python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
pysc2-master
pysc2/env/converter/cc/game_data/python/__init__.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This replaces google's gfile used for network storage. A more complete public version of gfile: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/platform/gfile.py """ import os # pylint: disable=invalid-name Exists = os.path.exists IsDirectory = os.path.isdir ListDir = os.listdir MakeDirs = os.makedirs Open = open
pysc2-master
pysc2/lib/gfile.py
#!/usr/bin/python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the point library.""" from absl.testing import absltest from pysc2.lib import point class FakePoint(object): def __init__(self): self.x = 5 self.y = 8 class PointTest(absltest.TestCase): def testBuild(self): self.assertEqual(point.Point(5, 8), point.Point.build(FakePoint())) def testAssignTo(self): f = FakePoint() self.assertEqual(5, f.x) self.assertEqual(8, f.y) point.Point(1, 2).assign_to(f) self.assertEqual(1, f.x) self.assertEqual(2, f.y) def testDist(self): a = point.Point(1, 1) b = point.Point(4, 5) self.assertEqual(5, a.dist(b)) def testDistSq(self): a = point.Point(1, 1) b = point.Point(4, 5) self.assertEqual(25, a.dist_sq(b)) def testLen(self): p = point.Point(3, 4) self.assertEqual(5, p.len()) def testScale(self): p = point.Point(3, 4) self.assertAlmostEqual(2, p.scale(2).len()) def testScaleMaxSize(self): p = point.Point(3, 4) self.assertEqual(p, p.scale_max_size(p)) self.assertEqual(point.Point(6, 8), p.scale_max_size(point.Point(8, 8))) self.assertEqual(point.Point(6, 8), p.scale_max_size(point.Point(100, 8))) self.assertEqual(point.Point(6, 8), p.scale_max_size(point.Point(6, 100))) def testScaleMinSize(self): p = point.Point(3, 4) self.assertEqual(p, p.scale_min_size(p)) self.assertEqual(point.Point(6, 8), p.scale_min_size(point.Point(6, 6))) self.assertEqual(point.Point(6, 8), p.scale_min_size(point.Point(2, 8))) self.assertEqual(point.Point(6, 8), p.scale_min_size(point.Point(6, 2))) def testMinDim(self): self.assertEqual(5, point.Point(5, 10).min_dim()) def testMaxDim(self): self.assertEqual(10, point.Point(5, 10).max_dim()) def testTranspose(self): self.assertEqual(point.Point(4, 3), point.Point(3, 4).transpose()) def testRound(self): p = point.Point(1.3, 2.6).round() self.assertEqual(point.Point(1, 3), p) self.assertIsInstance(p.x, int) self.assertIsInstance(p.y, int) def testCeil(self): p = point.Point(1.3, 2.6).ceil() self.assertEqual(point.Point(2, 3), p) self.assertIsInstance(p.x, int) self.assertIsInstance(p.y, int) def testFloor(self): p = point.Point(1.3, 2.6).floor() self.assertEqual(point.Point(1, 2), p) self.assertIsInstance(p.x, int) self.assertIsInstance(p.y, int) def testRotate(self): p = point.Point(0, 100) self.assertEqual(point.Point(-100, 0), p.rotate_deg(90).round()) self.assertEqual(point.Point(100, 0), p.rotate_deg(-90).round()) self.assertEqual(point.Point(0, -100), p.rotate_deg(180).round()) def testContainedCircle(self): self.assertTrue(point.Point(2, 2).contained_circle(point.Point(1, 1), 2)) self.assertFalse(point.Point(2, 2).contained_circle(point.Point(1, 1), 0.5)) def testBound(self): tl = point.Point(1, 2) br = point.Point(3, 4) self.assertEqual(tl, point.Point(0, 0).bound(tl, br)) self.assertEqual(br, point.Point(10, 10).bound(tl, br)) self.assertEqual(point.Point(1.5, 2), point.Point(1.5, 0).bound(tl, br)) class RectTest(absltest.TestCase): def testInit(self): r = point.Rect(1, 2, 3, 4) self.assertEqual(r.t, 1) self.assertEqual(r.l, 2) self.assertEqual(r.b, 3) self.assertEqual(r.r, 4) self.assertEqual(r.tl, point.Point(2, 1)) self.assertEqual(r.tr, point.Point(4, 1)) self.assertEqual(r.bl, point.Point(2, 3)) self.assertEqual(r.br, point.Point(4, 3)) def testInitBad(self): with self.assertRaises(TypeError): point.Rect(4, 3, 2, 1) # require t <= b, l <= r with self.assertRaises(TypeError): point.Rect(1) with self.assertRaises(TypeError): point.Rect(1, 2, 3) with self.assertRaises(TypeError): point.Rect() def testInitOnePoint(self): r = point.Rect(point.Point(1, 2)) self.assertEqual(r.t, 0) self.assertEqual(r.l, 0) self.assertEqual(r.b, 2) self.assertEqual(r.r, 1) self.assertEqual(r.tl, point.Point(0, 0)) self.assertEqual(r.tr, point.Point(1, 0)) self.assertEqual(r.bl, point.Point(0, 2)) self.assertEqual(r.br, point.Point(1, 2)) self.assertEqual(r.size, point.Point(1, 2)) self.assertEqual(r.center, point.Point(1, 2) / 2) self.assertEqual(r.area, 2) def testInitTwoPoints(self): r = point.Rect(point.Point(1, 2), point.Point(3, 4)) self.assertEqual(r.t, 2) self.assertEqual(r.l, 1) self.assertEqual(r.b, 4) self.assertEqual(r.r, 3) self.assertEqual(r.tl, point.Point(1, 2)) self.assertEqual(r.tr, point.Point(3, 2)) self.assertEqual(r.bl, point.Point(1, 4)) self.assertEqual(r.br, point.Point(3, 4)) self.assertEqual(r.size, point.Point(2, 2)) self.assertEqual(r.center, point.Point(2, 3)) self.assertEqual(r.area, 4) def testInitTwoPointsReversed(self): r = point.Rect(point.Point(3, 4), point.Point(1, 2)) self.assertEqual(r.t, 2) self.assertEqual(r.l, 1) self.assertEqual(r.b, 4) self.assertEqual(r.r, 3) self.assertEqual(r.tl, point.Point(1, 2)) self.assertEqual(r.tr, point.Point(3, 2)) self.assertEqual(r.bl, point.Point(1, 4)) self.assertEqual(r.br, point.Point(3, 4)) self.assertEqual(r.size, point.Point(2, 2)) self.assertEqual(r.center, point.Point(2, 3)) self.assertEqual(r.area, 4) def testArea(self): r = point.Rect(point.Point(1, 1), point.Point(3, 4)) self.assertEqual(r.area, 6) def testContains(self): r = point.Rect(point.Point(1, 1), point.Point(3, 3)) self.assertTrue(r.contains_point(point.Point(2, 2))) self.assertFalse(r.contains_circle(point.Point(2, 2), 5)) self.assertFalse(r.contains_point(point.Point(4, 4))) self.assertFalse(r.contains_circle(point.Point(4, 4), 5)) def testIntersectsCircle(self): r = point.Rect(point.Point(1, 1), point.Point(3, 3)) self.assertFalse(r.intersects_circle(point.Point(0, 0), 0.5)) self.assertFalse(r.intersects_circle(point.Point(0, 0), 1)) self.assertTrue(r.intersects_circle(point.Point(0, 0), 1.5)) self.assertTrue(r.intersects_circle(point.Point(0, 0), 2)) if __name__ == '__main__': absltest.main()
pysc2-master
pysc2/lib/point_test.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interface for tracking the number and/or latency of episodes and steps.""" class _EventTimer(object): """Example event timer to measure step and observation times.""" def __enter__(self): pass def __exit__(self, unused_exception_type, unused_exc_value, unused_traceback): pass class Metrics(object): """Interface for tracking the number and/or latency of episodes and steps.""" def __init__(self, map_name): pass def increment_instance(self): pass def increment_episode(self): pass def measure_step_time(self, num_steps=1): """Return a context manager to measure the time to perform N game steps.""" del num_steps return _EventTimer() def measure_observation_time(self): """Return a context manager to measure the time to get an observation.""" return _EventTimer() def close(self): pass def __del__(self): self.close()
pysc2-master
pysc2/lib/metrics.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A memoization decorator.""" def memoize(func): """Memoization decorator.""" class Memodict(dict): """A memoization decorator dict.""" __slots__ = () __name__ = func.__name__ __doc__ = func.__doc__ def __call__(self, *args): return self[args] def __missing__(self, args): ret = self[args] = func(*args) return ret return Memodict()
pysc2-master
pysc2/lib/memoize.py
#!/usr/bin/python # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for image_differencer.py.""" from absl.testing import absltest import numpy as np from pysc2.lib import image_differencer from pysc2.lib import proto_diff from s2clientprotocol import common_pb2 from s2clientprotocol import sc2api_pb2 as sc_pb from s2clientprotocol import spatial_pb2 class ImageDifferencerTest(absltest.TestCase): def testFilteredOut(self): result = image_differencer.image_differencer( path=proto_diff.ProtoPath(("observation", "actions", 1)), proto_a=None, proto_b=None) self.assertIsNone(result) def testFilteredIn(self): a = sc_pb.ResponseObservation( observation=sc_pb.Observation( feature_layer_data=spatial_pb2.ObservationFeatureLayer( renders=spatial_pb2.FeatureLayers( height_map=common_pb2.ImageData( bits_per_pixel=32, size=common_pb2.Size2DI(x=4, y=4), data=np.array([[0, 0, 0, 0], [1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1]], dtype=np.int32).tobytes() ) ) ))) b = sc_pb.ResponseObservation( observation=sc_pb.Observation( feature_layer_data=spatial_pb2.ObservationFeatureLayer( renders=spatial_pb2.FeatureLayers( height_map=common_pb2.ImageData( bits_per_pixel=32, size=common_pb2.Size2DI(x=4, y=4), data=np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [1, 1, 1, 0]], dtype=np.int32).tobytes() ) ) ))) result = image_differencer.image_differencer( path=proto_diff.ProtoPath(( "observation", "feature_layer_data", "renders", "height_map", "data")), proto_a=a, proto_b=b) self.assertEqual( result, "3 element(s) changed - [1][0]: 1 -> 0; [1][1]: 0 -> 1; [3][3]: 1 -> 0") if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/image_differencer_test.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define the static list of units for SC2. Generated by bin/gen_data.py.""" import enum # pylint: disable=invalid-name class Neutral(enum.IntEnum): """Neutral units.""" BattleStationMineralField = 886 BattleStationMineralField750 = 887 CarrionBird = 322 CleaningBot = 612 CollapsibleRockTower = 609 CollapsibleRockTowerDebris = 490 CollapsibleRockTowerDebrisRampLeft = 518 CollapsibleRockTowerDebrisRampRight = 517 CollapsibleRockTowerDiagonal = 588 CollapsibleRockTowerPushUnit = 561 CollapsibleRockTowerPushUnitRampLeft = 564 CollapsibleRockTowerPushUnitRampRight = 563 CollapsibleRockTowerRampLeft = 664 CollapsibleRockTowerRampRight = 663 CollapsibleTerranTower = 610 CollapsibleTerranTowerDebris = 485 CollapsibleTerranTowerDiagonal = 589 CollapsibleTerranTowerPushUnit = 562 CollapsibleTerranTowerPushUnitRampLeft = 559 CollapsibleTerranTowerPushUnitRampRight = 560 CollapsibleTerranTowerRampLeft = 590 CollapsibleTerranTowerRampRight = 591 Crabeetle = 662 Debris2x2NonConjoined = 475 DebrisRampLeft = 486 DebrisRampRight = 487 DestructibleBillboardTall = 350 DestructibleCityDebris4x4 = 628 DestructibleCityDebris6x6 = 629 DestructibleCityDebrisHugeDiagonalBLUR = 630 DestructibleDebris4x4 = 364 DestructibleDebris6x6 = 365 DestructibleDebrisRampDiagonalHugeBLUR = 377 DestructibleDebrisRampDiagonalHugeULBR = 376 DestructibleIce4x4 = 648 DestructibleIce6x6 = 649 DestructibleIceDiagonalHugeBLUR = 651 DestructibleRampDiagonalHugeBLUR = 373 DestructibleRampDiagonalHugeULBR = 372 DestructibleRock6x6 = 371 DestructibleRockEx14x4 = 638 DestructibleRockEx16x6 = 639 DestructibleRockEx1DiagonalHugeBLUR = 641 DestructibleRockEx1DiagonalHugeULBR = 640 DestructibleRockEx1HorizontalHuge = 643 DestructibleRockEx1VerticalHuge = 642 Dog = 336 InhibitorZoneMedium = 1958 InhibitorZoneSmall = 1957 KarakFemale = 324 LabBot = 661 LabMineralField = 665 LabMineralField750 = 666 Lyote = 321 MineralField = 341 MineralField450 = 1961 MineralField750 = 483 ProtossVespeneGeyser = 608 PurifierMineralField = 884 PurifierMineralField750 = 885 PurifierRichMineralField = 796 PurifierRichMineralField750 = 797 PurifierVespeneGeyser = 880 ReptileCrate = 877 RichMineralField = 146 RichMineralField750 = 147 RichVespeneGeyser = 344 Scantipede = 335 ShakurasVespeneGeyser = 881 SpacePlatformGeyser = 343 UnbuildableBricksDestructible = 473 UnbuildablePlatesDestructible = 474 UnbuildableRocksDestructible = 472 UtilityBot = 330 VespeneGeyser = 342 XelNagaDestructibleBlocker8NE = 1904 XelNagaDestructibleBlocker8SW = 1908 XelNagaTower = 149 class Protoss(enum.IntEnum): """Protoss units.""" Adept = 311 AdeptPhaseShift = 801 Archon = 141 Assimilator = 61 AssimilatorRich = 1955 Carrier = 79 Colossus = 4 CyberneticsCore = 72 DarkShrine = 69 DarkTemplar = 76 Disruptor = 694 DisruptorPhased = 733 FleetBeacon = 64 ForceField = 135 Forge = 63 Gateway = 62 HighTemplar = 75 Immortal = 83 Interceptor = 85 Mothership = 10 MothershipCore = 488 Nexus = 59 Observer = 82 ObserverSurveillanceMode = 1911 Oracle = 495 Phoenix = 78 PhotonCannon = 66 Probe = 84 Pylon = 60 PylonOvercharged = 894 RoboticsBay = 70 RoboticsFacility = 71 Sentry = 77 ShieldBattery = 1910 Stalker = 74 Stargate = 67 StasisTrap = 732 Tempest = 496 TemplarArchive = 68 TwilightCouncil = 65 VoidRay = 80 WarpGate = 133 WarpPrism = 81 WarpPrismPhasing = 136 Zealot = 73 class Terran(enum.IntEnum): """Terran units.""" Armory = 29 AutoTurret = 31 Banshee = 55 Barracks = 21 BarracksFlying = 46 BarracksReactor = 38 BarracksTechLab = 37 Battlecruiser = 57 Bunker = 24 CommandCenter = 18 CommandCenterFlying = 36 Cyclone = 692 EngineeringBay = 22 Factory = 27 FactoryFlying = 43 FactoryReactor = 40 FactoryTechLab = 39 FusionCore = 30 Ghost = 50 GhostAcademy = 26 GhostAlternate = 144 GhostNova = 145 Hellion = 53 Hellbat = 484 KD8Charge = 830 Liberator = 689 LiberatorAG = 734 MULE = 268 Marauder = 51 Marine = 48 Medivac = 54 MissileTurret = 23 Nuke = 58 OrbitalCommand = 132 OrbitalCommandFlying = 134 PlanetaryFortress = 130 PointDefenseDrone = 11 Raven = 56 Reactor = 6 Reaper = 49 Refinery = 20 RefineryRich = 1960 RepairDrone = 1913 SCV = 45 SensorTower = 25 SiegeTank = 33 SiegeTankSieged = 32 Starport = 28 StarportFlying = 44 StarportReactor = 42 StarportTechLab = 41 SupplyDepot = 19 SupplyDepotLowered = 47 TechLab = 5 Thor = 52 ThorHighImpactMode = 691 VikingAssault = 34 VikingFighter = 35 WidowMine = 498 WidowMineBurrowed = 500 class Zerg(enum.IntEnum): """Zerg units.""" Baneling = 9 BanelingBurrowed = 115 BanelingCocoon = 8 BanelingNest = 96 BroodLord = 114 BroodLordCocoon = 113 Broodling = 289 BroodlingEscort = 143 Changeling = 12 ChangelingMarine = 15 ChangelingMarineShield = 14 ChangelingZealot = 13 ChangelingZergling = 17 ChangelingZerglingWings = 16 Cocoon = 103 Corruptor = 112 CreepTumor = 87 CreepTumorBurrowed = 137 CreepTumorQueen = 138 Drone = 104 DroneBurrowed = 116 EvolutionChamber = 90 Extractor = 88 ExtractorRich = 1956 GreaterSpire = 102 Hatchery = 86 Hive = 101 Hydralisk = 107 HydraliskBurrowed = 117 HydraliskDen = 91 InfestationPit = 94 InfestedTerran = 7 InfestedTerranBurrowed = 120 InfestedTerranCocoon = 150 Infestor = 111 InfestorBurrowed = 127 Lair = 100 Larva = 151 Locust = 489 LocustFlying = 693 Lurker = 502 LurkerBurrowed = 503 LurkerDen = 504 LurkerCocoon = 501 Mutalisk = 108 NydusCanal = 142 NydusNetwork = 95 Overlord = 106 OverlordTransport = 893 OverlordTransportCocoon = 892 Overseer = 129 OverseerCocoon = 128 OverseerOversightMode = 1912 ParasiticBombDummy = 824 Queen = 126 QueenBurrowed = 125 Ravager = 688 RavagerBurrowed = 690 RavagerCocoon = 687 Roach = 110 RoachBurrowed = 118 RoachWarren = 97 SpawningPool = 89 SpineCrawler = 98 SpineCrawlerUprooted = 139 Spire = 92 SporeCrawler = 99 SporeCrawlerUprooted = 140 SwarmHost = 494 SwarmHostBurrowed = 493 Ultralisk = 109 UltraliskBurrowed = 131 UltraliskCavern = 93 Viper = 499 Zergling = 105 ZerglingBurrowed = 119 def get_unit_type(unit_id): for race in (Neutral, Protoss, Terran, Zerg): try: return race(unit_id) except ValueError: pass # Wrong race.
pysc2-master
pysc2/lib/units.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language gwritererning permissions and # limitations under the License. """Write a video based on a numpy array.""" from skvideo import io class VideoWriter(io.FFmpegWriter): """Write a video based on a numpy array. Subclass/wrap FFmpegWriter to make it easy to switch to a different library. """ def __init__(self, filename, frame_rate): super(VideoWriter, self).__init__( filename, outputdict={"-r": str(frame_rate)}) def add(self, frame): """Add a frame to the video based on a numpy array.""" self.writeFrame(frame) def __del__(self): self.close()
pysc2-master
pysc2/lib/video_writer.py
#!/usr/bin/python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for stopwatch.""" import os from absl.testing import absltest import mock from pysc2.lib import stopwatch def ham_dist(str1, str2): """Hamming distance. Count the number of differences between str1 and str2.""" assert len(str1) == len(str2) return sum(c1 != c2 for c1, c2 in zip(str1, str2)) class StatTest(absltest.TestCase): def testRange(self): stat = stopwatch.Stat() stat.add(1) stat.add(5) stat.add(3) self.assertEqual(stat.num, 3) self.assertEqual(stat.sum, 9) self.assertEqual(stat.min, 1) self.assertEqual(stat.max, 5) self.assertEqual(stat.avg, 3) def testParse(self): stat = stopwatch.Stat() stat.add(1) stat.add(3) out = str(stat) self.assertEqual(out, "sum: 4.0000, avg: 2.0000, dev: 1.0000, " "min: 1.0000, max: 3.0000, num: 2") # Allow a few small rounding errors self.assertLess(ham_dist(out, str(stopwatch.Stat.parse(out))), 5) class StopwatchTest(absltest.TestCase): @mock.patch("time.time") def testStopwatch(self, mock_time): mock_time.return_value = 0 sw = stopwatch.StopWatch() with sw("one"): mock_time.return_value += 0.002 with sw("one"): mock_time.return_value += 0.004 with sw("two"): with sw("three"): mock_time.return_value += 0.006 @sw.decorate def four(): mock_time.return_value += 0.004 four() @sw.decorate("five") def foo(): mock_time.return_value += 0.005 foo() out = str(sw) # The names should be in sorted order. names = [l.split(None)[0] for l in out.splitlines()[1:]] self.assertEqual(names, ["five", "four", "one", "two", "two.three"]) one_line = out.splitlines()[3].split(None) self.assertLess(one_line[5], one_line[6]) # min < max self.assertEqual(one_line[7], "2") # num # Can't test the rest since they'll be flaky. # Allow a few small rounding errors for the round trip. round_trip = str(stopwatch.StopWatch.parse(out)) self.assertLess(ham_dist(out, round_trip), 15, "%s != %s" % (out, round_trip)) def testDivideZero(self): sw = stopwatch.StopWatch() with sw("zero"): pass # Just make sure this doesn't have a divide by 0 for when the total is 0. self.assertIn("zero", str(sw)) @mock.patch.dict(os.environ, {"SC2_NO_STOPWATCH": "1"}) def testDecoratorDisabled(self): sw = stopwatch.StopWatch() self.assertEqual(round, sw.decorate(round)) self.assertEqual(round, sw.decorate("name")(round)) @mock.patch.dict(os.environ, {"SC2_NO_STOPWATCH": ""}) def testDecoratorEnabled(self): sw = stopwatch.StopWatch() self.assertNotEqual(round, sw.decorate(round)) self.assertNotEqual(round, sw.decorate("name")(round)) def testSpeed(self): count = 100 def run(): for _ in range(count): with sw("name"): pass sw = stopwatch.StopWatch() for _ in range(10): sw.enable() with sw("enabled"): run() sw.trace() with sw("trace"): run() sw.enable() # To catch "disabled". with sw("disabled"): sw.disable() run() # No asserts. Succeed but print the timings. print(sw) if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/stopwatch_test.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Named numpy arrays for easier access to the observation data. https://docs.scipy.org/doc/numpy/user/basics.rec.html are not enough since they actually change the type and don't interoperate well with tensorflow. """ import enum import numbers import re import numpy as np class NamedDict(dict): """A dict where you can use `d["element"]` or `d.element`.""" def __init__(self, *args, **kwargs): super(NamedDict, self).__init__(*args, **kwargs) self.__dict__ = self _NULL_SLICE = slice(None, None, None) # pylint: disable=protected-access class NamedNumpyArray(np.ndarray): """A subclass of ndarray that lets you give names to indices. This is a normal ndarray in the sense that you can always index by numbers and slices, though elipses don't work. Also, all elements have the same type, unlike a record array. Names should be a list of names per dimension in the ndarray shape. The names should be a list or tuple of strings, a namedtuple class (with names taken from _fields), or an IntEnum. Alternatively if you don't want to give a name to a particular dimension, use None. If your array only has one dimension, the second level of list can be skipped. Example usage: a = named_array.NamedNumpyArray([1, 3, 6], ["a", "b", "c"]) a.a, a[1], a["c"] => 1, 3, 6 b = named_array.NamedNumpyArray([[1, 3], [6, 8]], [["a", "b"], None]) b.a, b[1], b["a", 1] => [1, 3], [6, 8], 3 c = named_array.NamedNumpyArray([[1, 3], [6, 8]], [None, ["a", "b"]]) c[0].a, b[1, 0], b[1, "b"] => 1, 6, 8 Look at the tests for more examples including using enums and named tuples. """ # Details of how to subclass an ndarray are at: # https://docs.scipy.org/doc/numpy-1.13.0/user/basics.subclassing.html def __new__(cls, values, names, *args, **kwargs): obj = np.array(values, *args, **kwargs) if len(obj.shape) == 0: # pylint: disable=g-explicit-length-test raise ValueError("Scalar arrays are unsupported.") if len(obj.shape) == 1: if obj.shape[0] == 0 and names and names[0] is None: # Support arrays of length 0. names = [None] else: # Allow just a single dimension if the array is also single dimension. try: if len(names) > 1: names = [names] except TypeError: # len of a namedtuple is a TypeError names = [names] # Validate names! if not isinstance(names, (list, tuple)) or len(names) != len(obj.shape): raise ValueError( "Names must be a list of length equal to the array shape: %s != %s." % (len(names), len(obj.shape))) index_names = [] only_none = obj.shape[0] > 0 for i, o in enumerate(names): if o is None: index_names.append(o) else: only_none = False if isinstance(o, enum.EnumMeta): for j, n in enumerate(o._member_names_): if j != o[n]: raise ValueError("Enum has holes or doesn't start from 0.") o = o._member_names_ elif isinstance(o, type): # Assume namedtuple try: o = o._fields except AttributeError: raise ValueError("Bad names. Must be None, a list of strings, " "a namedtuple, or IntEnum.") elif isinstance(o, (list, tuple)): for n in o: if not isinstance(n, str): raise ValueError( "Bad name, must be a list of strings, not %s" % type(n)) else: raise ValueError("Bad names. Must be None, a list of strings, " "a namedtuple, or IntEnum.") if obj.shape[i] != len(o): raise ValueError( "Wrong number of names in dimension %s. Got %s, expected %s." % ( i, len(o), obj.shape[i])) index_names.append({n: j for j, n in enumerate(o)}) if only_none: raise ValueError("No names given. Use a normal numpy.ndarray instead.") # Finally convert to a NamedNumpyArray. obj = obj.view(cls) obj._index_names = index_names # [{name: index}, ...], dict per dimension. return obj def __array_finalize__(self, obj): if obj is None: return self._index_names = getattr(obj, "_index_names", None) def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError("Bad attribute name: %s" % name) def __setattr__(self, name, value): if name == "_index_names": # Need special handling to avoid recursion. super(NamedNumpyArray, self).__setattr__(name, value) else: self.__setitem__(name, value) def __getitem__(self, indices): """Get by indexing lookup.""" indices = self._indices(indices) obj = super(NamedNumpyArray, self).__getitem__(indices) if (isinstance(indices, np.ndarray) and len(indices.shape) > 1 and indices.dtype == bool): # Is this a multi-dimensional mask, eg: obj[obj == 5] ? # Multi-dimensional masks return a single dimensional array, and it's # unclear what it means for the result to have names, so return a normal # numpy array. return np.array(obj) if isinstance(obj, np.ndarray): # If this is a view, index the names too. if not isinstance(indices, tuple): indices = (indices,) new_names = [] dim = 0 for i, index in enumerate(indices): if isinstance(index, numbers.Integral): dim += 1 # Drop this dimension's names. elif index is Ellipsis: # Copy all the dimensions' names through. end = len(self.shape) - len(indices) + i + 1 for j in range(dim, end): new_names.append(self._index_names[j]) dim = end elif index is np.newaxis: # Add an unnamed dimension. new_names.append(None) # Don't modify dim, as we're still working on the same one. elif (self._index_names[dim] is None or (isinstance(index, slice) and index == _NULL_SLICE)): # Keep unnamed dimensions or ones where the slice is a no-op. new_names.append(self._index_names[dim]) dim += 1 elif isinstance(index, (slice, list, np.ndarray)): if isinstance(index, np.ndarray) and len(index.shape) > 1: raise TypeError("What does it mean to index into a named array by " "a multidimensional array? %s" % index) # Rebuild the index of names for the various forms of slicing. names = sorted(self._index_names[dim].items(), key=lambda item: item[1]) names = np.array(names, dtype=object) # Support full numpy slicing. sliced = names[index] # Actually slice it. indexed = {n: j for j, (n, _) in enumerate(sliced)} # Reindex. if len(sliced) != len(indexed): # Names aren't unique, so drop the names for this dimension. indexed = None new_names.append(indexed) dim += 1 else: raise TypeError("Unknown index: %s; %s" % (type(index), index)) obj._index_names = new_names + self._index_names[dim:] if len(obj._index_names) != len(obj.shape): raise IndexError("Names don't match object shape: %s != %s" % ( len(obj.shape), len(obj._index_names))) return obj def __setitem__(self, indices, value): super(NamedNumpyArray, self).__setitem__(self._indices(indices), value) def __getslice__(self, i, j): # deprecated, but still needed... # https://docs.python.org/2.0/ref/sequence-methods.html return self[max(0, i):max(0, j):] def __setslice__(self, i, j, seq): # deprecated, but still needed... self[max(0, i):max(0, j):] = seq def __repr__(self): """A repr, parsing the original and adding the names param.""" names = [] for dim_names in self._index_names: if dim_names: dim_names = [n for n, _ in sorted(dim_names.items(), key=lambda item: item[1])] if len(dim_names) > 11: dim_names = dim_names[:5] + ["..."] + dim_names[-5:] names.append(dim_names) if len(names) == 1: names = names[0] # "NamedNumpyArray([1, 3, 6], dtype=int32)" -> # ["NamedNumpyArray", "[1, 3, 6]", ", dtype=int32"] matches = re.findall(r"^(\w+)\(([\d\., \n\[\]]*)(,\s+\w+=.+)?\)$", np.array_repr(self))[0] space = "\n " if matches[2] and matches[2][1] == "\n" else "" return "%s(%s,%s %s%s)" % ( matches[0], matches[1], space, names, matches[2]) def __reduce__(self): # Support pickling: https://stackoverflow.com/a/26599346 state = super(NamedNumpyArray, self).__reduce__() # pytype: disable=attribute-error assert len(state) == 3 # Verify numpy hasn't changed their protocol. return (state[0], state[1], state[2] + (self._index_names,)) def __setstate__(self, state): # Support pickling: https://stackoverflow.com/a/26599346 self._index_names = state[-1] super(NamedNumpyArray, self).__setstate__(state[0:-1]) # pytype: disable=attribute-error def _indices(self, indices): """Turn all string indices into int indices, preserving ellipsis.""" if isinstance(indices, tuple): out = [] dim = 0 for i, index in enumerate(indices): if index is Ellipsis: out.append(index) dim = len(self.shape) - len(indices) + i + 1 elif index is np.newaxis: out.append(None) else: out.append(self._get_index(dim, index)) dim += 1 return tuple(out) else: return self._get_index(0, indices) def _get_index(self, dim, index): """Turn a string into a real index, otherwise return the index.""" if isinstance(index, str): try: return self._index_names[dim][index] except KeyError: raise KeyError("Name '%s' is invalid for axis %s." % (index, dim)) except TypeError: raise TypeError( "Trying to access an unnamed axis %s by name: '%s'" % (dim, index)) else: return index
pysc2-master
pysc2/lib/named_array.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Protocol library to make communication easy.""" import contextlib import enum import itertools import os import socket import sys import time from absl import flags from absl import logging from pysc2.lib import stopwatch import websocket from s2clientprotocol import sc2api_pb2 as sc_pb flags.DEFINE_integer("sc2_verbose_protocol", 0, ("Print the communication packets with SC2. 0 disables. " "-1 means all. >0 will print that many lines per " "packet. 20 is a good starting value.")) FLAGS = flags.FLAGS sw = stopwatch.sw # Create a python version of the Status enum in the proto. Status = enum.Enum("Status", sc_pb.Status.items()) # pylint: disable=invalid-name MAX_WIDTH = int(os.getenv("COLUMNS", "200")) # Get your TTY width. class ConnectionError(Exception): # pylint: disable=redefined-builtin """Failed to read/write a message, details in the error string.""" pass class ProtocolError(Exception): # pylint: disable=g-bad-exception-name """SC2 responded with an error message likely due to a bad request or bug.""" pass @contextlib.contextmanager def catch_websocket_connection_errors(): """A context manager that translates websocket errors into ConnectionError.""" try: yield except websocket.WebSocketConnectionClosedException as e: raise ConnectionError("Connection already closed. SC2 probably crashed. " "Check the error log.") from e except websocket.WebSocketTimeoutException as e: raise ConnectionError("Websocket timed out.") from e except socket.error as e: raise ConnectionError("Socket error: %s" % e) from e class StarcraftProtocol(object): """Defines the protocol for chatting with starcraft.""" def __init__(self, sock): self._status = Status.launched self._sock = sock self._port = sock.sock.getpeername()[1] self._count = itertools.count(1) @property def status(self): return self._status def close(self): if self._sock: self._sock.close() self._sock = None self._status = Status.quit @sw.decorate def read(self): """Read a Response, do some validation, and return it.""" if FLAGS.sc2_verbose_protocol: self._log("-------------- [%s] Reading response --------------", self._port) start = time.time() response = self._read() if FLAGS.sc2_verbose_protocol: self._log("-------------- [%s] Read %s in %0.1f msec --------------\n%s", self._port, response.WhichOneof("response"), 1000 * (time.time() - start), self._packet_str(response)) if not response.HasField("status"): raise ProtocolError("Got an incomplete response without a status.") prev_status = self._status self._status = Status(response.status) # pytype: disable=not-callable if response.error: err_str = ("Error in RPC response (likely a bug). " "Prev status: %s, new status: %s, error:\n%s" % ( prev_status, self._status, "\n".join(response.error))) logging.error(err_str) raise ProtocolError(err_str) return response @sw.decorate def write(self, request): """Write a Request.""" if FLAGS.sc2_verbose_protocol: self._log("-------------- [%s] Writing request: %s --------------\n%s", self._port, request.WhichOneof("request"), self._packet_str(request)) self._write(request) def send_req(self, request): """Write a pre-filled Request and return the Response.""" self.write(request) return self.read() def send(self, **kwargs): """Create and send a specific request, and return the response. For example: send(ping=sc_pb.RequestPing()) => sc_pb.ResponsePing Args: **kwargs: A single kwarg with the name and value to fill in to Request. Returns: The Response corresponding to your request. Raises: ConnectionError: if it gets a different response. """ assert len(kwargs) == 1, "Must make a single request." name = list(kwargs.keys())[0] req = sc_pb.Request(**kwargs) req.id = next(self._count) try: res = self.send_req(req) except ConnectionError as e: raise ConnectionError("Error during %s: %s" % (name, e)) from e if res.HasField("id") and res.id != req.id: raise ConnectionError( "Error during %s: Got a response with a different id" % name) return getattr(res, name) def _packet_str(self, packet): """Return a string form of this packet.""" max_lines = FLAGS.sc2_verbose_protocol packet_str = str(packet).strip() if max_lines <= 0: return packet_str lines = packet_str.split("\n") line_count = len(lines) lines = [line[:MAX_WIDTH] for line in lines[:max_lines + 1]] if line_count > max_lines + 1: # +1 to prefer the last line to skipped msg. lines[-1] = "***** %s lines skipped *****" % (line_count - max_lines) return "\n".join(lines) def _log(self, s, *args): r"""Log a string. It flushes but doesn't append \n, so do that yourself.""" # TODO(tewalds): Should this be using logging.info instead? How to see them # outside of google infrastructure? sys.stderr.write((s + "\n") % args) sys.stderr.flush() def _read(self): """Actually read the response and parse it, returning a Response.""" with sw("read_response"): with catch_websocket_connection_errors(): response_str = self._sock.recv() if not response_str: raise ProtocolError("Got an empty response from SC2.") with sw("parse_response"): response = sc_pb.Response.FromString(response_str) return response def _write(self, request): """Actually serialize and write the request.""" with sw("serialize_request"): request_str = request.SerializeToString() with sw("write_request"): with catch_websocket_connection_errors(): self._sock.send(request_str)
pysc2-master
pysc2/lib/protocol.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define the static list of buffs for SC2.""" import enum # pylint: disable=invalid-name class Buffs(enum.IntEnum): """The list of buffs, as generated by bin/gen_data.py.""" BansheeCloak = 7 BlindingCloud = 83 BlindingCloudStructure = 38 CarryHarvestableVespeneGeyserGas = 273 CarryHarvestableVespeneGeyserGasProtoss = 274 CarryHarvestableVespeneGeyserGasZerg = 275 CarryHighYieldMineralFieldMinerals = 272 CarryMineralFieldMinerals = 271 ChannelSnipeCombat = 145 Charging = 30 ChronoBoostEnergyCost = 281 CloakFieldEffect = 29 Contaminated = 36 EMPDecloak = 16 FungalGrowth = 17 GhostCloak = 6 GhostHoldFire = 12 GhostHoldFireB = 13 GravitonBeam = 5 GuardianShield = 18 ImmortalOverload = 102 InhibitorZoneTemporalField = 289 LockOn = 116 LurkerHoldFire = 136 LurkerHoldFireB = 137 MedivacSpeedBoost = 89 NeuralParasite = 22 OracleRevelation = 49 OracleStasisTrapTarget = 129 OracleWeapon = 99 ParasiticBomb = 132 ParasiticBombSecondaryUnitSearch = 134 ParasiticBombUnitKU = 133 PowerUserWarpable = 8 PsiStorm = 28 QueenSpawnLarvaTimer = 11 RavenScramblerMissile = 277 RavenShredderMissileArmorReduction = 280 RavenShredderMissileTint = 279 Slow = 33 Stimpack = 27 StimpackMarauder = 24 SupplyDrop = 25 TemporalField = 121 ViperConsumeStructure = 59 VoidRaySpeedUpgrade = 288 VoidRaySwarmDamageBoost = 122
pysc2-master
pysc2/lib/buffs.py
# Copyright 2017-2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launch the game and set up communication.""" import os import platform import shutil import subprocess import tempfile import time from absl import flags from absl import logging import portpicker from pysc2.lib import remote_controller from pysc2.lib import stopwatch flags.DEFINE_bool( "sc2_verbose", False, "Enable SC2 verbose logging.", allow_hide_cpp=True) flags.DEFINE_bool( "sc2_verbose_mp", False, "Enable SC2 verbose multiplayer logging.") flags.DEFINE_bool("sc2_gdb", False, "Run SC2 in gdb.") flags.DEFINE_bool("sc2_strace", False, "Run SC2 in strace.") flags.DEFINE_integer("sc2_port", None, "If set, connect to the instance on " "localhost:sc2_port instead of launching one.") FLAGS = flags.FLAGS sw = stopwatch.sw class SC2LaunchError(Exception): pass class StarcraftProcess(object): """Launch a starcraft server, initialize a controller, and later, clean up. This is best used from run_configs, which decides which version to run, and where to find it. It is important to call `close` or use it as a context manager, otherwise you'll likely leak temp files and SC2 processes. """ def __init__(self, run_config, exec_path, version, full_screen=False, extra_args=None, verbose=False, host=None, port=None, connect=True, timeout_seconds=None, window_size=(640, 480), window_loc=(50, 50), **kwargs): """Launch the SC2 process. Args: run_config: `run_configs.lib.RunConfig` object. exec_path: Path to the binary to run. version: `run_configs.lib.Version` object. full_screen: Whether to launch the game window full_screen on win/mac. extra_args: List of additional args for the SC2 process. verbose: Whether to have the SC2 process do verbose logging. host: IP for the game to listen on for its websocket. This is usually "127.0.0.1", or "::1", but could be others as well. port: Port SC2 should listen on for the websocket. connect: Whether to create a RemoteController to connect. timeout_seconds: Timeout for the remote controller. window_size: Screen size if not full screen. window_loc: Screen location if not full screen. **kwargs: Extra arguments for _launch (useful for subclasses). """ self._proc = None self._controller = None self._check_exists(exec_path) self._tmp_dir = tempfile.mkdtemp(prefix="sc-", dir=run_config.tmp_dir) self._host = host or "127.0.0.1" self._port = FLAGS.sc2_port or port or portpicker.pick_unused_port() self._version = version args = [ exec_path, "-listen", self._host, "-port", str(self._port), "-dataDir", os.path.join(run_config.data_dir, ""), "-tempDir", os.path.join(self._tmp_dir, ""), ] if ":" in self._host: args += ["-ipv6"] if platform.system() != "Linux": if full_screen: args += ["-displayMode", "1"] else: args += [ "-displayMode", "0", "-windowwidth", str(window_size[0]), "-windowheight", str(window_size[1]), "-windowx", str(window_loc[0]), "-windowy", str(window_loc[1]), ] if verbose or FLAGS.sc2_verbose: args += ["-verbose"] if FLAGS.sc2_verbose_mp: args += ["-verboseMP"] if self._version and self._version.data_version: args += ["-dataVersion", self._version.data_version.upper()] if extra_args: args += extra_args if FLAGS.sc2_gdb: print("Launching: gdb", args[0]) print("GDB run command:") print(" run %s" % " ".join(args[1:])) print("\n") args = ["gdb", args[0]] timeout_seconds = 3600 * 6 elif FLAGS.sc2_strace: strace_out = "/tmp/sc2-strace.txt" print("Launching in strace. Redirecting output to", strace_out) args = ["strace", "-f", "-o", strace_out] + args else: logging.info("Launching SC2: %s", " ".join(args)) try: with sw("startup"): if not FLAGS.sc2_port: self._proc = self._launch(run_config, args, **kwargs) if connect: self._controller = remote_controller.RemoteController( self._host, self._port, self, timeout_seconds=timeout_seconds) except: self.close() raise @sw.decorate def close(self): """Shut down the game and clean up.""" if hasattr(self, "_controller") and self._controller: self._controller.quit() self._controller.close() self._controller = None self._shutdown() if hasattr(self, "_port") and self._port: if not FLAGS.sc2_port: portpicker.return_port(self._port) self._port = None if hasattr(self, "_tmp_dir") and os.path.exists(self._tmp_dir): shutil.rmtree(self._tmp_dir) @property def controller(self): return self._controller @property def host(self): return self._host @property def port(self): return self._port @property def version(self): return self._version def __enter__(self): return self.controller def __exit__(self, unused_exception_type, unused_exc_value, unused_traceback): self.close() def __del__(self): # Prefer using a context manager, but this cleans most other cases. self.close() def _check_exists(self, exec_path): if not os.path.isfile(exec_path): raise RuntimeError("Trying to run '%s', but it doesn't exist" % exec_path) if not os.access(exec_path, os.X_OK): raise RuntimeError( "Trying to run '%s', but it isn't executable." % exec_path) def _launch(self, run_config, args, **kwargs): """Launch the process and return the process object.""" try: with sw("popen"): return subprocess.Popen( args, cwd=run_config.cwd, env=run_config.env, **kwargs) except OSError as e: logging.exception("Failed to launch") raise SC2LaunchError("Failed to launch: %s" % args) from e def _shutdown(self): """Terminate the sub-process.""" if self._proc: ret = _shutdown_proc(self._proc, 3) logging.info("Shutdown with return code: %s", ret) self._proc = None @property def running(self): if FLAGS.sc2_port: return True # poll returns None if it's running, otherwise the exit code. return self._proc and (self._proc.poll() is None) @property def pid(self): return self._proc.pid if self.running else None def _shutdown_proc(p, timeout): """Wait for a proc to shut down, then terminate or kill it after `timeout`.""" freq = 10 # how often to check per second for _ in range(1 + timeout * freq): p.terminate() ret = p.poll() if ret is not None: logging.info("Shutdown gracefully.") return ret time.sleep(1 / freq) logging.warning("Killing the process.") p.kill() return p.wait()
pysc2-master
pysc2/lib/sc_process.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define a flag type for points.""" from absl import flags from pysc2.lib import point # Let absl.flags know that DEFINE_point should show up in the caller's module. flags.disclaim_key_flags() class PointParser(flags.ArgumentParser): """Parse a flag into a pysc2.lib.point.Point.""" def parse(self, argument): if not argument or argument == "0": return None if isinstance(argument, int): args = [argument] elif isinstance(argument, (list, tuple)): args = argument elif isinstance(argument, str): args = argument.split(",") else: raise ValueError( "Invalid point: '%r'. Valid: '<int>' or '<int>,<int>'." % argument) args = [int(v) for v in args] if len(args) == 1: args *= 2 if len(args) == 2: return point.Point(args[0], args[1]) raise ValueError( "Invalid point: '%s'. Valid: '<int>' or '<int>,<int>'." % argument) def flag_type(self): return "pysc2.lib.point.Point" class PointSerializer(flags.ArgumentSerializer): """Custom serializer for pysc2.lib.point.Point.""" def serialize(self, value): return str(value) def DEFINE_point(name, default, help_string, flag_values=flags.FLAGS, **args): # pylint: disable=invalid-name,redefined-builtin """Registers a flag whose value parses as a point.""" flags.DEFINE(PointParser(), name, default, help_string, flag_values, PointSerializer(), **args)
pysc2-master
pysc2/lib/point_flag.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define the static list of types and actions for SC2.""" import collections import enum import numbers import numpy from pysc2.lib import point from s2clientprotocol import spatial_pb2 as sc_spatial from s2clientprotocol import ui_pb2 as sc_ui class ActionSpace(enum.Enum): FEATURES = 1 # Act in feature layer pixel space with FUNCTIONS below. RGB = 2 # Act in RGB pixel space with FUNCTIONS below. RAW = 3 # Act with unit tags with RAW_FUNCTIONS below. def spatial(action, action_space): """Choose the action space for the action proto.""" if action_space == ActionSpace.FEATURES: return action.action_feature_layer elif action_space == ActionSpace.RGB: return action.action_render else: raise ValueError("Unexpected value for action_space: %s" % action_space) def no_op(action, action_space): del action, action_space def move_camera(action, action_space, minimap): """Move the camera.""" minimap.assign_to(spatial(action, action_space).camera_move.center_minimap) def select_point(action, action_space, select_point_act, screen): """Select a unit at a point.""" select = spatial(action, action_space).unit_selection_point screen.assign_to(select.selection_screen_coord) select.type = select_point_act def select_rect(action, action_space, select_add, screen, screen2): """Select units within a rectangle.""" select = spatial(action, action_space).unit_selection_rect out_rect = select.selection_screen_coord.add() screen_rect = point.Rect(screen, screen2) screen_rect.tl.assign_to(out_rect.p0) screen_rect.br.assign_to(out_rect.p1) select.selection_add = bool(select_add) def select_idle_worker(action, action_space, select_worker): """Select an idle worker.""" del action_space action.action_ui.select_idle_worker.type = select_worker def select_army(action, action_space, select_add): """Select the entire army.""" del action_space action.action_ui.select_army.selection_add = select_add def select_warp_gates(action, action_space, select_add): """Select all warp gates.""" del action_space action.action_ui.select_warp_gates.selection_add = select_add def select_larva(action, action_space): """Select all larva.""" del action_space action.action_ui.select_larva.SetInParent() # Adds the empty proto field. def select_unit(action, action_space, select_unit_act, select_unit_id): """Select a specific unit from the multi-unit selection.""" del action_space select = action.action_ui.multi_panel select.type = select_unit_act select.unit_index = select_unit_id def control_group(action, action_space, control_group_act, control_group_id): """Act on a control group, selecting, setting, etc.""" del action_space select = action.action_ui.control_group select.action = control_group_act select.control_group_index = control_group_id def unload(action, action_space, unload_id): """Unload a unit from a transport/bunker/nydus/etc.""" del action_space action.action_ui.cargo_panel.unit_index = unload_id def build_queue(action, action_space, build_queue_id): """Cancel a unit in the build queue.""" del action_space action.action_ui.production_panel.unit_index = build_queue_id def cmd_quick(action, action_space, ability_id, queued): """Do a quick command like 'Stop' or 'Stim'.""" action_cmd = spatial(action, action_space).unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued def cmd_screen(action, action_space, ability_id, queued, screen): """Do a command that needs a point on the screen.""" action_cmd = spatial(action, action_space).unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued screen.assign_to(action_cmd.target_screen_coord) def cmd_minimap(action, action_space, ability_id, queued, minimap): """Do a command that needs a point on the minimap.""" action_cmd = spatial(action, action_space).unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued minimap.assign_to(action_cmd.target_minimap_coord) def autocast(action, action_space, ability_id): """Toggle autocast.""" del action_space action.action_ui.toggle_autocast.ability_id = ability_id def raw_no_op(action): del action def raw_move_camera(action, world): """Move the camera.""" action_cmd = action.action_raw.camera_move world.assign_to(action_cmd.center_world_space) def raw_cmd(action, ability_id, queued, unit_tags): """Do a raw command to another unit.""" action_cmd = action.action_raw.unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued if not isinstance(unit_tags, (tuple, list)): unit_tags = [unit_tags] action_cmd.unit_tags.extend(unit_tags) def raw_cmd_pt(action, ability_id, queued, unit_tags, world): """Do a raw command to another unit towards a point.""" action_cmd = action.action_raw.unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued if not isinstance(unit_tags, (tuple, list)): unit_tags = [unit_tags] action_cmd.unit_tags.extend(unit_tags) world.assign_to(action_cmd.target_world_space_pos) def raw_cmd_unit(action, ability_id, queued, unit_tags, target_unit_tag): """Do a raw command to another unit towards a unit.""" action_cmd = action.action_raw.unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued if not isinstance(unit_tags, (tuple, list)): unit_tags = [unit_tags] action_cmd.unit_tags.extend(unit_tags) action_cmd.target_unit_tag = target_unit_tag def raw_autocast(action, ability_id, unit_tags): """Toggle autocast.""" action_cmd = action.action_raw.toggle_autocast action_cmd.ability_id = ability_id if not isinstance(unit_tags, (tuple, list)): unit_tags = [unit_tags] action_cmd.unit_tags.extend(unit_tags) def numpy_to_python(val): """Convert numpy types to their corresponding python types.""" if isinstance(val, (int, float)): return val if isinstance(val, str): return val if (isinstance(val, numpy.number) or isinstance(val, numpy.ndarray) and not val.shape): # numpy.array(1) return val.item() if isinstance(val, (list, tuple, numpy.ndarray)): return [numpy_to_python(v) for v in val] raise ValueError("Unknown value. Type: %s, repr: %s" % (type(val), repr(val))) class ArgumentType(collections.namedtuple( "ArgumentType", ["id", "name", "sizes", "fn", "values", "count"])): """Represents a single argument type. Attributes: id: The argument id. This is unique. name: The name of the argument, also unique. sizes: The max+1 of each of the dimensions this argument takes. fn: The function to convert the list of integers into something more meaningful to be set in the protos to send to the game. values: An enum representing the values this argument type could hold. None if this isn't an enum argument type. count: Number of valid values. Only useful for unit_tags. """ __slots__ = () def __str__(self): return "%s/%s %s" % (self.id, self.name, list(self.sizes)) def __reduce__(self): return self.__class__, tuple(self) @classmethod def enum(cls, options, values): """Create an ArgumentType where you choose one of a set of known values.""" names, real = zip(*options) del names # unused def factory(i, name): return cls(i, name, (len(real),), lambda a: real[a[0]], values, None) return factory @classmethod def scalar(cls, value): """Create an ArgumentType with a single scalar in range(value).""" return lambda i, name: cls(i, name, (value,), lambda a: a[0], None, None) @classmethod def point(cls): # No range because it's unknown at this time. """Create an ArgumentType that is represented by a point.Point.""" def factory(i, name): return cls(i, name, (0, 0), lambda a: point.Point(*a).floor(), None, None) return factory @classmethod def spec(cls, id_, name, sizes): """Create an ArgumentType to be used in ValidActions.""" return cls(id_, name, sizes, None, None, None) @classmethod def unit_tags(cls, count, size): """Create an ArgumentType with a list of unbounded ints.""" def clean(arg): arg = numpy_to_python(arg) if isinstance(arg, list) and len(arg) == 1 and isinstance(arg[0], list): arg = arg[0] # Support [[list, of, tags]]. return arg[:count] return lambda i, name: cls(i, name, (size,), clean, None, count) class Arguments(collections.namedtuple("Arguments", [ "screen", "minimap", "screen2", "queued", "control_group_act", "control_group_id", "select_point_act", "select_add", "select_unit_act", "select_unit_id", "select_worker", "build_queue_id", "unload_id"])): """The full list of argument types. Take a look at TYPES and FUNCTION_TYPES for more details. Attributes: screen: A point on the screen. minimap: A point on the minimap. screen2: The second point for a rectangle. This is needed so that no function takes the same type twice. queued: Whether the action should be done immediately or after all other actions queued for this unit. control_group_act: What to do with the control group. control_group_id: Which control group to do it with. select_point_act: What to do with the unit at the point. select_add: Whether to add the unit to the selection or replace it. select_unit_act: What to do when selecting a unit by id. select_unit_id: Which unit to select by id. select_worker: What to do when selecting a worker. build_queue_id: Which build queue index to target. unload_id: Which unit to target in a transport/nydus/command center. """ __slots__ = () @classmethod def types(cls, **kwargs): """Create an Arguments of the possible Types.""" named = {name: factory(Arguments._fields.index(name), name) for name, factory in kwargs.items()} return cls(**named) def __reduce__(self): return self.__class__, tuple(self) class RawArguments(collections.namedtuple("RawArguments", [ "world", "queued", "unit_tags", "target_unit_tag"])): """The full list of argument types. Take a look at TYPES and FUNCTION_TYPES for more details. Attributes: world: A point in world coordinates queued: Whether the action should be done immediately or after all other actions queued for this unit. unit_tags: Which units should execute this action. target_unit_tag: The target unit of this action. """ __slots__ = () @classmethod def types(cls, **kwargs): """Create an Arguments of the possible Types.""" named = {name: factory(RawArguments._fields.index(name), name) for name, factory in kwargs.items()} return cls(**named) def __reduce__(self): return self.__class__, tuple(self) def _define_position_based_enum(name, options): return enum.IntEnum( name, {opt_name: i for i, (opt_name, _) in enumerate(options)}) QUEUED_OPTIONS = [ ("now", False), ("queued", True), ] Queued = _define_position_based_enum( # pylint: disable=invalid-name "Queued", QUEUED_OPTIONS) CONTROL_GROUP_ACT_OPTIONS = [ ("recall", sc_ui.ActionControlGroup.Recall), ("set", sc_ui.ActionControlGroup.Set), ("append", sc_ui.ActionControlGroup.Append), ("set_and_steal", sc_ui.ActionControlGroup.SetAndSteal), ("append_and_steal", sc_ui.ActionControlGroup.AppendAndSteal), ] ControlGroupAct = _define_position_based_enum( # pylint: disable=invalid-name "ControlGroupAct", CONTROL_GROUP_ACT_OPTIONS) SELECT_POINT_ACT_OPTIONS = [ ("select", sc_spatial.ActionSpatialUnitSelectionPoint.Select), ("toggle", sc_spatial.ActionSpatialUnitSelectionPoint.Toggle), ("select_all_type", sc_spatial.ActionSpatialUnitSelectionPoint.AllType), ("add_all_type", sc_spatial.ActionSpatialUnitSelectionPoint.AddAllType), ] SelectPointAct = _define_position_based_enum( # pylint: disable=invalid-name "SelectPointAct", SELECT_POINT_ACT_OPTIONS) SELECT_ADD_OPTIONS = [ ("select", False), ("add", True), ] SelectAdd = _define_position_based_enum( # pylint: disable=invalid-name "SelectAdd", SELECT_ADD_OPTIONS) SELECT_UNIT_ACT_OPTIONS = [ ("select", sc_ui.ActionMultiPanel.SingleSelect), ("deselect", sc_ui.ActionMultiPanel.DeselectUnit), ("select_all_type", sc_ui.ActionMultiPanel.SelectAllOfType), ("deselect_all_type", sc_ui.ActionMultiPanel.DeselectAllOfType), ] SelectUnitAct = _define_position_based_enum( # pylint: disable=invalid-name "SelectUnitAct", SELECT_UNIT_ACT_OPTIONS) SELECT_WORKER_OPTIONS = [ ("select", sc_ui.ActionSelectIdleWorker.Set), ("add", sc_ui.ActionSelectIdleWorker.Add), ("select_all", sc_ui.ActionSelectIdleWorker.All), ("add_all", sc_ui.ActionSelectIdleWorker.AddAll), ] SelectWorker = _define_position_based_enum( # pylint: disable=invalid-name "SelectWorker", SELECT_WORKER_OPTIONS) # The list of known types. TYPES = Arguments.types( screen=ArgumentType.point(), minimap=ArgumentType.point(), screen2=ArgumentType.point(), queued=ArgumentType.enum(QUEUED_OPTIONS, Queued), control_group_act=ArgumentType.enum( CONTROL_GROUP_ACT_OPTIONS, ControlGroupAct), control_group_id=ArgumentType.scalar(10), select_point_act=ArgumentType.enum( SELECT_POINT_ACT_OPTIONS, SelectPointAct), select_add=ArgumentType.enum(SELECT_ADD_OPTIONS, SelectAdd), select_unit_act=ArgumentType.enum(SELECT_UNIT_ACT_OPTIONS, SelectUnitAct), select_unit_id=ArgumentType.scalar(500), # Depends on current selection. select_worker=ArgumentType.enum(SELECT_WORKER_OPTIONS, SelectWorker), build_queue_id=ArgumentType.scalar(10), # Depends on current build queue. unload_id=ArgumentType.scalar(500), # Depends on the current loaded units. ) RAW_TYPES = RawArguments.types( world=ArgumentType.point(), queued=ArgumentType.enum(QUEUED_OPTIONS, Queued), unit_tags=ArgumentType.unit_tags(512, 512), target_unit_tag=ArgumentType.unit_tags(1, 512), ) # Which argument types do each function need? FUNCTION_TYPES = { no_op: [], move_camera: [TYPES.minimap], select_point: [TYPES.select_point_act, TYPES.screen], select_rect: [TYPES.select_add, TYPES.screen, TYPES.screen2], select_unit: [TYPES.select_unit_act, TYPES.select_unit_id], control_group: [TYPES.control_group_act, TYPES.control_group_id], select_idle_worker: [TYPES.select_worker], select_army: [TYPES.select_add], select_warp_gates: [TYPES.select_add], select_larva: [], unload: [TYPES.unload_id], build_queue: [TYPES.build_queue_id], cmd_quick: [TYPES.queued], cmd_screen: [TYPES.queued, TYPES.screen], cmd_minimap: [TYPES.queued, TYPES.minimap], autocast: [], raw_no_op: [], raw_cmd: [RAW_TYPES.queued, RAW_TYPES.unit_tags], raw_cmd_pt: [RAW_TYPES.queued, RAW_TYPES.unit_tags, RAW_TYPES.world], raw_cmd_unit: [RAW_TYPES.queued, RAW_TYPES.unit_tags, RAW_TYPES.target_unit_tag], raw_move_camera: [RAW_TYPES.world], raw_autocast: [RAW_TYPES.unit_tags], } # Which ones need an ability? ABILITY_FUNCTIONS = {cmd_quick, cmd_screen, cmd_minimap, autocast} RAW_ABILITY_FUNCTIONS = {raw_cmd, raw_cmd_pt, raw_cmd_unit, raw_autocast} # Which ones require a point? POINT_REQUIRED_FUNCS = { False: {cmd_quick, autocast}, True: {cmd_screen, cmd_minimap, autocast}} always = lambda _: True class Function(collections.namedtuple( "Function", ["id", "name", "ability_id", "general_id", "function_type", "args", "avail_fn", "raw"])): """Represents a function action. Attributes: id: The function id, which is what the agent will use. name: The name of the function. Should be unique. ability_id: The ability id to pass to sc2. general_id: 0 for normal abilities, and the ability_id of another ability if it can be represented by a more general action. function_type: One of the functions in FUNCTION_TYPES for how to construct the sc2 action proto out of python types. args: A list of the types of args passed to function_type. avail_fn: For non-abilities, this function returns whether the function is valid. raw: Whether the function is raw or not. """ __slots__ = () @classmethod def ui_func(cls, id_, name, function_type, avail_fn=always): """Define a function representing a ui action.""" return cls(id_, name, 0, 0, function_type, FUNCTION_TYPES[function_type], avail_fn, False) @classmethod def ability(cls, id_, name, function_type, ability_id, general_id=0): """Define a function represented as a game ability.""" assert function_type in ABILITY_FUNCTIONS return cls(id_, name, ability_id, general_id, function_type, FUNCTION_TYPES[function_type], None, False) @classmethod def raw_ability(cls, id_, name, function_type, ability_id, general_id=0, avail_fn=always): """Define a function represented as a game ability.""" assert function_type in RAW_ABILITY_FUNCTIONS return cls(id_, name, ability_id, general_id, function_type, FUNCTION_TYPES[function_type], avail_fn, True) @classmethod def raw_ui_func(cls, id_, name, function_type, avail_fn=always): """Define a function representing a ui action.""" return cls(id_, name, 0, 0, function_type, FUNCTION_TYPES[function_type], avail_fn, True) @classmethod def spec(cls, id_, name, args): """Create a Function to be used in ValidActions.""" return cls(id_, name, None, None, None, args, None, False) def __hash__(self): # So it can go in a set(). return self.id def __str__(self): return self.str() def __call__(self, *args): """A convenient way to create a FunctionCall from this Function.""" return FunctionCall.init_with_validation(self.id, args, raw=self.raw) def __reduce__(self): return self.__class__, tuple(self) def str(self, space=False): """String version. Set space=True to line them all up nicely.""" return "%s/%s (%s)" % (str(int(self.id)).rjust(space and 4), self.name.ljust(space and 50), "; ".join(str(a) for a in self.args)) class Functions(object): """Represents the full set of functions. Can't use namedtuple since python3 has a limit of 255 function arguments, so build something similar. """ def __init__(self, functions): functions = sorted(functions, key=lambda f: f.id) self._func_list = functions self._func_dict = {f.name: f for f in functions} if len(self._func_dict) != len(self._func_list): raise ValueError("Function names must be unique.") def __getattr__(self, name): return self._func_dict[name] def __getitem__(self, key): if isinstance(key, numbers.Integral): return self._func_list[key] return self._func_dict[key] def __getstate__(self): # Support pickling, which otherwise conflicts with __getattr__. return self._func_list def __setstate__(self, functions): # Support pickling, which otherwise conflicts with __getattr__. self.__init__(functions) def __iter__(self): return iter(self._func_list) def __len__(self): return len(self._func_list) def __eq__(self, other): return self._func_list == other._func_list # pylint: disable=protected-access # The semantic meaning of these actions can mainly be found by searching: # http://liquipedia.net/starcraft2/ or http://starcraft.wikia.com/ . # pylint: disable=line-too-long _FUNCTIONS = [ Function.ui_func(0, "no_op", no_op), Function.ui_func(1, "move_camera", move_camera), Function.ui_func(2, "select_point", select_point), Function.ui_func(3, "select_rect", select_rect), Function.ui_func(4, "select_control_group", control_group), Function.ui_func(5, "select_unit", select_unit, lambda obs: obs.ui_data.HasField("multi")), Function.ui_func(6, "select_idle_worker", select_idle_worker, lambda obs: obs.player_common.idle_worker_count > 0), Function.ui_func(7, "select_army", select_army, lambda obs: obs.player_common.army_count > 0), Function.ui_func(8, "select_warp_gates", select_warp_gates, lambda obs: obs.player_common.warp_gate_count > 0), Function.ui_func(9, "select_larva", select_larva, lambda obs: obs.player_common.larva_count > 0), Function.ui_func(10, "unload", unload, lambda obs: obs.ui_data.HasField("cargo")), Function.ui_func(11, "build_queue", build_queue, lambda obs: obs.ui_data.HasField("production")), # Everything below here is generated with gen_actions.py Function.ability(12, "Attack_screen", cmd_screen, 3674), Function.ability(13, "Attack_minimap", cmd_minimap, 3674), Function.ability(14, "Attack_Attack_screen", cmd_screen, 23, 3674), Function.ability(15, "Attack_Attack_minimap", cmd_minimap, 23, 3674), Function.ability(16, "Attack_AttackBuilding_screen", cmd_screen, 2048, 3674), Function.ability(17, "Attack_AttackBuilding_minimap", cmd_minimap, 2048, 3674), Function.ability(555, "Attack_Battlecruiser_screen", cmd_screen, 3771, 3674), Function.ability(556, "Attack_Battlecruiser_minimap", cmd_minimap, 3771, 3674), Function.ability(18, "Attack_Redirect_screen", cmd_screen, 1682, 3674), Function.ability(19, "Scan_Move_screen", cmd_screen, 19, 3674), Function.ability(20, "Scan_Move_minimap", cmd_minimap, 19, 3674), Function.ability(21, "Behavior_BuildingAttackOff_quick", cmd_quick, 2082), Function.ability(22, "Behavior_BuildingAttackOn_quick", cmd_quick, 2081), Function.ability(23, "Behavior_CloakOff_quick", cmd_quick, 3677), Function.ability(24, "Behavior_CloakOff_Banshee_quick", cmd_quick, 393, 3677), Function.ability(25, "Behavior_CloakOff_Ghost_quick", cmd_quick, 383, 3677), Function.ability(26, "Behavior_CloakOn_quick", cmd_quick, 3676), Function.ability(27, "Behavior_CloakOn_Banshee_quick", cmd_quick, 392, 3676), Function.ability(28, "Behavior_CloakOn_Ghost_quick", cmd_quick, 382, 3676), Function.ability(29, "Behavior_GenerateCreepOff_quick", cmd_quick, 1693), Function.ability(30, "Behavior_GenerateCreepOn_quick", cmd_quick, 1692), Function.ability(31, "Behavior_HoldFireOff_quick", cmd_quick, 3689), Function.ability(32, "Behavior_HoldFireOff_Ghost_quick", cmd_quick, 38, 3689), Function.ability(33, "Behavior_HoldFireOff_Lurker_quick", cmd_quick, 2552, 3689), Function.ability(34, "Behavior_HoldFireOn_quick", cmd_quick, 3688), Function.ability(35, "Behavior_HoldFireOn_Ghost_quick", cmd_quick, 36, 3688), Function.ability(36, "Behavior_HoldFireOn_Lurker_quick", cmd_quick, 2550, 3688), Function.ability(37, "Behavior_PulsarBeamOff_quick", cmd_quick, 2376), Function.ability(38, "Behavior_PulsarBeamOn_quick", cmd_quick, 2375), Function.ability(39, "Build_Armory_screen", cmd_screen, 331), Function.ability(40, "Build_Assimilator_screen", cmd_screen, 882), Function.ability(41, "Build_BanelingNest_screen", cmd_screen, 1162), Function.ability(42, "Build_Barracks_screen", cmd_screen, 321), Function.ability(43, "Build_Bunker_screen", cmd_screen, 324), Function.ability(44, "Build_CommandCenter_screen", cmd_screen, 318), Function.ability(45, "Build_CreepTumor_screen", cmd_screen, 3691), Function.ability(46, "Build_CreepTumor_Queen_screen", cmd_screen, 1694, 3691), Function.ability(47, "Build_CreepTumor_Tumor_screen", cmd_screen, 1733, 3691), Function.ability(48, "Build_CyberneticsCore_screen", cmd_screen, 894), Function.ability(49, "Build_DarkShrine_screen", cmd_screen, 891), Function.ability(50, "Build_EngineeringBay_screen", cmd_screen, 322), Function.ability(51, "Build_EvolutionChamber_screen", cmd_screen, 1156), Function.ability(52, "Build_Extractor_screen", cmd_screen, 1154), Function.ability(53, "Build_Factory_screen", cmd_screen, 328), Function.ability(54, "Build_FleetBeacon_screen", cmd_screen, 885), Function.ability(55, "Build_Forge_screen", cmd_screen, 884), Function.ability(56, "Build_FusionCore_screen", cmd_screen, 333), Function.ability(57, "Build_Gateway_screen", cmd_screen, 883), Function.ability(58, "Build_GhostAcademy_screen", cmd_screen, 327), Function.ability(59, "Build_Hatchery_screen", cmd_screen, 1152), Function.ability(60, "Build_HydraliskDen_screen", cmd_screen, 1157), Function.ability(61, "Build_InfestationPit_screen", cmd_screen, 1160), Function.ability(62, "Build_Interceptors_quick", cmd_quick, 1042), Function.ability(63, "Build_Interceptors_autocast", autocast, 1042), Function.ability(524, "Build_LurkerDen_screen", cmd_screen, 1163), Function.ability(64, "Build_MissileTurret_screen", cmd_screen, 323), Function.ability(65, "Build_Nexus_screen", cmd_screen, 880), Function.ability(66, "Build_Nuke_quick", cmd_quick, 710), Function.ability(67, "Build_NydusNetwork_screen", cmd_screen, 1161), Function.ability(68, "Build_NydusWorm_screen", cmd_screen, 1768), Function.ability(69, "Build_PhotonCannon_screen", cmd_screen, 887), Function.ability(70, "Build_Pylon_screen", cmd_screen, 881), Function.ability(71, "Build_Reactor_quick", cmd_quick, 3683), Function.ability(72, "Build_Reactor_screen", cmd_screen, 3683), Function.ability(73, "Build_Reactor_Barracks_quick", cmd_quick, 422, 3683), Function.ability(74, "Build_Reactor_Barracks_screen", cmd_screen, 422, 3683), Function.ability(75, "Build_Reactor_Factory_quick", cmd_quick, 455, 3683), Function.ability(76, "Build_Reactor_Factory_screen", cmd_screen, 455, 3683), Function.ability(77, "Build_Reactor_Starport_quick", cmd_quick, 488, 3683), Function.ability(78, "Build_Reactor_Starport_screen", cmd_screen, 488, 3683), Function.ability(79, "Build_Refinery_screen", cmd_screen, 320), Function.ability(80, "Build_RoachWarren_screen", cmd_screen, 1165), Function.ability(81, "Build_RoboticsBay_screen", cmd_screen, 892), Function.ability(82, "Build_RoboticsFacility_screen", cmd_screen, 893), Function.ability(83, "Build_SensorTower_screen", cmd_screen, 326), Function.ability(525, "Build_ShieldBattery_screen", cmd_screen, 895), Function.ability(84, "Build_SpawningPool_screen", cmd_screen, 1155), Function.ability(85, "Build_SpineCrawler_screen", cmd_screen, 1166), Function.ability(86, "Build_Spire_screen", cmd_screen, 1158), Function.ability(87, "Build_SporeCrawler_screen", cmd_screen, 1167), Function.ability(88, "Build_Stargate_screen", cmd_screen, 889), Function.ability(89, "Build_Starport_screen", cmd_screen, 329), Function.ability(90, "Build_StasisTrap_screen", cmd_screen, 2505), Function.ability(91, "Build_SupplyDepot_screen", cmd_screen, 319), Function.ability(92, "Build_TechLab_quick", cmd_quick, 3682), Function.ability(93, "Build_TechLab_screen", cmd_screen, 3682), Function.ability(94, "Build_TechLab_Barracks_quick", cmd_quick, 421, 3682), Function.ability(95, "Build_TechLab_Barracks_screen", cmd_screen, 421, 3682), Function.ability(96, "Build_TechLab_Factory_quick", cmd_quick, 454, 3682), Function.ability(97, "Build_TechLab_Factory_screen", cmd_screen, 454, 3682), Function.ability(98, "Build_TechLab_Starport_quick", cmd_quick, 487, 3682), Function.ability(99, "Build_TechLab_Starport_screen", cmd_screen, 487, 3682), Function.ability(100, "Build_TemplarArchive_screen", cmd_screen, 890), Function.ability(101, "Build_TwilightCouncil_screen", cmd_screen, 886), Function.ability(102, "Build_UltraliskCavern_screen", cmd_screen, 1159), Function.ability(103, "BurrowDown_quick", cmd_quick, 3661), Function.ability(104, "BurrowDown_Baneling_quick", cmd_quick, 1374, 3661), Function.ability(105, "BurrowDown_Drone_quick", cmd_quick, 1378, 3661), Function.ability(106, "BurrowDown_Hydralisk_quick", cmd_quick, 1382, 3661), Function.ability(107, "BurrowDown_Infestor_quick", cmd_quick, 1444, 3661), Function.ability(108, "BurrowDown_InfestorTerran_quick", cmd_quick, 1394, 3661), Function.ability(109, "BurrowDown_Lurker_quick", cmd_quick, 2108, 3661), Function.ability(110, "BurrowDown_Queen_quick", cmd_quick, 1433, 3661), Function.ability(111, "BurrowDown_Ravager_quick", cmd_quick, 2340, 3661), Function.ability(112, "BurrowDown_Roach_quick", cmd_quick, 1386, 3661), Function.ability(113, "BurrowDown_SwarmHost_quick", cmd_quick, 2014, 3661), Function.ability(114, "BurrowDown_Ultralisk_quick", cmd_quick, 1512, 3661), Function.ability(115, "BurrowDown_WidowMine_quick", cmd_quick, 2095, 3661), Function.ability(116, "BurrowDown_Zergling_quick", cmd_quick, 1390, 3661), Function.ability(117, "BurrowUp_quick", cmd_quick, 3662), Function.ability(118, "BurrowUp_autocast", autocast, 3662), Function.ability(119, "BurrowUp_Baneling_quick", cmd_quick, 1376, 3662), Function.ability(120, "BurrowUp_Baneling_autocast", autocast, 1376, 3662), Function.ability(121, "BurrowUp_Drone_quick", cmd_quick, 1380, 3662), Function.ability(122, "BurrowUp_Hydralisk_quick", cmd_quick, 1384, 3662), Function.ability(123, "BurrowUp_Hydralisk_autocast", autocast, 1384, 3662), Function.ability(124, "BurrowUp_Infestor_quick", cmd_quick, 1446, 3662), Function.ability(125, "BurrowUp_InfestorTerran_quick", cmd_quick, 1396, 3662), Function.ability(126, "BurrowUp_InfestorTerran_autocast", autocast, 1396, 3662), Function.ability(127, "BurrowUp_Lurker_quick", cmd_quick, 2110, 3662), Function.ability(128, "BurrowUp_Queen_quick", cmd_quick, 1435, 3662), Function.ability(129, "BurrowUp_Queen_autocast", autocast, 1435, 3662), Function.ability(130, "BurrowUp_Ravager_quick", cmd_quick, 2342, 3662), Function.ability(131, "BurrowUp_Ravager_autocast", autocast, 2342, 3662), Function.ability(132, "BurrowUp_Roach_quick", cmd_quick, 1388, 3662), Function.ability(133, "BurrowUp_Roach_autocast", autocast, 1388, 3662), Function.ability(134, "BurrowUp_SwarmHost_quick", cmd_quick, 2016, 3662), Function.ability(135, "BurrowUp_Ultralisk_quick", cmd_quick, 1514, 3662), Function.ability(136, "BurrowUp_Ultralisk_autocast", autocast, 1514, 3662), Function.ability(137, "BurrowUp_WidowMine_quick", cmd_quick, 2097, 3662), Function.ability(138, "BurrowUp_Zergling_quick", cmd_quick, 1392, 3662), Function.ability(139, "BurrowUp_Zergling_autocast", autocast, 1392, 3662), Function.ability(140, "Cancel_quick", cmd_quick, 3659), Function.ability(141, "Cancel_AdeptPhaseShift_quick", cmd_quick, 2594, 3659), Function.ability(142, "Cancel_AdeptShadePhaseShift_quick", cmd_quick, 2596, 3659), Function.ability(143, "Cancel_BarracksAddOn_quick", cmd_quick, 451, 3659), Function.ability(144, "Cancel_BuildInProgress_quick", cmd_quick, 314, 3659), Function.ability(145, "Cancel_CreepTumor_quick", cmd_quick, 1763, 3659), Function.ability(146, "Cancel_FactoryAddOn_quick", cmd_quick, 484, 3659), Function.ability(147, "Cancel_GravitonBeam_quick", cmd_quick, 174, 3659), Function.ability(148, "Cancel_LockOn_quick", cmd_quick, 2354, 3659), Function.ability(149, "Cancel_MorphBroodlord_quick", cmd_quick, 1373, 3659), Function.ability(150, "Cancel_MorphGreaterSpire_quick", cmd_quick, 1221, 3659), Function.ability(151, "Cancel_MorphHive_quick", cmd_quick, 1219, 3659), Function.ability(152, "Cancel_MorphLair_quick", cmd_quick, 1217, 3659), Function.ability(153, "Cancel_MorphLurker_quick", cmd_quick, 2333, 3659), Function.ability(154, "Cancel_MorphLurkerDen_quick", cmd_quick, 2113, 3659), Function.ability(155, "Cancel_MorphMothership_quick", cmd_quick, 1848, 3659), Function.ability(156, "Cancel_MorphOrbital_quick", cmd_quick, 1517, 3659), Function.ability(157, "Cancel_MorphOverlordTransport_quick", cmd_quick, 2709, 3659), Function.ability(158, "Cancel_MorphOverseer_quick", cmd_quick, 1449, 3659), Function.ability(159, "Cancel_MorphPlanetaryFortress_quick", cmd_quick, 1451, 3659), Function.ability(160, "Cancel_MorphRavager_quick", cmd_quick, 2331, 3659), Function.ability(161, "Cancel_MorphThorExplosiveMode_quick", cmd_quick, 2365, 3659), Function.ability(162, "Cancel_NeuralParasite_quick", cmd_quick, 250, 3659), Function.ability(163, "Cancel_Nuke_quick", cmd_quick, 1623, 3659), Function.ability(164, "Cancel_SpineCrawlerRoot_quick", cmd_quick, 1730, 3659), Function.ability(165, "Cancel_SporeCrawlerRoot_quick", cmd_quick, 1732, 3659), Function.ability(166, "Cancel_StarportAddOn_quick", cmd_quick, 517, 3659), Function.ability(167, "Cancel_StasisTrap_quick", cmd_quick, 2535, 3659), Function.ability(546, "Cancel_VoidRayPrismaticAlignment_quick", cmd_quick, 3707, 3659), Function.ability(168, "Cancel_Last_quick", cmd_quick, 3671), Function.ability(169, "Cancel_HangarQueue5_quick", cmd_quick, 1038, 3671), Function.ability(170, "Cancel_Queue1_quick", cmd_quick, 304, 3671), Function.ability(171, "Cancel_Queue5_quick", cmd_quick, 306, 3671), Function.ability(172, "Cancel_QueueAddOn_quick", cmd_quick, 312, 3671), Function.ability(173, "Cancel_QueueCancelToSelection_quick", cmd_quick, 308, 3671), Function.ability(174, "Cancel_QueuePassive_quick", cmd_quick, 1831, 3671), Function.ability(175, "Cancel_QueuePassiveCancelToSelection_quick", cmd_quick, 1833, 3671), Function.ability(176, "Effect_Abduct_screen", cmd_screen, 2067), Function.ability(177, "Effect_AdeptPhaseShift_screen", cmd_screen, 2544), Function.ability(547, "Effect_AdeptPhaseShift_minimap", cmd_minimap, 2544), Function.ability(526, "Effect_AntiArmorMissile_screen", cmd_screen, 3753), Function.ability(178, "Effect_AutoTurret_screen", cmd_screen, 1764), Function.ability(179, "Effect_BlindingCloud_screen", cmd_screen, 2063), Function.ability(180, "Effect_Blink_screen", cmd_screen, 3687), Function.ability(543, "Effect_Blink_minimap", cmd_minimap, 3687), Function.ability(181, "Effect_Blink_Stalker_screen", cmd_screen, 1442, 3687), Function.ability(544, "Effect_Blink_Stalker_minimap", cmd_minimap, 1442, 3687), Function.ability(182, "Effect_ShadowStride_screen", cmd_screen, 2700, 3687), Function.ability(545, "Effect_ShadowStride_minimap", cmd_minimap, 2700, 3687), Function.ability(183, "Effect_CalldownMULE_screen", cmd_screen, 171), Function.ability(184, "Effect_CausticSpray_screen", cmd_screen, 2324), Function.ability(185, "Effect_Charge_screen", cmd_screen, 1819), Function.ability(186, "Effect_Charge_autocast", autocast, 1819), Function.ability(187, "Effect_ChronoBoost_screen", cmd_screen, 261), Function.ability(527, "Effect_ChronoBoostEnergyCost_screen", cmd_screen, 3755), Function.ability(188, "Effect_Contaminate_screen", cmd_screen, 1825), Function.ability(189, "Effect_CorrosiveBile_screen", cmd_screen, 2338), Function.ability(190, "Effect_EMP_screen", cmd_screen, 1628), Function.ability(191, "Effect_Explode_quick", cmd_quick, 42), Function.ability(192, "Effect_Feedback_screen", cmd_screen, 140), Function.ability(193, "Effect_ForceField_screen", cmd_screen, 1526), Function.ability(194, "Effect_FungalGrowth_screen", cmd_screen, 74), Function.ability(195, "Effect_GhostSnipe_screen", cmd_screen, 2714), Function.ability(196, "Effect_GravitonBeam_screen", cmd_screen, 173), Function.ability(197, "Effect_GuardianShield_quick", cmd_quick, 76), Function.ability(198, "Effect_Heal_screen", cmd_screen, 386), Function.ability(199, "Effect_Heal_autocast", autocast, 386), Function.ability(200, "Effect_HunterSeekerMissile_screen", cmd_screen, 169), Function.ability(201, "Effect_ImmortalBarrier_quick", cmd_quick, 2328), Function.ability(202, "Effect_ImmortalBarrier_autocast", autocast, 2328), Function.ability(203, "Effect_InfestedTerrans_screen", cmd_screen, 247), Function.ability(204, "Effect_InjectLarva_screen", cmd_screen, 251), Function.ability(528, "Effect_InterferenceMatrix_screen", cmd_screen, 3747), Function.ability(205, "Effect_KD8Charge_screen", cmd_screen, 2588), Function.ability(206, "Effect_LockOn_screen", cmd_screen, 2350), Function.ability(557, "Effect_LockOn_autocast", autocast, 2350), Function.ability(207, "Effect_LocustSwoop_screen", cmd_screen, 2387), Function.ability(208, "Effect_MassRecall_screen", cmd_screen, 3686), Function.ability(209, "Effect_MassRecall_Mothership_screen", cmd_screen, 2368, 3686), Function.ability(210, "Effect_MassRecall_MothershipCore_screen", cmd_screen, 1974, 3686), Function.ability(529, "Effect_MassRecall_Nexus_screen", cmd_screen, 3757, 3686), Function.ability(548, "Effect_MassRecall_StrategicRecall_screen", cmd_screen, 142, 3686), Function.ability(211, "Effect_MedivacIgniteAfterburners_quick", cmd_quick, 2116), Function.ability(212, "Effect_NeuralParasite_screen", cmd_screen, 249), Function.ability(213, "Effect_NukeCalldown_screen", cmd_screen, 1622), Function.ability(214, "Effect_OracleRevelation_screen", cmd_screen, 2146), Function.ability(215, "Effect_ParasiticBomb_screen", cmd_screen, 2542), Function.ability(216, "Effect_PhotonOvercharge_screen", cmd_screen, 2162), Function.ability(217, "Effect_PointDefenseDrone_screen", cmd_screen, 144), Function.ability(218, "Effect_PsiStorm_screen", cmd_screen, 1036), Function.ability(219, "Effect_PurificationNova_screen", cmd_screen, 2346), Function.ability(220, "Effect_Repair_screen", cmd_screen, 3685), Function.ability(221, "Effect_Repair_autocast", autocast, 3685), Function.ability(222, "Effect_Repair_Mule_screen", cmd_screen, 78, 3685), Function.ability(223, "Effect_Repair_Mule_autocast", autocast, 78, 3685), Function.ability(530, "Effect_Repair_RepairDrone_screen", cmd_screen, 3751, 3685), Function.ability(531, "Effect_Repair_RepairDrone_autocast", autocast, 3751, 3685), Function.ability(224, "Effect_Repair_SCV_screen", cmd_screen, 316, 3685), Function.ability(225, "Effect_Repair_SCV_autocast", autocast, 316, 3685), Function.ability(532, "Effect_RepairDrone_screen", cmd_screen, 3749), Function.ability(533, "Effect_Restore_screen", cmd_screen, 3765), Function.ability(534, "Effect_Restore_autocast", autocast, 3765), Function.ability(226, "Effect_Salvage_quick", cmd_quick, 32), Function.ability(227, "Effect_Scan_screen", cmd_screen, 399), Function.ability(542, "Effect_Scan_minimap", cmd_minimap, 399), Function.ability(228, "Effect_SpawnChangeling_quick", cmd_quick, 181), Function.ability(229, "Effect_SpawnLocusts_screen", cmd_screen, 2704), Function.ability(230, "Effect_Spray_screen", cmd_screen, 3684), Function.ability(231, "Effect_Spray_Protoss_screen", cmd_screen, 30, 3684), Function.ability(232, "Effect_Spray_Terran_screen", cmd_screen, 26, 3684), Function.ability(233, "Effect_Spray_Zerg_screen", cmd_screen, 28, 3684), Function.ability(549, "Effect_Spray_minimap", cmd_minimap, 3684), Function.ability(550, "Effect_Spray_Protoss_minimap", cmd_minimap, 30, 3684), Function.ability(551, "Effect_Spray_Terran_minimap", cmd_minimap, 26, 3684), Function.ability(552, "Effect_Spray_Zerg_minimap", cmd_minimap, 28, 3684), Function.ability(234, "Effect_Stim_quick", cmd_quick, 3675), Function.ability(235, "Effect_Stim_Marauder_quick", cmd_quick, 253, 3675), Function.ability(236, "Effect_Stim_Marauder_Redirect_quick", cmd_quick, 1684, 3675), Function.ability(237, "Effect_Stim_Marine_quick", cmd_quick, 380, 3675), Function.ability(238, "Effect_Stim_Marine_Redirect_quick", cmd_quick, 1683, 3675), Function.ability(239, "Effect_SupplyDrop_screen", cmd_screen, 255), Function.ability(240, "Effect_TacticalJump_screen", cmd_screen, 2358), Function.ability(553, "Effect_TacticalJump_minimap", cmd_minimap, 2358), Function.ability(241, "Effect_TimeWarp_screen", cmd_screen, 2244), Function.ability(242, "Effect_Transfusion_screen", cmd_screen, 1664), Function.ability(243, "Effect_ViperConsume_screen", cmd_screen, 2073), Function.ability(244, "Effect_VoidRayPrismaticAlignment_quick", cmd_quick, 2393), Function.ability(245, "Effect_WidowMineAttack_screen", cmd_screen, 2099), Function.ability(246, "Effect_WidowMineAttack_autocast", autocast, 2099), Function.ability(247, "Effect_YamatoGun_screen", cmd_screen, 401), Function.ability(248, "Hallucination_Adept_quick", cmd_quick, 2391), Function.ability(249, "Hallucination_Archon_quick", cmd_quick, 146), Function.ability(250, "Hallucination_Colossus_quick", cmd_quick, 148), Function.ability(251, "Hallucination_Disruptor_quick", cmd_quick, 2389), Function.ability(252, "Hallucination_HighTemplar_quick", cmd_quick, 150), Function.ability(253, "Hallucination_Immortal_quick", cmd_quick, 152), Function.ability(254, "Hallucination_Oracle_quick", cmd_quick, 2114), Function.ability(255, "Hallucination_Phoenix_quick", cmd_quick, 154), Function.ability(256, "Hallucination_Probe_quick", cmd_quick, 156), Function.ability(257, "Hallucination_Stalker_quick", cmd_quick, 158), Function.ability(258, "Hallucination_VoidRay_quick", cmd_quick, 160), Function.ability(259, "Hallucination_WarpPrism_quick", cmd_quick, 162), Function.ability(260, "Hallucination_Zealot_quick", cmd_quick, 164), Function.ability(261, "Halt_quick", cmd_quick, 3660), Function.ability(262, "Halt_Building_quick", cmd_quick, 315, 3660), Function.ability(263, "Halt_TerranBuild_quick", cmd_quick, 348, 3660), Function.ability(264, "Harvest_Gather_screen", cmd_screen, 3666), Function.ability(265, "Harvest_Gather_Drone_screen", cmd_screen, 1183, 3666), Function.ability(266, "Harvest_Gather_Mule_screen", cmd_screen, 166, 3666), Function.ability(267, "Harvest_Gather_Probe_screen", cmd_screen, 298, 3666), Function.ability(268, "Harvest_Gather_SCV_screen", cmd_screen, 295, 3666), Function.ability(269, "Harvest_Return_quick", cmd_quick, 3667), Function.ability(270, "Harvest_Return_Drone_quick", cmd_quick, 1184, 3667), Function.ability(271, "Harvest_Return_Mule_quick", cmd_quick, 167, 3667), Function.ability(272, "Harvest_Return_Probe_quick", cmd_quick, 299, 3667), Function.ability(273, "Harvest_Return_SCV_quick", cmd_quick, 296, 3667), Function.ability(274, "HoldPosition_quick", cmd_quick, 3793), Function.ability(558, "HoldPosition_Battlecruiser_quick", cmd_quick, 3778, 3793), Function.ability(559, "HoldPosition_Hold_quick", cmd_quick, 18, 3793), Function.ability(275, "Land_screen", cmd_screen, 3678), Function.ability(276, "Land_Barracks_screen", cmd_screen, 554, 3678), Function.ability(277, "Land_CommandCenter_screen", cmd_screen, 419, 3678), Function.ability(278, "Land_Factory_screen", cmd_screen, 520, 3678), Function.ability(279, "Land_OrbitalCommand_screen", cmd_screen, 1524, 3678), Function.ability(280, "Land_Starport_screen", cmd_screen, 522, 3678), Function.ability(281, "Lift_quick", cmd_quick, 3679), Function.ability(282, "Lift_Barracks_quick", cmd_quick, 452, 3679), Function.ability(283, "Lift_CommandCenter_quick", cmd_quick, 417, 3679), Function.ability(284, "Lift_Factory_quick", cmd_quick, 485, 3679), Function.ability(285, "Lift_OrbitalCommand_quick", cmd_quick, 1522, 3679), Function.ability(286, "Lift_Starport_quick", cmd_quick, 518, 3679), Function.ability(287, "Load_screen", cmd_screen, 3668), Function.ability(288, "Load_Bunker_screen", cmd_screen, 407, 3668), Function.ability(289, "Load_Medivac_screen", cmd_screen, 394, 3668), Function.ability(290, "Load_NydusNetwork_screen", cmd_screen, 1437, 3668), Function.ability(291, "Load_NydusWorm_screen", cmd_screen, 2370, 3668), Function.ability(292, "Load_Overlord_screen", cmd_screen, 1406, 3668), Function.ability(293, "Load_WarpPrism_screen", cmd_screen, 911, 3668), Function.ability(294, "LoadAll_quick", cmd_quick, 3663), Function.ability(295, "LoadAll_CommandCenter_quick", cmd_quick, 416, 3663), Function.ability(296, "Morph_Archon_quick", cmd_quick, 1766), Function.ability(297, "Morph_BroodLord_quick", cmd_quick, 1372), Function.ability(298, "Morph_Gateway_quick", cmd_quick, 1520), Function.ability(299, "Morph_GreaterSpire_quick", cmd_quick, 1220), Function.ability(300, "Morph_Hellbat_quick", cmd_quick, 1998), Function.ability(301, "Morph_Hellion_quick", cmd_quick, 1978), Function.ability(302, "Morph_Hive_quick", cmd_quick, 1218), Function.ability(303, "Morph_Lair_quick", cmd_quick, 1216), Function.ability(304, "Morph_LiberatorAAMode_quick", cmd_quick, 2560), Function.ability(305, "Morph_LiberatorAGMode_screen", cmd_screen, 2558), Function.ability(554, "Morph_LiberatorAGMode_minimap", cmd_minimap, 2558), Function.ability(306, "Morph_Lurker_quick", cmd_quick, 2332), Function.ability(307, "Morph_LurkerDen_quick", cmd_quick, 2112), Function.ability(308, "Morph_Mothership_quick", cmd_quick, 1847), Function.ability(535, "Morph_ObserverMode_quick", cmd_quick, 3739), Function.ability(309, "Morph_OrbitalCommand_quick", cmd_quick, 1516), Function.ability(310, "Morph_OverlordTransport_quick", cmd_quick, 2708), Function.ability(311, "Morph_Overseer_quick", cmd_quick, 1448), Function.ability(536, "Morph_OverseerMode_quick", cmd_quick, 3745), Function.ability(537, "Morph_OversightMode_quick", cmd_quick, 3743), Function.ability(312, "Morph_PlanetaryFortress_quick", cmd_quick, 1450), Function.ability(313, "Morph_Ravager_quick", cmd_quick, 2330), Function.ability(314, "Morph_Root_screen", cmd_screen, 3680), Function.ability(315, "Morph_SpineCrawlerRoot_screen", cmd_screen, 1729, 3680), Function.ability(316, "Morph_SporeCrawlerRoot_screen", cmd_screen, 1731, 3680), Function.ability(317, "Morph_SiegeMode_quick", cmd_quick, 388), Function.ability(318, "Morph_SupplyDepot_Lower_quick", cmd_quick, 556), Function.ability(319, "Morph_SupplyDepot_Raise_quick", cmd_quick, 558), Function.ability(538, "Morph_SurveillanceMode_quick", cmd_quick, 3741), Function.ability(320, "Morph_ThorExplosiveMode_quick", cmd_quick, 2364), Function.ability(321, "Morph_ThorHighImpactMode_quick", cmd_quick, 2362), Function.ability(322, "Morph_Unsiege_quick", cmd_quick, 390), Function.ability(323, "Morph_Uproot_quick", cmd_quick, 3681), Function.ability(324, "Morph_SpineCrawlerUproot_quick", cmd_quick, 1725, 3681), Function.ability(325, "Morph_SporeCrawlerUproot_quick", cmd_quick, 1727, 3681), Function.ability(326, "Morph_VikingAssaultMode_quick", cmd_quick, 403), Function.ability(327, "Morph_VikingFighterMode_quick", cmd_quick, 405), Function.ability(328, "Morph_WarpGate_quick", cmd_quick, 1518), Function.ability(560, "Morph_WarpGate_autocast", autocast, 1518), Function.ability(329, "Morph_WarpPrismPhasingMode_quick", cmd_quick, 1528), Function.ability(330, "Morph_WarpPrismTransportMode_quick", cmd_quick, 1530), Function.ability(331, "Move_screen", cmd_screen, 3794), Function.ability(332, "Move_minimap", cmd_minimap, 3794), Function.ability(561, "Move_Battlecruiser_screen", cmd_screen, 3776, 3794), Function.ability(562, "Move_Battlecruiser_minimap", cmd_minimap, 3776, 3794), Function.ability(563, "Move_Move_screen", cmd_screen, 16, 3794), Function.ability(564, "Move_Move_minimap", cmd_minimap, 16, 3794), Function.ability(333, "Patrol_screen", cmd_screen, 3795), Function.ability(334, "Patrol_minimap", cmd_minimap, 3795), Function.ability(565, "Patrol_Battlecruiser_screen", cmd_screen, 3777, 3795), Function.ability(566, "Patrol_Battlecruiser_minimap", cmd_minimap, 3777, 3795), Function.ability(567, "Patrol_Patrol_screen", cmd_screen, 17, 3795), Function.ability(568, "Patrol_Patrol_minimap", cmd_minimap, 17, 3795), Function.ability(335, "Rally_Units_screen", cmd_screen, 3673), Function.ability(336, "Rally_Units_minimap", cmd_minimap, 3673), Function.ability(337, "Rally_Building_screen", cmd_screen, 195, 3673), Function.ability(338, "Rally_Building_minimap", cmd_minimap, 195, 3673), Function.ability(339, "Rally_Hatchery_Units_screen", cmd_screen, 211, 3673), Function.ability(340, "Rally_Hatchery_Units_minimap", cmd_minimap, 211, 3673), Function.ability(341, "Rally_Morphing_Unit_screen", cmd_screen, 199, 3673), Function.ability(342, "Rally_Morphing_Unit_minimap", cmd_minimap, 199, 3673), Function.ability(343, "Rally_Workers_screen", cmd_screen, 3690), Function.ability(344, "Rally_Workers_minimap", cmd_minimap, 3690), Function.ability(345, "Rally_CommandCenter_screen", cmd_screen, 203, 3690), Function.ability(346, "Rally_CommandCenter_minimap", cmd_minimap, 203, 3690), Function.ability(347, "Rally_Hatchery_Workers_screen", cmd_screen, 212, 3690), Function.ability(348, "Rally_Hatchery_Workers_minimap", cmd_minimap, 212, 3690), Function.ability(349, "Rally_Nexus_screen", cmd_screen, 207, 3690), Function.ability(350, "Rally_Nexus_minimap", cmd_minimap, 207, 3690), Function.ability(539, "Research_AdaptiveTalons_quick", cmd_quick, 3709), Function.ability(351, "Research_AdeptResonatingGlaives_quick", cmd_quick, 1594), Function.ability(352, "Research_AdvancedBallistics_quick", cmd_quick, 805), Function.ability(569, "Research_AnabolicSynthesis_quick", cmd_quick, 263), Function.ability(353, "Research_BansheeCloakingField_quick", cmd_quick, 790), Function.ability(354, "Research_BansheeHyperflightRotors_quick", cmd_quick, 799), Function.ability(355, "Research_BattlecruiserWeaponRefit_quick", cmd_quick, 1532), Function.ability(356, "Research_Blink_quick", cmd_quick, 1593), Function.ability(357, "Research_Burrow_quick", cmd_quick, 1225), Function.ability(358, "Research_CentrifugalHooks_quick", cmd_quick, 1482), Function.ability(359, "Research_Charge_quick", cmd_quick, 1592), Function.ability(360, "Research_ChitinousPlating_quick", cmd_quick, 265), Function.ability(361, "Research_CombatShield_quick", cmd_quick, 731), Function.ability(362, "Research_ConcussiveShells_quick", cmd_quick, 732), Function.ability(570, "Research_CycloneLockOnDamage_quick", cmd_quick, 769), Function.ability(540, "Research_CycloneRapidFireLaunchers_quick", cmd_quick, 768), Function.ability(363, "Research_DrillingClaws_quick", cmd_quick, 764), Function.ability(572, "Research_EnhancedShockwaves_quick", cmd_quick, 822), Function.ability(364, "Research_ExtendedThermalLance_quick", cmd_quick, 1097), Function.ability(365, "Research_GlialRegeneration_quick", cmd_quick, 216), Function.ability(366, "Research_GraviticBooster_quick", cmd_quick, 1093), Function.ability(367, "Research_GraviticDrive_quick", cmd_quick, 1094), Function.ability(368, "Research_GroovedSpines_quick", cmd_quick, 1282), Function.ability(369, "Research_HiSecAutoTracking_quick", cmd_quick, 650), Function.ability(370, "Research_HighCapacityFuelTanks_quick", cmd_quick, 804), Function.ability(371, "Research_InfernalPreigniter_quick", cmd_quick, 761), Function.ability(372, "Research_InterceptorGravitonCatapult_quick", cmd_quick, 44), Function.ability(374, "Research_MuscularAugments_quick", cmd_quick, 1283), Function.ability(375, "Research_NeosteelFrame_quick", cmd_quick, 655), Function.ability(376, "Research_NeuralParasite_quick", cmd_quick, 1455), Function.ability(377, "Research_PathogenGlands_quick", cmd_quick, 1454), Function.ability(378, "Research_PersonalCloaking_quick", cmd_quick, 820), Function.ability(379, "Research_PhoenixAnionPulseCrystals_quick", cmd_quick, 46), Function.ability(380, "Research_PneumatizedCarapace_quick", cmd_quick, 1223), Function.ability(381, "Research_ProtossAirArmor_quick", cmd_quick, 3692), Function.ability(382, "Research_ProtossAirArmorLevel1_quick", cmd_quick, 1565, 3692), Function.ability(383, "Research_ProtossAirArmorLevel2_quick", cmd_quick, 1566, 3692), Function.ability(384, "Research_ProtossAirArmorLevel3_quick", cmd_quick, 1567, 3692), Function.ability(385, "Research_ProtossAirWeapons_quick", cmd_quick, 3693), Function.ability(386, "Research_ProtossAirWeaponsLevel1_quick", cmd_quick, 1562, 3693), Function.ability(387, "Research_ProtossAirWeaponsLevel2_quick", cmd_quick, 1563, 3693), Function.ability(388, "Research_ProtossAirWeaponsLevel3_quick", cmd_quick, 1564, 3693), Function.ability(389, "Research_ProtossGroundArmor_quick", cmd_quick, 3694), Function.ability(390, "Research_ProtossGroundArmorLevel1_quick", cmd_quick, 1065, 3694), Function.ability(391, "Research_ProtossGroundArmorLevel2_quick", cmd_quick, 1066, 3694), Function.ability(392, "Research_ProtossGroundArmorLevel3_quick", cmd_quick, 1067, 3694), Function.ability(393, "Research_ProtossGroundWeapons_quick", cmd_quick, 3695), Function.ability(394, "Research_ProtossGroundWeaponsLevel1_quick", cmd_quick, 1062, 3695), Function.ability(395, "Research_ProtossGroundWeaponsLevel2_quick", cmd_quick, 1063, 3695), Function.ability(396, "Research_ProtossGroundWeaponsLevel3_quick", cmd_quick, 1064, 3695), Function.ability(397, "Research_ProtossShields_quick", cmd_quick, 3696), Function.ability(398, "Research_ProtossShieldsLevel1_quick", cmd_quick, 1068, 3696), Function.ability(399, "Research_ProtossShieldsLevel2_quick", cmd_quick, 1069, 3696), Function.ability(400, "Research_ProtossShieldsLevel3_quick", cmd_quick, 1070, 3696), Function.ability(401, "Research_PsiStorm_quick", cmd_quick, 1126), Function.ability(402, "Research_RavenCorvidReactor_quick", cmd_quick, 793), Function.ability(403, "Research_RavenRecalibratedExplosives_quick", cmd_quick, 803), Function.ability(404, "Research_ShadowStrike_quick", cmd_quick, 2720), Function.ability(373, "Research_SmartServos_quick", cmd_quick, 766), Function.ability(405, "Research_Stimpack_quick", cmd_quick, 730), Function.ability(406, "Research_TerranInfantryArmor_quick", cmd_quick, 3697), Function.ability(407, "Research_TerranInfantryArmorLevel1_quick", cmd_quick, 656, 3697), Function.ability(408, "Research_TerranInfantryArmorLevel2_quick", cmd_quick, 657, 3697), Function.ability(409, "Research_TerranInfantryArmorLevel3_quick", cmd_quick, 658, 3697), Function.ability(410, "Research_TerranInfantryWeapons_quick", cmd_quick, 3698), Function.ability(411, "Research_TerranInfantryWeaponsLevel1_quick", cmd_quick, 652, 3698), Function.ability(412, "Research_TerranInfantryWeaponsLevel2_quick", cmd_quick, 653, 3698), Function.ability(413, "Research_TerranInfantryWeaponsLevel3_quick", cmd_quick, 654, 3698), Function.ability(414, "Research_TerranShipWeapons_quick", cmd_quick, 3699), Function.ability(415, "Research_TerranShipWeaponsLevel1_quick", cmd_quick, 861, 3699), Function.ability(416, "Research_TerranShipWeaponsLevel2_quick", cmd_quick, 862, 3699), Function.ability(417, "Research_TerranShipWeaponsLevel3_quick", cmd_quick, 863, 3699), Function.ability(418, "Research_TerranStructureArmorUpgrade_quick", cmd_quick, 651), Function.ability(419, "Research_TerranVehicleAndShipPlating_quick", cmd_quick, 3700), Function.ability(420, "Research_TerranVehicleAndShipPlatingLevel1_quick", cmd_quick, 864, 3700), Function.ability(421, "Research_TerranVehicleAndShipPlatingLevel2_quick", cmd_quick, 865, 3700), Function.ability(422, "Research_TerranVehicleAndShipPlatingLevel3_quick", cmd_quick, 866, 3700), Function.ability(423, "Research_TerranVehicleWeapons_quick", cmd_quick, 3701), Function.ability(424, "Research_TerranVehicleWeaponsLevel1_quick", cmd_quick, 855, 3701), Function.ability(425, "Research_TerranVehicleWeaponsLevel2_quick", cmd_quick, 856, 3701), Function.ability(426, "Research_TerranVehicleWeaponsLevel3_quick", cmd_quick, 857, 3701), Function.ability(427, "Research_TunnelingClaws_quick", cmd_quick, 217), Function.ability(428, "Research_WarpGate_quick", cmd_quick, 1568), Function.ability(429, "Research_ZergFlyerArmor_quick", cmd_quick, 3702), Function.ability(430, "Research_ZergFlyerArmorLevel1_quick", cmd_quick, 1315, 3702), Function.ability(431, "Research_ZergFlyerArmorLevel2_quick", cmd_quick, 1316, 3702), Function.ability(432, "Research_ZergFlyerArmorLevel3_quick", cmd_quick, 1317, 3702), Function.ability(433, "Research_ZergFlyerAttack_quick", cmd_quick, 3703), Function.ability(434, "Research_ZergFlyerAttackLevel1_quick", cmd_quick, 1312, 3703), Function.ability(435, "Research_ZergFlyerAttackLevel2_quick", cmd_quick, 1313, 3703), Function.ability(436, "Research_ZergFlyerAttackLevel3_quick", cmd_quick, 1314, 3703), Function.ability(437, "Research_ZergGroundArmor_quick", cmd_quick, 3704), Function.ability(438, "Research_ZergGroundArmorLevel1_quick", cmd_quick, 1189, 3704), Function.ability(439, "Research_ZergGroundArmorLevel2_quick", cmd_quick, 1190, 3704), Function.ability(440, "Research_ZergGroundArmorLevel3_quick", cmd_quick, 1191, 3704), Function.ability(441, "Research_ZergMeleeWeapons_quick", cmd_quick, 3705), Function.ability(442, "Research_ZergMeleeWeaponsLevel1_quick", cmd_quick, 1186, 3705), Function.ability(443, "Research_ZergMeleeWeaponsLevel2_quick", cmd_quick, 1187, 3705), Function.ability(444, "Research_ZergMeleeWeaponsLevel3_quick", cmd_quick, 1188, 3705), Function.ability(445, "Research_ZergMissileWeapons_quick", cmd_quick, 3706), Function.ability(446, "Research_ZergMissileWeaponsLevel1_quick", cmd_quick, 1192, 3706), Function.ability(447, "Research_ZergMissileWeaponsLevel2_quick", cmd_quick, 1193, 3706), Function.ability(448, "Research_ZergMissileWeaponsLevel3_quick", cmd_quick, 1194, 3706), Function.ability(449, "Research_ZerglingAdrenalGlands_quick", cmd_quick, 1252), Function.ability(450, "Research_ZerglingMetabolicBoost_quick", cmd_quick, 1253), Function.ability(451, "Smart_screen", cmd_screen, 1), Function.ability(452, "Smart_minimap", cmd_minimap, 1), Function.ability(453, "Stop_quick", cmd_quick, 3665), Function.ability(571, "Stop_Battlecruiser_quick", cmd_quick, 3783, 3665), Function.ability(454, "Stop_Building_quick", cmd_quick, 2057, 3665), Function.ability(455, "Stop_Redirect_quick", cmd_quick, 1691, 3665), Function.ability(456, "Stop_Stop_quick", cmd_quick, 4, 3665), Function.ability(457, "Train_Adept_quick", cmd_quick, 922), Function.ability(458, "Train_Baneling_quick", cmd_quick, 80), Function.ability(459, "Train_Banshee_quick", cmd_quick, 621), Function.ability(460, "Train_Battlecruiser_quick", cmd_quick, 623), Function.ability(461, "Train_Carrier_quick", cmd_quick, 948), Function.ability(462, "Train_Colossus_quick", cmd_quick, 978), Function.ability(463, "Train_Corruptor_quick", cmd_quick, 1353), Function.ability(464, "Train_Cyclone_quick", cmd_quick, 597), Function.ability(465, "Train_DarkTemplar_quick", cmd_quick, 920), Function.ability(466, "Train_Disruptor_quick", cmd_quick, 994), Function.ability(467, "Train_Drone_quick", cmd_quick, 1342), Function.ability(468, "Train_Ghost_quick", cmd_quick, 562), Function.ability(469, "Train_Hellbat_quick", cmd_quick, 596), Function.ability(470, "Train_Hellion_quick", cmd_quick, 595), Function.ability(471, "Train_HighTemplar_quick", cmd_quick, 919), Function.ability(472, "Train_Hydralisk_quick", cmd_quick, 1345), Function.ability(473, "Train_Immortal_quick", cmd_quick, 979), Function.ability(474, "Train_Infestor_quick", cmd_quick, 1352), Function.ability(475, "Train_Liberator_quick", cmd_quick, 626), Function.ability(476, "Train_Marauder_quick", cmd_quick, 563), Function.ability(477, "Train_Marine_quick", cmd_quick, 560), Function.ability(478, "Train_Medivac_quick", cmd_quick, 620), Function.ability(541, "Train_Mothership_quick", cmd_quick, 110), Function.ability(479, "Train_MothershipCore_quick", cmd_quick, 1853), Function.ability(480, "Train_Mutalisk_quick", cmd_quick, 1346), Function.ability(481, "Train_Observer_quick", cmd_quick, 977), Function.ability(482, "Train_Oracle_quick", cmd_quick, 954), Function.ability(483, "Train_Overlord_quick", cmd_quick, 1344), Function.ability(484, "Train_Phoenix_quick", cmd_quick, 946), Function.ability(485, "Train_Probe_quick", cmd_quick, 1006), Function.ability(486, "Train_Queen_quick", cmd_quick, 1632), Function.ability(487, "Train_Raven_quick", cmd_quick, 622), Function.ability(488, "Train_Reaper_quick", cmd_quick, 561), Function.ability(489, "Train_Roach_quick", cmd_quick, 1351), Function.ability(490, "Train_SCV_quick", cmd_quick, 524), Function.ability(491, "Train_Sentry_quick", cmd_quick, 921), Function.ability(492, "Train_SiegeTank_quick", cmd_quick, 591), Function.ability(493, "Train_Stalker_quick", cmd_quick, 917), Function.ability(494, "Train_SwarmHost_quick", cmd_quick, 1356), Function.ability(495, "Train_Tempest_quick", cmd_quick, 955), Function.ability(496, "Train_Thor_quick", cmd_quick, 594), Function.ability(497, "Train_Ultralisk_quick", cmd_quick, 1348), Function.ability(498, "Train_VikingFighter_quick", cmd_quick, 624), Function.ability(499, "Train_Viper_quick", cmd_quick, 1354), Function.ability(500, "Train_VoidRay_quick", cmd_quick, 950), Function.ability(501, "Train_WarpPrism_quick", cmd_quick, 976), Function.ability(502, "Train_WidowMine_quick", cmd_quick, 614), Function.ability(503, "Train_Zealot_quick", cmd_quick, 916), Function.ability(504, "Train_Zergling_quick", cmd_quick, 1343), Function.ability(505, "TrainWarp_Adept_screen", cmd_screen, 1419), Function.ability(506, "TrainWarp_DarkTemplar_screen", cmd_screen, 1417), Function.ability(507, "TrainWarp_HighTemplar_screen", cmd_screen, 1416), Function.ability(508, "TrainWarp_Sentry_screen", cmd_screen, 1418), Function.ability(509, "TrainWarp_Stalker_screen", cmd_screen, 1414), Function.ability(510, "TrainWarp_Zealot_screen", cmd_screen, 1413), Function.ability(511, "UnloadAll_quick", cmd_quick, 3664), Function.ability(512, "UnloadAll_Bunker_quick", cmd_quick, 408, 3664), Function.ability(513, "UnloadAll_CommandCenter_quick", cmd_quick, 413, 3664), Function.ability(514, "UnloadAll_NydusNetwork_quick", cmd_quick, 1438, 3664), Function.ability(515, "UnloadAll_NydusWorm_quick", cmd_quick, 2371, 3664), Function.ability(516, "UnloadAllAt_screen", cmd_screen, 3669), Function.ability(517, "UnloadAllAt_minimap", cmd_minimap, 3669), Function.ability(518, "UnloadAllAt_Medivac_screen", cmd_screen, 396, 3669), Function.ability(519, "UnloadAllAt_Medivac_minimap", cmd_minimap, 396, 3669), Function.ability(520, "UnloadAllAt_Overlord_screen", cmd_screen, 1408, 3669), Function.ability(521, "UnloadAllAt_Overlord_minimap", cmd_minimap, 1408, 3669), Function.ability(522, "UnloadAllAt_WarpPrism_screen", cmd_screen, 913, 3669), Function.ability(523, "UnloadAllAt_WarpPrism_minimap", cmd_minimap, 913, 3669), ] # pylint: enable=line-too-long # Create an IntEnum of the function names/ids so that printing the id will # show something useful. _Functions = enum.IntEnum( # pylint: disable=invalid-name "_Functions", {f.name: f.id for f in _FUNCTIONS}) _FUNCTIONS = [f._replace(id=_Functions(f.id)) for f in _FUNCTIONS] FUNCTIONS = Functions(_FUNCTIONS) # Some indexes to support features.py and action conversion. ABILITY_IDS = collections.defaultdict(set) # {ability_id: {funcs}} for _func in FUNCTIONS: if _func.ability_id >= 0: ABILITY_IDS[_func.ability_id].add(_func) ABILITY_IDS = {k: frozenset(v) for k, v in ABILITY_IDS.items()} FUNCTIONS_AVAILABLE = {f.id: f for f in FUNCTIONS if f.avail_fn} # pylint: disable=line-too-long _RAW_FUNCTIONS = [ Function.raw_ui_func(0, "no_op", raw_no_op), Function.raw_ui_func(168, "raw_move_camera", raw_move_camera), Function.raw_ability(2, "Attack_pt", raw_cmd_pt, 3674), Function.raw_ability(3, "Attack_unit", raw_cmd_unit, 3674), Function.raw_ability(4, "Attack_Attack_pt", raw_cmd_pt, 23, 3674), Function.raw_ability(6, "Attack_AttackBuilding_pt", raw_cmd_pt, 2048, 3674), Function.raw_ability(5, "Attack_Attack_unit", raw_cmd_unit, 23, 3674), Function.raw_ability(7, "Attack_AttackBuilding_unit", raw_cmd_unit, 2048, 3674), Function.raw_ability(539, "Attack_Battlecruiser_pt", raw_cmd_pt, 3771, 3674), Function.raw_ability(540, "Attack_Battlecruiser_unit", raw_cmd_unit, 3771, 3674), Function.raw_ability(8, "Attack_Redirect_pt", raw_cmd_pt, 1682, 3674), Function.raw_ability(9, "Attack_Redirect_unit", raw_cmd_unit, 1682, 3674), Function.raw_ability(88, "Behavior_BuildingAttackOff_quick", raw_cmd, 2082), # wrong / baneling Function.raw_ability(87, "Behavior_BuildingAttackOn_quick", raw_cmd, 2081), # wrong / baneling Function.raw_ability(169, "Behavior_CloakOff_quick", raw_cmd, 3677), Function.raw_ability(170, "Behavior_CloakOff_Banshee_quick", raw_cmd, 393, 3677), Function.raw_ability(171, "Behavior_CloakOff_Ghost_quick", raw_cmd, 383, 3677), Function.raw_ability(172, "Behavior_CloakOn_quick", raw_cmd, 3676), Function.raw_ability(173, "Behavior_CloakOn_Banshee_quick", raw_cmd, 392, 3676), Function.raw_ability(174, "Behavior_CloakOn_Ghost_quick", raw_cmd, 382, 3676), Function.raw_ability(175, "Behavior_GenerateCreepOff_quick", raw_cmd, 1693), Function.raw_ability(176, "Behavior_GenerateCreepOn_quick", raw_cmd, 1692), Function.raw_ability(178, "Behavior_HoldFireOff_Ghost_quick", raw_cmd, 38, 3689), Function.raw_ability(179, "Behavior_HoldFireOff_Lurker_quick", raw_cmd, 2552, 3689), Function.raw_ability(177, "Behavior_HoldFireOff_quick", raw_cmd, 3689), Function.raw_ability(181, "Behavior_HoldFireOn_Ghost_quick", raw_cmd, 36, 3688), Function.raw_ability(182, "Behavior_HoldFireOn_Lurker_quick", raw_cmd, 2550, 3688), Function.raw_ability(180, "Behavior_HoldFireOn_quick", raw_cmd, 3688), Function.raw_ability(158, "Behavior_PulsarBeamOff_quick", raw_cmd, 2376), Function.raw_ability(159, "Behavior_PulsarBeamOn_quick", raw_cmd, 2375), Function.raw_ability(183, "Build_Armory_pt", raw_cmd_pt, 331), Function.raw_ability(36, "Build_Assimilator_unit", raw_cmd_unit, 882), Function.raw_ability(184, "Build_BanelingNest_pt", raw_cmd_pt, 1162), Function.raw_ability(185, "Build_Barracks_pt", raw_cmd_pt, 321), Function.raw_ability(186, "Build_Bunker_pt", raw_cmd_pt, 324), Function.raw_ability(187, "Build_CommandCenter_pt", raw_cmd_pt, 318), Function.raw_ability(188, "Build_CreepTumor_pt", raw_cmd_pt, 3691), Function.raw_ability(189, "Build_CreepTumor_Queen_pt", raw_cmd_pt, 1694, 3691), Function.raw_ability(190, "Build_CreepTumor_Tumor_pt", raw_cmd_pt, 1733, 3691), Function.raw_ability(47, "Build_CyberneticsCore_pt", raw_cmd_pt, 894), Function.raw_ability(44, "Build_DarkShrine_pt", raw_cmd_pt, 891), Function.raw_ability(191, "Build_EngineeringBay_pt", raw_cmd_pt, 322), Function.raw_ability(192, "Build_EvolutionChamber_pt", raw_cmd_pt, 1156), Function.raw_ability(193, "Build_Extractor_unit", raw_cmd_unit, 1154), Function.raw_ability(194, "Build_Factory_pt", raw_cmd_pt, 328), Function.raw_ability(39, "Build_FleetBeacon_pt", raw_cmd_pt, 885), Function.raw_ability(38, "Build_Forge_pt", raw_cmd_pt, 884), Function.raw_ability(195, "Build_FusionCore_pt", raw_cmd_pt, 333), Function.raw_ability(37, "Build_Gateway_pt", raw_cmd_pt, 883), Function.raw_ability(196, "Build_GhostAcademy_pt", raw_cmd_pt, 327), Function.raw_ability(197, "Build_Hatchery_pt", raw_cmd_pt, 1152), Function.raw_ability(198, "Build_HydraliskDen_pt", raw_cmd_pt, 1157), Function.raw_ability(199, "Build_InfestationPit_pt", raw_cmd_pt, 1160), Function.raw_ability(200, "Build_Interceptors_autocast", raw_autocast, 1042), Function.raw_ability(66, "Build_Interceptors_quick", raw_cmd, 1042), Function.raw_ability(201, "Build_LurkerDen_pt", raw_cmd_pt, 1163), Function.raw_ability(202, "Build_MissileTurret_pt", raw_cmd_pt, 323), Function.raw_ability(34, "Build_Nexus_pt", raw_cmd_pt, 880), Function.raw_ability(203, "Build_Nuke_quick", raw_cmd, 710), Function.raw_ability(204, "Build_NydusNetwork_pt", raw_cmd_pt, 1161), Function.raw_ability(205, "Build_NydusWorm_pt", raw_cmd_pt, 1768), Function.raw_ability(41, "Build_PhotonCannon_pt", raw_cmd_pt, 887), Function.raw_ability(35, "Build_Pylon_pt", raw_cmd_pt, 881), Function.raw_ability(207, "Build_Reactor_pt", raw_cmd_pt, 3683), Function.raw_ability(206, "Build_Reactor_quick", raw_cmd, 3683), Function.raw_ability(209, "Build_Reactor_Barracks_pt", raw_cmd_pt, 422, 3683), Function.raw_ability(208, "Build_Reactor_Barracks_quick", raw_cmd, 422, 3683), Function.raw_ability(211, "Build_Reactor_Factory_pt", raw_cmd_pt, 455, 3683), Function.raw_ability(210, "Build_Reactor_Factory_quick", raw_cmd, 455, 3683), Function.raw_ability(213, "Build_Reactor_Starport_pt", raw_cmd_pt, 488, 3683), Function.raw_ability(212, "Build_Reactor_Starport_quick", raw_cmd, 488, 3683), Function.raw_ability(214, "Build_Refinery_pt", raw_cmd_unit, 320), Function.raw_ability(215, "Build_RoachWarren_pt", raw_cmd_pt, 1165), Function.raw_ability(45, "Build_RoboticsBay_pt", raw_cmd_pt, 892), Function.raw_ability(46, "Build_RoboticsFacility_pt", raw_cmd_pt, 893), Function.raw_ability(216, "Build_SensorTower_pt", raw_cmd_pt, 326), Function.raw_ability(48, "Build_ShieldBattery_pt", raw_cmd_pt, 895), Function.raw_ability(217, "Build_SpawningPool_pt", raw_cmd_pt, 1155), Function.raw_ability(218, "Build_SpineCrawler_pt", raw_cmd_pt, 1166), Function.raw_ability(219, "Build_Spire_pt", raw_cmd_pt, 1158), Function.raw_ability(220, "Build_SporeCrawler_pt", raw_cmd_pt, 1167), Function.raw_ability(42, "Build_Stargate_pt", raw_cmd_pt, 889), Function.raw_ability(221, "Build_Starport_pt", raw_cmd_pt, 329), Function.raw_ability(95, "Build_StasisTrap_pt", raw_cmd_pt, 2505), Function.raw_ability(222, "Build_SupplyDepot_pt", raw_cmd_pt, 319), Function.raw_ability(224, "Build_TechLab_pt", raw_cmd_pt, 3682), Function.raw_ability(223, "Build_TechLab_quick", raw_cmd, 3682), Function.raw_ability(226, "Build_TechLab_Barracks_pt", raw_cmd_pt, 421, 3682), Function.raw_ability(225, "Build_TechLab_Barracks_quick", raw_cmd, 421, 3682), Function.raw_ability(228, "Build_TechLab_Factory_pt", raw_cmd_pt, 454, 3682), Function.raw_ability(227, "Build_TechLab_Factory_quick", raw_cmd, 454, 3682), Function.raw_ability(230, "Build_TechLab_Starport_pt", raw_cmd_pt, 487, 3682), Function.raw_ability(229, "Build_TechLab_Starport_quick", raw_cmd, 487, 3682), Function.raw_ability(43, "Build_TemplarArchive_pt", raw_cmd_pt, 890), Function.raw_ability(40, "Build_TwilightCouncil_pt", raw_cmd_pt, 886), Function.raw_ability(231, "Build_UltraliskCavern_pt", raw_cmd_pt, 1159), Function.raw_ability(232, "BurrowDown_quick", raw_cmd, 3661), Function.raw_ability(233, "BurrowDown_Baneling_quick", raw_cmd, 1374, 3661), Function.raw_ability(234, "BurrowDown_Drone_quick", raw_cmd, 1378, 3661), Function.raw_ability(235, "BurrowDown_Hydralisk_quick", raw_cmd, 1382, 3661), Function.raw_ability(236, "BurrowDown_Infestor_quick", raw_cmd, 1444, 3661), Function.raw_ability(237, "BurrowDown_InfestorTerran_quick", raw_cmd, 1394, 3661), Function.raw_ability(238, "BurrowDown_Lurker_quick", raw_cmd, 2108, 3661), Function.raw_ability(239, "BurrowDown_Queen_quick", raw_cmd, 1433, 3661), Function.raw_ability(240, "BurrowDown_Ravager_quick", raw_cmd, 2340, 3661), Function.raw_ability(241, "BurrowDown_Roach_quick", raw_cmd, 1386, 3661), Function.raw_ability(242, "BurrowDown_SwarmHost_quick", raw_cmd, 2014, 3661), Function.raw_ability(243, "BurrowDown_Ultralisk_quick", raw_cmd, 1512, 3661), Function.raw_ability(244, "BurrowDown_WidowMine_quick", raw_cmd, 2095, 3661), Function.raw_ability(245, "BurrowDown_Zergling_quick", raw_cmd, 1390, 3661), Function.raw_ability(247, "BurrowUp_autocast", raw_autocast, 3662), Function.raw_ability(246, "BurrowUp_quick", raw_cmd, 3662), Function.raw_ability(249, "BurrowUp_Baneling_autocast", raw_autocast, 1376, 3662), Function.raw_ability(248, "BurrowUp_Baneling_quick", raw_cmd, 1376, 3662), Function.raw_ability(250, "BurrowUp_Drone_quick", raw_cmd, 1380, 3662), Function.raw_ability(252, "BurrowUp_Hydralisk_autocast", raw_autocast, 1384, 3662), Function.raw_ability(251, "BurrowUp_Hydralisk_quick", raw_cmd, 1384, 3662), Function.raw_ability(253, "BurrowUp_Infestor_quick", raw_cmd, 1446, 3662), Function.raw_ability(255, "BurrowUp_InfestorTerran_autocast", raw_autocast, 1396, 3662), Function.raw_ability(254, "BurrowUp_InfestorTerran_quick", raw_cmd, 1396, 3662), Function.raw_ability(256, "BurrowUp_Lurker_quick", raw_cmd, 2110, 3662), Function.raw_ability(258, "BurrowUp_Queen_autocast", raw_autocast, 1435, 3662), Function.raw_ability(257, "BurrowUp_Queen_quick", raw_cmd, 1435, 3662), Function.raw_ability(260, "BurrowUp_Ravager_autocast", raw_autocast, 2342, 3662), Function.raw_ability(259, "BurrowUp_Ravager_quick", raw_cmd, 2342, 3662), Function.raw_ability(262, "BurrowUp_Roach_autocast", raw_autocast, 1388, 3662), Function.raw_ability(261, "BurrowUp_Roach_quick", raw_cmd, 1388, 3662), Function.raw_ability(263, "BurrowUp_SwarmHost_quick", raw_cmd, 2016, 3662), Function.raw_ability(265, "BurrowUp_Ultralisk_autocast", raw_autocast, 1514, 3662), Function.raw_ability(264, "BurrowUp_Ultralisk_quick", raw_cmd, 1514, 3662), Function.raw_ability(266, "BurrowUp_WidowMine_quick", raw_cmd, 2097, 3662), Function.raw_ability(268, "BurrowUp_Zergling_autocast", raw_autocast, 1392, 3662), Function.raw_ability(267, "BurrowUp_Zergling_quick", raw_cmd, 1392, 3662), Function.raw_ability(98, "Cancel_quick", raw_cmd, 3659), Function.raw_ability(123, "Cancel_AdeptPhaseShift_quick", raw_cmd, 2594, 3659), Function.raw_ability(124, "Cancel_AdeptShadePhaseShift_quick", raw_cmd, 2596, 3659), Function.raw_ability(269, "Cancel_BarracksAddOn_quick", raw_cmd, 451, 3659), Function.raw_ability(125, "Cancel_BuildInProgress_quick", raw_cmd, 314, 3659), Function.raw_ability(270, "Cancel_CreepTumor_quick", raw_cmd, 1763, 3659), Function.raw_ability(271, "Cancel_FactoryAddOn_quick", raw_cmd, 484, 3659), Function.raw_ability(126, "Cancel_GravitonBeam_quick", raw_cmd, 174, 3659), Function.raw_ability(272, "Cancel_HangarQueue5_quick", raw_cmd, 1038, 3671), Function.raw_ability(129, "Cancel_Last_quick", raw_cmd, 3671), Function.raw_ability(273, "Cancel_LockOn_quick", raw_cmd, 2354, 3659), Function.raw_ability(274, "Cancel_MorphBroodlord_quick", raw_cmd, 1373, 3659), Function.raw_ability(275, "Cancel_MorphGreaterSpire_quick", raw_cmd, 1221, 3659), Function.raw_ability(276, "Cancel_MorphHive_quick", raw_cmd, 1219, 3659), Function.raw_ability(277, "Cancel_MorphLair_quick", raw_cmd, 1217, 3659), Function.raw_ability(279, "Cancel_MorphLurkerDen_quick", raw_cmd, 2113, 3659), Function.raw_ability(278, "Cancel_MorphLurker_quick", raw_cmd, 2333, 3659), Function.raw_ability(280, "Cancel_MorphMothership_quick", raw_cmd, 1848, 3659), Function.raw_ability(281, "Cancel_MorphOrbital_quick", raw_cmd, 1517, 3659), Function.raw_ability(282, "Cancel_MorphOverlordTransport_quick", raw_cmd, 2709, 3659), Function.raw_ability(283, "Cancel_MorphOverseer_quick", raw_cmd, 1449, 3659), Function.raw_ability(284, "Cancel_MorphPlanetaryFortress_quick", raw_cmd, 1451, 3659), Function.raw_ability(285, "Cancel_MorphRavager_quick", raw_cmd, 2331, 3659), Function.raw_ability(286, "Cancel_MorphThorExplosiveMode_quick", raw_cmd, 2365, 3659), Function.raw_ability(287, "Cancel_NeuralParasite_quick", raw_cmd, 250, 3659), Function.raw_ability(288, "Cancel_Nuke_quick", raw_cmd, 1623, 3659), Function.raw_ability(130, "Cancel_Queue1_quick", raw_cmd, 304, 3671), Function.raw_ability(131, "Cancel_Queue5_quick", raw_cmd, 306, 3671), Function.raw_ability(289, "Cancel_QueueAddOn_quick", raw_cmd, 312, 3671), Function.raw_ability(132, "Cancel_QueueCancelToSelection_quick", raw_cmd, 308, 3671), Function.raw_ability(134, "Cancel_QueuePassiveCancelToSelection_quick", raw_cmd, 1833, 3671), Function.raw_ability(133, "Cancel_QueuePassive_quick", raw_cmd, 1831, 3671), Function.raw_ability(290, "Cancel_SpineCrawlerRoot_quick", raw_cmd, 1730, 3659), Function.raw_ability(291, "Cancel_SporeCrawlerRoot_quick", raw_cmd, 1732, 3659), Function.raw_ability(292, "Cancel_StarportAddOn_quick", raw_cmd, 517, 3659), Function.raw_ability(127, "Cancel_StasisTrap_quick", raw_cmd, 2535, 3659), Function.raw_ability(128, "Cancel_VoidRayPrismaticAlignment_quick", raw_cmd, 3707, 3659), Function.raw_ability(293, "Effect_Abduct_unit", raw_cmd_unit, 2067), Function.raw_ability(96, "Effect_AdeptPhaseShift_pt", raw_cmd_pt, 2544), Function.raw_ability(294, "Effect_AntiArmorMissile_unit", raw_cmd_unit, 3753), Function.raw_ability(295, "Effect_AutoTurret_pt", raw_cmd_pt, 1764), Function.raw_ability(296, "Effect_BlindingCloud_pt", raw_cmd_pt, 2063), Function.raw_ability(111, "Effect_Blink_pt", raw_cmd_pt, 3687), Function.raw_ability(135, "Effect_Blink_Stalker_pt", raw_cmd_pt, 1442, 3687), Function.raw_ability(112, "Effect_Blink_unit", raw_cmd_unit, 3687), # wrong/unit Function.raw_ability(297, "Effect_CalldownMULE_pt", raw_cmd_pt, 171), Function.raw_ability(298, "Effect_CalldownMULE_unit", raw_cmd_unit, 171), Function.raw_ability(299, "Effect_CausticSpray_unit", raw_cmd_unit, 2324), Function.raw_ability(302, "Effect_Charge_autocast", raw_autocast, 1819), Function.raw_ability(300, "Effect_Charge_pt", raw_cmd_pt, 1819), Function.raw_ability(301, "Effect_Charge_unit", raw_cmd_unit, 1819), Function.raw_ability(122, "Effect_ChronoBoostEnergyCost_unit", raw_cmd_unit, 3755), # new 4.0? Function.raw_ability(33, "Effect_ChronoBoost_unit", raw_cmd_unit, 261), # wrong / old? Function.raw_ability(303, "Effect_Contaminate_unit", raw_cmd_unit, 1825), Function.raw_ability(304, "Effect_CorrosiveBile_pt", raw_cmd_pt, 2338), Function.raw_ability(305, "Effect_EMP_pt", raw_cmd_pt, 1628), Function.raw_ability(306, "Effect_EMP_unit", raw_cmd_unit, 1628), Function.raw_ability(307, "Effect_Explode_quick", raw_cmd, 42), Function.raw_ability(157, "Effect_Feedback_unit", raw_cmd_unit, 140), Function.raw_ability(79, "Effect_ForceField_pt", raw_cmd_pt, 1526), Function.raw_ability(308, "Effect_FungalGrowth_pt", raw_cmd_pt, 74), Function.raw_ability(309, "Effect_FungalGrowth_unit", raw_cmd_unit, 74), Function.raw_ability(310, "Effect_GhostSnipe_unit", raw_cmd_unit, 2714), Function.raw_ability(32, "Effect_GravitonBeam_unit", raw_cmd_unit, 173), Function.raw_ability(20, "Effect_GuardianShield_quick", raw_cmd, 76), Function.raw_ability(312, "Effect_Heal_autocast", raw_autocast, 386), Function.raw_ability(311, "Effect_Heal_unit", raw_cmd_unit, 386), Function.raw_ability(313, "Effect_ImmortalBarrier_autocast", raw_autocast, 2328), Function.raw_ability(91, "Effect_ImmortalBarrier_quick", raw_cmd, 2328), Function.raw_ability(314, "Effect_InfestedTerrans_pt", raw_cmd_pt, 247), Function.raw_ability(315, "Effect_InjectLarva_unit", raw_cmd_unit, 251), Function.raw_ability(316, "Effect_InterferenceMatrix_unit", raw_cmd_unit, 3747), Function.raw_ability(317, "Effect_KD8Charge_pt", raw_cmd_pt, 2588), Function.raw_ability(538, "Effect_KD8Charge_unit", raw_cmd_unit, 2588), Function.raw_ability(318, "Effect_LockOn_unit", raw_cmd_unit, 2350), Function.raw_ability(541, "Effect_LockOn_autocast", raw_autocast, 2350), Function.raw_ability(319, "Effect_LocustSwoop_pt", raw_cmd_pt, 2387), Function.raw_ability(110, "Effect_MassRecall_pt", raw_cmd_pt, 3686), Function.raw_ability(136, "Effect_MassRecall_Mothership_pt", raw_cmd_pt, 2368, 3686), Function.raw_ability(162, "Effect_MassRecall_Nexus_pt", raw_cmd_pt, 3757, 3686), Function.raw_ability(137, "Effect_MassRecall_StrategicRecall_pt", raw_cmd_pt, 142, 3686), Function.raw_ability(320, "Effect_MedivacIgniteAfterburners_quick", raw_cmd, 2116), Function.raw_ability(321, "Effect_NeuralParasite_unit", raw_cmd_unit, 249), Function.raw_ability(322, "Effect_NukeCalldown_pt", raw_cmd_pt, 1622), Function.raw_ability(90, "Effect_OracleRevelation_pt", raw_cmd_pt, 2146), Function.raw_ability(323, "Effect_ParasiticBomb_unit", raw_cmd_unit, 2542), Function.raw_ability(65, "Effect_PsiStorm_pt", raw_cmd_pt, 1036), Function.raw_ability(167, "Effect_PurificationNova_pt", raw_cmd_pt, 2346), Function.raw_ability(324, "Effect_Repair_autocast", raw_autocast, 3685), Function.raw_ability(108, "Effect_Repair_pt", raw_cmd_pt, 3685), Function.raw_ability(109, "Effect_Repair_unit", raw_cmd_unit, 3685), Function.raw_ability(326, "Effect_Repair_Mule_autocast", raw_autocast, 78, 3685), Function.raw_ability(325, "Effect_Repair_Mule_unit", raw_cmd_unit, 78, 3685), Function.raw_ability(328, "Effect_Repair_RepairDrone_autocast", raw_autocast, 3751, 3685), Function.raw_ability(327, "Effect_Repair_RepairDrone_unit", raw_cmd_unit, 3751, 3685), Function.raw_ability(330, "Effect_Repair_SCV_autocast", raw_autocast, 316, 3685), Function.raw_ability(329, "Effect_Repair_SCV_unit", raw_cmd_unit, 316, 3685), Function.raw_ability(331, "Effect_Restore_autocast", raw_autocast, 3765), Function.raw_ability(161, "Effect_Restore_unit", raw_cmd_unit, 3765), Function.raw_ability(332, "Effect_Salvage_quick", raw_cmd, 32), Function.raw_ability(333, "Effect_Scan_pt", raw_cmd_pt, 399), Function.raw_ability(113, "Effect_ShadowStride_pt", raw_cmd_pt, 2700, 3687), Function.raw_ability(334, "Effect_SpawnChangeling_quick", raw_cmd, 181), Function.raw_ability(335, "Effect_SpawnLocusts_pt", raw_cmd_pt, 2704), Function.raw_ability(336, "Effect_SpawnLocusts_unit", raw_cmd_unit, 2704), Function.raw_ability(337, "Effect_Spray_pt", raw_cmd_pt, 3684), Function.raw_ability(338, "Effect_Spray_Protoss_pt", raw_cmd_pt, 30, 3684), Function.raw_ability(339, "Effect_Spray_Terran_pt", raw_cmd_pt, 26, 3684), Function.raw_ability(340, "Effect_Spray_Zerg_pt", raw_cmd_pt, 28, 3684), Function.raw_ability(341, "Effect_Stim_quick", raw_cmd, 3675), Function.raw_ability(342, "Effect_Stim_Marauder_quick", raw_cmd, 253, 3675), Function.raw_ability(343, "Effect_Stim_Marauder_Redirect_quick", raw_cmd, 1684, 3675), Function.raw_ability(344, "Effect_Stim_Marine_quick", raw_cmd, 380, 3675), Function.raw_ability(345, "Effect_Stim_Marine_Redirect_quick", raw_cmd, 1683, 3675), Function.raw_ability(346, "Effect_SupplyDrop_unit", raw_cmd_unit, 255), Function.raw_ability(347, "Effect_TacticalJump_pt", raw_cmd_pt, 2358), Function.raw_ability(348, "Effect_TimeWarp_pt", raw_cmd_pt, 2244), Function.raw_ability(349, "Effect_Transfusion_unit", raw_cmd_unit, 1664), Function.raw_ability(350, "Effect_ViperConsume_unit", raw_cmd_unit, 2073), Function.raw_ability(94, "Effect_VoidRayPrismaticAlignment_quick", raw_cmd, 2393), Function.raw_ability(353, "Effect_WidowMineAttack_autocast", raw_autocast, 2099), Function.raw_ability(351, "Effect_WidowMineAttack_pt", raw_cmd_pt, 2099), Function.raw_ability(352, "Effect_WidowMineAttack_unit", raw_cmd_unit, 2099), Function.raw_ability(537, "Effect_YamatoGun_unit", raw_cmd_unit, 401), Function.raw_ability(93, "Hallucination_Adept_quick", raw_cmd, 2391), Function.raw_ability(22, "Hallucination_Archon_quick", raw_cmd, 146), Function.raw_ability(23, "Hallucination_Colossus_quick", raw_cmd, 148), Function.raw_ability(92, "Hallucination_Disruptor_quick", raw_cmd, 2389), Function.raw_ability(24, "Hallucination_HighTemplar_quick", raw_cmd, 150), Function.raw_ability(25, "Hallucination_Immortal_quick", raw_cmd, 152), Function.raw_ability(89, "Hallucination_Oracle_quick", raw_cmd, 2114), Function.raw_ability(26, "Hallucination_Phoenix_quick", raw_cmd, 154), Function.raw_ability(27, "Hallucination_Probe_quick", raw_cmd, 156), Function.raw_ability(28, "Hallucination_Stalker_quick", raw_cmd, 158), Function.raw_ability(29, "Hallucination_VoidRay_quick", raw_cmd, 160), Function.raw_ability(30, "Hallucination_WarpPrism_quick", raw_cmd, 162), Function.raw_ability(31, "Hallucination_Zealot_quick", raw_cmd, 164), Function.raw_ability(354, "Halt_Building_quick", raw_cmd, 315, 3660), Function.raw_ability(99, "Halt_quick", raw_cmd, 3660), Function.raw_ability(355, "Halt_TerranBuild_quick", raw_cmd, 348, 3660), Function.raw_ability(102, "Harvest_Gather_unit", raw_cmd_unit, 3666), Function.raw_ability(356, "Harvest_Gather_Drone_unit", raw_cmd_unit, 1183, 3666), Function.raw_ability(357, "Harvest_Gather_Mule_unit", raw_cmd_unit, 166, 3666), Function.raw_ability(358, "Harvest_Gather_Probe_unit", raw_cmd_unit, 298, 3666), Function.raw_ability(359, "Harvest_Gather_SCV_unit", raw_cmd_unit, 295, 3666), Function.raw_ability(103, "Harvest_Return_quick", raw_cmd, 3667), Function.raw_ability(360, "Harvest_Return_Drone_quick", raw_cmd, 1184, 3667), Function.raw_ability(361, "Harvest_Return_Mule_quick", raw_cmd, 167, 3667), Function.raw_ability(154, "Harvest_Return_Probe_quick", raw_cmd, 299, 3667), Function.raw_ability(362, "Harvest_Return_SCV_quick", raw_cmd, 296, 3667), Function.raw_ability(17, "HoldPosition_quick", raw_cmd, 3793), Function.raw_ability(542, "HoldPosition_Battlecruiser_quick", raw_cmd, 3778, 3793), Function.raw_ability(543, "HoldPosition_Hold_quick", raw_cmd, 18, 3793), Function.raw_ability(364, "Land_Barracks_pt", raw_cmd_pt, 554, 3678), Function.raw_ability(365, "Land_CommandCenter_pt", raw_cmd_pt, 419, 3678), Function.raw_ability(366, "Land_Factory_pt", raw_cmd_pt, 520, 3678), Function.raw_ability(367, "Land_OrbitalCommand_pt", raw_cmd_pt, 1524, 3678), Function.raw_ability(363, "Land_pt", raw_cmd_pt, 3678), Function.raw_ability(368, "Land_Starport_pt", raw_cmd_pt, 522, 3678), Function.raw_ability(370, "Lift_Barracks_quick", raw_cmd, 452, 3679), Function.raw_ability(371, "Lift_CommandCenter_quick", raw_cmd, 417, 3679), Function.raw_ability(372, "Lift_Factory_quick", raw_cmd, 485, 3679), Function.raw_ability(373, "Lift_OrbitalCommand_quick", raw_cmd, 1522, 3679), Function.raw_ability(369, "Lift_quick", raw_cmd, 3679), Function.raw_ability(374, "Lift_Starport_quick", raw_cmd, 518, 3679), Function.raw_ability(376, "LoadAll_CommandCenter_quick", raw_cmd, 416, 3663), Function.raw_ability(375, "LoadAll_quick", raw_cmd, 3663), Function.raw_ability(377, "Load_Bunker_unit", raw_cmd_unit, 407, 3668), Function.raw_ability(378, "Load_Medivac_unit", raw_cmd_unit, 394, 3668), Function.raw_ability(379, "Load_NydusNetwork_unit", raw_cmd_unit, 1437, 3668), Function.raw_ability(380, "Load_NydusWorm_unit", raw_cmd_unit, 2370, 3668), Function.raw_ability(381, "Load_Overlord_unit", raw_cmd_unit, 1406, 3668), Function.raw_ability(104, "Load_unit", raw_cmd_unit, 3668), Function.raw_ability(382, "Load_WarpPrism_unit", raw_cmd_unit, 911, 3668), Function.raw_ability(86, "Morph_Archon_quick", raw_cmd, 1766), Function.raw_ability(383, "Morph_BroodLord_quick", raw_cmd, 1372), Function.raw_ability(78, "Morph_Gateway_quick", raw_cmd, 1520), Function.raw_ability(384, "Morph_GreaterSpire_quick", raw_cmd, 1220), Function.raw_ability(385, "Morph_Hellbat_quick", raw_cmd, 1998), Function.raw_ability(386, "Morph_Hellion_quick", raw_cmd, 1978), Function.raw_ability(387, "Morph_Hive_quick", raw_cmd, 1218), Function.raw_ability(388, "Morph_Lair_quick", raw_cmd, 1216), Function.raw_ability(389, "Morph_LiberatorAAMode_quick", raw_cmd, 2560), Function.raw_ability(390, "Morph_LiberatorAGMode_pt", raw_cmd_pt, 2558), Function.raw_ability(392, "Morph_LurkerDen_quick", raw_cmd, 2112), Function.raw_ability(391, "Morph_Lurker_quick", raw_cmd, 2332), Function.raw_ability(393, "Morph_Mothership_quick", raw_cmd, 1847), Function.raw_ability(121, "Morph_ObserverMode_quick", raw_cmd, 3739), Function.raw_ability(394, "Morph_OrbitalCommand_quick", raw_cmd, 1516), Function.raw_ability(395, "Morph_OverlordTransport_quick", raw_cmd, 2708), Function.raw_ability(397, "Morph_OverseerMode_quick", raw_cmd, 3745), Function.raw_ability(396, "Morph_Overseer_quick", raw_cmd, 1448), Function.raw_ability(398, "Morph_OversightMode_quick", raw_cmd, 3743), Function.raw_ability(399, "Morph_PlanetaryFortress_quick", raw_cmd, 1450), Function.raw_ability(400, "Morph_Ravager_quick", raw_cmd, 2330), Function.raw_ability(401, "Morph_Root_pt", raw_cmd_pt, 3680), Function.raw_ability(402, "Morph_SiegeMode_quick", raw_cmd, 388), Function.raw_ability(403, "Morph_SpineCrawlerRoot_pt", raw_cmd_pt, 1729, 3680), Function.raw_ability(404, "Morph_SpineCrawlerUproot_quick", raw_cmd, 1725, 3681), Function.raw_ability(405, "Morph_SporeCrawlerRoot_pt", raw_cmd_pt, 1731, 3680), Function.raw_ability(406, "Morph_SporeCrawlerUproot_quick", raw_cmd, 1727, 3681), Function.raw_ability(407, "Morph_SupplyDepot_Lower_quick", raw_cmd, 556), Function.raw_ability(408, "Morph_SupplyDepot_Raise_quick", raw_cmd, 558), Function.raw_ability(160, "Morph_SurveillanceMode_quick", raw_cmd, 3741), Function.raw_ability(409, "Morph_ThorExplosiveMode_quick", raw_cmd, 2364), Function.raw_ability(410, "Morph_ThorHighImpactMode_quick", raw_cmd, 2362), Function.raw_ability(411, "Morph_Unsiege_quick", raw_cmd, 390), Function.raw_ability(412, "Morph_Uproot_quick", raw_cmd, 3681), Function.raw_ability(413, "Morph_VikingAssaultMode_quick", raw_cmd, 403), Function.raw_ability(414, "Morph_VikingFighterMode_quick", raw_cmd, 405), Function.raw_ability(77, "Morph_WarpGate_quick", raw_cmd, 1518), Function.raw_ability(544, "Morph_WarpGate_autocast", raw_autocast, 1518), Function.raw_ability(80, "Morph_WarpPrismPhasingMode_quick", raw_cmd, 1528), Function.raw_ability(81, "Morph_WarpPrismTransportMode_quick", raw_cmd, 1530), Function.raw_ability(13, "Move_pt", raw_cmd_pt, 3794), Function.raw_ability(14, "Move_unit", raw_cmd_unit, 3794), Function.raw_ability(545, "Move_Battlecruiser_pt", raw_cmd_pt, 3776, 3794), Function.raw_ability(546, "Move_Battlecruiser_unit", raw_cmd_unit, 3776, 3794), Function.raw_ability(547, "Move_Move_pt", raw_cmd_pt, 16, 3794), Function.raw_ability(548, "Move_Move_unit", raw_cmd_unit, 16, 3794), Function.raw_ability(15, "Patrol_pt", raw_cmd_pt, 3795), Function.raw_ability(16, "Patrol_unit", raw_cmd_unit, 3795), Function.raw_ability(549, "Patrol_Battlecruiser_pt", raw_cmd_pt, 3777, 3795), Function.raw_ability(550, "Patrol_Battlecruiser_unit", raw_cmd_unit, 3777, 3795), Function.raw_ability(551, "Patrol_Patrol_pt", raw_cmd_pt, 17, 3795), Function.raw_ability(552, "Patrol_Patrol_unit", raw_cmd_unit, 17, 3795), Function.raw_ability(415, "Rally_Building_pt", raw_cmd_pt, 195, 3673), Function.raw_ability(416, "Rally_Building_unit", raw_cmd_unit, 195, 3673), Function.raw_ability(417, "Rally_CommandCenter_pt", raw_cmd_pt, 203, 3690), Function.raw_ability(418, "Rally_CommandCenter_unit", raw_cmd_unit, 203, 3690), Function.raw_ability(419, "Rally_Hatchery_Units_pt", raw_cmd_pt, 211, 3673), Function.raw_ability(420, "Rally_Hatchery_Units_unit", raw_cmd_unit, 211, 3673), Function.raw_ability(421, "Rally_Hatchery_Workers_pt", raw_cmd_pt, 212, 3690), Function.raw_ability(422, "Rally_Hatchery_Workers_unit", raw_cmd_unit, 212, 3690), Function.raw_ability(423, "Rally_Morphing_Unit_pt", raw_cmd_pt, 199, 3673), Function.raw_ability(424, "Rally_Morphing_Unit_unit", raw_cmd_unit, 199, 3673), Function.raw_ability(138, "Rally_Nexus_pt", raw_cmd_pt, 207, 3690), Function.raw_ability(165, "Rally_Nexus_unit", raw_cmd_unit, 207, 3690), Function.raw_ability(106, "Rally_Units_pt", raw_cmd_pt, 3673), Function.raw_ability(107, "Rally_Units_unit", raw_cmd_unit, 3673), Function.raw_ability(114, "Rally_Workers_pt", raw_cmd_pt, 3690), Function.raw_ability(115, "Rally_Workers_unit", raw_cmd_unit, 3690), Function.raw_ability(425, "Research_AdaptiveTalons_quick", raw_cmd, 3709), Function.raw_ability(85, "Research_AdeptResonatingGlaives_quick", raw_cmd, 1594), Function.raw_ability(426, "Research_AdvancedBallistics_quick", raw_cmd, 805), Function.raw_ability(553, "Research_AnabolicSynthesis_quick", raw_cmd, 263), Function.raw_ability(427, "Research_BansheeCloakingField_quick", raw_cmd, 790), Function.raw_ability(428, "Research_BansheeHyperflightRotors_quick", raw_cmd, 799), Function.raw_ability(429, "Research_BattlecruiserWeaponRefit_quick", raw_cmd, 1532), Function.raw_ability(84, "Research_Blink_quick", raw_cmd, 1593), Function.raw_ability(430, "Research_Burrow_quick", raw_cmd, 1225), Function.raw_ability(431, "Research_CentrifugalHooks_quick", raw_cmd, 1482), Function.raw_ability(83, "Research_Charge_quick", raw_cmd, 1592), Function.raw_ability(432, "Research_ChitinousPlating_quick", raw_cmd, 265), Function.raw_ability(433, "Research_CombatShield_quick", raw_cmd, 731), Function.raw_ability(434, "Research_ConcussiveShells_quick", raw_cmd, 732), Function.raw_ability(554, "Research_CycloneLockOnDamage_quick", raw_cmd, 769), Function.raw_ability(435, "Research_CycloneRapidFireLaunchers_quick", raw_cmd, 768), Function.raw_ability(436, "Research_DrillingClaws_quick", raw_cmd, 764), Function.raw_ability(563, "Research_EnhancedShockwaves_quick", raw_cmd, 822), Function.raw_ability(69, "Research_ExtendedThermalLance_quick", raw_cmd, 1097), Function.raw_ability(437, "Research_GlialRegeneration_quick", raw_cmd, 216), Function.raw_ability(67, "Research_GraviticBooster_quick", raw_cmd, 1093), Function.raw_ability(68, "Research_GraviticDrive_quick", raw_cmd, 1094), Function.raw_ability(438, "Research_GroovedSpines_quick", raw_cmd, 1282), Function.raw_ability(440, "Research_HighCapacityFuelTanks_quick", raw_cmd, 804), Function.raw_ability(439, "Research_HiSecAutoTracking_quick", raw_cmd, 650), Function.raw_ability(441, "Research_InfernalPreigniter_quick", raw_cmd, 761), Function.raw_ability(18, "Research_InterceptorGravitonCatapult_quick", raw_cmd, 44), Function.raw_ability(442, "Research_MuscularAugments_quick", raw_cmd, 1283), Function.raw_ability(443, "Research_NeosteelFrame_quick", raw_cmd, 655), Function.raw_ability(444, "Research_NeuralParasite_quick", raw_cmd, 1455), Function.raw_ability(445, "Research_PathogenGlands_quick", raw_cmd, 1454), Function.raw_ability(446, "Research_PersonalCloaking_quick", raw_cmd, 820), Function.raw_ability(19, "Research_PhoenixAnionPulseCrystals_quick", raw_cmd, 46), Function.raw_ability(447, "Research_PneumatizedCarapace_quick", raw_cmd, 1223), Function.raw_ability(139, "Research_ProtossAirArmorLevel1_quick", raw_cmd, 1565, 3692), Function.raw_ability(140, "Research_ProtossAirArmorLevel2_quick", raw_cmd, 1566, 3692), Function.raw_ability(141, "Research_ProtossAirArmorLevel3_quick", raw_cmd, 1567, 3692), Function.raw_ability(116, "Research_ProtossAirArmor_quick", raw_cmd, 3692), Function.raw_ability(142, "Research_ProtossAirWeaponsLevel1_quick", raw_cmd, 1562, 3693), Function.raw_ability(143, "Research_ProtossAirWeaponsLevel2_quick", raw_cmd, 1563, 3693), Function.raw_ability(144, "Research_ProtossAirWeaponsLevel3_quick", raw_cmd, 1564, 3693), Function.raw_ability(117, "Research_ProtossAirWeapons_quick", raw_cmd, 3693), Function.raw_ability(145, "Research_ProtossGroundArmorLevel1_quick", raw_cmd, 1065, 3694), Function.raw_ability(146, "Research_ProtossGroundArmorLevel2_quick", raw_cmd, 1066, 3694), Function.raw_ability(147, "Research_ProtossGroundArmorLevel3_quick", raw_cmd, 1067, 3694), Function.raw_ability(118, "Research_ProtossGroundArmor_quick", raw_cmd, 3694), Function.raw_ability(148, "Research_ProtossGroundWeaponsLevel1_quick", raw_cmd, 1062, 3695), Function.raw_ability(149, "Research_ProtossGroundWeaponsLevel2_quick", raw_cmd, 1063, 3695), Function.raw_ability(150, "Research_ProtossGroundWeaponsLevel3_quick", raw_cmd, 1064, 3695), Function.raw_ability(119, "Research_ProtossGroundWeapons_quick", raw_cmd, 3695), Function.raw_ability(151, "Research_ProtossShieldsLevel1_quick", raw_cmd, 1068, 3696), Function.raw_ability(152, "Research_ProtossShieldsLevel2_quick", raw_cmd, 1069, 3696), Function.raw_ability(153, "Research_ProtossShieldsLevel3_quick", raw_cmd, 1070, 3696), Function.raw_ability(120, "Research_ProtossShields_quick", raw_cmd, 3696), Function.raw_ability(70, "Research_PsiStorm_quick", raw_cmd, 1126), Function.raw_ability(448, "Research_RavenCorvidReactor_quick", raw_cmd, 793), Function.raw_ability(449, "Research_RavenRecalibratedExplosives_quick", raw_cmd, 803), Function.raw_ability(97, "Research_ShadowStrike_quick", raw_cmd, 2720), Function.raw_ability(450, "Research_SmartServos_quick", raw_cmd, 766), Function.raw_ability(451, "Research_Stimpack_quick", raw_cmd, 730), Function.raw_ability(453, "Research_TerranInfantryArmorLevel1_quick", raw_cmd, 656, 3697), Function.raw_ability(454, "Research_TerranInfantryArmorLevel2_quick", raw_cmd, 657, 3697), Function.raw_ability(455, "Research_TerranInfantryArmorLevel3_quick", raw_cmd, 658, 3697), Function.raw_ability(452, "Research_TerranInfantryArmor_quick", raw_cmd, 3697), Function.raw_ability(457, "Research_TerranInfantryWeaponsLevel1_quick", raw_cmd, 652, 3698), Function.raw_ability(458, "Research_TerranInfantryWeaponsLevel2_quick", raw_cmd, 653, 3698), Function.raw_ability(459, "Research_TerranInfantryWeaponsLevel3_quick", raw_cmd, 654, 3698), Function.raw_ability(456, "Research_TerranInfantryWeapons_quick", raw_cmd, 3698), Function.raw_ability(461, "Research_TerranShipWeaponsLevel1_quick", raw_cmd, 861, 3699), Function.raw_ability(462, "Research_TerranShipWeaponsLevel2_quick", raw_cmd, 862, 3699), Function.raw_ability(463, "Research_TerranShipWeaponsLevel3_quick", raw_cmd, 863, 3699), Function.raw_ability(460, "Research_TerranShipWeapons_quick", raw_cmd, 3699), Function.raw_ability(464, "Research_TerranStructureArmorUpgrade_quick", raw_cmd, 651), Function.raw_ability(466, "Research_TerranVehicleAndShipPlatingLevel1_quick", raw_cmd, 864, 3700), Function.raw_ability(467, "Research_TerranVehicleAndShipPlatingLevel2_quick", raw_cmd, 865, 3700), Function.raw_ability(468, "Research_TerranVehicleAndShipPlatingLevel3_quick", raw_cmd, 866, 3700), Function.raw_ability(465, "Research_TerranVehicleAndShipPlating_quick", raw_cmd, 3700), Function.raw_ability(470, "Research_TerranVehicleWeaponsLevel1_quick", raw_cmd, 855, 3701), Function.raw_ability(471, "Research_TerranVehicleWeaponsLevel2_quick", raw_cmd, 856, 3701), Function.raw_ability(472, "Research_TerranVehicleWeaponsLevel3_quick", raw_cmd, 857, 3701), Function.raw_ability(469, "Research_TerranVehicleWeapons_quick", raw_cmd, 3701), Function.raw_ability(473, "Research_TunnelingClaws_quick", raw_cmd, 217), Function.raw_ability(82, "Research_WarpGate_quick", raw_cmd, 1568), Function.raw_ability(475, "Research_ZergFlyerArmorLevel1_quick", raw_cmd, 1315, 3702), Function.raw_ability(476, "Research_ZergFlyerArmorLevel2_quick", raw_cmd, 1316, 3702), Function.raw_ability(477, "Research_ZergFlyerArmorLevel3_quick", raw_cmd, 1317, 3702), Function.raw_ability(474, "Research_ZergFlyerArmor_quick", raw_cmd, 3702), Function.raw_ability(479, "Research_ZergFlyerAttackLevel1_quick", raw_cmd, 1312, 3703), Function.raw_ability(480, "Research_ZergFlyerAttackLevel2_quick", raw_cmd, 1313, 3703), Function.raw_ability(481, "Research_ZergFlyerAttackLevel3_quick", raw_cmd, 1314, 3703), Function.raw_ability(478, "Research_ZergFlyerAttack_quick", raw_cmd, 3703), Function.raw_ability(483, "Research_ZergGroundArmorLevel1_quick", raw_cmd, 1189, 3704), Function.raw_ability(484, "Research_ZergGroundArmorLevel2_quick", raw_cmd, 1190, 3704), Function.raw_ability(485, "Research_ZergGroundArmorLevel3_quick", raw_cmd, 1191, 3704), Function.raw_ability(482, "Research_ZergGroundArmor_quick", raw_cmd, 3704), Function.raw_ability(494, "Research_ZerglingAdrenalGlands_quick", raw_cmd, 1252), Function.raw_ability(495, "Research_ZerglingMetabolicBoost_quick", raw_cmd, 1253), Function.raw_ability(487, "Research_ZergMeleeWeaponsLevel1_quick", raw_cmd, 1186, 3705), Function.raw_ability(488, "Research_ZergMeleeWeaponsLevel2_quick", raw_cmd, 1187, 3705), Function.raw_ability(489, "Research_ZergMeleeWeaponsLevel3_quick", raw_cmd, 1188, 3705), Function.raw_ability(486, "Research_ZergMeleeWeapons_quick", raw_cmd, 3705), Function.raw_ability(491, "Research_ZergMissileWeaponsLevel1_quick", raw_cmd, 1192, 3706), Function.raw_ability(492, "Research_ZergMissileWeaponsLevel2_quick", raw_cmd, 1193, 3706), Function.raw_ability(493, "Research_ZergMissileWeaponsLevel3_quick", raw_cmd, 1194, 3706), Function.raw_ability(490, "Research_ZergMissileWeapons_quick", raw_cmd, 3706), Function.raw_ability(10, "Scan_Move_pt", raw_cmd_pt, 19, 3674), Function.raw_ability(11, "Scan_Move_unit", raw_cmd_unit, 19, 3674), Function.raw_ability(1, "Smart_pt", raw_cmd_pt, 1), Function.raw_ability(12, "Smart_unit", raw_cmd_unit, 1), Function.raw_ability(101, "Stop_quick", raw_cmd, 3665), Function.raw_ability(555, "Stop_Battlecruiser_quick", raw_cmd, 3783, 3665), Function.raw_ability(496, "Stop_Building_quick", raw_cmd, 2057, 3665), Function.raw_ability(497, "Stop_Redirect_quick", raw_cmd, 1691, 3665), Function.raw_ability(155, "Stop_Stop_quick", raw_cmd, 4, 3665), Function.raw_ability(54, "Train_Adept_quick", raw_cmd, 922), Function.raw_ability(498, "Train_Baneling_quick", raw_cmd, 80), Function.raw_ability(499, "Train_Banshee_quick", raw_cmd, 621), Function.raw_ability(500, "Train_Battlecruiser_quick", raw_cmd, 623), Function.raw_ability(56, "Train_Carrier_quick", raw_cmd, 948), Function.raw_ability(62, "Train_Colossus_quick", raw_cmd, 978), Function.raw_ability(501, "Train_Corruptor_quick", raw_cmd, 1353), Function.raw_ability(502, "Train_Cyclone_quick", raw_cmd, 597), Function.raw_ability(52, "Train_DarkTemplar_quick", raw_cmd, 920), Function.raw_ability(166, "Train_Disruptor_quick", raw_cmd, 994), Function.raw_ability(503, "Train_Drone_quick", raw_cmd, 1342), Function.raw_ability(504, "Train_Ghost_quick", raw_cmd, 562), Function.raw_ability(505, "Train_Hellbat_quick", raw_cmd, 596), Function.raw_ability(506, "Train_Hellion_quick", raw_cmd, 595), Function.raw_ability(51, "Train_HighTemplar_quick", raw_cmd, 919), Function.raw_ability(507, "Train_Hydralisk_quick", raw_cmd, 1345), Function.raw_ability(63, "Train_Immortal_quick", raw_cmd, 979), Function.raw_ability(508, "Train_Infestor_quick", raw_cmd, 1352), Function.raw_ability(509, "Train_Liberator_quick", raw_cmd, 626), Function.raw_ability(510, "Train_Marauder_quick", raw_cmd, 563), Function.raw_ability(511, "Train_Marine_quick", raw_cmd, 560), Function.raw_ability(512, "Train_Medivac_quick", raw_cmd, 620), Function.raw_ability(513, "Train_MothershipCore_quick", raw_cmd, 1853), Function.raw_ability(21, "Train_Mothership_quick", raw_cmd, 110), Function.raw_ability(514, "Train_Mutalisk_quick", raw_cmd, 1346), Function.raw_ability(61, "Train_Observer_quick", raw_cmd, 977), Function.raw_ability(58, "Train_Oracle_quick", raw_cmd, 954), Function.raw_ability(515, "Train_Overlord_quick", raw_cmd, 1344), Function.raw_ability(55, "Train_Phoenix_quick", raw_cmd, 946), Function.raw_ability(64, "Train_Probe_quick", raw_cmd, 1006), Function.raw_ability(516, "Train_Queen_quick", raw_cmd, 1632), Function.raw_ability(517, "Train_Raven_quick", raw_cmd, 622), Function.raw_ability(518, "Train_Reaper_quick", raw_cmd, 561), Function.raw_ability(519, "Train_Roach_quick", raw_cmd, 1351), Function.raw_ability(520, "Train_SCV_quick", raw_cmd, 524), Function.raw_ability(53, "Train_Sentry_quick", raw_cmd, 921), Function.raw_ability(521, "Train_SiegeTank_quick", raw_cmd, 591), Function.raw_ability(50, "Train_Stalker_quick", raw_cmd, 917), Function.raw_ability(522, "Train_SwarmHost_quick", raw_cmd, 1356), Function.raw_ability(59, "Train_Tempest_quick", raw_cmd, 955), Function.raw_ability(523, "Train_Thor_quick", raw_cmd, 594), Function.raw_ability(524, "Train_Ultralisk_quick", raw_cmd, 1348), Function.raw_ability(525, "Train_VikingFighter_quick", raw_cmd, 624), Function.raw_ability(526, "Train_Viper_quick", raw_cmd, 1354), Function.raw_ability(57, "Train_VoidRay_quick", raw_cmd, 950), Function.raw_ability(76, "TrainWarp_Adept_pt", raw_cmd_pt, 1419), Function.raw_ability(74, "TrainWarp_DarkTemplar_pt", raw_cmd_pt, 1417), Function.raw_ability(73, "TrainWarp_HighTemplar_pt", raw_cmd_pt, 1416), Function.raw_ability(60, "Train_WarpPrism_quick", raw_cmd, 976), Function.raw_ability(75, "TrainWarp_Sentry_pt", raw_cmd_pt, 1418), Function.raw_ability(72, "TrainWarp_Stalker_pt", raw_cmd_pt, 1414), Function.raw_ability(71, "TrainWarp_Zealot_pt", raw_cmd_pt, 1413), Function.raw_ability(527, "Train_WidowMine_quick", raw_cmd, 614), Function.raw_ability(49, "Train_Zealot_quick", raw_cmd, 916), Function.raw_ability(528, "Train_Zergling_quick", raw_cmd, 1343), Function.raw_ability(529, "UnloadAllAt_Medivac_pt", raw_cmd_pt, 396, 3669), Function.raw_ability(530, "UnloadAllAt_Medivac_unit", raw_cmd_unit, 396, 3669), Function.raw_ability(531, "UnloadAllAt_Overlord_pt", raw_cmd_pt, 1408, 3669), Function.raw_ability(532, "UnloadAllAt_Overlord_unit", raw_cmd_unit, 1408, 3669), Function.raw_ability(105, "UnloadAllAt_pt", raw_cmd_pt, 3669), Function.raw_ability(164, "UnloadAllAt_unit", raw_cmd_unit, 3669), Function.raw_ability(156, "UnloadAllAt_WarpPrism_pt", raw_cmd_pt, 913, 3669), Function.raw_ability(163, "UnloadAllAt_WarpPrism_unit", raw_cmd_unit, 913, 3669), Function.raw_ability(533, "UnloadAll_Bunker_quick", raw_cmd, 408, 3664), Function.raw_ability(534, "UnloadAll_CommandCenter_quick", raw_cmd, 413, 3664), Function.raw_ability(535, "UnloadAll_NydusNetwork_quick", raw_cmd, 1438, 3664), Function.raw_ability(536, "UnloadAll_NydusWorm_quick", raw_cmd, 2371, 3664), Function.raw_ability(100, "UnloadAll_quick", raw_cmd, 3664), Function.raw_ability(556, "UnloadUnit_quick", raw_cmd, 3796), Function.raw_ability(557, "UnloadUnit_Bunker_quick", raw_cmd, 410, 3796), Function.raw_ability(558, "UnloadUnit_CommandCenter_quick", raw_cmd, 415, 3796), Function.raw_ability(559, "UnloadUnit_Medivac_quick", raw_cmd, 397, 3796), Function.raw_ability(560, "UnloadUnit_NydusNetwork_quick", raw_cmd, 1440, 3796), Function.raw_ability(561, "UnloadUnit_Overlord_quick", raw_cmd, 1409, 3796), Function.raw_ability(562, "UnloadUnit_WarpPrism_quick", raw_cmd, 914, 3796), ] # pylint: enable=line-too-long # Create an IntEnum of the function names/ids so that printing the id will # show something useful. _Raw_Functions = enum.IntEnum( # pylint: disable=invalid-name "_Raw_Functions", {f.name: f.id for f in _RAW_FUNCTIONS}) _RAW_FUNCTIONS = [f._replace(id=_Raw_Functions(f.id)) for f in _RAW_FUNCTIONS] RAW_FUNCTIONS = Functions(_RAW_FUNCTIONS) # Some indexes to support features.py and action conversion. RAW_ABILITY_IDS = collections.defaultdict(set) # {ability_id: {funcs}} for _func in RAW_FUNCTIONS: if _func.ability_id >= 0: RAW_ABILITY_IDS[_func.ability_id].add(_func) RAW_ABILITY_IDS = {k: frozenset(v) for k, v in RAW_ABILITY_IDS.items()} RAW_FUNCTIONS_AVAILABLE = {f.id: f for f in RAW_FUNCTIONS if f.avail_fn} RAW_ABILITY_ID_TO_FUNC_ID = {k: min(f.id for f in v) # pylint: disable=g-complex-comprehension for k, v in RAW_ABILITY_IDS.items()} class FunctionCall(collections.namedtuple( "FunctionCall", ["function", "arguments"])): """Represents a function call action. Attributes: function: Store the function id, eg 2 for select_point. arguments: The list of arguments for that function, each being a list of ints. For select_point this could be: [[0], [23, 38]]. """ __slots__ = () @classmethod def init_with_validation(cls, function, arguments, raw=False): """Return a `FunctionCall` given some validation for the function and args. Args: function: A function name or id, to be converted into a function id enum. arguments: An iterable of function arguments. Arguments that are enum types can be passed by name. Arguments that only take one value (ie not a point) don't need to be wrapped in a list. raw: Whether this is a raw function call. Returns: A new `FunctionCall` instance. Raises: KeyError: if the enum name doesn't exist. ValueError: if the enum id doesn't exist. """ func = RAW_FUNCTIONS[function] if raw else FUNCTIONS[function] args = [] for arg, arg_type in zip(arguments, func.args): arg = numpy_to_python(arg) if arg_type.values: # Allow enum values by name or int. if isinstance(arg, str): try: args.append([arg_type.values[arg]]) except KeyError: raise KeyError("Unknown argument value: %s, valid values: %s" % ( arg, [v.name for v in arg_type.values])) else: if isinstance(arg, list): arg = arg[0] try: args.append([arg_type.values(arg)]) except ValueError: raise ValueError("Unknown argument value: %s, valid values: %s" % ( arg, list(arg_type.values))) elif isinstance(arg, int): # Allow bare ints. args.append([arg]) elif isinstance(arg, list): args.append(arg) else: raise ValueError( "Unknown argument value type: %s, expected int or list of ints, or " "their numpy equivalents. Value: %s" % (type(arg), arg)) return cls(func.id, args) @classmethod def all_arguments(cls, function, arguments, raw=False): """Helper function for creating `FunctionCall`s with `Arguments`. Args: function: The value to store for the action function. arguments: The values to store for the arguments of the action. Can either be an `Arguments` object, a `dict`, or an iterable. If a `dict` or an iterable is provided, the values will be unpacked into an `Arguments` object. raw: Whether this is a raw function call. Returns: A new `FunctionCall` instance. """ args_type = RawArguments if raw else Arguments if isinstance(arguments, dict): arguments = args_type(**arguments) elif not isinstance(arguments, args_type): arguments = args_type(*arguments) return cls(function, arguments) def __reduce__(self): return self.__class__, tuple(self) class ValidActions(collections.namedtuple( "ValidActions", ["types", "functions"])): """The set of types and functions that are valid for an agent to use. Attributes: types: A namedtuple of the types that the functions require. Unlike TYPES above, this includes the sizes for screen and minimap. functions: A namedtuple of all the functions. """ __slots__ = () def __reduce__(self): return self.__class__, tuple(self)
pysc2-master
pysc2/lib/actions.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
pysc2-master
pysc2/lib/__init__.py
# Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Diff proto objects returning paths to changed attributes.""" import deepdiff from google.protobuf import json_format _ARRAY_PLACEHOLDER = "*" class ProtoPath(object): """Path to a proto field, from the root of the proto object.""" def __init__(self, path): """Initializer. Args: path: Tuple of attribute names / array indices on the path to a field. """ self._path = tuple(path) def get_field(self, proto): """Returns field at this proto path, in the specified proto.""" value = proto for k in self._path: if isinstance(k, int): value = value[k] else: value = getattr(value, k) return value def with_anonymous_array_indices(self): """Path with array indices replaced with '*' so that they compare equal.""" return ProtoPath( tuple(_ARRAY_PLACEHOLDER if isinstance(t, int) else t for t in self._path)) @property def path(self): return self._path def __lt__(self, other): for k1, k2 in zip(self._path, other.path): if k1 < k2: return True elif k1 > k2: return False return len(self._path) < len(other.path) def __getitem__(self, item): return self._path.__getitem__(item) def __len__(self): return len(self._path) def __eq__(self, o): return self._path == o.path def __hash__(self): return hash(self._path) def __repr__(self): result = "" for k in self._path: if isinstance(k, int) or k == _ARRAY_PLACEHOLDER: result += "[{}]".format(k) else: result += ("." if result else "") + k return result class ProtoDiffs(object): """Summary of diffs between two protos.""" def __init__(self, proto_a, proto_b, changed, added, removed): """Initializer. Args: proto_a: First proto. proto_b: Second proto. changed: List of paths to attributes which changed between the two. added: List of paths to attributes added from proto_a -> proto_b. removed: List of paths to attributes removed from proto_a -> proto_b. """ self._proto_a = proto_a self._proto_b = proto_b self._changed = sorted(changed) self._added = sorted(added) self._removed = sorted(removed) @property def proto_a(self): return self._proto_a @property def proto_b(self): return self._proto_b @property def changed(self): return self._changed @property def added(self): return self._added @property def removed(self): return self._removed def all_diffs(self): return self.changed + self.added + self.removed def report(self, differencers=None, truncate_to=0): """Returns a string report of diffs. Additions and removals are identified by proto path. Changes in value are reported as path: old_value -> new_value by default, though this can be customized via the differencers argument. Args: differencers: Iterable of callable(path, proto_a, proto_b) -> str or None If a string is returned it is used to represent the diff between path.get_field(proto_a) and path.get_field(proto_b), and no further differencers are invoked. If None is returned by all differencers, the default string diff is used. truncate_to: Number of characters to truncate diff output values to. Zero, the default, means no truncation. """ results = [] for a in self._added: results.append("Added {}.".format(a)) for r in self._removed: results.append("Removed {}.".format(r)) for c in self._changed: result = None if differencers: for d in differencers: result = d(c, self._proto_a, self._proto_b) if result: break if not result: result = "{} -> {}".format( _truncate(c.get_field(self._proto_a), truncate_to), _truncate(c.get_field(self._proto_b), truncate_to)) else: result = _truncate(result, truncate_to) results.append("Changed {}: {}.".format(c, result)) if results: return "\n".join(results) else: return "No diffs." def __repr__(self): return "changed: {}, added: {}, removed: {}".format( self._changed, self._added, self._removed) def _truncate(val, truncate_to): string_val = str(val) if truncate_to and len(string_val) > truncate_to: return string_val[:max(truncate_to - 3, 0)] + "..." else: return string_val def _dict_path_to_proto_path(dict_path): dict_path = dict_path[5:-1] # strip off 'root[...]' keys = dict_path.split("][") # tokenize return ProtoPath( (k[1:-1] if k[0] == "'" else int(k)) for k in keys) # key or idx def compute_diff(proto_a, proto_b): """Returns `ProtoDiff` of two protos, else None if no diffs. Args: proto_a: First of the two protos to compare. proto_b: Second of the two protos to compare. """ dict1 = json_format.MessageToDict(proto_a, preserving_proto_field_name=True) dict2 = json_format.MessageToDict(proto_b, preserving_proto_field_name=True) diff = deepdiff.DeepDiff(dict1, dict2, significant_digits=3) if diff: changed_paths = [] for key in diff.pop("values_changed", []): changed_paths.append(_dict_path_to_proto_path(key)) added_paths = [] for key in diff.pop("dictionary_item_added", []): added_paths.append(_dict_path_to_proto_path(key)) for key in diff.pop("iterable_item_added", []): added_paths.append(_dict_path_to_proto_path(key)) removed_paths = [] for key in diff.pop("dictionary_item_removed", []): removed_paths.append(_dict_path_to_proto_path(key)) for key in diff.pop("iterable_item_removed", []): removed_paths.append(_dict_path_to_proto_path(key)) if diff: raise ValueError("Unhandled diffs: {}".format(diff)) return ProtoDiffs( proto_a=proto_a, proto_b=proto_b, changed=changed_paths, added=added_paths, removed=removed_paths) else: return None
pysc2-master
pysc2/lib/proto_diff.py
#!/usr/bin/python # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for lib.named_array.""" import collections import enum import pickle from absl.testing import absltest from absl.testing import parameterized import numpy as np from pysc2.lib import named_array class NamedDictTest(absltest.TestCase): def test_named_dict(self): a = named_array.NamedDict(a=2, b=(1, 2)) self.assertEqual(a["a"], a.a) self.assertEqual(a["b"], a.b) self.assertIs(a["b"], a.b) self.assertNotEqual(a["a"], a.b) a.c = 3 self.assertEqual(a["c"], 3) class TestEnum(enum.IntEnum): a = 0 b = 1 c = 2 class BadEnum(enum.IntEnum): a = 1 b = 2 c = 3 class TestNamedTuple(collections.namedtuple("TestNamedTuple", ["a", "b", "c"])): pass class BadNamedTuple(collections.namedtuple("BadNamedTuple", ["a", "b"])): pass class NamedArrayTest(parameterized.TestCase): def assertArrayEqual(self, a, b): np.testing.assert_array_equal(a, b) @parameterized.named_parameters( ("none", None), ("none2", [None]), ("short_list", ["a"]), ("long_list", ["a", "b", "c", "d"]), ("long_list2", [["a", "b", "c", "d"]]), ("ints", [[1, "b", 3]]), ("bad_enum", [BadEnum]), ("bad_namedtuple", [BadNamedTuple]), ("dict", [{"a": 0, "b": 1, "c": 2}]), ("set", [{"a", "b", "c"}]), ) def test_bad_names(self, names): with self.assertRaises(ValueError): named_array.NamedNumpyArray([1, 3, 6], names) @parameterized.named_parameters( ("list", ["a", "b", "c"]), ("tuple", ("a", "b", "c")), ("list2", [["a", "b", "c"]]), ("tuple2", (("a", "b", "c"))), ("list_tuple", [("a", "b", "c")]), ("named_tuple", TestNamedTuple), ("named_tuple2", [TestNamedTuple]), ("int_enum", TestEnum), ("int_enum2", [TestEnum]), ) def test_single_dimension(self, names): a = named_array.NamedNumpyArray([1, 3, 6], names) self.assertEqual(a[0], 1) self.assertEqual(a[1], 3) self.assertEqual(a[2], 6) self.assertEqual(a[-1], 6) self.assertEqual(a.a, 1) self.assertEqual(a.b, 3) self.assertEqual(a.c, 6) with self.assertRaises(AttributeError): a.d # pylint: disable=pointless-statement self.assertEqual(a["a"], 1) self.assertEqual(a["b"], 3) self.assertEqual(a["c"], 6) with self.assertRaises(KeyError): a["d"] # pylint: disable=pointless-statement # New axis = None self.assertArrayEqual(a, [1, 3, 6]) self.assertArrayEqual(a[np.newaxis], [[1, 3, 6]]) self.assertArrayEqual(a[None], [[1, 3, 6]]) self.assertArrayEqual(a[None, :], [[1, 3, 6]]) self.assertArrayEqual(a[:, None], [[1], [3], [6]]) self.assertArrayEqual(a[None, :, None], [[[1], [3], [6]]]) self.assertArrayEqual(a[None, a % 3 == 0, None], [[[3], [6]]]) self.assertArrayEqual(a[None][None], [[[1, 3, 6]]]) self.assertArrayEqual(a[None][0], [1, 3, 6]) self.assertEqual(a[None, 0], 1) self.assertEqual(a[None, "a"], 1) self.assertEqual(a[None][0].a, 1) self.assertEqual(a[None][0, "b"], 3) # range slicing self.assertArrayEqual(a[0:2], [1, 3]) self.assertArrayEqual(a[1:3], [3, 6]) self.assertArrayEqual(a[0:2:], [1, 3]) self.assertArrayEqual(a[0:2:1], [1, 3]) self.assertArrayEqual(a[::2], [1, 6]) self.assertArrayEqual(a[::-1], [6, 3, 1]) self.assertEqual(a[1:3][0], 3) self.assertEqual(a[1:3].b, 3) self.assertEqual(a[1:3].c, 6) # list slicing self.assertArrayEqual(a[[0, 0]], [1, 1]) self.assertArrayEqual(a[[0, 1]], [1, 3]) self.assertArrayEqual(a[[1, 0]], [3, 1]) self.assertArrayEqual(a[[1, 2]], [3, 6]) self.assertArrayEqual(a[np.array([0, 2])], [1, 6]) self.assertEqual(a[[1, 2]].b, 3) self.assertEqual(a[[2, 0]].c, 6) with self.assertRaises(TypeError): # Duplicates lead to unnamed dimensions. a[[0, 0]].a # pylint: disable=pointless-statement a[1] = 4 self.assertEqual(a[1], 4) self.assertEqual(a.b, 4) self.assertEqual(a["b"], 4) a[1:2] = 2 self.assertEqual(a[1], 2) self.assertEqual(a.b, 2) self.assertEqual(a["b"], 2) a[[1]] = 3 self.assertEqual(a[1], 3) self.assertEqual(a.b, 3) self.assertEqual(a["b"], 3) a.b = 5 self.assertEqual(a[1], 5) self.assertEqual(a.b, 5) self.assertEqual(a["b"], 5) def test_empty_array(self): named_array.NamedNumpyArray([], [None, ["a", "b"]]) with self.assertRaises(ValueError): # Must be the right length. named_array.NamedNumpyArray([], [["a", "b"]]) with self.assertRaises(ValueError): # Returning an empty slice is not supported, and it's not clear how or # even if it should be supported. named_array.NamedNumpyArray([], [["a", "b"], None]) with self.assertRaises(ValueError): # Scalar arrays are unsupported. named_array.NamedNumpyArray(1, []) def test_named_array_multi_first(self): a = named_array.NamedNumpyArray([[1, 3], [6, 8]], [["a", "b"], None]) self.assertArrayEqual(a.a, [1, 3]) self.assertArrayEqual(a[1], [6, 8]) self.assertArrayEqual(a["b"], [6, 8]) self.assertArrayEqual(a[::-1], [[6, 8], [1, 3]]) self.assertArrayEqual(a[::-1][::-1], [[1, 3], [6, 8]]) self.assertArrayEqual(a[::-1, ::-1], [[8, 6], [3, 1]]) self.assertArrayEqual(a[::-1][0], [6, 8]) self.assertArrayEqual(a[::-1, 0], [6, 1]) self.assertArrayEqual(a[::-1, 1], [8, 3]) self.assertArrayEqual(a[::-1].a, [1, 3]) self.assertArrayEqual(a[::-1].a[0], 1) self.assertArrayEqual(a[::-1].b, [6, 8]) self.assertArrayEqual(a[[0, 0]], [[1, 3], [1, 3]]) with self.assertRaises(TypeError): a[[0, 0]].a # pylint: disable=pointless-statement self.assertEqual(a[0, 1], 3) self.assertEqual(a[(0, 1)], 3) self.assertEqual(a["a", 0], 1) self.assertEqual(a["b", 0], 6) self.assertEqual(a["b", 1], 8) self.assertEqual(a.a[0], 1) self.assertArrayEqual(a[a > 2], [3, 6, 8]) self.assertArrayEqual(a[a % 3 == 0], [3, 6]) with self.assertRaises(TypeError): a[0].a # pylint: disable=pointless-statement # New axis = None self.assertArrayEqual(a, [[1, 3], [6, 8]]) self.assertArrayEqual(a[np.newaxis], [[[1, 3], [6, 8]]]) self.assertArrayEqual(a[None], [[[1, 3], [6, 8]]]) self.assertArrayEqual(a[None, :], [[[1, 3], [6, 8]]]) self.assertArrayEqual(a[None, "a"], [[1, 3]]) self.assertArrayEqual(a[:, None], [[[1, 3]], [[6, 8]]]) self.assertArrayEqual(a[None, :, None], [[[[1, 3]], [[6, 8]]]]) self.assertArrayEqual(a[None, 0, None], [[[1, 3]]]) self.assertArrayEqual(a[None, "a", None], [[[1, 3]]]) self.assertArrayEqual(a[None][None], [[[[1, 3], [6, 8]]]]) self.assertArrayEqual(a[None][0], [[1, 3], [6, 8]]) self.assertArrayEqual(a[None][0].a, [1, 3]) self.assertEqual(a[None][0].a[0], 1) self.assertEqual(a[None][0, "b", 1], 8) def test_named_array_multi_second(self): a = named_array.NamedNumpyArray([[1, 3], [6, 8]], [None, ["a", "b"]]) self.assertArrayEqual(a[0], [1, 3]) self.assertEqual(a[0, 1], 3) self.assertEqual(a[0, "a"], 1) self.assertEqual(a[0, "b"], 3) self.assertEqual(a[1, "b"], 8) self.assertEqual(a[0].a, 1) self.assertArrayEqual(a[a > 2], [3, 6, 8]) self.assertArrayEqual(a[a % 3 == 0], [3, 6]) with self.assertRaises(TypeError): a.a # pylint: disable=pointless-statement self.assertArrayEqual(a[None, :, "a"], [[1, 6]]) def test_masking(self): a = named_array.NamedNumpyArray([[1, 2, 3, 4], [5, 6, 7, 8]], [None, list("abcd")]) self.assertArrayEqual(a[a > 2], [3, 4, 5, 6, 7, 8]) self.assertArrayEqual(a[a < 4], [1, 2, 3]) self.assertArrayEqual(a[a % 2 == 0], [2, 4, 6, 8]) self.assertArrayEqual(a[a % 3 == 0], [3, 6]) def test_slicing(self): a = named_array.NamedNumpyArray([1, 2, 3, 4, 5], list("abcde")) self.assertArrayEqual(a[:], [1, 2, 3, 4, 5]) self.assertArrayEqual(a[::], [1, 2, 3, 4, 5]) self.assertArrayEqual(a[::2], [1, 3, 5]) self.assertArrayEqual(a[::-1], [5, 4, 3, 2, 1]) self.assertEqual(a[:].a, 1) self.assertEqual(a[::].b, 2) self.assertEqual(a[::2].c, 3) with self.assertRaises(AttributeError): a[::2].d # pylint: disable=pointless-statement self.assertEqual(a[::-1].e, 5) self.assertArrayEqual(a[a % 2 == 0], [2, 4]) self.assertEqual(a[a % 2 == 0].b, 2) a = named_array.NamedNumpyArray([[1, 2, 3, 4], [5, 6, 7, 8]], [None, list("abcd")]) self.assertArrayEqual(a[:], [[1, 2, 3, 4], [5, 6, 7, 8]]) self.assertArrayEqual(a[::], [[1, 2, 3, 4], [5, 6, 7, 8]]) self.assertArrayEqual(a[:, :], [[1, 2, 3, 4], [5, 6, 7, 8]]) self.assertArrayEqual(a[:, ...], [[1, 2, 3, 4], [5, 6, 7, 8]]) self.assertArrayEqual(a[..., ::], [[1, 2, 3, 4], [5, 6, 7, 8]]) self.assertArrayEqual(a[:, ::2], [[1, 3], [5, 7]]) self.assertArrayEqual(a[::-1], [[5, 6, 7, 8], [1, 2, 3, 4]]) self.assertArrayEqual(a[..., ::-1], [[4, 3, 2, 1], [8, 7, 6, 5]]) self.assertArrayEqual(a[:, ::-1], [[4, 3, 2, 1], [8, 7, 6, 5]]) self.assertArrayEqual(a[:, ::-2], [[4, 2], [8, 6]]) self.assertArrayEqual(a[:, -2::-2], [[3, 1], [7, 5]]) self.assertArrayEqual(a[::-1, -2::-2], [[7, 5], [3, 1]]) self.assertArrayEqual(a[..., 0, 0], 1) # weird scalar arrays... a = named_array.NamedNumpyArray( [[[[0, 1], [2, 3]], [[4, 5], [6, 7]]], [[[8, 9], [10, 11]], [[12, 13], [14, 15]]]], [["a", "b"], ["c", "d"], ["e", "f"], ["g", "h"]]) self.assertEqual(a.a.c.e.g, 0) self.assertEqual(a.b.c.f.g, 10) self.assertEqual(a.b.d.f.h, 15) self.assertArrayEqual(a[0, ..., 0], [[0, 2], [4, 6]]) self.assertArrayEqual(a[0, ..., 1], [[1, 3], [5, 7]]) self.assertArrayEqual(a[0, 0, ..., 1], [1, 3]) self.assertArrayEqual(a[0, ..., 1, 1], [3, 7]) self.assertArrayEqual(a[..., 1, 1], [[3, 7], [11, 15]]) self.assertArrayEqual(a[1, 0, ...], [[8, 9], [10, 11]]) self.assertArrayEqual(a["a", ..., "g"], [[0, 2], [4, 6]]) self.assertArrayEqual(a["a", ...], [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) self.assertArrayEqual(a[..., "g"], [[[0, 2], [4, 6]], [[8, 10], [12, 14]]]) self.assertArrayEqual(a["a", "c"], [[0, 1], [2, 3]]) self.assertArrayEqual(a["a", ...].c, [[0, 1], [2, 3]]) self.assertArrayEqual(a["a", ..., "g"].c, [0, 2]) with self.assertRaises(TypeError): a[np.array([[0, 1], [0, 1]])] # pylint: disable=pointless-statement, expression-not-assigned with self.assertRaises(IndexError): a[..., 0, ...] # pylint: disable=pointless-statement def test_string(self): a = named_array.NamedNumpyArray([1, 3, 6], ["a", "b", "c"], dtype=np.int32) self.assertEqual(str(a), "[1 3 6]") self.assertEqual(repr(a), ("NamedNumpyArray([1, 3, 6], ['a', 'b', 'c'], " "dtype=int32)")) a = named_array.NamedNumpyArray([[1, 3], [6, 8]], [None, ["a", "b"]]) self.assertEqual(str(a), "[[1 3]\n [6 8]]") self.assertEqual(repr(a), ("NamedNumpyArray([[1, 3],\n" " [6, 8]], [None, ['a', 'b']])")) a = named_array.NamedNumpyArray([[1, 3], [6, 8]], [["a", "b"], None]) self.assertEqual(str(a), "[[1 3]\n [6 8]]") self.assertEqual(repr(a), ("NamedNumpyArray([[1, 3],\n" " [6, 8]], [['a', 'b'], None])")) a = named_array.NamedNumpyArray([0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0], [str(i) for i in range(13)], dtype=np.int32) numpy_repr = np.array_repr(a) if "\n" in numpy_repr: # ie numpy > 1.14 self.assertEqual(repr(a), """ NamedNumpyArray([ 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0], ['0', '1', '2', '3', '4', '...', '8', '9', '10', '11', '12'], dtype=int32)""".strip()) # Keep the middle newlines. else: self.assertEqual(repr(a), ( "NamedNumpyArray(" "[ 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0], " "['0', '1', '2', '3', '4', '...', '8', '9', '10', '11', '12'], " "dtype=int32)")) # Note the lack of newlines. a = named_array.NamedNumpyArray([list(range(50))] * 50, [None, ["a%s" % i for i in range(50)]]) self.assertIn("49", str(a)) self.assertIn("49", repr(a)) self.assertIn("a4", repr(a)) self.assertIn("a49", repr(a)) a = named_array.NamedNumpyArray([list(range(50))] * 50, [["a%s" % i for i in range(50)], None]) self.assertIn("49", str(a)) self.assertIn("49", repr(a)) self.assertIn("a4", repr(a)) self.assertIn("a49", repr(a)) def test_pickle(self): arr = named_array.NamedNumpyArray([1, 3, 6], ["a", "b", "c"]) pickled = pickle.loads(pickle.dumps(arr)) self.assertTrue(np.all(arr == pickled)) self.assertEqual(repr(pickled), "NamedNumpyArray([1, 3, 6], ['a', 'b', 'c'])") if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/named_array_test.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Render feature layers from SC2 Observation protos into numpy arrays.""" # pylint: disable=g-complex-comprehension import collections import enum import random from absl import logging import numpy as np from pysc2.lib import actions from pysc2.lib import colors from pysc2.lib import named_array from pysc2.lib import point from pysc2.lib import static_data from pysc2.lib import stopwatch from pysc2.lib import transform from s2clientprotocol import raw_pb2 as sc_raw from s2clientprotocol import sc2api_pb2 as sc_pb sw = stopwatch.sw EPSILON = 1e-5 class FeatureType(enum.Enum): SCALAR = 1 CATEGORICAL = 2 class PlayerRelative(enum.IntEnum): """The values for the `player_relative` feature layers.""" NONE = 0 SELF = 1 ALLY = 2 NEUTRAL = 3 ENEMY = 4 class Visibility(enum.IntEnum): """Values for the `visibility` feature layers.""" HIDDEN = 0 SEEN = 1 VISIBLE = 2 class Effects(enum.IntEnum): """Values for the `effects` feature layer.""" # pylint: disable=invalid-name none = 0 PsiStorm = 1 GuardianShield = 2 TemporalFieldGrowing = 3 TemporalField = 4 ThermalLance = 5 ScannerSweep = 6 NukeDot = 7 LiberatorDefenderZoneSetup = 8 LiberatorDefenderZone = 9 BlindingCloud = 10 CorrosiveBile = 11 LurkerSpines = 12 # pylint: enable=invalid-name class ScoreCumulative(enum.IntEnum): """Indices into the `score_cumulative` observation.""" score = 0 idle_production_time = 1 idle_worker_time = 2 total_value_units = 3 total_value_structures = 4 killed_value_units = 5 killed_value_structures = 6 collected_minerals = 7 collected_vespene = 8 collection_rate_minerals = 9 collection_rate_vespene = 10 spent_minerals = 11 spent_vespene = 12 class ScoreByCategory(enum.IntEnum): """Indices for the `score_by_category` observation's first dimension.""" food_used = 0 killed_minerals = 1 killed_vespene = 2 lost_minerals = 3 lost_vespene = 4 friendly_fire_minerals = 5 friendly_fire_vespene = 6 used_minerals = 7 used_vespene = 8 total_used_minerals = 9 total_used_vespene = 10 class ScoreCategories(enum.IntEnum): """Indices for the `score_by_category` observation's second dimension.""" none = 0 army = 1 economy = 2 technology = 3 upgrade = 4 class ScoreByVital(enum.IntEnum): """Indices for the `score_by_vital` observation's first dimension.""" total_damage_dealt = 0 total_damage_taken = 1 total_healed = 2 class ScoreVitals(enum.IntEnum): """Indices for the `score_by_vital` observation's second dimension.""" life = 0 shields = 1 energy = 2 class Player(enum.IntEnum): """Indices into the `player` observation.""" player_id = 0 minerals = 1 vespene = 2 food_used = 3 food_cap = 4 food_army = 5 food_workers = 6 idle_worker_count = 7 army_count = 8 warp_gate_count = 9 larva_count = 10 class UnitLayer(enum.IntEnum): """Indices into the unit layers in the observations.""" unit_type = 0 player_relative = 1 health = 2 shields = 3 energy = 4 transport_slots_taken = 5 build_progress = 6 class UnitCounts(enum.IntEnum): """Indices into the `unit_counts` observations.""" unit_type = 0 count = 1 class FeatureUnit(enum.IntEnum): """Indices for the `feature_unit` observations.""" unit_type = 0 alliance = 1 health = 2 shield = 3 energy = 4 cargo_space_taken = 5 build_progress = 6 health_ratio = 7 shield_ratio = 8 energy_ratio = 9 display_type = 10 owner = 11 x = 12 y = 13 facing = 14 radius = 15 cloak = 16 is_selected = 17 is_blip = 18 is_powered = 19 mineral_contents = 20 vespene_contents = 21 cargo_space_max = 22 assigned_harvesters = 23 ideal_harvesters = 24 weapon_cooldown = 25 order_length = 26 # If zero, the unit is idle. order_id_0 = 27 order_id_1 = 28 tag = 29 # Unique identifier for a unit (only populated for raw units). hallucination = 30 buff_id_0 = 31 buff_id_1 = 32 addon_unit_type = 33 active = 34 is_on_screen = 35 order_progress_0 = 36 order_progress_1 = 37 order_id_2 = 38 order_id_3 = 39 is_in_cargo = 40 buff_duration_remain = 41 buff_duration_max = 42 attack_upgrade_level = 43 armor_upgrade_level = 44 shield_upgrade_level = 45 class EffectPos(enum.IntEnum): """Positions of the active effects.""" effect = 0 alliance = 1 owner = 2 radius = 3 x = 4 y = 5 class Radar(enum.IntEnum): """Positions of the Sensor towers.""" x = 0 y = 1 radius = 2 class ProductionQueue(enum.IntEnum): """Indices for the `production_queue` observations.""" ability_id = 0 build_progress = 1 class Feature(collections.namedtuple( "Feature", ["index", "name", "layer_set", "full_name", "scale", "type", "palette", "clip"])): """Define properties of a feature layer. Attributes: index: Index of this layer into the set of layers. name: The name of the layer within the set. layer_set: Which set of feature layers to look at in the observation proto. full_name: The full name including for visualization. scale: Max value (+1) of this layer, used to scale the values. type: A FeatureType for scalar vs categorical. palette: A color palette for rendering. clip: Whether to clip the values for coloring. """ __slots__ = () dtypes = { 1: np.uint8, 8: np.uint8, 16: np.uint16, 32: np.int32, } def unpack(self, obs): """Return a correctly shaped numpy array for this feature.""" planes = getattr(obs.feature_layer_data, self.layer_set) plane = getattr(planes, self.name) return self.unpack_layer(plane) @staticmethod @sw.decorate def unpack_layer(plane): """Return a correctly shaped numpy array given the feature layer bytes.""" size = point.Point.build(plane.size) if size == (0, 0): # New layer that isn't implemented in this SC2 version. return None data = np.frombuffer(plane.data, dtype=Feature.dtypes[plane.bits_per_pixel]) if plane.bits_per_pixel == 1: data = np.unpackbits(data) if data.shape[0] != size.x * size.y: # This could happen if the correct length isn't a multiple of 8, leading # to some padding bits at the end of the string which are incorrectly # interpreted as data. data = data[:size.x * size.y] return data.reshape(size.y, size.x) @staticmethod @sw.decorate def unpack_rgb_image(plane): """Return a correctly shaped numpy array given the image bytes.""" assert plane.bits_per_pixel == 24, "{} != 24".format(plane.bits_per_pixel) size = point.Point.build(plane.size) data = np.frombuffer(plane.data, dtype=np.uint8) return data.reshape(size.y, size.x, 3) @sw.decorate def color(self, plane): if self.clip: plane = np.clip(plane, 0, self.scale - 1) return self.palette[plane] class ScreenFeatures(collections.namedtuple("ScreenFeatures", [ "height_map", "visibility_map", "creep", "power", "player_id", "player_relative", "unit_type", "selected", "unit_hit_points", "unit_hit_points_ratio", "unit_energy", "unit_energy_ratio", "unit_shields", "unit_shields_ratio", "unit_density", "unit_density_aa", "effects", "hallucinations", "cloaked", "blip", "buffs", "buff_duration", "active", "build_progress", "pathable", "buildable", "placeholder"])): """The set of screen feature layers.""" __slots__ = () def __new__(cls, **kwargs): feats = {} for name, (scale, type_, palette, clip) in kwargs.items(): feats[name] = Feature( index=ScreenFeatures._fields.index(name), name=name, layer_set="renders", full_name="screen " + name, scale=scale, type=type_, palette=palette(scale) if callable(palette) else palette, clip=clip) return super(ScreenFeatures, cls).__new__(cls, **feats) # pytype: disable=missing-parameter class MinimapFeatures(collections.namedtuple("MinimapFeatures", [ "height_map", "visibility_map", "creep", "camera", "player_id", "player_relative", "selected", "unit_type", "alerts", "pathable", "buildable"])): """The set of minimap feature layers.""" __slots__ = () def __new__(cls, **kwargs): feats = {} for name, (scale, type_, palette) in kwargs.items(): feats[name] = Feature( index=MinimapFeatures._fields.index(name), name=name, layer_set="minimap_renders", full_name="minimap " + name, scale=scale, type=type_, palette=palette(scale) if callable(palette) else palette, clip=False) return super(MinimapFeatures, cls).__new__(cls, **feats) # pytype: disable=missing-parameter SCREEN_FEATURES = ScreenFeatures( height_map=(256, FeatureType.SCALAR, colors.height_map, False), visibility_map=(4, FeatureType.CATEGORICAL, colors.VISIBILITY_PALETTE, False), creep=(2, FeatureType.CATEGORICAL, colors.CREEP_PALETTE, False), power=(2, FeatureType.CATEGORICAL, colors.POWER_PALETTE, False), player_id=(17, FeatureType.CATEGORICAL, colors.PLAYER_ABSOLUTE_PALETTE, False), player_relative=(5, FeatureType.CATEGORICAL, colors.PLAYER_RELATIVE_PALETTE, False), unit_type=(max(static_data.UNIT_TYPES) + 1, FeatureType.CATEGORICAL, colors.unit_type, False), selected=(2, FeatureType.CATEGORICAL, colors.SELECTED_PALETTE, False), unit_hit_points=(1600, FeatureType.SCALAR, colors.hot, True), unit_hit_points_ratio=(256, FeatureType.SCALAR, colors.hot, False), unit_energy=(1000, FeatureType.SCALAR, colors.hot, True), unit_energy_ratio=(256, FeatureType.SCALAR, colors.hot, False), unit_shields=(1000, FeatureType.SCALAR, colors.hot, True), unit_shields_ratio=(256, FeatureType.SCALAR, colors.hot, False), unit_density=(16, FeatureType.SCALAR, colors.hot, True), unit_density_aa=(256, FeatureType.SCALAR, colors.hot, False), effects=(16, FeatureType.CATEGORICAL, colors.effects, False), hallucinations=(2, FeatureType.CATEGORICAL, colors.POWER_PALETTE, False), cloaked=(2, FeatureType.CATEGORICAL, colors.POWER_PALETTE, False), blip=(2, FeatureType.CATEGORICAL, colors.POWER_PALETTE, False), buffs=(max(static_data.BUFFS) + 1, FeatureType.CATEGORICAL, colors.buffs, False), buff_duration=(256, FeatureType.SCALAR, colors.hot, False), active=(2, FeatureType.CATEGORICAL, colors.POWER_PALETTE, False), build_progress=(256, FeatureType.SCALAR, colors.hot, False), pathable=(2, FeatureType.CATEGORICAL, colors.winter, False), buildable=(2, FeatureType.CATEGORICAL, colors.winter, False), placeholder=(2, FeatureType.CATEGORICAL, colors.winter, False), ) MINIMAP_FEATURES = MinimapFeatures( height_map=(256, FeatureType.SCALAR, colors.height_map), visibility_map=(4, FeatureType.CATEGORICAL, colors.VISIBILITY_PALETTE), creep=(2, FeatureType.CATEGORICAL, colors.CREEP_PALETTE), camera=(2, FeatureType.CATEGORICAL, colors.CAMERA_PALETTE), player_id=(17, FeatureType.CATEGORICAL, colors.PLAYER_ABSOLUTE_PALETTE), player_relative=(5, FeatureType.CATEGORICAL, colors.PLAYER_RELATIVE_PALETTE), selected=(2, FeatureType.CATEGORICAL, colors.winter), unit_type=(max(static_data.UNIT_TYPES) + 1, FeatureType.CATEGORICAL, colors.unit_type), alerts=(2, FeatureType.CATEGORICAL, colors.winter), pathable=(2, FeatureType.CATEGORICAL, colors.winter), buildable=(2, FeatureType.CATEGORICAL, colors.winter), ) def _to_point(dims): """Convert (width, height) or size -> point.Point.""" assert dims if isinstance(dims, (tuple, list)): if len(dims) != 2: raise ValueError( "A two element tuple or list is expected here, got {}.".format(dims)) else: width = int(dims[0]) height = int(dims[1]) if width <= 0 or height <= 0: raise ValueError("Must specify +ve dims, got {}.".format(dims)) else: return point.Point(width, height) else: size = int(dims) if size <= 0: raise ValueError( "Must specify a +ve value for size, got {}.".format(dims)) else: return point.Point(size, size) class Dimensions(object): """Screen and minimap dimensions configuration. Both screen and minimap must be specified. Sizes must be positive. Screen size must be greater than or equal to minimap size in both dimensions. Attributes: screen: A (width, height) int tuple or a single int to be used for both. minimap: A (width, height) int tuple or a single int to be used for both. """ def __init__(self, screen=None, minimap=None): if not screen or not minimap: raise ValueError( "screen and minimap must both be set, screen={}, minimap={}".format( screen, minimap)) self._screen = _to_point(screen) self._minimap = _to_point(minimap) @property def screen(self): return self._screen @property def minimap(self): return self._minimap def __repr__(self): return "Dimensions(screen={}, minimap={})".format(self.screen, self.minimap) def __eq__(self, other): return (isinstance(other, Dimensions) and self.screen == other.screen and self.minimap == other.minimap) def __ne__(self, other): return not self == other class AgentInterfaceFormat(object): """Observation and action interface format specific to a particular agent.""" def __init__( self, feature_dimensions=None, rgb_dimensions=None, raw_resolution=None, action_space=None, camera_width_world_units=None, use_feature_units=False, use_raw_units=False, use_raw_actions=False, max_raw_actions=512, max_selected_units=30, use_unit_counts=False, use_camera_position=False, show_cloaked=False, show_burrowed_shadows=False, show_placeholders=False, hide_specific_actions=True, action_delay_fn=None, send_observation_proto=False, crop_to_playable_area=False, raw_crop_to_playable_area=False, allow_cheating_layers=False, add_cargo_to_units=False): """Initializer. Args: feature_dimensions: Feature layer `Dimension`s. Either this or rgb_dimensions (or both) must be set. rgb_dimensions: RGB `Dimension`. Either this or feature_dimensions (or both) must be set. raw_resolution: Discretize the `raw_units` observation's x,y to this resolution. Default is the map_size. action_space: If you pass both feature and rgb sizes, then you must also specify which you want to use for your actions as an ActionSpace enum. camera_width_world_units: The width of your screen in world units. If your feature_dimensions.screen=(64, 48) and camera_width is 24, then each px represents 24 / 64 = 0.375 world units in each of x and y. It'll then represent a camera of size (24, 0.375 * 48) = (24, 18) world units. use_feature_units: Whether to include feature_unit observations. use_raw_units: Whether to include raw unit data in observations. This differs from feature_units because it includes units outside the screen and hidden units, and because unit positions are given in terms of world units instead of screen units. use_raw_actions: [bool] Whether to use raw actions as the interface. Same as specifying action_space=ActionSpace.RAW. max_raw_actions: [int] Maximum number of raw actions max_selected_units: [int] The maximum number of selected units in the raw interface. use_unit_counts: Whether to include unit_counts observation. Disabled by default since it gives information outside the visible area. use_camera_position: Whether to include the camera's position (in minimap coordinates) in the observations. show_cloaked: Whether to show limited information for cloaked units. show_burrowed_shadows: Whether to show limited information for burrowed units that leave a shadow on the ground (ie widow mines and moving roaches and infestors). show_placeholders: Whether to show buildings that are queued for construction. hide_specific_actions: [bool] Some actions (eg cancel) have many specific versions (cancel this building, cancel that spell) and can be represented in a more general form. If a specific action is available, the general will also be available. If you set `hide_specific_actions` to False, the specific versions will also be available, but if it's True, the specific ones will be hidden. Similarly, when transforming back, a specific action will be returned as the general action. This simplifies the action space, though can lead to some actions in replays not being exactly representable using only the general actions. action_delay_fn: A callable which when invoked returns a delay in game loops to apply to a requested action. Defaults to None, meaning no delays are added (actions will be executed on the next game loop, hence with the minimum delay of 1). send_observation_proto: Whether or not to send the raw observation response proto in the observations. crop_to_playable_area: Crop the feature layer minimap observations down from the full map area to just the playable area. Also improves the heightmap rendering. raw_crop_to_playable_area: Crop the raw units to the playable area. This means units will show up closer to the origin with less dead space around their valid locations. allow_cheating_layers: Show the unit types and potentially other cheating layers on the minimap. add_cargo_to_units: Whether to add the units that are currently in cargo to the feature_units and raw_units lists. Raises: ValueError: if the parameters are inconsistent. """ if not (feature_dimensions or rgb_dimensions or use_raw_units): raise ValueError("Must set either the feature layer or rgb dimensions, " "or use raw units.") if action_space: if not isinstance(action_space, actions.ActionSpace): raise ValueError("action_space must be of type ActionSpace.") if action_space == actions.ActionSpace.RAW: use_raw_actions = True elif ((action_space == actions.ActionSpace.FEATURES and not feature_dimensions) or (action_space == actions.ActionSpace.RGB and not rgb_dimensions)): raise ValueError( "Action space must match the observations, action space={}, " "feature_dimensions={}, rgb_dimensions={}".format( action_space, feature_dimensions, rgb_dimensions)) else: if use_raw_actions: action_space = actions.ActionSpace.RAW elif feature_dimensions and rgb_dimensions: raise ValueError( "You must specify the action space if you have both screen and " "rgb observations.") elif feature_dimensions: action_space = actions.ActionSpace.FEATURES else: action_space = actions.ActionSpace.RGB if raw_resolution: raw_resolution = _to_point(raw_resolution) if use_raw_actions: if not use_raw_units: raise ValueError( "You must set use_raw_units if you intend to use_raw_actions") if action_space != actions.ActionSpace.RAW: raise ValueError( "Don't specify both an action_space and use_raw_actions.") if (rgb_dimensions and (rgb_dimensions.screen.x < rgb_dimensions.minimap.x or rgb_dimensions.screen.y < rgb_dimensions.minimap.y)): raise ValueError( "RGB Screen (%s) can't be smaller than the minimap (%s)." % ( rgb_dimensions.screen, rgb_dimensions.minimap)) self._feature_dimensions = feature_dimensions self._rgb_dimensions = rgb_dimensions self._action_space = action_space self._camera_width_world_units = camera_width_world_units or 24 self._use_feature_units = use_feature_units self._use_raw_units = use_raw_units self._raw_resolution = raw_resolution self._use_raw_actions = use_raw_actions self._max_raw_actions = max_raw_actions self._max_selected_units = max_selected_units self._use_unit_counts = use_unit_counts self._use_camera_position = use_camera_position self._show_cloaked = show_cloaked self._show_burrowed_shadows = show_burrowed_shadows self._show_placeholders = show_placeholders self._hide_specific_actions = hide_specific_actions self._action_delay_fn = action_delay_fn self._send_observation_proto = send_observation_proto self._add_cargo_to_units = add_cargo_to_units self._crop_to_playable_area = crop_to_playable_area self._raw_crop_to_playable_area = raw_crop_to_playable_area self._allow_cheating_layers = allow_cheating_layers if action_space == actions.ActionSpace.FEATURES: self._action_dimensions = feature_dimensions else: self._action_dimensions = rgb_dimensions @property def feature_dimensions(self): return self._feature_dimensions @property def rgb_dimensions(self): return self._rgb_dimensions @property def action_space(self): return self._action_space @property def camera_width_world_units(self): return self._camera_width_world_units @property def use_feature_units(self): return self._use_feature_units @property def use_raw_units(self): return self._use_raw_units @property def raw_resolution(self): return self._raw_resolution @raw_resolution.setter def raw_resolution(self, value): self._raw_resolution = value @property def use_raw_actions(self): return self._use_raw_actions @property def max_raw_actions(self): return self._max_raw_actions @property def max_selected_units(self): return self._max_selected_units @property def use_unit_counts(self): return self._use_unit_counts @property def use_camera_position(self): return self._use_camera_position @property def show_cloaked(self): return self._show_cloaked @property def show_burrowed_shadows(self): return self._show_burrowed_shadows @property def show_placeholders(self): return self._show_placeholders @property def hide_specific_actions(self): return self._hide_specific_actions @property def action_delay_fn(self): return self._action_delay_fn @property def send_observation_proto(self): return self._send_observation_proto @property def add_cargo_to_units(self): return self._add_cargo_to_units @property def action_dimensions(self): return self._action_dimensions @property def crop_to_playable_area(self): return self._crop_to_playable_area @property def raw_crop_to_playable_area(self): return self._raw_crop_to_playable_area @property def allow_cheating_layers(self): return self._allow_cheating_layers def parse_agent_interface_format( feature_screen=None, feature_minimap=None, rgb_screen=None, rgb_minimap=None, action_space=None, action_delays=None, **kwargs): """Creates an AgentInterfaceFormat object from keyword args. Convenient when using dictionaries or command-line arguments for config. Note that the feature_* and rgb_* properties define the respective spatial observation dimensions and accept: * None or 0 to disable that spatial observation. * A single int for a square observation with that side length. * A (int, int) tuple for a rectangular (width, height) observation. Args: feature_screen: If specified, so must feature_minimap be. feature_minimap: If specified, so must feature_screen be. rgb_screen: If specified, so must rgb_minimap be. rgb_minimap: If specified, so must rgb_screen be. action_space: ["FEATURES", "RGB", "RAW"]. action_delays: List of relative frequencies for each of [1, 2, 3, ...] game loop delays on executed actions. Only used when the environment is non-realtime. Intended to simulate the delays which can be experienced when playing in realtime. Note that 1 is the minimum possible delay; as actions can only ever be executed on a subsequent game loop. **kwargs: Anything else is passed through to AgentInterfaceFormat. Returns: An `AgentInterfaceFormat` object. Raises: ValueError: If an invalid parameter is specified. """ if feature_screen or feature_minimap: feature_dimensions = Dimensions(feature_screen, feature_minimap) else: feature_dimensions = None if rgb_screen or rgb_minimap: rgb_dimensions = Dimensions(rgb_screen, rgb_minimap) else: rgb_dimensions = None def _action_delay_fn(delays): """Delay frequencies per game loop delay -> fn returning game loop delay.""" if not delays: return None else: total = sum(delays) cumulative_sum = np.cumsum([delay / total for delay in delays]) def fn(): sample = random.uniform(0, 1) - EPSILON for i, cumulative in enumerate(cumulative_sum): if sample <= cumulative: return i + 1 raise ValueError("Failed to sample action delay??") return fn return AgentInterfaceFormat( feature_dimensions=feature_dimensions, rgb_dimensions=rgb_dimensions, action_space=(action_space and actions.ActionSpace[action_space.upper()]), action_delay_fn=_action_delay_fn(action_delays), **kwargs) def features_from_game_info(game_info, agent_interface_format=None, map_name=None, **kwargs): """Construct a Features object using data extracted from game info. Args: game_info: A `sc_pb.ResponseGameInfo` from the game. agent_interface_format: an optional AgentInterfaceFormat. map_name: an optional map name, which overrides the one in game_info. **kwargs: Anything else is passed through to AgentInterfaceFormat. It's an error to send any kwargs if you pass an agent_interface_format. Returns: A features object matching the specified parameterisation. Raises: ValueError: if you pass both agent_interface_format and kwargs. ValueError: if you pass an agent_interface_format that doesn't match game_info's resolutions. """ if isinstance(agent_interface_format, sc_pb.InterfaceOptions): return Passthrough() if not map_name: map_name = game_info.map_name if game_info.options.HasField("feature_layer"): fl_opts = game_info.options.feature_layer feature_dimensions = Dimensions( screen=(fl_opts.resolution.x, fl_opts.resolution.y), minimap=(fl_opts.minimap_resolution.x, fl_opts.minimap_resolution.y)) camera_width_world_units = game_info.options.feature_layer.width else: feature_dimensions = None camera_width_world_units = None if game_info.options.HasField("render"): rgb_opts = game_info.options.render rgb_dimensions = Dimensions( screen=(rgb_opts.resolution.x, rgb_opts.resolution.y), minimap=(rgb_opts.minimap_resolution.x, rgb_opts.minimap_resolution.y)) else: rgb_dimensions = None map_size = game_info.start_raw.map_size requested_races = { info.player_id: info.race_requested for info in game_info.player_info if info.type != sc_pb.Observer} if agent_interface_format: if kwargs: raise ValueError( "Either give an agent_interface_format or kwargs, not both.") aif = agent_interface_format if (aif.rgb_dimensions != rgb_dimensions or aif.feature_dimensions != feature_dimensions or (feature_dimensions and aif.camera_width_world_units != camera_width_world_units)): raise ValueError(""" The supplied agent_interface_format doesn't match the resolutions computed from the game_info: rgb_dimensions: %s vs %s feature_dimensions: %s vs %s camera_width_world_units: %s vs %s """ % (aif.rgb_dimensions, rgb_dimensions, aif.feature_dimensions, feature_dimensions, aif.camera_width_world_units, camera_width_world_units)) else: agent_interface_format = AgentInterfaceFormat( feature_dimensions=feature_dimensions, rgb_dimensions=rgb_dimensions, camera_width_world_units=camera_width_world_units, **kwargs) return Features( agent_interface_format=agent_interface_format, map_size=map_size, map_name=map_name, requested_races=requested_races) def _init_valid_functions(action_dimensions): """Initialize ValidFunctions and set up the callbacks.""" sizes = { "screen": tuple(int(i) for i in action_dimensions.screen), "screen2": tuple(int(i) for i in action_dimensions.screen), "minimap": tuple(int(i) for i in action_dimensions.minimap), } types = actions.Arguments(*[ actions.ArgumentType.spec(t.id, t.name, sizes.get(t.name, t.sizes)) for t in actions.TYPES]) functions = actions.Functions([ actions.Function.spec(f.id, f.name, tuple(types[t.id] for t in f.args)) for f in actions.FUNCTIONS]) return actions.ValidActions(types, functions) def _init_valid_raw_functions(raw_resolution, max_selected_units): """Initialize ValidFunctions and set up the callbacks.""" sizes = { "world": tuple(int(i) for i in raw_resolution), "unit_tags": (max_selected_units,), } types = actions.RawArguments(*[ actions.ArgumentType.spec(t.id, t.name, sizes.get(t.name, t.sizes)) for t in actions.RAW_TYPES]) functions = actions.Functions([ actions.Function.spec(f.id, f.name, tuple(types[t.id] for t in f.args)) for f in actions.RAW_FUNCTIONS]) return actions.ValidActions(types, functions) class Features(object): """Render feature layers from SC2 Observation protos into numpy arrays. This has the implementation details of how to render a starcraft environment. It translates between agent action/observation formats and starcraft action/observation formats, which should not be seen by agent authors. The starcraft protos contain more information than they should have access to. This is outside of the environment so that it can also be used in other contexts, eg a supervised dataset pipeline. """ def __init__(self, agent_interface_format=None, map_size=None, requested_races=None, map_name="unknown"): """Initialize a Features instance matching the specified interface format. Args: agent_interface_format: See the documentation for `AgentInterfaceFormat`. map_size: The size of the map in world units, needed for feature_units. requested_races: Optional. Dict mapping `player_id`s to that player's requested race. If present, will send player races in observation. map_name: Optional name of the map, to be added to the observation. Raises: ValueError: if agent_interface_format isn't specified. ValueError: if map_size isn't specified when use_feature_units or use_camera_position is. """ if not agent_interface_format: raise ValueError("Please specify agent_interface_format") self._agent_interface_format = agent_interface_format aif = self._agent_interface_format if not aif.raw_resolution and map_size: aif.raw_resolution = point.Point.build(map_size) self._map_size = map_size self._map_name = map_name if (aif.use_feature_units or aif.use_camera_position or aif.use_raw_units): self.init_camera( aif.feature_dimensions, map_size, aif.camera_width_world_units, aif.raw_resolution) self._send_observation_proto = aif.send_observation_proto self._raw = aif.use_raw_actions if self._raw: self._valid_functions = _init_valid_raw_functions( aif.raw_resolution, aif.max_selected_units) self._raw_tags = [] else: self._valid_functions = _init_valid_functions(aif.action_dimensions) self._requested_races = requested_races if requested_races is not None: assert len(requested_races) <= 2 def init_camera( self, feature_dimensions, map_size, camera_width_world_units, raw_resolution): """Initialize the camera (especially for feature_units). This is called in the constructor and may be called repeatedly after `Features` is constructed, since it deals with rescaling coordinates and not changing environment/action specs. Args: feature_dimensions: See the documentation in `AgentInterfaceFormat`. map_size: The size of the map in world units. camera_width_world_units: See the documentation in `AgentInterfaceFormat`. raw_resolution: See the documentation in `AgentInterfaceFormat`. Raises: ValueError: If map_size or camera_width_world_units are falsey (which should mainly happen if called by the constructor). """ if not map_size or not camera_width_world_units: raise ValueError( "Either pass the game_info with raw enabled, or map_size and " "camera_width_world_units in order to use feature_units or camera" "position.") map_size = point.Point.build(map_size) self._world_to_world_tl = transform.Linear(point.Point(1, -1), point.Point(0, map_size.y)) self._world_tl_to_world_camera_rel = transform.Linear(offset=-map_size / 4) if feature_dimensions: world_camera_rel_to_feature_screen = transform.Linear( feature_dimensions.screen / camera_width_world_units, feature_dimensions.screen / 2) self._world_to_feature_screen_px = transform.Chain( self._world_to_world_tl, self._world_tl_to_world_camera_rel, world_camera_rel_to_feature_screen, transform.PixelToCoord()) # If we don't have a specified raw resolution, we do no transform. world_tl_to_feature_minimap = transform.Linear( scale=raw_resolution / map_size.max_dim() if raw_resolution else None) self._world_to_minimap_px = transform.Chain( self._world_to_world_tl, world_tl_to_feature_minimap, transform.PixelToCoord()) self._camera_size = ( raw_resolution / map_size.max_dim() * camera_width_world_units) def _update_camera(self, camera_center): """Update the camera transform based on the new camera center.""" self._world_tl_to_world_camera_rel.offset = ( -self._world_to_world_tl.fwd_pt(camera_center) * self._world_tl_to_world_camera_rel.scale) def observation_spec(self): """The observation spec for the SC2 environment. It's worth noting that the image-like observations are in y,x/row,column order which is different than the actions which are in x,y order. This is due to conflicting conventions, and to facilitate printing of the images. Returns: The dict of observation names to their tensor shapes. Shapes with a 0 can vary in length, for example the number of valid actions depends on which units you have selected. """ # pytype: disable=wrong-arg-types obs_spec = named_array.NamedDict({ "action_result": (0,), # See error.proto: ActionResult. "alerts": (0,), # See sc2api.proto: Alert. "build_queue": (0, len(UnitLayer)), "cargo": (0, len(UnitLayer)), "cargo_slots_available": (1,), "control_groups": (10, 2), "game_loop": (1,), "last_actions": (0,), "map_name": (0,), "multi_select": (0, len(UnitLayer)), "player": (len(Player),), "production_queue": (0, len(ProductionQueue)), "score_cumulative": (len(ScoreCumulative),), "score_by_category": (len(ScoreByCategory), len(ScoreCategories)), "score_by_vital": (len(ScoreByVital), len(ScoreVitals)), "single_select": (0, len(UnitLayer)), # Only (n, 7) for n in (0, 1). }) # pytype: enable=wrong-arg-types if not self._raw: obs_spec["available_actions"] = (0,) aif = self._agent_interface_format if aif.feature_dimensions: obs_spec["feature_screen"] = (len(SCREEN_FEATURES), aif.feature_dimensions.screen.y, aif.feature_dimensions.screen.x) obs_spec["feature_minimap"] = (len(MINIMAP_FEATURES), aif.feature_dimensions.minimap.y, aif.feature_dimensions.minimap.x) if aif.rgb_dimensions: obs_spec["rgb_screen"] = (aif.rgb_dimensions.screen.y, aif.rgb_dimensions.screen.x, 3) obs_spec["rgb_minimap"] = (aif.rgb_dimensions.minimap.y, aif.rgb_dimensions.minimap.x, 3) if aif.use_feature_units: obs_spec["feature_units"] = (0, len(FeatureUnit)) # pytype: disable=wrong-arg-types obs_spec["feature_effects"] = (0, len(EffectPos)) if aif.use_raw_units: obs_spec["raw_units"] = (0, len(FeatureUnit)) obs_spec["raw_effects"] = (0, len(EffectPos)) if aif.use_feature_units or aif.use_raw_units: obs_spec["radar"] = (0, len(Radar)) obs_spec["upgrades"] = (0,) if aif.use_unit_counts: obs_spec["unit_counts"] = (0, len(UnitCounts)) if aif.use_camera_position: obs_spec["camera_position"] = (2,) obs_spec["camera_size"] = (2,) if self._send_observation_proto: obs_spec["_response_observation"] = (0,) obs_spec["home_race_requested"] = (1,) obs_spec["away_race_requested"] = (1,) return obs_spec def action_spec(self): """The action space pretty complicated and fills the ValidFunctions.""" return self._valid_functions @property def map_size(self): return self._map_size @property def requested_races(self): return self._requested_races @sw.decorate def transform_obs(self, obs): """Render some SC2 observations into something an agent can handle.""" empty_unit = np.array([], dtype=np.int32).reshape((0, len(UnitLayer))) out = named_array.NamedDict({ # Fill out some that are sometimes empty. "single_select": empty_unit, "multi_select": empty_unit, "build_queue": empty_unit, "cargo": empty_unit, "production_queue": np.array([], dtype=np.int32).reshape( (0, len(ProductionQueue))), "last_actions": np.array([], dtype=np.int32), "cargo_slots_available": np.array([0], dtype=np.int32), "home_race_requested": np.array([0], dtype=np.int32), "away_race_requested": np.array([0], dtype=np.int32), "map_name": self._map_name, }) def or_zeros(layer, size): if layer is not None: return layer.astype(np.int32, copy=False) else: return np.zeros((size.y, size.x), dtype=np.int32) aif = self._agent_interface_format if aif.feature_dimensions: with sw("feature_screen"): out["feature_screen"] = named_array.NamedNumpyArray( np.stack([or_zeros(f.unpack(obs.observation), aif.feature_dimensions.screen) for f in SCREEN_FEATURES]), names=[ScreenFeatures, None, None]) with sw("feature_minimap"): out["feature_minimap"] = named_array.NamedNumpyArray( np.stack([or_zeros(f.unpack(obs.observation), aif.feature_dimensions.minimap) for f in MINIMAP_FEATURES]), names=[MinimapFeatures, None, None]) if aif.rgb_dimensions: with sw("rgb_screen"): out["rgb_screen"] = Feature.unpack_rgb_image( obs.observation.render_data.map).astype(np.int32) with sw("rgb_minimap"): out["rgb_minimap"] = Feature.unpack_rgb_image( obs.observation.render_data.minimap).astype(np.int32) if not self._raw: with sw("last_actions"): out["last_actions"] = np.array( [self.reverse_action(a).function for a in obs.actions], dtype=np.int32) out["action_result"] = np.array([o.result for o in obs.action_errors], dtype=np.int32) out["alerts"] = np.array(obs.observation.alerts, dtype=np.int32) out["game_loop"] = np.array([obs.observation.game_loop], dtype=np.int32) with sw("score"): score_details = obs.observation.score.score_details out["score_cumulative"] = named_array.NamedNumpyArray([ obs.observation.score.score, score_details.idle_production_time, score_details.idle_worker_time, score_details.total_value_units, score_details.total_value_structures, score_details.killed_value_units, score_details.killed_value_structures, score_details.collected_minerals, score_details.collected_vespene, score_details.collection_rate_minerals, score_details.collection_rate_vespene, score_details.spent_minerals, score_details.spent_vespene, ], names=ScoreCumulative, dtype=np.int32) def get_score_details(key, details, categories): row = getattr(details, key.name) return [getattr(row, category.name) for category in categories] out["score_by_category"] = named_array.NamedNumpyArray([ get_score_details(key, score_details, ScoreCategories) for key in ScoreByCategory ], names=[ScoreByCategory, ScoreCategories], dtype=np.int32) out["score_by_vital"] = named_array.NamedNumpyArray([ get_score_details(key, score_details, ScoreVitals) for key in ScoreByVital ], names=[ScoreByVital, ScoreVitals], dtype=np.int32) player = obs.observation.player_common out["player"] = named_array.NamedNumpyArray([ player.player_id, player.minerals, player.vespene, player.food_used, player.food_cap, player.food_army, player.food_workers, player.idle_worker_count, player.army_count, player.warp_gate_count, player.larva_count, ], names=Player, dtype=np.int32) def unit_vec(u): return np.array(( u.unit_type, u.player_relative, u.health, u.shields, u.energy, u.transport_slots_taken, int(u.build_progress * 100), # discretize ), dtype=np.int32) ui = obs.observation.ui_data with sw("ui"): groups = np.zeros((10, 2), dtype=np.int32) for g in ui.groups: groups[g.control_group_index, :] = (g.leader_unit_type, g.count) out["control_groups"] = groups if ui.HasField("single"): out["single_select"] = named_array.NamedNumpyArray( [unit_vec(ui.single.unit)], [None, UnitLayer]) elif ui.HasField("multi"): out["multi_select"] = named_array.NamedNumpyArray( [unit_vec(u) for u in ui.multi.units], [None, UnitLayer]) elif ui.HasField("cargo"): out["single_select"] = named_array.NamedNumpyArray( [unit_vec(ui.cargo.unit)], [None, UnitLayer]) out["cargo"] = named_array.NamedNumpyArray( [unit_vec(u) for u in ui.cargo.passengers], [None, UnitLayer]) out["cargo_slots_available"] = np.array([ui.cargo.slots_available], dtype=np.int32) elif ui.HasField("production"): out["single_select"] = named_array.NamedNumpyArray( [unit_vec(ui.production.unit)], [None, UnitLayer]) if ui.production.build_queue: out["build_queue"] = named_array.NamedNumpyArray( [unit_vec(u) for u in ui.production.build_queue], [None, UnitLayer], dtype=np.int32) if ui.production.production_queue: out["production_queue"] = named_array.NamedNumpyArray( [(item.ability_id, item.build_progress * 100) for item in ui.production.production_queue], [None, ProductionQueue], dtype=np.int32) tag_types = {} # Only populate the cache if it's needed. def get_addon_type(tag): if not tag_types: for u in raw.units: tag_types[u.tag] = u.unit_type return tag_types.get(tag, 0) def full_unit_vec(u, pos_transform, is_raw=False): """Compute unit features.""" screen_pos = pos_transform.fwd_pt( point.Point.build(u.pos)) screen_radius = pos_transform.fwd_dist(u.radius) def raw_order(i): if len(u.orders) > i: # TODO(tewalds): Return a generalized func id. return actions.RAW_ABILITY_ID_TO_FUNC_ID.get( u.orders[i].ability_id, 0) return 0 features = [ # Match unit_vec order u.unit_type, u.alliance, # Self = 1, Ally = 2, Neutral = 3, Enemy = 4 u.health, u.shield, u.energy, u.cargo_space_taken, int(u.build_progress * 100), # discretize # Resume API order int(u.health / u.health_max * 255) if u.health_max > 0 else 0, int(u.shield / u.shield_max * 255) if u.shield_max > 0 else 0, int(u.energy / u.energy_max * 255) if u.energy_max > 0 else 0, u.display_type, # Visible = 1, Snapshot = 2, Hidden = 3 u.owner, # 1-15, 16 = neutral screen_pos.x, screen_pos.y, u.facing, screen_radius, u.cloak, # Cloaked = 1, CloakedDetected = 2, NotCloaked = 3 u.is_selected, u.is_blip, u.is_powered, u.mineral_contents, u.vespene_contents, # Not populated for enemies or neutral u.cargo_space_max, u.assigned_harvesters, u.ideal_harvesters, u.weapon_cooldown, len(u.orders), raw_order(0), raw_order(1), u.tag if is_raw else 0, u.is_hallucination, u.buff_ids[0] if len(u.buff_ids) >= 1 else 0, u.buff_ids[1] if len(u.buff_ids) >= 2 else 0, get_addon_type(u.add_on_tag) if u.add_on_tag else 0, u.is_active, u.is_on_screen, int(u.orders[0].progress * 100) if len(u.orders) >= 1 else 0, int(u.orders[1].progress * 100) if len(u.orders) >= 2 else 0, raw_order(2), raw_order(3), 0, u.buff_duration_remain, u.buff_duration_max, u.attack_upgrade_level, u.armor_upgrade_level, u.shield_upgrade_level, ] return features raw = obs.observation.raw_data if aif.use_feature_units: with sw("feature_units"): # Update the camera location so we can calculate world to screen pos self._update_camera(point.Point.build(raw.player.camera)) feature_units = [full_unit_vec(u, self._world_to_feature_screen_px) for u in raw.units if u.is_on_screen] out["feature_units"] = named_array.NamedNumpyArray( feature_units, [None, FeatureUnit], dtype=np.int64) feature_effects = [] feature_screen_size = aif.feature_dimensions.screen for effect in raw.effects: for pos in effect.pos: screen_pos = self._world_to_feature_screen_px.fwd_pt( point.Point.build(pos)) if (0 <= screen_pos.x < feature_screen_size.x and 0 <= screen_pos.y < feature_screen_size.y): feature_effects.append([ effect.effect_id, effect.alliance, effect.owner, effect.radius, screen_pos.x, screen_pos.y, ]) out["feature_effects"] = named_array.NamedNumpyArray( feature_effects, [None, EffectPos], dtype=np.int32) if aif.use_raw_units: with sw("raw_units"): with sw("to_list"): raw_units = [full_unit_vec(u, self._world_to_minimap_px, is_raw=True) for u in raw.units] with sw("to_numpy"): out["raw_units"] = named_array.NamedNumpyArray( raw_units, [None, FeatureUnit], dtype=np.int64) if raw_units: self._raw_tags = out["raw_units"][:, FeatureUnit.tag] else: self._raw_tags = np.array([]) raw_effects = [] for effect in raw.effects: for pos in effect.pos: raw_pos = self._world_to_minimap_px.fwd_pt(point.Point.build(pos)) raw_effects.append([ effect.effect_id, effect.alliance, effect.owner, effect.radius, raw_pos.x, raw_pos.y, ]) out["raw_effects"] = named_array.NamedNumpyArray( raw_effects, [None, EffectPos], dtype=np.int32) out["upgrades"] = np.array(raw.player.upgrade_ids, dtype=np.int32) def cargo_units(u, pos_transform, is_raw=False): """Compute unit features.""" screen_pos = pos_transform.fwd_pt( point.Point.build(u.pos)) features = [] for v in u.passengers: features.append([ v.unit_type, u.alliance, # Self = 1, Ally = 2, Neutral = 3, Enemy = 4 v.health, v.shield, v.energy, 0, # cargo_space_taken 0, # build_progress int(v.health / v.health_max * 255) if v.health_max > 0 else 0, int(v.shield / v.shield_max * 255) if v.shield_max > 0 else 0, int(v.energy / v.energy_max * 255) if v.energy_max > 0 else 0, 0, # display_type u.owner, # 1-15, 16 = neutral screen_pos.x, screen_pos.y, 0, # facing 0, # screen_radius 0, # cloak 0, # is_selected 0, # is_blip 0, # is powered 0, # mineral_contents 0, # vespene_contents 0, # cargo_space_max 0, # assigned_harvesters 0, # ideal_harvesters 0, # weapon_cooldown 0, # order_length 0, # order_id_0 0, # order_id_1 v.tag if is_raw else 0, 0, # is hallucination 0, # buff_id_1 0, # buff_id_2 0, # addon_unit_type 0, # active 0, # is_on_screen 0, # order_progress_1 0, # order_progress_2 0, # order_id_2 0, # order_id_3 1, # is_in_cargo 0, # buff_duration_remain 0, # buff_duration_max 0, # attack_upgrade_level 0, # armor_upgrade_level 0, # shield_upgrade_level ]) return features if aif.add_cargo_to_units: with sw("add_cargo_to_units"): if aif.use_feature_units: with sw("feature_units"): with sw("to_list"): feature_cargo_units = [] for u in raw.units: if u.is_on_screen: feature_cargo_units += cargo_units( u, self._world_to_feature_screen_px) with sw("to_numpy"): if feature_cargo_units: all_feature_units = np.array( feature_cargo_units, dtype=np.int64) all_feature_units = np.concatenate( [out["feature_units"], feature_cargo_units], axis=0) out["feature_units"] = named_array.NamedNumpyArray( all_feature_units, [None, FeatureUnit], dtype=np.int64) if aif.use_raw_units: with sw("raw_units"): with sw("to_list"): raw_cargo_units = [] for u in raw.units: raw_cargo_units += cargo_units( u, self._world_to_minimap_px, is_raw=True) with sw("to_numpy"): if raw_cargo_units: raw_cargo_units = np.array(raw_cargo_units, dtype=np.int64) all_raw_units = np.concatenate( [out["raw_units"], raw_cargo_units], axis=0) out["raw_units"] = named_array.NamedNumpyArray( all_raw_units, [None, FeatureUnit], dtype=np.int64) self._raw_tags = out["raw_units"][:, FeatureUnit.tag] if aif.use_unit_counts: with sw("unit_counts"): unit_counts = collections.defaultdict(int) for u in raw.units: if u.alliance == sc_raw.Self: unit_counts[u.unit_type] += 1 out["unit_counts"] = named_array.NamedNumpyArray( sorted(unit_counts.items()), [None, UnitCounts], dtype=np.int32) if aif.use_camera_position: camera_position = self._world_to_minimap_px.fwd_pt( point.Point.build(raw.player.camera)) out["camera_position"] = np.array((camera_position.x, camera_position.y), dtype=np.int32) out["camera_size"] = np.array((self._camera_size.x, self._camera_size.y), dtype=np.int32) if not self._raw: out["available_actions"] = np.array( self.available_actions(obs.observation), dtype=np.int32) if self._requested_races is not None: out["home_race_requested"] = np.array( (self._requested_races[player.player_id],), dtype=np.int32) for player_id, race in self._requested_races.items(): if player_id != player.player_id: out["away_race_requested"] = np.array((race,), dtype=np.int32) if aif.use_feature_units or aif.use_raw_units: def transform_radar(radar): p = self._world_to_minimap_px.fwd_pt(point.Point.build(radar.pos)) return p.x, p.y, radar.radius out["radar"] = named_array.NamedNumpyArray( list(map(transform_radar, obs.observation.raw_data.radar)), [None, Radar], dtype=np.int32) # Send the entire proto as well (in a function, so it isn't copied). if self._send_observation_proto: out["_response_observation"] = lambda: obs return out @sw.decorate def available_actions(self, obs): """Return the list of available action ids.""" available_actions = set() hide_specific_actions = self._agent_interface_format.hide_specific_actions for i, func in actions.FUNCTIONS_AVAILABLE.items(): if func.avail_fn(obs): available_actions.add(i) for a in obs.abilities: if a.ability_id not in actions.ABILITY_IDS: logging.warning("Unknown ability %s seen as available.", a.ability_id) continue found_applicable = False for func in actions.ABILITY_IDS[a.ability_id]: if func.function_type in actions.POINT_REQUIRED_FUNCS[a.requires_point]: if func.general_id == 0 or not hide_specific_actions: available_actions.add(func.id) found_applicable = True if func.general_id != 0: # Always offer generic actions. for general_func in actions.ABILITY_IDS[func.general_id]: if general_func.function_type is func.function_type: # Only the right type. Don't want to expose the general action # to minimap if only the screen version is available. available_actions.add(general_func.id) found_applicable = True break if not found_applicable: raise ValueError("Failed to find applicable action for {}".format(a)) return list(available_actions) @sw.decorate def transform_action(self, obs, func_call, skip_available=False): """Transform an agent-style action to one that SC2 can consume. Args: obs: a `sc_pb.Observation` from the previous frame. func_call: a `FunctionCall` to be turned into a `sc_pb.Action`. skip_available: If True, assume the action is available. This should only be used for testing or if you expect to make actions that weren't valid at the last observation. Returns: a corresponding `sc_pb.Action`. Raises: ValueError: if the action doesn't pass validation. """ # Ignore sc_pb.Action's to make the env more flexible, eg raw actions. if isinstance(func_call, sc_pb.Action): return func_call func_id = func_call.function try: if self._raw: func = actions.RAW_FUNCTIONS[func_id] else: func = actions.FUNCTIONS[func_id] except KeyError: raise ValueError("Invalid function id: %s." % func_id) # Available? if not (skip_available or self._raw or func_id in self.available_actions(obs)): raise ValueError("Function %s/%s is currently not available" % ( func_id, func.name)) # Right number of args? if len(func_call.arguments) != len(func.args): raise ValueError( "Wrong number of arguments for function: %s, got: %s" % ( func, func_call.arguments)) # Args are valid? aif = self._agent_interface_format for t, arg in zip(func.args, func_call.arguments): if t.count: if 1 <= len(arg) <= t.count: continue else: raise ValueError( "Wrong number of values for argument of %s, got: %s" % ( func, func_call.arguments)) if t.name in ("screen", "screen2"): sizes = aif.action_dimensions.screen elif t.name == "minimap": sizes = aif.action_dimensions.minimap elif t.name == "world": sizes = aif.raw_resolution else: sizes = t.sizes if len(sizes) != len(arg): raise ValueError( "Wrong number of values for argument of %s, got: %s" % ( func, func_call.arguments)) for s, a in zip(sizes, arg): if not np.all(0 <= a) and np.all(a < s): raise ValueError("Argument is out of range for %s, got: %s" % ( func, func_call.arguments)) # Convert them to python types. kwargs = {type_.name: type_.fn(a) for type_, a in zip(func.args, func_call.arguments)} # Call the right callback to get an SC2 action proto. sc2_action = sc_pb.Action() kwargs["action"] = sc2_action if func.ability_id: kwargs["ability_id"] = func.ability_id if self._raw: if "world" in kwargs: kwargs["world"] = self._world_to_minimap_px.back_pt(kwargs["world"]) def find_original_tag(position): if position >= len(self._raw_tags): # Assume it's a real unit tag. return position original_tag = self._raw_tags[position] if original_tag == 0: logging.warning("Tag not found: %s", original_tag) return original_tag if "target_unit_tag" in kwargs: kwargs["target_unit_tag"] = find_original_tag( kwargs["target_unit_tag"][0]) if "unit_tags" in kwargs: kwargs["unit_tags"] = [find_original_tag(t) for t in kwargs["unit_tags"]] actions.RAW_FUNCTIONS[func_id].function_type(**kwargs) else: kwargs["action_space"] = aif.action_space actions.FUNCTIONS[func_id].function_type(**kwargs) return sc2_action @sw.decorate def reverse_action(self, action): """Transform an SC2-style action into an agent-style action. This should be the inverse of `transform_action`. Args: action: a `sc_pb.Action` to be transformed. Returns: A corresponding `actions.FunctionCall`. Raises: ValueError: if it doesn't know how to transform this action. """ FUNCTIONS = actions.FUNCTIONS # pylint: disable=invalid-name aif = self._agent_interface_format def func_call_ability(ability_id, cmd_type, *args): """Get the function id for a specific ability id and action type.""" if ability_id not in actions.ABILITY_IDS: logging.warning("Unknown ability_id: %s. This is probably dance or " "cheer, or some unknown new or map specific ability. " "Treating it as a no-op.", ability_id) return FUNCTIONS.no_op() if aif.hide_specific_actions: general_id = next(iter(actions.ABILITY_IDS[ability_id])).general_id if general_id: ability_id = general_id for func in actions.ABILITY_IDS[ability_id]: if func.function_type is cmd_type: return FUNCTIONS[func.id](*args) raise ValueError("Unknown ability_id: %s, type: %s. Likely a bug." % ( ability_id, cmd_type.__name__)) if action.HasField("action_ui"): act_ui = action.action_ui if act_ui.HasField("multi_panel"): return FUNCTIONS.select_unit(act_ui.multi_panel.type - 1, act_ui.multi_panel.unit_index) if act_ui.HasField("control_group"): return FUNCTIONS.select_control_group( act_ui.control_group.action - 1, act_ui.control_group.control_group_index) if act_ui.HasField("select_idle_worker"): return FUNCTIONS.select_idle_worker(act_ui.select_idle_worker.type - 1) if act_ui.HasField("select_army"): return FUNCTIONS.select_army(act_ui.select_army.selection_add) if act_ui.HasField("select_warp_gates"): return FUNCTIONS.select_warp_gates( act_ui.select_warp_gates.selection_add) if act_ui.HasField("select_larva"): return FUNCTIONS.select_larva() if act_ui.HasField("cargo_panel"): return FUNCTIONS.unload(act_ui.cargo_panel.unit_index) if act_ui.HasField("production_panel"): return FUNCTIONS.build_queue(act_ui.production_panel.unit_index) if act_ui.HasField("toggle_autocast"): return func_call_ability(act_ui.toggle_autocast.ability_id, actions.autocast) if (action.HasField("action_feature_layer") or action.HasField("action_render")): act_sp = actions.spatial(action, aif.action_space) if act_sp.HasField("camera_move"): coord = point.Point.build(act_sp.camera_move.center_minimap) return FUNCTIONS.move_camera(coord) if act_sp.HasField("unit_selection_point"): select_point = act_sp.unit_selection_point coord = point.Point.build(select_point.selection_screen_coord) return FUNCTIONS.select_point(select_point.type - 1, coord) if act_sp.HasField("unit_selection_rect"): select_rect = act_sp.unit_selection_rect # TODO(tewalds): After looking at some replays we should decide if # this is good enough. Maybe we need to simulate multiple actions or # merge the selection rects into a bigger one. tl = point.Point.build(select_rect.selection_screen_coord[0].p0) br = point.Point.build(select_rect.selection_screen_coord[0].p1) return FUNCTIONS.select_rect(select_rect.selection_add, tl, br) if act_sp.HasField("unit_command"): cmd = act_sp.unit_command queue = int(cmd.queue_command) if cmd.HasField("target_screen_coord"): coord = point.Point.build(cmd.target_screen_coord) return func_call_ability(cmd.ability_id, actions.cmd_screen, queue, coord) elif cmd.HasField("target_minimap_coord"): coord = point.Point.build(cmd.target_minimap_coord) return func_call_ability(cmd.ability_id, actions.cmd_minimap, queue, coord) else: return func_call_ability(cmd.ability_id, actions.cmd_quick, queue) if action.HasField("action_raw") or action.HasField("action_render"): raise ValueError("Unknown action:\n%s" % action) return FUNCTIONS.no_op() @sw.decorate def reverse_raw_action(self, action, prev_obs): """Transform an SC2-style action into an agent-style action. This should be the inverse of `transform_action`. Args: action: a `sc_pb.Action` to be transformed. prev_obs: an obs to figure out tags. Returns: A corresponding `actions.FunctionCall`. Raises: ValueError: if it doesn't know how to transform this action. """ aif = self._agent_interface_format raw_tags = prev_obs["raw_units"][:, FeatureUnit.tag] def find_tag_position(original_tag): for i, tag in enumerate(raw_tags): if tag == original_tag: return i logging.warning("Not found tag! %s", original_tag) return -1 def func_call_ability(ability_id, cmd_type, *args): """Get the function id for a specific ability id and action type.""" if ability_id not in actions.RAW_ABILITY_IDS: logging.warning("Unknown ability_id: %s. This is probably dance or " "cheer, or some unknown new or map specific ability. " "Treating it as a no-op.", ability_id) return actions.RAW_FUNCTIONS.no_op() if aif.hide_specific_actions: general_id = next(iter(actions.RAW_ABILITY_IDS[ability_id])).general_id if general_id: ability_id = general_id for func in actions.RAW_ABILITY_IDS[ability_id]: if func.function_type is cmd_type: return actions.RAW_FUNCTIONS[func.id](*args) raise ValueError("Unknown ability_id: %s, type: %s. Likely a bug." % ( ability_id, cmd_type.__name__)) if action.HasField("action_raw"): raw_act = action.action_raw if raw_act.HasField("unit_command"): uc = raw_act.unit_command ability_id = uc.ability_id queue_command = uc.queue_command unit_tags = (find_tag_position(t) for t in uc.unit_tags) # Remove invalid units. unit_tags = [t for t in unit_tags if t != -1] if not unit_tags: return actions.RAW_FUNCTIONS.no_op() if uc.HasField("target_unit_tag"): target_unit_tag = find_tag_position(uc.target_unit_tag) if target_unit_tag == -1: return actions.RAW_FUNCTIONS.no_op() return func_call_ability(ability_id, actions.raw_cmd_unit, queue_command, unit_tags, target_unit_tag) if uc.HasField("target_world_space_pos"): coord = point.Point.build(uc.target_world_space_pos) coord = self._world_to_minimap_px.fwd_pt(coord) return func_call_ability(ability_id, actions.raw_cmd_pt, queue_command, unit_tags, coord) else: return func_call_ability(ability_id, actions.raw_cmd, queue_command, unit_tags) if raw_act.HasField("toggle_autocast"): uc = raw_act.toggle_autocast ability_id = uc.ability_id unit_tags = (find_tag_position(t) for t in uc.unit_tags) # Remove invalid units. unit_tags = [t for t in unit_tags if t != -1] if not unit_tags: return actions.RAW_FUNCTIONS.no_op() return func_call_ability(ability_id, actions.raw_autocast, unit_tags) if raw_act.HasField("unit_command"): raise ValueError("Unknown action:\n%s" % action) if raw_act.HasField("camera_move"): coord = point.Point.build(raw_act.camera_move.center_world_space) coord = self._world_to_minimap_px.fwd_pt(coord) return actions.RAW_FUNCTIONS.raw_move_camera(coord) return actions.RAW_FUNCTIONS.no_op() class Passthrough: """Alternative to `Features` which passes actions and observations through.""" def observation_spec(self): return {} def transform_obs(self, observation): return observation def action_spec(self): return {} def transform_action(self, observation, action, skip_available): del observation del skip_available return action def available_actions(self, observation): del observation raise NotImplementedError( "available_actions isn't supported for passthrough") def reverse_action(self, action): del action raise NotImplementedError("reverse_action isn't supported for passthrough")
pysc2-master
pysc2/lib/features.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A stopwatch to check how much time is used by bits of code.""" import collections import functools import math import os import sys import threading import time class Stat(object): """A set of statistics about a single value series.""" __slots__ = ("num", "min", "max", "sum", "sum_sq") def __init__(self): self.reset() def reset(self): self.num = 0 self.min = 1000000000 self.max = 0 self.sum = 0 self.sum_sq = 0 def add(self, val): self.num += 1 if self.min > val: self.min = val if self.max < val: self.max = val self.sum += val self.sum_sq += val**2 @property def avg(self): return 0 if self.num == 0 else self.sum / self.num @property def dev(self): """Standard deviation.""" if self.num == 0: return 0 return math.sqrt(max(0, self.sum_sq / self.num - (self.sum / self.num)**2)) def merge(self, other): self.num += other.num self.min = min(self.min, other.min) self.max = max(self.max, other.max) self.sum += other.sum self.sum_sq += other.sum_sq @staticmethod def build(summation, average, standard_deviation, minimum, maximum, number): stat = Stat() if number > 0: stat.num = number stat.min = minimum stat.max = maximum stat.sum = summation stat.sum_sq = number * (standard_deviation**2 + average**2) return stat @staticmethod def parse(s): if s == "num=0": return Stat() parts = (float(p.split(":")[1]) for p in s.split(", ")) return Stat.build(*parts) def __str__(self): if self.num == 0: return "num=0" return "sum: %.4f, avg: %.4f, dev: %.4f, min: %.4f, max: %.4f, num: %d" % ( self.sum, self.avg, self.dev, self.min, self.max, self.num) class StopWatchContext(object): """Time an individual call.""" __slots__ = ("_sw", "_start") def __init__(self, stopwatch, name): self._sw = stopwatch self._sw.push(name) def __enter__(self): self._start = time.time() def __exit__(self, unused_exception_type, unused_exc_value, unused_traceback): self._sw.add(self._sw.pop(), time.time() - self._start) class TracingStopWatchContext(StopWatchContext): """Time an individual call, but also output all the enter/exit calls.""" def __enter__(self): super(TracingStopWatchContext, self).__enter__() self._log(">>> %s" % self._sw.cur_stack()) def __exit__(self, *args, **kwargs): self._log("<<< %s: %.6f secs" % (self._sw.cur_stack(), time.time() - self._start)) super(TracingStopWatchContext, self).__exit__(*args, **kwargs) def _log(self, s): print(s, file=sys.stderr) class FakeStopWatchContext(object): """A fake stopwatch context for when the stopwatch is too slow or unneeded.""" __slots__ = () def __enter__(self): pass def __exit__(self, unused_exception_type, unused_exc_value, unused_traceback): pass fake_context = FakeStopWatchContext() class StopWatch(object): """A context manager that tracks call count and latency, and other stats. Usage: sw = stopwatch.Stopwatch() with sw("foo"): foo() with sw("bar"): bar() @sw.decorate def func(): pass func() print(sw) """ __slots__ = ("_times", "_local", "_factory") def __init__(self, enabled=True, trace=False): self._times = collections.defaultdict(Stat) self._local = threading.local() if trace: self.trace() elif enabled: self.enable() else: self.disable() def disable(self): self._factory = lambda _: fake_context def enable(self): self._factory = lambda name: StopWatchContext(self, name) def trace(self): self._factory = lambda name: TracingStopWatchContext(self, name) def custom(self, factory): self._factory = factory def __call__(self, name): return self._factory(name) def decorate(self, name_or_func): """Decorate a function/method to check its timings. To use the function's name: @sw.decorate def func(): pass To name it explicitly: @sw.decorate("name") def random_func_name(): pass Args: name_or_func: the name or the function to decorate. Returns: If a name is passed, returns this as a decorator, otherwise returns the decorated function. """ if os.environ.get("SC2_NO_STOPWATCH"): return name_or_func if callable(name_or_func) else lambda func: func def decorator(name, func): @functools.wraps(func) def _stopwatch(*args, **kwargs): with self(name): return func(*args, **kwargs) return _stopwatch if callable(name_or_func): return decorator(name_or_func.__name__, name_or_func) else: return lambda func: decorator(name_or_func, func) def push(self, name): try: self._local.stack.append(name) except AttributeError: # Using an exception is faster than using hasattr. self._local.stack = [name] def pop(self): stack = self._local.stack ret = ".".join(stack) stack.pop() return ret def cur_stack(self): return ".".join(self._local.stack) def clear(self): self._times.clear() def add(self, name, duration): self._times[name].add(duration) def __getitem__(self, name): return self._times[name] @property def times(self): return self._times def merge(self, other): for k, v in other.times.items(): self._times[k].merge(v) @staticmethod def parse(s): """Parse the output below to create a new StopWatch.""" stopwatch = StopWatch() for line in s.splitlines(): if line.strip(): parts = line.split(None) name = parts[0] if name != "%": # ie not the header line rest = (float(v) for v in parts[2:]) stopwatch.times[parts[0]].merge(Stat.build(*rest)) return stopwatch def str(self, threshold=0.1): """Return a string representation of the timings.""" if not self._times: return "" total = sum(s.sum for k, s in self._times.items() if "." not in k) table = [["", "% total", "sum", "avg", "dev", "min", "max", "num"]] for k, v in sorted(self._times.items()): percent = 100 * v.sum / (total or 1) if percent > threshold: # ignore anything below the threshold table.append([ k, "%.2f%%" % percent, "%.4f" % v.sum, "%.4f" % v.avg, "%.4f" % v.dev, "%.4f" % v.min, "%.4f" % v.max, "%d" % v.num, ]) col_widths = [max(len(row[i]) for row in table) for i in range(len(table[0]))] out = "" for row in table: out += " " + row[0].ljust(col_widths[0]) + " " out += " ".join( val.rjust(width) for val, width in zip(row[1:], col_widths[1:])) out += "\n" return out def __str__(self): return self.str() # Global stopwatch is disabled by default to not incur the performance hit if # it's not wanted. sw = StopWatch(enabled=False)
pysc2-master
pysc2/lib/stopwatch.py
#!/usr/bin/python # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compare the observations from multiple binaries.""" from pysc2.lib import features from pysc2.lib import np_util from pysc2.lib import proto_diff from s2clientprotocol import common_pb2 def image_differencer(path, proto_a, proto_b): """proto_diff differencer for PySC2 image data.""" if path[-1] == "data" and len(path) >= 2: image_data_path = proto_diff.ProtoPath(path[:-1]) image_data_a = image_data_path.get_field(proto_a) if isinstance(image_data_a, common_pb2.ImageData): image_data_b = image_data_path.get_field(proto_b) image_a = features.Feature.unpack_layer(image_data_a) image_b = features.Feature.unpack_layer(image_data_b) return np_util.summarize_array_diffs(image_a, image_b) return None
pysc2-master
pysc2/lib/image_differencer.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic Point and Rect classes.""" import collections import math import random class Point(collections.namedtuple("Point", ["x", "y"])): """A basic Point class.""" __slots__ = () @classmethod def build(cls, obj): """Build a Point from an object that has properties `x` and `y`.""" return cls(obj.x, obj.y) @classmethod def unit_rand(cls): """Return a Point with x, y chosen randomly with 0 <= x < 1, 0 <= y < 1.""" return cls(random.random(), random.random()) def assign_to(self, obj): """Assign `x` and `y` to an object that has properties `x` and `y`.""" obj.x = self.x obj.y = self.y def dist(self, other): """Distance to some other point.""" dx = self.x - other.x dy = self.y - other.y return math.sqrt(dx**2 + dy**2) def dist_sq(self, other): """Distance squared to some other point.""" dx = self.x - other.x dy = self.y - other.y return dx**2 + dy**2 def round(self): """Round `x` and `y` to integers.""" return Point(int(round(self.x)), int(round(self.y))) def floor(self): """Round `x` and `y` down to integers.""" return Point(int(math.floor(self.x)), int(math.floor(self.y))) def ceil(self): """Round `x` and `y` up to integers.""" return Point(int(math.ceil(self.x)), int(math.ceil(self.y))) def abs(self): """Take the absolute value of `x` and `y`.""" return Point(abs(self.x), abs(self.y)) def len(self): """Length of the vector to this point.""" return math.sqrt(self.x**2 + self.y**2) def scale(self, target_len): """Scale the vector to have the target length.""" return self * (target_len / self.len()) def scale_max_size(self, max_size): """Scale this value, keeping aspect ratio, but fitting inside `max_size`.""" return self * (max_size / self).min_dim() def scale_min_size(self, min_size): """Scale this value, keeping aspect ratio, but fitting around `min_size`.""" return self * (min_size / self).max_dim() def min_dim(self): return min(self.x, self.y) def max_dim(self): return max(self.x, self.y) def transpose(self): """Flip x and y.""" return Point(self.y, self.x) def rotate_deg(self, angle): return self.rotate_rad(math.radians(angle)) def rotate_rad(self, angle): return Point(self.x * math.cos(angle) - self.y * math.sin(angle), self.x * math.sin(angle) + self.y * math.cos(angle)) def rotate_rand(self, angle=180): return self.rotate_deg(random.uniform(-angle, angle)) def contained_circle(self, pt, radius): """Is this point inside the circle defined by (`pt`, `radius`)?""" return self.dist(pt) < radius def bound(self, p1, p2=None): """Bound this point within the rect defined by (`p1`, `p2`).""" r = Rect(p1, p2) return Point(min(max(self.x, r.l), r.r), min(max(self.y, r.t), r.b)) def __str__(self): if all(isinstance(v, int) for v in self): return "%d,%d" % self else: return "%.6f,%.6f" % self def __neg__(self): return Point(-self.x, -self.y) def __add__(self, pt_or_val): if isinstance(pt_or_val, Point): return Point(self.x + pt_or_val.x, self.y + pt_or_val.y) else: return Point(self.x + pt_or_val, self.y + pt_or_val) def __sub__(self, pt_or_val): if isinstance(pt_or_val, Point): return Point(self.x - pt_or_val.x, self.y - pt_or_val.y) else: return Point(self.x - pt_or_val, self.y - pt_or_val) def __mul__(self, pt_or_val): if isinstance(pt_or_val, Point): return Point(self.x * pt_or_val.x, self.y * pt_or_val.y) else: return Point(self.x * pt_or_val, self.y * pt_or_val) def __truediv__(self, pt_or_val): if isinstance(pt_or_val, Point): return Point(self.x / pt_or_val.x, self.y / pt_or_val.y) else: return Point(self.x / pt_or_val, self.y / pt_or_val) def __floordiv__(self, pt_or_val): if isinstance(pt_or_val, Point): return Point(int(self.x // pt_or_val.x), int(self.y // pt_or_val.y)) else: return Point(int(self.x // pt_or_val), int(self.y // pt_or_val)) __div__ = __truediv__ origin = Point(0, 0) class Rect(collections.namedtuple("Rect", ["t", "l", "b", "r"])): """A basic Rect class. Assumes tl <= br.""" __slots__ = () def __new__(cls, *args): if len(args) == 1 or (len(args) == 2 and args[1] is None): args = (origin, args[0]) if len(args) == 2: p1, p2 = args if not isinstance(p1, Point) or not isinstance(p2, Point): raise TypeError("Rect expected Points") return super(Rect, cls).__new__( cls, min(p1.y, p2.y), min(p1.x, p2.x), max(p1.y, p2.y), max(p1.x, p2.x)) if len(args) == 4: if args[0] > args[2] or args[1] > args[3]: raise TypeError("Rect requires: t <= b and l <= r") # TODO(b/117657518): Remove the disable once the pytype bug is fixed. return super(Rect, cls).__new__(cls, *args) # pytype: disable=missing-parameter raise TypeError( "Unexpected arguments to Rect. Takes 1 or 2 Points, or 4 coords.") def __str__(self): if all(isinstance(v, int) for v in self): return "%d,%d,%d,%d" % self else: return "%.6f,%.6f,%.6f,%.6f" % self @property def center(self): return Point(self.l + self.r, self.t + self.b) / 2 @property def top(self): return self.t @property def left(self): return self.l @property def bottom(self): return self.b @property def right(self): return self.r @property def width(self): return self.r - self.l @property def height(self): return self.b - self.t @property def tl(self): return Point(self.l, self.t) @property def br(self): return Point(self.r, self.b) @property def tr(self): return Point(self.r, self.t) @property def bl(self): return Point(self.l, self.b) @property def diagonal(self): return Point(self.width, self.height) @property def size(self): return self.br - self.tl @property def area(self): size = self.size return size.x * size.y def round(self): return Rect(self.tl.round(), self.br.round()) def floor(self): return Rect(self.tl.floor(), self.br.floor()) def ceil(self): return Rect(self.tl.ceil(), self.br.ceil()) def contains_point(self, pt): """Is the point inside this rect?""" return (self.l < pt.x and self.r > pt.x and self.t < pt.y and self.b > pt.y) def contains_circle(self, pt, radius): """Is the circle completely inside this rect?""" return (self.l < pt.x - radius and self.r > pt.x + radius and self.t < pt.y - radius and self.b > pt.y + radius) def intersects_circle(self, pt, radius): """Does the circle intersect with this rect?""" # How this works: http://stackoverflow.com/a/402010 rect_corner = self.size / 2 # relative to the rect center circle_center = (pt - self.center).abs() # relative to the rect center # Is the circle far from the rect? if (circle_center.x > rect_corner.x + radius or circle_center.y > rect_corner.y + radius): return False # Is the circle center inside the rect or near one of the edges? if (circle_center.x <= rect_corner.x or circle_center.y <= rect_corner.y): return True # Does the circle contain the corner of the rect? return circle_center.dist_sq(rect_corner) <= radius**2
pysc2-master
pysc2/lib/point.py
#!/usr/bin/python # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for np_util.py.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np from pysc2.lib import np_util class NpUtilTest(parameterized.TestCase): @parameterized.named_parameters( ("no_diff_1d", [1, 2, 3, 4], [1, 2, 3, 4], ""), ("no_diff_2d", [[1, 2], [3, 4]], [[1, 2], [3, 4]], ""), ("diff_1d", [1, 2, 3, 4], [1, 3, 2, 4], "2 element(s) changed - [1]: 2 -> 3; [2]: 3 -> 2"), ("diff_2d", [[1, 2], [3, 4]], [[1, 3], [2, 4]], "2 element(s) changed - [0][1]: 2 -> 3; [1][0]: 3 -> 2")) def testSummarizeArrayDiffs(self, lhs, rhs, expected): a = np.array(lhs) b = np.array(rhs) result = np_util.summarize_array_diffs(a, b) self.assertEqual(result, expected) if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/np_util_test.py
#!/usr/bin/python # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for portspicker.py.""" from absl.testing import absltest from absl.testing import parameterized from pysc2.lib import portspicker class PortsTest(parameterized.TestCase): @parameterized.parameters(range(1, 10)) def testNonContiguousReservation(self, num_ports): reserved = portspicker.pick_unused_ports(num_ports) self.assertLen(reserved, num_ports) portspicker.return_ports(reserved) @parameterized.parameters(range(2, 5)) def testContiguousReservation(self, num_ports): reserved = portspicker.pick_contiguous_unused_ports(num_ports) self.assertLen(reserved, num_ports) portspicker.return_ports(reserved) def testInvalidReservation(self): with self.assertRaises(ValueError): portspicker.pick_unused_ports(0) def testInvalidContiguousReservation(self): with self.assertRaises(ValueError): portspicker.pick_contiguous_unused_ports(0) if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/portspicker_test.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Give a crude ascii rendering of the feature_screen.""" from pysc2.lib import units def get_printable_unit_types(): """Generate the list of printable unit type characters.""" types = { units.Protoss.Assimilator: "a", units.Protoss.Probe: "p", units.Protoss.Stalker: "s", units.Terran.SCV: "s", units.Terran.Marine: "m", units.Terran.SupplyDepot: "D", units.Terran.SupplyDepotLowered: "D", } substrings = { "MineralField": "$", "VespeneGeyser": "&", "Collapsible": "@", "Debris": "@", "Destructible": "@", "Rock": "@", } for name, unit_type in units.Neutral.__members__.items(): for substring, char in substrings.items(): if substring in name: types[unit_type] = char for race in (units.Protoss, units.Terran, units.Zerg): for name, unit_type in race.__members__.items(): if unit_type not in types: types[unit_type] = name[0] return types _printable_unit_types = get_printable_unit_types() VISIBILITY = "#+." # Fogged, seen, visible. PLAYER_RELATIVE = ".SANE" # self, allied, neutral, enemy. def _summary(obs, view, width): s = " %s: p%s; step: %s; money: %s, %s; food: %s/%s " % ( view, obs.player.player_id, obs.game_loop[0], obs.player.minerals, obs.player.vespene, obs.player.food_used, obs.player.food_cap) return s.center(max(len(s) + 6, width), "-") def screen(obs): """Give a crude ascii rendering of feature_screen.""" unit_type = obs.feature_screen.unit_type selected = obs.feature_screen.selected visibility = obs.feature_screen.visibility_map max_y, max_x = unit_type.shape out = _summary(obs, "screen", max_y * 2) + "\n" for y in range(max_y): started = False for x in range(max_x): s = selected[y, x] u = unit_type[y, x] v = visibility[y, x] if started and not s: out += ")" elif not started and s: out += "(" else: out += " " if u: out += _printable_unit_types.get(u, str(u)) else: out += VISIBILITY[v] started = s if started: out += ")" out += "\n" return out def minimap(obs): """Give a crude ascii rendering of feature_minimap.""" player = obs.feature_minimap.player_relative selected = obs.feature_minimap.selected visibility = obs.feature_minimap.visibility_map max_y, max_x = visibility.shape out = _summary(obs, "minimap", max_y * 2) + "\n" for y in range(max_y): started = False for x in range(max_x): s = selected[y, x] p = player[y, x] v = visibility[y, x] if started and not s: out += ")" elif not started and s: out += "(" else: out += " " if v: out += PLAYER_RELATIVE[p] else: out += VISIBILITY[v] started = s if started: out += ")" out += "\n" return out
pysc2-master
pysc2/lib/renderer_ascii.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Expose static data in a more useful form than the raw protos.""" class StaticData(object): """Expose static data in a more useful form than the raw protos.""" def __init__(self, data): """Takes data from RequestData.""" self._units = {u.unit_id: u.name for u in data.units} self._unit_stats = {u.unit_id: u for u in data.units} self._upgrades = {a.upgrade_id: a for a in data.upgrades} self._abilities = {a.ability_id: a for a in data.abilities} self._general_abilities = {a.remaps_to_ability_id for a in data.abilities if a.remaps_to_ability_id} for a in self._abilities.values(): a.hotkey = a.hotkey.lower() @property def abilities(self): return self._abilities @property def upgrades(self): return self._upgrades @property def units(self): return self._units @property def unit_stats(self): return self._unit_stats @property def general_abilities(self): return self._general_abilities # List of used/available abilities found by parsing replays. ABILITIES = [ 1, 4, 6, 7, 16, 17, 18, 19, 23, 26, 28, 30, 32, 36, 38, 42, 44, 46, 74, 76, 78, 80, 110, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 167, 169, 171, 173, 174, 181, 195, 199, 203, 207, 211, 212, 216, 217, 247, 249, 250, 251, 253, 255, 261, 263, 265, 295, 296, 298, 299, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 323, 324, 326, 327, 328, 329, 331, 333, 348, 380, 382, 383, 386, 388, 390, 392, 393, 394, 396, 397, 399, 401, 403, 405, 407, 408, 410, 413, 415, 416, 417, 419, 421, 422, 451, 452, 454, 455, 484, 485, 487, 488, 517, 518, 520, 522, 524, 554, 556, 558, 560, 561, 562, 563, 591, 594, 595, 596, 597, 614, 620, 621, 622, 623, 624, 626, 650, 651, 652, 653, 654, 655, 656, 657, 658, 710, 730, 731, 732, 761, 764, 766, 768, 769, 790, 793, 799, 803, 804, 805, 820, 822, 855, 856, 857, 861, 862, 863, 864, 865, 866, 880, 881, 882, 883, 884, 885, 886, 887, 889, 890, 891, 892, 893, 894, 895, 911, 913, 914, 916, 917, 919, 920, 921, 922, 946, 948, 950, 954, 955, 976, 977, 978, 979, 994, 1006, 1036, 1038, 1039, 1042, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1093, 1094, 1097, 1126, 1152, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1165, 1166, 1167, 1183, 1184, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1216, 1217, 1218, 1219, 1220, 1221, 1223, 1225, 1252, 1253, 1282, 1283, 1312, 1313, 1314, 1315, 1316, 1317, 1342, 1343, 1344, 1345, 1346, 1348, 1351, 1352, 1353, 1354, 1356, 1372, 1373, 1374, 1376, 1378, 1380, 1382, 1384, 1386, 1388, 1390, 1392, 1394, 1396, 1406, 1408, 1409, 1413, 1414, 1416, 1417, 1418, 1419, 1433, 1435, 1437, 1438, 1440, 1442, 1444, 1446, 1448, 1449, 1450, 1451, 1454, 1455, 1482, 1512, 1514, 1516, 1517, 1518, 1520, 1522, 1524, 1526, 1528, 1530, 1532, 1562, 1563, 1564, 1565, 1566, 1567, 1568, 1592, 1593, 1594, 1622, 1623, 1628, 1632, 1664, 1682, 1683, 1684, 1691, 1692, 1693, 1694, 1725, 1727, 1729, 1730, 1731, 1732, 1733, 1763, 1764, 1766, 1768, 1819, 1825, 1831, 1832, 1833, 1834, 1847, 1848, 1853, 1974, 1978, 1998, 2014, 2016, 2048, 2057, 2063, 2067, 2073, 2081, 2082, 2095, 2097, 2099, 2108, 2110, 2112, 2113, 2114, 2116, 2146, 2162, 2244, 2324, 2328, 2330, 2331, 2332, 2333, 2338, 2340, 2342, 2346, 2350, 2354, 2358, 2362, 2364, 2365, 2368, 2370, 2371, 2373, 2375, 2376, 2387, 2389, 2391, 2393, 2505, 2535, 2542, 2544, 2550, 2552, 2558, 2560, 2588, 2594, 2596, 2700, 2704, 2708, 2709, 2714, 2720, 3707, 3709, 3739, 3741, 3743, 3745, 3747, 3749, 3751, 3753, 3755, 3757, 3765, 3771, 3776, 3777, 3778, 3783, ] # List of known unit types. It is generated by parsing replays and from: # https://github.com/Blizzard/s2client-api/blob/master/include/sc2api/sc2_typeenums.h UNIT_TYPES = [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 268, 289, 311, 321, 322, 324, 330, 335, 336, 341, 342, 343, 344, 350, 364, 365, 371, 372, 373, 376, 377, 472, 473, 474, 475, 483, 484, 485, 486, 487, 488, 489, 490, 493, 494, 495, 496, 498, 499, 500, 501, 502, 503, 504, 517, 518, 559, 560, 561, 562, 563, 564, 588, 589, 590, 591, 608, 609, 610, 612, 628, 629, 630, 638, 639, 640, 641, 642, 643, 648, 649, 651, 661, 662, 663, 664, 665, 666, 687, 688, 689, 690, 691, 692, 693, 694, 732, 733, 734, 796, 797, 801, 824, 830, 877, 880, 881, 884, 885, 886, 887, 892, 893, 894, 1904, 1908, 1910, 1911, 1912, 1913, 1955, 1956, 1957, 1958, 1960, 1961, ] # List of used buffs found by parsing replays. BUFFS = [ 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 22, 24, 25, 27, 28, 29, 30, 33, 36, 38, 49, 59, 83, 89, 99, 102, 116, 121, 122, 129, 132, 133, 134, 136, 137, 145, 271, 272, 273, 274, 275, 277, 279, 280, 281, 288, 289, ] # List of used upgrades found by parsing replays. UPGRADES = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22, 25, 30, 31, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 99, 101, 116, 117, 118, 122, 130, 134, 135, 136, 139, 140, 141, 144, 289, 291, 293, 296, ]
pysc2-master
pysc2/lib/static_data.py
#!/usr/bin/python # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for replays.""" import io import json import mpyq from pysc2.run_configs import lib as run_configs_lib def get_replay_version(replay_data): replay_io = io.BytesIO() replay_io.write(replay_data) replay_io.seek(0) archive = mpyq.MPQArchive(replay_io).extract() metadata = json.loads(archive[b"replay.gamemetadata.json"].decode("utf-8")) return run_configs_lib.Version( game_version=".".join(metadata["GameVersion"].split(".")[:-1]), build_version=int(metadata["BaseBuild"][4:]), data_version=metadata.get("DataVersion"), # Only in replays version 4.1+. binary=None)
pysc2-master
pysc2/lib/replay.py
#!/usr/bin/python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for features.""" import copy import pickle from absl.testing import absltest from absl.testing import parameterized import numpy from pysc2.lib import actions from pysc2.lib import features from pysc2.lib import point from google.protobuf import text_format from s2clientprotocol import sc2api_pb2 as sc_pb # Heavily trimmed, so this is useful for testing actions, but not observations. observation_text_proto = """ player_common { player_id: 1 minerals: 0 vespene: 0 food_cap: 10 food_used: 0 food_army: 0 food_workers: 0 idle_worker_count: 0 army_count: 0 warp_gate_count: 0 larva_count: 0 } game_loop: 20 """ RECTANGULAR_DIMENSIONS = features.Dimensions(screen=(84, 80), minimap=(64, 67)) SQUARE_DIMENSIONS = features.Dimensions(screen=84, minimap=64) class AvailableActionsTest(absltest.TestCase): always_expected = { "no_op", "move_camera", "select_point", "select_rect", "select_control_group" } def setUp(self): super(AvailableActionsTest, self).setUp() self.obs = text_format.Parse(observation_text_proto, sc_pb.Observation()) self.hideSpecificActions(True) def hideSpecificActions(self, hide_specific_actions): # pylint: disable=invalid-name self.features = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, hide_specific_actions=hide_specific_actions)) def assertAvail(self, expected): actual = self.features.available_actions(self.obs) actual_names = {actions.FUNCTIONS[i].name for i in actual} self.assertEqual(actual_names, set(expected) | self.always_expected) def testAlways(self): self.assertAvail([]) def testSelectUnit(self): self.obs.ui_data.multi.units.add(unit_type=1) self.assertAvail(["select_unit"]) def testSelectIdleWorkder(self): self.obs.player_common.idle_worker_count = 1 self.assertAvail(["select_idle_worker"]) def testSelectArmy(self): self.obs.player_common.army_count = 3 self.assertAvail(["select_army"]) def testSelectWarpGates(self): self.obs.player_common.warp_gate_count = 1 self.assertAvail(["select_warp_gates"]) def testSelectLarva(self): self.obs.player_common.larva_count = 2 self.assertAvail(["select_larva"]) def testQuick(self): self.obs.abilities.add(ability_id=32) self.assertAvail(["Effect_Salvage_quick"]) def testScreen(self): self.obs.abilities.add(ability_id=326, requires_point=True) self.assertAvail(["Build_SensorTower_screen"]) def testScreenMinimap(self): self.obs.abilities.add(ability_id=17, requires_point=True) self.assertAvail(["Patrol_screen", "Patrol_minimap"]) def testScreenAutocast(self): self.obs.abilities.add(ability_id=386, requires_point=True) self.assertAvail(["Effect_Heal_screen", "Effect_Heal_autocast"]) def testScreenQuick(self): a = self.obs.abilities.add(ability_id=421) self.hideSpecificActions(True) a.requires_point = False self.assertAvail(["Build_TechLab_quick"]) a.requires_point = True self.assertAvail(["Build_TechLab_screen"]) self.hideSpecificActions(False) a.requires_point = False self.assertAvail(["Build_TechLab_Barracks_quick", "Build_TechLab_quick"]) a.requires_point = True self.assertAvail(["Build_TechLab_Barracks_screen", "Build_TechLab_screen"]) def testGeneral(self): self.obs.abilities.add(ability_id=1374) self.hideSpecificActions(False) self.assertAvail(["BurrowDown_quick", "BurrowDown_Baneling_quick"]) self.hideSpecificActions(True) self.assertAvail(["BurrowDown_quick"]) def testGeneralType(self): a = self.obs.abilities.add(ability_id=1376) self.hideSpecificActions(False) self.assertAvail(["BurrowUp_quick", "BurrowUp_Baneling_quick", "BurrowUp_autocast", "BurrowUp_Baneling_autocast"]) self.hideSpecificActions(True) self.assertAvail(["BurrowUp_quick", "BurrowUp_autocast"]) a.ability_id = 2110 self.hideSpecificActions(False) self.assertAvail(["BurrowUp_quick", "BurrowUp_Lurker_quick"]) self.hideSpecificActions(True) self.assertAvail(["BurrowUp_quick"]) def testMany(self): add = [ (23, True), # Attack (318, True), # Build_CommandCenter (320, True), # Build_Refinery (319, True), # Build_SupplyDepot (316, True), # Effect_Repair_SCV (295, True), # Harvest_Gather_SCV (16, True), # Move (17, True), # Patrol (4, False), # Stop ] for a, r in add: self.obs.abilities.add(ability_id=a, requires_point=r) self.hideSpecificActions(False) self.assertAvail([ "Attack_Attack_minimap", "Attack_Attack_screen", "Attack_minimap", "Attack_screen", "Build_CommandCenter_screen", "Build_Refinery_screen", "Build_SupplyDepot_screen", "Effect_Repair_screen", "Effect_Repair_autocast", "Effect_Repair_SCV_autocast", "Effect_Repair_SCV_screen", "Harvest_Gather_screen", "Harvest_Gather_SCV_screen", "Move_minimap", "Move_screen", "Move_Move_minimap", "Move_Move_screen", "Patrol_minimap", "Patrol_screen", "Patrol_Patrol_minimap", "Patrol_Patrol_screen", "Stop_quick", "Stop_Stop_quick" ]) self.hideSpecificActions(True) self.assertAvail([ "Attack_minimap", "Attack_screen", "Build_CommandCenter_screen", "Build_Refinery_screen", "Build_SupplyDepot_screen", "Effect_Repair_screen", "Effect_Repair_autocast", "Harvest_Gather_screen", "Move_minimap", "Move_screen", "Patrol_minimap", "Patrol_screen", "Stop_quick", ]) class ToPointTest(absltest.TestCase): def testIntAsString(self): value = features._to_point("32") self.assertEqual(value, point.Point(32, 32)) def testIntStringTwoTuple(self): value = features._to_point(("32", 64)) self.assertEqual(value, point.Point(32, 64)) def testNoneInputReturnsNoneOutput(self): with self.assertRaises(AssertionError): features._to_point(None) def testNoneAsFirstElementOfTupleRaises(self): with self.assertRaises(TypeError): features._to_point((None, 32)) def testNoneAsSecondElementOfTupleRaises(self): with self.assertRaises(TypeError): features._to_point((32, None)) def testSingletonTupleRaises(self): with self.assertRaises(ValueError): features._to_point((32,)) def testThreeTupleRaises(self): with self.assertRaises(ValueError): features._to_point((32, 32, 32)) class DimensionsTest(absltest.TestCase): def testScreenSizeWithoutMinimapRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=84) def testScreenWidthWithoutHeightRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=(84, 0), minimap=64) def testScreenWidthHeightWithoutMinimapRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=(84, 80)) def testMinimapWidthAndHeightWithoutScreenRaises(self): with self.assertRaises(ValueError): features.Dimensions(minimap=(64, 67)) def testNoneNoneRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=None, minimap=None) def testSingularZeroesRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=0, minimap=0) def testTwoZeroesRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=(0, 0), minimap=(0, 0)) def testThreeTupleScreenRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=(1, 2, 3), minimap=32) def testThreeTupleMinimapRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=64, minimap=(1, 2, 3)) def testNegativeScreenRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=-64, minimap=32) def testNegativeMinimapRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=64, minimap=-32) def testNegativeScreenTupleRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=(-64, -64), minimap=32) def testNegativeMinimapTupleRaises(self): with self.assertRaises(ValueError): features.Dimensions(screen=64, minimap=(-32, -32)) def testEquality(self): self.assertEqual(features.Dimensions(screen=64, minimap=64), features.Dimensions(screen=64, minimap=64)) self.assertNotEqual(features.Dimensions(screen=64, minimap=64), features.Dimensions(screen=64, minimap=32)) self.assertNotEqual(features.Dimensions(screen=64, minimap=64), None) class TestParseAgentInterfaceFormat(parameterized.TestCase): def test_no_arguments_raises(self): with self.assertRaises(ValueError): features.parse_agent_interface_format() @parameterized.parameters((32, None), (None, 32)) def test_invalid_feature_combinations_raise(self, screen, minimap): with self.assertRaises(ValueError): features.parse_agent_interface_format( feature_screen=screen, feature_minimap=minimap) def test_valid_feature_specification_is_parsed(self): agent_interface_format = features.parse_agent_interface_format( feature_screen=32, feature_minimap=(24, 24)) self.assertEqual( agent_interface_format.feature_dimensions.screen, point.Point(32, 32)) self.assertEqual( agent_interface_format.feature_dimensions.minimap, point.Point(24, 24)) @parameterized.parameters((32, None), (None, 32), (32, 64)) def test_invalid_minimap_combinations_raise(self, screen, minimap): with self.assertRaises(ValueError): features.parse_agent_interface_format( rgb_screen=screen, rgb_minimap=minimap) def test_valid_minimap_specification_is_parsed(self): agent_interface_format = features.parse_agent_interface_format( rgb_screen=32, rgb_minimap=(24, 24)) self.assertEqual( agent_interface_format.rgb_dimensions.screen, point.Point(32, 32)) self.assertEqual( agent_interface_format.rgb_dimensions.minimap, point.Point(24, 24)) def test_invalid_action_space_raises(self): with self.assertRaises(KeyError): features.parse_agent_interface_format( feature_screen=64, feature_minimap=64, action_space="UNKNOWN_ACTION_SPACE") @parameterized.parameters(actions.ActionSpace.__members__.keys()) def test_valid_action_space_is_parsed(self, action_space): agent_interface_format = features.parse_agent_interface_format( feature_screen=32, feature_minimap=(24, 24), rgb_screen=64, rgb_minimap=(48, 48), use_raw_units=True, action_space=action_space) self.assertEqual( agent_interface_format.action_space, actions.ActionSpace[action_space]) def test_camera_width_world_units_are_parsed(self): agent_interface_format = features.parse_agent_interface_format( feature_screen=32, feature_minimap=(24, 24), camera_width_world_units=77) self.assertEqual(agent_interface_format.camera_width_world_units, 77) def test_use_feature_units_is_parsed(self): agent_interface_format = features.parse_agent_interface_format( feature_screen=32, feature_minimap=(24, 24), use_feature_units=True) self.assertEqual(agent_interface_format.use_feature_units, True) class FeaturesTest(absltest.TestCase): def testFunctionsIdsAreConsistent(self): for i, f in enumerate(actions.FUNCTIONS): self.assertEqual(i, f.id, "id doesn't match for %s" % f.id) def testAllVersionsOfAnAbilityHaveTheSameGeneral(self): for ability_id, funcs in actions.ABILITY_IDS.items(): self.assertLen({f.general_id for f in funcs}, 1, "Multiple generals for %s" % ability_id) def testValidFunctionsAreConsistent(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS)) valid_funcs = feats.action_spec() for func_def in valid_funcs.functions: func = actions.FUNCTIONS[func_def.id] self.assertEqual(func_def.id, func.id) self.assertEqual(func_def.name, func.name) self.assertEqual(len(func_def.args), len(func.args)) # pylint: disable=g-generic-assert def gen_random_function_call(self, action_spec, func_id): args = [[numpy.random.randint(0, size) for size in arg.sizes] # pylint: disable=g-complex-comprehension for arg in action_spec.functions[func_id].args] return actions.FunctionCall(func_id, args) def testIdsMatchIndex(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS)) action_spec = feats.action_spec() for func_index, func_def in enumerate(action_spec.functions): self.assertEqual(func_index, func_def.id) for type_index, type_def in enumerate(action_spec.types): self.assertEqual(type_index, type_def.id) def testReversingUnknownAction(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, hide_specific_actions=False)) sc2_action = sc_pb.Action() sc2_action.action_feature_layer.unit_command.ability_id = 6 # Cheer func_call = feats.reverse_action(sc2_action) self.assertEqual(func_call.function, 0) # No-op def testSpecificActionsAreReversible(self): """Test that the `transform_action` and `reverse_action` are inverses.""" feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, hide_specific_actions=False)) action_spec = feats.action_spec() for func_def in action_spec.functions: for _ in range(10): func_call = self.gen_random_function_call(action_spec, func_def.id) sc2_action = feats.transform_action( None, func_call, skip_available=True) func_call2 = feats.reverse_action(sc2_action) sc2_action2 = feats.transform_action( None, func_call2, skip_available=True) if func_def.id == actions.FUNCTIONS.select_rect.id: # Need to check this one manually since the same rect can be # defined in multiple ways. def rect(a): return point.Rect(point.Point(*a[1]).floor(), point.Point(*a[2]).floor()) self.assertEqual(func_call.function, func_call2.function) self.assertEqual(len(func_call.arguments), len(func_call2.arguments)) # pylint: disable=g-generic-assert self.assertEqual(func_call.arguments[0], func_call2.arguments[0]) self.assertEqual(rect(func_call.arguments), rect(func_call2.arguments)) else: self.assertEqual(func_call, func_call2, msg=sc2_action) self.assertEqual(sc2_action, sc2_action2) def testRawActionUnitTags(self): feats = features.Features( features.AgentInterfaceFormat( use_raw_units=True, action_space=actions.ActionSpace.RAW), map_size=point.Point(100, 100)) tags = [numpy.random.randint(2**20, 2**24) for _ in range(10)] ntags = numpy.array(tags, dtype=numpy.int64) tag = tags[0] ntag = numpy.array(tag, dtype=numpy.int64) def transform(fn, *args): func_call = actions.RAW_FUNCTIONS[fn]("now", *args) proto = feats.transform_action(None, func_call, skip_available=True) return proto.action_raw.unit_command self.assertEqual(transform("Attack_pt", tag, [15, 20]).unit_tags, [tag]) self.assertEqual(transform("Attack_pt", ntag, [15, 20]).unit_tags, [tag]) self.assertEqual(transform("Attack_pt", [tag], [15, 20]).unit_tags, [tag]) self.assertEqual(transform("Attack_pt", [ntag], [15, 20]).unit_tags, [tag]) self.assertEqual(transform("Attack_pt", tags, [15, 20]).unit_tags, tags) self.assertEqual(transform("Attack_pt", ntags, [15, 20]).unit_tags, tags) # Weird, but needed for backwards compatibility self.assertEqual(transform("Attack_pt", [tags], [15, 20]).unit_tags, tags) self.assertEqual(transform("Attack_pt", [ntags], [15, 20]).unit_tags, tags) self.assertEqual(transform("Attack_unit", tag, tag).target_unit_tag, tag) self.assertEqual(transform("Attack_unit", tag, ntag).target_unit_tag, tag) self.assertEqual(transform("Attack_unit", tag, [tag]).target_unit_tag, tag) self.assertEqual(transform("Attack_unit", tag, [ntag]).target_unit_tag, tag) def testCanPickleSpecs(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=SQUARE_DIMENSIONS)) action_spec = feats.action_spec() observation_spec = feats.observation_spec() self.assertEqual(action_spec, pickle.loads(pickle.dumps(action_spec))) self.assertEqual(observation_spec, pickle.loads(pickle.dumps(observation_spec))) def testCanPickleFunctionCall(self): func = actions.FUNCTIONS.select_point("select", [1, 2]) self.assertEqual(func, pickle.loads(pickle.dumps(func))) def testCanDeepcopyNumpyFunctionCall(self): arguments = [numpy.float32] * len(actions.Arguments._fields) dtypes = actions.FunctionCall( function=numpy.float32, arguments=actions.Arguments(*arguments)) self.assertEqual(dtypes, copy.deepcopy(dtypes)) def testSizeConstructors(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=SQUARE_DIMENSIONS)) spec = feats.action_spec() self.assertEqual(spec.types.screen.sizes, (84, 84)) self.assertEqual(spec.types.screen2.sizes, (84, 84)) self.assertEqual(spec.types.minimap.sizes, (64, 64)) feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS)) spec = feats.action_spec() self.assertEqual(spec.types.screen.sizes, (84, 80)) self.assertEqual(spec.types.screen2.sizes, (84, 80)) self.assertEqual(spec.types.minimap.sizes, (64, 67)) feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS)) spec = feats.action_spec() self.assertEqual(spec.types.screen.sizes, (84, 80)) self.assertEqual(spec.types.screen2.sizes, (84, 80)) self.assertEqual(spec.types.minimap.sizes, (64, 67)) # Missing one or the other of game_info and dimensions. with self.assertRaises(ValueError): features.Features() # Resolution/action space mismatch. with self.assertRaises(ValueError): features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, action_space=actions.ActionSpace.RGB)) with self.assertRaises(ValueError): features.Features(features.AgentInterfaceFormat( rgb_dimensions=RECTANGULAR_DIMENSIONS, action_space=actions.ActionSpace.FEATURES)) with self.assertRaises(ValueError): features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, rgb_dimensions=RECTANGULAR_DIMENSIONS)) def testFlRgbActionSpec(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, rgb_dimensions=features.Dimensions(screen=(128, 132), minimap=(74, 77)), action_space=actions.ActionSpace.FEATURES)) spec = feats.action_spec() self.assertEqual(spec.types.screen.sizes, (84, 80)) self.assertEqual(spec.types.screen2.sizes, (84, 80)) self.assertEqual(spec.types.minimap.sizes, (64, 67)) feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, rgb_dimensions=features.Dimensions(screen=(128, 132), minimap=(74, 77)), action_space=actions.ActionSpace.RGB)) spec = feats.action_spec() self.assertEqual(spec.types.screen.sizes, (128, 132)) self.assertEqual(spec.types.screen2.sizes, (128, 132)) self.assertEqual(spec.types.minimap.sizes, (74, 77)) def testFlRgbObservationSpec(self): feats = features.Features(features.AgentInterfaceFormat( feature_dimensions=RECTANGULAR_DIMENSIONS, rgb_dimensions=features.Dimensions(screen=(128, 132), minimap=(74, 77)), action_space=actions.ActionSpace.FEATURES)) obs_spec = feats.observation_spec() self.assertEqual(obs_spec["feature_screen"], # pylint: disable=g-generic-assert (len(features.SCREEN_FEATURES), 80, 84)) self.assertEqual(obs_spec["feature_minimap"], # pylint: disable=g-generic-assert (len(features.MINIMAP_FEATURES), 67, 64)) self.assertEqual(obs_spec["rgb_screen"], (132, 128, 3)) self.assertEqual(obs_spec["rgb_minimap"], (77, 74, 3)) if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/features_test.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transform coordinates for rendering in various ways. It's best to name these as `a_to_b` for example `screen_to_world`. The `fwd` methods take a point or distance in coordinate system `a` and convert it to a point or distance in coordinate system `b`. The `back` methods do the reverse going from `b` to `a`. These can then be chained as b_to_c.fwd(a_to_b.fwd(pt)) which will take something in `a` and return something in `c`. It's better to use the Chain transform to create `a_to_c`. """ import numbers from pysc2.lib import point class Transform(object): """Base class for coordinate transforms.""" def fwd_dist(self, dist): raise NotImplementedError() def fwd_pt(self, pt): raise NotImplementedError() def back_dist(self, dist): raise NotImplementedError() def back_pt(self, pt): raise NotImplementedError() class Linear(Transform): """A linear transform with a scale and offset.""" def __init__(self, scale=None, offset=None): if scale is None: self.scale = point.Point(1, 1) elif isinstance(scale, numbers.Number): self.scale = point.Point(scale, scale) else: self.scale = scale assert self.scale.x != 0 and self.scale.y != 0 self.offset = offset or point.Point(0, 0) def fwd_dist(self, dist): return dist * self.scale.x def fwd_pt(self, pt): return pt * self.scale + self.offset def back_dist(self, dist): return dist / self.scale.x def back_pt(self, pt): return (pt - self.offset) / self.scale def __str__(self): return "Linear(scale=%s, offset=%s)" % (self.scale, self.offset) class Chain(Transform): """Chain a set of transforms: Chain(a_to_b, b_to_c) => a_to_c.""" def __init__(self, *args): self.transforms = args def fwd_dist(self, dist): for transform in self.transforms: dist = transform.fwd_dist(dist) return dist def fwd_pt(self, pt): for transform in self.transforms: pt = transform.fwd_pt(pt) return pt def back_dist(self, dist): for transform in reversed(self.transforms): dist = transform.back_dist(dist) return dist def back_pt(self, pt): for transform in reversed(self.transforms): pt = transform.back_pt(pt) return pt def __str__(self): return "Chain(%s)" % (self.transforms,) class PixelToCoord(Transform): """Take a point within a pixel and use the tl, or tl to pixel center.""" def fwd_dist(self, dist): return dist def fwd_pt(self, pt): return pt.floor() def back_dist(self, dist): return dist def back_pt(self, pt): return pt.floor() + 0.5 def __str__(self): return "PixelToCoord()"
pysc2-master
pysc2/lib/transform.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """portpicker for multiple ports.""" import time import portpicker # The set of ports returned by pick_contiguous_unused_ports and not by # the underlying portpicker. _contiguous_ports = set() def pick_unused_ports(num_ports, retry_interval_secs=1, retry_attempts=5): """Reserves and returns a list of `num_ports` unused ports.""" if num_ports <= 0: raise ValueError("Number of ports, must be >= 1, got: %s" % num_ports) ports = set() for _ in range(retry_attempts): ports.update( portpicker.pick_unused_port() for _ in range(num_ports - len(ports))) ports.discard(None) # portpicker returns None on error. if len(ports) == num_ports: return list(ports) # Duplicate ports can be returned, especially when insufficient ports are # free. Wait for more ports to be freed and retry. time.sleep(retry_interval_secs) # Could not obtain enough ports. Release what we do have. return_ports(ports) raise RuntimeError("Unable to obtain %d unused ports." % num_ports) def pick_contiguous_unused_ports( num_ports, retry_interval_secs=1, retry_attempts=5): """Reserves and returns a list of `num_ports` contiguous unused ports.""" if num_ports <= 0: raise ValueError("Number of ports, must be >= 1, got: %s" % num_ports) for _ in range(retry_attempts): start_port = portpicker.pick_unused_port() if start_port is not None: ports = [start_port + p for p in range(num_ports)] if all(portpicker.is_port_free(p) for p in ports): _contiguous_ports.update(ports[1:]) return ports else: portpicker.return_port(start_port) time.sleep(retry_interval_secs) raise RuntimeError("Unable to obtain %d contiguous unused ports." % num_ports) def return_ports(ports): """Returns previously reserved ports so that may be reused.""" for port in ports: if port in _contiguous_ports: _contiguous_ports.discard(port) else: portpicker.return_port(port)
pysc2-master
pysc2/lib/portspicker.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Controllers take actions and generates observations in proto format.""" import copy import functools import socket import sys import time from absl import flags from absl import logging from pysc2.lib import protocol from pysc2.lib import static_data from pysc2.lib import stopwatch import websocket from s2clientprotocol import debug_pb2 as sc_debug from s2clientprotocol import sc2api_pb2 as sc_pb flags.DEFINE_bool("sc2_log_actions", False, ("Print all the actions sent to SC2. If you want observations" " as well, consider using `sc2_verbose_protocol`.")) flags.DEFINE_integer("sc2_timeout", 360, "Timeout to connect and wait for rpc responses.") FLAGS = flags.FLAGS sw = stopwatch.sw Status = protocol.Status # pylint: disable=invalid-name class ConnectError(Exception): pass class RequestError(Exception): def __init__(self, description, res): super(RequestError, self).__init__(description) self.res = res def check_error(res, error_enum): """Raise if the result has an error, otherwise return the result.""" if res.HasField("error"): enum_name = error_enum.DESCRIPTOR.full_name error_name = error_enum.Name(res.error) details = getattr(res, "error_details", "<none>") raise RequestError("%s.%s: '%s'" % (enum_name, error_name, details), res) return res def decorate_check_error(error_enum): """Decorator to call `check_error` on the return value.""" def decorator(func): @functools.wraps(func) def _check_error(*args, **kwargs): return check_error(func(*args, **kwargs), error_enum) return _check_error return decorator def skip_status(*skipped): """Decorator to skip this call if we're in one of the skipped states.""" def decorator(func): @functools.wraps(func) def _skip_status(self, *args, **kwargs): if self.status not in skipped: return func(self, *args, **kwargs) return _skip_status return decorator def valid_status(*valid): """Decorator to assert that we're in a valid state.""" def decorator(func): @functools.wraps(func) def _valid_status(self, *args, **kwargs): if self.status not in valid: raise protocol.ProtocolError( "`%s` called while in state: %s, valid: (%s)" % ( func.__name__, self.status, ",".join(map(str, valid)))) return func(self, *args, **kwargs) return _valid_status return decorator def catch_game_end(func): """Decorator to handle 'Game has already ended' exceptions.""" @functools.wraps(func) def _catch_game_end(self, *args, **kwargs): """Decorator to handle 'Game has already ended' exceptions.""" prev_status = self.status try: return func(self, *args, **kwargs) except protocol.ProtocolError as protocol_error: if prev_status == Status.in_game and ( "Game has already ended" in str(protocol_error)): # It's currently possible for us to receive this error even though # our previous status was in_game. This shouldn't happen according # to the protocol. It does happen sometimes when we don't observe on # every step (possibly also requiring us to be playing against a # built-in bot). To work around the issue, we catch the exception # and so let the client code continue. logging.warning( "Received a 'Game has already ended' error from SC2 whilst status " "in_game. Suppressing the exception, returning None.") return None else: raise return _catch_game_end class RemoteController(object): """Implements a python interface to interact with the SC2 binary. All of these are implemented as blocking calls, so wait for the response before returning. Many of these functions take a Request* object and respond with the corresponding Response* object as returned from SC2. The simpler functions take a value and construct the Request itself, or return something more useful than a Response* object. """ def __init__(self, host, port, proc=None, timeout_seconds=None): timeout_seconds = timeout_seconds or FLAGS.sc2_timeout sock = self._connect(host, port, proc, timeout_seconds) self._client = protocol.StarcraftProtocol(sock) self._last_obs = None self.ping() @sw.decorate def _connect(self, host, port, proc, timeout_seconds): """Connect to the websocket, retrying as needed. Returns the socket.""" if ":" in host and not host.startswith("["): # Support ipv6 addresses. host = "[%s]" % host url = "ws://%s:%s/sc2api" % (host, port) was_running = False for i in range(timeout_seconds): is_running = proc and proc.running was_running = was_running or is_running if (i >= timeout_seconds // 4 or was_running) and not is_running: logging.warning( "SC2 isn't running, so bailing early on the websocket connection.") break logging.info("Connecting to: %s, attempt: %s, running: %s", url, i, is_running) try: return websocket.create_connection(url, timeout=timeout_seconds) except socket.error: pass # SC2 hasn't started listening yet. except websocket.WebSocketConnectionClosedException: raise ConnectError("Connection rejected. Is something else connected?") except websocket.WebSocketBadStatusException as err: if err.status_code == 404: pass # SC2 is listening, but hasn't set up the /sc2api endpoint yet. else: raise time.sleep(1) raise ConnectError("Failed to connect to the SC2 websocket. Is it up?") def close(self): self._client.close() @property def status_ended(self): return self.status == protocol.Status.ended @valid_status(Status.launched, Status.ended, Status.in_game, Status.in_replay) @decorate_check_error(sc_pb.ResponseCreateGame.Error) @sw.decorate def create_game(self, req_create_game): """Create a new game. This can only be done by the host.""" return self._client.send(create_game=req_create_game) @valid_status(Status.launched, Status.init_game) @decorate_check_error(sc_pb.ResponseSaveMap.Error) @sw.decorate def save_map(self, map_path, map_data): """Save a map into temp dir so create game can access it in multiplayer.""" return self._client.send(save_map=sc_pb.RequestSaveMap( map_path=map_path, map_data=map_data)) @valid_status(Status.launched, Status.init_game) @decorate_check_error(sc_pb.ResponseJoinGame.Error) @sw.decorate def join_game(self, req_join_game): """Join a game, done by all connected clients.""" return self._client.send(join_game=req_join_game) @valid_status(Status.ended, Status.in_game) @decorate_check_error(sc_pb.ResponseRestartGame.Error) @sw.decorate def restart(self): """Restart the game. Only done by the host.""" return self._client.send(restart_game=sc_pb.RequestRestartGame()) @valid_status(Status.launched, Status.ended, Status.in_game, Status.in_replay) @decorate_check_error(sc_pb.ResponseStartReplay.Error) @sw.decorate def start_replay(self, req_start_replay): """Start a replay.""" return self._client.send(start_replay=req_start_replay) @valid_status(Status.in_game, Status.in_replay) @sw.decorate def game_info(self): """Get the basic information about the game.""" return self._client.send(game_info=sc_pb.RequestGameInfo()) @valid_status(Status.in_game, Status.in_replay) @sw.decorate def data_raw(self, ability_id=True, unit_type_id=True, upgrade_id=True, buff_id=True, effect_id=True): """Get the raw static data for the current game. Prefer `data` instead.""" return self._client.send(data=sc_pb.RequestData( ability_id=ability_id, unit_type_id=unit_type_id, upgrade_id=upgrade_id, buff_id=buff_id, effect_id=effect_id)) def data(self): """Get the static data for the current game.""" return static_data.StaticData(self.data_raw()) @valid_status(Status.in_game, Status.in_replay, Status.ended) @sw.decorate def observe(self, disable_fog=False, target_game_loop=0): """Get a current observation.""" obs = self._client.send(observation=sc_pb.RequestObservation( game_loop=target_game_loop, disable_fog=disable_fog)) if obs.observation.game_loop == 2**32 - 1: logging.info("Received stub observation.") if not obs.player_result: raise ValueError("Expect a player result in a stub observation") elif self._last_obs is None: raise RuntimeError("Received stub observation with no previous obs") # Rather than handling empty obs through the code, regurgitate the last # observation (+ player result, sub actions). new_obs = copy.deepcopy(self._last_obs) del new_obs.actions[:] new_obs.actions.extend(obs.actions) new_obs.player_result.extend(obs.player_result) obs = new_obs self._last_obs = None else: self._last_obs = obs if FLAGS.sc2_log_actions and obs.actions: sys.stderr.write(" Executed actions ".center(60, "<") + "\n") for action in obs.actions: sys.stderr.write(str(action)) sys.stderr.flush() return obs def available_maps(self): return self._client.send(available_maps=sc_pb.RequestAvailableMaps()) @valid_status(Status.in_game, Status.in_replay) @catch_game_end @sw.decorate def step(self, count=1): """Step the engine forward by one (or more) step.""" return self._client.send(step=sc_pb.RequestStep(count=count)) @skip_status(Status.in_replay) @valid_status(Status.in_game) @catch_game_end @sw.decorate def actions(self, req_action): """Send a `sc_pb.RequestAction`, which may include multiple actions.""" if FLAGS.sc2_log_actions and req_action.actions: sys.stderr.write(" Sending actions ".center(60, ">") + "\n") for action in req_action.actions: sys.stderr.write(str(action)) sys.stderr.flush() return self._client.send(action=req_action) def act(self, action): """Send a single action. This is a shortcut for `actions`.""" if action and action.ListFields(): # Skip no-ops. return self.actions(sc_pb.RequestAction(actions=[action])) @skip_status(Status.in_game) @valid_status(Status.in_replay) @sw.decorate def observer_actions(self, req_observer_action): """Send a `sc_pb.RequestObserverAction`.""" if FLAGS.sc2_log_actions and req_observer_action.actions: sys.stderr.write(" Sending observer actions ".center(60, ">") + "\n") for action in req_observer_action.actions: sys.stderr.write(str(action)) sys.stderr.flush() return self._client.send(obs_action=req_observer_action) def observer_act(self, action): """Send a single observer action. A shortcut for `observer_actions`.""" if action and action.ListFields(): # Skip no-ops. return self.observer_actions( sc_pb.RequestObserverAction(actions=[action])) def chat(self, message, channel=sc_pb.ActionChat.Broadcast): """Send chat message as a broadcast.""" if message: action_chat = sc_pb.ActionChat( channel=channel, message=message) action = sc_pb.Action(action_chat=action_chat) return self.act(action) @valid_status(Status.in_game, Status.ended) @sw.decorate def leave(self): """Disconnect from a multiplayer game.""" return self._client.send(leave_game=sc_pb.RequestLeaveGame()) @valid_status(Status.in_game, Status.in_replay, Status.ended) @sw.decorate def save_replay(self): """Save a replay, returning the data.""" res = self._client.send(save_replay=sc_pb.RequestSaveReplay()) return res.data @valid_status(Status.in_game) @sw.decorate def debug(self, debug_commands): """Run a debug command.""" if isinstance(debug_commands, sc_debug.DebugCommand): debug_commands = [debug_commands] return self._client.send(debug=sc_pb.RequestDebug(debug=debug_commands)) @valid_status(Status.in_game, Status.in_replay) @sw.decorate def query(self, query): """Query the game state.""" return self._client.send(query=query) @skip_status(Status.quit) @sw.decorate def quit(self): """Shut down the SC2 process.""" try: # Don't expect a response. self._client.write(sc_pb.Request(quit=sc_pb.RequestQuit(), id=999999999)) except protocol.ConnectionError: pass # It's likely already (shutting) down, so continue as if it worked. finally: self.close() @sw.decorate def ping(self): return self._client.send(ping=sc_pb.RequestPing()) @decorate_check_error(sc_pb.ResponseReplayInfo.Error) @sw.decorate def replay_info(self, replay_data): return self._client.send(replay_info=sc_pb.RequestReplayInfo( replay_data=replay_data)) @property def status(self): return self._client.status
pysc2-master
pysc2/lib/remote_controller.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A viewer for starcraft observations/replays.""" import collections import ctypes import enum import functools import itertools import math import os import platform import queue import re import subprocess import threading import time from absl import logging import numpy as np import pygame from pysc2.lib import buffs from pysc2.lib import colors from pysc2.lib import features from pysc2.lib import memoize from pysc2.lib import point from pysc2.lib import remote_controller from pysc2.lib import stopwatch from pysc2.lib import transform from pysc2.lib import video_writer from s2clientprotocol import error_pb2 as sc_err from s2clientprotocol import raw_pb2 as sc_raw from s2clientprotocol import sc2api_pb2 as sc_pb from s2clientprotocol import spatial_pb2 as sc_spatial from s2clientprotocol import ui_pb2 as sc_ui # Disable attribute-error because of the multiple stages of initialization for # RendererHuman. # pytype: disable=attribute-error sw = stopwatch.sw render_lock = threading.Lock() # Serialize all window/render operations. def with_lock(lock): """Make sure the lock is held while in this function.""" def decorator(func): @functools.wraps(func) def _with_lock(*args, **kwargs): with lock: return func(*args, **kwargs) return _with_lock return decorator def clamp(n, smallest, largest): return max(smallest, min(n, largest)) class MouseButtons(enum.IntEnum): # https://www.pygame.org/docs/ref/mouse.html LEFT = 1 MIDDLE = 2 RIGHT = 3 WHEEL_UP = 4 WHEEL_DOWN = 5 class SurfType(enum.IntEnum): """Used to tell what a mouse click refers to.""" CHROME = 1 # ie help, feature layer titles, etc SCREEN = 2 MINIMAP = 4 FEATURE = 8 RGB = 16 class ActionCmd(enum.Enum): STEP = 1 RESTART = 2 QUIT = 3 class _Ability(collections.namedtuple("_Ability", [ "ability_id", "name", "footprint_radius", "requires_point", "hotkey"])): """Hold the specifics of available abilities.""" def __new__(cls, ability, static_data): specific_data = static_data[ability.ability_id] if specific_data.remaps_to_ability_id: general_data = static_data[specific_data.remaps_to_ability_id] else: general_data = specific_data return super(_Ability, cls).__new__( cls, ability_id=general_data.ability_id, name=(general_data.friendly_name or general_data.button_name or general_data.link_name), footprint_radius=general_data.footprint_radius, requires_point=ability.requires_point, hotkey=specific_data.hotkey) class _Surface(object): """A surface to display on screen.""" def __init__(self, surf, surf_type, surf_rect, world_to_surf, world_to_obs, draw): """A surface to display on screen. Args: surf: The actual pygame.Surface (or subsurface). surf_type: A SurfType, used to tell how to treat clicks in that area. surf_rect: Rect of the surface relative to the window. world_to_surf: Convert a world point to a pixel on the surface. world_to_obs: Convert a world point to a pixel in the observation. draw: A function that draws onto the surface. """ self.surf = surf self.surf_type = surf_type self.surf_rect = surf_rect self.world_to_surf = world_to_surf self.world_to_obs = world_to_obs self.draw = draw def draw_line(self, color, start_loc, end_loc, thickness=1): """Draw a line using world coordinates and thickness.""" pygame.draw.line(self.surf, color, self.world_to_surf.fwd_pt(start_loc).round(), self.world_to_surf.fwd_pt(end_loc).round(), max(1, thickness)) def draw_arc(self, color, world_loc, world_radius, start_angle, stop_angle, thickness=1): """Draw an arc using world coordinates, radius, start and stop angles.""" center = self.world_to_surf.fwd_pt(world_loc).round() radius = max(1, int(self.world_to_surf.fwd_dist(world_radius))) rect = pygame.Rect(center - radius, (radius * 2, radius * 2)) pygame.draw.arc(self.surf, color, rect, start_angle, stop_angle, thickness if thickness < radius else 0) def draw_circle(self, color, world_loc, world_radius, thickness=0): """Draw a circle using world coordinates and radius.""" if world_radius > 0: center = self.world_to_surf.fwd_pt(world_loc).round() radius = max(1, int(self.world_to_surf.fwd_dist(world_radius))) pygame.draw.circle(self.surf, color, center, radius, thickness if thickness < radius else 0) def draw_rect(self, color, world_rect, thickness=0): """Draw a rectangle using world coordinates.""" tl = self.world_to_surf.fwd_pt(world_rect.tl).round() br = self.world_to_surf.fwd_pt(world_rect.br).round() rect = pygame.Rect(tl, br - tl) pygame.draw.rect(self.surf, color, rect, thickness) def blit_np_array(self, array): """Fill this surface using the contents of a numpy array.""" with sw("make_surface"): raw_surface = pygame.surfarray.make_surface(array.transpose([1, 0, 2])) with sw("draw"): pygame.transform.scale(raw_surface, self.surf.get_size(), self.surf) def write_screen(self, font, color, screen_pos, text, align="left", valign="top"): """Write to the screen in font.size relative coordinates.""" pos = point.Point(*screen_pos) * point.Point(0.75, 1) * font.get_linesize() text_surf = font.render(str(text), True, color) rect = text_surf.get_rect() if pos.x >= 0: setattr(rect, align, pos.x) else: setattr(rect, align, self.surf.get_width() + pos.x) if pos.y >= 0: setattr(rect, valign, pos.y) else: setattr(rect, valign, self.surf.get_height() + pos.y) self.surf.blit(text_surf, rect) def write_world(self, font, color, world_loc, text): text_surf = font.render(text, True, color) rect = text_surf.get_rect() rect.center = self.world_to_surf.fwd_pt(world_loc) self.surf.blit(text_surf, rect) class MousePos(collections.namedtuple("MousePos", ["world_pos", "surf"])): """Holds the mouse position in world coordinates and the surf it came from.""" __slots__ = () @property def surf_pos(self): return self.surf.world_to_surf.fwd_pt(self.world_pos) @property def obs_pos(self): return self.surf.world_to_obs.fwd_pt(self.world_pos) def action_spatial(self, action): """Given an Action, return the right spatial action.""" if self.surf.surf_type & SurfType.FEATURE: return action.action_feature_layer elif self.surf.surf_type & SurfType.RGB: return action.action_render else: assert self.surf.surf_type & (SurfType.RGB | SurfType.FEATURE) class PastAction(collections.namedtuple("PastAction", [ "ability", "color", "pos", "time", "deadline"])): """Holds a past action for drawing over time.""" @memoize.memoize def _get_desktop_size(): """Get the desktop size.""" if platform.system() == "Linux": try: xrandr_query = subprocess.check_output(["xrandr", "--query"]) sizes = re.findall(r"\bconnected primary (\d+)x(\d+)", str(xrandr_query)) if sizes[0]: return point.Point(int(sizes[0][0]), int(sizes[0][1])) except: # pylint: disable=bare-except logging.error("Failed to get the resolution from xrandr.") # Most general, but doesn't understand multiple monitors. display_info = pygame.display.Info() return point.Point(display_info.current_w, display_info.current_h) def circle_mask(shape, pt, radius): # ogrid is confusing but seems to be the best way to generate a circle mask. # http://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html # http://stackoverflow.com/questions/8647024/how-to-apply-a-disc-shaped-mask-to-a-numpy-array y, x = np.ogrid[-pt.y:shape.y - pt.y, -pt.x:shape.x - pt.x] # <= is important as radius will often come in as 0 due to rounding. return x**2 + y**2 <= radius**2 class RendererHuman(object): """Render starcraft obs with pygame such that it's playable by humans.""" camera_actions = { # camera moves by 3 world units. pygame.K_LEFT: point.Point(-3, 0), pygame.K_RIGHT: point.Point(3, 0), pygame.K_UP: point.Point(0, 3), pygame.K_DOWN: point.Point(0, -3), } cmd_group_keys = { pygame.K_0: 0, pygame.K_1: 1, pygame.K_2: 2, pygame.K_3: 3, pygame.K_4: 4, pygame.K_5: 5, pygame.K_6: 6, pygame.K_7: 7, pygame.K_8: 8, pygame.K_9: 9, } shortcuts = [ ("F1", "Select idle worker"), ("F2", "Select army"), ("F3", "Select larva (zerg) or warp gates (protoss)"), ("F4", "Quit the game"), ("F5", "Restart the map"), ("F8", "Save a replay"), ("F9", "Toggle RGB rendering"), ("F10", "Toggle rendering the player_relative layer."), ("F11", "Toggle synchronous rendering"), ("F12", "Toggle raw/feature layer actions"), ("Ctrl++", "Zoom in"), ("Ctrl+-", "Zoom out"), ("PgUp/PgDn", "Increase/decrease the max game speed"), ("Ctrl+PgUp/PgDn", "Increase/decrease the step multiplier"), ("Pause", "Pause the game"), ("?", "This help screen"), ] upgrade_colors = [ colors.black, # unused... colors.white * 0.6, colors.white * 0.8, colors.white, ] def __init__(self, fps=22.4, step_mul=1, render_sync=False, render_feature_grid=True, video=None): """Create a renderer for use by humans. Make sure to call `init` with the game info, or just use `run`. Args: fps: How fast should the game be run. step_mul: How many game steps to take per observation. render_sync: Whether to wait for the obs to render before continuing. render_feature_grid: When RGB and feature layers are available, whether to render the grid of feature layers. video: A filename to write the video to. Implicitly enables render_sync. """ self._fps = fps self._step_mul = step_mul self._render_sync = render_sync or bool(video) self._raw_actions = False self._render_player_relative = False self._render_rgb = None self._render_feature_grid = render_feature_grid self._window = None self._window_scale = 0.75 self._obs_queue = queue.Queue() self._render_thread = threading.Thread(target=self.render_thread, name="Renderer") self._render_thread.start() self._game_times = collections.deque(maxlen=100) # Avg FPS over 100 frames. # pytype: disable=wrong-keyword-args self._render_times = collections.deque(maxlen=100) # pytype: disable=wrong-keyword-args self._last_time = time.time() self._last_game_loop = 0 self._name_lengths = {} self._video_writer = video_writer.VideoWriter(video, fps) if video else None def close(self): if self._obs_queue: self._obs_queue.put(None) self._render_thread.join() self._obs_queue = None self._render_thread = None if self._video_writer: self._video_writer.close() self._video_writer = None def init(self, game_info, static_data): """Take the game info and the static data needed to set up the game. This must be called before render or get_actions for each game or restart. Args: game_info: A `sc_pb.ResponseGameInfo` object for this game. static_data: A `StaticData` object for this game. Raises: ValueError: if there is nothing to render. """ self._game_info = game_info self._static_data = static_data if not game_info.HasField("start_raw"): raise ValueError("Raw observations are required for the renderer.") self._map_size = point.Point.build(game_info.start_raw.map_size) self._playable = point.Rect( point.Point.build(game_info.start_raw.playable_area.p0), point.Point.build(game_info.start_raw.playable_area.p1)) if game_info.options.HasField("feature_layer"): fl_opts = game_info.options.feature_layer self._feature_screen_px = point.Point.build(fl_opts.resolution) self._feature_minimap_px = point.Point.build(fl_opts.minimap_resolution) self._feature_camera_width_world_units = fl_opts.width self._render_rgb = False if not fl_opts.crop_to_playable_area: self._playable = point.Rect(self._map_size) else: self._feature_screen_px = self._feature_minimap_px = None if game_info.options.HasField("render"): render_opts = game_info.options.render self._rgb_screen_px = point.Point.build(render_opts.resolution) self._rgb_minimap_px = point.Point.build(render_opts.minimap_resolution) self._render_rgb = True else: self._rgb_screen_px = self._rgb_minimap_px = None if not self._feature_screen_px and not self._rgb_screen_px: raise ValueError("Nothing to render.") try: self.init_window() self._initialized = True except pygame.error as e: self._initialized = False logging.error("-" * 60) logging.error("Failed to initialize pygame: %s", e) logging.error("Continuing without pygame.") logging.error("If you're using ssh and have an X server, try ssh -X.") logging.error("-" * 60) self._obs = sc_pb.ResponseObservation() self._queued_action = None self._queued_hotkey = "" self._select_start = None self._alerts = {} self._past_actions = [] self._help = False self._last_zoom_time = 0 @with_lock(render_lock) @sw.decorate def init_window(self): """Initialize the pygame window and lay out the surfaces.""" if platform.system() == "Windows": # Enable DPI awareness on Windows to give the correct window size. ctypes.windll.user32.SetProcessDPIAware() # pytype: disable=module-attr pygame.init() if self._render_rgb and self._rgb_screen_px: main_screen_px = self._rgb_screen_px else: main_screen_px = self._feature_screen_px window_size_ratio = main_screen_px num_feature_layers = 0 if self._render_feature_grid: # Want a roughly square grid of feature layers, each being roughly square. if self._game_info.options.raw: num_feature_layers += 5 if self._feature_screen_px: num_feature_layers += len(features.SCREEN_FEATURES) num_feature_layers += len(features.MINIMAP_FEATURES) if num_feature_layers > 0: feature_cols = math.ceil(math.sqrt(num_feature_layers)) feature_rows = math.ceil(num_feature_layers / feature_cols) features_layout = point.Point( feature_cols, feature_rows * 1.05) # Make room for titles. # Scale features_layout to main_screen_px height so we know its width. features_aspect_ratio = (features_layout * main_screen_px.y / features_layout.y) window_size_ratio += point.Point(features_aspect_ratio.x, 0) window_size_px = window_size_ratio.scale_max_size( _get_desktop_size() * self._window_scale).ceil() # Create the actual window surface. This should only be blitted to from one # of the sub-surfaces defined below. self._window = pygame.display.set_mode(window_size_px, 0, 32) pygame.display.set_caption("Starcraft Viewer") # The sub-surfaces that the various draw functions will draw to. self._surfaces = [] def add_surface(surf_type, surf_loc, world_to_surf, world_to_obs, draw_fn): """Add a surface. Drawn in order and intersect in reverse order.""" sub_surf = self._window.subsurface( pygame.Rect(surf_loc.tl, surf_loc.size)) self._surfaces.append(_Surface( sub_surf, surf_type, surf_loc, world_to_surf, world_to_obs, draw_fn)) self._scale = window_size_px.y // 32 self._font_small = pygame.font.Font(None, int(self._scale * 0.5)) self._font_large = pygame.font.Font(None, self._scale) def check_eq(a, b): """Used to run unit tests on the transforms.""" assert (a - b).len() < 0.0001, "%s != %s" % (a, b) # World has origin at bl, world_tl has origin at tl. self._world_to_world_tl = transform.Linear( point.Point(1, -1), point.Point(0, self._map_size.y)) check_eq(self._world_to_world_tl.fwd_pt(point.Point(0, 0)), point.Point(0, self._map_size.y)) check_eq(self._world_to_world_tl.fwd_pt(point.Point(5, 10)), point.Point(5, self._map_size.y - 10)) # Move the point to be relative to the camera. This gets updated per frame. self._world_tl_to_world_camera_rel = transform.Linear( offset=-self._map_size / 4) check_eq(self._world_tl_to_world_camera_rel.fwd_pt(self._map_size / 4), point.Point(0, 0)) check_eq( self._world_tl_to_world_camera_rel.fwd_pt( (self._map_size / 4) + point.Point(5, 10)), point.Point(5, 10)) if self._feature_screen_px: # Feature layer locations in continuous space. feature_world_per_pixel = (self._feature_screen_px / self._feature_camera_width_world_units) world_camera_rel_to_feature_screen = transform.Linear( feature_world_per_pixel, self._feature_screen_px / 2) check_eq(world_camera_rel_to_feature_screen.fwd_pt(point.Point(0, 0)), self._feature_screen_px / 2) check_eq( world_camera_rel_to_feature_screen.fwd_pt( point.Point(-0.5, -0.5) * self._feature_camera_width_world_units), point.Point(0, 0)) self._world_to_feature_screen = transform.Chain( self._world_to_world_tl, self._world_tl_to_world_camera_rel, world_camera_rel_to_feature_screen) self._world_to_feature_screen_px = transform.Chain( self._world_to_feature_screen, transform.PixelToCoord()) world_tl_to_feature_minimap = transform.Linear( self._feature_minimap_px / self._playable.diagonal.max_dim()) world_tl_to_feature_minimap.offset = world_tl_to_feature_minimap.fwd_pt( -self._world_to_world_tl.fwd_pt(self._playable.bl)) self._world_to_feature_minimap = transform.Chain( self._world_to_world_tl, world_tl_to_feature_minimap) self._world_to_feature_minimap_px = transform.Chain( self._world_to_feature_minimap, transform.PixelToCoord()) # These are confusing since self._playable is in world coords which is # (bl <= tr), but stored in a Rect that is (tl <= br). check_eq(self._world_to_feature_minimap.fwd_pt(self._playable.bl), point.Point(0, 0)) check_eq(self._world_to_feature_minimap.fwd_pt(self._playable.tr), self._playable.diagonal.scale_max_size(self._feature_minimap_px)) if self._rgb_screen_px: # RGB pixel locations in continuous space. # TODO(tewalds): Use a real 3d projection instead of orthogonal. rgb_world_per_pixel = (self._rgb_screen_px / 24) world_camera_rel_to_rgb_screen = transform.Linear( rgb_world_per_pixel, self._rgb_screen_px / 2) check_eq(world_camera_rel_to_rgb_screen.fwd_pt(point.Point(0, 0)), self._rgb_screen_px / 2) check_eq( world_camera_rel_to_rgb_screen.fwd_pt( point.Point(-0.5, -0.5) * 24), point.Point(0, 0)) self._world_to_rgb_screen = transform.Chain( self._world_to_world_tl, self._world_tl_to_world_camera_rel, world_camera_rel_to_rgb_screen) self._world_to_rgb_screen_px = transform.Chain( self._world_to_rgb_screen, transform.PixelToCoord()) world_tl_to_rgb_minimap = transform.Linear( self._rgb_minimap_px / self._map_size.max_dim()) check_eq(world_tl_to_rgb_minimap.fwd_pt(point.Point(0, 0)), point.Point(0, 0)) check_eq(world_tl_to_rgb_minimap.fwd_pt(self._map_size), self._map_size.scale_max_size(self._rgb_minimap_px)) self._world_to_rgb_minimap = transform.Chain( self._world_to_world_tl, world_tl_to_rgb_minimap) self._world_to_rgb_minimap_px = transform.Chain( self._world_to_rgb_minimap, transform.PixelToCoord()) # Renderable space for the screen. screen_size_px = main_screen_px.scale_max_size(window_size_px) minimap_size_px = self._playable.diagonal.scale_max_size(screen_size_px / 4) minimap_offset = point.Point(0, (screen_size_px.y - minimap_size_px.y)) if self._render_rgb: rgb_screen_to_main_screen = transform.Linear( screen_size_px / self._rgb_screen_px) add_surface(SurfType.RGB | SurfType.SCREEN, point.Rect(point.origin, screen_size_px), transform.Chain( # surf self._world_to_rgb_screen, rgb_screen_to_main_screen), self._world_to_rgb_screen_px, self.draw_screen) rgb_minimap_to_main_minimap = transform.Linear( minimap_size_px / self._rgb_minimap_px) add_surface(SurfType.RGB | SurfType.MINIMAP, point.Rect(minimap_offset, minimap_offset + minimap_size_px), transform.Chain( # surf self._world_to_rgb_minimap, rgb_minimap_to_main_minimap), self._world_to_rgb_minimap_px, self.draw_mini_map) else: # Feature layer main screen feature_screen_to_main_screen = transform.Linear( screen_size_px / self._feature_screen_px) add_surface(SurfType.FEATURE | SurfType.SCREEN, point.Rect(point.origin, screen_size_px), transform.Chain( # surf self._world_to_feature_screen, feature_screen_to_main_screen), self._world_to_feature_screen_px, self.draw_screen) feature_minimap_to_main_minimap = transform.Linear( minimap_size_px.max_dim() / self._feature_minimap_px.max_dim()) add_surface(SurfType.FEATURE | SurfType.MINIMAP, point.Rect(minimap_offset, minimap_offset + minimap_size_px), transform.Chain( # surf self._world_to_feature_minimap, feature_minimap_to_main_minimap), self._world_to_feature_minimap_px, self.draw_mini_map) if self._render_feature_grid and num_feature_layers > 0: # Add the raw and feature layers features_loc = point.Point(screen_size_px.x, 0) feature_pane = self._window.subsurface( pygame.Rect(features_loc, window_size_px - features_loc)) feature_pane.fill(colors.white / 2) feature_pane_size = point.Point(*feature_pane.get_size()) feature_grid_size = feature_pane_size / point.Point(feature_cols, feature_rows) feature_layer_area = point.Point(1, 1).scale_max_size( feature_grid_size) feature_layer_padding = feature_layer_area // 20 feature_layer_size = feature_layer_area - feature_layer_padding * 2 feature_font_size = int(feature_grid_size.y * 0.09) feature_font = pygame.font.Font(None, feature_font_size) feature_counter = itertools.count() def add_layer(surf_type, world_to_surf, world_to_obs, name, fn): """Add a layer surface.""" i = next(feature_counter) grid_offset = point.Point(i % feature_cols, i // feature_cols) * feature_grid_size text = feature_font.render(name, True, colors.white) rect = text.get_rect() rect.center = grid_offset + point.Point(feature_grid_size.x / 2, feature_font_size) feature_pane.blit(text, rect) surf_loc = (features_loc + grid_offset + feature_layer_padding + point.Point(0, feature_font_size)) add_surface(surf_type, point.Rect(surf_loc, surf_loc + feature_layer_size).round(), world_to_surf, world_to_obs, fn) raw_world_to_obs = transform.Linear() raw_world_to_surf = transform.Linear(feature_layer_size / self._map_size) def add_raw_layer(from_obs, name, color): add_layer(SurfType.FEATURE | SurfType.MINIMAP, raw_world_to_surf, raw_world_to_obs, "raw " + name, lambda surf: self.draw_raw_layer(surf, from_obs, name, color)) if self._game_info.options.raw: add_raw_layer(False, "terrain_height", colors.height_map(256)) add_raw_layer(False, "pathing_grid", colors.winter(2)) add_raw_layer(False, "placement_grid", colors.winter(2)) add_raw_layer(True, "visibility", colors.VISIBILITY_PALETTE) add_raw_layer(True, "creep", colors.CREEP_PALETTE) def add_feature_layer(feature, surf_type, world_to_surf, world_to_obs): add_layer(surf_type, world_to_surf, world_to_obs, feature.full_name, lambda surf: self.draw_feature_layer(surf, feature)) if self._feature_minimap_px: # Add the minimap feature layers feature_minimap_to_feature_minimap_surf = transform.Linear( feature_layer_size / self._feature_minimap_px) world_to_feature_minimap_surf = transform.Chain( self._world_to_feature_minimap, feature_minimap_to_feature_minimap_surf) for feature in features.MINIMAP_FEATURES: add_feature_layer(feature, SurfType.FEATURE | SurfType.MINIMAP, world_to_feature_minimap_surf, self._world_to_feature_minimap_px) if self._feature_screen_px: # Add the screen feature layers feature_screen_to_feature_screen_surf = transform.Linear( feature_layer_size / self._feature_screen_px) world_to_feature_screen_surf = transform.Chain( self._world_to_feature_screen, feature_screen_to_feature_screen_surf) for feature in features.SCREEN_FEATURES: add_feature_layer(feature, SurfType.FEATURE | SurfType.SCREEN, world_to_feature_screen_surf, self._world_to_feature_screen_px) # Add the help screen help_size = point.Point( (max(len(s) for s, _ in self.shortcuts) + max(len(s) for _, s in self.shortcuts)) * 0.4 + 4, len(self.shortcuts) + 3) * self._scale help_rect = point.Rect(window_size_px / 2 - help_size / 2, window_size_px / 2 + help_size / 2) add_surface(SurfType.CHROME, help_rect, None, None, self.draw_help) # Arbitrarily set the initial camera to the center of the map. self._update_camera(self._map_size / 2) def _update_camera(self, camera_center): """Update the camera transform based on the new camera center.""" self._world_tl_to_world_camera_rel.offset = ( -self._world_to_world_tl.fwd_pt(camera_center) * self._world_tl_to_world_camera_rel.scale) if self._feature_screen_px: camera_radius = (self._feature_screen_px / self._feature_screen_px.x * self._feature_camera_width_world_units / 2) center = camera_center.bound(camera_radius, self._map_size - camera_radius) self._camera = point.Rect( (center - camera_radius).bound(self._map_size), (center + camera_radius).bound(self._map_size)) def zoom(self, factor): """Zoom the window in/out.""" self._window_scale *= factor if time.time() - self._last_zoom_time < 1: # Avoid a deadlock in pygame if you zoom too quickly. time.sleep(time.time() - self._last_zoom_time) self.init_window() self._last_zoom_time = time.time() def get_mouse_pos(self, window_pos=None): """Return a MousePos filled with the world position and surf it hit.""" window_pos = window_pos or pygame.mouse.get_pos() # +0.5 to center the point on the middle of the pixel. window_pt = point.Point(*window_pos) + 0.5 for surf in reversed(self._surfaces): if (surf.surf_type != SurfType.CHROME and surf.surf_rect.contains_point(window_pt)): surf_rel_pt = window_pt - surf.surf_rect.tl world_pt = surf.world_to_surf.back_pt(surf_rel_pt) return MousePos(world_pt, surf) def clear_queued_action(self): self._queued_hotkey = "" self._queued_action = None def save_replay(self, run_config, controller): if controller.status in (remote_controller.Status.in_game, remote_controller.Status.ended): prefix, _ = os.path.splitext( os.path.basename(self._game_info.local_map_path)) replay_path = run_config.save_replay( controller.save_replay(), "local", prefix) print("Wrote replay to:", replay_path) @sw.decorate def get_actions(self, run_config, controller): """Get actions from the UI, apply to controller, and return an ActionCmd.""" if not self._initialized: return ActionCmd.STEP for event in pygame.event.get(): ctrl = pygame.key.get_mods() & pygame.KMOD_CTRL shift = pygame.key.get_mods() & pygame.KMOD_SHIFT alt = pygame.key.get_mods() & pygame.KMOD_ALT if event.type == pygame.QUIT: return ActionCmd.QUIT elif event.type == pygame.KEYDOWN: if self._help: self._help = False elif event.key in (pygame.K_QUESTION, pygame.K_SLASH): self._help = True elif event.key == pygame.K_PAUSE: pause = True while pause: time.sleep(0.1) for event2 in pygame.event.get(): if event2.type == pygame.KEYDOWN: if event2.key in (pygame.K_PAUSE, pygame.K_ESCAPE): pause = False elif event2.key == pygame.K_F4: return ActionCmd.QUIT elif event2.key == pygame.K_F5: return ActionCmd.RESTART elif event.key == pygame.K_F4: return ActionCmd.QUIT elif event.key == pygame.K_F5: return ActionCmd.RESTART elif event.key == pygame.K_F9: # Toggle rgb rendering. if self._rgb_screen_px and self._feature_screen_px: self._render_rgb = not self._render_rgb print("Rendering", self._render_rgb and "RGB" or "Feature Layers") self.init_window() elif event.key == pygame.K_F11: # Toggle synchronous rendering. self._render_sync = not self._render_sync print("Rendering", self._render_sync and "Sync" or "Async") elif event.key == pygame.K_F12: self._raw_actions = not self._raw_actions print("Action space:", self._raw_actions and "Raw" or "Spatial") elif event.key == pygame.K_F10: # Toggle player_relative layer. self._render_player_relative = not self._render_player_relative elif event.key == pygame.K_F8: # Save a replay. self.save_replay(run_config, controller) elif event.key in (pygame.K_PLUS, pygame.K_EQUALS) and ctrl: self.zoom(1.1) # zoom in elif event.key in (pygame.K_MINUS, pygame.K_UNDERSCORE) and ctrl: self.zoom(1 / 1.1) # zoom out elif event.key in (pygame.K_PAGEUP, pygame.K_PAGEDOWN): if ctrl: if event.key == pygame.K_PAGEUP: self._step_mul += 1 elif self._step_mul > 1: self._step_mul -= 1 print("New step mul:", self._step_mul) else: self._fps *= 1.25 if event.key == pygame.K_PAGEUP else 1 / 1.25 print("New max game speed: %.1f" % self._fps) elif event.key == pygame.K_F1: if self._obs.observation.player_common.idle_worker_count > 0: controller.act(self.select_idle_worker(ctrl, shift)) elif event.key == pygame.K_F2: if self._obs.observation.player_common.army_count > 0: controller.act(self.select_army(shift)) elif event.key == pygame.K_F3: if self._obs.observation.player_common.warp_gate_count > 0: controller.act(self.select_warp_gates(shift)) if self._obs.observation.player_common.larva_count > 0: controller.act(self.select_larva()) elif event.key in self.cmd_group_keys: controller.act(self.control_group(self.cmd_group_keys[event.key], ctrl, shift, alt)) elif event.key in self.camera_actions: if self._obs: pt = point.Point.build(self._obs.observation.raw_data.player.camera) pt += self.camera_actions[event.key] controller.act(self.camera_action_raw(pt)) controller.observer_act(self.camera_action_observer_pt(pt)) elif event.key == pygame.K_ESCAPE: controller.observer_act(self.camera_action_observer_player( self._obs.observation.player_common.player_id)) if self._queued_action: self.clear_queued_action() else: cmds = self._abilities(lambda cmd: cmd.hotkey == "escape") # Cancel for cmd in cmds: # There could be multiple cancels. assert not cmd.requires_point controller.act(self.unit_action(cmd, None, shift)) else: if not self._queued_action: key = pygame.key.name(event.key).lower() new_cmd = self._queued_hotkey + key cmds = self._abilities(lambda cmd, n=new_cmd: ( # pylint: disable=g-long-lambda cmd.hotkey != "escape" and cmd.hotkey.startswith(n))) if cmds: self._queued_hotkey = new_cmd if len(cmds) == 1: cmd = cmds[0] if cmd.hotkey == self._queued_hotkey: if cmd.requires_point: self.clear_queued_action() self._queued_action = cmd else: controller.act(self.unit_action(cmd, None, shift)) elif event.type == pygame.MOUSEBUTTONDOWN: mouse_pos = self.get_mouse_pos(event.pos) if event.button == MouseButtons.LEFT and mouse_pos: if self._queued_action: controller.act(self.unit_action( self._queued_action, mouse_pos, shift)) elif mouse_pos.surf.surf_type & SurfType.MINIMAP: controller.act(self.camera_action(mouse_pos)) controller.observer_act(self.camera_action_observer_pt( mouse_pos.world_pos)) else: self._select_start = mouse_pos elif event.button == MouseButtons.RIGHT: if self._queued_action: self.clear_queued_action() cmds = self._abilities(lambda cmd: cmd.name == "Smart") if cmds: controller.act(self.unit_action(cmds[0], mouse_pos, shift)) elif event.type == pygame.MOUSEBUTTONUP: mouse_pos = self.get_mouse_pos(event.pos) if event.button == MouseButtons.LEFT and self._select_start: if (mouse_pos and mouse_pos.surf.surf_type & SurfType.SCREEN and mouse_pos.surf.surf_type == self._select_start.surf.surf_type): controller.act(self.select_action( self._select_start, mouse_pos, ctrl, shift)) self._select_start = None return ActionCmd.STEP def camera_action(self, mouse_pos): """Return a `sc_pb.Action` with the camera movement filled.""" action = sc_pb.Action() action_spatial = mouse_pos.action_spatial(action) mouse_pos.obs_pos.round().assign_to( action_spatial.camera_move.center_minimap) return action def camera_action_raw(self, world_pos): """Return a `sc_pb.Action` with the camera movement filled.""" action = sc_pb.Action() world_pos.assign_to(action.action_raw.camera_move.center_world_space) return action def camera_action_observer_pt(self, world_pos): """Return a `sc_pb.ObserverAction` with the camera movement filled.""" action = sc_pb.ObserverAction() world_pos.assign_to(action.camera_move.world_pos) return action def camera_action_observer_player(self, player_id): """Return a `sc_pb.ObserverAction` with the camera movement filled.""" action = sc_pb.ObserverAction() action.camera_follow_player.player_id = player_id return action def select_action(self, pos1, pos2, ctrl, shift): """Return a `sc_pb.Action` with the selection filled.""" assert pos1.surf.surf_type == pos2.surf.surf_type assert pos1.surf.world_to_obs == pos2.surf.world_to_obs action = sc_pb.Action() if self._raw_actions: unit_command = action.action_raw.unit_command unit_command.ability_id = 0 # no-op player_id = self._obs.observation.player_common.player_id if pos1.world_pos == pos2.world_pos: # select a point for u, p in reversed(list(self._visible_units())): if (pos1.world_pos.contained_circle(p, u.radius) and u.owner == player_id): unit_command.unit_tags.append(u.tag) break else: rect = point.Rect(pos1.world_pos, pos2.world_pos) unit_command.unit_tags.extend([ u.tag for u, p in self._visible_units() if u.owner == player_id and rect.intersects_circle(p, u.radius)]) else: action_spatial = pos1.action_spatial(action) if pos1.world_pos == pos2.world_pos: # select a point select = action_spatial.unit_selection_point pos1.obs_pos.assign_to(select.selection_screen_coord) mod = sc_spatial.ActionSpatialUnitSelectionPoint if ctrl: select.type = mod.AddAllType if shift else mod.AllType else: select.type = mod.Toggle if shift else mod.Select else: select = action_spatial.unit_selection_rect rect = select.selection_screen_coord.add() pos1.obs_pos.assign_to(rect.p0) pos2.obs_pos.assign_to(rect.p1) select.selection_add = shift # Clear the queued action if something will be selected. An alternative # implementation may check whether the selection changed next frame. units = self._units_in_area(point.Rect(pos1.world_pos, pos2.world_pos)) if units: self.clear_queued_action() return action def select_idle_worker(self, ctrl, shift): """Select an idle worker.""" action = sc_pb.Action() mod = sc_ui.ActionSelectIdleWorker if ctrl: select_worker = mod.AddAll if shift else mod.All else: select_worker = mod.Add if shift else mod.Set action.action_ui.select_idle_worker.type = select_worker return action def select_army(self, shift): """Select the entire army.""" action = sc_pb.Action() action.action_ui.select_army.selection_add = shift return action def select_warp_gates(self, shift): """Select all warp gates.""" action = sc_pb.Action() action.action_ui.select_warp_gates.selection_add = shift return action def select_larva(self): """Select all larva.""" action = sc_pb.Action() action.action_ui.select_larva.SetInParent() # Adds the empty proto field. return action def control_group(self, control_group_id, ctrl, shift, alt): """Act on a control group, selecting, setting, etc.""" action = sc_pb.Action() select = action.action_ui.control_group mod = sc_ui.ActionControlGroup if not ctrl and not shift and not alt: select.action = mod.Recall elif ctrl and not shift and not alt: select.action = mod.Set elif not ctrl and shift and not alt: select.action = mod.Append elif not ctrl and not shift and alt: select.action = mod.SetAndSteal elif not ctrl and shift and alt: select.action = mod.AppendAndSteal else: return # unknown select.control_group_index = control_group_id return action def unit_action(self, cmd, pos, shift): """Return a `sc_pb.Action` filled with the cmd and appropriate target.""" action = sc_pb.Action() if self._raw_actions: unit_command = action.action_raw.unit_command unit_command.ability_id = cmd.ability_id unit_command.queue_command = shift player_id = self._obs.observation.player_common.player_id unit_command.unit_tags.extend([u.tag for u, _ in self._visible_units() if u.is_selected and u.owner == player_id]) if pos: for u, p in reversed(list(self._visible_units())): if pos.world_pos.contained_circle(p, u.radius): unit_command.target_unit_tag = u.tag break else: pos.world_pos.assign_to(unit_command.target_world_space_pos) else: if pos: action_spatial = pos.action_spatial(action) unit_command = action_spatial.unit_command unit_command.ability_id = cmd.ability_id unit_command.queue_command = shift if pos.surf.surf_type & SurfType.SCREEN: pos.obs_pos.assign_to(unit_command.target_screen_coord) elif pos.surf.surf_type & SurfType.MINIMAP: pos.obs_pos.assign_to(unit_command.target_minimap_coord) else: if self._feature_screen_px: action.action_feature_layer.unit_command.ability_id = cmd.ability_id else: action.action_render.unit_command.ability_id = cmd.ability_id self.clear_queued_action() return action def _abilities(self, fn=None): """Return the list of abilities filtered by `fn`.""" out = {} for cmd in self._obs.observation.abilities: ability = _Ability(cmd, self._static_data.abilities) if not fn or fn(ability): out[ability.ability_id] = ability return list(out.values()) def _visible_units(self): """A generator of visible units and their positions as `Point`s, sorted.""" # Sort the units by elevation, then owned (eg refinery) above world (ie 16) # (eg geiser), small above big, and otherwise arbitrary but stable. for u in sorted(self._obs.observation.raw_data.units, key=lambda u: (u.pos.z, u.owner != 16, -u.radius, u.tag)): yield u, point.Point.build(u.pos) def _units_in_area(self, rect): """Return the list of units that intersect the rect.""" player_id = self._obs.observation.player_common.player_id return [u for u, p in self._visible_units() if rect.intersects_circle(p, u.radius) and u.owner == player_id] def get_unit_name(self, surf, name, radius): """Get a length limited unit name for drawing units.""" key = (name, radius) if key not in self._name_lengths: max_len = surf.world_to_surf.fwd_dist(radius * 1.6) for i in range(len(name)): if self._font_small.size(name[:i + 1])[0] > max_len: self._name_lengths[key] = name[:i] break else: self._name_lengths[key] = name return self._name_lengths[key] @sw.decorate def draw_units(self, surf): """Draw the units and buildings.""" unit_dict = None # Cache the units {tag: unit_proto} for orders. tau = 2 * math.pi for u, p in self._visible_units(): if self._camera.intersects_circle(p, u.radius): fraction_damage = clamp((u.health_max - u.health) / (u.health_max or 1), 0, 1) if u.display_type == sc_raw.Placeholder: surf.draw_circle(colors.PLAYER_ABSOLUTE_PALETTE[u.owner] // 3, p, u.radius) else: surf.draw_circle(colors.PLAYER_ABSOLUTE_PALETTE[u.owner], p, u.radius) if fraction_damage > 0: surf.draw_circle(colors.PLAYER_ABSOLUTE_PALETTE[u.owner] // 2, p, u.radius * fraction_damage) surf.draw_circle(colors.black, p, u.radius, thickness=1) if self._static_data.unit_stats[u.unit_type].movement_speed > 0: surf.draw_arc(colors.white, p, u.radius, u.facing - 0.1, u.facing + 0.1, thickness=1) def draw_arc_ratio(color, world_loc, radius, start, end, thickness=1): surf.draw_arc(color, world_loc, radius, start * tau, end * tau, thickness) if u.shield and u.shield_max: draw_arc_ratio(colors.blue, p, u.radius - 0.05, 0, u.shield / u.shield_max) if u.energy and u.energy_max: draw_arc_ratio(colors.purple * 0.9, p, u.radius - 0.1, 0, u.energy / u.energy_max) if 0 < u.build_progress < 1: draw_arc_ratio(colors.cyan, p, u.radius - 0.15, 0, u.build_progress) elif u.orders and 0 < u.orders[0].progress < 1: draw_arc_ratio(colors.cyan, p, u.radius - 0.15, 0, u.orders[0].progress) if u.buff_duration_remain and u.buff_duration_max: draw_arc_ratio(colors.white, p, u.radius - 0.2, 0, u.buff_duration_remain / u.buff_duration_max) if u.attack_upgrade_level: draw_arc_ratio(self.upgrade_colors[u.attack_upgrade_level], p, u.radius - 0.25, 0.18, 0.22, thickness=3) if u.armor_upgrade_level: draw_arc_ratio(self.upgrade_colors[u.armor_upgrade_level], p, u.radius - 0.25, 0.23, 0.27, thickness=3) if u.shield_upgrade_level: draw_arc_ratio(self.upgrade_colors[u.shield_upgrade_level], p, u.radius - 0.25, 0.28, 0.32, thickness=3) def write_small(loc, s): surf.write_world(self._font_small, colors.white, loc, str(s)) name = self.get_unit_name( surf, self._static_data.units.get(u.unit_type, "<none>"), u.radius) if name: write_small(p, name) if u.ideal_harvesters > 0: write_small(p + point.Point(0, 0.5), "%s / %s" % (u.assigned_harvesters, u.ideal_harvesters)) if u.mineral_contents > 0: write_small(p - point.Point(0, 0.5), u.mineral_contents) elif u.vespene_contents > 0: write_small(p - point.Point(0, 0.5), u.vespene_contents) elif u.display_type == sc_raw.Snapshot: write_small(p - point.Point(0, 0.5), "snapshot") elif u.display_type == sc_raw.Placeholder: write_small(p - point.Point(0, 0.5), "placeholder") elif u.is_hallucination: write_small(p - point.Point(0, 0.5), "hallucination") elif u.is_burrowed: write_small(p - point.Point(0, 0.5), "burrowed") elif u.cloak != sc_raw.NotCloaked: write_small(p - point.Point(0, 0.5), "cloaked") if u.is_selected: surf.draw_circle(colors.green, p, u.radius + 0.1, 1) # Draw the orders of selected units. start_point = p for o in u.orders: target_point = None if o.HasField("target_world_space_pos"): target_point = point.Point.build(o.target_world_space_pos) elif o.HasField("target_unit_tag"): if unit_dict is None: unit_dict = {t.tag: t for t in self._obs.observation.raw_data.units} target_unit = unit_dict.get(o.target_unit_tag) if target_unit: target_point = point.Point.build(target_unit.pos) if target_point: surf.draw_line(colors.cyan * 0.75, start_point, target_point) start_point = target_point else: break for rally in u.rally_targets: surf.draw_line(colors.cyan * 0.75, p, point.Point.build(rally.point)) @sw.decorate def draw_effects(self, surf): """Draw the effects.""" for effect in self._obs.observation.raw_data.effects: color = [ colors.effects[effect.effect_id], colors.effects[effect.effect_id], colors.PLAYER_ABSOLUTE_PALETTE[effect.owner], ] name = self.get_unit_name( surf, features.Effects(effect.effect_id).name, effect.radius) for pos in effect.pos: p = point.Point.build(pos) # pygame alpha transparency doesn't work, so just draw thin circles. for r in range(1, int(effect.radius * 3)): surf.draw_circle(color[r % 3], p, r / 3, thickness=2) if name: surf.write_world(self._font_small, colors.white, p, name) @sw.decorate def draw_selection(self, surf): """Draw the selection rectange.""" select_start = self._select_start # Cache to avoid a race condition. if select_start: mouse_pos = self.get_mouse_pos() if (mouse_pos and mouse_pos.surf.surf_type & SurfType.SCREEN and mouse_pos.surf.surf_type == select_start.surf.surf_type): rect = point.Rect(select_start.world_pos, mouse_pos.world_pos) surf.draw_rect(colors.green, rect, 1) @sw.decorate def draw_build_target(self, surf): """Draw the build target.""" round_half = lambda v, cond: round(v - 0.5) + 0.5 if cond else round(v) queued_action = self._queued_action if queued_action: radius = queued_action.footprint_radius if radius: pos = self.get_mouse_pos() if pos: pos = point.Point(round_half(pos.world_pos.x, (radius * 2) % 2), round_half(pos.world_pos.y, (radius * 2) % 2)) surf.draw_circle( colors.PLAYER_ABSOLUTE_PALETTE[ self._obs.observation.player_common.player_id], pos, radius) @sw.decorate def draw_overlay(self, surf): """Draw the overlay describing resources.""" obs = self._obs.observation player = obs.player_common surf.write_screen( self._font_large, colors.green, (0.2, 0.2), "Minerals: %s, Vespene: %s, Food: %s / %s" % ( player.minerals, player.vespene, player.food_used, player.food_cap)) times, steps = zip(*self._game_times) sec = obs.game_loop // 22.4 # http://liquipedia.net/starcraft2/Game_Speed surf.write_screen( self._font_large, colors.green, (-0.2, 0.2), "Score: %s, Step: %s, %.1f/s, Time: %d:%02d" % ( obs.score.score, obs.game_loop, sum(steps) / (sum(times) or 1), sec // 60, sec % 60), align="right") surf.write_screen( self._font_large, colors.green * 0.8, (-0.2, 1.2), "APM: %d, EPM: %d, FPS: O:%.1f, R:%.1f" % ( obs.score.score_details.current_apm, obs.score.score_details.current_effective_apm, len(times) / (sum(times) or 1), len(self._render_times) / (sum(self._render_times) or 1)), align="right") line = 3 for alert, ts in sorted(self._alerts.items(), key=lambda item: item[1]): if time.time() < ts + 3: # Show for 3 seconds. surf.write_screen(self._font_large, colors.red, (20, line), alert) line += 1 else: del self._alerts[alert] @sw.decorate def draw_help(self, surf): """Draw the help dialog.""" if not self._help: return def write(loc, text): surf.write_screen(self._font_large, colors.black, loc, text) surf.surf.fill(colors.white * 0.8) write((1, 1), "Shortcuts:") max_len = max(len(s) for s, _ in self.shortcuts) for i, (hotkey, description) in enumerate(self.shortcuts, start=2): write((2, i), hotkey) write((3 + max_len * 0.7, i), description) @sw.decorate def draw_commands(self, surf): """Draw the list of upgrades and available commands.""" line = itertools.count(2) def write(loc, text, color=colors.yellow): surf.write_screen(self._font_large, color, loc, text) def write_line(x, *args, **kwargs): write((x, next(line)), *args, **kwargs) action_count = len(self._obs.observation.abilities) if action_count > 0: write_line(0.2, "Available Actions:", colors.green) past_abilities = {act.ability for act in self._past_actions if act.ability} for cmd in sorted(self._abilities(lambda c: c.name != "Smart"), key=lambda c: c.name): if self._queued_action and cmd == self._queued_action: color = colors.green elif self._queued_hotkey and cmd.hotkey.startswith(self._queued_hotkey): color = colors.green * 0.75 elif cmd.ability_id in past_abilities: color = colors.red else: color = colors.yellow hotkey = cmd.hotkey[0:3] # truncate "escape" -> "esc" y = next(line) write((1, y), hotkey, color) write((4, y), cmd.name, color) next(line) upgrade_count = len(self._obs.observation.raw_data.player.upgrade_ids) if upgrade_count > 0: write_line(0.2, "Upgrades: %s" % upgrade_count, colors.green) upgrades = [ self._static_data.upgrades[upgrade_id].name for upgrade_id in self._obs.observation.raw_data.player.upgrade_ids] for name in sorted(upgrades): write_line(1, name) @sw.decorate def draw_panel(self, surf): """Draw the unit selection or build queue.""" left = -14 # How far from the right border line = itertools.count(3) def unit_name(unit_type): return self._static_data.units.get(unit_type, "<unknown>") def write(loc, text, color=colors.yellow): surf.write_screen(self._font_large, color, loc, text) def write_line(x, *args, **kwargs): write((left + x, next(line)), *args, **kwargs) def write_single(unit): """Write a description of a single selected unit.""" write_line(1, unit_name(unit.unit_type), colors.cyan) write_line(1, "Health: %s / %s" % (unit.health, unit.max_health)) if unit.max_shields: write_line(1, "Shields: %s / %s" % (unit.shields, unit.max_shields)) if unit.max_energy: write_line(1, "Energy: %s / %s" % (unit.energy, unit.max_energy)) if unit.build_progress > 0: write_line(1, "Progress: %d%%" % (unit.build_progress * 100)) if unit.transport_slots_taken > 0: write_line(1, "Slots: %s" % unit.transport_slots_taken) def write_multi(units): """Write a description of multiple selected units.""" counts = collections.defaultdict(int) for unit in units: counts[unit_name(unit.unit_type)] += 1 for name, count in sorted(counts.items()): y = next(line) write((left + 1, y), count) write((left + 3, y), name) ui = self._obs.observation.ui_data if ui.groups: write_line(0, "Control Groups:", colors.green) for group in ui.groups: y = next(line) write((left + 1, y), "%s:" % group.control_group_index, colors.green) write((left + 3, y), "%s %s" % (group.count, unit_name(group.leader_unit_type))) next(line) if ui.HasField("single"): write_line(0, "Selection:", colors.green) write_single(ui.single.unit) if (ui.single.attack_upgrade_level or ui.single.armor_upgrade_level or ui.single.shield_upgrade_level): write_line(1, "Upgrades:") if ui.single.attack_upgrade_level: write_line(2, "Attack: %s" % ui.single.attack_upgrade_level) if ui.single.armor_upgrade_level: write_line(2, "Armor: %s" % ui.single.armor_upgrade_level) if ui.single.shield_upgrade_level: write_line(2, "Shield: %s" % ui.single.shield_upgrade_level) if ui.single.buffs: write_line(1, "Buffs:") for b in ui.single.buffs: write_line(2, buffs.Buffs(b).name) elif ui.HasField("multi"): write_line(0, "Selection:", colors.green) write_multi(ui.multi.units) elif ui.HasField("cargo"): write_line(0, "Selection:", colors.green) write_single(ui.cargo.unit) next(line) write_line(0, "Cargo:", colors.green) write_line(1, "Empty slots: %s" % ui.cargo.slots_available) write_multi(ui.cargo.passengers) elif ui.HasField("production"): write_line(0, "Selection:", colors.green) write_single(ui.production.unit) next(line) if ui.production.production_queue: write_line(0, "Production:", colors.green) for item in ui.production.production_queue: specific_data = self._static_data.abilities[item.ability_id] if specific_data.remaps_to_ability_id: general_data = self._static_data.abilities[ specific_data.remaps_to_ability_id] else: general_data = specific_data s = (general_data.friendly_name or general_data.button_name or general_data.link_name) s = s.replace("Research ", "").replace("Train ", "") if item.build_progress > 0: s += ": %d%%" % (item.build_progress * 100) write_line(1, s) elif ui.production.build_queue: # Handle old binaries, no research. write_line(0, "Build Queue:", colors.green) for unit in ui.production.build_queue: s = unit_name(unit.unit_type) if unit.build_progress > 0: s += ": %d%%" % (unit.build_progress * 100) write_line(1, s) @sw.decorate def draw_actions(self): """Draw the actions so that they can be inspected for accuracy.""" now = time.time() for act in self._past_actions: if act.pos and now < act.deadline: remain = (act.deadline - now) / (act.deadline - act.time) if isinstance(act.pos, point.Point): size = remain / 3 self.all_surfs(_Surface.draw_circle, act.color, act.pos, size, 1) else: # Fade with alpha would be nice, but doesn't seem to work. self.all_surfs(_Surface.draw_rect, act.color, act.pos, 1) @sw.decorate def prepare_actions(self, obs): """Keep a list of the past actions so they can be drawn.""" now = time.time() while self._past_actions and self._past_actions[0].deadline < now: self._past_actions.pop(0) def add_act(ability_id, color, pos, timeout=1): if ability_id: ability = self._static_data.abilities[ability_id] if ability.remaps_to_ability_id: # Prefer general abilities. ability_id = ability.remaps_to_ability_id self._past_actions.append( PastAction(ability_id, color, pos, now, now + timeout)) for act in obs.actions: if (act.HasField("action_raw") and act.action_raw.HasField("unit_command") and act.action_raw.unit_command.HasField("target_world_space_pos")): pos = point.Point.build( act.action_raw.unit_command.target_world_space_pos) add_act(act.action_raw.unit_command.ability_id, colors.yellow, pos) if act.HasField("action_feature_layer"): act_fl = act.action_feature_layer if act_fl.HasField("unit_command"): if act_fl.unit_command.HasField("target_screen_coord"): pos = self._world_to_feature_screen_px.back_pt( point.Point.build(act_fl.unit_command.target_screen_coord)) add_act(act_fl.unit_command.ability_id, colors.cyan, pos) elif act_fl.unit_command.HasField("target_minimap_coord"): pos = self._world_to_feature_minimap_px.back_pt( point.Point.build(act_fl.unit_command.target_minimap_coord)) add_act(act_fl.unit_command.ability_id, colors.cyan, pos) else: add_act(act_fl.unit_command.ability_id, None, None) if (act_fl.HasField("unit_selection_point") and act_fl.unit_selection_point.HasField("selection_screen_coord")): pos = self._world_to_feature_screen_px.back_pt(point.Point.build( act_fl.unit_selection_point.selection_screen_coord)) add_act(None, colors.cyan, pos) if act_fl.HasField("unit_selection_rect"): for r in act_fl.unit_selection_rect.selection_screen_coord: rect = point.Rect( self._world_to_feature_screen_px.back_pt( point.Point.build(r.p0)), self._world_to_feature_screen_px.back_pt( point.Point.build(r.p1))) add_act(None, colors.cyan, rect, 0.3) if act.HasField("action_render"): act_rgb = act.action_render if act_rgb.HasField("unit_command"): if act_rgb.unit_command.HasField("target_screen_coord"): pos = self._world_to_rgb_screen_px.back_pt( point.Point.build(act_rgb.unit_command.target_screen_coord)) add_act(act_rgb.unit_command.ability_id, colors.red, pos) elif act_rgb.unit_command.HasField("target_minimap_coord"): pos = self._world_to_rgb_minimap_px.back_pt( point.Point.build(act_rgb.unit_command.target_minimap_coord)) add_act(act_rgb.unit_command.ability_id, colors.red, pos) else: add_act(act_rgb.unit_command.ability_id, None, None) if (act_rgb.HasField("unit_selection_point") and act_rgb.unit_selection_point.HasField("selection_screen_coord")): pos = self._world_to_rgb_screen_px.back_pt(point.Point.build( act_rgb.unit_selection_point.selection_screen_coord)) add_act(None, colors.red, pos) if act_rgb.HasField("unit_selection_rect"): for r in act_rgb.unit_selection_rect.selection_screen_coord: rect = point.Rect( self._world_to_rgb_screen_px.back_pt( point.Point.build(r.p0)), self._world_to_rgb_screen_px.back_pt( point.Point.build(r.p1))) add_act(None, colors.red, rect, 0.3) @sw.decorate def draw_base_map(self, surf): """Draw the base map.""" hmap_feature = features.SCREEN_FEATURES.height_map hmap = hmap_feature.unpack(self._obs.observation) if not hmap.any(): hmap = hmap + 100 hmap_color = hmap_feature.color(hmap) out = hmap_color * 0.6 creep_feature = features.SCREEN_FEATURES.creep creep = creep_feature.unpack(self._obs.observation) creep_mask = creep > 0 creep_color = creep_feature.color(creep) out[creep_mask, :] = (0.4 * out[creep_mask, :] + 0.6 * creep_color[creep_mask, :]) power_feature = features.SCREEN_FEATURES.power power = power_feature.unpack(self._obs.observation) power_mask = power > 0 power_color = power_feature.color(power) out[power_mask, :] = (0.7 * out[power_mask, :] + 0.3 * power_color[power_mask, :]) if self._render_player_relative: player_rel_feature = features.SCREEN_FEATURES.player_relative player_rel = player_rel_feature.unpack(self._obs.observation) player_rel_mask = player_rel > 0 player_rel_color = player_rel_feature.color(player_rel) out[player_rel_mask, :] = player_rel_color[player_rel_mask, :] visibility = features.SCREEN_FEATURES.visibility_map.unpack( self._obs.observation) visibility_fade = np.array([[0.5] * 3, [0.75]*3, [1]*3]) out *= visibility_fade[visibility] surf.blit_np_array(out) @sw.decorate def draw_mini_map(self, surf): """Draw the minimap.""" if (self._render_rgb and self._obs.observation.HasField("render_data") and self._obs.observation.render_data.HasField("minimap")): # Draw the rendered version. surf.blit_np_array(features.Feature.unpack_rgb_image( self._obs.observation.render_data.minimap)) else: # Render it manually from feature layer data. hmap_feature = features.MINIMAP_FEATURES.height_map hmap = hmap_feature.unpack(self._obs.observation) if not hmap.any(): hmap = hmap + 100 hmap_color = hmap_feature.color(hmap) creep_feature = features.MINIMAP_FEATURES.creep creep = creep_feature.unpack(self._obs.observation) creep_mask = creep > 0 creep_color = creep_feature.color(creep) if self._obs.observation.player_common.player_id in (0, 16): # observer # If we're the observer, show the absolute since otherwise all player # units are friendly, making it pretty boring. player_feature = features.MINIMAP_FEATURES.player_id else: player_feature = features.MINIMAP_FEATURES.player_relative player_data = player_feature.unpack(self._obs.observation) player_mask = player_data > 0 player_color = player_feature.color(player_data) visibility = features.MINIMAP_FEATURES.visibility_map.unpack( self._obs.observation) visibility_fade = np.array([[0.5] * 3, [0.75]*3, [1]*3]) # Compose and color the different layers. out = hmap_color * 0.6 out[creep_mask, :] = (0.4 * out[creep_mask, :] + 0.6 * creep_color[creep_mask, :]) out[player_mask, :] = player_color[player_mask, :] out *= visibility_fade[visibility] # Render the bit of the composited layers that actually correspond to the # map. This isn't all of it on non-square maps. shape = self._playable.diagonal.scale_max_size( self._feature_minimap_px).floor() surf.blit_np_array(out[:shape.y, :shape.x, :]) surf.draw_rect(colors.white * 0.8, self._camera, 1) # Camera # Sensor rings. for radar in self._obs.observation.raw_data.radar: surf.draw_circle(colors.white / 2, point.Point.build(radar.pos), radar.radius, 1) if self._obs.observation.game_loop < 22.4 * 20: for loc in self._game_info.start_raw.start_locations: surf.draw_circle(colors.red, point.Point.build(loc), 5, 1) pygame.draw.rect(surf.surf, colors.red, surf.surf.get_rect(), 1) # Border def check_valid_queued_action(self): # Make sure the existing command is still valid if (self._queued_hotkey and not self._abilities( lambda cmd: cmd.hotkey.startswith(self._queued_hotkey))): self._queued_hotkey = "" if (self._queued_action and not self._abilities( lambda cmd: self._queued_action == cmd)): self._queued_action = None @sw.decorate def draw_rendered_map(self, surf): """Draw the rendered pixels.""" surf.blit_np_array(features.Feature.unpack_rgb_image( self._obs.observation.render_data.map)) def draw_screen(self, surf): """Draw the screen area.""" # surf.fill(colors.black) if (self._render_rgb and self._obs.observation.HasField("render_data") and self._obs.observation.render_data.HasField("map")): self.draw_rendered_map(surf) else: self.draw_base_map(surf) self.draw_effects(surf) self.draw_units(surf) self.draw_selection(surf) self.draw_build_target(surf) self.draw_overlay(surf) self.draw_commands(surf) self.draw_panel(surf) @sw.decorate def draw_feature_layer(self, surf, feature): """Draw a feature layer.""" layer = feature.unpack(self._obs.observation) if layer is not None: surf.blit_np_array(feature.color(layer)) else: # Ignore layers that aren't in this version of SC2. surf.surf.fill(colors.black) @sw.decorate def draw_raw_layer(self, surf, from_obs, name, color): """Draw a raw layer.""" if from_obs: layer = getattr(self._obs.observation.raw_data.map_state, name) else: layer = getattr(self._game_info.start_raw, name) layer = features.Feature.unpack_layer(layer) if layer is not None: surf.blit_np_array(color[layer]) else: # Ignore layers that aren't in this version of SC2. surf.surf.fill(colors.black) def all_surfs(self, fn, *args, **kwargs): for surf in self._surfaces: if surf.world_to_surf: fn(surf, *args, **kwargs) @sw.decorate def render(self, obs): """Push an observation onto the queue to be rendered.""" if not self._initialized: return now = time.time() self._game_times.append( (now - self._last_time, max(1, obs.observation.game_loop - self._obs.observation.game_loop))) self._last_time = now self._last_game_loop = self._obs.observation.game_loop self._obs_queue.put(obs) if self._render_sync: self._obs_queue.join() def render_thread(self): """A render loop that pulls observations off the queue to render.""" obs = True while obs: # Send something falsy through the queue to shut down. obs = self._obs_queue.get() if obs: for alert in obs.observation.alerts: self._alerts[sc_pb.Alert.Name(alert)] = time.time() for err in obs.action_errors: if err.result != sc_err.Success: self._alerts[sc_err.ActionResult.Name(err.result)] = time.time() self.prepare_actions(obs) if self._obs_queue.empty(): # Only render the latest observation so we keep up with the game. self.render_obs(obs) if self._video_writer: self._video_writer.add(np.transpose( pygame.surfarray.pixels3d(self._window), axes=(1, 0, 2))) self._obs_queue.task_done() @with_lock(render_lock) @sw.decorate def render_obs(self, obs): """Render a frame given an observation.""" start_time = time.time() self._obs = obs self.check_valid_queued_action() self._update_camera(point.Point.build( self._obs.observation.raw_data.player.camera)) for surf in self._surfaces: # Render that surface. surf.draw(surf) mouse_pos = self.get_mouse_pos() if mouse_pos: # Draw a small mouse cursor self.all_surfs(_Surface.draw_circle, colors.green, mouse_pos.world_pos, 0.1) self.draw_actions() with sw("flip"): pygame.display.flip() self._render_times.append(time.time() - start_time) def run(self, run_config, controller, max_game_steps=0, max_episodes=0, game_steps_per_episode=0, save_replay=False): """Run loop that gets observations, renders them, and sends back actions.""" is_replay = (controller.status == remote_controller.Status.in_replay) total_game_steps = 0 start_time = time.time() num_episodes = 0 try: while True: self.init(controller.game_info(), controller.data()) episode_steps = 0 num_episodes += 1 controller.step() while True: total_game_steps += self._step_mul episode_steps += self._step_mul frame_start_time = time.time() obs = controller.observe() self.render(obs) if obs.player_result: break cmd = self.get_actions(run_config, controller) if cmd == ActionCmd.STEP: pass elif cmd == ActionCmd.QUIT: if not is_replay and save_replay: self.save_replay(run_config, controller) return elif cmd == ActionCmd.RESTART: break else: raise Exception("Unexpected command: %s" % cmd) controller.step(self._step_mul) if max_game_steps and total_game_steps >= max_game_steps: if not is_replay and save_replay: self.save_replay(run_config, controller) return if game_steps_per_episode and episode_steps >= game_steps_per_episode: break with sw("sleep"): elapsed_time = time.time() - frame_start_time time.sleep(max(0, 1 / self._fps - elapsed_time)) if is_replay: break if save_replay: self.save_replay(run_config, controller) if max_episodes and num_episodes >= max_episodes: break print("Restarting") controller.restart() except KeyboardInterrupt: pass finally: self.close() elapsed_time = time.time() - start_time print("took %.3f seconds for %s steps: %.3f fps" % (elapsed_time, total_game_steps, total_game_steps / elapsed_time)) def __del__(self): self.close()
pysc2-master
pysc2/lib/renderer_human.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This replaces google's resources used for locating data deps.""" def GetResourceFilename(path): return path
pysc2-master
pysc2/lib/resources.py
# Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Diff proto objects returning paths to changed attributes.""" import numpy as np def summarize_array_diffs(lhs, rhs): """Output value differences, with index for each, between two arrays.""" result = [] indices = np.transpose(np.nonzero(lhs - rhs)) for row in indices: index = tuple(np.array([e]) for e in row.tolist()) lhs_element = lhs[index] rhs_element = rhs[index] result.append("{}: {} -> {}".format( "".join("[{}]".format(i) for i in row), lhs_element[0], rhs_element[0])) if indices.size: return "{} element(s) changed - ".format(len(indices)) + "; ".join(result) else: return ""
pysc2-master
pysc2/lib/np_util.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define the static list of upgrades for SC2.""" import enum # pylint: disable=invalid-name class Upgrades(enum.IntEnum): """The list of upgrades, as generated by bin/gen_data.py.""" AdaptiveTalons = 293 AdrenalGlands = 65 AdvancedBallistics = 140 AnabolicSynthesis = 88 AnionPulseCrystals = 99 Blink = 87 Burrow = 64 CentrificalHooks = 75 Charge = 86 ChitinousPlating = 4 CloakingField = 20 CombatShield = 16 ConcussiveShells = 17 CorvidReactor = 22 CycloneRapidFireLaunchers = 291 DrillingClaws = 122 EnhancedShockwaves = 296 ExtendedThermalLance = 50 GlialReconstitution = 2 GraviticBooster = 48 GraviticDrive = 49 GravitonCatapult = 1 GroovedSpines = 134 HiSecAutoTracking = 5 HighCapacityFuelTanks = 139 HyperflightRotors = 136 InfernalPreigniter = 19 LockOn = 144 MetabolicBoost = 66 MuscularAugments = 135 NeosteelFrame = 10 NeuralParasite = 101 PathogenGlands = 74 PersonalCloaking = 25 PneumatizedCarapace = 62 ProtossAirArmorsLevel1 = 81 ProtossAirArmorsLevel2 = 82 ProtossAirArmorsLevel3 = 83 ProtossAirWeaponsLevel1 = 78 ProtossAirWeaponsLevel2 = 79 ProtossAirWeaponsLevel3 = 80 ProtossGroundArmorsLevel1 = 42 ProtossGroundArmorsLevel2 = 43 ProtossGroundArmorsLevel3 = 44 ProtossGroundWeaponsLevel1 = 39 ProtossGroundWeaponsLevel2 = 40 ProtossGroundWeaponsLevel3 = 41 ProtossShieldsLevel1 = 45 ProtossShieldsLevel2 = 46 ProtossShieldsLevel3 = 47 PsiStorm = 52 ResonatingGlaives = 130 ShadowStrike = 141 SmartServos = 289 Stimpack = 15 TerranInfantryArmorsLevel1 = 11 TerranInfantryArmorsLevel2 = 12 TerranInfantryArmorsLevel3 = 13 TerranInfantryWeaponsLevel1 = 7 TerranInfantryWeaponsLevel2 = 8 TerranInfantryWeaponsLevel3 = 9 TerranShipWeaponsLevel1 = 36 TerranShipWeaponsLevel2 = 37 TerranShipWeaponsLevel3 = 38 TerranStructureArmor = 6 TerranVehicleAndShipArmorsLevel1 = 116 TerranVehicleAndShipArmorsLevel2 = 117 TerranVehicleAndShipArmorsLevel3 = 118 TerranVehicleWeaponsLevel1 = 30 TerranVehicleWeaponsLevel2 = 31 TerranVehicleWeaponsLevel3 = 32 TunnelingClaws = 3 WarpGateResearch = 84 WeaponRefit = 76 ZergFlyerArmorsLevel1 = 71 ZergFlyerArmorsLevel2 = 72 ZergFlyerArmorsLevel3 = 73 ZergFlyerWeaponsLevel1 = 68 ZergFlyerWeaponsLevel2 = 69 ZergFlyerWeaponsLevel3 = 70 ZergGroundArmorsLevel1 = 56 ZergGroundArmorsLevel2 = 57 ZergGroundArmorsLevel3 = 58 ZergMeleeWeaponsLevel1 = 53 ZergMeleeWeaponsLevel2 = 54 ZergMeleeWeaponsLevel3 = 55 ZergMissileWeaponsLevel1 = 59 ZergMissileWeaponsLevel2 = 60 ZergMissileWeaponsLevel3 = 61
pysc2-master
pysc2/lib/upgrades.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A thread pool for running a set of functions synchronously in parallel. This is mainly intended for use where the functions have a barrier and none will return until all have been called. """ from concurrent import futures import functools class RunParallel(object): """Run all funcs in parallel.""" def __init__(self, timeout=None): self._timeout = timeout self._executor = None self._workers = 0 def run(self, funcs): """Run a set of functions in parallel, returning their results. Make sure any function you pass exits with a reasonable timeout. If it doesn't return within the timeout or the result is ignored due an exception in a separate thread it will continue to stick around until it finishes, including blocking process exit. Args: funcs: An iterable of functions or iterable of args to functools.partial. Returns: A list of return values with the values matching the order in funcs. Raises: Propagates the first exception encountered in one of the functions. """ funcs = [f if callable(f) else functools.partial(*f) for f in funcs] if len(funcs) == 1: # Ignore threads if it's not needed. return [funcs[0]()] if len(funcs) > self._workers: # Lazy init and grow as needed. self.shutdown() self._workers = len(funcs) while True: try: # Temporary workaround for "<frozen importlib._bootstrap>", line 110. # Race condition on import of ThreadPoolExecutor. self._executor = futures.ThreadPoolExecutor(self._workers) break except KeyError: pass futs = [self._executor.submit(f) for f in funcs] done, not_done = futures.wait(futs, self._timeout, futures.FIRST_EXCEPTION) # Make sure to propagate any exceptions. for f in done: if not f.cancelled() and f.exception() is not None: if not_done: # If there are some calls that haven't finished, cancel and recreate # the thread pool. Otherwise we may have a thread running forever # blocking parallel calls. for nd in not_done: nd.cancel() self.shutdown(False) # Don't wait, they may be deadlocked. raise f.exception() # Either done or timed out, so don't wait again. return [f.result(timeout=0) for f in futs] def shutdown(self, wait=True): if self._executor: self._executor.shutdown(wait) self._executor = None self._workers = 0 def __del__(self): self.shutdown()
pysc2-master
pysc2/lib/run_parallel.py
#!/usr/bin/python # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for proto_diff.py.""" from absl.testing import absltest from pysc2.lib import proto_diff from s2clientprotocol import sc2api_pb2 as sc_pb from s2clientprotocol import score_pb2 class ProtoPathTest(absltest.TestCase): def testCreationFromTuple(self): self.assertEqual( str(proto_diff.ProtoPath(("observation", "actions"))), "observation.actions") def testCreationFromList(self): self.assertEqual( str(proto_diff.ProtoPath(["observation", "actions"])), "observation.actions") def testCreationFromGenerator(self): self.assertEqual( str(proto_diff.ProtoPath(a for a in "abc")), "a.b.c") def testStringRepr(self): self.assertEqual( str(proto_diff.ProtoPath(("observation", "actions", 1, "target"))), "observation.actions[1].target") def testOrdering(self): self.assertLess( proto_diff.ProtoPath(("observation", "actions", 1, "game_loop")), proto_diff.ProtoPath(("observation", "actions", 1, "target"))) self.assertLess( proto_diff.ProtoPath(("observation", "actions", 1)), proto_diff.ProtoPath(("observation", "actions", 1, "target"))) self.assertGreater( proto_diff.ProtoPath(("observation", "actions", 1)), proto_diff.ProtoPath(("observation",))) def testEquals(self): a = proto_diff.ProtoPath(("observation", "actions", 1)) b = proto_diff.ProtoPath(("observation", "actions", 1)) self.assertEqual(a, b) self.assertEqual(hash(a), hash(b)) def testNotEqual(self): a = proto_diff.ProtoPath(("observation", "actions", 1)) b = proto_diff.ProtoPath(("observation", "actions", 2)) self.assertNotEqual(a, b) self.assertNotEqual(hash(a), hash(b)) def testIndexing(self): path = proto_diff.ProtoPath(("observation", "actions", 1)) self.assertEqual(path[0], "observation") self.assertEqual(path[1], "actions") self.assertEqual(path[-2], "actions") self.assertEqual(path[-1], 1) def testGetField(self): proto = sc_pb.ResponseObservation( observation=sc_pb.Observation(game_loop=1, alerts=[sc_pb.AlertError])) game_loop = proto_diff.ProtoPath(("observation", "game_loop")) alert = proto_diff.ProtoPath(("observation", "alerts", 0)) self.assertEqual(game_loop.get_field(proto), 1) self.assertEqual(alert.get_field(proto), sc_pb.AlertError) self.assertEqual( proto_diff.ProtoPath(game_loop.path[:-1]).get_field(proto), sc_pb.Observation(game_loop=1, alerts=[sc_pb.AlertError])) def testWithAnonymousArrayIndices(self): a = proto_diff.ProtoPath(("observation", "actions")) b = proto_diff.ProtoPath(("observation", "actions", 1)) c = proto_diff.ProtoPath(("observation", "actions", 2)) self.assertEqual(str(a), "observation.actions") self.assertEqual( str(b.with_anonymous_array_indices()), "observation.actions[*]") self.assertEqual( b.with_anonymous_array_indices(), c.with_anonymous_array_indices()) def _alert_formatter(path, proto_a, proto_b): field_a = path.get_field(proto_a) if path[-2] == "alerts": field_b = path.get_field(proto_b) return "{} -> {}".format( sc_pb.Alert.Name(field_a), sc_pb.Alert.Name(field_b)) class ProtoDiffTest(absltest.TestCase): def testNoDiffs(self): a = sc_pb.ResponseObservation() b = sc_pb.ResponseObservation() diff = proto_diff.compute_diff(a, b) self.assertIsNone(diff) def testAddedField(self): a = sc_pb.ResponseObservation() b = sc_pb.ResponseObservation( observation=sc_pb.Observation(game_loop=1)) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertLen(diff.added, 1, diff) self.assertEqual(str(diff.added[0]), "observation") self.assertEqual(diff.added, diff.all_diffs()) self.assertEqual(diff.report(), "Added observation.") def testAddedFields(self): a = sc_pb.ResponseObservation( observation=sc_pb.Observation( alerts=[sc_pb.AlertError])) b = sc_pb.ResponseObservation( observation=sc_pb.Observation( alerts=[sc_pb.AlertError, sc_pb.MergeComplete]), player_result=[sc_pb.PlayerResult()]) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertLen(diff.added, 2, diff) self.assertEqual(str(diff.added[0]), "observation.alerts[1]") self.assertEqual(str(diff.added[1]), "player_result") self.assertEqual(diff.added, diff.all_diffs()) self.assertEqual( diff.report(), "Added observation.alerts[1].\n" "Added player_result.") def testRemovedField(self): a = sc_pb.ResponseObservation(observation=sc_pb.Observation(game_loop=1)) b = sc_pb.ResponseObservation(observation=sc_pb.Observation()) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertLen(diff.removed, 1, diff) self.assertEqual(str(diff.removed[0]), "observation.game_loop") self.assertEqual(diff.removed, diff.all_diffs()) self.assertEqual( diff.report(), "Removed observation.game_loop.") def testRemovedFields(self): a = sc_pb.ResponseObservation(observation=sc_pb.Observation( game_loop=1, score=score_pb2.Score(), alerts=[sc_pb.AlertError, sc_pb.MergeComplete])) b = sc_pb.ResponseObservation(observation=sc_pb.Observation( alerts=[sc_pb.AlertError])) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertLen(diff.removed, 3, diff) self.assertEqual(str(diff.removed[0]), "observation.alerts[1]") self.assertEqual(str(diff.removed[1]), "observation.game_loop") self.assertEqual(str(diff.removed[2]), "observation.score") self.assertEqual(diff.removed, diff.all_diffs()) self.assertEqual( diff.report(), "Removed observation.alerts[1].\n" "Removed observation.game_loop.\n" "Removed observation.score.") def testChangedField(self): a = sc_pb.ResponseObservation(observation=sc_pb.Observation(game_loop=1)) b = sc_pb.ResponseObservation(observation=sc_pb.Observation(game_loop=2)) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertLen(diff.changed, 1, diff) self.assertEqual(str(diff.changed[0]), "observation.game_loop") self.assertEqual(diff.changed, diff.all_diffs()) self.assertEqual(diff.report(), "Changed observation.game_loop: 1 -> 2.") def testChangedFields(self): a = sc_pb.ResponseObservation(observation=sc_pb.Observation( game_loop=1, alerts=[sc_pb.AlertError, sc_pb.LarvaHatched])) b = sc_pb.ResponseObservation(observation=sc_pb.Observation( game_loop=2, alerts=[sc_pb.AlertError, sc_pb.MergeComplete])) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertLen(diff.changed, 2, diff) self.assertEqual(str(diff.changed[0]), "observation.alerts[1]") self.assertEqual(str(diff.changed[1]), "observation.game_loop") self.assertEqual(diff.changed, diff.all_diffs()) self.assertEqual( diff.report(), "Changed observation.alerts[1]: 7 -> 8.\n" "Changed observation.game_loop: 1 -> 2.") self.assertEqual( diff.report([_alert_formatter]), "Changed observation.alerts[1]: LarvaHatched -> MergeComplete.\n" "Changed observation.game_loop: 1 -> 2.") def testTruncation(self): a = sc_pb.ResponseObservation(observation=sc_pb.Observation( game_loop=1, alerts=[sc_pb.AlertError, sc_pb.LarvaHatched])) b = sc_pb.ResponseObservation(observation=sc_pb.Observation( game_loop=2, alerts=[sc_pb.AlertError, sc_pb.MergeComplete])) diff = proto_diff.compute_diff(a, b) self.assertIsNotNone(diff) self.assertEqual( diff.report([_alert_formatter], truncate_to=9), "Changed observation.alerts[1]: LarvaH....\n" "Changed observation.game_loop: 1 -> 2.") self.assertEqual( diff.report([_alert_formatter], truncate_to=-1), "Changed observation.alerts[1]: ....\n" "Changed observation.game_loop: ... -> ....") if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/proto_diff_test.py
#!/usr/bin/python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for lib.run_parallel.""" import threading from absl.testing import absltest from pysc2.lib import run_parallel class Barrier(object): def __init__(self, n): self.n = n self.count = 0 self.cond = threading.Condition() def wait(self): self.cond.acquire() me = self.count self.count += 1 if self.count < self.n: self.cond.wait() else: self.count = 0 self.cond.notify_all() self.cond.release() return me def clear(self): self.cond.acquire() self.cond.notify_all() self.cond.release() def bad(): raise ValueError() class RunParallelTest(absltest.TestCase): def test_returns_expected_values(self): pool = run_parallel.RunParallel() out = pool.run([int]) self.assertListEqual(out, [0]) out = pool.run([lambda: 1, lambda: 2, lambda: "asdf", lambda: {1: 2}]) self.assertListEqual(out, [1, 2, "asdf", {1: 2}]) pool.shutdown() def test_run_in_parallel(self): b = Barrier(3) pool = run_parallel.RunParallel() out = pool.run([b.wait, b.wait, b.wait]) self.assertCountEqual(out, [0, 1, 2]) pool.shutdown() def test_avoids_deadlock(self): b = Barrier(2) pool = run_parallel.RunParallel(timeout=2) with self.assertRaises(ValueError): pool.run([int, b.wait, bad]) # Release the thread waiting on the barrier so the process can exit cleanly. b.clear() pool.shutdown() def test_exception(self): pool = run_parallel.RunParallel() out = pool.run([lambda: 1, ValueError]) self.assertEqual(out[0], 1) self.assertIsInstance(out[1], ValueError) with self.assertRaises(ValueError): pool.run([bad]) with self.assertRaises(ValueError): pool.run([int, bad]) pool.shutdown() def test_partial(self): pool = run_parallel.RunParallel() out = pool.run((max, 0, i - 2) for i in range(5)) self.assertListEqual(out, [0, 0, 0, 1, 2]) pool.shutdown() if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/run_parallel_test.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A basic Color class.""" import collections import math import random import numpy from pysc2.lib import static_data class Color(collections.namedtuple("Color", ["r", "g", "b"])): """A basic Color class.""" __slots__ = () def set(self, r=None, g=None, b=None): return Color(r or self.r, b or self.b, g or self.g) def round(self): return Color(int(round(self.r)), int(round(self.g)), int(round(self.b))) def floor(self): return Color(int(math.floor(self.r)), int(math.floor(self.g)), int(math.floor(self.b))) def ceil(self): return Color(int(math.ceil(self.r)), int(math.ceil(self.g)), int(math.ceil(self.b))) def __str__(self): return "%d,%d,%d" % self def __add__(self, o): return Color(self.r + o.r, self.g + o.g, self.b + o.b) def __sub__(self, o): return Color(self.r - o.r, self.g - o.g, self.b - o.b) def __mul__(self, val): return Color(self.r * val, self.g * val, self.b * val) def __truediv__(self, val): return Color(self.r / val, self.g / val, self.b / val) def __floordiv__(self, val): return Color(self.r // val, self.g // val, self.b // val) __div__ = __truediv__ black = Color(0, 0, 0) white = Color(255, 255, 255) red = Color(255, 0, 0) green = Color(0, 255, 0) blue = Color(0, 0, 255) cyan = Color(0, 255, 255) yellow = Color(255, 255, 0) purple = Color(255, 0, 255) def smooth_hue_palette(scale): """Takes an array of ints and returns a corresponding colored rgb array.""" # http://en.wikipedia.org/wiki/HSL_and_HSV#From_HSL # Based on http://stackoverflow.com/a/17382854 , with simplifications and # optimizations. Assumes S=1, L=0.5, meaning C=1 and m=0. # 0 stays black, everything else moves into a hue. # Some initial values and scaling. Check wikipedia for variable meanings. array = numpy.arange(scale) h = array * (6 / scale) # range of [0,6) x = 255 * (1 - numpy.absolute(numpy.mod(h, 2) - 1)) c = 255 # Initialize outputs to zero/black out = numpy.zeros(h.shape + (3,), float) r = out[..., 0] g = out[..., 1] b = out[..., 2] mask = (0 < h) & (h < 1) r[mask] = c g[mask] = x[mask] mask = (1 <= h) & (h < 2) r[mask] = x[mask] g[mask] = c mask = (2 <= h) & (h < 3) g[mask] = c b[mask] = x[mask] mask = (3 <= h) & (h < 4) g[mask] = x[mask] b[mask] = c mask = (4 <= h) & (h < 5) r[mask] = x[mask] b[mask] = c mask = 5 <= h r[mask] = c b[mask] = x[mask] return out def shuffled_hue(scale): palette = list(smooth_hue_palette(scale)) random.Random(21).shuffle(palette) # Return a fixed shuffle return numpy.array(palette) def piece_wise_linear(scale, points): """Create a palette that is piece-wise linear given some colors at points.""" assert len(points) >= 2 assert points[0][0] == 0 assert points[-1][0] == 1 assert all(i < j for i, j in zip(points[:-1], points[1:])) out = numpy.zeros((scale, 3)) p1, c1 = points[0] p2, c2 = points[1] next_pt = 2 for i in range(1, scale): # Leave 0 as black. v = i / scale if v > p2: p1, c1 = p2, c2 p2, c2 = points[next_pt] next_pt += 1 frac = (v - p1) / (p2 - p1) out[i, :] = c1 * (1 - frac) + c2 * frac return out def winter(scale): return piece_wise_linear(scale, [(0, Color(0, 0.5, 0.4) * 255), (1, Color(1, 1, 0.4) * 255)]) def hot(scale): return piece_wise_linear(scale, [(0, Color(0.5, 0, 0) * 255), (0.2, Color(1, 0, 0) * 255), (0.6, Color(1, 1, 0) * 255), (1, Color(1, 1, 1) * 255)]) def height_map(scale): return piece_wise_linear(scale, [ (0, Color(0, 0, 0)), # Abyss (40/255, Color(67, 109, 95)), # Water, little below this height. (50/255, Color(168, 152, 129)), # Beach (60/255, Color(154, 124, 90)), # Sand, the mode height. (70/255, Color(117, 150, 96)), # Grass (80/255, Color(166, 98, 97)), # Dirt, should be the top. (1, Color(255, 255, 100)), # Heaven. Shouldn't be seen. ]) # Palette used to color player_relative features. PLAYER_RELATIVE_PALETTE = numpy.array([ black, # Background. Color(0, 142, 0), # Self. (Green). yellow, # Ally. Color(129, 166, 196), # Neutral. (Cyan.) Color(113, 25, 34), # Enemy. (Red). ]) PLAYER_ABSOLUTE_PALETTE = numpy.array([ black, # Background Color(0, 142, 0), # 1: Green Color(113, 25, 34), # 2: Red Color(223, 215, 67), # 3: Yellow Color(66, 26, 121), # 4: Purple Color(222, 144, 50), # 5: Orange Color(46, 72, 237), # 6: Blue Color(207, 111, 176), # 7: Pink Color(189, 251, 157), # 8: Light green white * 0.1, # 9: Does the game ever have more than 8 players? white * 0.1, # 10: Does the game ever have more than 8 players? white * 0.1, # 11: Does the game ever have more than 8 players? white * 0.1, # 12: Does the game ever have more than 8 players? white * 0.1, # 13: Does the game ever have more than 8 players? white * 0.1, # 14: Does the game ever have more than 8 players? white * 0.1, # 15: Does the game ever have more than 8 players? Color(129, 166, 196), # 16 Neutral: Cyan ]) VISIBILITY_PALETTE = numpy.array([ black, # Hidden white * 0.25, # Fogged white * 0.6, # Visible ]) CAMERA_PALETTE = numpy.array([black, white * 0.6]) CREEP_PALETTE = numpy.array([black, purple * 0.4]) POWER_PALETTE = numpy.array([black, cyan * 0.7]) SELECTED_PALETTE = numpy.array([black, green * 0.7]) def unit_type(scale=None): """Returns a palette that maps unit types to rgb colors.""" return categorical(static_data.UNIT_TYPES, scale) def buffs(scale=None): """Returns a palette that maps buffs to rgb colors.""" return categorical(static_data.BUFFS, scale) def categorical(options, scale=None): # Can specify a scale to match the api or to accept unknown unit types. palette_size = scale or max(options) + 1 palette = shuffled_hue(palette_size) assert len(options) <= len(distinct_colors) for i, v in enumerate(options): palette[v] = distinct_colors[i] return palette effects = numpy.array([ [0, 0, 0], [72, 173, 207], [203, 76, 49], [122, 98, 209], [109, 183, 67], [192, 80, 181], [86, 185, 138], [211, 63, 115], [81, 128, 60], [182, 135, 208], [182, 174, 73], [95, 123, 196], [220, 146, 71], [187, 102, 147], [138, 109, 48], [197, 103, 99], ]) # Generated with http://tools.medialab.sciences-po.fr/iwanthue/ # 350 colors: H: 0-360, C: 0-100, L: 35-100; then shuffled. distinct_colors = numpy.array([ [99, 91, 0], [195, 211, 0], [57, 206, 255], [255, 172, 106], [255, 187, 77], [255, 195, 114], [0, 102, 201], [3, 249, 197], [79, 84, 81], [255, 252, 198], [0, 132, 134], [255, 155, 144], [255, 211, 140], [41, 91, 83], [101, 77, 73], [0, 144, 124], [146, 41, 97], [2, 223, 228], [173, 77, 0], [255, 93, 193], [54, 92, 36], [119, 255, 202], [154, 0, 183], [0, 156, 121], [144, 173, 0], [255, 254, 173], [62, 90, 54], [144, 54, 5], [2, 169, 191], [132, 255, 249], [196, 158, 255], [187, 8, 0], [138, 255, 99], [236, 163, 255], [78, 255, 187], [128, 64, 56], [255, 195, 148], [0, 101, 209], [149, 193, 255], [0, 239, 125], [134, 65, 240], [0, 222, 123], [255, 249, 146], [0, 247, 164], [8, 169, 0], [156, 36, 46], [255, 174, 81], [0, 102, 84], [139, 213, 0], [142, 87, 0], [215, 255, 55], [203, 255, 124], [0, 96, 93], [63, 78, 147], [227, 255, 115], [160, 0, 131], [69, 148, 0], [142, 149, 0], [255, 72, 70], [0, 229, 224], [127, 63, 76], [248, 139, 255], [2, 188, 206], [0, 128, 203], [113, 151, 0], [255, 203, 103], [0, 178, 172], [128, 53, 122], [163, 4, 83], [2, 79, 204], [235, 128, 0], [0, 106, 247], [164, 156, 255], [179, 173, 0], [255, 124, 221], [115, 209, 0], [62, 249, 255], [240, 118, 0], [45, 84, 135], [106, 96, 255], [39, 89, 109], [0, 86, 192], [255, 133, 151], [90, 192, 0], [156, 0, 154], [127, 51, 133], [216, 255, 82], [160, 255, 212], [106, 43, 191], [224, 255, 221], [167, 47, 227], [255, 217, 85], [251, 173, 255], [92, 55, 185], [162, 28, 1], [126, 102, 255], [212, 140, 255], [113, 66, 111], [216, 0, 205], [70, 242, 69], [120, 109, 255], [0, 132, 180], [122, 67, 62], [255, 166, 54], [140, 173, 255], [105, 79, 0], [39, 227, 55], [255, 71, 238], [112, 75, 18], [149, 83, 255], [255, 130, 205], [255, 138, 39], [0, 184, 21], [202, 154, 0], [145, 52, 41], [185, 255, 85], [151, 46, 8], [255, 215, 128], [2, 192, 148], [80, 81, 101], [255, 166, 114], [0, 161, 80], [255, 56, 89], [2, 223, 146], [98, 246, 255], [150, 251, 255], [255, 125, 56], [144, 51, 53], [83, 133, 255], [1, 82, 173], [122, 118, 0], [255, 86, 174], [67, 87, 78], [131, 65, 4], [170, 255, 204], [0, 108, 66], [248, 96, 255], [212, 101, 255], [99, 230, 34], [140, 41, 121], [173, 0, 175], [255, 190, 175], [186, 179, 255], [171, 221, 255], [78, 255, 135], [220, 0, 32], [255, 217, 192], [46, 58, 215], [68, 255, 230], [96, 81, 53], [1, 174, 246], [72, 70, 166], [255, 233, 77], [255, 166, 197], [255, 208, 241], [183, 255, 62], [255, 226, 226], [107, 255, 119], [148, 122, 0], [171, 255, 143], [255, 109, 232], [156, 142, 255], [124, 148, 255], [178, 236, 255], [168, 91, 0], [255, 255, 248], [255, 92, 91], [132, 238, 255], [225, 131, 0], [255, 149, 111], [171, 157, 0], [255, 133, 181], [196, 158, 0], [2, 162, 246], [193, 110, 0], [255, 243, 244], [255, 180, 181], [255, 79, 221], [255, 211, 109], [0, 99, 118], [255, 167, 214], [89, 81, 83], [147, 255, 120], [2, 210, 200], [255, 244, 113], [255, 197, 248], [0, 122, 37], [255, 194, 57], [130, 130, 255], [107, 77, 29], [255, 153, 56], [178, 104, 255], [17, 98, 0], [0, 119, 128], [146, 106, 0], [117, 255, 186], [255, 155, 232], [1, 87, 232], [61, 83, 120], [200, 255, 187], [196, 221, 255], [100, 73, 112], [115, 218, 255], [85, 114, 0], [208, 142, 0], [255, 30, 147], [156, 0, 200], [239, 0, 122], [255, 43, 170], [0, 87, 241], [237, 255, 248], [0, 151, 44], [255, 155, 161], [218, 0, 107], [139, 57, 29], [148, 255, 174], [100, 69, 131], [195, 0, 29], [177, 64, 0], [93, 81, 60], [2, 162, 172], [205, 0, 134], [255, 168, 135], [225, 93, 0], [125, 39, 165], [187, 255, 126], [2, 196, 237], [234, 119, 255], [240, 0, 182], [115, 181, 0], [255, 125, 125], [67, 90, 26], [242, 255, 69], [185, 81, 255], [255, 195, 130], [32, 95, 35], [215, 0, 153], [197, 125, 0], [46, 104, 0], [72, 73, 155], [177, 183, 0], [149, 40, 81], [255, 145, 88], [164, 16, 58], [215, 187, 255], [119, 204, 255], [198, 255, 237], [255, 92, 65], [197, 244, 255], [0, 146, 22], [118, 179, 255], [255, 94, 144], [208, 1, 182], [28, 200, 0], [0, 121, 97], [167, 0, 111], [25, 84, 143], [2, 191, 98], [175, 0, 127], [48, 92, 57], [119, 71, 31], [255, 169, 186], [2, 115, 247], [111, 74, 50], [255, 82, 41], [41, 94, 11], [42, 155, 255], [235, 52, 0], [243, 167, 0], [255, 96, 134], [61, 255, 216], [220, 255, 177], [3, 162, 206], [183, 0, 90], [255, 237, 208], [86, 153, 0], [207, 255, 220], [255, 194, 229], [255, 93, 34], [3, 95, 57], [0, 160, 99], [1, 89, 165], [167, 128, 0], [1, 215, 245], [167, 255, 97], [187, 0, 77], [173, 0, 32], [0, 101, 130], [58, 90, 66], [255, 102, 112], [0, 120, 89], [240, 182, 255], [125, 90, 0], [216, 210, 255], [244, 0, 78], [88, 85, 18], [228, 181, 0], [169, 207, 0], [24, 134, 0], [217, 255, 255], [216, 255, 147], [133, 55, 93], [205, 90, 255], [255, 119, 97], [255, 227, 164], [50, 129, 0], [1, 138, 243], [0, 134, 68], [98, 255, 245], [255, 94, 158], [186, 204, 255], [0, 191, 163], [1, 141, 207], [2, 228, 103], [255, 208, 171], [207, 78, 0], [0, 147, 86], [217, 32, 0], [194, 0, 50], [0, 122, 68], [255, 235, 48], [183, 28, 217], [193, 167, 0], [250, 0, 200], [154, 36, 64], [126, 58, 107], [103, 127, 0], [210, 106, 0], [220, 0, 49], [0, 107, 143], [255, 181, 242], [166, 255, 183], [95, 66, 149], [0, 210, 151], [1, 217, 81], [255, 238, 184], [253, 255, 0], [201, 0, 75], [0, 170, 49], [255, 215, 209], [94, 61, 168], [117, 54, 151], [91, 83, 37], [190, 1, 209], [216, 241, 0], [243, 230, 255], [233, 255, 193], [169, 141, 0], [80, 96, 0], [0, 101, 34], ])
pysc2-master
pysc2/lib/colors.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SC2 replays -> ResponseObservation proto streams.""" import io import json import time from absl import logging import mpyq from pysc2 import run_configs from s2clientprotocol import sc2api_pb2 as sc_pb def _get_replay_version(replay_data): replay_io = io.BytesIO() replay_io.write(replay_data) replay_io.seek(0) archive = mpyq.MPQArchive(replay_io).extract() metadata = json.loads( bytes.decode(archive[b"replay.gamemetadata.json"], "utf-8")) return run_configs.lib.Version( game_version=".".join(metadata["GameVersion"].split(".")[:-1]), build_version=int(metadata["BaseBuild"][4:]), data_version=metadata.get("DataVersion"), # Only in replays version 4.1+. binary=None) class ReplayError(Exception): pass class ReplayObservationStream(object): """Wrapper class for iterating over replay observation data. Yields the observations for a replay from player_id's perspective. The class can throw connection errors from the controller. These should be caught at the top level, since they are unrecoverable (the controller is unusable). Determines the replay version from the protocol information in the replay file. Uses a cache of processes, one for each binary version required to process corresponding replays. How to use the class: with ReplayObservationStream() as replay_stream: replay_stream.start_replay(replay_data, player_id) # Get game data if needed. info = replay_stream.game_info() for observation in replay_stream.observations(): # Do something with each observation. """ def __init__(self, interface_options: sc_pb.InterfaceOptions, step_mul: int = 1, disable_fog: bool = False, game_steps_per_episode: int = 0, add_opponent_observations: bool = False): """Constructs the replay stream object. Args: interface_options: Interface format to use. step_mul: Number of skipped observations in between environment steps. disable_fog: Bool, True to disable fog of war. game_steps_per_episode: Int, truncate after this many steps (0 for inf.). add_opponent_observations: Bool, True to return the opponent's observations in addition to the observing player. Note that this will start two SC2 processes simultaneously if set to True. By default is False and returns observations from one player's perspective. """ self._step_mul = step_mul self._disable_fog = disable_fog self._game_steps_per_episode = game_steps_per_episode self._add_opponent_observations = add_opponent_observations self._packet_count = 0 self._info = None self._player_id = None if not interface_options: raise ValueError("Please specify interface_options") self._interface = interface_options self._want_rgb = self._interface.HasField("render") self._run_config = None self._sc2_procs = [] self._controllers = [] def _get_controllers(self, version): """Get controllers.""" if not self._run_config or self._run_config.version != version: # Close current process and create a new one. self._close() self._run_config = run_configs.get(version=version) self._sc2_procs = [self._run_config.start(want_rgb=self._want_rgb)] if self._add_opponent_observations: self._sc2_procs.append(self._run_config.start(want_rgb=self._want_rgb)) self._controllers = [ proc.controller for proc in self._sc2_procs ] return self._controllers def _close(self): self._run_config = None for controller in self._controllers: if controller: controller.quit() self._controllers = [] for proc in self._sc2_procs: if proc: proc.close() self._sc2_procs = [] def start_replay_from_data(self, replay_data, player_id): """Starts the stream of replay observations from an in-memory replay.""" self._player_id = player_id try: version = _get_replay_version(replay_data) except (ValueError, AttributeError) as err: logging.exception("Error getting replay version from data: %s", err) raise ReplayError(err) if self._add_opponent_observations: player_ids = [player_id, (player_id % 2) + 1] else: player_ids = [player_id] start_requests = [] for p_id in player_ids: start_requests.append( sc_pb.RequestStartReplay( replay_data=replay_data, options=self._interface, disable_fog=self._disable_fog, observed_player_id=p_id)) logging.info("Starting replay...") self._controllers = self._get_controllers(version) self._info = info = self._controllers[0].replay_info(replay_data) logging.info(" Replay info ".center(60, "-")) logging.info(info) logging.info("-" * 60) if (info.local_map_path and info.local_map_path.lower().endswith(".sc2map")): logging.info("Map path: %s", info.local_map_path) for start_replay in start_requests: start_replay.map_data = self._run_config.map_data(info.local_map_path) for controller, start_replay in zip(self._controllers, start_requests): controller.start_replay(start_replay) logging.info("Getting started...") def replay_info(self): return self._info def game_info(self): return self._controllers[0].game_info() def static_data(self): return self._controllers[0].data() def observations(self, step_sequence=None): """Yields a ResponseObservation proto for each environment step. If using the opponent's observations, this will yield a list of observations, one for each player. Args: step_sequence: A list of integers, the step sizes to apply to the stream. """ self._packet_count = 0 period_start = time.time() period = 1000 # log packet rate every 1000 packets logging.info("Begin iterating over frames...") while True: obs = [controller.observe() for controller in self._controllers] if self._packet_count == 0: logging.info("The first packet has been read") self._packet_count += 1 if len(obs) == 1: yield obs[0] else: yield obs if (obs[0].player_result or (step_sequence and self._packet_count > len(step_sequence))): # End of game. break if self._game_steps_per_episode > 0: if obs[0].observation.game_loop >= self._game_steps_per_episode - 1: break for controller in self._controllers: if step_sequence and self._packet_count <= len(step_sequence): step_mul = step_sequence[self._packet_count - 1] else: step_mul = self._step_mul controller.step(step_mul) if self._packet_count % period == 0: time_taken = time.time() - period_start period_start = time.time() logging.info( "Frame: %d, packets per sec: %.1f", obs[0].observation.game_loop, period / time_taken) def close(self): """Close the replay process connection.""" logging.info("Quitting...") self._close() def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): if exception_value: logging.error("[%s]: %s", exception_type, exception_value) self.close()
pysc2-master
pysc2/lib/replay/replay_observation_stream.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from absl import flags from absl.testing import absltest from absl.testing import parameterized from pysc2.lib.replay import sc2_replay from pysc2.lib.replay import sc2_replay_utils from pysc2.lib import gfile from pysc2.lib import resources FLAGS = flags.FLAGS PATH = "pysc2/lib/replay/test_data" def _read_replay(name): replay_path = resources.GetResourceFilename(os.path.join(PATH, name)) with gfile.Open(replay_path, mode="rb") as f: replay_data = f.read() return sc2_replay.SC2Replay(replay_data) def _read_skips(name): skips_path = resources.GetResourceFilename(os.path.join(PATH, name)) with gfile.Open(skips_path, mode="r") as f: return [int(i) for i in f.readlines()[0].split(",")] class Sc2ReplayUtilsTest(parameterized.TestCase): @parameterized.parameters( ((f"replay_0{i}.SC2Replay", f"replay_0{i}.skips.txt") for i in range(1, 10))) def test_raw_action_skips(self, replay_name, skips_file): replay = _read_replay(replay_name) skips = _read_skips(skips_file) result = sc2_replay_utils.raw_action_skips(replay) self.assertEqual(result[1], skips) if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/replay/sc2_replay_utils_test.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
pysc2-master
pysc2/lib/replay/__init__.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities built on top of sc2_replay.""" import collections import dataclasses from typing import List, Mapping from pysc2.lib.replay import sc2_replay _EVENT_TYPES_TO_FILTER_OUT = frozenset([ # Not related to actions. "SetSyncLoadingTime", "SetSyncPlayingTime", "TriggerSoundLengthSync", "UserFinishedLoadingSync", "UserOptions", # Always accompanied by a CommandManagerState, which we track. "CmdUpdateTargetPoint", # Of interest for the visual interface, but skipped for now as we are # targeting raw. "CameraSave", "ControlGroupUpdate", "SelectionDelta", ]) def _readable_event_type(full_event_type): return full_event_type[len("NNet.Game.S"):-5] @dataclasses.dataclass class EventData: game_loop: int event_type: str def raw_action_skips(replay: sc2_replay.SC2Replay) -> Mapping[int, List[int]]: """Returns player id -> list, the game loops on which each player acted. Args: replay: An sc2_replay.SC2Replay instance. Note that these skips are specific to the raw interface - further work will be needed to support visual. """ action_frames = collections.defaultdict(list) last_game_loop = None # Extract per-user events of interest. for event in replay.game_events(): event_type = _readable_event_type(event["_event"]) if event_type not in _EVENT_TYPES_TO_FILTER_OUT: game_loop = event["_gameloop"] last_game_loop = game_loop # As soon as anyone leaves, we stop tracking events. if event_type == "GameUserLeave": break user_id = event["_userid"]["m_userId"] player_id = user_id + 1 if player_id < 1 or player_id > 2: raise ValueError(f"Unexpected player_id: {player_id}") if (action_frames[player_id] and action_frames[player_id][-1].game_loop == game_loop): # Later (non-camera) events on the same game loop take priority. if event_type != "CameraUpdate": action_frames[player_id][-1].event_type = event_type else: action_frames[player_id].append(EventData(game_loop, event_type)) for player_id in action_frames: # Filter out repeated camera updates. filtered = [] for v in action_frames[player_id]: if (v.event_type == "CameraUpdate" and filtered and filtered[-1].event_type == "CameraUpdate"): filtered[-1].game_loop = v.game_loop else: filtered.append(v) # If the last update is a camera move, remove it (only camera moves with a # raw action following them should be added). if filtered and filtered[-1].event_type == "CameraUpdate": filtered.pop() # Extract game loops. action_frames[player_id] = [v.game_loop for v in filtered] if not action_frames[player_id] or (action_frames[player_id][-1] != last_game_loop): action_frames[player_id].append(last_game_loop) return action_frames
pysc2-master
pysc2/lib/replay/sc2_replay_utils.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SC2 replay data -> converted observations.""" import collections from typing import Any, Dict, Iterable, Sequence import numpy as np from pysc2.env.converter import converter as converter_lib from pysc2.env.converter import derive_interface_options from pysc2.env.converter.proto import converter_pb2 from pysc2.lib.replay import replay_observation_stream from pysc2.lib.replay import sc2_replay from pysc2.lib.replay import sc2_replay_utils import tree from s2clientprotocol import sc2api_pb2 def _unconverted_observation(observation, actions): return converter_pb2.Observation( player=observation[0], opponent=observation[1], force_action=sc2api_pb2.RequestAction( actions=actions ), # This will be populated when we look ahead. force_action_delay=0, ) def get_flat_action(obs: Dict[str, Any]) -> Dict[str, Any]: """Extracts action, with components starting action/, from an observation.""" result = { k[len('action/'):]: v for k, v in obs.items() if k.startswith('action/') } if not result: raise ValueError(f'Failed to parse action from observation: {obs}') return result def _convert_observation(converter, player_observation, force_action_delay, force_action_fn): """Convert a raw observation proto and set action delay.""" player_observation.force_action_delay = force_action_delay converted_observation = converter.convert_observation(player_observation) converter.convert_action(force_action_fn(converted_observation)) def _squeeze_if_necessary(x): if x.shape == (1,): return np.squeeze(x) return x return tree.map_structure(_squeeze_if_necessary, converted_observation) def converted_observations(observations_iterator, converter, accept_step_fn, force_action_fn=get_flat_action): """Generator of transformed observations (incl. action and time delay).""" current_observation = next(observations_iterator) current_step = current_observation[0].observation.game_loop assert current_step == 0 player_obs_queue = collections.deque() for next_observation in observations_iterator: step = next_observation[0].observation.game_loop if (step == 0 or (current_step > 0 and not accept_step_fn(step - 1))): # Save the observation even if it didn't have any actions. The step # stream also yields the observations immediately before the actions # are reported to capture the time the player actually issued the # action. If actions were reported at time steps t1 and t2 # subsequently, we need to yield observation at step t2-1 instead of # t1 (this is also what is recorded in the action skips dataset). current_observation = next_observation continue player_obs_queue.append(_unconverted_observation( observation=current_observation, actions=next_observation[0].actions)) while len(player_obs_queue) >= 2: # We have saved at least 2 observations in the queue, we can now # correctly calculate the true action delay. player_obs = player_obs_queue.popleft() player_obs_next = player_obs_queue[0] converted_observation = _convert_observation( converter, player_obs, force_action_delay=(player_obs_next.player.observation.game_loop - player_obs.player.observation.game_loop), force_action_fn=force_action_fn) yield converted_observation current_step = step current_observation = next_observation # Always use last observation, it contains the player result. player_obs_queue.append(_unconverted_observation( observation=current_observation, actions=current_observation[0].actions)) previous_delay = 1 while player_obs_queue: player_obs = player_obs_queue.popleft() if len(player_obs_queue) >= 1: player_obs_next = player_obs_queue[0] force_action_delay = (player_obs_next.player.observation.game_loop - player_obs.player.observation.game_loop) else: # Use previous force action delay, this is only done in the last step. # Preserve for reproducibility. In theory the actual delay value # shouldn't matter if we retrain checkpoints, since the actions from # the last step are never taken. force_action_delay = previous_delay converted_observation = _convert_observation( converter, player_obs, force_action_delay=force_action_delay, force_action_fn=force_action_fn) previous_delay = force_action_delay yield converted_observation def converted_observation_stream( replay_data: bytes, player_id: int, converter_settings: converter_pb2.ConverterSettings, disable_fog: bool = False, max_steps: int = int(1e6)): """Generator of transformed observations (incl. action and time delay).""" with replay_observation_stream.ReplayObservationStream( step_mul=1, game_steps_per_episode=max_steps, add_opponent_observations=True, interface_options=derive_interface_options.from_settings( converter_settings), disable_fog=disable_fog, ) as replay_stream: replay_stream.start_replay_from_data(replay_data, player_id=player_id) obs_converter = converter_lib.Converter( converter_settings, environment_info=converter_pb2.EnvironmentInfo( game_info=replay_stream.game_info(), replay_info=replay_stream.replay_info())) replay_file = sc2_replay.SC2Replay(replay_data) action_skips = sc2_replay_utils.raw_action_skips(replay_file) player_action_skips = action_skips[player_id] step_sequence = get_step_sequence(player_action_skips) observations_iterator = replay_stream.observations( step_sequence=step_sequence) def _accept_step_fn(step): return step in player_action_skips yield from converted_observations(observations_iterator, obs_converter, _accept_step_fn) # Current step sequence will yield observations right before # the last camera move in a contiguous sequence of camera moves. Consider # whether we want to change the observation at which the camera action is being # reported. def get_step_sequence(action_skips: Iterable[int]) -> Sequence[int]: """Generates a sequence of step muls for the replay stream. In SC2 we train on observations with actions but actions in replays are reported in frames after they were taken. We need a step sequence so we can advance the SC2 environment to the relevant observations before the action was taken and then step again with delta=1 to get the actual action on the next frame. A step sequence is key from a performance point of view since at the steps where no actions were taken we do not really need to render which is the expensive part of processing a replay. We can advance the simulation without rendering at a relatively low cost. An example stream looks like this: (obs_{0},)------(obs_{k-1},)---(obs_{k}, a_{k-1})---(obs_{k+1}, a_{k})... The first observation where an action was taken is `obs_{k-1}`, but the replay will not report the action until we request the next observation `obs_{k}`. In the above case we also have an action taken at timestep k, but it will be reported when we request `obs_{k+1}`. A step sequence would allow us to get a union of the observations that we want to report for training and those that have actions in them. An example step sequence for the above stream would be `[k-1, 1, 1]` where we first step k-1 times to get to the first observation where an action was taken, then step once to get the actual action as it is reported late. Args: action_skips: A sequence of game loops where actions were taken in the replay. This contains the game loops of the observations that happened before the action was reported by the replay to align it with the time step when the player took the action (replays report past actions). Note that the provided action skips sequence is assumed to have already been processed to include only relevant frames depending on the action types of interest (e.g., with or without camera moves). Returns: A sequence of step_muls to use in the replay stream. """ prev_game_loop = 0 steps = [] for current_game_loop in action_skips: if prev_game_loop == 0: steps.append(current_game_loop) elif current_game_loop - prev_game_loop > 1: # We need to yield twice: to get the observation immediately before the # action (this is the game loop number we stored in the index), and to # get the replay observation that will return the actual actions. This # is needed because replays return actions that humans have taken on # previous frames. steps.append(1) steps.append(current_game_loop - prev_game_loop - 1) elif current_game_loop - prev_game_loop == 1: # Both previous and current observations had actions, step 1. steps.append(1) prev_game_loop = current_game_loop return steps
pysc2-master
pysc2/lib/replay/replay_converter.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl import flags from absl.testing import absltest from pysc2.lib.replay import sc2_replay from pysc2.lib import gfile from pysc2.lib import resources FLAGS = flags.FLAGS PATH = "pysc2/lib/replay/test_data/replay_01.SC2Replay" class Sc2ReplayTest(absltest.TestCase): def setUp(self): super(Sc2ReplayTest, self).setUp() replay_path = resources.GetResourceFilename(PATH) with gfile.Open(replay_path, mode="rb") as f: replay_data = f.read() self._replay = sc2_replay.SC2Replay(replay_data) def testDetails(self): replay_details = self._replay.details() self.assertEmpty(replay_details["m_cacheHandles"]) self.assertEqual(replay_details["m_campaignIndex"], 0) self.assertEqual(replay_details["m_defaultDifficulty"], 3) self.assertEqual(replay_details["m_description"], "") self.assertEqual(replay_details["m_difficulty"], "") self.assertFalse(replay_details["m_disableRecoverGame"]) self.assertEqual(replay_details["m_gameSpeed"], 4) self.assertEqual(replay_details["m_imageFilePath"], "") self.assertFalse(replay_details["m_isBlizzardMap"]) self.assertEqual( replay_details["m_mapFileName"], "Ladder2019Season1May/CyberForestLE.SC2Map") self.assertFalse(replay_details["m_miniSave"]) self.assertEqual( replay_details["m_modPaths"], [ "Mods/Liberty.SC2Mod", "Mods/Swarm.SC2Mod", "Mods/Void.SC2Mod", "Mods/VoidMulti.SC2Mod" ]) # (there is more data here, just listing the most interesting bits) self.assertEqual(replay_details["m_playerList"][0]["m_name"], "Supervised") self.assertFalse(replay_details["m_playerList"][0]["m_observe"]) self.assertEqual(replay_details["m_playerList"][0]["m_race"], "Protoss") self.assertEqual(replay_details["m_playerList"][0]["m_result"], 2) self.assertEqual(replay_details["m_playerList"][1]["m_name"], "temp_x1_5_beast3f_6571236_final") self.assertFalse(replay_details["m_playerList"][1]["m_observe"]) self.assertEqual(replay_details["m_playerList"][1]["m_race"], "Protoss") self.assertEqual(replay_details["m_playerList"][1]["m_result"], 1) self.assertFalse(replay_details["m_restartAsTransitionMap"]) self.assertEqual(replay_details["m_thumbnail"]["m_file"], "Minimap.tga") self.assertEqual(replay_details["m_timeLocalOffset"], 0) self.assertEqual(replay_details["m_timeUTC"], 132772394814660570) self.assertEqual(replay_details["m_title"], "Cyber Forest LE") def testInitData(self): init_data = self._replay.init_data() # (there is more data here, just listing the most interesting bits) game_description = init_data["m_syncLobbyState"]["m_gameDescription"] self.assertEqual(game_description["m_gameOptions"]["m_fog"], 0) self.assertEqual(game_description["m_gameSpeed"], 4) self.assertEqual(game_description["m_isBlizzardMap"], False) self.assertEqual(game_description["m_isRealtimeMode"], False) self.assertEqual( game_description["m_mapFileName"], "Ladder2019Season1May/CyberForestLE.SC2Map") def testTrackerEvents(self): events = list(self._replay.tracker_events()) event_types = set(s["_event"] for s in events) self.assertEqual( event_types, {"NNet.Replay.Tracker.SPlayerSetupEvent", "NNet.Replay.Tracker.SPlayerStatsEvent", "NNet.Replay.Tracker.SUnitBornEvent", "NNet.Replay.Tracker.SUnitDiedEvent", "NNet.Replay.Tracker.SUnitDoneEvent", "NNet.Replay.Tracker.SUnitInitEvent", "NNet.Replay.Tracker.SUnitPositionsEvent", "NNet.Replay.Tracker.SUnitTypeChangeEvent", "NNet.Replay.Tracker.SUpgradeEvent"}) def testGameEvents(self): events = list(self._replay.game_events()) event_types = set(s["_event"] for s in events) self.assertEqual( event_types, {"NNet.Game.SCameraUpdateEvent", "NNet.Game.SCmdEvent", "NNet.Game.SCmdUpdateTargetPointEvent", "NNet.Game.SCmdUpdateTargetUnitEvent", "NNet.Game.SCommandManagerStateEvent", "NNet.Game.SPeerSetSyncLoadingTimeEvent", "NNet.Game.SPeerSetSyncPlayingTimeEvent", "NNet.Game.SSelectionDeltaEvent", "NNet.Game.SUserFinishedLoadingSyncEvent", "NNet.Game.SUserOptionsEvent"}) def testMessageEvents(self): events = list(self._replay.message_events()) event_types = set(s["_event"] for s in events) self.assertEqual( event_types, {"NNet.Game.SLoadingProgressMessage"}) def testAttributesEvents(self): events = list(self._replay.attributes_events()) self.assertEmpty(events) if __name__ == "__main__": absltest.main()
pysc2-master
pysc2/lib/replay/sc2_replay_test.py
# Copyright 2021 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for loading replay data using the s2protocol library.""" import io import json import types import mpyq from s2protocol import versions as s2versions import tree def _convert_to_str(s): if isinstance(s, bytes): return bytes.decode(s) else: return s def _convert_all_to_str(structure): if isinstance(structure, types.GeneratorType): return tree.map_structure(_convert_to_str, list(structure)) else: return tree.map_structure(_convert_to_str, structure) class SC2Replay(object): """Helper class for loading and extracting data using s2protocol library.""" def __init__(self, replay_data): """Construct SC2Replay helper for extracting data from a replay.""" (self._header, self._metadata, self._extracted, self._protocol) = _extract(replay_data) def details(self): details_key = b"replay.details" if details_key not in self._extracted: details_key = b"replay.details.backup" return _convert_all_to_str( self._protocol.decode_replay_details(self._extracted[details_key])) def init_data(self): return _convert_all_to_str( self._protocol.decode_replay_initdata( self._extracted[b"replay.initData"])) def tracker_events(self, filter_fn=None): """Yield tracker events from the replay in s2protocol format.""" for event in _convert_all_to_str( self._protocol.decode_replay_tracker_events( self._extracted[b"replay.tracker.events"])): if not filter_fn or filter_fn(event): yield event def game_events(self, filter_fn=None): """Yield game events from the replay in s2protocol format.""" for event in _convert_all_to_str( self._protocol.decode_replay_game_events( self._extracted[b"replay.game.events"])): if not filter_fn or filter_fn(event): yield event def message_events(self, filter_fn=None): """Yield message events from the replay in s2protocol format.""" for event in _convert_all_to_str( self._protocol.decode_replay_message_events( self._extracted[b"replay.message.events"])): if not filter_fn or filter_fn(event): yield event def attributes_events(self, filter_fn=None): """Yield attribute events from the replay in s2protocol format.""" for event in _convert_all_to_str( self._protocol.decode_replay_attributes_events( self._extracted[b"replay.attributes.events"])): if not filter_fn or filter_fn(event): yield event @property def metadata(self): return self._metadata @property def protocol(self): return self._protocol def _extract(contents): """Extract a replay using s2protocol.""" replay_io = io.BytesIO() replay_io.write(contents) replay_io.seek(0) archive = mpyq.MPQArchive(replay_io) extracted = archive.extract() metadata = json.loads( bytes.decode(extracted[b"replay.gamemetadata.json"], "utf-8")) contents = archive.header["user_data_header"]["content"] header = s2versions.latest().decode_replay_header(contents) base_build = header["m_version"]["m_baseBuild"] protocol = s2versions.build(base_build) if protocol is None: raise ValueError("Could not load protocol {} for replay".format(base_build)) return header, metadata, extracted, protocol
pysc2-master
pysc2/lib/replay/sc2_replay.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for monatomic water in the cubic or hexagonal ice phases.""" from flows_for_atomic_solids.experiments import utils from flows_for_atomic_solids.models import attention from flows_for_atomic_solids.models import coupling_flows from flows_for_atomic_solids.models import particle_model_constructors from flows_for_atomic_solids.models import particle_models from flows_for_atomic_solids.systems.monatomic_water import MonatomicWaterEnergy import jax.numpy as jnp from ml_collections import config_dict # Density, temperature and system shapes and sizes below chosen for comparison # with the paper by Quigley (https://doi.org/10.1063/1.4896376, see Table 1). BOLTZMANN_CONSTANT = 0.0019872067 # in units of kcal/mol K QUIGLEY_DENSITY = 0.033567184 # inverse cubic Angstrom QUIGLEY_TEMPERATURE = 200. # Kelvin BOX_FUNS = { 'hex': utils.get_hexagonal_box_lengths, 'cubic': utils.get_cubic_box_lengths, } LATTICE_MODELS = { 'hex': particle_models.HexagonalIceLattice, 'cubic': particle_models.DiamondCubicLattice, } FREQUENCIES = { 8: 8, 64: 8, 216: 16, 512: 24, } def get_config(num_particles: int, lattice: str) -> config_dict.ConfigDict: """Returns the config.""" box_fun = BOX_FUNS[lattice] lattice_model = LATTICE_MODELS[lattice] box_lengths = box_fun(num_particles, density=QUIGLEY_DENSITY, dim=3) num_frequencies = FREQUENCIES[num_particles] config = config_dict.ConfigDict() config.state = dict( num_particles=num_particles, beta=1./(QUIGLEY_TEMPERATURE * BOLTZMANN_CONSTANT), lower=-box_lengths/2., upper=box_lengths/2., ) conditioner = dict( constructor=coupling_flows.make_equivariant_conditioner, kwargs=dict( embedding_size=256, num_frequencies=num_frequencies, conditioner_constructor=attention.Transformer, conditioner_kwargs=dict( num_heads=2, num_layers=2, dropout_rate=0., use_layernorm=False, w_init_final=jnp.zeros)) ) translation_invariant = True config.model = dict( constructor=particle_model_constructors.make_particle_model, kwargs=dict( bijector=dict( constructor=coupling_flows.make_split_coupling_flow, kwargs=dict( num_layers=24, num_bins=16, conditioner=conditioner, permute_variables=True, split_axis=-1, use_circular_shift=True, prng=42, ), ), base=dict( constructor=lattice_model, kwargs=dict( noise_scale=0.2, remove_corner=translation_invariant, ), ), translation_invariant=translation_invariant, ), ) shared_kwargs = dict(box_length=box_lengths) config.train_energy = dict( constructor=MonatomicWaterEnergy, kwargs=dict(min_distance=0.01, linearize_below=1.2, **shared_kwargs) ) config.test_energy = dict( constructor=MonatomicWaterEnergy, kwargs=dict(**shared_kwargs) ) config.train = dict( batch_size=128, learning_rate=7e-5, learning_rate_decay_steps=[250000, 500000], learning_rate_decay_factor=0.1, seed=42, max_gradient_norm=10000., ) config.test = dict( test_every=500, batch_size=2048, ) return config
flows_for_atomic_solids-main
experiments/monatomic_water_config.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
flows_for_atomic_solids-main
experiments/__init__.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for running experiments.""" from typing import Callable, Optional, Sequence, Union import chex import jax.numpy as jnp import numpy as np Array = chex.Array Numeric = Union[Array, int, float] def get_lr_schedule(base_lr: float, lr_decay_steps: Sequence[int], lr_decay_factor: float) -> Callable[[Numeric], Numeric]: """Returns a callable that defines the learning rate for a given step.""" if not lr_decay_steps: return lambda _: base_lr lr_decay_steps = jnp.array(lr_decay_steps) if not jnp.all(lr_decay_steps[1:] > lr_decay_steps[:-1]): raise ValueError('Expected learning rate decay steps to be increasing, got ' f'{lr_decay_steps}.') def lr_schedule(update_step: Numeric) -> Array: i = jnp.sum(lr_decay_steps <= update_step) return base_lr * lr_decay_factor**i return lr_schedule def get_orthorhombic_box_lengths( num_particles: int, density: float, dim: int, shape_factor: Array, repeats: Optional[Array]) -> Array: """Returns edge lengths of an orthorhombic box.""" assert dim == len(shape_factor) vol = num_particles / density if repeats is None: repeats = np.ones(dim, dtype=int) base = (vol / np.prod(shape_factor * repeats)) ** (1./dim) return base * shape_factor * repeats def get_hexagonal_box_lengths( num_particles: int, density: float, dim: int, repeats: Optional[Array] = None) -> Array: """Returns edge lengths of an orthorhombic box for Ih packing.""" shape_factor = np.array([1.0, np.sqrt(3), np.sqrt(8/3)]) return get_orthorhombic_box_lengths( num_particles, density, dim, shape_factor, repeats) def get_cubic_box_lengths( num_particles: int, density: float, dim: int) -> Array: """Returns the edge lengths of a cubic simulation box.""" edge_length = (num_particles / density) ** (1./dim) return np.full([dim], edge_length)
flows_for_atomic_solids-main
experiments/utils.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for a Lennard-Jones system in the solid FCC phase.""" from flows_for_atomic_solids.experiments import utils from flows_for_atomic_solids.models import attention from flows_for_atomic_solids.models import coupling_flows from flows_for_atomic_solids.models import particle_model_constructors from flows_for_atomic_solids.models import particle_models from flows_for_atomic_solids.systems.lennard_jones import LennardJonesEnergy import jax.numpy as jnp from ml_collections import config_dict FREQUENCIES = { 32: 8, 256: 16, 500: 32, } def get_config(num_particles: int) -> config_dict.ConfigDict: """Returns the config.""" box_lengths = utils.get_cubic_box_lengths(num_particles, density=1.28, dim=3) num_frequencies = FREQUENCIES[num_particles] config = config_dict.ConfigDict() config.state = dict( num_particles=num_particles, beta=0.5, lower=-box_lengths/2., upper=box_lengths/2., ) conditioner = dict( constructor=coupling_flows.make_equivariant_conditioner, kwargs=dict( embedding_size=256, num_frequencies=num_frequencies, conditioner_constructor=attention.Transformer, conditioner_kwargs=dict( num_heads=2, num_layers=2, dropout_rate=0., use_layernorm=False, w_init_final=jnp.zeros)) ) translation_invariant = True config.model = dict( constructor=particle_model_constructors.make_particle_model, kwargs=dict( bijector=dict( constructor=coupling_flows.make_split_coupling_flow, kwargs=dict( num_layers=24, num_bins=16, conditioner=conditioner, permute_variables=True, split_axis=-1, use_circular_shift=True, prng=42, ), ), base=dict( constructor=particle_models.FaceCentredCubicLattice, kwargs=dict( noise_scale=0.01, remove_corner=translation_invariant, ), ), translation_invariant=translation_invariant, ), ) shared_kwargs = dict( cutoff=2.7, box_length=box_lengths, lambda_lj=1., shift_energy=True) config.train_energy = dict( constructor=LennardJonesEnergy, kwargs=dict(min_distance=0.01, linearize_below=0.8, **shared_kwargs) ) config.test_energy = dict( constructor=LennardJonesEnergy, kwargs=dict(min_distance=0., **shared_kwargs) ) config.train = dict( batch_size=128, learning_rate=7e-5, learning_rate_decay_steps=[250000, 500000], learning_rate_decay_factor=0.1, seed=42, max_gradient_norm=10000., ) config.test = dict( test_every=500, batch_size=2048, ) return config
flows_for_atomic_solids-main
experiments/lennard_jones_config.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Energy-based training of a flow model on an atomistic system.""" from typing import Callable, Dict, Tuple, Union from absl import app from absl import flags import chex import distrax from flows_for_atomic_solids.experiments import lennard_jones_config from flows_for_atomic_solids.experiments import monatomic_water_config from flows_for_atomic_solids.experiments import utils from flows_for_atomic_solids.utils import observable_utils as obs_utils import haiku as hk import jax import jax.numpy as jnp import optax Array = chex.Array Numeric = Union[Array, float] flags.DEFINE_enum('system', 'mw_cubic_64', ['mw_cubic_8', 'mw_cubic_64', 'mw_cubic_216', 'mw_cubic_512', 'mw_hex_64', 'mw_hex_216', 'mw_hex_512', 'lj_32', 'lj_256', 'lj_500', ], 'System and number of particles to train.') flags.DEFINE_integer('num_iterations', int(10**6), 'Number of training steps.') FLAGS = flags.FLAGS def _num_particles(system: str) -> int: return int(system.split('_')[-1]) def _get_loss( model: distrax.Distribution, energy_fn: Callable[[Array], Array], beta: Numeric, num_samples: int) -> Tuple[Array, Dict[str, Array]]: """Returns the loss and stats.""" rng_key = hk.next_rng_key() samples, log_prob = model.sample_and_log_prob( seed=rng_key, sample_shape=num_samples) energies = energy_fn(samples) energy_loss = jnp.mean(beta * energies + log_prob) loss = energy_loss stats = { 'energy': energies, 'model_log_prob': log_prob, 'target_log_prob': -beta * energies } return loss, stats def main(_): system = FLAGS.system if system.startswith('lj'): config = lennard_jones_config.get_config(_num_particles(system)) elif system.startswith('mw_cubic'): config = monatomic_water_config.get_config(_num_particles(system), 'cubic') elif system.startswith('mw_hex'): config = monatomic_water_config.get_config(_num_particles(system), 'hex') else: raise KeyError(system) state = config.state energy_fn_train = config.train_energy.constructor( **config.train_energy.kwargs) energy_fn_test = config.test_energy.constructor(**config.test_energy.kwargs) lr_schedule_fn = utils.get_lr_schedule( config.train.learning_rate, config.train.learning_rate_decay_steps, config.train.learning_rate_decay_factor) optimizer = optax.chain( optax.scale_by_adam(), optax.scale_by_schedule(lr_schedule_fn), optax.scale(-1)) if config.train.max_gradient_norm is not None: optimizer = optax.chain( optax.clip_by_global_norm(config.train.max_gradient_norm), optimizer) def create_model(): return config.model['constructor']( num_particles=state.num_particles, lower=state.lower, upper=state.upper, **config.model['kwargs']) def loss_fn(): """Loss function for training.""" model = create_model() loss, stats = _get_loss( model=model, energy_fn=energy_fn_train, beta=state.beta, num_samples=config.train.batch_size, ) metrics = { 'loss': loss, 'energy': jnp.mean(stats['energy']), 'model_entropy': -jnp.mean(stats['model_log_prob']), } return loss, metrics def eval_fn(): """Evaluation function.""" model = create_model() loss, stats = _get_loss( model=model, energy_fn=energy_fn_test, beta=state.beta, num_samples=config.test.batch_size, ) log_probs = { 'model_log_probs': stats['model_log_prob'], 'target_log_probs': stats['target_log_prob'], } metrics = { 'loss': loss, 'energy': jnp.mean(stats['energy']), 'model_entropy': -jnp.mean(stats['model_log_prob']), 'ess': obs_utils.compute_ess(**log_probs), 'logz': obs_utils.compute_logz(**log_probs), 'logz_per_particle': obs_utils.compute_logz(**log_probs) / state.num_particles, } return metrics print(f'Initialising system {system}') rng_key = jax.random.PRNGKey(config.train.seed) init_fn, apply_fn = hk.transform(loss_fn) _, apply_eval_fn = hk.transform(eval_fn) rng_key, init_key = jax.random.split(rng_key) params = init_fn(init_key) opt_state = optimizer.init(params) def _loss(params, rng): loss, metrics = apply_fn(params, rng) return loss, metrics jitted_loss = jax.jit(jax.value_and_grad(_loss, has_aux=True)) jitted_eval = jax.jit(apply_eval_fn) step = 0 print('Beginning of training.') while step < FLAGS.num_iterations: # Training update. rng_key, loss_key = jax.random.split(rng_key) (_, metrics), g = jitted_loss(params, loss_key) if (step % 50) == 0: print(f'Train[{step}]: {metrics}') updates, opt_state = optimizer.update(g, opt_state, params) params = optax.apply_updates(params, updates) if (step % config.test.test_every) == 0: rng_key, val_key = jax.random.split(rng_key) metrics = jitted_eval(params, val_key) print(f'Valid[{step}]: {metrics}') step += 1 print('Done') if __name__ == '__main__': app.run(main)
flows_for_atomic_solids-main
experiments/train.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to build lattice-based particle models.""" from typing import Tuple, Union import chex import numpy as np Array = chex.Array def gcd(values: Array, tol: float = 3e-2) -> Union[int, float]: """GCD of a list of numbers (possibly floats).""" def _gcd2(a, b): if np.abs(b) < tol: return a else: return _gcd2(b, a % b) x = values[0] for v in values[1:]: x = _gcd2(x, v) return x def make_simple_lattice(lower: Array, upper: Array, cell_aspect: Array, n: int) -> Tuple[Array, Array, Array]: """Returns a shifted cubic lattice with atoms at the unit cell centres.""" dim = len(lower) assert len(upper) == dim assert len(cell_aspect) == dim box_size = upper - lower normalized_box = (upper - lower) / cell_aspect integer_aspect = np.round(normalized_box / gcd(normalized_box)).astype(int) num_per_dim = np.round((n/np.prod(integer_aspect)) ** (1/dim)).astype(int) repeats = num_per_dim * integer_aspect if np.prod(repeats) != n: raise ValueError(f'The number of lattice points {n} does not ' f'match the box size {box_size} and cell aspect ' f'{cell_aspect}, got integer aspect {integer_aspect}, ' f'{repeats} repeats.') points = [np.linspace(lower[i], upper[i], repeats[i], endpoint=False).T for i in range(dim)] xs = np.meshgrid(*points) lattice = np.concatenate([x[..., None] for x in xs], axis=-1) lattice = lattice.reshape(np.prod(repeats), dim) lattice_constant = (upper - lower) / repeats return lattice, lattice_constant, repeats def make_lattice(lower: Array, upper: Array, cell_aspect: Array, atom_positions_in_cell: Array, n: int) -> Tuple[Array, Array, Array]: """An orthorhombic lattice of repeated unit cells. Args: lower: vector of lower limits of lattice box (number of elements determines the dimensionality) upper: vector of upper limits of lattice box (number of elements must be the same as `lower`) cell_aspect: relative lengths of unit cell edges. A cubic cell would have `cell_aspect==[1, 1, 1]` for example. The box basis `lower - upper`, divided by `cell_aspect`, should have low-integer length ratios. atom_positions_in_cell: a n_u x dimensionality matrix with the fractional positions of atoms within each unit cell. `n_u` will be the number of atoms per unit cell. n: number of atoms in lattice. Should be the product of the low-integer length ratios of the aspect-normalized box, times some integer to the power of the number of dimensions, times the number of atoms per cell. Returns: A 3-tuple (lattice, lattice_constant, repeats): lattice: n x dimension array of lattice sites. lattice_constant: a vector of length equal to the dimensionality, with the side lengths of the unit cell. repeats: an integer vector of length equal to the dimensionality, with the number of cells in each dimension. `repeats x lattice_constant` equals `upper - lower`. """ num_cells = n // len(atom_positions_in_cell) if num_cells * len(atom_positions_in_cell) != n: raise ValueError(f'Number of particles {n} is not divisible by the number ' f'of particles per cell {len(atom_positions_in_cell)}') base, lc, repeats = make_simple_lattice(lower, upper, cell_aspect, num_cells) sites = atom_positions_in_cell * lc lattice = base[..., None, :] + sites lattice = lattice.reshape(-1, lattice.shape[-1]) return lattice, lc, repeats
flows_for_atomic_solids-main
utils/lattice_utils.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for computing observables in atomistic systems.""" from typing import Optional, Tuple import chex import jax import jax.numpy as jnp import scipy.special Array = chex.Array def _volume_sphere(radius: Array, dim: int) -> Array: """Computes the volume of a Euclidean ball in `dim` dimensions.""" c = jnp.pi**(dim/2) / scipy.special.gamma(1 + dim/2) # Volume of unit sphere. return c * radius**dim def _check_same_dim(coordinates: Array, box_length: Array) -> None: """Check that `coordinates` and `box_length` have equal spatial dimension.""" if coordinates.ndim < 1: raise ValueError('The coordinates cannot be a scalar.') if box_length.ndim < 1: raise ValueError('The box length cannot be a scalar.') dim_coords = coordinates.shape[-1] dim_box = box_length.shape[-1] if dim_coords != dim_box: raise ValueError( f'The dimensionality of the coordinates (got {dim_coords}) must be ' f'equal to the dimensionality of the box (got {dim_box}).') def _pairwise_difference(coordinates: Array) -> Array: """Computes pairwise difference vectors. Args: coordinates: array with shape [..., num_particles, dim] containing particle coordinates. Returns: Array with shape [..., num_particles, num_particles, dim], difference vectors for all pairs of particles. """ if coordinates.ndim < 2: raise ValueError( f'Expected at least 2 array dimensions, got {coordinates.ndim}.') x = coordinates[..., :, None, :] y = coordinates[..., None, :, :] return x - y def pairwise_difference_pbc(coordinates: Array, box_length: Array) -> Array: """Computes pairwise distance vectors obeying periodic boundary conditions. Args: coordinates: array with shape [..., num_particles, dim] containing particle coordinates. box_length: array with shape [..., dim], the edge lengths of the box. Returns: Array with shape [..., num_particles, num_particles, dim], the pairwise distance vectors with respect to periodic boundary conditions. """ _check_same_dim(coordinates, box_length) deltas = _pairwise_difference(coordinates) chex.assert_is_broadcastable(box_length.shape[:-1], coordinates.shape[:-2]) box_length = box_length[..., None, None, :] return deltas - box_length * jnp.round(deltas / box_length) def squared_distance_pbc(coordinate_deltas: Array, box_length: Array) -> Array: """Computes squared distance obeying periodic boundary conditions. Args: coordinate_deltas: array with shape [..., dim] containing difference vectors. box_length: array with shape [..., dim], the edge lengths of the box. Returns: Array with shape [...], the squared distances with respect to periodic boundary conditions. """ _check_same_dim(coordinate_deltas, box_length) chex.assert_is_broadcastable( box_length.shape[:-1], coordinate_deltas.shape[:-1]) coordinate_deltas_pbc = (coordinate_deltas - box_length * jnp.round(coordinate_deltas / box_length)) return jnp.sum(coordinate_deltas_pbc**2, axis=-1) def pairwise_squared_distance_pbc(coordinates: Array, box_length: Array) -> Array: """Computes pairwise squared distance obeying periodic boundary conditions. Args: coordinates: array with shape [..., num_particles, dim] containing particle coordinates. box_length: array with shape [..., dim], the edge lengths of the box. Returns: Array with shape [..., num_particles, num_particles] with pairwise squared distances. """ _check_same_dim(coordinates, box_length) coordinate_deltas = _pairwise_difference(coordinates) chex.assert_is_broadcastable(box_length.shape[:-1], coordinates.shape[:-2]) return squared_distance_pbc(coordinate_deltas, box_length[..., None, None, :]) def pairwise_distance_pbc(coordinates: Array, box_length: Array) -> Array: """Computes pairwise distance obeying periodic boundary conditions. Args: coordinates: array with shape [..., num_particles, dim] containing particle coordinates. box_length: array with shape [..., dim], the edge lengths of the box. Returns: Array of shape [..., num_particles, num_particles] with pairwise distances. """ return jnp.sqrt(pairwise_squared_distance_pbc(coordinates, box_length)) def radial_distribution_function(coordinates: Array, box_length: Array, num_bins: int = 300) -> Array: """Computes the radial distribution function. The radial distribution function `g(r)`, also known as the pair correlation function, quantifies the variation in density as a function of distance with respect to a reference particle. Args: coordinates: array with shape [..., num_particles, dim] containing particle coordinates. box_length: array with shape [dim], the edge lengths of the simulation box. num_bins: the number of bins (resolution) for computing the radial distribution function. Returns: gr: array with shape [num_bins, 2] where the first column is the centre of the bin, `r`, and the second the estimated function value `g(r)`. """ num_particles, dim = coordinates.shape[-2:] if jnp.shape(box_length) != (dim,): raise ValueError( f'`box_length` must be a vector of length {dim}.' f' Got `box_length = {box_length}`.') min_box_length = jnp.min(box_length) box_volume = jnp.product(box_length) coordinates = jnp.reshape(coordinates, [-1, num_particles, dim]) batch_size = coordinates.shape[0] dr = pairwise_distance_pbc(coordinates, box_length) # Extract all upper triangular matrix elements. dr = jax.vmap(lambda x: x[jnp.triu_indices(x.shape[0], k=1)])(dr) hist, bins = jnp.histogram(dr, bins=num_bins, range=(0, min_box_length / 2.)) density = num_particles / box_volume volume_shell = _volume_sphere(bins[1:], dim) - _volume_sphere(bins[:-1], dim) # Normaliser for histogram so that `g(r)` approaches unity for large `r`. normaliser = volume_shell * density * batch_size * (num_particles - 1) / 2 gr = jnp.column_stack(((bins[:-1] + bins[1:]) / 2, hist / normaliser)) return gr def compute_histogram(data: Array, num_bins: int = 100, data_range: Optional[Tuple[float, float]] = None, density: bool = True) -> Array: """Returns a histogram of the input data.""" hist, bins = jnp.histogram( data, bins=num_bins, density=density, range=data_range) centers = (bins[:-1] + bins[1:]) / 2 return jnp.column_stack((centers, hist)) def free_energy_fep(forward: Array, beta: float) -> Array: """Returns the FEP estimate of the free energy difference. The free energy estimate is computed using the Free Energy Perturbation (FEP) estimator (for details see doi.org/10.1063/1.1740409). This is an importance sampling based estimator that requires specification of forward values. Args: forward: a one-dimensional array that contains the forward work values. beta: the inverse temperature. Returns: the estimated free energy difference. """ log_sum_exp = jax.scipy.special.logsumexp(-beta * forward) log_average_exp = log_sum_exp - jnp.log(forward.size) return - log_average_exp / beta def free_energy_fep_running(forward: Array, beta: float, num_evals: int = 10) -> Array: """Returns a running average of the FEP estimate. Args: forward: a one-dimensional array that contains the forward work values. beta: the inverse temperature. num_evals: number of times the free energy difference is evaluated. Returns: an array with shape [num_evals, 2] where the first column corresponds to the number of samples and the second column to the estimated free energy difference. """ num_samples = forward.size sample_increment = num_samples // num_evals running_average = [] for i in range(num_evals): samples_i = sample_increment * (i + 1) df_i = free_energy_fep(forward[:samples_i], beta) running_average.append((samples_i, df_i)) return jnp.array(running_average) def _compute_importance_weights(model_log_probs: Array, target_log_probs: Array) -> Array: """Returns the normalised importance weights. Args: model_log_probs: an array containing the log_probs computed by the model. target_log_probs: an array containing the target log_probs. Returns: the normalised importance weights. """ assert model_log_probs.shape == target_log_probs.shape # Make sure all computations are done in double precision. model_log_probs = model_log_probs.astype(jnp.float64) target_log_probs = target_log_probs.astype(jnp.float64) # Compute the self-normalised importance weights. return jax.nn.softmax(target_log_probs - model_log_probs, axis=None) def compute_ess(model_log_probs: Array, target_log_probs: Array) -> Array: """Returns the standard estimate of the effective sample size (ESS). More details can be found in https://arxiv.org/pdf/1602.03572.pdf (see Eq. 6). Args: model_log_probs: an array containing the log_probs computed by the model. target_log_probs: an array containing the target log_probs. Returns: the ESS as a percentage between 0 and 100. """ weights = _compute_importance_weights(model_log_probs, target_log_probs) return 100 / (jnp.sum(weights**2) * weights.size) def compute_logz(model_log_probs: Array, target_log_probs: Array) -> Array: """Returns an estimate of the logarithm of the ratio of normalisers. Args: model_log_probs: an array containing the log_probs computed by the model. target_log_probs: an array containing the target log_probs. Returns: the estimated difference of the log normalisers. """ assert model_log_probs.shape == target_log_probs.shape log_prob_diff = target_log_probs - model_log_probs log_sum_exp = jax.scipy.special.logsumexp(log_prob_diff, axis=None) return log_sum_exp - jnp.log(target_log_probs.size) def compute_importance_estimate(x: Array, model_log_probs: Array, target_log_probs: Array) -> Array: """Return an importance sampling estimate of the mean value of `x`.""" weights = _compute_importance_weights(model_log_probs, target_log_probs) if weights.shape != x.shape: raise ValueError('The shape of the importance sampling weights ' f'{weights.shape} differs from the shape of the data ' f'{x.shape} but is expected to be the same.') return jnp.sum(weights * x)
flows_for_atomic_solids-main
utils/observable_utils.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Distrax bijectors.""" from typing import Union import chex import distrax import jax.numpy as jnp Array = chex.Array class CircularShift(distrax.Lambda): """Shift with wrapping around. Or, translation on a torus.""" def __init__(self, shift: Array, lower: Union[float, Array], upper: Union[float, Array]): # Checking `upper >= lower` causes jitting problems when `upper` and # `lower` are arrays, we check only for scalars. The check is not # really necessary, since wrapping works equally well when upper < lower. if jnp.isscalar(lower) and jnp.isscalar(upper) and (lower >= upper): raise ValueError('`lower` must be less than `upper`.') try: width = upper - lower except TypeError as e: raise ValueError('`lower` and `upper` must be broadcastable to same ' f'shape, but `lower`={lower} and `upper`={upper}') from e wrap = lambda x: jnp.mod(x - lower, width) + lower # We first wrap the shift to avoid `x + shift` when `shift` is very large, # which can lead to loss of precision. This gives the same result, since # `wrap(x + wrap(shift)) == wrap(x + shift)`. Same holds for `y - shift`. shift = wrap(shift) super().__init__( forward=lambda x: wrap(x + shift), inverse=lambda y: wrap(y - shift), forward_log_det_jacobian=jnp.zeros_like, inverse_log_det_jacobian=jnp.zeros_like, event_ndims_in=0, is_constant_jacobian=True) class Rescale(distrax.ScalarAffine): """Rescales from the range [lower_in, upper_in] to [lower_out, upper_out].""" def __init__(self, lower_in: Union[float, Array], upper_in: Union[float, Array], lower_out: Union[float, Array], upper_out: Union[float, Array]): width_in = upper_in - lower_in width_out = upper_out - lower_out scale = width_out / width_in super().__init__(scale=scale, shift=lower_out - scale * lower_in)
flows_for_atomic_solids-main
models/bijectors.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Attention modules.""" import math from typing import Optional import chex import haiku as hk import jax import jax.numpy as jnp Array = chex.Array class Attention(hk.Module): """Multi-headed dot-product attention.""" def __init__(self, num_heads: int, w_init: Optional[hk.initializers.Initializer] = None, w_init_final: Optional[hk.initializers.Initializer] = None, name: Optional[str] = None): super().__init__(name=name) self._num_heads = num_heads default = hk.initializers.VarianceScaling(1.) self._w_init = default if w_init is None else w_init self._w_init_final = default if w_init_final is None else w_init_final @hk.transparent def _multihead_linear(self, x: Array, head_size: int) -> Array: """Linearly project `x` to have `head_size` dimensions per head.""" out = hk.Linear(self._num_heads * head_size, w_init=self._w_init)(x) shape = out.shape[:-1] + (self._num_heads, head_size) return jnp.reshape(out, shape) def __call__(self, q: Array, k: Array, v: Array) -> Array: """Apply attention with queries `q`, keys `k` and values `v`. Args: q: array of shape [..., N_q, D_q]. k: array of shape [..., N_k, D_k]. v: array of shape [..., N_k, D_v]. Returns: Array of shape [..., N_q, D_q]. """ num_dims = q.shape[-1] if num_dims % self._num_heads != 0: raise ValueError(f'The number of dimensions ({num_dims}) is not divisible' f' by the number of heads ({self._num_heads}).') head_size = num_dims // self._num_heads # Preprocess queries, keys and values. q = self._multihead_linear(q, head_size) k = self._multihead_linear(k, head_size) v = self._multihead_linear(v, head_size) # Compute attention matrix. scale = math.sqrt(head_size) attention = jnp.einsum('...thd,...Thd->...htT', q, k) / scale attention = jax.nn.softmax(attention) # Attend over values and concatenate head outputs. attended_v = jnp.einsum('...htT,...Thd->...thd', attention, v) attended_v = jnp.reshape(attended_v, attended_v.shape[:-2] + (num_dims,)) return hk.Linear(num_dims, w_init=self._w_init_final)(attended_v) class SelfAttention(Attention): """Multi-headed dot-product self-attention.""" def __call__(self, x: Array) -> Array: return super().__call__(x, x, x) class _DenseBlock(hk.Module): """An MLP with one hidden layer, whose output has the size of the input.""" def __init__(self, widening_factor: int, w_init: hk.initializers.Initializer, w_init_final: hk.initializers.Initializer, name: Optional[str] = None): super().__init__(name=name) self._widening_factor = widening_factor self._w_init = w_init self._w_init_final = w_init_final def __call__(self, x: Array) -> Array: num_dims = x.shape[-1] num_hiddens = self._widening_factor * num_dims x = hk.Linear(num_hiddens, w_init=self._w_init)(x) x = jax.nn.gelu(x) return hk.Linear(num_dims, w_init=self._w_init_final)(x) def _layer_norm(x: Array, name: Optional[str] = None) -> Array: """Apply a unique LayerNorm to `x` with default settings.""" return hk.LayerNorm(axis=-1, create_scale=True, create_offset=True, name=name)(x) class Transformer(hk.Module): """A transformer model.""" def __init__(self, num_heads: int, num_layers: int, dropout_rate: float = 0., use_layernorm: bool = True, w_init: Optional[hk.initializers.Initializer] = None, w_init_final: Optional[hk.initializers.Initializer] = None, name: Optional[str] = None): super().__init__(name=name) self._num_heads = num_heads self._num_layers = num_layers self._dropout_rate = dropout_rate if use_layernorm: self._maybe_layer_norm = _layer_norm else: self._maybe_layer_norm = lambda h, name: h default = hk.initializers.VarianceScaling(2. / math.sqrt(num_layers)) self._w_init = default if w_init is None else w_init self._w_init_final = default if w_init_final is None else w_init_final def __call__(self, x: Array, is_training: Optional[bool] = None) -> Array: """Applies the transformer. Args: x: array of shape [..., num_points, num_dims]. is_training: whether we're training or not. Must be provided when dropout is used, otherwise it can be left unspecified. Returns: Array of same shape as `x`. """ if self._dropout_rate != 0. and is_training is None: raise ValueError('`is_training` must be specified when dropout is used.') dropout_rate = self._dropout_rate if is_training else 0. h = x for i in range(self._num_layers): h_norm = self._maybe_layer_norm(h, name=f'h{i}_ln_1') h_attn = SelfAttention(num_heads=self._num_heads, w_init=self._w_init, w_init_final=self._w_init_final, name=f'h{i}_attn')(h_norm) h_attn = hk.dropout(hk.next_rng_key(), dropout_rate, h_attn) h = h + h_attn h_norm = self._maybe_layer_norm(h, name=f'h{i}_ln_2') h_dense = _DenseBlock(widening_factor=4, w_init=self._w_init, w_init_final=self._w_init_final, name=f'h{i}_mlp')(h_norm) h_dense = hk.dropout(hk.next_rng_key(), dropout_rate, h_dense) h = h + h_dense return self._maybe_layer_norm(h, name='ln_f')
flows_for_atomic_solids-main
models/attention.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Particle models.""" import abc import math from typing import Optional, Tuple import chex import distrax from flows_for_atomic_solids.models import distributions from flows_for_atomic_solids.utils import lattice_utils from flows_for_atomic_solids.utils import observable_utils as obs_utils import jax import jax.numpy as jnp import numpy as np from tensorflow_probability.substrates import jax as tfp Array = chex.Array PRNGKey = Array class ParticleModel(distrax.Distribution, metaclass=abc.ABCMeta): """A distribution over particles confined in a box. It assumes that the box has periodic boundary conditions (it's a torus). A sample from this distribution is a set of N particles in a D-dimensional box. Each particle is described by a vector of D position coordinates. A sample from this distribution has shape [N, D]. """ def __init__(self, num_particles: int, lower: Array, upper: Array): """Constructor. Args: num_particles: number of particles. lower: array of shape [dim], the lower ranges of the box. upper: array of shape [dim], the upper ranges of the box. """ if num_particles < 1: raise ValueError( f'The number of particles must be at least 1, got {num_particles}.') if lower.ndim != 1: raise ValueError(f'`lower` must have one array dimension, ' f'got `lower.ndim = {lower.ndim}`.') if upper.ndim != 1: raise ValueError(f'`upper` must have one array dimension, ' f'got `upper.ndim = {upper.ndim}`.') (dim,) = lower.shape if upper.shape != (dim,): raise ValueError( f'`lower` and `upper` must have the same shape. Got ' f'`lower.shape = {lower.shape}` and `upper.shape = {upper.shape}`.') if np.any(lower >= upper): raise ValueError( f'`lower` components must be less than `upper` components. ' f'Got `lower == {lower}` and `upper == {upper}`.') self._num_particles = num_particles self._dim = dim self._lower = lower self._upper = upper self._width = upper - lower super().__init__() @property def num_particles(self) -> int: return self._num_particles @property def dim(self) -> int: return self._dim @property def lower(self) -> Array: return self._lower @property def upper(self) -> Array: return self._upper @property def width(self) -> Array: return self._width @property def event_shape(self) -> Tuple[int, int]: return (self._num_particles, self._dim) def wrap(self, x: Array) -> Array: """Wraps `x` back into the box.""" return jnp.mod(x - self._lower, self._width) + self._lower def log_prob(self, particles: Array) -> Array: if particles.shape[-2:] != self.event_shape: raise ValueError( f'Events of shape {particles.shape[-2:]} were passed to `log_prob`,' f' but `{self.name}` expects events of shape {self.event_shape}.') return self._log_prob_no_checks(particles) def _log_prob_no_checks(self, particles: Array) -> Array: """Called by `log_prob`. Should be implemented in a subclass.""" raise NotImplementedError('`log_prob` is not implemented for ' f'`{self.name}`.') class FlowModel(ParticleModel): """A particle model transformed by a flow. It takes in a base model and a flow (a Distrax bijector). The model is the pushforward of the base model through the flow. If the base model is invariant to particle permutations and the flow is equivariant to particle permutations, the resulting model will be invariant to particle permutations too. """ def __init__(self, base_model: ParticleModel, bijector: distrax.BijectorLike): """Constructor. Args: base_model: the base model to transform with the flow. bijector: the flow, a Distrax bijector. """ super().__init__(base_model.num_particles, base_model.lower, base_model.upper) self._flow_model = distrax.Transformed(base_model, bijector) def _sample_n(self, key: PRNGKey, n: int) -> Array: return self._flow_model.sample(seed=key, sample_shape=n) def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: return self._flow_model.sample_and_log_prob(seed=key, sample_shape=n) def _log_prob_no_checks(self, particles: Array) -> Array: return self._flow_model.log_prob(particles) class TranslationInvariant(ParticleModel): """Translation-invariant particle model: works by inserting an extra particle. This model takes a base model with N particles, and produces a translation- invariant model with N+1 particles. It works as follows: 1. We draw N particles from the base model. 2. We add an extra particle at a fixed location. 3. We choose a translation uniformly at random and apply it to all particles. The probability density of N+1 particles `x` is `p(x) = p(z) p(u)`, where: - `u` is the random translation. - `p(u) = 1 / (upper - lower) ^ dim` is the uniform density on the box. - `z` are the N particles before translation by `u`. - `p(z)` is the density of the base model. NOTE: the above procedure breaks permutation invariance. If the base model is permutation-invariant, the resulting distribution over N+1 particles will be invariant to permutations of the first N particles, but not to permutations of all N+1 particles. """ def __init__(self, base_model: ParticleModel): """Constructor. Args: base_model: The base model. The number of particles of the translation- invariant model is the number of particles of the base model plus one. """ super().__init__(base_model.num_particles + 1, base_model.lower, base_model.upper) # We place the extra particle at the corner of the box. self._extra_particle = self.lower # Log density of the random shift: log uniform on the box. self._shift_log_prob = -np.sum(np.log(self.width)) self._base_model = base_model def _add_particle(self, key: PRNGKey, particles: Array) -> Array: batch_shape = particles.shape[:-2] extra = jnp.tile(self._extra_particle, batch_shape + (1, 1)) particles = jnp.concatenate((particles, extra), axis=-2) shift = self.width * jax.random.uniform(key, batch_shape + (1, self.dim)) particles = self.wrap(particles + shift) return particles def _sample_n(self, key: PRNGKey, n: int) -> Array: key1, key2 = jax.random.split(key) samples = self._base_model.sample(seed=key1, sample_shape=n) samples = self._add_particle(key2, samples) return samples def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: key1, key2 = jax.random.split(key) samples, log_prob = self._base_model.sample_and_log_prob( seed=key1, sample_shape=n) samples = self._add_particle(key2, samples) log_prob += self._shift_log_prob return samples, log_prob def _log_prob_no_checks(self, particles: Array) -> Array: shift = particles[..., -1:, :] - self._extra_particle particles = self.wrap(particles[..., :-1, :] - shift) return self._base_model.log_prob(particles) + self._shift_log_prob def _log_factorial(n: int) -> float: return sum(math.log(i + 1) for i in range(n)) class Lattice(ParticleModel, metaclass=abc.ABCMeta): """A particle model based on a lattice for sampling particles. Samples are generated by adding random noise to the lattice followed by a random permutation of particles. The noise is drawn i.i.d. from a distribution that is defined on a suitable interval such that perturbed particles never escape their lattice sites. """ def __init__(self, num_particles: int, lower: Array, upper: Array, noise_scale: float, cell_aspect: Array, atom_positions_in_cell: Array, remove_corner: bool, spherical_noise: bool): """Constructor. Args: num_particles: number of particles. lower: array of shape [dim], the lower ranges of the box. upper: array of shape [dim], the upper ranges of the box. noise_scale: scale for the noise distribution. cell_aspect: vector of length `dim` with the relative length of each of the unit cell axes. atom_positions_in_cell: [N x dim] matrix of fractional coordinates of atoms within each unit cell (N being the number of atoms per cell). remove_corner: whether the lattice excludes one particle, at the coordinate origin. Notice that if True, `num_particles` should not count the missing particle, e.g., a 2x2x2 simple cubic lattice should have `num_particles` equal 7 and not 8 if `remove_corner` is True. spherical_noise: whether to cut off the noise spherically or indepedently across each axis. """ super().__init__(num_particles, lower, upper) if noise_scale < 0.: raise ValueError( f'`noise_scale` can\'t be negative; got {noise_scale}.') self._cell_aspect = cell_aspect self._atom_positions_in_cell = atom_positions_in_cell self._remove_corner = remove_corner self._lattice, self._lattice_constant, self._repeats = self._make_lattice() self._spherical_noise = spherical_noise self._noise_dist = self._make_noise_dist(noise_scale, spherical_noise) self._log_num_permutations = _log_factorial(num_particles) @property def lattice(self) -> Array: return self._lattice @property def lattice_constant(self) -> Array: return self._lattice_constant def _make_lattice(self) -> Tuple[Array, Array, Array]: """Returns a lattice and its lattice constant.""" lattice, lc, repeats = lattice_utils.make_lattice( self.lower, self.upper, self._cell_aspect, self._atom_positions_in_cell, self.num_particles + self._remove_corner) if self._remove_corner: # Make sure the removed site is at the lower corner lattice = lattice - lattice[0] + self.lower lattice = lattice[1:] lattice = self.wrap(lattice) return lattice, lc, repeats def _get_lattice_cutoff(self) -> float: r_matrix = obs_utils.pairwise_distance_pbc(self.lattice, self.width) r_matrix = r_matrix + jnp.eye(self.num_particles) * r_matrix.max() cutoff = r_matrix.min() / 2 return cutoff def _make_noise_dist( self, noise_scale: float, spherical: bool) -> distrax.Distribution: """Returns a distribution to sample the noise from.""" if spherical: # Find closest lattice points, cutoff is half of that distance cutoff = self._get_lattice_cutoff() proposal = distrax.Normal( loc=jnp.zeros((self.num_particles, self.dim)), scale=noise_scale) proposal = distrax.Independent(proposal, 1) # We rejection-sample for each particle independently. log_z = tfp.distributions.Chi(self.dim).log_cdf(cutoff / noise_scale) proposal = distributions.SphericalTruncation(proposal, cutoff, log_z) return distrax.Independent(proposal, 1) else: # Independent noise up to half the smallest distance along each axis dx = jnp.abs(obs_utils.pairwise_difference_pbc(self.lattice, self.width)) # Ignore zeros when computing minimum distance (this is a heuristic # to obtain the maximal non-overlapping noise - we presume that # atoms that coincide on one axis are well separated on some other axis) dx = jnp.where(dx < 1e-9, np.amax(dx), dx) cutoffs = jnp.amin(dx.reshape(-1, dx.shape[-1]), axis=0) / 2.0 # TruncatedNormal does not allow different truncation cutoffs for each # axis, so we scale down the std dev by the cutoffs and then scale up the # result by the same amount. proposal = tfp.distributions.TruncatedNormal( loc=jnp.zeros((self.num_particles, self.dim)), scale=noise_scale / cutoffs, low=-1.0, high=1.0) return distrax.Independent( distrax.Transformed(proposal, distrax.ScalarAffine(0., cutoffs)), 2) def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: keys = jax.random.split(key, 1 + n) noise, log_prob = self._noise_dist.sample_and_log_prob( sample_shape=n, seed=keys[0]) samples = self.wrap(noise + self._lattice) samples = jax.vmap(jax.random.permutation)(keys[1:], samples) # The probability density p(x) is the average of p(x|z), where z is a # particle permutation. But because we assume perturbed particles never # escape their lattice cell, all but one of p(x|z) are zero, so the average # reduces to a division by the number of permutations. log_prob -= self._log_num_permutations return samples, log_prob def _sample_n(self, key: PRNGKey, n: int) -> Array: samples, _ = self._sample_n_and_log_prob(key, n) return samples def _wrap_displacement(self, dx: Array) -> Array: """Returns the difference vector to the nearest image under PBCs.""" return dx - self.width * jnp.round(dx / self.width) def _get_nearest_lattice_indices(self, x: Array) -> Array: """Returns indices of the nearest lattice sites.""" deltas = self.lattice[..., :, None, :] - x[..., None, :, :] deltas = self._wrap_displacement(deltas) sq_dist = jnp.sum(deltas**2, axis=-1) return jnp.argmin(sq_dist, axis=-2) def _check_single_occupation(self, indices: Array) -> bool: """Returns True if each lattice index appears once otherwise False.""" index_error = jnp.sort(indices) - jnp.arange(self.num_particles) return jnp.all(index_error == 0) def _log_prob_no_checks(self, particles: Array) -> Array: if not self._spherical_noise: raise NotImplementedError('The log_prob for non-spherical noise is not ' 'yet implemented.') indices = self._get_nearest_lattice_indices(particles) is_valid = jnp.vectorize(self._check_single_occupation, signature='(m)->()')(indices) noise = self._wrap_displacement(particles - self.lattice[indices]) log_prob = self._noise_dist.log_prob(noise) - self._log_num_permutations return jnp.where(is_valid, log_prob, -jnp.inf) class SimpleCubicLattice(Lattice): """A particle model based on a simple cubic lattice for sampling particles. The noise is drawn i.i.d. from a truncated Gaussian that is defined on a suitable interval such that perturbed particles never escape their lattice cell. """ def __init__(self, num_particles: int, lower: Array, upper: Array, noise_scale: float, remove_corner: bool = False, cell_aspect: Optional[Array] = None): dim = lower.shape[-1] if cell_aspect is None: cell_aspect = np.ones(dim) atom_positions_in_cell = np.ones((1, dim)) * 0.5 spherical_noise = False super().__init__(num_particles, lower, upper, noise_scale, cell_aspect, atom_positions_in_cell, remove_corner, spherical_noise) def _log_prob_no_checks(self, particles: Array) -> Array: if self._remove_corner: raise NotImplementedError( '`_log_prob_no_checks` not implemented in ' f'{self.name} when `remove_corner` is True.') noise = jnp.mod(particles - self.lower, self._lattice_constant) noise -= self._lattice_constant / 2. log_prob = self._noise_dist.log_prob(noise) log_prob -= self._log_num_permutations bins = [l + jnp.arange(r + 1) * lc for (l, r, lc) in zip( self.lower, self._repeats.tolist(), self.lattice_constant)] def has_no_overlap(x): hist, _ = jnp.histogramdd(x, bins=bins) return jnp.all(hist == 1) no_overlap = jnp.vectorize(has_no_overlap, signature='(m,n)->()')(particles) in_range = (particles >= self.lower) & (particles <= self.upper) in_range = jnp.all(in_range, axis=[-2, -1]) return jnp.where(in_range & no_overlap, log_prob, -jnp.inf) class FaceCentredCubicLattice(Lattice): """A particle model based on a face centred cubic (FCC) lattice. We construct the lattice by translating a unit cell containing four atoms. We then draw i.i.d. noise for each particle from a spherically truncated normal. The support of this distribution is chosen such that the noise distributions of neighbouring lattice sites are pairwise disjoint. Note that this lattice requires three spatial dimensions (`dim == 3`). """ def __init__(self, num_particles: int, lower: Array, upper: Array, noise_scale: float, remove_corner: bool): """Constructor. Args: num_particles: number of particles. lower: array of shape [dim], the lower ranges of the box. upper: array of shape [dim], the upper ranges of the box. noise_scale: scale for the noise distribution. remove_corner: if True, we remove the lattice site located at the corner of the box. """ dim = lower.shape[-1] if dim != 3: raise ValueError(f'Expected the box dimensionality to be 3, got {dim}.') cell_aspect = np.ones(dim) atom_positions_in_cell = np.array([[0., 0., 0.], [1., 1., 0.], [1., 0., 1.], [0., 1., 1.]]) / 2 spherical_noise = True super().__init__(num_particles, lower, upper, noise_scale, cell_aspect, atom_positions_in_cell, remove_corner, spherical_noise) class DiamondCubicLattice(Lattice): """A particle model based on a diamond cubic lattice. The unit cell of a diamond cubic lattice contains eight atoms: the four atoms of the FCC unit cell and an additional four atoms that are located within the unit cell. See here for more details on the mathematical structure and an illustration: https://en.wikipedia.org/wiki/Diamond_cubic. Note that this lattice requires three spatial dimensions (`dim == 3`). """ def __init__(self, num_particles: int, lower: Array, upper: Array, noise_scale: float, remove_corner: bool): """Constructor. Args: num_particles: number of particles. lower: array of shape [dim], the lower ranges of the box. upper: array of shape [dim], the upper ranges of the box. noise_scale: scale for the noise distribution. remove_corner: if True, we remove the lattice site located at the corner of the box. """ dim = lower.shape[-1] if dim != 3: raise ValueError(f'Expected the box dimensionality to be 3, got {dim}.') cell_aspect = np.ones(dim) atom_positions_in_cell = np.array([ # The first 4 atoms are the same as for FCC. [0., 0., 0.], [0., 2., 2.], [2., 0., 2.], [2., 2., 0.], # The additional are located within the unit cell. [3., 3., 3.], [3., 1., 1.], [1., 3., 1.], [1., 1., 3.], ]) / 4 spherical_noise = True super().__init__(num_particles, lower, upper, noise_scale, cell_aspect, atom_positions_in_cell, remove_corner, spherical_noise) class HexagonalIceLattice(Lattice): """A particle model based on a hexagonal ice (Ice Ih) lattice. Note that this lattice requires three spatial dimensions (`dim == 3`). """ def __init__(self, num_particles: int, lower: Array, upper: Array, noise_scale: float, remove_corner: bool): """Constructor. Args: num_particles: number of particles. lower: an array of shape [dim], the lower ranges of the box. upper: an array of shape [dim], the upper ranges of the box. noise_scale: scale for the noise distribution. remove_corner: if True, we remove the lattice site located at the corner of the box. """ dim = lower.shape[-1] if dim != 3: raise ValueError(f'Expected the box dimensionality to be 3, got {dim}.') # According to http://people.cs.uchicago.edu/~ridg/digbio12/primerice.pdf # within the non-orthogonal base cell: # # base = np.array([[1, 0, 0], # [-0.5, np.sqrt(3)/2, 0], # [0, 0, 2*np.sqrt(6)/3]]) # # we need 4 atoms at absolute coordinates: # # atom_coords = np.array([[0.5, np.sqrt(3)/6, np.sqrt(6)/24], # [1.0, np.sqrt(3)/3, 15*np.sqrt(6)/24], # [0.5, np.sqrt(3)/6, 7*np.sqrt(6)/24], # [1.0, np.sqrt(3)/3, 8*np.sqrt(6)/2]]) # # We make an orthogonal cell from integer multiples of the # non-orthogonal base: # # ortho_base = np.array([[1, 0, 0], # [1, 2, 0], # [0, 0, 1]]) @ base # # This orthogonal cell has twice the volume of the non-orthogonal base # and the relative atom coordinates within it can be easily found by # replicating the non-orthogonal cell and retaining only atoms within # the orthogonal one. This results in the 8 atom positions below. cell_aspect = np.array([1.0, np.sqrt(3), np.sqrt(8/3)]) a = 6 * 0.0625 atom_positions_in_cell = np.array([ [3., 5., 3 + a], [0., 4., 0 + a], [0., 2., 3 + a], [3., 1., 0 + a], [0., 2., 6 - a], [3., 1., 3 - a], [3., 5., 6 - a], [0., 4., 3 - a], ]) / 6.0 spherical_noise = True super().__init__(num_particles, lower, upper, noise_scale, cell_aspect, atom_positions_in_cell, remove_corner, spherical_noise) class HalfDiamondLattice(Lattice): """A particle model based on a half-cell diamond lattice. The unit cell is 1/2 of a standard diamond cubic cell (and therefore has 4 atoms per unit cell). If the base vectors of the diamond cubic cell are a=(1, 0, 0), b=(0, 1, 0) and c=(0, 0, 1), this cell has basis a'=(1/2, 1/2, 0), b'=(1/2, -1/2, 0), and c'=c. Note that this lattice requires three spatial dimensions (`dim == 3`). """ def __init__(self, num_particles: int, lower: Array, upper: Array, noise_scale: float, remove_corner: bool): """Constructor. Args: num_particles: number of particles. lower: array of shape [dim], the lower ranges of the box. upper: array of shape [dim], the upper ranges of the box. noise_scale: scale for the noise distribution. remove_corner: if True, we remove the lattice site located at the corner of the box. """ dim = lower.shape[-1] if dim != 3: raise ValueError(f'Expected the box dimensionality to be 3, got {dim}.') cell_aspect = np.array([1.0, 1.0, np.sqrt(2.0)]) # Half a diamond cubic cell by using base (0.5, 0.5) and (-0.5, 0.5) # in the x-y plane instead of (1, 0) and (0, 1) atom_positions_in_cell = np.array([ [0, 0, 0], [0, 2, 1], [2, 2, 2], [2, 0, 3] ]) / 4.0 spherical_noise = True super().__init__(num_particles, lower, upper, noise_scale, cell_aspect, atom_positions_in_cell, remove_corner, spherical_noise)
flows_for_atomic_solids-main
models/particle_models.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
flows_for_atomic_solids-main
models/__init__.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Constructors for particle models.""" from typing import Any, Mapping import chex import distrax from flows_for_atomic_solids.models import bijectors from flows_for_atomic_solids.models import particle_models import numpy as np Array = chex.Array def make_particle_model(num_particles: int, lower: Array, upper: Array, bijector: Mapping[str, Any], base: Mapping[str, Any], translation_invariant: bool, ) -> particle_models.ParticleModel: """Constructs a particle model, with various configuration options. With N particles, the model is implemented as follows: 1. We draw N particles randomly from a base distribution. 2. We jointly transform the particles with a flow (a Distrax bijector). Optionally, the model can be made invariant to translations. We do this as follows: 1. We draw N-1 particles and transform them with the flow as above. 2. We add an extra particle at a fixed location. 3. We choose a translation uniformly at random and apply it to all particles. Args: num_particles: number of particles. lower: array of shape [dim], the lower ranges of the box. upper: array of shape [dim], the upper ranges of the box. bijector: configures the bijector that transforms particles. Expected to have the following keys: * 'constructor': a callable that creates the bijector. * 'kwargs': keyword arguments to pass to the constructor. base: configures the base distribution. Expected to have the following keys: * 'constructor': a callable that creates the base distribution. * 'kwargs': keyword arguments to pass to the constructor. translation_invariant: if True, the model is constructed to be invariant to translations. Returns: A particle model. """ if translation_invariant: num_mapped_particles = num_particles - 1 else: num_mapped_particles = num_particles base_model = base['constructor']( num_particles=num_mapped_particles, lower=lower, upper=upper, **base['kwargs']) if len(np.unique(lower)) == 1 and len(np.unique(upper)) == 1: # Box is cubic. bij = bijector['constructor']( event_shape=base_model.event_shape, lower=lower[0], upper=upper[0], **bijector['kwargs']) else: # Box is rectangular. scaling_bijector = distrax.Block( bijectors.Rescale(lower_in=lower, upper_in=upper, lower_out=0., upper_out=1.), 2) descaling_bijector = distrax.Inverse(scaling_bijector) bij = distrax.Chain([ descaling_bijector, bijector['constructor']( event_shape=base_model.event_shape, lower=0.0, upper=1.0, **bijector['kwargs']), scaling_bijector, ]) particle_model = particle_models.FlowModel(base_model, bij) if translation_invariant: particle_model = particle_models.TranslationInvariant(particle_model) return particle_model
flows_for_atomic_solids-main
models/particle_model_constructors.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Distrax distributions.""" from typing import Callable, Optional, Tuple, Union import chex import distrax import jax import jax.numpy as jnp Array = chex.Array Numeric = Union[Array, float] PRNGKey = Array class RejectionSampling(distrax.Distribution): """A rejection-sampling based distribution. Samples are drawn from the `proposal` distribution provided and are accepted only if they are valid as judged by `are_valid_fn`. NOTE: By default, the density of this distribution is unnormalized and doesn't integrate to unity. Specifically, calling `prob` returns the density of the proposal distribution if the sample is valid, otherwise it returns 0. This makes the normalizing constant equal to the acceptance rate. Optionally, the user can specify the normalizing constant, which will be used when computing probabilities. """ def __init__(self, proposal: distrax.Distribution, are_valid_fn: Callable[[Array], Array], log_z: Optional[Numeric] = None): """Constructor. Args: proposal: the proposal distribution to sample from. are_valid_fn: checks whether samples are valid. If the input to the function is of shape `batch_shape + event_shape`, then the shape of the output should `batch_shape`. log_z: if specified, this value will be used as the log normalizing constant when computing probabilities. Should be equal to the log of the acceptance probability. Must be broadcastable to the distribution's batch shape. """ super().__init__() self._proposal = proposal self._are_valid_fn = are_valid_fn self._log_z = 0. if log_z is None else log_z chex.assert_is_broadcastable(jnp.shape(self._log_z), self.batch_shape) @property def event_shape(self) -> Tuple[int, ...]: """Shape of event of distribution samples.""" return self._proposal.event_shape @property def batch_shape(self) -> Tuple[int, ...]: """Batch shape of distribution samples.""" return self._proposal.batch_shape def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: """Returns samples and log_probs obtained via rejection sampling.""" # This function uses a jittable implementation of rejection sampling that # yields exact independent samples after a (random) number of iterations. def body(args): # In each iteration we propose `n` new samples and accept those that are # valid. key, samples, log_probs, accepted = args key, subkey = jax.random.split(key) proposals, proposal_log_probs = self._proposal.sample_and_log_prob( seed=subkey, sample_shape=n) valid_sample = self._are_valid_fn(proposals) valid_sample_event = valid_sample.reshape(valid_sample.shape + (1,) * len(self.event_shape)) samples = jnp.where(valid_sample_event, proposals, samples) log_probs = jnp.where(valid_sample, proposal_log_probs, log_probs) accepted = valid_sample | accepted return key, samples, log_probs, accepted def cond(args): # If not all samples have been accepted yet, we continue iterating. _, _, _, accepted = args return ~jnp.all(accepted) samples = jnp.empty((n,) + self.batch_shape + self.event_shape) log_probs = jnp.empty((n,) + self.batch_shape) accepted = jnp.full((n,) + self.batch_shape, False) _, samples, log_probs, _ = jax.lax.while_loop( cond, body, (key, samples, log_probs, accepted)) return samples, log_probs - self._log_z def _sample_n(self, key: PRNGKey, n: int) -> Array: samples, _ = self._sample_n_and_log_prob(key, n) return samples def log_prob(self, x: Array) -> Array: valid = self._are_valid_fn(x) log_prob = self._proposal.log_prob(x) - self._log_z return jnp.where(valid, log_prob, -jnp.inf) class SphericalTruncation(RejectionSampling): """A rejection-sampling based distribution for spherical truncation. A sample from the `proposal` is accepted if its norm, computed across the entire event, is within the `cutoff`. """ def __init__(self, proposal: distrax.Distribution, cutoff: float, log_z: Optional[Numeric] = None): """Constructor. Args: proposal: the proposal distribution to sample from. cutoff: the radial cutoff outside which samples are rejected. log_z: the log normalizing constant, same as in the parent class. """ def are_within_cutoff(x: Array) -> Array: event_axes = list(range(-len(proposal.event_shape), 0)) sq_dists = jnp.sum(x**2, axis=event_axes) return sq_dists <= cutoff**2 super().__init__(proposal, are_within_cutoff, log_z)
flows_for_atomic_solids-main
models/distributions.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Coupling flows for particle models.""" import functools from typing import Any, Callable, Mapping, Sequence, Union import chex import distrax from flows_for_atomic_solids.models import bijectors from flows_for_atomic_solids.models import embeddings from flows_for_atomic_solids.models import utils import haiku as hk import jax import jax.numpy as jnp from tensorflow_probability.substrates import jax as tfp Array = chex.Array PRNGKey = Array def _reshape_last(x: Array, ndims: int, new_shape: Sequence[int]) -> Array: """Reshapes the last `ndims` dimensions of `x` to shape `new_shape`.""" if ndims <= 0: raise ValueError( f'Number of dimensions to reshape must be positive, got {ndims}.') return jnp.reshape(x, x.shape[:-ndims] + tuple(new_shape)) def make_equivariant_conditioner( shape_transformed: Sequence[int], num_bijector_params: int, lower: float, upper: float, embedding_size: int, conditioner_constructor: Callable[..., Any], conditioner_kwargs: Mapping[str, Any], num_frequencies: int, w_init_final: hk.initializers.Initializer = jnp.zeros, ) -> Callable[[Array], Array]: """Make a permutation-equivariant conditioner for the coupling flow.""" # This conditioner assumes that the input is of shape [..., N, D1]. It returns # an output of shape [..., N, D2, K], where: # D2 = `shape_transformed[-1]` # K = `num_bijector_params` output_size = shape_transformed[-1] conditioner = conditioner_constructor(**conditioner_kwargs) return hk.Sequential([ functools.partial( embeddings.circular, lower=lower, upper=upper, num_frequencies=num_frequencies), hk.Linear(embedding_size), conditioner, hk.Linear(output_size * num_bijector_params, w_init=w_init_final), functools.partial( _reshape_last, ndims=1, new_shape=(output_size, num_bijector_params)), ]) def make_split_coupling_flow( event_shape: Sequence[int], lower: float, upper: float, num_layers: int, num_bins: int, conditioner: Mapping[str, Any], permute_variables: bool, split_axis: int, use_circular_shift: bool, prng: Union[int, PRNGKey], circular_shift_init: hk.initializers.Initializer = jnp.zeros, ) -> distrax.Bijector: """Create a flow that consists of a sequence of split coupling layers. All coupling layers use rational-quadratic splines. Each layer of the flow is composed of two split coupling bijectors, where each coupling bijector transforms a different part of the input. The flow maps to and from the range `[lower, upper]`, obeying periodic boundary conditions. Args: event_shape: the shape of the event generated by the flow. Does not include the batch dimensions. lower: lower range of the flow. upper: upper range of the flow. num_layers: the number of layers to use. Each layer consists of two split coupling bijectors, where each coupling bijector transforms a different part of the input. num_bins: number of bins to use in the rational-quadratic splines. conditioner: a Mapping containing 'constructor' and 'kwargs' keys that configures the conditioner used in the coupling layers. permute_variables: whether to permute the dimensions along the splitting axis between successive layers. split_axis: a negative int that defines which axis to split along. use_circular_shift: if True, add a learned circular shift between successive flow layers. prng: either a PRNG key, or an integer seed to convert to a PRNG key. The PRNG key will be used to construct the permutations, when these are random. circular_shift_init: initializer for the circular shifts. Returns: The flow, a Distrax bijector. """ if isinstance(prng, int): prng = jax.random.PRNGKey(prng) if split_axis >= 0: raise ValueError(f'Expected split axis to be negative, got {split_axis}.') def bijector_fn(params: Array): return distrax.RationalQuadraticSpline( params, range_min=lower, range_max=upper, boundary_slopes='circular', min_bin_size=(upper - lower) * 1e-4) split_size = event_shape[split_axis] split_index = split_size // 2 cyclic_permutation = jnp.roll(jnp.arange(split_size), shift=1) block_ndims = len(event_shape) + split_axis layers = [] for _ in range(num_layers): sublayers = [] # Variable permutation. if permute_variables: if split_size <= 3: permutation = cyclic_permutation else: prng, key = jax.random.split(prng) permutation = jax.random.permutation(key, jnp.arange(split_size)) permute_layer = tfp.bijectors.Permute(permutation, axis=split_axis) permute_layer = distrax.Block(permute_layer, block_ndims) sublayers.append(permute_layer) # Circular shift. if use_circular_shift: shift = utils.Parameter( name='circular_shift', param_name='shift', shape=event_shape[-1:], init=circular_shift_init)() shift_layer = bijectors.CircularShift( (upper - lower) * shift, lower, upper) shift_layer = distrax.Block(shift_layer, len(event_shape)) sublayers.append(shift_layer) # Coupling layers. for swap in [True, False]: shape_transformed = list(event_shape) shape_transformed[split_axis] = ( split_index if swap else split_size - split_index) coupling_layer = distrax.SplitCoupling( swap=swap, split_index=split_index, split_axis=split_axis, event_ndims=len(event_shape), bijector=bijector_fn, conditioner=conditioner['constructor']( shape_transformed=shape_transformed, num_bijector_params=3 * num_bins + 1, lower=lower, upper=upper, **conditioner['kwargs'])) sublayers.append(coupling_layer) layers.append(distrax.Chain(sublayers)) return distrax.Chain(layers)
flows_for_atomic_solids-main
models/coupling_flows.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Embeddings.""" import chex import jax.numpy as jnp Array = chex.Array def circular(x: Array, lower: float, upper: float, num_frequencies: int) -> Array: """Maps angles to points on the unit circle. The mapping is such that the interval [lower, upper] is mapped to a full circle starting and ending at (1, 0). For num_frequencies > 1, the mapping also includes higher frequencies which are multiples of 2 pi/(lower-upper) so that [lower, upper] wraps around the unit circle multiple times. Args: x: array of shape [..., D]. lower: lower limit, angles equal to this will be mapped to (1, 0). upper: upper limit, angles equal to this will be mapped to (1, 0). num_frequencies: number of frequencies to consider in the embedding. Returns: An array of shape [..., 2*num_frequencies*D]. """ base_frequency = 2. * jnp.pi / (upper - lower) frequencies = base_frequency * jnp.arange(1, num_frequencies+1) angles = frequencies * (x[..., None] - lower) # Reshape from [..., D, num_frequencies] to [..., D*num_frequencies]. angles = angles.reshape(x.shape[:-1] + (-1,)) cos = jnp.cos(angles) sin = jnp.sin(angles) return jnp.concatenate([cos, sin], axis=-1)
flows_for_atomic_solids-main
models/embeddings.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities.""" from typing import Sequence import chex import haiku as hk Array = chex.Array class Parameter(hk.Module): """Helper Haiku module for defining model parameters.""" def __init__(self, name: str, param_name: str, shape: Sequence[int], init: hk.initializers.Initializer): super().__init__(name=name) self._param = hk.get_parameter(param_name, shape=shape, init=init) def __call__(self) -> Array: return self._param
flows_for_atomic_solids-main
models/utils.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General-purpose energy functions.""" import abc from typing import Optional import chex from flows_for_atomic_solids.utils import observable_utils as obs_utils import jax import jax.numpy as jnp Array = chex.Array def _check_same_dim(coordinates: Array, box_length: Array) -> None: """Check that `coordinates` and `box_length` have the same dimensionality.""" if coordinates.ndim < 1: raise ValueError('The coordinates cannot be a scalar.') if box_length.ndim < 1: raise ValueError('The box length cannot be a scalar.') dim1 = coordinates.shape[-1] dim2 = box_length.shape[-1] if dim1 != dim2: raise ValueError( f'The dimensionality of the coordinates (got {dim1}) must be equal ' f'to the dimensionality of the box (got {dim2}).') class PotentialEnergy(abc.ABC): """Potential energy function of N interacting particles confined in a box. It assumes periodic boundary conditions. """ def __init__(self, box_length: Optional[Array] = None): """Initializer. Args: box_length: array of shape [dim], the side lengths of the box that contains the particles. If None, the box length must be passed as an argument to the class methods. """ if box_length is not None and box_length.ndim != 1: raise ValueError( f'`box_length` must be a vector. Got `box_length = {box_length}`.') self._box_length = box_length @property def box_length(self) -> Array: if self._box_length is None: raise ValueError('This class does not have a default box length.') return self._box_length def __call__(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: return self.energy(coordinates, box_length) @abc.abstractmethod def energy(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes the potential energy. Args: coordinates: array with shape [..., num_atoms, dim] containing the particle coordinates. box_length: array with shape [..., dim] containing the box length. If None, the default box length will be used instead. Returns: an array with shape [...] containing the computed energy values. """ def forces(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes the forces exerted on each particle for a batch of coordinates. Args: coordinates: array with shape [..., num_atoms, dim] containing the particle coordinates. box_length: array with shape [..., dim] containing the box length. If None, the default box length will be used instead. Returns: an array with shape [..., num_atoms, dim] whose [..., i, :] entry contains the total force exerted on particle i. """ if box_length is None: box_length = self.box_length _check_same_dim(coordinates, box_length) grad_fn = jnp.vectorize( jax.grad(self.energy, argnums=0), signature='(n,d),(d)->(n,d)') return -grad_fn(coordinates, box_length) def pressure(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes the excess virial pressure for a batch of coordinates. The virial pressure is computed according to the formula p_virial = (sum_i f_i . r_i - dim * V ∂U/∂V) / (dim * V) where r_i is the position of particle i, f_i is the total force acting on particle i, . is the dot-product, V the box volume and dim the number of dimensions. We assume that volume change occurs via a homogeneous affine expansion or contraction, so that dim * V ∂U/∂V = prod_i Li * ∂U/∂(Li) where Li is the i-th sidelength of the box. More details can be found in Thompson et al. (2009) https://doi.org/10.1063/1.3245303 (eqs. 1 and 13). Note that the above formula only contains the "excess" contribution due to the potential energy but not the "ideal" contribution due to the kinetic energy. The latter can be computed analytically. Args: coordinates: array with shape [..., num_atoms, dim] containing the particle coordinates. box_length: array with shape [..., dim] containing the box length. If None, the default box length will be used instead. Returns: an array with shape [...] containing the computed pressure. """ if box_length is None: box_length = self.box_length _check_same_dim(coordinates, box_length) dim = coordinates.shape[-1] energy_grad = jnp.vectorize( jax.grad(self.energy, argnums=1), signature='(n,d),(d)->(d)') forces = self.forces(coordinates, box_length) virial = jnp.sum(coordinates * forces, axis=[-1, -2]) virial -= jnp.sum( box_length * energy_grad(coordinates, box_length), axis=-1) return virial / (dim * jnp.prod(box_length, axis=-1)) class PairwisePotentialEnergy(PotentialEnergy): """Energy function based on a pairwise potential between particles. This is a base class for any energy function that can be written as a sum of pairwise potentials: E(x_1,...,x_N) = sum_{i<j} U(|x_i - x_j|^2). Distances are computed using periodic boundary conditions. The pairwise potential U should be implemented in a subclass. """ def __init__(self, box_length: Optional[Array] = None, min_distance: float = 0., linearize_below: Optional[float] = None): """Constructor. Args: box_length: array of shape [dim], the side lengths of the box that contains the particles. If None, the box length must be passed as an argument to the class methods. min_distance: the pairwise distance is clipped to this value whenever it falls below it, which means that the pairwise potential is constant below this value. This can be used for numerical reasons, for example to avoid singularities for potentials that diverge at zero distance. linearize_below: below this value, the potential is linearized, i.e. it becomes a linear function of the pairwise distance. This can be used for numerical reasons, for example when the potential grows too fast for small distances. If None, no linearization is done. NOTE: with linearization, the pairwise force at zero distance is undefined (becomes NaN). To have a well-defined force at zero distance, you need to set `min_distance > 0`. """ super().__init__(box_length) self._min_distance = min_distance self._linearize_below = linearize_below @abc.abstractmethod def _unclipped_pairwise_potential(self, r2: Array) -> Array: """Scalar pairwise potential, to be implemented in a subclass. Args: r2: a scalar (0-dim array), the squared distance between particles. Returns: a scalar, the pairwise potential at that squared distance. """ def _pairwise_potential(self, r2: Array) -> Array: """Numerically stable (clipped and linearized) version of the potential. Args: r2: a scalar (0-dim array), the squared distance between particles. Returns: a scalar, the pairwise potential at that squared distance. """ r2 = jnp.clip(r2, self._min_distance ** 2) if self._linearize_below is None: return self._unclipped_pairwise_potential(r2) else: e0, g0 = jax.value_and_grad( lambda r: self._unclipped_pairwise_potential(r**2))( self._linearize_below) return jnp.where( r2 < self._linearize_below**2, e0 + (jnp.sqrt(r2) - self._linearize_below) * g0, self._unclipped_pairwise_potential(r2)) def energy(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes the potential energy. Args: coordinates: array with shape [..., num_atoms, dim] containing the particle coordinates. box_length: array with shape [..., dim] containing the box length. If None, the default box length will be used instead. Returns: an array with shape [...] containing the computed energy values. """ if box_length is None: box_length = self.box_length _check_same_dim(coordinates, box_length) r2 = obs_utils.pairwise_squared_distance_pbc(coordinates, box_length) # We set the diagonal to a non-zero value to avoid infinities for pairwise # potentials that diverge at zero distances. r2 += jnp.eye(r2.shape[-1]) energies = jnp.vectorize(self._pairwise_potential, signature='()->()')(r2) return jnp.sum(jnp.triu(energies, k=1), axis=[-2, -1]) def pairwise_forces(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes the pairwise forces for a batch of coordinates. Args: coordinates: array with shape [..., num_atoms, dim] containing the particle coordinates. box_length: array with shape [..., dim] containing the box length. If None, the default box length will be used instead. Returns: an array with shape [..., num_atoms, num_atoms, dim] whose [..., i, j, :] entry contains the force exerted on particle i from particle j. """ if box_length is None: box_length = self.box_length _check_same_dim(coordinates, box_length) coordinate_deltas = obs_utils.pairwise_difference_pbc( coordinates, box_length) r2 = jnp.sum(coordinate_deltas**2, axis=-1) r2 += jnp.eye(r2.shape[-1]) potential_gradient = jnp.vectorize( jax.grad(self._pairwise_potential), signature='()->()') forces = -2. * coordinate_deltas * potential_gradient(r2)[..., None] return forces def pairwise_pressure(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes the excess virial pressure for a batch of coordinates. This function returns exactly the same result as `pressure` (up to numerical differences), but it's implemented in a way that is only valid for pairwise potentials. It's computed according to the formula p_virial = 1 / (dim * V) sum_i<j f_ij . r_ij, where r_ij is the distance vector between two particles, f_ij the force acting between this pair, . is the dot-product, V the box volume and dim the number of dimensions. More details can be found in Thompson et al. (2009) https://doi.org/10.1063/1.3245303 (see eqs. 1 and 7). Note that the above formula only contains the "excess" contribution due to the potential energy but not the "ideal" contribution due to the kinetic energy. The latter can be computed analytically. Args: coordinates: array with shape [..., num_atoms, dim] containing the particle coordinates. box_length: array with shape [..., dim] containing the box length. If None, the default box length will be used instead. Returns: an array with shape [...] containing the computed pressure. """ if box_length is None: box_length = self.box_length _check_same_dim(coordinates, box_length) dim = coordinates.shape[-1] coordinate_deltas = obs_utils.pairwise_difference_pbc( coordinates, box_length) forces = self.pairwise_forces(coordinates, box_length) dot_product = jnp.sum(coordinate_deltas * forces, axis=-1) virial = jnp.sum(jnp.triu(dot_product, k=1), axis=[-2, -1]) pressure = virial / (dim * jnp.prod(box_length, axis=-1)) return pressure
flows_for_atomic_solids-main
systems/energies.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lennard-Jones system.""" from typing import Optional import chex from flows_for_atomic_solids.systems import energies import jax.numpy as jnp Array = chex.Array class LennardJonesEnergy(energies.PairwisePotentialEnergy): """Evaluates the Lennard-Jones (LJ) energy with periodic boundary conditions. This class implements a "soft" version of the original LJ potential and uses a scalar parameter `lambda_lj` in [0, 1] to interpolate between a uniform distribution (for `lambda_lj=0`) and the standard LJ potential (for `lambda_lj=1`). Two LJ particles, separated by a distance `r`, interact with each other via a radially symmetric, pairwise potential ``` g(r) = 0.5 * (1 - lambda_lj)**2 + (r/sigma)**6 u(r) = 4 * lambda_lj * epsilon * [1/g(r)**2 - 1/g(r)] ``` where `epsilon` and `sigma` are two Lennard-Jones parameters defining the scales of energy and length. For `lambda_lj=1`, the pairwise potential above exhibits a singularity at `r=0`, so that the energy diverges whenever any two particles coincide. The option `min_distance` can be used to clip the pairwise distance to avoid this problem. Optionally, the energy can be shifted so that it is zero at and beyond the cutoff ``` u_shifted(r) = u(r) - u(cutoff) if r <= cutoff and 0 otherwise. """ def __init__(self, cutoff: float, box_length: Optional[Array] = None, epsilon: float = 1., sigma: float = 1., min_distance: float = 0., lambda_lj: float = 1., linearize_below: Optional[float] = None, shift_energy: bool = False): """Initializer. Args: cutoff: above this value, the pairwise potential is set equal to 0. A cutoff is typically employed in simulation for performance reasons, so we also support this option here. box_length: array of shape [dim], side lengths of the simulation box. If None, the box length must be passed as an argument to the class methods. epsilon: determines the scale of the potential. See class docstring. sigma: determines the scale of the pairwise distance. See class docstring. min_distance: the pairwise distance is clipped to this value whenever it falls below it, which means that the pairwise potential is constant below this value. This is used for numerical reasons, to avoid the singularity at zero distance. lambda_lj: parameter for soft-core Lennard-Jones. Interpolates between a constant pairwise potential (lambda_lj = 0) and proper Lennard-Jones potential (lambda_lj = 1). See class docstring. linearize_below: below this value, the potential is linearized, i.e. it becomes a linear function of the pairwise distance. This can be used for numerical reasons, to avoid the potential growing too fast for small distances. If None, no linearization is done. NOTE: linearization removes the singularity at zero distance, but the pairwise force at zero distance is still undefined (becomes NaN). To have a well-defined force at zero distance, you need to set `min_distance > 0`. shift_energy: whether to shift the energy by a constant such that the potential is zero at the cutoff (spherically truncated and shifted LJ). """ super().__init__(box_length, min_distance, linearize_below) self._cutoff = cutoff self._epsilon = epsilon self._sigma = sigma self._lambda_lj = lambda_lj self._shift = self._soft_core_lj_potential(cutoff**2) if shift_energy else 0 def _soft_core_lj_potential(self, r2: Array) -> Array: r6 = r2**3 / self._sigma**6 r6 += 0.5 * (1. - self._lambda_lj)**2 r6inv = 1. / r6 energy = r6inv * (r6inv - 1.) energy *= 4. * self._lambda_lj * self._epsilon return energy def _unclipped_pairwise_potential(self, r2: Array) -> Array: energy = self._soft_core_lj_potential(r2) # Apply radial cutoff and shift. energy = jnp.where(r2 <= self._cutoff**2, energy - self._shift, 0.) return energy
flows_for_atomic_solids-main
systems/lennard_jones.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
flows_for_atomic_solids-main
systems/__init__.py
#!/usr/bin/python # # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Monatomic (mW) water system.""" import math from typing import Optional import chex from flows_for_atomic_solids.systems import energies from flows_for_atomic_solids.utils import observable_utils as obs_utils import jax import jax.numpy as jnp Array = chex.Array MW_A = 7.049556277 MW_B = 0.6022245584 MW_GAMMA = 1.2 MW_EPSILON = 6.189 # Kcal/mol MW_SIGMA = 2.3925 # Angstrom MW_REDUCED_CUTOFF = 1.8 MW_COS = math.cos(109.47 / 180. * math.pi) MW_LAMBDA = 23.15 class _TwoBodyEnergy(energies.PairwisePotentialEnergy): """Implements the two-body component of the monatomic-water energy.""" def _unclipped_pairwise_potential(self, r2: Array) -> Array: r2 /= MW_SIGMA**2 r = jnp.sqrt(r2) mask = jnp.array(r < MW_REDUCED_CUTOFF) # Distances on or above the cutoff can cause NaNs in the gradient of # `term_2` below, even though they're masked out in the forward computation. # To avoid this, we set these distances to a safe value. r = jnp.where(mask, r, 2. * MW_REDUCED_CUTOFF) term_1 = MW_A * MW_EPSILON * (MW_B / r2**2 - 1.) term_2 = jnp.where(mask, jnp.exp(1. / (r - MW_REDUCED_CUTOFF)), 0.) energy = term_1 * term_2 return energy class MonatomicWaterEnergy(energies.PotentialEnergy): """Evaluates the monatomic water energy with periodic boundary conditions. The monatomic water model, or mW model, consists of point particles that interact with each other via two-body interactions (between pairs of particles) and three-body interactions (between triplets of particles). The energy is decomposed as follows: ``` energy = sum of all two-body interactions over distinct pairs + sum of all three-body interactions over distinct triplets ``` More details on the specific functional form of the individual interaction terms can be found in the paper of Molinero and Moore (2009): https://arxiv.org/abs/0809.2811. """ def __init__(self, box_length: Optional[Array] = None, min_distance: float = 0., linearize_below: Optional[float] = None): """Constructor. Args: box_length: array of shape [dim], side lengths of the simulation box. If None, the box length must be passed as an argument to the class methods. min_distance: we clip the pairwise distance to this value in the calculation of the two-body term. This can be used to remove the singularity of the two-body term at zero distance. linearize_below: we linearize the two-body term below this value. If None, no linearization is done. """ super().__init__(box_length) self._two_body_energy = _TwoBodyEnergy( min_distance=min_distance, linearize_below=linearize_below) def _three_body_energy(self, dr: Array) -> Array: """Compute three-body term for one sample. Args: dr: [num_particles, num_particles, 3] array of distance vectors between the particles. Returns: The three-body energy contribution of the sample (a scalar). """ def _one_particle_contribution(dri: Array) -> Array: # dri is (num_particles-1) x 3. raw_norms = jnp.linalg.norm(dri, axis=-1) keep = raw_norms < MW_REDUCED_CUTOFF norms = jnp.where(keep, raw_norms, 1e20) norm_energy = jnp.exp(MW_GAMMA/(norms - MW_REDUCED_CUTOFF)) norm_energy = jnp.where(keep, norm_energy, 0.) normprods = norms[None, :] * norms[:, None] # Note: the sum below is equivalent to: # dotprods = jnp.dot(dri, dri[..., None]).squeeze(-1) # but using jnp.dot results in loss of precision on TPU, # as evaluated by comparing to MD samples. dotprods = jnp.sum(dri[:, None, :] * dri[None, :, :], axis=-1) cos_ijk = dotprods / normprods energy = MW_LAMBDA * MW_EPSILON * (MW_COS - cos_ijk)**2 energy *= norm_energy energy = jnp.triu(energy, 1) energy = jnp.sum(energy, axis=-1) return jnp.dot(energy, norm_energy) # Remove diagonal elements [i, i, :], changing the shape from # [num_particles, num_particles, 3] to [num_particles, num_particles-1, 3]. clean_dr = jnp.rollaxis(jnp.triu(jnp.rollaxis(dr, -1), 1)[..., 1:]+ jnp.tril(jnp.rollaxis(dr, -1), -1)[..., :-1], 0, dr.ndim) # Vectorize over particles. energy = jnp.sum(jax.vmap(_one_particle_contribution)(clean_dr)) return energy def energy(self, coordinates: Array, box_length: Optional[Array] = None) -> Array: """Computes energies for an entire batch of particles. Args: coordinates: array with shape [..., num_particles, dim] containing the particle coordinates. box_length: array with shape [..., dim], side lengths of the simulation box. If None, the default box length will be used instead. Returns: energy: array with shape [...] containing the computed energies. """ if box_length is None: box_length = self.box_length dr = obs_utils.pairwise_difference_pbc(coordinates, box_length) dr /= MW_SIGMA two_body_energy = self._two_body_energy(coordinates, box_length) # Vectorize over samples. three_body_energy = jnp.vectorize(self._three_body_energy, signature='(m,m,n)->()')(dr) return two_body_energy + three_body_energy
flows_for_atomic_solids-main
systems/monatomic_water.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #!/usr/bin/env python """A package to implement the BraVe model. Broaden Your Views for Self-Supervised Video Learning. """ import setuptools setuptools.setup( name='brave', python_requires='>3.7.0', version='0.0.1', description='Broaden Your Views for Self-Supervised Video Learning', author='Ross Hemsley', url='https://arxiv.org/abs/2103.16559', packages=setuptools.find_packages(), install_requires=[ 'absl-py==0.12.0', 'astunparse~=1.6.3', 'attrs~=21.2.0', 'cached-property~=1.5.2', 'cachetools~=4.2.2', 'certifi~=2021.5.30', 'charset-normalizer~=2.0.4', 'chex==0.0.8', 'contextlib2~=21.6.0', 'dill==0.3.4', 'dm-haiku==0.0.4', 'dm-tree==0.1.6', 'ffmpeg-python==0.2.0', 'flatbuffers~=1.12', 'future==0.18.2', 'gast==0.4.0', 'google-auth~=1.34.0', 'google-auth-oauthlib==0.4.5', 'google-pasta==0.2.0', 'googleapis-common-protos~=1.53.0', 'grpcio~=1.34.1', 'h5py~=3.1.0', 'idna~=3.2', 'importlib-metadata~=4.6.3', 'importlib-resources~=5.2.2', 'iniconfig~=1.1.1', 'jax==0.2.17', 'jaxlib==0.1.69', 'jaxline==0.0.3', 'joblib~=1.0.1', 'keras-nightly~=2.5.0.dev2021032900', 'Keras-Preprocessing~=1.1.2', 'Markdown~=3.3.4', 'ml-collections==0.1.0', 'mock~=4.0.3', 'numpy~=1.19.5', 'oauthlib~=3.1.1', 'opt-einsum~=3.3.0', 'optax==0.0.9', 'packaging~=21.0', 'pluggy==0.13.1', 'promise~=2.3', 'protobuf~=3.17.3', 'py~=1.10.0', 'pyasn1==0.4.8', 'pyasn1-modules==0.2.8', 'pyparsing~=2.4.7', 'pytest~=6.2.4', 'PyYAML~=5.4.1', 'requests~=2.26.0', 'requests-oauthlib~=1.3.0', 'rsa~=4.7.2', 'scikit-learn==0.24.2', 'scipy~=1.5.4', 'six~=1.15.0', 'sklearn==0.0', 'tabulate==0.8.9', 'tensorboard~=2.5.0', 'tensorboard-data-server==0.6.1', 'tensorboard-plugin-wit~=1.8.0', 'tensorflow~=2.5.0', 'tensorflow-datasets~=4.4.0', 'tensorflow-estimator~=2.5.0', 'tensorflow-metadata~=1.2.0', 'termcolor~=1.1.0', 'threadpoolctl~=2.2.0', 'toml==0.10.2', 'toolz==0.11.1', 'tqdm~=4.62.0', 'typing-extensions~=3.7.4.3', 'urllib3~=1.26.6', 'Werkzeug~=2.0.1', 'wrapt~=1.12.1', 'zipp~=3.5.0', ])
brave-main
setup.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Configuration for the Brave experiment.""" import glob from jaxline import base_config as jaxline_base_config import ml_collections from brave.models.brave import config as brave_config def get_config() -> ml_collections.ConfigDict: """Get the experiment config.""" config = jaxline_base_config.get_base_config() config.checkpoint_dir = '/tmp/jaxline/brave' config.train_checkpoint_all_hosts = False config.training_steps = 300_000 config.log_tensors_interval = 60 config.save_checkpoint_interval = 600 config.eval_specific_checkpoint_dir = '' config.best_model_eval_metric = 'multiple_of_saving_period' config.experiment_kwargs.experiment_name = 'brave' config.experiment_kwargs.config = brave_config.get_experiment_config() config.eval_modes = config.experiment_kwargs.config.eval_modes # Fill in this to set the training shards for training. config.experiment_kwargs.config.model.dataset_shards = glob.glob( '<path/to/train/shards/*.tfrecord>') config.lock() return config
brave-main
brave/config.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test the experiment.""" import tempfile from unittest import mock from absl import flags from absl.testing import absltest from absl.testing import parameterized import chex from jaxline import train from brave import config from brave import experiment from brave.datasets import fixtures FLAGS = flags.FLAGS DEVICE_COUNT = 1 chex.set_n_cpu_devices(DEVICE_COUNT) class ExperimentTest(parameterized.TestCase): def setUp(self): super().setUp() # Needed to make absl work with pytest. FLAGS.mark_as_parsed() def test_train(self): with chex.fake_pmap(), tempfile.TemporaryDirectory() as fixture_dir: shards = fixtures.write_tf_record_dataset_fixture(fixture_dir) cfg = _lightweight_brave_config(shards) train.train( experiment.Experiment, cfg, checkpointer=mock.Mock(), writer=mock.Mock()) def _lightweight_brave_config(shards): cfg = config.get_config() cfg.unlock() cfg.training_steps = 1 # Do whatever we can to make running this test as fast as possible. # without changing the experiment too much from a real run. cfg.experiment_kwargs.config.global_batch_size = 2 cfg.experiment_kwargs.config.model.include_video_in_broad_view = True cfg.experiment_kwargs.config.model.include_audio_in_broad_view = False cfg.experiment_kwargs.config.model.output_dims = 2 cfg.experiment_kwargs.config.model.image_size_broad = 2 cfg.experiment_kwargs.config.model.num_frames_broad = 2 cfg.experiment_kwargs.config.model.image_size_narrow = 2 cfg.experiment_kwargs.config.model.num_frames_narrow = 1 cfg.experiment_kwargs.config.model.dataset_shards = shards cfg.experiment_kwargs.experiment_name = 'brave_test' print(cfg) cfg.lock() return cfg if __name__ == '__main__': absltest.main()
brave-main
brave/experiment_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
brave-main
brave/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A runnable program to evaluate video embeddings. Given a model checkpoint, and the location of the shards for a dataset, computes the performance of the Brave video embeddings. This code may be used to evaluate both UCF101 and HMDB51, as long as they are both given in the appropriate input format. The only hyperparameter to this program is the svm_regularization constant, which can impact the performance of the linear classification. """ import glob import json from absl import app from absl import flags import chex import jax import numpy as np import tensorflow as tf from brave.datasets import datasets from brave.evaluate import evaluate_video_embedding from brave.models.brave import brave FLAGS = flags.FLAGS flags.DEFINE_string('checkpoint_path', None, 'Checkpoint to evaluate.') flags.DEFINE_integer('batch_size', None, 'The size of the batches to use.') # Hyperparameters flags.DEFINE_float('svm_regularization', None, 'Regularization constant.') # Datasets flags.DEFINE_string('train_dataset_shards', None, 'Glob pattern for train shards.') flags.DEFINE_string('test_dataset_shards', None, 'Glob pattern for test shards.') # Transformations to apply to video before running network. flags.DEFINE_integer('num_video_frames', 32, 'Number of frames in eval videos.') flags.DEFINE_integer('video_step', 2, 'The step to use in the eval videos.') flags.DEFINE_integer('image_size', 224, 'The size of the video to evaluate.') def main(_): checkpoint_path = FLAGS.checkpoint_path train_shards = glob.glob(FLAGS.train_dataset_shards) test_shards = glob.glob(FLAGS.test_dataset_shards) video_config = evaluate_video_embedding.VideoConfig( num_frames=FLAGS.num_video_frames, image_size=FLAGS.image_size, video_step=FLAGS.video_step, ) video_embedding_fn = _video_embedding(checkpoint_path) results = evaluate_video_embedding.evaluate_video_embedding( train_dataset_shards=train_shards, test_dataset_shards=test_shards, embedding_fn=video_embedding_fn, config=video_config, svm_regularization=FLAGS.svm_regularization, batch_size=FLAGS.batch_size) results_dct = dict( top_1_train=results.train.top_one_accuracy, top_5_train=results.train.top_five_accuracy, top_1_test=results.test.top_one_accuracy, top_5_test=results.test.top_five_accuracy, ) # Write the results to stdout in a way that can be used as input to other # programs. print(json.dumps(results_dct)) def _video_embedding(checkpoint_path: str): """Load the video embedding for the BraVe model to evaluate.""" checkpoint = np.load(checkpoint_path, allow_pickle=True).item() params = checkpoint['params'] state = checkpoint['state'] brave_config_dct = checkpoint['config'] brave_config = brave.BraveConfig(**brave_config_dct) model = brave.get_model(brave_config) @jax.jit def embedding_fn(view: datasets.View) -> chex.Array: narrow_forward_fn = model.forward_fns['narrow_video'] embedding, _ = narrow_forward_fn(params, state, None, view, False) return embedding def synchronous_embedding_fn(view: datasets.View) -> chex.Array: # jax.jit causes the above function to be executed lazily, but we want # to force the computation to happen synchronously. return jax.device_get(embedding_fn(view)) return synchronous_embedding_fn if __name__ == '__main__': try: tf.config.set_visible_devices([], 'GPU') # Prevent TF from using the GPU. except tf.errors.NotFoundError: pass flags.mark_flag_as_required('checkpoint_path') flags.mark_flag_as_required('batch_size') flags.mark_flag_as_required('train_dataset_shards') flags.mark_flag_as_required('test_dataset_shards') flags.mark_flag_as_required('svm_regularization') app.run(main)
brave-main
brave/evaluate_video_embeddings.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A jaxline experiment to train the Brave model.""" import functools from typing import Sequence from absl import app from absl import flags from absl import logging import chex import jax from jaxline import experiment from jaxline import platform from jaxline import utils import ml_collections import tensorflow as tf import tensorflow_datasets as tfds from brave.models.brave import brave from brave.training import optimizers from brave.training import trainer FLAGS = flags.FLAGS @chex.dataclass class ExperimentConfig: """The config class for the experiment. Attributes: model_name: The name of the model to initialize and train. global_batch_size: The size of the batches to take from the train dataset. This will be split amongst all of the devices. optimizer: The configuration to use for the optimizer. eval_modes: For each value in this sequence, a new evaluation process will be started, with the given mode. This allows running multiple parallel evaluation processes. """ model_name: str global_batch_size: int model: ml_collections.ConfigDict optimizer: ml_collections.ConfigDict eval_modes: Sequence[str] class Experiment(experiment.AbstractExperiment): """Experiment to train Brave.""" CHECKPOINT_ATTRS = { '_params': 'params', '_state': 'state', '_opt_state': 'opt_state', } def __init__(self, mode: str, init_rng: chex.Array, config: ml_collections.ConfigDict, experiment_name: str): super().__init__(mode=mode, init_rng=init_rng) self._mode = mode self._init_rng = init_rng self._config = ExperimentConfig(**config) self._model = brave.get_model(brave.BraveConfig(**config.model)) self._opt_state = None self._params = None self._state = None logging.info('Running experiment in mode %s.', mode) if mode == 'train': self._init_train_dataset() self._init_train() # _ _ # | |_ _ __ __ _(_)_ __ # | __| '__/ _` | | '_ \ # | |_| | | (_| | | | | | # \__|_| \__,_|_|_| |_| # def _init_train(self): """Prepare the model for training.""" # Note: We store a copy of the learning rate schedule for logging only. optimizer_config = optimizers.OptimizerConfig(**self._config.optimizer) optimizer, self._lr_schedule = optimizers.get_optimizer(optimizer_config) init_fn = jax.pmap(self._model.init_fn, axis_name='i') optimizer_init_fn = jax.pmap(optimizer.init, axis_name='i') broadcasted_key = utils.bcast_local_devices(self._init_rng) self._params, self._state = init_fn(broadcasted_key) self._opt_state = optimizer_init_fn(self._params) self._update_fn = jax.pmap( trainer.build_update_fn(optimizer, self._model.loss_fn), axis_name='i', donate_argnums=(1, 2, 3, 4)) def _init_train_dataset(self): batch_dims = trainer.get_batch_dims(self._config.global_batch_size, jax.device_count(), jax.local_device_count()) logging.info('This host batch dimensions: %s.', batch_dims) ds = self._model.train_dataset_builder_fn() for batch_size in reversed(batch_dims): ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat() ds = ds.prefetch(tf.data.AUTOTUNE) ds = tfds.as_numpy(ds) self._train_data_iter = utils.py_prefetch(lambda: iter(ds)) def step(self, *, rng, writer, global_step): """Perform one step of the optimization.""" del writer batch = next(self._train_data_iter) logging.log_every_n(logging.INFO, 'Batch shape: %s', 10, batch) updates = self._update_fn(rng, batch, self._params, self._state, self._opt_state) self._params = updates.params self._state = updates.state self._opt_state = updates.opt_state scalars = updates.scalars scalars['learning_rate'] = self._lr_schedule(global_step) return utils.get_first(scalars) # _ # _____ ____ _| | # / _ \ \ / / _` | | # | __/\ V / (_| | | # \___| \_/ \__,_|_| # def evaluate(self, *, rng, writer, global_step): params = utils.get_first(self._params) state = utils.get_first(self._state) return self._model.evaluate_fn(global_step, self._mode, params, state) if __name__ == '__main__': flags.mark_flag_as_required('config') try: tf.config.set_visible_devices([], 'GPU') # Prevent TF from using the GPU. except tf.errors.NotFoundError: pass app.run(functools.partial(platform.main, Experiment))
brave-main
brave/experiment.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Fetch and write HMDB51. This binary can be run with python -m brave.download_hmdb --output_dir <desired/output/directory> This will write a sharded tfrecords version of HMDB to the destination, with each of the test and train splits separated out. This binary requires that the ffmpeg and rar commands be callable as subprocesses. Note that a local temporary working directory is used to fetch and decompress files at /tmp/hdmb. This can be set using the `work_dir` flag. """ import contextlib import enum import glob import hashlib import os import re import shutil import subprocess import tempfile from typing import Dict, List, NamedTuple, Sequence from absl import app from absl import flags from absl import logging import ffmpeg import requests import tensorflow as tf import tqdm DEFAULT_UNRAR_COMMAND = 'unrar' DEFAULT_HMDB_SPLITS_URL = 'https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/test_train_splits.rar' DEFAULT_HMDB_DATA_URL = 'https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar' DEFAULT_WORK_DIR = os.path.join(tempfile.gettempdir(), 'hmdb') DEFAULT_VIDEO_QUALITY = 1 DEFAULT_VIDEO_FRAMERATE = 25 DEFAULT_VIDEO_MIN_RESIZE = 256 DEFAULT_MAX_SAMPLE_LENGTH_SECONDS = 20.0 MD5_OF_SPLITS_FILE = '15e67781e70dcfbdce2d7dbb9b3344b5' MD5_OF_VIDEOS_FILE = '517d6f1f19f215c45cdd4d25356be1fb' FLAGS = flags.FLAGS flags.DEFINE_string( 'work_dir', DEFAULT_WORK_DIR, 'Temporary working directory for downloading and processing files') flags.DEFINE_string('output_dir', None, 'Where to write the dataset shards at the end') flags.DEFINE_string('unrar_command', DEFAULT_UNRAR_COMMAND, 'Path to call unrar') flags.DEFINE_integer('num_shards', 10, 'Number of shards to write') class Split(enum.Enum): UNUSED = 0 TRAIN = 1 TEST = 2 class HMDBVideo(NamedTuple): hmdb_split_index: int split: Split full_video_path: str action_name: str def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments') output_dir = FLAGS.output_dir os.makedirs(output_dir, exist_ok=True) if os.listdir(output_dir): logging.error('Output directory `%s` must be empty', output_dir) exit(1) work_dir = FLAGS.work_dir video_dir = os.path.join(work_dir, 'videos') os.makedirs(work_dir, exist_ok=True) os.makedirs(video_dir, exist_ok=True) logging.info('Using `%s` as a temporary work_dir', work_dir) _fetch_dataset_splits(work_dir) _fetch_and_decompress_videos(video_dir) videos = _get_all_hmdb_videos(work_dir, video_dir) _write_dataset(videos, output_dir, num_shards=FLAGS.num_shards) logging.info('Finished writing tfrecords dataset to %s', output_dir) def _write_dataset(videos: Sequence[HMDBVideo], output_dir: str, num_shards: int) -> None: """Write a tfrecords dataset for the given videos. Args: videos: The sequence of all videos in the dataset to write. output_dir: The destination where the dataset will be written. num_shards: The number of independent shards to write the dataset to. """ for split_index in [1, 2, 3]: split_index_name = f'split_{split_index}' for split in [Split.TEST, Split.TRAIN]: split_name = 'test' if split == split.TEST else 'train' current_dir = os.path.join(output_dir, split_index_name, split_name) os.makedirs(current_dir, exist_ok=True) videos_to_write = [ video for video in videos if video.hmdb_split_index == split_index and video.split == split ] logging.info('Writing %d videos to %d shards at %s', len(videos_to_write), num_shards, current_dir) _write_shards(videos_to_write, current_dir, num_shards) def _fetch_and_decompress_videos(video_dir: str) -> None: """Download and extract rarfiles containing videos. At the end of this command, all videos will be stored in the given video_dir. This function also leaves the original .rar files in place. Args: video_dir: The directory in the workspace where the video should be downloaded and extracted. """ videos_rar_path = os.path.join(video_dir, 'hmdb51_org.rar') _download_data(DEFAULT_HMDB_DATA_URL, videos_rar_path) videos_md5 = md5(videos_rar_path) logging.info('MD5 of videos rar: %s', videos_md5) if videos_md5 != MD5_OF_VIDEOS_FILE: logging.warning( 'MD5 did not match expected value (%s)' ' - this may cause this script to fail', MD5_OF_SPLITS_FILE) logging.info('Extracting rarfile `%s` in `%s`', videos_rar_path, video_dir) _extract_rar(videos_rar_path, video_dir) logging.info('Extracting video rar files') for path in tqdm.tqdm(os.listdir(video_dir)): if path == 'hmdb51_org.rar': continue _extract_rar(path, video_dir) def _fetch_dataset_splits(work_dir: str) -> None: """Download the datafile containing the splits information. Args: work_dir: The location where the temporary files may be downloaded and decompressed. """ splits_rar_path = os.path.join(work_dir, 'test_train_splits.rar') _download_data(DEFAULT_HMDB_SPLITS_URL, splits_rar_path) splits_md5 = md5(splits_rar_path) logging.info('MD5 of splits file: %s', splits_md5) if splits_md5 != MD5_OF_SPLITS_FILE: logging.warning( 'MD5 did not match expected value (%s)' ' - this may cause this script to fail', MD5_OF_SPLITS_FILE) logging.info('Extracting rarfile `%s` in `%s`', splits_rar_path, work_dir) _extract_rar(splits_rar_path, work_dir) def _write_shards(hmdb_videos: Sequence[HMDBVideo], output_dir: str, num_shards: int) -> None: """Write tfrecord shards to the output dir. Args: hmdb_videos: The videos to write to the output directory. output_dir: The location where the shards will be written. num_shards: The number of shards to write. """ shard_paths = [ os.path.join(output_dir, f'hmdb51-{i:05d}-of-{num_shards:05d}') for i in range(num_shards) ] with contextlib.ExitStack() as context_manager: writers = [ context_manager.enter_context(tf.io.TFRecordWriter(path)) for path in shard_paths ] all_actions = set(video.action_name for video in hmdb_videos) action_lookup = { action_name: index for index, action_name in enumerate(sorted(all_actions)) } for i, video in enumerate(tqdm.tqdm(hmdb_videos)): sequence = _create_sequence_example(video, action_lookup) writers[i % len(writers)].write(sequence.SerializeToString()) def _download_data(url: str, destination: str) -> None: """Fetch data from a url to the given destination. If the destination file is found to exist, no download will take place. Note that since this write is not atomic, if a download partially fails, then this might cause future runs to fail. Deleting all data in the work_dir will fix this. Args: url: The resource to fetch. destination: the full path where the output should be written. """ if os.path.exists(destination): logging.info('Found data at `%s`, skipping download.', destination) return logging.info('Downloading from `%s` to `%s`', url, destination) with requests.get(url, stream=True) as r, open(destination, 'wb') as w: shutil.copyfileobj(r.raw, w) def _extract_rar(filename: str, work_dir: str) -> None: _check_unrar_found() subprocess.call([FLAGS.unrar_command, 'e', '-y', '-idq', filename], cwd=work_dir) def _check_unrar_found() -> None: try: subprocess.call([FLAGS.unrar_command, '-idq']) except: raise RuntimeError( f'Failed to call unrar using command `{FLAGS.unrar_command}`. ' 'Unrar can be downlaoded at https://www.rarlab.com/download.htm.') def _get_all_hmdb_videos(work_dir: str, video_dir: str) -> List[HMDBVideo]: """Extract splits data. Args: work_dir: The location containing the split txt files. video_dir: The location where the video data can be found. Returns: A list of HMDBVideo dataclasses containing information about each example in the dataset. """ result = [] for path in glob.glob(os.path.join(work_dir, '*txt')): match = re.search(r'^(.+)_test_split(\d)\.txt$', path) if not match: raise ValueError(f'Failed to parse path name: `{path}`') action_name = match.group(1) split_index = int(match.group(2)) with open(path, 'r') as f: for line in f: line = line.strip() try: video_path, test_train_index = line.split(' ') except: raise ValueError(f'Failed to parse line `{line}`') if test_train_index == '0': split = Split.UNUSED elif test_train_index == '1': split = Split.TRAIN elif test_train_index == '2': split = Split.TEST else: raise ValueError(f'Unknown split `{test_train_index}`') result.append( HMDBVideo( hmdb_split_index=split_index, split=split, action_name=action_name, full_video_path=os.path.join(video_dir, video_path))) return result def _create_sequence_example( video: HMDBVideo, label_to_label_index: Dict[str, int]) -> tf.train.SequenceExample: """Create a tf example using the conventions used by DMVR.""" jpeg_encoded_images = _extract_jpeg_frames(video.full_video_path) def _jpeg_feature(buffer) -> tf.train.Feature: bytes_list = tf.train.BytesList(value=[buffer]) return tf.train.Feature(bytes_list=bytes_list) def _label_feature(value: Sequence[int]) -> tf.train.Feature: return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) video_feature = tf.train.FeatureList( feature=[_jpeg_feature(img) for img in jpeg_encoded_images]) features = {'image/encoded': video_feature} label_index = label_to_label_index[video.action_name] context = tf.train.Features(feature={ 'clip/label/index': _label_feature([label_index]), }) return tf.train.SequenceExample( context=context, feature_lists=tf.train.FeatureLists(feature_list=features)) def _extract_jpeg_frames( video_path: str, *, max_length: float = DEFAULT_MAX_SAMPLE_LENGTH_SECONDS, fps: int = DEFAULT_VIDEO_FRAMERATE, min_resize: int = DEFAULT_VIDEO_MIN_RESIZE) -> List[bytes]: """Extract list of encoded jpegs from video_path using ffmpeg.""" jpeg_header = b'\xff\xd8' new_width = '(iw/min(iw,ih))*{}'.format(min_resize) # Note: the qscale parameter here is important for achieving good performance. cmd = ( ffmpeg.input(video_path).trim(start=0, end=max_length).filter( 'fps', fps=fps).filter('scale', new_width, -1).output( 'pipe:', format='image2pipe', **{ 'qscale:v': DEFAULT_VIDEO_QUALITY, 'qmin': DEFAULT_VIDEO_QUALITY, 'qmax': DEFAULT_VIDEO_QUALITY })) jpeg_bytes, _ = cmd.run(capture_stdout=True, quiet=True) jpeg_bytes = jpeg_bytes.split(jpeg_header)[1:] jpeg_bytes = map(lambda x: jpeg_header + x, jpeg_bytes) return list(jpeg_bytes) def _set_context_int(key: str, value: int, sequence: tf.train.SequenceExample) -> None: sequence.context.feature[key].int64_list.value[:] = (value,) def _set_context_bytes(key: str, value: bytes, sequence: tf.train.SequenceExample): sequence.context.feature[key].bytes_list.value[:] = (value,) def _add_bytes_list(key: str, values: Sequence[bytes], sequence: tf.train.SequenceExample) -> None: sequence.feature_lists.feature_list[key].feature.add( ).bytes_list.value[:] = values def md5(path: str) -> str: """Compute an MD5 hash of the file at a given path.""" hash_md5 = hashlib.md5() with open(path, 'rb') as f: for chunk in iter(lambda: f.read(4096), b''): hash_md5.update(chunk) return hash_md5.hexdigest() if __name__ == '__main__': flags.mark_flag_as_required('output_dir') app.run(main)
brave-main
brave/download_hmdb.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for trainer.""" from absl.testing import absltest from absl.testing import parameterized import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax from brave.datasets import datasets from brave.training import trainer DEVICE_COUNT = 1 chex.set_n_cpu_devices(DEVICE_COUNT) class TrainerTest(parameterized.TestCase): def test_train_step(self): self.assertEqual(DEVICE_COUNT, jax.device_count()) rng = jax.random.PRNGKey(0) def forward(x): return hk.nets.MLP([10, 10, 1])(x) def loss(batch): # Something that vaguely looks like a trainable embedding, but isn't. return jnp.mean(forward(batch.views['default'].video)) transformed_loss_fn = hk.transform_with_state(loss) fake_batch = datasets.MiniBatch( views={ 'default': datasets.View( video=jnp.zeros([DEVICE_COUNT, 8, 32, 32, 3]), audio=None, labels=None) }) keys = jnp.broadcast_to(rng, (DEVICE_COUNT,) + rng.shape) params, state = jax.pmap(transformed_loss_fn.init)(keys, fake_batch) optimizer = optax.sgd(1e-4) opt_state = jax.pmap(optimizer.init)(params) # Check that the parameters are initialized to the same value. jax.tree_map(lambda x: np.testing.assert_allclose(x[0], x[1]), params) def loss_fn(params, state, rng, batch): loss, state = transformed_loss_fn.apply(params, state, rng, batch) scalars = {'loss': loss} return loss, (state, scalars) update_fn = jax.pmap( trainer.build_update_fn(optimizer, loss_fn), axis_name='i') # A smoke test to ensure that the updates are successfully computed. result = update_fn(keys, fake_batch, params, state, opt_state) # Check the parameters agree across the devices. jax.tree_map(lambda x: np.testing.assert_allclose(x[0], x[1]), result.params) self.assertEqual((DEVICE_COUNT,), result.scalars['loss'].shape) # Due to pmean, all of the scalars should have the same value. loss_scalars = result.scalars['loss'] self.assertTrue(np.all(loss_scalars == loss_scalars[0])) if __name__ == '__main__': absltest.main()
brave-main
brave/training/trainer_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test the optimizer.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import jax.numpy as jnp import numpy as np from brave.training import optimizers class OptimizersTest(parameterized.TestCase): def test_scale_by_module_name(self): def forward(x): return hk.Sequential( [hk.Linear(10, name='linear_1'), hk.Linear(10, name='linear_2')])( x) forward_fn = hk.without_apply_rng(hk.transform(forward)) params = forward_fn.init(jax.random.PRNGKey(0), jnp.zeros([1])) scaler = optimizers._scale_by_module_name([(r'^.*linear_1.*$', 10.0)]) state = scaler.init(None) scaled_params, _ = scaler.update(params, state) np.testing.assert_allclose(10 * params['linear_1']['w'], scaled_params['linear_1']['w']) np.testing.assert_allclose(params['linear_2']['w'], scaled_params['linear_2']['w']) if __name__ == '__main__': absltest.main()
brave-main
brave/training/optimizers_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
brave-main
brave/training/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Optimizers for the trainer.""" import re from typing import Any, Callable, Dict, Sequence, Tuple import chex import jax.numpy as jnp import optax import tree @chex.dataclass class OptimizerConfig: """Shared config for optimizers. Attributes: optimizer_name: The name of the optimizer (for example `lars`, `adam`). scheduler_name: The name of the scheduler (for example. `cosine_decay`). scheduler_kwargs: Kwargs to pass to the scheduler function. optimizer_kwargs: Kwargs to pass to the optimizer function. weight_decay: The constant to use for weight decay. scale_learning_rate_by_regex: A sequence of regular expressions to match module parameter paths, along with the rescaling to apply. This allows us to tune the learning rate for individual parameter blocks. For example `[(r'^.*predictor.*$', 10.0)] would match modules all modules containing the name 'predictor' and rescale the learning rate by a factor of 10.0. """ optimizer_name: str optimizer_kwargs: Dict[str, Any] scheduler_name: str scheduler_kwargs: Dict[str, Any] weight_decay: float scale_learning_rate_by_regex: Sequence[Tuple[str, float]] def exclude_bias_and_normalizers(params): def predicate(path: Tuple[Any], value: jnp.ndarray) -> jnp.ndarray: del value return path[-1] == 'b' or 'norm' in path[-2] return tree.map_structure_with_path(predicate, params) def get_optimizer( config: OptimizerConfig, *, weight_decay_mask: Callable[[optax.Params], optax.Params] = exclude_bias_and_normalizers, trust_ratio_mask: Callable[[optax.Params], optax.Params] = exclude_bias_and_normalizers ) -> Tuple[optax.GradientTransformation, optax.Schedule]: """Returns the optimizer. The function return the optimizer function for the model. Args: config: parameters for the optimizer and the scheduler. weight_decay_mask: A mask used to remove parameter blocks from weight decay. trust_ratio_mask: A mask used to remove parameter blocks from LARS trust ratio update. Returns: the corresponding `GradientTransformation`. """ learning_rate_schedule = _get_learning_rate_schedule(config) if config.optimizer_name == 'adam': optimizer = optax.chain( _scale_by_module_name(config.scale_learning_rate_by_regex), optax.adamw( learning_rate=learning_rate_schedule, weight_decay=config.weight_decay, mask=weight_decay_mask, **config.optimizer_kwargs)) return optimizer, learning_rate_schedule elif config.optimizer_name == 'lars': optimizer = optax.chain( _scale_by_module_name(config.scale_learning_rate_by_regex), optax.lars( learning_rate=learning_rate_schedule, weight_decay=config.weight_decay, weight_decay_mask=weight_decay_mask, trust_ratio_mask=trust_ratio_mask, **config.optimizer_kwargs)) return optimizer, learning_rate_schedule else: raise ValueError(f'Unknown optimizer: {config.optimizer_name}.') def _get_learning_rate_schedule(config: OptimizerConfig): if config.scheduler_name == 'cosine_decay': return optax.warmup_cosine_decay_schedule(**config.scheduler_kwargs) elif config.scheduler_name == 'piecewise_constant': return optax.piecewise_constant_schedule(**config.scheduler_kwargs) else: raise ValueError(f'Unknown scheduler: {config.scheduler_name}.') class _ScaleByModuleNameState(optax.OptState): ... def _scale_by_module_name( module_regex_and_scale: Sequence[Tuple[str, float]] ) -> optax.GradientTransformation: """An transformation that rescales the updates only of matching layers. Args: module_regex_and_scale: A sequence of pairs of regex pattern and scale. Returns: An (init_fn, update_fn) tuple. """ matchers = [ (re.compile(pattern), scale) for pattern, scale in module_regex_and_scale ] def rescaler(path: Tuple[Any], value: jnp.ndarray) -> jnp.ndarray: path = '/'.join(path) rescaling = 1.0 for matcher, scale in matchers: if matcher.match(path): rescaling *= scale return value * rescaling def init_fn(_): return _ScaleByModuleNameState() def update_fn(updates, state, params=None): del params return tree.map_structure_with_path(rescaler, updates), state return optax.GradientTransformation(init_fn, update_fn)
brave-main
brave/training/optimizers.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The functions for computing gradient updates.""" from typing import Callable, NamedTuple, Sequence import chex import haiku as hk import jax import optax from brave.datasets import datasets from brave.models import embedding_model class ModelUpdates(NamedTuple): params: hk.Params state: hk.State opt_state: optax.OptState scalars: embedding_model.Scalars UpdateFn = Callable[ [chex.PRNGKey, datasets.MiniBatch, hk.Params, hk.State, optax.OptState], ModelUpdates] def build_update_fn(optimizer: optax.GradientTransformation, loss_fn: embedding_model.LossFn) -> UpdateFn: """Returns a function for computing model updates. Args: optimizer: The optimizer to use e.g. the result of optax.sgd(...). loss_fn: An instance of the loss function, pmapped across all devices. Returns: A callable function that takes one step in the optimization problem using the gradients of the loss computed by the model loss function. """ def update_fn(rng: chex.PRNGKey, minibatch: datasets.MiniBatch, params: hk.Params, state: hk.State, opt_state: optax.OptState) -> ModelUpdates: grad_fn = jax.grad(loss_fn, has_aux=True) grad, (state, scalars) = grad_fn(params, state, rng, minibatch) grad = jax.lax.pmean(grad, axis_name='i') scalars = jax.lax.pmean(scalars, axis_name='i') updates, opt_state = optimizer.update(grad, opt_state, params) params = optax.apply_updates(params, updates) return ModelUpdates(params, state, opt_state, scalars) return update_fn def get_batch_dims(global_batch_size: int, device_count: int, local_device_count: int) -> Sequence[int]: """Compute the batch dims for this host. The global_batch_size is the number of data samples that are optimized over in one step of the optimization. This value must be split up so that each individual device gets some share of the batch. When running with multiple devices, there may be multiple hosts, each with multiple local devices. Each host has a local copy of the program, and runs a local copy of the code. Each host must therefore use a batch size so that when all of the hosts run together, the total number of batched elements matches the global batch size. We do this by splitting up the global batch size evenly amongst all devices, and setting the batch size per host to the number of host devices times the device batch size. Args: global_batch_size: The target total batch size per optimization step. device_count: The total number of devices sharing computation per step. local_device_count: The number of devices available on the current host. Returns: The batch dimensions to use on the currently running host. """ per_device_batch_size, remainder = divmod(global_batch_size, device_count) if remainder: raise ValueError( f'Cannot split batch of {global_batch_size} evenly across {local_device_count} devices.' ) host_batch_dims = (local_device_count, per_device_batch_size) return host_batch_dims
brave-main
brave/training/trainer.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A package to sample from videos.""" from typing import Tuple, Optional, Union import tensorflow as tf DEFAULT_MAX_RANDOM_SAMPLE_CROP_ATTEMPTS = 20 DEFAULT_PADDING_ON_FAIL = 16 def pad_and_center_crop_window(image_shape: tf.Tensor, padding: int = 16) -> tf.Tensor: """Compute a crop window for a padded center crop of the given image shape. Args: image_shape: The shape of the jpeg [height, width, channels], or [height, width]. padding: The padding between the input image and the resulting image. The padding represents the distance between the input image and the output image at each edge (so that the total number of pixels removed from the smallest edge is 2 X the padding value. Returns: A crop window [y, x, image_size, image_size], where image_size = min(height, width) - 2 * padding, and y and x are chosen so that the resutling crop falls in the center of the input image. """ # Scrub the channels size, if it was provided. image_shape = image_shape[:2] min_image_side = tf.math.reduce_min(image_shape) image_height = image_shape[0] image_width = image_shape[1] # If the padding is larger than the image, no pixels will be returned. tf.debugging.assert_greater(min_image_side, 2 * padding) offset_y = tf.cast((image_height - min_image_side) / 2, dtype=tf.int32) offset_x = tf.cast((image_width - min_image_side) / 2, dtype=tf.int32) image_size = tf.cast(min_image_side - 2 * padding, tf.int32) return tf.stack( [offset_y + padding, offset_x + padding, image_size, image_size]) def random_sample_crop_window(image_shape: tf.Tensor, min_area: float, max_area: float, min_aspect_ratio: float, max_aspect_ratio: float, padding_on_fail: int = DEFAULT_PADDING_ON_FAIL, seed: Optional[int] = None) -> tf.Tensor: """Randomly sample a crop window, given an image size and config. It may be that the random sampler is unable to satisfy the constraints given (within an acceptable number of iterations). In this case, the sampler falls back to returning the result of `pad_and_center_crop_window`, with the default padding set. Args: image_shape: A tensor containing [image_height, image_width, channels]. min_area: A float with the minimum area used per crop. max_area: A float with the maximum area used per crop. min_aspect_ratio: A float with the minimum aspect ratio distorsion for the crops. max_aspect_ratio: A float with the maximum aspect ratio distorsion for the crops. padding_on_fail: The padding to use if the sampler fails to return a valid sample. seed: The seed to pass to the random sampler. Returns: A bounding box tensor [min y, min x, height, width] in image coordinates. """ crop_window = _sample_crop_window( image_shape=image_shape, min_object_covered=min_area, aspect_ratio_range=(min_aspect_ratio, max_aspect_ratio), area_range=(min_area, max_area), max_attempts=DEFAULT_MAX_RANDOM_SAMPLE_CROP_ATTEMPTS, seed=seed) # If the random crop failed, fall back to padded center crop. return tf.cond( tf.reduce_all(tf.equal(image_shape[:2], crop_window[2:])), lambda: pad_and_center_crop_window(image_shape, padding=padding_on_fail), lambda: tf.identity(crop_window)) def decode_crop_resize_images( jpeg_encoded_images: tf.Tensor, crop_window: tf.Tensor, image_size: Union[tf.Tensor, Tuple[int, int]]) -> tf.Tensor: """Given a crop window, decode the input tensors. Args: jpeg_encoded_images: A tensor containing a sequence of jpeg images. crop_window: The window to crop, as [y min, x min, height, width]. image_size: The size to use to resize the images to after cropping, as [height, width]. Returns: Video encoded as [T, image_size, image_size, C], where the time is the leading dimension. """ video = decode_crop_images(jpeg_encoded_images, crop_window) return tf.image.resize(video, image_size) def decode_crop_images(jpeg_encoded_images: tf.Tensor, crop_window: tf.Tensor) -> tf.Tensor: """Given a crop window, decode the input tensors. Args: jpeg_encoded_images: A tensor containing jpeg images. crop_window: [row min, col min, row max, col max] the window to crop. Returns: Video encoded as [T, H, W, C], where the time is the leading dimension. """ return tf.map_fn( lambda x: _decode_and_crop(x, crop_window), jpeg_encoded_images, fn_output_signature=tf.uint8) def decode_resize_crop_images(jpeg_encoded_images: tf.Tensor, *, initial_resize: int, center_crop_size: int) -> tf.Tensor: """Decode, resize minimum and then center crop a sequence of images. Args: jpeg_encoded_images: A tensor containing jpeg images. initial_resize: First, resize the smallest edge of the images to be exactly this value. center_crop_size: Once the initial resize is complete, Returns: Video encoded as [T, H, W, C], where the time is the leading dimension. """ video = tf.map_fn( tf.io.decode_jpeg, jpeg_encoded_images, fn_output_signature=tf.uint8) return _resize_min_and_crop( video, initial_resize=initial_resize, center_crop_size=center_crop_size) def _resize_min_and_crop(video, *, initial_resize: int, center_crop_size: int) -> tf.Tensor: """Resize the minimum side and center crop to given side. Args: video: The video to crop. initial_resize: First, resize the smallest edge of the images to be exactly this value. center_crop_size: Once the initial resize is complete, Returns: The cropped video. """ video = resize_min(video, initial_resize) shape = tf.shape(video) height = shape[1] width = shape[2] offset_h = tf.cast((height - center_crop_size) / 2, tf.int32) offset_w = tf.cast((width - center_crop_size) / 2, tf.int32) return video[:, offset_h:offset_h + center_crop_size, offset_w:offset_w + center_crop_size, :] def resize_min(video: tf.Tensor, shortest_edge: int) -> tf.Tensor: """Given a video, resize the smallest side to a given value. Args: video: A video as [T, H, W, 3]. shortest_edge: The result will be resized so that the shortest edge matches this value. Returns: A video [T, H', W', 3], where min(H', W') = shortest_edge. """ shape = tf.shape(video) input_h = shape[1] input_w = shape[2] output_h = tf.maximum(shortest_edge, (input_h * shortest_edge) // input_w) output_w = tf.maximum(shortest_edge, (input_w * shortest_edge) // input_h) def resize_fn(): result = tf.image.resize( video, (output_h, output_w), method=tf.image.ResizeMethod.BILINEAR) return tf.cast(result, video.dtype) should_resize = tf.math.logical_or( tf.not_equal(input_w, output_w), tf.not_equal(input_h, output_h)) return tf.cond(pred=should_resize, true_fn=resize_fn, false_fn=lambda: video) def _decode_and_crop(jpeg_encoded_image: tf.Tensor, crop_window: tf.Tensor) -> tf.Tensor: """Decode jpeg using to crop window. Args: jpeg_encoded_image: Tensor containing encoded jpeg. crop_window: [row min, col min, row max, col max] the window to crop. Returns: Decoded image [H, W, C] """ return tf.image.decode_and_crop_jpeg( jpeg_encoded_image, crop_window, channels=3) def _sample_crop_window(image_shape: tf.Tensor, min_object_covered: float, aspect_ratio_range: Tuple[float, float], area_range: Tuple[float, float], max_attempts: int, seed: Optional[int] = None) -> tf.Tensor: """Sample a crop_window to be used for cropping. If the sampler fails to find a solution, the full imgae will be returned. Args: image_shape: The shape of the image to sample [height, width, channels]. min_object_covered: The minimum amount of the image to cover. aspect_ratio_range: The range of aspect ratios of the result. area_range: The range of areas for the sampled boxes. max_attempts: The number of attempts to the sampler should make before failing. seed: The seed to feed to the random number generator. Returns: A crop window [min y, min x, height, width]. If the sampler fails, the resulting crop will be the full image. """ bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( image_shape, bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True, seed=seed) offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) return tf.stack([offset_y, offset_x, target_height, target_width])
brave-main
brave/datasets/video_sampling.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for sampling.""" from absl.testing import absltest from absl.testing import parameterized from brave.datasets import sampling class SamplingTest(parameterized.TestCase): @parameterized.named_parameters([ { 'testcase_name': 'single_item', 'sequence_length': 10, 'num_samples': 1, 'num_frames_per_sample': 1, 'step': 1, 'expected': [(0, 1, 1)] }, { 'testcase_name': 'two_items', 'sequence_length': 10, 'num_samples': 2, 'num_frames_per_sample': 1, 'step': 1, 'expected': [(0, 1, 1), (9, 10, 1)] }, { 'testcase_name': 'five_items', 'sequence_length': 5, 'num_samples': 5, 'num_frames_per_sample': 1, 'step': 1, 'expected': [(0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 5, 1)] }, { 'testcase_name': 'overlapping_items', 'sequence_length': 5, 'num_samples': 5, 'num_frames_per_sample': 3, 'step': 1, 'expected': [(0, 3, 1), (0, 3, 1), (1, 4, 1), (1, 4, 1), (2, 5, 1)] }, { 'testcase_name': 'overlapping_with_step', 'sequence_length': 12, 'num_samples': 3, 'num_frames_per_sample': 3, 'step': 2, 'expected': [(0, 5, 2), (3, 8, 2), (7, 12, 2)] }, { 'testcase_name': 'shortest_possible_sequence', 'sequence_length': 12, 'num_samples': 3, 'num_frames_per_sample': 12, 'step': 1, 'expected': [(0, 12, 1), (0, 12, 1), (0, 12, 1)] }, { 'testcase_name': 'shortest_possible_sequence_with_step', 'sequence_length': 4, 'num_samples': 3, 'num_frames_per_sample': 2, 'step': 3, 'expected': [(0, 4, 3), (0, 4, 3), (0, 4, 3)] }, ]) def test_compute_linearly_spaced_sample_indices(self, sequence_length, num_samples, num_frames_per_sample, step, expected): result = sampling.compute_linearly_spaced_sample_indices( sequence_length, num_samples, num_frames_per_sample, step) result = [tuple(v) for v in result] self.assertEqual(expected, result) if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/sampling_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Datasets for multi-view multi-modal data.""" import functools from typing import Callable, Dict, Optional, Sequence, Union import chex import tensorflow as tf from brave.datasets import media_sequences Array = Union[tf.Tensor, chex.Array] @chex.dataclass class View: """A view is a group of time-synchronized modes. Attributes: video: An optional tensor of shape [BATCH_DIMS..., T, H, W, C], where T is the time dimension and C=3 are the image channels as RGB. audio: An optional tensor of shape [BATCH_DIMS..., AUDIO...]. Depending on the representation, the audio may be rank-1 stored as a raw waveform of dimension (T,), or as a rank-2 spectrogram, (T, frequency_bins). The sample-rate is dependent on the dataset. labels: If available, contains the integer class labels for this view, of shape [BATCH_DIMS..., N], where N is the number of labels. """ video: Optional[Array] audio: Optional[Array] labels: Optional[Array] def __repr__(self): # Workaround http://b/190464506 if isinstance(self.video, (str, int)): return '' modes = [] if self.video is not None: modes.append(f'video: {self.video.shape}') if self.audio is not None: modes.append(f'audio: {self.audio.shape}') if self.labels is not None: modes.append(f'labels: {self.labels.shape}') return f'<View {", ".join(modes)}' @chex.dataclass class MiniBatch: """Minibatches contain multimodal multi-view data. Attributes: views: A mapping from view_name to view. Each view is a time-synchronized slice of the underlying raw data. Any batch dimensions are contained in the tensors of the view themselves. """ views: Dict[str, View] def __repr__(self): # Workaround http://b/190464506 if isinstance(self.views, (str, int)): return '' views = ', '.join(f'{name}: {view}' for name, view in self.views.items()) return f'<Batch {views}>' ViewSamplerFn = Callable[[media_sequences.EncodedSequence], Dict[str, media_sequences.EncodedSequence]] ViewDecoderFn = Callable[[Dict[str, media_sequences.EncodedSequence]], Dict[str, View]] def multi_view_dataset( shards: Sequence[str], features: Sequence[media_sequences.FeatureKind], view_sampler: ViewSamplerFn, view_decoder: ViewDecoderFn, *, shuffle: bool = False, shard_reader: media_sequences.ShardReaderFn = media_sequences .tf_record_shard_reader, ) -> tf.data.Dataset: """Construct a multiview multimodal dataset. The dataset is constructed in three stages, * The specified features are read into EncodedSequence objects. * The view_sampler function is used to filter out only the fields that are needed for each view. * The view_decoder is used to decode the EncodedSequences into views. Args: shards: The shard paths to read the dataset from. features: The features to deserialize from the table into the encoded media sequences object. view_sampler: A callable taking an encoded media sequence and returning a dictionary of sampled media sequences, oen for each view. view_decoder: A callable taking a dictionary of encoded sequences per view and returning the decoded views. shuffle: Whether or not to shuffle the data. shard_reader: The callable used to decode shards from paths. Returns: A tfds dataset with underlying datatype `datasets.Minibatch`. Note that the returned dataset has no batch dimensions, so that every item in the dataset is a single example. Call `.batch()` on the result to group together examples. """ ds = media_sequences.media_sequence_dataset( shards, features, shuffle=shuffle, shard_reader=shard_reader) return _multi_view_batches_from_sequences( ds, view_sampler, view_decoder, deterministic=not shuffle) def _multi_view_batches_from_sequences(ds: tf.data.Dataset, view_sampler: ViewSamplerFn, view_decoder: ViewDecoderFn, *, deterministic: bool) -> tf.data.Dataset: """Construct batches using the view decoder.""" ds = ds.map(view_sampler) ds = ds.map( functools.partial(_make_batch, view_decoder=view_decoder), num_parallel_calls=tf.data.AUTOTUNE, deterministic=deterministic) return ds def _make_batch(sequences: Dict[str, media_sequences.EncodedSequence], view_decoder: ViewDecoderFn) -> MiniBatch: return MiniBatch(views=view_decoder(sequences))
brave-main
brave/datasets/datasets.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
brave-main
brave/datasets/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for datasets.""" import tempfile from typing import Dict from absl.testing import absltest from absl.testing import parameterized from brave.datasets import datasets from brave.datasets import fixtures from brave.datasets import media_sequences from brave.datasets import time_sampling from brave.datasets import video_sampling class TFRecordDatasetsTest(parameterized.TestCase): def test_multi_view_dataset(self): with tempfile.TemporaryDirectory() as fixture_dir: self.shards = fixtures.write_tf_record_dataset_fixture(fixture_dir) # Create a video dataset with a single view called 'default' containing # the first 4 frames of each video, cropped to 128 X 128 ds = datasets.multi_view_dataset( self.shards, features=[media_sequences.FeatureKind.VIDEO], view_sampler=_test_sampler, view_decoder=_test_decoder) for batch in ds: self.assertEqual(batch.views['default'].video.shape, (4, 128, 128, 3)) def _test_decoder( sequences: Dict[str, media_sequences.EncodedSequence] ) -> Dict[str, datasets.View]: batch_views = {} for view_name, sequence in sequences.items(): # Now decode the crop window from the sequence as a video. video = video_sampling.decode_resize_crop_images( sequence.jpeg_encoded_images, initial_resize=224, center_crop_size=128) batch_views[view_name] = datasets.View(video=video, audio=None, labels=None) return batch_views def _test_sampler( sequence: media_sequences.EncodedSequence ) -> Dict[str, media_sequences.EncodedSequence]: # Simply sample the first four frames of the sequence into a single view # called 'default'. result = time_sampling.random_sample_sequence_using_video( num_video_frames=4, video_frame_step=1, sequence=sequence) return {'default': result.sequence} if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/datasets_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Video sampling tests.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np import tensorflow as tf from brave.datasets import video_sampling class VideoSamplingTest(parameterized.TestCase): @parameterized.parameters([ dict(image_shape=(224, 300), padding=0, expected=(0, 38, 224, 224)), dict(image_shape=(300, 224), padding=0, expected=(38, 0, 224, 224)), dict(image_shape=(224, 300), padding=16, expected=(16, 54, 192, 192)), dict(image_shape=(300, 224), padding=16, expected=(54, 16, 192, 192)), dict(image_shape=(32 + 1, 32 + 1), padding=16, expected=(16, 16, 1, 1)), ]) def test_center_crop(self, image_shape, padding, expected): image_shape = tf.constant(image_shape, dtype=tf.int32) bbox = video_sampling.pad_and_center_crop_window(image_shape, padding) np.testing.assert_allclose(expected, bbox.numpy()) @parameterized.parameters([ dict( image_shape=(224, 300, 3), min_area=0.5, max_area=1.0, min_aspect_ratio=1.0, max_aspect_ratio=1.0), dict( image_shape=(224, 224, 3), min_area=0.5, max_area=1.0, min_aspect_ratio=0.3, max_aspect_ratio=2.0), dict( image_shape=(100, 10, 3), min_area=0.001, max_area=1.0, min_aspect_ratio=0.1, max_aspect_ratio=10.0), ]) def test_random_sample_crop_window(self, image_shape, min_area, max_area, min_aspect_ratio, max_aspect_ratio): windows = [] for i in range(100): crop_window = video_sampling.random_sample_crop_window( tf.constant(image_shape), min_area=min_area, max_area=max_area, min_aspect_ratio=min_aspect_ratio, max_aspect_ratio=max_aspect_ratio, seed=i).numpy() windows.append(crop_window) # Test that we see plenty of variety in the samples. different_samples = set(tuple(window) for window in windows) assert len(different_samples) > 50 image_area = image_shape[0] * image_shape[1] sampled_min_area = min(w[2] * w[3] for w in windows) sampled_max_area = max(w[2] * w[3] for w in windows) sampled_min_aspect_ratio = min(w[3] / w[2] for w in windows) sampled_max_aspect_ratio = min(w[3] / w[2] for w in windows) self.assertLess(sampled_max_area / image_area, max_area + 1e-4) self.assertGreater(sampled_min_area / image_area, min_area - 1e-4) self.assertLess(sampled_max_aspect_ratio, max_aspect_ratio + 1e-4) self.assertGreater(sampled_min_aspect_ratio, min_aspect_ratio - 1e-4) def test_random_sample_crop_window_fall_back(self): # The sampler can't satisfy the given conditions, and will thus fallback # to a padded center crop. We check this by comparing with a padded # center crop gives the same result in this case. image_shape = tf.constant([224, 64, 3]) crop_window = video_sampling.random_sample_crop_window( image_shape, min_area=0.5, max_area=1.0, min_aspect_ratio=100.0, max_aspect_ratio=200.0, seed=0) padded_center_crop = video_sampling.pad_and_center_crop_window(image_shape) np.testing.assert_allclose(padded_center_crop.numpy(), crop_window.numpy()) def test_resize_min_and_crop(self): video = np.ones((3, 120, 240, 3)) video[:, 50:70, 110:130, :] = 1.0 cropped = video_sampling._resize_min_and_crop( video, initial_resize=60, center_crop_size=60) self.assertEqual(cropped.shape, (3, 60, 60, 3)) expected = np.ones((3, 60, 60, 3)) expected[:, 20:40, 20:40, :] = 1.0 np.testing.assert_allclose(expected, cropped.numpy()) if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/video_sampling_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for time sampling.""" from absl.testing import absltest from absl.testing import parameterized import tensorflow as tf from brave.datasets import media_sequences from brave.datasets import sampling from brave.datasets import time_sampling class TimeSamplingTest(parameterized.TestCase): def test_video_sampling_overruns_region(self): sequence = _sequence_fixture() # There is only one way to sample result = time_sampling.random_sample_sequence_using_video( num_video_frames=2, video_frame_step=3, sequence=sequence, seed=5) expected_images = tf.constant(['abc', 'jkl']) tf.assert_equal(expected_images, result.sequence.jpeg_encoded_images) tf.assert_equal(0, result.indices.start_index) tf.assert_equal(4, result.indices.end_index) expected_audio = tf.constant([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]) tf.assert_equal(expected_audio, result.sequence.audio) def test_impossible_time_sampling(self): sequence = _sequence_fixture() with self.assertRaises(tf.errors.InvalidArgumentError): time_sampling.random_sample_sequence_using_video( num_video_frames=3, video_frame_step=3, sequence=sequence, seed=5) def test_all_values_are_sampled(self): sequence = _sequence_fixture() samples = set() for _ in range(100): result = time_sampling.random_sample_sequence_using_video( num_video_frames=1, video_frame_step=1, sequence=sequence) vs = tuple(result.sequence.jpeg_encoded_images.numpy().tolist()) samples.add(vs) expected = set([(b'abc',), (b'def',), (b'ghi',), (b'jkl',)]) self.assertEqual(expected, samples) def test_time_sample_length_1(self): sequence = _sequence_fixture() samples = set() for _ in range(100): result = time_sampling.random_sample_sequence_using_video( num_video_frames=1, video_frame_step=1, sequence=sequence, sample_start_index=2) vs = tuple(result.sequence.jpeg_encoded_images.numpy().tolist()) samples.add(vs) expected = set([(b'ghi',), (b'jkl',)]) self.assertEqual(expected, samples) def test_constrained_sample_ranges(self): sequence = _sequence_fixture() result = time_sampling.random_sample_sequence_using_video( num_video_frames=2, video_frame_step=1, sequence=sequence, sample_start_index=1, sample_end_index=3) # Only one sequence can satisfy these constraints. expected_images = tf.constant(['def', 'ghi']) tf.assert_equal(expected_images, result.sequence.jpeg_encoded_images) expected_audio = tf.constant([2.0, 3.0, 4.0, 5.0]) tf.assert_equal(expected_audio, result.sequence.audio) @parameterized.parameters([ { 'indices': (0, 2, 1), 'old_length': 4, 'new_length': 4, 'expected': (0, 2, 1), }, { 'indices': (0, 1, 1), 'old_length': 4, 'new_length': 8, 'expected': (0, 2, 1), }, { 'indices': (0, 1, 1), 'old_length': 4, 'new_length': 8, 'expected': (0, 2, 1), }, { 'indices': (0, 4, 3), 'old_length': 4, 'new_length': 4, 'expected': (0, 4, 1), }, { 'indices': (0, 10, 4), 'old_length': 10, 'new_length': 5, 'expected': (0, 5, 1), }, ]) def test_synced_indices(self, indices, old_length, new_length, expected): indices = sampling.Indices(*indices) result = time_sampling.synced_indices(indices, old_length, new_length) self.assertEqual(expected[0], result.start_index) self.assertEqual(expected[1], result.end_index) self.assertEqual(expected[2], result.step) def test_get_subsequence_by_video_indices(self): sequence = _sequence_fixture() result = time_sampling.get_subsequence_by_video_indices( sequence, sampling.Indices(1, 3, 1)) expected_images = tf.constant(['def', 'ghi']) expected_audio = tf.constant([2.0, 3.0, 4.0, 5.0]) tf.assert_equal(expected_audio, result.audio) tf.assert_equal(expected_images, result.jpeg_encoded_images) result = time_sampling.get_subsequence_by_video_indices( sequence, sampling.Indices(1, 3, 1), override_num_audio_samples=8) expected_images = tf.constant(['def', 'ghi']) expected_audio = tf.constant([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 0.0, 0.0]) tf.assert_equal(expected_audio, result.audio) tf.assert_equal(expected_images, result.jpeg_encoded_images) def _sequence_fixture(): return media_sequences.EncodedSequence( jpeg_encoded_images=tf.constant(['abc', 'def', 'ghi', 'jkl']), audio=tf.constant([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]), labels=None) if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/time_sampling_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Logic for sampling in the temporal dimension.""" from typing import NamedTuple, Optional, Union import tensorflow as tf from brave.datasets import media_sequences from brave.datasets import sampling Scalar = Union[int, tf.Tensor] class SampleResult(NamedTuple): sequence: media_sequences.EncodedSequence indices: sampling.Indices def random_sample_sequence_using_video( num_video_frames: Scalar, video_frame_step: Scalar, sequence: media_sequences.EncodedSequence, seed: Optional[int] = None, sample_start_index: Scalar = 0, sample_end_index: Scalar = -1, override_num_audio_samples: Optional[int] = None, ) -> SampleResult: """Randomly sample a sub-sequence using video to sync. Args: num_video_frames: The number of video frames to return. video_frame_step: The step between frames sampled from the sequence. sequence: The sequence to sample from. seed: A seed to set to introduce determinism. sample_start_index: The returned must start at or after this value. sample_end_index: The returned must end before this value (can be negative). Thus the returned indices must fall within the range given by [sample_start_index, sample_end_index). override_num_audio_samples: If set, and audio is present, then the length of the sampled audio will be set to this value. This is useful to avoid rounding and sync. errors where we want the audio tensor to have a specific shape. Returns: A new sequence, where the video has been sampled to have the given number of frames and the given step. All other fields present in the sequence are also sampled proportionally to the same time range. """ # Change negative values of sample_end_index into a true index value. total_frames = tf.shape(sequence.jpeg_encoded_images)[0] sample_end_index = tf.cond( tf.less(sample_end_index, 0), lambda: total_frames + sample_end_index + 1, lambda: sample_end_index) indices = sampling.random_sample( start_index=sample_start_index, end_index=sample_end_index, sample_length=num_video_frames, step=video_frame_step, seed=seed) new_sequence = get_subsequence_by_video_indices( sequence, indices, override_num_audio_samples=override_num_audio_samples) return SampleResult(new_sequence, indices) def get_subsequence_by_video_indices( sequence: media_sequences.EncodedSequence, indices: sampling.Indices, override_num_audio_samples: Optional[int] = None ) -> media_sequences.EncodedSequence: """Return a new subsequence sliced down using the video to sync time. Args: sequence: The sequence to slice using indices. indices: The indices to use to slice the input. override_num_audio_samples: If set, and audio is present, then the length of the sampled audio will be set to this value. This is useful to avoid rounding and sync. errors where we want the tensors to have a specific shape. Returns: A new sequence, sliced using the given indices (which are specifically for the `jpeg_encoded_images` part of the input data. The other components of the input sequence will be sliced synchronously to the same sub-region (although with no 'step' applied). The labels are never sliced, and are always kept the same. """ result = media_sequences.EncodedSequence( jpeg_encoded_images=None, audio=None, labels=sequence.labels) result.jpeg_encoded_images = sequence.jpeg_encoded_images[ indices.start_index:indices.end_index:indices.step] if sequence.labels is not None: result.labels = sequence.labels if sequence.audio is not None: audio = sequence.audio video_length = tf.shape(sequence.jpeg_encoded_images)[0] audio_length = tf.shape(sequence.audio)[0] audio_indices = synced_indices(indices, video_length, audio_length) if override_num_audio_samples is not None: audio_indices = sampling.Indices( audio_indices.start_index, audio_indices.start_index + override_num_audio_samples, audio_indices.step) audio_length = tf.shape(sequence.audio)[-1] if audio_length < audio_indices.end_index: padding = tf.zeros((audio_indices.end_index - audio_length,)) audio = tf.concat([audio, padding], axis=-1) result.audio = audio[audio_indices.start_index:audio_indices .end_index:audio_indices.step] return result def synced_indices(indices: sampling.Indices, old_length: Scalar, new_length: Scalar, new_step: Scalar = 1) -> sampling.Indices: """Move indices in one array to equivalent indices in another. Args: indices: The indices to resample/ old_length: The length of the array the indices came from. new_length: The length of the array we would like to sample in. new_step: The step value to return with the returned sequence. Returns: Indices, modified so that they sample the same region in another array. """ length = (indices.end_index - indices.start_index) ratio = tf.cast(new_length / old_length, tf.float32) start = tf.cast(tf.cast(indices.start_index, tf.float32) * ratio, tf.int32) end = tf.cast((tf.cast(indices.start_index + length, tf.float32)) * ratio, tf.int32) start = tf.maximum(0, start) end = tf.minimum(new_length, end) return sampling.Indices( start_index=start, end_index=end, step=new_step, )
brave-main
brave/datasets/time_sampling.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A package for reading and materializing encoded data into memory.""" import enum import functools from typing import Any, Callable, Dict, Optional, Sequence import chex import tensorflow as tf MAXIMUM_DATA_FETCH_CONCURRENT_REQUESTS = 8 DEFAULT_BLOCK_LENGTH = 8 DEFAULT_SHUFFLE_BUFFER_SIZE = 32 # Note(rhemsley): We are fortunate that the datasets we currently use follow the # same conventions for naming these features. We may have to support different # feature names in future. DEFAULT_LABEL_FEATURE_NAME = 'clip/label/index' DEFAULT_IMAGE_FEATURE_NAME = 'image/encoded' DEFAULT_AUDIO_FEATURE_NAME = 'WAVEFORM/feature/floats' # A ShardReaderFn takes a path and returns a tf.data.Dataset. The dataset # must be an iterable over serialized tf.train.SequenceExample protos in # tensors. ShardReaderFn = Callable[[str], tf.data.Dataset] class FeatureKind(enum.Enum): VIDEO = enum.auto() LABELS = enum.auto() AUDIO = enum.auto() @chex.dataclass class EncodedSequence: """Encoded sequences contain selected fields read from MediaSequence protos. We make use of an optimized proto reader to construct these objects, which is why we do not use the proto message directly. Attributes: jpeg_encoded_images: An optional tensor of shape (T,) containing jpeg encoded strings. Each entry in the tensor corresponds to an (ordered) frame in a video. audio: Raw audio encoded as a waveform, with rank-1 and of shape (T,). For example, for 10 seconds of audio sampled at 48Khz, the shape would be (480000,). labels: An optional tensor of integer class indices of shape (N,), where N is the number of labels associated with this sequence. """ jpeg_encoded_images: Optional[tf.Tensor] audio: Optional[tf.Tensor] labels: Optional[tf.Tensor] def __repr__(self): features = [] if self.jpeg_encoded_images is not None: features.append(f'jpeg_encoded_images: {self.jpeg_encoded_images.shape}') if self.labels is not None: features.append(f'labels: {self.labels.shape}') if self.audio is not None: features.append(f'audio: {self.audio.shape}') return '<EncodedSequence ' + ', '.join(features) + '>' def tf_record_shard_reader(path: str) -> tf.data.Dataset: """By default, we assume that the data can be read using from TFRecords.""" return tf.data.TFRecordDataset(path) def media_sequence_dataset( shards: Sequence[str], features: Sequence[FeatureKind], *, shuffle: bool = False, shard_reader: ShardReaderFn = tf.data.TFRecordDataset) -> tf.data.Dataset: """Returns a tensorflow dataset that iterates over encoded media sequences. Uses jax.process_count() and jax.process_index() to shard the data across the different active processes. Args: shards: The paths to the shards to read. features: The features to read from the encoded protobuf. shuffle: Whether or not to shuffle the data. shard_reader: A function mapping a path from the sequence of shards and return a tf.data.Dataset over serializedtf.train.SequenceExample protos. Defaults to a reader for `TFRecordDataset`. Returns: A tf.data.Dataset containing objects of type EncodedSequence. """ # Create a dataset that iterates over the shard paths. ds = tf.data.Dataset.from_tensor_slices(shards) # Shuffling the shards is an efficient way to shuffle the dataset at # a coarse level of granularity. if shuffle: ds = ds.shuffle(len(shards), seed=0) # We map the shard reader function across the shards and interleave the # results in parallel, resulting in parallel reads to the shards that are # combined into one sequential dataset. # According to the docs, the cycle_length becomes the maximum concurrent # fetches. ds = ds.interleave( shard_reader, cycle_length=MAXIMUM_DATA_FETCH_CONCURRENT_REQUESTS, block_length=DEFAULT_BLOCK_LENGTH, num_parallel_calls=tf.data.AUTOTUNE, deterministic=not shuffle) # Deserialize only the required features from the protobuf. ds = ds.map(functools.partial(_extract_features_from_pbf, features=features)) # Despite shuffling the shards, we still need to shuffle within the shards. if shuffle: ds = ds.shuffle(buffer_size=DEFAULT_SHUFFLE_BUFFER_SIZE) return ds def extend_sequence(sequence: EncodedSequence, min_video_frames: int) -> EncodedSequence: """Extend a sequence until it contains at least the given number of frames. Args: sequence: The sequence under consideration min_video_frames: The minimum number of video frames required. Returns: A sequence containing at least the minimum number of frames. """ num_frames = tf.shape(sequence.jpeg_encoded_images)[0] needed_repeats = tf.math.ceil(min_video_frames / num_frames) return tf.cond( tf.greater(needed_repeats, 1.0), lambda: repeat(sequence, needed_repeats), lambda: sequence) def repeat(sequence: EncodedSequence, n: int) -> EncodedSequence: """Extend a sequence by repeating it n times. This is useful to extend unusually short sequences to allow sampling longer time ranges. Args: sequence: The sequence to repeat. n: The number of times to loop the input seuquence. Returns: A new sequence that is n times longer than the input sequence. """ result = EncodedSequence(jpeg_encoded_images=None, audio=None, labels=None) if sequence.jpeg_encoded_images is not None: result.jpeg_encoded_images = tf.tile( sequence.jpeg_encoded_images, multiples=(n,)) if sequence.audio is not None: result.audio = tf.tile(sequence.audio, multiples=(n,)) if sequence.labels is not None: result.labels = sequence.labels return result def _extract_features_from_pbf( buffer: tf.Tensor, features: Sequence[FeatureKind]) -> EncodedSequence: """Read specific features from a media sequence proto. Args: buffer: A serialized tf.train.SequenceExample proto. features: The features that should be read into the resulting object. Returns: An EncodedSequence object containing the requested features. """ features_dct = _build_features_dct(features) context_features_dct = _build_context_features_dct(features) context_dct, dct = tf.io.parse_single_sequence_example( buffer, context_features_dct, features_dct) result = EncodedSequence(jpeg_encoded_images=None, audio=None, labels=None) if DEFAULT_IMAGE_FEATURE_NAME in dct: result.jpeg_encoded_images = tf.identity(dct[DEFAULT_IMAGE_FEATURE_NAME]) if DEFAULT_AUDIO_FEATURE_NAME in dct: audio = tf.sparse.to_dense(dct[DEFAULT_AUDIO_FEATURE_NAME]) # The audio is stored on the wire as (1, <n samples>). tf.assert_rank(audio, 2) result.audio = audio[0] if DEFAULT_LABEL_FEATURE_NAME in context_dct: result.labels = tf.sparse.to_dense(context_dct[DEFAULT_LABEL_FEATURE_NAME]) return result def _build_context_features_dct( features: Sequence[FeatureKind]) -> Dict[str, Any]: dct = {} for feature in features: if feature is FeatureKind.LABELS: dct[DEFAULT_LABEL_FEATURE_NAME] = tf.io.VarLenFeature(dtype=tf.int64) return dct def _build_features_dct(features: Sequence[FeatureKind]) -> Dict[str, Any]: """Build the input dictionary required by parse_single_sequence_example. Due to optimizations in parse_single_sequence_example, we need to specify additional information about the way the fields should be loaded. Args: features: The features to load Returns: Type information used to construct the tensors for the encoded sequence objects. """ dct = {} for feature in features: if feature is FeatureKind.VIDEO: dct[DEFAULT_IMAGE_FEATURE_NAME] = tf.io.FixedLenSequenceFeature( (), dtype=tf.string) if feature is FeatureKind.AUDIO: dct[DEFAULT_AUDIO_FEATURE_NAME] = tf.io.VarLenFeature(dtype=tf.float32) return dct
brave-main
brave/datasets/media_sequences.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implement logic for sampling videos and audio.""" from typing import Sequence, NamedTuple, Union, Optional import tensorflow as tf Scalar = Union[int, tf.Tensor] class Indices(NamedTuple): start_index: Scalar end_index: Scalar step: Scalar def compute_linearly_spaced_sample_indices(sequence_length: int, num_samples: int, num_frames_per_sample: int, step: int) -> Sequence[Indices]: """Space out windows along a sequence. Args: sequence_length: The length of the sequence we are sampling from. num_samples: The number of samples to return from the input sequence. num_frames_per_sample: Each resulting sample must have this number of frames. step: The gap between frames sampled into the output. Returns: A sequence of slice indices referencing the input sequence. When `num_samples` is one, the returned sample always starts at zero, When `num_samples` is two, we return a sample starting at zero, and another sample starting at the end of the sequence (i.e. the last sample that could fit at the end). As `num_samples` increases, the samples are returned spaced out evenly between the first possible sample, and the last possible sample. Samples may overlap or indeed be repeated. """ # Each cropped sample must have this number of frames. We repeat # the underlying sequence until it contains this number of frames, so that # we can return valid crops. Even if some of the samples may be repeats. sample_length = (num_frames_per_sample - 1) * step + 1 last_sample_start = tf.cast(sequence_length - sample_length, tf.float32) start_indices = tf.linspace(0.0, last_sample_start, num_samples) start_indices = tf.cast(start_indices, tf.int32) indices = [ Indices(start_indices[i], start_indices[i] + sample_length, step) for i in range(num_samples) ] return indices def random_sample(start_index: Scalar, end_index: Scalar, sample_length: Scalar, step: Scalar, seed: Optional[int] = None) -> Indices: """Sample a range from a sequence given constraints. All arguments must be positive. Args: start_index: The returned sample must start at or after this index. end_index: The returned sample must end before this index. sample_length: The sample must contain this number of values. step: The sample must have this step in the original sequence. seed: A seed for the rng. Returns: Indices representing the start, end, and step in the original sequence. Raises: tf.error.InvalidArgumenError if the sample is not satisfiable - in this case, there are not enough elements in the sequence to return a sample. """ samplable_sequence_length = end_index - start_index required_length = step * (sample_length - 1) + 1 tf.debugging.assert_less_equal(required_length, samplable_sequence_length) max_val = samplable_sequence_length - required_length + 1 idx = tf.random.uniform((), maxval=max_val, dtype=tf.int32, seed=seed) start = start_index + idx end = start + required_length return Indices(start, end, step)
brave-main
brave/datasets/sampling.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Package to compute spectrograms from PCM encoded audio.""" import tensorflow as tf DEFAULT_FRAME_LENGTH = 320 DEFAULT_FFT_LENGTH = 320 DEFAULT_LOG_FACTOR = 10_000 DEFAULT_LOWER_EDGE_FREQUENCY_HZ = 80.0 DEFAULT_UPPER_EDGE_FREQUENCY_HZ = 7600.0 def pcm_to_log_mel_spectrogram(pcm: tf.Tensor, input_sample_rate: int, num_spectrogram_bins: int, fft_step: int): """Compute log-mel spectrogram from raw audio. Args: pcm: The raw audio represented as PCM, with shape (BATCH_DIMS..., N) sampled at the sample rate `input_sample_rate`, and with zero or more batch dimensions. input_sample_rate: The samplerate of the input audio. num_spectrogram_bins: The number of bins in the output spectrogram. fft_step: The step size to use in the fft. Returns: The log-mel spectrogram of the raw audio, with shape (BATCH_DIMS... , N / `fft_step`, `num_bins`), where N is the number of samples in the input pcm. """ stfts = tf.signal.stft( pcm, frame_length=DEFAULT_FRAME_LENGTH, frame_step=fft_step, fft_length=DEFAULT_FFT_LENGTH, window_fn=tf.signal.hann_window, pad_end=True) spectrograms = tf.abs(stfts) # Warp the linear scale spectrograms into the mel-scale. linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix( num_spectrogram_bins, stfts.shape[-1], input_sample_rate, DEFAULT_LOWER_EDGE_FREQUENCY_HZ, DEFAULT_UPPER_EDGE_FREQUENCY_HZ) mel_spectrograms = tf.tensordot(spectrograms, linear_to_mel_weight_matrix, 1) mel_spectrograms.set_shape(spectrograms.shape[:-1].concatenate( linear_to_mel_weight_matrix.shape[-1:])) # Compute a stabilized log to get log-magnitude mel-scale spectrograms. # Using Sander's suggested alternative. log_mel_spectrograms = tf.math.log(1 + DEFAULT_LOG_FACTOR * mel_spectrograms) return log_mel_spectrograms
brave-main
brave/datasets/spectrograms.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for spectrograms.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np import tensorflow as tf from brave.datasets import spectrograms class AudioProcessingTest(parameterized.TestCase): def test_log_mel_spectrogram(self): pcm = np.random.uniform(low=-1.0, high=1.0, size=(48_000 * 13,)) pcm = tf.constant(pcm, dtype=tf.float32) expected_length = int(48_000 * 13 / 160) log_mel = spectrograms.pcm_to_log_mel_spectrogram( pcm, input_sample_rate=48_000, num_spectrogram_bins=80, fft_step=160) self.assertEqual((expected_length, 80), log_mel.shape) def test_batched_spectrogram(self): shape = (3, 5, 48_000) pcm = np.random.uniform(low=-1.0, high=1.0, size=shape) pcm = tf.constant(pcm, dtype=tf.float32) spectrogram = spectrograms.pcm_to_log_mel_spectrogram( pcm, input_sample_rate=48_000, num_spectrogram_bins=80, fft_step=160) self.assertEqual((3, 5, int(48_000 / 160), 80), spectrogram.shape) if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/spectrograms_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for media sequences.""" import tempfile from absl.testing import absltest from absl.testing import parameterized import tensorflow as tf from brave.datasets import fixtures from brave.datasets import media_sequences class MediaSequencesTest(parameterized.TestCase): def test_read_hmdb_51(self): with tempfile.TemporaryDirectory() as fixture_dir: self.shards = fixtures.write_tf_record_dataset_fixture(fixture_dir) features = [ media_sequences.FeatureKind.VIDEO, media_sequences.FeatureKind.LABELS, media_sequences.FeatureKind.AUDIO, ] ds = media_sequences.media_sequence_dataset(self.shards, features) for v in ds: self.assertIsInstance(v, media_sequences.EncodedSequence) self.assertIsNotNone(v.jpeg_encoded_images) self.assertIsNotNone(v.audio) self.assertIsNotNone(v.labels) def test_repeat(self): sequence = media_sequences.EncodedSequence( jpeg_encoded_images=tf.constant(['abc', 'def', 'ghi', 'jkl']), audio=tf.zeros((480376,)), labels=None) result = media_sequences.repeat(sequence, 2) expected = tf.constant( ['abc', 'def', 'ghi', 'jkl', 'abc', 'def', 'ghi', 'jkl']) tf.assert_equal(expected, result.jpeg_encoded_images) self.assertEqual((2 * 480376,), tf.shape(result.audio)) @parameterized.parameters([ dict(min_num_frames=1, expected_length=4), dict(min_num_frames=3, expected_length=4), dict(min_num_frames=4, expected_length=4), dict(min_num_frames=5, expected_length=8), dict(min_num_frames=8, expected_length=8), dict(min_num_frames=9, expected_length=12), dict(min_num_frames=13, expected_length=16), dict(min_num_frames=16, expected_length=16), ]) def test_extend_sequence(self, min_num_frames, expected_length): sequence = media_sequences.EncodedSequence( jpeg_encoded_images=tf.constant(['abc', 'def', 'ghi', 'jkl']), audio=tf.constant([0.1, -0.1, 0.0, 0.0]), labels=None) result = media_sequences.extend_sequence(sequence, min_num_frames) self.assertEqual(expected_length, result.jpeg_encoded_images.shape[0]) self.assertEqual(expected_length, result.audio.shape[0]) if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/media_sequences_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for data augmentations.""" from absl.testing import absltest from absl.testing import parameterized import tensorflow as tf from brave.datasets import augmentations from brave.datasets import datasets class AugmentationsTest(parameterized.TestCase): def test_normalize_video(self): view = _view_fixture() result = augmentations.normalize_video(view) self.assertEqual(result.video.shape, (4, 8, 8, 3)) self.assertAlmostEqual(result.video[0, 0, 0, 0], 0.0) def test_random_color_augment_video(self): view = _view_fixture() result = augmentations.random_color_augment_video( view, prob_color_augment=1.0, prob_color_drop=1.0) self.assertEqual(result.video.shape, (4, 8, 8, 3)) def test_gaussian_blur(self): view = _view_fixture() result = augmentations.random_gaussian_blur_video( view, kernel_size=3, sigma_range=(1.0, 1.0)) self.assertEqual(result.video.shape, (4, 8, 8, 3)) def test_random_horizontal_flip_video(self): view = _view_fixture() result = augmentations.random_horizontal_flip_video(view) self.assertEqual(result.video.shape, (4, 8, 8, 3)) def test_random_convolve_video(self): view = _view_fixture() result = augmentations.random_convolve_video(view) self.assertEqual(result.video.shape, (4, 8, 8, 3)) def _view_fixture() -> datasets.View: return datasets.View(video=tf.zeros([4, 8, 8, 3]), audio=None, labels=None) if __name__ == '__main__': absltest.main()
brave-main
brave/datasets/augmentations_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provide view augmentations for the dataset.""" import copy import functools from typing import Optional, Tuple import tensorflow as tf from brave.datasets import datasets DEFAULT_RANDOM_CONVOLVE_MAX_K = 11 def normalize_video(view: datasets.View) -> datasets.View: """Return view with video normalized to range [0, 1].""" result = copy.copy(view) result.video = view.video * (1.0 / 255.0) return result def random_color_augment_video(view: datasets.View, *, prob_color_augment: float, prob_color_drop: float) -> datasets.View: """Apply random color augmentations to the video in a view.""" video = _color_default_augm( view.video, zero_centering_image=False, prob_color_augment=prob_color_augment, prob_color_drop=prob_color_drop) result = copy.copy(view) result.video = video return result def random_gaussian_blur_video( view: datasets.View, *, kernel_size: int, sigma_range: Tuple[float, float]) -> datasets.View: """Apply a gaussian blur with a random sigma value in the range sigma_range. Args: view: The input view to augment. kernel_size: The kernel size of the blur kernel. sigma_range: A random value in this range is chosen as the sigma value for the gaussian blur. Returns: A new view where the video has a guassian gaussian blur applied. """ sigma = tf.random.uniform((), sigma_range[0], sigma_range[1], dtype=tf.float32) def blur(img): return _gaussian_blur(img, kernel_size=kernel_size, sigma=sigma) result = copy.copy(view) result.video = tf.map_fn(blur, view.video, fn_output_signature=tf.float32) return result def random_horizontal_flip_video(view: datasets.View) -> datasets.View: """Randomly flip all frames within a video.""" flip = tf.random.uniform((), minval=0, maxval=2, dtype=tf.int32) video = tf.cond( pred=tf.equal(flip, 1), true_fn=lambda: tf.image.flip_left_right(view.video), false_fn=lambda: view.video) result = copy.copy(view) result.video = video return result def random_convolve_video(view: datasets.View, *, max_k=DEFAULT_RANDOM_CONVOLVE_MAX_K) -> datasets.View: """Apply a random convolution to the input view's video.""" video = _random_convolve(view.video, max_k=max_k) result = copy.copy(view) result.video = video return result def _gaussian_blur(image: tf.Tensor, kernel_size: int, sigma: float, padding='SAME'): """Blurs the given image with separable convolution. Args: image: Tensor of shape [height, width, channels] and dtype float to blur. kernel_size: Integer Tensor for the size of the blur kernel. This is should be an odd number. If it is an even number, the actual kernel size will be size + 1. sigma: Sigma value for gaussian operator. padding: Padding to use for the convolution. Typically 'SAME' or 'VALID'. Returns: A Tensor representing the blurred image. """ radius = tf.cast(kernel_size // 2, tf.int32) kernel_size = radius * 2 + 1 x = tf.cast(tf.range(-radius, radius + 1), tf.float32) blur_filter = tf.exp(-tf.pow(x, 2.0) / (2.0 * tf.pow(tf.cast(sigma, tf.float32), 2.0))) blur_filter /= tf.reduce_sum(blur_filter) # One vertical and one horizontal filter. blur_v = tf.reshape(blur_filter, [kernel_size, 1, 1, 1]) blur_h = tf.reshape(blur_filter, [1, kernel_size, 1, 1]) num_channels = tf.shape(image)[-1] blur_h = tf.tile(blur_h, [1, 1, num_channels, 1]) blur_v = tf.tile(blur_v, [1, 1, num_channels, 1]) expand_batch_dim = image.shape.ndims == 3 if expand_batch_dim: # Tensorflow requires batched input to convolutions, which we can fake with # an extra dimension. image = tf.expand_dims(image, axis=0) blurred = tf.nn.depthwise_conv2d( image, blur_h, strides=[1, 1, 1, 1], padding=padding) blurred = tf.nn.depthwise_conv2d( blurred, blur_v, strides=[1, 1, 1, 1], padding=padding) if expand_batch_dim: blurred = tf.squeeze(blurred, axis=0) return blurred def _color_default_augm(frames: tf.Tensor, zero_centering_image: bool = False, prob_color_augment: float = 0.8, prob_color_drop: float = 0.0, seed: Optional[int] = None): """Standard color augmentation for videos. Args: frames: A float32 tensor of shape [timesteps, input_h, input_w, channels]. zero_centering_image: If `True`, results are in [-1, 1], if `False`, results are in [0, 1]. prob_color_augment: Probability of applying color augmentation. prob_color_drop: Probability of droping the colors to gray scale. seed: A seed to use for the random sampling. Returns: A tensor of same shape as the input with color eventually altered. """ def color_augment(video: tf.Tensor) -> tf.Tensor: """Do standard color augmentations.""" # Note the same augmentation will be applied to all frames of the video. if zero_centering_image: video = 0.5 * (video + 1.0) video = tf.image.random_brightness(video, max_delta=32. / 255.) video = tf.image.random_saturation(video, lower=0.6, upper=1.4) video = tf.image.random_contrast(video, lower=0.6, upper=1.4) video = tf.image.random_hue(video, max_delta=0.2) video = tf.clip_by_value(video, 0.0, 1.0) if zero_centering_image: video = 2 * (video - 0.5) return video def color_drop(video: tf.Tensor) -> tf.Tensor: """Do color drop.""" video = tf.image.rgb_to_grayscale(video) video = tf.tile(video, [1, 1, 1, 3]) return video should_color_augment = tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32, seed=seed) frames = tf.cond( pred=tf.less(should_color_augment, tf.cast(prob_color_augment, tf.float32)), true_fn=lambda: color_augment(frames), false_fn=lambda: frames) should_color_drop = tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32, seed=seed) frames = tf.cond( pred=tf.less(should_color_drop, tf.cast(prob_color_drop, tf.float32)), true_fn=lambda: color_drop(frames), false_fn=lambda: frames) return frames def _random_convolve(x: tf.Tensor, max_k: int, init='he') -> tf.Tensor: """Applies a random convolution of random odd kernel size <= max_k.""" if init == 'he': he_normal_init = tf.initializers.he_normal w_init = he_normal_init() else: raise NotImplementedError(f'Unknown init: {init} for RandConv.') _, _, _, ch = x.get_shape().as_list() # Prepare the switch case operation, depending on the dynamically sampled k. values_k = range(1, max_k + 1, 2) nb_values_k = len(values_k) random_conv_fns = {} def apply_conv2d_fn(x, k, ch, w_init): k_h, k_w, k_ic, k_oc = k, k, ch, ch w_shape = [k_h, k_w, k_ic, k_oc] strides = 1 w = w_init(w_shape) return tf.nn.conv2d(x, w, strides, 'SAME', name='random_conv') for ind_k in range(nb_values_k): k = 2 * ind_k + 1 apply_conv_k_fn = functools.partial(apply_conv2d_fn, x, k, ch, w_init) random_conv_fns[ind_k] = apply_conv_k_fn # Sample k uniformly in 1:max_k:2. ind_k = tf.cast(tf.floor(tf.random.uniform([], maxval=nb_values_k)), tf.int32) x = tf.switch_case(ind_k, random_conv_fns, name='sample_random_conv') return x
brave-main
brave/datasets/augmentations.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implement test fixtures for testing datasets.""" import os from typing import Dict, List, Sequence import numpy as np import tensorflow as tf DEFAULT_AUDIO_SAMPLES = int(10.376 * 48_000) def write_tf_record_dataset_fixture(path: str) -> List[str]: """Write a tfrecord dataset to the given path.""" records = [record for k, record in sorted(_make_fixture().items())] shard_1 = os.path.join(path, 'shard1.tfrecords') shard_2 = os.path.join(path, 'shard2.tfrecords') with tf.io.TFRecordWriter(shard_1) as w: for record in records[:2]: w.write(record) with tf.io.TFRecordWriter(shard_2) as w: for record in records[2:]: w.write(record) return [shard_1, shard_2] def _make_fixture() -> Dict[str, bytes]: return { 'sequence_1': _fake_sequence_1(0).SerializeToString(), 'sequence_2': _fake_sequence_1(1).SerializeToString(), 'sequence_3': _fake_sequence_1(2).SerializeToString(), } def _fake_sequence_1(label: int) -> tf.train.SequenceExample: """The first test sequence.""" img = np.zeros((224, 300, 3)) video = tf.train.FeatureList(feature=[ _jpeg_feature(img), _jpeg_feature(img), _jpeg_feature(img), _jpeg_feature(img), _jpeg_feature(img), ]) audio = _audio_feature(np.zeros((DEFAULT_AUDIO_SAMPLES,))) features = { 'image/encoded': video, 'WAVEFORM/feature/floats': audio, } context = tf.train.Features(feature={ 'clip/label/index': _label_feature([label]), }) return tf.train.SequenceExample( context=context, feature_lists=tf.train.FeatureLists(feature_list=features)) def _jpeg_feature(img: np.ndarray) -> tf.train.Feature: buffer = tf.io.encode_jpeg(img).numpy() bytes_list = tf.train.BytesList(value=[buffer]) return tf.train.Feature(bytes_list=bytes_list) def _audio_feature(value: np.ndarray) -> tf.train.Feature: return tf.train.FeatureList( feature=[tf.train.Feature(float_list=tf.train.FloatList(value=value))]) def _label_feature(value: Sequence[int]) -> tf.train.Feature: return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
brave-main
brave/datasets/fixtures.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Define a re-usable container for multimodal embedding models.""" from typing import Dict, Tuple, Callable import chex import haiku as hk import tensorflow as tf from brave.datasets import datasets Loss = chex.Array Scalars = Dict[str, chex.Array] GlobalStep = int EvalMode = str InitFn = Callable[[chex.PRNGKey], Tuple[hk.Params, hk.State]] LossFn = Callable[[hk.Params, hk.State, chex.PRNGKey, datasets.MiniBatch], Tuple[Loss, Tuple[hk.State, Scalars]]] ForwardFn = Callable[[hk.Params, hk.State, chex.PRNGKey, datasets.View, bool], Tuple[chex.Array, hk.State]] DatasetBuilderFn = Callable[[], tf.data.Dataset] EvaluateFn = Callable[[GlobalStep, EvalMode, hk.Params, hk.State], Dict[str, chex.Array]] @chex.dataclass class MultimodalEmbeddingModel: """A trainable multimodal embedding model. Attributes: init_fn: The init function may be called to initialize parameters and state for the model. The resulting parameters may be used for all other functions returned in this dataclass. forward_fns: A mapping giving the (named) embedding functions trained by the model. loss_fn: A function to compute training loss given a train batch. evaluate_fn: A function taking the global step, the "evaluation mode" (a user-defined string taken from the Jaxline mode, which has been added to support running multiple parallel Jaxline evaluation processes), and returning a dictionary of metrics that may be published directly. train_dataset_builder_fn: A callable returning the train dataset. he dataset must be an iterable over datasets.MiniBatch, each minibatch must be structured to support the specific embedding model being trained. Note that the batch dimension is added by the trainer, so the dataset should return single examples, rather than batches. """ init_fn: InitFn forward_fns: Dict[str, ForwardFn] loss_fn: LossFn evaluate_fn: EvaluateFn train_dataset_builder_fn: DatasetBuilderFn
brave-main
brave/models/embedding_model.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
brave-main
brave/models/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Brave.""" import copy import tempfile from absl.testing import absltest from absl.testing import parameterized import chex import jax from jaxline import utils as jaxline_utils import ml_collections import numpy as np import optax import tensorflow_datasets as tfds from brave.datasets import datasets from brave.datasets import fixtures from brave.models.brave import brave from brave.training import trainer ConfigDict = ml_collections.ConfigDict TEST_CONFIG = ConfigDict({ 'num_frames_broad': 2, 'image_size_broad': 1, 'step_broad': 1, 'include_video_in_broad_view': True, 'include_audio_in_broad_view': True, 'num_frames_narrow': 1, 'image_size_narrow': 2, 'step_narrow': 1, 'output_dims': 4, 'tsm_resnet_width_multiplier': 1, 'num_spectrogram_bins': 2, 'fft_step': 160, 'dataset_shards': None, 'input_video_sample_rate': 25.0, 'input_audio_sample_rate': 16_000, }) # The number of dimensions the backbone emits. BACKBONE_EMBEDDING_DIMS = 2048 DEVICE_COUNT = 1 chex.set_n_cpu_devices(DEVICE_COUNT) class BraveTest(parameterized.TestCase): def test_apply_embeddings_and_loss(self): """Test that parameters and loss can be computed for all embeddings.""" # Using real pmap would make the test _much_ slower. with chex.fake_pmap(), tempfile.TemporaryDirectory() as fixture_dir: self.assertEqual(jax.local_device_count(), DEVICE_COUNT) shards = fixtures.write_tf_record_dataset_fixture(fixture_dir) cfg = copy.copy(TEST_CONFIG) cfg.unlock() cfg.dataset_shards = shards cfg.lock() cfg = brave.BraveConfig(**cfg) # A key with the right shape (note this should really be broadcasted # for init) broadcasted_key = jaxline_utils.bcast_local_devices(jax.random.PRNGKey(0)) batch = brave.get_empty_minibatch(cfg) broad_view = batch.views['broad'] narrow_view = batch.views['narrow'] broad_view.video = np.random.uniform(size=[DEVICE_COUNT, 1, 2, 2, 2, 3]) broad_view.audio = np.random.uniform(size=[DEVICE_COUNT, 1, 4, 2]) narrow_view.video = np.random.uniform(size=[DEVICE_COUNT, 1, 1, 2, 2, 3]) model = brave.get_model(cfg) params, state = jax.pmap(model.init_fn, axis_name='i')(broadcasted_key) embeddings = model.forward_fns def broad(params, state, view): return embeddings['broad_video'](params, state, None, view, False) def narrow(params, state, view): return embeddings['narrow_video'](params, state, None, view, False) broad = jax.pmap(broad) narrow = jax.pmap(narrow) f_b, _ = broad(params, state, broad_view) self.assertEqual(f_b.shape, (DEVICE_COUNT, 1, BACKBONE_EMBEDDING_DIMS)) f_n, _ = narrow(params, state, narrow_view) self.assertEqual(f_n.shape, (DEVICE_COUNT, 1, BACKBONE_EMBEDDING_DIMS)) loss_fn = model.loss_fn optimizer = optax.sgd(learning_rate=1e-3) opt_state = optimizer.init(jax.random.PRNGKey(0)) update_fn = jax.pmap( trainer.build_update_fn(optimizer, loss_fn), axis_name='i', donate_argnums=(1, 2, 3, 4)) key = jax.random.split(jax.random.PRNGKey(0), DEVICE_COUNT) updates = update_fn(key, batch, params, state, opt_state) metrics = updates.scalars self.assertIn('loss', metrics) loss = metrics['loss'] self.assertEqual(loss.shape, (DEVICE_COUNT,)) self.assertFalse(np.isnan(loss[0])) # The loss should be approximately equal to 1.0, due to the random # initialization of the network. Since the test is small, there may # a large variance, so we set the tolerance to be high. # Note also that we take the mean over the loss, even though there # is a pmean. This is due to fake_pmap not currently implementing # lax.pmean. self.assertAlmostEqual(1.0, np.mean(loss), delta=5.0) def test_table_reader(self): with tempfile.TemporaryDirectory() as fixture_dir: shards = fixtures.write_tf_record_dataset_fixture(fixture_dir) cfg = copy.copy(TEST_CONFIG) cfg.unlock() cfg.dataset_shards = shards cfg.lock() cfg = brave.BraveConfig(**cfg) dataset = brave._train_dataset_builder(cfg) ds = dataset() ds = ds.batch(2) ds = tfds.as_numpy(ds) for batch in ds: self.assertIsInstance(batch, datasets.MiniBatch) self.assertIn('narrow', batch.views) self.assertIn('broad', batch.views) break def test_avoid_nan_in_loss(self): """Test that degenerate points do not result in NaN loss values.""" x = np.array([[1, 2, 3]]) y = np.array([[0, 0, 0]]) loss = brave._regression_loss(x, y, 1e-6) np.testing.assert_allclose(0.5, loss, rtol=1e-5) if __name__ == '__main__': absltest.main()
brave-main
brave/models/brave/brave_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Config for training Brave experiment.""" import ml_collections def get_experiment_config() -> ml_collections.ConfigDict: """The config for the BraVe model`.""" return ml_collections.ConfigDict({ 'global_batch_size': 512, 'model_name': 'brave', 'eval_modes': ['eval'], 'model': { 'image_size_broad': 112, 'num_frames_broad': 64, 'step_broad': 4, 'include_video_in_broad_view': False, 'include_audio_in_broad_view': True, 'image_size_narrow': 224, 'num_frames_narrow': 16, 'step_narrow': 2, 'output_dims': 128, 'tsm_resnet_width_multiplier': 1, 'num_spectrogram_bins': 80, 'fft_step': 160, 'dataset_shards': [], # Set this to train the model. 'input_audio_sample_rate': 48_000, 'input_video_sample_rate': 25.0, }, 'optimizer': { 'optimizer_name': 'lars', 'weight_decay': 1e-2, 'optimizer_kwargs': { 'momentum': 0.9, 'trust_coefficient': 0.001, 'nesterov': True, }, 'scheduler_name': 'cosine_decay', 'scheduler_kwargs': { 'init_value': 0.0, 'peak_value': 1.0, 'warmup_steps': 5000, 'decay_steps': 300_000, 'end_value': 0.0, }, 'scale_learning_rate_by_regex': [(r'.*predictor.*', 10.0)], }, })
brave-main
brave/models/brave/config.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implement the Brave model.""" import copy import functools from typing import Callable, Dict, Optional, Sequence, Tuple import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np import tensorflow as tf from brave.datasets import augmentations from brave.datasets import datasets from brave.datasets import media_sequences from brave.datasets import sampling from brave.datasets import spectrograms from brave.datasets import time_sampling from brave.datasets import video_sampling from brave.models import embedding_model from brave.models.brave import modules FAKE_AUDIO_LENGTH = 100 EmbeddingFn = Callable[[hk.Params, hk.State, chex.PRNGKey, datasets.View, bool], Tuple[chex.Array, chex.Array]] PredictorFn = Callable[[hk.Params, hk.State, chex.PRNGKey, chex.Array, bool], Tuple[chex.Array, chex.Array]] @chex.dataclass class ParameterizedFns: broad_video_embedding: EmbeddingFn broad_audio_embedding: EmbeddingFn narrow_video_embedding: EmbeddingFn b_video_to_n_video: PredictorFn n_video_to_b_video: PredictorFn b_audio_to_n_video: PredictorFn n_video_to_b_audio: PredictorFn @chex.dataclass class BraveConfig: """Specific configuration for the BraVe model.""" # Broad view config include_video_in_broad_view: bool include_audio_in_broad_view: bool num_frames_narrow: int image_size_narrow: int step_broad: int # Narrow view config num_frames_broad: int image_size_broad: int step_narrow: int # Predictors and projectors use output_dims dimensions. output_dims: int tsm_resnet_width_multiplier: int # spectrogram config (when using audio) num_spectrogram_bins: int fft_step: int # Dataset dataset_shards: Sequence[str] input_video_sample_rate: int input_audio_sample_rate: int def get_model(config: BraveConfig) -> embedding_model.MultimodalEmbeddingModel: """Construct a model implementing BraVe. Args: config: Configuration for BraVe. Returns: A `MultimodalEmbeddingModel` to train BraVe. """ init_fn, parameterized_fns = _build_parameterized_fns(config) loss_fn = _build_loss_fn(config, parameterized_fns) forward_fns = { 'broad_video': parameterized_fns.broad_video_embedding, 'broad_audio': parameterized_fns.broad_audio_embedding, 'narrow_video': parameterized_fns.narrow_video_embedding, } return embedding_model.MultimodalEmbeddingModel( init_fn=init_fn, forward_fns=forward_fns, loss_fn=loss_fn, evaluate_fn=_build_eval_fn(forward_fns), train_dataset_builder_fn=_train_dataset_builder(config), ) def get_empty_minibatch(config: BraveConfig) -> datasets.MiniBatch: """Get a zero-initialized minibatch for initialization and testing.""" narrow_video = np.zeros([ 1, config.num_frames_narrow, config.image_size_narrow, config.image_size_narrow, 3 ]) broad_audio = None broad_video = None if config.include_video_in_broad_view: broad_video = np.zeros([ 1, config.num_frames_broad, config.image_size_broad, config.image_size_broad, 3 ]) if config.include_audio_in_broad_view: # Computing the actual size of this tensor is surprisingly difficult. # But in practice it doesn't matter, the parameter block will be the same # in this case, one simply has to re-jit. broad_audio = np.zeros([1, FAKE_AUDIO_LENGTH, config.num_spectrogram_bins]) return datasets.MiniBatch( views={ 'broad': datasets.View(video=broad_video, audio=broad_audio, labels=None), 'narrow': datasets.View(video=narrow_video, audio=None, labels=None), }) def _build_parameterized_fns( config: BraveConfig) -> Tuple[embedding_model.InitFn, ParameterizedFns]: """Initialize Brave trainable embedding functions and predictors. Args: config: Configuration for the brave model. Returns: All parameterized trainable functions used by the BraVe model. """ output_dims = config.output_dims def shared_project(feats, is_training): net = modules.ProjectAndPredict(output_dims, name='shared_project') return net(feats, is_training) def broad_video_embedding(view, is_training): net = modules.VideoEmbedding( width_multiplier=config.tsm_resnet_width_multiplier, name='broad_video_embedding') return net(view, is_training) def broad_audio_embedding(view, is_training): net = modules.AudioEmbedding(name='broad_audio_embedding') return net(view, is_training) def narrow_video_embedding(view, is_training): net = modules.VideoEmbedding( width_multiplier=config.tsm_resnet_width_multiplier, name='narrow_video_embedding') return net(view, is_training) def b_video_to_n_video(f_b_1, is_training): return shared_project(f_b_1, is_training) def n_video_to_b_video(f_n, is_training): return shared_project(f_n, is_training) def b_audio_to_n_video(f_b_2, is_training): return shared_project(f_b_2, is_training) def n_video_to_b_audio(f_n, is_training): return shared_project(f_n, is_training) def init(): batch = get_empty_minibatch(config) broad, narrow = batch.views['broad'], batch.views['narrow'] f_n = narrow_video_embedding(narrow, is_training=True) if config.include_video_in_broad_view: f_b_1 = broad_video_embedding(broad, is_training=True) b_video_to_n_video(f_b_1, is_training=True) n_video_to_b_video(f_n, is_training=True) if config.include_audio_in_broad_view: f_b_2 = broad_audio_embedding(broad, is_training=True) b_audio_to_n_video(f_b_2, is_training=True) n_video_to_b_audio(f_n, is_training=True) return hk.transform_with_state(init).init, ParameterizedFns( broad_video_embedding=hk.transform_with_state( broad_video_embedding).apply, broad_audio_embedding=hk.transform_with_state( broad_audio_embedding).apply, narrow_video_embedding=hk.transform_with_state( narrow_video_embedding).apply, b_video_to_n_video=hk.transform_with_state(b_video_to_n_video).apply, n_video_to_b_video=hk.transform_with_state(n_video_to_b_video).apply, b_audio_to_n_video=hk.transform_with_state(b_audio_to_n_video).apply, n_video_to_b_audio=hk.transform_with_state(n_video_to_b_audio).apply, ) def _build_loss_fn( config: BraveConfig, paremeterized_fns: ParameterizedFns) -> embedding_model.LossFn: """Construct the loss function for BraVe. Takes as input the predictors across views, the predictors take as input a view and output the predicted value of a predictor computed from another view. Args: config: The config for BraVe. paremeterized_fns: The cross-view predictor functions. Returns: A function for computing the loss between the predictors with respect to the data contained within a minibatch. """ broad_video_embedding = paremeterized_fns.broad_video_embedding broad_audio_embedding = paremeterized_fns.broad_audio_embedding narrow_video_embedding = paremeterized_fns.narrow_video_embedding b_video_to_n_video = paremeterized_fns.b_video_to_n_video n_video_to_b_video = paremeterized_fns.n_video_to_b_video b_audio_to_n_video = paremeterized_fns.b_audio_to_n_video n_video_to_b_audio = paremeterized_fns.n_video_to_b_audio def loss_fn( params: hk.Params, state: hk.State, rng: chex.PRNGKey, batch: datasets.MiniBatch, ) -> Tuple[chex.Array, Tuple[hk.State, embedding_model.Scalars]]: metrics = {} losses = [] broad, narrow = batch.views['broad'], batch.views['narrow'] k1, k2, k3, k4, k5, k6, k7 = jax.random.split(rng, 7) f_n, state = narrow_video_embedding(params, state, k1, narrow, True) if config.include_video_in_broad_view: f_b_1, state = broad_video_embedding(params, state, k2, broad, True) (z_b_1, h_b_1), state = b_video_to_n_video(params, state, k4, f_b_1, True) (z_n_1, h_n_1), state = n_video_to_b_video(params, state, k5, f_n, True) chex.assert_rank([z_b_1, h_b_1, z_n_1, h_n_1], 2) loss_b_to_n_1 = _regression_loss(h_b_1, jax.lax.stop_gradient(z_n_1)) loss_n_to_b_1 = _regression_loss(h_n_1, jax.lax.stop_gradient(z_b_1)) chex.assert_rank([loss_b_to_n_1, loss_b_to_n_1], 0) metrics['loss_b_to_n_1'] = loss_b_to_n_1 metrics['loss_n_to_b_1'] = loss_n_to_b_1 losses.extend([loss_b_to_n_1, loss_n_to_b_1]) if config.include_audio_in_broad_view: f_b_2, state = broad_audio_embedding(params, state, k3, broad, True) (z_b_2, h_b_2), state = b_audio_to_n_video(params, state, k6, f_b_2, True) (z_n_2, h_n_2), state = n_video_to_b_audio(params, state, k7, f_n, True) chex.assert_rank([z_b_2, h_b_2, z_n_2, h_n_2], 2) loss_b_to_n_2 = _regression_loss(h_b_2, jax.lax.stop_gradient(z_n_2)) loss_n_to_b_2 = _regression_loss(h_n_2, jax.lax.stop_gradient(z_b_2)) chex.assert_rank([loss_b_to_n_2, loss_b_to_n_2], 0) metrics['loss_b_to_n_2'] = loss_b_to_n_2 metrics['loss_n_to_b_2'] = loss_n_to_b_2 losses.extend([loss_b_to_n_2, loss_n_to_b_2]) loss = jnp.stack(losses).mean() chex.assert_rank(loss, 0) metrics['loss'] = loss return loss, (state, metrics) return loss_fn def _regression_loss(x: chex.Array, y: chex.Array, epsilon: float = 1e-5) -> chex.Array: """Cosine-similarity based loss.""" batched_norm_fn = jnp.vectorize(_safe_norm, signature='(k)->()', excluded={1}) normed_x = x / jnp.expand_dims(batched_norm_fn(x, epsilon), axis=-1) normed_y = y / jnp.expand_dims(batched_norm_fn(y, epsilon), axis=-1) return jnp.mean(0.5 * jnp.sum((normed_x - normed_y)**2, axis=-1)) def _safe_norm(x: chex.Array, min_norm: float) -> chex.Array: """Compute normalization, with correct gradients.""" norm = jnp.linalg.norm(x) x = jnp.where(norm <= min_norm, jnp.ones_like(x), x) return jnp.where(norm <= min_norm, min_norm, jnp.linalg.norm(x)) def _build_eval_fn( forward_fns: Dict[str, embedding_model.ForwardFn] ) -> embedding_model.EvaluateFn: """Construct a function to use for evaluating BraVe.""" del forward_fns def eval_fn(global_step: int, mode: str, params: hk.Params, state: hk.State) -> Dict[str, chex.Array]: del mode del params del state # No online evaluation enabled in this release. return {'multiple_of_saving_period': global_step // (50 * 1000)} return eval_fn def _train_dataset_builder( config: BraveConfig) -> embedding_model.DatasetBuilderFn: """Construct the train dataset for BraVe.""" def build_dataset(): return _train_dataset(config, config.dataset_shards, shuffle=True) return build_dataset def _train_dataset(config: BraveConfig, shards: Sequence[str], *, shuffle: bool = False) -> tf.data.Dataset: """Construct the train dataset for BraVe.""" features = [media_sequences.FeatureKind.VIDEO] if config.include_audio_in_broad_view: features.append(media_sequences.FeatureKind.AUDIO) ds = datasets.multi_view_dataset( shards=shards, features=features, view_sampler=functools.partial(_brave_random_view_sampler, config), view_decoder=functools.partial(_brave_view_decoder, config), shuffle=shuffle) ds = ds.map( _transform_views, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False) return ds def _transform_views(batch: datasets.MiniBatch) -> datasets.MiniBatch: """Apply data augmentations to the views in the batch.""" narrow = batch.views['narrow'] narrow_video_width = narrow.video.shape[-2] narrow = augmentations.normalize_video(narrow) narrow = augmentations.random_gaussian_blur_video( narrow, kernel_size=narrow_video_width // 10, sigma_range=(0.1, 2.0)) narrow = augmentations.random_horizontal_flip_video(narrow) narrow = augmentations.random_color_augment_video( narrow, prob_color_augment=0.8, prob_color_drop=0.2) broad = batch.views['broad'] if broad.video is not None: broad_video_width = broad.video.shape[-2] broad = augmentations.normalize_video(broad) broad = augmentations.random_gaussian_blur_video( broad, kernel_size=broad_video_width // 10, sigma_range=(0.1, 2.0)) broad = augmentations.random_horizontal_flip_video(broad) broad = augmentations.random_color_augment_video( broad, prob_color_augment=0.8, prob_color_drop=0.2) broad = augmentations.random_convolve_video(view=broad) result = copy.copy(batch) result.views = dict(broad=broad, narrow=narrow) return result def _brave_random_view_sampler( config: BraveConfig, sequence: media_sequences.EncodedSequence ) -> Dict[str, media_sequences.EncodedSequence]: """Sample the data for BraVe.""" num_audio_samples = _num_audio_samples( config.num_frames_broad * config.step_broad, config.input_video_sample_rate, config.input_audio_sample_rate) frames_required_narrow = (config.num_frames_narrow - 1) * config.step_narrow + 1 narrow_indices = sampling.random_sample( start_index=0, end_index=tf.math.maximum( tf.shape(sequence.jpeg_encoded_images)[0], frames_required_narrow), sample_length=config.num_frames_narrow, step=config.step_narrow) # Extend the sequence so that there are enough frames # for the broad view. frames_required_broad = (config.num_frames_broad - 1) * config.step_broad + 1 # Note: We align the narrow view to the start of the broad view. # For some configurations, it is better to randomly sample the start of the # narrow (for example when the broad view is a video). broad_indices = sampling.Indices( start_index=narrow_indices.start_index, end_index=narrow_indices.start_index + frames_required_broad, step=config.step_broad) # Technically an over-estimate, but ensures there are enough frames. min_frames_required = narrow_indices.start_index + ( config.num_frames_broad * config.step_broad) sequence = media_sequences.extend_sequence(sequence, min_frames_required) narrow = time_sampling.get_subsequence_by_video_indices( sequence, narrow_indices) broad = time_sampling.get_subsequence_by_video_indices( sequence, broad_indices, override_num_audio_samples=num_audio_samples) return { 'broad': broad, 'narrow': narrow, } def _brave_view_decoder( config: BraveConfig, sequences: Dict[str, media_sequences.EncodedSequence] ) -> Dict[str, datasets.View]: """Decode sequences to return the views for BraVe.""" result = {} for view_name, sequence in sequences.items(): result[view_name] = datasets.View( video=_get_video_for_view(config, view_name, sequence), audio=_get_audio_for_view(config, view_name, sequence), labels=None) return result def _get_video_for_view( config: BraveConfig, view_name: str, sequence: media_sequences.EncodedSequence) -> Optional[tf.Tensor]: """Sample and decode video.""" if view_name == 'broad': if config.include_video_in_broad_view: return _sample_video(config, sequence, config.image_size_broad) else: return None return _sample_video(config, sequence, config.image_size_narrow) def _get_audio_for_view( config: BraveConfig, view_name: str, sequence: media_sequences.EncodedSequence) -> Optional[tf.Tensor]: """Get the audio field for the view, if needed.""" if config.include_audio_in_broad_view and view_name == 'broad': return spectrograms.pcm_to_log_mel_spectrogram( sequence.audio, input_sample_rate=config.input_audio_sample_rate, num_spectrogram_bins=config.num_spectrogram_bins, fft_step=config.fft_step) return None def _sample_video(config: BraveConfig, sequence: media_sequences.EncodedSequence, image_size: int) -> tf.Tensor: """Randomly crop and decode videos to a given square image size.""" del config # Extract shape only reads the image header. image_shape = tf.image.extract_jpeg_shape(sequence.jpeg_encoded_images[0]) crop_window = video_sampling.random_sample_crop_window( image_shape, min_area=0.3, max_area=1.0, min_aspect_ratio=0.5, max_aspect_ratio=2.0) return video_sampling.decode_crop_resize_images( sequence.jpeg_encoded_images, crop_window, image_size=(image_size, image_size)) def _num_audio_samples(num_video_frames: int, video_sample_rate: int, audio_sample_rate: int) -> int: return int((num_video_frames / video_sample_rate) * audio_sample_rate)
brave-main
brave/models/brave/brave.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Temporal Shift Module w/ ResNet-50 and ResNet-101. Based on: TSM: Temporal Shift Module for Efficient Video Understanding Ji Lin, Chuang Gan, Song Han https://arxiv.org/pdf/1811.08383.pdf. """ from typing import Callable, Optional, Tuple from absl import logging import chex import haiku as hk import jax import jax.numpy as jnp NormalizeFn = Callable[..., chex.Array] class TSMResNetBlock(hk.Module): """A ResNet subblock with Temporal Channel Shifting. Combines a typical ResNetV2 block implementation (see https://arxiv.org/abs/1512.03385) with a pre-convolution Temporal Shift Module (see https://arxiv.org/pdf/1811.08383.pdf) in the residual. """ def __init__(self, output_channels: int, stride: int, use_projection: bool, tsm_mode: str, normalize_fn: Optional[NormalizeFn] = None, channel_shift_fraction: float = 0.125, num_frames: int = 8, name: str = 'TSMResNetBlock'): """Initializes the TSMResNetBlock module. Args: output_channels: Number of output channels. stride: Stride used in convolutions. use_projection: Whether to use a projection for the shortcut. tsm_mode: Mode for TSM ('gpu' or 'tpu' or 'deflated_0.x'). normalize_fn: Function used for normalization. channel_shift_fraction: The fraction of temporally shifted channels. If `channel_shift_fraction` is 0, the block is the same as a normal ResNet block. num_frames: Size of frame dimension in a single batch example name: The name of the module. """ super().__init__(name=name) self._output_channels = output_channels self._bottleneck_channels = output_channels // 4 self._stride = stride self._use_projection = use_projection self._normalize_fn = normalize_fn self._tsm_mode = tsm_mode self._channel_shift_fraction = channel_shift_fraction self._num_frames = num_frames def __call__(self, inputs: chex.Array, is_training: bool = True) -> jnp.ndarray: """Connects the ResNetBlock module into the graph. Args: inputs: A 4-D float array of shape `[B, H, W, C]`. is_training: Whether to use training mode. Returns: A 4-D float array of shape `[B * num_frames, new_h, new_w, output_channels]`. """ # ResNet V2 uses pre-activation, where the batch norm and relu are before # convolutions, rather than after as in ResNet V1. preact = inputs if self._normalize_fn is not None: preact = self._normalize_fn(preact, is_training=is_training) preact = jax.nn.relu(preact) if self._use_projection: shortcut = hk.Conv2D( output_channels=self._output_channels, kernel_shape=1, stride=self._stride, with_bias=False, padding='SAME', name='shortcut_conv')( preact) else: shortcut = inputs # Eventually applies Temporal Shift Module. if self._channel_shift_fraction != 0: preact = apply_temporal_shift( preact, tsm_mode=self._tsm_mode, num_frames=self._num_frames, channel_shift_fraction=self._channel_shift_fraction) # First convolution. residual = hk.Conv2D( self._bottleneck_channels, kernel_shape=1, stride=1, with_bias=False, padding='SAME', name='conv_0')( preact) # Second convolution. if self._normalize_fn is not None: residual = self._normalize_fn(residual, is_training=is_training) residual = jax.nn.relu(residual) residual = hk.Conv2D( output_channels=self._bottleneck_channels, kernel_shape=3, stride=self._stride, with_bias=False, padding='SAME', name='conv_1')( residual) # Third convolution. if self._normalize_fn is not None: residual = self._normalize_fn(residual, is_training=is_training) residual = jax.nn.relu(residual) residual = hk.Conv2D( output_channels=self._output_channels, kernel_shape=1, stride=1, with_bias=False, padding='SAME', name='conv_2')( residual) # NOTE: we do not use block multiplier. output = shortcut + residual return output class TSMResNetUnit(hk.Module): """Block group for TSM ResNet.""" def __init__(self, output_channels: int, num_blocks: int, stride: int, tsm_mode: str, num_frames: int, normalize_fn: Optional[NormalizeFn] = None, channel_shift_fraction: float = 0.125, name: str = 'tsm_resnet_unit'): """Creates a TSMResNet Unit. Args: output_channels: Number of output channels. num_blocks: Number of ResNet blocks in the unit. stride: Stride of the unit. tsm_mode: Which temporal shift module to use. num_frames: Size of frame dimension in a single batch example. normalize_fn: Function used for normalization. channel_shift_fraction: The fraction of temporally shifted channels. If `channel_shift_fraction` is 0, the block is the same as a normal ResNet block. name: The name of the module. """ super().__init__(name=name) self._output_channels = output_channels self._num_blocks = num_blocks self._normalize_fn = normalize_fn self._stride = stride self._tsm_mode = tsm_mode self._channel_shift_fraction = channel_shift_fraction self._num_frames = num_frames def __call__(self, inputs: chex.Array, is_training: bool) -> jnp.ndarray: """Connects the module to inputs. Args: inputs: A 4-D float array of shape `[B * num_frames, H, W, C]`. is_training: Whether to use training mode. Returns: A 4-D float array of shape `[B * num_frames, H // stride, W // stride, output_channels]`. """ net = inputs for idx_block in range(self._num_blocks): net = TSMResNetBlock( self._output_channels, stride=self._stride if idx_block == 0 else 1, use_projection=idx_block == 0, normalize_fn=self._normalize_fn, tsm_mode=self._tsm_mode, channel_shift_fraction=self._channel_shift_fraction, num_frames=self._num_frames, name=f'block_{idx_block}')( net, is_training=is_training) return net class TSMResNetV2(hk.Module): """TSM based on ResNet V2 as described in https://arxiv.org/abs/1603.05027.""" # Endpoints of the model in order. VALID_ENDPOINTS = ( 'tsm_resnet_stem', 'tsm_resnet_unit_0', 'tsm_resnet_unit_1', 'tsm_resnet_unit_2', 'tsm_resnet_unit_3', 'last_conv', 'Embeddings', ) def __init__(self, normalize_fn: Optional[NormalizeFn] = None, depth: int = 50, num_frames: int = 16, channel_shift_fraction: float = 0.125, width_mult: int = 1, name: str = 'TSMResNetV2'): """Constructs a ResNet model. Args: normalize_fn: Function used for normalization. depth: Depth of the desired ResNet. num_frames: Number of frames (used in TPU mode). channel_shift_fraction: Fraction of channels that are temporally shifted, if `channel_shift_fraction` is 0, a regular ResNet is returned. width_mult: Whether or not to use a width multiplier. name: The name of the module. Raises: ValueError: If `channel_shift_fraction` or `depth` has invalid value. """ super().__init__(name=name) if not 0. <= channel_shift_fraction <= 1.0: raise ValueError(f'channel_shift_fraction ({channel_shift_fraction})' ' has to be in [0, 1].') self._num_frames = num_frames self._channels = (256, 512, 1024, 2048) self._strides = (1, 2, 2, 2) num_blocks = { 50: (3, 4, 6, 3), 101: (3, 4, 23, 3), 152: (3, 8, 36, 3), 200: (3, 24, 36, 3), } if depth not in num_blocks: raise ValueError( f'`depth` should be in {list(num_blocks.keys())} ({depth} given).') self._num_blocks = num_blocks[depth] self._width_mult = width_mult self._channel_shift_fraction = channel_shift_fraction self._normalize_fn = normalize_fn def __call__(self, inputs: chex.Array, is_training: bool = True, final_endpoint: str = 'Embeddings', is_deflated: bool = False, alpha_deflation: float = 0.3) -> jnp.ndarray: """Connects the TSM ResNetV2 module into the graph. Args: inputs: The input may be in one of two shapes; if the shape is `[B, T, H, W, C]`, this module assumes the backend is a GPU (setting `tsm_mode='gpu'`) and `T` is treated the time dimension, with `B` being the batch dimension. This mode cannot be used when `is_deflated` is `true`. In this mode, the num_frames parameter passed to the constructor is ignored. If the shape is `[B, H, W, C]`, then the batch dimension is assumed to be of the form [B*T, H, W, C], where `T` is the number of frames in each video. This value may be set by passing `num_frames=n` to the constructor. The default value is `n=16` (beware this default is not the same as the default for the `TSMResNetBlock`, which has a default of 8 frames). In this case, the module assumes it is being run on a TPU, and emits instructions that are more efficient for for that case, using`tsm_mode`='tpu'` for the downstream blocks. is_training: Whether to use training mode. final_endpoint: Up to which endpoint to run / return. is_deflated: Whether or not to use the deflated version of the network. alpha_deflation: Deflation parameter to use for dealing with the padding effect. Returns: Network output at location `final_endpoint`. A float array which shape depends on `final_endpoint`. Raises: ValueError: If `final_endpoint` is not recognized. """ # Prepare inputs for TSM. if is_deflated: if len(inputs.shape) != 4: raise ValueError( 'In deflated mode inputs should be given as [B, H, W, 3]') logging.warning( 'Deflation is an experimental feature and the API might change.') tsm_mode = f'deflated_{alpha_deflation}' num_frames = 1 else: inputs, tsm_mode, num_frames = prepare_inputs(inputs) num_frames = num_frames or self._num_frames self._final_endpoint = final_endpoint if self._final_endpoint not in self.VALID_ENDPOINTS: raise ValueError(f'Unknown final endpoint {self._final_endpoint}') # Stem convolution. end_point = 'tsm_resnet_stem' net = hk.Conv2D( output_channels=64 * self._width_mult, kernel_shape=7, stride=2, with_bias=False, name=end_point, padding='SAME')( inputs) net = hk.MaxPool( window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding='SAME')( net) if self._final_endpoint == end_point: net = prepare_outputs(net, tsm_mode, num_frames, reduce_mean=False) return net # Residual block. for unit_id, (channels, num_blocks, stride) in enumerate( zip(self._channels, self._num_blocks, self._strides)): end_point = f'tsm_resnet_unit_{unit_id}' net = TSMResNetUnit( output_channels=channels * self._width_mult, num_blocks=num_blocks, stride=stride, normalize_fn=self._normalize_fn, channel_shift_fraction=self._channel_shift_fraction, num_frames=num_frames, tsm_mode=tsm_mode, name=end_point)( net, is_training=is_training) if self._final_endpoint == end_point: net = prepare_outputs(net, tsm_mode, num_frames, reduce_mean=False) return net if self._normalize_fn is not None: net = self._normalize_fn(net, is_training=is_training) net = jax.nn.relu(net) end_point = 'last_conv' if self._final_endpoint == end_point: net = prepare_outputs(net, tsm_mode, num_frames, reduce_mean=False) return net net = jnp.mean(net, axis=(1, 2)) # Prepare embedding outputs for TSM (temporal average of features). net = prepare_outputs(net, tsm_mode, num_frames, reduce_mean=True) assert self._final_endpoint == 'Embeddings' return net def prepare_inputs(inputs: chex.Array) -> Tuple[jnp.ndarray, str, int]: """Deduces input mode for TSM.""" # Deduce if we run on TPU based on input shape. if len(inputs.shape) == 5: # Input is given in the standard [B, T, H, W, 3] format. tsm_mode = 'gpu' num_frames = inputs.shape[1] inputs = jnp.reshape(inputs, [-1] + list(inputs.shape[2:])) else: # Input is given in the [T * B, H, W, 3] format. tsm_mode = 'tpu' num_frames = None return inputs, tsm_mode, num_frames def prepare_outputs(outputs: chex.Array, tsm_mode: str, num_frames: int, reduce_mean: bool = True) -> jnp.ndarray: """Processes output of TSM to undo the merging of batch and time.""" # Get the shape without the batch/time dimension (for TSM batch and time are # merged in the first dimension). shape_no_bt = list(outputs.shape[1:]) if tsm_mode == 'tpu': # Outputs are of the shape [num_frames * B, ..., n_channels] outputs = jnp.reshape(outputs, [num_frames, -1] + shape_no_bt) if reduce_mean: # We average over time and space. outputs = jnp.mean( outputs, axis=[0] + list(range(2, len(shape_no_bt) + 1))) else: outputs = jnp.transpose( outputs, axes=[1, 0] + list(range(2, len(shape_no_bt) + 2))) elif tsm_mode == 'gpu': # Outputs are of the shape [B * num_frames, ..., n_channels] outputs = jnp.reshape(outputs, [-1, num_frames] + shape_no_bt) if reduce_mean: outputs = jnp.mean( outputs, axis=[1] + list(range(2, len(shape_no_bt) + 1))) elif tsm_mode.startswith('deflated'): # In deflated mode, outputs are already in the right format. pass else: raise ValueError('`tsm_mode` should be \'tpu\' or \'gpu\' or ' f'\'deflated_0.x\' ({tsm_mode} given)') return outputs def apply_temporal_shift(x: chex.Array, tsm_mode: str, num_frames: int, channel_shift_fraction: float = 0.125) -> jnp.ndarray: """Performs a temporal shift: https://arxiv.org/abs/1811.08383 with mode.""" if tsm_mode == 'tpu': outputs = temporal_shift_tpu(x, num_frames, channel_shift_fraction) elif tsm_mode == 'gpu': outputs = temporal_shift_gpu(x, num_frames, channel_shift_fraction) elif tsm_mode.startswith('deflated'): alpha = float(tsm_mode.split('_')[1]) outputs = temporal_shift_image_mode(x, channel_shift_fraction, alpha) else: raise ValueError('`tsm_mode` should be \'tpu\' or \'gpu\' or ' f'\'deflated_0.x\' ({tsm_mode} given)') return outputs def temporal_shift_image_mode(x, channel_shift_fraction=0.125, alpha=0.3): """Temporal shift applied on single image (to emulate a fixed video).""" # B, H, W, C = batch_size, im_height, im_width, channels # Input is (B, H, W, C) orig_shp = tuple(x.shape) n_channels = orig_shp[-1] n_shift = int(n_channels * channel_shift_fraction) # Alpha emulates the effect of the padding when using a single frame shifted_backward = alpha * x[:, :, :, -n_shift:] shifted_forward = alpha * x[:, :, :, :n_shift] no_shift = x[:, :, :, n_shift:-n_shift] shifted_x = jnp.concatenate([shifted_backward, no_shift, shifted_forward], axis=3) return shifted_x def temporal_shift_gpu(x: chex.Array, num_frames: int, channel_shift_fraction: float = 0.125) -> jnp.ndarray: """Performs a temporal shift: https://arxiv.org/abs/1811.08383.""" # B, T, H, W, C = batch_size, num_frames, im_height, im_width, channels # Input is (B * T, H, W, C) orig_shp = tuple(x.shape) reshaped_x = jnp.reshape(x, (-1, num_frames) + orig_shp[1:]) n_channels = orig_shp[-1] n_shift = int(n_channels * channel_shift_fraction) new_shp = tuple(reshaped_x.shape) # shifted_backward = reshaped_x[:, 1:, :, :, -n_shift:] shifted_backward = jax.lax.slice( reshaped_x, (0, 1, 0, 0, new_shp[4] - n_shift), (new_shp[0], new_shp[1], new_shp[2], new_shp[3], new_shp[4])) shifted_backward_padding = ((0, 0), (0, 1), (0, 0), (0, 0), (0, 0)) shifted_backward = jnp.pad(shifted_backward, shifted_backward_padding) # shifted_forward = reshaped_x[:, :-1, :, :, :n_shift] shifted_forward = jax.lax.slice( reshaped_x, (0, 0, 0, 0, 0), (new_shp[0], new_shp[1] - 1, new_shp[2], new_shp[3], n_shift)) shifted_forward_padding = ((0, 0), (1, 0), (0, 0), (0, 0), (0, 0)) shifted_forward = jnp.pad(shifted_forward, shifted_forward_padding) no_shift = reshaped_x[:, :, :, :, n_shift:-n_shift] shifted_x = jnp.concatenate([shifted_backward, no_shift, shifted_forward], axis=4) return jnp.reshape(shifted_x, (-1,) + orig_shp[1:]) def temporal_shift_tpu(x: chex.Array, num_frames: int, channel_shift_fraction: float = 0.125) -> jnp.ndarray: """Performs a temporal shift: https://arxiv.org/abs/1811.08383. TPU optimized version of TSM. Args: x: Input expected to be [T * B, H, W, C] (where the batch has been reshaped from a time major version of the input). num_frames: number of frames T per video. channel_shift_fraction: fraction of the channel to shift forward and backward. Returns: The temporal shifted version of x. """ # B, T, H, W, C = batch_size, num_frames, im_height, im_width, channels # Input is (T * B, H, W, C) original_dtype = x.dtype original_shape = list(x.shape) batch_size = int(original_shape[0] / num_frames) n_channels = int(original_shape[-1]) n_shift = int(n_channels * channel_shift_fraction) # Cast to bfloat16. x = x.astype(jnp.bfloat16) # For the following, assume that x has 3 channels [x1, x2, x3] and n_shift=1. # Shift backward, we first pad by zeros [x1, x2, x3, 0, 0]. orig_shp = list(x.shape) shifted_backward_padding = ((0, batch_size, 0), (0, 0, 0), (0, 0, 0), (0, n_channels - n_shift, 0)) x_backward_padding = jax.lax.pad( x, padding_value=jnp.bfloat16(0.), padding_config=shifted_backward_padding) # The following shift gets to [x3^+1, 0, 0] (where +1 means from the future). shifted_backward = jax.lax.slice(x_backward_padding, (batch_size, 0, 0, n_channels - n_shift), (orig_shp[0] + batch_size, orig_shp[1], orig_shp[2], 2 * n_channels - n_shift)) # Shift forward, we first pad by zeros [0, 0, x1, x2, x3]. shifted_forward_padding = ((batch_size, 0, 0), (0, 0, 0), (0, 0, 0), (n_channels - n_shift, 0, 0)) x_forward_padding = jax.lax.pad( x, padding_value=jnp.bfloat16(0.), padding_config=shifted_forward_padding) # The following shift gets to [0, 0, x1^-1] (where -1 means from the past). shifted_forward = jax.lax.slice( x_forward_padding, (0, 0, 0, 0), (orig_shp[0], orig_shp[1], orig_shp[2], n_channels)) # No shift is in the middle, this gets [0, x2, 0]. mask_noshift = (jnp.reshape((jnp.arange(n_channels) >= n_shift) & (jnp.arange(n_channels) < n_channels - n_shift), (1, 1, 1, -1))).astype(jnp.bfloat16) no_shift = mask_noshift * x # By summing everything together, we end up with [x3^+1, x2, x1^-1]. # Note: channels have been reordered but that doesn't matter for the model. shifted_x = shifted_backward + shifted_forward + no_shift return shifted_x.astype(original_dtype)
brave-main
brave/models/brave/tsm_resnet.py