python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `utils.py`.""" from unittest import mock from absl.testing import absltest from absl.testing import parameterized import jax import jax.numpy as jnp import numpy as np from optax._src import utils def _shape_to_tuple(shape): if isinstance(shape, tuple): return shape return tuple([shape]) class ScaleGradientTest(parameterized.TestCase): @parameterized.product(inputs=[-1., 0., 1.], scale=[-0.5, 0., 0.5, 1., 2.]) @mock.patch.object(jax.lax, 'stop_gradient', wraps=jax.lax.stop_gradient) def test_scale_gradient(self, mock_sg, inputs, scale): def fn(inputs): outputs = utils.scale_gradient(inputs, scale) return outputs ** 2 grad = jax.grad(fn) self.assertEqual(grad(inputs), 2 * inputs * scale) if scale == 0.: mock_sg.assert_called_once_with(inputs) else: self.assertFalse(mock_sg.called) self.assertEqual(fn(inputs), inputs ** 2) @parameterized.product(scale=[-0.5, 0., 0.5, 1., 2.]) def test_scale_gradient_pytree(self, scale): def fn(inputs): outputs = utils.scale_gradient(inputs, scale) outputs = jax.tree_util.tree_map(lambda x: x ** 2, outputs) return sum(jax.tree_util.tree_leaves(outputs)) inputs = dict(a=-1., b=dict(c=(2.,), d=0.)) grad = jax.grad(fn) grads = grad(inputs) jax.tree_util.tree_map( lambda i, g: self.assertEqual(g, 2 * i * scale), inputs, grads) self.assertEqual( fn(inputs), sum(jax.tree_util.tree_leaves( jax.tree_util.tree_map(lambda x: x**2, inputs)))) class MultiNormalDiagFromLogScaleTest(parameterized.TestCase): def _get_loc_scale(self, loc_shape, scale_shape): loc = 1.5 * jnp.ones(shape=loc_shape, dtype=jnp.float32) scale = 0.5 * jnp.ones(shape=scale_shape, dtype=jnp.float32) return loc, scale @parameterized.parameters( (1, 1, 1), (5, 5, 5), ((2, 3), (2, 3), (2, 3)), ((1, 4), (3, 4), (3, 4)), ((1, 2, 1, 3), (2, 1, 4, 3), (2, 2, 4, 3)), ) def test_init_successful_broadcast( self, loc_shape, scale_shape, broadcasted_shape ): loc, scale = self._get_loc_scale(loc_shape, scale_shape) dist = utils.multi_normal(loc, scale) self.assertIsInstance(dist, utils.MultiNormalDiagFromLogScale) mean, log_scale = dist.params self.assertEqual(tuple(mean.shape), _shape_to_tuple(loc_shape)) self.assertEqual(tuple(log_scale.shape), _shape_to_tuple(scale_shape)) self.assertEqual( tuple(dist._param_shape), _shape_to_tuple(broadcasted_shape) ) @parameterized.parameters( (2, 3), ((2, 3), (3, 2)), ((2, 4), (3, 4)), ((1, 2, 1, 3), (2, 1, 4, 4)), ) def test_init_unsuccessful_broadcast(self, loc_shape, scale_shape): loc, scale = self._get_loc_scale(loc_shape, scale_shape) with self.assertRaisesRegex( ValueError, 'Incompatible shapes for broadcasting' ): utils.multi_normal(loc, scale) @parameterized.parameters(list, tuple) def test_sample_input_sequence_types(self, sample_type): sample_shape = sample_type((4, 5)) loc_shape = scale_shape = (2, 3) loc, scale = self._get_loc_scale(loc_shape, scale_shape) dist = utils.multi_normal(loc, scale) samples = dist.sample(sample_shape, jax.random.PRNGKey(239)) self.assertEqual(samples.shape, tuple(sample_shape) + loc_shape) @parameterized.named_parameters([ ('1d', 1), ('2d', (2, 3)), ('4d', (1, 2, 3, 4)), ]) def test_log_prob(self, shape): loc, scale = self._get_loc_scale(shape, shape) dist = utils.multi_normal(loc, scale) probs = dist.log_prob(jnp.ones(shape=shape, dtype=jnp.float32)) self.assertEqual(probs.shape, ()) class HelpersTest(parameterized.TestCase): @parameterized.parameters([ (1, 1), (3, 3), (1, 3), (2, 3), ]) def test_set_diags_valid(self, n, d): def _all_but_diag(matrix): return matrix - jnp.diag(jnp.diag(matrix)) a = jnp.ones(shape=(n, d, d)) * 10 new_diags = jnp.arange(n * d).reshape((n, d)) res = utils.set_diags(a, new_diags) for i in range(n): np.testing.assert_array_equal(jnp.diag(res[i]), new_diags[i]) np.testing.assert_array_equal(_all_but_diag(res[i]), _all_but_diag(a[i])) @parameterized.named_parameters([ ('1d', 1), ('2d', (2, 3)), ('4d', (1, 2, 3, 4)), ]) def test_set_diag_a_raises(self, a_shape): a = jnp.ones(shape=a_shape) new_diags = jnp.zeros(shape=(2, 2)) with self.assertRaisesRegex(ValueError, 'Expected `a` to be a 3D tensor'): utils.set_diags(a, new_diags) @parameterized.named_parameters([ ('1d', 1), ('3d', (2, 3, 4)), ('4d', (1, 2, 3, 4)), ]) def test_set_diag_new_diags_raises(self, new_diags_shape): a = jnp.ones(shape=(3, 2, 2)) new_diags = jnp.zeros(shape=new_diags_shape) with self.assertRaisesRegex( ValueError, 'Expected `new_diags` to be a 2D array' ): utils.set_diags(a, new_diags) @parameterized.parameters([ (1, 1, 2), (3, 3, 4), (1, 3, 5), (2, 3, 2), ]) def test_set_diag_a_shape_mismatch_raises(self, n, d, d1): a = jnp.ones(shape=(n, d, d1)) new_diags = jnp.zeros(shape=(n, d)) with self.assertRaisesRegex( ValueError, 'Shape mismatch: expected `a.shape`' ): utils.set_diags(a, new_diags) @parameterized.parameters([ (1, 1, 1, 3), (3, 3, 4, 3), (1, 3, 1, 5), (2, 3, 6, 7), ]) def test_set_diag_new_diags_shape_mismatch_raises(self, n, d, n1, d1): a = jnp.ones(shape=(n, d, d)) new_diags = jnp.zeros(shape=(n1, d1)) with self.assertRaisesRegex( ValueError, 'Shape mismatch: expected `new_diags.shape`' ): utils.set_diags(a, new_diags) @parameterized.parameters([ (jnp.float32, [1.3, 2.001, 3.6], [-3.3], [1.3, 2.001, 3.6], [-3.3]), (jnp.float32, [1.3, 2.001, 3.6], [-3], [1.3, 2.001, 3.6], [-3.0]), (jnp.int32, [1.3, 2.001, 3.6], [-3.3], [1, 2, 3], [-3]), (jnp.int32, [1.3, 2.001, 3.6], [-3], [1, 2, 3], [-3]), (None, [1.123, 2.33], [0.0], [1.123, 2.33], [0.0]), (None, [1, 2, 3], [0.0], [1, 2, 3], [0.0]), ]) def test_cast_tree(self, dtype, b, c, new_b, new_c): def _build_tree(val1, val2): dict_tree = {'a': {'b': jnp.array(val1)}, 'c': jnp.array(val2)} return jax.tree_util.tree_map(lambda x: x, dict_tree) tree = _build_tree(b, c) tree = utils.cast_tree(tree, dtype=dtype) jax.tree_util.tree_map( np.testing.assert_array_equal, tree, _build_tree(new_b, new_c) ) @parameterized.named_parameters([ ('1d-single', 1), ('1d', 10), ('2d', (1, 2)), ('3d', (10, 3, 2)), ('4d', (2, 3, 4, 5)), ('6d', (1, 2, 3, 4, 5, 6)), ('8d', (5, 4, 7, 6, 1, 2, 3, 1)), ]) def test_tile_second_to_last_dim(self, shape): shape = _shape_to_tuple(shape) elems = jnp.prod(jnp.array(shape)) matrix = jnp.arange(elems).reshape(shape) result = utils.tile_second_to_last_dim(matrix) self.assertEqual(result.shape, shape + (shape[-1],)) np.testing.assert_array_equal(result[..., -1], matrix) np.testing.assert_array_equal(result[..., 0], matrix) @parameterized.parameters([ (None, None), (jnp.float32, np.dtype('float32')), (jnp.int32, np.dtype('int32')), (jnp.bfloat16, np.dtype('bfloat16')), ]) def test_canonicalize_dtype(self, dtype, expected_dtype): canonical = utils.canonicalize_dtype(dtype) self.assertIs(canonical, expected_dtype) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/utils_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `transform.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import alias from optax._src import combine from optax._src import transform from optax._src import update STEPS = 50 LR = 1e-2 class TransformTest(parameterized.TestCase): def setUp(self): super().setUp() self.init_params = (jnp.array([1., 2.]), jnp.array([3., 4.])) self.per_step_updates = (jnp.array([500., 5.]), jnp.array([300., 3.])) @chex.all_variants @parameterized.named_parameters([ ('adam', transform.scale_by_adam), ('adamax', transform.scale_by_adamax), ('lion', transform.scale_by_lion), ('rmsprop', transform.scale_by_rms), ('stddev', transform.scale_by_stddev), ('trust_ratio', transform.scale_by_trust_ratio), ('param_block_norm', transform.scale_by_param_block_norm), ('param_block_rms', transform.scale_by_param_block_rms), ('distance_over_gradients', transform.scale_by_distance_over_gradients), ]) def test_scalers(self, scaler_constr): params = self.init_params scaler = scaler_constr() init_fn = self.variant(scaler.init) transform_fn = self.variant(scaler.update) state = init_fn(params) chex.assert_tree_all_finite(state) updates, state = transform_fn(self.per_step_updates, state, params) chex.assert_tree_all_finite((params, updates, state)) jax.tree_util.tree_map( lambda *args: chex.assert_equal_shape(args), params, updates) @chex.all_variants def test_add_decayed_weights(self): # Define a transform that add decayed weights. # We can define a mask either as a pytree, or as a function that # returns the pytree. Below we define the pytree directly. mask = (True, dict(a=True, b=False)) tx = transform.add_decayed_weights(0.1, mask=mask) # Define input updates and weights. updates = ( jnp.zeros((2,), dtype=jnp.float32), dict( a=jnp.zeros((2,), dtype=jnp.float32), b=jnp.zeros((2,), dtype=jnp.float32),)) weights = ( jnp.ones((2,), dtype=jnp.float32), dict( a=jnp.ones((2,), dtype=jnp.float32), b=jnp.ones((2,), dtype=jnp.float32),)) # This mask means that we will add decayed weights to the first two # terms in the input updates, but not to the last element. expected_tx_updates = ( 0.1*jnp.ones((2,), dtype=jnp.float32), dict( a=0.1*jnp.ones((2,), dtype=jnp.float32), b=jnp.zeros((2,), dtype=jnp.float32),)) # Apply transform state = tx.init(weights) transform_fn = self.variant(tx.update) new_updates, _ = transform_fn(updates, state, weights) # Assert output as expected. chex.assert_trees_all_close(new_updates, expected_tx_updates) @chex.all_variants def test_ema(self): values = jnp.array([5.0, 7.0]) decay = 0.9 d = decay ema = transform.ema(decay=decay, debias=False) state = ema.init(values[0]) # init to zeroes transform_fn = self.variant(ema.update) mean, state = transform_fn(values[0], state) np.testing.assert_allclose(mean, (1-d) * values[0], atol=1e-4) mean, state = transform_fn(values[1], state) np.testing.assert_allclose( mean, (1 - d) * (values[1] + d * values[0]), atol=1e-2) @chex.all_variants def test_ema_debias(self): values = jnp.array([5.0, 7.0]) decay = 0.9 d = decay ema = transform.ema(decay=decay) state = ema.init(values[0]) transform_fn = self.variant(ema.update) mean, state = transform_fn(values[0], state) np.testing.assert_allclose(mean, values[0], atol=1e-4) mean, state = transform_fn(values[1], state) np.testing.assert_allclose( mean, ((1 - d) * values[1] + d * (1 - d) * values[0]) / (1 - d**2), atol=1e-2) # The state must not be debiased. np.testing.assert_allclose( state.ema, (1 - d) * values[1] + d * (1 - d) * values[0], atol=1e-2) @chex.all_variants def test_update_infinity_moment(self): values = jnp.array([5.0, 7.0]) decay = 0.9 d = decay transform_fn = self.variant(transform.update_infinity_moment) # identity if updating with itself (and positive decay) np.testing.assert_allclose( transform_fn(values, values, decay=d, eps=0.), values, atol=1e-4 ) # return (decayed) max when updating with zeros np.testing.assert_allclose( transform_fn(jnp.zeros_like(values), values, decay=d, eps=0.), d * values, atol=1e-4 ) # infinity norm takes absolute values np.testing.assert_allclose( transform_fn(-values, jnp.zeros_like(values), decay=d, eps=0.), values, atol=1e-4 ) # return at least `eps` np.testing.assert_allclose( transform_fn(jnp.zeros_like(values), jnp.zeros_like(values), decay=d, eps=1e-2), jnp.ones_like(values) * 1e-2, atol=1e-4 ) @chex.all_variants def test_apply_every(self): # The frequency of the application of sgd k = 4 zero_update = (jnp.array([0., 0.]), jnp.array([0., 0.])) # optax sgd optax_sgd_params = self.init_params sgd = alias.sgd(LR, 0.0) state_sgd = sgd.init(optax_sgd_params) # optax sgd plus apply every optax_sgd_apply_every_params = self.init_params sgd_apply_every = combine.chain( transform.apply_every(k=k), transform.trace(decay=0, nesterov=False), transform.scale(-LR)) state_sgd_apply_every = sgd_apply_every.init(optax_sgd_apply_every_params) transform_fn = self.variant(sgd_apply_every.update) for i in range(STEPS): # Apply a step of sgd updates_sgd, state_sgd = sgd.update(self.per_step_updates, state_sgd) optax_sgd_params = update.apply_updates(optax_sgd_params, updates_sgd) # Apply a step of sgd_apply_every updates_sgd_apply_every, state_sgd_apply_every = transform_fn( self.per_step_updates, state_sgd_apply_every) optax_sgd_apply_every_params = update.apply_updates( optax_sgd_apply_every_params, updates_sgd_apply_every) # Every k steps, check equivalence. if i % k == k-1: chex.assert_trees_all_close( optax_sgd_apply_every_params, optax_sgd_params, atol=1e-6, rtol=1e-5) # Otherwise, check update is zero. else: chex.assert_trees_all_close( updates_sgd_apply_every, zero_update, atol=0.0, rtol=0.0) def test_scale(self): updates = self.per_step_updates for i in range(1, STEPS + 1): factor = 0.1 ** i rescaler = transform.scale(factor) # Apply rescaling. scaled_updates, _ = rescaler.update(updates, {}) # Manually scale updates. def rescale(t): return t * factor # pylint:disable=cell-var-from-loop manual_updates = jax.tree_util.tree_map(rescale, updates) # Check the rescaled updates match. chex.assert_trees_all_close(scaled_updates, manual_updates) @parameterized.named_parameters([ ('1d', [1.0, 2.0], [1.0, 2.0]), ('2d', [[1.0, 2.0], [3.0, 4.0]], [[-0.5, 0.5], [-0.5, 0.5]]), ('3d', [[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]], [[[-1.5, -0.5], [0.5, 1.5]], [[-1.5, -0.5], [0.5, 1.5]]]), ]) def test_centralize(self, inputs, outputs): inputs = jnp.asarray(inputs) outputs = jnp.asarray(outputs) centralizer = transform.centralize() centralized_inputs, _ = centralizer.update(inputs, {}) chex.assert_trees_all_close(centralized_inputs, outputs) @chex.all_variants def test_add_noise_has_correct_variance_scaling(self): # Prepare to compare noise with a rescaled unit-variance substitute. eta = 0.3 gamma = 0.55 seed = 314 noise = transform.add_noise(eta, gamma, seed) noise_unit = transform.add_noise(1.0, 0.0, seed) params = self.init_params state = noise.init(params) state_unit = noise_unit.init(params) # Check the noise itself by adding it to zeros. updates = jax.tree_util.tree_map(jnp.zeros_like, params) for i in range(1, STEPS + 1): updates_i, state = self.variant(noise.update)(updates, state) updates_i_unit, state_unit = noise_unit.update(updates, state_unit) scale = jnp.sqrt(eta / i**gamma) updates_i_rescaled = jax.tree_util.tree_map( lambda g, s=scale: g * s, updates_i_unit) chex.assert_trees_all_close(updates_i, updates_i_rescaled, rtol=1e-4) def test_scale_by_optimistic_gradient(self): def f(params: jnp.ndarray) -> jnp.ndarray: return params['x'] ** 2 initial_params = { 'x': jnp.array(2.0) } og = transform.scale_by_optimistic_gradient() og_state = og.init(initial_params) # Provide some arbitrary previous gradient. getattr(og_state, 'trace')['x'] = 1.5 g = jax.grad(f)(initial_params) og_true = 2 * g['x'] - getattr(og_state, 'trace')['x'] og, og_state = og.update(g, og_state) # Compare transformation output with manually computed optimistic gradient. chex.assert_trees_all_close(og_true, og['x']) @chex.all_variants def test_bias_correction_bf16(self): bias_correction_fn = self.variant(transform.bias_correction) m = jnp.logspace(-10, 10, num=21, dtype=jnp.bfloat16) # 1e-10 ... 1e10 for decay in (0.9, 0.99, 0.999, 0.9995): for count in (1, 10, 100, 1000): chex.assert_tree_all_finite( bias_correction_fn(m, decay, count), custom_message=f'failed with decay={decay}, count={count}') if __name__ == '__main__': absltest.main()
optax-master
optax/_src/transform_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Implementation of control variates. We are interested in computing the gradient using control variates: \nabla_{\theta} E_{p(x; \theta)} f(x) = \nabla_{\theta} [E_{p(x; \theta)} f(x) - h(x; \theta) + E_{p(x; \theta)}] = \nabla_{\theta} [E_{p(x; \theta)} f(x) - h(x; \theta)] + \nabla_{\theta} E_{p(x; \theta)}] = \nabla_{\theta} [E_{p(x; \theta)} f(x) - h(x; \theta)] + \nabla_{\theta} E_{p(x; \theta)}] = \nabla_{\theta} \int {p(x; \theta)} (f(x) - h(x; \theta)) dx + \nabla_{\theta} E_{p(x; \theta)}] = \int \nabla_{\theta} {p(x; \theta)} (f(x) - h(x; \theta)) dx + [E_{p(x; \theta)} \nabla_{\theta} (f(x) - h(x; \theta)) + \nabla_{\theta} E_{p(x; \theta)}] = \int \nabla_{\theta} {p(x; \theta)} (f(x) - h(x; \theta)) dx - [E_{p(x; \theta)} \nabla_{\theta} h(x; \theta) + \nabla_{\theta} E_{p(x; \theta)}] The above computation is performed in `control_variates_jacobians`. When adding a new control variate, one does not need to implement the jacobian computation, but instead has to implement the forward computation. Each control variate implemented has to satisfy the following API: * control_variate(function) This returns a tuple of three functions: * The first element of the tuple is a function which returns the control variate value for a set of samples. It takes in as arguments the parameters used to construct the distribution, the distributional samples, and the state of the control variate (if any). The return value of this function will have shape `num_samples`, where `num_samples` is the number of samples provided as input. * The second is a function returns the expected value of the control variate. The input arguments of this function are the parameters of the distribution and the state of the control variate. * The third is a function which updates the state of the control variate, and returns the updated states. For examples, see `control_delta_method` and `moving_avg_baseline`. """ from typing import Any, Callable, Sequence, Tuple import chex import jax import jax.numpy as jnp from optax._src import base CvState = Any ComputeCv = Callable[[base.Params, chex.Array, CvState], chex.Array] CvExpectedValue = Callable[[base.Params, CvState], CvState] UpdateCvState = Callable[[base.Params, chex.Array, CvState], CvState] ControlVariate = Tuple[ComputeCv, CvExpectedValue, UpdateCvState] def control_delta_method( function: Callable[[chex.Array], float]) -> ControlVariate: """The control delta covariate method. Control variate obtained by performing a second order Taylor expansion on the cost function f at the mean of the input distribution. Only implemented for Gaussian random variables. For details, see: https://icml.cc/2012/papers/687.pdf Args: function: The function for which to compute the control variate. The function takes in one argument (a sample from the distribution) and returns a floating point value. Returns: A tuple of three functions, to compute the control variate, the expected value of the control variate, and to update the control variate state. """ def delta( params: base.Params, sample: chex.Array, state: CvState = None) -> chex.Array: """"Second order expansion of `function` at the mean of the input dist.""" del state mean_dist = params[0] centered_sample = sample - mean_dist # Function is a function of samples. Here, we use the mean as the input # since we do a Taylor expansion of function around the mean. grads = jax.grad(function)(mean_dist) hessians = jax.hessian(function)(mean_dist) assert hessians.ndim == 2 control_variate = function(mean_dist) control_variate += jnp.dot(centered_sample, grads) control_variate += jnp.dot( jnp.dot(centered_sample, hessians), centered_sample) / 2. return control_variate def expected_value_delta( params: base.Params, state: CvState) -> jax.Array: """"Expected value of second order expansion of `function` at dist mean.""" del state mean_dist = params[0] var_dist = jnp.square(jnp.exp(params[1])) hessians = jax.hessian(function)(mean_dist) assert hessians.ndim == 2 hess_diags = jnp.diag(hessians) assert hess_diags.ndim == 1 # Trace (Hessian * Sigma) and we use that Sigma is diagonal. expected_second_order_term = jnp.sum(var_dist * hess_diags) / 2. expected_control_variate = function(mean_dist) expected_control_variate += expected_second_order_term return expected_control_variate def update_state( params: base.Params, samples: chex.Array, state: CvState = None) -> CvState: """"No state kept, so no operation is done.""" del params, samples return state return delta, expected_value_delta, update_state def moving_avg_baseline( function: Callable[[chex.Array], float], decay: float = 0.99, zero_debias: bool = True, use_decay_early_training_heuristic=True) -> ControlVariate: """A moving average baseline. It has no effect on the pathwise or measure valued estimator. Args: function: The function for which to compute the control variate. The function takes in one argument (a sample from the distribution) and returns a floating point value. decay: The decay rate for the moving average. zero_debias: Whether or not to use zero debiasing for the moving average. use_decay_early_training_heuristic: Whether or not to use a heuristic which overrides the decay value early in training based on min(decay, (1.0 + i) / (10.0 + i)). This stabilises training and was adapted from the Tensorflow codebase. Returns: A tuple of three functions, to compute the control variate, the expected value of the control variate, and to update the control variate state. """ def moving_avg( params: base.Params, samples: chex.Array, state: CvState = None) -> CvState: """"Return the moving average.""" del params, samples return state[0] def expected_value_moving_avg( params: base.Params, state: CvState) -> chex.Array: """"Return the moving average.""" del params return state[0] def update_state( params: base.Params, samples: chex.Array, state: CvState = None) -> CvState: """"Update the moving average.""" del params value, i = state if use_decay_early_training_heuristic: iteration_decay = jnp.minimum(decay, (1.0 + i) / (10.0 + i)) else: iteration_decay = decay updated_value = iteration_decay * value updated_value += (1 - iteration_decay) * jnp.mean( jax.vmap(function)(samples)) if zero_debias: updated_value /= (jnp.ones([]) - jnp.power(iteration_decay, i + 1)) return (jax.lax.stop_gradient(updated_value), i + 1) return moving_avg, expected_value_moving_avg, update_state def _map(cv, params, samples, state): return jax.vmap(lambda x: cv(params, x, state))(samples) def control_variates_jacobians( function: Callable[[chex.Array], float], control_variate_from_function: Callable[ [Callable[[chex.Array], float]], ControlVariate ], grad_estimator: Callable[..., jnp.ndarray], params: base.Params, dist_builder: Callable[..., Any], rng: chex.PRNGKey, num_samples: int, control_variate_state: CvState = None, estimate_cv_coeffs: bool = False, estimate_cv_coeffs_num_samples: int = 20, ) -> Tuple[Sequence[chex.Array], CvState]: r"""Obtain jacobians using control variates. We will compute each term individually. The first term will use stochastic gradient estimation. The second term will be computes using Monte Carlo estimation and automatic differentiation to compute \nabla_{\theta} h(x; \theta). The the third term will be computed using automatic differentiation, as we restrict ourselves to control variates which compute this expectation in closed form. This function updates the state of the control variate (once), before computing the control variate coefficients. Args: function: Function f(x) for which to estimate grads_{params} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. control_variate_from_function: The control variate to use to reduce variance. See `control_delta_method` and `moving_avg_baseline` examples. grad_estimator: The gradient estimator to be used to compute the gradients. Note that not all control variates will reduce variance for all estimators. For example, the `moving_avg_baseline` will make no difference to the measure valued or pathwise estimators. params: A tuple of jnp arrays. The parameters for which to construct the distribution and for which we want to compute the jacobians. dist_builder: a constructor which builds a distribution given the input parameters specified by params. `dist_builder(params)` should return a valid distribution. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. control_variate_state: The control variate state. This is used for control variates which keep states (such as the moving average baselines). estimate_cv_coeffs: Boolean. Whether or not to estimate the optimal control variate coefficient via `estimate_control_variate_coefficients`. estimate_cv_coeffs_num_samples: The number of samples to use to estimate the optimal coefficient. These need to be new samples to ensure that the objective is unbiased. Returns: A tuple of size two: * A tuple of size `params`, each element is `num_samples x param.shape` jacobian vector containing the estimates of the gradients obtained for each sample. The mean of this vector is the gradient wrt to parameters that can be used for learning. The entire jacobian vector can be used to assess estimator variance. * The updated CV state. """ control_variate = control_variate_from_function(function) stochastic_cv, expected_value_cv, update_state_cv = control_variate data_dim = jax.tree_util.tree_leaves(params)[0].shape[0] if estimate_cv_coeffs: cv_coeffs = estimate_control_variate_coefficients( function, control_variate_from_function, grad_estimator, params, dist_builder, rng, estimate_cv_coeffs_num_samples, control_variate_state) else: cv_coeffs = [1.0] * len(params) # \int \nabla_{\theta} {p(x; \theta)} (f(x) - h(x; \theta)) dx function_jacobians = grad_estimator( function, params, dist_builder, rng, num_samples) # Chain rule since CVs can also depend on parameters - for example, for the # pathwise gradient estimator they have in order to have an effect on # gradient. # The rng has to be the same as passed to the grad_estimator above so that we # obtain the same samples. samples = dist_builder(*params).sample((num_samples,), seed=rng) # If the CV has state, update it. control_variate_state = update_state_cv( params, samples, control_variate_state) def samples_fn(x): return stochastic_cv( jax.lax.stop_gradient(params), x, control_variate_state) cv_jacobians = grad_estimator( samples_fn, params, dist_builder, rng, num_samples) # The gradients of the stochastic covariate with respect to the parameters. def param_fn(x): return jnp.mean(_map( stochastic_cv, x, jax.lax.stop_gradient(samples), control_variate_state)) # [E_{p(x; \theta)} \nabla_{\theta} h(x; \theta) cv_param_grads = jax.grad(param_fn)(params) # The gradients of the closed form expectation of the control variate # with respect to the parameters: # \nabla_{\theta} E_{p(x; \theta)}]. expected_value_grads = jax.grad( lambda x: expected_value_cv(x, control_variate_state))(params) jacobians = [] for param_index, param in enumerate(jax.tree_util.tree_leaves(params)): chex.assert_shape(function_jacobians[param_index], (num_samples, data_dim)) chex.assert_shape(cv_jacobians[param_index], (num_samples, data_dim)) chex.assert_shape(cv_param_grads[param_index], (data_dim,)) chex.assert_shape(expected_value_grads[param_index], (data_dim,)) cv_coeff = cv_coeffs[param_index] # \int \nabla_{\theta} {p(x; \theta)} (f(x) - h(x; \theta)) dx param_jacobians = function_jacobians[param_index] param_jacobians -= cv_coeff * cv_jacobians[param_index] # - [E_{p(x; \theta)} \nabla_{\theta} h(x; \theta) param_jacobians -= cv_coeff * cv_param_grads[param_index] # \nabla_{\theta} E_{p(x; \theta)}] param_jacobians += cv_coeff * expected_value_grads[param_index] chex.assert_shape(param_jacobians, (num_samples,) + param.shape) jacobians.append(param_jacobians) return jacobians, control_variate_state def estimate_control_variate_coefficients( function: Callable[[chex.Array], float], control_variate_from_function: Callable[ [Callable[[chex.Array], float]], ControlVariate ], grad_estimator: Callable[..., jnp.ndarray], params: base.Params, dist_builder: Callable[..., Any], rng: chex.PRNGKey, num_samples: int, control_variate_state: CvState = None, eps: float = 1e-3, ) -> Sequence[float]: r"""Estimates the control variate coefficients for the given parameters. For each variable `var_k`, the coefficient is given by: \sum_k cov(df/d var_k, d cv/d var_k) / (\sum var(d cv/d var_k) + eps) Where var_k is the k'th element of the parameters in `params`. The covariance and variance calculations are done from samples obtained from the distribution obtained by calling `dist_builder` on the input `params`. This function does not update the state of the control variate. Args: function: Function f(x) for which to estimate grads_{params} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. control_variate_from_function: The control variate to use to reduce variance. See `control_delta_method` and `moving_avg_baseline` examples. grad_estimator: The gradient estimator to be used to compute the gradients. Note that not all control variates will reduce variance for all estimators. For example, the `moving_avg_baseline` will make no difference to the measure valued or pathwise estimators. params: A tuple of jnp arrays. The parameters for which to construct the distribution and for which we want to compute the jacobians. dist_builder: a constructor which builds a distribution given the input parameters specified by params. `dist_builder(params)` should return a valid distribution. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. control_variate_state: The control variate state. This is used for control variates which keep states (such as the moving average baselines). eps: A small constant used to avoid numerical issues. Float. Returns: A list of control variate coefficients (each a scalar), for each parameter in `params`. """ # Resample to avoid biased gradients. cv_rng, _ = jax.random.split(rng) del rng # Avoid using rng in this function. stochastic_cv, _, _ = control_variate_from_function(function) # Samples have to be the same so we use the same rng. cv_jacobians = grad_estimator( lambda x: stochastic_cv(params, x, control_variate_state), params, dist_builder, cv_rng, num_samples) function_jacobians = grad_estimator( function, params, dist_builder, cv_rng, num_samples) def compute_coeff(param_cv_jacs, param_f_jacs): assert param_f_jacs.ndim == 2 assert param_cv_jacs.ndim == 2 mean_f = jnp.mean(param_f_jacs, axis=0) mean_cv = jnp.mean(param_cv_jacs, axis=0) cov = jnp.mean((param_f_jacs - mean_f) * (param_cv_jacs - mean_cv), axis=0) assert cov.ndim == 1 # Compute the coefficients which minimize variance. # Since we want to minimize the variances across parameter dimensions, # the optimal coefficients are given by the sum of covariances per # dimensions over the sum of variances per dimension. cv_coeff = jnp.sum(cov) / (jnp.sum(jnp.var(param_cv_jacs, axis=0)) + eps) return jax.lax.stop_gradient(cv_coeff) return [compute_coeff(cv_jacobians[i], function_jacobians[i]) for i in range(len(params))]
optax-master
optax/_src/control_variates.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `alias.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp from optax._src import alias from optax._src import numerics from optax._src import schedule from optax._src import state_utils from optax._src import update _OPTIMIZERS_UNDER_TEST = ( dict(opt_name='sgd', opt_kwargs=dict(learning_rate=1e-3, momentum=0.9)), dict(opt_name='adafactor', opt_kwargs=dict(learning_rate=5e-3)), dict(opt_name='adagrad', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='adam', opt_kwargs=dict(learning_rate=1e-1)), dict(opt_name='adamw', opt_kwargs=dict(learning_rate=1e-1)), dict(opt_name='adamax', opt_kwargs=dict(learning_rate=1e-1)), dict(opt_name='adamaxw', opt_kwargs=dict(learning_rate=1e-1)), dict(opt_name='amsgrad', opt_kwargs=dict(learning_rate=1e-1)), dict(opt_name='lars', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='lamb', opt_kwargs=dict(learning_rate=1e-3)), dict( opt_name='lion', opt_kwargs=dict(learning_rate=1e-2, weight_decay=1e-4), ), dict(opt_name='noisy_sgd', opt_kwargs=dict(learning_rate=1e-3, eta=1e-4)), dict(opt_name='novograd', opt_kwargs=dict(learning_rate=1e-3)), dict( opt_name='optimistic_gradient_descent', opt_kwargs=dict(learning_rate=2e-3, alpha=0.7, beta=0.1), ), dict(opt_name='rmsprop', opt_kwargs=dict(learning_rate=5e-3)), dict(opt_name='rmsprop', opt_kwargs=dict(learning_rate=5e-3, momentum=0.9)), dict(opt_name='fromage', opt_kwargs=dict(learning_rate=5e-3)), dict(opt_name='adabelief', opt_kwargs=dict(learning_rate=1e-2)), dict(opt_name='radam', opt_kwargs=dict(learning_rate=5e-3)), dict(opt_name='sm3', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='yogi', opt_kwargs=dict(learning_rate=1e-1)), dict( opt_name='dpsgd', opt_kwargs=dict( learning_rate=1e-3, l2_norm_clip=10.0, noise_multiplier=1e-3, seed=0, momentum=0.2, ), ), ) def _setup_parabola(dtype): """Quadratic function as an optimization target.""" initial_params = jnp.array([-1.0, 10.0, 1.0], dtype=dtype) final_params = jnp.array([1.0, -1.0, 1.0], dtype=dtype) if jnp.iscomplexobj(dtype): final_params *= 1 + 1j @jax.grad def get_updates(params): return jnp.sum(numerics.abs_sq(params - final_params)) return initial_params, final_params, get_updates def _setup_rosenbrock(dtype): """Rosenbrock function as an optimization target.""" a = 1.0 b = 100.0 if jnp.iscomplexobj(dtype): a *= 1 + 1j initial_params = jnp.array([0.0, 0.0], dtype=dtype) final_params = jnp.array([a, a**2], dtype=dtype) @jax.grad def get_updates(params): return (numerics.abs_sq(a - params[0]) + b * numerics.abs_sq(params[1] - params[0]**2)) return initial_params, final_params, get_updates class AliasTest(chex.TestCase): @parameterized.product( _OPTIMIZERS_UNDER_TEST, target=(_setup_parabola, _setup_rosenbrock), dtype=(jnp.float32, jnp.complex64), ) def test_optimization(self, opt_name, opt_kwargs, target, dtype): if opt_name in ( 'fromage', 'noisy_sgd', 'sm3', 'optimistic_gradient_descent', 'lion', ) and jnp.iscomplexobj(dtype): raise absltest.SkipTest( f'{opt_name} does not support complex parameters.' ) opt = getattr(alias, opt_name)(**opt_kwargs) initial_params, final_params, get_updates = target(dtype) @jax.jit def step(params, state): updates = get_updates(params) if opt_name == 'dpsgd': updates = updates[None] # Complex gradients need to be conjugated before being added to parameters # https://gist.github.com/wdphy16/118aef6fb5f82c49790d7678cf87da29 updates = jax.tree_util.tree_map(lambda x: x.conj(), updates) updates, state = opt.update(updates, state, params) params = update.apply_updates(params, updates) return params, state params = initial_params state = opt.init(params) # A no-op change, to verify that tree map works. state = state_utils.tree_map_params(opt, lambda v: v, state) for _ in range(10000): params, state = step(params, state) chex.assert_trees_all_close(params, final_params, rtol=3e-2, atol=3e-2) @chex.all_variants @parameterized.product(_OPTIMIZERS_UNDER_TEST) def test_optimizers_can_be_wrapped_in_inject_hyperparams( self, opt_name, opt_kwargs): """Checks that optimizers can be wrapped in inject_hyperparams.""" # See also https://github.com/deepmind/optax/issues/412. opt_factory = getattr(alias, opt_name) opt = opt_factory(**opt_kwargs) if opt_name == 'adafactor': # Adafactor wrapped in inject_hyperparams currently needs a static # argument to be specified in order to be jittable. See issue # https://github.com/deepmind/optax/issues/412. opt_inject = schedule.inject_hyperparams( opt_factory, static_args=('min_dim_size_to_factor',))(**opt_kwargs) else: opt_inject = schedule.inject_hyperparams(opt_factory)(**opt_kwargs) params = [-jnp.ones((2, 3)), jnp.ones((2, 5, 2))] grads = [jnp.ones((2, 3)), -jnp.ones((2, 5, 2))] state = self.variant(opt.init)(params) updates, new_state = self.variant(opt.update)(grads, state, params) state_inject = self.variant(opt_inject.init)(params) updates_inject, new_state_inject = self.variant(opt_inject.update)( grads, state_inject, params) with self.subTest('Equality of updates.'): chex.assert_trees_all_close(updates_inject, updates, rtol=1e-4) with self.subTest('Equality of new optimizer states.'): chex.assert_trees_all_close( new_state_inject.inner_state, new_state, rtol=1e-4) @parameterized.named_parameters([ ('float32', 'float32'), ('bfloat16', 'bfloat16'), ('complex64', 'complex64'), ('None', None), ]) def test_explicit_dtype(self, dtype): expected_dtype = jax.dtypes.canonicalize_dtype(dtype) # None -> float32 tx = alias.sgd(0.1, momentum=0.9, accumulator_dtype=dtype) trace_state, _ = tx.init(jnp.array([0.0, 0.0])) self.assertEqual(expected_dtype, getattr(trace_state, 'trace').dtype) tx = alias.adam(0.1, mu_dtype=dtype) adam_state, _ = tx.init(jnp.array([0.0, 0.0])) self.assertEqual(expected_dtype, getattr(adam_state, 'mu').dtype) tx = alias.adamw(0.1, mu_dtype=dtype) adam_state, _, _ = tx.init(jnp.array([0.0, 0.0])) self.assertEqual(expected_dtype, getattr(adam_state, 'mu').dtype) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/alias_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `wrappers.py`.""" import copy from typing import cast from absl.testing import absltest from absl.testing import parameterized import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np from optax._src import alias from optax._src import base from optax._src import combine from optax._src import constrain from optax._src import state_utils from optax._src import transform from optax._src import update from optax._src import wrappers import tree def _build_sgd(): return alias.sgd(1.) def _build_stateful_sgd(): # This SGD behaves like _build_sgd but also tests the optimizer state. The # momentum is set to zero rather than None so that the momentum terms are # calculated, but do not change the results. return alias.sgd(1., momentum=0.) def _build_sgd_extra_args(): def init_fn(params): del params return {'foo': 1} def update_fn(grads, state, params=None, *, foo=None, **extra_args): del extra_args, foo, params return grads, state t = base.GradientTransformationExtraArgs(init_fn, update_fn) return combine.chain(_build_sgd(), t) class WrappersTest(parameterized.TestCase): def test_flatten(self): def init_params(): return (jnp.array([1., 2.]), jnp.array([3., 4.])) per_step_updates = (jnp.array([500., 5.]), jnp.array([300., 3.])) # First calculate new params without flattening optax_sgd_params = init_params() sgd = alias.sgd(1e-2, 0.0) state_sgd = sgd.init(optax_sgd_params) updates_sgd, state_sgd = sgd.update(per_step_updates, state_sgd) sgd_params_no_flatten = update.apply_updates(optax_sgd_params, updates_sgd) # And now calculate new params with flattening optax_sgd_params = init_params() sgd = wrappers.flatten(sgd) state_sgd = sgd.init(optax_sgd_params) updates_sgd, state_sgd = sgd.update(per_step_updates, state_sgd) sgd_params_flatten = update.apply_updates(optax_sgd_params, updates_sgd) # Test that both give the same result chex.assert_trees_all_close( sgd_params_no_flatten, sgd_params_flatten, atol=1e-7, rtol=1e-7) @chex.variants(with_jit=True, without_jit=True, with_pmap=True) @parameterized.named_parameters( ('sgd', _build_sgd), ('stateful_sgd', _build_stateful_sgd), ('sgd_extra_args', _build_sgd_extra_args), ) def test_apply_if_finite(self, opt_builder): one = jnp.ones([]) nan = jnp.array(jnp.nan) def fn(x): return x * hk.get_parameter('p', [], init=hk.initializers.Constant(0.)) fn = hk.without_apply_rng(hk.transform(fn)) params = fn.init(jax.random.PRNGKey(1905), one) opt = wrappers.apply_if_finite(opt_builder(), 2) state = opt.init(params) grads_fn = jax.grad(self.variant(fn.apply)) # Do one successful param update grads = grads_fn(params, one) updates, state = opt.update(grads, state, params) params = update.apply_updates(params, updates) # We know exactly what should be the value of params since we are # effectively using sgd in all cases. self.assertEqual(-1., float(jax.tree_util.tree_flatten(params)[0][0])) self.assertTrue(bool(getattr(state, 'last_finite'))) # Check 2 rejected param updates for step in range(2): grads = grads_fn(params, nan) updates, state = opt.update(grads, state, params) params = update.apply_updates(params, updates) self.assertEqual(-1., float(jax.tree_util.tree_flatten(params)[0][0])) self.assertFalse(bool(getattr(state, 'last_finite'))) self.assertEqual(step + 1, int(getattr(state, 'notfinite_count'))) # Next successful param update grads = grads_fn(params, one) updates, state = opt.update(grads, state, params) params = update.apply_updates(params, updates) self.assertEqual(-2., float(jax.tree_util.tree_flatten(params)[0][0])) self.assertTrue(bool(getattr(state, 'last_finite'))) # Again 2 rejected param updates for step in range(2): grads = grads_fn(params, nan) updates, state = opt.update(grads, state, params) params = update.apply_updates(params, updates) self.assertEqual(-2., float(jax.tree_util.tree_flatten(params)[0][0])) self.assertFalse(bool(getattr(state, 'last_finite'))) self.assertEqual(step + 1, int(getattr(state, 'notfinite_count'))) # Next param update with NaN is accepted since we reached maximum grads = grads_fn(params, nan) updates, state = opt.update(grads, state, params) params = update.apply_updates(params, updates) self.assertTrue(bool(jnp.isnan(jax.tree_util.tree_flatten(params)[0][0]))) self.assertEqual(5, int(getattr(state, 'total_notfinite'))) def test_apply_if_finite_pmap(self): # Unlike in `test_apply_if_finite`: # * pmap is applied to the gradient computation and the optimisation; # * the NaNs are caused inside the function and do not come from the inputs. half = jnp.ones([1]) / 2. two = jnp.ones([1]) * 2. # Causes a NaN in arctanh def fn(x): return jnp.arctanh(x) * hk.get_parameter( 'p', [], init=hk.initializers.Constant(0.)) fn = hk.without_apply_rng(hk.transform(fn)) opt = wrappers.apply_if_finite(alias.sgd(1.), 2) def fn_update(params, opt_state, x): grads = jax.grad(fn.apply)(params, x) grads = jax.lax.psum(grads, axis_name='i') updates, new_opt_state = opt.update(grads, opt_state, params) new_params = update.apply_updates(params, updates) return new_params, new_opt_state fn_update = jax.pmap(fn_update, axis_name='i') params = fn.init(jax.random.PRNGKey(1905), half) opt_state = opt.init(params) params = jax.tree_util.tree_map(lambda x: x[None], params) opt_state = jax.tree_util.tree_map(lambda x: x[None], opt_state) # Do one successful param update params, opt_state = fn_update(params, opt_state, half) self.assertTrue(bool(opt_state.last_finite)) # Check 2 rejected param updates for step in range(2): params, opt_state = fn_update(params, opt_state, two) self.assertFalse(bool(opt_state.last_finite)) self.assertEqual(step + 1, int(opt_state.notfinite_count)) # Next successful param update params, opt_state = fn_update(params, opt_state, half) self.assertTrue(bool(opt_state.last_finite)) # Again 2 rejected param updates for step in range(2): params, opt_state = fn_update(params, opt_state, two) self.assertFalse(bool(opt_state.last_finite)) self.assertEqual(step + 1, int(opt_state.notfinite_count)) # Next param update with NaN is accepted since we reached maximum params, opt_state = fn_update(params, opt_state, two) self.assertEqual(5, int(opt_state.total_notfinite)) @chex.variants(with_jit=True, without_jit=True, with_pmap=True) def test_multi_steps(self): batch_size = 32 x_size = 7 # Parameters should be updated only every `k_steps` optimisation steps. k_steps = 4 data = jnp.ones([batch_size, x_size]) def get_loss(x): loss = jnp.sum(hk.Linear(10)(x)**2) return loss loss_init, loss_apply = hk.without_apply_rng(hk.transform(get_loss)) params = loss_init(jax.random.PRNGKey(1915), data) ms_opt = wrappers.MultiSteps( # Use a non-trivial inner optimiser: # * it has a state, # * it requires the params for the update. combine.chain(transform.scale_by_adam(), transform.add_decayed_weights(1e-2), transform.scale(-1e-4)), k_steps) opt_init, opt_update = ms_opt.gradient_transformation() # Put the training in one function, to check that the update is indeed # jittable. def train_step(data, opt_state, params): grad = jax.grad(loss_apply)(params, data) updates, opt_state = opt_update(grad, opt_state, params) return updates, opt_state opt_state = opt_init(params) prev_loss = loss_apply(params, data) for idx in range(5 * k_steps): updates, opt_state = self.variant(train_step)(data, opt_state, params) new_params = update.apply_updates(params, updates) new_loss = loss_apply(new_params, data) if idx % k_steps < k_steps - 1: # The parameters should not have changed and the loss should be # constant. jax.tree_util.tree_map( np.testing.assert_array_equal, new_params, params) np.testing.assert_equal(new_loss, prev_loss) self.assertFalse(ms_opt.has_updated(opt_state)) else: # This is a step where parameters should actually have been updated, and # the loss should accordingly go down. np.testing.assert_array_less(new_loss, prev_loss) prev_loss = new_loss self.assertTrue(ms_opt.has_updated(opt_state)) params = new_params def test_multi_steps_every_k_schedule(self): # Test a non-trivial schedule which varies over time. ms_opt = wrappers.MultiSteps( alias.sgd(1e-4), lambda grad_step: jnp.where(grad_step < 2, 1, 3)) opt_init, opt_update = ms_opt.gradient_transformation() params = dict(a=jnp.zeros([])) opt_state = opt_init(params) grad = dict(a=jnp.zeros([])) self.assertFalse(ms_opt.has_updated(opt_state)) # First two steps have 1 mini-step per update. for _ in range(2): _, opt_state = opt_update(grad, opt_state, params) self.assertTrue(ms_opt.has_updated(opt_state)) # Subsequently, mini-steps should have 3 mini-steps per update. for _ in range(5): for _ in range(2): _, opt_state = opt_update(grad, opt_state, params) self.assertFalse(ms_opt.has_updated(opt_state)) _, opt_state = opt_update(grad, opt_state, params) self.assertTrue(ms_opt.has_updated(opt_state)) def test_multi_steps_computes_mean(self): k_steps = 4 ms_opt = wrappers.MultiSteps( transform.scale(1.0), k_steps, use_grad_mean=True) opt_init, opt_update = ms_opt.gradient_transformation() params = dict(a=jnp.zeros([])) opt_state = opt_init(params) grads = [dict(a=jnp.ones([]) * i) for i in [1, 2, 3, 4]] self.assertFalse(ms_opt.has_updated(opt_state)) # First 3 steps don't update. for grad in grads[:-1]: _, opt_state = opt_update(grad, opt_state, params) self.assertFalse(ms_opt.has_updated(opt_state)) # Actual update. new_params, opt_state = opt_update(grads[-1], opt_state, params) self.assertTrue(ms_opt.has_updated(opt_state)) np.testing.assert_array_equal(new_params['a'], 2.5) def test_skip_not_finite(self): step = jnp.zeros([], dtype=jnp.int32) with self.subTest('test_pos_inf'): should_skip, skip_state = wrappers.skip_not_finite( [jnp.array(float('inf')), jnp.zeros([])], step, None) self.assertTrue(bool(should_skip)) self.assertTrue(bool(skip_state['should_skip'])) self.assertEqual(int(skip_state['num_not_finite']), 1) with self.subTest('test_neg_inf'): should_skip, skip_state = wrappers.skip_not_finite( [jnp.array(-float('inf')), jnp.zeros([])], step, None) self.assertTrue(bool(should_skip)) self.assertTrue(bool(skip_state['should_skip'])) self.assertEqual(int(skip_state['num_not_finite']), 1) with self.subTest('test_nan'): should_skip, skip_state = wrappers.skip_not_finite( [jnp.array(float('nan')), jnp.zeros([])], step, None) self.assertTrue(bool(should_skip)) self.assertTrue(bool(skip_state['should_skip'])) self.assertEqual(int(skip_state['num_not_finite']), 1) with self.subTest('test_finite'): should_skip, skip_state = wrappers.skip_not_finite( [jnp.array(11.), jnp.zeros([])], step, None) self.assertFalse(bool(should_skip)) self.assertFalse(bool(skip_state['should_skip'])) self.assertEqual(int(skip_state['num_not_finite']), 0) def test_skip_large_updates(self): step = jnp.zeros([], dtype=jnp.int32) with self.subTest('test_inf'): should_skip, skip_state = wrappers.skip_large_updates( [jnp.array(float('inf')), jnp.zeros([])], step, None, 100.) self.assertTrue(bool(should_skip)) self.assertTrue(bool(skip_state['should_skip'])) self.assertEqual(float(skip_state['norm_squared']), float('inf')) with self.subTest('test_nan'): should_skip, skip_state = wrappers.skip_large_updates( [jnp.array(float('nan')), jnp.zeros([])], step, None, 100.) self.assertTrue(bool(should_skip)) self.assertTrue(bool(skip_state['should_skip'])) # Recall that NaN != NaN. norm_squared = float(skip_state['norm_squared']) self.assertNotEqual(norm_squared, norm_squared) with self.subTest('test_large'): should_skip, skip_state = wrappers.skip_large_updates( [jnp.array(11.), jnp.zeros([])], step, None, 100.) self.assertTrue(bool(should_skip)) self.assertTrue(bool(skip_state['should_skip'])) self.assertEqual(float(skip_state['norm_squared']), 121.) with self.subTest('test_small'): should_skip, skip_state = wrappers.skip_large_updates( [jnp.zeros([]), jnp.zeros([])], step, None, 100.) self.assertFalse(bool(should_skip)) self.assertFalse(bool(skip_state['should_skip'])) self.assertEqual(float(skip_state['norm_squared']), 0.) def test_multi_steps_skip_not_finite(self): k_steps = 2 ms_opt = wrappers.MultiSteps( alias.sgd(1.), k_steps, should_skip_update_fn=wrappers.skip_not_finite) opt_init, opt_update = ms_opt.gradient_transformation() opt_init = jax.jit(opt_init) opt_update = jax.jit(opt_update) params = dict(a=jnp.zeros([])) opt_state = opt_init(params) with self.subTest('test_good_updates'): updates, opt_state = opt_update(dict(a=jnp.ones([])), opt_state, params) self.assertEqual(int(opt_state.mini_step), 1) params = update.apply_updates(params, updates) updates, opt_state = opt_update(dict(a=jnp.ones([])), opt_state, params) self.assertEqual(int(opt_state.mini_step), 0) params = update.apply_updates(params, updates) np.testing.assert_array_equal(params['a'], -jnp.ones([])) with self.subTest('test_inf_updates'): updates, opt_state = opt_update( dict(a=jnp.array(float('inf'))), opt_state, params) self.assertEqual(int(opt_state.mini_step), 0) # No increase in mini_step params = update.apply_updates(params, updates) np.testing.assert_array_equal(params['a'], -jnp.ones([])) with self.subTest('test_nan_updates'): updates, opt_state = opt_update( dict(a=jnp.full([], float('nan'))), opt_state, params) self.assertEqual(int(opt_state.mini_step), 0) # No increase in mini_step params = update.apply_updates(params, updates) np.testing.assert_array_equal(params['a'], -jnp.ones([])) with self.subTest('test_final_good_updates'): updates, opt_state = opt_update(dict(a=jnp.ones([])), opt_state, params) self.assertEqual(int(opt_state.mini_step), 1) params = update.apply_updates(params, updates) updates, opt_state = opt_update(dict(a=jnp.ones([])), opt_state, params) self.assertEqual(int(opt_state.mini_step), 0) params = update.apply_updates(params, updates) np.testing.assert_array_equal(params['a'], -jnp.full([], 2.)) class MaskedTest(chex.TestCase): """Tests for the masked wrapper.""" def test_tree_map_params(self): params = { 'a': { 'b': (jnp.zeros((1, 2)), jnp.zeros((2, 2))), }, 'c': { 'd': jnp.zeros((1, 2)), 'e': (jnp.zeros((1, 2)), jnp.zeros((1, 2))), }, } sharding_axes = { 'a': { 'b': (1, 2), }, 'c': { 'd': 1, 'e': (1, 2), }, } mask = { 'a': { 'b': (True, False), }, 'c': { 'd': True, 'e': (False, True), }, } expected = { 'a': { 'b': (jnp.ones((1, 2)), jnp.zeros((2, 2))), }, 'c': { 'd': jnp.ones((1, 2)), 'e': (jnp.ones((1, 2)), jnp.ones((1, 2))), }, } def init_fn(params): return {'count': 1, 'params': params, 'params_copy': params} def update_fn(updates, state, params=None): del params return updates, state inner = base.GradientTransformation(init_fn, update_fn) masked = wrappers.masked(inner, mask) def increment_dim_1(v): return v + 1 if v.shape[0] == 1 else v # For this optimizer, tree_map_params should have the same effect on a # masked optimizer state as it does on an unmasked optimizer state. with self.subTest('inner'): state = inner.init(params) result = state_utils.tree_map_params(inner, increment_dim_1, state) chex.assert_trees_all_equal(result, inner.init(expected)) with self.subTest('masked'): state = masked.init(params) result = state_utils.tree_map_params(masked, increment_dim_1, state) chex.assert_trees_all_equal(result, masked.init(expected)) with self.subTest('masked_with_extra_args'): # Users wishing to pass additional arguments with the same tree structure # as the original params pytree will need to add the additional `is_leaf` # callable. This makes it possible to ignore the masked parts of the # pytree. # Replace all non-masked parameters in the opt-state tree with the # sharding axis values given in the tree above. Everything else is set to # None. new_state = state_utils.tree_map_params( masked, lambda p, axis: None if isinstance(p, wrappers.MaskedNode) else axis, state, sharding_axes, is_leaf=lambda v: isinstance(v, wrappers.MaskedNode), transform_non_params=lambda v: None, ) sharded_params = { 'a': { 'b': (1, None), }, 'c': { 'd': 1, 'e': (None, 2), }, } # Required to make pytype happy new_state = cast(wrappers.MaskedState, new_state) chex.assert_equal(None, new_state.inner_state['count']) chex.assert_equal(sharded_params, new_state.inner_state['params']) chex.assert_equal(sharded_params, new_state.inner_state['params_copy']) @chex.all_variants @parameterized.named_parameters( ('sgd', _build_sgd, False), ('stateful_sgd', _build_stateful_sgd, False), ('sgd_w_mask_fn', _build_sgd, True), ('stateful_sgd_w_mask_fn', _build_stateful_sgd, True), ) def test_masked(self, opt_builder, use_fn): mask = {'a': True, 'b': [False, True], 'c': {'d': True, 'e': (False, True)}} mask_arg = lambda _: mask if use_fn else mask params = {'a': 1., 'b': [2., 3.], 'c': {'d': 4., 'e': (5., 6.)}} params = jax.tree_util.tree_map(jnp.asarray, params) input_updates = jax.tree_util.tree_map(lambda x: x/10., params) # Negate the updates wherever the mask is True def masked_negate(updates): return jax.tree_util.tree_map( lambda upd, m: -upd if m else upd, updates, mask) correct_updates = masked_negate(input_updates) init_fn, update_fn = wrappers.masked(opt_builder(), mask_arg) update_fn = self.variant(update_fn) state = self.variant(init_fn)(params) with self.subTest('tree_map_params'): result = state_utils.tree_map_params(init_fn, lambda v: v, state) chex.assert_trees_all_equal_structs(result, state) updates, state = update_fn(input_updates, state, params) chex.assert_trees_all_close(updates, correct_updates) # Check repeated application, this time with no params. correct_updates = masked_negate(correct_updates) updates, state = update_fn(updates, state) chex.assert_trees_all_close(updates, correct_updates) @chex.all_variants @parameterized.named_parameters( ('sgd', _build_sgd), ('stateful_sgd', _build_stateful_sgd), ) def test_prefix_mask(self, opt_builder): """Test when the mask is a prefix of the updates PyTree.""" mask = {'a': True, 'b': False, 'c': {'d': False, 'e': True}} params = {'a': 1., 'b': {'f': 2.}, 'c': {'d': 3., 'e': ([4., 5.], 6.)}} params = jax.tree_util.tree_map(jnp.asarray, params) input_updates = jax.tree_util.tree_map(lambda x: x/10., params) # Negate the updates wherever the mask (or mask parent) is True def _masked_sgd_on_updates(m, upd): return jax.tree_util.tree_map(lambda x: -x, upd) if m else upd correct_updates = jax.tree_util.tree_map( _masked_sgd_on_updates, mask, input_updates) init_fn, update_fn = wrappers.masked(opt_builder(), mask) update_fn = self.variant(update_fn) state = self.variant(init_fn)(params) updates, state = update_fn(input_updates, state, params) chex.assert_trees_all_close(updates, correct_updates) # Check repeated application, this time with no params. correct_updates = jax.tree_util.tree_map( _masked_sgd_on_updates, mask, correct_updates) updates, _ = update_fn(updates, state) chex.assert_trees_all_close(updates, correct_updates) @chex.all_variants def test_update_requires_params(self): weight_decay = 0.1 mask = {'a': True, 'b': [False, True], 'c': {'d': True, 'e': (False, True)}} params = {'a': 1., 'b': [2., 3.], 'c': {'d': 4., 'e': (5., 6.)}} params = jax.tree_util.tree_map(jnp.asarray, params) input_updates = jax.tree_util.tree_map(lambda x: x/10., params) correct_updates = jax.tree_util.tree_map( lambda m, u, p: u + weight_decay * p if m else u, mask, input_updates, params) init_fn, update_fn = wrappers.masked( transform.add_decayed_weights(weight_decay), mask) update_fn = self.variant(update_fn) state = self.variant(init_fn)(params) updates, state = update_fn(input_updates, state, params) chex.assert_trees_all_close(updates, correct_updates) params = update.apply_updates(params, updates) # Test repeated application new_correct_updates = jax.tree_util.tree_map( lambda m, u, p: u + weight_decay * p if m else u, mask, correct_updates, params) updates, state = update_fn(correct_updates, state, params) chex.assert_trees_all_close(updates, new_correct_updates) @parameterized.parameters(list, tuple, dict) def test_empty(self, container): init_fn, update_fn = wrappers.masked(_build_sgd(), container()) update_fn(container(), init_fn(container())) @parameterized.parameters( (False, False), (False, True), (True, False), (True, True)) def test_tree_mismatch_fails(self, extra_key_in_mask, use_fn): mask = {'a': True, 'b': [False, True], 'c': {'d': True, 'e': (False, True)}} mask_arg = lambda _: mask if use_fn else mask params = {'a': 1., 'b': [2., 3.], 'c': {'d': 4., 'e': (5., 6.)}} params = jax.tree_util.tree_map(jnp.asarray, params) if extra_key_in_mask: mask['c']['extra'] = True else: params['c']['extra'] = 7 init_fn = wrappers.masked(_build_sgd(), mask_arg)[0] with self.assertRaises(ValueError): init_fn(params) @chex.all_variants def test_mask_fn(self): params = {'a': jnp.ones((1, 2)), 'b': (jnp.ones((1,)), np.ones((1, 2, 3)))} mask_fn = lambda p: jax.tree_util.tree_map(lambda x: x.ndim > 1, p) init_fn, update_fn = wrappers.masked(transform.add_decayed_weights(0.1), mask_fn) update_fn = self.variant(update_fn) state = self.variant(init_fn)(params) grads = jax.tree_util.tree_map(lambda x: x*2, params) updates, state = update_fn(grads, state, params) np.testing.assert_allclose(updates['a'], grads['a'] + 0.1*params['a']) np.testing.assert_allclose(updates['b'][0], grads['b'][0]) np.testing.assert_allclose(updates['b'][1], grads['b'][1] + 0.1*params['b'][1]) @chex.all_variants @parameterized.named_parameters( ('sgd', _build_sgd), ('stateful_sgd', _build_stateful_sgd), ) def test_nested_mask(self, opt_builder): # https://github.com/deepmind/optax/issues/271 params = {'linear_1': {'w': jnp.zeros((1, 1)), 'b': jnp.zeros(1)}, 'linear_2': {'w': jnp.zeros((1, 2)), 'b': jnp.zeros(2)}, 'linear_3': {'w': jnp.zeros((2, 3)), 'b': jnp.zeros(3)}} outer_mask = lambda p: jax.tree_util.tree_map(lambda x: x.ndim > 1, p) inner_mask = jax.tree_util.tree_map(lambda _: True, params) inner_mask['linear_2'] = False inner = wrappers.masked(opt_builder(), inner_mask) init_fn, update_fn = wrappers.masked(inner, outer_mask) input_updates = jax.tree_util.tree_map(jnp.ones_like, params) correct_updates = copy.deepcopy(input_updates) correct_updates['linear_1']['w'] *= -1.0 correct_updates['linear_3']['w'] *= -1.0 state = self.variant(init_fn)(params) updates, state = self.variant(update_fn)(input_updates, state, params) chex.assert_trees_all_close(updates, correct_updates) @chex.all_variants def test_masked_state_structure(self): # https://github.com/deepmind/optax/issues/271 params = {'a': [jnp.ones(1), (jnp.ones(2), jnp.ones(3))], 'b': {'c': jnp.ones(4), 'd': jnp.ones(5)}} mask = {'a': [True, (True, False)], 'b': False} tx = wrappers.masked(_build_stateful_sgd(), mask) trace = self.variant(tx.init)(params).inner_state[0].trace expected_trace = { 'a': [jnp.zeros(1), (jnp.zeros(2), wrappers.MaskedNode())], 'b': wrappers.MaskedNode() } chex.assert_trees_all_equal_structs(trace, expected_trace) def test_masked_state_is_compatible_with_deepmind_tree(self): """Checks that the masked state is compatible with deepmind/tree. DeepMind's tree library and `jax.tree_util` have slightly different behavior: jax treats `None`s as tree nodes without children while deepmind/tree treats them as leaves with `None` values. This has led to bugs when users used deepmind/tree to manipulate masked optimizer states. This test ensures that masked parts of the optimizer state are also ignored by deepmind/tree. """ params = { 'a': [jnp.ones(1), (jnp.ones(2), jnp.ones(3))], 'b': [jnp.ones(4)] } mask = {'a': [True, (True, False)], 'b': False} opt_init, _ = wrappers.masked(_build_stateful_sgd(), mask) state = opt_init(params) chex.assert_trees_all_equal(tree.map_structure(np.array, state), state) class MaybeUpdateTest(chex.TestCase): """Tests for the maybe_update wrapper.""" NUM_STEPS = 3 @chex.all_variants def test_stateless_inner(self): params = jnp.zeros([]) grads = jnp.ones([]) def should_update(step): return step < MaybeUpdateTest.NUM_STEPS opt = wrappers.maybe_update(transform.scale(2.), should_update) state = opt.init(params) update_fn = self.variant(opt.update) for _ in range(MaybeUpdateTest.NUM_STEPS): updates, state = update_fn(grads, state) self.assertEqual(updates, 2.) # Further updates stop calling the inner optimiser. for _ in range(5): updates, state = update_fn(grads, state) self.assertEqual(updates, 1.) @chex.all_variants def test_statefull_inner(self): params = jnp.zeros([]) grads_with_nan = jnp.array(float('nan')) grads = jnp.ones([]) def should_update(step): return step < MaybeUpdateTest.NUM_STEPS opt = wrappers.maybe_update(constrain.zero_nans(), should_update) state = opt.init(params) update_fn = self.variant(opt.update) for _ in range(MaybeUpdateTest.NUM_STEPS - 1): updates, state = update_fn(grads_with_nan, state) self.assertEqual(updates, 0.) self.assertEqual(state.inner_state.found_nan, True) updates, state = update_fn(grads, state) self.assertEqual(updates, 1.) self.assertEqual(state.inner_state.found_nan, False) # Further updates stop calling the inner optimiser. for _ in range(5): updates, state = update_fn(grads_with_nan, state) # Warning: do not use assertEqual with a NaN as NaN == NaN returns False. self.assertTrue(jnp.isnan(updates)) # Inner state is not be updated. self.assertEqual(state.inner_state.found_nan, False) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/wrappers_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that types are preserved by the `update` calls when jax_enbable_x64.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax from jax.config import config import jax.numpy as jnp from optax._src import alias from optax._src import base from optax._src import clipping from optax._src import transform from optax._src import update ALL_MODULES = [ ('identity', base.identity, {}), ('clip', clipping.clip, dict(max_delta=1.0)), ('clip_by_global_norm', clipping.clip_by_global_norm, dict(max_norm=1.0)), ('trace', transform.trace, dict(decay=0.5, nesterov=False)), ('trace_with_nesterov', transform.trace, dict(decay=0.5, nesterov=True)), ('scale_by_rss', transform.scale_by_rss, {}), ('scale_by_rms', transform.scale_by_rms, {}), ('scale_by_stddev', transform.scale_by_stddev, {}), ('adam', transform.scale_by_adam, {}), ('scale', transform.scale, dict(step_size=3.0)), ('add_decayed_weights', transform.add_decayed_weights, dict(weight_decay=0.1)), ('scale_by_schedule', transform.scale_by_schedule, dict(step_size_fn=lambda x: x * 0.1)), ('scale_by_trust_ratio', transform.scale_by_trust_ratio, {}), ('add_noise', transform.add_noise, dict(eta=1.0, gamma=0.1, seed=42)), ('apply_every_k', transform.apply_every, {}), ('adagrad', alias.adagrad, dict(learning_rate=0.1)), ('adam', alias.adam, dict(learning_rate=0.1)), ('adamw', alias.adamw, dict(learning_rate=0.1)), ('fromage', alias.fromage, dict(learning_rate=0.1)), ('lamb', alias.lamb, dict(learning_rate=0.1)), ('noisy_sgd', alias.noisy_sgd, dict(learning_rate=0.1)), ('rmsprop', alias.rmsprop, dict(learning_rate=0.1)), ('sgd', alias.sgd, dict(learning_rate=0.1)), ('dpsgd', alias.dpsgd, dict(learning_rate=0.1, l2_norm_clip=0.9, noise_multiplier=1.1, seed=42)), ] class Float64Test(parameterized.TestCase): def _assert_dtype_equals(self, tree1, tree2): tree1_types = jax.tree_util.tree_map(lambda t: t.dtype, tree1) tree2_types = jax.tree_util.tree_map(lambda t: t.dtype, tree2) self.assertEqual(tree1_types, tree2_types) @chex.all_variants @parameterized.named_parameters(ALL_MODULES) def test_mixed_dtype_input_outputs(self, transform_constr, transform_kwargs): initial_params = ( jnp.array([1., 2.], dtype=jnp.float32), jnp.array([3., 4.], dtype=jnp.float64)) updates = ( jnp.array([10., 21.], dtype=jnp.float32), jnp.array([33., 42.], dtype=jnp.float64)) scaler = transform_constr(**transform_kwargs) init_fn = self.variant(scaler.init) update_fn = self.variant(scaler.update) initial_state = init_fn(initial_params) updates, new_state = update_fn( updates, initial_state, params=initial_params) new_params = update.apply_updates(initial_params, updates) self._assert_dtype_equals(initial_state, new_state) self._assert_dtype_equals(initial_params, new_params) if __name__ == '__main__': config.update('jax_enable_x64', True) absltest.main()
optax-master
optax/_src/float64_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `clipping.py`.""" from absl.testing import absltest import chex import jax import jax.numpy as jnp from optax._src import clipping from optax._src import linear_algebra STEPS = 50 LR = 1e-2 class ClippingTest(absltest.TestCase): def setUp(self): super().setUp() self.init_params = (jnp.array([1., 2.]), jnp.array([3., 4.])) self.per_step_updates = (jnp.array([500., 5.]), jnp.array([300., 3.])) def test_clip(self): updates = self.per_step_updates # For a sufficiently high delta the update should not be changed. clipper = clipping.clip(1e6) clipped_updates, _ = clipper.update(updates, None) chex.assert_trees_all_close(clipped_updates, clipped_updates) # Clipping at delta=1 should make all updates exactly 1. clipper = clipping.clip(1.) clipped_updates, _ = clipper.update(updates, None) chex.assert_trees_all_close( clipped_updates, jax.tree_util.tree_map(jnp.ones_like, updates)) def test_clip_by_block_rms(self): rmf_fn = lambda t: jnp.sqrt(jnp.mean(t**2)) updates = self.per_step_updates for i in range(1, STEPS + 1): clipper = clipping.clip_by_block_rms(1. / i) # Check that the clipper actually works and block rms is <= threshold updates, _ = clipper.update(updates, None) self.assertAlmostEqual(rmf_fn(updates[0]), 1. / i) self.assertAlmostEqual(rmf_fn(updates[1]), 1. / i) # Check that continuously clipping won't cause numerical issues. updates_step, _ = clipper.update(self.per_step_updates, None) chex.assert_trees_all_close(updates, updates_step) def test_clip_by_global_norm(self): updates = self.per_step_updates for i in range(1, STEPS + 1): clipper = clipping.clip_by_global_norm(1. / i) # Check that the clipper actually works and global norm is <= max_norm updates, _ = clipper.update(updates, None) self.assertAlmostEqual( linear_algebra.global_norm(updates), 1. / i, places=6) # Check that continuously clipping won't cause numerical issues. updates_step, _ = clipper.update(self.per_step_updates, None) chex.assert_trees_all_close(updates, updates_step) def test_adaptive_grad_clip(self): updates = self.per_step_updates params = self.init_params for i in range(1, STEPS + 1): clip_r = 1. / i clipper = clipping.adaptive_grad_clip(clip_r) # Check that the clipper actually works and upd_norm is < c * param_norm. updates, _ = clipper.update(updates, None, params) u_norm, p_norm = jax.tree_util.tree_map( clipping.unitwise_norm, (updates, params)) cmp = jax.tree_util.tree_map( lambda u, p, c=clip_r: u - c * p < 1e-6, u_norm, p_norm) for leaf in jax.tree_util.tree_leaves(cmp): self.assertTrue(leaf.all()) # Check that continuously clipping won't cause numerical issues. updates_step, _ = clipper.update(self.per_step_updates, None, params) chex.assert_trees_all_close(updates, updates_step) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/clipping_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for state_utils.""" import dataclasses from typing import Optional, TypedDict, cast from absl.testing import absltest import chex import jax import jax.numpy as jnp from optax._src import alias from optax._src import base from optax._src import combine from optax._src import schedule from optax._src import state_utils from optax._src import transform @dataclasses.dataclass class FakeShardSpec: sharding_axis: Optional[int] class ScaleByAdamStateDict(TypedDict): """An opt state that uses dictionaries instead of classes.""" count: chex.Array params: TypedDict('Params', {'mu': chex.ArrayTree, 'nu': chex.ArrayTree}) def _scale_by_adam_with_dicts(): """An implementation of adam using dictionary-based opt states.""" t = transform.scale_by_adam() def init(params): state = t.init(params) state = cast(transform.ScaleByAdamState, state) return ScaleByAdamStateDict( count=state.count, params={'mu': state.mu, 'nu': state.nu}, ) def update(updates, state, params=None): state = transform.ScaleByAdamState( count=state['count'], mu=state['params']['mu'], nu=state['params']['nu'], ) updates, state = t.update(updates, state, params) state = cast(transform.ScaleByAdamState, state) return ScaleByAdamStateDict( count=state.count, params={'mu': state.mu, 'nu': state.nu}, ) return base.GradientTransformation(init, update) class StateUtilsTest(absltest.TestCase): def test_dict_based_optimizers(self): """Test we can map over params also for optimizer states using dicts.""" opt = combine.chain( _scale_by_adam_with_dicts(), transform.add_decayed_weights(1e-3), ) params = _fake_params() params_sharding_spec = _fake_param_sharding() opt_state = opt.init(params) opt_state_sharding_spec = state_utils.tree_map_params( opt, lambda _, spec: spec, opt_state, params_sharding_spec, transform_non_params=lambda _: FakeShardSpec(None), ) expected = ( { 'count': FakeShardSpec(sharding_axis=None), 'params': { 'mu': { 'my/fake/module': { 'b': FakeShardSpec(sharding_axis=1), 'w': FakeShardSpec(sharding_axis=0), }, 'my/other/fake/module': { 'b': FakeShardSpec(sharding_axis=3), 'w': FakeShardSpec(sharding_axis=2), }, }, 'nu': { 'my/fake/module': { 'b': FakeShardSpec(sharding_axis=1), 'w': FakeShardSpec(sharding_axis=0), }, 'my/other/fake/module': { 'b': FakeShardSpec(sharding_axis=3), 'w': FakeShardSpec(sharding_axis=2), }, }, }, }, base.EmptyState(), ) self.assertEqual(expected, opt_state_sharding_spec) def test_state_chex_dataclass(self): @chex.dataclass class Foo: count: int v: chex.ArrayTree def init(params): return Foo(count=0, v=params) params = { 'w': 0, } state = init(params) state = state_utils.tree_map_params(init, lambda v: v+1, state) state = cast(Foo, state) self.assertEqual(int(state.count), 0) self.assertEqual(state.v, {'w': jnp.array(1)}) def test_adam(self): params = _fake_params() params_sharding_spec = _fake_param_sharding() opt = alias.adam(1e-4) opt_state = opt.init(params) opt_state_sharding_spec = state_utils.tree_map_params( opt, lambda _, spec: spec, opt_state, params_sharding_spec, transform_non_params=lambda _: FakeShardSpec(None), ) expected = ( transform.ScaleByAdamState( # pytype:disable=wrong-arg-types count=FakeShardSpec(sharding_axis=None), mu={ 'my/fake/module': { 'w': FakeShardSpec(sharding_axis=0), 'b': FakeShardSpec(sharding_axis=1), }, 'my/other/fake/module': { 'w': FakeShardSpec(sharding_axis=2), 'b': FakeShardSpec(sharding_axis=3), }, }, nu={ 'my/fake/module': { 'w': FakeShardSpec(sharding_axis=0), 'b': FakeShardSpec(sharding_axis=1), }, 'my/other/fake/module': { 'w': FakeShardSpec(sharding_axis=2), 'b': FakeShardSpec(sharding_axis=3), }, }, ), base.EmptyState(), ) self.assertEqual(expected, opt_state_sharding_spec) def test_inject_hparams(self): opt = schedule.inject_hyperparams(alias.adamw)(learning_rate=1e-3) params = _fake_params() state = opt.init(params) state = state_utils.tree_map_params(opt, lambda v: v+1, state) state = cast(schedule.InjectHyperparamsState, state) self.assertEqual(1e-3, state.hyperparams['learning_rate']) params_plus_one = jax.tree_map(lambda v: v+1, params) mu = getattr(state.inner_state[0], 'mu') chex.assert_trees_all_close(mu, params_plus_one) def test_map_params_to_none(self): opt = alias.adagrad(1e-4) params = {'a': jnp.zeros((1, 2))} state = opt.init(params) state = state_utils.tree_map_params(opt, lambda _: None, state) self.assertEqual( state, ( transform.ScaleByRssState(sum_of_squares={'a': None}), base.EmptyState(), ), ) def test_map_non_params_to_none(self): """Test for dangerous edge-cases in tree when returning None values.""" opt = alias.adam(schedule.linear_schedule(1e-2, 1e-4, 10)) params = {'a': jnp.zeros((1, 2))} state = opt.init(params) state = state_utils.tree_map_params( opt, lambda v: 1, state, transform_non_params=lambda _: None ) expected = ( transform.ScaleByAdamState( # pytype:disable=wrong-arg-types count=None, mu={'a': 1}, nu={'a': 1}, ), transform.ScaleByScheduleState( # pytype:disable=wrong-arg-types count=None), ) self.assertEqual(state, expected) def _fake_params(): return { 'my/fake/module': { 'w': jnp.zeros((1, 2)), 'b': jnp.zeros((3, 4)), }, 'my/other/fake/module': { 'w': jnp.zeros((1, 2)), 'b': jnp.zeros((3, 4)), }, } def _fake_param_sharding(): return { 'my/fake/module': { 'w': FakeShardSpec(0), 'b': FakeShardSpec(1), }, 'my/other/fake/module': { 'w': FakeShardSpec(2), 'b': FakeShardSpec(3), }, } if __name__ == '__main__': absltest.main()
optax-master
optax/_src/state_utils_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `control_variates.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import control_variates from optax._src import stochastic_gradient_estimators as sge from optax._src import utils # Set seed for deterministic sampling. np.random.seed(42) def _assert_equal(actual, expected, rtol=1e-2, atol=1e-2): """Asserts that arrays are equal.""" # Note: assert_allclose does not check shapes chex.assert_equal_shape((actual, expected)) # Scalar. if not actual.shape: np.testing.assert_allclose( np.asarray(actual), np.asarray(expected), rtol, atol) return # We get around the bug https://github.com/numpy/numpy/issues/13801 zero_indices = np.argwhere(expected == 0) if not np.all(np.abs(actual[zero_indices]) <= atol): raise AssertionError(f'Larger than {atol} diff in {actual[zero_indices]}') non_zero_indices = np.argwhere(expected != 0) np.testing.assert_allclose( np.asarray(actual)[non_zero_indices], expected[non_zero_indices], rtol, atol) def _map(cv, params, samples, state=None): return jax.vmap(lambda x: cv(params, x, state))(samples) def _map_variant(variant): return variant(_map, static_argnums=0) def _cv_jac_variant(variant): return variant( control_variates.control_variates_jacobians, static_argnums=(0, 1, 2, 4, 6, 7, 8)) class DeltaControlVariateTest(chex.TestCase): @chex.all_variants @parameterized.parameters([(1.0, 0.5)]) def testQuadraticFunction(self, effective_mean, effective_log_scale): data_dims = 20 num_samples = 10**6 rng = jax.random.PRNGKey(1) mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] dist = utils.multi_normal(*params) dist_samples = dist.sample((num_samples,), rng) function = lambda x: jnp.sum(x**2) cv, expected_cv, _ = control_variates.control_delta_method(function) avg_cv = jnp.mean(_map_variant(self.variant)(cv, params, dist_samples)) expected_cv_value = jnp.sum(dist_samples**2) / num_samples # This should be an analytical computation, the result needs to be # accurate. _assert_equal(avg_cv, expected_cv_value, rtol=1e-1, atol=1e-3) _assert_equal(expected_cv(params, None), expected_cv_value, rtol=0.02) @chex.all_variants @parameterized.parameters([(1.0, 1.0)]) def testPolinomialFunction(self, effective_mean, effective_log_scale): data_dims = 10 num_samples = 10**3 mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] dist = utils.multi_normal(*params) rng = jax.random.PRNGKey(1) dist_samples = dist.sample((num_samples,), rng) function = lambda x: jnp.sum(x**5) cv, expected_cv, _ = control_variates.control_delta_method(function) avg_cv = jnp.mean(_map_variant(self.variant)(cv, params, dist_samples)) # Check that the average value of the control variate is close to the # expected value. _assert_equal(avg_cv, expected_cv(params, None), rtol=1e-1, atol=1e-3) @chex.all_variants def testNonPolynomialFunction(self): data_dims = 10 num_samples = 10**3 mean = jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = jnp.ones(shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] rng = jax.random.PRNGKey(1) dist = utils.multi_normal(*params) dist_samples = dist.sample((num_samples,), rng) function = lambda x: jnp.sum(jnp.log(x**2)) cv, expected_cv, _ = control_variates.control_delta_method(function) avg_cv = jnp.mean(_map_variant(self.variant)(cv, params, dist_samples)) # Check that the average value of the control variate is close to the # expected value. _assert_equal(avg_cv, expected_cv(params, None), rtol=1e-1, atol=1e-3) # Second order expansion is log(\mu**2) + 1/2 * \sigma**2 (-2 / \mu**2) expected_cv_val = - np.exp(1.) ** 2 * data_dims _assert_equal( expected_cv(params, None), expected_cv_val, rtol=1e-1, atol=1e-3) class MovingAverageBaselineTest(chex.TestCase): @chex.all_variants @parameterized.parameters( [(1.0, 0.5, 0.9), (1.0, 0.5, 0.99)]) def testLinearFunction( self, effective_mean, effective_log_scale, decay): weights = jnp.array([1., 2., 3.], dtype=jnp.float32) num_samples = 10**4 data_dims = len(weights) mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(weights * x) rng = jax.random.PRNGKey(1) dist = utils.multi_normal(*params) dist_samples = dist.sample((num_samples,), rng) cv, expected_cv, update_state = control_variates.moving_avg_baseline( function, decay=decay, zero_debias=False, use_decay_early_training_heuristic=False) state_1 = jnp.array(1.) avg_cv = jnp.mean(_map_variant(self.variant)( cv, params, dist_samples, (state_1, 0))) _assert_equal(avg_cv, state_1) _assert_equal(expected_cv(params, (state_1, 0)), state_1) state_2 = jnp.array(2.) avg_cv = jnp.mean( _map_variant(self.variant)(cv, params, dist_samples, (state_2, 0))) _assert_equal(avg_cv, state_2) _assert_equal(expected_cv(params, (state_2, 0)), state_2) update_state_1 = update_state(params, dist_samples, (state_1, 0))[0] _assert_equal( update_state_1, decay * state_1 + (1 - decay) * function(mean)) update_state_2 = update_state(params, dist_samples, (state_2, 0))[0] _assert_equal( update_state_2, decay * state_2 + (1 - decay) * function(mean)) @chex.all_variants @parameterized.parameters( [(1.0, 0.5, 0.9), (1.0, 0.5, 0.99)]) def testLinearFunctionWithHeuristic( self, effective_mean, effective_log_scale, decay): weights = jnp.array([1., 2., 3.], dtype=jnp.float32) num_samples = 10**5 data_dims = len(weights) mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(weights * x) rng = jax.random.PRNGKey(1) dist = utils.multi_normal(*params) dist_samples = dist.sample((num_samples,), rng) cv, expected_cv, update_state = control_variates.moving_avg_baseline( function, decay=decay, zero_debias=False, use_decay_early_training_heuristic=True) state_1 = jnp.array(1.) avg_cv = jnp.mean(_map_variant(self.variant)( cv, params, dist_samples, (state_1, 0))) _assert_equal(avg_cv, state_1) _assert_equal(expected_cv(params, (state_1, 0)), state_1) state_2 = jnp.array(2.) avg_cv = jnp.mean( _map_variant(self.variant)(cv, params, dist_samples, (state_2, 0))) _assert_equal(avg_cv, state_2) _assert_equal(expected_cv(params, (state_2, 0)), state_2) first_step_decay = 0.1 update_state_1 = update_state(params, dist_samples, (state_1, 0))[0] _assert_equal( update_state_1, first_step_decay * state_1 + (1 - first_step_decay) * function(mean)) second_step_decay = 2. / 11 update_state_2 = update_state(params, dist_samples, (state_2, 1))[0] _assert_equal( update_state_2, second_step_decay * state_2 + (1 - second_step_decay) * function(mean)) @parameterized.parameters( [(1.0, 0.5, 0.9), (1.0, 0.5, 0.99)]) def testLinearFunctionZeroDebias( self, effective_mean, effective_log_scale, decay): weights = jnp.array([1., 2., 3.], dtype=jnp.float32) num_samples = 10**5 data_dims = len(weights) mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(weights * x) rng = jax.random.PRNGKey(1) dist = utils.multi_normal(*params) dist_samples = dist.sample((num_samples,), rng) update_state = control_variates.moving_avg_baseline( function, decay=decay, zero_debias=False, use_decay_early_training_heuristic=False)[-1] update_state_zero_debias = control_variates.moving_avg_baseline( function, decay=decay, zero_debias=True, use_decay_early_training_heuristic=False)[-1] updated_state = update_state(params, dist_samples, (jnp.array(0.), 0))[0] _assert_equal(updated_state, (1 - decay) * function(mean)) updated_state_zero_debias = update_state_zero_debias( params, dist_samples, (jnp.array(0.), 0))[0] _assert_equal( updated_state_zero_debias, function(mean)) class DeltaMethodAnalyticalExpectedGrads(chex.TestCase): """Tests for grads approximations.""" @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', 1.0, 1.0, sge.score_function_jacobians), ('_pathwise_jacobians', 1.0, 1.0, sge.pathwise_jacobians), ('_measure_valued_jacobians', 1.0, 1.0, sge.measure_valued_jacobians), ], [ ('estimate_cv_coeffs', True), ('no_estimate_cv_coeffs', False), ], named=True)) def testQuadraticFunction(self, effective_mean, effective_log_scale, grad_estimator, estimate_cv_coeffs): data_dims = 3 num_samples = 10**3 mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(x**2) rng = jax.random.PRNGKey(1) jacobians = _cv_jac_variant(self.variant)( function, control_variates.control_delta_method, grad_estimator, params, utils.multi_normal, # dist_builder rng, num_samples, None, # No cv state. estimate_cv_coeffs)[0] expected_mean_grads = 2 * effective_mean * np.ones( data_dims, dtype=np.float32) expected_log_scale_grads = 2 * np.exp(2 * effective_log_scale) * np.ones( data_dims, dtype=np.float32) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads_from_jacobian = jnp.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads_from_jacobian = jnp.mean(log_scale_jacobians, axis=0) _assert_equal(mean_grads_from_jacobian, expected_mean_grads, rtol=1e-1, atol=1e-3) _assert_equal(log_scale_grads_from_jacobian, expected_log_scale_grads, rtol=1e-1, atol=1e-3) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', 1.0, 1.0, sge.score_function_jacobians), ('_pathwise_jacobians', 1.0, 1.0, sge.pathwise_jacobians), ('_measure_valued_jacobians', 1.0, 1.0, sge.measure_valued_jacobians), ], [ ('estimate_cv_coeffs', True), ('no_estimate_cv_coeffs', False), ], named=True)) def testCubicFunction( self, effective_mean, effective_log_scale, grad_estimator, estimate_cv_coeffs): data_dims = 1 num_samples = 10**5 mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(x**3) rng = jax.random.PRNGKey(1) jacobians = _cv_jac_variant(self.variant)( function, control_variates.control_delta_method, grad_estimator, params, utils.multi_normal, rng, num_samples, None, # No cv state. estimate_cv_coeffs)[0] # The third order uncentered moment of the Gaussian distribution is # mu**3 + 2 mu * sigma **2. We use that to compute the expected value # of the gradients. Note: for the log scale we need use the chain rule. expected_mean_grads = ( 3 * effective_mean**2 + 3 * np.exp(effective_log_scale)**2) expected_mean_grads *= np.ones(data_dims, dtype=np.float32) expected_log_scale_grads = ( 6 * effective_mean * np.exp(effective_log_scale) ** 2) expected_log_scale_grads *= np.ones(data_dims, dtype=np.float32) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads_from_jacobian = jnp.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads_from_jacobian = jnp.mean(log_scale_jacobians, axis=0) _assert_equal(mean_grads_from_jacobian, expected_mean_grads, rtol=1e-1, atol=1e-3) _assert_equal(log_scale_grads_from_jacobian, expected_log_scale_grads, rtol=1e-1, atol=1e-3) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', 1.0, 1.0, sge.score_function_jacobians), ('_pathwise_jacobians', 1.0, 1.0, sge.pathwise_jacobians), ('_measure_valued_jacobians', 1.0, 1.0, sge.measure_valued_jacobians), ], [ ('estimate_cv_coeffs', True), ('no_estimate_cv_coeffs', False), ], named=True)) def testForthPowerFunction( self, effective_mean, effective_log_scale, grad_estimator, estimate_cv_coeffs): data_dims = 1 num_samples = 10**5 mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(x**4) rng = jax.random.PRNGKey(1) jacobians = _cv_jac_variant(self.variant)( function, control_variates.control_delta_method, grad_estimator, params, utils.multi_normal, rng, num_samples, None, # No cv state estimate_cv_coeffs)[0] # The third order uncentered moment of the Gaussian distribution is # mu**4 + 6 mu **2 sigma **2 + 3 sigma**4. We use that to compute the # expected value of the gradients. # Note: for the log scale we need use the chain rule. expected_mean_grads = ( 3 * effective_mean**3 + 12 * effective_mean * np.exp(effective_log_scale)**2) expected_mean_grads *= np.ones(data_dims, dtype=np.float32) expected_log_scale_grads = 12 * ( effective_mean**2 * np.exp(effective_log_scale) + np.exp(effective_log_scale) ** 3) * np.exp(effective_log_scale) expected_log_scale_grads *= np.ones(data_dims, dtype=np.float32) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads_from_jacobian = jnp.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads_from_jacobian = jnp.mean(log_scale_jacobians, axis=0) _assert_equal(mean_grads_from_jacobian, expected_mean_grads, rtol=1e-1, atol=1e-3) _assert_equal(log_scale_grads_from_jacobian, expected_log_scale_grads, rtol=1e-1, atol=1e-3) class ConsistencyWithStandardEstimators(chex.TestCase): """Tests for consistency between estimators.""" @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', 1, 1, sge.score_function_jacobians, 10**6), ('_pathwise_jacobians', 1, 1, sge.pathwise_jacobians, 10**5), ('_measure_valued_jacobians', 1, 1, sge.measure_valued_jacobians, 10**5), ], [ ('control_delta_method', control_variates.control_delta_method), ('moving_avg_baseline', control_variates.moving_avg_baseline), ], named=True)) def testWeightedLinearFunction(self, effective_mean, effective_log_scale, grad_estimator, num_samples, control_variate_from_function): """Check that the gradients are consistent between estimators.""" weights = jnp.array([1., 2., 3.], dtype=jnp.float32) data_dims = len(weights) mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.sum(weights * x) rng = jax.random.PRNGKey(1) cv_rng, ge_rng = jax.random.split(rng) jacobians = _cv_jac_variant(self.variant)( function, control_variate_from_function, grad_estimator, params, utils.multi_normal, # dist_builder cv_rng, # rng num_samples, (0., 0), # control_variate_state False)[0] mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = jnp.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = jnp.mean(log_scale_jacobians, axis=0) # We use a different random number generator for the gradient estimator # without the control variate. no_cv_jacobians = grad_estimator( function, [mean, log_scale], utils.multi_normal, ge_rng, num_samples=num_samples) no_cv_mean_jacobians = no_cv_jacobians[0] chex.assert_shape(no_cv_mean_jacobians, (num_samples, data_dims)) no_cv_mean_grads = jnp.mean(no_cv_mean_jacobians, axis=0) no_cv_log_scale_jacobians = no_cv_jacobians[1] chex.assert_shape(no_cv_log_scale_jacobians, (num_samples, data_dims)) no_cv_log_scale_grads = jnp.mean(no_cv_log_scale_jacobians, axis=0) _assert_equal(mean_grads, no_cv_mean_grads, rtol=1e-1, atol=5e-2) _assert_equal(log_scale_grads, no_cv_log_scale_grads, rtol=1, atol=5e-2) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', 1, 1, sge.score_function_jacobians, 10**5), ('_pathwise_jacobians', 1, 1, sge.pathwise_jacobians, 10**5), ('_measure_valued_jacobians', 1, 1, sge.measure_valued_jacobians, 10**5), ], [ ('control_delta_method', control_variates.control_delta_method), ('moving_avg_baseline', control_variates.moving_avg_baseline), ], named=True)) def testNonPolynomialFunction( self, effective_mean, effective_log_scale, grad_estimator, num_samples, control_variate_from_function): """Check that the gradients are consistent between estimators.""" data_dims = 3 mean = effective_mean * jnp.ones(shape=(data_dims), dtype=jnp.float32) log_scale = effective_log_scale * jnp.ones( shape=(data_dims), dtype=jnp.float32) params = [mean, log_scale] function = lambda x: jnp.log(jnp.sum(x**2)) rng = jax.random.PRNGKey(1) cv_rng, ge_rng = jax.random.split(rng) jacobians = _cv_jac_variant(self.variant)( function, control_variate_from_function, grad_estimator, params, utils.multi_normal, cv_rng, num_samples, (0., 0), # control_variate_state False)[0] mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = jnp.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = jnp.mean(log_scale_jacobians, axis=0) # We use a different random number generator for the gradient estimator # without the control variate. no_cv_jacobians = grad_estimator( function, [mean, log_scale], utils.multi_normal, ge_rng, num_samples=num_samples) no_cv_mean_jacobians = no_cv_jacobians[0] chex.assert_shape(no_cv_mean_jacobians, (num_samples, data_dims)) no_cv_mean_grads = jnp.mean(no_cv_mean_jacobians, axis=0) no_cv_log_scale_jacobians = no_cv_jacobians[1] chex.assert_shape(no_cv_log_scale_jacobians, (num_samples, data_dims)) no_cv_log_scale_grads = jnp.mean(no_cv_log_scale_jacobians, axis=0) _assert_equal(mean_grads, no_cv_mean_grads, rtol=1e-1, atol=5e-2) _assert_equal(log_scale_grads, no_cv_log_scale_grads, rtol=1e-1, atol=5e-2) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/control_variates_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `second_order.py`.""" import collections import functools import itertools from absl.testing import absltest import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np from optax._src import second_order NUM_CLASSES = 2 NUM_SAMPLES = 3 NUM_FEATURES = 4 class SecondOrderTest(chex.TestCase): def setUp(self): super().setUp() self.data = np.random.rand(NUM_SAMPLES, NUM_FEATURES) self.labels = np.random.randint(NUM_CLASSES, size=NUM_SAMPLES) def net_fn(z): mlp = hk.Sequential( [hk.Linear(10), jax.nn.relu, hk.Linear(NUM_CLASSES)], name='mlp') return jax.nn.log_softmax(mlp(z)) net = hk.without_apply_rng(hk.transform(net_fn)) self.parameters = net.init(jax.random.PRNGKey(0), self.data) def loss(params, inputs, targets): log_probs = net.apply(params, inputs) return -jnp.mean(hk.one_hot(targets, NUM_CLASSES) * log_probs) self.loss_fn = loss def jax_hessian_diag(loss_fun, params, inputs, targets): """This is the 'ground-truth' obtained via the JAX library.""" hess = jax.hessian(loss_fun)(params, inputs, targets) # Extracts the diagonal components. hess_diag = collections.defaultdict(dict) for k0, k1 in itertools.product(params.keys(), ['w', 'b']): params_shape = params[k0][k1].shape n_params = np.prod(params_shape) hess_diag[k0][k1] = jnp.diag(hess[k0][k1][k0][k1].reshape( n_params, n_params)).reshape(params_shape) for k, v in hess_diag.items(): hess_diag[k] = v return second_order.ravel(hess_diag) self.hessian = jax_hessian_diag( self.loss_fn, self.parameters, self.data, self.labels) @chex.all_variants def test_hessian_diag(self): hessian_diag_fn = self.variant( functools.partial(second_order.hessian_diag, self.loss_fn)) actual = hessian_diag_fn(self.parameters, self.data, self.labels) np.testing.assert_array_almost_equal(self.hessian, actual, 5) @chex.all_variants def test_fisher_diag_shape(self): fisher_diag_fn = self.variant( functools.partial(second_order.fisher_diag, self.loss_fn)) fisher_diagonal = fisher_diag_fn(self.parameters, self.data, self.labels) chex.assert_equal_shape([fisher_diagonal, self.hessian]) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/second_order_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for computing diagonals of Hessians & Fisher info of parameters. Computing the Hessian or Fisher information matrices for neural networks is typically intractible due to the quadratic memory requirements. Solving for the diagonals of these matrices is often a better solution. This module provides two functions for computing these diagonals, `hessian_diag` and `fisher_diag`., each with sub-quadratic memory requirements. """ from typing import Any, Callable import jax from jax.flatten_util import ravel_pytree import jax.numpy as jnp # This covers both Jax and Numpy arrays. # TODO(b/160876114): use the pytypes defined in Chex. Array = jnp.ndarray # LossFun of type f(params, inputs, targets). LossFun = Callable[[Any, Array, Array], Array] def ravel(p: Any) -> Array: return ravel_pytree(p)[0] def hvp( loss: LossFun, v: jax.Array, params: Any, inputs: jax.Array, targets: jax.Array, ) -> jax.Array: """Performs an efficient vector-Hessian (of `loss`) product. Args: loss: the loss function. v: a vector of size `ravel(params)`. params: model parameters. inputs: inputs at which `loss` is evaluated. targets: targets at which `loss` is evaluated. Returns: An Array corresponding to the product of `v` and the Hessian of `loss` evaluated at `(params, inputs, targets)`. """ _, unravel_fn = ravel_pytree(params) loss_fn = lambda p: loss(p, inputs, targets) return jax.jvp(jax.grad(loss_fn), [params], [unravel_fn(v)])[1] def hessian_diag( loss: LossFun, params: Any, inputs: jax.Array, targets: jax.Array, ) -> jax.Array: """Computes the diagonal hessian of `loss` at (`inputs`, `targets`). Args: loss: the loss function. params: model parameters. inputs: inputs at which `loss` is evaluated. targets: targets at which `loss` is evaluated. Returns: A DeviceArray corresponding to the product to the Hessian of `loss` evaluated at `(params, inputs, targets)`. """ vs = jnp.eye(ravel(params).size) comp = lambda v: jnp.vdot(v, ravel(hvp(loss, v, params, inputs, targets))) return jax.vmap(comp)(vs) def fisher_diag( negative_log_likelihood: LossFun, params: Any, inputs: jnp.ndarray, targets: jnp.ndarray, ) -> jax.Array: """Computes the diagonal of the (observed) Fisher information matrix. Args: negative_log_likelihood: the negative log likelihood function. params: model parameters. inputs: inputs at which `negative_log_likelihood` is evaluated. targets: targets at which `negative_log_likelihood` is evaluated. Returns: An Array corresponding to the product to the Hessian of `negative_log_likelihood` evaluated at `(params, inputs, targets)`. """ return jnp.square( ravel(jax.grad(negative_log_likelihood)(params, inputs, targets)))
optax-master
optax/_src/second_order.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optax._src.loss.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import loss class SquaredErrorTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = jnp.array([-2., -1., 0.5, 1.]) self.ts = jnp.array([-1.5, 0., -1, 1.]) # compute expected outputs in numpy. self.exp = (self.ts - self.ys) ** 2 @chex.all_variants def test_scalar(self): np.testing.assert_allclose( self.variant(loss.squared_error)( self.ys[0], self.ts[0]), self.exp[0]) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.squared_error)( self.ys, self.ts), self.exp) @chex.all_variants def test_shape_mismatch(self): with self.assertRaises(AssertionError): _ = self.variant(loss.squared_error)( self.ys, jnp.expand_dims(self.ts, axis=-1)) class L2LossTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = jnp.array([-2., -1., 0.5, 1.]) self.ts = jnp.array([-1.5, 0., -1, 1.]) # compute expected outputs in numpy. self.exp = 0.5 * (self.ts - self.ys) ** 2 @chex.all_variants def test_scalar(self): np.testing.assert_allclose( self.variant(loss.l2_loss)(self.ys[0], self.ts[0]), self.exp[0]) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.l2_loss)(self.ys, self.ts), self.exp) @chex.all_variants def test_shape_mismatch(self): with self.assertRaises(AssertionError): _ = self.variant(loss.l2_loss)(self.ys, jnp.expand_dims(self.ts, axis=-1)) class HuberLossTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = np.array([-2.0, 0.5, 0., 0.5, 2.0, 4.0, 132.]) self.ts = np.array([0.0, -0.5, 0., 1., 1.0, 2.0, 0.3]) # computed expected outputs manually. self.exp = np.array([1.5, 0.5, 0., 0.125, 0.5, 1.5, 131.2]) @chex.all_variants def test_scalar(self): np.testing.assert_allclose( self.variant(loss.huber_loss)(self.ys[0], self.ts[0], delta=1.0), self.exp[0]) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.huber_loss)(self.ys, self.ts, delta=1.0), self.exp) class SmoothLabelsTest(parameterized.TestCase): def setUp(self): super().setUp() self.ts = np.array([[0., 1., 0.], [1., 0., 0.]], dtype=np.float32) # compute expected outputs in numpy. self.exp_alpha_zero = self.ts self.exp_alpha_zero_point_one = 0.9 * self.ts + 0.1 / self.ts.shape[-1] self.exp_alpha_one = jnp.ones_like(self.ts) / self.ts.shape[-1] @chex.all_variants def test_scalar(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.smooth_labels)(self.ts[0], 0.), self.exp_alpha_zero[0], atol=1e-4) np.testing.assert_allclose( self.variant(loss.smooth_labels)(self.ts[0], 0.1), self.exp_alpha_zero_point_one[0], atol=1e-4) np.testing.assert_allclose( self.variant(loss.smooth_labels)(self.ts[0], 1.), self.exp_alpha_one[0], atol=1e-4) @chex.all_variants def test_batched(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.smooth_labels)(self.ts, 0.), self.exp_alpha_zero, atol=1e-4) np.testing.assert_allclose( self.variant(loss.smooth_labels)(self.ts, 0.1), self.exp_alpha_zero_point_one, atol=1e-4) np.testing.assert_allclose( self.variant(loss.smooth_labels)(self.ts, 1.), self.exp_alpha_one, atol=1e-4) class SoftmaxCrossEntropyTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = np.array([[10., 1., -2.], [1., 4., 0.2]], dtype=np.float32) self.ts = np.array([[0., 1., 0.], [1., 0., 0.]], dtype=np.float32) # taken expected outputs from rlax. self.exp = np.array([9.00013, 3.0696733], dtype=np.float32) @chex.all_variants def test_scalar(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.softmax_cross_entropy)(self.ys[0], self.ts[0]), self.exp[0], atol=1e-4) @chex.all_variants def test_batched(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.softmax_cross_entropy)(self.ys, self.ts), self.exp, atol=1e-4) class SoftmaxCrossEntropyWithIntegerLabelsTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = np.array([[10., 1., -2.], [1., 4., 0.2]], dtype=np.float32) self.ts = np.array([1, 0], dtype=np.int32) @chex.all_variants def test_consistent_with_softmax_cross_entropy_scalar(self): """Tests for a scalar.""" exp = loss.softmax_cross_entropy(self.ys[0], jax.nn.one_hot(self.ts[0], 3)) np.testing.assert_allclose( self.variant(loss.softmax_cross_entropy_with_integer_labels)( self.ys[0], self.ts[0]), exp, rtol=1e-6) @chex.all_variants def test_consistent_with_softmax_cross_entropy_batched(self): """Tests for a full batch.""" exp = loss.softmax_cross_entropy(self.ys, jax.nn.one_hot(self.ts, 3)) np.testing.assert_allclose( self.variant(loss.softmax_cross_entropy_with_integer_labels)( self.ys, self.ts), exp, rtol=1e-6) class SigmoidCrossEntropyTest(parameterized.TestCase): @parameterized.parameters( dict(preds=np.array([-1e+09, -1e-09]), labels=np.array([1., 0.]), expected=5e+08), dict(preds=np.array([-1e+09, -1e-09]), labels=np.array([0., 1.]), expected=0.3465736), dict(preds=np.array([1e+09, 1e-09]), labels=np.array([1., 0.]), expected=0.3465736), dict(preds=np.array([1e+09, 1e-09]), labels=np.array([0., 1.]), expected=5e+08), dict(preds=np.array([-1e+09, 1e-09]), labels=np.array([1., 0.]), expected=5e+08), dict(preds=np.array([-1e+09, 1e-09]), labels=np.array([0., 1.]), expected=0.3465736), dict(preds=np.array([1e+09, -1e-09]), labels=np.array([1., 0.]), expected=0.3465736), dict(preds=np.array([1e+09, -1e-09]), labels=np.array([0., 1.]), expected=5e+08), dict(preds=np.array([0., 0.]), labels=np.array([1., 0.]), expected=0.6931472), dict(preds=np.array([0., 0.]), labels=np.array([0., 1.]), expected=0.6931472), ) def testSigmoidCrossEntropy(self, preds, labels, expected): tested = jnp.mean(loss.sigmoid_binary_cross_entropy(preds, labels)) np.testing.assert_allclose(tested, expected, rtol=1e-6, atol=1e-6) class CosineDistanceTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = np.array([[10., 1., -2.], [1., 4., 0.2]], dtype=np.float32) self.ts = np.array([[0., 1.2, 0.2], [1., -0.3, 0.]], dtype=np.float32) # distance computed expected output from `scipy 1.20`. self.exp = np.array([0.9358251989, 1.0464068465], dtype=np.float32) @chex.all_variants def test_scalar_distance(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.cosine_distance)(self.ys[0], self.ts[0]), self.exp[0], atol=1e-4) @chex.all_variants def test_scalar_similarity(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.cosine_similarity)(self.ys[0], self.ts[0]), 1. - self.exp[0], atol=1e-4) @chex.all_variants def test_batched_distance(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.cosine_distance)(self.ys, self.ts), self.exp, atol=1e-4) @chex.all_variants def test_batched_similarity(self): """Tests for a full batch.""" np.testing.assert_allclose( self.variant(loss.cosine_similarity)(self.ys, self.ts), 1. - self.exp, atol=1e-4) # TODO(b/188419459): add test for grad and second order grad. class LogCoshTest(parameterized.TestCase): def setUp(self): super().setUp() # Test large values for overflow self.ys = jnp.array([500, -2., -1., 0.5, 1.]) self.ts = jnp.array([-200, -1.5, 0., -1, 1.]) # computed using tensorflow.keras.losses.log_cosh v2.4.1 self.exp = jnp.array([699.3068, 0.12011445, 0.4337809, 0.85544014, 0.]) self.exp_ys_only = jnp.array( [499.30685, 1.3250027, 0.4337809, 0.12011451, 0.43378082]) @chex.all_variants def test_scalar(self): out = self.variant(loss.log_cosh)(self.ys[0], self.ts[0]) np.testing.assert_allclose(out, self.exp[0], atol=1e-5) @chex.all_variants def test_batched(self): out = self.variant(loss.log_cosh)(self.ys, self.ts) np.testing.assert_allclose(out, self.exp, atol=1e-5) @chex.all_variants def test_scalar_predictions_only(self): out = self.variant(loss.log_cosh)(self.ys[0]) np.testing.assert_allclose(out, self.exp_ys_only[0], atol=1e-5) @chex.all_variants def test_batched_predictions_only(self): out = self.variant(loss.log_cosh)(self.ys) np.testing.assert_allclose(out, self.exp_ys_only, atol=1e-5) def _lengths_to_paddings(lengths: chex.Array, maxlength: int) -> chex.Array: indices = jnp.arange(maxlength).reshape((1,) * lengths.ndim + (maxlength,)) lengths = jnp.expand_dims(lengths, axis=-1) elem_valid = indices < lengths return np.logical_not(elem_valid).astype(np.float32) def _average_ctc_loss(logprobs: chex.Array, logprob_paddings: chex.Array, labels: chex.Array, label_paddings: chex.Array) -> chex.Array: return jnp.average( loss.ctc_loss(logprobs, logprob_paddings, labels, label_paddings)) class CTCTest(parameterized.TestCase): def setUp(self): super().setUp() np.random.seed(1234) self._rtol = 5e-3 if jax.default_backend() != 'cpu' else 1e-6 @chex.all_variants def test_with_one_to_one_alignment(self): # when inputsteps and outputsteps are equal, no blank will be allowed. batchsize = 8 steps = 50 nclasses = 40 logits = np.random.randn(batchsize, steps, nclasses) labels = np.random.uniform( 1, nclasses, size=(batchsize, steps)).astype(np.int32) # This function only covers the cases without same-label repetition. # `test_repeat_with_one_to_one_alignment` below complements those cases. # So, redraw the samples for satisfying the non-repetition constraint. for n in range(labels.shape[0]): for t in range(1, labels.shape[1]): while labels[n, t] == labels[n, t - 1]: labels[n, t] = np.random.uniform(1, nclasses) results = self.variant(loss.ctc_loss_with_forward_probs)( logits, np.zeros(logits.shape[:2]), labels, np.zeros(labels.shape)) (per_seq_loss, logalpha_blank, logalpha_emit) = results logprobs = jax.nn.log_softmax(logits) for b in range(batchsize): p = 0.0 for t in range(steps): p += logprobs[b, t, labels[b, t]] np.testing.assert_allclose( np.array(-p), per_seq_loss[b], rtol=self._rtol) # Check forward-probabilities. # 1. All-phi path: logalpha_blank[-1, b, 0] must be a probability of # the path that outputs blank symbols for all the frames. np.testing.assert_allclose(logalpha_blank[-1, b, 0], np.sum(logprobs[b, :, 0]), rtol=self._rtol) # 2. After emitting all the labels # the negated loss must be identical with the forward probability of # paths after consuming all the labels (because one-to-one alignment # doesn't allow extra blank symbols) np.testing.assert_allclose(logalpha_emit[-1, b, steps - 1], -per_seq_loss[b], rtol=self._rtol) # and, this forward probability must be copied to the blank forward # probability of the next step. np.testing.assert_allclose(logalpha_blank[-1, b, steps], -per_seq_loss[b], rtol=self._rtol) @chex.all_variants def test_with_one_to_one_alignment_and_paddings(self): batch_size = 5 nclasses = 13 steps = 7 logits = np.random.normal(size=[batch_size, steps, nclasses]) logprobs = jax.nn.log_softmax(logits) labels = [] for n in range(batch_size): row = list(range(1, nclasses)) np.random.shuffle(row) labels.append(row[:steps]) labels = np.array(labels) lengths = np.random.randint(3, 6, size=(batch_size,)) paddings = _lengths_to_paddings(lengths, steps) actual_loss = self.variant(loss.ctc_loss)(logits, paddings, labels, paddings) value_and_grad = self.variant(jax.value_and_grad(_average_ctc_loss)) unused_avg_loss, actual_gradients = value_and_grad(logits, paddings, labels, paddings) for n in range(batch_size): expected_loss = -sum(logprobs[n, t, k] for t, k in enumerate(labels[n, :lengths[n]])) np.testing.assert_allclose(expected_loss, actual_loss[n], rtol=self._rtol) expected_gradients = np.array(jax.nn.softmax(logits[n])) expected_gradients[lengths[n]:] = 0.0 for t, k in enumerate(labels[n, :lengths[n]]): expected_gradients[t, k] -= 1.0 expected_gradients /= batch_size np.testing.assert_allclose( expected_gradients, actual_gradients[n], rtol=self._rtol) @chex.all_variants def test_repeat_with_one_to_one_alignment(self): # test if it can correctly handle the same-label repetition. nclasses = 5 labels = np.array([ [1, 2, 2, 3], [2, 3, 4, 4], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 1, 2], ]) expected_alignment = [ # expected minimal alignment [1, 2, 0, 2, 3], [2, 3, 4, 0, 4], [1, 0, 1, 0, 1, 0, 1], [1, 0, 1, 2, 3], [1, 0, 1, 0, 1, 2], ] batch_size = len(labels) label_lens = np.array([4] * batch_size) label_steps = 6 # Designed to have two padding elements on the right. labels = np.pad(labels, [(0, 0), (0, label_steps - labels.shape[1])]) label_paddings = _lengths_to_paddings(label_lens, label_steps) logit_lengths = np.array([len(seq) for seq in expected_alignment]) logit_steps = max(logit_lengths) logits = np.random.randn(batch_size, logit_steps, nclasses) logit_paddings = _lengths_to_paddings(logit_lengths, logit_steps) per_seq_loss = self.variant(loss.ctc_loss)(logits, logit_paddings, labels, label_paddings) logprobs = jax.nn.log_softmax(logits) for n in range(batch_size): expected_loss = -sum(logprobs[n, t, k] for t, k in enumerate(expected_alignment[n])) np.testing.assert_allclose( jnp.array(expected_loss), per_seq_loss[n], rtol=self._rtol) class ConvexKLDivergenceTest(parameterized.TestCase): def setUp(self): super().setUp() self.log_ps = np.array([ [-2.9957, -3.5066, -3.9120, -1.2040, -0.6931, -2.3026], [-1.6094, -1.6094, -1.6094, -2.3026, -1.8971, -1.8971], ]) self.qs = np.array( [[0.2, 0.2, 0.2, 0.1, 0.15, 0.15], [0.05, 0.03, 0.02, 0.3, 0.5, 0.0]] ) # Computed convex kullback-leibler divergence of P from Q. self.exp = np.array([0.88757247, 0.859308]) @chex.all_variants def test_scalar(self): np.testing.assert_allclose( self.variant(loss.convex_kl_divergence)(self.log_ps[0], self.qs[0]), self.exp[0], atol=1e-4, ) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.convex_kl_divergence)(self.log_ps, self.qs), self.exp, atol=1e-4, ) class KLDivergenceTest(parameterized.TestCase): def setUp(self): super().setUp() self.log_ps = np.array( [[-2.9957, -3.5066, -3.9120, -1.2040, -0.6931, -2.3026], [-1.6094, -1.6094, -1.6094, -2.3026, -1.8971, -1.8971]]) self.qs = np.array([[0.2, 0.2, 0.2, 0.1, 0.15, 0.15], [0.05, 0.03, 0.02, 0.3, 0.5, 0.]]) # Computed kullback-leibler divergence of P from Q. self.exp = np.array([0.8875577, 0.7592807]) @chex.all_variants def test_scalar(self): np.testing.assert_allclose( self.variant(loss.kl_divergence)(self.log_ps[0], self.qs[0]), self.exp[0], atol=1e-4) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.kl_divergence)(self.log_ps, self.qs), self.exp, atol=1e-4) class KLDivergenceWithLogTargetsTest(parameterized.TestCase): def setUp(self): super().setUp() self.log_ps = np.array( [[-2.9957, -3.5066, -3.9120, -1.2040, -0.6931, -2.3026], [-1.6094, -1.6094, -1.6094, -2.3026, -1.8971, -1.8971]]) self.qs = np.array([[-1.6094, -1.6094, -1.6094, -2.3026, -1.8971, -1.8971], [-2.9957, -3.5066, -3.9120, -1.2040, -0.6931, -2.3026]]) # Computed kullback-leibler divergence of P from Q. self.exp = np.array([0.8875625, 0.7187435584901326]) @chex.all_variants def test_scalar(self): np.testing.assert_allclose( self.variant(loss.kl_divergence_with_log_targets)(self.log_ps[0], self.qs[0]), self.exp[0], atol=1e-4) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.kl_divergence_with_log_targets)(self.log_ps, self.qs), self.exp, atol=1e-4) class HingeLossTest(parameterized.TestCase): def setUp(self): super().setUp() self.ys = np.array([ -0.97740268, -1.01812625, -0.81675726, -0.73605974, 2.08235648, 1.84101354, -1.0581002 ]) self.ts = np.array([-1, -1, -1, -1, 1, 1, -1]) # Computed expected outputs. self.correct_result = np.array( [0.02259731, 0., 0.18324274, 0.26394027, 0., 0., 0.]) @chex.all_variants def test_batched(self): np.testing.assert_allclose( self.variant(loss.hinge_loss)(self.ys, self.ts), self.correct_result, atol=1e-4) class PolyLossTest(parameterized.TestCase): def setUp(self): super().setUp() self.logits = np.array([0.14, 1.456, 2.356, -0.124, -2.47]) self.labels = np.array([0.1, 0.15, 0.2, 0.25, 0.3]) self.batched_logits = np.array([[4.0, 2.0, 1.0], [0.0, 5.0, 1.0]]) self.batched_labels = np.array([[1.0, 0.0, 0.0], [0.0, 0.8, 0.2]]) # all expected values are computed using tf version of `poly1_cross_entropy` # see page 10 here https://arxiv.org/pdf/2204.12511.pdf for more @chex.all_variants @parameterized.parameters( dict(eps=2, expected=4.5317), dict(eps=1, expected=3.7153), dict(eps=-1, expected=2.0827), dict(eps=0, expected=2.8990), dict(eps=-0.5, expected=2.4908), dict(eps=1.15, expected=3.8378), dict(eps=1.214, expected=3.8900), dict(eps=5.45, expected=7.3480), ) def test_scalar(self, eps, expected): np.testing.assert_allclose( self.variant(loss.poly_loss_cross_entropy)( self.logits, self.labels, eps ), expected, atol=1e-4, ) @chex.all_variants @parameterized.parameters( dict(eps=2, expected=np.array([0.4823, 1.2567])), dict(eps=1, expected=np.array([0.3261, 1.0407])), dict(eps=0, expected=np.array([0.1698, 0.8247])), dict(eps=-0.5, expected=np.array([0.0917, 0.7168])), dict(eps=1.15, expected=np.array([0.3495, 1.0731])), dict(eps=1.214, expected=np.array([0.3595, 1.0870])), dict(eps=5.45, expected=np.array([1.0211, 2.0018])), ) def test_batched(self, eps, expected): np.testing.assert_allclose( self.variant(loss.poly_loss_cross_entropy)( self.batched_logits, self.batched_labels, eps ), expected, atol=1e-4, ) @chex.all_variants @parameterized.parameters( dict( logits=np.array( [[4.0, 2.0, 1.0], [0.0, 5.0, 1.0], [0.134, 1.234, 3.235]] ), labels=np.array( [[1.0, 0.0, 0.0], [0.0, 0.8, 0.2], [0.34, 0.33, 0.33]] ), ), dict( logits=np.array([[4.0, 2.0, 1.0], [0.0, 5.0, 1.0]]), labels=np.array([[1.0, 0.0, 0.0], [0.0, 0.8, 0.2]]), ), dict( logits=np.array( [[4.0, 2.0, 1.0, 0.134, 1.3515], [0.0, 5.0, 1.0, 0.5215, 5.616]] ), labels=np.array( [[0.5, 0.0, 0.0, 0.0, 0.5], [0.0, 0.12, 0.2, 0.56, 0.12]] ), ), dict(logits=np.array([1.89, 2.39]), labels=np.array([0.34, 0.66])), dict(logits=np.array([0.314]), labels=np.array([1.0])), ) def test_equals_to_cross_entropy_when_eps0(self, logits, labels): np.testing.assert_allclose( self.variant(loss.poly_loss_cross_entropy)(logits, labels, epsilon=0.0), self.variant(loss.softmax_cross_entropy)(logits, labels), atol=1e-4, ) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/loss_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradient transformations used to enforce specific constraints.""" from typing import Any, NamedTuple import jax import jax.numpy as jnp from optax._src import base # pylint:disable=no-value-for-parameter NonNegativeParamsState = base.EmptyState def keep_params_nonnegative() -> base.GradientTransformation: """Modifies the updates to keep parameters non-negative, i.e. >= 0. This transformation ensures that parameters after the update will be larger than or equal to zero. In a chain of transformations, this should be the last one. WARNING: the transformation expects input params to be non-negative. When params is negative the transformed update will move them to 0. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return NonNegativeParamsState() def update_fn(updates, state, params): if params is None: raise ValueError(base.NO_PARAMS_MSG) updates = jax.tree_util.tree_map( lambda p, u: jnp.where((p + u) < 0., -p, u), params, updates) return updates, state return base.GradientTransformation(init_fn, update_fn) class ZeroNansState(NamedTuple): """Contains a tree. The entry `found_nan` has the same tree structure as that of the parameters. Each leaf is a single boolean which contains True iff a NaN was detected in the corresponding parameter array at the last call to `update`. """ found_nan: Any def zero_nans() -> base.GradientTransformation: """A transformation which replaces NaNs with 0. Zeroing values in gradients is guaranteed to produce a direction of non-increasing loss. The state of the transformation has the same tree structure as that of the parameters. Each leaf is a single boolean which contains True iff a NaN was detected in the corresponding parameter array at the last call to `update`. This state is not used by the transformation internally, but lets users be aware when NaNs have been zeroed out. Returns: A `GradientTransformation`. """ def init_fn(params): return ZeroNansState(jax.tree_util.tree_map( lambda p: jnp.array(False, dtype=jnp.bool_), params)) def update_fn(updates, opt_state, params=None): del params opt_state = ZeroNansState( jax.tree_util.tree_map(lambda p: jnp.any(jnp.isnan(p)), updates)) updates = jax.tree_util.tree_map( lambda p: jnp.where(jnp.isnan(p), jnp.zeros_like(p), p), updates) return updates, opt_state return base.GradientTransformation(init=init_fn, update=update_fn)
optax-master
optax/_src/constrain.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools for mapping over optimizer states.""" import typing from typing import Any, Callable, Optional, Protocol, Union, cast import jax from optax._src import base @typing.runtime_checkable class Initable(Protocol): """An object with an init function.""" def init(self, params: base.Params) -> base.OptState: """Calling the init for given parameters returns a fresh opt state.""" def tree_map_params( initable: Union[ Callable[[base.Params], base.OptState], Initable, ], f: Callable[..., Any], state: base.OptState, /, *rest: Any, transform_non_params: Optional[Callable[..., Any]] = None, is_leaf: Optional[Callable[[base.Params], bool]] = None, ) -> base.OptState: """Apply a callable over all params in the given optimizer state. This function exists to help construct partition specs over optimizer states, in the case that a partition spec is already known for the parameters. For example, the following will replace all optimizer state parameter trees with copies of the given partition spec instead. The argument `transform_non_params` can be used to replace any remaining fields as required, in this case, we replace those fields by None. >>> params, specs = ... # Trees with the same shape >>> state = opt.init(params) >>> >>> opt_specs = optax.tree_map_params( >>> opt, >>> lambda _, spec: spec, >>> state, >>> specs, >>> transform_non_params=lambda _: None, >>> ) Args: initable: A callable taking parameters and returning an optimizer state, or an object with an `init` attribute having the same function. f: A callable that will be applied for all copies of the parameter tree within this optimizer state. state: The optimizer state to map over. *rest: Additional arguments, having the same shape as the parameter tree, that will be passed to f. transform_non_params: An optional function that will be called on all non-parameter fields within the optimizer state. is_leaf: Passed through to `jax.tree_map`. This makes it possible to ignore parts of the parameter tree e.g. when the gradient transformations modify the shape of the original pytree, such as for ``optax.masked``. Returns: The result of applying the function f on all trees in the optimizer's state that have the same shape as the parameter tree, along with the given optional extra arguments. """ # Cast for pytype checks (no-op for other usages). placeholder = cast(base.chex.ArrayTree, _ParamsPlaceholder()) if isinstance(initable, Initable): initable = cast(Initable, initable) # for pytype checks state_with_placeholders = initable.init(placeholder) else: state_with_placeholders = initable(placeholder) def map_params(maybe_placeholder_value, value): if isinstance(maybe_placeholder_value, _ParamsPlaceholder): return jax.tree_map(f, value, *rest, is_leaf=is_leaf) elif transform_non_params is not None: return transform_non_params(value) else: return value return jax.tree_map( map_params, state_with_placeholders, state, is_leaf=lambda v: isinstance(v, _ParamsPlaceholder), ) @jax.tree_util.register_pytree_node_class class _ParamsPlaceholder: def tree_flatten(self): return ((), None) @classmethod def tree_unflatten(cls, aux, children): del aux, children return cls()
optax-master
optax/_src/state_utils.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradient clipping transformations. Note that complex numbers are also supported, see https://gist.github.com/wdphy16/118aef6fb5f82c49790d7678cf87da29 """ from typing import List, Tuple import chex import jax import jax.numpy as jnp from optax._src import base from optax._src import linear_algebra from optax._src import numerics ClipState = base.EmptyState def clip(max_delta: chex.Numeric) -> base.GradientTransformation: """Clips updates element-wise, to be in ``[-max_delta, +max_delta]``. Args: max_delta: The maximum absolute value for each element in the update. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return ClipState() def update_fn(updates, state, params=None): del params updates = jax.tree_util.tree_map( lambda g: jnp.clip(g, -max_delta, max_delta), updates) return updates, state return base.GradientTransformation(init_fn, update_fn) def clip_by_block_rms(threshold: float) -> base.GradientTransformation: """Clips updates to a max rms for the gradient of each param vector or matrix. A `block` is here a weight vector (e.g. in a Linear layer) or a weight matrix (e.g. in a convolutional layer) appearing as a leaf in the grads/param pytree. Args: threshold: The maximum rms for the gradient of each param vector or matrix. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return base.EmptyState() def update_fn(updates, state, params=None): del params def _clip_fn(u): clip_denom = jnp.maximum( 1.0, jnp.sqrt(jnp.mean(numerics.abs_sq(u))) / threshold) return u / clip_denom updates = jax.tree_util.tree_map(_clip_fn, updates) return updates, state return base.GradientTransformation(init_fn, update_fn) ClipByGlobalNormState = base.EmptyState def clip_by_global_norm(max_norm: float) -> base.GradientTransformation: """Clips updates using their global norm. References: [Pascanu et al, 2012](https://arxiv.org/abs/1211.5063) Args: max_norm: The maximum global norm for an update. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return ClipByGlobalNormState() def update_fn(updates, state, params=None): del params g_norm = linear_algebra.global_norm(updates) # TODO(b/163995078): revert back to the following (faster) implementation # once analysed how it affects backprop through update (e.g. meta-gradients) # g_norm = jnp.maximum(max_norm, g_norm) # updates = jax.tree_util.tree_map( # lambda t: (t / g_norm) * max_norm, updates) trigger = jnp.squeeze(g_norm < max_norm) chex.assert_shape(trigger, ()) # A scalar. def clip_fn(t): return jax.lax.select(trigger, t, (t / g_norm.astype(t.dtype)) * max_norm) updates = jax.tree_util.tree_map(clip_fn, updates) return updates, state return base.GradientTransformation(init_fn, update_fn) def per_example_global_norm_clip( grads: List[chex.Array], l2_norm_clip: float ) -> Tuple[List[chex.Array], jax.Array]: """Applies gradient clipping per-example using their global norm. References: [Abadi et al, 2016](https://arxiv.org/abs/1607.00133) Args: grads: flattened update; the function expects these to have a batch dimension on the 0th axis. l2_norm_clip: maximum L2 norm of the per-example gradients. Returns: A tuple containing sum of the clipped per-example grads, and the number of per-example grads that were clipped. """ bsize = grads[0].shape[0] if any(g.ndim == 0 or bsize != g.shape[0] for g in grads): raise ValueError( 'Unlike other transforms, `per_example_global_norm_clip` expects' ' `grads` to have a batch dimension in the 0th axis.') global_grad_norms = jax.vmap(linear_algebra.global_norm)(grads) divisors = jnp.maximum(global_grad_norms / l2_norm_clip, 1.0) num_clipped = jnp.greater(divisors, 1.0).sum() clipped_sum = [(jnp.moveaxis(g, 0, -1) / divisors).sum(-1) for g in grads] return clipped_sum, num_clipped def unitwise_norm(x: chex.Array) -> chex.Array: """Computes norms of each output unit separately.""" if jnp.squeeze(x).ndim <= 1: # Scalars and vectors squared_norm = jnp.sum(numerics.abs_sq(x), keepdims=True) # Note that this assumes parameters with a shape of length 3 are multihead # linear parameters--if you wish to apply AGC to 1D convs, you may need # to modify this line. elif x.ndim in (2, 3): # Linear layers of shape IO or multihead linear squared_norm = jnp.sum(numerics.abs_sq(x), axis=0, keepdims=True) elif x.ndim == 4: # Conv kernels of shape HWIO squared_norm = jnp.sum(numerics.abs_sq(x), axis=(0, 1, 2), keepdims=True) else: raise ValueError( f'Expected parameter with shape in {1, 2, 3, 4}, got {x.shape}.') chex.assert_is_broadcastable(squared_norm.shape, x.shape) return jnp.broadcast_to(jnp.sqrt(squared_norm), x.shape) def unitwise_clip(g_norm: chex.Array, max_norm: chex.Array, grad: chex.Array, div_eps: float = 1e-6) -> chex.Array: """Applies gradient clipping unit-wise.""" # This little max(., div_eps) is distinct from the normal eps and just # prevents division by zero. It technically should be impossible to engage. clipped_grad = grad * (max_norm / jnp.maximum(g_norm, div_eps)) chex.assert_equal_shape((g_norm, max_norm, grad, clipped_grad)) return jnp.where(g_norm < max_norm, grad, clipped_grad) AdaptiveGradClipState = base.EmptyState def adaptive_grad_clip(clipping: float, eps: float = 1e-3) -> base.GradientTransformation: """Clips updates to be at most ``clipping * parameter_norm``, unit-wise. References: [Brock, Smith, De, Simonyan 2021] High-Performance Large-Scale Image Recognition Without Normalization. (https://arxiv.org/abs/2102.06171) Args: clipping: The maximum allowed ratio of update norm to parameter norm. eps: An epsilon term to prevent clipping of zero-initialized params. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return AdaptiveGradClipState() def update_fn(updates, state, params): if params is None: raise ValueError(base.NO_PARAMS_MSG) g_norm, p_norm = jax.tree_util.tree_map(unitwise_norm, (updates, params)) # Maximum allowable norm. max_norm = jax.tree_util.tree_map( lambda x: clipping * jnp.maximum(x, eps), p_norm) # If grad norm > clipping * param_norm, rescale. updates = jax.tree_util.tree_map(unitwise_clip, g_norm, max_norm, updates) return updates, state return base.GradientTransformation(init_fn, update_fn)
optax-master
optax/_src/clipping.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Standard losses used in optimisation. We provide implementations of the most canonical losses used in deep learning. These operate transparently on batches, and do not perform any reduction over the batch dimensions, leaving it to the user to, for instance, mean or sum losses across batch dimensions. """ from typing import Optional, Tuple import chex import jax import jax.numpy as jnp from optax._src import utils def squared_error( predictions: chex.Array, targets: Optional[chex.Array] = None, ) -> chex.Array: """Calculates the squared error for a set of predictions. Mean Squared Error can be computed as squared_error(a, b).mean(). Note: l2_loss = 0.5 * squared_error, where the 0.5 term is standard in "Pattern Recognition and Machine Learning" by Bishop, but not "The Elements of Statistical Learning" by Tibshirani. References: [Chris Bishop, 2006](https://bit.ly/3eeP0ga) Args: predictions: a vector of arbitrary shape `[...]`. targets: a vector with shape broadcastable to that of `predictions`; if not provided then it is assumed to be a vector of zeros. Returns: elementwise squared differences, with same shape as `predictions`. """ chex.assert_type([predictions], float) if targets is not None: # Avoid broadcasting logic for "-" operator. chex.assert_equal_shape((predictions, targets)) errors = predictions - targets if targets is not None else predictions return errors ** 2 def l2_loss( predictions: chex.Array, targets: Optional[chex.Array] = None, ) -> chex.Array: """Calculates the L2 loss for a set of predictions. Note: the 0.5 term is standard in "Pattern Recognition and Machine Learning" by Bishop, but not "The Elements of Statistical Learning" by Tibshirani. References: [Chris Bishop, 2006](https://bit.ly/3eeP0ga) Args: predictions: a vector of arbitrary shape `[...]`. targets: a vector with shape broadcastable to that of `predictions`; if not provided then it is assumed to be a vector of zeros. Returns: elementwise squared differences, with same shape as `predictions`. """ return 0.5 * squared_error(predictions, targets) def huber_loss( predictions: chex.Array, targets: Optional[chex.Array] = None, delta: float = 1.) -> chex.Array: """Huber loss, similar to L2 loss close to zero, L1 loss away from zero. If gradient descent is applied to the `huber loss`, it is equivalent to clipping gradients of an `l2_loss` to `[-delta, delta]` in the backward pass. References: [Huber, 1964](www.projecteuclid.org/download/pdf_1/euclid.aoms/1177703732) Args: predictions: a vector of arbitrary shape `[...]`. targets: a vector with shape broadcastable to that of `predictions`; if not provided then it is assumed to be a vector of zeros. delta: the bounds for the huber loss transformation, defaults at 1. Returns: elementwise huber losses, with the same shape of `predictions`. """ chex.assert_type([predictions], float) errors = (predictions - targets) if (targets is not None) else predictions # 0.5 * err^2 if |err| <= d # 0.5 * d^2 + d * (|err| - d) if |err| > d abs_errors = jnp.abs(errors) quadratic = jnp.minimum(abs_errors, delta) # Same as max(abs_x - delta, 0) but avoids potentially doubling gradient. linear = abs_errors - quadratic return 0.5 * quadratic ** 2 + delta * linear def smooth_labels( labels: chex.Array, alpha: float, ) -> jnp.ndarray: """Apply label smoothing. Label smoothing is often used in combination with a cross-entropy loss. Smoothed labels favour small logit gaps, and it has been shown that this can provide better model calibration by preventing overconfident predictions. References: [Müller et al, 2019](https://arxiv.org/pdf/1906.02629.pdf) Args: labels: One hot labels to be smoothed. alpha: The smoothing factor. Returns: a smoothed version of the one hot input labels. """ chex.assert_type([labels], float) num_categories = labels.shape[-1] return (1.0 - alpha) * labels + alpha / num_categories def sigmoid_binary_cross_entropy(logits, labels): """Computes element-wise sigmoid cross entropy given logits and labels. This function can be used for binary or multiclass classification (where each class is an independent binary prediction and different classes are not mutually exclusive e.g. predicting that an image contains both a cat and a dog.) Because this function is overloaded, please ensure your `logits` and `labels` are compatible with each other. If you're passing in binary `labels` (values in {0, 1}), ensure your `logits` correspond to class 1 only. If you're passing in per-class target probabilities or one-hot `labels`, please ensure your `logits` are also multiclass. Be particularly careful if you're relying on implicit broadcasting to reshape `logits` or `labels`. References: [Goodfellow et al, 2016](http://www.deeplearningbook.org/contents/prob.html) Args: logits: Each element is the unnormalized log probability of a binary prediction. See note about compatibility with `labels` above. labels: Binary labels whose values are {0,1} or multi-class target probabilities. See note about compatibility with `logits` above. Returns: cross entropy for each binary prediction, same shape as `logits`. """ chex.assert_type([logits], float) labels = labels.astype(logits.dtype) log_p = jax.nn.log_sigmoid(logits) # log(1 - sigmoid(x)) = log_sigmoid(-x), the latter more numerically stable log_not_p = jax.nn.log_sigmoid(-logits) return -labels * log_p - (1. - labels) * log_not_p def softmax_cross_entropy( logits: chex.Array, labels: chex.Array, ) -> chex.Array: """Computes the softmax cross entropy between sets of logits and labels. Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image can be a dog or a truck, but not both. References: [Goodfellow et al, 2016](http://www.deeplearningbook.org/contents/prob.html) Args: logits: Unnormalized log probabilities, with shape `[..., num_classes]`. labels: Valid probability distributions (non-negative, sum to 1), e.g a one hot encoding specifying the correct class for each input; must have a shape broadcastable to `[..., num_classes]`. Returns: cross entropy between each prediction and the corresponding target distributions, with shape `[...]`. """ chex.assert_type([logits], float) return -jnp.sum(labels * jax.nn.log_softmax(logits, axis=-1), axis=-1) def softmax_cross_entropy_with_integer_labels( logits: chex.Array, labels: chex.Array, ) -> chex.Array: """Computes softmax cross entropy between sets of logits and integer labels. Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image can be a dog or a truck, but not both. References: [Goodfellow et al, 2016](http://www.deeplearningbook.org/contents/prob.html) Args: logits: Unnormalized log probabilities, with shape `[..., num_classes]`. labels: Integers specifying the correct class for each input, with shape `[...]`. Returns: Cross entropy between each prediction and the corresponding target distributions, with shape `[...]`. """ chex.assert_type([logits], float) chex.assert_type([labels], int) # This is like jnp.take_along_axis(jax.nn.log_softmax(...), ...) except that # we avoid subtracting the normalizer from all values, just from the values # for the correct labels. logits_max = jnp.max(logits, axis=-1, keepdims=True) logits -= jax.lax.stop_gradient(logits_max) label_logits = jnp.take_along_axis(logits, labels[..., None], axis=-1)[..., 0] log_normalizers = jnp.log(jnp.sum(jnp.exp(logits), axis=-1)) return log_normalizers - label_logits def cosine_similarity( predictions: chex.Array, targets: chex.Array, epsilon: float = 0., ) -> chex.Array: r"""Computes the cosine similarity between targets and predictions. The cosine **similarity** is a measure of similarity between vectors defined as the cosine of the angle between them, which is also the inner product of those vectors normalized to have unit norm. References: [Wikipedia, 2021](https://en.wikipedia.org/wiki/Cosine_similarity) Args: predictions: The predicted vectors, with shape `[..., dim]`. targets: Ground truth target vectors, with shape `[..., dim]`. epsilon: minimum norm for terms in the denominator of the cosine similarity. Returns: cosine similarity measures, with shape `[...]`. """ chex.assert_type([predictions, targets], float) # vectorize norm fn, to treat all dimensions except the last as batch dims. batched_norm_fn = jnp.vectorize( utils.safe_norm, signature='(k)->()', excluded={1}) # normalise the last dimension of targets and predictions. unit_targets = targets / jnp.expand_dims( batched_norm_fn(targets, epsilon), axis=-1) unit_predictions = predictions / jnp.expand_dims( batched_norm_fn(predictions, epsilon), axis=-1) # return cosine similarity. return jnp.sum(unit_targets * unit_predictions, axis=-1) def cosine_distance( predictions: chex.Array, targets: chex.Array, epsilon: float = 0., ) -> chex.Array: r"""Computes the cosine distance between targets and predictions. The cosine **distance**, implemented here, measures the **dissimilarity** of two vectors as the opposite of cosine **similarity**: `1 - cos(\theta)`. References: [Wikipedia, 2021](https://en.wikipedia.org/wiki/Cosine_similarity) Args: predictions: The predicted vectors, with shape `[..., dim]`. targets: Ground truth target vectors, with shape `[..., dim]`. epsilon: minimum norm for terms in the denominator of the cosine similarity. Returns: cosine distances, with shape `[...]`. """ chex.assert_type([predictions, targets], float) # cosine distance = 1 - cosine similarity. return 1. - cosine_similarity(predictions, targets, epsilon) def log_cosh( predictions: chex.Array, targets: Optional[chex.Array] = None, ) -> chex.Array: """Calculates the log-cosh loss for a set of predictions. log(cosh(x)) is approximately `(x**2) / 2` for small x and `abs(x) - log(2)` for large x. It is a twice differentiable alternative to the Huber loss. References: [Chen et al, 2019](https://openreview.net/pdf?id=rkglvsC9Ym) Args: predictions: a vector of arbitrary shape `[...]`. targets: a vector with shape broadcastable to that of `predictions`; if not provided then it is assumed to be a vector of zeros. Returns: the log-cosh loss, with same shape as `predictions`. """ chex.assert_type([predictions], float) errors = (predictions - targets) if (targets is not None) else predictions # log(cosh(x)) = log((exp(x) + exp(-x))/2) = log(exp(x) + exp(-x)) - log(2) return jnp.logaddexp(errors, -errors) - jnp.log(2.0).astype(errors.dtype) def ctc_loss_with_forward_probs( logits: chex.Array, logit_paddings: chex.Array, labels: chex.Array, label_paddings: chex.Array, blank_id: int = 0, log_epsilon: float = -1e5) -> Tuple[chex.Array, chex.Array, chex.Array]: r"""Computes CTC loss and CTC forward-probabilities. The CTC loss is a loss function based on log-likelihoods of the model that introduces a special blank symbol :math:`\phi` to represent variable-length output sequences. Forward probabilities returned by this function, as auxiliary results, are grouped into two part: blank alpha-probability and non-blank alpha probability. Those are defined as follows: .. math:: \alpha_{\mathrm{BLANK}}(t, n) = \sum_{\pi_{1:t-1}} p(\pi_t = \phi | \pi_{1:t-1}, y_{1:n-1}, \cdots), \\ \alpha_{\mathrm{LABEL}}(t, n) = \sum_{\pi_{1:t-1}} p(\pi_t = y_n | \pi_{1:t-1}, y_{1:n-1}, \cdots). Here, :math:`\pi` denotes the alignment sequence in the reference [Graves et al, 2006] that is blank-inserted representations of ``labels``. The return values are the logarithms of the above probabilities. References: [Graves et al, 2006](https://dl.acm.org/doi/abs/10.1145/1143844.1143891) Args: logits: (B, T, K)-array containing logits of each class where B denotes the batch size, T denotes the max time frames in ``logits``, and K denotes the number of classes including a class for blanks. logit_paddings: (B, T)-array. Padding indicators for ``logits``. Each element must be either 1.0 or 0.0, and ``logitpaddings[b, t] == 1.0`` denotes that ``logits[b, t, :]`` are padded values. labels: (B, N)-array containing reference integer labels where N denotes the max time frames in the label sequence. label_paddings: (B, N)-array. Padding indicators for ``labels``. Each element must be either 1.0 or 0.0, and ``labelpaddings[b, n] == 1.0`` denotes that ``labels[b, n]`` is a padded label. In the current implementation, ``labels`` must be right-padded, i.e. each row ``labelpaddings[b, :]`` must be repetition of zeroes, followed by repetition of ones. blank_id: Id for blank token. ``logits[b, :, blank_id]`` are used as probabilities of blank symbols. log_epsilon: Numerically-stable approximation of log(+0). Returns: A tuple ``(loss_value, logalpha_blank, logalpha_nonblank)``. Here, ``loss_value`` is a (B,)-array containing the loss values for each sequence in the batch, ``logalpha_blank`` and ``logalpha_nonblank`` are (T, B, N+1)-arrays where the (t, b, n)-th element denotes \log \alpha_B(t, n) and \log \alpha_L(t, n), respectively, for ``b``-th sequence in the batch. """ chex.assert_rank(logits, 3) chex.assert_rank(labels, 2) batchsize, unused_maxinputlen, num_classes = logits.shape batchsize_of_labels, maxlabellen = labels.shape chex.assert_equal(batchsize, batchsize_of_labels) chex.assert_equal(labels.shape, label_paddings.shape) chex.assert_equal(logits.shape[:2], logit_paddings.shape) logprobs = jax.nn.log_softmax(logits) labellens = maxlabellen - jnp.sum(label_paddings, axis=1).astype(jnp.int32) # repeat[b, n] == 1.0 when label[b, n] == label[b, n+1]. repeat = (labels[:, :-1] == labels[:, 1:]).astype(jnp.float32) repeat = jnp.pad(repeat, ((0, 0), (0, 1))) logprobs_phi = logprobs[:, :, blank_id:blank_id + 1] # [B, T, 1] logprobs_phi = jnp.transpose(logprobs_phi, (1, 0, 2)) # [T, B, 1] one_hot = jax.nn.one_hot(labels, num_classes=num_classes) # [B, N, K] logprobs_emit = jnp.einsum('btk,bnk->btn', logprobs, one_hot) logprobs_emit = jnp.transpose(logprobs_emit, (1, 0, 2)) # [T, B, N] logalpha_phi_init = jnp.ones( (batchsize, maxlabellen + 1)) * log_epsilon # [B, N] logalpha_phi_init = logalpha_phi_init.at[:, 0].set(0.0) logalpha_emit_init = jnp.ones((batchsize, maxlabellen)) * log_epsilon def update_phi_score(phi, added_score): # Update `phi[:, 1:]`` with adding `added_score` in log space. return jnp.concatenate( [phi[:, :1], jnp.logaddexp(phi[:, 1:], added_score)], axis=-1) def loop_body(prev, x): prev_phi, prev_emit = prev # emit-to-phi epsilon transition, except if the next label is repetition prev_phi_orig = prev_phi prev_phi = update_phi_score(prev_phi, prev_emit + log_epsilon * repeat) logprob_emit, logprob_phi, pad = x # phi-to-emit transition next_emit = jnp.logaddexp(prev_phi[:, :-1] + logprob_emit, prev_emit + logprob_emit) # self-loop transition next_phi = prev_phi + logprob_phi # emit-to-phi blank transition only when the next label is repetition next_phi = update_phi_score( next_phi, prev_emit + logprob_phi + log_epsilon * (1.0 - repeat)) pad = pad.reshape((batchsize, 1)) next_emit = pad * prev_emit + (1.0 - pad) * next_emit next_phi = pad * prev_phi_orig + (1.0 - pad) * next_phi return (next_phi, next_emit), (next_phi, next_emit) xs = (logprobs_emit, logprobs_phi, logit_paddings.transpose((1, 0))) _, (logalpha_phi, logalpha_emit) = jax.lax.scan(loop_body, (logalpha_phi_init, logalpha_emit_init), xs) # last row needs to be updated with the last epsilon transition logalpha_phi_last = update_phi_score(logalpha_phi[-1], logalpha_emit[-1]) logalpha_phi = logalpha_phi.at[-1].set(logalpha_phi_last) # extract per_seq_loss one_hot = jax.nn.one_hot(labellens, num_classes=maxlabellen + 1) # [B, N+1] per_seq_loss = -jnp.einsum('bn,bn->b', logalpha_phi_last, one_hot) # pylint:disable=invalid-unary-operand-type return per_seq_loss, logalpha_phi, logalpha_emit def ctc_loss(logits: chex.Array, logit_paddings: chex.Array, labels: chex.Array, label_paddings: chex.Array, blank_id: int = 0, log_epsilon: float = -1e5) -> chex.Array: """Computes CTC loss. See docstring for ``ctc_loss_with_forward_probs`` for details. Args: logits: (B, T, K)-array containing logits of each class where B denotes the batch size, T denotes the max time frames in ``logits``, and K denotes the number of classes including a class for blanks. logit_paddings: (B, T)-array. Padding indicators for ``logits``. Each element must be either 1.0 or 0.0, and ``logitpaddings[b, t] == 1.0`` denotes that ``logits[b, t, :]`` are padded values. labels: (B, N)-array containing reference integer labels where N denotes the max time frames in the label sequence. label_paddings: (B, N)-array. Padding indicators for ``labels``. Each element must be either 1.0 or 0.0, and ``labelpaddings[b, n] == 1.0`` denotes that ``labels[b, n]`` is a padded label. In the current implementation, ``labels`` must be right-padded, i.e. each row ``labelpaddings[b, :]`` must be repetition of zeroes, followed by repetition of ones. blank_id: Id for blank token. ``logits[b, :, blank_id]`` are used as probabilities of blank symbols. log_epsilon: Numerically-stable approximation of log(+0). Returns: (B,)-array containing loss values for each sequence in the batch. """ per_seq_loss, _, _ = ctc_loss_with_forward_probs( logits, logit_paddings, labels, label_paddings, blank_id=blank_id, log_epsilon=log_epsilon) return per_seq_loss def convex_kl_divergence( log_predictions: chex.Array, targets: chex.Array ) -> chex.Array: """Computes a convex version of the Kullback-Leibler divergence loss. Measures the information gain achieved if target probability distribution would be used instead of predicted probability distribution. This version is jointly convex in p (targets) and q (log_predictions). References: [Kullback, Leibler, 1951](https://www.jstor.org/stable/2236703) Args: log_predictions: Probabilities of predicted distribution with shape [..., dim]. Expected to be in the log-space to avoid underflow. targets: Probabilities of target distribution with shape [..., dim]. Expected to be strictly positive. Returns: Kullback-Leibler divergence of predicted distribution from target distribution with shape [...]. """ return kl_divergence(log_predictions, targets) + jnp.sum( jnp.exp(log_predictions) - targets, axis=-1 ) def kl_divergence( log_predictions: chex.Array, targets: chex.Array ) -> chex.Array: """Computes the Kullback-Leibler divergence (relative entropy) loss. Measures the information gain achieved if target probability distribution would be used instead of predicted probability distribution. References: [Kullback, Leibler, 1951](https://www.jstor.org/stable/2236703) Args: log_predictions: Probabilities of predicted distribution with shape [..., dim]. Expected to be in the log-space to avoid underflow. targets: Probabilities of target distribution with shape [..., dim]. Expected to be strictly positive. Returns: Kullback-Leibler divergence of predicted distribution from target distribution with shape [...]. """ chex.assert_type([log_predictions, targets], float) loss = targets * ( jnp.where(targets == 0, 0, jnp.log(targets)) - log_predictions ) return jnp.sum(loss, axis=-1) def kl_divergence_with_log_targets(log_predictions: chex.Array, log_targets: chex.Array) -> chex.Array: """Computes the Kullback-Leibler divergence (relative entropy) loss. Version of kl_div_loss where targets are given in log-space. Args: log_predictions: Probabilities of predicted distribution with shape [..., dim]. Expected to be in the log-space to avoid underflow. log_targets: Probabilities of target distribution with shape [..., dim]. Expected to be in the log-space. Returns: Kullback-Leibler divergence of predicted distribution from target distribution with shape [...]. """ chex.assert_type([log_predictions, log_targets], float) loss = jnp.exp(log_targets) * (log_targets - log_predictions) return jnp.sum(loss, axis=-1) def hinge_loss(predictor_outputs: chex.Array, targets: chex.Array) -> chex.Array: """Computes the hinge loss for binary classification. Args: predictor_outputs: Outputs of the decision function. targets: Target values. Target values should be strictly in the set {-1, 1}. Returns: Binary Hinge Loss. """ return jnp.maximum(0, 1 - predictor_outputs * targets) def poly_loss_cross_entropy( logits: chex.Array, labels: chex.Array, epsilon: float = 2.0 ) -> chex.Array: r"""Computes PolyLoss between logits and labels. The PolyLoss is a loss function that decomposes commonly used classification loss functions into a series of weighted polynomial bases. It is inspired by the Taylor expansion of cross-entropy loss and focal loss in the bases of :math:`(1 − P_t)^j`. .. math:: L_{Poly} = \sum_1^\infty \alpha_j \cdot (1 - P_t)^j \\ L_{Poly-N} = (\epsilon_1 + 1) \cdot (1 - P_t) + \ldots + \\ (\epsilon_N + \frac{1}{N}) \cdot (1 - P_t)^N + \frac{1}{N + 1} \cdot (1 - P_t)^{N + 1} + \ldots = \\ - \log(P_t) + \sum_{j = 1}^N \epsilon_j \cdot (1 - P_t)^j This function provides a simplified version of :math:`L_{Poly-N}` with only the coefficient of the first polynomial term being changed. References: [Zhaoqi Leng et al, 2022](https://arxiv.org/pdf/2204.12511.pdf) Args: logits: Unnormalized log probabilities, with shape `[..., num_classes]`. labels: Valid probability distributions (non-negative, sum to 1), e.g. a one hot encoding specifying the correct class for each input; must have a shape broadcastable to `[..., num_classes]`. epsilon: The coefficient of the first polynomial term. According to the paper, the following values are recommended: - For the ImageNet 2d image classification, epsilon = 2.0. - For the 2d Instance Segmentation and object detection, epsilon = -1.0. - It is also recommended to adjust this value based on the task, e.g. by using grid search. Returns: Poly loss between each prediction and the corresponding target distributions, with shape `[...]`. """ chex.assert_type([logits, labels], float) one_minus_pt = jnp.sum(labels * (1 - jax.nn.softmax(logits)), axis=-1) cross_entropy = softmax_cross_entropy(logits=logits, labels=labels) return cross_entropy + epsilon * one_minus_pt
optax-master
optax/_src/loss.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Stochastic Monte Carlo gradient estimators. Utility functions to approximate gradients of the form using Monte Carlo estimation: \nabla_{\theta} E_{p(x; \theta)} f(x) Here f is assumed to have no dependence on the parameters theta - if f has dependence on theta, the functions below need to be called with `stop_grad(f)` and the chain rule needs to be applied outside these functions in order to obtain unbiased gradient. For more details, see: S. Mohamed, M. Rosca, M. Figurnov, A Mnih. Monte Carlo Gradient Estimation in Machine Learning. JMLR, 2020. """ import math from typing import Any, Callable, Sequence import chex import jax import jax.numpy as jnp import numpy as np from optax._src import base from optax._src import utils def score_function_jacobians( function: Callable[[chex.Array], float], params: base.Params, dist_builder: Callable[..., Any], rng: chex.PRNGKey, num_samples: int) -> Sequence[chex.Array]: r"""Score function gradient estimation. Approximates: \nabla_{\theta} E_{p(x; \theta)} f(x) With: E_{p(x; \theta)} f(x) \nabla_{\theta} \log p(x; \theta) Requires: p to be differentiable wrt to theta. Applicable to both continuous and discrete random variables. No requirements on f. Args: function: Function f(x) for which to estimate grads_{params} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. params: A tuple of jnp arrays. The parameters for which to construct the distribution. dist_builder: a constructor which builds a distribution given the input parameters specified by params. `dist_builder(params)` should return a valid distribution. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. Returns: A tuple of size `params`, each element is `num_samples x param.shape` jacobian vector containing the estimates of the gradients obtained for each sample. The mean of this vector is the gradient wrt to parameters that can be used for learning. The entire jacobian vector can be used to assess estimator variance. """ def surrogate(params): dist = dist_builder(*params) one_sample_surrogate_fn = lambda x: function(x) * dist.log_prob(x) samples = jax.lax.stop_gradient(dist.sample((num_samples,), seed=rng)) # We vmap the function application over samples - this ensures that the # function we use does not have to be vectorized itself. return jax.vmap(one_sample_surrogate_fn)(samples) return jax.jacfwd(surrogate)(params) def pathwise_jacobians( function: Callable[[chex.Array], float], params: base.Params, dist_builder: Callable[..., Any], rng: chex.PRNGKey, num_samples: int) -> Sequence[chex.Array]: r"""Pathwise gradient estimation. Approximates: \nabla_{\theta} E_{p(x; \theta)} f(x) With: E_{p(\epsilon)} \nabla_{\theta} f(g(\epsilon, \theta)) where x = g(\epsilon, \theta). g depends on the distribution p. Requires: p to be reparametrizable and the reparametrization to be implemented in tensorflow_probability. Applicable to continuous random variables. f needs to be differentiable. Args: function: Function f(x) for which to estimate grads_{params} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. params: A tuple of jnp arrays. The parameters for which to construct the distribution. dist_builder: a constructor which builds a distribution given the input parameters specified by params. `dist_builder(params)` should return a valid distribution. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. Returns: A tuple of size `params`, each element is `num_samples x param.shape` jacobian vector containing the estimates of the gradients obtained for each sample. The mean of this vector is the gradient wrt to parameters that can be used for learning. The entire jacobian vector can be used to assess estimator variance. """ def surrogate(params): # We vmap the function application over samples - this ensures that the # function we use does not have to be vectorized itself. dist = dist_builder(*params) return jax.vmap(function)(dist.sample((num_samples,), seed=rng)) return jax.jacfwd(surrogate)(params) def measure_valued_jacobians( function: Callable[[chex.Array], float], params: base.Params, dist_builder: Callable[..., Any], rng: chex.PRNGKey, num_samples: int, coupling: bool = True) -> Sequence[chex.Array]: r"""Measure valued gradient estimation. Approximates: \nabla_{\theta} E_{p(x; \theta)} f(x) With: 1./ c (E_{p1(x; \theta)} f(x) - E_{p2(x; \theta)} f(x)) where p1 and p2 are measures which depend on p. Currently only supports computing gradients of expectations of Gaussian RVs. Args: function: Function f(x) for which to estimate grads_{params} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. params: A tuple of jnp arrays. The parameters for which to construct the distribution. dist_builder: a constructor which builds a distribution given the input parameters specified by params. `dist_builder(params)` should return a valid distribution. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. coupling: A boolean. Whether or not to use coupling for the positive and negative samples. Recommended: True, as this reduces variance. Returns: A tuple of size `params`, each element is `num_samples x param.shape` jacobian vector containing the estimates of the gradients obtained for each sample. The mean of this vector is the gradient wrt to parameters that can be used for learning. The entire jacobian vector can be used to assess estimator variance. """ if dist_builder is not utils.multi_normal: raise ValueError( 'Unsupported distribution builder for measure_valued_jacobians!') dist = dist_builder(*params) # Need to apply chain rule for log scale grad (instead of scale grad). return [ measure_valued_estimation_mean( function, dist, rng, num_samples, coupling=coupling), jnp.exp(dist.log_scale) * measure_valued_estimation_std( function, dist, rng, num_samples, coupling=coupling)] def measure_valued_estimation_mean( function: Callable[[chex.Array], float], dist: Any, rng: chex.PRNGKey, num_samples: int, coupling: bool = True) -> chex.Array: """Measure valued grads of a Gaussian expectation of `function` wrt the mean. Args: function: Function f(x) for which to estimate grads_{mean} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. dist: a distribution on which we can call `sample`. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. coupling: A boolean. Whether or not to use coupling for the positive and negative samples. Recommended: True, as this reduces variance. Returns: A `num_samples x D` vector containing the estimates of the gradients obtained for each sample. The mean of this vector can be used to update the mean parameter. The entire vector can be used to assess estimator variance. """ mean, log_std = dist.params std = jnp.exp(log_std) dist_samples = dist.sample((num_samples,), seed=rng) pos_rng, neg_rng = jax.random.split(rng) pos_sample = jax.random.weibull_min( pos_rng, scale=math.sqrt(2.), concentration=2., shape=dist_samples.shape) if coupling: neg_sample = pos_sample else: neg_sample = jax.random.weibull_min( neg_rng, scale=math.sqrt(2.), concentration=2., shape=dist_samples.shape) # N x D positive_diag = mean + std * pos_sample # N x D negative_diag = mean - std * neg_sample # NOTE: you can sample base samples here if you use the same rng # Duplicate the D dimension - N x D x D. base_dist_samples = utils.tile_second_to_last_dim(dist_samples) positive = utils.set_diags(base_dist_samples, positive_diag) negative = utils.set_diags(base_dist_samples, negative_diag) c = np.sqrt(2 * np.pi) * std # D # Apply function. We apply the function to each element of N x D x D. # We apply a function that takes a sample and returns one number, so the # output will be N x D (which is what we want, batch by dimension). # We apply a function in parallel to the batch. # Broadcast the division. vmaped_function = jax.vmap(jax.vmap(function, 1, 0)) grads = (vmaped_function(positive) - vmaped_function(negative)) / c chex.assert_shape(grads, (num_samples,) + std.shape) return grads def measure_valued_estimation_std( function: Callable[[chex.Array], float], dist: Any, rng: chex.PRNGKey, num_samples: int, coupling: bool = True) -> chex.Array: """Measure valued grads of a Gaussian expectation of `function` wrt the std. Args: function: Function f(x) for which to estimate grads_{std} E_dist f(x). The function takes in one argument (a sample from the distribution) and returns a floating point value. dist: a distribution on which we can call `sample`. rng: a PRNGKey key. num_samples: Int, the number of samples used to compute the grads. coupling: A boolean. Whether or not to use coupling for the positive and negative samples. Recommended: True, as this reduces variance. Returns: A `num_samples x D` vector containing the estimates of the gradients obtained for each sample. The mean of this vector can be used to update the scale parameter. The entire vector can be used to assess estimator variance. """ mean, log_std = dist.params std = jnp.exp(log_std) dist_samples = dist.sample((num_samples,), seed=rng) pos_rng, neg_rng = jax.random.split(rng) # The only difference between mean and std gradients is what we sample. pos_sample = jax.random.double_sided_maxwell( pos_rng, loc=0.0, scale=1.0, shape=dist_samples.shape) if coupling: unif_rvs = jax.random.uniform(neg_rng, dist_samples.shape) neg_sample = unif_rvs * pos_sample else: neg_sample = jax.random.normal(neg_rng, dist_samples.shape) # Both need to be positive in the case of the scale. # N x D positive_diag = mean + std * pos_sample # N x D negative_diag = mean + std * neg_sample # NOTE: you can sample base samples here if you use the same rng # Duplicate the D dimension - N x D x D. base_dist_samples = utils.tile_second_to_last_dim(dist_samples) positive = utils.set_diags(base_dist_samples, positive_diag) negative = utils.set_diags(base_dist_samples, negative_diag) # Different C for the scale c = std # D # Apply function. We apply the function to each element of N x D x D. # We apply a function that takes a sample and returns one number, so the # output will be N x D (which is what we want, batch by dimension). # We apply a function in parallel to the batch. # Broadcast the division. vmaped_function = jax.vmap(jax.vmap(function, 1, 0)) grads = (vmaped_function(positive) - vmaped_function(negative)) / c chex.assert_shape(grads, (num_samples,) + std.shape) return grads
optax-master
optax/_src/stochastic_gradient_estimators.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optax._src.linear_algebra.""" from absl.testing import absltest import jax.numpy as jnp import numpy as np from optax._src import linear_algebra import scipy.stats class LinearAlgebraTest(absltest.TestCase): def test_global_norm(self): flat_updates = jnp.array([2., 4., 3., 5.], dtype=jnp.float32) nested_updates = dict( a=jnp.array([2., 4.], dtype=jnp.float32), b=jnp.array([3., 5.], dtype=jnp.float32)) np.testing.assert_array_equal( jnp.sqrt(jnp.sum(flat_updates**2)), linear_algebra.global_norm(nested_updates)) def test_matrix_inverse_pth_root(self): """Test for matrix inverse pth root.""" def _gen_symmetrix_matrix(dim, condition_number): u = scipy.stats.ortho_group.rvs(dim=dim).astype(np.float64) v = u.T diag = np.diag([condition_number ** (-i/(dim-1)) for i in range(dim)]) return u @ diag @ v # Fails after it reaches a particular condition number. for e in range(2, 12): condition_number = 10 ** e ms = _gen_symmetrix_matrix(16, condition_number) self.assertLess( np.abs(np.linalg.cond(ms) - condition_number), condition_number * 0.01) error = linear_algebra.matrix_inverse_pth_root( ms.astype(np.float32), 4, ridge_epsilon=1e-12)[1] if e < 7: self.assertLess(error, 0.1) else: # No guarantee of success after e >= 7 pass if __name__ == '__main__': absltest.main()
optax-master
optax/_src/linear_algebra_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for testing.""" from typing import Optional, Tuple, Sequence import chex import jax import jax.numpy as jnp import jax.scipy.stats.norm as multivariate_normal from optax._src import linear_algebra from optax._src import numerics def tile_second_to_last_dim(a: chex.Array) -> chex.Array: ones = jnp.ones_like(a) a = jnp.expand_dims(a, axis=-1) return jnp.expand_dims(ones, axis=-2) * a def canonicalize_dtype( dtype: Optional[chex.ArrayDType]) -> Optional[chex.ArrayDType]: """Canonicalise a dtype, skip if None.""" if dtype is not None: return jax.dtypes.canonicalize_dtype(dtype) return dtype def cast_tree(tree: chex.ArrayTree, dtype: Optional[chex.ArrayDType]) -> chex.ArrayTree: """Cast tree to given dtype, skip if None.""" if dtype is not None: return jax.tree_util.tree_map(lambda t: t.astype(dtype), tree) else: return tree def set_diags(a: chex.Array, new_diags: chex.Array) -> chex.Array: """Set the diagonals of every DxD matrix in an input of shape NxDxD. Args: a: rank 3, tensor NxDxD. new_diags: NxD matrix, the new diagonals of each DxD matrix. Returns: NxDxD tensor, with the same contents as `a` but with the diagonal changed to `new_diags`. """ a_dim, new_diags_dim = len(a.shape), len(new_diags.shape) if a_dim != 3: raise ValueError(f'Expected `a` to be a 3D tensor, got {a_dim}D instead') if new_diags_dim != 2: raise ValueError( f'Expected `new_diags` to be a 2D array, got {new_diags_dim}D instead' ) n, d, d1 = a.shape n_diags, d_diags = new_diags.shape if d != d1: raise ValueError( f'Shape mismatch: expected `a.shape` to be {(n, d, d)}, ' f'got {(n, d, d1)} instead' ) if d_diags != d or n_diags != n: raise ValueError( f'Shape mismatch: expected `new_diags.shape` to be {(n, d)}, ' f'got {(n_diags, d_diags)} instead' ) indices1 = jnp.repeat(jnp.arange(n), d) indices2 = jnp.tile(jnp.arange(d), n) indices3 = indices2 # Use numpy array setting a = a.at[indices1, indices2, indices3].set(new_diags.flatten()) return a class MultiNormalDiagFromLogScale(): """MultiNormalDiag which directly exposes its input parameters.""" def __init__(self, loc: chex.Array, log_scale: chex.Array): self._log_scale = log_scale self._scale = jnp.exp(log_scale) self._mean = loc self._param_shape = jax.lax.broadcast_shapes( self._mean.shape, self._scale.shape) def sample(self, shape: Sequence[int], seed: chex.PRNGKey) -> chex.Array: sample_shape = tuple(shape) + self._param_shape return jax.random.normal( seed, shape=sample_shape) * self._scale + self._mean def log_prob(self, x: chex.Array) -> chex.Array: log_prob = multivariate_normal.logpdf(x, loc=self._mean, scale=self._scale) # Sum over parameter axes. sum_axis = [-(i + 1) for i in range(len(self._param_shape))] return jnp.sum(log_prob, axis=sum_axis) @property def log_scale(self) -> chex.Array: return self._log_scale @property def params(self) -> Sequence[chex.Array]: return [self._mean, self._log_scale] def multi_normal(loc: chex.Array, log_scale: chex.Array) -> MultiNormalDiagFromLogScale: return MultiNormalDiagFromLogScale(loc=loc, log_scale=log_scale) @jax.custom_vjp def _scale_gradient(inputs: chex.ArrayTree, scale: float) -> chex.ArrayTree: """Internal gradient scaling implementation.""" del scale # Only used for the backward pass defined in _scale_gradient_bwd. return inputs def _scale_gradient_fwd(inputs: chex.ArrayTree, scale: float) -> Tuple[chex.ArrayTree, float]: return _scale_gradient(inputs, scale), scale def _scale_gradient_bwd(scale: float, g: chex.ArrayTree) -> Tuple[chex.ArrayTree, None]: return (jax.tree_util.tree_map(lambda g_: g_ * scale, g), None) _scale_gradient.defvjp(_scale_gradient_fwd, _scale_gradient_bwd) def scale_gradient(inputs: chex.ArrayTree, scale: float) -> chex.ArrayTree: """Scales gradients for the backwards pass. Args: inputs: A nested array. scale: The scale factor for the gradient on the backwards pass. Returns: An array of the same structure as `inputs`, with scaled backward gradient. """ # Special case scales of 1. and 0. for more efficiency. if scale == 1.: return inputs elif scale == 0.: return jax.lax.stop_gradient(inputs) else: return _scale_gradient(inputs, scale) # TODO(b/183800387): remove legacy aliases. safe_norm = numerics.safe_norm safe_int32_increment = numerics.safe_int32_increment global_norm = linear_algebra.global_norm
optax-master
optax/_src/utils.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Transformation wrappers.""" from typing import Any, Callable, NamedTuple, Optional, Protocol, Tuple, Union import chex import jax from jax import lax import jax.numpy as jnp import numpy as np from optax._src import base from optax._src import numerics from optax._src import state_utils Array = jnp.ndarray def flatten( inner: base.GradientTransformation ) -> base.GradientTransformationExtraArgs: """Flattens parameters and gradients for init and update of inner transform. This can reduce the overhead of performing many calculations on lots of small variables, at the cost of slightly increased memory usage. Args: inner: Inner transformation to flatten inputs for. Returns: New ``GradientTransformationExtraArgs`` """ inner = base.with_extra_args_support(inner) def _flatten(params): """Flattens and concatenates all tensors in params to a single vector.""" params, _ = jax.tree_util.tree_flatten(params) return jnp.concatenate([jnp.reshape(param, [-1]) for param in params]) def _unflatten(updates, flat): """Extracts tensors from flat, using the structure and shapes of params.""" updates_flat, treedef = jax.tree_util.tree_flatten(updates) offsets = [] for update in updates_flat: size = np.prod(update.shape) if offsets: offsets.append(size + offsets[-1]) else: offsets.append(size) del offsets[-1] flat_split = jnp.split(flat, offsets) reshaped = [ jnp.reshape(flat_update, update.shape) for flat_update, update in zip(flat_split, updates_flat) ] return jax.tree_util.tree_unflatten(treedef, reshaped) def init_fn(params): flat = _flatten(params) return inner.init(flat) def update_fn(updates, state, params=None, **extra_args): if params is not None: params = _flatten(params) updates_flat, state = inner.update( _flatten(updates), state, params, **extra_args ) updates = _unflatten(updates, updates_flat) return updates, state return base.GradientTransformationExtraArgs(init_fn, update_fn) class ApplyIfFiniteState(NamedTuple): """State of the `GradientTransformation` returned by `apply_if_finite`. Fields: notfinite_count: Number of consecutive gradient updates containing an Inf or a NaN. This number is reset to 0 whenever a gradient update without an Inf or a NaN is done. last_finite: Whether or not the last gradient update contained an Inf of a NaN. total_notfinite: Total number of gradient updates containing an Inf or a NaN since this optimizer was initialised. This number is never reset. inner_state: The state of the inner `GradientTransformation`. """ # TODO(optax-dev): notfinite_count, last_finite and inner_state used to be # annotated as `jnp.array` but that is not a valid annotation (it's a function # and secretely resolved to `Any`. We should add back typing. notfinite_count: Any last_finite: Any total_notfinite: Any inner_state: Any def apply_if_finite( inner: base.GradientTransformation, max_consecutive_errors: int ) -> base.GradientTransformation: """A function that wraps an optimizer to make it robust to a few NaNs or Infs. The purpose of this function is to prevent any optimization to happen if the gradients contain NaNs or Infs. That is, when a NaN of Inf is detected in the gradients, the wrapped optimizer ignores that gradient update. If the NaNs or Infs persist after a given number of updates, the wrapped optimizer gives up and accepts the update. Args: inner: Inner transformation to be wrapped. max_consecutive_errors: Maximum number of consecutive gradient updates containing NaNs of Infs that the wrapped optimizer will ignore. After that many ignored updates, the optimizer will give up and accept. Returns: New ``GradientTransformationExtraArgs``. """ inner = base.with_extra_args_support(inner) def init(params): return ApplyIfFiniteState( notfinite_count=jnp.zeros([], jnp.int32), last_finite=jnp.array(True, jnp.bool_), total_notfinite=jnp.zeros([], jnp.int32), inner_state=inner.init(params)) def update(updates, state, params=None, **extra_args): inner_state = state.inner_state flat_updates = jax.tree_util.tree_flatten(updates)[0] isfinite = jnp.all( jnp.array([jnp.all(jnp.isfinite(p)) for p in flat_updates])) notfinite_count = jnp.where( isfinite, jnp.zeros([], jnp.int32), numerics.safe_int32_increment(state.notfinite_count)) def do_update(_): return inner.update(updates, inner_state, params, **extra_args) def reject_update(_): return (jax.tree_util.tree_map(jnp.zeros_like, updates), inner_state) updates, new_inner_state = lax.cond( jnp.logical_or(isfinite, notfinite_count > max_consecutive_errors), do_update, reject_update, operand=None) return updates, ApplyIfFiniteState( notfinite_count=notfinite_count, last_finite=isfinite, total_notfinite=jnp.where( isfinite, state.total_notfinite, numerics.safe_int32_increment(state.total_notfinite)), inner_state=new_inner_state) return base.GradientTransformationExtraArgs(init=init, update=update) def _zeros_tree_like(inp_tree: chex.ArrayTree) -> chex.ArrayTree: return jax.tree_util.tree_map(jnp.zeros_like, inp_tree) class MultiStepsState(NamedTuple): """State of the `GradientTransformation` returned by `MultiSteps`. Fields: mini_step: current mini-step counter. At an update, this either increases by 1 or is reset to 0. gradient_step: gradient step counter. This only increases after enough mini-steps have been accumulated. inner_opt_state: the state of the wrapped otpimiser. acc_grads: accumulated gradients over multiple mini-steps. skip_state: an arbitrarily nested tree of arrays. This is only relevant when passing a `should_skip_update_fn` to `MultiSteps`. This structure will then contain values for debugging and or monitoring. The actual structure will vary depending on the choice of `ShouldSkipUpdateFunction`. """ mini_step: Array gradient_step: Array inner_opt_state: Any acc_grads: Any skip_state: chex.ArrayTree = () class ShouldSkipUpdateFunction(Protocol): def __call__(self, updates: base.Updates, gradient_step: Array, params: Optional[base.Params]) -> Tuple[Array, chex.ArrayTree]: """Returns true to indicate that updates should be skipped in a multi-step. Args: updates: The updates that the gradient transformation has proposed to apply gradient_step: The current gradient step (see `MultiStepsState.gradient_step`). This can be used for example to reject large gradients with an annealed maximum allowed gradient norm. params: If known, the current parameter tree of the function being transformed. Returns: A tuple: * First element is an array with a single bool indicating whether or not the updates should be applied. * Second element is an arbitrarily nested structure of arrays that will be stored in `MultiStepsState.skip_state`. The structure will vary from function to function. Debugging info, or values to monitor, can be put in this structure. """ def skip_not_finite( updates: base.Updates, gradient_step: Array, params: Optional[base.Params]) -> Tuple[Array, chex.ArrayTree]: """Returns True iff any of the `updates` contains an inf or a NaN. Args: updates: see `ShouldSkipUpdateFunction`. gradient_step: see `ShouldSkipUpdateFunction`. params: see `ShouldSkipUpdateFunction`. Returns: A tuple: * First element is a scalar array of type bool. * Second element is a dictionary with keys: - `should_skip`: True iff `updates` contains an inf or a NaN. - `num_not_finite`: total number of inf and NaN found in `updates`. """ del gradient_step, params all_is_finite = [jnp.sum(jnp.logical_not(jnp.isfinite(p))) for p in jax.tree_util.tree_leaves(updates)] num_not_finite = jnp.sum(jnp.array(all_is_finite)) should_skip = num_not_finite > 0 return should_skip, dict(should_skip=should_skip, num_not_finite=num_not_finite) def skip_large_updates(updates: base.Updates, gradient_step: Array, params: Optional[base.Params], max_squared_norm: float) -> Tuple[Array, chex.ArrayTree]: """Returns True if the global norm square of `updates` is small enough. Args: updates: see `ShouldSkipUpdateFunction`. gradient_step: see `ShouldSkipUpdateFunction`. params: see `ShouldSkipUpdateFunction`. max_squared_norm: only updates with a norm square strictly less than this value will be accepted. Returns: A tuple: * First element is a scalar array of type bool. * Second element is a dictionary with keys: - `should_skip`: True iff square norm of `updates` is larger or equal than `max_squared_norm`. - `norm_squared`: overall norm square of the `updates`. """ del gradient_step, params norm_sq = jnp.sum( jnp.array([jnp.sum(p**2) for p in jax.tree_util.tree_leaves(updates)])) # This will also return True if `norm_sq` is NaN. should_skip = jnp.logical_not(norm_sq < max_squared_norm) return should_skip, dict(should_skip=should_skip, norm_squared=norm_sq) class MultiSteps: """An optimizer wrapper to accumulate gradients over multiple steps. This wrapper collects together the updates passed to its `update` function over consecutive steps until a given number of scheduled steps is reached. In each of these intermediate steps, the returned value from the optimizer is a tree of zeros of the same shape of the updates passed as input. Once the scheduled number of intermediate 'mini-steps' has been reached, the gradients accumulated to the current time will be passed to the wrapped optimizer's update function, (with the inner optimizer's state being updated appropriately) and then returned to the caller. The wrapper's accumulated gradients are then set back to zero and the process starts again. The number of mini-steps per gradient update is controlled by a function, and it can vary over training. This offers a means of varying batch size over training. """ def __init__( self, opt: base.GradientTransformation, every_k_schedule: Union[int, Callable[[Array], Array]], use_grad_mean: bool = True, should_skip_update_fn: Optional[ShouldSkipUpdateFunction] = None): """Initialiser. Args: opt: the wrapped optimizer. every_k_schedule: an int or f a function. * As a function, it returns how many mini-steps should be accumulated in a single gradient step. Its only argument is the current gradient step count. By varying the returned value, users can vary the overall training batch size. * If an `int`, this is the constant number of mini-steps per gradient update. use_grad_mean: if `True` (the default), gradients accumulated over multiple mini-steps are averaged. Otherwise, they are summed. should_skip_update_fn: if provided, this function is used to decide when to accept or reject the updates from a mini-step. When a mini-step is rejected, the inner state of `MultiSteps` is not updated. In other words, it is as if this mini-step never happened. For example: * to ignore updates containing inf or NaN, do `should_skip_update_fn=skip_not_finite`; * to ignore updates with a norm square larger then 42, do `should_skip_update_fn=functools.partial(skip_large_updates, max_norm_sq=42.)`. Note that the optimizer's state `MultiStepsState` contains a field `skip_state` in which debugging and monitoring information returned by `should_skip_update_fn` is written. """ self._opt = base.with_extra_args_support(opt) if isinstance(every_k_schedule, int): self._every_k_schedule = lambda step: every_k_schedule else: self._every_k_schedule = every_k_schedule self._use_grad_mean = use_grad_mean if self._use_grad_mean: # Use Welford algorithm for numerically stable aggregation of mean. self._acc_update = ( lambda grad, acc, *, n_acc: acc + (grad - acc) / (n_acc + 1)) else: self._acc_update = lambda grad, acc, *, n_acc: grad + acc if should_skip_update_fn is None: def should_skip_update_fn(*unused_args, **unused_kwargs): return jnp.array(False, dtype=jnp.bool_), () self._should_skip_update_fn = should_skip_update_fn @property def inner_opt(self): return self._opt def init(self, params: Any) -> MultiStepsState: """Builds and returns initial `MultiStepsState`.""" updates = _zeros_tree_like(params) gradient_step = jnp.zeros([], dtype=jnp.int32) _, skip_state = self._should_skip_update_fn(updates, gradient_step, params) init_state = MultiStepsState( mini_step=jnp.zeros([], dtype=jnp.int32), gradient_step=gradient_step, inner_opt_state=self._opt.init(params), acc_grads=updates, skip_state=skip_state) return init_state def update(self, updates: base.Updates, state: MultiStepsState, params: Optional[base.Params] = None, **extra_args: Any, ) -> Tuple[base.Updates, MultiStepsState]: """Accumulates gradients and proposes non-zero updates every `k_steps`.""" k_steps = self._every_k_schedule(state.gradient_step) should_skip_update, skip_state = self._should_skip_update_fn( updates, state.gradient_step, params) if (should_skip_update.dtype, should_skip_update.shape) != (jnp.bool_, ()): raise ValueError( 'The `should_skip_update_fn` function should return a boolean scalar ' f'array, but it returned an array of dtype {should_skip_update.dtype}' f' and shape {should_skip_update.shape}' ) # Note: we do not enclose variables to allow JAX to re-use memory buffers. def _final_step(state, params, acc_grads): final_updates, new_inner_state = self._opt.update( acc_grads, state.inner_opt_state, params=params, **extra_args) new_state = MultiStepsState( mini_step=jnp.zeros([], dtype=jnp.int32), gradient_step=numerics.safe_int32_increment(state.gradient_step), inner_opt_state=new_inner_state, acc_grads=_zeros_tree_like(acc_grads), skip_state=skip_state) return final_updates, new_state def _mid_step(state, params, acc_grads): updates_shape_dtype, _ = jax.eval_shape( self._opt.update, acc_grads, state.inner_opt_state, params=params) mid_updates = jax.tree_util.tree_map( lambda sd: jnp.zeros(sd.shape, sd.dtype), updates_shape_dtype) new_state = MultiStepsState( mini_step=numerics.safe_int32_increment(state.mini_step), gradient_step=state.gradient_step, inner_opt_state=state.inner_opt_state, acc_grads=acc_grads, skip_state=skip_state) return mid_updates, new_state def _do_update(updates, state, params): acc_grads = jax.tree_util.tree_map( lambda upd, acc: self._acc_update(upd, acc, n_acc=state.mini_step), updates, state.acc_grads) new_updates, new_state = jax.lax.cond( state.mini_step < k_steps - 1, _mid_step, _final_step, *(state, params, acc_grads)) return new_updates, new_state def _skip_update(updates, state, params): del updates, params multi_state_when_skip = MultiStepsState( mini_step=state.mini_step, gradient_step=state.gradient_step, inner_opt_state=state.inner_opt_state, acc_grads=state.acc_grads, skip_state=skip_state, ) zero_updates = _zeros_tree_like(state.acc_grads) return zero_updates, multi_state_when_skip new_updates, new_state = jax.lax.cond( should_skip_update, _skip_update, _do_update, *(updates, state, params) ) return new_updates, new_state def has_updated(self, state: Union[MultiStepsState, chex.ArrayTree]) -> Array: # Use `getattr` to bypass pytype checks. return jnp.logical_and( getattr(state, 'mini_step') == 0, getattr(state, 'gradient_step') > 0 ) def gradient_transformation(self) -> base.GradientTransformation: return base.GradientTransformation(init=self.init, update=self.update) class MaskedState(NamedTuple): """Maintains inner transform state for masked transformations.""" inner_state: Any class MaskedNode(NamedTuple): """A node used to mask out unspecified parts of a tree. This node is ignored when mapping functions across the tree e.g. using `jax.tree_util.tree_map` since it is a container without children. It can therefore be used to mask out parts of a tree. """ def masked( inner: base.GradientTransformation, mask: Union[base.PyTree, Callable[[base.Params], base.PyTree]] ) -> base.GradientTransformationExtraArgs: """Mask updates so only some are transformed, the rest are passed through. For example, it is common to skip weight decay for BatchNorm scale and all bias parameters. In many networks, these are the only parameters with only one dimension. So, you may create a mask function to mask these out as follows:: mask_fn = lambda p: jax.tree_util.tree_map(lambda x: x.ndim != 1, p) weight_decay = optax.masked(optax.add_decayed_weights(0.001), mask_fn) You may alternatively create the mask pytree upfront:: mask = jax.tree_util.tree_map(lambda x: x.ndim != 1, params) weight_decay = optax.masked(optax.add_decayed_weights(0.001), mask) For the ``inner`` transform, state will only be stored for the parameters that have a mask value of ``True``. Note that, when using ``tree_map_params``, it may be required to pass the argument `is_leaf=lambda v: isinstance(v, optax.MaskedNode)`, if the tree map needs to take additional arguments with the same shape as the original input tree. Args: inner: Inner transformation to mask. mask: a PyTree with same structure as (or a prefix of) the params PyTree, or a Callable that returns such a pytree given the params/updates. The leaves should be booleans, ``True`` for leaves/subtrees you want to apply the transformation to, and ``False`` for those you want to skip. The mask must be static for the gradient transformation to be jit-compilable. Returns: New ``GradientTransformationExtraArgs`` wrapping ``inner``. """ inner = base.with_extra_args_support(inner) def mask_pytree(pytree, mask_tree): return jax.tree_util.tree_map( lambda m, p: p if m else MaskedNode(), mask_tree, pytree ) def init_fn(params): # This is a workaround to make tree_map_params work with masking. # The API of `masked` takes a mask on construction, instead of at init. # This means that this gradient transformation can only work for parameter # trees that match the shape of the mask. Technically this breaks the API # of optax, and this causes tree_map_params to break. This is because # tree_map_params calls init with a placeholder in order to detect copies # of the parameter tree. As a (slightly ugly) workaround, we detect when # the init is being called by tree_map_params, and pass the placeholder # down without masking. This is safe, since tree_map_params does not impose # any particular constraints on the shape of the parameter tree, as long # as tree_map_params is being called on a tree with the correct structure. # See wrappers_test for proof that this works! if isinstance(params, state_utils._ParamsPlaceholder): # pylint:disable=protected-access return MaskedState(inner_state=inner.init(params)) mask_tree = mask(params) if callable(mask) else mask masked_params = mask_pytree(params, mask_tree) return MaskedState(inner_state=inner.init(masked_params)) def update_fn(updates, state, params=None, **extra_args): mask_tree = mask(updates) if callable(mask) else mask masked_updates = mask_pytree(updates, mask_tree) masked_params = None if params is None else mask_pytree(params, mask_tree) new_masked_updates, new_inner_state = inner.update( masked_updates, state.inner_state, masked_params, **extra_args) new_updates = jax.tree_util.tree_map( lambda m, new_u, old_u: new_u if m else old_u, mask_tree, new_masked_updates, updates) return new_updates, MaskedState(inner_state=new_inner_state) return base.GradientTransformationExtraArgs(init_fn, update_fn) class MaybeUpdateState(NamedTuple): """Maintains inner transform state and adds a step counter.""" inner_state: Any step: Array def maybe_update( inner: base.GradientTransformation, should_update_fn: Callable[[Array], Array] ) -> base.GradientTransformationExtraArgs: """Calls the inner update function only at certain steps. Creates a transformation wrapper which counts the number of times the `update` function has been called. This counter is passed to the `should_update_fn` to decide when to call the inner update function. When not calling the inner update function, the `updates` and the inner state are left untouched and just passed through. The step counter is increased regardless. Args: inner: the inner transformation. should_update_fn: this function takes in a step counter (array of shape [] and dtype int32), and returns a boolean array of shape []. Returns: A new ``GradientTransformationExtraArgs``. """ inner = base.with_extra_args_support(inner) def init_fn(params): return MaybeUpdateState( inner_state=inner.init(params), step=jnp.zeros([], dtype=jnp.int32)) def update_fn(updates, state, params=None, **extra_args): def do_update(_): return inner.update(updates, state.inner_state, params, **extra_args) def reject_update(_): return updates, state.inner_state updates, new_inner_state = lax.cond( should_update_fn(state.step), do_update, reject_update, operand=None) return updates, MaybeUpdateState(new_inner_state, numerics.safe_int32_increment(state.step)) return base.GradientTransformationExtraArgs(init_fn, update_fn)
optax-master
optax/_src/wrappers.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `update.py`.""" from absl.testing import absltest import chex import jax import jax.numpy as jnp from optax._src import update class UpdateTest(chex.TestCase): @chex.all_variants def test_apply_updates(self): params = ({'a': jnp.ones((3, 2))}, jnp.ones((1,))) grads = jax.tree_util.tree_map(lambda t: 2 * t, params) exp_params = jax.tree_util.tree_map(lambda t: 3 * t, params) new_params = self.variant(update.apply_updates)(params, grads) chex.assert_trees_all_close( exp_params, new_params, atol=1e-10, rtol=1e-5) @chex.all_variants def test_apply_updates_mixed_precision(self): params = ( {'a': jnp.ones((3, 2), dtype=jnp.bfloat16)}, jnp.ones((1,), dtype=jnp.bfloat16)) grads = jax.tree_util.tree_map( lambda t: (2 * t).astype(jnp.float32), params) new_params = self.variant(update.apply_updates)(params, grads) for leaf in jax.tree_util.tree_leaves(new_params): assert leaf.dtype == jnp.bfloat16 @chex.all_variants def test_incremental_update(self): params_1 = ({'a': jnp.ones((3, 2))}, jnp.ones((1,))) params_2 = jax.tree_util.tree_map(lambda t: 2 * t, params_1) exp_params = jax.tree_util.tree_map(lambda t: 1.5 * t, params_1) new_params = self.variant( update.incremental_update)(params_2, params_1, 0.5) chex.assert_trees_all_close( exp_params, new_params, atol=1e-10, rtol=1e-5) @chex.all_variants def test_periodic_update(self): params_1 = ({'a': jnp.ones((3, 2))}, jnp.ones((1,))) params_2 = jax.tree_util.tree_map(lambda t: 2 * t, params_1) update_period = 5 update_fn = self.variant(update.periodic_update) for j in range(3): for i in range(1, update_period): new_params = update_fn( params_2, params_1, j*update_period+i, update_period) chex.assert_trees_all_close( params_1, new_params, atol=1e-10, rtol=1e-5) new_params = update_fn( params_2, params_1, (j+1)*update_period, update_period) chex.assert_trees_all_close( params_2, new_params, atol=1e-10, rtol=1e-5) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/update_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradient transformations.""" import functools from typing import Any, Callable, NamedTuple, Optional, Union import chex import jax import jax.numpy as jnp from optax._src import base from optax._src import clipping from optax._src import numerics from optax._src import utils from optax._src import wrappers # pylint:disable=no-value-for-parameter _abs_sq = numerics.abs_sq class TraceState(NamedTuple): """Holds an aggregation of past updates.""" trace: base.Params def trace( decay: float, nesterov: bool = False, accumulator_dtype: Optional[Any] = None, ) -> base.GradientTransformation: """Compute a trace of past updates. Note: `trace` and `ema` have very similar but distinct updates; `trace = decay * trace + t`, while `ema = decay * ema + (1-decay) * t`. Both are frequently found in the optimization literature. Args: decay: Decay rate for the trace of past updates. nesterov: Whether to use Nesterov momentum. accumulator_dtype: Optional `dtype` to be used for the accumulator; if `None` then the `dtype` is inferred from `params` and `updates`. Returns: A `GradientTransformation` object. """ accumulator_dtype = utils.canonicalize_dtype(accumulator_dtype) def init_fn(params): return TraceState( trace=jax.tree_util.tree_map( lambda t: jnp.zeros_like(t, dtype=accumulator_dtype), params)) def update_fn(updates, state, params=None): del params f = lambda g, t: g + decay * t new_trace = jax.tree_util.tree_map(f, updates, state.trace) updates = ( jax.tree_util.tree_map(f, updates, new_trace) if nesterov else new_trace) new_trace = utils.cast_tree(new_trace, accumulator_dtype) return updates, TraceState(trace=new_trace) return base.GradientTransformation(init_fn, update_fn) def update_moment(updates, moments, decay, order): """Compute the exponential moving average of the `order`-th moment.""" return jax.tree_util.tree_map( lambda g, t: (1 - decay) * (g ** order) + decay * t, updates, moments) def update_infinity_moment(updates, moments, decay, eps): """Compute the exponential moving average of the infinity norm.""" return jax.tree_util.tree_map( lambda g, t: jnp.maximum(jnp.abs(g) + eps, decay * t), updates, moments) def update_moment_per_elem_norm(updates, moments, decay, order): """Compute the EMA of the `order`-th moment of the element-wise norm.""" def orderth_norm(g): if jnp.isrealobj(g): return g ** order else: half_order = order / 2 # JAX generates different HLO for int and float `order` if half_order.is_integer(): half_order = int(half_order) return _abs_sq(g) ** half_order return jax.tree_util.tree_map( lambda g, t: (1 - decay) * orderth_norm(g) + decay * t, updates, moments) @functools.partial(jax.jit, inline=True) def bias_correction(moment, decay, count): """Performs bias correction. It becomes a no-op as count goes to infinity.""" # The conversion to the data type of the moment ensures that bfloat16 remains # bfloat16 in the optimizer state. This conversion has to be done after # `bias_correction_` is calculated as calculating `decay**count` in low # precision can result in it being rounded to 1 and subsequently a # "division by zero" error. bias_correction_ = 1 - decay**count # Perform division in the original precision. return jax.tree_util.tree_map( lambda t: t / bias_correction_.astype(t.dtype), moment) def _reject_complex(params): if any(jnp.iscomplexobj(x) for x in jax.tree_util.tree_leaves(params)): raise ValueError('This transformation does not support complex parameters.') class EmaState(NamedTuple): """Holds an exponential moving average of past updates.""" count: chex.Array # shape=(), dtype=jnp.int32. ema: base.Params def ema( decay: float, debias: bool = True, accumulator_dtype: Optional[Any] = None ) -> base.GradientTransformation: """Compute an exponential moving average of past updates. Note: `trace` and `ema` have very similar but distinct updates; `ema = decay * ema + (1-decay) * t`, while `trace = decay * trace + t`. Both are frequently found in the optimization literature. Args: decay: Decay rate for the exponential moving average. debias: Whether to debias the transformed gradient. accumulator_dtype: Optional `dtype` to used for the accumulator; if `None` then the `dtype` is inferred from `params` and `updates`. Returns: A `GradientTransformation` object. """ accumulator_dtype = utils.canonicalize_dtype(accumulator_dtype) def init_fn(params): return EmaState( count=jnp.zeros([], jnp.int32), ema=jax.tree_util.tree_map( lambda t: jnp.zeros_like(t, dtype=accumulator_dtype), params)) def update_fn(updates, state, params=None): del params updates = new_ema = update_moment(updates, state.ema, decay, order=1) count_inc = utils.safe_int32_increment(state.count) if debias: updates = bias_correction(new_ema, decay, count_inc) state_ema = utils.cast_tree(new_ema, accumulator_dtype) return updates, EmaState(count=count_inc, ema=state_ema) return base.GradientTransformation(init_fn, update_fn) class ScaleByRssState(NamedTuple): """State holding the sum of gradient squares to date.""" sum_of_squares: base.Updates def scale_by_rss( initial_accumulator_value: float = 0.1, eps: float = 1e-7 ) -> base.GradientTransformation: """Rescale updates by the root of the sum of all squared gradients to date. References: [Duchi et al, 2011](https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) [McMahan et al., 2010](https://arxiv.org/abs/1002.4908) Args: initial_accumulator_value: Starting value for accumulators, must be >= 0. eps: A small floating point value to avoid zero denominator. Returns: A `GradientTransformation` object. """ def init_fn(params): sum_of_squares = jax.tree_util.tree_map( lambda t: jnp.full_like(t, initial_accumulator_value), params) return ScaleByRssState(sum_of_squares=sum_of_squares) def update_fn(updates, state, params=None): del params sum_of_squares = jax.tree_util.tree_map( lambda g, t: _abs_sq(g) + t, updates, state.sum_of_squares) inv_sqrt_g_square = jax.tree_util.tree_map( lambda t: jnp.where(t > 0, jax.lax.rsqrt(t + eps), 0.0), sum_of_squares) updates = jax.tree_util.tree_map( lambda scale, g: scale * g, inv_sqrt_g_square, updates) return updates, ScaleByRssState(sum_of_squares=sum_of_squares) return base.GradientTransformation(init_fn, update_fn) class ScaleByRmsState(NamedTuple): """State for exponential root mean-squared (RMS)-normalized updates.""" nu: base.Updates def scale_by_rms( decay: float = 0.9, eps: float = 1e-8, initial_scale: float = 0. ) -> base.GradientTransformation: """Rescale updates by the root of the exp. moving avg of the square. References: [Hinton](www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) Args: decay: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. initial_scale: Initial value for second moment. Returns: A `GradientTransformation` object. """ def init_fn(params): nu = jax.tree_util.tree_map( lambda n: jnp.full_like(n, initial_scale), params) # second moment return ScaleByRmsState(nu=nu) def update_fn(updates, state, params=None): del params nu = update_moment_per_elem_norm(updates, state.nu, decay, 2) updates = jax.tree_util.tree_map( lambda g, n: g * jax.lax.rsqrt(n + eps), updates, nu) return updates, ScaleByRmsState(nu=nu) return base.GradientTransformation(init_fn, update_fn) class ScaleByRStdDevState(NamedTuple): """State for centered exponential moving average of squares of updates.""" mu: base.Updates nu: base.Updates def scale_by_stddev( decay: float = 0.9, eps: float = 1e-8, initial_scale: float = 0. ) -> base.GradientTransformation: """Rescale updates by the root of the centered exp. moving average of squares. References: [Hinton](www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) Args: decay: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. initial_scale: Initial value for second moment. Returns: A `GradientTransformation` object. """ def init_fn(params): mu = jax.tree_util.tree_map(jnp.zeros_like, params) # First moment nu = jax.tree_util.tree_map( lambda n: jnp.full_like(n, initial_scale), params) # second moment return ScaleByRStdDevState(mu=mu, nu=nu) def update_fn(updates, state, params=None): del params mu = update_moment(updates, state.mu, decay, 1) nu = update_moment_per_elem_norm(updates, state.nu, decay, 2) updates = jax.tree_util.tree_map( lambda g, m, n: g * jax.lax.rsqrt(n - _abs_sq(m) + eps), updates, mu, nu) return updates, ScaleByRStdDevState(mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) class ScaleByAdamState(NamedTuple): """State for the Adam algorithm.""" count: chex.Array # shape=(), dtype=jnp.int32. mu: base.Updates nu: base.Updates def scale_by_adam( b1: float = 0.9, b2: float = 0.999, eps: float = 1e-8, eps_root: float = 0.0, mu_dtype: Optional[chex.ArrayDType] = None, ) -> base.GradientTransformation: """Rescale updates according to the Adam algorithm. References: [Kingma et al, 2014](https://arxiv.org/abs/1412.6980) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. mu_dtype: Optional `dtype` to be used for the first order accumulator; if `None` then the `dtype` is inferred from `params` and `updates`. Returns: A `GradientTransformation` object. """ mu_dtype = utils.canonicalize_dtype(mu_dtype) def init_fn(params): mu = jax.tree_util.tree_map( # First moment lambda t: jnp.zeros_like(t, dtype=mu_dtype), params) nu = jax.tree_util.tree_map(jnp.zeros_like, params) # Second moment return ScaleByAdamState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu) def update_fn(updates, state, params=None): del params mu = update_moment(updates, state.mu, b1, 1) nu = update_moment_per_elem_norm(updates, state.nu, b2, 2) count_inc = numerics.safe_int32_increment(state.count) mu_hat = bias_correction(mu, b1, count_inc) nu_hat = bias_correction(nu, b2, count_inc) updates = jax.tree_util.tree_map( lambda m, v: m / (jnp.sqrt(v + eps_root) + eps), mu_hat, nu_hat) mu = utils.cast_tree(mu, mu_dtype) return updates, ScaleByAdamState(count=count_inc, mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) class ScaleByAmsgradState(NamedTuple): """State for the AMSGrad algorithm.""" count: chex.Array # shape=(), dtype=jnp.int32. mu: base.Updates nu: base.Updates nu_max: base.Updates def scale_by_amsgrad( b1: float = 0.9, b2: float = 0.999, eps: float = 1e-8, eps_root: float = 0.0, mu_dtype: Optional[chex.ArrayDType] = None, ) -> base.GradientTransformation: """Rescale updates according to the AMSGrad algorithm. References: [Reddi et al, 2018](https://openreview.net/forum?id=ryQu7f-RZ) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. mu_dtype: Optional `dtype` to be used for the first order accumulator; if `None` then the `dtype` is inferred from `params` and `updates`. Returns: A `GradientTransformation` object. """ mu_dtype = utils.canonicalize_dtype(mu_dtype) def init_fn(params): mu = jax.tree_util.tree_map( # First moment lambda t: jnp.zeros_like(t, dtype=mu_dtype), params) nu = jax.tree_util.tree_map(jnp.zeros_like, params) # Second moment nu_max = jax.tree_util.tree_map(jnp.zeros_like, params) return ScaleByAmsgradState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu, nu_max=nu_max) def update_fn(updates, state, params=None): del params mu = update_moment(updates, state.mu, b1, 1) nu = update_moment_per_elem_norm(updates, state.nu, b2, 2) count_inc = numerics.safe_int32_increment(state.count) mu_hat = bias_correction(mu, b1, count_inc) nu_hat = bias_correction(nu, b2, count_inc) nu_max = jax.tree_util.tree_map(jnp.maximum, state.nu_max, nu_hat) updates = jax.tree_util.tree_map( lambda m, v: m / (jnp.sqrt(v + eps_root) + eps), mu_hat, nu_max) mu = utils.cast_tree(mu, mu_dtype) return updates, ScaleByAmsgradState(count=count_inc, mu=mu, nu=nu, nu_max=nu_max) return base.GradientTransformation(init_fn, update_fn) def scale_by_adamax( b1: float = 0.9, b2: float = 0.999, eps: float = 1e-8 ) -> base.GradientTransformation: """Rescale updates according to the Adamax algorithm. References: [Kingma et al, 2014](https://arxiv.org/abs/1412.6980) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted maximum of grads. eps: Term added to the denominator to improve numerical stability. Returns: A `GradientTransformation` object. """ def init_fn(params): mu = jax.tree_util.tree_map(jnp.zeros_like, params) # First moment nu = jax.tree_util.tree_map(jnp.zeros_like, params) # Infinite moment return ScaleByAdamState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu) def update_fn(updates, state, params=None): del params count_inc = numerics.safe_int32_increment(state.count) mu = update_moment(updates, state.mu, b1, 1) nu = update_infinity_moment(updates, state.nu, b2, eps) # Bias correction for mean. No bias correction needed for infinity moment. mu_hat = bias_correction(mu, b1, count_inc) updates = jax.tree_util.tree_map(lambda m, v: m / v, mu_hat, nu) return updates, ScaleByAdamState(count=count_inc, mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) class ScaleByLionState(NamedTuple): """State for the Lion algorithm.""" count: chex.Array # shape=(), dtype=jnp.int32. mu: base.Updates def scale_by_lion( b1: float = 0.9, b2: float = 0.99, mu_dtype: Optional[chex.ArrayDType] = None, ) -> base.GradientTransformation: """Rescale updates according to the Lion algorithm. References: [Chen et al, 2023](https://arxiv.org/abs/2302.06675) Args: b1: Rate for combining the momentum and the current grad. b2: Decay rate for the exponentially weighted average of grads. mu_dtype: Optional `dtype` to be used for the momentum; if `None` then the `dtype is inferred from `params` and `updates`. Returns: A `GradientTransformation` object. """ mu_dtype = utils.canonicalize_dtype(mu_dtype) def init_fn(params): mu = jax.tree_util.tree_map( # moment lambda t: jnp.zeros_like(t, dtype=mu_dtype), params) return ScaleByLionState(count=jnp.zeros([], jnp.int32), mu=mu) def update_fn(updates, state, params=None): del params updates_new = jax.tree_util.tree_map( lambda g, m: jnp.sign((1. - b1) * g + b1 * m), updates, state.mu) mu = update_moment(updates, state.mu, b2, 1) mu = utils.cast_tree(mu, mu_dtype) count_inc = numerics.safe_int32_increment(state.count) return updates_new, ScaleByLionState(count=count_inc, mu=mu) return base.GradientTransformation(init_fn, update_fn) ScaleState = base.EmptyState def scale( step_size: float ) -> base.GradientTransformation: """Scale updates by some fixed scalar `step_size`. Args: step_size: A scalar corresponding to a fixed scaling factor for updates. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return ScaleState() def update_fn(updates, state, params=None): del params updates = jax.tree_util.tree_map(lambda g: step_size * g, updates) return updates, state return base.GradientTransformation(init_fn, update_fn) def scale_by_param_block_norm( min_scale: float = 1e-3 ) -> base.GradientTransformation: """Scale updates for each param block by the norm of that block's parameters. A `block` is here a weight vector (e.g. in a Linear layer) or a weight matrix (e.g. in a convolutional layer) appearing as a leaf in the grads/param pytree. Args: min_scale: Minimum scaling factor. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return base.EmptyState() def update_fn(updates, state, params): if params is None: raise ValueError(base.NO_PARAMS_MSG) updates = jax.tree_util.tree_map( lambda u, p: u * numerics.safe_norm(p, min_scale), updates, params) return updates, state return base.GradientTransformation(init_fn, update_fn) def scale_by_param_block_rms( min_scale: float = 1e-3 ) -> base.GradientTransformation: """Scale updates by rms of the gradient for each param vector or matrix. A `block` is here a weight vector (e.g. in a Linear layer) or a weight matrix (e.g. in a convolutional layer) appearing as a leaf in the grads/param pytree. Args: min_scale: Minimum scaling factor. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return base.EmptyState() def update_fn(updates, state, params): if params is None: raise ValueError(base.NO_PARAMS_MSG) updates = jax.tree_util.tree_map( lambda u, p: u * numerics.safe_root_mean_squares(p, min_scale), updates, params) return updates, state return base.GradientTransformation(init_fn, update_fn) class ScaleByBeliefState(NamedTuple): """State for the rescaling by AdaBelief algorithm.""" count: chex.Array # shape=(), dtype=jnp.int32. mu: base.Updates nu: base.Updates def scale_by_belief( b1: float = 0.9, b2: float = 0.999, eps: float = 1e-16, eps_root: float = 1e-16 ) -> base.GradientTransformation: """Rescale updates according to the AdaBelief algorithm. References: [Zhuang et al, 2020](https://arxiv.org/abs/2010.07468) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of variance of grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the second moment of the prediction error to improve numerical stability. If backpropagating gradients through the gradient transformation (e.g. for meta-learning), this must be non-zero. Returns: A `GradientTransformation` object. """ def init_fn(params): mu = jax.tree_util.tree_map(jnp.zeros_like, params) # First moment s = jax.tree_util.tree_map(jnp.zeros_like, params) # Second Central moment return ScaleByBeliefState(count=jnp.zeros([], jnp.int32), mu=mu, nu=s) def update_fn(updates, state, params=None): del params mu = update_moment(updates, state.mu, b1, 1) prediction_error = jax.tree_util.tree_map( lambda g, m: g-m, updates, state.mu) nu = update_moment_per_elem_norm(prediction_error, state.nu, b2, 2) nu = jax.tree_util.tree_map(lambda v: v + eps_root, nu) count_inc = numerics.safe_int32_increment(state.count) mu_hat = bias_correction(mu, b1, count_inc) nu_hat = bias_correction(nu, b2, count_inc) updates = jax.tree_util.tree_map( lambda m, v: m / (jnp.sqrt(v) + eps), mu_hat, nu_hat) return updates, ScaleByBeliefState(count=count_inc, mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) def scale_by_yogi( b1: float = 0.9, b2: float = 0.999, eps: float = 1e-3, eps_root: float = 0.0, initial_accumulator_value: float = 1e-6 ) -> base.GradientTransformation: """Rescale updates according to the Yogi algorithm. Supports complex numbers, see https://gist.github.com/wdphy16/118aef6fb5f82c49790d7678cf87da29 References: [Zaheer et al, 2018](https://papers.nips.cc/paper/2018/hash/90365351ccc7437a1309dc64e4db32a3-Abstract.html) #pylint:disable=line-too-long Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of variance of grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. initial_accumulator_value: The starting value for accumulators. Only positive values are allowed. Returns: A `GradientTransformation` object. """ def init_fn(params): value_like = lambda p: jnp.full_like(p, initial_accumulator_value) mu = jax.tree_util.tree_map(value_like, params) # First moment nu = jax.tree_util.tree_map(value_like, params) # Second Central moment return ScaleByAdamState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu) def update_fn(updates, state, params=None): del params mu = update_moment(updates, state.mu, b1, 1) nu = jax.tree_util.tree_map( lambda g, v: v - (1 - b2) * jnp.sign(v - _abs_sq(g)) * _abs_sq(g), updates, state.nu) count_inc = numerics.safe_int32_increment(state.count) mu_hat = bias_correction(mu, b1, count_inc) nu_hat = bias_correction(nu, b2, count_inc) updates = jax.tree_util.tree_map( lambda m, v: m / (jnp.sqrt(v + eps_root) + eps), mu_hat, nu_hat) return updates, ScaleByAdamState(count=count_inc, mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) def scale_by_radam( b1: float = 0.9, b2: float = 0.999, eps: float = 1e-8, eps_root: float = 0.0, threshold: float = 5.0 ) -> base.GradientTransformation: """Rescale updates according to the Rectified Adam algorithm. References: [Liu et al, 2020](https://arxiv.org/abs/1908.03265) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. threshold: Threshold for variance tractability. Returns: A `GradientTransformation` object. """ ro_inf = 2./(1 - b2) - 1 def _radam_update(params): ro = params[0] mu_hat = params[1] nu_hat = params[2] r = jnp.sqrt((ro - 4)*(ro - 2)*ro_inf/((ro_inf - 4)*(ro_inf - 2)*ro)) updates = jax.tree_util.tree_map( lambda m, v: r*m / (jnp.sqrt(v + eps_root) + eps), mu_hat, nu_hat) return updates def init_fn(params): mu = jax.tree_util.tree_map(jnp.zeros_like, params) # First moment nu = jax.tree_util.tree_map(jnp.zeros_like, params) # Second moment return ScaleByAdamState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu) def update_fn(updates, state, params=None): del params mu = update_moment(updates, state.mu, b1, 1) nu = update_moment_per_elem_norm(updates, state.nu, b2, 2) count_inc = numerics.safe_int32_increment(state.count) b2t = b2**count_inc ro = ro_inf - 2 * count_inc * b2t / (1 - b2t) mu_hat = bias_correction(mu, b1, count_inc) nu_hat = bias_correction(nu, b2, count_inc) updates = jax.lax.cond( ro >= threshold, _radam_update, lambda _: mu_hat, (ro, mu_hat, nu_hat)) return updates, ScaleByAdamState(count=count_inc, mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) AddDecayedWeightsState = base.EmptyState def add_decayed_weights( weight_decay: Union[float, jax.Array] = 0.0, mask: Optional[Union[Any, Callable[[base.Params], Any]]] = None ) -> base.GradientTransformation: """Add parameter scaled by `weight_decay`. Args: weight_decay: A scalar weight decay rate. mask: A tree with same structure as (or a prefix of) the params PyTree, or a Callable that returns such a pytree given the params/updates. The leaves should be booleans, `True` for leaves/subtrees you want to apply the transformation to, and `False` for those you want to skip. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return AddDecayedWeightsState() def update_fn(updates, state, params): if params is None: raise ValueError(base.NO_PARAMS_MSG) updates = jax.tree_util.tree_map( lambda g, p: g + weight_decay * p, updates, params) return updates, state # If mask is not `None`, apply mask to the gradient transformation. # E.g. it is common to skip weight decay on bias units and batch stats. if mask is not None: return wrappers.masked( base.GradientTransformation(init_fn, update_fn), mask) return base.GradientTransformation(init_fn, update_fn) class ScaleByScheduleState(NamedTuple): """Maintains count for scale scheduling.""" count: chex.Array # shape=(), dtype=jnp.int32 def scale_by_schedule( step_size_fn: base.Schedule ) -> base.GradientTransformation: """Scale updates using a custom schedule for the `step_size`. Args: step_size_fn: A function that takes an update count as input and proposes the step_size to multiply the updates by. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return ScaleByScheduleState(count=jnp.zeros([], jnp.int32)) def update_fn(updates, state, params=None): del params step_size = step_size_fn(state.count) updates = jax.tree_util.tree_map( lambda g: jnp.array(step_size, dtype=g.dtype) * g, updates) return updates, ScaleByScheduleState( count=numerics.safe_int32_increment(state.count)) return base.GradientTransformation(init_fn, update_fn) class ScaleByTrustRatioState(NamedTuple): """The scale and decay trust ratio transformation is stateless.""" def scale_by_trust_ratio( min_norm: float = 0.0, trust_coefficient: float = 1., eps: float = 0., ) -> base.GradientTransformation: """Scale updates by `trust ratio`. References: [You et. al 2020](https://arxiv.org/abs/1904.00962) Args: min_norm: Minimum norm for params and gradient norms; by default is zero. trust_coefficient: A multiplier for the trust ratio. eps: Additive constant added to the denominator for numerical stability. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return ScaleByTrustRatioState() def update_fn(updates, state, params): if params is None: raise ValueError(base.NO_PARAMS_MSG) def _scale_update(update, param): # Clip norms to minimum value, by default no clipping. param_norm = numerics.safe_norm(param, min_norm) update_norm = numerics.safe_norm(update, min_norm) trust_ratio = trust_coefficient * param_norm / (update_norm + eps) # If no minimum norm clipping is used # Set trust_ratio to 1 in case where parameters would never be updated. zero_norm = jnp.logical_or(param_norm == 0., update_norm == 0.) safe_trust_ratio = jnp.where( zero_norm, jnp.array(1.0, dtype=param.dtype), trust_ratio) return update * safe_trust_ratio updates = jax.tree_util.tree_map(_scale_update, updates, params) return updates, state return base.GradientTransformation(init_fn, update_fn) class AddNoiseState(NamedTuple): """State for adding gradient noise. Contains a count for annealing.""" count: chex.Array rng_key: chex.PRNGKey def add_noise( eta: float, gamma: float, seed: int ) -> base.GradientTransformation: """Add gradient noise. References: [Neelakantan et al, 2014](https://arxiv.org/abs/1511.06807) Args: eta: Base variance of the gaussian noise added to the gradient. gamma: Decay exponent for annealing of the variance. seed: Seed for random number generation. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return AddNoiseState( count=jnp.zeros([], jnp.int32), rng_key=jax.random.PRNGKey(seed)) def update_fn(updates, state, params=None): # pylint: disable=missing-docstring del params num_vars = len(jax.tree_util.tree_leaves(updates)) treedef = jax.tree_util.tree_structure(updates) count_inc = numerics.safe_int32_increment(state.count) variance = eta / count_inc**gamma standard_deviation = jnp.sqrt(variance) all_keys = jax.random.split(state.rng_key, num=num_vars + 1) noise = jax.tree_util.tree_map( lambda g, k: jax.random.normal(k, shape=g.shape, dtype=g.dtype), updates, jax.tree_util.tree_unflatten(treedef, all_keys[1:])) updates = jax.tree_util.tree_map( lambda g, n: g + standard_deviation.astype(g.dtype) * n, updates, noise) return updates, AddNoiseState(count=count_inc, rng_key=all_keys[0]) return base.GradientTransformation(init_fn, update_fn) class ApplyEvery(NamedTuple): """Contains a counter and a gradient accumulator.""" count: chex.Array grad_acc: base.Updates def apply_every( k: int = 1 ) -> base.GradientTransformation: """Accumulate gradients and apply them every k steps. Note that if this transformation is part of a chain, the states of the other transformations will still be updated at every step. In particular, using `apply_every` with a batch size of N/2 and k=2 is not necessarily equivalent to not using `apply_every` with a batch size of N. If this equivalence is important for you, consider using the `optax.MultiSteps`. Args: k: Emit non-zero gradients every k steps, otherwise accumulate them. Returns: A `GradientTransformation` object. """ def init_fn(params): grad_acc = jax.tree_util.tree_map(jnp.zeros_like, params) return ApplyEvery(count=jnp.zeros([], jnp.int32), grad_acc=grad_acc) def update_fn(updates, state, params=None): del params c = state.count % k acc = c != 0 grad_acc = jax.tree_util.tree_map( lambda g, ga: acc * ga + g, updates, state.grad_acc) emit = c == (k - 1) updates = jax.tree_util.tree_map(lambda ga: emit * ga, grad_acc) count_inc = numerics.safe_int32_increment(state.count) return updates, ApplyEvery(count=count_inc % k, grad_acc=grad_acc) return base.GradientTransformation(init_fn, update_fn) def _subtract_mean(g): if len(g.shape) > 1: return g - g.mean(tuple(range(1, len(g.shape))), keepdims=True) else: return g CentralState = base.EmptyState def centralize() -> base.GradientTransformation: """Centralize gradients. References: [Yong et al, 2020](https://arxiv.org/abs/2004.01461) Returns: A `GradientTransformation` object. """ def init_fn(params): del params return CentralState() def update_fn(updates, state, params=None): del params updates = jax.tree_util.tree_map(_subtract_mean, updates) return updates, state return base.GradientTransformation(init_fn, update_fn) class ScaleBySM3State(NamedTuple): """State for the SM3 algorithm.""" mu: base.Updates nu: base.Updates def scale_by_sm3( b1: float = 0.9, b2: float = 1.0, eps: float = 1e-8 ) -> base.GradientTransformation: """Scale updates by `sm3`. References: [Anil et. al 2019](https://arxiv.org/abs/1901.11150) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. Returns: A `GradientTransformation` object. """ def zeros_for_dim(p): return [jnp.zeros([s]) for s in p.shape] def init_fn(params): _reject_complex(params) mu = jax.tree_util.tree_map(zeros_for_dim, params) nu = jax.tree_util.tree_map(jnp.zeros_like, params) return ScaleBySM3State(mu, nu) def _expanded_shape(shape, axis): # Replaces a `shape` of [M, N, K] with 1 in all dimensions except for i. # For eg: i = 1 returns [1, N, 1]. rank = len(shape) return [1] * axis + [shape[axis]] + [1] * (rank - axis - 1) def _new_accum(g, v): coeffs = ((1.0 - b2) if b2 != 1.0 else 1.0, b2) if g.ndim < 2: return coeffs[0]*g**2 + coeffs[1]*v[0] else: return coeffs[0]*g**2 + coeffs[1]*functools.reduce(jnp.minimum, v) def _new_mu(g, i): if g.ndim < 2: return g else: return jnp.max(g, axis=other_axes(i, g.ndim)) def other_axes(idx, ndim): return list(range(idx)) + list(range(idx+1, ndim)) def update_fn(updates, state, params=None): del params mu = jax.tree_util.tree_map( lambda g, v: # pylint:disable=g-long-lambda [jnp.reshape(v[i], _expanded_shape(g.shape, i)) for i in range(g.ndim)], updates, state.mu) accum = jax.tree_util.tree_map(_new_accum, updates, mu) accum_inv_sqrt = jax.tree_util.tree_map( lambda t: jnp.where(t > 0, jax.lax.rsqrt(t + eps), 0.0), accum) up = jax.tree_util.tree_map(lambda g, a: g*a, updates, accum_inv_sqrt) nu = update_moment(up, state.nu, b1, 1) mu = jax.tree_util.tree_map( lambda g: [_new_mu(g, i) for i in range(g.ndim)], accum) return nu, ScaleBySM3State(mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) class ScaleByNovogradState(NamedTuple): """State for Novograd.""" count: chex.Array mu: base.Updates nu: base.Updates def scale_by_novograd( b1: float = 0.9, b2: float = 0.25, eps: float = 1e-8, eps_root: float = 0.0, weight_decay: float = 0.0, mu_dtype: Optional[chex.ArrayDType] = None, ) -> base.GradientTransformation: """Computes NovoGrad updates. References: [Ginsburg et al, 2019](https://arxiv.org/abs/1905.11286) Args: b1: A decay rate for the exponentially weighted average of grads. b2: A decay rate for the exponentially weighted average of squared grads. eps: A term added to the denominator to improve numerical stability. eps_root: A term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. weight_decay: A scalar weight decay rate. mu_dtype: An optional `dtype` to be used for the first order accumulator; if `None` then the `dtype` is inferred from `params` and `updates`. Returns: The corresponding `GradientTransformation`. """ mu_dtype = utils.canonicalize_dtype(mu_dtype) def init_fn(params): mu = jax.tree_util.tree_map( # First moment lambda t: jnp.zeros_like(t, dtype=mu_dtype), params) nu = jax.tree_util.tree_map(lambda _: 0.0, params) # Second moment return ScaleByNovogradState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu) def nu_addition(grads): return jnp.linalg.norm(grads)**2 def mu_addition(grads, params, nu): return grads / (jnp.sqrt(nu + eps_root) + eps) + weight_decay * params def init_nu(grads, nu): del nu return jax.tree_util.tree_map(nu_addition, grads) def update_nu(grads, nu): updates = jax.tree_util.tree_map(nu_addition, grads) return update_moment(updates, nu, b2, 1) def init_mu(grads, params, mu, nu): del mu return jax.tree_util.tree_map(mu_addition, grads, params, nu) def update_mu(grads, params, mu, nu): updates = jax.tree_util.tree_map(mu_addition, grads, params, nu) return jax.tree_util.tree_map(lambda m, u: b1 * m + u, mu, updates) # Second moment def update_fn(updates, state, params): count_inc = numerics.safe_int32_increment(state.count) nu = jax.lax.cond(count_inc == 1, init_nu, update_nu, updates, state.nu) mu = jax.lax.cond(count_inc == 1, init_mu, update_mu, updates, params, state.mu, nu) mu = utils.cast_tree(mu, mu_dtype) updates = mu return updates, ScaleByNovogradState(count=count_inc, mu=mu, nu=nu) return base.GradientTransformation(init_fn, update_fn) def scale_by_optimistic_gradient(alpha: float = 1.0, beta: float = 1.0 ) -> base.GradientTransformation: """Compute generalized optimistic gradients. References: [Mokhtari et al, 2019](https://arxiv.org/abs/1901.08511v2) Args: alpha: Coefficient for generalized optimistic gradient descent. beta: Coefficient for negative momentum. Returns: A `GradientTransformation` object. """ def init_fn(params): prev_grads = jax.tree_util.tree_map(jnp.zeros_like, params) return TraceState(trace=prev_grads) def update_fn(updates, state, params=None): del params new_updates = jax.tree_util.tree_map( lambda grad_t, grad_tm1: (alpha + beta) * grad_t - beta * grad_tm1, updates, state.trace) return new_updates, TraceState(trace=updates) return base.GradientTransformation(init_fn, update_fn) class ScaleByDistanceOverGradientsState(NamedTuple): """State for scale_by_distance_over_gradients.""" max_dist: base.OptState grad_sum_of_squares: base.OptState init_params: base.OptState def scale_by_distance_over_gradients( reps_rel=1e-6, eps=1e-8, param_dtype=jnp.float32, global_scale=1.0 ) -> base.GradientTransformation: """Distance-over-gradients learning rate-free optimizer. This implementation stores a single copy of the model parameters, plus two scalars per parameter array. It is equivalent to "Layer-wise DoG" (LDoG) in the paper. The authors recommend using model averaging with this optimizer. References: ["DoG is SGD’s Best Friend: A Parameter-Free Dynamic Step Size Schedule"](https://arxiv.org/pdf/2302.12022.pdf) Args: reps_rel: Used to compute initial learning rate. Recommended values are 1e-4 for models using batch norm, 1e-6 otherwise. eps: Small loading term to avoid divide-by-zero errors. param_dtype: dtype for storing initial parameters. global_scale: Global scale factor, typically 1.0 or -1.0 Returns: A `GradientTransformation` object. """ def _l2(x, y=0.0): return jnp.sqrt(jnp.square(x - y).sum()) def init_fn(params): return ScaleByDistanceOverGradientsState( # Initial distance (needed to prevent zero step sizes). jax.tree_util.tree_map(lambda x: reps_rel * (1 + _l2(x)), params), # Initial gradient sum-of-squares. jax.tree_util.tree_map(lambda x: jnp.zeros(1), params), # Initial params, cast to preferred precision. jax.tree_map(lambda x: x.astype(param_dtype), params), ) def update_fn(updates, state: ScaleByDistanceOverGradientsState, params): # update max distance max_dist = jax.tree_map( lambda d, x, y: jnp.maximum(d, _l2(x, y)), state.max_dist, params, state.init_params, ) # update gradient sum-of-squares g_sos = jax.tree_map( lambda x, y: x + jnp.square(y).sum(), state.grad_sum_of_squares, updates ) def _tx(g, d, g_sos): """Apply the transformation.""" eta = global_scale * (d / jnp.sqrt(g_sos + eps)) return eta * g updates = jax.tree_map(_tx, max_dist, g_sos, updates) # new state state = ScaleByDistanceOverGradientsState( max_dist, g_sos, state.init_params ) return updates, state return base.GradientTransformation(init_fn, update_fn) # TODO(b/183800387): remove legacy aliases. # These legacy aliases are here for checkpoint compatibility # To be removed once checkpoints have updated. safe_int32_increment = numerics.safe_int32_increment ClipState = clipping.ClipState ClipByGlobalNormState = clipping.ClipByGlobalNormState
optax-master
optax/_src/transform.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optax._src.constrain.""" from absl.testing import absltest import chex import jax.numpy as jnp from optax._src import combine from optax._src import constrain from optax._src import transform from optax._src import update STEPS = 50 LR = 1e-2 class ConstraintsTest(chex.TestCase): def test_keep_params_nonnegative(self): grads = (jnp.array([500., -500., 0.]), jnp.array([500., -500., 0.]), jnp.array([500., -500., 0.])) params = (jnp.array([-1., -1., -1.]), jnp.array([1., 1., 1.]), jnp.array([0., 0., 0.])) # vanilla sgd opt = combine.chain( transform.trace(decay=0, nesterov=False), transform.scale(-LR)) opt_state = opt.init(params) updates, _ = opt.update(grads, opt_state, params) new_params = update.apply_updates(params, updates) chex.assert_trees_all_close(new_params, (jnp.array([-6., 4., -1.]), jnp.array([-4., 6., 1.]), jnp.array([-5., 5., 0.]))) # sgd with keeping parameters non-negative opt = combine.chain( transform.trace(decay=0, nesterov=False), transform.scale(-LR), constrain.keep_params_nonnegative()) opt_state = opt.init(params) updates, _ = opt.update(grads, opt_state, params) new_params = update.apply_updates(params, updates) chex.assert_trees_all_close(new_params, (jnp.array([0., 4., 0.]), jnp.array([0., 6., 1.]), jnp.array([0., 5., 0.]))) @chex.all_variants def test_zero_nans(self): params = (jnp.zeros([3]), jnp.zeros([3]), jnp.zeros([3])) opt = constrain.zero_nans() opt_state = self.variant(opt.init)(params) update_fn = self.variant(opt.update) chex.assert_trees_all_close( opt_state, constrain.ZeroNansState((jnp.array(False),) * 3)) # Check an upate with nans grads_with_nans = (jnp.ones([3]), jnp.array([1., float('nan'), float('nan')]), jnp.array([float('nan'), 1., 1.])) updates, opt_state = update_fn(grads_with_nans, opt_state) chex.assert_trees_all_close( opt_state, constrain.ZeroNansState( (jnp.array(False), jnp.array(True), jnp.array(True)))) chex.assert_trees_all_close( updates, (jnp.ones([3]), jnp.array([1., 0., 0.]), jnp.array([0., 1., 1.]))) # Check an upate with nans and infs grads_with_nans_infs = (jnp.ones([3]), jnp.array([1., float('nan'), float('nan')]), jnp.array([float('inf'), 1., 1.])) updates, opt_state = update_fn(grads_with_nans_infs, opt_state) chex.assert_trees_all_close( opt_state, constrain.ZeroNansState( (jnp.array(False), jnp.array(True), jnp.array(False)))) chex.assert_trees_all_close(updates, (jnp.ones([3]), jnp.array( [1., 0., 0.]), jnp.array([float('inf'), 1., 1.]))) # Check an upate with only good values grads = (jnp.ones([3]), jnp.ones([3]), jnp.ones([3])) updates, opt_state = update_fn(grads, opt_state) chex.assert_trees_all_close( opt_state, constrain.ZeroNansState( (jnp.array(False), jnp.array(False), jnp.array(False)))) chex.assert_trees_all_close(updates, grads) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/constrain_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `privacy.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp from optax._src import privacy class DifferentiallyPrivateAggregateTest(parameterized.TestCase): def setUp(self): super().setUp() self.batch_size = 8 self.params = {'key_a': (jnp.zeros((2, 3, 4)), jnp.zeros([])), 'key_b': jnp.zeros((6, 7))} # Example `i`'s grads are full of `i`s. Important to include 0 to ensure # there are no divisons by 0 (e.g. in norm clipping) a = jnp.arange(self.batch_size) self.per_eg_grads = jax.tree_util.tree_map( lambda p: jnp.moveaxis(a * jnp.ones(p.shape+(self.batch_size,)), -1, 0), self.params) @chex.all_variants def test_no_privacy(self): """l2_norm_clip=MAX_FLOAT32 and noise_multiplier=0 should recover SGD.""" dp_agg = privacy.differentially_private_aggregate( l2_norm_clip=jnp.finfo(jnp.float32).max, noise_multiplier=0., seed=0) state = dp_agg.init(self.params) update_fn = self.variant(dp_agg.update) mean_grads = jax.tree_util.tree_map(lambda g: g.mean(0), self.per_eg_grads) for _ in range(3): updates, state = update_fn(self.per_eg_grads, state) chex.assert_trees_all_close(updates, mean_grads) @chex.all_variants @parameterized.parameters(0.5, 10.0, 20.0, 40.0, 80.0) def test_clipping_norm(self, l2_norm_clip): dp_agg = privacy.differentially_private_aggregate( l2_norm_clip=l2_norm_clip, noise_multiplier=0., seed=42) state = dp_agg.init(self.params) update_fn = self.variant(dp_agg.update) # Shape of the three arrays below is (self.batch_size, ) norms = [jnp.linalg.norm(g.reshape(self.batch_size, -1), axis=1) for g in jax.tree_util.tree_leaves(self.per_eg_grads)] global_norms = jnp.linalg.norm(jnp.stack(norms), axis=0) divisors = jnp.maximum(global_norms / l2_norm_clip, 1.) # Since the values of all the parameters are the same within each example, # we can easily compute what the values should be: expected_val = jnp.mean(jnp.arange(self.batch_size) / divisors) expected_tree = jax.tree_util.tree_map( lambda p: jnp.broadcast_to(expected_val, p.shape), self.params) for _ in range(3): updates, state = update_fn(self.per_eg_grads, state, self.params) chex.assert_trees_all_close(updates, expected_tree, rtol=2e-7) @chex.all_variants @parameterized.parameters((3.0, 2.0), (1.0, 5.0), (100.0, 4.0), (1.0, 90.0)) def test_noise_multiplier(self, l2_norm_clip, noise_multiplier): """Standard dev. of noise should be l2_norm_clip * noise_multiplier.""" dp_agg = privacy.differentially_private_aggregate( l2_norm_clip=l2_norm_clip, noise_multiplier=noise_multiplier, seed=1337) state = dp_agg.init(None) update_fn = self.variant(dp_agg.update) expected_std = l2_norm_clip * noise_multiplier grads = [jnp.ones((1, 100, 100))] # batch size 1 for _ in range(3): updates, state = update_fn(grads, state) chex.assert_trees_all_close(expected_std, jnp.std(updates[0]), atol=0.1 * expected_std) def test_aggregated_updates_as_input_fails(self): """Expect per-example gradients as input to this transform.""" dp_agg = privacy.differentially_private_aggregate(l2_norm_clip=0.1, noise_multiplier=1.1, seed=2021) state = dp_agg.init(self.params) mean_grads = jax.tree_util.tree_map(lambda g: g.mean(0), self.per_eg_grads) with self.assertRaises(ValueError): dp_agg.update(mean_grads, state, self.params) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/privacy_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `factorized.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax.numpy as jnp from optax._src import factorized class FactorizedTest(parameterized.TestCase): def setUp(self): super().setUp() self.init_params = (jnp.array([1., 2.]), jnp.array([3., 4.])) self.per_step_updates = (jnp.array([500., 5.]), jnp.array([300., 3.])) @chex.all_variants def test_scale_by_factored_rms(self): params = self.init_params scaler = factorized.scale_by_factored_rms() init_fn = self.variant(scaler.init) transform_fn = self.variant(scaler.update) state = init_fn(params) chex.assert_tree_all_finite(state) updates, state = transform_fn(self.per_step_updates, state, params) chex.assert_tree_all_finite((params, updates, state)) chex.assert_trees_all_equal_shapes(params, updates) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/factorized_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `stochastic_gradient_estimators.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import stochastic_gradient_estimators as sge from optax._src import utils # Set seed for deterministic sampling. np.random.seed(42) _estimator_to_num_samples = { sge.score_function_jacobians: 5 * 10**5, sge.measure_valued_jacobians: 10**5, sge.pathwise_jacobians: 5 * 10**4, } _weighted_estimator_to_num_samples = { sge.score_function_jacobians: 5 * 10**6, sge.measure_valued_jacobians: 5 * 10**5, sge.pathwise_jacobians: 5 * 10**4, } def _ones(dims): return jnp.ones(shape=(dims), dtype=jnp.float32) def _assert_equal(actual, expected, rtol=1e-2, atol=1e-2): """Asserts that arrays are equal.""" # Note: assert_allclose does not check shapes chex.assert_equal_shape((actual, expected)) # We get around the bug https://github.com/numpy/numpy/issues/13801 zero_indices = np.argwhere(expected == 0) if not np.all(np.abs(actual[zero_indices]) <= atol): raise AssertionError(f'Larger than {atol} diff in {actual[zero_indices]}') non_zero_indices = np.argwhere(expected != 0) np.testing.assert_allclose( np.asarray(actual)[non_zero_indices], expected[non_zero_indices], rtol, atol) def _estimator_variant(variant, estimator): return variant(estimator, static_argnums=(0, 2, 4)) def _measure_valued_variant(variant): return variant( sge.measure_valued_jacobians, static_argnums=(0, 2, 4, 5)) class GradientEstimatorsTest(chex.TestCase): @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', sge.score_function_jacobians), ('_pathwise_jacobians', sge.pathwise_jacobians), ('_measure_valued_jacobians', sge.measure_valued_jacobians), ], [ ('0.1', 0.1), ('0.5', 0.5), ('0.9', 0.9), ], named=True)) def testConstantFunction(self, estimator, constant): data_dims = 3 num_samples = _estimator_to_num_samples[estimator] effective_mean = 1.5 mean = effective_mean * _ones(data_dims) effective_log_scale = 0.0 log_scale = effective_log_scale * _ones(data_dims) rng = jax.random.PRNGKey(1) jacobians = _estimator_variant(self.variant, estimator)( lambda x: jnp.array(constant), [mean, log_scale], utils.multi_normal, rng, num_samples) # Average over the number of samples. mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = np.mean(mean_jacobians, axis=0) expected_mean_grads = np.zeros(data_dims, dtype=np.float32) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = np.mean(log_scale_jacobians, axis=0) expected_log_scale_grads = np.zeros(data_dims, dtype=np.float32) _assert_equal(mean_grads, expected_mean_grads, atol=5e-3) _assert_equal(log_scale_grads, expected_log_scale_grads, atol=5e-3) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', sge.score_function_jacobians), ('_pathwise_jacobians', sge.pathwise_jacobians), ('_measure_valued_jacobians', sge.measure_valued_jacobians), ], [ ('0.5_-1.', 0.5, -1.), ('0.7_0.0)', 0.7, 0.0), ('0.8_0.1', 0.8, 0.1), ], named=True)) def testLinearFunction(self, estimator, effective_mean, effective_log_scale): data_dims = 3 num_samples = _estimator_to_num_samples[estimator] rng = jax.random.PRNGKey(1) mean = effective_mean * _ones(data_dims) log_scale = effective_log_scale * _ones(data_dims) jacobians = _estimator_variant(self.variant, estimator)( np.sum, [mean, log_scale], utils.multi_normal, rng, num_samples) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = np.mean(mean_jacobians, axis=0) expected_mean_grads = np.ones(data_dims, dtype=np.float32) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = np.mean(log_scale_jacobians, axis=0) expected_log_scale_grads = np.zeros(data_dims, dtype=np.float32) _assert_equal(mean_grads, expected_mean_grads) _assert_equal(log_scale_grads, expected_log_scale_grads) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', sge.score_function_jacobians), ('_pathwise_jacobians', sge.pathwise_jacobians), ('_measure_valued_jacobians', sge.measure_valued_jacobians), ], [ ('1.0_0.3', 1.0, 0.3), ], named=True)) def testQuadraticFunction( self, estimator, effective_mean, effective_log_scale): data_dims = 3 num_samples = _estimator_to_num_samples[estimator] rng = jax.random.PRNGKey(1) mean = effective_mean * _ones(data_dims) log_scale = effective_log_scale * _ones(data_dims) jacobians = _estimator_variant(self.variant, estimator)( lambda x: np.sum(x**2) / 2, [mean, log_scale], utils.multi_normal, rng, num_samples) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = np.mean(mean_jacobians, axis=0) expected_mean_grads = effective_mean * np.ones( data_dims, dtype=np.float32) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = np.mean(log_scale_jacobians, axis=0) expected_log_scale_grads = np.exp(2 * effective_log_scale) * np.ones( data_dims, dtype=np.float32) _assert_equal(mean_grads, expected_mean_grads, atol=5e-2) _assert_equal(log_scale_grads, expected_log_scale_grads, atol=5e-2) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', sge.score_function_jacobians), ('_pathwise_jacobians', sge.pathwise_jacobians), ('_measure_valued_jacobians', sge.measure_valued_jacobians), ], [ ('case_1', [1.0, 2.0, 3.], [-1., 0.3, -2.], [1., 1., 1.]), ('case_2', [1.0, 2.0, 3.], [-1., 0.3, -2.], [4., 2., 3.]), ('case_3', [1.0, 2.0, 3.], [0.1, 0.2, 0.1], [10., 5., 1.]), ], named=True)) def testWeightedLinear( self, estimator, effective_mean, effective_log_scale, weights): num_samples = _weighted_estimator_to_num_samples[estimator] rng = jax.random.PRNGKey(1) mean = jnp.array(effective_mean) log_scale = jnp.array(effective_log_scale) weights = jnp.array(weights) data_dims = len(effective_mean) function = lambda x: jnp.sum(x * weights) jacobians = _estimator_variant(self.variant, estimator)( function, [mean, log_scale], utils.multi_normal, rng, num_samples) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = np.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = np.mean(log_scale_jacobians, axis=0) expected_mean_grads = weights expected_log_scale_grads = np.zeros(data_dims, dtype=np.float32) _assert_equal(mean_grads, expected_mean_grads, atol=5e-2) _assert_equal(log_scale_grads, expected_log_scale_grads, atol=5e-2) @chex.all_variants @parameterized.named_parameters( chex.params_product([ ('_score_function_jacobians', sge.score_function_jacobians), ('_pathwise_jacobians', sge.pathwise_jacobians), ('_measure_valued_jacobians', sge.measure_valued_jacobians), ], [ ('case_1', [1.0, 2.0, 3.], [-1., 0.3, -2.], [1., 1., 1.]), ('case_2', [1.0, 2.0, 3.], [-1., 0.3, -2.], [4., 2., 3.]), ('case_3', [1.0, 2.0, 3.], [0.1, 0.2, 0.1], [3., 5., 1.]), ], named=True)) def testWeightedQuadratic( self, estimator, effective_mean, effective_log_scale, weights): num_samples = _weighted_estimator_to_num_samples[estimator] rng = jax.random.PRNGKey(1) mean = jnp.array(effective_mean, dtype=jnp.float32) log_scale = jnp.array(effective_log_scale, dtype=jnp.float32) weights = jnp.array(weights, dtype=jnp.float32) data_dims = len(effective_mean) function = lambda x: jnp.sum(x * weights) ** 2 jacobians = _estimator_variant(self.variant, estimator)( function, [mean, log_scale], utils.multi_normal, rng, num_samples) mean_jacobians = jacobians[0] chex.assert_shape(mean_jacobians, (num_samples, data_dims)) mean_grads = np.mean(mean_jacobians, axis=0) log_scale_jacobians = jacobians[1] chex.assert_shape(log_scale_jacobians, (num_samples, data_dims)) log_scale_grads = np.mean(log_scale_jacobians, axis=0) expected_mean_grads = 2 * weights * np.sum(weights * mean) effective_scale = np.exp(log_scale) expected_scale_grads = 2 * weights ** 2 * effective_scale expected_log_scale_grads = expected_scale_grads * effective_scale _assert_equal(mean_grads, expected_mean_grads, atol=1e-1, rtol=1e-1) _assert_equal( log_scale_grads, expected_log_scale_grads, atol=1e-1, rtol=1e-1) @chex.all_variants @parameterized.named_parameters( chex.params_product( [ ('_sum_cos_x', [1.0], [1.0], lambda x: jnp.sum(jnp.cos(x))), # Need to ensure that the mean is not too close to 0. ('_sum_log_x', [10.0], [0.0], lambda x: jnp.sum(jnp.log(x))), ('_sum_cos_2x', [1.0, 2.0], [1.0, -2 ], lambda x: jnp.sum(jnp.cos(2 * x))), ('_cos_sum_2x', [1.0, 2.0], [1.0, -2 ], lambda x: jnp.cos(jnp.sum(2 * x))), ], [ ('coupling', True), ('nocoupling', False), ], named=True)) def testNonPolynomialFunctionConsistencyWithPathwise(self, effective_mean, effective_log_scale, function, coupling): num_samples = 10**5 rng = jax.random.PRNGKey(1) measure_rng, pathwise_rng = jax.random.split(rng) mean = jnp.array(effective_mean, dtype=jnp.float32) log_scale = jnp.array(effective_log_scale, dtype=jnp.float32) data_dims = len(effective_mean) measure_valued_jacobians = _measure_valued_variant(self.variant)( function, [mean, log_scale], utils.multi_normal, measure_rng, num_samples, coupling) measure_valued_mean_jacobians = measure_valued_jacobians[0] chex.assert_shape(measure_valued_mean_jacobians, (num_samples, data_dims)) measure_valued_mean_grads = np.mean(measure_valued_mean_jacobians, axis=0) measure_valued_log_scale_jacobians = measure_valued_jacobians[1] chex.assert_shape( measure_valued_log_scale_jacobians, (num_samples, data_dims)) measure_valued_log_scale_grads = np.mean( measure_valued_log_scale_jacobians, axis=0) pathwise_jacobians = _estimator_variant( self.variant, sge.pathwise_jacobians)(function, [mean, log_scale], utils.multi_normal, pathwise_rng, num_samples) pathwise_mean_jacobians = pathwise_jacobians[0] chex.assert_shape(pathwise_mean_jacobians, (num_samples, data_dims)) pathwise_mean_grads = np.mean(pathwise_mean_jacobians, axis=0) pathwise_log_scale_jacobians = pathwise_jacobians[1] chex.assert_shape(pathwise_log_scale_jacobians, (num_samples, data_dims)) pathwise_log_scale_grads = np.mean(pathwise_log_scale_jacobians, axis=0) _assert_equal( pathwise_mean_grads, measure_valued_mean_grads, rtol=5e-1, atol=1e-1) _assert_equal( pathwise_log_scale_grads, measure_valued_log_scale_grads, rtol=5e-1, atol=1e-1) class MeasuredValuedEstimatorsTest(chex.TestCase): @chex.all_variants @parameterized.parameters([True, False]) def testRaisesErrorForNonGaussian(self, coupling): num_samples = 10**5 rng = jax.random.PRNGKey(1) function = lambda x: jnp.sum(x) ** 2 mean = jnp.array(0, dtype=jnp.float32) log_scale = jnp.array(0., dtype=jnp.float32) class TestDist(): def __init__(self, params): self._params = params def sample(self, n): return np.zeros(n) with self.assertRaises(ValueError): _measure_valued_variant(self.variant)( function, [mean, log_scale], TestDist, rng, num_samples, coupling) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/stochastic_gradient_estimators_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """JAX Schedules. Schedules may be used to anneal the value of a hyper-parameter over time; for instance, they may be used to anneal the learning rate used to update an agent's parameters or the exploration factor used to select actions. """ import functools import inspect from typing import Callable, Dict, Union, NamedTuple, Optional, Iterable, Sequence from absl import logging import chex import jax import jax.numpy as jnp import numpy as np from optax._src import base from optax._src import numerics def constant_schedule( value: Union[float, int] ) -> base.Schedule: """Constructs a constant schedule. Args: value: value to be held constant throughout. Returns: schedule: A function that maps step counts to values. """ return lambda count: value def polynomial_schedule( init_value: chex.Scalar, end_value: chex.Scalar, power: chex.Scalar, transition_steps: int, transition_begin: int = 0 ) -> base.Schedule: """Constructs a schedule with polynomial transition from init to end value. Args: init_value: initial value for the scalar to be annealed. end_value: end value of the scalar to be annealed. power: the power of the polynomial used to transition from init to end. transition_steps: number of steps over which annealing takes place, the scalar starts changing at `transition_begin` steps and completes the transition by `transition_begin + transition_steps` steps. If `transition_steps <= 0`, then the entire annealing process is disabled and the value is held fixed at `init_value`. transition_begin: must be positive. After how many steps to start annealing (before this many steps the scalar value is held fixed at `init_value`). Returns: schedule: A function that maps step counts to values. """ if transition_steps <= 0: logging.info( 'A polynomial schedule was set with a non-positive `transition_steps` ' 'value; this results in a constant schedule with value `init_value`.') return lambda count: init_value if transition_begin < 0: logging.info( 'An exponential schedule was set with a negative `transition_begin` ' 'value; this will result in `transition_begin` falling back to `0`.') transition_begin = 0 def schedule(count): count = jnp.clip(count - transition_begin, 0, transition_steps) frac = 1 - count / transition_steps return (init_value - end_value) * (frac**power) + end_value return schedule # Alias polynomial schedule to linear schedule for convenience. def linear_schedule( init_value: chex.Scalar, end_value: chex.Scalar, transition_steps: int, transition_begin: int = 0 ) -> base.Schedule: return polynomial_schedule( init_value=init_value, end_value=end_value, power=1, transition_steps=transition_steps, transition_begin=transition_begin) def piecewise_constant_schedule( init_value: float, boundaries_and_scales: Optional[Dict[int, float]] = None ) -> base.Schedule: """Returns a function which implements a piecewise constant schedule. Args: init_value: An initial value `init_v`. boundaries_and_scales: A map from boundaries `b_i` to non-negative scaling factors `f_i`. For any step count `s`, the schedule returns `init_v` scaled by the product of all factors `f_i` such that `b_i` < `s`. Returns: schedule: A function that maps step counts to values. """ if boundaries_and_scales is not None: all_positive = all(scale >= 0. for scale in boundaries_and_scales.values()) if not all_positive: raise ValueError( '`piecewise_constant_schedule` expects non-negative scale factors') def schedule(count): v = init_value if boundaries_and_scales is not None: for threshold, scale in sorted(boundaries_and_scales.items()): indicator = jnp.maximum(0., jnp.sign(threshold - count)) v = v * indicator + (1 - indicator) * scale * v return v return schedule def exponential_decay( init_value: float, transition_steps: int, decay_rate: float, transition_begin: int = 0, staircase: bool = False, end_value: Optional[float] = None ) -> base.Schedule: """Constructs a schedule with either continuous or discrete exponential decay. This function applies an exponential decay function to a provided initial value. The function returns the decayed value as follows: ``` decayed_value = init_value * decay_rate ^ (count / transition_steps) ``` If the argument `staircase` is `True`, then `count / transition_steps` is an integer division and the decayed value follows a staircase function. Args: init_value: the initial learning rate. transition_steps: must be positive. See the decay computation above. decay_rate: must not be zero. The decay rate. transition_begin: must be positive. After how many steps to start annealing (before this many steps the scalar value is held fixed at `init_value`). staircase: if `True`, decay the values at discrete intervals. end_value: the value at which the exponential decay stops. When `decay_rate` < 1, `end_value` is treated as a lower bound, otherwise as an upper bound. Has no effect when `decay_rate` = 0. Returns: schedule: A function that maps step counts to values. """ if transition_steps <= 0: logging.info( 'An exponential schedule was set with a non-positive `transition_steps`' ' value; this will result in a constant schedule with value ' '`init_value`.') return lambda count: init_value if decay_rate == 0: logging.info( 'An exponential schedule was set with a zero `decay_rate` value; ' 'this will result in a constant schedule with value `init_value`.') return lambda count: init_value if transition_begin < 0: logging.info( 'An exponential schedule was set with a negative `transition_begin` ' 'value; this will result in `transition_begin` falling back to `0`.') transition_begin = 0 if end_value is not None: clip_fn = jnp.maximum if decay_rate < 1.0 else jnp.minimum def schedule(count): decreased_count = count - transition_begin p = decreased_count / transition_steps if staircase: p = jnp.floor(p) decayed_value = jnp.where( decreased_count <= 0, init_value, init_value * jnp.power(decay_rate, p)) if end_value is not None: decayed_value = clip_fn(decayed_value, end_value) return decayed_value return schedule def cosine_decay_schedule( init_value: float, decay_steps: int, alpha: float = 0.0, exponent: float = 1.0, ) -> base.Schedule: """Returns a function which implements cosine learning rate decay. The schedule does not restart when ``decay_steps`` has been reached. Instead, the learning rate remains constant afterwards. For a cosine schedule with restarts, :func:`optax.join_schedules` can be used to join several cosine decay schedules. For more details see: https://arxiv.org/abs/1608.03983. Args: init_value: An initial value `init_v`. decay_steps: Positive integer - the number of steps for which to apply the decay for. alpha: Float. The minimum value of the multiplier used to adjust the learning rate. exponent: Float. The default decay is 0.5 * (1 + cos(pi * t/T)), where t is the current timestep and T is the `decay_steps`. The exponent modifies this to be (0.5 * (1 + cos(pi * t/T))) ** exponent. Defaults to 1.0. Returns: schedule: A function that maps step counts to values. """ if not decay_steps > 0: raise ValueError('The cosine_decay_schedule requires positive decay_steps!') def schedule(count): count = jnp.minimum(count, decay_steps) cosine_decay = 0.5 * (1 + jnp.cos(jnp.pi * count / decay_steps)) decayed = (1 - alpha) * cosine_decay ** exponent + alpha return init_value * decayed return schedule def _linear_interpolate(start: float, end: float, pct: float): return (end-start) * pct + start def _cosine_interpolate(start: float, end: float, pct: float): return end + (start-end) / 2.0 * (jnp.cos(jnp.pi * pct) + 1) def piecewise_interpolate_schedule( interpolate_type: str, init_value: float, boundaries_and_scales: Optional[Dict[int, float]] = None ) -> base.Schedule: """Returns a function which implements a piecewise interpolated schedule. Args: interpolate_type: 'linear' or 'cosine', specifying the interpolation strategy. init_value: An initial value `init_v`. boundaries_and_scales: A map from boundaries `b_i` to non-negative scaling factors `f_i`. At boundary step `b_i`, the schedule returns `init_v` scaled by the product of all factors `f_j` such that `b_j` <= `b_i`. The values in between each boundary will be interpolated as per `type`. Returns: schedule: A function that maps step counts to values. """ if interpolate_type == 'linear': interpolate_fn = _linear_interpolate elif interpolate_type == 'cosine': interpolate_fn = _cosine_interpolate else: raise ValueError('`interpolate_type` must be either \'cos\' or \'linear\'') if boundaries_and_scales: boundaries, scales = zip(*sorted(boundaries_and_scales.items())) if not all(scale >= 0. for scale in scales): raise ValueError( '`piecewise_interpolate_schedule` expects non-negative scale factors') else: boundaries, scales = (), () bounds = np.stack((0,) + boundaries) values = np.cumprod(np.stack((init_value,) + scales)) interval_sizes = bounds[1:] - bounds[:-1] def schedule(count): indicator = (bounds[:-1] <= count) & (count < bounds[1:]) pct = (count - bounds[:-1]) / interval_sizes interp_vals = interpolate_fn(values[:-1], values[1:], pct) return indicator.dot(interp_vals) + (bounds[-1] <= count) * values[-1] return schedule def linear_onecycle_schedule( transition_steps: int, peak_value: float, pct_start: float = 0.3, pct_final: float = 0.85, div_factor: float = 25.0, final_div_factor: float = 1e4 ) -> base.Schedule: """Returns a function which implements the onecycle learning rate schedule. This function uses a linear annealing strategy. For more details see: https://arxiv.org/abs/1708.07120 Args: transition_steps: Number of steps over which annealing takes place. peak_value: Maximum value attained by schedule at pct_start percent of the cycle (in number of steps). pct_start: The percentage of the cycle (in number of steps) spent increasing the learning rate. pct_final: The percentage of the cycle (in number of steps) spent increasing to peak_value then decreasing back to init_value. div_factor: Determines the initial value via init_value = peak_value / div_factor final_div_factor: Determines the final value via final_value = init_value / final_div_factor Returns: schedule: A function that maps step counts to values. """ if transition_steps <= 0: raise ValueError( 'A linear onecycle schedule was set with a non-positive ' '`transition_steps`') return piecewise_interpolate_schedule( 'linear', peak_value / div_factor, {int(pct_start * transition_steps): div_factor, int(pct_final * transition_steps): 1. / div_factor, transition_steps: 1. / final_div_factor}) def cosine_onecycle_schedule( transition_steps: int, peak_value: float, pct_start: float = 0.3, div_factor: float = 25.0, final_div_factor: float = 1e4 ) -> base.Schedule: """Returns a function which implements the onecycle learning rate schedule. This function uses a cosine annealing strategy. For more details see: https://arxiv.org/abs/1708.07120 Args: transition_steps: Number of steps over which annealing takes place. peak_value: Maximum value attained by schedule at pct_start percent of the cycle (in number of steps). pct_start: The percentage of the cycle (in number of steps) spent increasing the learning rate. div_factor: Determines the initial value via init_value = peak_value / div_factor final_div_factor: Determines the final value via final_value = init_value / final_div_factor Returns: schedule: A function that maps step counts to values. """ if transition_steps <= 0: raise ValueError( 'A linear onecycle schedule was set with a non-positive ' '`transition_steps`') return piecewise_interpolate_schedule( 'cosine', peak_value / div_factor, {int(pct_start * transition_steps): div_factor, int(transition_steps): 1. / (div_factor * final_div_factor)}) def join_schedules(schedules: Sequence[base.Schedule], boundaries: Sequence[int]) -> base.Schedule: """Sequentially apply multiple schedules. Args: schedules: A list of callables (expected to be optax schedules). Each schedule will receive a step count indicating the number of steps since the previous boundary transition. boundaries: A list of integers (of length one less than schedules) that indicate when to transition between schedules. Returns: schedule: A function that maps step counts to values. """ def schedule(step: chex.Numeric) -> chex.Numeric: output = schedules[0](step) for boundary, schedule in zip(boundaries, schedules[1:]): output = jnp.where(step < boundary, output, schedule(step - boundary)) return output return schedule def warmup_cosine_decay_schedule( init_value: float, peak_value: float, warmup_steps: int, decay_steps: int, end_value: float = 0.0, exponent: float = 1.0, ) -> base.Schedule: """Linear warmup followed by cosine decay. Args: init_value: Initial value for the scalar to be annealed. peak_value: Peak value for scalar to be annealed at end of warmup. warmup_steps: Positive integer, the length of the linear warmup. decay_steps: Positive integer, the total length of the schedule. Note that this includes the warmup time, so the number of steps during which cosine annealing is applied is `decay_steps - warmup_steps`. end_value: End value of the scalar to be annealed. exponent: Float. The default decay is 0.5 * (1 + cos(pi * t/T)), where t is the current timestep and T is the `decay_steps`. The exponent modifies this to be (0.5 * (1 + cos(pi * t/T))) ** exponent. Defaults to 1.0. Returns: schedule: A function that maps step counts to values. """ schedules = [ linear_schedule( init_value=init_value, end_value=peak_value, transition_steps=warmup_steps), cosine_decay_schedule( init_value=peak_value, decay_steps=decay_steps - warmup_steps, alpha=end_value/peak_value, exponent=exponent)] return join_schedules(schedules, [warmup_steps]) def warmup_exponential_decay_schedule( init_value: float, peak_value: float, warmup_steps: int, transition_steps: int, decay_rate: float, transition_begin: int = 0, staircase: bool = False, end_value: Optional[float] = None ) -> base.Schedule: """Linear warmup followed by exponential decay. Args: init_value: Initial value for the scalar to be annealed. peak_value: Peak value for scalar to be annealed at end of warmup. warmup_steps: Positive integer, the length of the linear warmup. transition_steps: must be positive. See `exponential_decay` for more details. decay_rate: must not be zero. The decay rate. transition_begin: must be positive. After how many steps to start annealing (before this many steps the scalar value is held fixed at `peak_value`). staircase: if `True`, decay the values at discrete intervals. end_value: the value at which the exponential decay stops. When `decay_rate` < 1, `end_value` is treated as a lower bound, otherwise as an upper bound. Has no effect when `decay_rate` = 0. Returns: schedule: A function that maps step counts to values. """ schedules = [ linear_schedule( init_value=init_value, end_value=peak_value, transition_steps=warmup_steps), exponential_decay( init_value=peak_value, transition_steps=transition_steps, decay_rate=decay_rate, transition_begin=transition_begin, staircase=staircase, end_value=end_value)] return join_schedules(schedules, [warmup_steps]) def sgdr_schedule(cosine_kwargs: Iterable[Dict[str, chex.Numeric]] ) -> base.Schedule: """SGD with warm restarts, from Loschilov & Hutter (arXiv:1608.03983). This learning rate schedule applies multiple joined cosine decay cycles. For more details see: https://arxiv.org/abs/1608.03983 Args: cosine_kwargs: An Iterable of dicts, where each element specifies the arguments to pass to each cosine decay cycle. The `decay_steps` kwarg will specify how long each cycle lasts for, and therefore when to transition to the next cycle. Returns: schedule: A function that maps step counts to values. """ boundaries = [] schedules = [] step = 0 for kwargs in cosine_kwargs: schedules += [warmup_cosine_decay_schedule(**kwargs)] boundaries += [step + kwargs['decay_steps']] step += kwargs['decay_steps'] return join_schedules(schedules, boundaries[:-1]) def _convert_floats(x, dtype): """Convert float-like inputs to dtype, rest pass through.""" if jax.dtypes.scalar_type_of(x) == float: return jnp.asarray(x, dtype=dtype) return x class InjectHyperparamsState(NamedTuple): """Maintains inner transform state, hyperparameters, and step count.""" count: jnp.ndarray # shape=(), dtype=jnp.int32 hyperparams: Dict[str, chex.Numeric] inner_state: base.OptState def inject_hyperparams( inner_factory: Callable[..., base.GradientTransformation], static_args: Union[str, Iterable[str]] = (), hyperparam_dtype: Optional[jnp.dtype] = None, ) -> Callable[..., base.GradientTransformation]: """Wrapper that injects hyperparameters into the inner GradientTransformation. This wrapper allows you to pass schedules (i.e. a function that returns a numeric value given a step count) instead of constants for hyperparameters. You may only schedule numeric hyperparameters (i.e. boolean flags cannot be scheduled). For example, to use ``scale_by_adam`` with a piecewise linear schedule for beta_1 and constant for beta_2:: scheduled_adam = optax.inject_hyperparams(optax.scale_by_adam)( b1=optax.piecewise_linear_schedule(...), b2=0.99) You may manually change numeric hyperparameters that were not scheduled through the ``hyperparams`` dict in the ``InjectHyperparamState``:: state = scheduled_adam.init(params) updates, state = scheduled_adam.update(grads, state) state.hyperparams['b2'] = 0.95 updates, state = scheduled_adam.update(updates, state) # uses b2 = 0.95 Manually overriding scheduled hyperparameters will have no effect (e.g. in the code sample above, you cannot manually adjust ``b1``). Args: inner_factory: a function that returns the inner ``optax.GradientTransformation`` given the hyperparameters. static_args: a string or iterable of strings specifying which callable parameters are not schedules. inject_hyperparams treats all callables as schedules by default, so if a hyperparameter is a non-schedule callable, you must specify that using this argument. hyperparam_dtype: Optional datatype override. If specified, all float hyperparameters will be cast to this type. Returns: A callable that returns a ``optax.GradientTransformation``. This callable accepts the same arguments as ``inner_factory``, except you may provide schedules in place of the constant arguments. """ static_args = ({static_args} if isinstance(static_args, str) else set(static_args)) inner_signature = inspect.signature(inner_factory) if not static_args.issubset(inner_signature.parameters): raise ValueError( '`static_args` must specify a subset of `inner_factory`\'s parameters. ' f'Given `static_args`: {static_args}. `inner_factory` parameters: ' f'{set(inner_signature.parameters.keys())}') @functools.wraps(inner_factory) def wrapped_transform(*args, **kwargs) -> base.GradientTransformation: bound_arguments = inner_signature.bind(*args, **kwargs) bound_arguments.apply_defaults() sched_hps, numeric_hps, other_hps = {}, {}, {} for name, value in bound_arguments.arguments.items(): if name in static_args or isinstance(value, bool): other_hps[name] = value elif callable(value): sched_hps[name] = value elif isinstance(value, (int, float, jax.Array, np.ndarray)): numeric_hps[name] = value else: other_hps[name] = value def schedule_fn(count, dtype): return {k: _convert_floats(f(count), dtype) for k, f in sched_hps.items()} def init_fn(params): count = jnp.zeros([], jnp.int32) if hyperparam_dtype is None: dtype = getattr(next(iter( jax.tree_util.tree_leaves(params)), None), 'dtype', None) else: dtype = hyperparam_dtype hparams = { k: jnp.asarray(_convert_floats(v, dtype)) for k, v in numeric_hps.items()} hparams.update(schedule_fn(count, dtype)) return InjectHyperparamsState( # pylint:disable=too-many-function-args count, hparams, inner_factory(**other_hps, **hparams).init(params)) def update_fn(updates, state, params=None): if hyperparam_dtype is None: dtype = getattr(next(iter( jax.tree_util.tree_leaves(updates)), None), 'dtype', None) else: dtype = hyperparam_dtype hparams = {k: _convert_floats(v, dtype) for k, v in state.hyperparams.items()} hparams.update(schedule_fn(state.count, dtype)) updates, inner_state = inner_factory(**other_hps, **hparams).update( updates, state.inner_state, params) count_inc = numerics.safe_int32_increment(state.count) # pylint:disable=too-many-function-args return updates, InjectHyperparamsState(count_inc, hparams, inner_state) # pylint:enable=too-many-function-args return base.GradientTransformation(init_fn, update_fn) return wrapped_transform
optax-master
optax/_src/schedule.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A lookahead optimization wrapper.""" from typing import NamedTuple, Tuple, Union from absl import logging import jax import jax.numpy as jnp from optax._src import base # pylint:disable=no-value-for-parameter class LookaheadState(NamedTuple): """State of the `GradientTransformation` returned by `lookahead`. Attributes: fast_state: Optimizer state of the fast optimizer. steps_since_sync: Number of fast optimizer steps taken since slow and fast parameters were synchronized. """ fast_state: base.OptState steps_since_sync: jnp.ndarray class LookaheadParams(NamedTuple): """Holds a pair of slow and fast parameters for the lookahead optimizer. Gradients should always be calculated with the fast parameters. The slow parameters should be used for testing and inference as they generalize better. See the reference for a detailed discussion. References: [Zhang et al, 2019](https://arxiv.org/pdf/1907.08610v1.pdf) Attributes: fast: Fast parameters. slow: Slow parameters. """ fast: base.Params slow: base.Params @classmethod def init_synced(cls, params: base.Params) -> 'LookaheadParams': """Initialize a pair of synchronized lookahead parameters.""" return cls(slow=params, fast=params) def lookahead( fast_optimizer: base.GradientTransformation, sync_period: int, slow_step_size: float, reset_state: bool = False ) -> base.GradientTransformation: """Lookahead optimizer. Performs steps with a fast optimizer and periodically updates a set of slow parameters. Optionally resets the fast optimizer state after synchronization by calling the init function of the fast optimizer. Updates returned by the lookahead optimizer should not be modified before they are applied, otherwise fast and slow parameters are not synchronized correctly. References: [Zhang et al, 2019](https://arxiv.org/pdf/1907.08610v1.pdf) Args: fast_optimizer: The optimizer to use in the inner loop of lookahead. sync_period: Number of fast optimizer steps to take before synchronizing parameters. Must be >= 1. slow_step_size: Step size of the slow parameter updates. reset_state: Whether to reset the optimizer state of the fast opimizer after each synchronization. Returns: A `GradientTransformation` with init and update functions. The updates passed to the update function should be calculated using the fast lookahead parameters only. """ if sync_period < 1: raise ValueError('Synchronization period must be >= 1.') def init_fn(params: base.Params) -> LookaheadState: fast_params = getattr(params, 'fast', None) if fast_params is None: # Allowing init_fn to be called with fast parameters reduces the # modifications necessary to adapt code to use lookahead in some cases. logging.warning( '`params` has no attribute `fast`. Continuing by assuming that ' 'only fast parameters were passed to lookahead init.') fast_params = params return LookaheadState( fast_state=fast_optimizer.init(fast_params), steps_since_sync=jnp.zeros(shape=(), dtype=jnp.int32)) def update_fn( updates: base.Updates, state: LookaheadState, params: LookaheadParams) -> Tuple[LookaheadParams, LookaheadState]: updates, fast_state = fast_optimizer.update(updates, state.fast_state, params.fast) sync_next = state.steps_since_sync == sync_period - 1 updates = _lookahead_update(updates, sync_next, params, slow_step_size) if reset_state: # Jittable way of resetting the fast optimizer state if parameters will be # synchronized after this update step. initial_state = fast_optimizer.init(params.fast) fast_state = jax.tree_util.tree_map( lambda current, init: (1 - sync_next) * current + sync_next * init, fast_state, initial_state) steps_since_sync = (state.steps_since_sync + 1) % sync_period return updates, LookaheadState(fast_state, steps_since_sync) return base.GradientTransformation(init_fn, update_fn) def _lookahead_update( updates: base.Updates, sync_next: Union[bool, jax.Array], params: LookaheadParams, slow_step_size: float) -> LookaheadParams: """Returns the updates corresponding to one lookahead step. References: [Zhang et al, 2019](https://arxiv.org/pdf/1907.08610v1.pdf) Args: updates: Updates returned by the fast optimizer. sync_next: Wether fast and slow parameters should be synchronized after the fast optimizer step. params: Current fast and slow parameters as `LookaheadParams` object. slow_step_size: Step size of the slow optimizer. Returns: The updates for the lookahead parameters. """ # In the paper, lookahead is presented as two nested loops. To write lookahead # as optax wrapper, these loops have to be broken into successive updates. # This leads to two types of update steps: # # Non-synchronization steps (sync_next == False): # The updates returned by the fast optimizer are used for the fast parameters # without change and the slow parameter updates are zero (i.e. fast_updates = # updates, slow_updates = 0). # # Synchronisation step (sync_next == True): # This consists of two substeps: a last fast optimizer step and the # synchronization. # Substep 1 (last fast optimizer step): # last_fast_params = fast_params + updates # Substep 2 (synchronization): # new_slow_params = slow_params + slow_step_size * ( # last_fast_params - slow_params) # new_fast_params = new_slow_params # # Merging into a single update step we get the update rules: # slow_updates = slow_step_size * (fast_params + updates - slow_params) # fast_updates = new_slow_params - fast_params = updates - (1 - # slow_step_size) * (fast_params + updates - slow_params) # # To make the equations jittable, the two types of steps are merged. Defining # last_difference = fast_params + updates - slow_params, this yields the # following equtions which are implemented below: # slow_updates = slow_step_size * sync_next * last_difference # fast_updates = updates - ( # 1 - slow_step_size) * sync_next * last_difference last_difference = jax.tree_util.tree_map( lambda f, u, s: f + u - s, params.fast, updates, params.slow) slow_updates = jax.tree_util.tree_map( lambda diff: slow_step_size * sync_next * diff, last_difference) fast_updates = jax.tree_util.tree_map( lambda up, diff: up - sync_next * (1 - slow_step_size) * diff, updates, last_difference) return LookaheadParams(fast=fast_updates, slow=slow_updates)
optax-master
optax/_src/lookahead.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of equivalence between optax and other optimiser libraries.""" from absl.testing import absltest from absl.testing import parameterized import chex from jax.example_libraries import optimizers import jax.numpy as jnp from optax._src import alias from optax._src import update STEPS = 50 LR = 1e-2 LR_SCHED = lambda _: LR # Trivial constant "schedule". class OptimizersEquivalenceTest(chex.TestCase): def setUp(self): super().setUp() self.init_params = (jnp.array([1., 2.]), jnp.array([3., 4., 5.])) self.per_step_updates = (jnp.array([500., 5.]), jnp.array([300., 3., 1.])) @chex.all_variants @parameterized.named_parameters( ('sgd', alias.sgd(LR, 0.0), optimizers.sgd(LR), 1e-5), ('adam', alias.adam(LR, 0.9, 0.999, 1e-8), optimizers.adam(LR, 0.9, 0.999), 1e-4), ('rmsprop', alias.rmsprop(LR, decay=.9, eps=0.1), optimizers.rmsprop(LR, .9, 0.1), 1e-5), ('rmsprop_momentum', alias.rmsprop( LR, decay=.9, eps=0.1, momentum=0.9), optimizers.rmsprop_momentum(LR, .9, 0.1, 0.9), 1e-5), ('adagrad', alias.adagrad(LR, 0., 0.,), optimizers.adagrad(LR, 0.), 1e-5), ('sgd', alias.sgd(LR_SCHED, 0.0), optimizers.sgd(LR), 1e-5), ('adam', alias.adam(LR_SCHED, 0.9, 0.999, 1e-8), optimizers.adam(LR, 0.9, 0.999), 1e-4), ('rmsprop', alias.rmsprop(LR_SCHED, decay=.9, eps=0.1), optimizers.rmsprop(LR, .9, 0.1), 1e-5), ('rmsprop_momentum', alias.rmsprop( LR_SCHED, decay=.9, eps=0.1, momentum=0.9), optimizers.rmsprop_momentum(LR, .9, 0.1, 0.9), 1e-5), ('adagrad', alias.adagrad(LR_SCHED, 0., 0.,), optimizers.adagrad(LR, 0.), 1e-5), ('sm3', alias.sm3(LR), optimizers.sm3(LR), 1e-2), ) def test_jax_optimizer_equivalent(self, optax_optimizer, jax_optimizer, rtol): # example_libraries/optimizers.py jax_params = self.init_params opt_init, opt_update, get_params = jax_optimizer state = opt_init(jax_params) for i in range(STEPS): state = opt_update(i, self.per_step_updates, state) jax_params = get_params(state) # optax optax_params = self.init_params state = optax_optimizer.init(optax_params) @self.variant def step(updates, state): return optax_optimizer.update(updates, state) for _ in range(STEPS): updates, state = step(self.per_step_updates, state) optax_params = update.apply_updates(optax_params, updates) # Check equivalence. chex.assert_trees_all_close(jax_params, optax_params, rtol=rtol) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/equivalence_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `combine.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp from optax._src import alias from optax._src import base from optax._src import combine from optax._src import transform from optax._src import update STEPS = 50 LR = 1e-2 class ComposeTest(chex.TestCase): def setUp(self): super().setUp() self.init_params = (jnp.array([1., 2.]), jnp.array([3., 4.])) self.per_step_updates = (jnp.array([500., 5.]), jnp.array([300., 3.])) @chex.all_variants def test_chain(self): transformations = [ transform.scale_by_adam(), transform.trace(decay=0, nesterov=False), transform.scale(-LR)] # Apply updates with chain. chain_params = self.init_params chained_transforms = combine.chain(*transformations) state = chained_transforms.init(chain_params) self.assertIsInstance(state, tuple) @self.variant def update_fn(updates, state): return chained_transforms.update(updates, state) for _ in range(STEPS): updates, state = update_fn(self.per_step_updates, state) self.assertIsInstance(state, tuple) chain_params = update.apply_updates(chain_params, updates) # Manually apply sequence of transformations. manual_params = self.init_params states = [t.init(manual_params) for t in transformations] for _ in range(STEPS): updates = self.per_step_updates new_states = [] for t, s in zip(transformations, states): updates, state = t.update(updates, s) new_states.append(state) manual_params = update.apply_updates(manual_params, updates) states = new_states # Check equivalence. chex.assert_trees_all_close(manual_params, chain_params, rtol=1e-4) def _map_keys_fn(fn): def map_fn(nested_dict): return {k: (map_fn(v) if isinstance(v, dict) else fn(k, v)) for k, v in nested_dict.items()} return map_fn class ExtraArgsTest(chex.TestCase): def test_extra_args(self): def init_fn(params): del params return tuple() # Arguments required by a transformation should be keyword-only. # For example, the loss argument in this transformation. def update_fn(updates, state, params=None, *, loss, **extra_args): # Extra args should always be accepted. del extra_args, params assert loss == 1 return updates, state t = base.GradientTransformationExtraArgs(init_fn, update_fn) result = combine.chain(alias.adam(1e-3), t) self.assertIsInstance(result, base.GradientTransformationExtraArgs) params = {'a': 1, 'b': 2} state = result.init(params) result.update(params, state, loss=1, ignored_kwarg='hi') def test_extra_args_chaining(self): def init_fn(params): del params return {} def update_fn(updates, state, params=None): del params return updates, state # Possible gotcha: Chaining regular gradient transformations results in # a transformation that supports extra args. t1 = base.GradientTransformation(init_fn, update_fn) t2 = combine.chain(t1, t1) self.assertIsInstance(t2, base.GradientTransformation) self.assertIsInstance(t2, base.GradientTransformationExtraArgs) t3 = base.with_extra_args_support(t2) self.assertIsInstance(t3, base.GradientTransformationExtraArgs) def test_extra_args_positional_params(self): def init_fn(params): del params return tuple() def update_fn(updates, state, params=None): assert params is not None return updates, state def update_fn_kwargs(updates, state, params=None, **extra_args): del extra_args assert params is not None return updates, state t1 = base.GradientTransformation(init_fn, update_fn) t2 = base.GradientTransformationExtraArgs(init_fn, update_fn_kwargs) opt = combine.chain(t1, t2) params = {'a': 1, 'b': 2} state = opt.init(params) opt.update(params, state, params, ignored_kwarg='hi') opt.update(params, state, params=params, ignored_kwarg='hi') class MultiTransformTest(chex.TestCase): """Tests for the multi_transform wrapper.""" @chex.all_variants @parameterized.parameters(True, False) def test_multi_transform(self, use_fn): params = {'a1': 1., 'b1': 2., 'z1': {'a2': 3., 'z2': {'c1': 4.}}} params = jax.tree_util.tree_map(jnp.asarray, params) input_updates = jax.tree_util.tree_map(lambda x: x / 10.0, params) tx_dict = {'a': transform.scale(-1.0), 'b': transform.ema(0.0), # stateful 'c': transform.scale(2.0)} param_labels = _map_keys_fn(lambda k, _: k[0]) if not use_fn: param_labels = param_labels(params) tx = combine.multi_transform(tx_dict, param_labels) update_fn = self.variant(tx.update) state = self.variant(tx.init)(params) correct_update_fn = _map_keys_fn( lambda k, v: {'a': -v, 'b': v, 'c': 2.0*v}[k[0]]) updates, state = update_fn(input_updates, state, params) correct_updates = correct_update_fn(input_updates) chex.assert_trees_all_close(updates, correct_updates) # Check repeated application, this time with no params. correct_updates = correct_update_fn(correct_updates) updates, state = update_fn(updates, state) chex.assert_trees_all_close(updates, correct_updates) def test_extra_args(self): class ArgNotEqual1Error(ValueError): """Raised when argument not set as expected.""" def init(params): return {'mu': params} def update_with_arg(updates, state, params=None, *, arg, **extra_args): del params, extra_args if arg != 1: raise ArgNotEqual1Error() return updates, state def update_without_arg(updates, state, params=None): del params return updates, state opt_no_arg = base.GradientTransformation(init, update_without_arg) opt_extra_arg = base.GradientTransformationExtraArgs(init, update_with_arg) opt = combine.multi_transform( { 'a': opt_no_arg, 'b': opt_extra_arg, }, ('a', 'b'), ) fake_params = ({'u': jnp.array([1])}, {'v': jnp.array([1])}) state = opt.init(fake_params) with self.assertRaises(TypeError): opt.update(fake_params, state) with self.assertRaises(ArgNotEqual1Error): opt.update(fake_params, state, arg=2, ignored_kwarg='hi') opt.update(fake_params, state, arg=1, ignored_kwarg='hi') @parameterized.parameters(list, tuple, dict) def test_empty(self, container): init_fn, update_fn = combine.multi_transform( {0: alias.sgd(1.)}, lambda _: 0) updates, _ = update_fn(container(), init_fn(container())) self.assertEqual(updates, container()) @chex.all_variants @parameterized.parameters( (False, False), (False, True), (True, False), (True, True)) def test_labels_mismatch(self, use_extra_label, use_fn): # The labels from label_fn must be a subet of the keys for the tx. params = {'a': 1., 'b': [2., 3.], 'c': {'d': 4., 'e': (5., 6.)}} params = jax.tree_util.tree_map(jnp.asarray, params) label_tree = {'a': 0, 'b': [1, 0], 'c': 1} # prefix of params if use_extra_label: label_tree['a'] = 3 transforms = {0: alias.sgd(1.), 1: alias.adam(1., b1=0., b2=0.), 2: transform.trace(1.0)} init_fn, update_fn = combine.multi_transform( transforms, (lambda _: label_tree) if use_fn else label_tree) if use_extra_label: with self.assertRaises(ValueError): self.variant(init_fn)(params) else: state = self.variant(init_fn)(params) updates = jax.tree_util.tree_map(lambda x: x / 10.0, params) self.variant(update_fn)(updates, state) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/combine_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Factorized optimizers.""" import dataclasses from typing import NamedTuple, Optional, Tuple, Callable import chex import jax import jax.numpy as jnp import numpy as np from optax._src import base from optax._src import numerics from optax._src import utils # pylint:disable=no-value-for-parameter def _decay_rate_pow(i: int, exponent: float = 0.8) -> chex.Array: """Second-order moment decay schedule.""" t = jnp.array(i + 1, jnp.float32) return 1.0 - t**(-exponent) def _factored_dims( shape: base.Shape, factored: bool, min_dim_size_to_factor: int ) -> Optional[Tuple[int, int]]: """Whether to use a factored second moment estimator. This function returns a tuple with the two largest axes to reduce over. If no two dimensions have size >= min_dim_size_to_factor, return None. Args: shape: an input shape factored: whether to use factored second-moment estimator for 2d vars. min_dim_size_to_factor: only factor accumulator if two array dimensions have at least this size. Returns: None or a tuple of ints """ if not factored or len(shape) < 2: return None sorted_dims = np.argsort(shape) if shape[sorted_dims[-2]] < min_dim_size_to_factor: return None return int(sorted_dims[-2]), int(sorted_dims[-1]) @dataclasses.dataclass class _UpdateResult: """Opaque containter that is not traversed by jax.tree_util.tree_map.""" update: chex.Array # the update to apply to params v_row: chex.Array # used for factored params. v_col: chex.Array # used for factored params. v: chex.Array # used for params where factoring is skipped. class FactoredState(NamedTuple): """Overall state of the gradient transformation.""" count: chex.Array # number of update steps. v_row: chex.ArrayTree # Tree of factored params. v_col: chex.ArrayTree # Tree of factored params. v: chex.ArrayTree # Tree for params where factoring is skipped. def scale_by_factored_rms( factored: bool = True, decay_rate: float = 0.8, step_offset: int = 0, min_dim_size_to_factor: int = 128, epsilon: float = 1e-30, decay_rate_fn: Callable[[int, float], chex.Array] = _decay_rate_pow): """Scaling by a factored estimate of the gradient rms (as in Adafactor). This is a so-called "1+epsilon" scaling algorithms, that is extremely memory efficient compared to RMSProp/Adam, and has had wide success when applied to large-scale training of attention-based models. References: [Shazeer et al, 2018](https://arxiv.org/abs/1804.04235) Args: factored: boolean: whether to use factored second-moment estimates.. decay_rate: float: controls second-moment exponential decay schedule. step_offset: for finetuning, one may set this to the starting step-number of the fine tuning phase. min_dim_size_to_factor: only factor accumulator if two array dimensions are at least this size. epsilon: Regularization constant for squared gradient. decay_rate_fn: A function that accepts the current step, the decay rate parameter and controls the schedule for the second momentum. Defaults to the original adafactor's power decay schedule. One potential shortcoming of the orignal schedule is the fact that second momentum converges to 1, which effectively freezes the second momentum. To prevent this the user can opt for a custom schedule that sets an upper bound for the second momentum, like in [Zhai et al., 2021](https://arxiv.org/abs/2106.04560). Returns: the corresponding `GradientTransformation`. """ def _to_state(count: chex.Array, result_tree): """Maps from a tree of (factored) values to separate trees of values.""" return FactoredState( count=count, v_row=jax.tree_util.tree_map(lambda o: o.v_row, result_tree), v_col=jax.tree_util.tree_map(lambda o: o.v_col, result_tree), v=jax.tree_util.tree_map(lambda o: o.v, result_tree)) def init_fn(params): """Initialise the optimiser's state.""" def _init(param): shape = param.shape factored_dims = _factored_dims(shape, factored, min_dim_size_to_factor) if factored_dims is not None: d1, d0 = factored_dims vr_shape = np.delete(shape, d0) vc_shape = np.delete(shape, d1) return _UpdateResult( update=jnp.zeros((1,)), v_row=jnp.zeros(vr_shape), v_col=jnp.zeros(vc_shape), v=jnp.zeros((1,))) else: return _UpdateResult( update=jnp.zeros((1,)), v_row=jnp.zeros((1,)), v_col=jnp.zeros((1,)), v=jnp.zeros(param.shape)) return _to_state( jnp.zeros([], jnp.int32), jax.tree_util.tree_map(_init, params)) def update_fn(grads, state, params): """Apply gradient transformation.""" if params is None: raise ValueError(base.NO_PARAMS_MSG) def _update(grad, v_row, v_col, v, param, step): shape = param.shape decay_rate_t = decay_rate_fn(step - step_offset, decay_rate) # Scaled by factorized second moment statistics. new_v_row = jnp.zeros((1,)) new_v_col = jnp.zeros((1,)) new_v = jnp.zeros((1,)) factored_dims = _factored_dims(shape, factored, min_dim_size_to_factor) if factored_dims is not None: d1, d0 = factored_dims grad_sqr = numerics.abs_sq(grad) + epsilon new_v_row = ( decay_rate_t * v_row + (1. - decay_rate_t) * jnp.mean(grad_sqr, axis=d0)) new_v_col = ( decay_rate_t * v_col + (1. - decay_rate_t) * jnp.mean(grad_sqr, axis=d1)) reduced_d1 = d1-1 if d1 > d0 else d1 row_col_mean = jnp.mean(new_v_row, axis=reduced_d1, keepdims=True) row_factor = (new_v_row / row_col_mean) ** -0.5 col_factor = (new_v_col) ** -0.5 update = ( grad * jnp.expand_dims(row_factor, axis=d0) * jnp.expand_dims(col_factor, axis=d1)) else: grad_sqr = numerics.abs_sq(grad) + epsilon new_v = decay_rate_t * v + (1. - decay_rate_t) * grad_sqr update = grad * (new_v)**-0.5 return _UpdateResult(update, new_v_row, new_v_col, new_v) # Transform grad and compute new per-parameter stats. output = jax.tree_util.tree_map( lambda *args: _update(*args, state.count), grads, state.v_row, state.v_col, state.v, params) # Unpack updates / stats and return. updates = jax.tree_util.tree_map(lambda o: o.update, output) return updates, _to_state(utils.safe_int32_increment(state.count), output) return base.GradientTransformation(init_fn, update_fn)
optax-master
optax/_src/factorized.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base interfaces and datatypes.""" from typing import Any, Callable, NamedTuple, Optional, Protocol, Sequence, Tuple import chex import jax import jax.numpy as jnp NO_PARAMS_MSG = ( 'You are using a transformation that requires the current value of ' 'parameters, but you are not passing `params` when calling `update`.') PyTree = Any Shape = Sequence[int] OptState = chex.ArrayTree # States are arbitrary nests of `jnp.ndarrays`. Params = chex.ArrayTree # Parameters are arbitrary nests of `jnp.ndarrays`. Updates = Params # Gradient updates are of the same type as parameters. Schedule = Callable[[chex.Numeric], chex.Numeric] class TransformInitFn(Protocol): """A callable type for the `init` step of a `GradientTransformation`. The `init` step takes a tree of `params` and uses these to construct an arbitrary structured initial `state` for the gradient transformation. This may hold statistics of the past updates or any other non static information. """ def __call__(self, params: Params) -> OptState: """The `init` function. Args: params: The initial value of the parameters. Returns: The initial state of the gradient transformation. """ class TransformUpdateFn(Protocol): """A callable type for the `update` step of a `GradientTransformation`. The `update` step takes a tree of candidate parameter `updates` (e.g. their gradient with respect to some loss), an arbitrary structured `state`, and the current `params` of the model being optimised. The `params` argument is optional, it must however be provided when using transformations that require access to the current values of the parameters. For the case where additional arguments are required, an alternative interface may be used, see ``TransformUpdateExtraArgsFn`` for details. """ def __call__( self, updates: Updates, state: OptState, params: Optional[Params] = None ) -> Tuple[Updates, OptState]: """The `update` function. Args: updates: A tree of candidate updates. state: The state of the gradient transformation. params: (Optionally) the current value of the parameters. Returns: The transformed updates, and the updated state. """ class TransformUpdateExtraArgsFn(Protocol): """An update function accepting additional keyword arguments.""" def __call__( self, updates: Updates, state: OptState, params: Optional[Params] = None, **extra_args: Any, ) -> Tuple[Updates, OptState]: """Update function with optional extra arguments. For example, an update function that requires an additional loss parameter (which might be useful for implementing learning rate schedules that depend on the current loss value) could be expressed as follows. >>> def update(updates, state, params=None, *, loss, **extra_args): >>> del extra_args >>> # use loss value Note that the loss value is keyword only, (it follows a `*` in the signature of the function). This means users will get explicit errors if they try to use this gradient transformation without providing the required argument. Args: updates: The gradient updates passed to this transformation. state: The state associated with this transformation params: Optional params. **extra_args: Additional keyword arguments passed to this transform. All implementors of this interface should accept arbitrary keyword arguments, ignoring those that are not needed for the current transformation. Transformations that require specific extra args should specify these using keyword-only arguments. Returns: Transformed updates, and an updated value for the state. """ class GradientTransformation(NamedTuple): """A pair of pure functions implementing a gradient transformation. Optax optimizers are all implemented as _gradient transformations_. A gradient transformation is defined to be a pair of pure functions, which are combined together in a `NamedTuple` so that they can be referred to by name. Note that an extended API is provided for users wishing to build optimizers that take additional arguments during the update step. For more details, see ``GradientTransoformationExtraArgs``. Since gradient transformations do not contain any internal state, all stateful optimizer properties (such as the current step count when using optimizer scheduels, or momemtum values) are passed through optax gradient transformations by using the optimizer _state_ pytree. Each time a gradient transformation is applied, a new state is computed and returned, ready to be passed to the next call to the gradient transformation. Since gradient transformations are pure, idempotent functions, the only way to change the behaviour of a gradient transformation between steps, is to change the values in the optimizer state. To see an example of mutating the optimizer state in order to control the behaviour of an optax gradient transformation, see the meta-learning example in the optax documentation. Attributes: init: A pure function which, when called with an example instance of the parameters whose gradients will be transformed, returns a pytree containing the initial value for the optimizer state. update: A pure function which takes as input a pytree of updates (with the same tree structure as the original params pytree passed to init), the previous optimizer state (which may have been initialized using the init function), and optionally the current params. The update function then returns the computed gradient updates, and a new optimizer state. """ init: TransformInitFn update: TransformUpdateFn class GradientTransformationExtraArgs(GradientTransformation): """A specialization of GradientTransformation that supports extra args. Extends the existing GradientTransformation interface by adding support for passing extra arguments to the update function. Note that if no extra args are provided, then the API of this function is identical to the case of ``TransformUpdateFn``. This means that we can safely wrap any gradient transformation (that does not support extra args) as one that does. The new gradient transformation will accept (and ignore) any extra arguments that a user might pass to it. This is the behavior implemented by ``optax.with_extra_args_support()``. Attributes: update: Overrides the type signature of the update in the base type to accept extra arguments. """ update: TransformUpdateExtraArgsFn class EmptyState(NamedTuple): """An empty state for the simplest stateless transformations.""" def identity() -> GradientTransformation: """Stateless identity transformation that leaves input gradients untouched. This function passes through the *gradient updates* unchanged. Note, this should not to be confused with `set_to_zero`, which maps the input updates to zero - which is the transform required for the *model parameters* to be left unchanged when the updates are applied to them. Returns: A `GradientTransformation` object. """ def init_fn(_): return EmptyState() def update_fn(updates, state, params=None): del params return updates, state return GradientTransformation(init_fn, update_fn) def set_to_zero() -> GradientTransformation: """Stateless transformation that maps input gradients to zero. The resulting update function, when called, will return a tree of zeros matching the shape of the input gradients. This means that when the updates returned from this transformation are applied to the model parameters, the model parameters will remain unchanged. This can be used in combination with `multi_transform` or `masked` to freeze (i.e. keep fixed) some parts of the tree of model parameters while applying gradient updates to other parts of the tree. When updates are set to zero inside the same jit-compiled function as the calculation of gradients, optax transformations, and application of updates to parameters, unnecessary computations will in general be dropped. Returns: A `GradientTransformation` object. """ def init_fn(params): del params return EmptyState() def update_fn(updates, state, params=None): del params # Unused by the zero transform. return jax.tree_util.tree_map(jnp.zeros_like, updates), state return GradientTransformation(init_fn, update_fn) def stateless( f: Callable[[Updates, Optional[Params]], Updates], ) -> GradientTransformation: """Creates a stateless transformation from an update-like function. This wrapper eliminates the boilerplate needed to create a transformation that does not require saved state between iterations. Args: f: Update function that takes in updates (e.g. gradients) and parameters and returns updates. The parameters may be `None`. Returns: An `optax.GradientTransformation`. """ def init_fn(_): return EmptyState() def update_fn(updates, state, params=None): del state return f(updates, params), EmptyState() return GradientTransformation(init_fn, update_fn) def stateless_with_tree_map( f: Callable[[chex.Array, Optional[chex.Array]], chex.Array], ) -> GradientTransformation: """Creates a stateless transformation from an update-like function for arrays. This wrapper eliminates the boilerplate needed to create a transformation that does not require saved state between iterations, just like optax.stateless. In addition, this function will apply the tree_map over update/params for you. Args: f: Update function that takes in an update array (e.g. gradients) and parameter array and returns an update array. The parameter array may be `None`. Returns: An `optax.GradientTransformation`. """ def init_fn(_): return EmptyState() def update_fn(updates, state, params=None): del state if params is not None: return jax.tree_util.tree_map(f, updates, params), EmptyState() else: f_ = lambda u: f(u, None) return jax.tree_util.tree_map(f_, updates), EmptyState() return GradientTransformation(init_fn, update_fn) def with_extra_args_support( tx: GradientTransformation, ) -> GradientTransformationExtraArgs: """Wraps a gradient transformation, so that it ignores extra args.""" if isinstance(tx, GradientTransformationExtraArgs): return tx def update(updates, state, params=None, **extra_args): del extra_args return tx.update(updates, state, params) return GradientTransformationExtraArgs(tx.init, update)
optax-master
optax/_src/base.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to ensure the implementation is safe wrt numerical issues. Note that complex numbers are also supported, see https://gist.github.com/wdphy16/118aef6fb5f82c49790d7678cf87da29 """ from typing import Optional, Tuple, Union import chex import jax.numpy as jnp import numpy as np # TODO(jscholz) Promote these functions to jax core lib? def abs_sq(x: chex.Array) -> chex.Array: """Returns the squared norm of a (maybe complex) array. For real `x`, JAX generates the same HLO from this, `jnp.square(x)`, `x * x`, or `x**2`. Args: x: a (maybe complex) array. Returns: The squared norm of `x`. """ if not isinstance(x, (np.ndarray, jnp.ndarray)): raise ValueError(f"`abs_sq` accepts only NDarrays, got: {x}.") return (x.conj() * x).real def safe_norm(x: chex.Array, min_norm: chex.Numeric, ord: Optional[Union[int, float, str]] = None, # pylint: disable=redefined-builtin axis: Union[None, Tuple[int, ...], int] = None, keepdims: bool = False) -> chex.Array: """Returns jnp.maximum(jnp.linalg.norm(x), min_norm) with correct gradients. The gradients of `jnp.maximum(jnp.linalg.norm(x), min_norm)` at 0.0 is `NaN`, because jax will evaluate both branches of the `jnp.maximum`. This function will instead return the correct gradient of 0.0 also in such setting. Args: x: jax array. min_norm: lower bound for the returned norm. ord: {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional. Order of the norm. inf means numpy’s inf object. The default is None. axis: {None, int, 2-tuple of ints}, optional. If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is None then either a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. The default is None. keepdims: bool, optional. If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Returns: The safe norm of the input vector, accounting for correct gradient. """ norm = jnp.linalg.norm(x, ord=ord, axis=axis, keepdims=True) x = jnp.where(norm <= min_norm, jnp.ones_like(x), x) norm = jnp.squeeze(norm, axis=axis) if not keepdims else norm masked_norm = jnp.linalg.norm(x, ord=ord, axis=axis, keepdims=keepdims) return jnp.where(norm <= min_norm, min_norm, masked_norm) def safe_root_mean_squares(x: chex.Array, min_rms: chex.Numeric) -> chex.Array: """Returns `maximum(sqrt(mean(abs_sq(x))), min_norm)` with correct grads. The gradients of `maximum(sqrt(mean(abs_sq(x))), min_norm)` at 0.0 is `NaN`, because jax will evaluate both branches of the `jnp.maximum`. This function will instead return the correct gradient of 0.0 also in such setting. Args: x: jax array. min_rms: lower bound for the returned norm. Returns: The safe RMS of the input vector, accounting for correct gradient. """ rms = jnp.sqrt(jnp.mean(abs_sq(x))) x = jnp.where(rms <= min_rms, jnp.ones_like(x), x) return jnp.where(rms <= min_rms, min_rms, jnp.sqrt(jnp.mean(abs_sq(x)))) def safe_int32_increment(count: chex.Numeric) -> chex.Numeric: """Increments int32 counter by one. Normally `max_int + 1` would overflow to `min_int`. This functions ensures that when `max_int` is reached the counter stays at `max_int`. Args: count: a counter to be incremented. Returns: A counter incremented by 1, or max_int if the maximum precision is reached. """ chex.assert_type(count, jnp.int32) max_int32_value = jnp.iinfo(jnp.int32).max one = jnp.array(1, dtype=jnp.int32) return jnp.where(count < max_int32_value, count + one, max_int32_value)
optax-master
optax/_src/numerics.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `lookahead.py`.""" from typing import NamedTuple from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import alias from optax._src import base from optax._src import lookahead from optax._src import state_utils from optax._src import update def _build_sgd(): return alias.sgd(1.) class TestOptimizerState(NamedTuple): """Fast optimizer state for the lookahead tests.""" aggregate_grads: base.Params # Include a variable with non-zero initial value to check that it is reset # correctly by the lookahead optimizer. is_reset: bool = True def _test_optimizer(step_size: float) -> base.GradientTransformation: """Fast optimizer for the lookahead tests.""" # Use SGD for simplicity but add non-trivial optimizer state so that the # resetting behaviour of lookahead can be tested. def init_fn(params): aggregate_grads = jax.tree_util.tree_map(jnp.zeros_like, params) return TestOptimizerState(aggregate_grads, is_reset=True) def update_fn(updates, state, params): # The test optimizer does not use the parameters, but we check that they # have been passed correctly. chex.assert_trees_all_equal_shapes(updates, params) aggregate_grads = update.apply_updates(state.aggregate_grads, updates) updates = jax.tree_util.tree_map(lambda u: step_size * u, updates) return updates, TestOptimizerState(aggregate_grads, is_reset=False) return base.GradientTransformation(init_fn, update_fn) class LookaheadTest(chex.TestCase): """Tests for the lookahead optimizer.""" def setUp(self): super().setUp() self.grads = {'x': np.array(2.), 'y': np.array(-2.)} self.initial_params = {'x': np.array(3.), 'y': np.array(-3.)} self.synced_initial_params = lookahead.LookaheadParams.init_synced( self.initial_params) def loop(self, optimizer, num_steps, params): """Performs a given number of optimizer steps.""" init_fn, update_fn = optimizer # Use the chex variant to check various function versions (jit, pmap, etc). step = self.variant(update_fn) opt_state = self.variant(init_fn)(params) # A no-op change, to verify that tree map works. opt_state = state_utils.tree_map_params(init_fn, lambda v: v, opt_state) for _ in range(num_steps): updates, opt_state = step(self.grads, opt_state, params) params = update.apply_updates(params, updates) return params, opt_state @chex.all_variants def test_lookahead(self): """Tests the lookahead optimizer in an analytically tractable setting.""" sync_period = 3 optimizer = lookahead.lookahead( _test_optimizer(-0.5), sync_period=sync_period, slow_step_size=1 / 3) final_params, _ = self.loop(optimizer, 2 * sync_period, self.synced_initial_params) # x steps must be: 3 -> 2 -> 1 -> 2 (sync) -> 1 -> 0 -> 1 (sync). # Similarly for y (with sign flipped). correct_final_params = {'x': 1, 'y': -1} chex.assert_trees_all_close(final_params.slow, correct_final_params) @chex.all_variants @parameterized.parameters([False], [True]) def test_lookahead_state_reset(self, reset_state): """Checks that lookahead resets the fast optimizer state correctly.""" num_steps = sync_period = 3 fast_optimizer = _test_optimizer(-0.5) optimizer = lookahead.lookahead( fast_optimizer, sync_period=sync_period, slow_step_size=0.5, reset_state=reset_state) _, opt_state = self.loop(optimizer, num_steps, self.synced_initial_params) # A no-op change, to verify that this does not break anything opt_state = state_utils.tree_map_params(optimizer, lambda v: v, opt_state) fast_state = opt_state.fast_state if reset_state: correct_state = fast_optimizer.init(self.initial_params) else: _, correct_state = self.loop(fast_optimizer, num_steps, self.initial_params) chex.assert_trees_all_close(fast_state, correct_state) @chex.all_variants @parameterized.parameters( [1, 0.5, {'x': np.array(1.), 'y': np.array(-1.)}], [1, 0, {'x': np.array(3.), 'y': np.array(-3.)}], [1, 1, {'x': np.array(-1.), 'y': np.array(1.)}], [2, 1, {'x': np.array(-1.), 'y': np.array(1.)}]) # pyformat: disable def test_lookahead_edge_cases(self, sync_period, slow_step_size, correct_result): """Checks special cases of the lookahed optimizer parameters.""" # These edge cases are important to check since users might use them as # simple ways of disabling lookahead in experiments. optimizer = lookahead.lookahead( _test_optimizer(-1), sync_period, slow_step_size) final_params, _ = self.loop( optimizer, num_steps=2, params=self.synced_initial_params) chex.assert_trees_all_close(final_params.slow, correct_result) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/lookahead_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Differential Privacy utilities.""" from typing import Any, NamedTuple import jax from optax._src import base from optax._src import clipping # pylint:disable=no-value-for-parameter class DifferentiallyPrivateAggregateState(NamedTuple): """State containing PRNGKey for `differentially_private_aggregate`.""" # TODO(optax-dev): rng_key used to be annotated as `jnp.array` but that is # not a valid annotation (it's a function and secretely resolved to `Any`). # We should add back typing. rng_key: Any def differentially_private_aggregate( l2_norm_clip: float, noise_multiplier: float, seed: int ) -> base.GradientTransformation: """Aggregates gradients based on the DPSGD algorithm. WARNING: Unlike other transforms, `differentially_private_aggregate` expects the input updates to have a batch dimension in the 0th axis. That is, this function expects per-example gradients as input (which are easy to obtain in JAX using `jax.vmap`). It can still be composed with other transformations as long as it is the first in the chain. References: [Abadi et al, 2016](https://arxiv.org/abs/1607.00133) Args: l2_norm_clip: maximum L2 norm of the per-example gradients. noise_multiplier: ratio of standard deviation to the clipping norm. seed: initial seed used for the jax.random.PRNGKey Returns: A `GradientTransformation`. """ noise_std = l2_norm_clip * noise_multiplier def init_fn(params): del params return DifferentiallyPrivateAggregateState(rng_key=jax.random.PRNGKey(seed)) def update_fn(updates, state, params=None): del params grads_flat, grads_treedef = jax.tree_util.tree_flatten(updates) bsize = grads_flat[0].shape[0] clipped, _ = clipping.per_example_global_norm_clip(grads_flat, l2_norm_clip) new_key, *rngs = jax.random.split(state.rng_key, len(grads_flat) + 1) noised = [(g + noise_std * jax.random.normal(r, g.shape, g.dtype)) / bsize for g, r in zip(clipped, rngs)] return (jax.tree_util.tree_unflatten(grads_treedef, noised), DifferentiallyPrivateAggregateState(rng_key=new_key)) return base.GradientTransformation(init_fn, update_fn)
optax-master
optax/_src/privacy.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Complex-valued optimization. When using `split_real_and_imaginary` to wrap an optimizer, we split the complex parameters and updates into pairs of real ones before sending them to the `update` of the wrapped optimizer, and merge the pairs of transformed real updates into complex ones afterward. In this way, optimizers on complex parameters behave the same way as if they were running on two real parameters. Note that the convention of conjugate for complex gradients in JAX is different from that in PyTorch and other frameworks, and we need to manually conjugate the gradients between `jax.grad` and `optimizer.update`. See details at https://github.com/deepmind/optax/issues/196 """ from typing import NamedTuple, Union import chex import jax import jax.numpy as jnp from optax._src import base class SplitRealAndImaginaryArrays(NamedTuple): """A pair of real arrays split from a complex array.""" real: chex.Array imaginary: chex.Array def _complex_to_real_pair( x: chex.Array ) -> Union[chex.Array, SplitRealAndImaginaryArrays]: """Splits a complex array into a `SplitRealAndImaginaryArrays`. Args: x: The input array, can be complex or real. Returns: `SplitRealAndImaginaryArrays` if the input is a complex array. If the input is a real array, it is passed through unmodified. """ if jnp.iscomplexobj(x): return SplitRealAndImaginaryArrays(x.real, x.imag) else: return x def _real_pair_to_complex( x: Union[chex.Array, SplitRealAndImaginaryArrays] ) -> chex.Array: """Merges a `SplitRealAndImaginaryArrays` into a complex array. Args: x: The input `SplitRealAndImaginaryArrays` or array. Returns: A complex array obtained from the real and imaginary parts of the `SplitRealAndImaginaryArrays`. If the input is not a `SplitRealAndImaginaryArrays`, it is passed through unmodified. """ if isinstance(x, SplitRealAndImaginaryArrays): return x.real + x.imaginary * 1j else: return x class SplitRealAndImaginaryState(NamedTuple): """Maintains the inner transformation state for `split_real_and_imaginary`.""" inner_state: base.OptState def split_real_and_imaginary( inner: base.GradientTransformation ) -> base.GradientTransformation: """Splits the real and imaginary components of complex updates into two. The inner transformation processes real parameters and updates, and the pairs of transformed real updates are merged into complex updates. Parameters and updates that are real before splitting are passed through unmodified. Args: inner: The inner transformation. Returns: An `optax.GradientTransformation`. """ def init_fn(params): params = jax.tree_util.tree_map(_complex_to_real_pair, params) inner_state = inner.init(params) return SplitRealAndImaginaryState(inner_state) def update_fn(updates, state, params=None): inner_state = state.inner_state updates = jax.tree_util.tree_map(_complex_to_real_pair, updates) params = jax.tree_util.tree_map(_complex_to_real_pair, params) updates, inner_state = inner.update(updates, inner_state, params) updates = jax.tree_util.tree_map( _real_pair_to_complex, updates, is_leaf=lambda x: isinstance(x, SplitRealAndImaginaryArrays)) return updates, SplitRealAndImaginaryState(inner_state) return base.GradientTransformation(init_fn, update_fn)
optax-master
optax/_src/experimental/complex_valued.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for extra_kwargs.""" from absl.testing import absltest import chex import jax import jax.numpy as jnp from optax._src import base from optax._src import transform from optax._src.experimental import extra_args as extra def scale_by_loss(): """Scale the gradient by the absolute value of the loss.""" def init_fn(params, *, extra_args): del params, extra_args return base.EmptyState() def update_fn(updates, state, params, *, extra_args): del params updates = jax.tree_util.tree_map( lambda u: u / extra_args['loss'], updates) return updates, state return extra.GradientTransformationWithExtraArgs(init_fn, update_fn) class ExtraArgsTest(absltest.TestCase): def test_named_chain(self): tx = extra.named_chain( ('scale', transform.scale(0.1)), ('scale_by_policy_loss', scale_by_loss()), ('scale_by_value_loss', scale_by_loss()), ) params = {'a': jnp.ones((4,))} grads = params extra_args = { 'scale_by_policy_loss': {'loss': 0.01}, 'scale_by_value_loss': {'loss': 10.0}} opt_state = tx.init(params, extra_args=extra_args) updates, opt_state = tx.update( grads, opt_state, params, extra_args=extra_args) chex.assert_trees_all_close(updates, {'a': jnp.ones((4,))}) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/experimental/extra_args_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Support for extra kwargs in a gradient transformation's `init` and `update`. Some users have the need to condition the behavior of a gradient transformations on dynamical quantities such as the loss. With this experimental feature we support passing additional kwargs to `init` and `update`. We introduce `GradientTransformationWithExtraArgs` as an experimental feature. You can use the new `named_chain` to combine both old-style and new-style transformations. We will then monitor users to understand how they use it and gather feedback from optax users before merging this into the stable API. """ from typing import Any, Mapping, Optional, Protocol, Tuple, Union, NamedTuple from optax._src import base class InitFnWithExtraArgs(Protocol): """Like `TransformInitFn` but with optional `extra_args`.""" def __call__( self, params: base.Params, *, extra_args: Optional[Mapping[str, Any]] = None, ) -> base.OptState: """The `init` function.""" class UpdateFnWithExtraArgs(Protocol): """Like `TransformUpdateFn` but with optional `extra_args`.""" def __call__( self, updates: base.Updates, state: base.OptState, params: Optional[base.Params] = None, *, extra_args: Optional[Mapping[str, Any]] = None, ) -> Tuple[base.Updates, base.OptState]: """The `update` function.""" class GradientTransformationWithExtraArgs(NamedTuple): """A pair of pure functions implementing a gradient transformation. GradientTransformationWithExtraArgs is just like GradientTransformation but both the `init` and `update` functions accept an additional `extra_args` dict. This can be used to provide additional dynamic information that is not computed by the GradientTransformation itself (e.g. loss) but that may be needed by specific algorithms. """ init: InitFnWithExtraArgs update: UpdateFnWithExtraArgs AnyGradientTransformation = Union[ base.GradientTransformation, GradientTransformationWithExtraArgs] NamedTransform = Tuple[str, AnyGradientTransformation] def named_chain( *transforms: NamedTransform) -> GradientTransformationWithExtraArgs: """Chains optax gradient transformations. The `transforms` are `(name, transformation)` pairs, constituted of a string `name` and an associated gradient transformation `transformation`. The gradient transformation must be an instance of either `GradientTransformation` or `GradientTransformationWithExtraArgs`. Each `name` is used as key for the state of the corresponding transformation within the `named_chain` state. Thus the state of the gradient transformation with a given `name` can be retrieved as `opt_state[name]`. The `named_chain` accepts an `extra_args` meta-dictionary whose fields are the transformations' names and its values are the corresponding extra_args: Example: tx = named_chain(('one', tx1), ('two', tx2)) extra_args={ 'one': {'loss': 0.1}, 'two': {'loss': 0.3, 'temperature': 0.01}} tx.init(params, extra_args=extra_args} tx.update(grads, state, params, extra_args=extra_args) # tx1 receives {'loss': 0.1} as extra_args # tx2 receives {'loss': 0.3, 'temperature': 0.01} as extra_args If one of the transformations does not need extra_args the corresponding name can just be skipped in the `named_chain` extra_args: Example: tx = named_chain(('one', tx1), ('two', tx2)) extra_args={'one': {'loss': 0.1}} tx.init(params, extra_args=extra_args} tx.update(grads, state, params, extra_args=extra_args) # tx1 receives {'loss': 0.1} as extra_args. # tx2 is called without passing the extra_args. Args: *transforms: an arbitrary number of `(name, tx)` pairs, constituted of a string `name` and an associated gradient transformation `tx`. The latter is a `GradientTransformation` or `GradientTransformationWithExtraArgs`. Returns: A single (init_fn, update_fn) tuple. """ names = [name for name, _ in transforms] if len(names) != len(set(names)): raise ValueError( f'Named transformations must have unique names, but got {names}') def init_fn(params, *, extra_args=None): states = {} for (name, tx) in transforms: _assert_is_gradient_transformation(tx) if (extra_args is not None and isinstance(tx, GradientTransformationWithExtraArgs)): states[name] = tx.init( params, extra_args=extra_args.get(name)) else: states[name] = tx.init(params) return states def update_fn(updates, state, params=None, *, extra_args=None): new_state = {} for (name, tx) in transforms: _assert_is_gradient_transformation(tx) if (extra_args is not None and isinstance(tx, GradientTransformationWithExtraArgs)): updates, new_state[name] = tx.update( updates, state[name], params, extra_args=extra_args.get(name)) else: updates, new_state[name] = tx.update(updates, state[name], params) return updates, new_state return GradientTransformationWithExtraArgs(init_fn, update_fn) def _assert_is_gradient_transformation(tx): valid_types = ( base.GradientTransformation, GradientTransformationWithExtraArgs) if not isinstance(tx, valid_types): raise ValueError( 'The transformation `tx` must be a valid gradient transformation, ' 'that is an instance of either `GradientTransformation` or ' 'an instance of `GradientTransformationWithExtraArgs`')
optax-master
optax/_src/experimental/extra_args.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `complex_valued.py`.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import transform from optax._src import update from optax._src.experimental import complex_valued def _loss_fun_complex_to_real(z): return (z.conj() * z).real.sum() def _loss_fun_real_to_real(params): x, y = params return _loss_fun_complex_to_real(x + y * 1j) class ComplexValuedTest(parameterized.TestCase): @chex.all_variants @parameterized.named_parameters([ ('adam', transform.scale_by_adam), ('param_block_norm', transform.scale_by_param_block_norm), ]) def test_split_real_and_imaginary(self, scaler_constr): def do_update(loss_fun, optimizer, params, opt_state): loss, grads = jax.value_and_grad(loss_fun)(params) # Complex gradients need to be conjugated before being added to parameters grads = jax.tree_util.tree_map(lambda x: x.conj(), grads) updates, opt_state = self.variant(optimizer.update)( grads, opt_state, params) params = update.apply_updates(params, updates) return loss, grads, params, opt_state x = jnp.array([[0.1, 0.2, 0.3], [-0.1, -0.2, -0.3]]) y = jnp.array([[0.5, -0.5, 0], [0.1, 0.3, -0.2]]) z = x + y * 1j optimizer = scaler_constr() optimizer_complex = complex_valued.split_real_and_imaginary(optimizer) opt_state = self.variant(optimizer.init)((x, y)) opt_state_complex = self.variant(optimizer_complex.init)(z) # Check that the loss, the gradients, and the parameters are the same for # real-to-real and complex-to-real loss functions in each step for _ in range(3): loss, (gx, gy), (x, y), opt_state = do_update( _loss_fun_real_to_real, optimizer, (x, y), opt_state) loss_complex, gz, z, opt_state_complex = do_update( _loss_fun_complex_to_real, optimizer_complex, z, opt_state_complex) np.testing.assert_allclose(loss, loss_complex) np.testing.assert_allclose(gx + gy * 1j, gz) np.testing.assert_allclose(x + y * 1j, z) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/experimental/complex_valued_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `mechanic.py`.""" from typing import NamedTuple from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from optax._src import alias from optax._src import base from optax._src import numerics from optax._src import state_utils from optax._src import update from optax._src.contrib import mechanic # TODO(harshm): make LARS and Fromage work with mechanic. _OPTIMIZERS_UNDER_TEST = ( dict(opt_name='sgd', opt_kwargs=dict(learning_rate=1.0, momentum=0.9)), dict(opt_name='adam', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='adamw', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='adamax', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='adamaxw', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='amsgrad', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='lamb', opt_kwargs=dict(learning_rate=1.0)), dict( opt_name='lion', opt_kwargs=dict(learning_rate=1.0, b1=0.99), ), dict(opt_name='noisy_sgd', opt_kwargs=dict(learning_rate=1.0, eta=1e-4)), dict(opt_name='novograd', opt_kwargs=dict(learning_rate=1.0)), dict( opt_name='optimistic_gradient_descent', opt_kwargs=dict(learning_rate=1.0, alpha=0.7, beta=0.1), ), dict(opt_name='rmsprop', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='rmsprop', opt_kwargs=dict(learning_rate=1.0, momentum=0.9)), dict(opt_name='adabelief', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='radam', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='sm3', opt_kwargs=dict(learning_rate=1.0)), dict(opt_name='yogi', opt_kwargs=dict(learning_rate=1.0, b1=0.99)), ) def _setup_parabola(dtype): """Quadratic function as an optimization target.""" initial_params = jnp.array([-1.0, 10.0, 1.0], dtype=dtype) final_params = jnp.array([1.0, -1.0, 1.0], dtype=dtype) @jax.grad def get_updates(params): return jnp.sum(numerics.abs_sq(params - final_params)) return initial_params, final_params, get_updates def _setup_rosenbrock(dtype): """Rosenbrock function as an optimization target.""" a = 1.0 b = 100.0 initial_params = jnp.array([0.0, 0.0], dtype=dtype) final_params = jnp.array([a, a**2], dtype=dtype) @jax.grad def get_updates(params): return (numerics.abs_sq(a - params[0]) + b * numerics.abs_sq(params[1] - params[0]**2)) return initial_params, final_params, get_updates class TestOptimizerState(NamedTuple): """Inner optimizer state for the Mechanic tests.""" aggregate_grads: base.Params def _test_optimizer(step_size: float) -> base.GradientTransformation: """Inner optimizer for the Mechanic tests.""" # Use SGD for simplicity but add non-trivial optimizer state so that the # resetting behaviour of lookahead can be tested. def init_fn(params): aggregate_grads = jax.tree_util.tree_map(jnp.zeros_like, params) return TestOptimizerState(aggregate_grads) def update_fn(updates, state, params): # The test optimizer does not use the parameters, but we check that they # have been passed correctly. chex.assert_trees_all_equal_shapes(updates, params) aggregate_grads = update.apply_updates(state.aggregate_grads, updates) updates = jax.tree_util.tree_map(lambda u: step_size * u, updates) return updates, TestOptimizerState(aggregate_grads) return base.GradientTransformation(init_fn, update_fn) class MechanicTest(chex.TestCase): def setUp(self): super().setUp() rng = np.random.RandomState(0) self.tree_a = (rng.randn(20, 10), rng.randn(20)) self.tree_b = (rng.randn(20, 10), rng.randn(20)) self.tree_a_dict = (1.0, {'k1': 1.0, 'k2': (1.0, 1.0)}, 1.0) self.tree_b_dict = (1.0, {'k1': 2.0, 'k2': (3.0, 4.0)}, 5.0) self.array_a = rng.randn(20) self.array_b = rng.randn(20) self.grads = {'x': np.array(2.), 'y': np.array(-2.)} self.initial_params = {'x': np.array(3.), 'y': np.array(-3.)} def loop(self, optimizer, num_steps, params): """Performs a given number of optimizer steps.""" init_fn, update_fn = optimizer # Use the chex variant to check various function versions (jit, pmap, etc). step = self.variant(update_fn) opt_state = self.variant(init_fn)(params) # A no-op change, to verify that tree map works. opt_state = state_utils.tree_map_params(init_fn, lambda v: v, opt_state) for _ in range(num_steps): updates, opt_state = step(self.grads, opt_state, params) print(updates) params = update.apply_updates(params, updates) return params, opt_state @chex.all_variants(with_pmap=False) def test_mechanized(self): params = self.initial_params num_betas = 6 inner_optimizer = _test_optimizer(-0.1) optimizer = mechanic.mechanize( inner_optimizer, weight_decay=1e-2, eps=1e-10, s_init=1e-8, num_betas=num_betas, ) final_params, final_state = self.loop( optimizer=optimizer, num_steps=1, params=params ) expected_m = np.array([1.0e-10] * num_betas) expected_v = np.array([0.0] * num_betas) expected_s = np.array([1.6666667e-09] * num_betas) chex.assert_trees_all_close(expected_m, final_state.m) chex.assert_trees_all_close(expected_v, final_state.v) chex.assert_trees_all_close(expected_s, final_state.s) chex.assert_trees_all_close(final_params, params) chex.assert_tree_all_finite((final_params, final_state)) @parameterized.product( _OPTIMIZERS_UNDER_TEST, target=(_setup_parabola, _setup_rosenbrock), dtype=(jnp.float32,), ) def test_optimization(self, opt_name, opt_kwargs, target, dtype): opt = getattr(alias, opt_name)(**opt_kwargs) opt = mechanic.mechanize(opt, weight_decay=0.0) initial_params, final_params, get_updates = target(dtype) @jax.jit def step(params, state): updates = get_updates(params) updates, state = opt.update(updates, state, params) params = update.apply_updates(params, updates) return params, state params = initial_params state = opt.init(params) # A no-op change, to verify that tree map works. state = state_utils.tree_map_params(opt, lambda v: v, state) for _ in range(25000): params, state = step(params, state) chex.assert_trees_all_close(params, final_params, rtol=3e-2, atol=3e-2) if __name__ == '__main__': absltest.main()
optax-master
optax/_src/contrib/mechanic_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mechanic wrapper for automatic black box learning rate tuning. Mechanic is a contributed optimizer implemented from https://arxiv.org/pdf/2306.00144.pdf. This implementation matches the paper exactly and implemented by the original authors. More specifically, mechanic is implemented to work well with other optax optimizers that it can wrap to learn the learning rate. Mechanic incurs an extra O(d) slot to store the initial weights and a handful of O(d) computations. We largely expect the wall clock time with and without using Mechanic to be the same for reasonably large batch sizes (>1k). """ import functools import operator from typing import NamedTuple, Optional, Tuple import chex import jax import jax.numpy as jnp from optax._src import base from optax._src import utils def _vdot_safe(a, b): vdot = functools.partial(jnp.vdot, precision=jax.lax.Precision.HIGHEST) cvdot = vdot(jnp.asarray(a), jnp.asarray(b)) return cvdot @jax.jit def _tree_vdot(tree_x, tree_y): """Compute the inner product <tree_x, tree_y>.""" vdots = jax.tree_util.tree_map(_vdot_safe, tree_x, tree_y) return jax.tree_util.tree_reduce(operator.add, vdots) @jax.jit def _tree_sum(tree_x): """Compute sum(tree_x).""" sums = jax.tree_util.tree_map(jnp.sum, tree_x) return jax.tree_util.tree_reduce(operator.add, sums) @jax.jit def _tree_norm(tree): """Compute the l2 norm ||tree_x||.""" return jnp.sqrt(_tree_sum(jax.tree_map(lambda x: jnp.sum(x**2), tree))) class MechanicState(NamedTuple): """State of the `GradientTransformation` returned by `mechanize`.""" base_optimizer_state: base.OptState count: chex.Array # shape=(), dtype=jnp.int32. r: chex.Array m: chex.Array v: chex.Array s: chex.Array x0: base.Updates def mechanize( base_optimizer: base.GradientTransformation, weight_decay: float = 1e-2, eps: float = 1e-8, s_init: float = 1e-6, num_betas: int = 6, ) -> base.GradientTransformation: """Mechanic - a black box learning rate tuner/optimizer. Accumulates updates returned by the base_optimizer and learns the scale of the updates (also know as learning rate or step size) to apply on a per iteration basis. Note that Mechanic does NOT eschew the need for a learning rate schedule, you are free to apply a learning rate schedule with base learning rate set to 1.0 (or any other constant) and Mechanic will learn the right scale factor automatically. For example, change this:: learning_rate_fn = optax.warmup_cosine_decay_schedule(peak_value=tuned_lr) optimizer = optax.adam(learning_rate_fn) To:: learning_rate_fn = optax.warmup_cosine_decay_schedule(peak_value=1.0) optimizer = optax.adam(learning_rate_fn) optimizer = optax.contrib.mechanize(optimizer) As of June, 2023, Mechanic is tested with SGD, Momentum, Adam and Lion as inner optimizers but we expect it to work with almost any first-order optimizer (except for normalized gradient optimizer like LARS or LAMB). References: [Cutkosky et al, 2023](https://arxiv.org/pdf/2306.00144.pdf) Args: base_optimizer: Base optimizer to compute updates from. weight_decay: A scalar weight decay rate. Note that this weight decay is not the same as the weight decay one would use for the base_optimizer. In addition to sometimes helping converge faster, this helps Mechanic reduce the variance between training runs using different seeds. You likely would not need to tune this, the default should work in most cases. eps: epsilon for mechanic. s_init: initial scale factor. Default should work almost all the time. num_betas: unlike traditional exp accumulators (like 1st or 2nd moment of adam), where one has to choose an explicit beta, mechanic has a clever way to automatically learn the right beta for all accumulators. We only provide the range of possible betas, and not the tuned value. For instance, if you set num_betas to 3, it will use betas = [0.9, 0.99, 0.999]. Returns: A `GradientTransformation` with init and update functions. """ def init_fn(params: base.Params) -> MechanicState: x0 = params r = jnp.zeros([num_betas,], jnp.float32) v = jnp.zeros([num_betas,], jnp.float32) m = jnp.zeros([num_betas,], jnp.float32) s = jnp.ones([num_betas,], jnp.float32) * s_init return MechanicState( base_optimizer_state=base_optimizer.init(params), count=jnp.zeros([], jnp.int32), r=r, m=m, v=v, s=s, x0=x0, ) def update_fn( updates: base.Updates, state: MechanicState, params: Optional[base.Params] = None, ) -> Tuple[base.Params, MechanicState]: if params is None: raise ValueError(base.NO_PARAMS_MSG) count_inc = utils.safe_int32_increment(state.count) new_neg_updates, base_optimizer_state = base_optimizer.update( updates, state.base_optimizer_state, params ) # Since a lot of training loops unfreezes weights to replace it with # pre-trained weights, we want to make sure we start from actually used # weights instead of what they were initialized with. x0 = jax.lax.cond(state.count == 0, lambda: params, lambda: state.x0) # Add weight decay to raw gradients, note that this is othogonal to any # weight decay applied to inner_optimizer updates. s_sum = jnp.sum(state.s) grad_norm = _tree_norm(updates) param_norm = _tree_norm(params) def add_weight_decay(gi, pi): return gi + weight_decay * s_sum * grad_norm / (param_norm + eps) * pi updates = jax.tree_util.tree_map( add_weight_decay, updates, params, ) # We use the memory efficient version of Mechanic where we re-compute # \Delta every iteration. delta_prev = jax.tree_util.tree_map( lambda xti, x0i: (x0i - xti) / (s_sum + eps), params, x0 ) # We actually want to add the updates, but since optax by default flips # signs when applying the learning rate, we substract instead. delta = jax.tree_util.tree_map( lambda si, ui: si - ui, delta_prev, new_neg_updates ) # Now we are ready to run the actual Mechanic algorithm. h = _tree_vdot(updates, delta_prev) # This clipping was not part of the original paper but we introduced it # a little later. clipped_h = jax.lax.clamp(-state.m, jnp.ones_like(state.m) * h, state.m) betas = jnp.array([1.0 - 0.1**betai for betai in range(1, num_betas + 1)]) m = jnp.maximum(betas * state.m, jnp.abs(h) + eps) v = (betas**2) * state.v + h**2 r = betas * state.r + clipped_h * state.s rc = jnp.maximum(0.0, r) wealth = (s_init / jnp.size(betas)) * m + rc s = wealth / (jnp.sqrt(v) + eps) # Once we have the scale factor s, we produce new params with it. new_x0 = x0 new_params = jax.tree_util.tree_map( lambda x0, deltai: x0 - jnp.sum(s) * deltai, new_x0, delta ) new_neg_updates = jax.tree_util.tree_map( lambda np, op: np - op, new_params, params ) return new_neg_updates, MechanicState( base_optimizer_state=base_optimizer_state, count=count_inc, r=r, m=m, v=v, s=s, x0=new_x0, ) return base.GradientTransformation(init_fn, update_fn)
optax-master
optax/_src/contrib/mechanic.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contributed optimizers in Optax.""" from optax._src.contrib.mechanic import MechanicState from optax._src.contrib.mechanic import mechanize
optax-master
optax/contrib/__init__.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple example of using Optax to train the parameters of a Flax module.""" from absl import app from flax import linen as nn import jax import jax.numpy as jnp import optax def main(argv): del argv learning_rate = 1e-2 n_training_steps = 100 # Random number generator sequence. rng = jax.random.PRNGKey(0) rng1, rng2 = jax.random.split(rng) # Create a one linear layer instance. model = nn.Dense(features=5) # Initialise the parameters. params = model.init(rng2, jax.random.normal(rng1, (10,))) # Set problem dimensions. nsamples = 20 xdim = 10 ydim = 5 # Generate random ground truth w and b. w = jax.random.normal(rng1, (xdim, ydim)) b = jax.random.normal(rng2, (ydim,)) # Generate samples with additional noise. ksample, knoise = jax.random.split(rng1) x_samples = jax.random.normal(ksample, (nsamples, xdim)) y_samples = jnp.dot(x_samples, w) + b y_samples += 0.1 * jax.random.normal(knoise, (nsamples, ydim)) # Define an MSE loss function. def make_mse_func(x_batched, y_batched): def mse(params): # Define the squared loss for a single (x, y) pair. def squared_error(x, y): pred = model.apply(params, x) return jnp.inner(y-pred, y-pred) / 2.0 # Vectorise the squared error and compute the average of the loss. return jnp.mean(jax.vmap(squared_error)(x_batched, y_batched), axis=0) return jax.jit(mse) # `jit` the result. # Instantiate the sampled loss. loss = make_mse_func(x_samples, y_samples) # Construct a simple Adam optimiser using the transforms in optax. # You could also just use the `optax.adam` alias, but we show here how # to do so manually so that you may construct your own `custom` optimiser. tx = optax.chain( # Set the parameters of Adam. Note the learning_rate is not here. optax.scale_by_adam(b1=0.9, b2=0.999, eps=1e-8), # Put a minus sign to *minimise* the loss. optax.scale(-learning_rate) ) # Create optimiser state. opt_state = tx.init(params) # Compute the gradient of the loss function. loss_grad_fn = jax.value_and_grad(loss) # Minimise the loss. for step in range(n_training_steps): # Compute gradient of the loss. loss_val, grads = loss_grad_fn(params) # Update the optimiser state, create an update to the params. updates, opt_state = tx.update(grads, opt_state) # Update the parameters. params = optax.apply_updates(params, updates) print(f'Loss[{step}] = {loss_val}') if __name__ == '__main__': app.run(main)
optax-master
examples/flax_example.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Trains a differentially private convolutional neural network on MNIST. A large portion of this code is forked from the differentially private SGD example in the JAX repo: https://github.com/google/jax/blob/master/examples/differentially_private_sgd.py Differentially Private Stochastic Gradient Descent (https://arxiv.org/abs/1607.00133) requires clipping the per-example parameter gradients, which is non-trivial to implement efficiently for convolutional neural networks. The JAX XLA compiler shines in this setting by optimizing the minibatch-vectorized computation for convolutional architectures. Train time takes a few seconds per epoch on a commodity GPU. The results match those in the reference TensorFlow baseline implementation: https://github.com/tensorflow/privacy/tree/master/tutorials Example invocations from within the `examples/` directory: # this non-private baseline should get ~99% acc python differentially_private_sgd.py \ --dpsgd=False \ --learning_rate=.1 \ --epochs=20 # this private baseline should get ~95% acc python differentially_private_sgd.py \ --dpsgd=True \ --noise_multiplier=1.3 \ --l2_norm_clip=1.5 \ --epochs=15 \ --learning_rate=.25 # this private baseline should get ~96.6% acc python differentially_private_sgd.py \ --dpsgd=True \ --noise_multiplier=1.1 \ --l2_norm_clip=1.0 \ --epochs=60 \ --learning_rate=.15 # this private baseline should get ~97% acc python differentially_private_sgd.py \ --dpsgd=True \ --noise_multiplier=0.7 \ --l2_norm_clip=1.5 \ --epochs=45 \ --learning_rate=.25 """ import time import warnings from absl import app from absl import flags import dp_accounting import jax from jax.example_libraries import stax import jax.numpy as jnp import optax # pylint: disable=g-bad-import-order import datasets # Located in the examples folder. # pylint: enable=g-bad-import-order NUM_EXAMPLES = 60_000 FLAGS = flags.FLAGS flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'train with vanilla SGD.') flags.DEFINE_float('learning_rate', .15, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 1.1, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') flags.DEFINE_integer('batch_size', 256, 'Batch size') flags.DEFINE_integer('epochs', 60, 'Number of epochs') flags.DEFINE_integer('seed', 1337, 'Seed for JAX PRNG') flags.DEFINE_float('delta', 1e-5, 'Target delta used to compute privacy spent.') init_random_params, predict = stax.serial( stax.Conv(16, (8, 8), padding='SAME', strides=(2, 2)), stax.Relu, stax.MaxPool((2, 2), (1, 1)), stax.Conv(32, (4, 4), padding='VALID', strides=(2, 2)), stax.Relu, stax.MaxPool((2, 2), (1, 1)), stax.Flatten, stax.Dense(32), stax.Relu, stax.Dense(10), ) def compute_epsilon(steps, target_delta=1e-5): if NUM_EXAMPLES * target_delta > 1.: warnings.warn('Your delta might be too high.') q = FLAGS.batch_size / float(NUM_EXAMPLES) orders = list(jnp.linspace(1.1, 10.9, 99)) + list(range(11, 64)) accountant = dp_accounting.rdp.RdpAccountant(orders) accountant.compose(dp_accounting.PoissonSampledDpEvent( q, dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps) return accountant.get_epsilon(target_delta) def loss_fn(params, batch): logits = predict(params, batch['image']) return optax.softmax_cross_entropy(logits, batch['label']).mean(), logits @jax.jit def test_step(params, batch): loss, logits = loss_fn(params, batch) accuracy = (logits.argmax(1) == batch['label'].argmax(1)).mean() return loss, accuracy * 100 def main(_): train_dataset = datasets.load_image_dataset('mnist', FLAGS.batch_size) test_dataset = datasets.load_image_dataset('mnist', NUM_EXAMPLES, datasets.Split.TEST) full_test_batch = next(test_dataset.as_numpy_iterator()) if FLAGS.dpsgd: tx = optax.dpsgd(learning_rate=FLAGS.learning_rate, l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, seed=FLAGS.seed) else: tx = optax.sgd(learning_rate=FLAGS.learning_rate) @jax.jit def train_step(params, opt_state, batch): grad_fn = jax.grad(loss_fn, has_aux=True) if FLAGS.dpsgd: # Insert dummy dimension in axis 1 to use jax.vmap over the batch batch = jax.tree_util.tree_map(lambda x: x[:, None], batch) # Use jax.vmap across the batch to extract per-example gradients grad_fn = jax.vmap(grad_fn, in_axes=(None, 0)) grads, _ = grad_fn(params, batch) updates, new_opt_state = tx.update(grads, opt_state, params) new_params = optax.apply_updates(params, updates) return new_params, new_opt_state key = jax.random.PRNGKey(FLAGS.seed) _, params = init_random_params(key, (-1, 28, 28, 1)) opt_state = tx.init(params) print('\nStarting training...') for epoch in range(1, FLAGS.epochs + 1): start_time = time.time() for batch in train_dataset.as_numpy_iterator(): params, opt_state = train_step(params, opt_state, batch) epoch_time = time.time() - start_time print(f'Epoch {epoch} in {epoch_time:0.2f} seconds.') # Evaluate test accuracy test_loss, test_acc = test_step(params, full_test_batch) print(f'Test Loss: {test_loss:.2f} Test Accuracy (%): {test_acc:.2f}).') # Determine privacy loss so far if FLAGS.dpsgd: steps = epoch * NUM_EXAMPLES // FLAGS.batch_size eps = compute_epsilon(steps, FLAGS.delta) print(f'For delta={FLAGS.delta:.0e}, the current epsilon is: {eps:.2f}.') else: print('Trained with vanilla non-private SGD optimizer.') if __name__ == '__main__': app.run(main)
optax-master
examples/differentially_private_sgd.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optax.examples.lookahead_mnist.""" from absl.testing import absltest from absl.testing.absltest import mock import numpy as np import tensorflow as tf # pylint: disable=g-bad-import-order import datasets # Located in the examples folder. import lookahead_mnist # Located in the examples folder. # pylint: enable=g-bad-import-order class LookaheadMnistTest(absltest.TestCase): def test_lookahead_example_can_fit_linear_mock_data(self): """Checks that the lookahead example can fit linear mock data.""" lookahead_mnist.LEARNING_RATE = 1e-2 lookahead_mnist.HIDDEN_SIZES = (1,) data = { 'image': np.arange(-0.5, 0.5, 0.1).reshape(10, 1, 1), 'label': np.array([[1, 0]] * 4 + [[0, 1]] * 6) } dataset = tf.data.Dataset.from_tensor_slices(data).repeat(8).batch(10) with mock.patch.object( datasets, 'load_image_dataset', return_value=dataset): final_accuracy = lookahead_mnist.main({}) self.assertEqual(final_accuracy, 1.) if __name__ == '__main__': absltest.main()
optax-master
examples/lookahead_mnist_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An MNIST example using the Adam optimizer and lookahead wrapper.""" import functools from absl import app import jax from jax import random import jax.numpy as jnp import optax # pylint: disable=g-bad-import-order import datasets # Located in the examples folder. import mnist # Located in the examples folder. # pylint: enable=g-bad-import-order LEARNING_RATE = 0.002 SLOW_LEARNING_RATE = 0.5 SYNC_PERIOD = 5 HIDDEN_SIZES = (1000, 1000) BATCH_SIZE = 128 N_EPOCHS = 5 SEED = 1 def main(unused_argv) -> None: train_dataset = datasets.load_image_dataset('mnist', BATCH_SIZE) test_dataset = datasets.load_image_dataset('mnist', BATCH_SIZE, datasets.Split.TEST) num_classes = train_dataset.element_spec['label'].shape[1] init_params_fn, apply_params_fn = mnist.build_model( (*HIDDEN_SIZES, num_classes)) # Set up the fast optimizer (adam) and wrap lookahead around it. fast_optimizer = optax.adam(LEARNING_RATE) optimizer = optax.lookahead(fast_optimizer, SYNC_PERIOD, SLOW_LEARNING_RATE) def get_loss(fast_params, batch): logits = apply_params_fn(fast_params, batch['image']) return jnp.mean(optax.softmax_cross_entropy(logits, batch['label'])) @jax.jit def train_step(params, optimizer_state, batch): grads = jax.grad(get_loss)(params.fast, batch) updates, opt_state = optimizer.update(grads, optimizer_state, params) return optax.apply_updates(params, updates), opt_state example_input = next(train_dataset.as_numpy_iterator())['image'] initial_params = init_params_fn(random.PRNGKey(SEED), example_input) # The lookahead optimizer wrapper keeps a pair of slow and fast parameters. To # initialize them, we create a pair of synchronized parameters from the # initial model parameters. The first line below is only necessary for the # lookahead wrapper; without it the initial parameters could be used in the # initialization function of the optimizer directly. params = optax.LookaheadParams.init_synced(initial_params) opt_state = optimizer.init(params) # Training loop for epoch in range(N_EPOCHS): for batch in train_dataset.as_numpy_iterator(): params, opt_state = train_step(params, opt_state, batch) # Validation is done on the slow lookahead parameters. eval_model = functools.partial(apply_params_fn, params.slow) test_acc = mnist.model_accuracy(eval_model, test_dataset.as_numpy_iterator()) print(f'Epoch {epoch+1}: test acc: {test_acc:.2f}') return test_acc # pytype: disable=bad-return-type # numpy-scalars if __name__ == '__main__': app.run(main)
optax-master
examples/lookahead_mnist.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Datasets used in the examples.""" import functools from typing import Dict, Mapping import numpy as np import tensorflow as tf import tensorflow_datasets as tfds Split = tfds.Split def _preprocess_image_dataset(element: Mapping[str, tf.Tensor], num_labels: int) -> Dict[str, tf.Tensor]: """Casts image to floats in the range [0,1] and one-hot encodes the label.""" rescaled_image = tf.cast(element['image'], tf.float32) / 255. one_hot_label = tf.one_hot( tf.cast(element['label'], tf.int32), num_labels, on_value=1, off_value=0) return {'image': rescaled_image, 'label': one_hot_label} def load_image_dataset(dataset_name: str, batch_size: int, split: Split = Split.TRAIN, *, shuffle: bool = True, buffer_size: int = 10000, cache: bool = True) -> tf.data.Dataset: """Loads an pre-processes an image dataset from tensorflow_datasets. The dataset is pre-processed so as to be ready for training a model: the images are converted to tensors of floats in the range [0, 1] and the labels are one-hot encoded. Args: dataset_name: Name of the dataset to load. batch_size: Batch size to be used for training. split: Split of the dataset that should be loaded. shuffle: Whether to shuffle the dataset. buffer_size: Size of the shuffle buffer. cache: Whether to cache the dataset after pre-processing. Returns: The batched pre-processed dataset. """ dataset = tfds.load(dataset_name, split=split) max_label = dataset.reduce( np.int64(0), lambda state, x: tf.maximum(state, x['label'])) num_labels = int(max_label) + 1 dataset = dataset.map( functools.partial(_preprocess_image_dataset, num_labels=num_labels)) if cache: dataset = dataset.cache() if shuffle: dataset = dataset.shuffle(buffer_size) return dataset.batch(batch_size).prefetch(tf.data.AUTOTUNE)
optax-master
examples/datasets.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optax.examples.datasets.""" from typing import Iterable, List from absl.testing import absltest from absl.testing.absltest import mock import numpy as np import tensorflow as tf import tensorflow_datasets as tfds # pylint: disable=g-bad-import-order import datasets # Located in the examples folder. # pylint: enable=g-bad-import-order def _batch_array(array: np.ndarray, batch_size: int) -> List[np.ndarray]: """Splits an array into batches.""" split_indices = np.arange(batch_size, array.shape[0], batch_size) return np.split(array, split_indices) def _assert_batches_almost_equal(actual: Iterable[np.ndarray], desired: Iterable[np.ndarray]) -> None: """Asserts that two dataset iterables are almost equal per batch.""" for batch, correct_batch in zip(actual, desired): np.testing.assert_almost_equal(batch, correct_batch) class DatasetsTest(absltest.TestCase): def setUp(self) -> None: super().setUp() self._images = np.array([[50], [150], [250]]) self._one_hot_labels = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) self._test_dataset = tf.data.Dataset.from_tensor_slices({ 'image': self._images, 'label': np.argmax(self._one_hot_labels, axis=1), }) self._batch_size = 2 def test_load_image_dataset(self) -> None: """Checks datasets are loaded and preprocessed correctly.""" with mock.patch.object(tfds, 'load', return_value=self._test_dataset): dataset = datasets.load_image_dataset( 'unused_by_mock', self._batch_size, shuffle=False) with self.subTest('test_images'): image_batches = dataset.map(lambda x: x['image']).as_numpy_iterator() correct_image_batches = _batch_array(self._images / 255., self._batch_size) _assert_batches_almost_equal(image_batches, correct_image_batches) with self.subTest('test_labels'): label_batches = dataset.map(lambda x: x['label']).as_numpy_iterator() correct_label_batches = _batch_array(self._one_hot_labels, self._batch_size) _assert_batches_almost_equal(label_batches, correct_label_batches) if __name__ == '__main__': absltest.main()
optax-master
examples/datasets_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optax.examples.mnist.""" from absl.testing import absltest from absl.testing.absltest import mock import chex import haiku as hk import jax import numpy as np import optax import tensorflow as tf # pylint: disable=g-bad-import-order import datasets # Located in the examples folder. import mnist # Located in the examples folder. # pylint: enable=g-bad-import-order class MnistTest(chex.TestCase): def test_model_accuracy_returns_correct_result(self): """Checks that model_accuracy returns the correct result.""" dataset = ( dict( image=np.array([[-1, 0, 0], [-1, 0, 1]]), label=np.array([[1, 0, 0], [0, 1, 0]])), dict( image=np.array([[2, 2, 1], [-2, -1, 0]]), label=np.array([[0, 0, 1], [1, 0, 0]])), ) self.assertEqual( mnist.model_accuracy(model=lambda x: -x, dataset=dataset), 0.75) @chex.all_variants def test_build_model_returns_mlp_with_correct_number_of_parameters(self): """Checks that the MLP has the correct number of parameters.""" model = mnist.build_model(layer_dims=(4, 5)) params = self.variant(model.init)(jax.random.PRNGKey(1), np.ones((9, 3, 2))) self.assertEqual( hk.data_structures.tree_size(params), (3 * 2 + 1) * 4 + (4 + 1) * 5) @chex.all_variants def test_build_model_returns_mlp_with_correct_output_shape(self): """Checks that the MLP has the correct output shape.""" model = mnist.build_model(layer_dims=(4, 5)) inputs = np.ones((9, 3, 2)) params = model.init(jax.random.PRNGKey(1), inputs) outputs = self.variant(model.apply)(params, inputs) self.assertEqual(outputs.shape, (9, 5)) def test_train_on_mnist_can_fit_linear_mock_data(self): """Checks that train_on_mnist can fit linear mock data.""" data = { 'image': np.arange(-0.5, 0.5, 0.1).reshape(10, 1, 1), 'label': np.array([[1, 0]] * 4 + [[0, 1]] * 6) } dataset = tf.data.Dataset.from_tensor_slices(data).repeat(8).batch(10) with mock.patch.object( datasets, 'load_image_dataset', return_value=dataset): final_accuracy = mnist.train_on_mnist(optax.adam(0.01), hidden_sizes=(1,)) self.assertEqual(final_accuracy, 1.) if __name__ == '__main__': absltest.main()
optax-master
examples/mnist_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An example showing how to train an MLP classifier on MNIST using optax.""" import functools from typing import Callable, Iterable, Mapping, Sequence from absl import app import chex import haiku as hk import jax from jax import random import jax.numpy as jnp import optax # pylint: disable=g-bad-import-order import datasets # Located in the examples folder. # pylint: enable=g-bad-import-order LEARNING_RATE = 0.002 DEFAULT_HIDDEN_SIZES = (1000, 1000) BATCH_SIZE = 128 N_EPOCHS = 5 SEED = 1 @jax.jit def _single_batch_accuracy(logits: chex.Array, labels: chex.Array) -> chex.Array: """Returns the accuracy for a batch of logits and labels.""" predictions = jnp.argmax(logits, axis=-1) return jnp.mean(jnp.argmax(labels, axis=-1) == predictions) def model_accuracy(model: Callable[[chex.Array], chex.Array], dataset: Iterable[Mapping[str, chex.Array]]) -> chex.Array: """Returns the accuracy of a model on a batched dataset.""" accuracy_sum = dataset_size = 0 for batch in dataset: # Take batch size into account in case there is a smaller remainder batch. batch_size = batch['image'].shape[0] logits = model(batch['image']) accuracy_sum += _single_batch_accuracy(logits, batch['label']) * batch_size dataset_size += batch_size return accuracy_sum / dataset_size # pytype: disable=bad-return-type # numpy-scalars # pylint: disable=line-too-long # Optax is agnostic to which (if any) neural network library is used. Below we # provide a Haiku version. def build_model(layer_dims: Sequence[int]) -> hk.Transformed: """Simple multi-layer perceptron model for image classification.""" @hk.transform def mlp_model(inputs: chex.Array) -> chex.Array: flattened = hk.Flatten()(inputs) return hk.nets.MLP(layer_dims)(flattened) return hk.without_apply_rng(mlp_model) def train_on_mnist(optimizer: optax.GradientTransformation, hidden_sizes: Sequence[int]) -> float: """Trains an MLP on MNIST using a given optimizer. Args: optimizer: Optax optimizer to use for training. hidden_sizes: Hidden layer sizes of the MLP. Returns: The final test accuracy. """ train_dataset = datasets.load_image_dataset('mnist', BATCH_SIZE) test_dataset = datasets.load_image_dataset('mnist', BATCH_SIZE, datasets.Split.TEST) num_classes = train_dataset.element_spec['label'].shape[1] init_params_fn, apply_params_fn = build_model((*hidden_sizes, num_classes)) def get_loss(params, batch): logits = apply_params_fn(params, batch['image']) return jnp.mean(optax.softmax_cross_entropy(logits, batch['label'])) @jax.jit def train_step(params, optimizer_state, batch): grads = jax.grad(get_loss)(params, batch) updates, opt_state = optimizer.update(grads, optimizer_state, params) return optax.apply_updates(params, updates), opt_state example_input = next(train_dataset.as_numpy_iterator())['image'] params = init_params_fn(random.PRNGKey(SEED), example_input) opt_state = optimizer.init(params) # Training loop for epoch in range(N_EPOCHS): for batch in train_dataset.as_numpy_iterator(): params, opt_state = train_step(params, opt_state, batch) eval_model = functools.partial(apply_params_fn, params) test_acc = model_accuracy(eval_model, test_dataset.as_numpy_iterator()) print(f'Epoch {epoch+1}: test acc: {test_acc:.2f}') return test_acc # pytype: disable=bad-return-type # numpy-scalars def main(unused_argv): """Trains an MLP on MNIST using the adam optimizers.""" return train_on_mnist(optax.adam(LEARNING_RATE), DEFAULT_HIDDEN_SIZES) if __name__ == '__main__': app.run(main)
optax-master
examples/mnist.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple example of using Optax to train the parameters of a Haiku module.""" from absl import app import haiku as hk import jax import jax.numpy as jnp import optax def main(argv): del argv learning_rate = 1e-2 batch_size = 64 input_size = 8 n_training_steps = 100 # Random number generator sequence. key_seq = hk.PRNGSequence(1729) # A simple Linear function. def forward_pass(x): return hk.Linear(10)(x) network = hk.without_apply_rng(hk.transform(forward_pass)) # Some arbitrary loss. def mean_square_loss(params, x): output = network.apply(params, x) loss = jnp.sum(output**2) return loss # Construct a simple Adam optimiser using the transforms in optax. # You could also just use the `optax.adam` alias, but we show here how # to do so manually so that you may construct your own `custom` optimiser. opt_init, opt_update = optax.chain( # Set the parameters of Adam. Note the learning_rate is not here. optax.scale_by_adam(b1=0.9, b2=0.999, eps=1e-8), # Put a minus sign to *minimise* the loss. optax.scale(-learning_rate) ) # Initialise the model's parameters and the optimiser's state. # The `state` of an optimiser contains all statistics used by the # stateful transformations in the `chain` (in this case just `scale_by_adam`). params = network.init(next(key_seq), jnp.zeros([1, input_size])) opt_state = opt_init(params) # Minimise the loss. for step in range(n_training_steps): # Get input. Learn to minimize the input to 0. data = jax.random.normal(next(key_seq), [batch_size, input_size]) # Compute gradient and loss. loss, grad = jax.value_and_grad(mean_square_loss)(params, data) print(f'Loss[{step}] = {loss}') # Transform the gradients using the optimiser. updates, opt_state = opt_update(grad, opt_state, params) # Update parameters. params = optax.apply_updates(params, updates) if __name__ == '__main__': app.run(main)
optax-master
examples/haiku_example.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """pytest configuration for fancyflags.""" from absl import flags collect_ignore = [ 'conftest.py', 'setup.py', ] def pytest_configure(config): del config # Unused. # We need to skip flag parsing when executing under pytest. flags.FLAGS.mark_as_parsed()
fancyflags-master
conftest.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Install script for fancyflags.""" from importlib import util import setuptools def _get_version(): spec = util.spec_from_file_location('_metadata', 'fancyflags/_metadata.py') mod = util.module_from_spec(spec) spec.loader.exec_module(mod) return mod.__version__ setuptools.setup( name='fancyflags', version=_get_version(), description='A Python library for defining dictionary-valued flags.', author='DeepMind', license='Apache License, Version 2.0', packages=setuptools.find_packages(), install_requires=['absl-py'], tests_require=['pytest'], classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', ], )
fancyflags-master
setup.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for definitions.""" import copy import datetime import enum from typing import Any, Callable from absl import flags from absl.testing import absltest from absl.testing import parameterized # definitions almost exactly corresponds to the public API, so aliasing the # import here for better illustrative tests. from fancyflags import _definitions as ff from fancyflags import _flags FLAGS = flags.FLAGS class MyEnum(enum.Enum): A = 1 B = 2 class DifferentEnum(enum.Enum): C = 1 D = 2 class FancyflagsTest(absltest.TestCase): def test_define_with_global_flagvalues(self): # Since ff.DEFINE_dict uses an optional positional argument to specify a # custom FlagValues instance, we run nearly the same test as below to make # sure both global (default) and custom FlagValues work. unused_flagholder = ff.DEFINE_dict( "flat_dict", integer_field=ff.Integer(1, "integer field"), string_field=ff.String(""), string_list_field=ff.StringList(["a", "b", "c"], "string list field"), ) expected = { "integer_field": 1, "string_field": "", "string_list_field": ["a", "b", "c"], } self.assertEqual(FLAGS.flat_dict, expected) # These flags should also exist, although we won't access them in practice. self.assertEqual(FLAGS["flat_dict.integer_field"].value, 1) self.assertEqual(FLAGS["flat_dict.string_field"].value, "") # Custom help string. self.assertEqual(FLAGS["flat_dict.integer_field"].help, "integer field") # Default help string. self.assertEqual( FLAGS["flat_dict.string_field"].help, "flat_dict.string_field" ) def test_define_with_custom_flagvalues(self): # Since ff.DEFINE_dict uses an optional positional argument to specify a # custom FlagValues instance, we run nearly the same test as above to make # sure both global (default) and custom FlagValues work. flag_values = flags.FlagValues() unused_flagholder = ff.DEFINE_dict( "flat_dict", flag_values, integer_field=ff.Integer(1, "integer field"), string_field=ff.String(""), string_list_field=ff.StringList(["a", "b", "c"], "string list field"), ) expected = { "integer_field": 1, "string_field": "", "string_list_field": ["a", "b", "c"], } flag_values(("./program", "")) self.assertEqual(flag_values.flat_dict, expected) # These flags should also exist, although we won't access them in practice. self.assertEqual(flag_values["flat_dict.integer_field"].value, 1) self.assertEqual(flag_values["flat_dict.string_field"].value, "") # Custom help string. self.assertEqual( flag_values["flat_dict.integer_field"].help, "integer field" ) # Default help string. self.assertEqual( flag_values["flat_dict.string_field"].help, "flat_dict.string_field" ) def test_define_flat(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "flat_dict", flag_values, integer_field=ff.Integer(1, "integer field"), string_field=ff.String(""), string_list_field=ff.StringList(["a", "b", "c"], "string list field"), ) # This should return a single dict with the default values specified above. expected = { "integer_field": 1, "string_field": "", "string_list_field": ["a", "b", "c"], } flag_values(("./program", "")) self.assertEqual(flag_values.flat_dict, expected) self.assertEqual(flag_holder.value, expected) def test_define_nested(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "nested_dict", flag_values, integer_field=ff.Integer(1, "integer field"), sub_dict=dict(string_field=ff.String("", "string field")), ) # This should return a single dict with the default values specified above. expected = {"integer_field": 1, "sub_dict": {"string_field": ""}} flag_values(("./program", "")) self.assertEqual(flag_values.nested_dict, expected) self.assertEqual(flag_holder.value, expected) # These flags should also exist, although we won't access them in practice. self.assertEqual(flag_values["nested_dict.integer_field"].value, 1) self.assertEqual(flag_values["nested_dict.sub_dict.string_field"].value, "") def test_no_name_error(self): with self.assertRaisesRegex(ValueError, "one positional argument"): ff.DEFINE_dict( integer_field=ff.Integer(1, "integer field"), ) def test_no_kwargs_error(self): with self.assertRaisesRegex(ValueError, "one keyword argument"): ff.DEFINE_dict("no_kwargs") def test_too_many_positional_args_error(self): with self.assertRaisesRegex(ValueError, "at most two positional"): ff.DEFINE_dict( "name", ff.String("foo", "string"), ff.String("bar", "string"), integer_field=ff.Integer(1, "integer field"), ) def test_flag_name_error(self): with self.assertRaisesRegex(ValueError, "must be a string"): ff.DEFINE_dict( ff.String("name", "string flag"), ff.String("stringflag", "string"), integer_field=ff.Integer(1, "integer field"), ) def test_flag_values_error(self): with self.assertRaisesRegex(ValueError, "FlagValues instance"): ff.DEFINE_dict( "name", ff.String("stringflag", "string"), integer_field=ff.Integer(1, "integer field"), ) def test_define_valid_enum(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "valid_enum", flag_values, padding=ff.Enum("same", ["same", "valid"], "enum field"), ) flag_values(("./program", "")) self.assertEqual(flag_holder.value, {"padding": "same"}) def test_define_valid_case_insensitive_enum(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "valid_case_sensitive", flag_values, padding=ff.Enum( "Same", ["same", "valid"], "enum field", case_sensitive=False ), ) flag_values(("./program", "")) self.assertEqual(flag_holder.value, {"padding": "same"}) def test_define_invalid_enum(self): with self.assertRaises(ValueError): ff.Enum("invalid", ["same", "valid"], "enum field") def test_define_invalid_case_sensitive_enum(self): with self.assertRaises(ValueError): ff.Enum("Same", ["same", "valid"], "enum field") def test_define_valid_enum_class(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "valid_enum_class", flag_values, my_enum=ff.EnumClass(MyEnum.A, MyEnum, "enum class field"), ) flag_values(("./program", "")) self.assertEqual(flag_holder.value, {"my_enum": MyEnum.A}) def test_define_invalid_enum_class(self): with self.assertRaises(ValueError): ff.EnumClass(DifferentEnum.C, MyEnum) class ExtractDefaultsTest(absltest.TestCase): def test_valid_flat(self): result = ff._extract_defaults({ "integer_field": ff.Integer(10, "Integer field"), "string_field": ff.String("default", "String field"), }) expected = {"integer_field": 10, "string_field": "default"} self.assertEqual(result, expected) def test_valid_nested(self): result = ff._extract_defaults({ "integer_field": ff.Integer(10, "Integer field"), "string_field": ff.String("default", "String field"), "nested": { "float_field": ff.Float(3.1, "Float field"), }, }) expected = { "integer_field": 10, "string_field": "default", "nested": {"float_field": 3.1}, } self.assertEqual(result, expected) def test_invalid_container(self): expected_message = ff._NOT_A_DICT_OR_ITEM.format("list") with self.assertRaisesWithLiteralMatch(TypeError, expected_message): ff._extract_defaults({ "integer_field": ff.Integer(10, "Integer field"), "string_field": ff.String("default", "String field"), "nested": [ff.Float(3.1, "Float field")], }) def test_invalid_flat_leaf(self): expected_message = ff._NOT_A_DICT_OR_ITEM.format("int") with self.assertRaisesWithLiteralMatch(TypeError, expected_message): ff._extract_defaults({ "string_field": ff.String("default", "String field"), "naughty_field": 100, }) def test_invalid_nested_leaf(self): expected_message = ff._NOT_A_DICT_OR_ITEM.format("bool") with self.assertRaisesWithLiteralMatch(TypeError, expected_message): ff._extract_defaults({ "string_field": ff.String("default", "String field"), "nested": { "naughty_field": True, }, }) def test_overriding_top_level_dict_flag_fails(self): flag_values = flags.FlagValues() ff.DEFINE_dict( "top_level_dict", flag_values, integer_field=ff.Integer(1, "integer field"), ) # The error type and message get converted in the process. with self.assertRaisesRegex( flags.IllegalFlagValueError, "Can't override a dict flag directly" ): flag_values(("./program", "--top_level_dict=3")) class DateTimeTest(parameterized.TestCase): @parameterized.named_parameters( dict( testcase_name="default_str", default="2001-01-01", expected=datetime.datetime(2001, 1, 1), ), dict( testcase_name="default_datetime", default=datetime.datetime(2001, 1, 1), expected=datetime.datetime(2001, 1, 1), ), dict(testcase_name="no_default", default=None, expected=None), ) def test_define_datetime_default(self, default, expected): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "dict_with_datetime", flag_values, my_datetime=ff.DateTime(default, "datetime field"), ) flag_values(("./program", "")) self.assertEqual(flag_holder.value, {"my_datetime": expected}) def test_define_datetime_invalid_default_raises(self): with self.assertRaisesRegex(ValueError, r"invalid"): ff.DEFINE_dict( "dict_with_datetime", my_datetime=ff.DateTime("42", "datetime field"), ) def test_define_and_parse_invalid_value_raises(self): flag_name = "dict_with_datetime" flag_values = flags.FlagValues() ff.DEFINE_dict( flag_name, flag_values, my_datetime=ff.DateTime(None, "datetime field"), ) with self.assertRaisesRegex(flags.IllegalFlagValueError, r"invalid"): flag_values["dict_with_datetime.my_datetime"].parse("2001") class SequenceTest(absltest.TestCase): def test_sequence_defaults(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "dict_with_sequences", flag_values, int_sequence=ff.Sequence([1, 2, 3], "integer field"), float_sequence=ff.Sequence([3.14, 2.718], "float field"), mixed_sequence=ff.Sequence([100, "hello", "world"], "mixed field"), ) flag_values(("./program", "")) self.assertEqual( flag_holder.value, { "int_sequence": [1, 2, 3], "float_sequence": [3.14, 2.718], "mixed_sequence": [100, "hello", "world"], }, ) class MultiEnumTest(parameterized.TestCase): def test_defaults_parsing(self): flag_values = flags.FlagValues() enum_values = [1, 2, 3, 3.14, 2.718, 100, "hello", ["world"], {"planets"}] ff.DEFINE_dict( "dict_with_multienums", flag_values, int_sequence=ff.MultiEnum([1, 2, 3], enum_values, "integer field"), float_sequence=ff.MultiEnum([3.14, 2.718], enum_values, "float field"), mixed_sequence=ff.MultiEnum( [100, "hello", ["world"], {"planets"}], enum_values, "mixed field" ), enum_sequence=ff.MultiEnum([MyEnum.A], MyEnum, "enum field"), ) expected = { "int_sequence": [1, 2, 3], "float_sequence": [3.14, 2.718], "mixed_sequence": [100, "hello", ["world"], {"planets"}], "enum_sequence": [MyEnum.A], } flag_values(("./program", "")) self.assertEqual(flag_values.dict_with_multienums, expected) class DefineSequenceTest(absltest.TestCase): # Follows test code in absl/flags/tests/flags_test.py def test_definition(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_sequence( name="sequence", default=[1, 2, 3], help="sequence flag", flag_values=flag_values, ) flag_values(("./program", "")) self.assertEqual(flag_holder.value, [1, 2, 3]) self.assertEqual(flag_values.flag_values_dict()["sequence"], [1, 2, 3]) self.assertEqual(flag_values["sequence"].default_as_str, "'[1, 2, 3]'") # pytype: disable=attribute-error def test_end_to_end_with_default(self): # There are more extensive tests for the parser in argument_parser_test.py. # Here we just include a couple of end-to-end examples. flag_values = flags.FlagValues() flag_holder = ff.DEFINE_sequence( "sequence", [1, 2, 3], "sequence flag", flag_values=flag_values, ) flag_values(("./program", "--sequence=[4,5]")) self.assertEqual(flag_holder.value, [4, 5]) def test_end_to_end_without_default(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_sequence( "sequence", None, "sequence flag", flag_values=flag_values, ) flag_values(("./program", "--sequence=(4, 5)")) self.assertEqual(flag_holder.value, (4, 5)) class DefineMultiEnumTest(absltest.TestCase): # Follows test code in absl/flags/tests/flags_test.py def test_definition(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_multi_enum( "multienum", [1, 2, 3], [1, 2, 3], "multienum flag", flag_values=flag_values, ) flag_values(("./program", "")) self.assertEqual(flag_holder.value, [1, 2, 3]) self.assertEqual(flag_values.multienum, [1, 2, 3]) self.assertEqual(flag_values.flag_values_dict()["multienum"], [1, 2, 3]) self.assertEqual(flag_values["multienum"].default_as_str, "'[1, 2, 3]'") # pytype: disable=attribute-error def test_end_to_end_with_default(self): # There are more extensive tests for the parser in argument_parser_test.py. # Here we just include a couple of end-to-end examples. flag_values = flags.FlagValues() flag_holder = ff.DEFINE_multi_enum( "multienum0", [1, 2, 3], [1, 2, 3, 4, 5], "multienum flag", flag_values=flag_values, ) flag_values(("./program", "--multienum0=[4,5]")) self.assertEqual(flag_holder.value, [4, 5]) def test_end_to_end_without_default(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_multi_enum( "multienum1", None, [1, 2, 3, 4, 5], "multienum flag", flag_values=flag_values, ) flag_values(("./program", "--multienum1=(4, 5)")) self.assertEqual(flag_holder.value, (4, 5)) class MultiEnumClassTest(parameterized.TestCase): def test_multi_enum_class(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "dict_with_multi_enum_class", flag_values, item=ff.MultiEnumClass( [MyEnum.A], MyEnum, "multi enum", ), ) flag_values(( "./program", "--dict_with_multi_enum_class.item=A", "--dict_with_multi_enum_class.item=B", "--dict_with_multi_enum_class.item=A", )) expected = {"item": [MyEnum.A, MyEnum.B, MyEnum.A]} self.assertEqual(flag_holder.value, expected) class MultiStringTest(parameterized.TestCase): def test_defaults_parsing(self): flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( "dict_with_multistrings", flag_values, no_default=ff.MultiString(None, "no default"), single_entry=ff.MultiString("a", "single entry"), single_entry_list=ff.MultiString(["a"], "single entry list"), multiple_entry_list=ff.MultiString(["a", "b"], "multiple entry list"), ) flag_values(("./program", "")) expected = { "no_default": None, "single_entry": ["a"], "single_entry_list": ["a"], "multiple_entry_list": ["a", "b"], } self.assertEqual(flag_holder.value, expected) class SerializationTest(absltest.TestCase): def test_basic_serialization(self): flag_values = flags.FlagValues() ff.DEFINE_dict( "to_serialize", flag_values, integer_field=ff.Integer(1, "integer field"), boolean_field=ff.Boolean(False, "boolean field"), string_list_field=ff.StringList(["a", "b", "c"], "string list field"), enum_class_field=ff.EnumClass(MyEnum.A, MyEnum, "my enum field"), ) initial_dict_value = copy.deepcopy(flag_values["to_serialize"].value) # Parse flags, then serialize. flag_values([ "./program", "--to_serialize.boolean_field=True", "--to_serialize.integer_field", "1337", "--to_serialize.string_list_field=d,e,f", "--to_serialize.enum_class_field=B", ]) self.assertEqual(flag_values["to_serialize"].serialize(), _flags._EMPTY) self.assertEqual( flag_values["to_serialize.boolean_field"].serialize(), "--to_serialize.boolean_field", ) self.assertEqual( flag_values["to_serialize.string_list_field"].serialize(), "--to_serialize.string_list_field=d,e,f", ) parsed_dict_value = copy.deepcopy(flag_values["to_serialize"].value) self.assertDictEqual( parsed_dict_value, { "boolean_field": True, "integer_field": 1337, "string_list_field": ["d", "e", "f"], "enum_class_field": MyEnum.B, }, ) self.assertNotEqual(flag_values["to_serialize"].value, initial_dict_value) # test a round trip serialized_args = [ flag_values[name].serialize() for name in flag_values if name.startswith("to_serialize.") ] flag_values.unparse_flags() # Reset to defaults self.assertDictEqual(flag_values["to_serialize"].value, initial_dict_value) flag_values(["./program"] + serialized_args) self.assertDictEqual(flag_values["to_serialize"].value, parsed_dict_value) NAMES_ITEMS_AND_FLAGS = ( dict( testcase_name="boolean", define_function=flags.DEFINE_boolean, item_constructor=ff.Boolean, default=True, override="false", ), dict( testcase_name="integer", define_function=flags.DEFINE_integer, item_constructor=ff.Integer, default=1, override="2", ), dict( testcase_name="float", define_function=flags.DEFINE_float, item_constructor=ff.Float, default=1.0, override="2.0", ), dict( testcase_name="sequence", define_function=ff.DEFINE_sequence, item_constructor=ff.Sequence, default=(1, "x"), override=(2.0, "y"), ), dict( testcase_name="string", define_function=flags.DEFINE_string, item_constructor=ff.String, default="one", override="two", ), dict( testcase_name="stringlist", define_function=flags.DEFINE_list, item_constructor=ff.StringList, default=["a", "b"], override="['c', 'd']", ), ) class FlagAndItemEquivalence(parameterized.TestCase): @parameterized.named_parameters(*NAMES_ITEMS_AND_FLAGS) def test_equivalence( self, define_function: Callable[..., flags.FlagHolder], item_constructor: type(ff.Item), default: Any, override: str, ): flag_values = flags.FlagValues() flag_holder = define_function( "name.item", default, "help string", flag_values=flag_values, ) ff_flagvalues = flags.FlagValues() shared_values = ff.define_flags( "name", {"item": item_constructor(default, "help string")}, flag_values=ff_flagvalues, ) with self.subTest("Check serialisation equivalence before parsing"): self.assertEqual( flag_values["name.item"].serialize(), ff_flagvalues["name.item"].serialize(), ) self.assertEqual( flag_values.flags_into_string(), ff_flagvalues.flags_into_string() ) with self.subTest("Apply overrides and check equivalence after parsing"): # The flag holder gets updated at this point: flag_values(("./program", f"--name.item={override}")) # The shared_values dict gets updated at this point: ff_flagvalues(("./program", f"--name.item={override}")) self.assertNotEqual(flag_holder.value, default) self.assertEqual(flag_holder.value, shared_values["item"]) if __name__ == "__main__": absltest.main()
fancyflags-master
fancyflags/_definitions_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Argument parsers.""" import ast import datetime import enum from absl import flags BASIC_SEQUENCE_TYPES = (list, tuple) # We assume a sequence contains only these types. Python has no primitive types. SIMPLE_TYPES = (bool, float, int, str) NOT_A_SIMPLE_TYPE_MESSAGE = """ Input list contains unsupported type {{}}, however each element in a sequence must be a {} or {}. """.format( ", ".join(type_.__name__ for type_ in SIMPLE_TYPES[:-1]), SIMPLE_TYPES[-1].__name__, ) _EMPTY_STRING_ERROR_MESSAGE = """ Empty sequences should be given explicitly as [] or () and not as an empty string""" class SequenceParser(flags.ArgumentParser): """Parser of simple sequences containing simple Python values.""" def parse(self, argument): """Parses the argument as a string-formatted sequence (list or tuple). Essentially reverses the result of `"{}".format(a_sequence)` Args: argument: The flag value as a string, list, tuple or None. Examples of valid input strings are `"(1,2,3)"` and `[0.2, 0.3, 1.0]`. Returns: The parsed sequence. Raises: TypeError: If the input type is not supported, or if the input is not a flat sequence that only contains simple Python values. ValueError: If the input is an empty string. """ if argument is None: return [] elif isinstance(argument, BASIC_SEQUENCE_TYPES): result = argument[:] elif isinstance(argument, str): if not argument: raise ValueError(_EMPTY_STRING_ERROR_MESSAGE) try: result = ast.literal_eval(argument) except (ValueError, SyntaxError) as e: raise ValueError( f'Failed to parse "{argument}" as a python literal.' ) from e if not isinstance(result, BASIC_SEQUENCE_TYPES): raise TypeError( "Input string should represent a list or tuple, however it " "evaluated as a {}.".format(type(result).__name__) ) else: raise TypeError("Unsupported type {}.".format(type(argument).__name__)) # Make sure the result is a flat sequence of simple types. for value in result: if not isinstance(value, SIMPLE_TYPES): raise TypeError(NOT_A_SIMPLE_TYPE_MESSAGE.format(type(value).__name__)) return result def flag_type(self): """See base class.""" return "sequence" class MultiEnumParser(flags.ArgumentParser): """Parser of multiple enum values. This parser allows the flag values to be sequences of any type, unlike flags.DEFINE_multi_enum which only allows strings. """ def __init__(self, enum_values): if not enum_values: raise ValueError("enum_values cannot be empty") if any(not value for value in enum_values): raise ValueError("No element of enum_values can be empty") super().__init__() self.enum_values = enum_values def parse(self, arguments): """Determines validity of arguments. Args: arguments: list, tuple, or enum of flag values. Each value may be any type Returns: The input list, tuple or enum if valid. Raises: TypeError: If the input type is not supported. ValueError: Raised if an argument element didn't match anything in enum. """ if arguments is None: return [] elif isinstance(arguments, BASIC_SEQUENCE_TYPES): result = arguments[:] elif isinstance(arguments, enum.EnumMeta): result = arguments elif isinstance(arguments, str): result = ast.literal_eval(arguments) if not isinstance(result, BASIC_SEQUENCE_TYPES): raise TypeError( "Input string should represent a list or tuple, however it " "evaluated as a {}.".format(type(result).__name__) ) else: raise TypeError("Unsupported type {}.".format(type(arguments).__name__)) if not all(arg in self.enum_values for arg in result): raise ValueError( "Argument values should be one of <{}>".format( "|".join(str(value) for value in self.enum_values) ) ) else: return result def flag_type(self): return "multi enum" class PossiblyNaiveDatetimeParser(flags.ArgumentParser): """Parses an ISO format datetime string into a datetime.datetime.""" def parse(self, value) -> datetime.datetime: if isinstance(value, datetime.datetime): return value # Handle ambiguous cases such as 2000-01-01+01:00, where the part after the # '+' sign looks like timezone info but is actually just the time. if value[10:11] in ("+", "-"): # plus/minus as separator between date and time (can be any character) raise ValueError( f"datetime value {value!r} uses {value[10]!r} as separator " "between date and time (excluded to avoid confusion between " "time and offset). Use any other character instead, e.g. " f"{value[:10] + 'T' + value[11:]!r}" ) try: return datetime.datetime.fromisoformat(value) except ValueError as e: raise ValueError(f"invalid datetime value {value!r}: {e}") from None def flag_type(self) -> str: return "datetime.datetime"
fancyflags-master
fancyflags/_argument_parsers.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Package metadata. This is kept in a separate module so that it can be imported from setup.py, at a time when the package dependencies may not have been installed yet. """ __version__ = '1.2' # https://www.python.org/dev/peps/pep-0440/
fancyflags-master
fancyflags/_metadata.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Automatically builds flags from a callable signature.""" import datetime import enum import functools import inspect import sys import typing from typing import Any, Callable, Collection, Iterable, List, Mapping, MutableMapping, Optional, Sequence, Tuple import warnings from fancyflags import _definitions # TODO(b/178129474): Improve support for typing.Sequence subtypes. _TYPE_MAP = { List[bool]: _definitions.Sequence, # pylint: disable=unhashable-member List[float]: _definitions.Sequence, # pylint: disable=unhashable-member List[int]: _definitions.Sequence, # pylint: disable=unhashable-member List[str]: _definitions.Sequence, # pylint: disable=unhashable-member Sequence[bool]: _definitions.Sequence, Sequence[float]: _definitions.Sequence, Sequence[int]: _definitions.Sequence, Sequence[str]: _definitions.Sequence, Tuple[bool, ...]: _definitions.Sequence, Tuple[bool]: _definitions.Sequence, Tuple[float, ...]: _definitions.Sequence, Tuple[float]: _definitions.Sequence, Tuple[int, ...]: _definitions.Sequence, Tuple[int]: _definitions.Sequence, Tuple[str, ...]: _definitions.Sequence, Tuple[str]: _definitions.Sequence, bool: _definitions.Boolean, datetime.datetime: _definitions.DateTime, float: _definitions.Float, int: _definitions.Integer, str: _definitions.String, } if sys.version_info >= (3, 9): # Support PEP 585 type hints. _TYPE_MAP.update( { list[bool]: _definitions.Sequence, list[float]: _definitions.Sequence, list[int]: _definitions.Sequence, list[str]: _definitions.Sequence, tuple[bool, ...]: _definitions.Sequence, tuple[bool]: _definitions.Sequence, tuple[float, ...]: _definitions.Sequence, tuple[float]: _definitions.Sequence, tuple[int, ...]: _definitions.Sequence, tuple[int]: _definitions.Sequence, tuple[str, ...]: _definitions.Sequence, tuple[str]: _definitions.Sequence, } ) # Add optional versions of all types as well _TYPE_MAP.update({Optional[tp]: parser for tp, parser in _TYPE_MAP.items()}) _MISSING_TYPE_ANNOTATION = "Missing type annotation for argument {name!r}" _UNSUPPORTED_ARGUMENT_TYPE = ( "No matching flag type for argument {{name!r}} with type annotation: " "{{annotation}}\n" "Supported types:\n{}".format("\n".join(str(t) for t in _TYPE_MAP)) ) _MISSING_DEFAULT_VALUE = "Missing default value for argument {name!r}" _is_enum = lambda type_: inspect.isclass(type_) and issubclass(type_, enum.Enum) _is_unsupported_type = lambda type_: not (type_ in _TYPE_MAP or _is_enum(type_)) def get_typed_signature(fn: Callable[..., Any]) -> inspect.Signature: """Returns the signature of a callable with type annotations resolved. If postponed evaluation of type annotations (PEP 563) is enabled (e.g. via `from __future__ import annotations` in Python >= 3.7) then we will need to resolve the annotations from their string forms in order to access the real types within the signature. https://www.python.org/dev/peps/pep-0563/#resolving-type-hints-at-runtime Args: fn: A callable to get the signature of. Returns: An instance of `inspect.Signature`. """ type_hints = typing.get_type_hints(fn) or {} orig_signature = inspect.signature(fn) new_params = [] for key, orig_param in orig_signature.parameters.items(): new_params.append( inspect.Parameter( name=key, default=orig_param.default, annotation=type_hints.get(key, orig_param.annotation), kind=orig_param.kind, ) ) return orig_signature.replace(parameters=new_params) def auto( callable_fn: Callable[..., Any], *, strict: bool = True, skip_params: Collection[str] = (), ) -> Mapping[str, _definitions.Item]: """Automatically builds fancyflag definitions from a callable's signature. Example usage: ```python # Function ff.DEFINE_dict('my_function_settings', **ff.auto(my_module.my_function)) # Class constructor ff.DEFINE_dict('my_class_settings', **ff.auto(my_module.MyClass)) ``` Args: callable_fn: Generates flag definitions from this callable's signature. All arguments must have type annotations and default values. The following argument types are supported: * `bool`, `float`, `int`, or `str` scalars * Homogeneous sequences of these types * Optional scalars or sequences of these types strict: A bool, whether invalid input types and defaults should trigger an error (the default) or be silently ignored. Setting strict=False might silence real errors, but will allow decorated functions to contain non-default values, or values with defaults that can not be easily turned into a flag or overriden on the CLI. skip_params: Optional parameter names to skip defining flags for. Returns: Mapping from parameter names to fancyflags `Item`s, to be splatted into `ff.DEFINE_dict`. Raises: ValueError: If any of the arguments to `callable_fn` lacks a default value. TypeError: If any of the arguments to `callable_fn` lacks a type annotation. TypeError: If any of the arguments to `callable_fn` has an unsupported type. TypeError: If `callable_fn` is not callable. """ if not callable(callable_fn): raise TypeError(f"Not a callable: {callable_fn}.") # Work around issue with metaclass-wrapped classes, such as Sonnet v2 modules. if isinstance(callable_fn, type): signature = get_typed_signature(callable_fn.__init__) # Remove `self` from start of __init__ signature. unused_self, *parameters = signature.parameters.values() else: signature = get_typed_signature(callable_fn) parameters = signature.parameters.values() items: MutableMapping[str, _definitions.Item] = {} parameters: Iterable[inspect.Parameter] for param in parameters: if param.name in skip_params: continue # Check for potential errors. if param.annotation is inspect.Signature.empty: exception = TypeError(_MISSING_TYPE_ANNOTATION.format(name=param.name)) elif _is_unsupported_type(param.annotation): exception = TypeError( _UNSUPPORTED_ARGUMENT_TYPE.format( name=param.name, annotation=param.annotation ) ) else: exception = None # If we saw an error, decide whether to raise or skip based on strictness. if exception: if strict: raise exception else: warnings.warn( f"Caught an exception ({exception}) when defining flags for " f"parameter {param}; skipping because strict=False..." ) continue # Look up the corresponding Item to create. if _is_enum(param.annotation): item_constructor = functools.partial( _definitions.EnumClass, enum_class=param.annotation ) else: item_constructor = _TYPE_MAP[param.annotation] # If there is no default argument for this parameter, we set the # corresponding `Flag` as `required`. if param.default is inspect.Signature.empty: default = None required = True else: default = param.default required = False # TODO(b/177673667): Parse the help string from docstring. items[param.name] = item_constructor( default, help_string=param.name, required=required, ) return items
fancyflags-master
fancyflags/_auto.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Flag classes for defining dict, Item, MultiItem and Auto flags.""" import copy import functools from absl import flags _EMPTY = "" class DictFlag(flags.Flag): """Implements the shared dict mechanism. See also `ItemFlag`.""" def __init__(self, shared_dict, *args, **kwargs): self._shared_dict = shared_dict super().__init__(*args, **kwargs) def _parse(self, value): # A `DictFlag` should not be overridable from the command line; only the # dotted `Item` flags should be. However, the _parse() method will still be # called in two situations: # 1. Via the base `Flag`'s constructor, which calls `_parse()` to process # the default value, which will be the shared dict. # 2. When processing command line overrides. We don't want to allow this # normally, however some libraries will serialize and deserialize all # flags, e.g. to pass values between processes, so we accept a dummy # empty serialized value for these cases. It's unlikely users will try to # set the dict flag to an empty string from the command line. if value is self._shared_dict or value == _EMPTY: return self._shared_dict raise flags.IllegalFlagValueError( "Can't override a dict flag directly. Did you mean to override one of " "its `Item`s instead?" ) def serialize(self): # When serializing flags, we return a sentinel value that the `DictFlag` # will ignore when parsing. The value of this flag is determined by the # corresponding `Item` flags for serialization and deserialization. return _EMPTY def flag_type(self): return "dict" # TODO(b/170423907): Pytype doesn't correctly infer that these have type # `property`. _flag_value_property = flags.Flag.value # type: property # pytype: disable=annotation-type-mismatch,unbound-type-param _multi_flag_value_property = flags.MultiFlag.value # type: property # pytype: disable=annotation-type-mismatch class ItemFlag(flags.Flag): """Updates a shared dict whenever its own value changes. See also the `DictFlag` and `ff.Item` classes for usage. """ def __init__(self, shared_dict, namespace, parser, *args, **kwargs): self._shared_dict = shared_dict self._namespace = namespace super().__init__( *args, parser=parser, # absl treats boolean flags as a special case in order to support the # alternative `--foo`/`--nofoo` syntax. boolean=isinstance(parser, flags.BooleanParser), **kwargs ) # `super().value = value` doesn't work, see https://bugs.python.org/issue14965 @_flag_value_property.setter def value(self, value): _flag_value_property.fset(self, value) self._update_shared_dict() def parse(self, argument): super().parse(argument) self._update_shared_dict() def _update_shared_dict(self): d = self._shared_dict for name in self._namespace[:-1]: d = d[name] d[self._namespace[-1]] = self.value class MultiItemFlag(flags.MultiFlag): """Updates a shared dict whenever its own value changes. Used for flags that can appear multiple times on the command line. See also the `DictFlag` and `ff.Item` classes for usage. """ def __init__(self, shared_dict, namespace, *args, **kwargs): self._shared_dict = shared_dict self._namespace = namespace super().__init__(*args, **kwargs) # `super().value = value` doesn't work, see https://bugs.python.org/issue14965 @_multi_flag_value_property.setter def value(self, value): _multi_flag_value_property.fset(self, value) self._update_shared_dict() def parse(self, argument): super().parse(argument) self._update_shared_dict() def _update_shared_dict(self): d = self._shared_dict for name in self._namespace[:-1]: d = d[name] d[self._namespace[-1]] = self.value class AutoFlag(flags.Flag): """Implements the shared dict mechanism.""" def __init__(self, fn, fn_kwargs, *args, **kwargs): self._fn = fn self._fn_kwargs = fn_kwargs super().__init__(*args, **kwargs) @property def value(self): kwargs = copy.deepcopy(self._fn_kwargs) return functools.partial(self._fn, **kwargs) @value.setter def value(self, value): # The flags `.value` gets set as part of the `flags.FLAG` constructor to a # default value. However the default value should be given by the initial # `fn_kwargs` instead, so a) the semantics of setting the value are unclear # and b) we may not be able to call `self._fn` at this point in execution. del value def _parse(self, value): # An `AutoFlag` should not be overridable from the command line; only the # dotted `Item` flags should be. However, the `_parse()` method will still # be called in two situations: # 1. In the base `Flag`'s constructor, which calls `_parse()` to process the # default value, which will be None (as set in `DEFINE_auto`). # 2. When processing command line overrides. We don't want to allow this # normally, however some libraries will serialize and deserialize all # flags, e.g. to pass values between processes, so we accept a dummy # empty serialized value for these cases. It's unlikely users will try to # set the auto flag to an empty string from the command line. if value is None or value == _EMPTY: return None raise flags.IllegalFlagValueError( "Can't override an auto flag directly. Did you mean to override one of " "its `Item`s instead?" ) def serialize(self): # When serializing a `FlagHolder` container, we must return *some* value for # this flag. We return an empty value that the `AutoFlag` will ignore when # parsing. The value of this flag is instead determined by the # corresponding `Item` flags for serialization and deserialization. return _EMPTY def flag_type(self): return "auto"
fancyflags-master
fancyflags/_flags.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functionality for defining `Item`s and dict flags.""" import collections import enum from typing import Any, Generic, Iterable, Mapping, Optional, Type, TypeVar, Union from absl import flags from fancyflags import _argument_parsers from fancyflags import _flags _T = TypeVar("_T") _EnumT = TypeVar("_EnumT", bound=enum.Enum) _MappingT = TypeVar("_MappingT", bound=Mapping[str, Any]) SEPARATOR = "." _NOT_A_DICT_OR_ITEM = """ DEFINE_dict only supports flat or nested dictionaries, and these must contain `ff.Item`s or `ff.MultiItems. Found type {} in this definition. """ # Add this module to absl's exclusion set for determining the calling modules. flags.disclaim_key_flags() def DEFINE_dict(*args, **kwargs): # pylint: disable=invalid-name """Defines a flat or nested dictionary flag. Usage example: ```python import fancyflags as ff ff.DEFINE_dict( "image_settings", mode=ff.String("pad"), sizes=dict( width=ff.Integer(5), height=ff.Integer(7), scale=ff.Float(0.5), ) ) This creates a flag `FLAGS.image_settings`, with a default value of ```python { "mode": "pad", "sizes": { "width": 5, "height": 7, "scale": 0.5, } } ``` Each item in the definition (e.g. ff.Integer(...)) corresponds to a flag that can be overridden from the command line using "dot" notation. For example, the following command overrides the `height` item in the nested dictionary defined above: ``` python script_name.py -- --image_settings.sizes.height=10 ``` Args: *args: One or two positional arguments are expected: 1. A string containing the root name for this flag. This must be set. 2. Optionally, a `flags.FlagValues` object that will hold the Flags. If not set, the usual global `flags.FLAGS` object will be used. **kwargs: One or more keyword arguments, where the value is either an `ff.Item` such as `ff.String(...)` or `ff.Integer(...)` or a dict with the same constraints. Returns: A `FlagHolder` instance. """ if not args: raise ValueError( "Please supply one positional argument containing the " "top-level flag name for the dict." ) if not kwargs: raise ValueError( "Please supply at least one keyword argument defining a flag." ) if len(args) > 2: raise ValueError( "Please supply at most two positional arguments, the " "first containing the top-level flag name for the dict " "and, optionally and unusually, a second positional " "argument to override the flags.FlagValues instance to " "use." ) if not isinstance(args[0], str): raise ValueError( "The first positional argument must be a string " "containing top-level flag name for the dict. Got a {}.".format( type(args[0]).__name__ ) ) if len(args) == 2: if not isinstance(args[1], flags.FlagValues): raise ValueError( "If supplying a second positional argument, this must " "be a flags.FlagValues instance. Got a {}. If you meant " "to define a flag, note these must be supplied as " "keyword arguments. ".format(type(args[1]).__name__) ) flag_values = args[1] else: flag_values = flags.FLAGS flag_name = args[0] shared_dict = define_flags(flag_name, kwargs, flag_values=flag_values) # TODO(b/177672282): Can we persuade pytype to correctly infer the type of the # flagholder's .value attribute? # We register a dummy flag that returns `shared_dict` as a value. return flags.DEFINE_flag( _flags.DictFlag( shared_dict, name=flag_name, default=shared_dict, parser=flags.ArgumentParser(), serializer=None, help_string="Unused help string.", ), flag_values=flag_values, ) def define_flags( name: str, name_to_item: _MappingT, flag_values: flags.FlagValues = flags.FLAGS, ) -> _MappingT: """Defines dot-delimited flags from a flat or nested dict of `ff.Item`s. Args: name: The top-level name to prepend to each flag. name_to_item: A flat or nested dictionary, where each final value is an `ff.Item` such as `ff.String(...)` or `ff.Integer(...)`. flag_values: The `flags.FlagValues` instance to use. By default this is `flags.FLAGS`. Most users will not need to override this. Returns: A flat or nested dictionary containing the default values in `name_to_item`. Overriding any of the flags defined by this function will also update the corresponding entry in the returned dictionary. """ # Each flag that we will define holds a reference to `shared_dict`, which is # a flat or nested dictionary containing the default values. shared_dict = _extract_defaults(name_to_item) # We create flags for each leaf item (e.g. ff.Integer(...)). # These are the flags that users will actually interact with when overriding # flags from the command line, however they will not access directly in their # scripts. It is also the job of these flags to update the corresponding # values in `shared_dict`, whenever their own values change. def recursively_define_flags(namespace, maybe_item): if isinstance(maybe_item, collections.abc.Mapping): for key, value in maybe_item.items(): recursively_define_flags(namespace + (key,), value) else: assert isinstance(maybe_item, (Item, MultiItem)) maybe_item.define(namespace, {name: shared_dict}, flag_values) for key, value in name_to_item.items(): recursively_define_flags(namespace=(name, key), maybe_item=value) return shared_dict def _extract_defaults(name_to_item): """Converts a flat or nested dict into a flat or nested dict of defaults.""" result = {} for key, value in name_to_item.items(): if isinstance(value, (Item, MultiItem)): result[key] = value.default elif isinstance(value, dict): result[key] = _extract_defaults(value) else: type_name = type(value).__name__ raise TypeError(_NOT_A_DICT_OR_ITEM.format(type_name)) return result class Item(Generic[_T]): """Defines a flag for leaf items in the dictionary.""" def __init__( self, default: Optional[_T], help_string: str, parser: flags.ArgumentParser, serializer: Optional[flags.ArgumentSerializer] = None, *, required: bool = False, ): """Initializes a new `Item`. Args: default: Default value of the flag that this instance will create. help_string: Help string for the flag that this instance will create. If `None`, then the dotted flag name will be used as the help string. parser: A `flags.ArgumentParser` used to parse command line input. serializer: An optional custom `flags.ArgumentSerializer`. By default, the flag defined by this class will use an instance of the base `flags.ArgumentSerializer`. required: Whether or not this item is required. If True, the corresponding abseil flag will be marked as required. """ # Flags run the following lines of parsing code during initialization. # See Flag._set_default in absl/flags/_flag.py # It's useful to repeat it here so that users will see any errors when the # Item is initialized, rather than when define() is called later. # The only minor difference is that Flag._set_default calls Flag._parse, # which also catches and modifies the exception type. if default is None: self.default = default else: if required: # Mirror the strict behavior of abseil flags. raise ValueError( "If marking an Item as required, the default must be None." ) self.default = parser.parse(default) # pytype: disable=wrong-arg-types self.required = required self._help_string = help_string self._parser = parser if serializer is None: self._serializer = flags.ArgumentSerializer() else: self._serializer = serializer def define( self, namespace: str, shared_dict, flag_values: flags.FlagValues, ) -> flags.FlagHolder[_T]: """Defines a flag that when parsed will update a shared dictionary. Args: namespace: A sequence of strings that define the name of this flag. For example, `("foo", "bar")` will correspond to a flag named `foo.bar`. shared_dict: A dictionary that is shared by the top level dict flag. When the individual flag created by this method is parsed, it will also write the parsed value into `shared_dict`. The `namespace` determines the flat or nested key when storing the parsed value. flag_values: The `flags.FlagValues` instance to use. Returns: A new flags.FlagHolder instance. """ name = SEPARATOR.join(namespace) help_string = name if self._help_string is None else self._help_string return flags.DEFINE_flag( _flags.ItemFlag( shared_dict, namespace, parser=self._parser, serializer=self._serializer, name=name, default=self.default, help_string=help_string, ), flag_values=flag_values, required=self.required, ) class Boolean(Item[bool]): """Matches behaviour of flags.DEFINE_boolean.""" def __init__( self, default: Optional[bool], help_string: Optional[str] = None, *, required: bool = False, ): super().__init__( default, help_string, flags.BooleanParser(), required=required, ) # TODO(b/177673597) Better document the different enum class options and # possibly recommend some over others. class Enum(Item[str]): """Matches behaviour of flags.DEFINE_enum.""" def __init__( self, default: Optional[str], enum_values: Iterable[str], help_string: Optional[str] = None, *, case_sensitive: bool = True, required: bool = False, ): parser = flags.EnumParser(tuple(enum_values), case_sensitive) super().__init__(default, help_string, parser, required=required) class EnumClass(Item[_EnumT]): """Matches behaviour of flags.DEFINE_enum_class.""" def __init__( self, default: Optional[_EnumT], enum_class: Type[_EnumT], help_string: Optional[str] = None, *, case_sensitive: bool = False, required: bool = False, ): parser = flags.EnumClassParser(enum_class, case_sensitive=case_sensitive) super().__init__( default, help_string, parser, flags.EnumClassSerializer(lowercase=False), required=required, ) class Float(Item[float]): """Matches behaviour of flags.DEFINE_float.""" def __init__( self, default: Optional[float], help_string: Optional[str] = None, *, required: bool = False, ): super().__init__( default, help_string, flags.FloatParser(), required=required ) class Integer(Item[int]): """Matches behaviour of flags.DEFINE_integer.""" def __init__( self, default: Optional[int], help_string: Optional[str] = None, required: bool = False, ): super().__init__( default, help_string, flags.IntegerParser(), required=required ) class Sequence(Item, Generic[_T]): r"""Defines a flag for a list or tuple of simple numeric types or strings. Here is an example of overriding a Sequence flag within a dict-flag named "settings" from the command line, with a list of values. ``` --settings.sequence=[1,2,3] ``` To include spaces, either quote the entire literal, or escape spaces as: ``` --settings.sequence="[1, 2, 3]" --settings.sequence=[1,\ 2,\ 3] ``` """ def __init__( self, default: Optional[Iterable[_T]], help_string: Optional[str] = None, required: bool = False, ): super().__init__( default, help_string, _argument_parsers.SequenceParser(), required=required, ) class String(Item[str]): """Matches behaviour of flags.DEFINE_string.""" def __init__( self, default: Optional[str], help_string: Optional[str] = None, *, required: bool = False, ): super().__init__( default, help_string, flags.ArgumentParser(), required=required, ) class DateTime(Item): def __init__( self, default: Optional[str], help_string: Optional[str] = None, *, required: bool = False, ): super(DateTime, self).__init__( default, help_string, _argument_parsers.PossiblyNaiveDatetimeParser(), required=required, ) class StringList(Item[Iterable[str]]): """A flag that implements the same behavior as absl.flags.DEFINE_list. Can be overwritten as --my_flag="a,list,of,commaseparated,strings" """ def __init__( self, default: Optional[Iterable[str]], help_string: Optional[str] = None, ): serializer = flags.CsvListSerializer(",") super().__init__(default, help_string, flags.ListParser(), serializer) # MultiFlag-related functionality. class MultiItem(Generic[_T]): """Class for items that can appear multiple times on the command line. See Item class for more details on methods and usage. """ def __init__( self, default: Union[None, _T, Iterable[_T]], help_string: str, parser: flags.ArgumentParser, serializer: Optional[flags.ArgumentSerializer] = None, ): if default is None: self.default = default else: if isinstance(default, collections.abc.Iterable) and not isinstance( default, (str, bytes) ): # Convert all non-string iterables to lists. default = list(default) if not isinstance(default, list): # Turn single items into single-value lists. default = [default] # Ensure each individual value is well-formed. self.default = [parser.parse(item) for item in default] self._help_string = help_string self._parser = parser if serializer is None: self._serializer = flags.ArgumentSerializer() else: self._serializer = serializer def define( self, namespace: str, shared_dict, flag_values, ) -> flags.FlagHolder[Iterable[_T]]: name = SEPARATOR.join(namespace) help_string = name if self._help_string is None else self._help_string return flags.DEFINE_flag( _flags.MultiItemFlag( shared_dict, namespace, parser=self._parser, serializer=self._serializer, name=name, default=self.default, help_string=help_string, ), flag_values=flag_values, ) class MultiEnum(Item[_T]): """Defines a flag for lists of values of any type, matched to enum_values.""" def __init__( self, default: Union[None, _T, Iterable[_T]], enum_values: Iterable[_T], help_string: Optional[str] = None, ): parser = _argument_parsers.MultiEnumParser(enum_values) serializer = flags.ArgumentSerializer() _ = parser.parse(enum_values) super().__init__(default, help_string, parser, serializer) class MultiEnumClass(MultiItem): """Matches behaviour of flags.DEFINE_multi_enum_class.""" def __init__( self, default: Union[None, _EnumT, Iterable[_EnumT]], enum_class: Type[_EnumT], help_string: Optional[str] = None, ): parser = flags.EnumClassParser(enum_class) serializer = flags.EnumClassListSerializer(",", lowercase=False) super().__init__(default, help_string, parser, serializer) class MultiString(MultiItem): """Matches behaviour of flags.DEFINE_multi_string.""" def __init__(self, default, help_string=None): parser = flags.ArgumentParser() serializer = flags.ArgumentSerializer() super().__init__(default, help_string, parser, serializer) # Misc DEFINE_*s. def DEFINE_multi_enum( # pylint: disable=invalid-name,redefined-builtin name: str, default: Optional[Iterable[_T]], enum_values: Iterable[_T], help: str, flag_values=flags.FLAGS, **args, ) -> flags.FlagHolder[_T]: """Defines flag for MultiEnum.""" parser = _argument_parsers.MultiEnumParser(enum_values) serializer = flags.ArgumentSerializer() return flags.DEFINE( parser, name, default, help, flag_values, serializer, **args, ) def DEFINE_sequence( # pylint: disable=invalid-name,redefined-builtin name: str, default: Optional[Iterable[_T]], help: str, flag_values=flags.FLAGS, **args, ) -> flags.FlagHolder[Iterable[_T]]: """Defines a flag for a list or tuple of simple types. See `Sequence` docs.""" parser = _argument_parsers.SequenceParser() serializer = flags.ArgumentSerializer() return flags.DEFINE( parser, name, default, help, flag_values, serializer, **args, )
fancyflags-master
fancyflags/_definitions.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for fancyflags._flags.""" from absl import flags from absl.testing import absltest from fancyflags import _flags class FlagsTest(absltest.TestCase): def test_update_shared_dict(self): # Tests that the shared dict is updated when the flag value is updated. shared_dict = {'a': {'b': 'value'}} namespace = ('a', 'b') flag_values = flags.FlagValues() flags.DEFINE_flag( _flags.ItemFlag( shared_dict, namespace, parser=flags.ArgumentParser(), serializer=flags.ArgumentSerializer(), name='a.b', default='bar', help_string='help string', ), flag_values=flag_values, ) flag_values['a.b'].value = 'new_value' with self.subTest(name='setter'): self.assertEqual(shared_dict, {'a': {'b': 'new_value'}}) flag_values(('./program', '--a.b=override')) with self.subTest(name='override_parse'): self.assertEqual(shared_dict, {'a': {'b': 'override'}}) def test_update_shared_dict_multi(self): # Tests that the shared dict is updated when the flag value is updated. shared_dict = {'a': {'b': ['value']}} namespace = ('a', 'b') flag_values = flags.FlagValues() flags.DEFINE_flag( _flags.MultiItemFlag( shared_dict, namespace, parser=flags.ArgumentParser(), serializer=flags.ArgumentSerializer(), name='a.b', default=['foo', 'bar'], help_string='help string', ), flag_values=flag_values, ) flag_values['a.b'].value = ['new', 'value'] with self.subTest(name='setter'): self.assertEqual(shared_dict, {'a': {'b': ['new', 'value']}}) flag_values(('./program', '--a.b=override1', '--a.b=override2')) with self.subTest(name='override_parse'): self.assertEqual(shared_dict, {'a': {'b': ['override1', 'override2']}}) if __name__ == '__main__': absltest.main()
fancyflags-master
fancyflags/_flags_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for fancyflags._define_auto.""" import copy import dataclasses from typing import Sequence from absl import flags from absl.testing import absltest from fancyflags import _define_auto from fancyflags import _flags @dataclasses.dataclass class Point: x: float = 0.0 y: float = 0.0 label: str = '' enable: bool = False def greet(greeting: str = 'Hello', targets: Sequence[str] = ('world',)) -> str: return greeting + ' ' + ', '.join(targets) # pytype: disable=unsupported-operands class DefineAutoTest(absltest.TestCase): def test_dataclass(self): flag_values = flags.FlagValues() flag_holder = _define_auto.DEFINE_auto( 'point', Point, flag_values=flag_values ) flag_values(( './program', '--point.x=2.0', '--point.y=-1.5', '--point.label=p', '--nopoint.enable', )) expected = Point(2.0, -1.5, 'p', False) self.assertEqual(expected, flag_holder.value()) def test_dataclass_nodefaults(self): # Given a class constructor with non-default (required) argument(s)... @dataclasses.dataclass class MySettings: foo: str bar: int = 3 # If we define auto flags for it... flag_values = flags.FlagValues() flag_holder = _define_auto.DEFINE_auto( 'thing', MySettings, flag_values=flag_values ) # Then the corresponding flag is required: not passing it should error. with self.assertRaisesRegex(flags.IllegalFlagValueError, 'thing.foo'): flag_values(('./program', '')) # Passing the required flag should work as normal. flag_values(('./program', '--thing.foo=hello')) expected = MySettings('hello', 3) self.assertEqual(expected, flag_holder.value()) def test_function(self): flag_values = flags.FlagValues() flag_holder = _define_auto.DEFINE_auto( 'greet', greet, flag_values=flag_values ) flag_values(( './program', '--greet.greeting=Hi there', "--greet.targets=('Alice', 'Bob')", )) expected = 'Hi there Alice, Bob' self.assertEqual(expected, flag_holder.value()) def test_override_kwargs(self): flag_values = flags.FlagValues() flag_holder = _define_auto.DEFINE_auto( 'point', Point, flag_values=flag_values ) flag_values(( './program', '--point.x=2.0', '--point.y=-1.5', '--point.label=p', '--point.enable', )) expected = Point(3.0, -1.5, 'p', True) # Here we override one of the arguments. self.assertEqual(expected, flag_holder.value(x=3.0)) def test_overriding_top_level_auto_flag_fails(self): flag_values = flags.FlagValues() _define_auto.DEFINE_auto('point', Point, flag_values=flag_values) with self.assertRaisesRegex( flags.IllegalFlagValueError, "Can't override an auto flag directly" ): flag_values(('./program', '--point=2.0')) def test_basic_serialization(self): flag_values = flags.FlagValues() _define_auto.DEFINE_auto('point', Point, flag_values=flag_values) # Accessing flag_holder.value would raise an error here, since flags haven't # been parsed yet. For consistency we access the value via flag_values # throughout the test, rather than through a returned `FlagHolder`. initial_point_value = copy.deepcopy(flag_values['point'].value()) # Parse flags, then serialize. flag_values(( './program', '--point.x=1.2', '--point.y=3.5', '--point.label=p', '--point.enable=True', )) self.assertEqual(flag_values['point'].serialize(), _flags._EMPTY) self.assertEqual(flag_values['point.x'].serialize(), '--point.x=1.2') self.assertEqual(flag_values['point.label'].serialize(), '--point.label=p') self.assertEqual(flag_values['point.enable'].serialize(), '--point.enable') parsed_point_value = copy.deepcopy(flag_values['point'].value()) self.assertEqual( parsed_point_value, Point(x=1.2, y=3.5, label='p', enable=True) ) self.assertNotEqual(parsed_point_value, initial_point_value) # Test a round trip. serialized_args = [ flag_values[name].serialize() for name in flag_values if name.startswith('point.') ] flag_values.unparse_flags() # Reset to defaults self.assertEqual(flag_values['point'].value(), initial_point_value) flag_values(['./program'] + serialized_args) self.assertEqual(flag_values['point'].value(), parsed_point_value) def test_disclaimed_module(self): flag_values = flags.FlagValues() _ = _define_auto.DEFINE_auto( 'greet', greet, 'help string', flag_values=flag_values ) defining_module = flag_values.find_module_defining_flag('greet') # The defining module should be the calling module, not the module where # the flag is defined. Otherwise the help for a module's flags will not be # printed unless the user uses --helpfull. self.assertIn('_define_auto_test', defining_module) def test_help_strings(self): flag_values = flags.FlagValues() # Should default to module.name, since the `greet` docstring is empty. _define_auto.DEFINE_auto('greet', greet, flag_values=flag_values) # Should use the custom help string. _define_auto.DEFINE_auto( 'point', Point, help_string='custom', flag_values=flag_values ) self.assertEqual(flag_values['greet'].help, f'{greet.__module__}.greet') self.assertEqual(flag_values['point'].help, 'custom') def test_manual_nostrict_overrides_no_default(self): # Given a function without type hints... def my_function(a): return a + 1 # pytype: disable=unsupported-operands # If we define an auto flag using this function in non-strict mode... flag_values = flags.FlagValues() flag_holder = _define_auto.DEFINE_auto( 'foo', my_function, flag_values=flag_values, strict=False ) # Calling the function without arguments should error. flag_values(('./program', '')) with self.assertRaises(TypeError): flag_holder.value() # pytype: disable=missing-parameter # Calling with arguments should work fine. self.assertEqual(flag_holder.value(a=2), 3) # pytype: disable=wrong-arg-types def test_skip_params(self): flag_values = flags.FlagValues() _define_auto.DEFINE_auto( 'greet', greet, flag_values=flag_values, skip_params=('targets',) ) self.assertNotIn('greet.targets', flag_values) if __name__ == '__main__': absltest.main()
fancyflags-master
fancyflags/_define_auto_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """An extended flags library. The main component is a nested dict flag.""" # pylint: disable=g-bad-import-order,g-import-not-at-top # Add current module to disclaimed module ids. from absl import flags flags.disclaim_key_flags() from fancyflags._metadata import __version__ # Define flags based on a dictionary or sequence. from fancyflags._definitions import DEFINE_dict from fancyflags._definitions import DEFINE_sequence from fancyflags._definitions import define_flags # Automatically build fancyflags defs from a callable signature. from fancyflags._auto import auto from fancyflags._define_auto import DEFINE_auto # `Item` definitions for supported types. from fancyflags._definitions import Boolean from fancyflags._definitions import DateTime from fancyflags._definitions import Enum from fancyflags._definitions import EnumClass from fancyflags._definitions import Float from fancyflags._definitions import Integer from fancyflags._definitions import MultiEnum from fancyflags._definitions import MultiEnumClass from fancyflags._definitions import MultiString from fancyflags._definitions import Sequence from fancyflags._definitions import String from fancyflags._definitions import StringList # Class for adding new flag types. from fancyflags._definitions import Item # usage_logging: import # experimental: import
fancyflags-master
fancyflags/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Automatic flags via ff.auto-compatible callables.""" from typing import Callable, Collection, Optional, TypeVar from absl import flags from fancyflags import _auto from fancyflags import _definitions from fancyflags import _flags _F = TypeVar('_F', bound=Callable) # Add current module to disclaimed module ids. flags.disclaim_key_flags() def DEFINE_auto( # pylint: disable=invalid-name name: str, fn: _F, help_string: Optional[str] = None, flag_values: flags.FlagValues = flags.FLAGS, *, strict: bool = True, skip_params: Collection[str] = (), ) -> flags.FlagHolder[_F]: """Defines a flag for an `ff.auto`-compatible constructor or callable. Automatically defines a set of dotted `ff.Item` flags corresponding to the constructor arguments and their default values. Overriding the value of a dotted flag will update the arguments used to invoke `fn`. This flag's value returns a callable `fn` with these values as bound arguments, Example usage: ```python # Defined in, e.g., datasets library. @dataclasses.dataclass class DataSettings: dataset_name: str = 'mnist' split: str = 'train' batch_size: int = 128 # In main script. # Exposes flags: --data.dataset_name --data.split and --data.batch_size. DATA_SETTINGS = ff.DEFINE_auto('data', datasets.DataSettings, 'Data config') def main(argv): # del argv # Unused. dataset = datasets.load(DATA_SETTINGS.value()) # ... ``` Args: name: The name for the top-level flag. fn: An `ff.auto`-compatible `Callable`. help_string: Optional help string for this flag. If not provided, this will default to '{fn's module}.{fn's name}'. flag_values: An optional `flags.FlagValues` instance. strict: Whether to skip flag definitions for arguments without type hints, or for arguments with unknown types. skip_params: Optional parameter names to skip defining flags for. Returns: A `flags.FlagHolder`. """ arguments = _auto.auto(fn, strict=strict, skip_params=skip_params) # Define the individual flags. defaults = _definitions.define_flags(name, arguments, flag_values=flag_values) help_string = help_string or f'{fn.__module__}.{fn.__name__}' # Define a holder flag. return flags.DEFINE_flag( flag=_flags.AutoFlag( fn, defaults, name=name, default=None, parser=flags.ArgumentParser(), serializer=None, help_string=help_string, ), flag_values=flag_values, )
fancyflags-master
fancyflags/_define_auto.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for argument_parsers.""" import datetime from absl.testing import absltest from absl.testing import parameterized from fancyflags import _argument_parsers UTC = datetime.timezone.utc TZINFO_4HRS = datetime.timezone(datetime.timedelta(hours=4)) class SequenceParserTest(parameterized.TestCase): def setUp(self): super().setUp() self.parser = _argument_parsers.SequenceParser() @parameterized.parameters( ([1, 2, 3],), ([],), ((),), (["hello", "world"],), ((3.14, 2.718),), ((1, -1.0),), ) def test_parse_input_sequence(self, input_sequence): result = self.parser.parse(input_sequence) self.assertEqual(result, input_sequence) @parameterized.parameters( ("[1, 2, 3]", [1, 2, 3]), ("[]", []), ("()", ()), ("['hello', 'world']", ["hello", "world"]), ("(3.14, 2.718)", (3.14, 2.718)), ( "(1, -1.0)", (1, -1.0), ), ) def test_parse_input_string(self, input_string, expected): result = self.parser.parse(input_string) self.assertEqual(result, expected) # Check that the string-formatted expected result also matches the input self.assertEqual("{}".format(expected), input_string) @parameterized.parameters( ('["hello", u"world"]', ["hello", "world"]), ("(1,2,3)", (1, 2, 3)), ) def test_parse_input_string_different_format(self, input_string, expected): # The parser/ast result should also work for slightly different formatting. result = self.parser.parse(input_string) self.assertEqual(result, expected) def test_parse_none(self): result = self.parser.parse(None) self.assertEqual(result, []) @parameterized.parameters( ({1, 2, 3},), (100,), ) def test_parse_invalid_input_type(self, input_item): with self.assertRaisesRegex(TypeError, "Unsupported type"): self.parser.parse(input_item) @parameterized.parameters( ("'hello world'",), ("{1: 3}",), ) def test_parse_invalid_evaluated_type(self, input_string): with self.assertRaisesRegex(TypeError, "evaluated as"): self.parser.parse(input_string) @parameterized.parameters( # No nested anything. ([1, [2, 3]],), ([1, (2, 3)],), ((1, [2, 3]),), ((1, (2, 3)),), # Nothing outside the listed primitive types. ([1, set()],), ) def test_parse_invalid_entries(self, input_item): with self.assertRaisesRegex(TypeError, "contains unsupported"): self.parser.parse(input_item) def test_empty_string(self): with self.assertRaisesWithLiteralMatch( ValueError, _argument_parsers._EMPTY_STRING_ERROR_MESSAGE ): self.parser.parse("") @parameterized.parameters( # ValueError from ast.literal_eval "[foo, bar]", # SyntaxError from ast.literal_eval "['foo', 'bar'", "[1 2]", ) def test_parse_string_literal_error(self, input_string): with self.assertRaisesRegex(ValueError, ".*as a python literal.*"): self.parser.parse(input_string) class MultiEnumParserTest(parameterized.TestCase): def setUp(self): super().setUp() self.parser = _argument_parsers.MultiEnumParser( ["a", "a", ["a"], "b", "c", 1, [2], {"a": "d"}] ) @parameterized.parameters( ('["a"]', ["a"]), ('[["a"], "a"]', [["a"], "a"]), ('[1, "a", {"a": "d"}]', [1, "a", {"a": "d"}]), ) def test_parse_input(self, inputs, target): self.assertEqual(self.parser.parse(inputs), target) @parameterized.parameters( ("'a'", "evaluated as a"), (1, "Unsupported type"), ({"a"}, "Unsupported type"), ("''", "evaluated as a"), ) def test_invalid_input_type(self, input_item, regex): with self.assertRaisesRegex(TypeError, regex): self.parser.parse(input_item) @parameterized.parameters("[1, 2]", '["a", ["b"]]') def test_out_of_enum_values(self, inputs): with self.assertRaisesRegex(ValueError, "Argument values should be one of"): self.parser.parse(inputs) with self.assertRaisesRegex(ValueError, "Argument values should be one of"): self.parser.parse(inputs) class PossiblyNaiveDatetimeFlagTest(parameterized.TestCase): def test_parser_flag_type(self): parser = _argument_parsers.PossiblyNaiveDatetimeParser() self.assertEqual("datetime.datetime", parser.flag_type()) @parameterized.named_parameters( dict( testcase_name="date_string", value="2011-11-04", expected=datetime.datetime(2011, 11, 4, 0, 0), ), dict( testcase_name="second_string", value="2011-11-04T00:05:23", expected=datetime.datetime(2011, 11, 4, 0, 5, 23), ), dict( testcase_name="fractions_string", value="2011-11-04 00:05:23.283", expected=datetime.datetime(2011, 11, 4, 0, 5, 23, 283000), ), dict( testcase_name="utc_string", value="2011-11-04 00:05:23.283+00:00", expected=datetime.datetime(2011, 11, 4, 0, 5, 23, 283000, tzinfo=UTC), ), dict( testcase_name="offset_string", value="2011-11-04T00:05:23+04:00", expected=datetime.datetime(2011, 11, 4, 0, 5, 23, tzinfo=TZINFO_4HRS), ), dict( testcase_name="datetime", value=datetime.datetime(2011, 11, 4, 0, 0), expected=datetime.datetime(2011, 11, 4, 0, 0), ), ) def test_parse(self, value, expected): parser = _argument_parsers.PossiblyNaiveDatetimeParser() result = parser.parse(value) self.assertIsInstance(result, datetime.datetime) self.assertEqual(expected, result) def test_parse_separator_plus_or_minus_raises(self): parser = _argument_parsers.PossiblyNaiveDatetimeParser() with self.assertRaisesRegex(ValueError, r"separator between date and time"): # Avoid confusion of 1970-01-01T08:00:00 vs. 1970-01-01T00:00:00-08:00 parser.parse("1970-01-01-08:00") if __name__ == "__main__": absltest.main()
fancyflags-master
fancyflags/_argument_parsers_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for fancyflags.auto.""" # Test that `auto` can still correctly infer parameter types when postponed # evaluation of type annotations (PEP 563) is enabled. from __future__ import annotations import abc import enum import sys from typing import List, Optional, Sequence, Tuple from absl import flags from absl.testing import absltest import fancyflags as ff from fancyflags import _auto FLAGS = flags.FLAGS class MyEnum(enum.Enum): ZERO = 0 ONE = 1 class AutoTest(absltest.TestCase): def test_works_fn(self): # pylint: disable=unused-argument def my_function( str_: str = 'foo', int_: int = 10, float_: float = 1.0, bool_: bool = False, list_int: List[int] = [1, 2, 3], tuple_str: Tuple[str] = ('foo',), variadic_tuple_str: Tuple[str, ...] = ('foo', 'bar'), sequence_bool: Sequence[bool] = [True, False], optional_int: Optional[int] = None, optional_float: Optional[float] = None, optional_list_int: Optional[List[int]] = None, ): # pylint: disable=dangerous-default-value pass # pylint: enable=unused-argument expected_settings = { 'str_': 'foo', 'int_': 10, 'float_': 1.0, 'bool_': False, 'list_int': [1, 2, 3], 'tuple_str': ('foo',), 'variadic_tuple_str': ('foo', 'bar'), 'sequence_bool': [True, False], 'optional_int': None, 'optional_float': None, 'optional_list_int': None, } ff_dict = ff.auto(my_function) self.assertEqual(expected_settings.keys(), ff_dict.keys()) flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( 'my_function_settings', flag_values, **ff_dict, ) flag_values(('./program', '')) self.assertEqual(flag_holder.value, expected_settings) @absltest.skipIf( condition=sys.version_info < (3, 9), reason='Generics syntax for standard collections requires Python >= 3.9', ) def test_works_fn_pep585(self): def my_function( list_int: list[int] = [1, 2, 3], tuple_str: tuple[str] = ('foo',), variadic_tuple_str: tuple[str, ...] = ('foo', 'bar'), optional_list_int: Optional[list[int]] = None, ): # pylint: disable=dangerous-default-value del list_int, tuple_str, variadic_tuple_str, optional_list_int # Unused. expected_settings = { 'list_int': [1, 2, 3], 'tuple_str': ('foo',), 'variadic_tuple_str': ('foo', 'bar'), 'optional_list_int': None, } ff_dict = ff.auto(my_function) self.assertEqual(expected_settings.keys(), ff_dict.keys()) flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( 'my_function_settings', flag_values, **ff_dict, ) flag_values(('./program', '')) self.assertEqual(flag_holder.value, expected_settings) def test_works_enum_fn(self): # pylint: disable=unused-argument def my_function( str_: str = 'foo', int_: int = 10, enum_: MyEnum = MyEnum.ZERO ): pass # pylint: enable=unused-argument expected_settings = { 'str_': 'foo', 'int_': 10, 'enum_': MyEnum.ZERO, } ff_dict = ff.auto(my_function) self.assertCountEqual(expected_settings, ff_dict) def test_works_class(self): class MyClass: # pylint: disable=unused-argument def __init__( self, str_: str = 'foo', int_: int = 10, float_: float = 1.0, bool_: bool = False, list_int: List[int] = [1, 2, 3], tuple_str: Tuple[str] = ('foo',), variadic_tuple_str: Tuple[str, ...] = ('foo', 'bar'), sequence_bool: Sequence[bool] = [True, False], optional_int: Optional[int] = None, optional_float: Optional[float] = None, optional_list_int: Optional[List[int]] = None, ): # pylint: disable=dangerous-default-value pass # pylint: enable=unused-argument expected_settings = { 'str_': 'foo', 'int_': 10, 'float_': 1.0, 'bool_': False, 'list_int': [1, 2, 3], 'tuple_str': ('foo',), 'variadic_tuple_str': ('foo', 'bar'), 'sequence_bool': [True, False], 'optional_int': None, 'optional_float': None, 'optional_list_int': None, } ff_dict = ff.auto(MyClass) self.assertEqual(expected_settings.keys(), ff_dict.keys()) flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( 'my_class_settings', flag_values, **ff_dict, ) flag_values(('./program', '')) self.assertEqual(flag_holder.value, expected_settings) @absltest.skipIf( condition=sys.version_info < (3, 9), reason='Generics syntax for standard collections requires Python >= 3.9', ) def test_works_class_pep585(self): class MyClass: def __init__( self, list_int: list[int] = [1, 2, 3], tuple_str: tuple[str] = ('foo',), variadic_tuple_str: tuple[str, ...] = ('foo', 'bar'), optional_list_int: Optional[list[int]] = None, ): # pylint: disable=dangerous-default-value # Unused. del list_int, tuple_str, variadic_tuple_str, optional_list_int expected_settings = { 'list_int': [1, 2, 3], 'tuple_str': ('foo',), 'variadic_tuple_str': ('foo', 'bar'), 'optional_list_int': None, } ff_dict = ff.auto(MyClass) self.assertEqual(expected_settings.keys(), ff_dict.keys()) flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( 'my_class_settings', flag_values, **ff_dict, ) flag_values(('./program', '')) self.assertEqual(flag_holder.value, expected_settings) def test_works_metaclass(self): # This replicates an issue with Sonnet v2 modules, where the constructor # arguments are hidden by the metaclass. class MyMetaclass(abc.ABCMeta): def __call__(cls, *args, **kwargs): del args, kwargs class MyClass(metaclass=MyMetaclass): def __init__( self, a: int = 10, b: float = 1.0, c: Sequence[int] = (1, 2, 3) ): del a, b, c expected = {'a': 10, 'b': 1.0, 'c': (1, 2, 3)} ff_dict = ff.auto(MyClass) self.assertEqual(ff_dict.keys(), expected.keys()) flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( 'my_meta_class_settings', flag_values, **ff_dict, ) flag_values(('./program', '')) self.assertEqual(flag_holder.value, expected) def test_required_item_with_no_default(self): def my_function(a: int, b: float = 1.0, c: Sequence[int] = (1, 2, 3)): del a, b, c items = ff.auto(my_function) self.assertTrue(items['a'].required) self.assertFalse(items['b'].required) self.assertFalse(items['c'].required) def test_error_if_missing_type_annotation(self): def my_function(a: int = 10, b=1.0, c: Sequence[int] = (1, 2, 3)): del a, b, c with self.assertRaisesWithLiteralMatch( TypeError, _auto._MISSING_TYPE_ANNOTATION.format(name='b') ): ff.auto(my_function) def test_error_if_unsupported_type(self): def my_function( a: int = 10, b: float = 1.0, c: Sequence[object] = (1, 2, 3) ): del a, b, c with self.assertRaisesWithLiteralMatch( TypeError, _auto._UNSUPPORTED_ARGUMENT_TYPE.format( name='c', annotation=Sequence[object] ), ): ff.auto(my_function) def test_no_error_if_nonstrict_unsupported_type(self): def my_function( a: int = 10, b: float = 1.0, c: Sequence[object] = (1, 2, 3) ): del a, b, c items = ff.auto(my_function, strict=False) self.assertSetEqual(set(items.keys()), {'a', 'b'}) def test_no_error_if_nonstrict_no_type_annotation(self): def my_function(a, b: int = 3): del a, b items = ff.auto(my_function, strict=False) self.assertSetEqual(set(items.keys()), {'b'}) def test_error_if_not_callable(self): with self.assertRaises(TypeError): ff.auto(3) # pytype: disable=wrong-arg-types # TODO(b/178129474): Improve support for typing.Sequence subtypes. @absltest.expectedFailure def test_supports_tuples_with_more_than_one_element(self): def my_function( three_ints: Tuple[int, int, int] = (1, 2, 3), zero_or_more_strings: Tuple[str, ...] = ('foo', 'bar'), ): del three_ints, zero_or_more_strings expected = { 'three_ints': (1, 2, 3), 'zero_or_more_strings': ('foo', 'bar'), } ff_dict = ff.auto(my_function) self.assertEqual(expected.keys(), ff_dict.keys()) flag_values = flags.FlagValues() flag_holder = ff.DEFINE_dict( 'my_function_settings', flag_values, **ff_dict, ) flag_values(('./program', '')) self.assertEqual(flag_holder.value, expected) def test_skip_params(self): def my_function(a: int, b: str = 'hi'): del a, b items = ff.auto(my_function, skip_params={'b'}) self.assertSetEqual(set(items.keys()), {'a'}) if __name__ == '__main__': absltest.main()
fancyflags-master
fancyflags/_auto_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for compatibility with absl.testing.flagsaver.""" from absl import flags from absl.testing import absltest from absl.testing import flagsaver import fancyflags as ff flags.DEFINE_string("string_flag", "unchanged", "flag to test with") ff.DEFINE_dict( "test_dict_flag", dict=dict( nested=ff.Float(1.0, "nested flag"), ), unnested=ff.Integer(4, "unnested flag"), ) FLAGS = flags.FLAGS class FlagSaverTest(absltest.TestCase): def test_flagsaver_with_context_overrides(self): with flagsaver.flagsaver( **{ "string_flag": "new value", "test_dict_flag.dict.nested": -1.0, } ): self.assertEqual("new value", FLAGS.string_flag) self.assertEqual(-1.0, FLAGS.test_dict_flag["dict"]["nested"]) self.assertEqual(4, FLAGS.test_dict_flag["unnested"]) FLAGS.string_flag = "another value" self.assertEqual("unchanged", FLAGS.string_flag) self.assertEqual(1.0, FLAGS.test_dict_flag["dict"]["nested"]) def test_flagsaver_with_decorator_overrides(self): # Modeled after test_decorator_with_overrides in # https://github.com/abseil/abseil-py/blob/master/absl/testing/tests/flagsaver_test.py # pylint: disable=line-too-long @flagsaver.flagsaver( **{ "string_flag": "new value", "test_dict_flag.dict.nested": -1.0, } ) def mutate_flags(): return FLAGS.string_flag, FLAGS.test_dict_flag["dict"]["nested"] # Values should be overridden in the function. self.assertEqual(("new value", -1.0), mutate_flags()) # But unchanged here. self.assertEqual("unchanged", FLAGS.string_flag) self.assertEqual(1.0, FLAGS.test_dict_flag["dict"]["nested"]) def test_flagsaver_with_context_overrides_twice(self): # Checking that the flat -> dict flag sync works again after restoration. # This might fail if the underlying absl functions copied the dict as part # of restoration. with flagsaver.flagsaver( **{ "string_flag": "new value", "test_dict_flag.dict.nested": -1.0, } ): self.assertEqual("new value", FLAGS.string_flag) self.assertEqual(-1.0, FLAGS.test_dict_flag["dict"]["nested"]) self.assertEqual(4, FLAGS.test_dict_flag["unnested"]) FLAGS.string_flag = "another value" self.assertEqual("unchanged", FLAGS.string_flag) self.assertEqual(1.0, FLAGS.test_dict_flag["dict"]["nested"]) # Same again! with flagsaver.flagsaver( **{ "string_flag": "new value", "test_dict_flag.dict.nested": -1.0, } ): self.assertEqual("new value", FLAGS.string_flag) self.assertEqual(-1.0, FLAGS.test_dict_flag["dict"]["nested"]) self.assertEqual(4, FLAGS.test_dict_flag["unnested"]) FLAGS.string_flag = "another value" self.assertEqual("unchanged", FLAGS.string_flag) self.assertEqual(1.0, FLAGS.test_dict_flag["dict"]["nested"]) @absltest.skip("This fails because flagsaver does not do deep copies") def test_flagsaver_with_changes_within_context(self): """Overrides within a flagsaver context should be correctly restored.""" with flagsaver.flagsaver(): FLAGS.string_flag = "new_value" FLAGS["test_dict_flag.dict.nested"].value = -1.0 FLAGS.test_dict_flag["unnested"] = -1.0 self.assertEqual("unchanged", FLAGS.string_flag) # Works. self.assertEqual(1.0, FLAGS.test_dict_flag["dict"]["nested"]) # Works. # TODO(b/177927157) Fix this behaviour. self.assertEqual(4, FLAGS.test_dict_flag["unnested"]) # Broken. if __name__ == "__main__": absltest.main()
fancyflags-master
fancyflags/_flagsaver_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A module that defines a dict flag, for testing purposes.""" import fancyflags as ff ff.DEFINE_dict( "settings", integer_field=ff.Integer(1, "integer field"), string_field=ff.String(None, "string field"), )
fancyflags-master
fancyflags/examples/example_module.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test for flag overrides in fancyflags..""" from absl import flags from absl.testing import absltest import fancyflags as ff SETTINGS = ff.DEFINE_dict( "settings", integer_field=ff.Integer(1, "integer field"), string_field=ff.String(None, "string field"), nested=dict(float_field=ff.Float(0.0, "float field")), sequence_field=ff.Sequence([1, 2, 3], "sequence field"), another_sequence_field=ff.Sequence((3.14, 2.718), "another sequence field"), string_list_field=ff.StringList(["a"], "string list flag."), ) class OverrideTest(absltest.TestCase): def test_give_me_a_name(self): expected = dict( integer_field=5, string_field=None, # Not overridden in BUILD args. nested=dict( float_field=3.2, ), sequence_field=[4, 5, 6], another_sequence_field=[3.0, 2.0], string_list_field=["a", "bunch", "of", "overrides"], ) self.assertEqual(flags.FLAGS.settings, expected) self.assertEqual(SETTINGS.value, expected) if __name__ == "__main__": absltest.main()
fancyflags-master
fancyflags/examples/override_test.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Install script for setuptools.""" from setuptools import find_packages from setuptools import setup setup( name='additive_cbug', version='1.0', description='Code reproducing the experiments of the paper' 'Malek, Aglietti, Chiappa. "Additive Causal Bandits with Unknown Graph". ' 'ICML 2023.', author='DeepMind', author_email='[email protected]', license='Apache License, Version 2.0', url='https://github.com/deepmind/additive_cbug', packages=find_packages(), install_requires=[ 'absl-py', 'numpy', 'networkx', 'matplotlib', ], tests_require=['mock'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
additive_cbug-main
setup.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the algorithms.""" from absl.testing import absltest from cbug import base from cbug import scm from cbug import utils import numpy as np class CBUGTest(absltest.TestCase): """Unit test for the CBUG algorithm.""" def test_reduce_actions(self): s_marginal = {'X': np.array([0, 1, 2]), 'Z': np.array([1, 2, 3])} support_sizes = {'X': 3, 'Z': 4} name_to_idx = utils.get_name_to_idx(support_sizes) mean_est = np.array([1.9, 2.7, 3, 2, 1.2, 1, 1.8]) # The gaps are: 1.1, .3, 0, 0, .8, 1, .2. gamma = .1 returned = base.reduce_actions(s_marginal, name_to_idx, mean_est, gamma) ans = { 'X': np.array([2]), 'Z': np.array([0]), } self.assertDictEqual(returned, ans) gamma = .4 returned = base.reduce_actions(s_marginal, name_to_idx, mean_est, gamma) ans = { 'X': np.array([1, 2]), 'Z': np.array([0, 3]), } self.assertDictEqual(returned, ans) gamma = 1 returned = base.reduce_actions(s_marginal, name_to_idx, mean_est, gamma) ans = { 'X': np.array([1, 2]), 'Z': np.array([0, 1, 3]), } self.assertDictEqual(returned, ans) def test_xy_optimal_design(self): s_marginal = {'X': np.array([0, 1, 2]), 'Z': np.array([0, 1, 2, 3])} support_sizes = {'X': 3, 'Z': 4} gamma = 1 delta = .5 sigma2 = 1.2 covariates = base.xy_optimal_design( s_marginal, support_sizes, gamma, delta, sigma2, ) np.testing.assert_allclose(len(covariates['X']), 24) _, counts = np.unique(covariates['X'], return_counts=True) np.testing.assert_allclose(counts, 8) _, counts = np.unique(covariates['Z'], return_counts=True) np.testing.assert_allclose(counts, 6) s_marginal = {'X': np.array([0, 1]), 'Z': np.array([0, 1, 2])} covariates = base.xy_optimal_design( s_marginal, support_sizes, gamma, delta, sigma2, ) np.testing.assert_allclose(len(covariates['X']), 17) _, counts = np.unique(covariates['X'], return_counts=True) np.testing.assert_allclose(counts, 8, atol=1) _, counts = np.unique(covariates['Z'], return_counts=True) np.testing.assert_allclose(counts, 6, atol=1) def test_run_modl(self): support_sizes = {'X1': 3, 'X2': 4} cov_variables = ['X1', 'X2'] var_names = ['X1', 'X2', 'Y'] parents = {'X1': [], 'X2': ['X1'], 'Y': ['X1', 'X2'], } strc_fn_probs = {} strc_fn_probs['X1'] = np.array([0, 1, 0]) strc_fn_probs['X2'] = np.array([[0, 1, 0], [1, 0, 0]]) additive_means = {'X1': np.array([0, 1, 0]), 'X2': np.array([0, .2, .4]), } support_sizes = {'X1': 3, 'X2': 3} model = scm.DiscreteAdditiveSCM( 'test', var_names, parents, strc_fn_probs, additive_means, cov_variables, 'Y', support_sizes, cov=0, ) results = base.run_modl(delta=.5, epsilon=.1, model=model, sigma2=1, outcome_bound=2, num_parents_bound=None, ) np.testing.assert_equal(results.n_samples_t, [72, 288, 767]) np.testing.assert_equal(results.gamma_t, [1, .5, .25]) np.testing.assert_equal(results.best_action_t[-1], {'X1': [1], 'X2': [2]}) np.testing.assert_equal(results.s_t[0], {'X1': [0, 1, 2], 'X2': [0, 1, 2]}) np.testing.assert_equal(results.s_t[-1], {'X1': [1], 'X2': [1, 2]})
additive_cbug-main
cbug/base_test.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for building discreteSCM objects.""" import itertools from typing import List, Mapping, Optional, Tuple from cbug import discrete_scm from cbug import scm from cbug import stoc_fn_utils as sf import numpy as np def sample_discrete_additive_scm( num_variables: int, degree: float, num_parents: int, prob_outcome_child: float = .5, cov: float = 1, mean_bound: float = 1, support_size_min: int = 3, support_size_max: int = 6, alpha: float = 2, beta: float = 5, dir_alpha: float = .5, interactions: Optional[List[int]] = None, interaction_magnitude: Optional[float] = None, ) -> discrete_scm.DiscreteSCM: """Generates a discrete additive SCM randomly. All variables in the SCM are discrete except for the outcome variable, Y. The stoc_fn of the outcome variable is additive with Gaussian noise of covariance cov. This function samples an SCM with a graph generated by the Erdos-Renyi process with the specified degree and where all the random variables are discrete. The number of discinct values a variable can take, known as its support_size, is sampled i.i.d. for each variable unifomly betwen support_size_min and support_size_max. All variables with no parents are have a categorical distribution with a parameter vector sampled from a Dirichlet with parameter dir_alpha, and the conditional distributions are sampled from a normalized Beta distribution with parameters alpha, beta. The Y variable is randomly connected to num_parents parents, and Y is equal to a linear function of its parents, with randomly sampled parameters less than mean_bound and added Gaussian noise of covariance cov. All variables topoligically after Y are made children of Y with probability prob_y_child, and have the same discrete categorical distribution with a discretized version of Y. If interactions and interaction_magnitude are not None, then a non-linear component to the stoc_fn of Y is added. The interactions term is the sum of several interaction terms, as specified by the interactions argument. Each element in interactions will create a separate interaction term with size equal to the element's value, e.g. an interaction term with size 3 will be x_1 * x_2 * x_3, where x_1, x_2, and x_3 are randomly chosen from y's parents. For example, if interactions = [2, 3], then the non-linear term could be x_2 * x_4 + x_0 * x_1 * x_5. Args: num_variables: The number of variables, excluding the output variable Y. degree: The average degree used to same on the Erdos-Renyi graph. num_parents: The number of parents of Y. prob_outcome_child: The probability of adding an edge from Y to any eligible variable. cov: covariance of Y's Gaussian noise. mean_bound: Maximum coefficient for Y's linear term. support_size_min: Lower bound on support size for each variable. support_size_max: Upper bound on support size for each variable. alpha: Y's values are sampled from a beta(alpha, beta) distribution. beta: Y's values are sampled from a beta(alpha, beta) distribution. dir_alpha: The dirichlet parameter used to sample the probabilities for categorical variables with no parents. interactions: A list of integers where each element will correspond to an interaction term between that many parents of Y. Only used when interaction_magnitude > 0. interaction_magnitude: The amount of model mispecification that breaks the additivity assumption in the outcome variable's stoc_fn. Returns: An SCM with a graph with the given properties. """ cov_variables = ['X' + str(i) for i in range(num_variables)] outcome_variable = 'Y' # Create an extra column for Y. adj = np.zeros((num_variables, num_variables + 1)) adj[:, :num_variables] = sample_dag_matrix(num_variables, degree) # The nodes are in reverse topological order; e.g. node 0 has no children, # node num_variables-1 has no parents. # Sample the parents of Y. outcome_parent_idx = np.random.choice( num_variables, size=num_parents, replace=False ) outcome_parents = [cov_variables[i] for i in outcome_parent_idx] # Sample the children of Y. We need to ensure we add no cycles. max_idx = max(outcome_parent_idx) if max_idx < num_variables: # Randomly add Y as a parent to variables > Y, topologically. for idx in range(max_idx + 1, num_variables): if np.random.binomial(1, prob_outcome_child): adj[idx, num_variables] = 1 # Sample the support sizes (the number of distinct values the variable can # take) for all variables. support_sizes = { var: np.random.randint(support_size_min, support_size_max + 1) for var in cov_variables } support_sizes['Y'] = int(np.ceil(mean_bound * len(outcome_parent_idx))) + 1 # For each variable, randomly construct its stochastic function. stoc_fns = {} for i, var in enumerate(cov_variables): # Enumerate the parents. parents = [] for j in range(num_variables): if adj[i, j]: parents.append(cov_variables[j]) if adj[i, num_variables]: parents.append('Y') if not parents: probs = np.random.dirichlet([dir_alpha] * support_sizes[var]) stoc_fns[var] = sf.create_categorical_stoc_fn(probs=probs) # stoc_fn has one input, n_samples, since it has no parents. else: # Sample probs. if len(parents) == 1: probs = np.ones(support_sizes[var]) / support_sizes[var] else: probs = generate_beta_cpd(support_sizes, parents, var) # Create the stoc_fn. stoc_fn = sf.create_categorical_conditional_stoc_fn(probs, parents) stoc_fns[var] = scm.StocFnRecipe(stoc_fn, parents) # Sample the linear part of the outcome stoc_fn. means = {} for var in outcome_parents: means[var] = mean_bound * np.random.beta( alpha, beta, size=support_sizes[var] ) # If interaction is not present, we generate a linear function. if interaction_magnitude is None or interaction_magnitude == 0: # Find the best action and best value. outcome_expected_value_fn = sf.create_discrete_to_linear_stoc_fn(means) outcome_stoc_fn = sf.add_gaussian_noise_to_stoc_fn( outcome_expected_value_fn, cov ) stoc_fns[outcome_variable] = scm.StocFnRecipe( outcome_stoc_fn, outcome_parents ) interaction_mean_fn = None elif interaction_magnitude is not None and interaction_magnitude != 0: assert all(np.array(interactions) <= num_parents) # Each non-linear interaction term will be the product of more than one # of Y's parents. Here, we randomly choose between them. domains = [ np.random.choice(outcome_parents, num, replace=False) for num in interactions ] # The stoc_fn of the outcome is formed by the sum of an interaction term, # a linear term, and Gaussian noise. interaction_mean_fn = sf.create_interaction_mean_stoc_fn( interaction_magnitude, domains, ) linear_mean_fn = sf.create_discrete_to_linear_stoc_fn(means) outcome_expected_value_fn = sf.add_stoc_fns( [interaction_mean_fn, linear_mean_fn] ) stoc_fns[outcome_variable] = scm.StocFnRecipe( sf.add_gaussian_noise_to_stoc_fn(outcome_expected_value_fn, cov), outcome_parents, ) best_action, best_action_value = find_best_action_and_value( outcome_parents, support_sizes, means, interaction_mean_fn=interaction_mean_fn, ) return discrete_scm.DiscreteSCM( stoc_fns=stoc_fns, support_sizes=support_sizes, outcome_variable='Y', best_action=best_action, best_action_value=best_action_value, outcome_expected_value_fn=outcome_expected_value_fn, ) def get_expected_value_of_outcome( model: discrete_scm.DiscreteSCM, action: Mapping[str, int], n: int = 1000, ) -> float: """Computes or estimates the value of an action. If the action specifies all the parents of the outcome variable, then the expected value can be read off from the model's outcome_expected_value_fn. Otherwise, the value is approximated. Args: model: The DiscreteSCM that generates the value. action: A Dictionary specifying the action for each variable in model. n: The sample size used to estimate the value if an exact value cannot be calculated. Returns: Either the exact expected value of the outcome variable or an approximation. """ if action.keys() >= set(model.parents[model.outcome_variable]): return float(model.outcome_expected_value_fn(**action)) else: # We need to sample. return np.mean(model.sample(n, action)[model.outcome_variable]) def find_best_action_and_value( outcome_parents: List[str], support_sizes: Mapping[str, int], means: Mapping[str, np.ndarray], interaction_mean_fn: Optional[scm.StocFn] = None, ) -> Tuple[Mapping[str, int], float]: """Finds the best mean action for a linear + optional interaction fn. Args: outcome_parents: A list of the parents of the outcome variable support_sizes: A mapping from variable names to the support size. means: Dictionary of means for the value of every parent of the outcome_variable. interaction_mean_fn: A callable that accepts an action dictionary and returns a float equal to the mean of the interaction term for that action. Returns: The best action (as a dictionary) and its value. """ if interaction_mean_fn is None: best_action = {var: np.argmax(var_mean) for var, var_mean in means.items()} best_action_value = np.sum( [np.max(var_mean) for var_mean in means.values()] ) return (best_action, best_action_value) parent_values = { par: np.arange(support_sizes[par]) for par in outcome_parents } best_value = -np.inf # Loop through all values of the parents. for val in itertools.product(*parent_values.values()): # Simulate average return. action = {parent: val for parent, val in zip(outcome_parents, val)} # Compute the value of the action. linear_terms = [means[parent][val] for (parent, val) in action.items()] # Compute the means from the non-linear part. interaction = interaction_mean_fn(**action) if interaction_mean_fn else 0 value = np.sum(linear_terms) + interaction if value > best_value: best_value = value best_action = action return (best_action, best_value) def generate_beta_cpd( support_sizes: Mapping[str, int], parents: List[str], var_name: str, alpha: float = 2, beta: float = 5, ) -> np.ndarray: """Generates a random discrete probability distribution of variable name. Uses support_sizes and parents to calculate the appropriate parameters. Returns an np.ndarray where array[i,j,...,k,:] is the probability vector for variable name when its parents have discrete values (i,j,...,k). Args: support_sizes: A dictionary of support sizes, indexed by variable name. parents: A dict, indexed by variable name, with values of a list of the names of the parents. var_name: The name of the variable this cpd is for. alpha: Parameter of the beta distribution. beta: Parameter of the beta distribution. Returns: A np.ndarray describing the marginal probability of variable name conditioned on the support value of the parents. """ sizes = [support_sizes[parent] for parent in parents] sizes.append(support_sizes[var_name]) probs = np.random.beta(alpha, beta, size=sizes) # Normalize probability. return probs / np.repeat( np.sum(probs, axis=-1)[..., np.newaxis], support_sizes[var_name], axis=-1, ) def sample_dag_matrix(num_variabless: int, degree: float = 3.0) -> np.ndarray: """Produces an Erdos-Renyi graph's adjacency matrix. Args: num_variabless: the number of variables to include in the dag. degree: the average degree of the graph Returns: An adjacency matrix. """ prob = float(degree) / (num_variabless - 1) graph = np.tril( (np.random.rand(num_variabless, num_variabless) < prob).astype(float), k=-1, ) return graph
additive_cbug-main
cbug/discrete_scm_utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code to run all algorithms in the paper on a SCM.""" from typing import Any, List, Mapping, Optional, Union from cbug import base from cbug import discrete_scm_utils as scm_utils import numpy as np def single_experiment( scm_params: Mapping[str, Union[int, float, List[int]]], scm_starting_seed: int = 0, alg_starting_seed: int = 0, num_scms: int = 1, num_seeds: int = 1, epsilon: float = .5, delta: float = 0.1, include_se: bool = False, num_parents_bound: Optional[int] = None, known_num_parents: bool = False, ) -> Mapping[str, Any]: """Returns the average sample complexity of several algorithms. Algorithms included: MODL parents-first: learn the parents then run MODL oracle: run MODL with the true parents given bandit: run a bandit ignoring the causal structure. Args: scm_params: Dictionary of parameters to generate the scm. scm_starting_seed: Seed to generate the scm using utils.sample_discrete_scm. alg_starting_seed: Seed to run the algorithm. num_scms: The number of different scms. num_seeds: The number of different runs of the algorithm. epsilon: Error tolerance. delta: Error probability. include_se: Whether to include the Successive Elimination baseline (needs very few, <8 nodes to be able to run). num_parents_bound: An upper bound on the number of parents. None indicates no bound. known_num_parents: Whether the true number of parents is given to the algorithm. The scm_params dictionary should include: num_variables: Number of variables. num_parents: Number of parents of Y. degree: Erdos-Renyi degree. mean_bound: Scale of linear coefficients. cov: Covariance of noise for Y. interaction_magnitude: float > 0 and typically < 1. The amount of model mispecification. interactions: A list of sizes of interaction. Each element is this list will be turned into an interaction term that is the multiple of the element number of parents * interaction_magnitude. Only relevant when interaction_magnitude != 0. The stoc_fn of y is set to be this interaction function. alpha: Y values are sampled from a beta(alpha, beta) distribution. beta: Y values are sampled from a beta(alpha, beta) distribution. support_size_min: Lower bound on support size for each variable. support_size_max: Upper bound on support size for each variable. Returns: Dictionary of: number of samples, final value, for each algorithm """ assert scm_params["num_parents"] <= scm_params["num_variables"] results = { "num_variables": scm_params["num_variables"], "num_parents": scm_params["num_parents"], "degree": scm_params["degree"], "epsilon": epsilon, "delta": delta, "mean_bound": scm_params["mean_bound"], "cov": scm_params["cov"], } results["oracle_samples"] = [] results["MODL_samples"] = [] results["parents_first_samples"] = [] results["se_samples"] = [] results["oracle_value"] = [] results["MODL_value"] = [] results["parents_first_value"] = [] results["se_value"] = [] results["oracle_gap"] = [] results["MODL_gap"] = [] results["parents_first_gap"] = [] results["se_gap"] = [] results["true_value"] = [] results["instance"] = [] results["seed"] = [] outcome_bound = scm_params["mean_bound"] * scm_params["num_variables"] for instance in range(num_scms): scm_seed = instance + scm_starting_seed np.random.seed(scm_seed) model = scm_utils.sample_discrete_additive_scm(**scm_params) if known_num_parents: modl_parents_bound = len(model.parents["Y"]) else: modl_parents_bound = num_parents_bound for alg_seed in range(num_seeds): results["instance"].append(scm_seed) results["true_value"].append(model.best_action_value) results["seed"].append(alg_seed + alg_starting_seed) np.random.seed(alg_seed + alg_starting_seed) # Run the MODL algorithm. modl_results = base.run_modl( delta=delta, epsilon=epsilon, model=model, cov=scm_params["cov"], outcome_bound=outcome_bound, num_parents_bound=modl_parents_bound, ) results["MODL_samples"].append(sum(modl_results.n_samples_t)) results["MODL_value"].append( scm_utils.get_expected_value_of_outcome( model, modl_results.best_action_t[-1] ) ) results["MODL_gap"].append( model.best_action_value - results["MODL_value"][-1] ) # Run the algorithm with knowledge of the parents. oracle_results = base.run_modl( delta=delta, epsilon=epsilon, model=model, cov=scm_params["cov"], outcome_bound=outcome_bound, opt_scope=model.parents["Y"], ) results["oracle_samples"].append(sum(oracle_results.n_samples_t)) results["oracle_value"].append( scm_utils.get_expected_value_of_outcome( model, oracle_results.best_action_t[-1] ) ) results["oracle_gap"].append( model.best_action_value - results["oracle_value"][-1] ) # Run the parents-first algorithm. (parents_hat, parents_first_samples) = base.find_parents( target_var="Y", delta=delta / 2, epsilon=epsilon / 2, model=model, cov=scm_params["cov"], num_parents_bound=num_parents_bound, ) if not parents_hat: # Find_parents failed. parents_hat = model.var_names.copy() parents_hat.remove("Y") parents_first_results = base.run_modl( delta=delta / 2, epsilon=epsilon, model=model, cov=scm_params["cov"], outcome_bound=outcome_bound, opt_scope=parents_hat, num_parents_bound=num_parents_bound, ) parents_first_samples += sum(parents_first_results.n_samples_t) results["parents_first_samples"].append(parents_first_samples) results["parents_first_value"].append( scm_utils.get_expected_value_of_outcome( model, parents_first_results.best_action_t[-1] ) ) results["parents_first_gap"].append( model.best_action_value - results["parents_first_value"][-1] ) if include_se: se_results = base.run_se( delta=delta / 2, epsilon=epsilon, model=model, cov=scm_params["cov"], outcome_bound=outcome_bound, ) results["se_samples"].append(se_results.n_samples_t[-1]) results["se_value"].append( scm_utils.get_expected_value_of_outcome( model, se_results.best_action_t[-1] ) ) results["se_gap"].append( model.best_action_value - results["se_value"][-1] ) else: results["se_samples"].append(np.nan) results["se_value"].append(np.nan) results["se_gap"].append(np.nan) results["MODL_mean_samples"] = np.mean(results["MODL_samples"]) results["oracle_mean_samples"] = np.mean(results["oracle_samples"]) results["parents_first_mean_samples"] = np.mean( results["parents_first_samples"] ) results["se_mean_samples"] = np.mean(results["se_samples"]) results["oracle_mean_gap"] = np.mean(results["oracle_gap"]) results["MODL_mean_gap"] = np.mean(results["MODL_gap"]) results["parents_first_mean_gap"] = np.mean(results["parents_first_gap"]) results["se_mean_gap"] = np.mean(results["se_gap"]) return results def sweep( scm_params: Mapping[str, Union[int, float, List[int]]], parameter_name: str, parameter_values: np.array, num_parents_bound: Optional[bool] = None, known_num_parents: bool = False, include_se: bool = False, num_scms: int = 20, num_seeds: int = 5, ) -> List[Mapping[str, Any]]: """Runs algorithms across a sweep of parameter_values. Args: scm_params: A dictionary of scm parameters. parameter_name: The name of the parameter to sweep over. Must be a parameter in scm_params. parameter_values: The values to sweep over. num_parents_bound: An optional upper bound on the number of parents provided to the algorithms. known_num_parents: Whether the algorithms are given the number of parents. include_se: Whether to run the Successive Elimination algorithm; it becomes intractable for more than ~7 variables. num_scms: The number of scms to sample. num_seeds: the number of reruns of the algorithms for each scm. Returns: A results dictionary for every value in parameter_values. """ results = [] for value in parameter_values: scm_params[parameter_name] = value results.append(single_experiment( scm_params, num_scms=num_scms, num_seeds=num_seeds, epsilon=.5, delta=.1, include_se=include_se, num_parents_bound=num_parents_bound, known_num_parents=known_num_parents, )) return results
additive_cbug-main
cbug/run.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for building stoc_fns especially for discrete SCMs.""" from typing import List, Mapping from cbug import scm import numpy as np def create_interaction_mean_stoc_fn( scale: float, input_domains: List[List[str]], ) -> scm.StocFn: """Creates a deterministic stoc_fn for the interaction terms. Args: scale: The magnitude of the maximum function value. input_domains: The variable names of the inputs to each interaction term. Returns: A stoc_fn that computes the interaction terms. """ def f(**kwargs): first_parent = [val for val in kwargs.values()][0] if isinstance(first_parent, np.ndarray): n_samples = first_parent.shape else: # Not an array but a single sample. n_samples = (1, 1) # Compute the non-linear term. samples = np.zeros(n_samples) for domain in input_domains: # For each domain, take a product. interaction_term = scale * np.ones(n_samples) for var in domain: interaction_term *= kwargs[var] samples += interaction_term return samples return f def create_discrete_to_linear_stoc_fn( means: Mapping[str, np.ndarray], ) -> scm.StocFn: """Returns a deterministic stoc_fn equal to a linear function of the parents. Args: means: A dictionary with parent names key and np.arrays of shape (dim_i,) values, where means[par][i] specifies the amount to add to the function's return values when the parent par has value i. Returns: Function that generates means for all tuples of values of the parents with shape (n_samples,). """ def stoc_fn(**kwargs): first_parent = [val for val in kwargs.values()][0] if isinstance(first_parent, (int, float, np.integer, np.floating)): # Not an array but a single sample. n_samples = 1 else: n_samples = len(first_parent) samples = np.zeros(n_samples) for parent, mean in means.items(): samples += mean[kwargs[parent]].flatten() return samples return stoc_fn def add_gaussian_noise_to_stoc_fn( stoc_fn: scm.StocFn, cov: float ) -> scm.StocFn: def new_stoc_fn(**kwargs): samples = stoc_fn(**kwargs) return samples + np.random.normal(0, cov, size=samples.shape) return new_stoc_fn def add_stoc_fns(stoc_fn_list: List[scm.StocFn]) -> scm.StocFn: def new_stoc_fn(**kwargs): samples = stoc_fn_list[0](**kwargs) for stoc_fn in stoc_fn_list[1:]: samples += stoc_fn(**kwargs) return samples return new_stoc_fn def create_categorical_stoc_fn( probs: np.ndarray, ) -> scm.StocFn: """Returns a stochastic function for a categorical random variable. Args: probs: the probability of each outcome """ # Set the function parameters with a closure. def stoc_fn(n_samples): return np.random.choice(len(probs), size=n_samples, p=probs) return stoc_fn def create_categorical_conditional_stoc_fn( probs: np.ndarray, parent_names: List[str], ) -> scm.StocFn: """Returns a stoc_fn for a categorical random variable with parents. Args: probs: A tensor of dimension (parents[0].dim, ..., parents[end].dim, dim). parent_names: A list of the names of the parents in the same order. Returns: A function from a dictionary of parents to an np.ndarray where value of the variable is chosen from the categorical distribution specified in the probs tensor using the corresponding value of the parents. E.g. if the parents are {'x0': [2], 'x1': [5], 'x2': [3]}, then the value is sampled as a categorical distribution with p=probs[2, 5, 3, :]. If vectors are passed as the parents, a vector of samples with the corresponding shape is returned. """ def stoc_fn(**kwargs) -> np.ndarray: first_parent = [val for val in kwargs.values()][0] if isinstance(first_parent, (int, float, np.integer, np.floating)): # Not an array but a single sample. n_samples = 1 else: n_samples = len(first_parent) support_size = probs.shape[-1] try: parents_matrix = np.vstack( [kwargs[var].flatten() for var in parent_names] ).transpose() except Exception as exc: raise ValueError('Parents do not have compatible size.') from exc # We need to make parents_matrix integer valued where each column # obeys the corresponding support_size constraint. upper_bound = np.tile(np.array(probs.shape[:-1]) - 1, (n_samples, 1)) parents_matrix = np.minimum( np.round(np.abs(parents_matrix)), upper_bound ).astype(int) return np.array( [ np.random.choice(support_size, p=probs[tuple(p_vals)]) for p_vals in parents_matrix ] ) return stoc_fn
additive_cbug-main
cbug/stoc_fn_utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A unit test for the utils implementation.""" import inspect from absl.testing import absltest from cbug import scm from cbug import utils import numpy as np class UtilsTest(absltest.TestCase): """Unit test for the CBUG utilities.""" def test_name_to_idx(self): support_sizes = { 'X1': 2, 'X2': 3, 'X3': 4, } name_to_idx = utils.get_name_to_idx(support_sizes) answer = { 'X1': [0, 1], 'X2': [2, 3, 4], 'X3': [5, 6, 7], } self.assertDictEqual(name_to_idx, answer) def test_generate_beta_cpd(self): support_sizes = {'X': 2, 'Y': 3} parents = {'X': [], 'Y': ['X']} probs = utils.generate_beta_cpd( support_sizes, parents, 'Y', ) assert len(probs) == 2 for p in probs: assert sum(p) == 1 assert len(p) == 3 def test_sample_discrete_scm_graph(self): np.random.seed(2) # Y will have children with this seed. model = utils.sample_discrete_scm(num_var=2, degree=2, num_parents=2) correct_parents = { 'X0': [], 'X1': ['X0'], 'X2': ['X0', 'X1', 'Y'], 'Y': ['X1', 'X0'], } self.assertDictEqual(model.parents, correct_parents) self.assertListEqual(['X0', 'X1', 'Y', 'X2'], model.var_names) def test_sample_discrete_scm_signatures(self): np.random.seed(2) # Y will have children with this seed model = utils.sample_discrete_scm(num_var=2, degree=2, num_parents=2) # Check Signature for X0. args = inspect.signature(model.stoc_fns['X0']).parameters.keys() self.assertListEqual(args, [scm.N_SAMPLES_NAME]) # Check Signature for X1. args = inspect.signature(model.stoc_fns['X1']).parameters.keys() self.assertListEqual(args, ['kwargs']) assert model.stoc_fns['X1'](X0=np.array([0, 1])).shape == (2,) self.assertRaises(KeyError, model.stoc_fns['X1'](X1=0)) # Wrong parent. # Check Signature for X2. args = inspect.signature(model.stoc_fns['X2']).parameters.keys() self.assertListEqual(args, ['kwargs']) parent_values = {'X0': np.array([0, 1]), 'X1': np.array([0, 1]), 'Y': np.array([0, 1]), } assert model.stoc_fns['X2'](**parent_values).shape == (2,) self.assertRaises(KeyError, model.stoc_fns['X1'](Z=0)) # wrong parent # Check Signature for Y. args = inspect.signature(model.stoc_fns['Y']).parameters.keys() self.assertListEqual(args, ['kwargs']) parent_values = {'X0': np.array([0, 1]), 'X1': np.array([0, 1]), } assert model.stoc_fns['Y'](**parent_values).shape == (2,) self.assertRaises(KeyError, model.stoc_fns['Y'](X2=0)) # Wrong parent. def test_sample_discrete_scm_sample_shapes(self): np.random.seed(2) # Y will have children with this seed. model = utils.sample_discrete_scm(num_var=2, degree=2, num_parents=2) # Check shape of the stoc_fns. n_samples = 3 samples = model.sample(n_samples) assert samples['X0'].shape == (n_samples,) assert samples['X1'].shape == (n_samples,) assert samples['X2'].shape == (n_samples,) assert samples['Y'].shape == (n_samples,) def test_interval_intersection(self): returned = utils.interval_intersection((0, 1), (1, 2)) np.testing.assert_allclose(returned, (1, 1)) returned = utils.interval_intersection((1, 3), (-2, 1)) np.testing.assert_allclose(returned, (1, 1)) returned = utils.interval_intersection((0, 1), (0, 2)) np.testing.assert_allclose(returned, (0, 1)) returned = utils.interval_intersection((0, 1), (2, 3)) assert returned is None returned = utils.interval_intersection((0, 1), (2, 3)) assert returned is None def test_one_hot_encoding(self): covariate_values = {'x': np.array([1, 2, 3]), 'y': np.array([0, 1, 2])} support_sizes = {'x': 4, 'y': 3} variable_names = ['x', 'y'] results = utils.form_data_matrix( covariate_values, support_sizes, variable_names ) answers = np.array([[0, 1, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 1]]) np.testing.assert_array_equal(answers, results) results = utils.form_data_matrix( covariate_values, support_sizes, ['y', 'x'] ) answers = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1]]) np.testing.assert_array_equal(answers, results)
additive_cbug-main
cbug/utils_test.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for scm.""" from absl.testing import absltest from cbug import scm import numpy as np class SCMTest(absltest.TestCase): def test_scm(self): def x3_fn(x1, x2): return x1 + x2 stoc_fns = { 'x0': lambda n_samples: np.random.binomial(1, 0.5, size=n_samples), 'x1': lambda n_samples: np.random.binomial(1, 0.25, size=n_samples), 'x2': lambda x0, x1: x1 + x0, 'x3': scm.StocFnRecipe(x3_fn, ['x1', 'x2']), } model = scm.SCM(stoc_fns) parents = { 'x0': [], 'x1': [], 'x2': ['x0', 'x1'], 'x3': ['x1', 'x2'], } np.testing.assert_equal(model.parents, parents) np.testing.assert_equal(model.var_names, ['x0', 'x1', 'x2', 'x3']) def test_pure_sample(self): def x3_fn(x1, x2): return x1 * x2 stoc_fns = { 'x0': lambda n_samples: np.random.binomial(1, 0.5, size=n_samples), 'x1': lambda n_samples: np.random.binomial(1, 0.25, size=n_samples), 'x2': lambda x0, x1: x1 + x0, 'x3': scm.StocFnRecipe(x3_fn, ['x1', 'x2']), } model = scm.SCM(stoc_fns) np.random.seed(3) samples = model.sample(4) answer = { 'x0': [1, 1, 0, 1], 'x1': [1, 1, 0, 0], 'x2': [2, 2, 0, 1], 'x3': [2, 2, 0, 0], } np.testing.assert_equal(samples, answer) def test_pure_sample2(self): def x3_fn(**kwargs): return sum(list(kwargs.values())) stoc_fns = { 'x0': lambda n_samples: np.random.binomial(1, 0.5, size=n_samples), 'x1': lambda n_samples: np.random.binomial(1, 0.25, size=n_samples), 'x2': lambda x0, x1: x1 + x0, 'x3': scm.StocFnRecipe(x3_fn, ['x0', 'x1', 'x2']), } model = scm.SCM(stoc_fns) np.random.seed(3) samples = model.sample(4) answer = { 'x0': [1, 1, 0, 1], 'x1': [1, 1, 0, 0], 'x2': [2, 2, 0, 1], 'x3': [4, 4, 0, 2], } np.testing.assert_equal(samples, answer) def test_sample_with_intervention(self): def x3_fn(x1, x2): return x1 * x2 stoc_fns = { 'x0': lambda n_samples: np.random.binomial(1, 0.5, size=n_samples), 'x1': lambda n_samples: np.random.binomial(1, 0.25, size=n_samples), 'x2': lambda x0, x1: x1 + x0, 'x3': scm.StocFnRecipe(x3_fn, ['x1', 'x2']), } model = scm.SCM(stoc_fns) np.random.seed(4) samples = model.sample(4, intervention={'x0': 1}) answer = { 'x0': [1, 1, 1, 1], 'x1': [1, 0, 1, 0], 'x2': [2, 1, 2, 1], 'x3': [2, 0, 2, 0], } np.testing.assert_equal(samples, answer) np.random.seed(3) samples = model.sample(4, intervention={'x1': 2}) answer = { 'x0': [1, 1, 0, 1], 'x1': [2, 2, 2, 2], 'x2': [3, 3, 2, 3], 'x3': [6, 6, 4, 6], } np.testing.assert_equal(samples, answer) np.random.seed(4) samples = model.sample(4, intervention={'x0': 0, 'x2': 2}) answer = { 'x0': [0, 0, 0, 0], 'x1': [1, 0, 1, 0], 'x2': [2, 2, 2, 2], 'x3': [2, 0, 2, 0], } np.testing.assert_equal(samples, answer) if __name__ == '__main__': absltest.main()
additive_cbug-main
cbug/scm_test.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init file for cbug package.""" from cbug import base from cbug import discrete_scm from cbug import discrete_scm_utils from cbug import run from cbug import scm from cbug import stoc_fn_utils from cbug import utils
additive_cbug-main
cbug/__init__.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for cbug experiments.""" import itertools from typing import List, Mapping, Tuple, Union import numpy as np def form_data_matrix( values: Mapping[str, np.ndarray], support_sizes: Mapping[str, int], variable_names: list[str], ) -> np.ndarray: """Returns covariates with one-hot encoding. Specifically, a dictionary of covariate_values, where covariate_values[var] is a np-array of values corresponding to the covariate. This function returns a matrix where the first row corresponds to (covariate_values[variable_names[0]][0], ..., covariate_values[variable_names[-1]][0]) and the last row corresponds to (covariate_values[variable_names[0]][-1], ..., covariate_values[variable_names[-1]][-1]), and each row is transformed to one-hot encoding. The ith row is mapped to e_{x_0}, ..., e_{x_k} where x_i = covariate_values[variable_names[i]][j], and e_i is zero except for a 1 in the i'th place. Args: values: A np.ndarray of ints of size (n_samples, n_vars). Each row specifies a datapoint with values (x0, x1, ..., x_k). support_sizes: Dictionary with variable name keys and support size values. The support size specified the number of values the corresponding variable can take, assumed to be (0, ..., n-1). variable_names: The names, and order, of the variables to include. Returns: A np.ndarray of shape (n_samples, sum(support_size_list)), where each row in data has been one-hot-encoded separately. """ one_hot_vector = [] for var in variable_names: one_hot_vector.append( np.eye(support_sizes[var])[values[var]] ) return np.hstack(one_hot_vector) def get_name_to_idx( support_sizes: Mapping[str, int], ) -> Mapping[str, List[int]]: """Given a support size map, returns the indices in a one-hot encoding. If we transform a series of data using one-hot encoding, such as in the form_data_matrix function, each variable gets mapped to a certain range of rows. This function returns a dictionary where each value specifies the indices corresponding to the key variable. Args: support_sizes: Dictionary specifying the support size of each variable. Returns: A dictionary with a list of all the indices corresponding to each variable. """ name_to_idx = {} start_idx = 0 for var, support_size in support_sizes.items(): name_to_idx[var] = np.arange( int(start_idx), int(start_idx + support_size)) start_idx += support_size return name_to_idx def interval_intersection( int1: Tuple[float, float], int2: Tuple[float, float], ) -> Union[Tuple[float, float], None]: """Finds the intersection of two real-valued intervals. Args: int1: Tuple of floats: the first interval. int2: Tuple of floats: the second interval. Returns: A tuple of floats indicating the interection of the intervals or None if it is empty. Intervals are assumed to be closed. """ if int1[1] < int2[0] or int1[0] > int2[1]: return None else: return (max(int1[0], int2[0]), min(int1[1], int2[1])) def get_full_action_set( support_sizes: Mapping[str, int], outcome_variable: str = 'Y', ) -> List[Mapping[str, int]]: """Returns the product actions set.""" # Don't include the outcome variable in the action set. sizes = [ list(range(support_sizes[var])) for var in support_sizes if var != outcome_variable ] cartesian_product = itertools.product(*sizes) actions = [] # Translate tuples of ints into a dictionary. for action in cartesian_product: actions.append({var: i for var, i in zip(support_sizes.keys(), action)}) return actions
additive_cbug-main
cbug/utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple Structural Causal Model (SCM) specified with stochastic functions. The building block is a stochastic function, which is a potentially random mapping from values of parents to values of a variable. These functions generalize: -sampling from conditional probability distributions -structural functions in SCMs. Stochastic functions (stoc_fns) are either parent-less, in which case they only output a random sample, or are specified by the values of their parents with the option of additional randomness (e.g. they may be a linear function of the parents with Gaussian noise). In this way, these function differs form the structural functions found in SCMs which are always deterministic. If the stochastic function has no parents, then it must take exactly one integer-values argument, n_samples. For example, a 3-D standard normal would be generated by lamdda n_samples: np.random.normal(size=(n_samples,3 )). All samples are always of the shape (n_samples,) or (n_samples, dimension). If the stochastic function has parents, then the parents can be specified in two ways: 1. Using the signature; e.g. def fn(x1, x2): return x1 + x2 2. Using the StocFnRecipe class, which specifies the function with kwargs and the parents as metadata, e.g. StocFnRecipe(lambda **kwargs; kwargs['x1'] + kwargs['x2'], ['x1', 'x2']) The second method is helpful when you want to create procedural functions, e.g. when the graph is generated first so the parents of a random variable are not known apriori. All data are assumed to be np.ndarrays, and the number of samples returned by a stoc_fn with parents is infered from the size of the parents which is why no n_samples argument is provided. Finally, a SCM is specified with a dictionary of stochastic functions. Example: We have the linear Gaussian SCM with X<-Z->Y and X->Y. We would call stoc_fns = { 'Z': lambda n_samples: np.random.normal(size=n_samples)}, 'X': lambda Z: 2*Z + np.random.normal(size=Z.shape)}, 'Y': lambda X, Z: Z - 2 * X, } scm = SCM(stoc_fns) Alternatively, we could use: def f_y(**kwargs): return kwargs['Z'] - 2 * kwargs['X'] stoc_fns = { 'Z': lambda n_samples: np.random.normal(size=n_samples)}, 'X': lambda Z: 2*Z + np.random.normal(size=X.shape)}, 'Y': StocFnRecipe(f_y, ['Z'' 'X']) } scm = SCM(stoc_fns). N.B. If you are defining functions with mutable parameters, e.g. for some mutable variable a def f_y(**kwargs): return kwargs['Z'] - a * kwargs['X'] you will need to either ensure that the value of a never changes (by making a copy specifically for this function) or by definit the function in a closure: def f_y(a): def f(**kwargs): return kwargs['Z'] - a * kwargs['X'] return f which ensures that a local copy of a in created and bound to the function f_y. """ import dataclasses import inspect from typing import Any, Callable, Mapping, Optional, Union, List import networkx as nx import numpy as np StocFn = Callable[..., Any] # [[np.ndarray, ..., np.ndarray], np.ndarray] N_SAMPLES_NAME = 'n_samples' # Constant for functions that do not have parents. @dataclasses.dataclass class StocFnRecipe: """Provides metadata needed to construct a stoc_fn.""" stoc_fn: StocFn stoc_fn_inputs: Optional[List[str]] = None class SCM: """Implements a simple SCM using stochastic functions. Attributes: var_names: A list of variable names. parents: Mapping[str, List[str]] parents[var] is a list of all names of all the parents of the variable var. If var has no parents, parents[var] is an empty list. stoc_fns: a dictionary of Callable objects. With samples: Mapping[str, np.ndarray] is a dictionary of values, stoc_fns[var](**parent_dict), where parent_dict is a dictionary of the parent values, will provide the values of the variable var. Recall that this function need not be deterministic. """ def __init__(self, stoc_fns: Mapping[str, Union[StocFnRecipe, StocFn]], ): self._stoc_fns = {} self._stoc_fn_inputs = {} for var, stoc_fn in stoc_fns.items(): if callable(stoc_fn): sig = inspect.signature(stoc_fn) self._stoc_fn_inputs[var] = list(sig.parameters.keys()) self._stoc_fns[var] = stoc_fn elif isinstance(stoc_fn, StocFnRecipe): if stoc_fn.stoc_fn_inputs is not None: self._stoc_fn_inputs[var] = stoc_fn.stoc_fn_inputs else: self._stoc_fn_inputs[var] = [N_SAMPLES_NAME] self._stoc_fns[var] = stoc_fn.stoc_fn else: raise ValueError( 'Must be a callable with a signature specifying the parents or a' ' StocFnRecipe.' ) self._var_names_ordered = self._topological_sort(self._stoc_fn_inputs) def sample(self, n_samples: int, intervention: Optional[Union[Mapping[str, np.ndarray], Mapping[str, int], Mapping[str, float], ]] = None, ) -> Mapping[str, np.ndarray]: """Generates a sample from the SCM. Args: n_samples: The number of samples. intervention (optional): For each key, the corresponding variable is set to the value instead of being sampled from the SCM. Returns: Dictionary with {var_name: sample of var_name} for all var_names """ samples = {N_SAMPLES_NAME: np.array([n_samples], dtype=int)} if intervention is None: intervention = {} for var in self._var_names_ordered: if var in intervention: val = np.array(intervention[var]) if val.size == 1: samples[var] = np.repeat(val.flatten(), n_samples, axis=0) else: samples[var] = np.repeat(val.reshape((1, -1)), n_samples, axis=0) else: parent_samples = {v: samples[v] for v in self._stoc_fn_inputs[var]} samples[var] = self._stoc_fns[var](**parent_samples) samples.pop(N_SAMPLES_NAME) # Remove integer inputs. return samples def _topological_sort( self, stoc_fn_inputs: Mapping[str, List[str]] ) -> List[str]: """Topologically sorts the nodes.""" edges = [] nodes = list(stoc_fn_inputs.keys()) for var, curr_parent_names in stoc_fn_inputs.items(): edges.extend([(p, var) for p in curr_parent_names]) dag = nx.DiGraph() dag.add_nodes_from(nodes) dag.add_edges_from(edges) return [var for var in nx.topological_sort(dag) if var != N_SAMPLES_NAME] def draw(self): """Draws the adjacency graph of the SCM.""" edges = [] nodes = list(self.var_names) for var, curr_parent_names in self.parents.items(): edges.extend([(p, var) for p in curr_parent_names]) dag = nx.DiGraph() dag.add_nodes_from(nodes) dag.add_edges_from(edges) nx.draw(dag, with_labels=True) @property def parents(self) -> Mapping[str, List[str]]: return { v: [] if item == [N_SAMPLES_NAME] else item for v, item in self._stoc_fn_inputs.items() } @property def stoc_fns(self) -> Mapping[str, Callable[..., any]]: return self._stoc_fns @property def var_names(self) -> List[str]: """Returns all the variable names in topological order.""" return self._var_names_ordered
additive_cbug-main
cbug/scm.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements a Discrete Structural Causal Model (SCM). Builds on scm.SCM class. This SCM assumes all variables, except for the outcome variable, are discrete. As such, it includes a few extra attributes on top of scm.SCM - outcome_variable: The real-valued variable that we are optimizing. - support_size: Mapping[str, int] specifies the number of distinct values all the non-outcome variables can take. - best_action: stores the intervention that induces the highest expected value of the outcome variable. """ from typing import Callable, Mapping, Optional, Union from cbug import scm class DiscreteSCM(scm.SCM): """Implements a discrete SCM using stochastic functions. All variables, except for the outcome_variable, are assumed to take on discrete values. Attributes: var_names: List[str] All variable names sorted to be in topological order. parents: Mapping[str, List[str]] parents[var] is a list of all names of all the parents of the variable var. If var has no parents, parents[var] is an empty list. stoc_fns: A dictionary of Callable object, where evaluating stoc_fns[var](**parent_dict) will provide the values of the variable var. Recall that this function need not be deterministic. outcome_variable: the real-valued variable that we are optimizing. support_size: A dictionary specifying the number of distinct values all the non-outcome variables can take. best_action: A mapping from variable names to a value for each variable that corresponds to the intervention that results in the highest expected value of the outcome variable. best_action_value: The expected value of the best action. outcome_expected_value_fn: A function that returns the expected value of the stoc_fn of the outcome_variable. """ def __init__(self, stoc_fns: Mapping[str, Union[scm.StocFnRecipe, scm.StocFn]], support_sizes: Mapping[str, int], outcome_variable: str, best_action: Optional[Mapping[str, int]] = None, best_action_value: Optional[float] = None, outcome_expected_value_fn: Optional[Callable[[Mapping[str, int]], float]] = None, ): super().__init__(stoc_fns) if support_sizes is None: self._support_sizes = {} else: self._support_sizes = support_sizes self._outcome_variable = outcome_variable self.best_action = best_action self.best_action_value = best_action_value self.outcome_expected_value_fn = outcome_expected_value_fn @property def support_sizes(self) -> Mapping[str, int]: """Number of distinct values for each variable.""" return self._support_sizes @property def outcome_variable(self) -> str: return self._outcome_variable
additive_cbug-main
cbug/discrete_scm.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of algorithms from the paper.""" import random from typing import List, Mapping, Tuple, Optional, Union from cbug import discrete_scm from cbug import scm from cbug import utils import numpy as np class Results: """Stores results generated from running action-elimination algorithms. In particular, both the run_modl algorithm and run_se returns Results objects. Attributes: s_t: A list of sets of plausibly best actions, as produced by running an action-elimination algorithm. num_actions_t: A list of ints of the number of actions remaining. gamma_t: A list of floats of the confidence-widths. n_samples_t: A list of ints of the tutal number of samples used. mean_est_t: A list of np.ndarrays of the mean estimates. true_value_t: A list of floats of the true reward generated by the empirically best action so far. best_action_t: A list of dictionaries of the empirically best action. """ def __init__(self): # _t denotes a sequence indexed by rounds. self.s_t = [] self.num_actions_t = [] self.gamma_t = [] self.n_samples_t = [] self.mean_est_t = None self.true_value_t = [] self.best_action_t = [] def update( self, action_set: Union[Mapping[str, List[int]], List[Mapping[str, int]]], num_actions: int, gamma: float, n_samples: int, mean_est: np.ndarray, true_value: float, best_action: Mapping[str, int], ): """Adds an additional observation to the Results class. Args: action_set: A representation of the plausibly best actions left, either through a marginal action set or a list of actions. num_actions: The number of actions remaining. gamma: The confidence width. n_samples: The number of samples used. mean_est: A vector of mean-estimates for every value of every variable. true_value: The true value of the empirically best action. best_action: The empirically best action. """ self.s_t.append(action_set) self.num_actions_t.append(num_actions) self.gamma_t.append(gamma) self.n_samples_t.append(n_samples) if self.mean_est_t is None: self.mean_est_t = mean_est.reshape(-1, 1) else: self.mean_est_t = np.hstack((self.mean_est_t, mean_est.reshape(-1, 1))) self.true_value_t.append(float(true_value)) self.best_action_t.append(best_action) def __str__(self): final_action = {var: list(self.s_t[-1][var]) for var in self.s_t[-1]} string = ( f"Displaying experimental results with {len(self.s_t)} rounds and total" f" samples {sum(self.n_samples_t)}.\nThe samples needed were" f" {self.n_samples_t}\nat gammas {self.gamma_t}.\nThe expected outcome" f" of the empirically best values are {self.true_value_t}\nand the" f" final actions are {final_action}\nwith a parameter" f" estimate\n{self.mean_est_t[:, -1]}" ) return string def reduce_actions( s_marginal: Mapping[str, np.ndarray], name_to_idx: Mapping[str, List[int]], mean_est: np.ndarray, gamma: float, ) -> Tuple[Mapping[str, List[int]], Mapping[str, int]]: """Uses a parameter estimate to prune the marginal action set. Starting from a marginal action set, this method computes the gaps for each variable separately then eliminates all values from the variable that have a gap bigger than gamma. Args: s_marginal: A dictionary of remaining actions for each variable in a sorted-in-ascending-order list. name_to_idx: A dictionary specifying which positions of mean_est correspond to each variable. This encoding is the same one-hot encoding by utils.form_data_matrix. mean_est: An nd.array of mean estimates. Assumed to be in the one-hot encoding order. gamma: The width of the confidence intervals for the means estimates. Returns: A new, pruned s_marginal and a guess of the best action. """ new_s_marginal = {} best_action = {} # Eliminate actions variable-by-variable. for var in s_marginal: # Compute gaps. marginal_means = mean_est[name_to_idx[var]][s_marginal[var]] gaps = np.array(max(marginal_means) - marginal_means).flatten() idx_to_keep = np.argwhere(gaps < gamma) best_pos = np.argwhere(gaps == 0)[0] new_s_marginal[var] = s_marginal[var][idx_to_keep.flatten()] best_action[var] = s_marginal[var][best_pos] return (new_s_marginal, best_action) def xy_optimal_design( s_marginal: Mapping[str, List[int]], support_sizes: Mapping[str, int], gamma: float, delta: float, cov: float, ) -> Mapping[str, np.ndarray]: """Solves an XY optimal design problem. The optimal design problem chooses a sequences of actions that will reveal as much information as possible about the gaps between values of the actions. If there is only one action remaining for a variable, then a uniform distribution over all the variable's actions is assumed, which provides a more informative mean estimate from the linear regression. Args: s_marginal: A marginal action set; composed of a dictionary of lists, each list representing the actions of the corresponding variable that haven't been eliminated yet. support_sizes: Dictionary of support sizes of every variable. gamma: Error tolerance. delta: Probability bound. cov: Scale of noise. Returns: A dictionary of a sequence of actions for each variable. """ num_s = sum([len(s_marginal[var]) for var in s_marginal]) num_samples = int(np.ceil(4 * cov * num_s * np.log(1 / delta) / gamma**2)) marginal_points = {} for var in s_marginal: support = len(s_marginal[var]) if support == 1: # Make this uniform. num_cycles = int(np.ceil(num_samples / support_sizes[var])) samples = [] for _ in range(num_cycles): new_list = list(np.arange(support_sizes[var])) np.random.shuffle(new_list) samples.append(new_list) else: num_cycles = int(np.ceil(num_samples / support)) samples = [] for _ in range(num_cycles): new_list = list(s_marginal[var]) np.random.shuffle(new_list) samples.append(new_list) marginal_points[var] = np.array(samples).flatten()[:num_samples] return marginal_points def run_modl( delta: float, epsilon: float, model: discrete_scm.DiscreteSCM, cov: float, outcome_bound: float, lambda_ridge: Optional[float] = .1, opt_scope: Optional[List[str]] = None, num_parents_bound: Optional[int] = None, ) -> Results: """Runs the MODL algorithm, Algorithm 1 of the paper. Args: delta: High probability requirement. epsilon: Error bound. model: A scm.SCM. cov: Noise scale parameter. outcome_bound: Bound of sum_i f_i. lambda_ridge: The regularization parameter for ridge regression. opt_scope: A list of variable names to include in the optimization. If unspecified, all variables are included. num_parents_bound: An upper bound on the number of parents. Returns: A Results object summarizing the experiment. """ if opt_scope is None: opt_scope = model.var_names.copy() opt_scope.remove(model.outcome_variable) s_marginal_size = np.sum([model.support_sizes[var] for var in opt_scope]) name_to_idx = utils.get_name_to_idx( {var: model.support_sizes[var] for var in opt_scope} ) # Construct a full marginal. s_marginal = { name: np.arange(model.support_sizes[name]) for name in opt_scope } num_actions = sum([len(s_marginal[var]) for var in s_marginal]) results = Results() mean_est = np.empty(s_marginal_size) mean_est[:] = np.nan num_phases = np.ceil(np.log2(outcome_bound / epsilon)) current_phase = 0 true_value = 0 best_action = {} while current_phase <= num_phases: gamma = epsilon * 2**(num_phases - current_phase - 1) # Solve optimization problem. covariates = xy_optimal_design( s_marginal, model.support_sizes, gamma, delta / num_phases, cov, ) # Collect data. n = len(covariates[opt_scope[0]]) if n < num_actions: # We cannot have enough data coverage. current_phase += 1 results.update( s_marginal, num_actions, gamma, n, mean_est, true_value, best_action ) continue samples = model.sample(n) data_matrix = utils.form_data_matrix( samples, model.support_sizes, opt_scope ) # Update linear parameter vector. mean_est = np.linalg.inv( data_matrix.transpose().dot(data_matrix) + lambda_ridge * np.eye(s_marginal_size) ).dot( data_matrix.transpose().dot( samples[model.outcome_variable].reshape(-1, 1) ) ) # Eliminate the arms with dynamic algorithm. (s_marginal, best_action) = reduce_actions( s_marginal, name_to_idx, mean_est, gamma, ) num_actions = sum([len(s_marginal[var]) for var in s_marginal]) # Estimate the true value of the best_action. true_value = estimate_value(model, best_action, model.outcome_variable) results.update(s_marginal, num_actions, gamma, n, mean_est, true_value, best_action) if num_actions == len(opt_scope): # We have eliminated all but one action. break if num_parents_bound is not None: # Count the number of variables with a single remaining action. single_action = [len(s_marginal[var]) == 1 for var in s_marginal] if sum(single_action) >= num_parents_bound: # All the parents are found. return results current_phase += 1 return results def run_se( delta: float, epsilon: float, model: discrete_scm.DiscreteSCM, cov: float, outcome_bound: float, opt_scope: Optional[List[str]] = None, batch_size: int = 100, sample_limit: int = 10000000, max_num_actions: int = 10000, ) -> Results: """Runs the successive elimination algorithm. Warning: this algorithm has exponential complexity in the number of parents: please be careful with the size of the input problem. Args: delta: High probability requirement. epsilon: Error bound. model: An scm.SCM; action variables are assumed to be discrete. cov: Noise scale parameter. outcome_bound: Bound of sum_i f_i. opt_scope: A list of variable names to include in the optimization. If unspecified, all variables are included. batch_size: The number of samples to gather between elimination rounds. sample_limit: The algorithm terminates after sample_limit total samples have been collected. max_num_actions: The total number of actions (arms) allowed; if the product of all actions support is larger, the method terminates. Returns: A Results object. """ if opt_scope is None: opt_scope = model.var_names.copy() opt_scope.remove(model.outcome_variable) results = Results() # If the number of actions is too large, abort. num_actions = np.product(list(model.support_sizes.values())) if num_actions > max_num_actions: print(f"Warning: {num_actions} actions: termination could be slow.") actions = utils.get_full_action_set(model.support_sizes) candidate_arm_idx = list(range(len(actions))) means = [] # Dicts are not hashable. total_samples = 0 # Pull every arm once. for action in actions: values = {var: action[var] for var in action} rewards = model.sample(batch_size, values)[model.outcome_variable] means.append(np.mean(rewards)) total_samples += batch_size * len(actions) num_samples_per_arm = batch_size means = np.array(means) while len(candidate_arm_idx) > 1: # Pull all remaining arms. for arm_idx in candidate_arm_idx: values = {var: actions[arm_idx][var]for var in actions[arm_idx]} rewards = model.sample(batch_size, values)[model.outcome_variable] total_samples += batch_size means[arm_idx] = ( means[arm_idx] * num_samples_per_arm + np.mean(rewards) * batch_size ) / (num_samples_per_arm + batch_size) num_samples_per_arm += batch_size # Do elimination. width = np.sqrt( cov * outcome_bound * np.log(2 * len(actions) * num_samples_per_arm**2 / delta) / num_samples_per_arm ) best_mean = np.max([means[idx] for idx in candidate_arm_idx]) new_candidate_arms = [] for idx in candidate_arm_idx: if means[idx] > best_mean - 2 * width: new_candidate_arms.append(idx) if means[idx] == best_mean: best_action = actions[idx] candidate_arms = new_candidate_arms # Calculate the true value of the best_action. true_value = estimate_value(model, best_action, model.outcome_variable) results.update( [], len(candidate_arms), width, total_samples, means, true_value, best_action, ) if width < epsilon / 2: # All remaining arms are approximately optimal. return results if total_samples > sample_limit: print("Sample limit for successive elimination reached.") return results return results def find_parents( target_var: str, delta: float, epsilon: float, model: discrete_scm.DiscreteSCM, cov: float, num_parents_bound: Optional[int] = None, ) -> Tuple[List[str], int]: """Finds the parents of Y in a discrete SCM variable-by-variable. For each variable, an arbitrary point in the support is chosen, and a hypothesis test for parenthood of that variable is conducted. The method can terminate early when enough parents have been found. This method assumes that the SCM is discrete and the causal effects on var_name are additive. Args: target_var: The name of the variable whose parents we want to find. delta: Desired error probability bound. epsilon: The minimum detectable effect. model: A DiscreteSCM. cov: Scale of the noise. num_parents_bound: An upper bound on the number of parents. Returns: A list of parents of the target variable. """ opt_scope = model.var_names.copy() opt_scope.remove(target_var) num_vars = len(opt_scope) parents = [] total_samples = 0 var_order = random.sample(opt_scope, len(opt_scope)) for var in var_order: # Calculate number of samples. n = int( np.ceil( 8 * cov * np.log(2 * model.support_sizes[var] * num_vars / delta) ) / epsilon**2 ) conf_set = (-np.inf, np.inf) action = {var: 0 for var in opt_scope} for value in range(model.support_sizes[var]): action[var] = value # Collect n samples. sample = model.sample(n, action) total_samples += n y_mean = np.mean(sample[target_var]) conf_set = utils.interval_intersection( conf_set, (y_mean - epsilon / 2, y_mean + epsilon / 2), ) if conf_set is None: # Empty intersection. parents.append(var) break if num_parents_bound is not None: if len(parents) >= num_parents_bound: break return (parents, total_samples) def estimate_value(model: scm.SCM, best_action: Mapping[str, int], outcome_variable: str, n: int = 1000, ) -> float: """Estimates the true value of the best_action.""" return np.mean(model.sample(n, best_action)[outcome_variable])
additive_cbug-main
cbug/base.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Renderer for NetHack with customizable foreground and background colors.""" import struct from typing import Mapping, Tuple, Optional from nle import _pynethack import numpy as np import pygame as pg FOREGROUND_COLORS = [ # Dark '#000000', '#770000', '#007700', '#aa7700', '#000077', '#aa00aa', '#00aaaa', '#ffffff', # Bright '#888888', '#ff0000', '#00ff00', '#ffff00', '#0000ff', '#ff00ff', '#00ffff', '#ffffff', ] BACKGROUND_COLORS = dict( cursor='#555555', # Gray. corpse='#0000aa', # Blue. invis='#333333', # Gray. detect='#333333', # Gray. pet='#ffffff', # White. ridden='#333333', # Gray. statue='#333333', # Gray. objpile='#333333', # Gray. bwlava='#330000', # Red. default='#000000', # Black. ) # Rendered tiles are cached in this dictionary to avoid re-rendering later. TILE_CACHE = {} def hex_string_to_color_tuple(hex_string: str) -> Tuple[int, int, int]: """Convert a hex string prefixed with '#' to RGB tuple.""" color_three_bytes = int(hex_string[1:], 16) blue, green, red, _ = struct.unpack('4B', struct.pack('I', color_three_bytes)) return (red, green, blue) def get_special_background(special: int) -> str: """Color the character and background based on its special flags.""" if bool(special & _pynethack.nethack.MG_CORPSE): return 'corpse' elif bool(special & _pynethack.nethack.MG_INVIS): return 'invis' elif bool(special & _pynethack.nethack.MG_DETECT): return 'detect' elif bool(special & _pynethack.nethack.MG_PET): return 'pet' elif bool(special & _pynethack.nethack.MG_RIDDEN): return 'ridden' elif bool(special & _pynethack.nethack.MG_STATUE): return 'statue' elif bool(special & _pynethack.nethack.MG_OBJPILE): return 'objpile' elif bool(special & _pynethack.nethack.MG_BW_LAVA): return 'bwlava' else: return 'default' def represent_char(c: int) -> int: """Change the representation of certain characters to curses UI forms.""" if c == 0: # Represent invalid characters with blank space. return ord(' ') elif c == ord('`'): # Represent boulders as 0 for readability. return ord('0') else: return c class ImageRenderer: """Renderer using headless PyGame to render TTY observations as images.""" def __init__(self): pg.font.init() self._font = pg.font.SysFont('couriernew', 14, bold=True) # Make color tuples from the hex strings above. self._colors_map = np.array(list(map(hex_string_to_color_tuple, FOREGROUND_COLORS))) self._bgcolors = {k: hex_string_to_color_tuple(v) for k, v in BACKGROUND_COLORS.items()} # `specials` is a uint8 bitfield. Map all possible values of `specials` to # the background color that the we should use for it. self._specials_map = np.zeros((256, 3)) for s in range(256): self._specials_map[s] = self._bgcolors[get_special_background(s)] def _render_char(self, c: str, color: Tuple[int, int, int], background: Tuple[int, int, int]) -> np.ndarray: """Render a single character to a patch. Patches are cached for reuse.""" key = (c, tuple(color), tuple(background)) if key not in TILE_CACHE: # Render this single character to a small image patch. single_character = pg.surfarray.array3d( self._font.render(c, True, color, background)).swapaxes(0, 1) # Ensure that the patch is exactly 16x8. single_character_fixed_size = single_character[:16, :8] TILE_CACHE[key] = single_character_fixed_size return TILE_CACHE[key] def render(self, obs: Mapping[str, np.ndarray], foreground_colors: Optional[np.ndarray] = None, background_colors: Optional[np.ndarray] = None) -> np.ndarray: """Render an image of the TTY, with colors potentially overridden. Args: obs: Standard NLE observation dict, or observation dict from the NAO dataset. Must contain key `tty_chars`. foreground_colors: Optional RGB array of color overrides for the chars. If not specified, colors will be derived from `tty_colors` instead. background_colors: Optional RGB array of color overrides for tile backgrounds. If not specified, background colors will be derived from `specials` or `tty_background` keys of the observation. Returns: Rendered image in the form of an RGB numpy array. """ # If colors are not specified, extract them from the observation. if foreground_colors is None: foreground_colors = self._colors_map[np.clip(obs['tty_colors'], 0, 15)] if background_colors is None: if 'specials' in obs: padded_specials = np.pad(obs['specials'], [[1, 2], [0, 1]]) padded_specials = np.clip(padded_specials, 0, 255) background_colors = self._specials_map[padded_specials] elif 'tty_background' in obs: background_colors = self._colors_map[ np.clip(obs['tty_background'], 0, 15)] else: background_colors = np.zeros((24, 80, 3), dtype=np.uint8) if 'tty_cursor' in obs: background_colors[obs['tty_cursor'][1], obs['tty_cursor'][0]] = self._bgcolors['cursor'] tty_chars = np.clip(obs['tty_chars'], 0, 255) def _render_pos(x, y): return self._render_char( chr(represent_char(tty_chars[y, x])), foreground_colors[y, x], background_colors[y, x]) return np.vstack([np.hstack([_render_pos(x, y) for x in range(80)]) for y in range(24)])
nao_top10-main
renderer.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple tool to iterate through the dataset, printing the name and source. Example usage: print_names_and_sources /path/to/dataset/code_contests_train* """ import io import sys import riegeli import contest_problem_pb2 def _all_problems(filenames): """Iterates through all ContestProblems in filenames.""" for filename in filenames: reader = riegeli.RecordReader(io.FileIO(filename, mode='rb'),) for problem in reader.read_messages(contest_problem_pb2.ContestProblem): yield problem def _print_names_and_sources(filenames): """Prints the names and sources of all ContestProblems in filenames.""" for problem in _all_problems(filenames): print( contest_problem_pb2.ContestProblem.Source.Name(problem.source), problem.name) if __name__ == '__main__': _print_names_and_sources(sys.argv[1:])
code_contests-main
print_names_and_sources.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Install script for setuptools.""" import distutils.sysconfig import fnmatch import os import posixpath import re import shutil import sys import sysconfig import setuptools from setuptools.command import build_ext __version__ = '1.0.6' PROJECT_NAME = 'labmaze' REQUIRED_PACKAGES = [ 'absl-py', 'numpy>=1.8.0', 'setuptools!=50.0.0', # https://github.com/pypa/setuptools/issues/2350 ] WORKSPACE_PYTHON_HEADERS_PATTERN = re.compile( r'(?<=path = ").*(?=", # May be overwritten by setup\.py\.)') IS_WINDOWS = sys.platform.startswith('win') class BazelExtension(setuptools.Extension): """A C/C++ extension that is defined as a Bazel BUILD target.""" def __init__(self, bazel_target): self.bazel_target = bazel_target self.relpath, self.target_name = ( posixpath.relpath(bazel_target, '//').split(':')) ext_name = os.path.join( self.relpath.replace(posixpath.sep, os.path.sep), self.target_name) setuptools.Extension.__init__(self, ext_name, sources=[]) class BuildBazelExtension(build_ext.build_ext): """A command that runs Bazel to build a C/C++ extension.""" def run(self): for ext in self.extensions: self.bazel_build(ext) build_ext.build_ext.run(self) def bazel_build(self, ext): with open('WORKSPACE', 'r') as f: workspace_contents = f.read() with open('WORKSPACE', 'w') as f: f.write(WORKSPACE_PYTHON_HEADERS_PATTERN.sub( distutils.sysconfig.get_python_inc().replace(os.path.sep, posixpath.sep), workspace_contents)) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) bazel_argv = [ 'bazel', 'build', ext.bazel_target, '--symlink_prefix=' + os.path.join(self.build_temp, 'bazel-'), '--compilation_mode=' + ('dbg' if self.debug else 'opt'), ] if IS_WINDOWS: for library_dir in self.library_dirs: bazel_argv.append('--linkopt=/LIBPATH:' + library_dir) # TODO(stunya): Figure out why we need this. if sysconfig.get_python_version() == '3.7': bazel_argv.append('--linkopt=/LIBPATH:C:\\Python37\\Libs') self.spawn(bazel_argv) shared_lib_suffix = '.dll' if IS_WINDOWS else '.so' ext_bazel_bin_path = os.path.join( self.build_temp, 'bazel-bin', ext.relpath, ext.target_name + shared_lib_suffix) ext_dest_path = self.get_ext_fullpath(ext.name) ext_dest_dir = os.path.dirname(ext_dest_path) if not os.path.exists(ext_dest_dir): os.makedirs(ext_dest_dir) shutil.copyfile(ext_bazel_bin_path, ext_dest_path) def find_data_files(package_dir, patterns): """Recursively finds files whose names match the given shell patterns.""" paths = set() for directory, _, filenames in os.walk(package_dir): for pattern in patterns: for filename in fnmatch.filter(filenames, pattern): # NB: paths must be relative to the package directory. relative_dirpath = os.path.relpath(directory, package_dir) paths.add(os.path.join(relative_dirpath, filename)) return list(paths) setuptools.setup( name=PROJECT_NAME, version=__version__, description='LabMaze: DeepMind Lab\'s text maze generator.', author='DeepMind', license='Apache 2.0', ext_modules=[ BazelExtension('//labmaze/cc/python:_defaults'), BazelExtension('//labmaze/cc/python:_random_maze'), ], cmdclass=dict(build_ext=BuildBazelExtension), packages=setuptools.find_packages(), package_data={'labmaze': find_data_files(package_dir='labmaze', patterns=['*.png'])}, install_requires=REQUIRED_PACKAGES, )
labmaze-master
setup.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """An array-like object that represents a 2D text grid.""" import sys import numpy as np class TextGrid(np.ndarray): """An array-like object that represents a 2D text grid. This object is constructed from a newline-delimited string (with a trailing newline character) and exposes an 2D array-like interface for character-wise access. The original string can be retrieved by performing a string-conversion on this object. """ def __new__(cls, newline_delimited_string): raw = newline_delimited_string split = raw[:-1].split('\n') height = len(split) width = len(split[0]) if split else 0 dtype = 'U1' if sys.version_info[0] >= 3 else 'S1' obj = super(TextGrid, cls).__new__(cls, shape=(height, width), dtype=dtype) obj[:, :] = tuple(tuple(line) for line in split) return obj def __str__(self): lines = [''.join(row) for row in self] lines.append('') return '\n'.join(lines)
labmaze-master
labmaze/text_grid.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for labmaze.fixed_maze.""" from absl.testing import absltest from absl.testing import parameterized from labmaze import fixed_maze import numpy as np _WIDTH = 9 _HEIGHT = 7 _EMPTY_CELL = ' ' _WALL = '*' _SPAWN_TOKEN = '%' _OBJECT_TOKEN = '$' _MAZE_1 = ('* * * * *\n' ' * * * * \n' '* * * * *\n' ' * * * * \n' '* * * * *\n' ' * * * * \n' '* * * * *\n') _MAZE_2 = ('* * * * *\n' ' *%* *$* \n' '* *$* * *\n' ' *%* *%* \n' '* * *$* *\n' ' *$* * * \n' '* * *$* *\n') _MAZE_2_SPAWNS = ((1, 2), (3, 2), (3, 6)) _MAZE_2_OBJECTS = ((1, 6), (2, 3), (4, 5), (5, 2), (6, 5)) class FixedMazeWithRandomGoalsTest(parameterized.TestCase): def testCorrectSize(self): maze = fixed_maze.FixedMazeWithRandomGoals(entity_layer=_MAZE_1) self.assertEqual(maze.height, _HEIGHT) self.assertEqual(maze.width, _WIDTH) def testCorrectEntityLayer(self): maze = fixed_maze.FixedMazeWithRandomGoals( entity_layer=_MAZE_2, num_spawns=0, spawn_token=_SPAWN_TOKEN, num_objects=0, object_token=_OBJECT_TOKEN) maze_chars = _MAZE_1.split('\n') for y in range(maze.height): for x in range(maze.width): self.assertEqual(maze.entity_layer[y, x], maze_chars[y][x]) def assert_consistent_maze(self, maze, num_spawns, num_objects, required_spawns=(), required_objects=()): spawns_found = 0 objects_found = 0 for y in range(maze.height): for x in range(maze.width): if y % 2 == x % 2: self.assertEqual(maze.entity_layer[y, x], _WALL) else: self.assertIn(maze.entity_layer[y, x], (_EMPTY_CELL, _SPAWN_TOKEN, _OBJECT_TOKEN)) if maze.entity_layer[y, x] == _SPAWN_TOKEN: spawns_found += 1 if num_spawns < len(required_spawns): self.assertIn((y, x), required_spawns) elif maze.entity_layer[y, x] == _OBJECT_TOKEN: objects_found += 1 if num_objects < len(required_objects): self.assertIn((y, x), required_objects) if num_spawns >= len(required_spawns): for required_spawn in required_spawns: self.assertEqual(maze.entity_layer[required_spawn], _SPAWN_TOKEN) if num_objects >= len(required_objects): for required_object in required_objects: self.assertEqual(maze.entity_layer[required_object], _OBJECT_TOKEN) self.assertEqual(spawns_found, num_spawns) self.assertEqual(objects_found, num_objects) def testConsistentMazeUnconstrained(self): num_spawns = 2 num_objects = 3 maze = fixed_maze.FixedMazeWithRandomGoals( entity_layer=_MAZE_1, num_spawns=num_spawns, spawn_token=_SPAWN_TOKEN, num_objects=num_objects, object_token=_OBJECT_TOKEN, random_state=np.random.RandomState(123)) self.assert_consistent_maze(maze, num_spawns, num_objects) for _ in range(5): old_entity_layer = maze.entity_layer.copy() maze.regenerate() self.assertFalse((maze.entity_layer == old_entity_layer).all()) self.assert_consistent_maze(maze, num_spawns, num_objects) @parameterized.named_parameters( ('underconstrained', 1, 2), ('overconstrained', 4, 7)) def testConsistentMazeConstrained(self, num_spawns, num_objects): maze = fixed_maze.FixedMazeWithRandomGoals( entity_layer=_MAZE_2, num_spawns=num_spawns, spawn_token=_SPAWN_TOKEN, num_objects=num_objects, object_token=_OBJECT_TOKEN, random_state=np.random.RandomState(234)) self.assert_consistent_maze(maze, num_spawns, num_objects, required_spawns=_MAZE_2_SPAWNS, required_objects=_MAZE_2_OBJECTS) for _ in range(5): old_entity_layer = maze.entity_layer.copy() maze.regenerate() self.assertFalse((maze.entity_layer == old_entity_layer).all()) self.assert_consistent_maze(maze, num_spawns, num_objects, required_spawns=_MAZE_2_SPAWNS, required_objects=_MAZE_2_OBJECTS) if __name__ == '__main__': absltest.main()
labmaze-master
labmaze/fixed_maze_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Text mazes with a fixed, prespecified layout.""" import itertools from labmaze import base from labmaze import defaults from labmaze import text_grid import numpy as np _EMPTY_CELL = ' ' class FixedMazeWithRandomGoals(base.BaseMaze): """A maze with fixed layout but randomized spawn points and object positions. The maze's layout is prespecified through a newline-terminated string. At each call to `regenerate`, the spawn points and object positions are randomly drawn from the empty cells within the specified maze layout. The number of spawn points and object positions generated is user-specifiable, but is fixed across calls to `regenerate`. Optionally, the user can also constrain the spawn points and object positions to be drawn from a predetermined set. This is done by including the spawn and/or object tokens directly into the maze layout string. If the requested number of spawns or objects is greater than the number of the respective tokens present in the layout string, then additional spawns/objects are randomly generated into the remaining empty cells in the layout string. """ def __init__(self, entity_layer, variations_layer=None, num_spawns=None, spawn_token=defaults.SPAWN_TOKEN, num_objects=None, object_token=defaults.OBJECT_TOKEN, random_state=None): """Initializes this maze object. Args: entity_layer: A string specifying the layout of this maze. The lines in this string should be of equal length, and the string should terminate with a newline character. Maze walls are represented by the '*' character. Optionally, candidate positions for spawn points and object locations can be specified by adding the appropriate tokens to the desired locations in the string. See this class' docstring for details. variations_layer: A string specifying the variations layer for this maze. This is used to change the visual appearance across various parts of the maze. See the docstring for `variations_layer` property for details. num_spawns: The total number of spawn points to be generated within this maze. If `None`, this maze will use all spawn tokens present in the `entity_layer` string (i.e. no randomization). spawn_token: The character that is used to represent spawn points in this text maze. num_objects: The total number of object positions to be generated within this maze. If `None`, this maze will use all object tokens present in the `entity_layer` string (i.e. no randomization). object_token: The character that is used to represent object locations in this text maze. random_state: A `numpy.random.RandomState` object. Raises: ValueError: If `variations_layer` is not of the same shape as `entity_layer`, or if `spawn_token` or `object_token` is not exactly one character long. """ self._entity_layer = text_grid.TextGrid(entity_layer) if variations_layer is not None: self._variations_layer = text_grid.TextGrid(variations_layer) if self._variations_layer.shape != self._entity_layer.shape: raise ValueError( '`variations_layer` is specified, but its shape is not the same as ' '`entity_layer`: got {} vs. {}' .format(self._variations_layer.shape, self._entity_layer.shape)) else: self._variations_layer = self._entity_layer.copy() self._variations_layer[:] = '.' self._max_variations = len(set(self._variations_layer.flatten())) - 1 spawn_token = str(spawn_token) if len(spawn_token) != 1: raise ValueError('`spawn_token` should be a single character: ' 'got {!r}'.format(spawn_token)) else: self._spawn_token = spawn_token object_token = str(object_token) if len(object_token) != 1: raise ValueError('`object_token` should be a single character: ' 'got {!r}'.format(object_token)) else: self._object_token = object_token self._height, self._width = self._entity_layer.shape self._random_state = random_state or np.random self._empty_cells = [] self._required_spawns = [] self._required_objects = [] for y in range(self._height): for x in range(self._width): if self._entity_layer[y, x] == _EMPTY_CELL: self._empty_cells.append((y, x)) elif self._entity_layer[y, x] == self._spawn_token: self._required_spawns.append((y, x)) elif self._entity_layer[y, x] == self._object_token: self._required_objects.append((y, x)) if num_spawns is not None: self._num_spawns = num_spawns else: self._num_spawns = len(self._required_spawns) if num_objects is not None: self._num_objects = num_objects else: self._num_objects = len(self._required_objects) self.regenerate() def regenerate(self): for (y, x) in itertools.chain( self._empty_cells, self._required_spawns, self._required_objects): self._entity_layer[y, x] = _EMPTY_CELL if self._required_spawns: chosen_spawn_indices = self._random_state.choice( len(self._required_spawns), min(self._num_spawns, len(self._required_spawns)), replace=False) spawns = [self._required_spawns[i] for i in chosen_spawn_indices] else: spawns = [] if self._required_objects: chosen_object_indices = self._random_state.choice( len(self._required_objects), min(self._num_objects, len(self._required_objects)), replace=False) objects = [self._required_objects[i] for i in chosen_object_indices] else: objects = [] extra_spawns = max(0, self._num_spawns - len(self._required_spawns)) extra_objects = max(0, self._num_objects - len(self._required_objects)) if extra_spawns + extra_objects > 0: chosen_extra_indices = self._random_state.choice( len(self._empty_cells), extra_spawns + extra_objects, replace=False) extras = [self._empty_cells[i] for i in chosen_extra_indices] spawns += extras[:extra_spawns] objects += extras[extra_spawns:] for (y, x) in spawns: self._entity_layer[y, x] = self._spawn_token for (y, x) in objects: self._entity_layer[y, x] = self._object_token @property def entity_layer(self): return self._entity_layer @property def variations_layer(self): return self._variations_layer @property def height(self): return self._height @property def width(self): return self._width @property def max_variations(self): return self._max_variations @property def max_rooms(self): return 1 @property def objects_per_room(self): return self._num_objects @property def spawn_token(self): return self._spawn_token @property def object_token(self): return self._object_token
labmaze-master
labmaze/fixed_maze.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """LabMaze: DeepMind Lab's text maze generator.""" from labmaze.base import BaseMaze from labmaze.fixed_maze import FixedMazeWithRandomGoals from labmaze.random_maze import RandomMaze from labmaze.text_grid import TextGrid
labmaze-master
labmaze/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for labmaze.RandomMaze.""" import copy from absl.testing import absltest import labmaze import numpy as np class RandomMazeTest(absltest.TestCase): """Tests for labmaze.RandomMaze. Tests whose name contain the word 'golden' are brittle since the output depends on the specific implementation of various random algorithms in the C++ standard library. Each test case contains two sets of golden output data, generated by libstdc++ and libc++. """ def testGolden7x9Maze(self): maze = labmaze.RandomMaze(height=7, width=9, random_seed=12345) expected_mazes = {('*********\n' '*********\n' '*********\n' '*** ***\n' '*** ***\n' '*** ***\n' '*********\n'), # libstdc++ ('*********\n' '*********\n' '*********\n' '* ***\n' '* ***\n' '* ***\n' '*********\n'), # libc++ } actual_maze = str(maze.entity_layer) self.assertIn(actual_maze, expected_mazes) np.testing.assert_array_equal(maze.entity_layer, labmaze.TextGrid(actual_maze)) expected_variations = actual_maze.replace('*', '.').replace(' ', 'A') self.assertEqual(str(maze.variations_layer), expected_variations) np.testing.assert_array_equal(maze.variations_layer, labmaze.TextGrid(expected_variations)) def testGoldenTwoRoom9x11Maze(self): maze = labmaze.RandomMaze(height=9, width=11, max_rooms=2, room_min_size=4, room_max_size=6, random_seed=12345) expected_mazes = {('***********\n' '*** ***\n' '*** * ***\n' '*** * *\n' '*** * *** *\n' '*** * * *\n' '*** * * *\n' '*** *\n' '***********\n'), # libc++ ('***********\n' '* *****\n' '* * *****\n' '* *\n' '* * *\n' '* * *\n' '* *** *****\n' '* *****\n' '***********\n'), # libstdc++ ('***********\n' '* ***\n' '* * ***\n' '* * ***\n' '*** * * ***\n' '*** *\n' '***** *\n' '***** *\n' '***********\n'), # MSVC14 } self.assertIn(str(maze.entity_layer), expected_mazes) expected_variations = {('...........\n' '.....AAA...\n' '.....AAA...\n' '.....AAA...\n' '...........\n' '.....BBB...\n' '.....BBB...\n' '.....BBB...\n' '...........\n'), # libstdc++ ('...........\n' '.AAA.......\n' '.AAA.......\n' '.AAA.BBBBB.\n' '.AAA.BBBBB.\n' '.AAA.BBBBB.\n' '...........\n' '...........\n' '...........\n'), # libc++ ('...........\n' '.AAAAA.....\n' '.AAAAA.....\n' '.AAAAA.....\n' '...........\n' '.....BBBBB.\n' '.....BBBBB.\n' '.....BBBBB.\n' '...........\n'), # MSVC14 } self.assertIn(str(maze.variations_layer), expected_variations) def testRegenerate(self): maze = labmaze.RandomMaze(height=51, width=31, max_rooms=5, room_min_size=10, room_max_size=20, random_seed=12345) old_maze, old_variations = None, None for _ in range(5): maze.regenerate() if old_maze is not None: self.assertNotEqual(str(maze.entity_layer), str(old_maze)) self.assertTrue(np.any(maze.entity_layer != old_maze)) self.assertNotEqual(str(maze.variations_layer), str(old_variations)) self.assertTrue(np.any(maze.variations_layer != old_variations)) old_maze = copy.deepcopy(maze.entity_layer) old_variations = copy.deepcopy(maze.variations_layer) def testGoldenMazeRegeneration(self): # This test makes sure that regeneration logic is not operating on an # old, dirty maze object. maze = labmaze.RandomMaze(height=17, width=17, max_rooms=9, room_min_size=3, room_max_size=3, random_seed=12345) expected_mazes = {('*****************\n' '* ***** ***\n' '* ***** *** ***\n' '* *** *\n' '*** *** ***** *\n' '* * * *\n' '* * * * *** *\n' '* * *\n' '* * * * * * * ***\n' '* * *\n' '* * * * * *\n' '* * * * *\n' '* ***** *** * * *\n' '* * * *\n' '***** * * * *\n' '***** * *\n' '*****************\n'), # libstdc++ ('*****************\n' '*** *\n' '*** *********** *\n' '*** * * *\n' '*** * * * * *\n' '* * * * *\n' '* ***** ***** *\n' '* *** *\n' '*** *** * ***** *\n' '* * * * * *\n' '* * * * * *\n' '* * * *\n' '*** *** * * * * *\n' '* *** * *\n' '* *** * * *\n' '* * *\n' '*****************\n'), # libc++ ('*****************\n' '********* *\n' '********* ***** *\n' '* ***** * *\n' '* ***** * * *\n' '* * * *\n' '* ************* *\n' '* * *\n' '* * *** * ***\n' '* * *\n' '* ***** * *** *\n' '* *** *\n' '* * ***** *** *\n' '* * *\n' '* *** * * *\n' '* * *\n' '*****************\n'), # MSVC14 } self.assertIn(str(maze.entity_layer), expected_mazes) maze.regenerate() expected_mazes_2 = {('*****************\n' '*** * *\n' '*** * * * *\n' '* * * *\n' '* * *** ******* *\n' '* * * *** *\n' '* * * *** *** *\n' '* * * * *\n' '* * * * * * * *\n' '* * * * *\n' '* * *** ***** *\n' '* * *\n' '*** * * ***** *\n' '* * * *\n' '* ***** * ***\n' '* * ***\n' '*****************\n'), # libstdc++ ('*****************\n' '********* *****\n' '********* *****\n' '* * *\n' '* * * *** *** *\n' '* * * * *\n' '* ***** * * *\n' '* * *\n' '* *** ***** *** *\n' '* * *\n' '* * * * *\n' '* * * *\n' '* * * * * *** ***\n' '* ***\n' '*** ***********\n' '*** ***********\n' '*****************\n'), # libc++ ('*****************\n' '* *****\n' '* * *** *****\n' '* *\n' '*** * * ***** *\n' '* * * *\n' '* ***** *** * *\n' '* *\n' '* * * *** * * *\n' '* * * * *\n' '* * * * * * *\n' '* * * *\n' '* * * * * *** *\n' '* * * *\n' '* * *** * *****\n' '* * *****\n' '*****************\n'), # MSVC14 } self.assertIn(str(maze.entity_layer), expected_mazes_2) def testInvalidArguments(self): with self.assertRaisesRegexp(ValueError, 'height.*integer'): labmaze.RandomMaze(height=2.5) with self.assertRaisesRegexp(ValueError, 'height.*positive'): labmaze.RandomMaze(height=-3) with self.assertRaisesRegexp(ValueError, 'height.*odd'): labmaze.RandomMaze(height=4) with self.assertRaisesRegexp(ValueError, 'width.*integer'): labmaze.RandomMaze(width=1.25) with self.assertRaisesRegexp(ValueError, 'width.*positive'): labmaze.RandomMaze(width=-5) with self.assertRaisesRegexp(ValueError, 'width.*odd'): labmaze.RandomMaze(width=2) with self.assertRaisesRegexp(ValueError, 'room_min_size.*integer'): labmaze.RandomMaze(room_min_size=3.3) with self.assertRaisesRegexp(ValueError, 'room_min_size.*positive'): labmaze.RandomMaze(room_min_size=-1) with self.assertRaisesRegexp(ValueError, 'room_max_size.*integer'): labmaze.RandomMaze(room_max_size=4.4) with self.assertRaisesRegexp(ValueError, 'room_max_size.*positive'): labmaze.RandomMaze(room_max_size=-2) with self.assertRaisesRegexp( ValueError, 'room_min_size.*less than or equal to.*room_max_size'): labmaze.RandomMaze(room_min_size=4, room_max_size=3) with self.assertRaisesRegexp(ValueError, 'retry_count.*integer'): labmaze.RandomMaze(retry_count=5.4) with self.assertRaisesRegexp(ValueError, 'retry_count.*positive'): labmaze.RandomMaze(retry_count=-7) with self.assertRaisesRegexp( ValueError, 'extra_connection_probability.*between 0.0 and 1.0'): labmaze.RandomMaze(extra_connection_probability=1.1) with self.assertRaisesRegexp(ValueError, 'max_variations.*integer'): labmaze.RandomMaze(max_variations=6.7) with self.assertRaisesRegexp( ValueError, 'max_variations.*between 0 and 26'): labmaze.RandomMaze(max_variations=27) with self.assertRaisesRegexp(ValueError, 'spawn_token.*single character'): labmaze.RandomMaze(spawn_token='foo') with self.assertRaisesRegexp(ValueError, 'object_token.*single character'): labmaze.RandomMaze(object_token='bar') if __name__ == '__main__': absltest.main()
labmaze-master
labmaze/random_maze_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Default constants for LabMaze.""" from labmaze.cc.python._defaults import * # pylint: disable=wildcard-import
labmaze-master
labmaze/defaults.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Randomly generated text mazes.""" from labmaze import base from labmaze import defaults from labmaze import text_grid from labmaze.cc.python import _random_maze import numpy as np class RandomMaze(base.BaseMaze): """A random text maze generated by DeepMind Lab's maze generator.""" def __init__( self, height=11, width=11, max_rooms=defaults.MAX_ROOMS, room_min_size=defaults.ROOM_MIN_SIZE, room_max_size=defaults.ROOM_MAX_SIZE, retry_count=defaults.RETRY_COUNT, extra_connection_probability=defaults.EXTRA_CONNECTION_PROBABILITY, max_variations=defaults.MAX_VARIATIONS, has_doors=defaults.HAS_DOORS, simplify=defaults.SIMPLIFY, spawns_per_room=defaults.SPAWN_COUNT, spawn_token=defaults.SPAWN_TOKEN, objects_per_room=defaults.OBJECT_COUNT, object_token=defaults.OBJECT_TOKEN, random_seed=None): if height != int(height) or height < 0 or height % 2 == 0: raise ValueError( '`height` should be a positive odd integer: got {!r}'.format(height)) if width != int(width) or width < 0 or width % 2 == 0: raise ValueError( '`width` should be a positive odd integer: got {!r}'.format(width)) if room_min_size != int(room_min_size) or room_min_size < 0: raise ValueError('`room_min_size` should be a positive integer: ' 'got {!r}'.format(room_min_size)) if room_max_size != int(room_max_size) or room_max_size < 0: raise ValueError('`room_max_size` should be a positive integer: ' 'got {!r}'.format(room_max_size)) if room_min_size > room_max_size: raise ValueError( '`room_min_size` should be less than or equal to `room_max_size`: ' 'got room_min_size={!r} and room_max_size={!r}' .format(room_min_size, room_max_size)) if retry_count != int(retry_count) or retry_count < 0: raise ValueError('`retry_count` should be a positive integer: ' 'got {!r}'.format(retry_count)) if extra_connection_probability < 0 or extra_connection_probability > 1: raise ValueError( '`extra_connection_probability` should be between 0.0 and 1.0: ' 'got {!r}'.format(extra_connection_probability)) if (max_variations != int(max_variations) or max_variations < 0 or max_variations > 26): raise ValueError( '`max_variations` should be an integer between 0 and 26: ' 'got {!r}'.format(max_variations)) spawn_token = str(spawn_token) if len(spawn_token) != 1: raise ValueError('`spawn_token` should be a single character: ' 'got {!r}'.format(spawn_token)) object_token = str(object_token) if len(object_token) != 1: raise ValueError('`object_token` should be a single character: ' 'got {!r}'.format(object_token)) if random_seed is None: random_seed = np.random.randint(2147483648) # 2**31 self._height = height self._width = width self._max_rooms = max_rooms self._room_min_size = room_min_size self._room_max_size = room_max_size self._max_variations = max_variations self._spawns_per_room = spawns_per_room self._spawn_token = spawn_token self._objects_per_room = objects_per_room self._object_token = object_token self._native_maze = _random_maze.RandomMaze( height=height, width=width, max_rooms=max_rooms, room_min_size=room_min_size, room_max_size=room_max_size, retry_count=retry_count, extra_connection_probability=extra_connection_probability, max_variations=max_variations, has_doors=has_doors, simplify=simplify, spawns_per_room=spawns_per_room, spawn_token=spawn_token, objects_per_room=objects_per_room, object_token=object_token, random_seed=random_seed) self._entity_layer = text_grid.TextGrid(self._native_maze.entity_layer) self._variations_layer = ( text_grid.TextGrid(self._native_maze.variations_layer)) def regenerate(self): self._native_maze.regenerate() self._entity_layer = text_grid.TextGrid(self._native_maze.entity_layer) self._variations_layer = ( text_grid.TextGrid(self._native_maze.variations_layer)) @property def entity_layer(self): return self._entity_layer @property def variations_layer(self): return self._variations_layer @property def height(self): return self._height @property def width(self): return self._width @property def max_rooms(self): return self._max_rooms @property def room_min_size(self): return self._room_min_size @property def room_max_size(self): return self._room_max_size @property def max_variations(self): return self._max_variations @property def spawns_per_room(self): return self._spawns_per_room @property def spawn_token(self): return self._spawn_token @property def objects_per_room(self): return self._objects_per_room @property def object_token(self): return self._object_token
labmaze-master
labmaze/random_maze.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Text mazes generated by DeepMind Lab's maze generator.""" import abc from labmaze import defaults class BaseMaze(metaclass=abc.ABCMeta): """A abstract base class for DeepMind Lab-style text mazes.""" def regenerate(self): """Regenerates the maze if required.""" pass @abc.abstractproperty def entity_layer(self): """The entity layer of the current maze. The entity layer defines the actual structure of the maze, i.e. which cells are vacant and which are occupied by walls. For further explanation, see: https://github.com/deepmind/lab/blob/master/docs/developers/creating_levels/text_level.md#text-level-format Returns: A 2-dimensional NumPy array of printable characters. """ @abc.abstractproperty def variations_layer(self): """The variations layer of the current maze. The variations layer defines the variations in decorative aspects of each cell in the maze. Each variation is assigned a different character (DeepMind Lab uses '.' for default styling, and A-Z for variations) For further explanation, see: https://github.com/deepmind/lab/blob/master/docs/developers/creating_levels/text_level.md.md#text-level-format Returns: A 2-dimensional NumPy array of printable characters. """ @abc.abstractproperty def height(self): """The number of cells along the y-direction of this maze.""" @abc.abstractproperty def width(self): """The number of cells along the x-direction of this maze.""" @property def max_variations(self): """The maximum number of variations in the variations layer of this maze.""" @property def spawn_token(self): return defaults.SPAWN_TOKEN @property def object_token(self): return defaults.OBJECT_TOKEN
labmaze-master
labmaze/base.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for labmaze.TextGrid.""" import copy from absl.testing import absltest import labmaze import numpy as np class TextGridTest(absltest.TestCase): def testConstruction(self): original_string = 'abcd\nefgh\nijkl\n' maze = labmaze.TextGrid(original_string) self.assertEqual(str(maze), original_string) self.assertEqual(maze.shape, (3, 4)) expected_array = [['a', 'b', 'c', 'd'], ['e', 'f', 'g', 'h'], ['i', 'j', 'k', 'l']] np.testing.assert_array_equal(maze, expected_array) # Test that iteration works. for actual_row, expected_row in zip(maze, expected_array): for actual_col, expected_col in zip(actual_row, expected_row): self.assertEqual(actual_col.strip(), expected_col.strip()) # Test that indexed access works. height = len(expected_array) width = len(expected_array[0]) for y in range(height): for x in range(width): self.assertEqual(maze[y, x].strip(), expected_array[y][x].strip()) def testAssignment(self): original_string = 'abcd\nefgh\nijkl\n' maze = labmaze.TextGrid(original_string) maze[:2, :2] = '#' expected_string = '##cd\n##gh\nijkl\n' expected_array = [['#', '#', 'c', 'd'], ['#', '#', 'g', 'h'], ['i', 'j', 'k', 'l']] self.assertEqual(str(maze), expected_string) np.testing.assert_array_equal(maze, expected_array) def testCopying(self): original_string = '1234\n5678\n' maze = labmaze.TextGrid(original_string) copied = copy.copy(maze) self.assertEqual(type(maze), type(copied)) self.assertEqual(str(maze), str(copied)) np.testing.assert_array_equal(maze, copied) deepcopied = copy.deepcopy(maze) self.assertEqual(type(maze), type(deepcopied)) self.assertEqual(str(maze), str(deepcopied)) np.testing.assert_array_equal(maze, deepcopied) if __name__ == '__main__': absltest.main()
labmaze-master
labmaze/text_grid_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================
labmaze-master
labmaze/cc/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================
labmaze-master
labmaze/cc/python/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """LabMaze texture assets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import sys ROOT_DIR = sys.modules[__name__].__path__[0] SKY_STYLES = ('sky_01', 'sky_02', 'sky_03') SkyBox = collections.namedtuple( 'SkyBox', ('left', 'right', 'up', 'down', 'front', 'back')) def get_sky_texture_paths(style): if style not in SKY_STYLES: raise ValueError('`style` should be one of {}: got {!r}'.format( SKY_STYLES, style)) return SkyBox(left=os.path.join(ROOT_DIR, style, 'lf.png'), right=os.path.join(ROOT_DIR, style, 'rt.png'), up=os.path.join(ROOT_DIR, style, 'up.png'), down=os.path.join(ROOT_DIR, style, 'dn.png'), front=os.path.join(ROOT_DIR, style, 'ft.png'), back=os.path.join(ROOT_DIR, style, 'bk.png')) MAZE_STYLES = ('style_01', 'style_02', 'style_03', 'style_04', 'style_05') WALL_TEXTURES = { 'style_01': ('blue', 'cerise', 'green_bright', 'green', 'purple', 'red_bright', 'red', 'yellow'), 'style_02': ('blue_bright', 'blue', 'dblue', 'lgreen', 'purple', 'yellow_bright', 'yellow'), 'style_03': ('blue', 'cyan', 'gray_bright', 'gray', 'orange_bright', 'orange', 'purple'), 'style_04': ('cerise', 'green_bright', 'green', 'purple', 'red_bright', 'red'), 'style_05': ('red_bright', 'red', 'yellow_bright', 'yellow') } def get_wall_texture_paths(style): if style not in MAZE_STYLES: raise ValueError('`style` should be one of {}: got {!r}'.format( MAZE_STYLES, style)) return {name: os.path.join(ROOT_DIR, style, 'wall_{:s}_d.png'.format(name)) for name in WALL_TEXTURES[style]} FLOOR_TEXTURES = { 'style_01': ('blue_bright', 'blue', 'blue_team', 'orange_bright', 'orange', 'red_team'), 'style_02': ('blue_bright', 'blue', 'green_bright', 'green', 'orange'), 'style_03': ('blue_bright', 'blue', 'green_bright', 'green', 'orange', 'purple', 'red'), 'style_04': ('blue_bright', 'blue', 'cyan', 'dorange', 'orange_bright', 'orange'), 'style_05': ('blue_bright', 'blue', 'orange_bright', 'orange') } def get_floor_texture_paths(style): if style not in MAZE_STYLES: raise ValueError('`style` should be one of {}: got {!r}'.format( MAZE_STYLES, style)) return {name: os.path.join(ROOT_DIR, style, 'floor_{:s}_d.png'.format(name)) for name in FLOOR_TEXTURES[style]}
labmaze-master
labmaze/assets/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for labmaze.assets.""" from absl.testing import absltest from labmaze import assets # DO NOT REMOVE THIS LINE -- COPYBARA: from google_internal import resources def get_file_contents(path): with open(path, 'rb') as f: return f.read() class AssetsTest(absltest.TestCase): def testHasSkyTextures(self): for style in assets.SKY_STYLES: texture_paths = assets.get_sky_texture_paths(style) self.assertTrue(get_file_contents(texture_paths.left)) self.assertTrue(get_file_contents(texture_paths.right)) self.assertTrue(get_file_contents(texture_paths.up)) self.assertTrue(get_file_contents(texture_paths.down)) self.assertTrue(get_file_contents(texture_paths.front)) self.assertTrue(get_file_contents(texture_paths.back)) def testHasWallTextures(self): for style in assets.MAZE_STYLES: texture_paths = assets.get_wall_texture_paths(style) for texture_name in assets.WALL_TEXTURES[style]: self.assertTrue(get_file_contents(texture_paths[texture_name])) def testHasFloorTextures(self): for style in assets.MAZE_STYLES: texture_paths = assets.get_floor_texture_paths(style) for texture_name in assets.FLOOR_TEXTURES[style]: self.assertTrue(get_file_contents(texture_paths[texture_name])) if __name__ == '__main__': absltest.main()
labmaze-master
labmaze/assets/assets_test.py
# Copyright 2021 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class which gives gan grads with explicit regularization.""" import functools import jax import jax.numpy as jnp from dd_two_player_games import drift_utils from dd_two_player_games import gan from dd_two_player_games import utils def explicit_regularization_grads( regularizer_fns, coeffs, params, state, data_batch, rng, is_training, attr_name): """Accumulate explicit regularization gradients.""" player_regularizer_fns = getattr(regularizer_fns, attr_name) player_coeffs = getattr(coeffs, attr_name) assert isinstance( player_regularizer_fns, drift_utils.PlayerRegularizationTerms) assert isinstance( player_coeffs, drift_utils.PlayerRegularizationTerms) reg_args = (params, state, data_batch, rng, is_training) accumulator = jax.tree_map(jnp.zeros_like, getattr(params, attr_name)) for grad_reg_fn, coeff in zip(player_regularizer_fns, player_coeffs): accumulator = utils.add_trees_with_coeff( acc=accumulator, mul=grad_reg_fn(*reg_args), coeff=coeff) return accumulator, utils.any_non_zero(player_coeffs) class GANGradsCalculator(object): """Utility class to compute GAN gradients with explicit regularization.""" def __init__(self, gan_model, estimator_fn, use_pmean=True): super(GANGradsCalculator, self).__init__() self._gan = gan_model self._estimator_fn = estimator_fn self._use_pmean = use_pmean self._maybe_pmean = jax.lax.pmean if use_pmean else lambda x, axis_name: x @property def regularisation_grad_fns(self): """Create the regularisation functions.""" disc_reg_grad_fns = drift_utils.PlayerRegularizationTerms( self_norm=self.disc_grads_disc_norm, other_norm=self.disc_grads_gen_norm, other_dot_prod=self.disc_grads_gen_dot_prod) gen_reg_grad_fns = drift_utils.PlayerRegularizationTerms( self_norm=self.gen_grads_gen_norm, other_norm=self.gen_grads_disc_norm, other_dot_prod=self.gen_grads_disc_dot_prod) return gan.GANTuple(disc=disc_reg_grad_fns, gen=gen_reg_grad_fns) @property def disc_grads_disc_norm(self): return self._estimator_fn( self._gan.disc_loss_fn_disc_grads, self._gan.disc_loss_fn_disc_grads, 'disc') @property def disc_grads_gen_norm(self): return self._estimator_fn( self._gan.gen_loss_fn_gen_grads, self._gan.gen_loss_fn_gen_grads, 'disc') @property def disc_grads_gen_dot_prod(self): # Note: order matters due to the stop grad. return self._estimator_fn( self._gan.disc_loss_fn_gen_grads, self._gan.gen_loss_fn_gen_grads, 'disc') @property def gen_grads_gen_norm(self): return self._estimator_fn( self._gan.gen_loss_fn_gen_grads, self._gan.gen_loss_fn_gen_grads, 'gen') @property def gen_grads_disc_norm(self): return self._estimator_fn( self._gan.disc_loss_fn_disc_grads, self._gan.disc_loss_fn_disc_grads, 'gen') @property def gen_grads_disc_dot_prod(self): # Note: order matters due to the stop grad. return self._estimator_fn( self._gan.gen_loss_fn_disc_grads, self._gan.disc_loss_fn_disc_grads, 'gen') @functools.partial(jax.jit, static_argnums=(0, 5, 6)) def disc_grads( self, params, state, data_batch, rng_disc, is_training, coeffs): """Compute discriminator gradients.""" disc_loss_grads, disc_gan_loss_aux = jax.grad( self._gan.disc_loss, has_aux=True)( params, state, data_batch, rng_disc, is_training) disc_loss_grads = disc_loss_grads.disc disc_reg_grads, non_zero_coeff = self.disc_explicit_regularization_grads( params, state, data_batch, rng_disc, is_training, coeffs) disc_grads = utils.add_trees_with_coeff( acc=disc_loss_grads, mul=disc_reg_grads, coeff=non_zero_coeff) disc_grads = self._maybe_pmean(disc_grads, axis_name='i') return disc_grads, disc_gan_loss_aux @functools.partial(jax.jit, static_argnums=(0, 5, 6)) def gen_grads( self, params, state, data_batch, rng_gen, is_training, coeffs): """Compute generator gradients.""" gen_loss_grads, gen_gan_loss_aux = jax.grad( self._gan.gen_loss, has_aux=True)( params, state, data_batch, rng_gen, is_training) gen_loss_grads = gen_loss_grads.gen gen_reg_grads, non_zero_coeff = self.gen_explicit_regularization_grads( params, state, data_batch, rng_gen, is_training, coeffs) gen_grads = utils.add_trees_with_coeff( acc=gen_loss_grads, mul=gen_reg_grads, coeff=non_zero_coeff) gen_grads = self._maybe_pmean(gen_grads, axis_name='i') return gen_grads, gen_gan_loss_aux def disc_explicit_regularization_grads( self, params, state, data_batch, rng_disc, is_training, coeffs): return explicit_regularization_grads( self.regularisation_grad_fns, coeffs, params, state, data_batch, rng_disc, is_training, 'disc') def gen_explicit_regularization_grads( self, params, state, data_batch, rng_gen, is_training, coeffs): return explicit_regularization_grads( self.regularisation_grad_fns, coeffs, params, state, data_batch, rng_gen, is_training, 'gen') def both_player_grads( self, params, state, disc_data_batch, gen_data_batch, rng_disc, rng_gen, is_training, exp_reg_coeffs): """Compute the gradients for both players and return them as a GANTuple.""" disc_grads, disc_aux = self.disc_grads( params, state, disc_data_batch, rng_disc, is_training, exp_reg_coeffs) gen_grads, gen_aux = self.gen_grads( params, state, gen_data_batch, rng_gen, is_training, exp_reg_coeffs) grads = gan.GANTuple(disc=disc_grads, gen=gen_grads) aux = gan.GANTuple(disc=disc_aux, gen=gen_aux) return grads, aux
discretisation_drift-main
dd_two_player_games/gan_grads_calculator.py
# Copyright 2021 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model utilities.""" import collections import immutabledict import jax class Sampler(object): """Sampler used for obtaining evaluation metric.""" def __init__(self, model, params, state, pmap=True): self.model = model self.params = params self.state = state self.pmap = pmap def sample_batch(self, batch_size, rng): gen_kwargs = immutabledict.immutabledict( collections.OrderedDict([('is_training', False), ('test_local_stats', False)])) sample_fn = self.model.sample if self.pmap: sample_fn = jax.pmap( sample_fn, axis_name='i', static_broadcasted_argnums=(3, 4)) return sample_fn( self.params.gen, self.state.players.gen, rng, batch_size, gen_kwargs)[0]
discretisation_drift-main
dd_two_player_games/model_utils.py
# Copyright 2021 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code to glue together the two GAN players.""" import collections import functools import haiku as hk import immutabledict import jax import jax.numpy as jnp GANTuple = collections.namedtuple('GANTuple', ['disc', 'gen']) GANPenalty = collections.namedtuple('GANPenalty', ['fn', 'coeff']) GANState = collections.namedtuple('GANState', ['players', 'param_transforms']) GANLossAux = collections.namedtuple( 'GANLossAux', ['state', 'log_dict', 'loss_components']) def get_player_fn(player, player_kwargs): def player_fn(*args, **kwargs): return player(**player_kwargs)(*args, **kwargs) return player_fn def filter_out_new_training_state(new_state, old_state): """Keeps only the training state from the old state. The training state is defined as anything that will be used during training time. All the state used at training time will be taken from `old_state`, while states needed for evaluation (such as batch norm statistics), will be kept from `new_state`. Filtering states this way allows us to have the best evaluation statistics while not leaking updates between the two players. Args: new_state: Dict composing of the new states (module_name to state). old_state: Dict composing of the old states (module_name to state). Returns: The resulting state after choosing components from old_state and new_state based on their interaction with training. """ assert new_state.keys() == old_state.keys() out = collections.defaultdict(dict) for module_name in new_state.keys(): if 'batch_norm' in module_name: out[module_name] = new_state[module_name] else: out[module_name] = old_state[module_name] return hk.data_structures.to_haiku_dict(out) class GAN: """A module which applies the relevant losses to the disc and generator.""" def __init__( self, players_hk, losses, penalties, player_param_transformers, players_kwargs, num_latents): """Initialises the module. Args: players_hk: A GANTuple containing the haiku module constructors to be passed to `hk.transform_with_state`. The discriminator is assumed to produce the right output which can then be passed into the corresponding losses. losses: A GANTuple containing the losses used to train the model. The current API assumes that losses both for the discriminator and generator are of the form: ```def loss(discriminator_real_output, discriminator_sample_output): ... return loss ``` where `discriminator_real_output`, `discriminator_sample_output` are the discriminator output on real data and fake data respectively. The loss returned is a jax scalar. penalties: A GANTuple containing optional GANPenalty that can be used for training. If no penalty should be used for one of the players, pass None. player_param_transformers: A GANTuple containing parameter transformers that are applied before a forward pass of the players. players_kwargs: A GANTuple containing the keyword args to build the two players. num_latents: Integer, the number of latents used. """ # Define the Haiku network transforms. gen_transform = hk.without_apply_rng( hk.transform_with_state( get_player_fn(players_hk.gen, players_kwargs.gen))) disc_transform = hk.without_apply_rng( hk.transform_with_state( get_player_fn(players_hk.disc, players_kwargs.disc))) if player_param_transformers.disc: self._disc_param_transform = hk.without_apply_rng( hk.transform_with_state( get_player_fn(player_param_transformers.disc, {}))) else: self._disc_param_transform = None self._transforms = GANTuple(disc=disc_transform, gen=gen_transform) self._penalties = penalties self._losses = losses self._num_latents = num_latents def initial_params(self, rng, batch): """Returns the initial parameters.""" # Generate dummy latents for the generator. dummy_latents = jnp.zeros((batch.shape[0], self._num_latents)) # Get initial network parameters. rng_gen, rng_disc, rng_disc_transform = jax.random.split(rng, 3) gen_init_params, gen_init_state = self._transforms.gen.init( rng_gen, dummy_latents) disc_init_params, disc_init_state = self._transforms.disc.init( rng_disc, batch) init_params = GANTuple(gen=gen_init_params, disc=disc_init_params) init_players_state = GANTuple(gen=gen_init_state, disc=disc_init_state) if self._disc_param_transform: _, init_disc_params_transform_state = self._disc_param_transform.init( rng_disc_transform, init_params.disc) else: init_disc_params_transform_state = None init_param_transforms_states = GANTuple( disc=init_disc_params_transform_state, gen=None) init_state = GANState( players=init_players_state, param_transforms=init_param_transforms_states) return init_params, init_state @functools.partial(jax.jit, static_argnums=(0, 4, 5)) def sample(self, gen_params, gen_state, rng, num_samples, gen_kwargs): """Generates images from noise latents.""" latents = jax.random.normal(rng, shape=(num_samples, self._num_latents)) return self._transforms.gen.apply( gen_params, gen_state, latents, **gen_kwargs) @functools.partial(jax.jit, static_argnums=(0, 4, 5)) def disc_forward(self, disc_params, state, disc_inputs, is_training, update_stats): """Discriminator forward pass with optional parameter transform.""" if self._disc_param_transform: disc_params, disc_params_transform_state = self._disc_param_transform.apply( {}, state.param_transforms.disc, disc_params, update_stats=update_stats) else: disc_params_transform_state = () disc_outputs, disc_state = self._transforms.disc.apply( disc_params, state.players.disc, disc_inputs, is_training) return disc_outputs, disc_state, disc_params, disc_params_transform_state @functools.partial(jax.jit, static_argnums=(0, 5)) def disc_loss(self, params, state, data_batch, rng, is_training): """Compute discriminator loss. Only updates the discriminator state.""" num_data = data_batch.shape[0] gen_kwargs = immutabledict.immutabledict( collections.OrderedDict([('is_training', is_training)])) samples, gen_state = self.sample( params.gen, state.players.gen, rng, num_data, gen_kwargs) # Update the part of the state which is used for evaluation, not training. # During training we do not want to have the players update each others' # state. # For example, we can update BatchNorm state since this is not used in # training, but we do not want to update SpectralNormalization state. gen_state = filter_out_new_training_state(gen_state, state.players.gen) # We merge the inputs to the discriminator and do it one pass in order # to ensure that we update the discriminator state only once and that # the real data and fake data obtain the same state. disc_inputs = jnp.concatenate((data_batch, samples), axis=0) (disc_outputs, disc_state, new_disc_params, disc_params_transform_state) = self.disc_forward( params.disc, state, disc_inputs, is_training, is_training) data_disc_output, samples_disc_output = jnp.split( disc_outputs, [data_batch.shape[0],], axis=0) loss, loss_components = self._losses.disc( data_disc_output, samples_disc_output) if self._penalties.disc: penalty_fn = self._penalties.disc.fn penalty_coeff = self._penalties.disc.coeff def disc_apply(x): # Note: we do not update the state from the penalty run. return self._transforms.disc.apply( new_disc_params, disc_state, x, is_training)[0] loss += penalty_coeff * penalty_fn(disc_apply, rng, data_batch, samples) player_states = GANTuple(gen=gen_state, disc=disc_state) param_transforms_states = state.param_transforms._replace( disc=disc_params_transform_state) state = GANState(players=player_states, param_transforms=param_transforms_states) logged_dict = {'disc_loss': loss} aux = GANLossAux( state=state, log_dict=logged_dict, loss_components=loss_components) return loss, aux @functools.partial(jax.jit, static_argnums=(0, 5)) def gen_loss(self, params, state, data_batch, rng, is_training): """Compute generator loss. Only updates generator state.""" num_data = data_batch.shape[0] gen_kwargs = immutabledict.immutabledict( collections.OrderedDict([('is_training', is_training)])) samples, gen_state = self.sample( params.gen, state.players.gen, rng, num_data, gen_kwargs) # We merge the inputs to the discriminator and do it one pass in order # to ensure that we update the discriminator state only once and that # the real data and fake data obtain the same state. disc_inputs = jnp.concatenate((data_batch, samples), axis=0) # Set is_training to the given values for the discriminator in case it has # state that changes during training. We pass update_stats to be False since # we do not want to update the discriminator parameter transformers in # the generator forward pass. (disc_outputs, disc_state, _, _) = self.disc_forward( params.disc, state, disc_inputs, is_training, False) data_disc_output, samples_disc_output = jnp.split( disc_outputs, [data_batch.shape[0],], axis=0) # Update the part of the state which is used for evaluation, not training. # During training we do not want to have the players update each others' # state. # For example, we can update BatchNorm state since this is not used in # training, but we do not want to update SpectralNormalization state. disc_state = filter_out_new_training_state(disc_state, state.players.disc) player_states = GANTuple(gen=gen_state, disc=disc_state) # No change to param transforms. state = state._replace(players=player_states) loss, loss_components = self._losses.gen( data_disc_output, samples_disc_output) logged_dict = {'gen_loss': loss} aux = GANLossAux( state=state, log_dict=logged_dict, loss_components=loss_components) return loss, aux @property def disc_loss_grad_fn(self): return jax.grad(lambda *args: self.disc_loss(*args)[0]) @property def gen_loss_grad_fn(self): return jax.grad(lambda *args: self.gen_loss(*args)[0]) def disc_loss_fn_disc_grads(self, *args): """Computes discriminator loss gradients wrt to discriminator params.""" return self.disc_loss_grad_fn(*args).disc def disc_loss_fn_gen_grads(self, *args): """Computes discriminator loss gradients wrt to generator params.""" return self.disc_loss_grad_fn(*args).gen def gen_loss_fn_disc_grads(self, *args): """Computes generator loss gradients wrt to discriminator params.""" return self.gen_loss_grad_fn(*args).disc def gen_loss_fn_gen_grads(self, *args): """Computes loss loss gradients wrt to generator params.""" return self.gen_loss_grad_fn(*args).gen @property def disc_loss_components(self): return lambda *args: self.disc_loss(*args)[1].loss_components @property def gen_loss_components(self): return lambda *args: self.gen_loss(*args)[1].loss_components
discretisation_drift-main
dd_two_player_games/gan.py
# Copyright 2021 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config for training GANs using Adam as a baseline.""" from jaxline import base_config from ml_collections import config_dict def get_config(): """Return config object for training.""" config = base_config.get_base_config() ## Experiment config. config.experiment_kwargs = config_dict.ConfigDict( dict( config=dict( random_seed=0, dataset='cifar10', data_processor='ImageProcessor', optimizers=dict( discriminator=dict( name='adam', lr=1e-4, kwargs=dict( b1=0.5, b2=0.999)), generator=dict( name='adam', lr=1e-4, kwargs=dict( b1=0.5, b2=0.999)), ), nets=dict( # See `nets.py` discriminator='CifarDiscriminator', disc_kwargs=dict(), generator='CifarGenerator', gen_kwargs=dict(), ), losses=dict( # See `losses.py` discriminator='discriminator_goodfellow_loss', generator='generator_saturating_loss', ), penalties=dict( # See `losses.py` discriminator=None, generator=None, ), param_transformers=dict( # See `nets.py` # discriminator='spectral_norm', discriminator='no_op', generator=None, ), training=dict( simultaneous_updates=False, runge_kutta_updates=False, estimator_fn='unbiased_estimate_fn_lowest_variance', # One of: disc_first, gen_first. alternating_player_order='disc_first', batch_size=128, rk_disc_regularizer_weight_coeff=0., grad_regularizes=dict( dd_coeffs_multiplier=dict( disc=dict( self_norm=0.0, other_norm=0.0, other_dot_prod=0.0, ), gen=dict( self_norm=0.0, other_norm=0.0, other_dot_prod=0.0, )), explicit_non_dd_coeffs=dict( disc=dict( self_norm=0.0, other_norm=0.0, other_dot_prod=0.0, ), gen=dict( self_norm=0.0, other_norm=0.0, other_dot_prod=0.0, ))), num_gen_updates=1, num_disc_updates=1, num_latents=128), eval=dict( run_image_metrics=True, batch_size=16, # The number of data/sample splits to be used for evaluation. num_eval_splits=5, num_inception_images=10000), ))) ## Training loop config. config.interval_type = 'steps' config.training_steps = int(6e5) config.log_tensors_interval = 100 config.save_checkpoint_interval = 100 config.train_checkpoint_all_hosts = False # Debugging info # Set the `init_ckpt_path` to a trained model for local training. # config.init_ckpt_path = '' # Change to evaluate a specific checkpoint config.restore_path = '' config.checkpoint_dir = '/tmp/dd_two_player_games' config.eval_specific_checkpoint_dir = '' # Change to False if you want to test checkpointing. config.delete_existing_local_checkpoints = True config.best_model_eval_metric = 'IS_mean' return config
discretisation_drift-main
dd_two_player_games/cifar_config.py