python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tensorflow op that clips gradient for backwards pass.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf @tf.custom_gradient def _clip_gradient(x, clip_value_min, clip_value_max): def grad(dy): return tf.clip_by_value(dy, clip_value_min, clip_value_max), None, None return x, grad def clip_gradient(net, clip_value_min, clip_value_max, name=None): """Clips respective gradients of a given tensor. Acts as identity for the forward pass, but clips gradient tensor element-wise by value during the backward pass. Any gradient values less than `clip_value_min` or greater than `clip_values_max` are set to the respective limit values. Args: net: A `tf.Tensor`. clip_value_min: A 0-D Tensor or scalar. The minimum value to clip by. clip_value_max: A 0-D Tensor or scalar. The maximum value to clip by. name: A name for the operation (optional, default 'clip_gradient'). Returns: A `tf.Tensor` with the same type as the input tensor. Raises: ValueError: If `net` dtype is non-float. """ if not net.dtype.is_floating: raise ValueError("clip_gradient does not support non-float `net` inputs.") with tf.name_scope(name, "clip_gradient", values=[net]): dtype = net.dtype.base_dtype # Convert ref dtypes to regular dtypes. min_tensor = tf.convert_to_tensor(clip_value_min, dtype=dtype) max_tensor = tf.convert_to_tensor(clip_value_max, dtype=dtype) output = _clip_gradient(net, min_tensor, max_tensor) return output
sonnet-1
sonnet/python/modules/clip_gradient.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Basic Modules for TensorFlow snt. Modules defining the simplest building blocks for Neural Networks. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numbers # Dependency imports import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from sonnet.python.modules import base from sonnet.python.modules import util import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest def merge_leading_dims(array_or_tensor, n_dims=2): """Merge the first dimensions of a tensor. Args: array_or_tensor: Tensor to have its first dimensions merged. Can also be an array or numerical value, which will be converted to a tensor for batch application, if needed. n_dims: Number of dimensions to merge. Returns: Either the input value converted to a Tensor, with the requested dimensions merged, or the unmodified input value if the input has less than `n_dims` dimensions. Raises: ValueError: If the rank of `array_or_tensor` is not well-defined. """ tensor = tf.convert_to_tensor(array_or_tensor) tensor_shape_static = tensor.get_shape() # Check if the rank of the input tensor is well-defined. if tensor_shape_static.dims is None: raise ValueError("Can't merge leading dimensions of tensor of unknown " "rank.") tensor_shape_list = tensor_shape_static.as_list() # We can only merge the n_dims leading dimensions if the rank of the given # tensor is sufficiently large. if n_dims > len(tensor_shape_list): return array_or_tensor if tensor_shape_static.is_fully_defined(): new_shape = ( [np.prod(tensor_shape_list[:n_dims])] + tensor_shape_list[n_dims:]) return tf.reshape(tensor, new_shape) # Shape can't be inferred statically. tensor_shape = tf.shape(tensor) new_first_dim = tf.reduce_prod(tensor_shape[:n_dims], keepdims=True) other_dims = tensor_shape[n_dims:] new_size = tf.concat([new_first_dim, other_dims], 0) result = tf.reshape(tensor, new_size) if all(value is not None for value in tensor_shape_list[:n_dims]): merged_leading_size = np.prod(tensor_shape_list[:n_dims]) else: merged_leading_size = None # We need to set the result size of this, as otherwise we won't be able to # pass to e.g. a Linear. Here we need to know at least the rank of the tensor. result.set_shape([merged_leading_size] + tensor_shape_list[n_dims:]) return result def split_leading_dim(tensor, inputs, n_dims=2): """Split the first dimension of a tensor. Args: tensor: Tensor to have its first dimension split. inputs: Original reference input to look the dimensions of. n_dims: Number of dimensions to split. Returns: The input tensor, with its first dimension split. """ input_shape_static = inputs.get_shape() input_shape_list = input_shape_static.as_list() tensor_shape_static = tensor.get_shape() tensor_shape_list = tensor_shape_static.as_list() if (input_shape_static.is_fully_defined() and tensor_shape_static.is_fully_defined()): new_shape = input_shape_list[:n_dims] + tensor_shape_list[1:] return tf.reshape(tensor, new_shape) # Shape can't be inferred statically. dims_after_first = tf.shape(tensor)[1:] split_sizes = tf.shape(inputs)[:n_dims] known_split_sizes = input_shape_list[:n_dims] known_dims_after_first = tensor_shape_list[1:] output_size = tf.concat([split_sizes, dims_after_first], 0) result = tf.reshape(tensor, output_size) result.set_shape(known_split_sizes + known_dims_after_first) return result def create_linear_initializer(input_size, dtype=tf.float32): """Returns a default initializer for weights of a linear module.""" stddev = 1 / math.sqrt(input_size) return tf.truncated_normal_initializer(stddev=stddev, dtype=dtype) def create_bias_initializer(unused_bias_shape, dtype=tf.float32): """Returns a default initializer for the biases of a linear/AddBias module.""" return tf.zeros_initializer(dtype=dtype) class Linear(base.AbstractModule, base.Transposable): """Linear module, optionally including bias.""" def __init__(self, output_size, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, allow_many_batch_dims=False, name="linear"): """Constructs a linear module. Linear map from `[batch_size, input_size]` -> `[batch_size, output_size]`. One can also use this for inputs with multiple batch dimensions, by setting `allow_many_batch_dims=True`. Then this maps `[batch_dim_1, ..., batch_dim_{n-1}, input_size]` -> `[batch_dim_1, ..., batch_dim_{n-1}, output_size]`. In allow_many_batch_dims mode, this operation is equivalent to flattening the n-1 leading dimensions of the input and applying a 2-D linear. However it avoids the flatten and reshape operation. Args: output_size: Output dimensionality. `output_size` can be either an integer or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_size can be called, returning an integer, when build is called. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing initializers to initialize the weights (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the weights (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. allow_many_batch_dims: If true, enables the use of a batched matmul over higher-dimensional inputs. The linear is applied to the final dimension. Namely instead of a `[batch_size, dim]` 2-D input, one can have a `[batch_dim_1, batch_dim_2, ..., batch_dim_{N-1}, input_size]` N-D input which will be mapped to a N-D `[batch_dim_1, batch_dim_2, ..., batch_dim_{N-1}, output_size]` output. name: Name of the module. Raises: KeyError: If `initializers`, `partitioners` or `regularizers` contains any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. """ super(Linear, self).__init__(custom_getter=custom_getter, name=name) self._output_size = output_size self._use_bias = use_bias self._input_shape = None self._w = None self._b = None self._allow_many_batch_dims = allow_many_batch_dims self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias) self._initializers = util.check_initializers( initializers, self.possible_keys) self._partitioners = util.check_partitioners( partitioners, self.possible_keys) self._regularizers = util.check_regularizers( regularizers, self.possible_keys) @classmethod def get_possible_initializer_keys(cls, use_bias=True): return {"w", "b"} if use_bias else {"w"} def _build(self, inputs): """Connects the Linear module into the graph, with input Tensor `inputs`. Linear maps the final dimension. If this is not the first time the module has been connected to the graph, the Tensor provided here must have the same final dimension, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs: A N-D Tensor of size [dim_1, ..., dim_{N-1}, input_size]. Returns: A N-D Tensor of size [dim_1, ..., dim_{N-1}, output_size]. Raises: base.IncompatibleShapeError: If the input is not a 2-D `Tensor` with the size of the second dimension specified and `allow_many_batch_dims` is set to False. base.IncompatibleShapeError: If reconnecting an already connected module into the graph, and the shape of the input is not compatible with previous inputs. """ input_shape = tuple(inputs.get_shape().as_list()) if len(input_shape) != 2 and not self._allow_many_batch_dims: raise base.IncompatibleShapeError( "{}: rank of shape must be 2 not: {}. To apply a batched linear " "over higher-dimensional inputs, set `allow_many_batch_dims=True`" .format(self.scope_name, len(input_shape))) input_size = input_shape[-1] if input_size is None: raise base.IncompatibleShapeError( "{}: Input size must be specified at module build time".format( self.scope_name)) if self._input_shape is not None and (input_size != self._input_shape[-1]): if len(self._input_shape) > 2: raise base.IncompatibleShapeError( "{}: Input shape must be [..., {}] not: [..., {}]" .format(self.scope_name, self._input_shape[-1], input_size)) else: raise base.IncompatibleShapeError( "{}: Input shape must be [B, {}] not [B, {}]" .format(self.scope_name, self._input_shape[-1], input_size)) self._input_shape = input_shape dtype = inputs.dtype if "w" not in self._initializers: self._initializers["w"] = create_linear_initializer(input_size, dtype) if "b" not in self._initializers and self._use_bias: self._initializers["b"] = create_bias_initializer(input_size, dtype) weight_shape = (input_size, self.output_size) self._w = tf.get_variable("w", shape=weight_shape, dtype=dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) outputs = tf.matmul(inputs, self._w) if self._use_bias: bias_shape = (self.output_size,) self._b = tf.get_variable("b", shape=bias_shape, dtype=dtype, initializer=self._initializers["b"], partitioner=self._partitioners.get("b", None), regularizer=self._regularizers.get("b", None)) outputs += self._b return outputs @property def w(self): """Returns the Variable containing the weight matrix. Returns: Variable object containing the weights, from the most recent __call__. Raises: base.NotConnectedError: If the module has not been connected to the graph yet, meaning the variables do not exist. """ self._ensure_is_connected() return self._w @property def b(self): """Returns the Variable containing the bias. Returns: Variable object containing the bias, from the most recent __call__. Raises: base.NotConnectedError: If the module has not been connected to the graph yet, meaning the variables do not exist. AttributeError: If the module does not use bias. """ self._ensure_is_connected() if not self._use_bias: raise AttributeError( "No bias Variable in Linear Module when `use_bias=False`.") return self._b @property def output_size(self): """Returns the module output size.""" if callable(self._output_size): self._output_size = self._output_size() return self._output_size @property def has_bias(self): """Returns `True` if bias Variable is present in the module.""" return self._use_bias @property def initializers(self): """Returns the initializers dictionary.""" return self._initializers @property def partitioners(self): """Returns the partitioners dictionary.""" return self._partitioners @property def regularizers(self): """Returns the regularizers dictionary.""" return self._regularizers def clone(self, name=None): """Returns a cloned `Linear` module. Args: name: Optional string assigning name of cloned module. The default name is constructed by appending "_clone" to `self.module_name`. Returns: Cloned `Linear` module. """ if name is None: name = self.module_name + "_clone" return Linear(output_size=self.output_size, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, name=name) # Implements Transposable interface. @property def input_shape(self): """Returns shape of input `Tensor` passed at last call to `build`.""" self._ensure_is_connected() return self._input_shape # Implements Transposable interface def transpose(self, name=None): """Returns transposed `Linear` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.module_name`. Returns: Transposed `Linear` module. """ if name is None: name = self.module_name + "_transpose" return Linear(output_size=lambda: self.input_shape[-1], use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, name=name) class ConcatLinear(base.AbstractModule): """Linear transformation of a number of concatenated inputs. This class ensures that at initialisation, the relative importance of all inputs are similar even if they have very different sizes. This assumes that all inputs have roughly the same range of values. For example, the following code also concatenates a list of inputs and applies a linear transform: ``` inp = tf.concat(input_list, axis=-1) return snt.Linear(output_size)(inp) ``` The issue with the above code is that if `input_list` is made of two Tensors of very different shapes such as `[batch_size, 1]` and `[batch_size, 128]`, then almost no signal will be received from the first Tensor. This class works around this problem by using a weight matrix with relatively larger coefficients for the first Tensor than for the second one. """ def __init__(self, output_size, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name="concat_linear"): """Constructs a ConcatLinear module. Args: output_size: Output dimensionality. `output_size` can be either an integer or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_size can be called, returning an integer, when build is called. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing initializers to initialize the weights (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the weights (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. """ super(ConcatLinear, self).__init__(name=name, custom_getter=custom_getter) self._output_size = output_size self._use_bias = use_bias self._initializers = initializers self._partitioners = partitioners self._regularizers = regularizers def _build(self, inputs_list): """Connects the module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided here must have the same final dimensions as when called the first time, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs_list: A list of 2D Tensors of rank 2, with leading batch dimension. Returns: A 2D Tensor of size [batch_size, output_size]. """ outputs = [] for idx, tensor in enumerate(inputs_list): outputs.append( Linear( self._output_size, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, # Since we are interpreting this as 'one big linear', we only need # one bias. use_bias=(idx == 0 and self._use_bias))(tensor)) return tf.add_n(outputs) def calculate_bias_shape(input_shape, bias_dims): """Calculate `bias_shape` based on the `input_shape` and `bias_dims`. Args: input_shape: Shape of the input being passed into the module. The leading dimension is the minibatch size. bias_dims: The dimensions that bias should be applied over. The remaining dimensions will get broadcasted over. Returns: bias_shape: Tuple corresponding to the shape of bias Variable to create. Raises: ValueError: If the user attempts to add bias over the minibatch dimension, e.g. `bias_dims=[0]`. """ input_rank = len(input_shape) # If None, default is to use all dimensions. if bias_dims is None: return input_shape[1:] # If empty list, use a scalar bias. elif not bias_dims: return () # Otherwise, calculate bias_shape from bias_dims. else: bias_shape = [1] * input_rank # Populate bias dimensions. for dim in bias_dims: dim %= input_rank if dim == 0: raise ValueError("Cannot apply bias across the minibatch dimension.") bias_shape[dim] = input_shape[dim] # Strip leading unit dimensions. start = input_rank for dim in xrange(1, input_rank): if bias_shape[dim] != 1: start = dim break return tuple(bias_shape[start:]) # Do not apply across minibatch dimension. class AddBias(base.AbstractModule, base.Transposable): """AddBias module.""" POSSIBLE_INITIALIZER_KEYS = {"b"} def __init__(self, output_shape=None, bias_dims=None, initializers=None, partitioners=None, regularizers=None, name="add"): """Constructs an AddBias module that supports broadcasting. Args: output_shape: Output dimensionality. `output_shape` can be either `None`, a `tuple`, or a `callable`. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that `output_shape` can be called, returning a tuple, when build is called. If `output_shape` is left as `None`, the size will be directly inferred by the input. bias_dims: List of which dimensions to retain from the input shape when constructing the bias. The remaining dimensions will get broadcasted over (given size of 1), and leading dimensions will be removed completely. For example, for an input of [batch_size, dim1_size, dim2_size, dim3_size] and `bias_dims=[1, 3]`, the resulting bias will have shape [dim1_size, 1, dim3_size]. The default is to retain all dimensions apart from the minibatch dimension. Trying to retain the bias shape over the minibatch dimension, e.g. `bias_dims=[0]`, will result in an error at build time. See the 'Example Usage' section below for more information. initializers: Optional dict containing ops to initialize the biases (with key 'b'). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing a partitioner to partition the bias (with key 'b'). As a default, no partitioner is used. regularizers: Optional dict containing regularizers of the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. name: Name of the module. Example Usage: ```python # Create a 4D input Tensor. input = tf.random_normal( shape=(batch_size, dim1_size, dim2_size, dim3_size))) # Create a scalar bias: scalar_bias = snt.AddBias(bias_dims=[]) scalar_bias_output = scalar_bias(input) scalar_bias.b.get_shape() # () # Create a bias over all non-minibatch dimensions: all_bias = snt.AddBias() # or snt.AddBias(bias_dims=None) all_bias_output = all_bias(input) all_bias.b.get_shape() # (dim1_size, dim2_size, dim3_size) # Create a bias over the last non-minibatch dimension: last_bias = snt.AddBias(bias_dims=[-1]) last_bias_output = last_bias(input) last_bias.b.get_shape() # (dim3_size) # Create a bias over the first non-minibatch dimension: first_bias = snt.AddBias(bias_dims=[1]) first_bias_output = first_bias(input) first_bias.b.get_shape() # (dim1_size, 1, 1) # Subtract and later add the same learned bias: bias = snt.AddBias() hidden1 = bias(input, multiplier=-1) # ... reconstructed_input = bias(hidden4) ``` Raises: KeyError: If `initializers` contains any keys other than 'b'. KeyError: If `partitioners` contains any keys other than 'b'. KeyError: If `regularizers` contains any keys other than 'b'. TypeError: If any of the given initializers are not callable. TypeError: If any of the given partitioners are not callable. TypeError: If any of the given regularizers are not callable. """ super(AddBias, self).__init__(name=name) self._output_shape = output_shape self._input_shape = None self._bias_dims = bias_dims self._b = None self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _build(self, inputs, multiplier=1): """Connects the Add module into the graph, with input Tensor `inputs`. Args: inputs: A Tensor of size `[batch_size, input_size1, ...]`. multiplier: A scalar or Tensor which the bias term is multiplied by before adding it to `inputs`. Anything which works in the expression `bias * multiplier` is acceptable here. This may be useful if you want to add a bias in one place and subtract the same bias in another place via `multiplier=-1`. Returns: A Tensor of size `[batch_size, input_size1, ...]`. Raises: base.IncompatibleShapeError: If the input is not a >= 2D `Tensor`. base.IncompatibleShapeError: If connecting the module into the graph any time after the first time, and the inferred size of the input does not match previous invocations. base.IncompatibleShapeError: If the `output_shape` has been specified but it does not match the input_shape`. base.ParentNotBuiltError: If the module is a transposed and the original untransposed module has not been built. """ input_shape = tuple(inputs.get_shape().as_list()) bias_shape = calculate_bias_shape(input_shape, self._bias_dims) # Check always contains minibatched input. if len(input_shape) < 2: raise base.IncompatibleShapeError( "Rank of input shape must be >=2 not: {}.".format(len(input_shape))) # Check previous input size is same as new input size. if (self._input_shape is not None and input_shape[1:] != self._input_shape[1:]): raise base.IncompatibleShapeError("Input shape has changed.") # If transposed, make sure that the original Module is built. if callable(self._output_shape): self._output_shape = self._output_shape() if self._output_shape is None: raise base.ParentNotBuiltError( "Build the original untransposed module before building this one.") # If output_shape specified, check that it matches input_shape. if (self._output_shape is not None and self._output_shape[1:] != input_shape[1:]): raise base.IncompatibleShapeError( "Input shape must be {} not: {}.".format(self._output_shape, input_shape[1])) self._input_shape = input_shape dtype = inputs.dtype if "b" not in self._initializers: self._initializers["b"] = create_bias_initializer(bias_shape, dtype) self._b = tf.get_variable( "b", shape=bias_shape, dtype=dtype, initializer=self._initializers["b"], partitioner=self._partitioners.get("b", None), regularizer=self._regularizers.get("b", None)) bias = self._b if multiplier != 1: bias = bias * multiplier # pylint: disable=g-no-augmented-assignment outputs = inputs + bias return outputs @property def b(self): """Returns the Variable containing the bias. Returns: Variable object containing the bias, from the most recent __call__. Raises: base.NotConnectedError: If the module has not been connected to the graph yet, meaning the variables do not exist. """ self._ensure_is_connected() return self._b # Implements Transposable interface. @property def input_shape(self): """Returns shape of input `Tensor` passed at last call to `build`.""" self._ensure_is_connected() return self._input_shape # Implements Transposable interface def transpose(self, name=None): """Returns transposed `AddBias` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.module_name`. Returns: Transposed `AddBias` module. """ if name is None: name = self.module_name + "_transpose" return AddBias(output_shape=lambda: self._input_shape, bias_dims=self._bias_dims, initializers=self._initializers, regularizers=self._regularizers, name=name) class BatchReshape(base.AbstractModule, base.Transposable): """Reshapes input Tensor, preserving the batch dimension.""" def __init__(self, shape, preserve_dims=1, name="batch_reshape"): """Constructs a BatchReshape module. Args: shape: Shape to reshape the input Tensor to while preserving its first `preserve_dims` dimensions; `shape` can be either a tuple/list, or a callable that returns the actual shape. The callable does not need to be ready to return something meaningful at construction time, but it will be required to be able to do so when the module is connected to the graph. When the special value -1 appears in `shape` the corresponding size is automatically inferred. Note that -1 can only appear once in `shape`. To flatten all non-batch dimensions, the snt.BatchFlatten module can also be used. preserve_dims: Number of leading dimensions that will not be reshaped. For example, given an input Tensor with shape `[B, H, W, C, D]`, and argument `shape` equal to `(-1, D)`: * `preserve_dims=1` will return a Tensor with shape `[B, H*W*C, D]`. * `preserve_dims=2` will return a Tensor with shape `[B, H, W*C, D]`. * `preserve_dims=3` will return a Tensor with shape `[B, H, W, C, D]`. * `preserve_dims=4` will return a Tensor with shape `[B, H, W, C, 1, D]`. * `preserve_dims>=5` will throw an error on build unless D=1. The preserved dimensions can be unknown at building time. name: Name of the module. Raises: ValueError: If `preserve_dims <= 0`. """ super(BatchReshape, self).__init__(name=name) self._input_shape = None self._shape = shape self._preserve_dims = preserve_dims if preserve_dims <= 0: raise ValueError("Argument preserve_dims should be >= 1.") if not callable(self._shape): self._shape = tuple(self._shape) def _infer_shape(self, dimensions): """Replaces the -1 wildcard in the output shape vector. This function infers the correct output shape given the input dimensions. Args: dimensions: List of input non-batch dimensions. Returns: Tuple of non-batch output dimensions. """ # Size of input n = np.prod(dimensions) # Size of output where defined m = np.prod(abs(np.array(self._shape))) # Replace wildcard v = np.array(self._shape) v[v == -1] = n // m return tuple(v) def _build(self, inputs): """Connects the module into the graph, with input Tensor `inputs`. Args: inputs: A Tensor of shape [b_1, b_2, ..., b_preserve_dims, b_preserve_dims+1, ...]. Returns: A Tensor of shape [b_1, b_2, ..., b_preserve_dims, b_reshape_1, b_reshape_2, ...], with reshaping defined by the constructor `shape` parameter. Raises: ValueError: If output shape is incompatible with input shape; or if shape array contains non numeric entries; or if shape array contains more than 1 wildcard -1; or if the input array contains unknown, non-preserved dimensions (except when the unknown dimension is the only non-preserved dimension and doesn't actually need reshaping). """ full_input_shape = inputs.get_shape().as_list() if len(full_input_shape) < self._preserve_dims: raise ValueError("Input tensor has {} dimensions, should have at least " "as many as preserve_dims={}".format( len(full_input_shape), self._preserve_dims)) self._input_shape = full_input_shape[self._preserve_dims:] if callable(self._shape): self._shape = tuple(self._shape()) # Special-case of 1 non-preserved dimension, where no reshape is necessary. # This is useful if the non-preserved dimension of `inputs` is unknown # at build time. if len(self._input_shape) == 1 and len(self._shape) == 1: if self._shape[0] == -1 or self._shape[0] == self._input_shape[0]: return inputs else: if self._input_shape[0] is None: raise ValueError("Unknown non-preserved dimensions are not allowed " "in the input to BatchReshape unless it is only one " "and the desired shape is (-1,).") else: raise ValueError("Output shape is incompatible with input shape") if not all([isinstance(x, numbers.Integral) and (x > 0 or x == -1) for x in self._shape]): raise ValueError( "Desired shape can only contain positive integral numbers " "and the wildcard -1. Given shape {}".format(self._shape)) if self._shape.count(-1) > 1: raise ValueError( "Wildcard -1 can appear only once in desired output shape. " "Given shape {}".format(self._shape)) preserved_shape = tf.shape(inputs)[:self._preserve_dims] # Slicing the shape tensor loses information, we keep it in a list. preserved_shape_list = inputs.get_shape()[:self._preserve_dims] # Except in the case above where no reshape is needed, we do not allow # unknown non-preserved dimensions in the input. if None in self._input_shape: raise ValueError("Unknown non-preserved dimensions are not allowed in " "the input to BatchReshape unless it is only one and the" " desired shape is (-1,). The offending non-preserved " "input shape is {}".format(self._input_shape)) if self._shape.count(-1) > 0: trailing_shape = self._infer_shape(self._input_shape) else: trailing_shape = self._shape if np.prod(self._input_shape) != np.prod(trailing_shape): raise ValueError("Output shape is incompatible with input shape") shape = tf.concat([preserved_shape, trailing_shape], 0) output = tf.reshape(inputs, shape) # Include shape information that was lost when we sliced the shape tensor. shape_list = preserved_shape_list.concatenate(trailing_shape) output.set_shape(shape_list) return output @property def input_shape(self): self._ensure_is_connected() return self._input_shape # Implements Transposable interface. def transpose(self, name=None): """Returns transpose batch reshape.""" if name is None: name = self.module_name + "_transpose" return BatchReshape(shape=lambda: self.input_shape, preserve_dims=self._preserve_dims, name=name) class BatchFlatten(BatchReshape): """Flattens the input Tensor, preserving the batch dimension(s).""" def __init__(self, preserve_dims=1, name="batch_flatten"): """Constructs a BatchFlatten module. Args: preserve_dims: Number of leading dimensions that will not be reshaped. For example, given an input Tensor with shape `[B, H, W, C]`: * `preserve_dims=1` will return a Tensor with shape `[B, H*W*C]`. * `preserve_dims=2` will return a Tensor with shape `[B, H, W*C]`. * `preserve_dims=3` will return the input itself, shape `[B, H, W, C]`. * `preserve_dims=4` will return a Tensor with shape `[B, H, W, C, 1]`. * `preserve_dims>=5` will throw an error on build. The preserved dimensions can be unknown at building time. name: Name of the module. """ super(BatchFlatten, self).__init__( shape=(-1,), preserve_dims=preserve_dims, name=name) class FlattenTrailingDimensions(BatchReshape): """Flattens trailing dimensions of a Tensor.""" def __init__(self, dim_from, name="batch_dim_from"): """Constructs a FlattenTrailingDimensions module. For example, given an input Tensor with shape `[B, H, W, C]`: * `dim_from=1` will return a Tensor with shape `[B, H*W*C]`. * `dim_from=2` will return a Tensor with shape `[B, H, W*C]`. * `dim_from=3` will return the input itself. * `dim_from=4` will return a Tensor with shape `[B, H, W, C, 1]`. * `dim_from>=5` will generate a ValueError when building the module. The preserved dimensions can be unknown at building time. Equivalent to BatchFlatten(preserve_dims=dim_from, name=name). Args: dim_from: All dimensions after and including `dim_from` will be flattened into a single dimension. name: Name of the module. Raises: ValueError: If `dim_from <= 0`. """ if dim_from <= 0: raise ValueError("Argument dim_from should be >= 1.") super(FlattenTrailingDimensions, self).__init__( shape=(-1,), preserve_dims=dim_from, name=name) class TrainableVariable(base.AbstractModule): """Provides learnable parameter Tensor.""" POSSIBLE_INITIALIZER_KEYS = {"w"} def __init__(self, shape, dtype=tf.float32, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name="trainable_variable"): """Constructs a TrainableVariable module. Args: shape: Tensor shape. dtype: Tensor data type. initializers: Optional dictionary containing ops to initialize the weight Tensor, with key 'w'. partitioners: Optional dict containing a partitioner to partition the weight (with key 'w'). As a default, no partitioner is used. regularizers: Optional dict containing regularizers for the weights (with key 'w'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. custom_getter: Optional callable or dictionary of callables to use as custom_getter for the module. name: Name of the module. Raises: KeyError: If `initializers` contains any keys other than 'w'. KeyError: If `partitioners` contains any keys other than 'w'. KeyError: If `regularizers` contains any keys other than 'w'. TypeError: If any of the given initializers are not callable. TypeError: If any of the given partitioners are not callable. TypeError: If any of the given regularizers are not callable. """ super(TrainableVariable, self).__init__(custom_getter=custom_getter, name=name) self._shape = tuple(shape) self._dtype = dtype self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _build(self): """Connects the TrainableTensor module into the graph. Returns: A Tensor of shape as determined in the constructor. """ if "w" not in self._initializers: stddev = 1 / math.sqrt(np.prod(self._shape)) self._initializers["w"] = tf.truncated_normal_initializer(stddev=stddev) self._w = tf.get_variable("w", shape=self._shape, dtype=self._dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) return self._w @property def w(self): """Returns the Variable containing the weights Tensor. Returns: Variable object containing the weights, from the most recent __call__. Raises: base.Error: If the module has not been connected to the graph yet, meaning the variables do not exist. """ self._ensure_is_connected() return self._w class BatchApply(base.AbstractModule): """Merges a number of leading dimensions of an input tensor to manipulate it. Merges a number of leading dimensions of a tensor into a single dimension, connects the provided module, then splits the leading dimension of the result to match the input. Input tensors whose rank is smaller than the number of dimensions to collapse (e.g. all scalar values, which are tensors of rank 0), are passed unaltered to the provided module. This is useful for applying some module to each timestep of a Time x Batch x N tensor. If a module is hard coded to only support 2D (Batch x N) then the full 3D Tensor cannot be provided. BatchApply will 'merge' the first two dimensions of the sequence tensor by reshaping to a (Time * Batch) x N Tensor, and then the internal module can be applied. The result of that operation is reshaped such that its first dimensions are split to match the leading dimensions of the input. """ def __init__(self, module_or_op, n_dims=2, input_example_index=0, name="batch_apply"): """Constructor of the module. Args: module_or_op: Module or tensorflow op to apply to an input tensor. n_dims: Number of dimensions to merge before using module on the input of BatchApply. input_example_index: Index of input that has same shape for the first `n_dims` dimensions as `module_or_op` output(s). This is used for unflattening the output(s) if static shape inference is not possible. name: Name of the module. Raises: TypeError: If n_dims is not an integer. ValueError: If n_dims is not greater than zero. """ super(BatchApply, self).__init__(name=name) if not isinstance(n_dims, int): raise TypeError("n_dims should be an integer, it is a %s instead." % type(n_dims)) if n_dims <= 0: raise ValueError("n_dims should be greater than zero.") self._module = module_or_op self._n_dims = n_dims self._input_example_index = input_example_index def _build(self, *args, **kwargs): """Connects the BatchApply module into the graph. Args: *args: a Tensor or a nested list or dictionary of Tensors. The input tensors will have their first dimensions merged, then an op or a module will be called on the input. The first dimension of the output tensor(s) will be split again based on the leading dimensions of the first input tensor. **kwargs: Dictionary of named arguments; used in the same way as `*args`. Returns: A Tensor or nested list or dictionary of Tensors as a result of applying the process above. ("None" return values are also supported.) """ flattened = nest.flatten([args, kwargs]) merged_flattened = [ merge_leading_dims(inp, self._n_dims) if inp is not None else None for inp in flattened] merged_args, merged_kwargs = nest.pack_sequence_as([args, kwargs], merged_flattened) results = self._module(*merged_args, **merged_kwargs) # Unmerging takes the sizes of the leading dimensions from an input example # with equal shape for the leading `n_dims` dimensions. Typically this is # the first input. example_input = tf.convert_to_tensor(flattened[self._input_example_index]) def _split_to_original_leading_dims(result): if result is None: return None else: return split_leading_dim(result, example_input, self._n_dims) flat_results = nest.flatten(results) flat_unmerged_results = [_split_to_original_leading_dims(result) for result in flat_results] return nest.pack_sequence_as(results, flat_unmerged_results) class SliceByDim(base.AbstractModule): """Slices a tensor along specific dimensions. The user can slice a tensor by specifying only the list of dimensions that they want to slice, together with the lists of integers containing the beginning indices of the slicing, and the size of the slices. Hence, with `SliceByDim` slicing can be performed without knowing in advance the rank of the input tensor. Tensorflow also offers a built-in op performing slicing, `tf.slice`. However, `tf.slice` requires all the slicing dimensions to be specified, using wildcards when no slicing is required. For example, with `tf.slice`, slicing half a 5D tensor along dimension `1` would be: ```python output = tf.slice(inputs, begin=[0, 0, 0, 0, 0], size=[-1, inputs.get_shape()[1].value//2, -1, -1, -1]) ``` The same operation using `SliceByDim` would be: ```python output = SliceByDim(dims=[1], begin=[0], size=[x.get_shape()[1].value//2])(x) ``` `SliceByDim` can be used to specify multiple slicing dimensions, for example: ```python output = SliceByDim(dims=[1, 3], begin=[0, 0], size=[12, 24])(x) ``` """ def __init__(self, dims, begin, size, name="slice_by_dim"): """Constructs the `SliceByDim` module. Args: dims: The dimensions to slice along, as a list of unique integers. Negative integers index from the final dimension backwards, as in python arrays. begin: The beginning indices of the slicing, as a list of integers. Must be the same length as the `dims` list. size: The size of the slices, as a list of integers. Must be the same length as the `dims` list. name: The name of the module. Raises: ValueError: If `dims` has non-unique integers, or if the size of `begin` is different from the size of `dims`, or if the size of `size` is different from the size of `dims`. """ super(SliceByDim, self).__init__(name=name) self._dims = dims self._begin = begin self._size = size if np.unique(dims).size != len(dims): raise ValueError("dims must not have any repeated integers.") if len(begin) != len(dims): raise ValueError( "begin must have the same length as dims: {}.".format(len(dims))) if len(size) != len(dims): raise ValueError( "size must have the same length as dims: {}.".format(len(dims))) def _build(self, inputs): """Connects the SliceByDim module into the graph. Args: inputs: `Tensor` to slice. Its rank must be greater than the maximum dimension specified in `dims` (plus one as python is 0 indexed). Returns: The sliced tensor. Raises: ValueError: If `inputs` tensor has insufficient rank. """ shape_inputs = inputs.get_shape().as_list() rank = len(shape_inputs) # Checks that the rank of the tensor. max_dim = np.max(self._dims) + 1 if rank < max_dim: raise ValueError("Rank of inputs must be at least {}.".format(max_dim)) # Builds default lists for begin and size to pass to `tf.slice`. full_begin = [0] * rank full_size = [-1] * rank # Updates lists with what the user provided. for dim, begin, size in zip(self._dims, self._begin, self._size): full_begin[dim] = begin full_size[dim] = size return tf.slice(inputs, begin=full_begin, size=full_size) class TileByDim(base.AbstractModule): """Tile a tensor along specific dimensions. The user can tile a tensor by specifying only the list of dimensions that they want to tile, together with the lists of integers containing the multiples of the tiling. Hence, with `TileByDim` tiling can be performed without knowing in advance the rank of the input tensor. Tensorflow also offers a built-in op performing tiling, `tf.tile`. However, `tf.tile` requires all the tiling dimensions to be specified, using `1` when no tiling is required. For example, with tf.tiling, tiling a 5D tensor along dimension `1`, by `2` would be: ```python output = tf.tile(inputs, multiples=[1, 2, 1, 1, 1]) ``` The same operation using `TileByDim` would be: ```python output = TileByDim(dims=[1], multiples=[2])(x) ``` `TileByDim` can be used to specify multiple tiling dimensions, for example: ```python output = TileByDim(dims=[1, 3], multiples=[2, 4])(x) ``` """ def __init__(self, dims, multiples, name="tile_by_dim"): """Constructs the `TileByDim` module. Args: dims: The dimensions to tile along, as a list of unique integers. multiples: The multiple of the tiling, as a list of integers. Must be the same length as the `dims` list. name: The name of the module. Raises: ValueError: If `dims` has non-unique integers, or if the size of `multiples` is different from the size of `dims`. """ super(TileByDim, self).__init__(name=name) self._dims = dims self._multiples = multiples if np.unique(dims).size != len(dims): raise ValueError("dims must not have any repeated integers.") if len(multiples) != len(dims): raise ValueError( "multiples must have the same length as dims: {}.".format(len(dims))) def _build(self, inputs): """Connects the `TileByDim` module into the graph. Args: inputs: `Tensor` to tile. Returns: The tiled tensor. """ shape_inputs = inputs.get_shape().as_list() rank = len(shape_inputs) # Builds default lists for multiples to pass to `tf.tile`. full_multiples = [1] * rank # Updates lists with what the user provided. for dim, multiple in zip(self._dims, self._multiples): full_multiples[dim] = multiple return tf.tile(inputs, multiples=full_multiples) class MergeDims(base.AbstractModule): """Merges a tensor or nested list of tensors along a range of dimensions. Tensors are reshaped by specifying the range of dimensions to merge. Hence, the reshape can be performed without knowing in advance the rank of the input tensor. For example, merging dimensions 1, 2 and 3 together can be performed by calling: ```python output = MergeDims(start=1, size=3)(x) ``` A nested list of tensors can be merged: ```python x = [tf.random_uniform(shape=[5, 5]), [tf.random_uniform(shape=[3, 3, 3])]] output = MergeDims(start=0, size=2)(x) ``` """ def __init__(self, start, size, name="merge_dims"): """Constructs the MergeDims module. Args: start: Start of the range of dimensions to merge. size: Size the range of dimensions to merge. name: The name of the module. Raises: ValueError: If `size` is not strictly greater than 1. """ super(MergeDims, self).__init__(name=name) self._start = start self._size = size # Checks for non consecutive integers. if size <= 1: raise ValueError("`size` should be strictly greater than 1.") def _merge(self, tensor): static_input_shape = tensor.get_shape().as_list() rank = len(static_input_shape) start = self._start if start < 0: start += rank # uses negative indexing from right if rank < start + self._size: raise ValueError("Rank of inputs must be at least {}." .format(self._start + self._size)) initial = static_input_shape[:start] middle = static_input_shape[start:start + self._size] final = static_input_shape[start + self._size:] if None in middle: middle = [None] else: middle = [np.prod(middle)] static_shape = initial + middle + final if static_shape.count(None) + static_shape.count(0) <= 1: # At most one undefined (or zero) dimension, so tf.reshape can handle this # case. static_shape = [-1 if i is None else i for i in static_shape] return tf.reshape(tensor, static_shape) else: # Need to compute output shape dynamically. dynamic_input_shape = tf.shape(tensor) dynamic_initial = dynamic_input_shape[:start] dynamic_middle = tf.reduce_prod( dynamic_input_shape[start:start + self._size], keep_dims=True) dynamic_final = dynamic_input_shape[start + self._size:] dynamic_shape = tf.concat( [dynamic_initial, dynamic_middle, dynamic_final], axis=0) tensor = tf.reshape(tensor, dynamic_shape) tensor.set_shape(static_shape) # give it some static shape information return tensor def _build(self, inputs): """Connects the MergeDims module into the graph. Args: inputs: Tensor or a nested list of Tensors to merge. Its rank must be greater than or equal to `start` + `size`. Returns: The merged Tensor or a nested list of merged Tensors. Raises: ValueError: If any of the `inputs` tensors has insufficient rank. """ if nest.is_sequence(inputs): merged_tensors = [self._merge(tensor) for tensor in nest.flatten(inputs)] return nest.pack_sequence_as(inputs, merged_tensors) # inputs is a single tf.Tensor return self._merge(inputs) class SelectInput(base.AbstractModule): """Returns a subset of its inputs in an arbitrarily nested configuration. This module can be used for multiple purposes. The basic usage is to select a tensor or a subset of tensors: ``` output = snt.SelectInput(idx=0, name='select')(input0, input1) ==> input0 output = snt.SelectInput(idx=[0, 2], name='select')(input0, input1, input2) ==> (input0, input2) ``` Another usage is to change the orders of the input tensors: ``` output = snt.SelectInput(idx=[1, 0], name='select')(input0, input1) ==> (input1, input0) ``` Another usage is to duplicate an input: ``` output = snt.SelectInput(idx=[0, 0], name='select')(input0) ==> (input0, input0) ``` Another usage is to add arbitrary nesting: ``` output = snt.SelectInput( idx=[0, [1, [2]]], name='select')(input0, input1, input2) ==> (input0, (input1, (input2,))) ``` """ def __init__(self, idx, name="select_input"): """Module constructor. Args: idx: Indexes of the tensors to select. If `idx` is an integer, then a `Tensor` is returned. If `idx` is a (nested) list/tuple, then a (nested) tuple of `Tensor` is returned. name: Name of the module. Raises: TypeError: If `idx` is not an list, tuple or integer. """ super(SelectInput, self).__init__(name=name) self._check_type(idx) self._idx = idx def _check_type(self, idx): if isinstance(idx, (list, tuple)): for value in idx: self._check_type(value) elif not isinstance(idx, int): raise TypeError("`idx` should be a (nested) array/tuple, or an integer.") def _select(self, inputs, idx): if isinstance(idx, (list, tuple)): return tuple(self._select(inputs, i) for i in idx) else: if idx < 0 or idx >= len(inputs): raise ValueError("`idx` contains out of bound entries (they should be " "in the range [0, {}))".format(len(inputs))) # Identity is called otherwise we might get 'placeholder is both fed and # fetched' errors in some cases when using a feed_dict. return tf.identity(inputs[idx]) def _build(self, *inputs): """Connects the module into the graph. Args: *inputs: `Tensor` variables to select. Returns: Subset of `inputs` in an arbitrarily nested configuration. Raises: ValueError: If any entry of `idx` is out of bounds with respect to the size of `inputs`. """ return self._select(inputs, self._idx)
sonnet-1
sonnet/python/modules/basic.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sonnet module information, stored in the graph collections.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports import six from sonnet.protos import module_pb2 from sonnet.python.modules import base_errors import tensorflow.compat.v1 as tf from tensorflow.python.framework import ops logging = tf.logging SONNET_COLLECTION_NAME = "sonnet" ModuleInfo = collections.namedtuple( "ModuleInfo", ("module_name", "scope_name", "class_name", "connected_subgraphs")) ConnectedSubGraph = collections.namedtuple( "ConnectedSubGraph", ("module", "name_scope", "inputs", "outputs")) _SPARSE_TENSOR_NAME = "SparseTensor" _SPARSE_TENSOR_FIELD = ("indices", "values", "dense_shape") class _UnserializableObject(object): """Placeholder for object which cannot be serialized.""" # Placeholder for tensor which cannot be found. _MissingTensor = collections.namedtuple("_MissingTensor", ("name",)) def _is_namedtuple(obj): """Returns `True` if `obj` is a `collections.namedtuple`.""" return isinstance(obj, tuple) and hasattr(obj, "_fields") def _is_iterable(obj): """Returns `True` if the object is a supported iterable.""" return isinstance(obj, (list, tuple, dict)) def _graph_element_to_path(graph_element): """Returns the path of the given graph element. Args: graph_element: A graph element. Currently only `tf.Tensor` is supported. Returns: The graph path corresponding to `graph_element` or the empty string if no path could be found. """ if isinstance(graph_element, tf.Tensor): return graph_element.name # Returns an empty string when no name is defined. This will be deserialized # as a `_UnSerializableObject`. return "" def _path_to_graph_element(path, graph): """Returns the graph element of the given path. Args: path: The path of the graph element. graph: The graph to look into. Returns: The graph element or an instance of `_MissingTensor`. """ try: return graph.get_tensor_by_name(path) except KeyError: return _MissingTensor(path) def _to_proto_sparse_tensor(sparse_tensor, nested_proto, process_leafs, already_processed): """Serializes a `tf.SparseTensor` into `nested_proto`. Args: sparse_tensor: An instance of `tf.SparseTensor`. nested_proto: A `module_pb2.NestedData` instance to be filled from `sparse_tensor`. process_leafs: A function to be applied to the leaf valued of the nested structure. already_processed: Set of already processed objects (used to avoid infinite recursion). """ already_processed.add(id(sparse_tensor)) nested_proto.named_tuple.name = _SPARSE_TENSOR_NAME for str_key in _SPARSE_TENSOR_FIELD: tensor = getattr(sparse_tensor, str_key) nested_proto.named_tuple.map[str_key].value = process_leafs(tensor) def _from_proto_sparse_tensor(sparse_tensor_proto, process_leafs): """Deserializes a `tf.SparseTensor` from `sparse_tensor_proto`. Args: sparse_tensor_proto: A proto representing a `tf.SparseTensor`. process_leafs: A function to be applied to the leaf valued of the nested structure. Returns: An instance of `tf.SparseTensor`. """ if not sparse_tensor_proto.HasField("named_tuple"): raise base_errors.ModuleInfoError( "Error while deserializing a SparseTensor: expected proto tuple.") if sparse_tensor_proto.named_tuple.name != _SPARSE_TENSOR_NAME: raise base_errors.ModuleInfoError( "Error while deserializing a SparseTensor: The name of the tuple " "should have been {} but was {}.".format( _SPARSE_TENSOR_NAME, sparse_tensor_proto.named_tuple.name)) named_tuple_map = sparse_tensor_proto.named_tuple.map return tf.SparseTensor( indices=process_leafs(named_tuple_map["indices"].value), values=process_leafs(named_tuple_map["values"].value), dense_shape=process_leafs(named_tuple_map["dense_shape"].value)) # This named tuple contains the necessary information to handle a Python # object which should be handled in a specific way. The "check" field should # contain a callable returning `True` if the Python object is indeed special # and the "to_proto" field should contain a custom serializer. _SpecialTypeInfo = collections.namedtuple("_SpecialTypeInfo", ("check", "to_proto", "from_proto")) _TO_PROTO_SPECIAL_TYPES = collections.OrderedDict() _TO_PROTO_SPECIAL_TYPES[_SPARSE_TENSOR_NAME] = _SpecialTypeInfo( check=lambda obj: isinstance(obj, tf.SparseTensor), to_proto=_to_proto_sparse_tensor, from_proto=_from_proto_sparse_tensor) def _nested_to_proto(nested_value, nested_proto, process_leafs, already_processed): """Serializes `nested_value` into `nested_proto`. Args: nested_value: A nested Python value. nested_proto: A `module_pb2.NestedData` instance to be filled from the value in `nested_value`. process_leafs: A function to be applied to the leaf values of the nested structure. already_processed: Set of already processed objects (used to avoid infinite recursion). Raises: ModuleInfoError: If `nested_proto` is not an instance of `module_pb2.NestedData`. """ if not isinstance(nested_proto, module_pb2.NestedData): raise base_errors.ModuleInfoError("Expected module_pb2.NestedData.") # If this object was already processed, mark as "unserializable" # to avoid infinite recursion. if id(nested_value) in already_processed: nested_proto.value = "" return # Check special types. for type_name, type_info in six.iteritems(_TO_PROTO_SPECIAL_TYPES): if type_info.check(nested_value): nested_proto.special_type.name = type_name type_info.to_proto( nested_value, nested_proto.special_type.object, process_leafs, already_processed) return # Check standard types. if _is_iterable(nested_value): # Mark this container as "already processed" to avoid infinite recursion. already_processed.add(id(nested_value)) if isinstance(nested_value, dict): nested_proto.dict.SetInParent() for key, child in six.iteritems(nested_value): str_key = str(key) child_proto = nested_proto.dict.map[str_key] _nested_to_proto(child, child_proto, process_leafs, already_processed) elif isinstance(nested_value, tuple): # NamedTuple? if _is_namedtuple(nested_value): nested_proto.named_tuple.name = type(nested_value).__name__ for str_key in nested_value._fields: child = getattr(nested_value, str_key) child_proto = nested_proto.named_tuple.map[str_key] _nested_to_proto(child, child_proto, process_leafs, already_processed) else: nested_proto.tuple.SetInParent() for child in nested_value: child_proto = nested_proto.tuple.list.add() _nested_to_proto(child, child_proto, process_leafs, already_processed) else: nested_proto.list.SetInParent() for child in nested_value: child_proto = nested_proto.list.list.add() _nested_to_proto(child, child_proto, process_leafs, already_processed) else: nested_proto.value = process_leafs(nested_value) def _module_info_to_proto(module_info, export_scope=None): """Serializes `module_into`. Args: module_info: An instance of `ModuleInfo`. export_scope: Optional `string`. Name scope to remove. Returns: An instance of `module_pb2.SonnetModule`. """ def strip_name_scope(name_scope): return ops.strip_name_scope(name_scope, export_scope) def process_leafs(value): return strip_name_scope(_graph_element_to_path(value)) module_info_def = module_pb2.SonnetModule( module_name=module_info.module_name, scope_name=strip_name_scope(module_info.scope_name), class_name=module_info.class_name) for connected_subgraph in module_info.connected_subgraphs: connected_subgraph_info_def = module_info_def.connected_subgraphs.add() connected_subgraph_info_def.name_scope = strip_name_scope( connected_subgraph.name_scope) _nested_to_proto( connected_subgraph.inputs, connected_subgraph_info_def.inputs, process_leafs, set()) _nested_to_proto( connected_subgraph.outputs, connected_subgraph_info_def.outputs, process_leafs, set()) return module_info_def def _nested_from_proto(nested_proto, process_leafs): """Deserializes `nested_proto`. Args: nested_proto: An instance of `module_pb2.NestedData`. process_leafs: A function to be applied to the leaf values of the nested structure. Returns: An instance of `string`, `tuple`, `dict` or `namedtuple`. Raises: base_errors.ModuleInfoError: If the probobuf is of the wrong type or if some of its fields are missing. """ if not isinstance(nested_proto, module_pb2.NestedData): raise base_errors.ModuleInfoError("Expected module_pb2.NestedData.") if nested_proto.HasField("value"): value = nested_proto.value if not value: value = _UnserializableObject() else: value = process_leafs(value) return value elif nested_proto.HasField("list"): return [_nested_from_proto(child, process_leafs) for child in nested_proto.list.list] elif nested_proto.HasField("tuple"): return tuple(_nested_from_proto(child, process_leafs) for child in nested_proto.tuple.list) elif nested_proto.HasField("dict"): return {name: _nested_from_proto(child, process_leafs) for name, child in six.iteritems(nested_proto.dict.map)} elif nested_proto.HasField("named_tuple"): tmp_dict = {name: _nested_from_proto(child, process_leafs) for name, child in six.iteritems(nested_proto.named_tuple.map)} # Note that this needs to be a named tuple to work with existing usage. NamedTuple = collections.namedtuple( # pylint: disable=invalid-name nested_proto.named_tuple.name, tmp_dict.keys()) return NamedTuple(**tmp_dict) elif nested_proto.HasField("special_type"): if nested_proto.special_type.name not in _TO_PROTO_SPECIAL_TYPES: return _UnserializableObject() type_info = _TO_PROTO_SPECIAL_TYPES[nested_proto.special_type.name] return type_info.from_proto(nested_proto.special_type.object, process_leafs) else: raise base_errors.ModuleInfoError( "Cannot deserialize a `ModuleInfo` protobuf with no fields.") def _module_info_from_proto(module_info_def, import_scope=None): """Deserializes `module_info_def` proto. Args: module_info_def: An instance of `module_pb2.SonnetModule`. import_scope: Optional `string`. Name scope to use. Returns: An instance of `ModuleInfo`. Raises: base_errors.ModuleInfoError: If the probobuf is of the wrong type or if some of its fields are missing. """ graph = tf.get_default_graph() def prepend_name_scope(name_scope): return ops.prepend_name_scope(name_scope, import_scope) def process_leafs(name): return _path_to_graph_element(prepend_name_scope(name), graph) connected_subgraphs = [] module_info = ModuleInfo( module_name=module_info_def.module_name, scope_name=prepend_name_scope(module_info_def.scope_name), class_name=module_info_def.class_name, connected_subgraphs=connected_subgraphs) for connected_subgraph_def in module_info_def.connected_subgraphs: connected_subgraph = ConnectedSubGraph( module=module_info, name_scope=prepend_name_scope(connected_subgraph_def.name_scope), inputs=_nested_from_proto( connected_subgraph_def.inputs, process_leafs), outputs=_nested_from_proto( connected_subgraph_def.outputs, process_leafs)) connected_subgraphs.append(connected_subgraph) return module_info def _module_info_from_proto_safe(module_info_def, import_scope=None): """Deserializes the `module_info_def` proto without raising exceptions. Args: module_info_def: An instance of `module_pb2.SonnetModule`. import_scope: Optional `string`. Name scope to use. Returns: An instance of `ModuleInfo`. """ try: return _module_info_from_proto(module_info_def, import_scope) except Exception as e: # pylint: disable=broad-except logging.warning( "Error encountered when deserializing sonnet ModuleInfo:\n%s", str(e)) return None # `to_proto` is already wrapped into a try...except externally but # `from_proto` isn't. In order to minimize disruption, catch all the exceptions # happening during `from_proto` and just log them. ops.register_proto_function(SONNET_COLLECTION_NAME, module_pb2.SonnetModule, to_proto=_module_info_to_proto, from_proto=_module_info_from_proto_safe)
sonnet-1
sonnet/python/modules/base_info.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Basic RNN Cores for TensorFlow snt. This file contains the definitions of the simplest building blocks for Recurrent Neural Networks. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports import six from sonnet.python.modules import base from sonnet.python.modules import basic from sonnet.python.modules import rnn_core from sonnet.python.modules import util import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest def _get_flat_core_sizes(cores): """Obtains the list flattened output sizes of a list of cores. Args: cores: list of cores to get the shapes from. Returns: List of lists that, for each core, contains the list of its output dimensions. """ core_sizes_lists = [] for core in cores: flat_output_size = nest.flatten(core.output_size) core_sizes_lists.append( [tf.TensorShape(size).as_list() for size in flat_output_size]) return core_sizes_lists def _get_shape_without_batch_dimension(tensor_nest): """Converts Tensor nest to a TensorShape nest, removing batch dimension.""" def _strip_batch_and_convert_to_shape(tensor): return tensor.get_shape()[1:] return nest.map_structure(_strip_batch_and_convert_to_shape, tensor_nest) class VanillaRNN(rnn_core.RNNCore): """Basic fully connected vanilla RNN core.""" IN_TO_HIDDEN = "in_to_hidden" HIDDEN_TO_HIDDEN = "hidden_to_hidden" POSSIBLE_INITIALIZER_KEYS = {IN_TO_HIDDEN, HIDDEN_TO_HIDDEN} def __init__(self, hidden_size, activation=tf.tanh, initializers=None, partitioners=None, regularizers=None, name="vanilla_rnn"): """Construct a Basic RNN core. Args: hidden_size: hidden size dimensionality. activation: activation function to use. initializers: optional dict containing ops to initialize the weights. This dictionary may contain the keys 'in_to_hidden' and/or 'hidden_to_hidden'. partitioners: optional dict containing ops to partition the weights. This dictionary may contain the keys 'in_to_hidden' and/or 'hidden_to_hidden'. regularizers: optional dict containing ops to regularize the weights. This dictionary may contain the keys 'in_to_hidden' and/or 'hidden_to_hidden'. name: name of the module. Raises: KeyError: if `initializers` contains any keys other than 'in_to_hidden' or 'hidden_to_hidden'. KeyError: if `partitioners` contains any keys other than 'in_to_hidden' or 'hidden_to_hidden'. KeyError: if `regularizers` contains any keys other than 'in_to_hidden' or 'hidden_to_hidden'. TypeError: If any of the given initializers are not callable. TypeError: If any of the given partitioners are not callable. TypeError: If any of the given regularizers are not callable. """ super(VanillaRNN, self).__init__(name=name) self._hidden_size = hidden_size self._activation = activation self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _build(self, input_, prev_state): """Connects the VanillaRNN module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as input_ and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: input_: a 2D Tensor of size [batch_size, input_size]. prev_state: a 2D Tensor of size [batch_size, hidden_size]. Returns: output: a 2D Tensor of size [batch_size, hidden_size]. next_state: a Tensor of size [batch_size, hidden_size]. Raises: ValueError: if connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. """ self._in_to_hidden_linear = basic.Linear( self._hidden_size, name="in_to_hidden", initializers=self._initializers.get("in_to_hidden"), partitioners=self._partitioners.get("in_to_hidden"), regularizers=self._regularizers.get("in_to_hidden")) self._hidden_to_hidden_linear = basic.Linear( self._hidden_size, name="hidden_to_hidden", initializers=self._initializers.get("hidden_to_hidden"), partitioners=self._partitioners.get("hidden_to_hidden"), regularizers=self._regularizers.get("hidden_to_hidden")) in_to_hidden = self._in_to_hidden_linear(input_) hidden_to_hidden = self._hidden_to_hidden_linear(prev_state) output = self._activation(in_to_hidden + hidden_to_hidden) # For VanillaRNN, the next state of the RNN is the same as the output return output, output @property def in_to_hidden_linear(self): self._ensure_is_connected() return self._in_to_hidden_linear @property def hidden_to_hidden_linear(self): self._ensure_is_connected() return self._hidden_to_hidden_linear @property def in_to_hidden_variables(self): self._ensure_is_connected() return self._in_to_hidden_linear.get_variables() @property def hidden_to_hidden_variables(self): self._ensure_is_connected() return self._hidden_to_hidden_linear.get_variables() @property def state_size(self): return tf.TensorShape([self._hidden_size]) @property def output_size(self): return tf.TensorShape([self._hidden_size]) class DeepRNN(rnn_core.RNNCore): """RNN core that passes data through a number of internal modules or ops. This module is constructed by passing an iterable of externally constructed modules or ops. The DeepRNN takes `(input, prev_state)` as input and passes the input through each internal module in the order they were presented, using elements from `prev_state` as necessary for internal recurrent cores. The output is `(output, next_state)` in common with other RNN cores. By default, skip connections from the input to all internal modules and from each intermediate output to the final output are used. E.g.: ```python lstm1 = snt.LSTM(hidden_size=256) lstm2 = snt.LSTM(hidden_size=256) deep_rnn = snt.DeepRNN([lstm1, lstm2]) output, next_state = deep_rnn(input, prev_state) ``` The computation set up inside the DeepRNN has the same effect as: ```python prev_state1, prev_state2 = prev_state lstm1_output, next_state1 = lstm1(input, prev_state1) lstm2_output, next_state2 = lstm2( tf.concat([input, lstm1_output], 1), prev_state2) next_state = (next_state1, next_state2) output = tf.concat([lstm1_output, lstm2_output], 1) ``` Every internal module receives the preceding module's output and the entire core's input. The output is created by concatenating each internal module's output. In the case of internal recurrent elements, corresponding elements of the state are used such that `state[i]` is passed to the `i`'th internal recurrent element. Note that the state of a `DeepRNN` is always a tuple, which will contain the same number of elements as there are internal recurrent cores. If no internal modules are recurrent, the state of the DeepRNN as a whole is the empty tuple. Wrapping non-recurrent modules into a DeepRNN can be useful to produce something API compatible with a "real" recurrent module, simplifying code that handles the cores. Without skip connections the previous example would become the following (note the only difference is the addition of `skip_connections=False`): ```python # ... declare other modules as above deep_rnn = snt.DeepRNN([lin, tanh, lstm], skip_connections=False) output, next_state = deep_rnn(input, prev_state) ``` which is equivalent to: ```python lin_output = lin(input) tanh_output = tanh(lin_output) lstm_output, lstm_next_state = lstm(tanh_output, prev_state[0]) next_state = (lstm_next_state,) output = lstm_output ``` Note: when using skip connections, all the cores should be recurrent. """ def __init__(self, cores, skip_connections=True, concat_final_output_if_skip=True, name="deep_rnn"): """Construct a Deep RNN core. Args: cores: iterable of modules or ops. skip_connections: a boolean that indicates whether to use skip connections. This means that the input is fed to all the layers, after being concatenated on the last dimension with the output of the previous layer. The output of the module will be the concatenation of all the outputs of the internal modules. concat_final_output_if_skip: A boolean that indicates whether the outputs of intermediate layers should be concatenated into the timestep-wise output of the core. By default this is True. If this is set to False, then the core output is that of the final layer, i.e. that of `cores[-1]`. name: name of the module. Raises: ValueError: if `cores` is not an iterable, or if `skip_connections` is True and not all the modules are recurrent. """ super(DeepRNN, self).__init__(name=name) if not isinstance(cores, collections.Iterable): raise ValueError("Cores should be an iterable object.") self._cores = tuple(cores) self._skip_connections = skip_connections self._concat_final_output_if_skip = concat_final_output_if_skip self._is_recurrent_list = [isinstance(core, rnn_core.RNNCore) for core in self._cores] if self._skip_connections: tf.logging.log_first_n( tf.logging.WARN, "The `skip_connections` argument will be deprecated.", 1 ) if not all(self._is_recurrent_list): raise ValueError("skip_connections are enabled but not all cores are " "`snt.RNNCore`s, which is not supported. The following" " cores were specified: {}.".format(self._cores)) self._check_cores_output_sizes() self._num_recurrent = sum(self._is_recurrent_list) self._last_output_size = None def _check_cores_output_sizes(self): """Checks the output_sizes of the cores of the DeepRNN module. Raises: ValueError: if the outputs of the cores cannot be concatenated along their first dimension. """ for core_sizes in zip(*tuple(_get_flat_core_sizes(self._cores))): first_core_list = core_sizes[0][1:] for i, core_list in enumerate(core_sizes[1:]): if core_list[1:] != first_core_list: raise ValueError("The outputs of the provided cores are not able " "to be concatenated along the first feature " "dimension. Core 0 has shape %s, whereas Core %d " "has shape %s - these must only differ in the first " "dimension" % (core_sizes[0], i + 1, core_list)) def _build(self, inputs, prev_state, **kwargs): """Connects the DeepRNN module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as input_ and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: a nested tuple of Tensors of arbitrary dimensionality, with at least an initial batch dimension. prev_state: a tuple of `prev_state`s that corresponds to the state of each one of the cores of the `DeepCore`. **kwargs: optional kwargs to be passed to the `_build` of all sub-modules. E.g. is_training=True. Note all sub-modules must accept the given kwarg. Returns: output: a nested tuple of Tensors of arbitrary dimensionality, with at least an initial batch dimension. next_state: a tuple of `next_state`s that corresponds to the updated state of each one of the cores of the `DeepCore`. Raises: ValueError: if connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. This may happen if one connects a module any time after the first time that does not have the configuration of skip connections as the first time. """ current_input = inputs next_states = [] outputs = [] recurrent_idx = 0 concatenate = lambda *args: tf.concat(args, axis=-1) for i, core in enumerate(self._cores): if self._skip_connections and i > 0: current_input = nest.map_structure(concatenate, inputs, current_input) # Determine if this core in the stack is recurrent or not and call # accordingly. if self._is_recurrent_list[i]: current_input, next_state = core(current_input, prev_state[recurrent_idx], **kwargs) next_states.append(next_state) recurrent_idx += 1 else: current_input = core(current_input, **kwargs) if self._skip_connections: outputs.append(current_input) if self._skip_connections and self._concat_final_output_if_skip: output = nest.map_structure(concatenate, *outputs) else: output = current_input self._last_output_size = _get_shape_without_batch_dimension(output) return output, tuple(next_states) def initial_state(self, batch_size, dtype=tf.float32, trainable=False, trainable_initializers=None, trainable_regularizers=None, name=None): """Builds the default start state for a DeepRNN. Args: batch_size: An int, float or scalar Tensor representing the batch size. dtype: The data type to use for the state. trainable: Boolean that indicates whether to learn the initial state. trainable_initializers: An initializer function or nested structure of functions with same structure as the `state_size` property of the core, to be used as initializers of the initial state variable. trainable_regularizers: Optional regularizer function or nested structure of functions with the same structure as the `state_size` property of the core, to be used as regularizers of the initial state variable. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. name: Optional string used to prefix the initial state variable names, in the case of a trainable initial state. If not provided, defaults to the name of the module. Returns: A tensor or nested tuple of tensors with same structure and shape as the `state_size` property of the core. Raises: ValueError: if the number of passed initializers is not the same as the number of recurrent cores. """ initial_state = [] if trainable_initializers is None: trainable_initializers = [None] * self._num_recurrent if trainable_regularizers is None: trainable_regularizers = [None] * self._num_recurrent num_initializers = len(trainable_initializers) if num_initializers != self._num_recurrent: raise ValueError("The number of initializers and recurrent cores should " "be the same. Received %d initializers for %d specified " "recurrent cores." % (num_initializers, self._num_recurrent)) with tf.name_scope(self._initial_state_scope(name)): recurrent_idx = 0 for is_recurrent, core in zip(self._is_recurrent_list, self._cores): if is_recurrent: core_initial_state = core.initial_state( batch_size, dtype=dtype, trainable=trainable, trainable_initializers=trainable_initializers[recurrent_idx], trainable_regularizers=trainable_regularizers[recurrent_idx]) initial_state.append(core_initial_state) recurrent_idx += 1 return tuple(initial_state) @property def state_size(self): sizes = [] for is_recurrent, core in zip(self._is_recurrent_list, self._cores): if is_recurrent: sizes.append(core.state_size) return tuple(sizes) @property def output_size(self): if self._skip_connections and self._concat_final_output_if_skip: output_size = [] for core_sizes in zip(*tuple(_get_flat_core_sizes(self._cores))): added_core_size = core_sizes[0] added_core_size[-1] = sum([size[-1] for size in core_sizes]) output_size.append(tf.TensorShape(added_core_size)) return nest.pack_sequence_as(structure=self._cores[0].output_size, flat_sequence=output_size) else: # Assumes that an element of cores which does not have the output_size # property does not affect the output shape. Then the 'last' core in the # sequence with output_size information should be the output_size of the # DeepRNN. This heuristic is error prone, but we would lose a lot of # flexibility if we tried to enforce that the final core must have an # output_size field (e.g. it would be impossible to add a TF nonlinearity # as the final "core"), but we should at least print a warning if this # is the case. final_core = self._cores[-1] if hasattr(final_core, "output_size"): # This is definitely the correct value, so no warning needed. return final_core.output_size # If we have connected the module at least once, we can get the output # size of whatever was actually produced. if self._last_output_size is not None: tf.logging.warning( "Final core does not contain .output_size, but the " "DeepRNN has been connected into the graph, so inferred output " "size as %s", self._last_output_size) return self._last_output_size # If all else fails, iterate backwards through cores and return the # first one which has an output_size field. This can be incorrect in # various ways, so warn loudly. try: guessed_output_size = next(core.output_size for core in reversed(self._cores) if hasattr(core, "output_size")) except StopIteration: raise ValueError("None of the 'cores' have output_size information.") tf.logging.warning( "Trying to infer output_size of DeepRNN, but the final core %s does " "not have the .output_size field. The guessed output_size is %s " "but this may not be correct. If you see shape errors following this " "warning, you must change the cores used in the DeepRNN so that " "the final core used has a correct .output_size property.", final_core, guessed_output_size) return guessed_output_size class ModelRNN(rnn_core.RNNCore): """RNNCore that ignores input and uses a model to compute its next state.""" def __init__(self, model, name="model_rnn"): """Construct a Basic RNN core. Args: model: callable that computes the next state. name: name of the module. Raises: TypeError: if model is not a callable object or if it is an RNNCore. AttributeError: if model does not have an output_size attribute. """ super(ModelRNN, self).__init__(name=name) if not callable(model): raise TypeError("Model must be callable.") if isinstance(model, rnn_core.RNNCore): raise TypeError("Model should not be an RNNCore.") try: self._output_size = model.output_size except AttributeError: raise AttributeError("Model should have an output_size attribute.") self._model = model def _build(self, inputs, prev_state): """Connects the ModelRNN module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as input_ and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: Tensor input to the ModelRNN (ignored). prev_state: Tensor of size `model.output_size`. Returns: output: Tensor of size `model.output_size`. next_state: Tensor of size `model.output_size`. """ next_state = self._model(prev_state) # For ModelRNN, the next state of the RNN is the same as the output return next_state, next_state @property def state_size(self): return self._output_size @property def output_size(self): return self._output_size class BidirectionalRNN(base.AbstractModule): """Bidirectional RNNCore that processes the sequence forwards and backwards. Based upon the encoder implementation in: https://arxiv.org/abs/1409.0473 This interface of this module is different than the typical ones found in the RNNCore family. The primary difference is that it is pre-conditioned on the full input sequence in order to produce a full sequence of outputs and states concatenated along the feature dimension among the forward and backward cores. """ def __init__(self, forward_core, backward_core, name="bidir_rnn"): """Construct a Bidirectional RNN core. Args: forward_core: callable RNNCore module that computes forward states. backward_core: callable RNNCore module that computes backward states. name: name of the module. Raises: ValueError: if not all the modules are recurrent. """ super(BidirectionalRNN, self).__init__(name=name) self._forward_core = forward_core self._backward_core = backward_core def _is_recurrent(core): has_rnn_core_interface = (hasattr(core, "initial_state") and hasattr(core, "output_size") and hasattr(core, "state_size")) return isinstance(core, rnn_core.RNNCore) or has_rnn_core_interface if not(_is_recurrent(forward_core) and _is_recurrent(backward_core)): raise ValueError("Forward and backward cores must both be instances of" "RNNCore.") def _build(self, input_sequence, state): """Connects the BidirectionalRNN module into the graph. Args: input_sequence: tensor (time, batch, [feature_1, ..]). It must be time_major. state: tuple of states for the forward and backward cores. Returns: A dict with forward/backard states and output sequences: "outputs":{ "forward": ..., "backward": ...}, "state": { "forward": ..., "backward": ...} Raises: ValueError: in case time dimension is not statically known. """ input_shape = input_sequence.get_shape() if input_shape[0] is None: raise ValueError("Time dimension of input (dim 0) must be statically" "known.") seq_length = int(input_shape[0]) forward_state, backward_state = state # Lists for the forward backward output and state. output_sequence_f = [] output_sequence_b = [] # Forward pass over the sequence. with tf.name_scope("forward_rnn"): core_state = forward_state for i in six.moves.range(seq_length): core_output, core_state = self._forward_core( input_sequence[i, :,], core_state) output_sequence_f.append((core_output, core_state)) output_sequence_f = nest.map_structure( lambda *vals: tf.stack(vals), *output_sequence_f) # Backward pass over the sequence. with tf.name_scope("backward_rnn"): core_state = backward_state for i in six.moves.range(seq_length - 1, -1, -1): core_output, core_state = self._backward_core( input_sequence[i, :,], core_state) output_sequence_b.append((core_output, core_state)) output_sequence_b = nest.map_structure( lambda *vals: tf.stack(vals), *output_sequence_b) # Compose the full output and state sequeneces. return { "outputs": { "forward": output_sequence_f[0], "backward": output_sequence_b[0] }, "state": { "forward": output_sequence_f[1], "backward": output_sequence_b[1] } } def initial_state(self, batch_size, dtype=tf.float32, trainable=False, trainable_initializers=None, trainable_regularizers=None, name=None): """Builds the default start state for a BidirectionalRNN. The Bidirectional RNN flattens the states of its forward and backward cores and concatentates them. Args: batch_size: An int, float or scalar Tensor representing the batch size. dtype: The data type to use for the state. trainable: Boolean that indicates whether to learn the initial state. trainable_initializers: An initializer function or nested structure of functions with same structure as the `state_size` property of the core, to be used as initializers of the initial state variable. trainable_regularizers: Optional regularizer function or nested structure of functions with the same structure as the `state_size` property of the core, to be used as regularizers of the initial state variable. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. name: Optional string used to prefix the initial state variable names, in the case of a trainable initial state. If not provided, defaults to the name of the module. Returns: Tuple of initial states from forward and backward RNNs. """ name = "state" if name is None else name forward_initial_state = self._forward_core.initial_state( batch_size, dtype, trainable, trainable_initializers, trainable_regularizers, name=name+"_forward") backward_initial_state = self._backward_core.initial_state( batch_size, dtype, trainable, trainable_initializers, trainable_regularizers, name=name+"_backward") return forward_initial_state, backward_initial_state @property def state_size(self): """Flattened state size of cores.""" return self._forward_core.state_size, self._backward_core.state_size @property def output_size(self): """Flattened output size of cores.""" return self._forward_core.output_size, self._backward_core.output_size
sonnet-1
sonnet/python/modules/basic_rnn.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sonnet exception classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function class Error(Exception): """Base class for all errors from snt. This is thrown to indicate a Neural Network specific problem, e.g. wrong module arity, module is not connected to the graph when it should be, tried to wire together incompatible modules, etc. """ class NotConnectedError(Error): """Error raised when operating on a module that has not yet been connected. Some module properties / methods are valid to access before the module has been connected into the graph, but some are not. This Error is raised when the user attempts to do anything not valid before connection. """ class ParentNotBuiltError(Error): """Error raised when the parent of a module has not been built yet. For example, when making a transpose of modules that inherit from `module.Transposable`, the parent has to be connected to the graph before the child transpose to ensure that shape inference has already occurred. """ class IncompatibleShapeError(Error): """Error raised when the shape of the input at build time is incompatible.""" class UnderspecifiedError(Error): """Error raised when too little information is available. This does not typically mean the user is trying to do something that doesn't work (in which case `IncompatibleShapeError` should be used), just that some more information needs to be provided in order to build the Graph. """ class NotSupportedError(Error): """Error raised when something that cannot be supported is requested. For example a Dilated Convolution module cannot be transposed. """ class NotInitializedError(Error): """Error raised when connecting an uninitialized Sonnet module. Before they can be connected, all Sonnet modules must call `AbstractModule.__init__` (e.g. via a `super` call). """ class DifferentGraphError(Error): """Error raised when trying to connect a Sonnet module to multiple Graphs.""" class ModuleInfoError(Error): """Error raised when Sonnet `ModuleInfo` cannot be serialized."""
sonnet-1
sonnet/python/modules/base_errors.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for Pondering Recurrent cores in sonnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import parameterized import numpy as np from sonnet.python.modules import basic_rnn from sonnet.python.modules import gated_rnn from sonnet.python.modules import pondering_rnn from sonnet.python.modules import rnn_core import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib.eager.python import tfe as contrib_eager nest = contrib_framework.nest _VALUES_A = [1., np.array([2, 3.5]), np.array([[-1., -1.], [0., 2.]])] _VALUES_B = [-0.5, np.array([2.25, 3.]), np.array([[1., -1.], [1., -2.]])] def _build_nested_tensor(values): tensor = (tf.constant(values[0], dtype=tf.float32), (tf.constant(values[1], dtype=tf.float32), tf.constant(values[2], dtype=tf.float32))) return tensor class OutputTupleCore(rnn_core.RNNCore): """Dummy core with multiple outputs.""" @property def output_size(self): return tf.TensorShape([1]), tf.TensorShape([1]) @property def state_size(self): return tf.TensorShape([1]) def _build(self): pass class Output2DCore(rnn_core.RNNCore): """Dummy core with 2D output.""" @property def output_size(self): return tf.TensorShape([1, 1]) @property def state_size(self): return tf.TensorShape([1]) def _build(self): pass @contrib_eager.run_all_tests_in_graph_and_eager_modes class ACTCoreTest(tf.test.TestCase, parameterized.TestCase): def _test_nested(self, tensor, values_expected): values_out = self.evaluate(tensor) self.assertLen(values_out, 2) self.assertLen(values_out[1], 2) self.assertEqual(values_expected[0], values_out[0]) self.assertTrue(np.all(np.equal(values_expected[1], values_out[1][0]))) self.assertTrue(np.all(np.equal(values_expected[2], values_out[1][1]))) def testNestedAdd(self): values_c = [a + b for a, b in zip(_VALUES_A, _VALUES_B)] tf_a = _build_nested_tensor(_VALUES_A) tf_b = _build_nested_tensor(_VALUES_B) tf_add = pondering_rnn._nested_add(tf_a, tf_b) self._test_nested(tf_add, values_c) def testNestedUnaryMul(self): mul_constant = 0.5 values_mul = [a * mul_constant for a in _VALUES_A] tf_a = _build_nested_tensor(_VALUES_A) tf_mul = pondering_rnn._nested_unary_mul( tf_a, tf.constant(mul_constant, dtype=tf.float32)) self._test_nested(tf_mul, values_mul) def testNestedUnaryMul_multiDim(self): """Tests _nested_unary_mul broadcasts dimensions correctly.""" nested_a = tf.ones([2, 3, 4]) p = tf.ones([2, 1]) output = pondering_rnn._nested_unary_mul(nested_a, p) self.assertEqual(output.shape.as_list(), [2, 3, 4]) def testNestedZerosLike(self): zeros = [0., np.array([0., 0.]), np.array([[0., 0.], [0., 0.]])] tf_a = _build_nested_tensor(_VALUES_A) tf_zeros = pondering_rnn._nested_zeros_like(tf_a) self._test_nested(tf_zeros, zeros) def _testACT(self, input_size, hidden_size, output_size, seq_len, batch_size, core, get_state_for_halting, max_steps=0): threshold = 0.99 act = pondering_rnn.ACTCore( core, output_size, threshold, get_state_for_halting, max_steps=max_steps) seq_input = tf.random_uniform(shape=(seq_len, batch_size, input_size)) initial_state = core.initial_state(batch_size) seq_output = tf.nn.dynamic_rnn( act, seq_input, time_major=True, initial_state=initial_state) for tensor in nest.flatten(seq_output): self.assertEqual(seq_input.dtype, tensor.dtype) self.evaluate(tf.global_variables_initializer()) output = self.evaluate(seq_output) (final_out, (iteration, r_t)), final_cumul_state = output self.assertEqual((seq_len, batch_size, output_size), final_out.shape) self.assertEqual((seq_len, batch_size, 1), iteration.shape) self.assertTrue(np.all(iteration == np.floor(iteration))) state_shape = get_state_for_halting(initial_state).get_shape().as_list() self.assertEqual(tuple(state_shape), get_state_for_halting(final_cumul_state).shape) self.assertEqual((seq_len, batch_size, 1), r_t.shape) self.assertTrue(np.all(r_t >= 0)) self.assertTrue(np.all(r_t <= threshold)) @parameterized.parameters((13, 11, 7, 3, 5), (3, 3, 3, 1, 5), (1, 1, 1, 1, 1)) def testACTLSTM( self, input_size, hidden_size, output_size, seq_len, batch_size): """Tests ACT using an LSTM for the core.""" lstm = gated_rnn.LSTM(hidden_size) def get_hidden_state(state): hidden, unused_cell = state return hidden self._testACT(input_size, hidden_size, output_size, seq_len, batch_size, lstm, get_hidden_state) @parameterized.parameters((13, 11, 7, 3, 5, 0), (3, 3, 3, 1, 5, 0), (1, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 10)) def testACTVanilla( self, input_size, hidden_size, output_size, seq_len, batch_size, max_steps): """Tests ACT using an LSTM for the core.""" vanilla = basic_rnn.VanillaRNN(hidden_size) def get_state(state): return state self._testACT(input_size, hidden_size, output_size, seq_len, batch_size, vanilla, get_state, max_steps) def testOutputTuple(self): core = OutputTupleCore(name="output_tuple_core") err = "Output of core should be single Tensor." with self.assertRaisesRegexp(ValueError, err): pondering_rnn.ACTCore(core, 1, 0.99, lambda state: state) def testOutput2D(self): core = Output2DCore(name="output_2d_core") err = "Output of core should be 1D." with self.assertRaisesRegexp(ValueError, err): pondering_rnn.ACTCore(core, 1, 0.99, lambda state: state) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/pondering_rnn_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Implementation of convolutional Sonnet modules. Classes defining convolutional operations, inheriting from `snt.Module`, with easy weight sharing. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import numbers # Dependency imports import numpy as np import six from sonnet.python.modules import base from sonnet.python.modules import util import tensorflow.compat.v1 as tf # Strings for TensorFlow convolution padding modes. See the following # documentation for an explanation of VALID versus SAME: # https://www.tensorflow.org/api_docs/python/tf/nn/convolution SAME = "SAME" VALID = "VALID" FULL = "FULL" CAUSAL = "CAUSAL" REVERSE_CAUSAL = "REVERSE_CAUSAL" CONV_OP_ALLOWED_PADDINGS = {SAME, VALID} ALLOWED_PADDINGS = { SAME, VALID, FULL, CAUSAL, REVERSE_CAUSAL } CONSTANT_PADDING = "CONSTANT" REFLECT_PADDING = "REFLECT" SYMMETRIC_PADDING = "SYMMETRIC" ALLOWED_PADDING_VALUES = {CONSTANT_PADDING, REFLECT_PADDING, SYMMETRIC_PADDING} DATA_FORMAT_NCW = "NCW" DATA_FORMAT_NWC = "NWC" SUPPORTED_1D_DATA_FORMATS = {DATA_FORMAT_NCW, DATA_FORMAT_NWC} DATA_FORMAT_NCHW = "NCHW" DATA_FORMAT_NHWC = "NHWC" SUPPORTED_2D_DATA_FORMATS = {DATA_FORMAT_NCHW, DATA_FORMAT_NHWC} DATA_FORMAT_NDHWC = "NDHWC" DATA_FORMAT_NCDHW = "NCDHW" SUPPORTED_3D_DATA_FORMATS = {DATA_FORMAT_NDHWC, DATA_FORMAT_NCDHW} def _default_transpose_size(input_shape, stride, kernel_shape=None, padding=SAME): """Returns default (maximal) output shape for a transpose convolution. In general, there are multiple possible output shapes that a transpose convolution with a given `input_shape` can map to. This function returns the output shape which evenly divides the stride to produce the input shape in a forward convolution, i.e. the maximal valid output shape with the given configuration: if the padding type is SAME then: output_shape = input_shape * stride if the padding type is VALID then: output_shape = input_shape * stride + kernel_shape - 1 See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/versions/r0.8/api_docs/python/nn.html#convolution Args: input_shape: Sequence of sizes of each dimension of the input, excluding batch and channel dimensions. stride: Sequence or integer of kernel strides, excluding batch and channel dimension strides. kernel_shape: Sequence or integer of kernel sizes. padding: Padding algorithm, either `snt.SAME` or `snt.VALID`. Returns: output_shape: A tuple of sizes for a transposed convolution that divide evenly with the given strides, kernel shapes, and padding algorithm. """ if not input_shape: raise TypeError("input_shape is None; if using Sonnet, are you sure you " "have connected the module to inputs?") input_length = len(input_shape) stride = _fill_and_verify_parameter_shape(stride, input_length, "stride") padding = _verify_conv_op_supported_padding(padding) output_shape = tuple(x * y for x, y in zip(input_shape, stride)) if padding == VALID: kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, input_length, "kernel") output_shape = tuple(x + y - 1 for x, y in zip(output_shape, kernel_shape)) return output_shape def _fill_shape(x, n): """Converts a dimension to a tuple of dimensions of a given size. This is used to allow shorthand notation for various configuration parameters. A user can provide either, for example, `2` or `[2, 2]` as a kernel shape, and this function returns `(2, 2)` in both cases. Passing `[1, 2]` will return `(1, 2)`. Args: x: An integer, tf.Dimension, or an iterable of them. n: An integer, the size of the desired output list Returns: If `x` is an integer, a tuple of size `n` containing `n` copies of `x`. If `x` is an iterable of integers or tf.Dimension of size `n`, it returns `tuple(x)`. Raises: TypeError: If n is not a positive integer; or if x is neither integer nor an iterable of size n. """ if not isinstance(n, numbers.Integral) or n < 1: raise TypeError("n must be a positive integer") if (isinstance(x, numbers.Integral) or isinstance(x, tf.Dimension)) and x > 0: return (x,) * n try: if len(x) == n and all(v > 0 for v in x): return tuple(x) except TypeError: pass raise TypeError("x is {}, must be either a positive integer " "or an iterable of positive integers of size {}" .format(x, n)) def _fill_and_verify_parameter_shape(x, n, parameter_label): """Expands x if necessary into a `n`-D kernel shape and reports errors.""" try: return _fill_shape(x, n) except TypeError as e: raise base.IncompatibleShapeError("Invalid " + parameter_label + " shape: " "{}".format(e)) def _verify_conv_op_supported_padding(padding): """Verifies that the given padding type is supported for conv ops. Args: padding: One of CONV_OP_ALLOWED_PADDINGS. Returns: padding. Raises: ValueError: If padding is not one of CONV_OP_ALLOWED_PADDINGS. """ if padding not in CONV_OP_ALLOWED_PADDINGS: raise ValueError( "Padding must be member of '{}', not {}".format( CONV_OP_ALLOWED_PADDINGS, padding)) return padding def _verify_padding_value(padding_value): """Verifies that the given padding mode is supported. Args: padding_value: One of ALLOWED_PADDING_VALUES. Returns: padding_value. Raises: ValueError: If padding_value is not one of ALLOWED_PADDING_VALUES. """ if padding_value not in ALLOWED_PADDING_VALUES: raise ValueError( "Padding must be member of '{}', not {}".format( ALLOWED_PADDING_VALUES, padding_value)) return padding_value def _fill_and_verify_padding(padding, n): """Verifies that the provided padding is supported and expands to size n. Args: padding: One of ALLOWED_PADDINGS, or an iterable of them. n: An integer, the size of the desired output list. Returns: If `padding` is one of ALLOWED_PADDINGS, a tuple of size `n` containing `n` copies of `padding`. If `padding` is an iterable of ALLOWED_PADDINGS of size `n`, it returns `padding(x)`. Raises: TypeError: If n is not a positive integer; if padding is neither one of ALLOWED_PADDINGS nor an iterable of ALLOWED_PADDINGS of size n. """ if not isinstance(n, numbers.Integral) or n < 1: raise TypeError("n must be a positive integer") if isinstance(padding, six.string_types) and padding in ALLOWED_PADDINGS: return (padding,) * n try: if len(padding) == n and all(p in ALLOWED_PADDINGS for p in padding): return tuple(padding) except TypeError: pass raise TypeError("padding is {}, must be member of '{}' or an iterable of " "these of size {}".format(padding, ALLOWED_PADDINGS, n)) def _padding_to_conv_op_padding(padding, padding_value): """Whether to use SAME or VALID for the underlying convolution op. Args: padding: A tuple of members of ALLOWED_PADDINGS, e.g. as returned from `_fill_and_verify_padding`. padding_value: A string of ALLOWED_PADDING_VALUES. Returns: One of CONV_OP_ALLOWED_PADDINGS, the padding method to use for the underlying convolution op. Raises: ValueError: If padding is not a tuple. """ if not isinstance(padding, tuple): raise ValueError("padding should be a tuple.") if all(p == SAME for p in padding) and padding_value == CONSTANT_PADDING: # If we want SAME padding for all dimensions then we can use SAME for the # conv and avoid doing any extra padding. return SAME else: # Otherwise we prefer to use VALID, since we can implement all the other # padding types just by adding some extra padding before doing a VALID conv. # (We could use SAME but then we'd also have to crop outputs in some cases). return VALID def _fill_and_one_pad_stride(stride, n, data_format=DATA_FORMAT_NHWC): """Expands the provided stride to size n and pads it with 1s.""" if isinstance(stride, numbers.Integral) or ( isinstance(stride, collections.Iterable) and len(stride) <= n): if data_format.startswith("NC"): return (1, 1,) + _fill_shape(stride, n) elif data_format.startswith("N") and data_format.endswith("C"): return (1,) + _fill_shape(stride, n) + (1,) else: raise ValueError( "Invalid data_format {:s}. Must start with N and have a channel dim " "either follow the N dim or come at the end".format(data_format)) elif isinstance(stride, collections.Iterable) and len(stride) == n + 2: return stride else: raise base.IncompatibleShapeError( "stride is {} ({}), must be either a positive integer or an iterable of" " positive integers of size {}".format(stride, type(stride), n)) def _verify_inputs(inputs, channel_index, data_format): """Verifies `inputs` is semantically correct. Args: inputs: An input tensor provided by the user. channel_index: The index of the channel dimension. data_format: The format of the data in `inputs`. Raises: base.IncompatibleShapeError: If the shape of `inputs` doesn't match `data_format`. base.UnderspecifiedError: If the channel dimension of `inputs` isn't defined. TypeError: If input Tensor dtype is not compatible with either `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. """ # Check shape. input_shape = tuple(inputs.get_shape().as_list()) if len(input_shape) != len(data_format): raise base.IncompatibleShapeError(( "Input Tensor must have rank {} corresponding to " "data_format {}, but instead was {} of rank {}.").format( len(data_format), data_format, input_shape, len(input_shape))) # Check type. if not (tf.float16.is_compatible_with(inputs.dtype) or tf.bfloat16.is_compatible_with(inputs.dtype) or tf.float32.is_compatible_with(inputs.dtype) or tf.float64.is_compatible_with(inputs.dtype)): raise TypeError( "Input must have dtype tf.float16, tf.bfloat16, tf.float32 or " "tf.float64, but dtype was {}".format(inputs.dtype)) # Check channel dim. input_channels = input_shape[channel_index] if input_channels is None: raise base.UnderspecifiedError( "Number of input channels must be known at module build time") def create_weight_initializer(fan_in_shape, dtype=tf.float32): """Returns a default initializer for the weights of a convolutional module.""" stddev = 1 / math.sqrt(np.prod(fan_in_shape)) return tf.truncated_normal_initializer(stddev=stddev, dtype=dtype) def create_bias_initializer(unused_bias_shape, dtype=tf.float32): """Returns a default initializer for the biases of a convolutional module.""" return tf.zeros_initializer(dtype=dtype) def _find_channel_index(data_format): """Returns the index of the channel dimension. Args: data_format: A string of characters corresponding to Tensor dimensionality. Returns: channel_index: An integer indicating the channel dimension. Raises: ValueError: If no channel dimension was found. """ for i, c in enumerate(data_format): if c == "C": return i raise ValueError("data_format requires a channel dimension. Got: {}" .format(data_format)) def _apply_bias(inputs, outputs, channel_index, data_format, output_channels, initializers, partitioners, regularizers): """Initialize and apply a bias to the outputs. Figures out the shape of the bias vector, initialize it, and applies it. Args: inputs: A Tensor of shape `data_format`. outputs: A Tensor of shape `data_format`. channel_index: The index of the channel dimension in `inputs`. data_format: Format of `inputs`. output_channels: Channel dimensionality for `outputs`. initializers: Optional dict containing ops to initialize the biases (with key 'b'). partitioners: Optional dict containing partitioners to partition the biases (with key 'b'). regularizers: Optional dict containing regularizers for the biases (with key 'b'). Returns: b: The constructed bias variable. outputs: The `outputs` argument that has had a bias applied. """ bias_shape = (output_channels,) if "b" not in initializers: initializers["b"] = create_bias_initializer(bias_shape, dtype=inputs.dtype) b = tf.get_variable("b", shape=bias_shape, dtype=inputs.dtype, initializer=initializers["b"], partitioner=partitioners.get("b", None), regularizer=regularizers.get("b", None)) # tf.nn.bias_add only supports 2 data formats. if data_format in (DATA_FORMAT_NHWC, DATA_FORMAT_NCHW): # Supported as-is. outputs = tf.nn.bias_add(outputs, b, data_format=data_format) else: # Create our own bias vector. bias_correct_dim = [1] * len(data_format) bias_correct_dim[channel_index] = output_channels outputs += tf.reshape(b, bias_correct_dim) return b, outputs class _ConvND(base.AbstractModule): """N-dimensional convolution and dilated convolution module, including bias. This acts as a light wrapper around the TensorFlow ops `tf.nn.convolution` abstracting away variable creation and sharing. """ def __init__(self, output_channels, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, mask=None, data_format=DATA_FORMAT_NHWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="conv_nd"): """Constructs a _ConvND module. Args: output_channels: Number of output channels. `output_channels` can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_channels can be called, returning an integer, when `build` is called. kernel_shape: Sequence of kernel sizes (up to size N), or an integer. `kernel_shape` will be expanded to define a kernel size in all dimensions. stride: Sequence of strides (up to size N), or an integer. `stride` will be expanded to define stride in all dimensions. rate: Sequence of dilation rates (of size N), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard ND convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings (up to size N). * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. mask: A convertible to a ND tensor which is multiplied component-wise with the weights (Optional). data_format: The data format of the input. padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME or VALID for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.IncompatibleShapeError: If a mask is a TensorFlow Tensor with a not fully defined shape. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. TypeError: If mask is given and it is not convertible to a Tensor. ValueError: If the passed-in data_format doesn't have a channel dimension. """ super(_ConvND, self).__init__(custom_getter=custom_getter, name=name) self._n = len(data_format) - 2 self._input_channels = None self._output_channels = output_channels self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, self._n, "kernel") self._data_format = data_format # The following is for backwards-compatibility from when we used to accept # N-strides of the form [1, ..., 1]. if (isinstance(stride, collections.Sequence) and len(stride) == len(data_format)): self._stride = tuple(stride)[1:-1] else: self._stride = _fill_and_verify_parameter_shape(stride, self._n, "stride") self._rate = _fill_and_verify_parameter_shape(rate, self._n, "rate") if any(x > 1 for x in self._stride) and any(x > 1 for x in self._rate): raise base.NotSupportedError("Cannot have stride > 1 with rate > 1") self._padding = _fill_and_verify_padding(padding, self._n) self._padding_value = _verify_padding_value(padding_value) self._conv_op_padding = _padding_to_conv_op_padding( self._padding, self._padding_value) self._use_bias = use_bias self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias) self._initializers = util.check_initializers( initializers, self.possible_keys) self._partitioners = util.check_partitioners( partitioners, self.possible_keys) self._regularizers = util.check_regularizers( regularizers, self.possible_keys) if mask is not None: if isinstance(mask, (tf.Tensor, list, tuple, np.ndarray)): self._mask = tf.convert_to_tensor(mask) if not (tf.float16.is_compatible_with(self._mask.dtype) or tf.bfloat16.is_compatible_with(self._mask.dtype) or tf.float32.is_compatible_with(self._mask.dtype) or tf.float64.is_compatible_with(self._mask.dtype)): raise TypeError( "Mask needs to have dtype float16, bfloat16, float32 or float64") if not self._mask.get_shape().is_fully_defined(): base.IncompatibleShapeError( "Mask needs to have a statically defined shape") else: raise TypeError("Invalid type for mask: {}".format(type(mask))) else: self._mask = None self._channel_index = _find_channel_index(self._data_format) @classmethod def get_possible_initializer_keys(cls, use_bias=True): return {"w", "b"} if use_bias else {"w"} def _build(self, inputs): """Connects the _ConvND module into the graph, with input Tensor `inputs`. If this is not the first time the module has been connected to the graph, the input Tensor provided here must have the same number of channels, in order for the existing variables to be the correct size for the multiplication; the batch size and input spatial dimensions may differ for each connection. Args: inputs: A ND Tensor of the same rank as `data_format`, and either of types `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: A ND Tensor of shape [batch_size, output_dim_1, output_dim_2, ..., output_channels]. Raises: ValueError: If connecting the module into the graph any time after the first time and the inferred size of the input does not match previous invocations. base.IncompatibleShapeError: If the input tensor has the wrong number of dimensions. base.UnderspecifiedError: If the channel dimension of `inputs` isn't defined. base.IncompatibleShapeError: If a mask is present and its shape is incompatible with the shape of the weights. TypeError: If input Tensor dtype is not compatible with either `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. """ _verify_inputs(inputs, self._channel_index, self._data_format) self._input_shape = tuple(inputs.get_shape().as_list()) self._input_channels = self._input_shape[self._channel_index] self._w = self._construct_w(inputs) if self._mask is not None: w = self._apply_mask() else: w = self._w inputs = self._pad_input(inputs) outputs = self._apply_conv(inputs, w) if self._use_bias: self._b, outputs = _apply_bias( inputs, outputs, self._channel_index, self._data_format, self.output_channels, self._initializers, self._partitioners, self._regularizers) return outputs def _pad_input(self, inputs): """Pad input in case the desired padding type requires it. VALID and SAME padding types are directly supported by tensorflow convolution ops, so don't require us to pad input ourselves, at least in cases where the same method is used for all dimensions. Other padding types (FULL, CAUSAL, REVERSE_CAUSAL) aren't directly supported by conv ops but can be implemented by using VALID and padding the input appropriately ourselves. If different padding types are used for different dimensions, we use VALID but pad the input ourselves along any dimensions that require other padding types. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: inputs: The `inputs` argument that has had any required padding added. """ if all(p == self._conv_op_padding for p in self._padding): # All axes require the same padding type that we're going to use for the # underlying convolution op and we use the padding mode that is used by # the convolution op, so nothing needs to be done: return inputs # In all other cases we use VALID as the underlying padding type, and for # the axes which require something other than VALID, we pad inputs ourselves # before the convolution. assert self._conv_op_padding == VALID def pad_amount(kernel_size, rate, padding): """Pre- and post-padding required for a particular axis before conv op.""" # The effective kernel size includes any holes/gaps introduced by the # dilation rate. It's equal to kernel_size when rate == 1. effective_kernel_size = int((kernel_size - 1) * rate + 1) if padding == FULL: return [effective_kernel_size - 1, effective_kernel_size - 1] if padding == CAUSAL: return [effective_kernel_size - 1, 0] if padding == REVERSE_CAUSAL: return [0, effective_kernel_size - 1] if padding == SAME: return [(effective_kernel_size - 1) // 2, effective_kernel_size // 2] # padding == VALID return [0, 0] paddings = map(pad_amount, self._kernel_shape, self._rate, self._padding) if self._data_format.startswith("NC"): # N, C, ... paddings = [[0, 0], [0, 0]] + list(paddings) else: # N, ..., C paddings = [[0, 0]] + list(paddings) + [[0, 0]] return tf.pad(inputs, paddings, mode=self._padding_value) def _apply_conv(self, inputs, w): """Apply a convolution operation on `inputs` using variable `w`. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. w: A weight matrix of the same type as `inputs`. Returns: outputs: The result of the convolution operation on `inputs`. """ outputs = tf.nn.convolution(inputs, w, strides=self._stride, padding=self._conv_op_padding, dilation_rate=self._rate, data_format=self._data_format) return outputs def _construct_w(self, inputs): """Construct the convolution weight matrix. Figures out the shape of the weight matrix, initialize it, and return it. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: w: A weight matrix of the same type as `inputs`. """ weight_shape = self._kernel_shape + (self._input_channels, self.output_channels) if "w" not in self._initializers: self._initializers["w"] = create_weight_initializer(weight_shape[:-1], dtype=inputs.dtype) w = tf.get_variable("w", shape=weight_shape, dtype=inputs.dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) return w def _apply_mask(self): """Applies the passed-in mask to the convolution matrix. Returns: w: A copy of the convolution matrix that has had the mask applied. Raises: base.IncompatibleShapeError: If the mask shape has more dimensions than the weight matrix. base.IncompatibleShapeError: If the mask and the weight matrix don't match on shape. """ w = self._w w_shape = w.get_shape() mask_shape = self._mask.get_shape() if mask_shape.ndims > w_shape.ndims: raise base.IncompatibleShapeError( "Invalid mask shape: {}. Max shape: {}".format( mask_shape.ndims, len(self._data_format) ) ) if mask_shape != w_shape[:mask_shape.ndims]: raise base.IncompatibleShapeError( "Invalid mask shape: {}. Weight shape: {}".format( mask_shape, w_shape ) ) # TF broadcasting is a bit fragile. # Expand the shape of self._mask by one dim at a time to the right # until the rank matches `weight_shape`. while self._mask.get_shape().ndims < w_shape.ndims: self._mask = tf.expand_dims(self._mask, -1) # tf.Variable & tf.ResourceVariable don't support *=. w = w * self._mask # pylint: disable=g-no-augmented-assignment return w @property def output_channels(self): """Returns the number of output channels.""" if callable(self._output_channels): self._output_channels = self._output_channels() # Channel must be integer. self._output_channels = int(self._output_channels) return self._output_channels @property def kernel_shape(self): """Returns the kernel shape.""" return self._kernel_shape @property def stride(self): """Returns the stride.""" # Backwards compatibility with old stride format. return _fill_and_one_pad_stride(self._stride, self._n, self._data_format) @property def rate(self): """Returns the dilation rate.""" return self._rate @property def padding(self): """Returns the padding algorithm used, if this is the same for all dims. Use `.paddings` if you want a tuple with the padding algorithm used for each dimension. Returns: The padding algorithm used, if this is the same for all dimensions. Raises: ValueError: If different padding algorithms are used for different dimensions. """ # This is for backwards compatibility -- previously only a single # padding setting was supported across all dimensions. if all(p == self._padding[0] for p in self._padding): return self._padding[0] else: raise ValueError("This layer uses different paddings for different " "dimensions. Use .paddings if you want a tuple of " "per-dimension padding settings.") @property def paddings(self): """Returns a tuple with the padding algorithm used for each dimension.""" return self._padding @property def conv_op_padding(self): """Returns the padding algorithm used for the underlying convolution op.""" return self._conv_op_padding @property def w(self): """Returns the Variable containing the weight matrix.""" self._ensure_is_connected() return self._w @property def b(self): """Returns the Variable containing the bias. Returns: Variable object containing the bias, from the most recent __call__. Raises: base.NotConnectedError: If the module has not been connected to the graph yet, meaning the variables do not exist. AttributeError: If the module does not use bias. """ self._ensure_is_connected() if not self._use_bias: raise AttributeError( "No bias Variable in Conv2D Module when `use_bias=False`.") return self._b @property def has_bias(self): """Returns `True` if bias Variable is present in the module.""" return self._use_bias @property def initializers(self): """Returns the initializers dictionary.""" return self._initializers @property def partitioners(self): """Returns the partitioners dictionary.""" return self._partitioners @property def regularizers(self): """Returns the regularizers dictionary.""" return self._regularizers @property def mask(self): """Returns the mask.""" return self._mask @property def data_format(self): """Returns the data format.""" return self._data_format # Implements Transposable interface. @property def input_shape(self): """Returns the input shape.""" self._ensure_is_connected() return self._input_shape @property def input_channels(self): """Returns the number of input channels.""" if self._input_channels is None: self._ensure_is_connected() return self._input_channels def clone(self, name=None): """Returns a cloned `_ConvND` module. Args: name: Optional string assigning name of cloned module. The default name is constructed by appending "_clone" to `self.module_name`. Returns: A copy of the current class. """ if name is None: name = self.module_name + "_clone" return type(self)(output_channels=self.output_channels, kernel_shape=self._kernel_shape, stride=self._stride, rate=self._rate, padding=self._padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, mask=self._mask, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class _ConvNDTranspose(base.AbstractModule): """Spatial transposed / reverse / up ND convolution module, including bias. This acts as a light wrapper around the TensorFlow `conv_nd_transpose` ops, abstracting away variable creation and sharing. """ def __init__(self, output_channels, output_shape=None, kernel_shape=None, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NHWC, custom_getter=None, name="conv_nd_transpose"): """Constructs a `ConvNDTranspose module`. Support for N = (1, 2, 3). See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. Can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure `output_channels` can be called, returning an integer, when build is called. output_shape: Output shape of transpose convolution. Can be either an iterable of integers or `Dimension`s, a `TensorShape`, or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that `output_shape` can be called, returning an iterable of output shapes when `build` is called. Note that `output_shape` defines the size of output signal domain, as opposed to the shape of the output `Tensor`. If a None value is given, a default shape is automatically calculated (see docstring of `_default_transpose_size` function for more details). kernel_shape: Sequence of kernel sizes (of size N), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size N), or integer that is used to define stride in all dimensions. padding: Padding algorithm, either `snt.SAME` or `snt.VALID`. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: The data format of the input. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is neither an integer nor a sequence of two integers. base.IncompatibleShapeError: If the given stride is neither an integer nor a sequence of two or four integers. ValueError: If the given padding is not `snt.VALID` or `snt.SAME`. ValueError: If the given kernel_shape is `None`. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. """ super(_ConvNDTranspose, self).__init__(custom_getter=custom_getter, name=name) self._data_format = data_format self._n = len(self._data_format) - 2 if self._n > 3: raise base.NotSupportedError( "We only support (1, 2, 3) convolution transpose operations. " "Received data format of: {}".format(self._data_format)) self._output_channels = output_channels if output_shape is None: self._output_shape = None self._use_default_output_shape = True else: self._use_default_output_shape = False if callable(output_shape): self._output_shape = output_shape else: self._output_shape = _fill_and_verify_parameter_shape(output_shape, self._n, "output_shape") if kernel_shape is None: raise ValueError("`kernel_shape` cannot be None.") self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, self._n, "kernel") if (isinstance(stride, collections.Sequence) and len(stride) == len(data_format)): if self._data_format.startswith("N") and self._data_format.endswith("C"): if not stride[0] == stride[-1] == 1: raise base.IncompatibleShapeError( "Invalid stride: First and last element must be 1.") elif self._data_format.startswith("NC"): if not stride[0] == stride[1] == 1: raise base.IncompatibleShapeError( "Invalid stride: First and second element must be 1.") self._stride = tuple(stride) else: self._stride = _fill_and_one_pad_stride(stride, self._n, self._data_format) self._padding = _verify_conv_op_supported_padding(padding) self._use_bias = use_bias self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias) self._initializers = util.check_initializers( initializers, self.possible_keys) self._partitioners = util.check_partitioners( partitioners, self.possible_keys) self._regularizers = util.check_regularizers( regularizers, self.possible_keys) self._channel_index = _find_channel_index(self._data_format) @classmethod def get_possible_initializer_keys(cls, use_bias=True): return {"w", "b"} if use_bias else {"w"} def _build(self, inputs): """Connects the _ConvNDTranspose module into the graph. If this is not the first time the module has been connected to the graph, the input Tensor provided here must have the same final N dimensions, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Raises: ValueError: If connecting the module into the graph any time after the first time and the inferred size of the input does not match previous invocations. base.IncompatibleShapeError: If the input tensor has the wrong number of dimensions. base.UnderspecifiedError: If the channel dimension of `inputs` isn't defined. base.IncompatibleShapeError: If `output_shape` is an iterable and is not in the format `(out_height, out_width)`. TypeError: If input Tensor dtype is not compatible with either `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. """ _verify_inputs(inputs, self._channel_index, self._data_format) self._input_shape = tuple(inputs.get_shape().as_list()) self._input_channels = self._input_shape[self._channel_index] # First, figure out what the non-(N,C) dims will be. if self._use_default_output_shape: def _default_transpose_size_wrapper(): if self._data_format.startswith("NC"): input_size = self._input_shape[2:] stride = self.stride[2:] else: # self._data_format == N*WC input_size = self._input_shape[1:-1] stride = self.stride[1:-1] return _default_transpose_size(input_size, stride, kernel_shape=self._kernel_shape, padding=self._padding) self._output_shape = _default_transpose_size_wrapper if len(self.output_shape) != self._n: raise base.IncompatibleShapeError( "Output shape must have rank {}, but instead was {}".format( self._n, len(self.output_shape))) # Now, construct the size of the output, including the N + C dims. output_shape = self._infer_all_output_dims(inputs) self._w = self._construct_w(inputs) if self._n == 1: # Add a dimension for the height. if self._data_format == DATA_FORMAT_NWC: h_dim = 1 two_dim_conv_data_format = DATA_FORMAT_NHWC else: # self._data_format == DATA_FORMAT_NCW h_dim = 2 two_dim_conv_data_format = DATA_FORMAT_NCHW inputs = tf.expand_dims(inputs, h_dim) two_dim_conv_stride = self.stride[:h_dim] + (1,) + self.stride[h_dim:] outputs = tf.nn.conv2d_transpose(inputs, self._w, output_shape, strides=two_dim_conv_stride, padding=self._padding, data_format=two_dim_conv_data_format) # Remove the height dimension to return a 3D tensor. outputs = tf.squeeze(outputs, [h_dim]) elif self._n == 2: outputs = tf.nn.conv2d_transpose(inputs, self._w, output_shape, strides=self._stride, padding=self._padding, data_format=self._data_format) else: outputs = tf.nn.conv3d_transpose(inputs, self._w, output_shape, strides=self._stride, padding=self._padding, data_format=self._data_format) if self._use_bias: self._b, outputs = _apply_bias( inputs, outputs, self._channel_index, self._data_format, self._output_channels, self._initializers, self._partitioners, self._regularizers) outputs = self._recover_shape_information(inputs, outputs) return outputs def _construct_w(self, inputs): """Construct the convolution weight matrix. Figures out the shape of the weight matrix, initialize it, and return it. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: w: A weight matrix of the same type as `inputs`. """ # Height dim needs to be added to everything for 1D Conv # as we'll be using the 2D Conv Transpose op. if self._n == 1: weight_shape = (1,) + self._kernel_shape + (self.output_channels, self._input_channels) else: weight_shape = self._kernel_shape + (self.output_channels, self._input_channels) if "w" not in self._initializers: fan_in_shape = self._kernel_shape + (self._input_channels,) self._initializers["w"] = create_weight_initializer(fan_in_shape, dtype=inputs.dtype) w = tf.get_variable("w", shape=weight_shape, dtype=inputs.dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) return w def _infer_all_output_dims(self, inputs): """Calculate the output shape for `inputs` after a deconvolution. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: output_shape: A tensor of shape (`batch_size`, `conv_output_shape`). """ # Use tensorflow shape op to manipulate inputs shape, so that unknown batch # size - which can happen when using input placeholders - is handled # correcly. batch_size = tf.expand_dims(tf.shape(inputs)[0], 0) out_channels = (self.output_channels,) # Height dim needs to be added to everything for 1D Conv # as we'll be using the 2D Conv Transpose op. if self._n == 1: out_shape = (1,) + self.output_shape else: out_shape = self.output_shape if self._data_format.startswith("NC"): out_shape_tuple = out_channels + out_shape elif self._data_format.startswith("N") and self._data_format.endswith("C"): out_shape_tuple = out_shape + out_channels else: raise ValueError("Unsupported data format: {}".format(self._data_format)) output_shape = tf.concat([batch_size, out_shape_tuple], 0) return output_shape def _recover_shape_information(self, inputs, outputs): """Recover output tensor shape value to enable shape inference. The batch size of `inputs` isn't preserved by the convolution op. Calculate what the proper output shape will be for `outputs`. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. outputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. The output of `inputs` from a transpose convolution op. Returns: outputs: The passed-in `outputs` with all shape information filled in. """ batch_size_value = inputs.get_shape()[0] if self._data_format.startswith("NC"): output_shape_value = ((batch_size_value, self.output_channels) + self.output_shape) elif self._data_format.startswith("N") and self._data_format.endswith("C"): output_shape_value = ((batch_size_value,) + self.output_shape + (self.output_channels,)) else: raise ValueError("Unsupported data format: {}".format(self._data_format)) outputs.set_shape(output_shape_value) return outputs @property def output_channels(self): """Returns the number of output channels.""" if callable(self._output_channels): self._output_channels = self._output_channels() # Channel must be integer. self._output_channels = int(self._output_channels) return self._output_channels @property def kernel_shape(self): """Returns the kernel shape.""" return self._kernel_shape @property def stride(self): """Returns the stride.""" return self._stride @property def output_shape(self): """Returns the output shape.""" if self._output_shape is None: self._ensure_is_connected() if callable(self._output_shape): self._output_shape = tuple(self._output_shape()) return self._output_shape @property def padding(self): """Returns the padding algorithm.""" return self._padding @property def conv_op_padding(self): """Returns the padding algorithm used for the underlying convolution op.""" return self._padding @property def w(self): """Returns the Variable containing the weight matrix.""" self._ensure_is_connected() return self._w @property def b(self): """Returns the Variable containing the bias. Returns: Variable object containing the bias, from the most recent __call__. Raises: base.NotConnectedError: If the module has not been connected to the graph yet, meaning the variables do not exist. AttributeError: If the module does not use bias. """ self._ensure_is_connected() if not self._use_bias: raise AttributeError( "No bias Variable in Conv2DTranspose Module when `use_bias=False`.") return self._b @property def has_bias(self): """Returns `True` if bias Variable is present in the module.""" return self._use_bias @property def initializers(self): """Returns the initializers dictionary.""" return self._initializers @property def partitioners(self): """Returns the partitioners dictionary.""" return self._partitioners @property def regularizers(self): """Returns the regularizers dictionary.""" return self._regularizers @property def input_shape(self): """Returns the input shape.""" self._ensure_is_connected() return self._input_shape @property def input_channels(self): """Returns the number of input channels.""" self._ensure_is_connected() return self._input_channels class Conv1D(_ConvND, base.Transposable): """1D convolution module, including optional bias. This acts as a light wrapper around the class `_ConvND`. """ def __init__(self, output_channels, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, mask=None, data_format=DATA_FORMAT_NWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="conv_1d"): """Constructs a Conv1D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. `output_channels` can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_channels can be called, returning an integer, when `build` is called. kernel_shape: Sequence of kernel sizes (of size 1), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 1), or integer that is used to define stride in all dimensions. rate: Sequence of dilation rates (of size 1), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 1. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. mask: A convertible to a 3D tensor which is multiplied component-wise with the weights (Optional). data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NWC), or the second dimension (NCW). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.IncompatibleShapeError: If a mask is a TensorFlow Tensor with a not fully defined shape. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. ValueError: If the given padding is not `snt.VALID` or `snt.SAME`. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. TypeError: If mask is given and it is not convertible to a Tensor. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_1D_DATA_FORMATS`). """ if data_format not in SUPPORTED_1D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_1D_DATA_FORMATS)) super(Conv1D, self).__init__( output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, rate=rate, padding=padding, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, mask=mask, data_format=data_format, custom_getter=custom_getter, name=name) # Implement Transposable interface def transpose(self, name=None): """Returns matching `Conv1DTranspose` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.name`. Returns: `Conv1DTranspose` module. Raises: base.NotSupportedError: If `rate` in any dimension > 1. """ if any(x > 1 for x in self._rate): raise base.NotSupportedError( "Cannot transpose a dilated convolution module.") if any(p != self._conv_op_padding for p in self._padding): raise base.NotSupportedError( "Cannot tranpose a convolution using mixed paddings or paddings " "other than SAME or VALID.") def output_shape(): if self._data_format == DATA_FORMAT_NCW: return (self._input_shape[2],) else: # data_format = DATA_FORMAT_NWC return (self._input_shape[1],) if name is None: name = self.module_name + "_transpose" return Conv1DTranspose(output_channels=lambda: self._input_channels, output_shape=output_shape, kernel_shape=self._kernel_shape, stride=self._stride, padding=self._conv_op_padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class Conv1DTranspose(_ConvNDTranspose, base.Transposable): """1D transposed / reverse / up 1D convolution module, including bias. This performs a 1D transpose convolution by lightly wrapping the TensorFlow op `tf.nn.conv2d_transpose`, setting the size of the height dimension of the image to 1. """ def __init__(self, output_channels, output_shape=None, kernel_shape=None, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NWC, custom_getter=None, name="conv_1d_transpose"): """Constructs a Conv1DTranspose module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. Can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure `output_channels` can be called, returning an integer, when build is called. output_shape: Output shape of transpose convolution. Can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that `output_shape` can be called, returning an iterable of format `(out_length)` when build is called. If a None value is given, a default shape is automatically calculated (see docstring of _default_transpose_size function for more details). kernel_shape: Sequence of kernel sizes (of size 1), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 1), or integer that is used to define stride in all dimensions. padding: Padding algorithm, either `snt.SAME` or `snt.VALID`. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NWC), or the second dimension (NCW). custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two or four integers. ValueError: If the given padding is not `snt.VALID` or `snt.SAME`. ValueError: If the given kernel_shape is `None`. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_1D_DATA_FORMATS`). """ if data_format not in SUPPORTED_1D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_1D_DATA_FORMATS)) super(Conv1DTranspose, self).__init__( output_channels=output_channels, output_shape=output_shape, kernel_shape=kernel_shape, stride=stride, padding=padding, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name ) # Implement Transposable interface. def transpose(self, name=None): """Returns matching `Conv1D` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.name`. Returns: `Conv1D` module. """ if name is None: name = self.module_name + "_transpose" if self._data_format == DATA_FORMAT_NWC: stride = self._stride[1:-1] else: # self._data_format == DATA_FORMAT_NCW stride = self._stride[2:] return Conv1D(output_channels=lambda: self.input_channels, kernel_shape=self.kernel_shape, stride=stride, padding=self.padding, use_bias=self._use_bias, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class CausalConv1D(_ConvND): """1D convolution module, including optional bias. This is deprecated, please use the padding=CAUSAL argument to Conv1D. This acts as a light wrapper around _ConvND ensuring that the outputs at index `i` only depend on indices smaller than `i` (also known as a causal convolution). For further details on the theoretical background, refer to: https://arxiv.org/abs/1610.10099 """ def __init__(self, output_channels, kernel_shape, stride=1, rate=1, use_bias=True, initializers=None, partitioners=None, regularizers=None, mask=None, padding=CAUSAL, data_format=DATA_FORMAT_NWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="causal_conv_1d"): """Constructs a CausalConv1D module. This is deprecated, please use the padding=CAUSAL argument to Conv1D. Args: output_channels: Number of output channels. `output_channels` can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_channels can be called, returning an integer, when `build` is called. kernel_shape: Sequence of kernel sizes (of size 1), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 1), or integer that is used to define stride in all dimensions. rate: Sequence of dilation rates (of size 1), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. mask: A convertible to a 3D tensor which is multiplied component-wise with the weights (Optional). padding: Padding algorithm. Should be `snt.CAUSAL`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NWC), or the second dimension (NCW). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Defaults to "CONSTANT" which will pad with zeros. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.IncompatibleShapeError: If a mask is a TensorFlow Tensor with a not fully defined shape. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. TypeError: If mask is given and it is not convertible to a Tensor. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_1D_DATA_FORMATS`). """ util.deprecation_warning( "CausalConv1D is deprecated, please use Conv1D with padding=CAUSAL.") if data_format not in SUPPORTED_1D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_1D_DATA_FORMATS)) if padding != CAUSAL: # This used to be required to be VALID, which is now rather ambiguous. # Supporting VALID for now but with a warning: util.deprecation_warning( "You specified a non-casual padding type for CausalConv1D, this has " "been ignored and you will get CAUSAL padding. Note CausalConv1D is " "deprecated, please switch to Conv1D with padding=CAUSAL.") super(CausalConv1D, self).__init__( output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, rate=rate, padding=CAUSAL, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, mask=mask, data_format=data_format, custom_getter=custom_getter, name=name) class Conv2D(_ConvND, base.Transposable): """Spatial convolution and dilated convolution module, including bias. This acts as a light wrapper around the class `_ConvND`. """ def __init__(self, output_channels, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, mask=None, data_format=DATA_FORMAT_NHWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="conv_2d"): """Constructs a Conv2D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. `output_channels` can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_channels can be called, returning an integer, when `build` is called. kernel_shape: Sequence of kernel sizes (of size 2), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 2), or integer that is used to define stride in all dimensions. rate: Sequence of dilation rates (of size 2), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard 2D convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 2. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. mask: A convertible to a 4D tensor which is multiplied component-wise with the weights (Optional). data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NHWC), or the second dimension (NCHW). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.IncompatibleShapeError: If a mask is given and its rank is neither 2 nor 4, or if it is a TensorFlow Tensor with a not fully defined shape. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. TypeError: If mask is given and it is not convertible to a Tensor. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_2D_DATA_FORMATS`). """ if data_format not in SUPPORTED_2D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) super(Conv2D, self).__init__( output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, rate=rate, padding=padding, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, mask=mask, data_format=data_format, custom_getter=custom_getter, name=name) # Implements Transposable interface. def transpose(self, name=None): """Returns matching `Conv2DTranspose` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.name`. Returns: `Conv2DTranspose` module. Raises: base.NotSupportedError: If `rate` in any dimension > 1. """ if any(x > 1 for x in self._rate): raise base.NotSupportedError( "Cannot transpose a dilated convolution module.") if any(p != self._conv_op_padding for p in self._padding): raise base.NotSupportedError( "Cannot tranpose a convolution using mixed paddings or paddings " "other than SAME or VALID.") if name is None: name = self.module_name + "_transpose" def output_shape(): if self._data_format == DATA_FORMAT_NCHW: return self.input_shape[2:4] else: # data_format == DATA_FORMAT_NHWC return self.input_shape[1:3] return Conv2DTranspose(output_channels=lambda: self._input_channels, output_shape=output_shape, kernel_shape=self._kernel_shape, stride=self._stride, padding=self._conv_op_padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class Conv2DTranspose(_ConvNDTranspose, base.Transposable): """Spatial transposed / reverse / up 2D convolution module, including bias. This acts as a light wrapper around the TensorFlow op `tf.nn.conv2d_transpose` abstracting away variable creation and sharing. """ def __init__(self, output_channels, output_shape=None, kernel_shape=None, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NHWC, custom_getter=None, name="conv_2d_transpose"): """Constructs a `Conv2DTranspose module`. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. Can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure `output_channels` can be called, returning an integer, when build is called. output_shape: Output shape of transpose convolution. Can be either an iterable of integers or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that `output_shape` can be called, returning an iterable of format `(out_height, out_width)` when `build` is called. Note that `output_shape` defines the size of output signal domain, as opposed to the shape of the output `Tensor`. If a None value is given, a default shape is automatically calculated (see docstring of _default_transpose_size function for more details). kernel_shape: Sequence of kernel sizes (of size 2), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 2), or integer that is used to define stride in all dimensions. padding: Padding algorithm, either `snt.SAME` or `snt.VALID`. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NHWC), or the second dimension ("NCHW"). custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the` tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is neither an integer nor a sequence of two integers. base.IncompatibleShapeError: If the given stride is neither an integer nor a sequence of two or four integers. ValueError: If the given padding is not `snt.VALID` or `snt.SAME`. ValueError: If the given kernel_shape is `None`. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_2D_DATA_FORMATS`). """ if data_format not in SUPPORTED_2D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) super(Conv2DTranspose, self).__init__( output_channels=output_channels, output_shape=output_shape, kernel_shape=kernel_shape, stride=stride, padding=padding, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name ) # Implements Transposable interface. def transpose(self, name=None): """Returns matching `Conv2D` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.name`. Returns: `Conv2D` module. """ if name is None: name = self.module_name + "_transpose" if self._data_format == DATA_FORMAT_NHWC: stride = self._stride[1:-1] else: # self._data_format == DATA_FORMAT_NCHW stride = self._stride[2:] return Conv2D(output_channels=lambda: self.input_channels, kernel_shape=self._kernel_shape, stride=stride, padding=self._padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class Conv3D(_ConvND, base.Transposable): """Volumetric convolution module, including optional bias. This acts as a light wrapper around the class `_ConvND`. """ def __init__(self, output_channels, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, mask=None, data_format=DATA_FORMAT_NDHWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="conv_3d"): """Constructs a Conv3D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. `output_channels` can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that output_channels can be called, returning an integer, when `build` is called. kernel_shape: Sequence of kernel sizes (of size 3), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 3), or integer that is used to define stride in all dimensions. rate: Sequence of dilation rates (of size 3), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard 3D convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 3. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. mask: An object convertible to a 5D tensor which is multiplied component-wise with the weights (Optional). data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NDHWC), or the second dimension (NCDHW). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two or four integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_3D_DATA_FORMATS`). """ if data_format not in SUPPORTED_3D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_3D_DATA_FORMATS)) super(Conv3D, self).__init__( output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, rate=rate, padding=padding, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, mask=mask, data_format=data_format, custom_getter=custom_getter, name=name) # Implements Transposable interface. def transpose(self, name=None): """Returns matching `Conv3DTranspose` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.name`. Returns: `Conv3DTranspose` module. Raises: base.NotSupportedError: If `rate` in any dimension > 1. """ if any(x > 1 for x in self._rate): raise base.NotSupportedError( "Cannot transpose a dilated convolution module.") if any(p != self._conv_op_padding for p in self._padding): raise base.NotSupportedError( "Cannot tranpose a convolution using mixed paddings or paddings " "other than SAME or VALID.") def output_shape(): if self._data_format == DATA_FORMAT_NCDHW: return self.input_shape[2:] else: # data_format == DATA_FORMAT_NDHWC return self.input_shape[1:4] if name is None: name = self.module_name + "_transpose" return Conv3DTranspose(output_channels=lambda: self._input_channels, output_shape=output_shape, kernel_shape=self._kernel_shape, stride=self._stride, padding=self._conv_op_padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class Conv3DTranspose(_ConvNDTranspose, base.Transposable): """Volumetric transposed / reverse / up 3D convolution module, including bias. This acts as a light wrapper around the TensorFlow op `tf.nn.conv3d_transpose` abstracting away variable creation and sharing. """ def __init__(self, output_channels, output_shape=None, kernel_shape=None, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NDHWC, custom_getter=None, name="conv_3d_transpose"): """Constructs a `Conv3DTranspose` module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. `output_channels` can be either a number or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure `output_channels` can be called, returning an integer, when `build` is called. output_shape: Output shape of transpose convolution. Can be either an iterable of integers or a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that `output_shape` can be called, returning an iterable of format `(out_depth, out_height, out_width)` when `build` is called. Note that `output_shape` defines the size of output signal domain, as opposed to the shape of the output `Tensor`. If a None value is given, a default shape is automatically calculated (see docstring of _default_transpose_size function for more details). kernel_shape: Sequence of kernel sizes (of size 3), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size 3), or integer that is used to define stride in all dimensions. padding: Padding algorithm, either `snt.SAME` or `snt.VALID`. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NDHWC), or the second dimension (NCDHW). custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: module.IncompatibleShapeError: If the given kernel shape is neither an integer nor a sequence of three integers. module.IncompatibleShapeError: If the given stride is neither an integer nor a sequence of three or five integers. ValueError: If the given padding is not `snt.VALID` or `snt.SAME`. ValueError: If the given kernel_shape is `None`. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. ValueError: If the given data_format is not a supported format (see `SUPPORTED_3D_DATA_FORMATS`). """ if data_format not in SUPPORTED_3D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_3D_DATA_FORMATS)) super(Conv3DTranspose, self).__init__( output_channels=output_channels, output_shape=output_shape, kernel_shape=kernel_shape, stride=stride, padding=padding, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name ) # Implement Transposable interface def transpose(self, name=None): """Returns transposed Conv3DTranspose module, i.e. a Conv3D module.""" if name is None: name = self.module_name + "_transpose" if self._data_format == DATA_FORMAT_NDHWC: stride = self._stride[1:-1] else: # self._data_format == DATA_FORMAT_NCDHW stride = self._stride[2:] return Conv3D(output_channels=lambda: self.input_channels, kernel_shape=self._kernel_shape, stride=stride, padding=self._padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name) class InPlaneConv2D(_ConvND): """Applies an in-plane convolution to each channel with tied filter weights. This acts as a light wrapper around the TensorFlow op `tf.nn.depthwise_conv2d`; it differs from the DepthWiseConv2D module in that it has tied weights (i.e. the same filter) for all the in-out channel pairs. """ def __init__(self, kernel_shape, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NHWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="in_plane_conv2d"): """Constructs an InPlaneConv2D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: kernel_shape: Iterable with 2 elements in the layout [filter_height, filter_width]; or integer that is used to define the list in all dimensions. stride: Iterable with 2 or 4 elements of kernel strides, or integer that is used to define stride in all dimensions. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 2. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition the filters (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NHWC), or the second dimension (NCHW). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: ValueError: If the given data_format is not a supported format (see `SUPPORTED_2D_DATA_FORMATS`). base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. """ if data_format not in SUPPORTED_2D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) super(InPlaneConv2D, self).__init__( output_channels=lambda: self.input_channels, kernel_shape=kernel_shape, stride=stride, padding=padding, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name) def _construct_w(self, inputs): """Construct the convolution weight matrix. Figures out the shape of the weight matrix, initialize it, and return it. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: w: A weight matrix of the same type as `inputs` and of shape [kernel_shape, 1, 1]. """ weight_shape = self._kernel_shape + (1, 1) if "w" not in self._initializers: self._initializers["w"] = create_weight_initializer(weight_shape[:2], dtype=inputs.dtype) w = tf.get_variable("w", shape=weight_shape, dtype=inputs.dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) return w def _apply_conv(self, inputs, w): """Apply a depthwise_conv2d operation on `inputs` using variable `w`. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. w: A weight matrix of the same type as `inputs`. Returns: outputs: The result of the convolution operation on `inputs`. """ tiled_weights = tf.tile(w, [1, 1, self._input_channels, 1]) outputs = tf.nn.depthwise_conv2d(inputs, tiled_weights, strides=self.stride, padding=self._conv_op_padding, data_format=self._data_format) return outputs class DepthwiseConv2D(_ConvND): """Spatial depthwise 2D convolution module, including bias. This acts as a light wrapper around the TensorFlow ops `tf.nn.depthwise_conv2d`, abstracting away variable creation and sharing. """ def __init__(self, channel_multiplier, kernel_shape, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NHWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="conv_2d_depthwise"): """Constructs a DepthwiseConv2D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: channel_multiplier: Number of channels to expand convolution to. Must be an integer. Must be > 0. When `channel_multiplier` is set to 1, apply a different filter to each input channel producing one output channel per input channel. Numbers larger than 1 cause multiple different filters to be applied to each input channel, with their outputs being concatenated together, producing `channel_multiplier` * `input_channels` output channels. kernel_shape: Iterable with 2 elements in the following layout: [filter_height, filter_width] or integer that is used to define the list in all dimensions. stride: Iterable with 2 or 4 elements of kernel strides, or integer that is used to define stride in all dimensions. Layout of list: In case of 4 elements: `[1, stride_height, stride_widith, 1]` In case of 2 elements: `[stride_height, stride_width]`. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 2. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners for the filters (with key 'w') and the biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NHWC), or the second dimension ("NCHW"). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: ValueError: If `channel_multiplier` isn't of type (`numbers.Integral` or `tf.Dimension`). ValueError: If `channel_multiplier` is less than 1. ValueError: If the given data_format is not a supported format (see `SUPPORTED_2D_DATA_FORMATS`). base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. ValueError: If the passed-in data_format doesn't have a channel dimension. """ if (not isinstance(channel_multiplier, numbers.Integral) and not isinstance(channel_multiplier, tf.Dimension)): raise ValueError(("channel_multiplier ({}), must be of type " "(`tf.Dimension`, `numbers.Integral`).").format( channel_multiplier)) if channel_multiplier < 1: raise ValueError("channel_multiplier ({}), must be >= 1".format( channel_multiplier)) self._channel_multiplier = channel_multiplier if data_format not in SUPPORTED_2D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) super(DepthwiseConv2D, self).__init__( output_channels=lambda: self._input_channels * self._channel_multiplier, kernel_shape=kernel_shape, stride=stride, padding=padding, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name) def _construct_w(self, inputs): """Construct the convolution weight matrix. Figures out the shape of the weight matrix, initializes it, and returns it. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: w: A weight matrix of the same type as `inputs` and of shape [kernel_sizes, input_channels, channel_multiplier]. """ # For depthwise conv, output_channels = in_channels * channel_multiplier. # By default, depthwise conv applies a different filter to every input # channel. If channel_multiplier > 1, one input channel is used to produce # `channel_multiplier` outputs, which are then concatenated together. # This results in: weight_shape = self._kernel_shape + (self._input_channels, self._channel_multiplier) if "w" not in self._initializers: self._initializers["w"] = create_weight_initializer(weight_shape[:2], dtype=inputs.dtype) w = tf.get_variable("w", shape=weight_shape, dtype=inputs.dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) return w def _apply_conv(self, inputs, w): """Apply a depthwise_conv2d operation on `inputs` using variable `w`. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. w: A weight matrix of the same type as `inputs`. Returns: outputs: The result of the convolution operation on `inputs`. """ outputs = tf.nn.depthwise_conv2d(inputs, w, strides=self.stride, padding=self._conv_op_padding, data_format=self._data_format) return outputs @property def channel_multiplier(self): """Returns the channel multiplier argument.""" return self._channel_multiplier class SeparableConv2D(_ConvND): """Performs an in-plane convolution to each channel independently. This acts as a light wrapper around the TensorFlow op `tf.nn.separable_conv2d`, abstracting away variable creation and sharing. """ def __init__(self, output_channels, channel_multiplier, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NHWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="separable_conv2d"): """Constructs a SeparableConv2D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. Must be an integer. channel_multiplier: Number of channels to expand pointwise (depthwise) convolution to. Must be an integer. Must be > 0. When `channel_multiplier` is set to 1, applies a different filter to each input channel. Numbers larger than 1 cause the filter to be applied to `channel_multiplier` input channels. Outputs are concatenated together. kernel_shape: List with 2 elements in the following layout: [filter_height, filter_width] or integer that is used to define the list in all dimensions. stride: List with 4 elements of kernel strides, or integer that is used to define stride in all dimensions. Layout of list: [1, stride_y, stride_x, 1]. rate: Sequence of dilation rates (of size 2), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard 2D convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 2. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with keys 'w_dw' for depthwise and 'w_pw' for pointwise) or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition the filters (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with keys 'w_dw' for depthwise and 'w_pw' for pointwise) and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NHWC), or the second dimension ("NCHW"). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: ValueError: If `channel_multiplier` isn't of type (`numbers.Integral` or `tf.Dimension`). ValueError: If `channel_multiplier` is less than 1. ValueError: If the given data_format is not a supported format (see `SUPPORTED_2D_DATA_FORMATS`). base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of two integers. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.IncompatibleShapeError: If a mask is a TensorFlow Tensor with a not fully defined shape. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w_dw', 'w_pw' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. TypeError: If mask is given and it is not convertible to a Tensor. ValueError: If the passed-in data_format doesn't have a channel dimension. """ if (not isinstance(channel_multiplier, numbers.Integral) and not isinstance(channel_multiplier, tf.Dimension)): raise ValueError(("channel_multiplier ({}), must be of type " "(`tf.Dimension`, `numbers.Integral`).").format( channel_multiplier)) if channel_multiplier < 1: raise ValueError("channel_multiplier ({}), must be >= 1".format( channel_multiplier)) self._channel_multiplier = channel_multiplier if data_format not in SUPPORTED_2D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) super(SeparableConv2D, self).__init__( output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, padding=padding, padding_value=padding_value, rate=rate, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name) @classmethod def get_possible_initializer_keys(cls, use_bias=True): return {"w_dw", "w_pw", "b"} if use_bias else {"w_dw", "w_pw"} def _construct_w(self, inputs): """Connects the module into the graph, with input Tensor `inputs`. Args: inputs: A 4D Tensor of shape: [batch_size, input_height, input_width, input_channels] and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: A tuple of two 4D Tensors, each with the same dtype as `inputs`: 1. w_dw, the depthwise weight matrix, of shape: [kernel_size, input_channels, channel_multiplier] 2. w_pw, the pointwise weight matrix, of shape: [1, 1, channel_multiplier * input_channels, output_channels]. """ depthwise_weight_shape = self._kernel_shape + (self._input_channels, self._channel_multiplier) pointwise_input_size = self._channel_multiplier * self._input_channels pointwise_weight_shape = (1, 1, pointwise_input_size, self._output_channels) if "w_dw" not in self._initializers: fan_in_shape = depthwise_weight_shape[:2] self._initializers["w_dw"] = create_weight_initializer(fan_in_shape, dtype=inputs.dtype) if "w_pw" not in self._initializers: fan_in_shape = pointwise_weight_shape[:3] self._initializers["w_pw"] = create_weight_initializer(fan_in_shape, dtype=inputs.dtype) w_dw = tf.get_variable( "w_dw", shape=depthwise_weight_shape, dtype=inputs.dtype, initializer=self._initializers["w_dw"], partitioner=self._partitioners.get("w_dw", None), regularizer=self._regularizers.get("w_dw", None)) w_pw = tf.get_variable( "w_pw", shape=pointwise_weight_shape, dtype=inputs.dtype, initializer=self._initializers["w_pw"], partitioner=self._partitioners.get("w_pw", None), regularizer=self._regularizers.get("w_pw", None)) return w_dw, w_pw def _apply_conv(self, inputs, w): """Apply a `separable_conv2d` operation on `inputs` using `w`. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. w: A tuple of weight matrices of the same type as `inputs`, the first being the depthwise weight matrix, and the second being the pointwise weight matrix. Returns: outputs: The result of the convolution operation on `inputs`. """ w_dw, w_pw = w outputs = tf.nn.separable_conv2d(inputs, w_dw, w_pw, rate=self._rate, strides=self.stride, padding=self._conv_op_padding, data_format=self._data_format) return outputs @property def channel_multiplier(self): """Returns the channel multiplier argument.""" return self._channel_multiplier @property def w_dw(self): """Returns the Variable containing the depthwise weight matrix.""" self._ensure_is_connected() return self._w[0] @property def w_pw(self): """Returns the Variable containing the pointwise weight matrix.""" self._ensure_is_connected() return self._w[1] class SeparableConv1D(_ConvND): """Performs an in-plane convolution to each channel independently. This acts as a light wrapper around the TensorFlow op `tf.nn.separable_conv2d`, abstracting away variable creation and sharing. """ def __init__(self, output_channels, channel_multiplier, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NWC, padding_value=CONSTANT_PADDING, custom_getter=None, name="separable_conv1d"): """Constructs a SeparableConv1D module. See the following documentation for an explanation of VALID versus SAME padding modes: https://www.tensorflow.org/api_docs/python/tf/nn/convolution Args: output_channels: Number of output channels. Must be an integer. channel_multiplier: Number of channels to expand pointwise (depthwise) convolution to. Must be an integer. Must be > 0. When `channel_multiplier` is set to 1, applies a different filter to each input channel. Numbers larger than 1 cause the filter to be applied to `channel_multiplier` input channels. Outputs are concatenated together. kernel_shape: List with 2 elements in the following layout: [filter_height, filter_width] or integer that is used to define the list in all dimensions. stride: List with 4 elements of kernel strides, or integer that is used to define stride in all dimensions. Layout of list: [1, stride_y, stride_x, 1]. rate: Sequence of dilation rates (of size 1), or integer that is used to define dilation rate in all dimensions. 1 corresponds to standard 1D convolution, `rate > 1` corresponds to dilated convolution. Cannot be > 1 if any of `stride` is also > 1. padding: Padding algorithm. Either `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL`, or a sequence of these paddings of length 1. * snt.SAME and snt.VALID are explained in the Tensorflow docs at https://www.tensorflow.org/api_docs/python/tf/nn/convolution. * snt.FULL pre- and post-pads with the maximum padding which does not result in a convolution over just padded elements. * snt.CAUSAL pre-pads to ensure that each output value only depends on input values at the same or preceding indices ("no dependence on the future"). * snt.REVERSE_CAUSAL post-pads to ensure that each output value only depends on input values at the same or *greater* indices ("no dependence on the past"). If you use the same padding for all dimensions, and it is one of SAME or VALID, then this is supported directly by the underlying convolution op. In all other cases, the input data will be padded using tf.pad before calling the convolution op. use_bias: Whether to include bias parameters. Default `True`. initializers: Optional dict containing ops to initialize the filters (with keys 'w_dw' for depthwise and 'w_pw' for pointwise) or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition the filters (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with keys 'w_dw' for depthwise and 'w_pw' for pointwise) and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. data_format: A string. Specifies whether the channel dimension of the input and output is the last dimension (default, NWC), or the second dimension ("NCW"). padding_value: The type of padding to use, either "CONSTANT", "SYMMETRIC" or "REFLECT", as supported by the underlying tf.pad (https://www.tensorflow.org/api_docs/python/tf/pad). Can only be set globally for all dimensions. Defaults to "CONSTANT" which will pad with zeros, potentially directly via the underlying convolution op if the padding is SAME for all dimensions. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: ValueError: If `channel_multiplier` isn't of type (`numbers.Integral` or `tf.Dimension`). ValueError: If `channel_multiplier` is less than 1. ValueError: If the given data_format is not a supported format (see `SUPPORTED_1D_DATA_FORMATS`). base.IncompatibleShapeError: If the given kernel shape is not an integer; or if the given kernel shape is not a sequence of one integer. base.IncompatibleShapeError: If the given stride is not an integer; or if the given stride is not a sequence of two integers. base.IncompatibleShapeError: If the given rate is not an integer; or if the given rate is not a sequence of two integers. base.IncompatibleShapeError: If a mask is a TensorFlow Tensor with a not fully defined shape. base.NotSupportedError: If rate in any dimension and the stride in any dimension are simultaneously > 1. ValueError: If the given padding is not `snt.VALID`, `snt.SAME`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a sequence of these. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w_dw', 'w_pw' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. TypeError: If mask is given and it is not convertible to a Tensor. ValueError: If the passed-in data_format doesn't have a channel dimension. """ if (not isinstance(channel_multiplier, numbers.Integral) and not isinstance(channel_multiplier, tf.Dimension)): raise ValueError(("channel_multiplier ({}), must be of type " "(`tf.Dimension`, `numbers.Integral`).").format( channel_multiplier)) if channel_multiplier < 1: raise ValueError("channel_multiplier ({}), must be >= 1".format( channel_multiplier)) self._channel_multiplier = channel_multiplier if data_format not in SUPPORTED_1D_DATA_FORMATS: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_1D_DATA_FORMATS)) super(SeparableConv1D, self).__init__( output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, rate=rate, padding=padding, padding_value=padding_value, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, data_format=data_format, custom_getter=custom_getter, name=name) @classmethod def get_possible_initializer_keys(cls, use_bias=True): return {"w_dw", "w_pw", "b"} if use_bias else {"w_dw", "w_pw"} def _construct_w(self, inputs): """Connects the module into the graph, with input Tensor `inputs`. Args: inputs: A 4D Tensor of shape: [batch_size, input_height, input_width, input_channels] and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. Returns: A tuple of two 4D Tensors, each with the same dtype as `inputs`: 1. w_dw, the depthwise weight matrix, of shape: [kernel_size, input_channels, channel_multiplier] 2. w_pw, the pointwise weight matrix, of shape: [1, 1, channel_multiplier * input_channels, output_channels]. """ depthwise_weight_shape = ((1,) + self._kernel_shape + (self._input_channels, self._channel_multiplier)) pointwise_input_size = self._channel_multiplier * self._input_channels pointwise_weight_shape = (1, 1, pointwise_input_size, self._output_channels) if "w_dw" not in self._initializers: fan_in_shape = depthwise_weight_shape[:2] self._initializers["w_dw"] = create_weight_initializer(fan_in_shape, dtype=inputs.dtype) if "w_pw" not in self._initializers: fan_in_shape = pointwise_weight_shape[:3] self._initializers["w_pw"] = create_weight_initializer(fan_in_shape, dtype=inputs.dtype) w_dw = tf.get_variable( "w_dw", shape=depthwise_weight_shape, dtype=inputs.dtype, initializer=self._initializers["w_dw"], partitioner=self._partitioners.get("w_dw", None), regularizer=self._regularizers.get("w_dw", None)) w_pw = tf.get_variable( "w_pw", shape=pointwise_weight_shape, dtype=inputs.dtype, initializer=self._initializers["w_pw"], partitioner=self._partitioners.get("w_pw", None), regularizer=self._regularizers.get("w_pw", None)) return w_dw, w_pw def _apply_conv(self, inputs, w): """Apply a `separable_conv2d` operation on `inputs` using `w`. Args: inputs: A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`, `tf.float32` or `tf.float64`. w: A tuple of weight matrices of the same type as `inputs`, the first being the depthwise weight matrix, and the second being the pointwise weight matrix. Returns: outputs: The result of the convolution operation on `inputs`. """ if self._data_format == DATA_FORMAT_NWC: h_dim = 1 two_dim_conv_data_format = DATA_FORMAT_NHWC else: h_dim = 2 two_dim_conv_data_format = DATA_FORMAT_NCHW inputs = tf.expand_dims(inputs, axis=h_dim) two_dim_conv_stride = self.stride[:h_dim] + (1,) + self.stride[h_dim:] # Height always precedes width. two_dim_conv_rate = (1,) + self._rate w_dw, w_pw = w outputs = tf.nn.separable_conv2d(inputs, w_dw, w_pw, strides=two_dim_conv_stride, rate=two_dim_conv_rate, padding=self._conv_op_padding, data_format=two_dim_conv_data_format) outputs = tf.squeeze(outputs, [h_dim]) return outputs @property def channel_multiplier(self): """Returns the channel multiplier argument.""" return self._channel_multiplier @property def w_dw(self): """Returns the Variable containing the depthwise weight matrix.""" self._ensure_is_connected() return self._w[0] @property def w_pw(self): """Returns the Variable containing the pointwise weight matrix.""" self._ensure_is_connected() return self._w[1]
sonnet-1
sonnet/python/modules/conv.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.python.modules.base.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports from sonnet.python.modules import base from sonnet.python.modules import base_info from sonnet.python.modules import basic import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest logging = tf.logging THIS_MODULE = "__main__" LINEAR_MODULE = "sonnet.python.modules.basic" DumbNamedTuple = collections.namedtuple("DumbNamedTuple", ("arg1", "arg2")) class NotATensor(object): pass class DumbModule(base.AbstractModule): """Dumb module to test ModuleInfo.""" def __init__(self, name, no_nest=False): base.AbstractModule.__init__(self, name=name) self.no_nest = no_nest def _build(self, inputs): if isinstance(inputs, (NotATensor, tf.SparseTensor)): outputs = inputs else: if self.no_nest: outputs = inputs else: outputs = nest.map_structure(tf.identity, inputs) return outputs def _copy_default_graph(): # Save default graph into `meta_graph_def`. meta_graph_def = tf.train.export_meta_graph() # Reset default graph. tf.reset_default_graph() # Load default graph from `meta_graph_def`. tf.train.import_meta_graph(meta_graph_def) class ModuleInfoTest(tf.test.TestCase): def testIsNamedTuple(self): self.assertTrue(base_info._is_namedtuple(DumbNamedTuple(1, 2))) self.assertFalse(base_info._is_namedtuple((1, 2, 3))) self.assertFalse(base_info._is_namedtuple([1, 2, 3])) self.assertFalse(base_info._is_namedtuple(NotATensor())) def testIsIterable(self): self.assertTrue(base_info._is_iterable((1, 2, 3))) self.assertTrue(base_info._is_iterable([1, 2, 3])) self.assertTrue(base_info._is_iterable({1: 1, 2: 2, 3: 3})) self.assertTrue(base_info._is_iterable( collections.OrderedDict([(1, 1), (2, 2)]))) self.assertTrue(base_info._is_iterable(DumbNamedTuple(1, 2))) tensor = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) self.assertFalse(base_info._is_iterable(set([1, 2, 3]))) self.assertFalse(base_info._is_iterable(tensor)) sparse_tensor = tf.SparseTensor( indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)), values=tf.placeholder(dtype=tf.float32, shape=(10,)), dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,))) self.assertFalse(base_info._is_iterable(sparse_tensor)) self.assertFalse(base_info._is_iterable(NotATensor())) self.assertFalse(base_info._is_iterable("foo")) def generator(): for count in xrange(3): self.assertFalse(False) yield count self.assertFalse(base_info._is_iterable(generator)) def testModuleInfo_multiple_modules(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb") dumb_1 = DumbModule(name="dumb") linear = basic.Linear(10, name="linear") ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) dumb(ph_0) with tf.name_scope("foo"): dumb_1(ph_0) linear(ph_0) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) self.assertEqual(len(sonnet_collection), 3) # item 0. self.assertEqual(sonnet_collection[0].module_name, "dumb") self.assertEqual(sonnet_collection[0].class_name, "{}.DumbModule".format(THIS_MODULE)) self.assertEqual(sonnet_collection[0].scope_name, "dumb") self.assertEqual(len(sonnet_collection[0].connected_subgraphs), 1) self.assertEqual( sonnet_collection[0].connected_subgraphs[0].name_scope, "dumb") # item 1. self.assertEqual(sonnet_collection[1].module_name, "dumb_1") self.assertEqual(sonnet_collection[1].scope_name, "dumb_1") self.assertEqual(sonnet_collection[1].class_name, "{}.DumbModule".format(THIS_MODULE)) self.assertEqual(sonnet_collection[1].scope_name, "dumb_1") self.assertEqual(len(sonnet_collection[1].connected_subgraphs), 1) self.assertEqual( sonnet_collection[1].connected_subgraphs[0].name_scope, "foo/dumb_1") # item 2. self.assertEqual(sonnet_collection[2].module_name, "linear") self.assertEqual(sonnet_collection[2].scope_name, "linear") self.assertEqual(sonnet_collection[2].class_name, "{}.Linear".format(LINEAR_MODULE)) self.assertEqual(sonnet_collection[2].scope_name, "linear") self.assertEqual(len(sonnet_collection[2].connected_subgraphs), 1) self.assertEqual( sonnet_collection[2].connected_subgraphs[0].name_scope, "linear") check() _copy_default_graph() check() def testModuleInfo_multiple_subgraph(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) dumb(ph_0) with tf.name_scope("foo"): dumb(ph_0) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) self.assertEqual(len(sonnet_collection), 1) self.assertEqual(len(sonnet_collection[0].connected_subgraphs), 2) connected_subgraph_0 = sonnet_collection[0].connected_subgraphs[0] connected_subgraph_1 = sonnet_collection[0].connected_subgraphs[1] self.assertEqual(connected_subgraph_0.name_scope, "dumb_a") self.assertEqual(connected_subgraph_1.name_scope, "foo/dumb_a") check() _copy_default_graph() check() def testModuleInfo_tensor(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) dumb(ph_0) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertIsInstance(connected_subgraph.inputs["inputs"], tf.Tensor) self.assertIsInstance(connected_subgraph.outputs, tf.Tensor) check() _copy_default_graph() check() def testModuleInfo_sparsetensor(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") sparse_tensor = tf.SparseTensor( indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)), values=tf.placeholder(dtype=tf.float32, shape=(10,)), dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,))) dumb(sparse_tensor) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertIsInstance( connected_subgraph.inputs["inputs"], tf.SparseTensor) self.assertIsInstance(connected_subgraph.outputs, tf.SparseTensor) check() _copy_default_graph() check() def testModuleInfo_tuple(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) dumb((ph_0, ph_1)) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertIsInstance(connected_subgraph.inputs["inputs"], tuple) self.assertIsInstance(connected_subgraph.outputs, tuple) check() _copy_default_graph() check() def testModuleInfo_namedtuple(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) dumb(DumbNamedTuple(ph_0, ph_1)) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertTrue( base_info._is_namedtuple(connected_subgraph.inputs["inputs"])) self.assertTrue(base_info._is_namedtuple(connected_subgraph.outputs)) check() _copy_default_graph() check() def testModuleInfo_dict(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) dumb({"ph_0": ph_0, "ph_1": ph_1}) def check(): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertIsInstance(connected_subgraph.inputs["inputs"], dict) self.assertIsInstance(connected_subgraph.outputs, dict) check() _copy_default_graph() check() def testModuleInfo_not_a_tensor(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a") dumb(NotATensor()) def check(check_type): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertIsInstance(connected_subgraph.inputs["inputs"], check_type) self.assertIsInstance(connected_subgraph.outputs, check_type) check(NotATensor) _copy_default_graph() check(base_info._UnserializableObject) def testModuleInfo_recursion(self): # pylint: disable=not-callable tf.reset_default_graph() dumb = DumbModule(name="dumb_a", no_nest=True) ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,)) val = {"one": ph_0, "self": None} val["self"] = val dumb(val) def check(check_type): sonnet_collection = tf.get_default_graph().get_collection( base_info.SONNET_COLLECTION_NAME) connected_subgraph = sonnet_collection[0].connected_subgraphs[0] self.assertIsInstance(connected_subgraph.inputs["inputs"]["one"], tf.Tensor) self.assertIsInstance( connected_subgraph.inputs["inputs"]["self"], check_type) self.assertIsInstance(connected_subgraph.outputs["one"], tf.Tensor) self.assertIsInstance(connected_subgraph.outputs["self"], check_type) check(dict) _copy_default_graph() check(base_info._UnserializableObject) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/base_info_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """LSTM based modules for TensorFlow snt. This python module contains LSTM-like cores that fall under the broader group of RNN cores. In general, initializers for the gate weights and other model parameters may be passed to the constructor. Typical usage example of the standard LSTM without peephole connections: ``` import sonnet as snt hidden_size = 10 batch_size = 2 # Simple LSTM op on some input rnn = snt.LSTM(hidden_size) input = tf.placeholder(tf.float32, shape=[batch_size, hidden_size]) out, next_state = rnn(input, rnn.initial_state(batch_size)) ``` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports from six.moves import xrange # pylint: disable=redefined-builtin from sonnet.python.modules import base from sonnet.python.modules import basic from sonnet.python.modules import batch_norm from sonnet.python.modules import conv from sonnet.python.modules import layer_norm from sonnet.python.modules import rnn_core from sonnet.python.modules import util import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import rnn as contrib_rnn LSTMState = collections.namedtuple("LSTMState", ("hidden", "cell")) class LSTM(rnn_core.RNNCore): """LSTM recurrent network cell with optional peepholes & layer normalization. The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to reduce the scale of forgetting in the beginning of the training. #### Layer normalization This is described in https://arxiv.org/pdf/1607.06450.pdf #### Peep-hole connections Peep-hole connections may optionally be used by specifying a flag in the constructor. These connections can aid increasing the precision of output timing, for more details see: https://research.google.com/pubs/archive/43905.pdf #### Recurrent projections Projection of the recurrent state, to reduce model parameters and speed up computation. For more details see: https://arxiv.org/abs/1402.1128 Attributes: state_size: Tuple of `tf.TensorShape`s indicating the size of state tensors. output_size: `tf.TensorShape` indicating the size of the core output. use_peepholes: Boolean indicating whether peephole connections are used. """ # Keys that may be provided for parameter initializers. W_GATES = "w_gates" # weight for gates B_GATES = "b_gates" # bias of gates W_F_DIAG = "w_f_diag" # weight for prev_cell -> forget gate peephole W_I_DIAG = "w_i_diag" # weight for prev_cell -> input gate peephole W_O_DIAG = "w_o_diag" # weight for prev_cell -> output gate peephole W_H_PROJECTION = "w_h_projection" # weight for (opt) projection of h in state POSSIBLE_INITIALIZER_KEYS = { W_GATES, B_GATES, W_F_DIAG, W_I_DIAG, W_O_DIAG, W_H_PROJECTION} def __init__(self, hidden_size, forget_bias=1.0, initializers=None, partitioners=None, regularizers=None, use_peepholes=False, use_layer_norm=False, hidden_clip_value=None, projection_size=None, cell_clip_value=None, custom_getter=None, name="lstm"): """Construct LSTM. Args: hidden_size: (int) Hidden size dimensionality. forget_bias: (float) Bias for the forget activation. initializers: Dict containing ops to initialize the weights. This dictionary may contain any of the keys returned by `LSTM.get_possible_initializer_keys`. partitioners: Optional dict containing partitioners to partition the weights and biases. As a default, no partitioners are used. This dict may contain any of the keys returned by `LSTM.get_possible_initializer_keys`. regularizers: Optional dict containing regularizers for the weights and biases. As a default, no regularizers are used. This dict may contain any of the keys returned by `LSTM.get_possible_initializer_keys`. use_peepholes: Boolean that indicates whether peephole connections are used. use_layer_norm: Boolean that indicates whether to apply layer normalization. hidden_clip_value: Optional number; if set, then the LSTM hidden state vector is clipped by this value. projection_size: Optional number; if set, then the LSTM hidden state is projected to this size via a learnable projection matrix. cell_clip_value: Optional number; if set, then the LSTM cell vector is clipped by this value. custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. See the `tf.get_variable` documentation for more details. name: Name of the module. Raises: KeyError: if `initializers` contains any keys not returned by `LSTM.get_possible_initializer_keys`. KeyError: if `partitioners` contains any keys not returned by `LSTM.get_possible_initializer_keys`. KeyError: if `regularizers` contains any keys not returned by `LSTM.get_possible_initializer_keys`. ValueError: if a peephole initializer is passed in the initializer list, but `use_peepholes` is False. """ super(LSTM, self).__init__(custom_getter=custom_getter, name=name) self._hidden_size = hidden_size self._forget_bias = forget_bias self._use_peepholes = use_peepholes self._use_layer_norm = use_layer_norm self._hidden_clip_value = hidden_clip_value self._cell_clip_value = cell_clip_value self._use_projection = projection_size is not None self._hidden_state_size = projection_size or hidden_size self.possible_keys = self.get_possible_initializer_keys( use_peepholes=use_peepholes, use_projection=self._use_projection) self._initializers = util.check_initializers(initializers, self.possible_keys) self._partitioners = util.check_initializers(partitioners, self.possible_keys) self._regularizers = util.check_initializers(regularizers, self.possible_keys) if hidden_clip_value is not None and hidden_clip_value < 0: raise ValueError("The value of hidden_clip_value should be nonnegative.") if cell_clip_value is not None and cell_clip_value < 0: raise ValueError("The value of cell_clip_value should be nonnegative.") @classmethod def get_possible_initializer_keys(cls, use_peepholes=False, use_projection=False): """Returns the keys the dictionary of variable initializers may contain. The set of all possible initializer keys are: w_gates: weight for gates b_gates: bias of gates w_f_diag: weight for prev_cell -> forget gate peephole w_i_diag: weight for prev_cell -> input gate peephole w_o_diag: weight for prev_cell -> output gate peephole Args: cls:The class. use_peepholes: Boolean that indicates whether peephole connections are used. use_projection: Boolean that indicates whether a recurrent projection layer is used. Returns: Set with strings corresponding to the strings that may be passed to the constructor. """ possible_keys = cls.POSSIBLE_INITIALIZER_KEYS.copy() if not use_peepholes: possible_keys.difference_update( {cls.W_F_DIAG, cls.W_I_DIAG, cls.W_O_DIAG}) if not use_projection: possible_keys.difference_update({cls.W_H_PROJECTION}) return possible_keys def _build(self, inputs, prev_state): """Connects the LSTM module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as inputs and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: Tensor of size `[batch_size, input_size]`. prev_state: Tuple (prev_hidden, prev_cell). Returns: A tuple (output, next_state) where 'output' is a Tensor of size `[batch_size, hidden_size]` and 'next_state' is a `LSTMState` namedtuple (next_hidden, next_cell) where `next_hidden` and `next_cell` have size `[batch_size, hidden_size]`. If `projection_size` is specified, then `next_hidden` will have size `[batch_size, projection_size]`. Raises: ValueError: If connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. """ prev_hidden, prev_cell = prev_state # pylint: disable=invalid-unary-operand-type if self._hidden_clip_value is not None: prev_hidden = tf.clip_by_value( prev_hidden, -self._hidden_clip_value, self._hidden_clip_value) if self._cell_clip_value is not None: prev_cell = tf.clip_by_value( prev_cell, -self._cell_clip_value, self._cell_clip_value) # pylint: enable=invalid-unary-operand-type self._create_gate_variables(inputs.get_shape(), inputs.dtype) # pylint false positive: calling module of same file; # pylint: disable=not-callable # Parameters of gates are concatenated into one multiply for efficiency. inputs_and_hidden = tf.concat([inputs, prev_hidden], 1) gates = tf.matmul(inputs_and_hidden, self._w_xh) if self._use_layer_norm: gates = layer_norm.LayerNorm()(gates) gates += self._b # i = input_gate, j = next_input, f = forget_gate, o = output_gate i, j, f, o = tf.split(value=gates, num_or_size_splits=4, axis=1) if self._use_peepholes: # diagonal connections self._create_peephole_variables(inputs.dtype) f += self._w_f_diag * prev_cell i += self._w_i_diag * prev_cell forget_mask = tf.sigmoid(f + self._forget_bias) next_cell = forget_mask * prev_cell + tf.sigmoid(i) * tf.tanh(j) cell_output = next_cell if self._use_peepholes: cell_output += self._w_o_diag * cell_output next_hidden = tf.tanh(cell_output) * tf.sigmoid(o) if self._use_projection: next_hidden = tf.matmul(next_hidden, self._w_h_projection) return next_hidden, LSTMState(hidden=next_hidden, cell=next_cell) def _create_gate_variables(self, input_shape, dtype): """Initialize the variables used for the gates.""" if len(input_shape) != 2: raise ValueError( "Rank of shape must be {} not: {}".format(2, len(input_shape))) equiv_input_size = self._hidden_state_size + input_shape.dims[1].value initializer = basic.create_linear_initializer(equiv_input_size) self._w_xh = tf.get_variable( self.W_GATES, shape=[equiv_input_size, 4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_GATES, initializer), partitioner=self._partitioners.get(self.W_GATES), regularizer=self._regularizers.get(self.W_GATES)) self._b = tf.get_variable( self.B_GATES, shape=[4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.B_GATES, initializer), partitioner=self._partitioners.get(self.B_GATES), regularizer=self._regularizers.get(self.B_GATES)) if self._use_projection: w_h_initializer = basic.create_linear_initializer(self._hidden_size) self._w_h_projection = tf.get_variable( self.W_H_PROJECTION, shape=[self._hidden_size, self._hidden_state_size], dtype=dtype, initializer=self._initializers.get(self.W_H_PROJECTION, w_h_initializer), partitioner=self._partitioners.get(self.W_H_PROJECTION), regularizer=self._regularizers.get(self.W_H_PROJECTION)) def _create_peephole_variables(self, dtype): """Initialize the variables used for the peephole connections.""" self._w_f_diag = tf.get_variable( self.W_F_DIAG, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_F_DIAG), partitioner=self._partitioners.get(self.W_F_DIAG), regularizer=self._regularizers.get(self.W_F_DIAG)) self._w_i_diag = tf.get_variable( self.W_I_DIAG, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_I_DIAG), partitioner=self._partitioners.get(self.W_I_DIAG), regularizer=self._regularizers.get(self.W_I_DIAG)) self._w_o_diag = tf.get_variable( self.W_O_DIAG, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_O_DIAG), partitioner=self._partitioners.get(self.W_O_DIAG), regularizer=self._regularizers.get(self.W_O_DIAG)) @property def state_size(self): """Tuple of `tf.TensorShape`s indicating the size of state tensors.""" return LSTMState(tf.TensorShape([self._hidden_state_size]), tf.TensorShape([self._hidden_size])) @property def output_size(self): """`tf.TensorShape` indicating the size of the core output.""" return tf.TensorShape([self._hidden_state_size]) @property def use_peepholes(self): """Boolean indicating whether peephole connections are used.""" return self._use_peepholes @property def use_layer_norm(self): """Boolean indicating whether layer norm is enabled.""" return self._use_layer_norm class RecurrentDropoutWrapper(rnn_core.RNNCore): """Wraps an RNNCore so that recurrent dropout can be applied.""" def __init__(self, core, keep_probs): """Builds a new wrapper around a given core. Args: core: the RNN core to be wrapped. keep_probs: the recurrent dropout keep probabilities to apply. This should have the same structure has core.init_state. No dropout is applied for leafs set to None. """ super(RecurrentDropoutWrapper, self).__init__( custom_getter=None, name=core.module_name + "_recdropout") self._core = core self._keep_probs = keep_probs # self._dropout_state_size is a list of shape for the state parts to which # dropout is to be applied. # self._dropout_index has the same shape as the core state. Leafs contain # either None if no dropout is applied or an integer representing an index # in self._dropout_state_size. self._dropout_state_size = [] def set_dropout_state_size(keep_prob, state_size): if keep_prob is not None: self._dropout_state_size.append(state_size) return len(self._dropout_state_size) - 1 return None self._dropout_indexes = contrib_framework.nest.map_structure( set_dropout_state_size, keep_probs, core.state_size) def _build(self, inputs, prev_state): core_state, dropout_masks = prev_state output, next_core_state = self._core(inputs, core_state) # Dropout masks are generated via tf.nn.dropout so they actually include # rescaling: the mask value is 1/keep_prob if no dropout is applied. next_core_state = contrib_framework.nest.map_structure( lambda i, state: state if i is None else state * dropout_masks[i], self._dropout_indexes, next_core_state) return output, (next_core_state, dropout_masks) def initial_state(self, batch_size, dtype=tf.float32, trainable=False, trainable_initializers=None, trainable_regularizers=None, name=None): """Builds the default start state tensor of zeros.""" core_initial_state = self._core.initial_state( batch_size, dtype=dtype, trainable=trainable, trainable_initializers=trainable_initializers, trainable_regularizers=trainable_regularizers, name=name) dropout_masks = [None] * len(self._dropout_state_size) def set_dropout_mask(index, state, keep_prob): if index is not None: ones = tf.ones_like(state, dtype=dtype) dropout_masks[index] = tf.nn.dropout(ones, keep_prob=keep_prob) contrib_framework.nest.map_structure(set_dropout_mask, self._dropout_indexes, core_initial_state, self._keep_probs) return core_initial_state, dropout_masks @property def state_size(self): return self._core.state_size, self._dropout_state_size @property def output_size(self): return self._core.output_size def lstm_with_recurrent_dropout(hidden_size, keep_prob=0.5, **kwargs): """LSTM with recurrent dropout. Args: hidden_size: the LSTM hidden size. keep_prob: the probability to keep an entry when applying dropout. **kwargs: Extra keyword arguments to pass to the LSTM. Returns: A tuple (train_lstm, test_lstm) where train_lstm is an LSTM with recurrent dropout enabled to be used for training and test_lstm is the same LSTM without recurrent dropout. """ lstm = LSTM(hidden_size, **kwargs) return RecurrentDropoutWrapper(lstm, LSTMState(keep_prob, None)), lstm class ZoneoutWrapper(rnn_core.RNNCore): """Wraps an RNNCore so that zoneout can be applied. Zoneout was introduced in https://arxiv.org/abs/1606.01305 It consists of randomly freezing some RNN state in the same way recurrent dropout would replace this state with zero. """ def __init__(self, core, keep_probs, is_training): """Builds a new wrapper around a given core. Args: core: the RNN core to be wrapped. keep_probs: the probabilities to use the updated states rather than keeping the old state values. This is one minus the probability that zoneout gets applied. This should have the same structure has core.init_state. No zoneout is applied for leafs set to None. is_training: when set, apply some stochastic zoneout. Otherwise perform a linear combination of the previous state and the current state based on the zoneout probability. """ super(ZoneoutWrapper, self).__init__( custom_getter=None, name=core.module_name + "_zoneout") self._core = core self._keep_probs = keep_probs self._is_training = is_training def _build(self, inputs, prev_state): output, next_state = self._core(inputs, prev_state) def apply_zoneout(keep_prob, next_s, prev_s): # pylint: disable=missing-docstring if keep_prob is None: return next_s if self._is_training: diff = next_s - prev_s # The dropout returns 0 with probability 1 - keep_prob and in this case # this function returns prev_s # It returns diff / keep_prob otherwise and then this function returns # prev_s + diff = next_s return prev_s + tf.nn.dropout(diff, keep_prob) * keep_prob else: return prev_s * (1 - keep_prob) + next_s * keep_prob next_state = contrib_framework.nest.map_structure(apply_zoneout, self._keep_probs, next_state, prev_state) return output, next_state def initial_state(self, batch_size, dtype=tf.float32, trainable=False, trainable_initializers=None, trainable_regularizers=None, name=None): """Builds the default start state tensor of zeros.""" return self._core.initial_state( batch_size, dtype=dtype, trainable=trainable, trainable_initializers=trainable_initializers, trainable_regularizers=trainable_regularizers, name=name) @property def state_size(self): return self._core.state_size @property def output_size(self): return self._core.output_size def lstm_with_zoneout(hidden_size, keep_prob_c=0.5, keep_prob_h=0.95, **kwargs): """LSTM with recurrent dropout. Args: hidden_size: the LSTM hidden size. keep_prob_c: the probability to use the new value of the cell state rather than freezing it. keep_prob_h: the probability to use the new value of the hidden state rather than freezing it. **kwargs: Extra keyword arguments to pass to the LSTM. Returns: A tuple (train_lstm, test_lstm) where train_lstm is an LSTM with recurrent dropout enabled to be used for training and test_lstm is the same LSTM without zoneout. """ lstm = LSTM(hidden_size, **kwargs) keep_probs = LSTMState(keep_prob_h, keep_prob_c) train_lstm = ZoneoutWrapper(lstm, keep_probs, is_training=True) test_lstm = ZoneoutWrapper(lstm, keep_probs, is_training=False) return train_lstm, test_lstm class BatchNormLSTM(rnn_core.RNNCore): """LSTM recurrent network cell with optional peepholes, batch normalization. The base implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to reduce the scale of forgetting in the beginning of the training. #### Peep-hole connections Peep-hole connections may optionally be used by specifying a flag in the constructor. These connections can aid increasing the precision of output timing, for more details see: https://research.google.com/pubs/archive/43905.pdf #### Batch normalization The batch norm transformation (in training mode) is batchnorm(x) = gamma * (x - mean(x)) / stddev(x) + beta, where gamma is a learnt scaling factor and beta is a learnt offset. Batch normalization may optionally be used at different places in the LSTM by specifying flag(s) in the constructor. These are applied when calculating the gate activations and cell-to-hidden transformation. The set-up is based on https://arxiv.org/pdf/1603.09025.pdf ##### Batch normalization: where to apply? Batch norm can be applied in three different places in the LSTM: (h) To the W_h h_{t-1} contribution to the gates from the previous hiddens. (x) To the W_x x_t contribution to the gates from the current input. (c) To the cell value c_t when calculating the output h_t from the cell. (The notation here is consistent with the Recurrent Batch Normalization paper). Each of these can be controlled individually, because batch norm is expensive, and not all are necessary. The paper doesn't mention the relative effects of these different batch norms; however, experimentation with a shallow LSTM for the `permuted_mnist` sequence task suggests that (h) is the most important and the other two can be left off. For other tasks or deeper (stacked) LSTMs, other batch norm combinations may be more effective. ##### Batch normalization: collecting stats (training vs test) When switching to testing (see `LSTM.with_batch_norm_control`), we can use a mean and stddev learnt from the training data instead of using the statistics from the test data. (This both increases test accuracy because the statistics have less variance, and if the test data does not have the same distribution as the training data then we must use the training statistics to ensure the effective network does not change when switching to testing anyhow.) This does however introduces a slight subtlety. The first few time steps of the RNN tend to have varying statistics (mean and variance) before settling down to a steady value. Therefore in general, better performance is obtained by using separate statistics for the first few time steps, and then using the final set of statistics for all subsequent time steps. This is controlled by the parameter `max_unique_stats`. (We can't have an unbounded number of distinct statistics for both technical reasons and also for the case where test sequences are longer than anything seen in training.) You may be fine leaving it at its default value of 1. Small values (like 10) may achieve better performance on some tasks when testing with cached statistics. Attributes: state_size: Tuple of `tf.TensorShape`s indicating the size of state tensors. output_size: `tf.TensorShape` indicating the size of the core output. use_peepholes: Boolean indicating whether peephole connections are used. use_batch_norm_h: Boolean indicating whether batch norm (h) is enabled. use_batch_norm_x: Boolean indicating whether batch norm (x) is enabled. use_batch_norm_c: Boolean indicating whether batch norm (c) is enabled. """ # Keys that may be provided for parameter initializers. W_GATES = "w_gates" # weight for gates B_GATES = "b_gates" # bias of gates W_F_DIAG = "w_f_diag" # weight for prev_cell -> forget gate peephole W_I_DIAG = "w_i_diag" # weight for prev_cell -> input gate peephole W_O_DIAG = "w_o_diag" # weight for prev_cell -> output gate peephole GAMMA_H = "gamma_h" # batch norm scaling for previous_hidden -> gates GAMMA_X = "gamma_x" # batch norm scaling for input -> gates GAMMA_C = "gamma_c" # batch norm scaling for cell -> output BETA_C = "beta_c" # (batch norm) bias for cell -> output POSSIBLE_INITIALIZER_KEYS = {W_GATES, B_GATES, W_F_DIAG, W_I_DIAG, W_O_DIAG, GAMMA_H, GAMMA_X, GAMMA_C, BETA_C} def __init__(self, hidden_size, forget_bias=1.0, initializers=None, partitioners=None, regularizers=None, use_peepholes=False, use_batch_norm_h=True, use_batch_norm_x=False, use_batch_norm_c=False, max_unique_stats=1, hidden_clip_value=None, cell_clip_value=None, custom_getter=None, name="batch_norm_lstm"): """Construct `BatchNormLSTM`. Args: hidden_size: (int) Hidden size dimensionality. forget_bias: (float) Bias for the forget activation. initializers: Dict containing ops to initialize the weights. This dictionary may contain any of the keys returned by `BatchNormLSTM.get_possible_initializer_keys`. The gamma and beta variables control batch normalization values for different batch norm transformations inside the cell; see the paper for details. partitioners: Optional dict containing partitioners to partition the weights and biases. As a default, no partitioners are used. This dict may contain any of the keys returned by `BatchNormLSTM.get_possible_initializer_keys`. regularizers: Optional dict containing regularizers for the weights and biases. As a default, no regularizers are used. This dict may contain any of the keys returned by `BatchNormLSTM.get_possible_initializer_keys`. use_peepholes: Boolean that indicates whether peephole connections are used. use_batch_norm_h: Boolean that indicates whether to apply batch normalization at the previous_hidden -> gates contribution. If you are experimenting with batch norm then this may be the most effective to use, and is enabled by default. use_batch_norm_x: Boolean that indicates whether to apply batch normalization at the input -> gates contribution. use_batch_norm_c: Boolean that indicates whether to apply batch normalization at the cell -> output contribution. max_unique_stats: The maximum number of steps to use unique batch norm statistics for. (See module description above for more details.) hidden_clip_value: Optional number; if set, then the LSTM hidden state vector is clipped by this value. cell_clip_value: Optional number; if set, then the LSTM cell vector is clipped by this value. custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. See the `tf.get_variable` documentation for more details. name: Name of the module. Raises: KeyError: if `initializers` contains any keys not returned by `BatchNormLSTM.get_possible_initializer_keys`. KeyError: if `partitioners` contains any keys not returned by `BatchNormLSTM.get_possible_initializer_keys`. KeyError: if `regularizers` contains any keys not returned by `BatchNormLSTM.get_possible_initializer_keys`. ValueError: if a peephole initializer is passed in the initializer list, but `use_peepholes` is False. ValueError: if a batch norm initializer is passed in the initializer list, but batch norm is disabled. ValueError: if none of the `use_batch_norm_*` options are True. ValueError: if `max_unique_stats` is < 1. """ if not any([use_batch_norm_h, use_batch_norm_x, use_batch_norm_c]): raise ValueError("At least one use_batch_norm_* option is required for " "BatchNormLSTM") super(BatchNormLSTM, self).__init__(custom_getter=custom_getter, name=name) self._hidden_size = hidden_size self._forget_bias = forget_bias self._use_peepholes = use_peepholes self._max_unique_stats = max_unique_stats self._use_batch_norm_h = use_batch_norm_h self._use_batch_norm_x = use_batch_norm_x self._use_batch_norm_c = use_batch_norm_c self._hidden_clip_value = hidden_clip_value self._cell_clip_value = cell_clip_value self.possible_keys = self.get_possible_initializer_keys( use_peepholes=use_peepholes, use_batch_norm_h=use_batch_norm_h, use_batch_norm_x=use_batch_norm_x, use_batch_norm_c=use_batch_norm_c) self._initializers = util.check_initializers(initializers, self.possible_keys) self._partitioners = util.check_initializers(partitioners, self.possible_keys) self._regularizers = util.check_initializers(regularizers, self.possible_keys) if max_unique_stats < 1: raise ValueError("max_unique_stats must be >= 1") if max_unique_stats != 1 and not ( use_batch_norm_h or use_batch_norm_x or use_batch_norm_c): raise ValueError("max_unique_stats specified but batch norm disabled") if hidden_clip_value is not None and hidden_clip_value < 0: raise ValueError("The value of hidden_clip_value should be nonnegative.") if cell_clip_value is not None and cell_clip_value < 0: raise ValueError("The value of cell_clip_value should be nonnegative.") if use_batch_norm_h: self._batch_norm_h = BatchNormLSTM.IndexedStatsBatchNorm(max_unique_stats, "batch_norm_h") if use_batch_norm_x: self._batch_norm_x = BatchNormLSTM.IndexedStatsBatchNorm(max_unique_stats, "batch_norm_x") if use_batch_norm_c: self._batch_norm_c = BatchNormLSTM.IndexedStatsBatchNorm(max_unique_stats, "batch_norm_c") def with_batch_norm_control(self, is_training, test_local_stats=True): """Wraps this RNNCore with the additional control input to the `BatchNorm`s. Example usage: lstm = snt.BatchNormLSTM(4) is_training = tf.placeholder(tf.bool) rnn_input = ... my_rnn = rnn.rnn(lstm.with_batch_norm_control(is_training), rnn_input) Args: is_training: Boolean that indicates whether we are in training mode or testing mode. When in training mode, the batch norm statistics are taken from the given batch, and moving statistics are updated. When in testing mode, the moving statistics are not updated, and in addition if `test_local_stats` is False then the moving statistics are used for the batch statistics. See the `BatchNorm` module for more details. test_local_stats: Boolean scalar indicated whether to use local batch statistics in test mode. Returns: snt.RNNCore wrapping this class with the extra input(s) added. """ return BatchNormLSTM.CoreWithExtraBuildArgs( self, is_training=is_training, test_local_stats=test_local_stats) @classmethod def get_possible_initializer_keys( cls, use_peepholes=False, use_batch_norm_h=True, use_batch_norm_x=False, use_batch_norm_c=False): """Returns the keys the dictionary of variable initializers may contain. The set of all possible initializer keys are: w_gates: weight for gates b_gates: bias of gates w_f_diag: weight for prev_cell -> forget gate peephole w_i_diag: weight for prev_cell -> input gate peephole w_o_diag: weight for prev_cell -> output gate peephole gamma_h: batch norm scaling for previous_hidden -> gates gamma_x: batch norm scaling for input -> gates gamma_c: batch norm scaling for cell -> output beta_c: batch norm bias for cell -> output Args: cls:The class. use_peepholes: Boolean that indicates whether peephole connections are used. use_batch_norm_h: Boolean that indicates whether to apply batch normalization at the previous_hidden -> gates contribution. If you are experimenting with batch norm then this may be the most effective to turn on. use_batch_norm_x: Boolean that indicates whether to apply batch normalization at the input -> gates contribution. use_batch_norm_c: Boolean that indicates whether to apply batch normalization at the cell -> output contribution. Returns: Set with strings corresponding to the strings that may be passed to the constructor. """ possible_keys = cls.POSSIBLE_INITIALIZER_KEYS.copy() if not use_peepholes: possible_keys.difference_update( {cls.W_F_DIAG, cls.W_I_DIAG, cls.W_O_DIAG}) if not use_batch_norm_h: possible_keys.remove(cls.GAMMA_H) if not use_batch_norm_x: possible_keys.remove(cls.GAMMA_X) if not use_batch_norm_c: possible_keys.difference_update({cls.GAMMA_C, cls.BETA_C}) return possible_keys def _build(self, inputs, prev_state, is_training=None, test_local_stats=True): """Connects the LSTM module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as inputs and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: Tensor of size `[batch_size, input_size]`. prev_state: Tuple (prev_hidden, prev_cell), or if batch norm is enabled and `max_unique_stats > 1`, then (prev_hidden, prev_cell, time_step). Here, prev_hidden and prev_cell are tensors of size `[batch_size, hidden_size]`, and time_step is used to indicate the current RNN step. is_training: Boolean indicating whether we are in training mode (as opposed to testing mode), passed to the batch norm modules. Note to use this you must wrap the cell via the `with_batch_norm_control` function. test_local_stats: Boolean indicating whether to use local batch statistics in test mode. See the `BatchNorm` documentation for more on this. Returns: A tuple (output, next_state) where 'output' is a Tensor of size `[batch_size, hidden_size]` and 'next_state' is a tuple (next_hidden, next_cell) or (next_hidden, next_cell, time_step + 1), where next_hidden and next_cell have size `[batch_size, hidden_size]`. Raises: ValueError: If connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. """ if is_training is None: raise ValueError("Boolean is_training flag must be explicitly specified " "when using batch normalization.") if self._max_unique_stats == 1: prev_hidden, prev_cell = prev_state time_step = None else: prev_hidden, prev_cell, time_step = prev_state # pylint: disable=invalid-unary-operand-type if self._hidden_clip_value is not None: prev_hidden = tf.clip_by_value( prev_hidden, -self._hidden_clip_value, self._hidden_clip_value) if self._cell_clip_value is not None: prev_cell = tf.clip_by_value( prev_cell, -self._cell_clip_value, self._cell_clip_value) # pylint: enable=invalid-unary-operand-type self._create_gate_variables(inputs.get_shape(), inputs.dtype) self._create_batch_norm_variables(inputs.dtype) # pylint false positive: calling module of same file; # pylint: disable=not-callable if self._use_batch_norm_h or self._use_batch_norm_x: gates_h = tf.matmul(prev_hidden, self._w_h) gates_x = tf.matmul(inputs, self._w_x) if self._use_batch_norm_h: gates_h = self._gamma_h * self._batch_norm_h(gates_h, time_step, is_training, test_local_stats) if self._use_batch_norm_x: gates_x = self._gamma_x * self._batch_norm_x(gates_x, time_step, is_training, test_local_stats) gates = gates_h + gates_x else: # Parameters of gates are concatenated into one multiply for efficiency. inputs_and_hidden = tf.concat([inputs, prev_hidden], 1) gates = tf.matmul(inputs_and_hidden, self._w_xh) gates += self._b # i = input_gate, j = next_input, f = forget_gate, o = output_gate i, j, f, o = tf.split(value=gates, num_or_size_splits=4, axis=1) if self._use_peepholes: # diagonal connections self._create_peephole_variables(inputs.dtype) f += self._w_f_diag * prev_cell i += self._w_i_diag * prev_cell forget_mask = tf.sigmoid(f + self._forget_bias) next_cell = forget_mask * prev_cell + tf.sigmoid(i) * tf.tanh(j) cell_output = next_cell if self._use_batch_norm_c: cell_output = (self._beta_c + self._gamma_c * self._batch_norm_c(cell_output, time_step, is_training, test_local_stats)) if self._use_peepholes: cell_output += self._w_o_diag * cell_output next_hidden = tf.tanh(cell_output) * tf.sigmoid(o) if self._max_unique_stats == 1: return next_hidden, (next_hidden, next_cell) else: return next_hidden, (next_hidden, next_cell, time_step + 1) def _create_batch_norm_variables(self, dtype): """Initialize the variables used for the `BatchNorm`s (if any).""" # The paper recommends a value of 0.1 for good gradient flow through the # tanh nonlinearity (although doesn't say whether this is for all gammas, # or just some). gamma_initializer = tf.constant_initializer(0.1) if self._use_batch_norm_h: self._gamma_h = tf.get_variable( self.GAMMA_H, shape=[4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.GAMMA_H, gamma_initializer), partitioner=self._partitioners.get(self.GAMMA_H), regularizer=self._regularizers.get(self.GAMMA_H)) if self._use_batch_norm_x: self._gamma_x = tf.get_variable( self.GAMMA_X, shape=[4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.GAMMA_X, gamma_initializer), partitioner=self._partitioners.get(self.GAMMA_X), regularizer=self._regularizers.get(self.GAMMA_X)) if self._use_batch_norm_c: self._gamma_c = tf.get_variable( self.GAMMA_C, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.GAMMA_C, gamma_initializer), partitioner=self._partitioners.get(self.GAMMA_C), regularizer=self._regularizers.get(self.GAMMA_C)) self._beta_c = tf.get_variable( self.BETA_C, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.BETA_C), partitioner=self._partitioners.get(self.BETA_C), regularizer=self._regularizers.get(self.BETA_C)) def _create_gate_variables(self, input_shape, dtype): """Initialize the variables used for the gates.""" if len(input_shape) != 2: raise ValueError( "Rank of shape must be {} not: {}".format(2, len(input_shape))) input_size = input_shape.dims[1].value b_shape = [4 * self._hidden_size] equiv_input_size = self._hidden_size + input_size initializer = basic.create_linear_initializer(equiv_input_size) if self._use_batch_norm_h or self._use_batch_norm_x: self._w_h = tf.get_variable( self.W_GATES + "_H", shape=[self._hidden_size, 4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_GATES, initializer), partitioner=self._partitioners.get(self.W_GATES), regularizer=self._regularizers.get(self.W_GATES)) self._w_x = tf.get_variable( self.W_GATES + "_X", shape=[input_size, 4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_GATES, initializer), partitioner=self._partitioners.get(self.W_GATES), regularizer=self._regularizers.get(self.W_GATES)) else: self._w_xh = tf.get_variable( self.W_GATES, shape=[self._hidden_size + input_size, 4 * self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_GATES, initializer), partitioner=self._partitioners.get(self.W_GATES), regularizer=self._regularizers.get(self.W_GATES)) self._b = tf.get_variable( self.B_GATES, shape=b_shape, dtype=dtype, initializer=self._initializers.get(self.B_GATES, initializer), partitioner=self._partitioners.get(self.B_GATES), regularizer=self._regularizers.get(self.B_GATES)) def _create_peephole_variables(self, dtype): """Initialize the variables used for the peephole connections.""" self._w_f_diag = tf.get_variable( self.W_F_DIAG, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_F_DIAG), partitioner=self._partitioners.get(self.W_F_DIAG), regularizer=self._regularizers.get(self.W_F_DIAG)) self._w_i_diag = tf.get_variable( self.W_I_DIAG, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_I_DIAG), partitioner=self._partitioners.get(self.W_I_DIAG), regularizer=self._regularizers.get(self.W_I_DIAG)) self._w_o_diag = tf.get_variable( self.W_O_DIAG, shape=[self._hidden_size], dtype=dtype, initializer=self._initializers.get(self.W_O_DIAG), partitioner=self._partitioners.get(self.W_O_DIAG), regularizer=self._regularizers.get(self.W_O_DIAG)) def initial_state(self, batch_size, dtype=tf.float32, trainable=False, trainable_initializers=None, trainable_regularizers=None, name=None): """Builds the default start state tensor of zeros. Args: batch_size: An int, float or scalar Tensor representing the batch size. dtype: The data type to use for the state. trainable: Boolean that indicates whether to learn the initial state. trainable_initializers: An optional pair of initializers for the initial hidden state and cell state. trainable_regularizers: Optional regularizer function or nested structure of functions with the same structure as the `state_size` property of the core, to be used as regularizers of the initial state variable. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. name: Optional string used to prefix the initial state variable names, in the case of a trainable initial state. If not provided, defaults to the name of the module. Returns: A tensor tuple `([batch_size, state_size], [batch_size, state_size], ?)` filled with zeros, with the third entry present when batch norm is enabled with `max_unique_stats > 1', with value `0` (representing the time step). """ if self._max_unique_stats == 1: return super(BatchNormLSTM, self).initial_state( batch_size, dtype=dtype, trainable=trainable, trainable_initializers=trainable_initializers, trainable_regularizers=trainable_regularizers, name=name) else: with tf.name_scope(self._initial_state_scope(name)): if not trainable: state = self.zero_state(batch_size, dtype) else: # We have to manually create the state ourselves so we don't create a # variable that never gets used for the third entry. state = rnn_core.trainable_initial_state( batch_size, (tf.TensorShape([self._hidden_size]), tf.TensorShape([self._hidden_size])), dtype=dtype, initializers=trainable_initializers, regularizers=trainable_regularizers, name=self._initial_state_scope(name)) return state[0], state[1], tf.constant(0, dtype=tf.int32) @property def state_size(self): """Tuple of `tf.TensorShape`s indicating the size of state tensors.""" if self._max_unique_stats == 1: return (tf.TensorShape([self._hidden_size]), tf.TensorShape([self._hidden_size])) else: return (tf.TensorShape([self._hidden_size]), tf.TensorShape([self._hidden_size]), tf.TensorShape(1)) @property def output_size(self): """`tf.TensorShape` indicating the size of the core output.""" return tf.TensorShape([self._hidden_size]) @property def use_peepholes(self): """Boolean indicating whether peephole connections are used.""" return self._use_peepholes @property def use_batch_norm_h(self): """Boolean indicating whether batch norm for hidden -> gates is enabled.""" return self._use_batch_norm_h @property def use_batch_norm_x(self): """Boolean indicating whether batch norm for input -> gates is enabled.""" return self._use_batch_norm_x @property def use_batch_norm_c(self): """Boolean indicating whether batch norm for cell -> output is enabled.""" return self._use_batch_norm_c class IndexedStatsBatchNorm(base.AbstractModule): """BatchNorm module where batch statistics are selected by an input index. This is used by LSTM+batchnorm, where we have distinct batch norm statistics for the first `max_unique_stats` time steps, and then use the final set of statistics for subsequent time steps. The module has as input (x, index, is_training, test_local_stats). During training or when test_local_stats=True, the output is simply batchnorm(x) (where mean(x) and stddev(x) are used), and during training the `BatchNorm` module accumulates statistics in mean_i, etc, where i = min(index, max_unique_stats - 1). During testing with test_local_stats=False, the output is batchnorm(x), where mean_i and stddev_i are used instead of mean(x) and stddev(x). See the `BatchNorm` module for more on is_training and test_local_stats. No offset `beta` or scaling `gamma` are learnt. """ def __init__(self, max_unique_stats, name=None): """Create an IndexedStatsBatchNorm. Args: max_unique_stats: number of different indices to have statistics for; indices beyond this will use the final statistics. name: Name of the module. """ super(BatchNormLSTM.IndexedStatsBatchNorm, self).__init__(name=name) self._max_unique_stats = max_unique_stats def _build(self, inputs, index, is_training, test_local_stats): """Add the IndexedStatsBatchNorm module to the graph. Args: inputs: Tensor to apply batch norm to. index: Scalar TensorFlow int32 value to select the batch norm index. is_training: Boolean to indicate to `snt.BatchNorm` if we are currently training. test_local_stats: Boolean to indicate to `snt.BatchNorm` if batch normalization should use local batch statistics at test time. Returns: Output of batch norm operation. """ def create_batch_norm(): return batch_norm.BatchNorm(offset=False, scale=False)( inputs, is_training, test_local_stats) if self._max_unique_stats > 1: # NOTE: This could be quite a bit faster with `tf.switch_case` however # that currently has bugs (bug: 136667318) when combined with # tf.gradients and control flow (such as dynamic unroll). pred_fn_pairs = [(tf.equal(i, index), create_batch_norm) for i in xrange(self._max_unique_stats - 1)] out = tf.case(pred_fn_pairs, create_batch_norm) out.set_shape(inputs.get_shape()) # needed for tf.case shape inference return out else: return create_batch_norm() class CoreWithExtraBuildArgs(rnn_core.RNNCore): """Wraps an RNNCore so that the build method receives extra args and kwargs. This will pass the additional input `args` and `kwargs` to the _build function of the snt.RNNCore after the input and prev_state inputs. """ def __init__(self, core, *args, **kwargs): """Construct the CoreWithExtraBuildArgs. Args: core: The snt.RNNCore to wrap. *args: Extra arguments to pass to _build. **kwargs: Extra keyword arguments to pass to _build. """ super(BatchNormLSTM.CoreWithExtraBuildArgs, self).__init__( name=core.module_name + "_extra_args") self._core = core self._args = args self._kwargs = kwargs def _build(self, inputs, state): return self._core(inputs, state, *self._args, **self._kwargs) @property def state_size(self): """Tuple indicating the size of nested state tensors.""" return self._core.state_size @property def output_size(self): """`tf.TensorShape` indicating the size of the core output.""" return self._core.output_size class ConvLSTM(rnn_core.RNNCore): """Convolutional LSTM.""" @classmethod def get_possible_initializer_keys(cls, conv_ndims, use_bias=True): conv_class = cls._get_conv_class(conv_ndims) return conv_class.get_possible_initializer_keys(use_bias) @classmethod def _get_conv_class(cls, conv_ndims): if conv_ndims == 1: return conv.Conv1D elif conv_ndims == 2: return conv.Conv2D elif conv_ndims == 3: return conv.Conv3D else: raise ValueError("Invalid convolution dimensionality.") def __init__(self, conv_ndims, input_shape, output_channels, kernel_shape, stride=1, rate=1, padding=conv.SAME, use_bias=True, legacy_bias_behaviour=True, forget_bias=1.0, initializers=None, partitioners=None, regularizers=None, use_layer_norm=False, custom_getter=None, name="conv_lstm"): """Construct ConvLSTM. Args: conv_ndims: Convolution dimensionality (1, 2 or 3). input_shape: Shape of the input as an iterable, excluding the batch size. output_channels: Number of output channels of the conv LSTM. kernel_shape: Sequence of kernel sizes (of size conv_ndims), or integer that is used to define kernel size in all dimensions. stride: Sequence of kernel strides (of size conv_ndims), or integer that is used to define stride in all dimensions. rate: Sequence of dilation rates (of size conv_ndims), or integer that is used to define dilation rate in all dimensions. 1 corresponds to a standard convolution, while rate > 1 corresponds to a dilated convolution. Cannot be > 1 if any of stride is also > 1. padding: Padding algorithm, either `snt.SAME` or `snt.VALID`. use_bias: Use bias in convolutions. legacy_bias_behaviour: If True, bias is applied to both input and hidden convolutions, creating a redundant bias variable. If False, bias is only applied to input convolution, removing the redundancy. forget_bias: Forget bias. initializers: Dict containing ops to initialize the convolutional weights. partitioners: Optional dict containing partitioners to partition the convolutional weights and biases. As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the convolutional weights and biases. As a default, no regularizers are used. use_layer_norm: Boolean that indicates whether to apply layer normalization. This is applied across the entire layer, normalizing over all non-batch dimensions. custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. See the `tf.get_variable` documentation for more details. name: Name of the module. Raises: ValueError: If `skip_connection` is `True` and stride is different from 1 or if `input_shape` is incompatible with `conv_ndims`. """ super(ConvLSTM, self).__init__(custom_getter=custom_getter, name=name) self._conv_class = self._get_conv_class(conv_ndims) if conv_ndims != len(input_shape)-1: raise ValueError("Invalid input_shape {} for conv_ndims={}.".format( input_shape, conv_ndims)) self._conv_ndims = conv_ndims self._input_shape = tuple(input_shape) self._output_channels = output_channels self._kernel_shape = kernel_shape self._stride = stride self._rate = rate self._padding = padding self._use_bias = use_bias self._legacy_bias_behaviour = legacy_bias_behaviour self._forget_bias = forget_bias self._initializers = initializers self._partitioners = partitioners self._regularizers = regularizers if use_layer_norm: util.deprecation_warning( "`use_layer_norm` kwarg is being deprecated as the implementation is " "currently incorrect - scale and offset params are created for " "spatial_dims * channels instead of just channels.") self._use_layer_norm = use_layer_norm self._total_output_channels = output_channels if self._stride != 1: self._total_output_channels //= self._stride * self._stride self._convolutions = dict() if self._use_bias and self._legacy_bias_behaviour: tf.logging.warning( "ConvLSTM will create redundant bias variables for input and hidden " "convolutions. To avoid this, invoke the constructor with option " "`legacy_bias_behaviour=False`. In future, this will be the default.") def _new_convolution(self, use_bias): """Returns new convolution. Args: use_bias: Use bias in convolutions. If False, clean_dict removes bias entries from initializers, partitioners and regularizers passed to the constructor of the convolution. """ def clean_dict(input_dict): if input_dict and not use_bias: cleaned_dict = input_dict.copy() cleaned_dict.pop("b", None) return cleaned_dict return input_dict return self._conv_class( output_channels=4*self._output_channels, kernel_shape=self._kernel_shape, stride=self._stride, rate=self._rate, padding=self._padding, use_bias=use_bias, initializers=clean_dict(self._initializers), partitioners=clean_dict(self._partitioners), regularizers=clean_dict(self._regularizers), name="conv") @property def convolutions(self): return self._convolutions @property def state_size(self): """Tuple of `tf.TensorShape`s indicating the size of state tensors.""" hidden_size = tf.TensorShape( self._input_shape[:-1] + (self._output_channels,)) return hidden_size, hidden_size @property def output_size(self): """`tf.TensorShape` indicating the size of the core output.""" return tf.TensorShape( self._input_shape[:-1] + (self._total_output_channels,)) def _build(self, inputs, state): hidden, cell = state if "input" not in self._convolutions: self._convolutions["input"] = self._new_convolution(self._use_bias) if "hidden" not in self._convolutions: if self._legacy_bias_behaviour: self._convolutions["hidden"] = self._new_convolution(self._use_bias) else: # Do not apply bias a second time self._convolutions["hidden"] = self._new_convolution(use_bias=False) input_conv = self._convolutions["input"] hidden_conv = self._convolutions["hidden"] next_hidden = input_conv(inputs) + hidden_conv(hidden) if self._use_layer_norm: # Normalize over all non-batch dimensions. # Temporarily flatten the spatial and channel dimensions together. flatten = basic.BatchFlatten() unflatten = basic.BatchReshape(next_hidden.get_shape().as_list()[1:]) next_hidden = flatten(next_hidden) next_hidden = layer_norm.LayerNorm()(next_hidden) next_hidden = unflatten(next_hidden) gates = tf.split(value=next_hidden, num_or_size_splits=4, axis=self._conv_ndims+1) input_gate, next_input, forget_gate, output_gate = gates next_cell = tf.sigmoid(forget_gate + self._forget_bias) * cell next_cell += tf.sigmoid(input_gate) * tf.tanh(next_input) output = tf.tanh(next_cell) * tf.sigmoid(output_gate) return output, (output, next_cell) @property def use_layer_norm(self): """Boolean indicating whether layer norm is enabled.""" return self._use_layer_norm class Conv1DLSTM(ConvLSTM): """1D convolutional LSTM.""" @classmethod def get_possible_initializer_keys(cls, use_bias=True): return super(Conv1DLSTM, cls).get_possible_initializer_keys(1, use_bias) def __init__(self, name="conv_1d_lstm", **kwargs): """Construct Conv1DLSTM. See `snt.ConvLSTM` for more details.""" super(Conv1DLSTM, self).__init__(conv_ndims=1, name=name, **kwargs) class Conv2DLSTM(ConvLSTM): """2D convolutional LSTM.""" @classmethod def get_possible_initializer_keys(cls, use_bias=True): return super(Conv2DLSTM, cls).get_possible_initializer_keys(2, use_bias) def __init__(self, name="conv_2d_lstm", **kwargs): """Construct Conv2DLSTM. See `snt.ConvLSTM` for more details.""" super(Conv2DLSTM, self).__init__(conv_ndims=2, name=name, **kwargs) class GRU(rnn_core.RNNCore): """GRU recurrent network cell. The implementation is based on: https://arxiv.org/pdf/1412.3555v1.pdf. Attributes: state_size: Integer indicating the size of state tensor. output_size: Integer indicating the size of the core output. """ # Keys that may be provided for parameter initializers. WZ = "wz" # weight for input -> update cell UZ = "uz" # weight for prev_state -> update cell BZ = "bz" # bias for update_cell WR = "wr" # weight for input -> reset cell UR = "ur" # weight for prev_state -> reset cell BR = "br" # bias for reset cell WH = "wh" # weight for input -> candidate activation UH = "uh" # weight for prev_state -> candidate activation BH = "bh" # bias for candidate activation POSSIBLE_INITIALIZER_KEYS = {WZ, UZ, BZ, WR, UR, BR, WH, UH, BH} def __init__(self, hidden_size, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name="gru"): """Construct GRU. Args: hidden_size: (int) Hidden size dimensionality. initializers: Dict containing ops to initialize the weights. This dict may contain any of the keys returned by `GRU.get_possible_initializer_keys`. partitioners: Optional dict containing partitioners to partition the weights and biases. As a default, no partitioners are used. This dict may contain any of the keys returned by `GRU.get_possible_initializer_keys` regularizers: Optional dict containing regularizers for the weights and biases. As a default, no regularizers are used. This dict may contain any of the keys returned by `GRU.get_possible_initializer_keys` custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. See the `tf.get_variable` documentation for more details. name: Name of the module. Raises: KeyError: if `initializers` contains any keys not returned by `GRU.get_possible_initializer_keys`. KeyError: if `partitioners` contains any keys not returned by `GRU.get_possible_initializer_keys`. KeyError: if `regularizers` contains any keys not returned by `GRU.get_possible_initializer_keys`. """ super(GRU, self).__init__(custom_getter=custom_getter, name=name) self._hidden_size = hidden_size self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) @classmethod def get_possible_initializer_keys(cls): """Returns the keys the dictionary of variable initializers may contain. The set of all possible initializer keys are: wz: weight for input -> update cell uz: weight for prev_state -> update cell bz: bias for update_cell wr: weight for input -> reset cell ur: weight for prev_state -> reset cell br: bias for reset cell wh: weight for input -> candidate activation uh: weight for prev_state -> candidate activation bh: bias for candidate activation Returns: Set with strings corresponding to the strings that may be passed to the constructor. """ return super(GRU, cls).get_possible_initializer_keys(cls) def _build(self, inputs, prev_state): """Connects the GRU module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as inputs and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: Tensor of size `[batch_size, input_size]`. prev_state: Tensor of size `[batch_size, hidden_size]`. Returns: A tuple (output, next_state) where `output` is a Tensor of size `[batch_size, hidden_size]` and `next_state` is a Tensor of size `[batch_size, hidden_size]`. Raises: ValueError: If connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. """ input_size = inputs.get_shape()[1] weight_shape = (input_size, self._hidden_size) u_shape = (self._hidden_size, self._hidden_size) bias_shape = (self._hidden_size,) self._wz = tf.get_variable(GRU.WZ, weight_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.WZ), partitioner=self._partitioners.get(GRU.WZ), regularizer=self._regularizers.get(GRU.WZ)) self._uz = tf.get_variable(GRU.UZ, u_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.UZ), partitioner=self._partitioners.get(GRU.UZ), regularizer=self._regularizers.get(GRU.UZ)) self._bz = tf.get_variable(GRU.BZ, bias_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.BZ), partitioner=self._partitioners.get(GRU.BZ), regularizer=self._regularizers.get(GRU.BZ)) z = tf.sigmoid(tf.matmul(inputs, self._wz) + tf.matmul(prev_state, self._uz) + self._bz) self._wr = tf.get_variable(GRU.WR, weight_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.WR), partitioner=self._partitioners.get(GRU.WR), regularizer=self._regularizers.get(GRU.WR)) self._ur = tf.get_variable(GRU.UR, u_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.UR), partitioner=self._partitioners.get(GRU.UR), regularizer=self._regularizers.get(GRU.UR)) self._br = tf.get_variable(GRU.BR, bias_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.BR), partitioner=self._partitioners.get(GRU.BR), regularizer=self._regularizers.get(GRU.BR)) r = tf.sigmoid(tf.matmul(inputs, self._wr) + tf.matmul(prev_state, self._ur) + self._br) self._wh = tf.get_variable(GRU.WH, weight_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.WH), partitioner=self._partitioners.get(GRU.WH), regularizer=self._regularizers.get(GRU.WH)) self._uh = tf.get_variable(GRU.UH, u_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.UH), partitioner=self._partitioners.get(GRU.UH), regularizer=self._regularizers.get(GRU.UH)) self._bh = tf.get_variable(GRU.BH, bias_shape, dtype=inputs.dtype, initializer=self._initializers.get(GRU.BH), partitioner=self._partitioners.get(GRU.BH), regularizer=self._regularizers.get(GRU.BH)) h_twiddle = tf.tanh(tf.matmul(inputs, self._wh) + tf.matmul(r * prev_state, self._uh) + self._bh) state = (1 - z) * prev_state + z * h_twiddle return state, state @property def state_size(self): return tf.TensorShape([self._hidden_size]) @property def output_size(self): return tf.TensorShape([self._hidden_size]) class HighwayCore(rnn_core.RNNCore): """Recurrent Highway Network cell. The implementation is based on: https://arxiv.org/pdf/1607.03474v5.pdf As per the first lines of section 5 of the reference paper, 1 - T is used instead of a dedicated C gate. Attributes: state_size: Integer indicating the size of state tensor. output_size: Integer indicating the size of the core output. """ # Keys that may be provided for parameter initializers. WT = "wt" # weight for input or previous state -> T gate BT = "bt" # bias for previous state -> T gate WH = "wh" # weight for input or previous state -> H gate BH = "bh" # bias for previous state -> H gate def __init__( self, hidden_size, num_layers, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name="highwaycore"): """Construct a new Recurrent Highway core. Args: hidden_size: (int) Hidden size dimensionality. num_layers: (int) Number of highway layers. initializers: Dict containing ops to initialize the weights. This dict may contain any of the keys returned by `HighwayCore.get_possible_initializer_keys`. partitioners: Optional dict containing partitioners to partition the weights and biases. As a default, no partitioners are used. This dict may contain any of the keys returned by `HighwayCore.get_possible_initializer_keys`. regularizers: Optional dict containing regularizers for the weights and biases. As a default, no regularizers are used. This dict may contain any of the keys returned by `HighwayCore.get_possible_initializer_keys`. custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. See the `tf.get_variable` documentation for more details. name: Name of the module. Raises: KeyError: if `initializers` contains any keys not returned by `HighwayCore.get_possible_initializer_keys`. KeyError: if `partitioners` contains any keys not returned by `HighwayCore.get_possible_initializer_keys`. KeyError: if `regularizers` contains any keys not returned by `HighwayCore.get_possible_initializer_keys`. """ super(HighwayCore, self).__init__(custom_getter=custom_getter, name=name) self._hidden_size = hidden_size self._num_layers = num_layers self._initializers = util.check_initializers( initializers, self.get_possible_initializer_keys(num_layers)) self._partitioners = util.check_partitioners( partitioners, self.get_possible_initializer_keys(num_layers)) self._regularizers = util.check_regularizers( regularizers, self.get_possible_initializer_keys(num_layers)) @classmethod def get_possible_initializer_keys(cls, num_layers): """Returns the keys the dictionary of variable initializers may contain. The set of all possible initializer keys are: wt: weight for input -> T gate wh: weight for input -> H gate wtL: weight for prev state -> T gate for layer L (indexed from 0) whL: weight for prev state -> H gate for layer L (indexed from 0) btL: bias for prev state -> T gate for layer L (indexed from 0) bhL: bias for prev state -> H gate for layer L (indexed from 0) Args: num_layers: (int) Number of highway layers. Returns: Set with strings corresponding to the strings that may be passed to the constructor. """ keys = [cls.WT, cls.WH] for layer_index in xrange(num_layers): layer_str = str(layer_index) keys += [ cls.WT + layer_str, cls.BT + layer_str, cls.WH + layer_str, cls.BH + layer_str] return set(keys) def _build(self, inputs, prev_state): """Connects the highway core module into the graph. Args: inputs: Tensor of size `[batch_size, input_size]`. prev_state: Tensor of size `[batch_size, hidden_size]`. Returns: A tuple (output, next_state) where `output` is a Tensor of size `[batch_size, hidden_size]` and `next_state` is a Tensor of size `[batch_size, hidden_size]`. Raises: ValueError: If connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. """ input_size = inputs.get_shape()[1] weight_shape = (input_size, self._hidden_size) u_shape = (self._hidden_size, self._hidden_size) bias_shape = (self._hidden_size,) def _get_variable(name, shape): return tf.get_variable( name, shape, dtype=inputs.dtype, initializer=self._initializers.get(name), partitioner=self._partitioners.get(name), regularizer=self._regularizers.get(name)) pre_highway_wt = _get_variable(self.WT, weight_shape) pre_highway_wh = _get_variable(self.WH, weight_shape) state = prev_state for layer_index in xrange(self._num_layers): layer_str = str(layer_index) layer_wt = _get_variable(self.WT + layer_str, u_shape) layer_bt = _get_variable(self.BT + layer_str, bias_shape) layer_wh = _get_variable(self.WH + layer_str, u_shape) layer_bh = _get_variable(self.BH + layer_str, bias_shape) linear_t = tf.matmul(state, layer_wt) + layer_bt linear_h = tf.matmul(state, layer_wh) + layer_bh if layer_index == 0: linear_t += tf.matmul(inputs, pre_highway_wt) linear_h += tf.matmul(inputs, pre_highway_wh) output_t = tf.sigmoid(linear_t) output_h = tf.tanh(linear_h) state = state * (1 - output_t) + output_h * output_t return state, state @property def state_size(self): return tf.TensorShape([self._hidden_size]) @property def output_size(self): return tf.TensorShape([self._hidden_size]) def highway_core_with_recurrent_dropout( hidden_size, num_layers, keep_prob=0.5, **kwargs): """Highway core with recurrent dropout. Args: hidden_size: (int) Hidden size dimensionality. num_layers: (int) Number of highway layers. keep_prob: the probability to keep an entry when applying dropout. **kwargs: Extra keyword arguments to pass to the highway core. Returns: A tuple (train_core, test_core) where train_core is a higway core with recurrent dropout enabled to be used for training and test_core is the same highway core without recurrent dropout. """ core = HighwayCore(hidden_size, num_layers, **kwargs) return RecurrentDropoutWrapper(core, keep_prob), core class LSTMBlockCell(rnn_core.RNNCellWrapper): """Wraps the TensorFlow LSTMBlockCell as a Sonnet RNNCore.""" @rnn_core.with_doc(contrib_rnn.LSTMBlockCell.__init__) def __init__(self, *args, **kwargs): super(LSTMBlockCell, self).__init__(contrib_rnn.LSTMBlockCell, *args, **kwargs)
sonnet-1
sonnet/python/modules/gated_rnn.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Batch normalization module for Sonnet. This contains the module BatchNorm, which performs batch normalization on its inputs. It has an optional post-normalization scale and offset, and it maintains moving averages of the statistics for use at test time. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from sonnet.python.modules import base from sonnet.python.modules import util import tensorflow.compat.v1 as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.layers import utils from tensorflow.python.training import moving_averages # pylint: enable=g-direct-tensorflow-import def create_beta_initializer(): """Returns a default initializer for the `beta` in batch norm.""" return tf.zeros_initializer() def create_gamma_initializer(): """Returns a default initializer for the `gamma` in batch norm.""" return tf.ones_initializer() def create_mean_initializer(): """Returns a default initializer for the `moving_mean` in batch norm.""" return tf.zeros_initializer() def create_variance_initializer(): """Returns a default initializer for the `moving_variance` in batch norm.""" return tf.ones_initializer() class BatchNorm(base.AbstractModule): """Batch normalization module, including optional affine transformation. This module maintains exponential moving averages of the mean and variance, which can be optionally used to normalize at test time. At training time, batch statistics (mean, variance) are not shared between separate connections. The moving averages are shared between separate connections. At both training and test time, the optional affine transformation (`* gamma + beta`) is shared between separate connections. This is also the case for distributed replica training, where the batch statistics are not aggregated across replicas, but the moving averages are shared globally. When connecting the module to the graph, `is_training=True` means that - Update ops are created to update the moving averages with the current batch's statistics. - Features are normalized using the *current batch's statistics*. The `test_local_stats` setting is ignored. The moving averages are **not** used. whereas `is_training=False` means that - Update ops are not created. - Features are normalized using either: - The test batch statistics if `test_local_stats=True` (default). - The moving averages if `test_local_stats=False`. Local batch statistics are used by default at test time, but the moving averages can be used by specifying a flag when connecting. One often wants to use local batch statistics at test time to track the progress while the model is trained as it would ensure that moving average updates do not affect the training curves. Once the training is finished, it's often advantageous to use moving average statistics, since it would make evaluation agnostic to the batch size, and might even lead to small improvements over the local batch statistics. You can either update the moving averages automatically by setting `update_ops_collection=None` or by running the ops in the given collection, by default tf.GraphKeys.UPDATE_OPS. For example, to run the updates automatically: bn = BatchNorm(update_ops_collection=None) train_net = bn(train_inputs, is_training=True) this does, however, have the effect of blocking the forwards pass of the network until the update ops have been run and may have a small performance penalty. For example, to run the updates manually: bn = BatchNorm() train_net = bn(train_inputs, is_training=True) ... update_ops = tf.group(*tf.get_collection( tf.GraphKeys.UPDATE_OPS)) train_op = tf.group(train_op, update_ops) Then, whenever `train_op` is run so also are the moving average update ops. Some batch normalization caveats: - Batch normalization will remove the effect of adding a bias, so e.g. `use_bias=False` should be used for an immediately preceding snt.Linear module. - If your data batches aren't i.i.d. then batch normalization can allow your network to 'cheat' by using the batch statistics to peek at the rest of the batch. This can exhibit itself as a higher test score with `test_local_stats=True` than `test_local_stats=False`. """ GAMMA = "gamma" BETA = "beta" MOVING_MEAN = "moving_mean" MOVING_VARIANCE = "moving_variance" POSSIBLE_INITIALIZER_KEYS = {GAMMA, BETA, MOVING_MEAN, MOVING_VARIANCE} POSSIBLE_PARTITIONER_KEYS = {GAMMA, BETA} POSSIBLE_REGULARIZER_KEYS = {GAMMA, BETA} def __init__(self, axis=None, offset=True, scale=False, decay_rate=0.999, eps=1e-3, initializers=None, partitioners=None, regularizers=None, update_ops_collection="update_ops", fused=False, name="batch_norm"): """Constructs a BatchNorm module. By default reduces over all input tensor dimensions apart from the final dimension. This has the effect of treating pixels in 1D/2D/3D images as additional elements of the minibatch. If this is not the desired behaviour, the user can specify the tensor indices to reduce over with `axis`. Args: axis: Optional iterable of indices of dimensions to reduce over. By default `None` and all dimensions except the last are reduced over. offset: Optional boolean to specify whether or not to apply a trained component-wise bias after the batch normalization and scaling. scale: Optional boolean to specify whether or not to apply a trained component-wise scale after the batch normalization. decay_rate: Decay rate of the exponential moving averages of the mean and variance. eps: Small number to avoid dividing by zero when diving by the standard deviation. initializers: Optional dict containing ops to initialize the weights of the affine transform (`gamma` and `beta`). partitioners: Optional dict containing partitioners to partition the weights of the affine transform (`gamma` and `beta`). regularizers: Optional dict containing regularizers for the weights of the affine transform ('gamma' and 'beta'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. update_ops_collection: Name of TensorFlow variable collection to add the moving average update ops to. If `None`, we instead add the update ops as control dependencies of the output of the module. This may result in some slowdown, as the feed-forward of the network is now blocked. By default, `tf.GraphKeys.UPDATE_OPS`. fused: Use nn.fused_batch_norm if True, nn.batch_normalization otherwise. name: Name of the module. Raises: KeyError: If `initializers` contains any keys other than `gamma`, `beta`, `moving_mean` or `moving_variance`. KeyError: If `partitioners` or `regularizers` contains any keys other than `gamma` or `beta`. TypeError: If any of the given initializers, partitioners or regularizers are not callable. """ super(BatchNorm, self).__init__(name=name) self._axis = axis self._offset = offset self._scale = scale self._decay_rate = decay_rate self._eps = eps self._update_ops_collection = update_ops_collection self._fused = fused self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_PARTITIONER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_REGULARIZER_KEYS) def _build_statistics(self, input_batch, axis, use_batch_stats, stat_dtype): """Builds the statistics part of the graph when using moving variance. Args: input_batch: Input batch Tensor. axis: Indices of `input_batch` to reduce over. use_batch_stats: Boolean to indicate if batch statistics should be calculated, otherwise moving averages are returned. stat_dtype: TensorFlow datatype to use for the moving mean and variance. Returns: Tuple of (mean, variance), each of the same datatype as `input_batch`. """ # Set up our moving statistics. When connecting in parallel, this is shared. if self.MOVING_MEAN not in self._initializers: self._initializers[self.MOVING_MEAN] = create_mean_initializer() self._moving_mean = tf.get_variable( "moving_mean", dtype=stat_dtype, shape=self._mean_shape, collections=[ tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES, ], initializer=self._initializers[self.MOVING_MEAN], trainable=False) if self.MOVING_VARIANCE not in self._initializers: self._initializers[self.MOVING_VARIANCE] = create_variance_initializer() self._moving_variance = tf.get_variable( "moving_variance", dtype=stat_dtype, shape=self._mean_shape, collections=[ tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES, ], initializer=self._initializers[self.MOVING_VARIANCE], trainable=False) def build_batch_stats(): """Builds the batch statistics calculation ops.""" mean, variance = tf.nn.moments(input_batch, axis, keep_dims=True, name="normalize_moments") return mean, variance def build_moving_stats(): """Retrieves the moving statistics.""" # If necessary, cast the moving statistics to match the input type. # This is required by tf.nn.batch_normalization. input_dtype = input_batch.dtype.base_dtype if stat_dtype == input_dtype: return ( tf.identity(self._moving_mean), tf.identity(self._moving_variance), ) else: return ( tf.cast(self._moving_mean, input_dtype), tf.cast(self._moving_variance, input_dtype), ) mean, variance = utils.smart_cond( use_batch_stats, build_batch_stats, build_moving_stats, ) return mean, variance def _build_update_ops(self, mean, variance, is_training): """Builds the moving average update ops when using moving variance. Args: mean: The mean value to update with. variance: The variance value to update with. is_training: Boolean Tensor to indicate if we're currently in training mode. Returns: Tuple of `(update_mean_op, update_variance_op)` when `is_training` is or could be `True`. Returns `None` when `is_training=False`. """ def build_update_ops(): """Builds the exponential moving average update ops.""" update_mean_op = moving_averages.assign_moving_average( variable=self._moving_mean, value=mean, decay=self._decay_rate, zero_debias=False, name="update_moving_mean").op update_variance_op = moving_averages.assign_moving_average( variable=self._moving_variance, value=variance, decay=self._decay_rate, zero_debias=False, name="update_moving_variance").op return update_mean_op, update_variance_op def build_no_ops(): return tf.no_op(), tf.no_op() # Only make the ops if we know that `is_training=True`, or the value of # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const: update_mean_op, update_variance_op = utils.smart_cond( is_training, build_update_ops, build_no_ops, ) return update_mean_op, update_variance_op else: return None def _infer_fused_data_format(self, input_batch): """Infers the data format for the fused batch norm. It uses the axis option to infer this information. Specifically, the axis value (0, 1, 2) corresponds to data format NHWC and the axis value (0, 2, 3) to data format NCHW. Args: input_batch: A Tensor of arbitrary dimension. Returns: A string description of the data format NHWC or NCHW. Raises: NotImplementedError: for input of dimensionality different from 4. ValueError: for axis configuration different from (0, 1, 2) and (0, 2, 3). """ input_shape = input_batch.get_shape().as_list() input_shape_len = len(input_shape) if input_shape_len != 4: raise NotImplementedError("fused batch norm supports only input with " "4 dimensions, it received input of " "dimensionality {:d}".format(input_shape_len)) axis = range(input_shape_len)[:-1] if self._axis is None else self._axis axis = tuple(axis) if axis == (0, 1, 2): # Reduce over the last dimension. return "NHWC" elif axis == (0, 2, 3): # Reduce over the second dimension. return "NCHW" else: raise ValueError("Invalid axis option {}. This does not correspond to" " either the NHWC format (0, 1, 2) or the NCHW " "(0, 2, 3).".format(axis)) def _fused_batch_norm_op(self, input_batch, mean, variance, use_batch_stats): """Creates a fused batch normalization op.""" # Store the original shape of the mean and variance. mean_shape = mean.get_shape() variance_shape = variance.get_shape() # The fused batch norm expects the mean, variance, gamma and beta # tensors to have dimension 1, so we flatten them to remove the # extra dimensions. gamma_flatten = tf.reshape(self._gamma, shape=(-1,)) beta_flatten = tf.reshape(self._beta, shape=(-1,)) flatten_mean = tf.reshape(mean, shape=(-1,)) flatten_variance = tf.reshape(variance, shape=(-1,)) use_batch_stats = tf.convert_to_tensor(use_batch_stats) common_args = { "scale": gamma_flatten, "offset": beta_flatten, "epsilon": self._eps, "data_format": self._infer_fused_data_format(input_batch), "name": "batch_norm" } def use_batch_stats_fused_batch_norm(): return tf.nn.fused_batch_norm(input_batch, mean=None, variance=None, is_training=True, **common_args) def moving_average_fused_batch_norm(): return tf.nn.fused_batch_norm(input_batch, mean=flatten_mean, variance=flatten_variance, is_training=False, **common_args) batch_norm_op, mean, variance = utils.smart_cond( use_batch_stats, use_batch_stats_fused_batch_norm, moving_average_fused_batch_norm) mean = tf.reshape(mean, mean_shape) variance = tf.reshape(variance, variance_shape) return batch_norm_op, mean, variance def _batch_norm_op(self, input_batch, mean, variance, use_batch_stats, stat_dtype): """Creates a batch normalization op. It uses the tf.nn.batch_normalization op by default and the tf.nn.fused_batch_norm op to support fused batch normalization. Args: input_batch: A input Tensor of arbitrary dimension. mean: A mean tensor, of the same dtype as `input_batch`. variance: A variance tensor, of the same dtype as `input_batch`. use_batch_stats: A bool value that indicates whether the operation should use the batch statistics. stat_dtype: TensorFlow datatype used for the moving mean and variance. Returns: A batch normalization operation. The current mean tensor, of datatype `stat_dtype`. The current variance tensor, of datatype `stat_dtype`. """ if self._fused: # For the non-training case where not using batch stats, # pass in the moving statistic variables directly. # These will already be in the correct dtype, even for float16 input. batch_norm_op, mean, variance = self._fused_batch_norm_op( input_batch, self._moving_mean, self._moving_variance, use_batch_stats) else: batch_norm_op = tf.nn.batch_normalization( input_batch, mean, variance, self._beta, self._gamma, self._eps, name="batch_norm") # We'll echo the supplied mean and variance so that they can also be used # to update the moving statistics. Cast to matching type if necessary. if input_batch.dtype.base_dtype != stat_dtype: mean = tf.cast(mean, stat_dtype) variance = tf.cast(variance, stat_dtype) return batch_norm_op, mean, variance def _build_scale_offset(self, dtype): """Sets up optional scale and offset factors.""" # tf.nn.fused_batch_norm accepts float16 batch data, but not scale/offset. if self._fused and dtype == tf.float16: dtype = tf.float32 # The fused batch norm operation needs the beta, gamma variables, # so in this case we build them and set the trainable option according # to the values of _offset and _scale. self._beta = None if self._offset or self._fused: if self.BETA not in self._initializers: self._initializers[self.BETA] = create_beta_initializer() self._beta = tf.get_variable( self.BETA, dtype=dtype, shape=self._mean_shape, initializer=self._initializers[self.BETA], partitioner=self._partitioners.get(self.BETA, None), regularizer=self._regularizers.get(self.BETA, None), trainable=self._offset) self._gamma = None if self._scale or self._fused: if self.GAMMA not in self._initializers: self._initializers[self.GAMMA] = create_gamma_initializer() self._gamma = tf.get_variable( self.GAMMA, dtype=dtype, shape=self._mean_shape, initializer=self._initializers[self.GAMMA], partitioner=self._partitioners.get(self.GAMMA, None), regularizer=self._regularizers.get(self.GAMMA, None), trainable=self._scale) def _build(self, input_batch, is_training, test_local_stats=True): """Connects the BatchNorm module into the graph. Args: input_batch: A Tensor of arbitrary dimension. By default, the final dimension is not reduced over when computing the minibatch statistics. is_training: A boolean to indicate if the module should be connected in training mode, meaning the moving averages are updated. Can be a Tensor. test_local_stats: A boolean to indicate if local batch statistics should be used when `is_training=False`. If not, moving averages are used. By default `True`. Can be a Tensor. Returns: A tensor with the same shape as `input_batch`. Raises: base.IncompatibleShapeError: If `axis` is not valid for the input shape or has negative entries. base.NotSupportedError: If `input_batch` has data type of `tf.bfloat16`. """ input_shape = input_batch.get_shape() if self._axis is not None: if len(self._axis) > len(input_shape): raise base.IncompatibleShapeError( "Too many indices specified in axis: len({}) > len({}).".format( self._axis, input_shape)) if max(self._axis) >= len(input_shape): raise base.IncompatibleShapeError( "One or more index in axis is too large for " "input shape: {} >= {:d}.".format(self._axis, len(input_shape))) if min(self._axis) < 0: raise base.IncompatibleShapeError( "Indices in axis must be non-negative: {} < 0.".format( self._axis)) axis = self._axis else: # Reduce over all dimensions except the last. axis = tuple(range(len(input_shape))[:-1]) dtype = input_batch.dtype.base_dtype if self._fused and dtype == tf.bfloat16: raise base.NotSupportedError( "Fused batch norm does not support tf.bfloat16.") # Maintain moving averages at a minimum precision of tf.float32. stat_dtype = tf.float32 if dtype in [tf.float16, tf.bfloat16] else dtype self._mean_shape = input_batch.get_shape().as_list() for index in axis: self._mean_shape[index] = 1 use_batch_stats = is_training | test_local_stats mean, variance = self._build_statistics(input_batch, axis, use_batch_stats, stat_dtype) # Sets up optional gamma and beta parameters self._build_scale_offset(dtype) # Sets up the batch normalization op. out, mean, variance = self._batch_norm_op(input_batch, mean, variance, use_batch_stats, stat_dtype) # Sets up the update op. update_ops = self._build_update_ops(mean, variance, is_training) # Put update ops in the update ops collection if given, otherwise add as # control dependencies of the output. if update_ops: if self._update_ops_collection: for update_op in update_ops: tf.add_to_collection(self._update_ops_collection, update_op) else: with tf.control_dependencies(update_ops): out = tf.identity(out) return out @property def initializers(self): return self._initializers @property def partitioners(self): return self._partitioners @property def regularizers(self): return self._regularizers @property def moving_mean(self): self._ensure_is_connected() return self._moving_mean @property def moving_variance(self): self._ensure_is_connected() return self._moving_variance @property def beta(self): self._ensure_is_connected() if self._beta is None: raise base.Error( "Batch normalization doesn't have an offset, so no beta") else: return self._beta @property def gamma(self): self._ensure_is_connected() if self._gamma is None: raise base.Error( "Batch normalization doesn't have a scale, so no gamma") else: return self._gamma
sonnet-1
sonnet/python/modules/batch_norm.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import parameterized import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf class ConstantZero(snt.AbstractModule): """A module that always outputs zero for each example.""" def __init__(self, output_rank=2, name="constant_zero"): """Initialize ConstantZero module. Args: output_rank: int. Rank of value returned by build(). The default value (2) imitates the output of the Linear module. name: string. Name of module. """ super(ConstantZero, self).__init__(name=name) self._output_rank = output_rank def _build(self, inputs): """Attach ConstantZero module to graph. Args: inputs: [batch_size, input_size]-shaped Tensor of dtype float32. Returns: A Tensor with rank output_rank where the first dimension has length batch_size and all others have length 1. """ # A module like Linear would require the final dimension to be known in # order to construct weights. assert inputs.get_shape().as_list()[-1] is not None batch_size = tf.shape(inputs)[0] result_shape = [batch_size] + [1] * (self._output_rank - 1) return tf.zeros(result_shape, dtype=inputs.dtype) class AttentiveReadTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(AttentiveReadTest, self).setUp() self._batch_size = 3 self._memory_size = 4 self._memory_word_size = 1 self._query_word_size = 2 self._memory = tf.reshape( tf.cast(tf.range(0, 3 * 4 * 1), dtype=tf.float32), shape=[3, 4, 1]) self._query = tf.reshape( tf.cast(tf.range(0, 3 * 2), dtype=tf.float32), shape=[3, 2]) self._memory_mask = tf.convert_to_tensor( [ [True, True, True, True], [True, True, True, False], [True, True, False, False], ], dtype=tf.bool) self._attention_logit_mod = ConstantZero() self._attention_mod = snt.AttentiveRead(self._attention_logit_mod) def testShape(self): # Shape should be inferred if it's known at graph construction time. attention_output = self._attention_mod(self._memory, self._query) x = attention_output.read self.assertTrue(x.get_shape().is_compatible_with( [self._batch_size, self._memory_word_size])) self.assertEqual(x.dtype, tf.float32) def testComputation(self): # Since all attention weight logits are zero, all memory slots get an equal # weight. Thus, the expected attentive read should return the average of # all memory slots for each example. attention_output = self._attention_mod(self._memory, self._query) x = attention_output.read with self.test_session() as sess: x_ = sess.run(x) self.assertAllClose(x_, [[1.5], [5.5], [9.5]]) def testMemoryMask(self): # Ignore some time steps. attention_output = self._attention_mod( self._memory, self._query, memory_mask=self._memory_mask) x = attention_output.read with self.test_session() as sess: x_ = sess.run(x) self.assertAllClose(x_, [[1.5], [5.0], [8.5]]) def testMemoryMaskWithNonuniformLogits(self): memory = np.random.randn(2, 3, 10) logits = np.array([[-1, 1, 0], [-1, 1, 0]]) mask = np.array([[True, True, True], [True, True, False]]) # Calculate expected output. expected_weights = np.exp(logits) expected_weights[1, 2] = 0 expected_weights /= np.sum(expected_weights, axis=1, keepdims=True) expected_output = np.matmul(expected_weights[:, np.newaxis, :], memory)[:, 0] # Run attention model. attention = snt.AttentiveRead( lambda _: tf.constant(logits.reshape([6, 1]), dtype=tf.float32)) attention_output = attention( memory=tf.constant(memory, dtype=tf.float32), query=tf.constant(np.zeros([2, 5]), dtype=tf.float32), memory_mask=tf.constant(mask)) with self.test_session() as sess: actual = sess.run(attention_output) # Check output. self.assertAllClose(actual.read, expected_output) self.assertAllClose(actual.weights, expected_weights) # The actual logit for the masked value should be tiny. First check without. masked_actual_weight_logits = np.array(actual.weight_logits, copy=True) masked_actual_weight_logits[1, 2] = logits[1, 2] self.assertAllClose(masked_actual_weight_logits, logits) self.assertLess(actual.weight_logits[1, 2], -1e35) def testUndefinedWordSizes(self): # memory_word_size must be defined. memory = tf.placeholder( dtype=tf.float32, shape=[self._batch_size, self._memory_size, None]) with self.assertRaises(snt.UnderspecifiedError): self._attention_mod(memory, self._query) # query_word_size must be defined. query = tf.placeholder(dtype=tf.float32, shape=[self._batch_size, None]) with self.assertRaises(snt.UnderspecifiedError): self._attention_mod(self._memory, query) def testMemoryShape(self): # memory must have rank 3. memory = tf.placeholder( dtype=tf.float32, shape=[self._batch_size, self._memory_size]) with self.assertRaises(snt.IncompatibleShapeError): self._attention_mod(memory, self._query) def testQueryShape(self): # query must have rank 2. query = tf.placeholder( dtype=tf.float32, shape=[self._batch_size, self._query_word_size, 1]) with self.assertRaises(snt.IncompatibleShapeError): self._attention_mod(self._memory, query) def testMemoryMaskShape(self): # memory_mask must have rank 2. memory_mask = tf.placeholder( dtype=tf.bool, shape=[self._batch_size, self._memory_size, 1]) with self.assertRaises(snt.IncompatibleShapeError): self._attention_mod(self._memory, self._query, memory_mask=memory_mask) @parameterized.parameters(1, 3) def testAttentionLogitsModuleShape(self, output_rank): # attention_logit_mod must produce a rank 2 Tensor. attention_mod = snt.AttentiveRead(ConstantZero(output_rank=output_rank)) with self.assertRaises(snt.IncompatibleShapeError): attention_mod(self._memory, self._query) def testNoMemorySlotsLeft(self): # Every example must have at least one unmasked memory slot for attention # to work. memory_mask = tf.convert_to_tensor( [ [True, True, True, True], [True, True, True, False], [False, False, False, False], ], dtype=tf.bool) attention_output = self._attention_mod( self._memory, self._query, memory_mask=memory_mask) x = attention_output.read with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(x) def testInvalidBatchSize(self): # Both memory and query need to agree on batch_size. memory = tf.placeholder(shape=[None, 1, 1], dtype=tf.float32) query = tf.placeholder(shape=[None, 1], dtype=tf.float32) attention_output = self._attention_mod(memory, query) x = attention_output.read with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): feed_dict = { memory: np.zeros([1, 1, 1], dtype=np.float32), query: np.zeros([2, 1], dtype=np.float32) } sess.run(x, feed_dict=feed_dict) @parameterized.parameters({ "module_cstr": snt.Linear, "module_kwargs": { "output_size": 1 } }, {"module_cstr": snt.nets.MLP, "module_kwargs": { "output_sizes": [1] }}) def testWorksWithCommonModules(self, module_cstr, module_kwargs): # In the academic literature, attentive reads are most commonly implemented # with Linear or MLP modules. This integration test ensures that # AttentiveRead works safely with these. attention_logit_mod = module_cstr(**module_kwargs) attention_mod = snt.AttentiveRead(attention_logit_mod) x = attention_mod(self._memory, self._query) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(x) def testAttentionWeightLogitsShape(self): # Expected to be [batch_size, memory_size]. x = self._attention_mod(self._memory, self._query).weight_logits self.assertTrue(x.get_shape().is_compatible_with( [self._batch_size, self._memory_size])) self.assertEqual(x.dtype, tf.float32) def testWeightsIsSoftmaxOfLogits(self): attention_output = self._attention_mod(self._memory, self._query) softmax_of_weight_logits = tf.nn.softmax(attention_output.weight_logits) with self.test_session() as sess: expected, obtained = sess.run([attention_output.weights, softmax_of_weight_logits]) self.assertAllClose(expected, obtained) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/attention_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =================================================== """Tools for constrained optimization. These classes and methods implement the logic described in: Danilo Rezende and Fabio Viola, 'Taming VAEs': https://arxiv.org/abs/1810.00597 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numbers # Dependency imports import numpy as np from sonnet.python.modules import basic from sonnet.python.modules import scale_gradient import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from tensorflow.python.framework import function # pylint: disable=g-direct-tensorflow-import LAGRANGE_MULTIPLIERS = 'Lagrange Multipliers' _GEQ_OPS = ('Greater', 'GreaterEqual') _LEQ_OPS = ('Less', 'LessEqual') class OptimizationConstraints(object): """Container for optimization constraints. Users can add to an OptimizationConstraints instance multiple inequality constraints, either implicitly passing inequality ops, such as `optimization_constraints.add(x < y)`, or explicitly specifying the constraint type, as in `optimization_constraints.add_geq(x, y)`. Users can finally add the constraints to the TensorFlow graph calling `optimization_constraints()`; when doing so, Lagrange multipliers are automatically added to the graph, so that users can optimize them alongside other variables in the graph, using the same optimizer and `minimize()`. Example usage: ``` regularization_loss = model.regularization_loss(data) reconstruction_error = model.reconstruction_error(data) avg_reconstruction_error = snt.MovingAverage()(reconstruction_error) constraints = snt.OptimizationConstraints() constraints.add(avg_reconstruction_error < reconstruction_threshold) loss = regularization_loss + constraints() # The following call actually performs an update step for # min_{theta} max_{lambda} ( # regularization_loss(theta) + # lambda * (avg_reconstruction_error - reconstruction_threshold)) # where theta are the model parameters and lambda are the Lagrange # multipliers. update = optimizer.minimize(loss) ``` """ def __init__(self, rate=1.0, valid_range=None): """Instantiates a container for optimization constraints. Args: rate: optional float, default 1.0. Default factor for Lagrange multiplier gradient scaling. Use there `rate` argument to scale the gradients of the Lagrange multipliers - note that this parameter has no effect when using optimisers such as Adam. This parameter can be overridden when adding constraints to the container. valid_range: optional tuple of length 2, default None. Default valid range for Lagrange multipliers. This parameter can be overridden when adding constraints to the container. """ self._constraints = [] self._lagrange_multipliers = [] self._valid_ranges = [] self._rate = rate self._valid_range = valid_range self._penalty = None @property def constraints(self): return self._constraints @property def lagrange_multipliers(self): return self._lagrange_multipliers def add(self, expression, rate=None, valid_range=None, initializer=None): """Add inequality constraint whose type depends on analysis of input op. Args: expression: op of type `Greater`, `GreaterEqual`, `Less` or `LessEqual`. Note that `GreaterEqual` and `LessEqual` are accepted only for convenience, and will result in the same behavior as `Greater` and `Less` respectively. rate: optional float, default None. Factor for Lagrange multiplier gradient scaling. Use there `rate` argument to scale the gradients of the Lagrange multipliers - note that this parameter has no effect when using optimisers such as Adam. This parameter overrides the defaults defined instantiating the container. valid_range: optional tuple of length 2, default None. Default valid range for Lagrange multipliers. This parameter overrides the defaults defined instantiating the container. initializer: optional tensorflow initializer, array or value to be used for the Lagrange multiplier initialization. By default Lagrange multiplier will be initialized to 1.0. Returns: Self. Raises: `TypeError`, when input expression op is not one of `Greater`, `GreaterEqual`, `Less`, `LessEqual`. """ self._assert_is_not_connected() lhs = expression.op.inputs[0] rhs = expression.op.inputs[1] op_type = expression.op.type if op_type in _GEQ_OPS: self.add_geq( lhs, rhs, rate=rate, valid_range=valid_range, initializer=initializer) elif op_type in _LEQ_OPS: self.add_leq( lhs, rhs, rate=rate, valid_range=valid_range, initializer=initializer) else: raise TypeError( 'add currently only supports parsing of the following ops: {}'.format( _GEQ_OPS + _LEQ_OPS)) return self def add_leq(self, lhs, rhs=0.0, rate=None, valid_range=None, initializer=None): """Add a 'less than' inequality constraint. Args: lhs: left hand argument of inequality expression. rhs: reft hand argument of inequality expression, defaults to 0.0. rate: optional float, default None. Factor for Lagrange multiplier gradient scaling. Use there `rate` argument to scale the gradients of the Lagrange multipliers - note that this parameter has no effect when using optimisers such as Adam. This parameter overrides the defaults defined instantiating the container. valid_range: optional tuple of length 2, default None. Default valid range for Lagrange multipliers. This parameter overrides the defaults defined instantiating the container. initializer: optional tensorflow initializer, array or value to be used for the Lagrange multiplier initialization. By default Lagrange multiplier will be initialized to 1.0. Returns: Self. """ self._assert_is_not_connected() constraint_op = lhs - rhs self._constraints.append(constraint_op) valid_range = valid_range or self._valid_range self._valid_ranges.append(valid_range) if rate is None: rate = self._rate lag_mul = get_lagrange_multiplier( shape=constraint_op.shape, rate=rate, initializer=initializer, valid_range=valid_range) self._lagrange_multipliers.append(lag_mul) return self def add_geq(self, lhs, rhs=0.0, rate=None, valid_range=None, initializer=None): """Add a 'greater than' inequality constraint. Args: lhs: left hand argument of inequality expression. rhs: reft hand argument of inequality expression, defaults to 0.0. rate: optional float, default None. Factor for Lagrange multiplier gradient scaling. Use there `rate` argument to scale the gradients of the Lagrange multipliers - note that this parameter has no effect when using optimisers such as Adam. This parameter overrides the defaults defined instantiating the container. valid_range: optional tuple of length 2, default None. Default valid range for Lagrange multipliers. This parameter overrides the defaults defined instantiating the container. initializer: optional tensorflow initializer, array or value to be used for the Lagrange multiplier initialization. By default Lagrange multiplier will be initialized to 1.0. Returns: Self. """ self._assert_is_not_connected() constraint_op = rhs - lhs return self.add_leq( constraint_op, rate=rate, valid_range=valid_range, initializer=initializer) def __call__(self): """Adds constrains and Lagrange multipliers to graph.""" if self._is_connected: return self._penalty self._penalty = tf.zeros(()) for l, c in zip(self._lagrange_multipliers, self._constraints): self._penalty += tf.reduce_sum(l * c) return self._penalty @property def _is_connected(self): return self._penalty is not None def _assert_is_not_connected(self): if self._is_connected: raise ValueError( 'Cannot add further constraints once OptimizationConstraints has ' 'been connected to the graph by calling it.') def get_lagrange_multiplier(shape=(), rate=1.0, initializer=1.0, maximize=True, valid_range=None, name='lagrange_multiplier'): """Lagrange multiplier factory. This factory returns ops that help setting up constrained optimization problems in Tensorflow. Given a constraint function op (either scalar or vectorial), use this function to instantiate a Lagrange multiplier op, then dot product the two and add them to the loss that is being optimized over. There is no need to instantiate a second optimizer to solve the minmax problem, as the Lagrange Multiplier op is setup to manipulate its own gradients so that a single optmizer can be used to update all the variables correctly. Args: shape: Lagrange multipliers can be used with both scalar and vector constraint functions; when using vector constraints use the shape kwarg to pass in shape information and instantiate variables of the correct shape. rate: Scalar used to scale the magnitude of gradients of the Lagrange multipliers, defaulting to 1e-2. Using the default value will make the Lagrange multipliers updates slower compared to the ones for the model's parameters. initializer: Initializer for the Lagrange multipliers. Note that when using inequality constraints the initial value of the multiplier will be transformed via the parametrization function. maximize: Boolean, True if we want to maximize the loss w.r.t. the Lagrange multipliers, False otherwise. valid_range: tuple, or list. of values used to clip the value of the (possibly reparametrized) Lagrange multipliers. name: Name of the Lagrange multiplier op. Returns: An op to be inserted in the graph, by multipling it with a constraint op and adding the resulting op to a loss. The Lagrange multiplier gradients are modified to that by calling minimize on the loss the optimizer will actually minimize w.r.t. to the model's parameters and maximize w.r.t. the Lagrande multipliers, hence enforcing the constraints. Raises: ValueError: If the Lagrange multiplier is set to enforce an equality constraint and a parametrization function is also provided. """ initializer = initializer or np.ones(shape=shape) if isinstance(initializer, (numbers.Number, np.ndarray, list, tuple)): initializer = tf.constant_initializer(initializer) initializer = _LagrangeMultiplierInitializer(initializer) lambda_var = basic.TrainableVariable( name=name, shape=shape, initializers={'w': initializer})() tf.add_to_collection(LAGRANGE_MULTIPLIERS, lambda_var) lag_multiplier = _parametrize(lambda_var, rate=rate) lag_multiplier.set_shape(shape) if valid_range: lag_multiplier = _constrain_to_range(lag_multiplier, *valid_range) return lag_multiplier if maximize else -lag_multiplier def _squared_softplus(x): return tf.nn.softplus(x) ** 2 def _inv_squared_softplus(x): # Support TFP 0.7 (which has `tfp.distributions.softplus_inverse`) and # TFP 0.8.0+ (where `softplus_inverse` was moved to `tfp.math`). softplus_inverse = (getattr(tfp.math, 'softplus_inverse', None) or getattr(tfp.distributions, 'softplus_inverse', None)) return softplus_inverse(tf.sqrt(x)) def _parametrize(x, rate=1.0): return scale_gradient.scale_gradient(_squared_softplus(x), -rate) class _LagrangeMultiplierInitializer(object): """Initializer applying inv squared softplus to a user defined initializer.""" def __init__(self, initializer, dtype=tf.float32): self.dtype = tf.as_dtype(dtype) self._initializer = initializer def __call__(self, shape, dtype=None, partition_info=None): initial_values = self._initializer(shape, dtype, partition_info) return _inv_squared_softplus(initial_values) def get_config(self): return {'dtype': self.dtype.name} # Implement simple memoization mechanism using a global dict. _op_ctors = dict() def _get_constrain_to_range_op(dtype): """Creates an op that keep values within a given range using a Defun. This method produces a new op the first time it is called with a given `dtype` argument, and then uses the cached op each time it is called after that with the same `dtype`. The min and max valuee are given as arguments for the forward pass method so that it can be used in the backwards pass. Args: dtype: the dtype of the input whose values are clipped. Returns: The op that clips the values. """ def _instantiate_op(dtype): """Instantiate constrain to range op constructor for given dtype.""" def constrain_to_range_forward(x, clip_value_min, clip_value_max): return tf.clip_by_value(x, clip_value_min, clip_value_max) def constrain_to_range_backward(op, grad): """Forwards the gradients moving the inputs within the valid range.""" x = op.inputs[0] clip_value_min = op.inputs[1] clip_value_max = op.inputs[2] zeros = tf.zeros_like(grad) condition = tf.logical_and(x < clip_value_min, grad < 0) grad = tf.where(condition, zeros, grad) condition = tf.logical_and(x > clip_value_max, grad > 0) grad = tf.where(condition, zeros, grad) return grad, None, None func_name = 'ConstrainToRange_{}'.format(dtype.name) return function.Defun( dtype, dtype, dtype, python_grad_func=constrain_to_range_backward, func_name=func_name)(constrain_to_range_forward) if dtype.name not in _op_ctors: _op_ctors[dtype.name] = _instantiate_op(dtype) return _op_ctors[dtype.name] def _constrain_to_range(x, min_value, max_value, name='constrain_to_range'): """Clips the inputs to a given range, whilst forwarding gradients.""" if not x.dtype.is_floating: raise ValueError('_clip_by_value does not support non-float `x` inputs.') with tf.name_scope(name, 'constrain_to_range', values=[x]): dtype = x.dtype.base_dtype # Convert ref dtypes to regular dtypes. min_tensor = tf.convert_to_tensor(min_value, dtype=dtype) max_tensor = tf.convert_to_tensor(max_value, dtype=dtype) constrain_to_range_op = _get_constrain_to_range_op(dtype) output = constrain_to_range_op(x, min_tensor, max_tensor) output.set_shape(x.get_shape()) return output
sonnet-1
sonnet/python/modules/optimization_constraints.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for snt.clip_gradient.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf class ClipGradientTest(tf.test.TestCase): def testOpClip(self): x = tf.placeholder(tf.float32, shape=[2, 1]) y = snt.clip_gradient(x, 2, 3) z = tf.reduce_sum(y * y) dzdy = tf.gradients(z, y)[0] dzdx = tf.gradients(z, x)[0] x_np = np.array([[0.5], [2]]) with self.test_session() as sess: y_np, dzdy_np, dzdx_np = sess.run([y, dzdy, dzdx], feed_dict={x: x_np}) self.assertAllEqual(y_np, x_np) # We do not expect the gradients with respect to the output to be clipped. self.assertAllEqual(dzdy_np, np.array([[1], [4]])) # We expect the gradients with respect to the input to be clipped [2, 3]. self.assertAllEqual(dzdx_np, np.array([[2], [3]])) def testOpClipDifferentClipValues(self): x = tf.placeholder(tf.float32, shape=[2, 1]) y_1 = snt.clip_gradient(x, 1, 2) y_2 = snt.clip_gradient(x, 2, 3) z_1 = tf.reduce_sum(y_1 * y_1) z_2 = tf.reduce_sum(y_2 * y_2) dzdy_1 = tf.gradients(z_1, y_1)[0] dzdy_2 = tf.gradients(z_2, y_2)[0] dzdx_1 = tf.gradients(z_1, x)[0] dzdx_2 = tf.gradients(z_2, x)[0] x_np = np.array([[0.5], [2]]) with self.test_session() as sess: y_np_1, dzdy_np_1, dzdx_np_1, y_np_2, dzdy_np_2, dzdx_np_2 = sess.run( [y_1, dzdy_1, dzdx_1, y_2, dzdy_2, dzdx_2], feed_dict={x: x_np}) self.assertAllEqual(y_np_1, x_np) self.assertAllEqual(y_np_2, x_np) # We do not expect the gradients with respect to the output to be clipped. self.assertAllEqual(dzdy_np_1, np.array([[1], [4]])) self.assertAllEqual(dzdy_np_2, np.array([[1], [4]])) # We expect the gradients w.r.t. the input to be clipped [1, 2] or [2, 3]. self.assertAllEqual(dzdx_np_1, np.array([[1], [2]])) self.assertAllEqual(dzdx_np_2, np.array([[2], [3]])) def testOpClipDifferentDtypes(self): x_1 = tf.placeholder(tf.float16, shape=()) snt.clip_gradient(x_1, 0, 1) # clip_gradient throws here if the Defun func_name does not use the dtype. x_2 = tf.placeholder(tf.float32, shape=()) snt.clip_gradient(x_2, 0, 1) def testShape(self): x = tf.placeholder(tf.float32, [None, 10, 13]) y = snt.clip_gradient(x, 0, 1) z = tf.reduce_sum(y * y) dzdx = tf.gradients(z, x)[0] self.assertAllEqual(y.get_shape().as_list(), [None, 10, 13]) self.assertAllEqual(dzdx.get_shape().as_list(), [None, 10, 13]) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/clip_gradient_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Base class for TensorFlow snt. This file contains the Abstract Base Class for defining Modules in TensorFlow. A Module is an object that can be connected into the Graph multiple times using the __call__ method, sharing variables automatically with no need to explicitly use scopes or specify reuse=True. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import contextlib import inspect import threading import types # Dependency imports import contextlib2 import six from sonnet.python.modules import base_info from sonnet.python.modules import util import tensorflow.compat.v1 as tf import wrapt # Import error class from base_errors for backward compatibility. from sonnet.python.modules.base_errors import Error from sonnet.python.modules.base_errors import NotConnectedError from sonnet.python.modules.base_errors import ParentNotBuiltError from sonnet.python.modules.base_errors import IncompatibleShapeError from sonnet.python.modules.base_errors import UnderspecifiedError from sonnet.python.modules.base_errors import NotSupportedError from sonnet.python.modules.base_errors import NotInitializedError from sonnet.python.modules.base_errors import DifferentGraphError from sonnet.python.modules.base_errors import ModuleInfoError from tensorflow.contrib.eager.python import tfe as contrib_eager # pylint: enable=g-bad-import-order # pylint: enable=unused-import _LOCAL_STACKS = threading.local() def _get_or_create_stack(name): """Returns a thread local stack uniquified by the given name.""" stack = getattr(_LOCAL_STACKS, name, None) if stack is None: stack = [] setattr(_LOCAL_STACKS, name, stack) return stack get_module_stack = lambda: _get_or_create_stack("modules") get_connection_stack = lambda: _get_or_create_stack("connections") @contextlib.contextmanager def observe_connections(observer): """Notifies the observer whenever any Sonnet module is connected to the graph. If a module contains nested modules, the observer is notified once for each nested module, followed by the containing module. For example: ```python def logging_observer(connected_subgraph): logging.info(connected_subgraph.module.module_name) with snt.observe_connections(logging_observer): output = imagenet_module(input_tensor) ``` Args: observer: Callable accepting a single argument. Will be called with a `ConnectedSubGraph` each time a module is connected to the graph. Yields: None: just yields control to the inner context. """ connection_stack = get_connection_stack() connection_stack.append(observer) try: yield finally: connection_stack.pop() @six.add_metaclass(abc.ABCMeta) class AbstractModule(object): """Superclass for Sonnet Modules. This class defines the functionality that every module should implement, principally the `build` method which is wrapped using `tf.make_template` and called from `__call__`. Every time the module is called it will be connected into the graph but using the same shared set of variables, thanks to the template. For this to work correctly, the `build` implementation in the derived class must access all variables using `tf.get_variable`, not `tf.Variable`. The same set of variables must be created each time, if this is not the case an Error will be raised. Every subclass must call this class' `__init__` at the start of their `__init__`, passing the relevant name. If this step is omitted variable sharing will not work. """ def __init__(self, _sentinel=None, custom_getter=None, name=None): # pylint: disable=invalid-name """Performs the initialisation necessary for all AbstractModule instances. Every subclass of AbstractModule must begin their constructor with a call to this constructor, i.e. `super(MySubModule, self).__init__(custom_getter=custom_getter, name=name)`. If you instantiate sub-modules in __init__ you must create them within the `_enter_variable_scope` context manager to ensure they are in the module's variable scope. Alternatively, instantiate sub-modules in `_build`. Args: _sentinel: Variable that only carries a non-None value if `__init__` was called without named parameters. If this is the case, a deprecation warning is issued in form of a `ValueError`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of this module. Used to construct the Templated build function. If `None` the module's class name is used (converted to snake case). Raises: TypeError: If `name` is not a string. TypeError: If a given `custom_getter` is not callable. ValueError: If `__init__` was called without named arguments. """ if _sentinel is not None: raise ValueError("Calling AbstractModule.__init__ without named " "arguments is not supported.") if name is None: name = util.to_snake_case(self.__class__.__name__) elif not isinstance(name, six.string_types): raise TypeError("Name must be a string, not {} of type {}.".format( name, type(name))) self._is_connected = False self._connected_subgraphs = [] # If the given custom getter is a dictionary with a per-variable custom # getter, wrap it into a single custom getter. if isinstance(custom_getter, collections.Mapping): self._custom_getter = util.custom_getter_router( custom_getter_map=custom_getter, name_fn=lambda name: name[len(self.scope_name) + 1:]) elif custom_getter is not None and not callable(custom_getter): raise TypeError("Given custom_getter is not callable.") else: self._custom_getter = custom_getter self._template = tf.make_template( name, self._build_wrapper, create_scope_now_=True, custom_getter_=self._custom_getter) self._original_name = name self._unique_name = self._template.variable_scope.name.split("/")[-1] # Copy signature of _build to __call__. adapter_fn = getattr(self._build, "__func__", self._build) @wrapt.decorator(adapter=adapter_fn) def copy_signature(method, unused_instance, args, kwargs): return method(*args, **kwargs) @copy_signature def __call__(instance, *args, **kwargs): # pylint: disable=invalid-name return AbstractModule.__call__(instance, *args, **kwargs) # use __dict__ instead of setting directly to avoid a Callable pytype error self.__dict__["__call__"] = types.MethodType(__call__, self) # Update __call__ and the object docstrings to enable better introspection. self.__doc__ = self._build.__doc__ self.__call__.__func__.__doc__ = self._build.__doc__ # Keep track of which graph this module has been connected to. Sonnet # modules cannot be connected to multiple graphs, as transparent variable # sharing is impossible in that case. self._graph = None # Container for all variables created in this module and its sub-modules. self._all_variables = set([]) # Calling `.defun()` causes the module's call method to become wrapped as # a graph function. self._defun_wrapped = False def _build_wrapper(self, *args, **kwargs): """Function which will be wrapped in a Template to do variable sharing. Passes through all arguments to the _build method, and returns the corresponding outputs, plus the name_scope generated by this call of the template. Args: *args: args list for self._build **kwargs: kwargs dict for self._build Returns: A tuple containing (output from _build, scope_name). """ output = self._build(*args, **kwargs) # Make a dummy subscope to check the name scope we are in. We could read # the name scope from one of the outputs produced, except that the outputs # could have been produced from a subscope instantiated by the build # function, for example if inner modules are present. Calling name_scope # here and creating a new subscope guarantees we get the right answer. # Because we don't create an ops inside this dummy scope, no extra memory # will be consumed. with tf.name_scope("dummy") as scope_name: this_scope_name = scope_name[:-len("/dummy/")] return output, this_scope_name def _check_init_called(self): """Checks that the base class's __init__ method has been called. Raises: NotInitializedError: `AbstractModule.__init__` has not been called. """ try: self._template except AttributeError: raise NotInitializedError("You may have forgotten to call super at the " "start of %s.__init__." % self.__class__.__name__) def _set_module_info(self): """Creates a `ModuleInfo` and adds it to the graph collections.""" self._module_info = base_info.ModuleInfo( module_name=self.module_name, scope_name=self.scope_name, class_name="{}.{}".format( self.__class__.__module__, self.__class__.__name__), connected_subgraphs=self._connected_subgraphs) self._graph.add_to_collection(base_info.SONNET_COLLECTION_NAME, self._module_info) def _check_same_graph(self): """Checks that the module is not being connect to multiple Graphs. An instance of a Sonnet module 'owns' the variables it contains, and permits seamless variable sharing. As such, connecting a single module instance to multiple Graphs is not possible - this function will raise an error should that occur. Raises: DifferentGraphError: if the module is connected to a different Graph than it was previously used in. """ with tf.init_scope(): # We need `init_scope` incase we're running inside a defun. In that case # what we want is information about where the function will be called not # where the function is being built. current_graph = tf.get_default_graph() will_call_in_eager_context = tf.executing_eagerly() if self._graph is None: self._graph = current_graph self._set_module_info() if not will_call_in_eager_context: # Same graph checks only make sense when calling from graph mode (in eager # mode there is a single process level context where all modules are # created). if self._graph != current_graph: raise DifferentGraphError("Cannot connect module to multiple Graphs.") @abc.abstractmethod def _build(self, *args, **kwargs): """Add elements to the Graph, computing output Tensors from input Tensors. Subclasses must implement this method, which will be wrapped in a Template. Args: *args: Input Tensors. **kwargs: Additional Python flags controlling connection. Returns: output Tensor(s). """ @contextlib.contextmanager def _capture_variables(self): """Adds variables used by this module to self._all_variables. Upon entering this context manager the module adds itself onto the top of the module call stack. Any variables created with `tf.get_variable()` inside `_build()` or `_enter_variable_scope()` while this module is on top of the call stack will be added to `self._all_variables`. Before exiting the context the module removes itself from the top of the call stack, and adds all of the variables in `self._all_variables` to its parent module (the new top) of the call stack. Yields: Nothing, the yield just transfers focus back to the inner context. """ module_stack = get_module_stack() module_stack.append(self) try: with contextlib2.ExitStack() as stack: # Ideally move re-entering store into Template.variable_scope. template_store = getattr(self._template, "_template_store", None) if template_store is not None: # In eager mode, the template store keeps references to created # variables such that they survive even if there are no references to # them in Python code. Variables added to an eager template store are # also added to TensorFlow global collections (unlike regular # variables created in eager mode). stack.enter_context(template_store.as_default()) stack.enter_context( util.notify_about_new_variables(self._all_variables.add)) yield if self._original_name: self._all_variables.update(self._template.variables) finally: # Remove `self` from `module_stack`, this happens as part of cleanup # even if an error is raised. module_stack.pop() if module_stack: # Peek into the stack to add created variables to the parent parent_module = module_stack[-1] parent_module._all_variables.update(self._all_variables) # pylint: disable=protected-access def _add_connected_subgraph(self, call_method, outputs, subgraph_name_scope, inputs_args, inputs_kwargs): """Adds a newly connected subgraph. Args: call_method: the function used to connect this Sonnet module to the graph. outputs: `call_method` outputs. subgraph_name_scope: name scope of the newly connected subgraph. inputs_args: `self._build` inputs `*args`. inputs_kwargs: `self._build` inputs `*kwargs`. """ build_inputs = inspect.getcallargs(call_method, *inputs_args, **inputs_kwargs) # "self" should normally be in `build_inputs` but some people are decorating # their `_build` function with `memoize`, in which case the function # signature doesn't contain `self` anymore. if "self" in build_inputs: del build_inputs["self"] connected_subgraph = base_info.ConnectedSubGraph( module=self, name_scope=subgraph_name_scope, inputs=build_inputs, outputs=outputs) self._connected_subgraphs.append(connected_subgraph) for observer in get_connection_stack(): observer(connected_subgraph) @property def defun_wrapped(self): """Returns boolean indicating whether this module is defun wrapped.""" return self._defun_wrapped def defun(self): """Wraps this modules call method in a callable graph function.""" if not self._defun_wrapped: self._defun_wrapped = True self._call = contrib_eager.defun(self._call) def __call__(self, *args, **kwargs): return self._call(*args, **kwargs) def _call(self, *args, **kwargs): """Entry point when a module is called to connect it to the graph. This is the entry point when users connect a Module into the Graph. The underlying _build method will have been wrapped in a Template by the constructor, and we call this template with the provided inputs here. Note we use `_call` instead of `__call__` to allow instance level monkey patching (see `defun`). Args: *args: Arguments for underlying _build method. **kwargs: Keyword arguments for underlying _build method. Returns: The result of the underlying _build method. """ self._check_init_called() self._check_same_graph() with self._capture_variables(): outputs, subgraph_name_scope = self._template(*args, **kwargs) self._is_connected = True if not tf.executing_eagerly(): # In eager mode the module is called a lot more frequently than in graph # mode (for each training step) and so we don't keep track of connected # subgraphs (since there will be orders of magnitude more of them). self._add_connected_subgraph(self._build, outputs, subgraph_name_scope, args, kwargs) return outputs @property def name_scopes(self): """Returns a tuple of all name_scopes generated by this module.""" if tf.executing_eagerly(): raise NotSupportedError( "The name_scopes property is not supported in eager mode.") return tuple(subgraph.name_scope for subgraph in self._connected_subgraphs) @property def variable_scope(self): """Returns the variable_scope declared by the module. It is valid for library users to access the internal templated variable_scope, but only makes sense to do so after connection. Therefore we raise an error here if the variable_scope is requested before connection. The only case where it does make sense to access the variable_scope before connection is to get the post-uniquification name, which we support using the separate .scope_name property. Returns: variable_scope: `tf.VariableScope` instance of the internal `tf.Template`. Raises: NotConnectedError: If the module is not connected to the Graph. """ self._ensure_is_connected() return self._template.variable_scope @property def scope_name(self): """Returns the full name of the Module's variable scope.""" return self._template.variable_scope.name @property def module_name(self): """Returns the name of the Module.""" return self._unique_name @property def is_connected(self): """Returns true iff the Module been connected to the Graph at least once.""" return self._is_connected @property def graph(self): """Returns the Graph instance which the module is connected to, or None.""" return self._graph @property def connected_subgraphs(self): """Returns the subgraphs created by this module so far.""" if tf.executing_eagerly(): raise NotSupportedError( "Connected sub-graphs are not tracked in eager mode.") return tuple(self._connected_subgraphs) @property def last_connected_subgraph(self): """Returns the last subgraph created by this module. Returns: The last connected subgraph. Raises: NotConnectedError: If the module is not connected to the Graph. """ if tf.executing_eagerly(): raise NotSupportedError( "Connected sub-graphs are not tracked in eager mode.") self._ensure_is_connected() return self._connected_subgraphs[-1] @classmethod def get_possible_initializer_keys(cls): """Returns the keys the dictionary of variable initializers may contain. This provides the user with a way of knowing the initializer keys that are available without having to instantiate a sonnet module. Subclasses may override this class method if they need additional arguments to determine what initializer keys may be provided. Returns: Set with strings corresponding to the strings that may be passed to the constructor. """ return getattr(cls, "POSSIBLE_INITIALIZER_KEYS", set()) def _ensure_is_connected(self): """Raise an Error if the module has not been connected yet. Until the module is connected into the Graph, any variables created do not exist yet and cannot be created in advance due to not knowing the size of the input Tensor(s). This assertion ensures that any variables contained in this module must now exist. Raises: NotConnectedError: If the module is not connected to the Graph. """ if not self.is_connected: raise NotConnectedError( "Variables in {} not instantiated yet, __call__ the module " "first.".format(self.scope_name)) # pylint: disable=g-doc-return-or-yield @contextlib.contextmanager def _enter_variable_scope(self, reuse=None, check_same_graph=True): """Returns a contextlib.contextmanager to enter the internal variable scope. This is useful for situations where submodules must be declared in the constructor, or somewhere else that is not called under the `_build` method. If such a case arises, calling `with self._enter_variable_scope():` will cause the variables in the submodule to be correctly scoped. An example justification for this is to allow the `Transposable` interface to be implemented - you might want to construct all the submodules at construction time so that you can call `.transpose()` and connect the result of that before connecting the non-transposed module. ```python class SomeModule(snt.AbstractModule): def __init__(self, name="some_module"): super(SomeModule, self).__init__(name=name) with self._enter_variable_scope(): # We need to construct this submodule before we get to the _build # method, for some reason. self._sub_mod = snt.SomeSubmodule(name="some_submodule") def _build(self, input): # Connect to the already constructed submodule. return self._sub_mod(input) ``` If you omit this then the submodule and parent module will appear to be "side by side" rather than nested when viewed in the Graph viewer, and functions such as `snt.get_variables_in_module()` or the `get_variables()` method will not know about variables defined in the submodule. Args: reuse: Boolean passed to `tf.variable_scope`. check_same_graph: Boolean to determine if same graph check should run. If you are only entering the scope to name other variable scopes (e.g. not to create/reuse variables) then it is legitimate to set this to False. Yields: The variable_scope inside the template. """ self._check_init_called() if check_same_graph: self._check_same_graph() with self._capture_variables(): with tf.variable_scope(self._template.variable_scope, reuse=reuse) as vs: yield vs # pylint: enable=g-doc-return-or-yield @property def variables(self): """**All** `tf.Variable`s used when the module is connected. This property does not rely on global collections and should generally be preferred vs. `get_variables` and `get_all_variables`. See the documentation for `AbstractModule._capture_variables()` for more information about what variables are captured. Returns: A sorted (by variable name) tuple of `tf.Variable` objects. Raises: NotConnectedError: If the module is not connected to the Graph. """ self._ensure_is_connected() return util.sort_by_name(self._all_variables) @property def trainable_variables(self): """All **trainable** `tf.Variable`s used when the module is connected. This property does not rely on global collections and should generally be preferred vs. `get_variables` and `get_all_variables`. See the documentation for `AbstractModule._capture_variables()` for more information about what variables are captured. Returns: A sorted (by variable name) tuple of `tf.Variable` objects. Raises: NotConnectedError: If the module is not connected to the Graph. """ return tuple(v for v in self.variables if v.trainable) @property def non_trainable_variables(self): """All **non-trainable** `tf.Variable`s used when the module is connected. This property does not rely on global collections and should generally be preferred vs. `get_variables` and `get_all_variables`. See the documentation for `AbstractModule._capture_variables()` for more information about what variables are captured. Returns: A sorted (by variable name) tuple of `tf.Variable` objects. Raises: NotConnectedError: If the module is not connected to the Graph. """ return tuple(v for v in self.variables if not v.trainable) def get_variables(self, collection=tf.GraphKeys.TRAINABLE_VARIABLES): """Returns tuple of `tf.Variable`s declared inside this module. Note that this operates by searching this module's variable scope, and so does not know about any modules that were constructed elsewhere but used inside this module. This method explicitly re-enters the Graph which this module has been connected to. Args: collection: Collection to restrict query to. By default this is `tf.GraphKeys.TRAINABLE_VARIABLES`, which doesn't include non-trainable variables such as moving averages. Returns: A tuple of `tf.Variable` objects. Raises: NotConnectedError: If the module is not connected to the Graph. """ self._ensure_is_connected() if self._defun_wrapped and tf.executing_eagerly(): raise NotSupportedError( "`module.get_variables()` relies on TensorFlow collections which are " "not supported when your module is wrapped with defun. Instead use " "`module.trainable_variables` or `module.variables`.") # Explicitly re-enter Graph, in case the module is being queried with a # different default Graph from the one it was connected to. If this was not # here then querying the variables from a different graph scope would # produce an empty tuple. with self._graph.as_default(): return util.get_variables_in_scope( self.variable_scope, collection=collection) def get_all_variables(self, collection=tf.GraphKeys.TRAINABLE_VARIABLES): """Returns all `tf.Variable`s used when the module is connected. See the documentation for `AbstractModule._capture_variables()` for more information. Args: collection: Collection to restrict query to. By default this is `tf.GraphKeys.TRAINABLE_VARIABLES`, which doesn't include non-trainable variables such as moving averages. Returns: A sorted (by variable name) tuple of `tf.Variable` objects. Raises: NotConnectedError: If the module is not connected to the Graph. """ self._ensure_is_connected() collection_variables = set(tf.get_collection(collection)) # Return variables in self._all_variables that are in `collection` return util.sort_by_name(self._all_variables & collection_variables) def __getstate__(self): raise NotSupportedError( "Sonnet AbstractModule instances cannot be serialized. You should " "instead serialize all necessary configuration which will allow " "modules to be rebuilt.") def _maybe_log(self, fstr, *args, **kwargs): """Logs a message to tf.logging.info, if the `verbose` kwarg is true.""" # If verbose is not set, we don't do any logging. This allows users to # put logging throughout their code, and enable or disable it with one # variable, rather than needing lots of if statements. if "verbose" in kwargs and kwargs["verbose"]: del kwargs["verbose"] tf.logging.info("%s: " + fstr, self.scope_name, *args, **kwargs) @six.add_metaclass(abc.ABCMeta) class Transposable(object): """Transposable module interface. The Transposable interface requires that transposable modules implement a method called `transpose`, returning a module that is the transposed version of the one the method is called on. Calling the method twice should return a module with the same specifications as the original module. When implementing a transposable module, special care is required to make sure that parameters needed to instantiate the module are provided as functions whose invocation is deferred to graph construction time. For example, in Linear we might want to call: ```python linear = snt.Linear(name="linear", output_size=output_size) linear_transpose = linear.transpose() ``` where the output_size for linear_transpose is not known yet, as linear is not yet connected to the graph: output_size is passed to linear_transpose's constructor as a lambda returning linear.input_size. The lambda will return the correct value once linear is given an input. Notice that linear_transpose's output_size value does not need to be defined until the module is connected to the graph. """ @abc.abstractmethod def transpose(self, name=None, **kwargs): """Builds and returns transposed version of module. Args: name: Name of the transposed module. **kwargs: Additional Python flags controlling transposition. Returns: Transposed version of the module. """ @abc.abstractmethod def input_shape(self): """Returns shape of input `Tensor` passed at last call to `build`.""" class Module(AbstractModule): """Module wrapping a function provided by the user.""" def __init__(self, build, custom_getter=None, name=None): """Constructs a module with a given build function. The Module class can be used to wrap a function assembling a network into a module. For example, the following code implements a simple one-hidden-layer MLP model by defining a function called make_model and using a Module instance to wrap it. ```python def make_model(inputs): lin1 = snt.Linear(name="lin1", output_size=10)(inputs) relu1 = tf.nn.relu(lin1, name="relu1") lin2 = snt.Linear(name="lin2", output_size=20)(relu1) return lin2 model = snt.Module(name='simple_mlp', build=make_model) outputs = model(inputs) ``` The `partial` package from `functools` can be used to bake configuration parameters into the function at construction time, as shown in the following example. ```python from functools import partial def make_model(inputs, output_sizes): lin1 = snt.Linear(name="lin1", output_size=output_sizes[0])(inputs) relu1 = tf.nn.relu(lin1, name="relu1") lin2 = snt.Linear(name="lin2", output_size=output_sizes[1])(relu1) return lin2 model = snt.Module(name='simple_mlp', build=partial(make_model, output_sizes=[10, 20]) outputs = model(inputs) ``` Args: build: Callable to be invoked when connecting the module to the graph. The `build` function is invoked when the module is called, and its role is to specify how to add elements to the Graph, and how to compute output Tensors from input Tensors. The `build` function signature can include the following parameters: *args - Input Tensors. **kwargs - Additional Python parameters controlling connection. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Module name. If set to `None` (the default), the name will be set to that of the `build` callable converted to `snake_case`. If `build` has no name, the name will be 'module'. Raises: TypeError: If build is not callable. TypeError: If a given `custom_getter` is not callable. """ if not callable(build): raise TypeError("Input 'build' must be callable.") if name is None: name = util.name_for_callable(build) super(Module, self).__init__(custom_getter=custom_getter, name=name) self._build_function = build def _build(self, *args, **kwargs): """Forwards call to the passed-in build function.""" return self._build_function(*args, **kwargs)
sonnet-1
sonnet/python/modules/base.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.python.modules.embed.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import parameterized import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.python.ops import variables class EmbedTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super(EmbedTest, self).setUp() self._batch_size = 3 self._vocab_size = 7 self._embed_dim = 1 self._embed_mod = snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim) self._embed_mod_dense = snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim, densify_gradients=True) self._ids = np.asarray([[0, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 6]]) def testOutputType(self): # Output shape should be same as ids, except with a full embedding for each # value. embeddings = self._embed_mod(tf.convert_to_tensor(self._ids)) expected_shape = list(self._ids.shape) + [self._embed_dim] self.assertTrue(embeddings.get_shape().is_compatible_with(expected_shape)) self.assertEqual(embeddings.dtype, tf.float32) @parameterized.named_parameters( ("Index-Slices", False), ("Dense Tensor", True), ) def testComputation(self, densify_gradients): # Initialize each embedding to its index. Thus, the lookup ids are the same # as the embeddings themselves. if densify_gradients: embed_mod = self._embed_mod_dense else: embed_mod = self._embed_mod initializers = {"embeddings": tf.constant_initializer( [[0], [1], [2], [3], [4], [5], [6]], dtype=tf.float32)} embed_mod = snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim, initializers=initializers) embeddings = embed_mod(tf.convert_to_tensor(self._ids)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) embeddings_ = sess.run(embeddings) expected_embeddings = np.reshape( self._ids, newshape=list(self._ids.shape) + [self._embed_dim]) self.assertAllClose(embeddings_, expected_embeddings) def testVocabTooSmall(self): # If an index doesn't fit in the vocab, there will be no embedding for it # and an exception should be raised. ids = self._ids.copy() ids[0, 0] = self._vocab_size ids = tf.convert_to_tensor(ids) embeddings = self._embed_mod(ids) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(embeddings) def testNegativeIds(self): # Negative ids are not allowed. ids = self._ids.copy() ids[0, 0] = -1 ids = tf.convert_to_tensor(ids) embeddings = self._embed_mod(ids) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(embeddings) def testDefaultVocabSize(self): embed_mod = snt.Embed(vocab_size=100, embed_dim=None, name="embed_small") self.assertEqual(embed_mod.embed_dim, 19) embed_mod = snt.Embed(vocab_size=1000000, embed_dim=None, name="embed_big") self.assertEqual(embed_mod.embed_dim, 190) def testInitializers(self): # Since all embeddings are initialized to zero, the extracted embeddings # should be as well. initializers = {"embeddings": tf.zeros_initializer()} embed_mod = snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim, initializers=initializers) embeddings = embed_mod(tf.convert_to_tensor(self._ids)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) embeddings_ = sess.run(embeddings) self.assertAllEqual(embeddings_, np.zeros_like(embeddings_)) def testPartitioners(self): # Partition embeddings such that there's one variable per vocabulary entry. partitioners = {"embeddings": tf.variable_axis_size_partitioner( 4 * self._embed_dim)} embed_mod = snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim, partitioners=partitioners) embeddings = embed_mod(tf.convert_to_tensor(self._ids)) self.assertEqual(type(embed_mod.embeddings), variables.PartitionedVariable) self.assertEqual(len(embed_mod.embeddings), self._vocab_size) # Ensure that tf.nn.embedding_lookup() plays nicely with embedding # variables. with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(embeddings) def testInvalidRegularizationParameters(self): regularizer = contrib_layers.l1_regularizer(scale=0.5) with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim, regularizers={"not_embeddings": regularizer}) err = "Regularizer for 'embeddings' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.Embed(vocab_size=self._vocab_size, embed_dim=self._embed_dim, regularizers={"embeddings": tf.zeros([1, 2, 3])}) def testRegularizersInRegularizationLosses(self): regularizer = contrib_layers.l1_regularizer(scale=0.5) embed = snt.Embed( vocab_size=self._vocab_size, embed_dim=self._embed_dim, regularizers={"embeddings": regularizer}) embed(tf.convert_to_tensor(self._ids)) regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) self.assertRegexpMatches(regularizers[0].name, ".*l1_regularizer.*") def testProperties(self): self.assertEqual(self._embed_mod.vocab_size, self._vocab_size) self.assertEqual(self._embed_mod.embed_dim, self._embed_dim) # Embeddings aren't accessible until module is connected to a graph. with self.assertRaises(snt.NotConnectedError): _ = self._embed_mod.embeddings self._embed_mod(tf.convert_to_tensor(self._ids)) self.assertIsInstance(self._embed_mod.embeddings, tf.Variable) def testExistingVocab(self): # Check that the module can be initialised with an existing vocabulary. existing = np.array( [[1, 0, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1]], dtype=np.int32) expected = np.array( [[1, 0, 0, 0], [0, 1, 0, 1], [1, 0, 1, 0]], dtype=np.int32) true_vocab_size, true_embed_dim = existing.shape inputs = tf.constant(np.array([0, 2, 1]), dtype=tf.int32) embed_mod = snt.Embed(existing_vocab=existing) embeddings = embed_mod(inputs) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) embeddings_ = sess.run(embeddings) self.assertAllClose(embeddings_, expected) self.assertEqual(embed_mod.vocab_size, true_vocab_size) self.assertEqual(embed_mod.embed_dim, true_embed_dim) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/embed_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Layer normalization module for Sonnet. This contains the module LayerNorm, which performs layer normalization over configurable axes of its inputs. Original paper: https://arxiv.org/abs/1607.06450. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from sonnet.python.modules import base from sonnet.python.modules import util import tensorflow.compat.v1 as tf class LayerNorm(base.AbstractModule): """Layer normalization module. Implementation based on: https://arxiv.org/abs/1607.06450 This module transforms input x into: outputs = gamma * (x - mu) / sigma + beta where mu and sigma are respectively the mean and standard deviation of x. Gamma and beta are trainable parameters for scaling and shifting respectively. Since the axes over which normalization is perfomed is configurable, this also subsumes instance normalization. """ GAMMA = "gamma" # Layer norm scaling. BETA = "beta" # Layer norm bias. POSSIBLE_INITIALIZER_KEYS = {GAMMA, BETA} def __init__(self, axis=None, offset=True, scale=True, eps=1e-5, initializers=None, partitioners=None, regularizers=None, name="layer_norm"): """Constructs a LayerNorm module. Args: axis: Optional dimension or iterable of indices of dimensions to normalize and reduce over. By default `None` and all dimensions except the first/batch dimension are reduced over. If the input tensor represents an image, summing over all except the batch and channel dimensions (e.g. for image format NHWC, axes=[1,2]), then this module corresponds to Instance Normalization (https://arxiv.org/abs/1607.08022). offset: Optional boolean to specify whether or not to apply a trained component-wise bias after the layer normalization and scaling. scale: Optional boolean to specify whether or not to apply a trained component-wise scale after the layer normalization. eps: small epsilon to avoid division by zero variance. Defaults to 1e-5 as used in the paper. initializers: Dict containing ops to initialize the scale (with key 'gamma') and bias (with key 'beta'). partitioners: Optional dict containing partitioners to partition the scale (with key 'gamma') and bias (with key 'beta'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the scale (with key 'gamma') and bias (with key 'beta').. As a default, no regularizers are used. name: name of the module. Raises: KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than `gamma` or `beta`. TypeError: If any of the given initializers, partitioners or regularizers are not callable. """ super(LayerNorm, self).__init__(name=name) if axis is not None: if isinstance(axis, int): axis = [axis] int_not_bool = lambda x: isinstance(x, int) and not isinstance(x, bool) if (not isinstance(axis, collections.Iterable) or not all(int_not_bool(ax) for ax in axis)): raise ValueError("axis should be an int or an iterable of ints") self._axis = axis self._offset = offset self._scale = scale self._eps = eps self._initializers = util.check_initializers(initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners(partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers(regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _build(self, inputs): """Connects the LayerNorm module into the graph. Args: inputs: a Tensor of dimensionality >= 2. Returns: normalized: layer normalized outputs with same shape as inputs. Raises: base.NotSupportedError: If `inputs` has less than 2 dimensions. """ if self._axis is None: axis = list(range(1, inputs.shape.ndims)) else: axis = self._axis original_dtype = inputs.dtype if original_dtype in [tf.float16, tf.bfloat16]: inputs = tf.cast(inputs, tf.float32) if inputs.get_shape().ndims < 2: raise base.NotSupportedError( "Layer normalization expects inputs of at least rank 2." " Got inputs of rank {}.".format(inputs.get_shape().ndims)) # Shape for the learnable scale and offset is the number of channels. See # https://arxiv.org/pdf/1803.08494.pdf around equation 6. params_shape = inputs.get_shape()[-1:] if self._scale: if self.GAMMA not in self._initializers: self._initializers[self.GAMMA] = create_gamma_initializer() self._gamma = tf.get_variable( self.GAMMA, shape=params_shape, dtype=inputs.dtype, initializer=self._initializers[self.GAMMA], partitioner=self._partitioners.get(self.GAMMA), regularizer=self._regularizers.get(self.GAMMA)) else: self._gamma = None if self._offset: if self.BETA not in self._initializers: self._initializers[self.BETA] = create_beta_initializer() self._beta = tf.get_variable( self.BETA, shape=params_shape, dtype=inputs.dtype, initializer=self._initializers[self.BETA], partitioner=self._partitioners.get(self.BETA), regularizer=self._regularizers.get(self.BETA)) else: self._beta = None mean, var = tf.nn.moments(inputs, axis, keep_dims=True) normalized = tf.nn.batch_normalization(inputs, mean, var, self._beta, self._gamma, self._eps) if original_dtype in [tf.float16, tf.bfloat16]: normalized = tf.cast(normalized, dtype=original_dtype) return normalized @property def initializers(self): return self._initializers @property def partitioners(self): return self._partitioners @property def regularizers(self): return self._regularizers @property def beta(self): self._ensure_is_connected() return self._beta @property def gamma(self): self._ensure_is_connected() return self._gamma def create_beta_initializer(): """Returns a default initializer for the `beta` in layer norm.""" return tf.zeros_initializer() def create_gamma_initializer(): """Returns a default initializer for the `gamma` in layer norm.""" return tf.ones_initializer()
sonnet-1
sonnet/python/modules/layer_norm.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """"Implementation of Spatial Transformer networks core components.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import itertools # Dependency imports import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from sonnet.python.modules import base from sonnet.python.modules import basic import tensorflow.compat.v1 as tf class GridWarper(base.AbstractModule): """Grid warper interface class. An object implementing the `GridWarper` interface generates a reference grid of feature points at construction time, and warps it via a parametric transformation model, specified at run time by an input parameter Tensor. Grid warpers must then implement a `create_features` function used to generate the reference grid to be warped in the forward pass (according to a determined warping model). """ def __init__(self, source_shape, output_shape, num_coeff, name, **kwargs): """Constructs a GridWarper module and initializes the source grid params. `source_shape` and `output_shape` are used to define the size of the source and output signal domains, as opposed to the shape of the respective Tensors. For example, for an image of size `width=W` and `height=H`, `{source,output}_shape=[H, W]`; for a volume of size `width=W`, `height=H` and `depth=D`, `{source,output}_shape=[H, W, D]`. Args: source_shape: Iterable of integers determining the size of the source signal domain. output_shape: Iterable of integers determining the size of the destination resampled signal domain. num_coeff: Number of coefficients parametrizing the grid warp. For example, a 2D affine transformation will be defined by the 6 parameters populating the corresponding 2x3 affine matrix. name: Name of Module. **kwargs: Extra kwargs to be forwarded to the `create_features` function, instantiating the source grid parameters. Raises: Error: If `len(output_shape) > len(source_shape)`. TypeError: If `output_shape` and `source_shape` are not both iterable. """ super(GridWarper, self).__init__(name=name) self._source_shape = tuple(source_shape) self._output_shape = tuple(output_shape) if len(self._output_shape) > len(self._source_shape): raise base.Error('Output domain dimensionality ({}) must be equal or ' 'smaller than source domain dimensionality ({})' .format(len(self._output_shape), len(self._source_shape))) self._num_coeff = num_coeff self._psi = self._create_features(**kwargs) @abc.abstractmethod def _create_features(self, **kwargs): """Generates matrix of features, of size `[num_coeff, num_points]`.""" pass @property def n_coeff(self): """Returns number of coefficients of warping function.""" return self._n_coeff @property def psi(self): """Returns a list of features used to compute the grid warp.""" return self._psi @property def source_shape(self): """Returns a tuple containing the shape of the source signal.""" return self._source_shape @property def output_shape(self): """Returns a tuple containing the shape of the output grid.""" return self._output_shape def _create_affine_features(output_shape, source_shape): """Generates n-dimensional homogenous coordinates for a given grid definition. `source_shape` and `output_shape` are used to define the size of the source and output signal domains, as opposed to the shape of the respective Tensors. For example, for an image of size `width=W` and `height=H`, `{source,output}_shape=[H, W]`; for a volume of size `width=W`, `height=H` and `depth=D`, `{source,output}_shape=[H, W, D]`. Args: output_shape: Iterable of integers determining the shape of the grid to be warped. source_shape: Iterable of integers determining the domain of the signal to be resampled. Returns: List of flattened numpy arrays of coordinates in range `[-1, 1]^N`, for example: ``` [[x_0_0, .... , x_0_{n-1}], .... [x_{M-1}_0, .... , x_{M-1}_{n-1}], [x_{M}_0=0, .... , x_{M}_{n-1}=0], ... [x_{N-1}_0=0, .... , x_{N-1}_{n-1}=0], [1, ..., 1]] ``` where N is the dimensionality of the sampled space, M is the dimensionality of the output space, i.e. 2 for images and 3 for volumes, and n is the number of points in the output grid. When the dimensionality of `output_shape` is smaller that that of `source_shape` the last rows before [1, ..., 1] will be filled with 0. """ ranges = [np.linspace(-1, 1, x, dtype=np.float32) for x in reversed(output_shape)] psi = [x.reshape(-1) for x in np.meshgrid(*ranges, indexing='xy')] dim_gap = len(source_shape) - len(output_shape) for _ in xrange(dim_gap): psi.append(np.zeros_like(psi[0], dtype=np.float32)) psi.append(np.ones_like(psi[0], dtype=np.float32)) return psi class AffineGridWarper(GridWarper): """Affine Grid Warper class. The affine grid warper generates a reference grid of n-dimensional points and warps it via an affine transormation model determined by an input parameter Tensor. Some of the transformation parameters can be fixed at construction time via an `AffineWarpConstraints` object. """ def __init__(self, source_shape, output_shape, constraints=None, name='affine_grid_warper'): """Constructs an AffineGridWarper. `source_shape` and `output_shape` are used to define the size of the source and output signal domains, as opposed to the shape of the respective Tensors. For example, for an image of size `width=W` and `height=H`, `{source,output}_shape=[H, W]`; for a volume of size `width=W`, `height=H` and `depth=D`, `{source,output}_shape=[H, W, D]`. Args: source_shape: Iterable of integers determining the size of the source signal domain. output_shape: Iterable of integers determining the size of the destination resampled signal domain. constraints: Either a double list of shape `[N, N+1]` defining constraints on the entries of a matrix defining an affine transformation in N dimensions, or an `AffineWarpConstraints` object. If the double list is passed, a numeric value bakes in a constraint on the corresponding entry in the transformation matrix, whereas `None` implies that the corresponding entry will be specified at run time. name: Name of module. Raises: Error: If constraints fully define the affine transformation; or if input grid shape and contraints have different dimensionality. TypeError: If output_shape and source_shape are not both iterable. """ self._source_shape = tuple(source_shape) self._output_shape = tuple(output_shape) num_dim = len(source_shape) if isinstance(constraints, AffineWarpConstraints): self._constraints = constraints elif constraints is None: self._constraints = AffineWarpConstraints.no_constraints(num_dim) else: self._constraints = AffineWarpConstraints(constraints=constraints) if self._constraints.num_free_params == 0: raise base.Error('Transformation is fully constrained.') if self._constraints.num_dim != num_dim: raise base.Error('Incompatible set of constraints provided: ' 'input grid shape and constraints have different ' 'dimensionality.') super(AffineGridWarper, self).__init__(source_shape=source_shape, output_shape=output_shape, num_coeff=6, name=name, constraints=self._constraints) def _create_features(self, constraints): """Creates all the matrices needed to compute the output warped grids.""" affine_warp_constraints = constraints if not isinstance(affine_warp_constraints, AffineWarpConstraints): affine_warp_constraints = AffineWarpConstraints(affine_warp_constraints) mask = affine_warp_constraints.mask psi = _create_affine_features(output_shape=self._output_shape, source_shape=self._source_shape) scales = [(x - 1.0) * .5 for x in reversed(self._source_shape)] offsets = scales # Transforming a point x's i-th coordinate via an affine transformation # is performed via the following dot product: # # x_i' = s_i * (T_i * x) + t_i (1) # # where Ti is the i-th row of an affine matrix, and the scalars s_i and t_i # define a decentering and global scaling into the source space. # In the AffineGridWarper some of the entries of Ti are provided via the # input, some others are instead fixed, according to the constraints # assigned in the constructor. # In create_features the internal dot product (1) is accordingly broken down # into two parts: # # x_i' = Ti[uncon_i] * x[uncon_i, :] + offset(con_var) (2) # # i.e. the sum of the dot product of the free parameters (coming # from the input) indexed by uncond_i and an offset obtained by # precomputing the fixed part of (1) according to the constraints. # This step is implemented by analyzing row by row the constraints matrix # and saving into a list the x[uncon_i] and offset(con_var) data matrices # for each output dimension. features = [] for row, scale in zip(mask, scales): x_i = np.array([x for x, is_active in zip(psi, row) if is_active]) features.append(x_i * scale if len(x_i) else None) for row_i, row in enumerate(mask): x_i = None s = scales[row_i] for i, is_active in enumerate(row): if is_active: continue # In principle a whole row of the affine matrix can be fully # constrained. In that case the corresponding dot product between input # parameters and grid coordinates doesn't need to be implemented in the # computation graph since it can be precomputed. # When a whole row if constrained, x_i - which is initialized to # None - will still be None at the end do the loop when it is appended # to the features list; this value is then used to detect this setup # in the build function where the graph is assembled. if x_i is None: x_i = np.array(psi[i]) * affine_warp_constraints[row_i][i] * s else: x_i += np.array(psi[i]) * affine_warp_constraints[row_i][i] * s features.append(x_i) features += offsets return features def _build(self, inputs): """Assembles the module network and adds it to the graph. The internal computation graph is assembled according to the set of constraints provided at construction time. Args: inputs: Tensor containing a batch of transformation parameters. Returns: A batch of warped grids. Raises: Error: If the input tensor size is not consistent with the constraints passed at construction time. """ input_shape = tf.shape(inputs) input_dtype = inputs.dtype.as_numpy_dtype batch_size = tf.expand_dims(input_shape[0], 0) number_of_params = inputs.get_shape()[1] if number_of_params != self._constraints.num_free_params: raise base.Error('Input size is not consistent with constraint ' 'definition: {} parameters expected, {} provided.' .format(self._constraints.num_free_params, number_of_params)) num_output_dimensions = len(self._psi) // 3 def get_input_slice(start, size): """Extracts a subset of columns from the input 2D Tensor.""" return basic.SliceByDim([1], [start], [size])(inputs) warped_grid = [] var_index_offset = 0 number_of_points = np.prod(self._output_shape) for i in xrange(num_output_dimensions): if self._psi[i] is not None: # The i-th output dimension is not fully specified by the constraints, # the graph is setup to perform matrix multiplication in batch mode. grid_coord = self._psi[i].astype(input_dtype) num_active_vars = self._psi[i].shape[0] active_vars = get_input_slice(var_index_offset, num_active_vars) warped_coord = tf.matmul(active_vars, grid_coord) warped_coord = tf.expand_dims(warped_coord, 1) var_index_offset += num_active_vars offset = self._psi[num_output_dimensions + i] if offset is not None: offset = offset.astype(input_dtype) # Some entries in the i-th row of the affine matrix were constrained # and the corresponding matrix multiplications have been precomputed. tiling_params = tf.concat( [ batch_size, tf.constant( 1, shape=(1,)), tf.ones_like(offset.shape) ], 0) offset = offset.reshape((1, 1) + offset.shape) warped_coord += tf.tile(offset, tiling_params) else: # The i-th output dimension is fully specified by the constraints, and # the corresponding matrix multiplications have been precomputed. warped_coord = self._psi[num_output_dimensions + i].astype(input_dtype) tiling_params = tf.concat( [ batch_size, tf.constant( 1, shape=(1,)), tf.ones_like(warped_coord.shape) ], 0) warped_coord = warped_coord.reshape((1, 1) + warped_coord.shape) warped_coord = tf.tile(warped_coord, tiling_params) warped_coord += self._psi[i + 2 * num_output_dimensions] # Need to help TF figuring out shape inference since tiling information # is held in Tensors which are not known until run time. warped_coord.set_shape([None, 1, number_of_points]) warped_grid.append(warped_coord) # Reshape all the warped coordinates tensors to match the specified output # shape and concatenate into a single matrix. grid_shape = self._output_shape + (1,) warped_grid = [basic.BatchReshape(grid_shape)(grid) for grid in warped_grid] return tf.concat(warped_grid, len(grid_shape)) @property def constraints(self): return self._constraints def inverse(self, name=None): """Returns a `sonnet` module to compute inverse affine transforms. The function first assembles a network that given the constraints of the current AffineGridWarper and a set of input parameters, retrieves the coefficients of the corresponding inverse affine transform, then feeds its output into a new AffineGridWarper setup to correctly warp the `output` space into the `source` space. Args: name: Name of module implementing the inverse grid transformation. Returns: A `sonnet` module performing the inverse affine transform of a reference grid of points via an AffineGridWarper module. Raises: tf.errors.UnimplementedError: If the function is called on a non 2D instance of AffineGridWarper. """ if self._num_coeff != 6: raise tf.errors.UnimplementedError('AffineGridWarper currently supports' 'inversion only for the 2D case.') def _affine_grid_warper_inverse(inputs): """Assembles network to compute inverse affine transformation. Each `inputs` row potentially contains [a, b, tx, c, d, ty] corresponding to an affine matrix: A = [a, b, tx], [c, d, ty] We want to generate a tensor containing the coefficients of the corresponding inverse affine transformation in a constraints-aware fashion. Calling M: M = [a, b] [c, d] the affine matrix for the inverse transform is: A_in = [M^(-1), M^-1 * [-tx, -tx]^T] where M^(-1) = (ad - bc)^(-1) * [ d, -b] [-c, a] Args: inputs: Tensor containing a batch of transformation parameters. Returns: A tensorflow graph performing the inverse affine transformation parametrized by the input coefficients. """ batch_size = tf.expand_dims(tf.shape(inputs)[0], 0) constant_shape = tf.concat([batch_size, tf.convert_to_tensor((1,))], 0) index = iter(range(6)) def get_variable(constraint): if constraint is None: i = next(index) return inputs[:, i:i+1] else: return tf.fill(constant_shape, tf.constant(constraint, dtype=inputs.dtype)) constraints = itertools.chain.from_iterable(self.constraints) a, b, tx, c, d, ty = (get_variable(constr) for constr in constraints) det = a * d - b * c a_inv = d / det b_inv = -b / det c_inv = -c / det d_inv = a / det m_inv = basic.BatchReshape( [2, 2])(tf.concat([a_inv, b_inv, c_inv, d_inv], 1)) txy = tf.expand_dims(tf.concat([tx, ty], 1), 2) txy_inv = basic.BatchFlatten()(tf.matmul(m_inv, txy)) tx_inv = txy_inv[:, 0:1] ty_inv = txy_inv[:, 1:2] inverse_gw_inputs = tf.concat( [a_inv, b_inv, -tx_inv, c_inv, d_inv, -ty_inv], 1) agw = AffineGridWarper(self.output_shape, self.source_shape) return agw(inverse_gw_inputs) # pylint: disable=not-callable if name is None: name = self.module_name + '_inverse' return base.Module(_affine_grid_warper_inverse, name=name) class AffineWarpConstraints(object): """Affine warp contraints class. `AffineWarpConstraints` allow for very succinct definitions of constraints on the values of entries in affine transform matrices. """ def __init__(self, constraints=((None,) * 3,) * 2): """Creates a constraint definition for an affine transformation. Args: constraints: A doubly-nested iterable of shape `[N, N+1]` defining constraints on the entries of a matrix that represents an affine transformation in `N` dimensions. A numeric value bakes in a constraint on the corresponding entry in the transformation matrix, whereas `None` implies that the corresponding entry will be specified at run time. Raises: TypeError: If `constraints` is not a nested iterable. ValueError: If the double iterable `constraints` has inconsistent dimensions. """ try: self._constraints = tuple(tuple(x) for x in constraints) except TypeError: raise TypeError('constraints must be a nested iterable.') # Number of rows self._num_dim = len(self._constraints) expected_num_cols = self._num_dim + 1 if any(len(x) != expected_num_cols for x in self._constraints): raise ValueError('The input list must define a Nx(N+1) matrix of ' 'contraints.') def _calc_mask(self): """Computes a boolean mask from the user defined constraints.""" mask = [] for row in self._constraints: mask.append(tuple(x is None for x in row)) return tuple(mask) def _calc_num_free_params(self): """Computes number of non constrained parameters.""" return sum(row.count(None) for row in self._constraints) @property def num_free_params(self): return self._calc_num_free_params() @property def mask(self): return self._calc_mask() @property def constraints(self): return self._constraints @property def num_dim(self): return self._num_dim def __getitem__(self, i): """Returns the list of constraints for the i-th row of the affine matrix.""" return self._constraints[i] def _combine(self, x, y): """Combines two constraints, raising an error if they are not compatible.""" if x is None or y is None: return x or y if x != y: raise ValueError('Incompatible set of constraints provided.') return x def __and__(self, rhs): """Combines two sets of constraints into a coherent single set.""" return self.combine_with(rhs) def combine_with(self, additional_constraints): """Combines two sets of constraints into a coherent single set.""" x = additional_constraints if not isinstance(additional_constraints, AffineWarpConstraints): x = AffineWarpConstraints(additional_constraints) new_constraints = [] for left, right in zip(self._constraints, x.constraints): new_constraints.append([self._combine(x, y) for x, y in zip(left, right)]) return AffineWarpConstraints(new_constraints) # Collection of utlities to initialize an AffineGridWarper in 2D and 3D. @classmethod def no_constraints(cls, num_dim=2): """Empty set of constraints for a num_dim-ensional affine transform.""" return cls(((None,) * (num_dim + 1),) * num_dim) @classmethod def translation_2d(cls, x=None, y=None): """Assign contraints on translation components of affine transform in 2d.""" return cls([[None, None, x], [None, None, y]]) @classmethod def translation_3d(cls, x=None, y=None, z=None): """Assign contraints on translation components of affine transform in 3d.""" return cls([[None, None, None, x], [None, None, None, y], [None, None, None, z]]) @classmethod def scale_2d(cls, x=None, y=None): """Assigns contraints on scaling components of affine transform in 2d.""" return cls([[x, None, None], [None, y, None]]) @classmethod def scale_3d(cls, x=None, y=None, z=None): """Assigns contraints on scaling components of affine transform in 3d.""" return cls([[x, None, None, None], [None, y, None, None], [None, None, z, None]]) @classmethod def shear_2d(cls, x=None, y=None): """Assigns contraints on shear components of affine transform in 2d.""" return cls([[None, x, None], [y, None, None]]) @classmethod def no_shear_2d(cls): return cls.shear_2d(x=0, y=0) @classmethod def no_shear_3d(cls): """Assigns contraints on shear components of affine transform in 3d.""" return cls([[None, 0, 0, None], [0, None, 0, None], [0, 0, None, None]])
sonnet-1
sonnet/python/modules/spatial_transformer.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.python.modules.basic.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports from absl.testing import parameterized import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import sonnet as snt from sonnet.python.modules import basic from sonnet.python.ops import nest import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib import nn as contrib_nn from tensorflow.contrib.eager.python import tfe as contrib_eager from tensorflow.python.client import device_lib # pylint: disable=g-direct-tensorflow-import from tensorflow.python.ops import variables # pylint: disable=g-direct-tensorflow-import def _test_initializer(mu=0.0, sigma=1.0, dtype=tf.float32): """Custom initializer for Linear tests.""" def _initializer(shape, dtype=dtype, partition_info=None): # pylint: disable=unused-argument random_normal_tensor = np.asarray(np.random.randn(*shape)) * sigma + mu return random_normal_tensor.astype(dtype.as_numpy_dtype) return _initializer @contrib_eager.run_all_tests_in_graph_and_eager_modes class ConcatLinearTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(ConcatLinearTest, self).setUp() self.batch_size = 11 self.in_sizes = [5, 19] self.out_size = 17 self.seed = 42 @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testShape(self, use_bias): inputs = [tf.ones(shape=[self.batch_size, size]) for size in self.in_sizes] lin = snt.ConcatLinear(output_size=self.out_size, use_bias=use_bias) output = lin(inputs) self.assertTrue( output.get_shape().is_compatible_with([self.batch_size, self.out_size])) def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): lin = snt.ConcatLinear(name=mod_name, output_size=self.out_size) self.assertEqual(lin.scope_name, "scope/" + mod_name) self.assertEqual(lin.module_name, mod_name) @contrib_eager.run_all_tests_in_graph_and_eager_modes class LinearTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(LinearTest, self).setUp() self.batch_size = 11 self.in_size = 13 self.out_size = 17 self.seed = 42 @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testShape(self, use_bias): inputs = tf.ones(dtype=tf.float32, shape=[self.batch_size, self.in_size]) lin = snt.Linear(output_size=self.out_size, use_bias=use_bias) output = lin(inputs) self.assertTrue( output.get_shape().is_compatible_with([self.batch_size, self.out_size])) def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): lin = snt.Linear(name=mod_name, output_size=self.out_size) self.assertEqual(lin.scope_name, "scope/" + mod_name) self.assertEqual(lin.module_name, mod_name) @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testVariables(self, use_bias): inputs = tf.ones(dtype=tf.float32, shape=[self.batch_size, self.in_size]) lin = snt.Linear(output_size=self.out_size, use_bias=use_bias) err = r"Variables in {} not instantiated yet, __call__ the module first." with self.assertRaisesRegexp(snt.NotConnectedError, err.format(lin.scope_name)): lin.get_variables() err = "Variables in {} not instantiated yet, __call__ the module first." with self.assertRaisesRegexp(snt.NotConnectedError, err.format(lin.scope_name)): _ = lin.w err = "Variables in {} not instantiated yet, __call__ the module first." with self.assertRaisesRegexp(snt.NotConnectedError, err.format(lin.scope_name)): _ = lin.b lin(inputs) # Connect the module, but ignore the return value. variables_ = lin.get_variables() if use_bias: self.assertLen(variables_, 2, "Linear should have 2 variables.") else: err = "No bias Variable in Linear Module when `use_bias=False`." with self.assertRaisesRegexp(AttributeError, err): _ = lin.b self.assertLen(variables_, 1, "Linear should have 1 variable.") for v in variables_: self.assertRegexpMatches(v.name, r"{}/[wb]:0".format(lin.scope_name)) if v.name.endswith("w:0"): shape = np.ndarray((self.in_size, self.out_size)) else: shape = np.ndarray(self.out_size) self.assertShapeEqual(shape, tf.convert_to_tensor(v)) def testCustomGetter(self): """Check that custom getters work appropriately.""" def custom_getter(getter, *args, **kwargs): kwargs["trainable"] = False return getter(*args, **kwargs) inputs = tf.ones(dtype=tf.float32, shape=[self.batch_size, self.in_size]) # Make w and b non-trainable. lin1 = snt.Linear(output_size=self.out_size, custom_getter=custom_getter) lin1(inputs) self.assertEmpty(tf.trainable_variables()) self.assertLen(tf.global_variables(), 2) # Make w non-trainable. lin2 = snt.Linear(output_size=self.out_size, custom_getter={"w": custom_getter}) lin2(inputs) self.assertLen(tf.trainable_variables(), 1) self.assertLen(tf.global_variables(), 4) @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testComputation(self, use_bias): np.random.seed(self.seed) types = (tf.float16, tf.float32, tf.float64) tol = (1e-2, 1e-6, 1e-9) tolerance_map = dict(zip(types, tol)) for dtype in types: # With random data, check the TF calculation matches the Numpy version. input_data = np.random.randn(self.batch_size, self.in_size).astype(dtype.as_numpy_dtype) inputs = tf.constant(input_data) if use_bias: initializers = {"w": _test_initializer(), "b": _test_initializer()} else: initializers = {"w": _test_initializer()} lin = snt.Linear(output_size=self.out_size, use_bias=use_bias, initializers=initializers) output = lin(inputs) self.evaluate(tf.global_variables_initializer()) if use_bias: output_data, w, b = self.evaluate([output, lin.w, lin.b]) else: output_data, w = self.evaluate([output, lin.w]) if use_bias: result = (np.dot(input_data, w.astype(dtype.as_numpy_dtype)) + b.astype(dtype.as_numpy_dtype)) else: result = np.dot(input_data, w.astype(dtype.as_numpy_dtype)) self.assertAllClose( result, output_data, atol=tolerance_map[dtype], rtol=tolerance_map[dtype]) @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testBatchedComputation(self, use_bias): np.random.seed(self.seed) types = (tf.float16, tf.float32, tf.float64) tol = (1e-1, 1e-6, 1e-9) tolerance_map = dict(zip(types, tol)) for dtype in types: # With random data, check the TF calculation matches the Numpy version. input_data = np.random.randn( self.batch_size, self.batch_size, self.in_size) flat_input_data = np.reshape( input_data, [self.batch_size * self.batch_size, self.in_size]) input_data = input_data.astype(dtype.as_numpy_dtype) inputs = tf.constant(input_data) if use_bias: initializers = {"w": _test_initializer(), "b": _test_initializer()} else: initializers = {"w": _test_initializer()} lin = snt.Linear(output_size=self.out_size, use_bias=use_bias, allow_many_batch_dims=True, initializers=initializers) output = lin(inputs) self.evaluate(tf.global_variables_initializer()) if use_bias: output_data, w, b = self.evaluate([output, lin.w, lin.b]) else: output_data, w = self.evaluate([output, lin.w]) if use_bias: result = (np.dot(flat_input_data, w.astype(dtype.as_numpy_dtype)) + b.astype(dtype.as_numpy_dtype)) else: result = np.dot(flat_input_data, w.astype(dtype.as_numpy_dtype)) result = np.reshape( result, [self.batch_size, self.batch_size, self.out_size]) self.assertAllClose( output_data, result, atol=tolerance_map[dtype], rtol=tolerance_map[dtype]) @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testSharing(self, use_bias): np.random.seed(self.seed) input_data = np.random.randn(self.batch_size, self.in_size).astype(np.float32) inp_1 = tf.constant(input_data) inp_2 = tf.constant(input_data) if use_bias: initializers = {"w": _test_initializer(), "b": _test_initializer()} else: initializers = {"w": _test_initializer()} lin = snt.Linear(output_size=self.out_size, use_bias=use_bias, initializers=initializers) out_1 = lin(inp_1) out_2 = lin(inp_2) # With the same data into each input, outputs should be identical. self.evaluate(tf.global_variables_initializer()) out_data_1, out_data_2 = self.evaluate([out_1, out_2]) self.assertAllEqual(out_data_1, out_data_2) def testUniquifying(self): # Create three modules in same scope with same name - make_template will # uniquify them. inp = tf.ones(dtype=tf.float32, shape=[self.batch_size, self.in_size]) mod_name = "another_linear_module" lin1 = snt.Linear(name=mod_name, output_size=self.out_size) lin2 = snt.Linear(name=mod_name, output_size=self.out_size) lin3 = snt.Linear(name=mod_name, output_size=self.out_size) # Connect all the modules to instantiate the variables. lin1(inp) lin2(inp) lin3(inp) # Ensure the module name property has been uniquified and is accessible. self.assertEqual(lin1.scope_name, mod_name) self.assertEqual(lin2.scope_name, mod_name + "_1") self.assertEqual(lin3.scope_name, mod_name + "_2") self.assertEqual(lin1.module_name, mod_name) self.assertEqual(lin2.module_name, mod_name + "_1") self.assertEqual(lin3.module_name, mod_name + "_2") vars1 = lin1.get_variables() vars2 = lin2.get_variables() vars3 = lin3.get_variables() # Ensure variable names have been made unique. for v in vars1: self.assertRegexpMatches(v.name, r"{}/[wb]:0".format(lin1.scope_name)) for v in vars2: self.assertRegexpMatches(v.name, r"{}/[wb]:0".format(lin2.scope_name)) for v in vars3: self.assertRegexpMatches(v.name, r"{}/[wb]:0".format(lin3.scope_name)) def testIsConnected(self): bad_inputs = tf.ones( dtype=tf.float32, shape=[self.batch_size, self.in_size, self.in_size]) lin = snt.Linear(output_size=self.out_size) self.assertFalse(lin.is_connected) # This will raise a snt.IncompatibleShapeError because bad_inputs has # too many dimensions. try: lin(bad_inputs) except snt.IncompatibleShapeError: pass self.assertFalse(lin.is_connected) def testUnknownInputSize(self): if tf.executing_eagerly(): self.skipTest("Inputs with unknown shape are not supported in eager.") bad_inputs = tf.placeholder(tf.float32, shape=[self.batch_size, None]) lin = snt.Linear(output_size=self.out_size) self.assertFalse(lin.is_connected) err = "Input size must be specified at module build time" with self.assertRaisesRegexp(snt.IncompatibleShapeError, err): lin(bad_inputs) self.assertFalse(lin.is_connected) def testInvalidInitializationParameters(self): with self.assertRaisesRegexp(KeyError, "Invalid initializer keys.*"): snt.Linear( output_size=self.out_size, initializers={"not_w": tf.truncated_normal_initializer(stddev=1.0)}) err = "Initializer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.Linear(output_size=self.out_size, initializers={"w": tf.zeros([1, 2, 3])}) def testInvalidPartitionerParameters(self): with self.assertRaisesRegexp(KeyError, "Invalid partitioner keys.*"): snt.Linear( output_size=self.out_size, partitioners={"not_w": tf.fixed_size_partitioner(num_shards=2)}) err = "Partitioner for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.Linear(output_size=self.out_size, partitioners={"w": tf.zeros([1, 2, 3])}) def testInvalidRegularizationParameters(self): with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): snt.Linear( output_size=self.out_size, regularizers={"not_w": contrib_layers.l1_regularizer(scale=0.5)}) err = "Regularizer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.Linear(output_size=self.out_size, regularizers={"w": tf.zeros([1, 2, 3])}) def testRegularizersInRegularizationLosses(self): inputs = tf.zeros([1, 100]) w_regularizer = contrib_layers.l1_regularizer(scale=0.5) b_regularizer = contrib_layers.l2_regularizer(scale=0.5) lin = snt.Linear(output_size=100, regularizers={"w": w_regularizer, "b": b_regularizer}) lin(inputs) regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) self.assertLen(regularizers, 2) if not tf.executing_eagerly(): self.assertRegexpMatches(regularizers[0].name, ".*l1_regularizer.*") self.assertRegexpMatches(regularizers[1].name, ".*l2_regularizer.*") def testClone(self): inputs = tf.zeros([1, 100]) linear = snt.Linear(output_size=self.out_size) clone1 = linear.clone() clone2 = linear.clone(name="clone2") linear(inputs) clone1(inputs) clone2(inputs) all_vars = tf.trainable_variables() linear_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=linear.variable_scope.name + "/") clone1_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=clone1.variable_scope.name + "/") clone2_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=clone2.variable_scope.name + "/") self.assertEqual(linear.output_size, clone1.output_size) self.assertEqual(linear.module_name + "_clone", clone1.module_name) self.assertEqual("clone2", clone2.module_name) self.assertLen(all_vars, 3*len(linear_vars)) self.assertLen(linear_vars, len(clone1_vars)) self.assertLen(linear_vars, len(clone2_vars)) @parameterized.named_parameters( ("WithBias", True), ("WithoutBias", False)) def testTranspose(self, use_bias): with tf.variable_scope("scope1"): linear1 = snt.Linear(output_size=self.out_size, use_bias=use_bias, name="linear") linear2 = snt.Linear(output_size=self.out_size, use_bias=use_bias, name="linear") with tf.variable_scope("scope2"): linear_transpose1 = linear1.transpose() linear_transpose2 = linear1.transpose() linear_transpose3 = linear2.transpose() self.assertEqual("scope1/linear", linear1.scope_name) self.assertEqual("linear", linear1.module_name) self.assertEqual("scope1/linear_1", linear2.scope_name) self.assertEqual("linear_1", linear2.module_name) self.assertEqual("scope2/linear_transpose", linear_transpose1.scope_name) self.assertEqual("linear_transpose", linear_transpose1.module_name) self.assertEqual("scope2/linear_transpose_1", linear_transpose2.scope_name) self.assertEqual("linear_transpose_1", linear_transpose2.module_name) self.assertEqual("scope2/linear_1_transpose", linear_transpose3.scope_name) self.assertEqual("linear_1_transpose", linear_transpose3.module_name) input_to_linear = tf.ones( dtype=tf.float32, shape=[self.batch_size, self.in_size]) err = ("Variables in {} not instantiated yet, __call__ the " "module first.".format(linear1.scope_name)) with self.assertRaisesRegexp(snt.NotConnectedError, err): linear_transpose1(input_to_linear) linear_transpose1 = linear1.transpose() self.assertEqual(linear1.has_bias, linear_transpose1.has_bias) linear_out = linear1(input_to_linear) linear_transposed_output = linear_transpose1(linear_out) self.assertEqual(linear_transposed_output.get_shape(), input_to_linear.get_shape()) def testGradientColocation(self): """Tests a particular device (e.g. gpu, cpu) placement. This test ensures that the following device placement is possible: * The Linear module is on the gpu, * the optimizer is declared to be on the cpu, * but when calling minimize on the optimizer, we pass True to colocate_gradients_with_ops. The test exists because while one may expect tf.matmul(X, w) + b to be equivalent to tf.nn.xw_plus_b(X, w, b), with the latter this placement results in an InvalidArgumentError. Warning: if there is no gpu available to tensorflow this test will be skipped with just a warning! This is because the test requires that tensorflow has access to a gpu, but often this is not the case. """ if not any(x.device_type == "GPU" for x in device_lib.list_local_devices()): tf.logging.warn("Skipping the gradient colocation test as there is no " "gpu available to tensorflow.") return n_outputs = 5 n_inputs = 3 batch_size = 7 linear = snt.Linear(n_outputs) with tf.device("/cpu:*"): # Set up data. inputs = tf.ones(dtype=tf.float32, shape=[batch_size, n_inputs]) labels = tf.to_int64(np.ones((batch_size))) # Predictions. with tf.device("/gpu:*"): outputs = linear(inputs) # Calculate the loss. cross_entropy = contrib_nn.deprecated_flipped_sparse_softmax_cross_entropy_with_logits( # pylint: disable=line-too-long outputs, labels, name="xentropy") loss = tf.reduce_mean(cross_entropy, name="xentropy_mean") # Optimizer. optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) optimizer.minimize(loss, colocate_gradients_with_ops=True) init = tf.global_variables_initializer() try: if tf.executing_eagerly(): # Unify on evaluate once force_gpu supports eager. self.evaluate(init) else: with self.test_session(force_gpu=True) as sess: sess.run(init) except tf.errors.InvalidArgumentError as e: self.fail("Cannot start the session. Details:\n" + e.message) def testPartitioners(self): if tf.executing_eagerly(): self.skipTest("Partitioned variables are not supported in eager mode.") inputs = tf.zeros([1, 100]) partitioners = { "w": tf.variable_axis_size_partitioner(10000), "b": tf.variable_axis_size_partitioner(100), } linear = snt.Linear(100, partitioners=partitioners) linear(inputs) self.assertEqual(type(linear.w), variables.PartitionedVariable) self.assertEqual(type(linear.b), variables.PartitionedVariable) @parameterized.named_parameters( ("float16", tf.float16), ("bfloat16", tf.bfloat16), ("float32", tf.float32), ("float64", tf.float64)) def testFloatDataTypeConsistent(self, dtype): inputs = tf.ones(dtype=dtype, shape=[3, 7]) linear = snt.Linear(11) outputs = linear(inputs) self.assertEqual(linear.w.dtype.base_dtype, dtype) self.assertEqual(linear.b.dtype.base_dtype, dtype) self.assertEqual(outputs.dtype.base_dtype, dtype) def testIntegerDataTypeFailsWithDefaultInitializers(self): dtype = tf.int32 inputs = tf.ones(dtype=dtype, shape=[3, 7]) linear = snt.Linear(11) with self.assertRaisesRegexp(ValueError, "Expected floating point type"): unused_outputs = linear(inputs) def testIntegerDataTypeConsistentWithCustomWeightInitializer(self): dtype = tf.int32 inputs = tf.ones(dtype=dtype, shape=[3, 7]) linear = snt.Linear( 11, initializers={"w": tf.zeros_initializer(dtype=dtype)}) outputs = linear(inputs) self.assertEqual(linear.w.dtype.base_dtype, dtype) self.assertEqual(linear.b.dtype.base_dtype, dtype) self.assertEqual(outputs.dtype.base_dtype, dtype) @contrib_eager.run_all_tests_in_graph_and_eager_modes class AddBiasTest(tf.test.TestCase, parameterized.TestCase): BATCH_SIZE = 11 IN_SHAPE = (13, 7, 5) OUT_SHAPE = IN_SHAPE BIAS_DIMS_PARAMETERS = [ ("DefaultBiasDims", None, IN_SHAPE), ("AllBiasDims", [1, 2, 3], IN_SHAPE), ("ScalarBiasDims", [], ()), ("LastBiasDims", [-1], (IN_SHAPE[2],)), ("ExplicitLastBiasDims", [3], (IN_SHAPE[2],)), ("FirstBiasDims", [1], (IN_SHAPE[0], 1, 1)), ("MiddleBiasDims", [2], (IN_SHAPE[1], 1)), ] def setUp(self): super(AddBiasTest, self).setUp() self.mb_in_shape = (self.BATCH_SIZE,) + self.IN_SHAPE self.mb_out_shape = (self.BATCH_SIZE,) + self.OUT_SHAPE self.seed = 42 @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testShape(self, bias_dims, unused_bias_shape): inputs = tf.ones(dtype=tf.float32, shape=self.mb_in_shape) add = snt.AddBias(bias_dims=bias_dims) output = add(inputs) self.assertTrue( output.get_shape().is_compatible_with(self.mb_out_shape)) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testName(self, bias_dims, unused_bias_shape): mod_name = "unique_name" with tf.variable_scope("scope"): add = snt.AddBias(name=mod_name, bias_dims=bias_dims) self.assertEqual(add.scope_name, "scope/" + mod_name) self.assertEqual(add.module_name, mod_name) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testVariables(self, bias_dims, bias_shape): inputs = tf.ones(dtype=tf.float32, shape=self.mb_in_shape) add = snt.AddBias(bias_dims=bias_dims) err = ("Variables in {} not instantiated yet, __call__ " "the module first.".format(add.scope_name)) with self.assertRaisesRegexp(snt.NotConnectedError, err): add.get_variables() err = ("Variables in {} not instantiated yet, __call__ " "the module first.".format(add.scope_name)) with self.assertRaisesRegexp(snt.NotConnectedError, err): _ = add.b add(inputs) # Connect the module, but ignore the return value. variables_ = add.get_variables() self.assertLen(variables_, 1, "Add should have 1 variable.") for v in variables_: if not tf.executing_eagerly(): self.assertRegexpMatches(v.name, r"{}/[b]:0".format(add.scope_name)) shape = np.ndarray(bias_shape) self.assertShapeEqual(shape, tf.convert_to_tensor(v)) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testComputation(self, bias_dims, bias_shape): np.random.seed(self.seed) types = (tf.float16, tf.float32, tf.float64) tol = (1e-2, 1e-6, 1e-9) tolerance_map = dict(zip(types, tol)) b_regularizer = contrib_layers.l2_regularizer(scale=0.5) for dtype in types: # With random data, check the TF calculation matches the Numpy version. input_data = np.random.randn(*self.mb_in_shape).astype( dtype.as_numpy_dtype) inputs = tf.constant(input_data) add = snt.AddBias(bias_dims=bias_dims, initializers={"b": _test_initializer()}, regularizers={"b": b_regularizer}) output = add(inputs) output_subtract = add(inputs, multiplier=-1) self.evaluate(tf.global_variables_initializer()) output_data, output_subtract_data, b = self.evaluate( [output, output_subtract, add.b]) regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) if not tf.executing_eagerly(): self.assertRegexpMatches(regularizers[0].name, ".*l2_regularizer.*") if not bias_shape: # Scalar bias. b_array = np.array([b]).astype(dtype.as_numpy_dtype(b)) else: b_array = b.astype(dtype.as_numpy_dtype) result = input_data + b_array result_subtract = input_data - b_array self.assertAllClose( result, output_data, atol=tolerance_map[dtype], rtol=tolerance_map[dtype]) self.assertAllClose( result_subtract, output_subtract_data, atol=tolerance_map[dtype], rtol=tolerance_map[dtype]) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testSharing(self, bias_dims, unused_bias_shape): np.random.seed(self.seed) input_data = np.random.randn(*self.mb_in_shape).astype(np.float32) inp_1 = tf.constant(input_data) inp_2 = tf.constant(input_data) add = snt.AddBias(bias_dims=bias_dims, initializers={"b": _test_initializer()}) out_1 = add(inp_1) out_2 = add(inp_2) # Put the same data into each input, outputs should be identical. self.evaluate(tf.global_variables_initializer()) out_data_1, out_data_2 = self.evaluate([out_1, out_2]) self.assertAllEqual(out_data_1, out_data_2) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testUniquifying(self, bias_dims, unused_bias_shape): # Create three modules in same scope with same name - make_template will # uniquify them. inp = tf.ones(dtype=tf.float32, shape=self.mb_in_shape) mod_name = "another_linear_module" add1 = snt.AddBias(bias_dims=bias_dims, name=mod_name) add2 = snt.AddBias(bias_dims=bias_dims, name=mod_name) add3 = snt.AddBias(bias_dims=bias_dims, name=mod_name) # Connect all the modules to instantiate the variables. add1(inp) add2(inp) add3(inp) # Ensure the module name property has been uniquified and is accessible. self.assertEqual(add1.module_name, mod_name) self.assertEqual(add2.module_name, mod_name + "_1") self.assertEqual(add3.module_name, mod_name + "_2") vars1 = add1.get_variables() vars2 = add2.get_variables() vars3 = add3.get_variables() # Ensure variable names have been made unique. for v in vars1: self.assertRegexpMatches(v.name, r"{}/[b]:0".format(add1.scope_name)) for v in vars2: self.assertRegexpMatches(v.name, r"{}/[b]:0".format(add2.scope_name)) for v in vars3: self.assertRegexpMatches(v.name, r"{}/[b]:0".format(add3.scope_name)) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testInvalidInitializationParameters(self, bias_dims, unused_bias_shape): err = "Invalid initializer keys.*" with self.assertRaisesRegexp(KeyError, err): snt.AddBias( bias_dims=bias_dims, initializers={"not_b": tf.truncated_normal_initializer(stddev=1.0)}) err = "Initializer for 'b' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.AddBias( bias_dims=bias_dims, initializers={"b": tf.zeros([1, 2, 3])}) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testInvalidPartitionerParameters(self, bias_dims, unused_bias_shape): with self.assertRaisesRegexp(KeyError, "Invalid partitioner keys.*"): snt.AddBias( bias_dims=bias_dims, partitioners={"not_b": tf.fixed_size_partitioner(num_shards=2)}) err = "Partitioner for 'b' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.AddBias( bias_dims=bias_dims, partitioners={"b": tf.zeros([1, 2, 3])}) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testInvalidRegularizationParameters(self, bias_dims, unused_bias_shape): with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): snt.AddBias( bias_dims=bias_dims, regularizers={"not_b": contrib_layers.l1_regularizer(scale=0.5)}) err = "Regularizer for 'b' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.AddBias(bias_dims=bias_dims, regularizers={"b": tf.zeros([1, 2, 3])}) @parameterized.named_parameters(*BIAS_DIMS_PARAMETERS) def testTranspose(self, bias_dims, unused_bias_shape): add = snt.AddBias(bias_dims=bias_dims) input_to_add = tf.ones(dtype=tf.float32, shape=self.mb_in_shape) # Check error occurs when we build the transposed module before the # original. add_transpose = add.transpose() err = "Build the original untransposed module before building this one." with self.assertRaisesRegexp(snt.ParentNotBuiltError, err): add_transpose(input_to_add) # Check that building the original before the transposed works as intended. add_transpose = add.transpose() add_out = add(input_to_add) add_transpose_out = add_transpose(add_out) self.assertEqual(add_transpose_out.get_shape(), input_to_add.get_shape()) self.assertEqual(add_transpose.b.get_shape(), add.b.get_shape()) def testPartitioners(self): if tf.executing_eagerly(): self.skipTest("Partitioned variables are not supported in eager mode.") inputs = tf.zeros([1, 100]) partitioners = { "b": tf.variable_axis_size_partitioner(10000), } bias = snt.AddBias(partitioners=partitioners) bias(inputs) self.assertEqual(type(bias.b), variables.PartitionedVariable) @contrib_eager.run_all_tests_in_graph_and_eager_modes class TrainableVariableTest(tf.test.TestCase, parameterized.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.TrainableVariable(name=mod_name, shape=[1]) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testInitialization(self): # Checks that the module initialization correctly sets the shape of the # internal variable w. shape = [1, 2, 3] var = snt.TrainableVariable( shape=shape, dtype=tf.float32, initializers={"w": tf.zeros_initializer()}) # We need to connect the module to the graph in order to inspect its # variables var() self.assertEqual(var.w.get_shape(), shape) def testVariableInitialization(self): # Check that a simple operation involving the TrainableVariable # matches the result of the corresponding operation in numpy np.random.seed(100) types = (tf.float16, tf.float32, tf.float64) tol = (1e-2, 1e-6, 1e-9) tolerance_map = dict(zip(types, tol)) lhs_shape = [3, 4] rhs_shape = [4, 6] for dtype in types: lhs_matrix = np.random.randn(*lhs_shape).astype(dtype.as_numpy_dtype) x = tf.constant(lhs_matrix) var = snt.TrainableVariable(shape=rhs_shape, dtype=dtype, initializers={"w": _test_initializer()}) y = tf.matmul(x, var()) self.evaluate(tf.global_variables_initializer()) product, w = self.evaluate([y, var.w]) self.assertAllClose(product, np.dot( lhs_matrix.astype(dtype.as_numpy_dtype), w.astype(dtype.as_numpy_dtype)), atol=tolerance_map[dtype], rtol=tolerance_map[dtype]) def testInvalidInitializationParameters(self): variable_name = "trainable_variable" with self.assertRaisesRegexp(KeyError, "Invalid initializer keys.*"): snt.TrainableVariable( name=variable_name, shape=[1], initializers={"w": tf.truncated_normal_initializer(stddev=1.0), "extra": tf.truncated_normal_initializer(stddev=1.0)}) with self.assertRaisesRegexp(KeyError, "Invalid initializer keys.*"): snt.TrainableVariable( name=variable_name, shape=[1], initializers={"not_w": tf.truncated_normal_initializer(stddev=1.0)}) err = "Initializer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.TrainableVariable(name=variable_name, shape=[1], initializers={"w": tf.zeros([1, 2, 3])}) def testCallBeforeInstantiation(self): variable_name = "trainable_variable" var = snt.TrainableVariable(name=variable_name, shape=[1]) err = r"Variables in {} not instantiated yet.*".format(variable_name) with self.assertRaisesRegexp(snt.NotConnectedError, err): var.get_variables() err = r"Variables in {} not instantiated yet.*".format(variable_name) with self.assertRaisesRegexp(snt.NotConnectedError, err): _ = var.w def testInvalidPartitionerParameters(self): with self.assertRaisesRegexp(KeyError, "Invalid partitioner keys.*"): snt.TrainableVariable( shape=[1], partitioners={"not_w": tf.fixed_size_partitioner(num_shards=2)}) err = "Partitioner for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.TrainableVariable( shape=[1], partitioners={"w": tf.zeros([1, 2, 3])}) def testInvalidRegularizationParameters(self): variable_name = "trainable_variable" with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): snt.TrainableVariable( name=variable_name, shape=[1], regularizers={"not_w": contrib_layers.l1_regularizer(scale=0.5)}) err = "Regularizer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.TrainableVariable(name=variable_name, shape=[1], regularizers={"w": tf.zeros([1, 2, 3])}) def testRegularizersInRegularizationLosses(self): variable_name = "trainable_variable" w_regularizer = contrib_layers.l1_regularizer(scale=0.5) var = snt.TrainableVariable( name=variable_name, shape=[1], regularizers={"w": w_regularizer}) var() regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) if tf.executing_eagerly(): # Tensor name is not supported in eager mode. self.assertLen(regularizers, 1) else: self.assertRegexpMatches(regularizers[0].name, ".*l1_regularizer.*") def testPartitioners(self): if tf.executing_eagerly(): self.skipTest("Partitioned variables are not supported in eager mode.") partitioners = { "w": tf.variable_axis_size_partitioner(10000), } var = snt.TrainableVariable( shape=[10, 13], partitioners=partitioners) var() self.assertEqual(type(var.w), variables.PartitionedVariable) @parameterized.parameters( (True,), (False,)) def testCustomGetter(self, with_stop_gradient): if tf.executing_eagerly(): self.skipTest("tf.gradients is not supported when executing eagerly.") def maybe_stop_gradients_custom_getter(getter, *args, **kwargs): actual_variable = getter(*args, **kwargs) if with_stop_gradient: return tf.stop_gradient(actual_variable) else: return actual_variable var = snt.TrainableVariable( shape=(), custom_getter=maybe_stop_gradients_custom_getter, name="non_trainable_variable") output = (var() * tf.constant(1.0)) ** 2 # We need to differentiate with respect to the actual variable object, # rather than var.w which is the output of the custom_getter (and possibly # the stop_gradient). actual_var = var.get_variables()[0] grads = tf.gradients(output, actual_var) # Gradient may or mnay not exist depending on the custom getter. if with_stop_gradient: self.assertIsNone(grads[0]) else: self.assertIsNotNone(grads[0]) @contrib_eager.run_all_tests_in_graph_and_eager_modes class BatchReshapeTest(tf.test.TestCase, parameterized.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.BatchReshape(name=mod_name, shape=[-1]) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testReshape(self): batch_size = 10 in_shape = [2, 3, 4, 5] out_shape = [2 * 3, 5, 4] assert np.prod(in_shape) == np.prod(out_shape) inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_shape) output = mod(inputs) self.assertEqual(output.get_shape(), [batch_size] + out_shape) def testInvalidReshapeParameters(self): batch_size = 10 in_shape = [2, 3, 4, 5] inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) # Shape array has invalid format err = "Wildcard -1 can appear only once in desired output shape. " with self.assertRaisesRegexp(ValueError, err): output_invalid_shape_format = [-1, -1] snt.BatchReshape(shape=output_invalid_shape_format)(inputs) err = ("Desired shape can only contain positive integral numbers " "and the wildcard -1. ") with self.assertRaisesRegexp(ValueError, err): output_invalid_shape_format = [2, 3, -2] snt.BatchReshape(shape=output_invalid_shape_format)(inputs) # Shape array contains invalid entries err = ("Desired shape can only contain positive integral numbers " "and the wildcard -1. ") with self.assertRaisesRegexp(ValueError, err): invalid_shape_type = [7, "string"] snt.BatchReshape(shape=invalid_shape_type)(inputs) # Incompatible input and output shapes err = "Output shape is incompatible with input shape" with self.assertRaisesRegexp(ValueError, err): out_shape = [2 * 2, 5, 4] snt.BatchReshape(shape=out_shape)(inputs) # Checks the 2D case. with self.assertRaisesRegexp(ValueError, err): snt.BatchReshape(shape=[batch_size, 1])(tf.zeros([batch_size, 2])) def testCallable(self): inputs = tf.ones(dtype=tf.float32, shape=[2, 3]) out_shape_lambda = lambda: [3] mod = snt.BatchReshape(shape=out_shape_lambda) output = mod(inputs) self.assertEqual(output.get_shape(), [2, 3]) def testInferShape(self): batch_size = 10 in_shape = [2, 3, 4, 5] out_size = [2, -1, 5] correct_out_size = [2, 3 * 4, 5] inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) output = mod(inputs) self.assertEqual(output.get_shape(), [batch_size] + correct_out_size) def testAddDimensions(self): batch_size = 10 in_shape = [] out_size = [1, 1] correct_out_size = [1, 1] inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) output = mod(inputs) self.assertEqual(output.get_shape(), [batch_size] + correct_out_size) # Transposition should also work mod_t = mod.transpose() t_output = mod_t(output) self.assertEqual(t_output.get_shape(), [batch_size] + in_shape) def testNoReshapeNeeded(self): batch_size = 10 if not tf.executing_eagerly(): in_shape = [None] out_size = [-1] inputs = tf.placeholder(tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) output = mod(inputs) self.assertIs(output, inputs) in_shape = [10] out_size = [10] inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) output = mod(inputs) self.assertIs(output, inputs) @parameterized.named_parameters( ("BadUnknown1", (None,), (5,)), ("BadUnknown2", (None, None), (5,)), ("BadUnknown3", (None, None), (5, 5)), ("BadUnknown4", (5, None), (5, 5)), ("BadUnknown5", (None, 5), (5, 5)), ) def testBadUnknownNonPreservedDimensions(self, input_shape, output_shape): if tf.executing_eagerly(): self.skipTest("Partial shapes are not supported in eager mode.") preserved_shape = (10,) shape = preserved_shape + input_shape preserve_dims = len(preserved_shape) inputs = tf.placeholder(tf.float32, shape) mod = snt.BatchReshape(shape=output_shape, preserve_dims=preserve_dims) err = "Unknown non-preserved dimensions are not allowed" with self.assertRaisesRegexp(ValueError, err): _ = mod(inputs) def testFlatten(self): batch_size = 10 in_shape = [2, 3, 4, 5] out_size = [-1] inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) output = mod(inputs) flattened_shape = np.prod(in_shape, dtype=int) self.assertEqual(output.get_shape(), [batch_size, flattened_shape]) def testUnknown(self): if tf.executing_eagerly(): self.skipTest("Partial shapes are not supported in eager mode.") batch_size = None in_shape = [2, 3, 4, 5] out_size = [-1] inputs = tf.placeholder(tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) output = mod(inputs) flattened_shape = np.prod(in_shape, dtype=int) self.assertEqual(output.get_shape().as_list(), [batch_size, flattened_shape]) def testTranspose(self): batch_size = 10 in_shape = [2, 3, 4, 5] out_size = [2, -1, 5] correct_out_size = [2, 3 * 4, 5] inputs = tf.random_uniform(shape=[batch_size] + in_shape) mod = snt.BatchReshape(shape=out_size) mod_t = mod.transpose() mod_t_t = mod_t.transpose() intermediate_output = mod(inputs) self.assertEqual(intermediate_output.get_shape(), [batch_size] + correct_out_size) output = mod_t(intermediate_output) self.assertEqual(output.get_shape(), [batch_size] + in_shape) further_output = mod_t_t(output) self.assertEqual(further_output.get_shape(), [batch_size] + correct_out_size) input_data, out = self.evaluate([inputs, output]) self.assertAllClose(out, input_data) def testInvalidPreserveDimsError(self): with self.assertRaisesRegexp(ValueError, "preserve_dims"): snt.BatchReshape((-1,), preserve_dims=0) def testBuildDimError(self): mod = snt.BatchReshape((-1,), preserve_dims=2) input_tensor = tf.ones(dtype=tf.float32, shape=[50]) with self.assertRaisesRegexp(ValueError, "preserve_dims"): mod(input_tensor) def testBuildUnknown(self): if tf.executing_eagerly(): self.skipTest( "Inputs with unknown shapes are not supported in eager mode.") mod = snt.BatchReshape(shape=(2, 9), preserve_dims=2) shape = [50, None, 6, 3] inputs = tf.placeholder(dtype=tf.float32, shape=shape) output = mod(inputs) self.assertEqual(output.get_shape().as_list(), [50, None, 2, 9]) @parameterized.named_parameters( ("Preserve1", (1,)), ("Preserve24", (2, 4)), ("Preserve?", (None,)), ("Preserve?5", (None, 5)), ("Preserve5?", (5, None)), ("Preserve??", (None, None))) def testPreserve(self, preserve): if None in preserve and tf.executing_eagerly(): self.skipTest( "Inputs with unknown shapes are not supported in eager mode.") shape = list(preserve) + [13, 84, 3, 2] output_shape = [13, 21, 3, 8] preserve_dims = len(preserve) if None in shape: inputs = tf.placeholder(dtype=tf.float32, shape=shape) else: inputs = tf.ones(dtype=tf.float32, shape=shape) mod = snt.BatchReshape(shape=output_shape, preserve_dims=preserve_dims) output = mod(inputs) self.assertEqual(output.get_shape().as_list(), list(preserve) + output_shape) @parameterized.named_parameters( ("Session1", (1,), (2, 3), (-1,)), ("Session2", (1, 7), (2, 3), (-1,)), ("Session3", (None,), (2, 3), (-1,)), ("Session4", (None, 5, None), (2, 3, 4), (4, 6)), ("Session5", (None, None, None), (2, 3, 4), (-1,)), ("Session6", (5, None, None), (1, 3, 1), (-1,)), ("Session7", (1,), (4, 3), (2, 2, 1, 3)), ("Session8", (None,), (4, 3), (2, 2, 1, 3)), ("Session9", (1, None, 5, None), (4, 3), (2, 2, -1, 3))) def testRun(self, preserve, trailing_in, trailing_out): if tf.executing_eagerly(): self.skipTest("Inputs with unknown shapes are not supported in eager.") rng = np.random.RandomState(0) input_shape = preserve + trailing_in output_shape = preserve + np.zeros(trailing_in).reshape(trailing_out).shape inputs = tf.placeholder(tf.float32, input_shape) mod = snt.BatchReshape(shape=trailing_out, preserve_dims=len(preserve)) output = mod(inputs) self.assertEqual(output.get_shape().as_list(), list(output_shape)) actual_input_shape = [13 if i is None else i for i in input_shape] expected_output_shape = [13 if i is None else i for i in output_shape] actual_input = rng.rand(*actual_input_shape).astype(np.float32) expected_output = actual_input.reshape(expected_output_shape) with self.test_session() as sess: actual_output = sess.run(output, feed_dict={inputs: actual_input}) self.assertAllEqual(actual_output, expected_output) @contrib_eager.run_all_tests_in_graph_and_eager_modes class MergeLeadingDimsTest(tf.test.TestCase, parameterized.TestCase): """Tests the merge_leading_dims function.""" @parameterized.named_parameters( ("Float", 1.0), ("Integer", 1), ("Boolean", False)) def testScalarInput(self, scalar): """Tests if a statically shaped scalar stays a scalar.""" # Act. result = basic.merge_leading_dims(scalar) # Assert. # This should be the same object we passed in. self.assertIs(result, scalar) def testExceptionUnknownRank(self): """Checks if an exception is thrown if the rank of the tensor is unknown.""" if tf.executing_eagerly(): self.skipTest("Unknown input shapes are not supported in eager mode.") # Arrange. tensor_scalar = tf.placeholder(dtype=tf.float32) # Act / assert. err = "unknown rank" with self.assertRaisesRegexp(ValueError, err): basic.merge_leading_dims(tensor_scalar) @parameterized.parameters( ([3, 5, 7, 11, None, 13], [3 * 5 * 7, 11, None, 13]), ([3, None, 7, 11, None, 13], [None, 11, None, 13]), ) def testPartialShape(self, input_shape, expected_output_shape): """Tests that resulting partial shape is best guess..""" if tf.executing_eagerly(): self.skipTest("Partial input shapes are not supported in eager mode.") input_ = tf.placeholder(tf.float32, shape=input_shape) output = basic.merge_leading_dims(input_, 3) self.assertEqual(output.shape.as_list(), expected_output_shape) @contrib_eager.run_all_tests_in_graph_and_eager_modes class BatchFlattenTest(tf.test.TestCase, parameterized.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.BatchFlatten(name=mod_name) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testFlatten(self): batch_size = 10 in_shape = [2, 3, 4, 5] inputs = tf.ones(dtype=tf.float32, shape=[batch_size] + in_shape) mod = snt.BatchFlatten() output = mod(inputs) flattened_size = np.prod(in_shape, dtype=int) self.assertEqual(output.get_shape(), [batch_size, flattened_size]) @parameterized.parameters(1, 2, 3, 4) def testPreserveDimsOk(self, preserve_dims): in_shape = [10, 2, 3, 4] inputs = tf.ones(dtype=tf.float32, shape=in_shape) mod = snt.BatchFlatten(preserve_dims=preserve_dims) output = mod(inputs) flattened_shape = (in_shape[:preserve_dims] + [np.prod(in_shape[preserve_dims:], dtype=int)]) self.assertEqual(output.get_shape(), flattened_shape) @parameterized.parameters(5, 6, 7, 10) def testPreserveDimsError(self, preserve_dims): in_shape = [10, 2, 3, 4] inputs = tf.ones(dtype=tf.float32, shape=in_shape) err = "Input tensor has 4 dimensions" mod = snt.BatchFlatten(preserve_dims=preserve_dims) with self.assertRaisesRegexp(ValueError, err): _ = mod(inputs) def testFlattenWithZeroDim(self): inputs = tf.ones(dtype=tf.float32, shape=[1, 0]) output = snt.BatchFlatten()(inputs) self.assertEqual(output.get_shape(), [1, 0]) @contrib_eager.run_all_tests_in_graph_and_eager_modes class FlattenTrailingDimensionsTest(tf.test.TestCase, parameterized.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.FlattenTrailingDimensions(dim_from=2, name=mod_name) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testInvalidFlattenFromError(self): with self.assertRaisesRegexp(ValueError, "dim_from"): snt.FlattenTrailingDimensions(dim_from=0) def testBuildDimError(self): mod = snt.FlattenTrailingDimensions(dim_from=2) input_tensor = tf.ones(dtype=tf.float32, shape=[50]) with self.assertRaisesRegexp(ValueError, "dim_from"): mod(input_tensor) def testBuildUnknown(self): if tf.executing_eagerly(): self.skipTest("Partial shapes are not supported in eager mode.") mod = snt.FlattenTrailingDimensions(dim_from=2) shape = [50, None, 5] inputs = tf.placeholder(tf.float32, shape) output = mod(inputs) self.assertEqual(output.get_shape().as_list(), shape) @parameterized.named_parameters( ("BatchSize1", 1), ("BatchSize5", 5), ("BatchSize?", None)) def testFlatten(self, batch_size): if tf.executing_eagerly() and batch_size is None: self.skipTest("Unknown batch size not supported in eager mode.") shape = [batch_size, 5, 84, 84, 3, 2] if batch_size is None: inputs = tf.placeholder(dtype=tf.float32, shape=shape) else: inputs = tf.ones(dtype=tf.float32, shape=shape) for dim_from in xrange(1, len(shape)): mod = snt.FlattenTrailingDimensions(dim_from) output = mod(inputs) trailing = np.prod(shape[dim_from:], dtype=int) self.assertEqual(output.get_shape().as_list(), shape[:dim_from] + [trailing]) @parameterized.named_parameters( ("BatchSize1", 1), ("BatchSize5", 5), ("BatchSize?", None)) def testTranspose(self, batch_size): if tf.executing_eagerly() and batch_size is None: self.skipTest("Unknown batch size not supported in eager mode.") mod = snt.FlattenTrailingDimensions(dim_from=4) mod_trans = mod.transpose() initial_shape = [batch_size, 5, 84, 84, 3, 2] if batch_size is None: original = tf.placeholder(dtype=tf.float32, shape=initial_shape) else: original = tf.ones(dtype=tf.float32, shape=initial_shape) flat = mod(original) self.assertEqual(flat.get_shape().as_list(), initial_shape[:4] + [6]) final = mod_trans(flat) self.assertEqual(final.get_shape().as_list(), initial_shape) @contrib_eager.run_all_tests_in_graph_and_eager_modes class BatchApplyTest(tf.test.TestCase, parameterized.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.BatchApply(name=mod_name, module_or_op=snt.Linear(2)) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) @parameterized.parameters(False, True) def testInferShape(self, test_with_none): if tf.executing_eagerly() and test_with_none: self.skipTest("Inferring input shapes not supported in eager mode.") if test_with_none: in_shape = [2, None, 4] inputs = tf.placeholder(dtype=tf.float32, shape=in_shape) else: in_shape = [2, 3, 4] inputs = tf.ones(dtype=tf.float32, shape=in_shape) hidden_size = 5 out_shape1 = in_shape[:2] + [hidden_size] out_shape2 = in_shape linear = snt.Linear(hidden_size) merge_linear = snt.BatchApply(module_or_op=linear) outputs1 = merge_linear(inputs) self.assertEqual(outputs1.get_shape().as_list(), out_shape1) merge_tanh = snt.BatchApply(module_or_op=tf.tanh) outputs2 = merge_tanh(inputs) self.assertEqual(outputs2.get_shape().as_list(), out_shape2) def testComputation(self): np.random.seed(100) in_shape = [2, 3, 4] in_shape_flat = [6, 4] hidden_size = 5 out_shape1 = in_shape[:2] + [hidden_size] out_shape2 = in_shape inputs = tf.random_uniform(shape=in_shape) inputs_flat = tf.reshape(inputs, shape=in_shape_flat) linear = snt.Linear(hidden_size, initializers={"w": _test_initializer(), "b": _test_initializer()}) merge_linear = snt.BatchApply(module_or_op=linear) outputs1 = merge_linear(inputs) outputs1_flat = linear(inputs_flat) merge_tanh = snt.BatchApply(module_or_op=tf.tanh) outputs2 = merge_tanh(inputs) outputs2_flat = merge_tanh(inputs_flat) self.evaluate(tf.global_variables_initializer()) out1, out_flat1 = self.evaluate([outputs1, outputs1_flat]) out2, out_flat2 = self.evaluate([outputs2, outputs2_flat]) self.assertAllClose(out1, out_flat1.reshape(out_shape1)) self.assertAllClose(out2, out_flat2.reshape(out_shape2)) def testVariables(self): hidden_size = 5 in_shape = [2, 3, 4] inputs = tf.ones(dtype=tf.float32, shape=in_shape) linear = snt.Linear(hidden_size) merge_linear = snt.BatchApply(module_or_op=linear) merge_tanh = snt.BatchApply(module_or_op=tf.tanh) merge_linear(inputs) merge_tanh(inputs) # BatchApply doesn't contain any variables inside scope. self.assertEqual(merge_linear.get_variables(), ()) self.assertEqual(merge_tanh.get_variables(), ()) def testOverTwoDims(self): hidden_size = 42 in_shape = (3, 4, 5, 6) expected_out_shape = in_shape[:-1] + (hidden_size,) inputs = tf.ones(dtype=tf.float32, shape=in_shape) linear = snt.Linear(output_size=hidden_size) merge_linear = snt.BatchApply(module_or_op=linear, n_dims=3) output = merge_linear(inputs) self.evaluate(tf.global_variables_initializer()) out_np = self.evaluate(output) self.assertEqual(expected_out_shape, out_np.shape) def testDifferentOutputStructure(self): in1 = np.random.randn(3, 5, 7) in2 = np.random.randn(3, 5, 11, 8) inputs = [tf.constant(in1), tf.constant(in2)] def build(inputs): a, b = inputs a.get_shape().assert_is_compatible_with([3 * 5, 7]) b.get_shape().assert_is_compatible_with([3 * 5, 11, 8]) return b op = snt.Module(build) module = snt.BatchApply(op) output = module(inputs) out_np = self.evaluate(output) self.assertAllEqual(in2, out_np) def testNested(self): # Make a complicated nested input, where we want to flatten the first # dimensions of each Tensor before applying ab_tuple = collections.namedtuple("ab_tuple", "a, b") ab = ab_tuple( a=tf.ones(dtype=tf.float32, shape=[3, 4, 5]), b=(tf.ones(dtype=tf.float32, shape=[3, 4, 7]), tf.ones(dtype=tf.float32, shape=[3, 4, 8]))) class SizeChecker(snt.AbstractModule): """Dummy module checking input is correct structure & size.""" def __init__(self, tester, name="size_checker"): super(SizeChecker, self).__init__(name=name) self._tester = tester def _build(self, inputs): # Structure of the nesting should be the same, even though the Tensors # will have been reshaped at this point. snt.nest.assert_same_structure(ab, inputs) self._tester.assertListEqual(inputs.a.get_shape().as_list(), [12, 5]) self._tester.assertListEqual(inputs.b[0].get_shape().as_list(), [12, 7]) self._tester.assertListEqual(inputs.b[1].get_shape().as_list(), [12, 8]) return inputs # Return the inputs unmodified output = snt.BatchApply(module_or_op=SizeChecker(self), n_dims=2)(ab) snt.nest.assert_same_structure(output, ab) self.assertShapeEqual(np.zeros((3, 4, 5)), output.a) self.assertShapeEqual(np.zeros((3, 4, 7)), output.b[0]) self.assertShapeEqual(np.zeros((3, 4, 8)), output.b[1]) def testInputExampleIndex(self): in1 = tf.random_normal((3, 5)) in2 = tf.random_normal((3, 9)) def build(inputs): a, b = inputs a.get_shape().assert_is_compatible_with([3 * 5]) b.get_shape().assert_is_compatible_with([3 * 9]) return b op = snt.Module(build) # Checks an error is thrown when the input example contains a different # shape for the leading dimensions as the output. exc = tf.errors.InvalidArgumentError if tf.executing_eagerly() else ( ValueError) with self.assertRaises(exc): snt.BatchApply(op, n_dims=2, input_example_index=0)((in1, in2)) # Check correct operation when the specified input example contains the same # shape for the leading dimensions as the output. output = snt.BatchApply(op, n_dims=2, input_example_index=1)((in1, in2)) in2_np, out_np = self.evaluate([in2, output]) self.assertAllEqual(in2_np, out_np) def testMultipleArgs(self): in1 = np.random.randn(2, 3, 4, 5) in2 = np.random.randn(2, 3, 5, 8) module = snt.BatchApply(tf.matmul) output = module(in1, in2) output.get_shape().assert_is_compatible_with([2, 3, 4, 8]) expected_output = tf.matmul(in1, in2) out_expected, out_result = self.evaluate([expected_output, output]) self.assertAllClose(out_expected, out_result) def testKWArgs(self): in1 = np.random.randn(2, 3, 4, 5) in2 = np.random.randn(2, 3, 5, 8) module = snt.BatchApply(tf.matmul) output = module(a=in1, b=in2) output.get_shape().assert_is_compatible_with([2, 3, 4, 8]) expected_output = tf.matmul(in1, in2) out_expected, out_result = self.evaluate([expected_output, output]) self.assertAllClose(out_expected, out_result) def testHandlesReturnedNone(self): def fn(input_): del input_ return None result = snt.BatchApply(fn)(tf.zeros([1, 1])) self.assertEqual(result, None) def testSomeInputsAreNone(self): in1 = np.random.randn(2, 3, 4, 5) in2 = np.random.randn(2, 3, 5, 8) in3 = None def build(input1, input2, input3): output = tf.matmul(input1, input2) if input3 is not None: output = tf.matmul(input3) return output module = snt.BatchApply(build) output = module(in1, in2, in3) output.get_shape().assert_is_compatible_with([2, 3, 4, 8]) expected_output = tf.matmul(in1, in2) out_expected, out_result = self.evaluate([expected_output, output]) self.assertAllClose(out_expected, out_result) @parameterized.named_parameters( ("flagArgTrue", [True], {}), ("flagArgFalse", [False], {}), ("flagKwargTrue", [], {"is_training": True}), ("flagKwargFalse", [], {"is_training": False})) def testNonTensor(self, flag_args, flag_kawargs): """Tests if non-tensor inputs are simply forwarded to the module.""" # Arrange. # We work around the Python closure issue by writing to a list instead of # a primitive variable. received_flag_value = [None] x = tf.ones(shape=(5, 3, 10), dtype=tf.float32) def _build(inputs, is_training): """Builds a network that requires a flag at construction time.""" net = snt.Linear(output_size=10)(inputs) net = snt.BatchNorm()(net, is_training=is_training) # We record the value of the flag here to make sure that the value # is correctly passed on to this module. received_flag_value[0] = is_training return net # Act. snt.BatchApply(snt.Module(build=_build))(x, *flag_args, **flag_kawargs) # Assert. self.assertIsNotNone(received_flag_value[0]) # Recover the flag value from the test inputs. flag_value = nest.flatten_iterable([flag_args, flag_kawargs])[0] self.assertEqual(received_flag_value[0], flag_value) @contrib_eager.run_all_tests_in_graph_and_eager_modes class SliceByDimTest(tf.test.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.SliceByDim(name=mod_name, dims=[0, 2], begin=[0, 0], size=[2, 4]) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testInferShape(self): in_shape = [2, 3, 4, 5, 6] dims = [0, 2, 4] begin = [0, 1, 2] size = [1, 2, 3] out_shape = [1, 3, 2, 5, 3] inputs = tf.ones(dtype=tf.float32, shape=in_shape) mod = snt.SliceByDim(dims=dims, begin=begin, size=size) output = mod(inputs) self.assertEqual(output.get_shape(), out_shape) def testComparison(self): # Here we compare the output with the tf.slice equivalent. in_shape = [2, 3, 4] inputs = tf.random_uniform(shape=in_shape) dims = [0, 2] begin = [1, 2] size = [1, 2] mod = snt.SliceByDim(dims=dims, begin=begin, size=size) output = mod(inputs) begin_tf = [1, 0, 2] size_tf = [1, -1, 2] ref_output = tf.slice(inputs, begin=begin_tf, size=size_tf) actual, expected = self.evaluate([output, ref_output]) self.assertAllEqual(actual, expected) def testComputation(self): inputs = tf.constant(dtype=tf.int32, value=[[1, 2, 3], [1, 2, 3]]) dims = [0, 1] begin = [0, 1] size = [1, 2] mod = snt.SliceByDim(dims=dims, begin=begin, size=size) output = mod(inputs) actual = self.evaluate(output) expected = [[2, 3]] self.assertAllEqual(actual, expected) def testNegativeDim(self): inputs = tf.constant(dtype=tf.int32, value=[[1, 2, 3], [4, 5, 6]]) dims = [0, -1] begin = [0, 1] size = [-1, 2] mod = snt.SliceByDim(dims=dims, begin=begin, size=size) output = mod(inputs) actual = self.evaluate(output) expected = [[2, 3], [5, 6]] self.assertAllEqual(actual, expected) def testInvalidSliceParameters(self): dims = [0, 2, 4] begin = [0, 0, 0] size = [1, 2, 3] err = "begin must have the same length as dims: {}.".format(len(dims)) with self.assertRaisesRegexp(ValueError, err): invalid_begin_format = [0, 0] _ = snt.SliceByDim( dims=dims, begin=invalid_begin_format, size=size) err = "size must have the same length as dims: {}.".format(len(dims)) with self.assertRaisesRegexp(ValueError, err): invalid_size_format = [1, 2, 3, 4] _ = snt.SliceByDim( dims=dims, begin=begin, size=invalid_size_format) def testInvalidTensorRank(self): dims = [0, 2, 4] begin = [0, 0, 0] size = [1, 2, 3] mod = snt.SliceByDim(dims=dims, begin=begin, size=size) in_shape = [2, 3, 4, 5] inputs = tf.ones(dtype=tf.float32, shape=in_shape) err = "Rank of inputs must be at least {}.".format(np.max(dims) + 1) with self.assertRaisesRegexp(ValueError, err): _ = mod(inputs) def testUniqueDimensions(self): dims = [0, 0, 1] begin = [0, 0, 0] size = [1, 2, 3] err = "dims must not have any repeated integers." with self.assertRaisesRegexp(ValueError, err): _ = snt.SliceByDim(dims=dims, begin=begin, size=size) @contrib_eager.run_all_tests_in_graph_and_eager_modes class TileByDimTest(tf.test.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.TileByDim(name=mod_name, dims=[0, 2], multiples=[1, 2]) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testInferShape(self): in_shape = [2, 3, 4, 5, 6] dims = [0, 2, 4] multiples = [1, 2, 3] out_shape = [2, 3, 8, 5, 18] inputs = tf.ones(dtype=tf.float32, shape=in_shape) mod = snt.TileByDim(dims=dims, multiples=multiples) output = mod(inputs) self.assertEqual(output.get_shape(), out_shape) def testComparison(self): # Here we compare the output with the `tf.tile` equivalent. in_shape = [2, 3, 4] inputs = tf.random_uniform(shape=in_shape) dims = [0, 2] multiples = [2, 4] mod = snt.TileByDim(dims=dims, multiples=multiples) output = mod(inputs) multiple_tf = [2, 1, 4] ref_output = tf.tile(inputs, multiples=multiple_tf) actual, expected = self.evaluate([output, ref_output]) self.assertAllEqual(actual, expected) def testComputation(self): inputs = tf.constant(dtype=tf.int32, value=[[1, 2, 3], [1, 2, 3]]) dims = [1] multiples = [2] mod = snt.TileByDim(dims=dims, multiples=multiples) output = mod(inputs) actual = self.evaluate(output) expected = [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]] self.assertAllEqual(actual, expected) def testInvalidTileParameters(self): dims = [0, 2, 4] invalid_multiples_format = [1, 2] err = "multiples must have the same length as dims: {}.".format(len(dims)) with self.assertRaisesRegexp(ValueError, err): snt.TileByDim(dims=dims, multiples=invalid_multiples_format) def testUniqueDimensions(self): dims = [0, 0, 1] multiples = [1, 2, 3] err = "dims must not have any repeated integers." with self.assertRaisesRegexp(ValueError, err): snt.TileByDim(dims=dims, multiples=multiples) @contrib_eager.run_all_tests_in_graph_and_eager_modes class MergeDimsTest(tf.test.TestCase, parameterized.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.MergeDims(name=mod_name, start=0, size=2) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testInferShape(self): in_shape = [2, 3, 4, 5, 6] start = 1 size = 3 out_shape = [2, 3 * 4 * 5, 6] inputs = tf.ones(dtype=tf.float32, shape=in_shape) mod = snt.MergeDims(start=start, size=size) output = mod(inputs) self.assertEqual(output.get_shape(), out_shape) def testInferShape_negStart(self): in_shape = [2, 3, 4, 5, 6] start = -4 size = 3 out_shape = [2, 3 * 4 * 5, 6] inputs = tf.ones(dtype=tf.float32, shape=in_shape) mod = snt.MergeDims(start=start, size=size) output = mod(inputs) self.assertEqual(output.get_shape(), out_shape) @parameterized.parameters( ([2, None, 4, 5, 6],), ([None, None, 4, 5, 6],), ([2, 3, None, 5, 6],), ([2, None, None, None, 6],)) def testWithUndefinedDims(self, in_shape): if tf.executing_eagerly(): self.skipTest("Inputs with partial unknown are not supported in eager.") start = 2 size = 2 inputs = tf.placeholder(tf.float32, shape=in_shape) mod = snt.MergeDims(start=start, size=size) output = mod(inputs) static_shape = in_shape static_shape[2:4] = [None] if None in in_shape[2:4] else [4 * 5] self.assertEqual(output.get_shape().as_list(), static_shape) with self.test_session(): output = output.eval(feed_dict={inputs: np.zeros([2, 3, 4, 5, 6])}) self.assertEqual(list(output.shape), [2, 3, 4 * 5, 6]) def testWithUndefinedAndZeroDim(self): if tf.executing_eagerly(): self.skipTest("Unspecified input shapes are not supported in eager mode.") in_shape = [0, None, 2, 3] start = 1 size = 2 inputs = tf.placeholder(tf.float32, shape=in_shape) mod = snt.MergeDims(start=start, size=size) output = mod(inputs) self.assertEqual(output.get_shape().as_list(), [0, None, 3]) with self.test_session() as session: output = session.run(output, feed_dict={inputs: np.zeros([0, 5, 2, 3])}) self.assertEqual(list(output.shape), [0, 10, 3]) def testComputation(self): # Here we compare the output with the tf.reshape equivalent. in_shape = [2, 3, 4, 5, 6] inputs = tf.random_uniform(shape=in_shape) start = 1 size = 2 mod = snt.MergeDims(start=start, size=size) output = mod(inputs) ref_output = tf.reshape(inputs, shape=[2, 3 * 4, 5, 6]) out = self.evaluate([output, ref_output]) self.assertAllEqual(out[0], out[1]) def testInvalidDimsParameters(self): start = 3 invalid_size = 1 err = "`size` should be strictly greater than 1." with self.assertRaisesRegexp(ValueError, err): snt.MergeDims(start=start, size=invalid_size) def testInvalidTensorRank(self): start = 0 size = 4 mod = snt.MergeDims(start=start, size=size) in_shape = [2, 3, 4] inputs = tf.ones(dtype=tf.float32, shape=in_shape) err = "Rank of inputs must be at least {}.".format(start + size) with self.assertRaisesRegexp(ValueError, err): mod(inputs) def testNestedInput(self): start = 0 size = 2 mod = snt.MergeDims(start=start, size=size) namedtuple_type = collections.namedtuple("abc", ["a", "b", "c"]) nested_tensors = [ tf.random_uniform(shape=[3, 4, 5, 44]), [ tf.random_uniform(shape=[101, 3]), tf.random_uniform(shape=[4, 5, 123, 87]), ], [ [tf.random_uniform(shape=[1, 2, 3, 4, 5])], ], namedtuple_type(a=tf.random_uniform(shape=[3, 2, 1]), b=tf.random_uniform(shape=[6, 8, 10, 12]), c=tf.random_uniform(shape=[20, 10])) ] merged_tensors = mod(nested_tensors) nest.assert_same_structure(nested_tensors, merged_tensors) for original_tensor, merged_tensor in zip(nest.flatten(nested_tensors), nest.flatten(merged_tensors)): original_shape = original_tensor.get_shape() merged_shape = merged_tensor.get_shape() self.assertEqual(original_shape.ndims - (size - 1), merged_shape.ndims) self.assertEqual(np.prod(original_shape[start:start + size], dtype=int), merged_shape[start]) self.assertEqual(original_shape.num_elements(), merged_shape.num_elements()) @contrib_eager.run_all_tests_in_graph_and_eager_modes class SelectInputTest(tf.test.TestCase): def testName(self): mod_name = "unique_name" with tf.variable_scope("scope"): mod = snt.SelectInput(name=mod_name, idx=0) self.assertEqual(mod.scope_name, "scope/" + mod_name) self.assertEqual(mod.module_name, mod_name) def testBasicSelect(self): """Test where idx is an integer.""" shape0 = [2, 3] shape1 = [2, 3, 4] input0 = tf.random_uniform(shape=shape0) input1 = tf.random_uniform(shape=shape1) mod = snt.SelectInput(idx=0) output = mod(input0, input1) output0 = tf.identity(input0) out = self.evaluate([output, output0]) self.assertAllEqual(out[0], out[1]) def testTupleSelect(self): """Test where idx is a tuple.""" shape0 = [1, 2] shape1 = [1, 2, 3] shape2 = [1, 2, 3, 4] input0 = tf.random_uniform(shape=shape0) input1 = tf.random_uniform(shape=shape1) input2 = tf.random_uniform(shape=shape2) mod = snt.SelectInput(idx=(0, 2)) output = mod(input0, input1, input2) output0 = tf.identity(input0) output2 = tf.identity(input2) out = self.evaluate([output, [output0, output2]]) self.assertAllEqual(out[0][0], out[1][0]) self.assertAllEqual(out[0][1], out[1][1]) def testNestedListSelect(self): """Test where idx is a nested list.""" shape0 = [1, 2] shape1 = [1, 2, 3] shape2 = [1, 2, 3, 4] input0 = tf.random_uniform(shape=shape0) input1 = tf.random_uniform(shape=shape1) input2 = tf.random_uniform(shape=shape2) mod = snt.SelectInput(idx=[2, [1, 0, 1]]) output = mod(input0, input1, input2) output0 = tf.identity(input0) output1 = tf.identity(input1) output2 = tf.identity(input2) out = self.evaluate([output, [output2, [output1, output0, output1]]]) self.assertAllEqual(out[0][0], out[1][0]) self.assertAllEqual(out[0][1][0], out[1][1][0]) self.assertAllEqual(out[0][1][1], out[1][1][1]) self.assertAllEqual(out[0][1][2], out[1][1][2]) def testInvalidIdxValue(self): """Checks error on invalid idx value.""" input1 = tf.ones(dtype=tf.float32, shape=[2, 3, 4, 5, 6]) input2 = tf.ones(dtype=tf.float32, shape=[7, 8]) invalid_idx = 2 mod = snt.SelectInput(idx=[invalid_idx]) err = (r"`idx` contains out of bound entries \(they should be in the " r"range \[0, 2\)\)") with self.assertRaisesRegexp(ValueError, err): mod(input1, input2) def testInvalidIdxType(self): """Checks error on invalid idx type.""" invalid_idx = 0.5 err = r"`idx` should be a \(nested\) array/tuple, or an integer." with self.assertRaisesRegexp(TypeError, err): snt.SelectInput(idx=invalid_idx) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/basic_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions and modules for implementing Spectral Normalization. This implementation follows the use in: https://arxiv.org/abs/1802.05957 https://arxiv.org/abs/1805.08318 https://arxiv.org/abs/1809.11096 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools # Dependency imports from sonnet.python.custom_getters import context from sonnet.python.modules import base from sonnet.python.modules import util import tensorflow.compat.v1 as tf def wrap_with_spectral_norm(module_class, sn_kwargs=None, pow_iter_collection=None): """Returns a constructor for the inner class with spectral normalization. This function accepts a Sonnet AbstractModule class as argument (the class, *not* an instance of that class) alongside an optional dictionary of keyword arguments for the spectral_norm function, and returns a constructor which can be treated identically to the constructor of the input class, but with spectral normalization applied to the weights created by the class. Internally, this is just a partially evaluated SpectralNormWrapper module. `pow_iter_collection`, if not None, is treated as the name of a TensorFlow global collection. Each time the module's weight matrix is accessed ops are built for performing one step of power iteration to approximate that weight's first singular follow and ops are created for saving this new approximation in an internal variable. At build-time the resulting object takes a special boolean 'enable_power_iteration' keyword argument. If this is True (the default), a control dependency on the operation for updating this internal variable is attached to the returned weight. Otherwise, the update is *not* attached as a control dependency, but an op is placed into the `pow_iter_collection` global collection which causes the internal variable to be updated. It is then up to the user to choose whether to run this update. Args: module_class: A constructor/class reference for a Sonnet module you would like to wrap and automatically apply spectral normalization. sn_kwargs: Keyword arguments to be passed to the spectral_norm function in addition to the weight tensor. pow_iter_collection: The name of a global collection for potentially storing ops for updating internal variables. Returns: An snt.AbstractModule class representing the original with spectral norm. """ sn_kwargs = sn_kwargs or {} return functools.partial( SpectralNormWrapper, module_class, sn_kwargs, pow_iter_collection) class SpectralNormWrapper(base.AbstractModule): """Wraps a Sonnet Module to selectively apply Spectral Normalization.""" def __init__(self, module, sn_kwargs, pow_iter_collection, *args, **kwargs): """Constructs a wrapped Sonnet module with Spectral Normalization. The module expects a first argument which should be a Sonnet AbstractModule and a second argument which is a dictionary which is passed to the inner spectral_norm function as kwargs. When connecting this module to the graph,the argument 'pow_iter_collection' is treated specially for this wrapper (rather than for the _build method of the inner module). If pow_iter_collection is None (the default), the approximate first singular value for weights will *not* be updated based on the inputs passed at the given _build call. However an op for updating the singular value will be placed into the pow_iter_collection global collection. If pow_iter_collection is None or not passed, a control dependency on the update op will be applied to the output of the _build function. Regardless, the kwarg is deleted from the list of keywords passed to the inner module. Args: module: A constructor/class reference for a Sonnet module you would like to construct. sn_kwargs: Keyword arguments to be passed to the spectral_norm function in addition to the weight tensor. pow_iter_collection: The name of a global collection for potentially storing ops for updating internal variables. *args: Construction-time arguments to the module. **kwargs: Construction-time keyword arguments to the module. """ name = kwargs.get('name', 'sn') + '_wrapper' # Our getter needs to be able to be disabled. getter_immediate_update, getter_deferred_update = self.sn_getter(sn_kwargs) w_getter = lambda g: util.custom_getter_router({'.*/w$': g}, lambda s: s) getter_immediate_update = w_getter(getter_immediate_update) getter_deferred_update = w_getter(getter_deferred_update) self._context_getter = context.Context( getter_immediate_update, default_getter=getter_deferred_update) self.pow_iter_collection = pow_iter_collection super(SpectralNormWrapper, self).__init__( name=name, custom_getter=self._context_getter) # Let's construct our model. with self._enter_variable_scope(): self._module = module(*args, **kwargs) def _build(self, *args, **kwargs): if kwargs.pop('enable_power_iteration', True): with self._context_getter: return self._module(*args, **kwargs) else: return self._module(*args, **kwargs) def sn_getter(self, spectral_norm_kwargs): """Returns a curried spectral normalization Custom Getter.""" def getter_immediate_update(getter, *args, **kwargs): w = getter(*args, **kwargs) # This is our variable. w_spectral_normalized = spectral_norm( w, update_collection=None, **spectral_norm_kwargs)['w_bar'] return w_spectral_normalized def getter_deferred_update(getter, *args, **kwargs): w = getter(*args, **kwargs) # This is our variable. w_spectral_normalized = spectral_norm( w, update_collection=self.pow_iter_collection, **spectral_norm_kwargs)['w_bar'] return w_spectral_normalized return getter_immediate_update, getter_deferred_update def _l2_normalize(t, axis=None, eps=1e-12): """Normalizes along dimension `axis` using an L2 norm. We use this over tf.nn.l2_normalize for numerical stability reasons. Args: t: A `Tensor`. axis: Dimension along which to normalize, e.g. `1` to separately normalize vectors in a batch. Passing `None` views `t` as a flattened vector when calculating the norm (equivalent to Frobenius norm). eps: Epsilon to avoid dividing by zero. Returns: A `Tensor` with the same shape as `t`. """ return t * tf.rsqrt(tf.reduce_sum(tf.square(t), axis, keepdims=True) + eps) def spectral_norm(weight, num_iters=1, update_collection=None, eps=1e-4): """Spectral Weight Normalization. Applies first-singular-value spectral normalization to weight and returns a tensor equivalent to weight with spectral normalization applies. By default, it also updates an inner variable for keeping track of the spectral values of this weight matrix. If update_collection is not None, however, this function does not update the variable automatically, instead placing an op for this update in the 'update_collection' global collection. Args: weight: The weight tensor which requires spectral normalization num_iters: Number of SN iterations. update_collection: The update collection for assigning persisted variable u. If None, the function will update u0 during the forward pass. Otherwise if the update_collection equals 'update_collection', it will put the assignment in a collection defined by the user. Then the user will need to run the assignment explicitly. eps: numerical stability constant > 0. Returns: A dictionary of: w_bar: The normalized weight tensor sigma: The estimated singular value for the weight tensor. u0: The internal persisted variable. """ if num_iters < 1: raise ValueError('num_iters must be a positive integer. {} given.'.format( num_iters)) original_dtype = weight.dtype weight = tf.cast(weight, tf.float32) w_shape = weight.shape.as_list() w_mat = tf.reshape(weight, [-1, w_shape[-1]]) u0 = tf.get_variable( 'u0', [1, w_shape[-1]], initializer=tf.truncated_normal_initializer(), trainable=False) u0_ = u0 # Power iteration for the weight's singular value. for _ in range(num_iters): v0_ = _l2_normalize(tf.matmul(u0_, w_mat, transpose_b=True), eps=eps) u0_ = _l2_normalize(tf.matmul(v0_, w_mat), eps=eps) u0_ = tf.stop_gradient(u0_) v0_ = tf.stop_gradient(v0_) sigma = tf.squeeze(tf.matmul(tf.matmul(v0_, w_mat), u0_, transpose_b=True), axis=[0, 1]) w_mat /= sigma w_bar = tf.reshape(w_mat, w_shape) # Potentially add a control dependency on u0s update. if update_collection is None: u_assign_ops = [u0.assign(u0_)] with tf.control_dependencies(u_assign_ops): w_bar = tf.identity(w_bar) else: tf.add_to_collection(update_collection, u0.assign(u0_)) return { 'w_bar': tf.cast(w_bar, original_dtype), 'sigma': tf.cast(sigma, original_dtype), 'u0': tf.cast(u0, original_dtype) }
sonnet-1
sonnet/python/modules/spectral_normalization.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet transformer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf class TransformerTowerTest(tf.test.TestCase): def test_forward(self): batch_size = 8 window_size = 15 value_size = 6 num_heads = 16 input_size = num_heads * value_size output_size = 128 inputs = tf.random_normal([batch_size, window_size, input_size]) transformer = snt.nets.TransformerTower( value_size=value_size, num_heads=num_heads, num_layers=3, causal=False, shared_attention=False, output_size=output_size, mlp_hidden_sizes=tuple([64])) output, _ = transformer(inputs) self.assertAllEqual(output.get_shape().as_list(), [batch_size, window_size, output_size]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(output) def test_invalid_input(self): batch_size = 8 window_size = 15 value_size = 6 num_heads = 16 # invalid input size because it is odd input_size = num_heads * value_size + 1 output_size = 128 invalid_inputs = tf.random_normal([batch_size, window_size, input_size]) transformer = snt.nets.TransformerTower( value_size=value_size, num_heads=num_heads, num_layers=3, causal=False, shared_attention=False, output_size=output_size, use_relative_positions=False, mlp_hidden_sizes=tuple([64])) with self.assertRaises(ValueError): transformer(invalid_inputs) class TransformerXLTest(tf.test.TestCase): def check_memory_gradients(self, state, output, session, start=0, end=-1, zero=True): """Checks masking via norm of state gradient with respect to output. Args: state: transformer.AttentionCoreState. output: tensor of model outputs. session: tensorflow session. start: inspect gradients from [start:] slots in memory. end: inspect gradients up to [:end] slots in memory. zero: if true, checks equal to zero, otherwise checks greater than zero. """ for state_i in state: grad_i = tf.gradients(output, state_i)[0][:, start:end] grad_norm_i = tf.reduce_sum(tf.square(grad_i)) grad_norm_np = session.run(grad_norm_i) if zero: self.assertEqual(grad_norm_np, 0) else: self.assertGreater(grad_norm_np, 0) def test_forward(self): batch_size = 8 window_size = 15 input_size = 16 output_size = 128 num_layers = 3 key_size = 4 value_size = 6 num_heads = 16 memory_size = 48 inputs = tf.random_normal([batch_size, window_size, input_size]) core_config = { 'value_size': value_size, 'key_size': key_size, 'num_heads': num_heads, 'num_layers': num_layers, 'causal': True, 'shared_attention': False, 'output_size': output_size, 'mlp_hidden_sizes': tuple([64]), } transformer_xl = snt.nets.transformer.TransformerXL( core_config=core_config, memory_size=memory_size, chunk_size=window_size, ) initial_state = transformer_xl.initial_state(batch_size) output, next_state = transformer_xl(inputs, initial_state) output2, final_state = transformer_xl(inputs, next_state) self.assertAllEqual(output.get_shape().as_list(), [batch_size, window_size, output_size]) self.assertEqual(len(next_state), num_layers) def check_state_size(state_list): for i in range(num_layers): state = state_list[i] self.assertAllEqual(state.get_shape().as_list(), [batch_size, memory_size, value_size * num_heads]) check_state_size(next_state) check_state_size(final_state) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(output) sess.run(next_state) sess.run(output2) sess.run(final_state) def test_mask_op(self): logits = tf.zeros(shape=(1, 1, 5, 5)) masked_logits = logits + snt.nets.transformer.future_mask( chunk_size=5, dtype=logits.dtype) weights = tf.nn.softmax(logits) masked_weights = tf.nn.softmax(masked_logits) with self.test_session() as sess: weights_v, masked_weights_v = sess.run([weights, masked_weights]) expected_weights_v = np.array([ [0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2], ]).reshape([1, 1, 5, 5]) self.assertAllClose(weights_v, expected_weights_v) expected_masked_weights_v = np.array( [[1. / 1, 0.00, 0.00, 0.00, 0.00], [1. / 2, 1. / 2, 0.00, 0.00, 0.00], [1. / 3, 1. / 3, 1. / 3, 0.00, 0.00], [1. / 4, 1. / 4, 1. / 4, 1. / 4, 0.00], [1. / 5, 1. / 5, 1. / 5, 1. / 5, 1. / 5]]).reshape([1, 1, 5, 5]) self.assertAllClose(masked_weights_v, expected_masked_weights_v) def test_masking_no_memory(self): """Checks that masking disallows information flow from future to present.""" batch_size = 1 value_size = 6 num_heads = 16 hidden_size = value_size * num_heads seq_length = 3 decoder_input = tf.random_normal([batch_size, seq_length, hidden_size]) transformer = snt.nets.TransformerTower( value_size=value_size, num_heads=num_heads, num_layers=3, causal=True, shared_attention=False, output_size=hidden_size, mlp_hidden_sizes=tuple([64])) decoder_output, _ = transformer(decoder_input) # For each time step of the output sequence, compute the # derivative with respect to each component of whole input tensor. # Sum over input and output channels. gradients = [] for time_idx in range(seq_length): tf.logging.info('Creating gradient ops for time %d/%d.' % (time_idx, seq_length)) time_gradients = tf.gradients( decoder_output[0, time_idx], # Sums over output channels decoder_input)[0] gradients.append(time_gradients) gradients = tf.stack(gradients, 0) tf.logging.info('Done creating gradient ops.') with self.test_session() as session: tf.global_variables_initializer().run() tf.logging.info('Fetching gradient ops.') output_v, grad_v = session.run([decoder_output, gradients]) tf.logging.info('Done fetching gradient ops.') # Pick out the subset of derivatives which should be zero # and test for exact equality with zero. time_grad_v = np.sum( # Sum over input channels. grad_v[:, 0, :], axis=2) grad_triu = time_grad_v[np.triu_indices(seq_length, k=1)] self.assertAllEqual(grad_triu, np.zeros_like(grad_triu)) # Make sure there are no nans in the output. self.assertTrue(np.all(np.logical_not(np.isnan(output_v)))) def test_no_dropout_during_eval(self): """Checks that dropout is only applied during training, and not eval.""" batch_size = 2 sequence_length = 10 memory_size = 48 core_config = { 'key_size': 3, 'value_size': 4, 'num_heads': 5, 'num_layers': 2, 'dropout_rate': 0.5, } inputs = tf.ones([batch_size, sequence_length, 16], dtype=tf.float32) transformer_xl = snt.nets.transformer.TransformerXL( core_config, memory_size, chunk_size=sequence_length) initial_state = transformer_xl.initial_state(batch_size, dtype=inputs.dtype) eval_output, _ = transformer_xl(inputs, initial_state, is_training=False) train_output, _ = transformer_xl(inputs, initial_state, is_training=True) with self.test_session() as session: tf.global_variables_initializer().run() # Ensures dropout is being applied during training (output changes). train_out_sum = session.run(tf.reduce_sum(train_output)) train_out_sum2 = session.run(tf.reduce_sum(train_output)) self.assertNotAlmostEqual(train_out_sum, train_out_sum2) # Ensures dropout is not being applied during eval (output is same). eval_out_sum = session.run(tf.reduce_sum(eval_output)) eval_out_sum2 = session.run(tf.reduce_sum(eval_output)) self.assertAlmostEqual(eval_out_sum, eval_out_sum2) def test_zero_chunk_size(self): """Tests a chunk size of 0 corresponds to a regular RNN core.""" batch_size = 2 core_config = { 'key_size': 3, 'value_size': 4, 'num_heads': 5, 'num_layers': 2, 'dropout_rate': 0.5, } inputs = tf.ones([10, batch_size, 16], dtype=tf.float32) transformer_xl = snt.nets.transformer.TransformerXL( core_config, memory_size=8, chunk_size=0) initial_state = transformer_xl.initial_state(batch_size) output, final_state = tf.nn.dynamic_rnn( transformer_xl, inputs, time_major=True, initial_state=initial_state) with self.test_session() as session: tf.global_variables_initializer().run() session.run([output, final_state]) def test_zero_memory_size(self): """Tests a memory size of 0 corresponds to a regular RNN core.""" batch_size = 2 memory_size = 0 sequence_length = 10 core_config = { 'key_size': 3, 'value_size': 4, 'num_heads': 5, 'num_layers': 2, 'dropout_rate': 0.5, } inputs = tf.ones([batch_size, sequence_length, 16], dtype=tf.float32) transformer_xl = snt.nets.transformer.TransformerXL( core_config, memory_size=memory_size, chunk_size=sequence_length) initial_state = transformer_xl.initial_state(batch_size) output, final_state = transformer_xl(inputs, initial_state) with self.test_session() as session: tf.global_variables_initializer().run() session.run([output, final_state]) def test_dynamic_batch_size(self): """Tests operation with changing batch size.""" memory_size = 0 sequence_length = 10 core_config = { 'key_size': 3, 'value_size': 4, 'num_heads': 5, 'num_layers': 2, 'dropout_rate': 0.5, } inputs = tf.placeholder(tf.float32, shape=(None, sequence_length, 16)) batch_size = tf.shape(inputs)[0] transformer_xl = snt.nets.transformer.TransformerXL( core_config, memory_size=memory_size, chunk_size=sequence_length) initial_state = transformer_xl.initial_state(batch_size) output, final_state = transformer_xl(inputs, initial_state) with self.test_session() as session: tf.global_variables_initializer().run() batch_size_1 = 2 final_output_1, _ = session.run( [output, final_state], feed_dict={inputs: np.ones([batch_size_1, sequence_length, 16])}) self.assertAllEqual(final_output_1.shape[0], batch_size_1) batch_size_2 = 4 final_output_2, _ = session.run( [output, final_state], feed_dict={inputs: np.ones([batch_size_2, sequence_length, 16])}) self.assertAllEqual(final_output_2.shape[0], batch_size_2) class CompressiveTransformerTest(tf.test.TestCase): def test_forward(self): batch_size = 8 window_size = 18 input_size = 16 output_size = 128 num_layers = 3 key_size = 4 value_size = 6 num_heads = 16 em_memory_size = 18 cm_memory_size = 7 inputs = tf.random_normal([batch_size, window_size, input_size]) core_config = { 'value_size': value_size, 'key_size': key_size, 'num_heads': num_heads, 'num_layers': num_layers, 'causal': True, 'shared_attention': False, 'output_size': output_size, 'mlp_hidden_sizes': tuple([64]), } compressive_transformer = snt.nets.CompressiveTransformer( core_config=core_config, episodic_memory_size=em_memory_size, compressed_memory_size=cm_memory_size, chunk_size=window_size, ) initial_state = compressive_transformer.initial_state(batch_size) output, next_state = compressive_transformer(inputs, initial_state) output2, final_state = compressive_transformer(inputs, next_state) compression_loss = tf.get_collection('auxiliary_losses') self.assertAllEqual(output.get_shape().as_list(), [batch_size, window_size, output_size]) self.assertEqual(len(next_state), num_layers) self.assertEqual(len(next_state[0]), 3) # index, cm, em def check_state_size(state_list): for state in state_list: self.assertAllEqual( state.episodic_memory.get_shape().as_list(), [batch_size, em_memory_size, value_size * num_heads]) self.assertAllEqual( state.compressed_memory.get_shape().as_list(), [batch_size, cm_memory_size, value_size * num_heads]) check_state_size(next_state) check_state_size(final_state) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(output) sess.run(next_state) sess.run(output2) sess.run(final_state) compression_loss_np = sess.run(compression_loss) # Compression loss is zero because em and cm are zero. self.assertEqual(compression_loss_np[0], 0) # Compression loss is > 0 because em is populated. self.assertGreater(compression_loss_np[1], 0) if __name__ == '__main__': tf.test.main()
sonnet-1
sonnet/python/modules/nets/transformer_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import parameterized import numpy as np import sonnet as snt from sonnet.python.modules.nets import dilation import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib.eager.python import tfe as contrib_eager @contrib_eager.run_all_tests_in_graph_and_eager_modes class IdentityKernelInitializerTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters(("Rank4", [2, 2]), ("SquareFilters", [2, 3, 1, 1]), ("OddHeighAndWidth", [2, 2, 1, 1]), ("EqualInAndOutChannels", [3, 3, 2, 1])) def testInvalidShapes(self, shape): with self.assertRaises(ValueError): snt.nets.identity_kernel_initializer(shape) def testComputation(self): x = self.evaluate(snt.nets.identity_kernel_initializer([3, 3, 5, 5])) # Iterate over elements. Assert that only the middle pixel is on when in # and out channels are same. it = np.nditer(x, flags=["multi_index"]) while not it.finished: value, idx = it[0], it.multi_index (filter_height, filter_width, in_channel, out_channel) = idx if (filter_height == 1 and filter_width == 1 and in_channel == out_channel): self.assertEqual(value, 1) else: self.assertEqual(value, 0) it.iternext() @contrib_eager.run_all_tests_in_graph_and_eager_modes class NoisyIdentityKernelInitializerTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("Rank4", [2, 2]), ("SquareFilters", [2, 3, 1, 1]), ("OddHeighAndWidth", [2, 2, 1, 1]), ("InAndOutChannelsAreMultiples", [3, 3, 2, 7])) def testInvalidShapes(self, shape): with self.assertRaises(ValueError): initializer = snt.nets.noisy_identity_kernel_initializer(2) initializer(shape) def testComputation(self): tf.set_random_seed(0) initializer = snt.nets.noisy_identity_kernel_initializer(2, stddev=1e-20) x = initializer([3, 3, 4, 8]) x = tf.reduce_sum(x, axis=[3]) x_ = self.evaluate(x) # Iterate over elements. After summing over depth, assert that only the # middle pixel is on. it = np.nditer(x_, flags=["multi_index"]) while not it.finished: value, idx = it[0], it.multi_index (filter_height, filter_width, _) = idx if filter_height == 1 and filter_width == 1: self.assertAllClose(value, 1) else: self.assertAllClose(value, 0) it.iternext() @contrib_eager.run_all_tests_in_graph_and_eager_modes class DilationTest(tf.test.TestCase, parameterized.TestCase): def setUpWithNumOutputClasses(self, num_output_classes, depth=None): """Initialize Dilation module and test images. Args: num_output_classes: int. Number of output classes the dilation module should predict per pixel. depth: None or int. Input depth of image. If None, same as num_output_classes. """ self._num_output_classes = num_output_classes self._model_size = "basic" self._module = snt.nets.Dilation( num_output_classes=self._num_output_classes, model_size=self._model_size) self._batch_size = 1 self._height = self._width = 5 self._depth = depth or num_output_classes # Generate images with all-positive values. This means that so long as # convolution kernels are initialized to identity operators, applying the # network should be an identity operation (negative values get zeroed out by # ReLUs). self._rng = np.random.RandomState(0) self._images = np.abs( self._rng.randn(self._batch_size, self._height, self._width, self._depth).astype(np.float32)) @parameterized.parameters(1, 3) def testShapeInference(self, num_output_classes): self.setUpWithNumOutputClasses(num_output_classes) x = self._module(tf.convert_to_tensor(self._images)) self.assertTrue(x.get_shape().is_compatible_with( [self._batch_size, self._height, self._width, num_output_classes])) @parameterized.parameters(1, 3) def testBasicComputation(self, num_output_classes): self.setUpWithNumOutputClasses(num_output_classes) x = self._module(tf.convert_to_tensor(self._images)) # Default initialization produces an identity operator. self.evaluate(tf.global_variables_initializer()) x_ = self.evaluate(x) self.assertAllClose(x_, self._images) @parameterized.parameters(1, 3) def testLargeComputation(self, num_output_classes): self.setUpWithNumOutputClasses( num_output_classes, depth=3 * num_output_classes) self.setUpWithNumOutputClasses(num_output_classes) module = snt.nets.Dilation( num_output_classes=num_output_classes, model_size="large") x = module(tf.convert_to_tensor(self._images)) self.evaluate(tf.global_variables_initializer()) x_ = self.evaluate(x) # Default initialization produces something like an operator, but the # number of channels differs. However, summing across channels should # recover a near-identical magnitude per-pixel. self.assertAllClose( np.sum(x_, axis=3), np.sum(self._images, axis=3), atol=1e-3) def testInvalidShape(self): self.setUpWithNumOutputClasses(1) images = self._rng.randn(self._batch_size, self._height, self._width) with self.assertRaisesRegexp(snt.IncompatibleShapeError, "must have shape"): self._module(tf.convert_to_tensor(images)) def testInvalidModelSize(self): self.setUpWithNumOutputClasses(1) module = snt.nets.Dilation( num_output_classes=self._num_output_classes, model_size="invalid_model_size") with self.assertRaisesRegexp(ValueError, "Unrecognized model_size"): module(tf.convert_to_tensor(self._images)) # The other check for model_size being valid is only reached when # weight initializers are provided. We need to test this as well to get # 100% test coverage. module = snt.nets.Dilation( num_output_classes=self._num_output_classes, initializers={"w": snt.nets.noisy_identity_kernel_initializer(1)}, model_size="invalid_model_size") with self.assertRaisesRegexp(ValueError, "Unrecognized model_size"): module(tf.convert_to_tensor(self._images)) def test_properties(self): self.setUpWithNumOutputClasses(1) with self.assertRaises(snt.NotConnectedError): _ = self._module.conv_modules self._module(tf.convert_to_tensor(self._images)) self.assertEqual(type(self._module.conv_modules), list) def testInvalidRegularizationParameters(self): regularizer = contrib_layers.l1_regularizer(scale=0.5) with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): self.setUpWithNumOutputClasses(1) snt.nets.Dilation(num_output_classes=self._num_output_classes, regularizers={"not_w": regularizer}) err = "Regularizer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): self.setUpWithNumOutputClasses(1) snt.nets.Dilation(num_output_classes=self._num_output_classes, regularizers={"w": tf.zeros([1, 2, 3])}) def testRegularizersInRegularizationLosses(self): w_regularizer = contrib_layers.l1_regularizer(scale=0.5) b_regularizer = contrib_layers.l2_regularizer(scale=0.5) self.setUpWithNumOutputClasses(1) dilation_mod = snt.nets.Dilation( num_output_classes=self._num_output_classes, regularizers={"w": w_regularizer, "b": b_regularizer}) dilation_mod(tf.convert_to_tensor(self._images)) regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # There are two regularizers per level layers_number = 8 self.assertEqual(len(regularizers), 2 * layers_number) if not tf.executing_eagerly(): for i in range(0, 2 * layers_number, 2): self.assertRegexpMatches(regularizers[i].name, ".*l1_regularizer.*") self.assertRegexpMatches(regularizers[i + 1].name, ".*l2_regularizer.*") def testUtilities(self): err = "Cannot calculate range along non-existent index." with self.assertRaisesRegexp(ValueError, err): # Valid rank here would be either 0 or 1. dilation._range_along_dimension(2, [2, 4]) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/nets/dilation_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A minimal interface convolutional networks module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import six from six.moves import xrange # pylint: disable=redefined-builtin from sonnet.python.modules import base from sonnet.python.modules import batch_norm from sonnet.python.modules import batch_norm_v2 from sonnet.python.modules import conv from sonnet.python.modules import util import tensorflow.compat.v1 as tf DATA_FORMAT_NCHW = "NCHW" DATA_FORMAT_NHWC = "NHWC" SUPPORTED_2D_DATA_FORMATS = {DATA_FORMAT_NCHW, DATA_FORMAT_NHWC} def _replicate_elements(input_iterable, num_times): """Replicates entry in `input_iterable` if `input_iterable` is of length 1.""" if len(input_iterable) == 1: return (input_iterable[0],) * num_times return tuple(input_iterable) class ConvNet2D(base.AbstractModule, base.Transposable): """A 2D Convolutional Network module.""" POSSIBLE_INITIALIZER_KEYS = {"w", "b"} def __init__(self, output_channels, kernel_shapes, strides, paddings, rates=(1,), activation=tf.nn.relu, activate_final=False, normalization_ctor=None, normalization_kwargs=None, normalize_final=None, initializers=None, partitioners=None, regularizers=None, use_batch_norm=None, # Deprecated. use_bias=True, batch_norm_config=None, # Deprecated. data_format=DATA_FORMAT_NHWC, custom_getter=None, name="conv_net_2d"): """Constructs a `ConvNet2D` module. By default, neither batch normalization nor activation are applied to the output of the final layer. Args: output_channels: Iterable of output channels, as defined in `conv.Conv2D`. Output channels can be defined either as number or via a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that entries can be called when build is called. Each entry in the iterable defines properties in the corresponding convolutional layer. kernel_shapes: Iterable of kernel sizes as defined in `conv.Conv2D`; if the list contains one element only, the same kernel shape is used in each layer of the network. strides: Iterable of kernel strides as defined in `conv.Conv2D`; if the list contains one element only, the same stride is used in each layer of the network. paddings: Iterable of padding options as defined in `conv.Conv2D`. Each can be `snt.SAME`, `snt.VALID`, `snt.FULL`, `snt.CAUSAL`, `snt.REVERSE_CAUSAL` or a pair of these to use for height and width. If the Iterable contains one element only, the same padding is used in each layer of the network. rates: Iterable of dilation rates as defined in `conv.Conv2D`; if the list contains one element only, the same rate is used in each layer of the network. activation: An activation op. activate_final: Boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. normalization_ctor: Constructor to return a callable which will perform normalization at each layer. Defaults to None / no normalization. Examples of what could go here: `snt.BatchNormV2`, `snt.LayerNorm`. If a string is provided, importlib is used to convert the string to a callable, so either `snt.LayerNorm` or `"snt.LayerNorm"` can be provided. normalization_kwargs: kwargs to be provided to `normalization_ctor` when it is called. normalize_final: Whether to apply normalization after the final conv layer. Default is to take the value of activate_final. initializers: Optional dict containing ops to initialize the filters of the whole network (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters of the whole network (with key 'w') or biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. use_batch_norm: Boolean determining if batch normalization is applied after convolution. Deprecated, use `normalization_ctor` instead. use_bias: Boolean or iterable of booleans determining whether to include bias parameters in the convolutional layers. Default `True`. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. Deprecated, use `normalization_kwargs` instead. data_format: A string, one of "NCHW" or "NHWC". Specifies whether the channel dimension of the input and output is the last dimension (default, "NHWC"), or the second dimension ("NCHW"). custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. Note that this `custom_getter` will not be passed to the `transpose` method. If you want to use a custom getter with the transposed of this convolutional network, you should provide one to the `transpose` method instead. name: Name of the module. Raises: TypeError: If `output_channels` is not iterable; or if `kernel_shapes` is not iterable; or `strides` is not iterable; or `paddings` is not iterable; or if `activation` is not callable. ValueError: If `output_channels` is empty; or if `kernel_shapes` has not length 1 or `len(output_channels)`; or if `strides` has not length 1 or `len(output_channels)`; or if `paddings` has not length 1 or `len(output_channels)`; or if `rates` has not length 1 or `len(output_channels)`; or if the given data_format is not a supported format ("NHWC" or "NCHW"); or if `normalization_ctor` is provided but cannot be mapped to a callable. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. """ if not isinstance(output_channels, collections.Iterable): raise TypeError("output_channels must be iterable") output_channels = tuple(output_channels) if not isinstance(kernel_shapes, collections.Iterable): raise TypeError("kernel_shapes must be iterable") kernel_shapes = tuple(kernel_shapes) if not isinstance(strides, collections.Iterable): raise TypeError("strides must be iterable") strides = tuple(strides) if not isinstance(paddings, collections.Iterable): raise TypeError("paddings must be iterable") paddings = tuple(paddings) if not isinstance(rates, collections.Iterable): raise TypeError("rates must be iterable") rates = tuple(rates) if isinstance(use_batch_norm, collections.Iterable): raise TypeError("use_batch_norm must be a boolean. Per-layer use of " "batch normalization is not supported. Previously, a " "test erroneously suggested use_batch_norm can be an " "iterable of booleans.") super(ConvNet2D, self).__init__(name=name, custom_getter=custom_getter) if not output_channels: raise ValueError("output_channels must not be empty") self._output_channels = tuple(output_channels) self._num_layers = len(self._output_channels) self._input_shape = None if data_format not in SUPPORTED_2D_DATA_FORMATS: raise ValueError("Invalid data_format {}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) self._data_format = data_format self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) if not callable(activation): raise TypeError("Input 'activation' must be callable") self._activation = activation self._activate_final = activate_final self._kernel_shapes = _replicate_elements(kernel_shapes, self._num_layers) if len(self._kernel_shapes) != self._num_layers: raise ValueError( "kernel_shapes must be of length 1 or len(output_channels)") self._strides = _replicate_elements(strides, self._num_layers) if len(self._strides) != self._num_layers: raise ValueError( """strides must be of length 1 or len(output_channels)""") self._paddings = _replicate_elements(paddings, self._num_layers) if len(self._paddings) != self._num_layers: raise ValueError( """paddings must be of length 1 or len(output_channels)""") self._rates = _replicate_elements(rates, self._num_layers) if len(self._rates) != self._num_layers: raise ValueError( """rates must be of length 1 or len(output_channels)""") self._parse_normalization_kwargs( use_batch_norm, batch_norm_config, normalization_ctor, normalization_kwargs) if normalize_final is None: util.deprecation_warning( "normalize_final is not specified, so using the value of " "activate_final = {}. Change your code to set this kwarg explicitly. " "In the future, normalize_final will default to True.".format( activate_final)) self._normalize_final = activate_final else: # User has provided an override, so don't link to activate_final. self._normalize_final = normalize_final if isinstance(use_bias, bool): use_bias = (use_bias,) else: if not isinstance(use_bias, collections.Iterable): raise TypeError("use_bias must be either a bool or an iterable") use_bias = tuple(use_bias) self._use_bias = _replicate_elements(use_bias, self._num_layers) self._instantiate_layers() def _check_and_assign_normalization_members(self, normalization_ctor, normalization_kwargs): """Checks that the normalization constructor is callable.""" if isinstance(normalization_ctor, six.string_types): normalization_ctor = util.parse_string_to_constructor(normalization_ctor) if normalization_ctor is not None and not callable(normalization_ctor): raise ValueError( "normalization_ctor must be a callable or a string that specifies " "a callable, got {}.".format(normalization_ctor)) self._normalization_ctor = normalization_ctor self._normalization_kwargs = normalization_kwargs def _parse_normalization_kwargs(self, use_batch_norm, batch_norm_config, normalization_ctor, normalization_kwargs): """Sets up normalization, checking old and new flags.""" if use_batch_norm is not None: # Delete this whole block when deprecation is done. util.deprecation_warning( "`use_batch_norm` kwarg is deprecated. Change your code to instead " "specify `normalization_ctor` and `normalization_kwargs`.") if not use_batch_norm: # Explicitly set to False - normalization_{ctor,kwargs} has precedence. self._check_and_assign_normalization_members(normalization_ctor, normalization_kwargs or {}) else: # Explicitly set to true - new kwargs must not be used. if normalization_ctor is not None or normalization_kwargs is not None: raise ValueError( "if use_batch_norm is specified, normalization_ctor and " "normalization_kwargs must not be.") self._check_and_assign_normalization_members(batch_norm.BatchNorm, batch_norm_config or {}) else: # Old kwargs not set, this block will remain after removing old kwarg. self._check_and_assign_normalization_members(normalization_ctor, normalization_kwargs or {}) def _instantiate_layers(self): """Instantiates all the convolutional modules used in the network.""" # Here we are entering the module's variable scope to name our submodules # correctly (not to create variables). As such it's safe to not check # whether we're in the same graph. This is important if we're constructing # the module in one graph and connecting it in another (e.g. with `defun` # the module is created in some default graph, and connected to a capturing # graph in order to turn it into a graph function). with self._enter_variable_scope(check_same_graph=False): self._layers = tuple(conv.Conv2D(name="conv_2d_{}".format(i), # pylint: disable=g-complex-comprehension output_channels=self._output_channels[i], kernel_shape=self._kernel_shapes[i], stride=self._strides[i], rate=self._rates[i], padding=self._paddings[i], use_bias=self._use_bias[i], initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format) for i in xrange(self._num_layers)) def _build(self, inputs, **normalization_build_kwargs): """Assembles the `ConvNet2D` and connects it to the graph. Args: inputs: A 4D Tensor of shape `[batch_size, input_height, input_width, input_channels]`. **normalization_build_kwargs: kwargs passed to the normalization module at _build time. Returns: A 4D Tensor of shape `[batch_size, output_height, output_width, output_channels[-1]]`. Raises: ValueError: If `is_training` is not explicitly specified when using batch normalization. """ if (self._normalization_ctor in {batch_norm.BatchNorm, batch_norm_v2.BatchNormV2} and "is_training" not in normalization_build_kwargs): raise ValueError("Boolean is_training flag must be explicitly specified " "when using batch normalization.") self._input_shape = tuple(inputs.get_shape().as_list()) net = inputs final_index = len(self._layers) - 1 for i, layer in enumerate(self._layers): net = layer(net) if i != final_index or self._normalize_final: if self._normalization_ctor is not None: # The name 'batch_norm' is used even if something else like # LayerNorm is being used. This is to avoid breaking old checkpoints. normalizer = self._normalization_ctor( name="batch_norm_{}".format(i), **self._normalization_kwargs) net = normalizer( net, **util.remove_unsupported_kwargs( normalizer, normalization_build_kwargs)) else: if normalization_build_kwargs: tf.logging.warning( "No normalization configured, but extra kwargs " "provided: {}".format(normalization_build_kwargs)) if i != final_index or self._activate_final: net = self._activation(net) return net @property def layers(self): """Returns a tuple containing the convolutional layers of the network.""" return self._layers @property def initializers(self): return self._initializers @property def partitioners(self): return self._partitioners @property def regularizers(self): return self._regularizers @property def strides(self): return self._strides @property def paddings(self): return self._paddings @property def rates(self): return self._rates @property def kernel_shapes(self): return self._kernel_shapes @property def output_channels(self): return tuple([l() if callable(l) else l for l in self._output_channels]) @property def use_bias(self): return self._use_bias @property def use_batch_norm(self): util.deprecation_warning( "The `.use_batch_norm` property is deprecated. Check " "`.normalization_ctor` instead.") return self._normalization_ctor == batch_norm.BatchNorm @property def batch_norm_config(self): util.deprecation_warning( "The `.batch_norm_config` property is deprecated. Check " "`.normalization_kwargs` instead.") return self._normalization_kwargs @property def normalization_ctor(self): return self._normalization_ctor @property def normalization_kwargs(self): return self._normalization_kwargs @property def normalize_final(self): return self._normalize_final @property def activation(self): return self._activation @property def activate_final(self): return self._activate_final # Implements Transposable interface. @property def input_shape(self): """Returns shape of input `Tensor` passed at last call to `build`.""" self._ensure_is_connected() return self._input_shape def _transpose(self, transpose_constructor, name=None, output_channels=None, kernel_shapes=None, strides=None, paddings=None, activation=None, activate_final=None, normalization_ctor=None, normalization_kwargs=None, normalize_final=None, initializers=None, partitioners=None, regularizers=None, use_bias=None, data_format=None): """Returns transposed version of this network. Args: transpose_constructor: A method that creates an instance of the transposed network type. The method must accept the same kwargs as this methods with the exception of the `transpose_constructor` argument. name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. output_channels: Optional iterable of numbers of output channels. kernel_shapes: Optional iterable of kernel sizes. The default value is constructed by reversing `self.kernel_shapes`. strides: Optional iterable of kernel strides. The default value is constructed by reversing `self.strides`. paddings: Optional iterable of padding options, either `snt.SAME` or `snt.VALID`; The default value is constructed by reversing `self.paddings`. activation: Optional activation op. Default value is `self.activation`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. normalization_ctor: Constructor to return a callable which will perform normalization at each layer. Defaults to None / no normalization. Examples of what could go here: `snt.BatchNormV2`, `snt.LayerNorm`. If a string is provided, importlib is used to convert the string to a callable, so either `snt.LayerNorm` or `"snt.LayerNorm"` can be provided. normalization_kwargs: kwargs to be provided to `normalization_ctor` when it is called. normalize_final: Whether to apply normalization after the final conv layer. Default is to take the value of activate_final. initializers: Optional dict containing ops to initialize the filters of the whole network (with key 'w') or biases (with key 'b'). The default value is `self.initializers`. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). The default value is `self.partitioners`. regularizers: Optional dict containing regularizers for the filters of the whole network (with key 'w') or biases (with key 'b'). The default is `self.regularizers`. use_bias: Optional boolean or iterable of booleans determining whether to include bias parameters in the convolutional layers. Default is constructed by reversing `self.use_bias`. data_format: Optional string, one of "NCHW" or "NHWC". Specifies whether the channel dimension of the input and output is the last dimension. Default is `self._data_format`. Returns: Matching transposed module. Raises: ValueError: If output_channels is specified and its length does not match the number of layers. """ if data_format is None: data_format = self._data_format if output_channels is None: output_channels = [] channel_dim = -1 if data_format == DATA_FORMAT_NHWC else 1 for layer in reversed(self._layers): output_channels.append(lambda l=layer: l.input_shape[channel_dim]) elif len(output_channels) != len(self._layers): # Note that we only have to do this check for the output channels. Any # other inconsistencies will be picked up by ConvNet2D.__init__. raise ValueError("Iterable output_channels length must match the " "number of layers ({}), but is {} instead.".format( len(self._layers), len(output_channels))) if kernel_shapes is None: kernel_shapes = reversed(self.kernel_shapes) if strides is None: strides = reversed(self.strides) if paddings is None: paddings = reversed(self.paddings) if activation is None: activation = self.activation if activate_final is None: activate_final = self.activate_final if normalization_ctor is None: normalization_ctor = self.normalization_ctor if normalization_kwargs is None: normalization_kwargs = self.normalization_kwargs if normalize_final is None: normalize_final = self.normalize_final if initializers is None: initializers = self.initializers if partitioners is None: partitioners = self.partitioners if regularizers is None: regularizers = self.regularizers if use_bias is None: use_bias = reversed(self.use_bias) if name is None: name = self.module_name + "_transpose" return transpose_constructor( output_channels=output_channels, kernel_shapes=kernel_shapes, strides=strides, paddings=paddings, activation=activation, activate_final=activate_final, normalization_ctor=normalization_ctor, normalization_kwargs=normalization_kwargs, normalize_final=normalize_final, initializers=initializers, partitioners=partitioners, regularizers=regularizers, use_bias=use_bias, data_format=data_format, name=name) # Implements Transposable interface. def transpose(self, name=None, output_channels=None, kernel_shapes=None, strides=None, paddings=None, activation=None, activate_final=None, normalization_ctor=None, normalization_kwargs=None, normalize_final=None, initializers=None, partitioners=None, regularizers=None, use_batch_norm=None, use_bias=None, batch_norm_config=None, data_format=None, custom_getter=None): """Returns transposed version of this network. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. output_channels: Optional iterable of numbers of output channels. kernel_shapes: Optional iterable of kernel sizes. The default value is constructed by reversing `self.kernel_shapes`. strides: Optional iterable of kernel strides. The default value is constructed by reversing `self.strides`. paddings: Optional iterable of padding options, either `snt.SAME` or `snt.VALID`; The default value is constructed by reversing `self.paddings`. activation: Optional activation op. Default value is `self.activation`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. normalization_ctor: Constructor to return a callable which will perform normalization at each layer. Defaults to None / no normalization. Examples of what could go here: `snt.BatchNormV2`, `snt.LayerNorm`. If a string is provided, importlib is used to convert the string to a callable, so either `snt.LayerNorm` or `"snt.LayerNorm"` can be provided. normalization_kwargs: kwargs to be provided to `normalization_ctor` when it is called. normalize_final: Whether to apply normalization after the final conv layer. Default is to take the value of activate_final. initializers: Optional dict containing ops to initialize the filters of the whole network (with key 'w') or biases (with key 'b'). The default value is `self.initializers`. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). The default value is `self.partitioners`. regularizers: Optional dict containing regularizers for the filters of the whole network (with key 'w') or biases (with key 'b'). The default is `self.regularizers`. use_batch_norm: Optional boolean determining if batch normalization is applied after convolution. The default value is `self.use_batch_norm`. use_bias: Optional boolean or iterable of booleans determining whether to include bias parameters in the convolutional layers. Default is constructed by reversing `self.use_bias`. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. Default is `self.batch_norm_config`. data_format: Optional string, one of "NCHW" or "NHWC". Specifies whether the channel dimension of the input and output is the last dimension. Default is `self._data_format`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. Returns: Matching `ConvNet2DTranspose` module. Raises: ValueError: If output_channels is specified and its length does not match the number of layers. ValueError: If the given data_format is not a supported format ("NHWC" or "NCHW"). NotImplementedError: If the convolutions are dilated. """ for rate in self._rates: if rate != 1: raise NotImplementedError("Transpose dilated convolutions " "are not supported") output_shapes = [] if data_format is None: data_format = self._data_format if data_format == DATA_FORMAT_NHWC: start_dim, end_dim = 1, -1 elif data_format == DATA_FORMAT_NCHW: start_dim, end_dim = 2, 4 else: raise ValueError("Invalid data_format {:s}. Allowed formats " "{}".format(data_format, SUPPORTED_2D_DATA_FORMATS)) if custom_getter is None and self._custom_getter is not None: tf.logging.warning( "This convnet was constructed with a custom getter, but the " "`transpose` method was not given any. The transposed ConvNet will " "not be using any custom_getter.") for layer in reversed(self._layers): output_shapes.append(lambda l=layer: l.input_shape[start_dim:end_dim]) transpose_constructor = functools.partial(ConvNet2DTranspose, output_shapes=output_shapes, custom_getter=custom_getter) return self._transpose( transpose_constructor=transpose_constructor, name=name, output_channels=output_channels, kernel_shapes=kernel_shapes, strides=strides, paddings=paddings, activation=activation, activate_final=activate_final, normalization_ctor=normalization_ctor, normalization_kwargs=normalization_kwargs, normalize_final=normalize_final, initializers=initializers, partitioners=partitioners, regularizers=regularizers, use_bias=use_bias, data_format=data_format) class ConvNet2DTranspose(ConvNet2D): """A 2D Transpose-Convolutional Network module.""" def __init__(self, output_channels, output_shapes, kernel_shapes, strides, paddings, activation=tf.nn.relu, activate_final=False, normalization_ctor=None, normalization_kwargs=None, normalize_final=None, initializers=None, partitioners=None, regularizers=None, use_batch_norm=False, use_bias=True, batch_norm_config=None, data_format=DATA_FORMAT_NHWC, custom_getter=None, name="conv_net_2d_transpose"): """Constructs a `ConvNetTranspose2D` module. `output_{shapes,channels}` can be defined either as iterable of {iterables,integers} or via a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that entries can be called returning meaningful values when build is called. Each entry in the iterable defines properties in the corresponding convolutional layer. By default, neither batch normalization nor activation are applied to the output of the final layer. Args: output_channels: Iterable of numbers of output channels. output_shapes: Iterable of output shapes as defined in `conv.conv2DTranpose`; if the iterable contains one element only, the same shape is used in each layer of the network. kernel_shapes: Iterable of kernel sizes as defined in `conv.Conv2D`; if the list contains one element only, the same kernel shape is used in each layer of the network. strides: Iterable of kernel strides as defined in `conv.Conv2D`; if the list contains one element only, the same stride is used in each layer of the network. paddings: Iterable of padding options, either `snt.SAME` or `snt.VALID`; if the Iterable contains one element only, the same padding is used in each layer of the network. activation: An activation op. activate_final: Boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. normalization_ctor: Constructor to return a callable which will perform normalization at each layer. Defaults to None / no normalization. Examples of what could go here: `snt.BatchNormV2`, `snt.LayerNorm`. If a string is provided, importlib is used to convert the string to a callable, so either `snt.LayerNorm` or `"snt.LayerNorm"` can be provided. normalization_kwargs: kwargs to be provided to `normalization_ctor` when it is called. normalize_final: Whether to apply normalization after the final conv layer. Default is to take the value of activate_final. initializers: Optional dict containing ops to initialize the filters of the whole network (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters of the whole network (with key 'w') or biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. use_batch_norm: Boolean determining if batch normalization is applied after convolution. use_bias: Boolean or iterable of booleans determining whether to include bias parameters in the convolutional layers. Default `True`. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. data_format: A string, one of "NCHW" or "NHWC". Specifies whether the channel dimension of the input and output is the last dimension (default, "NHWC"), or the second dimension ("NCHW"). custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: TypeError: If `output_channels` is not iterable; or if `output_shapes` is not iterable; or if `kernel_shapes` is not iterable; or if `strides` is not iterable; or if `paddings` is not iterable; or if `activation` is not callable. ValueError: If `output_channels` is empty; or if `kernel_shapes` has not length 1 or `len(output_channels)`; or if `strides` has not length 1 or `len(output_channels)`; or if `paddings` has not length 1 or `len(output_channels)`. ValueError: If the given data_format is not a supported format ("NHWC" or "NCHW"). ValueError: If `normalization_ctor` is provided but cannot be converted to a callable. KeyError: If `initializers`, `partitioners` or `regularizers` contain any keys other than 'w' or 'b'. TypeError: If any of the given initializers, partitioners or regularizers are not callable. """ if not isinstance(output_channels, collections.Iterable): raise TypeError("output_channels must be iterable") output_channels = tuple(output_channels) num_layers = len(output_channels) if not isinstance(output_shapes, collections.Iterable): raise TypeError("output_shapes must be iterable") output_shapes = tuple(output_shapes) self._output_shapes = _replicate_elements(output_shapes, num_layers) if len(self._output_shapes) != num_layers: raise ValueError( "output_shapes must be of length 1 or len(output_channels)") super(ConvNet2DTranspose, self).__init__( output_channels, kernel_shapes, strides, paddings, activation=activation, activate_final=activate_final, normalization_ctor=normalization_ctor, normalization_kwargs=normalization_kwargs, normalize_final=normalize_final, initializers=initializers, partitioners=partitioners, regularizers=regularizers, use_batch_norm=use_batch_norm, use_bias=use_bias, batch_norm_config=batch_norm_config, data_format=data_format, custom_getter=custom_getter, name=name) def _instantiate_layers(self): """Instantiates all the convolutional modules used in the network.""" # See `ConvNet2D._instantiate_layers` for more information about why we are # using `check_same_graph=False`. with self._enter_variable_scope(check_same_graph=False): self._layers = tuple( conv.Conv2DTranspose(name="conv_2d_transpose_{}".format(i), # pylint: disable=g-complex-comprehension output_channels=self._output_channels[i], output_shape=self._output_shapes[i], kernel_shape=self._kernel_shapes[i], stride=self._strides[i], padding=self._paddings[i], initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, use_bias=self._use_bias[i]) for i in xrange(self._num_layers)) @property def output_shapes(self): return tuple([l() if callable(l) else l for l in self._output_shapes]) # Implements Transposable interface. def transpose(self, name=None, output_channels=None, kernel_shapes=None, strides=None, paddings=None, activation=None, activate_final=None, normalization_ctor=None, normalization_kwargs=None, normalize_final=None, initializers=None, partitioners=None, regularizers=None, use_batch_norm=None, use_bias=None, batch_norm_config=None, data_format=None, custom_getter=None): """Returns transposed version of this network. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. output_channels: Optional iterable of numbers of output channels. kernel_shapes: Optional iterable of kernel sizes. The default value is constructed by reversing `self.kernel_shapes`. strides: Optional iterable of kernel strides. The default value is constructed by reversing `self.strides`. paddings: Optional iterable of padding options, either `snt.SAME` or `snt.VALID`; The default value is constructed by reversing `self.paddings`. activation: Optional activation op. Default value is `self.activation`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. normalization_ctor: Constructor to return a callable which will perform normalization at each layer. Defaults to None / no normalization. Examples of what could go here: `snt.BatchNormV2`, `snt.LayerNorm`. If a string is provided, importlib is used to convert the string to a callable, so either `snt.LayerNorm` or `"snt.LayerNorm"` can be provided. normalization_kwargs: kwargs to be provided to `normalization_ctor` when it is called. normalize_final: Whether to apply normalization after the final conv layer. Default is to take the value of activate_final. initializers: Optional dict containing ops to initialize the filters of the whole network (with key 'w') or biases (with key 'b'). The default value is `self.initializers`. partitioners: Optional dict containing partitioners to partition weights (with key 'w') or biases (with key 'b'). The default value is `self.partitioners`. regularizers: Optional dict containing regularizers for the filters of the whole network (with key 'w') or biases (with key 'b'). The default is `self.regularizers`. use_batch_norm: Optional boolean determining if batch normalization is applied after convolution. The default value is `self.use_batch_norm`. use_bias: Optional boolean or iterable of booleans determining whether to include bias parameters in the convolutional layers. Default is constructed by reversing `self.use_bias`. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. Default is `self.batch_norm_config`. data_format: Optional string, one of "NCHW" or "NHWC". Specifies whether the channel dimension of the input and output is the last dimension. Default is `self._data_format`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. Returns: Matching `ConvNet2D` module. Raises: ValueError: If output_channels is specified and its length does not match the number of layers. """ if use_batch_norm is not None: if normalization_ctor is not None or normalization_kwargs is not None: raise ValueError( "If use_batch_norm is specified, normalization_ctor and " "normalization_kwargs must not be.") if use_batch_norm: normalization_ctor = batch_norm.BatchNorm else: normalization_ctor = None normalization_kwargs = batch_norm_config if custom_getter is None and self._custom_getter is not None: tf.logging.warning( "This convnet was constructed with a custom getter, but the " "`transpose` method was not given any. The transposed ConvNet will " "not be using any custom_getter.") transpose_constructor = functools.partial(ConvNet2D, custom_getter=custom_getter) return self._transpose( transpose_constructor=transpose_constructor, name=name, output_channels=output_channels, kernel_shapes=kernel_shapes, strides=strides, paddings=paddings, activation=activation, activate_final=activate_final, normalization_ctor=normalization_ctor, normalization_kwargs=normalization_kwargs, normalize_final=normalize_final, initializers=initializers, partitioners=partitioners, regularizers=regularizers, use_bias=use_bias, data_format=data_format)
sonnet-1
sonnet/python/modules/nets/convnet.py
# Copyright 2018 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.python.modules.nets.vqvae.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf class VqvaeTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (snt.nets.VectorQuantizer, {'embedding_dim': 4, 'num_embeddings': 8, 'commitment_cost': 0.25}), (snt.nets.VectorQuantizerEMA, {'embedding_dim': 6, 'num_embeddings': 13, 'commitment_cost': 0.5, 'decay': 0.1}) ) def testConstruct(self, constructor, kwargs): vqvae = constructor(**kwargs) # Batch of input vectors to quantize inputs_np = np.random.randn(16, kwargs['embedding_dim']).astype(np.float32) inputs = tf.constant(inputs_np) # Set is_training to False, otherwise for the EMA case just evaluating the # forward pass will change the embeddings, meaning that some of our computed # closest embeddings will be incorrect. vq_output = vqvae(inputs, is_training=False) # Output shape is correct self.assertEqual(vq_output['quantize'].shape, inputs.shape) init_op = tf.global_variables_initializer() with self.test_session() as session: session.run(init_op) vq_output_np, embeddings_np = session.run([vq_output, vqvae.embeddings]) self.assertEqual(embeddings_np.shape, (kwargs['embedding_dim'], kwargs['num_embeddings'])) # Check that each input was assigned to the embedding it is closest to. distances = ((inputs_np ** 2).sum(axis=1, keepdims=True) - 2 * np.dot(inputs_np, embeddings_np) + (embeddings_np**2).sum(axis=0, keepdims=True)) closest_index = np.argmax(-distances, axis=1) self.assertAllEqual(closest_index, np.argmax(vq_output_np['encodings'], axis=1)) @parameterized.parameters( (snt.nets.VectorQuantizer, {'embedding_dim': 4, 'num_embeddings': 8, 'commitment_cost': 0.25}), (snt.nets.VectorQuantizerEMA, {'embedding_dim': 6, 'num_embeddings': 13, 'commitment_cost': 0.5, 'decay': 0.1}) ) def testShapeChecking(self, constructor, kwargs): vqvae = constructor(**kwargs) wrong_shape_input = np.random.randn(100, kwargs['embedding_dim'] * 2) with self.assertRaisesRegexp(ValueError, 'Cannot reshape a tensor'): vqvae(tf.constant(wrong_shape_input.astype(np.float32)), is_training=False) @parameterized.parameters( (snt.nets.VectorQuantizer, {'embedding_dim': 4, 'num_embeddings': 8, 'commitment_cost': 0.25}), (snt.nets.VectorQuantizerEMA, {'embedding_dim': 6, 'num_embeddings': 13, 'commitment_cost': 0.5, 'decay': 0.1}) ) def testNoneBatch(self, constructor, kwargs): """Check that vqvae can be built on input with a None batch dimension.""" vqvae = constructor(**kwargs) inputs = tf.placeholder(tf.float32, (None, 5, 5, kwargs['embedding_dim'])) vqvae(inputs, is_training=False) def testEmaUpdating(self): embedding_dim = 6 vqvae = snt.nets.VectorQuantizerEMA( embedding_dim=embedding_dim, num_embeddings=7, commitment_cost=0.5, decay=0.1) batch_size = 16 input_ph = tf.placeholder(shape=[batch_size, embedding_dim], dtype=tf.float32) output = vqvae(input_ph, is_training=True) embeddings = vqvae.embeddings init_op = tf.global_variables_initializer() with self.test_session() as session: session.run(init_op) # embedding should change every time we put some data through, even though # we are not passing any gradients through. prev_w = session.run(embeddings) for _ in range(10): session.run(output, {input_ph: np.random.randn(batch_size, embedding_dim)}) current_w = session.run(embeddings) self.assertFalse((prev_w == current_w).all()) prev_w = current_w if __name__ == '__main__': tf.test.main()
sonnet-1
sonnet/python/modules/nets/vqvae_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test sonnet.python.modules.nets.convnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import itertools # Dependency imports from absl.testing import parameterized import numpy as np import sonnet as snt from sonnet.python.modules.conv import _fill_shape as fill_shape import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib.eager.python import tfe as contrib_eager from tensorflow.python.ops import variables # pylint: disable=g-direct-tensorflow-import @contrib_eager.run_all_tests_in_graph_and_eager_modes class SharedConvNets2DTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super(SharedConvNets2DTest, self).setUp() self.output_channels = [2, 3, 4] self.kernel_shapes = [[3, 3]] self.strides = [1] self.rates = [1, 2, 1] self.paddings = [snt.SAME] @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testName(self, module): unique_name = "unique_name" with tf.variable_scope("scope"): net = module(name=unique_name, output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) self.assertEqual(net.scope_name, "scope/" + unique_name) self.assertEqual(net.module_name, unique_name) @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testConstructor(self, module): with self.assertRaisesRegexp(ValueError, "output_channels must not be empty"): module(output_channels=[], kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) with self.assertRaisesRegexp(ValueError, "kernel_shapes must be of length 1 or *"): module(output_channels=self.output_channels, kernel_shapes=[], strides=self.strides, paddings=self.paddings) with self.assertRaisesRegexp(ValueError, "kernel_shapes must be of length 1 or *"): module(output_channels=self.output_channels, kernel_shapes=[1, 2], strides=self.strides, paddings=self.paddings) with self.assertRaisesRegexp(ValueError, "strides must be of length 1 or *"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=[], paddings=self.paddings) with self.assertRaisesRegexp(ValueError, "strides must be of length 1 or *"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=[1, 1], paddings=self.paddings) with self.assertRaisesRegexp(ValueError, "paddings must be of length 1 or *"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.paddings, paddings=[]) with self.assertRaisesRegexp(ValueError, "paddings must be of length 1 or *"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=[snt.SAME, snt.SAME]) with self.assertRaisesRegexp(KeyError, "Invalid initializer keys.*"): module( output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, initializers={"not_w": tf.truncated_normal_initializer(stddev=1.0)}) with self.assertRaisesRegexp(TypeError, "Initializer for 'w' is not a callable " "function or dictionary"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, initializers={"w": tf.zeros([1, 2, 3])}) with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): module( output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, regularizers={"not_w": contrib_layers.l1_regularizer(scale=0.5)}) with self.assertRaisesRegexp(TypeError, "Regularizer for 'w' is not a callable " "function or dictionary"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, regularizers={"w": tf.zeros([1, 2, 3])}) with self.assertRaisesRegexp(TypeError, "Input 'activation' must be callable"): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, activation="not_a_function") err = "output_channels must be iterable" with self.assertRaisesRegexp(TypeError, err): module(output_channels=42, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) err = "kernel_shapes must be iterable" with self.assertRaisesRegexp(TypeError, err): module(output_channels=self.output_channels, kernel_shapes=None, strides=self.strides, paddings=self.paddings) err = "strides must be iterable" with self.assertRaisesRegexp(TypeError, err): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=True, paddings=self.paddings) err = "paddings must be iterable" with self.assertRaisesRegexp(TypeError, err): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=lambda x: x + 42) err = "use_bias must be either a bool or an iterable" with self.assertRaisesRegexp(TypeError, err): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_bias=2) err = "use_batch_norm must be a boolean" with self.assertRaisesRegexp(TypeError, err): module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_batch_norm=[True]) err = "Invalid data_format" # Also checks that the error works with non-string types for data_format in ["NHCW", 3]: with self.assertRaisesRegexp(ValueError, err): module( output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, data_format=data_format) @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testBatchNormBuildFlag(self, module): model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_batch_norm=True) self.assertTrue(model.use_batch_norm) input_to_net = tf.random_normal(dtype=tf.float32, shape=(1, 100, 100, 3)) # Check that an error is raised if we don't specify the is_training flag err = "is_training flag must be explicitly specified" with self.assertRaisesRegexp(ValueError, err): model(input_to_net) @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testBatchNorm(self, module): model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_batch_norm=True) self.assertTrue(model.use_batch_norm) input_to_net = tf.random_normal(dtype=tf.float32, shape=(1, 100, 100, 3)) # Check Tensorflow flags work is_training = tf.constant(False) test_local_stats = tf.constant(False) model(input_to_net, is_training=is_training, test_local_stats=test_local_stats) # Check Python is_training flag works model(input_to_net, is_training=False, test_local_stats=False) model_variables = model.get_variables() self.assertLen(model_variables, len(self.output_channels) * 3 - 1) # Check that the appropriate moving statistics variables have been created. self.assertTrue( any("moving_variance" in var.name for var in tf.global_variables())) self.assertTrue( any("moving_mean" in var.name for var in tf.global_variables())) @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testBatchNormConfig(self, module): batch_norm_config = { "scale": True, } model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_batch_norm=True, batch_norm_config=batch_norm_config) input_to_net = tf.random_normal(dtype=tf.float32, shape=(1, 100, 100, 3)) model(input_to_net, is_training=True) model_variables = model.get_variables() self.assertLen(model_variables, len(self.output_channels) * 4 - 2) @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testNoBias(self, module): model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_bias=False) self.assertEqual(model.use_bias, (False,) * len(self.output_channels)) input_to_net = tf.random_normal(dtype=tf.float32, shape=(1, 100, 100, 3)) model(input_to_net) model_variables = model.get_variables() self.assertLen(model_variables, len(self.output_channels)) @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testNoBiasIterable(self, module): use_bias = (True,) * (len(self.output_channels) - 1) + (False,) model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_bias=use_bias) actual_use_biases = tuple(layer.has_bias for layer in model.layers) self.assertEqual(model.use_bias, actual_use_biases) self.assertEqual(use_bias, actual_use_biases) model_transpose = model.transpose() actual_use_biases = tuple(layer.has_bias for layer in model_transpose.layers) self.assertEqual(model_transpose.use_bias, actual_use_biases) self.assertEqual(tuple(reversed(use_bias)), actual_use_biases) @parameterized.named_parameters(("ConvNet2DNoBias", False, False), ("ConvNet2DBias", False, True), ("ConvNet2DTransposeNoBias", True, False), ("ConvNet2DTransposeBias", True, True)) def testRegularizersInRegularizationLosses(self, transpose, use_bias): if transpose: module = functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]) else: module = snt.nets.ConvNet2D if use_bias: regularizers = { "w": contrib_layers.l1_regularizer(scale=0.5), "b": contrib_layers.l2_regularizer(scale=0.5) } else: regularizers = {"w": contrib_layers.l1_regularizer(scale=0.5)} model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, use_bias=use_bias, regularizers=regularizers) input_to_net = tf.random_normal(dtype=tf.float32, shape=(1, 100, 100, 3)) model(input_to_net) regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) expected_num_regularizers = 3 * (2 if use_bias else 1) self.assertLen(regularizers, expected_num_regularizers) if not tf.executing_eagerly(): self.assertRegexpMatches(regularizers[0].name, ".*l1_regularizer.*") if use_bias: self.assertRegexpMatches(regularizers[1].name, ".*l2_regularizer.*") @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D, False), ("ConvNet2DFinal", snt.nets.ConvNet2D, True), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]), False), ("ConvNet2DTransposeFinal", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]), True)) def testActivateFinal(self, module, activate_final): model = module(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, activate_final=activate_final, use_batch_norm=True, use_bias=False) self.assertEqual(activate_final, model.activate_final) input_to_net = tf.random_normal(dtype=tf.float32, shape=(1, 100, 100, 3)) model(input_to_net, is_training=True) model_variables = model.get_variables() # Batch norm variable missing for final activation if activate_final: self.assertLen(model_variables, len(self.output_channels) * 2) else: self.assertLen(model_variables, len(self.output_channels) * 2 - 1) # Test transpose method's activate_final arg. transposed_model_activate_final = model.transpose(activate_final=True) transposed_model_no_activate_final = model.transpose(activate_final=False) transposed_model_inherit_activate_final = model.transpose() self.assertEqual(True, transposed_model_activate_final.activate_final) self.assertEqual(False, transposed_model_no_activate_final.activate_final) self.assertEqual(model.activate_final, transposed_model_inherit_activate_final.activate_final) @parameterized.parameters( *itertools.product( [snt.nets.ConvNet2D, functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]])], ["kernel_shapes", "strides", "paddings", "activation", "initializers", "partitioners", "regularizers", "use_bias", "batch_norm_config"])) def testTransposeDefaultParameter(self, module, param_name): """Tests if .transpose correctly chooses the default parameters. Args: module: The conv net class. param_name: The name of the parameter to test. """ # For these parameters, the expected values are their reversed values expected_reversed = ["kernel_shapes", "strides", "paddings", "use_bias"] # We have to choose asymmetric parameter values here in order for the test # to be effective. This is why we don't take the default ones. model = module(output_channels=[2, 3, 4], kernel_shapes=[[3, 3], [5, 5], [7, 7]], strides=[[1, 1], [2, 2], [3, 3]], paddings=[snt.SAME, snt.SAME, snt.VALID], use_bias=[True, True, False]) # We don't pass the parameter on to .transpose, None should be the default transpose_model = model.transpose() if param_name in expected_reversed: self.assertEqual(tuple(reversed(getattr(model, param_name))), getattr(transpose_model, param_name)) else: self.assertEqual(getattr(model, param_name), getattr(transpose_model, param_name)) @parameterized.parameters( *itertools.product( [snt.nets.ConvNet2D, functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]])], [("kernel_shapes", [[3, 3], [3, 3], [3, 3]]), ("strides", [[1, 1], [1, 1], [1, 1]]), ("paddings", [snt.SAME, snt.SAME, snt.SAME]), ("activation", tf.nn.tanh), ("initializers", {}), ("partitioners", {}), ("regularizers", {}), ("use_bias", [True, True, True]), ("normalization_ctor", snt.BatchNorm)])) def testTransposePassThroughParameter(self, module, param_name_and_value): """Tests if .transpose correctly passes through the given parameters. Args: module: The conv net class. param_name_and_value: Tuple consisting of the parameter name and value. """ param_name, param_value = param_name_and_value # The given parameter values are all for three-layer networks. Changing # the default parameters would therefore break this test. Thus, we choose # fixed/independent parameters. model = module(output_channels=[2, 3, 4], kernel_shapes=[[3, 3], [5, 5], [7, 7]], strides=[[1, 1], [2, 2], [3, 3]], paddings=[snt.SAME, snt.SAME, snt.VALID], use_bias=[True, True, False]) transpose_model = model.transpose(**{param_name: param_value}) if isinstance(param_value, collections.Mapping): self.assertDictEqual(param_value, getattr(transpose_model, param_name)) elif isinstance(param_value, collections.Iterable): self.assertCountEqual(param_value, getattr(transpose_model, param_name)) else: self.assertEqual(param_value, getattr(transpose_model, param_name)) @parameterized.named_parameters( ("ConvNet2DNHWC", snt.nets.ConvNet2D, "NHWC"), ("ConvNet2DNCHW", snt.nets.ConvNet2D, "NCHW"), ("ConvNet2DTransposeNHWC", functools.partial( snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]), "NHWC"), ("ConvNet2DTransposeNCHW", functools.partial( snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]), "NCHW"),) def testDataFormat(self, module, data_format): net = module( output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, data_format=data_format) input_height, input_width, input_channels = 100, 100, 3 batch_size = 10 final_channel = self.output_channels[-1] if data_format == "NHWC": input_shape = [batch_size, input_height, input_width, input_channels] expected_output_shape = [ batch_size, input_height, input_width, final_channel ] else: input_shape = [batch_size, input_channels, input_height, input_width] expected_output_shape = [ batch_size, final_channel, input_height, input_width ] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) if tf.executing_eagerly() and data_format == "NCHW": if module == snt.nets.ConvNet2D: expected_exception = tf.errors.UnimplementedError else: expected_exception = tf.errors.InvalidArgumentError with self.assertRaisesRegexp(expected_exception, "only supports.*NHWC"): output = net(input_to_net) else: output = net(input_to_net) self.assertEqual(output.get_shape().as_list(), expected_output_shape) @parameterized.parameters( # Regular Layer Normalization {"conv_ctor": snt.nets.ConvNet2D, "norm_ctor": "snt.LayerNorm", "norm_kwargs": {"scale": False, "offset": False}}, {"conv_ctor": functools.partial( snt.nets.ConvNet2DTranspose, output_shapes=[[48, 64]]), "norm_ctor": snt.LayerNorm, "norm_kwargs": {"scale": False, "offset": False}}, # Instance normalization: sum over spatial dimensions but not channels. {"conv_ctor": snt.nets.ConvNet2D, "norm_ctor": "LayerNorm", "norm_kwargs": {"scale": False, "offset": False, "axis": [1, 2]}}, {"conv_ctor": functools.partial( snt.nets.ConvNet2DTranspose, output_shapes=[[48, 64]]), "norm_ctor": snt.LayerNorm, "norm_kwargs": {"scale": False, "offset": False, "axis": [1, 2]}}, ) def testNormalizations(self, conv_ctor, norm_ctor, norm_kwargs): if tf.executing_eagerly(): self.skipTest("Cannot test normalization correctness in Eager.") module = conv_ctor( output_channels=[16, 16], kernel_shapes=(3,), strides=(1,), paddings=("SAME",), normalization_ctor=norm_ctor, normalization_kwargs=norm_kwargs, normalize_final=True, activate_final=False) # No final activation, that would un-normalize. inputs = tf.random_uniform([16, 48, 64, 3]) output = module(inputs) with tf.train.SingularMonitoredSession() as session: output_np = session.run(output) # Convert the output into something where all the dimensions that should be # jointly normalized are combined to be on axis=1. if "axis" in norm_kwargs and norm_kwargs["axis"] == [1, 2]: # Check for instance normalization - combine spatial dimensions. output_np = np.reshape(output_np, [16, -1, 3]) else: # Check for layer normalization - combine all non-batch dimensions. output_np = np.reshape(output_np, [16, -1]) mean = np.mean(output_np, axis=1) std_dev = np.std(output_np, axis=1) # High tolerance - summing across big images, this normalization is fairly # approximate. self.assertAllClose(mean, np.zeros_like(mean), atol=3e-2) self.assertAllClose(std_dev, np.ones_like(std_dev), atol=2e-2) @parameterized.parameters( (snt.nets.ConvNet2D, {"use_batch_norm": True, "normalization_ctor": snt.LayerNorm}, ValueError, "if use_batch_norm is specified"), (functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[48, 64]]), {"use_batch_norm": True, "normalization_ctor": "LayerNorm"}, ValueError, "if use_batch_norm is specified"),) def testNormalizationBadConfig(self, conv_ctor, conv_kwargs, error_type, error_message): """Old and new normalization flags should not be combined.""" with self.assertRaisesRegexp(error_type, error_message): conv_ctor( output_channels=[16, 16], kernel_shapes=(3,), strides=(1,), paddings=("SAME",), **conv_kwargs) @contrib_eager.run_all_tests_in_graph_and_eager_modes class ConvNet2DTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super(ConvNet2DTest, self).setUp() self.output_channels = [2, 3, 4] self.kernel_shapes = [[3, 3]] self.strides = [1] self.rates = [2] self.paddings = [snt.SAME] def testConstructor(self): net = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, rates=self.rates, strides=self.strides, paddings=self.paddings) self.assertLen(net.layers, len(self.output_channels)) for i, layer in enumerate(net.layers): self.assertEqual(layer.output_channels, self.output_channels[i]) self.assertEqual(layer.stride, (1,) + fill_shape(self.strides[0], 2) + (1,)) self.assertEqual(layer.kernel_shape, fill_shape(self.kernel_shapes[0], 2)) self.assertEqual(layer.padding, self.paddings[0]) self.assertEqual(layer.rate, (self.rates[0], self.rates[0])) self.assertEqual(layer.output_channels, net.output_channels[i]) self.assertEqual(layer.stride, (1,) + fill_shape(net.strides[i], 2) + (1,)) self.assertEqual(layer.kernel_shape, fill_shape(net.kernel_shapes[i], 2)) self.assertEqual(layer.padding, net.paddings[i]) def testTranspose(self): with tf.variable_scope("scope1"): net = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, name="conv_net_2d") err = "Iterable output_channels length must match the number of layers" with self.assertRaisesRegexp(ValueError, err): net.transpose(output_channels=[42] * 18) with tf.variable_scope("scope2"): net_transpose = net.transpose() self.assertEqual("scope1/conv_net_2d", net.scope_name) self.assertEqual("conv_net_2d", net.module_name) self.assertEqual("scope2/conv_net_2d_transpose", net_transpose.scope_name) self.assertEqual("conv_net_2d_transpose", net_transpose.module_name) input_shape = [10, 100, 100, 3] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) # Tests that trying to connect the trasposed network before connecting the # original nets raises an error. The reason is that the output_shapes and # output_channels are laziliy evaluated and not yet known. with self.assertRaisesRegexp(snt.Error, "Variables in {} not instantiated yet, " "__call__ the module first.".format( net.layers[-1].scope_name)): net_transpose(input_to_net) net_transpose = net.transpose(name="another_net_transpose") net_out = net(input_to_net, is_training=True) self.assertEqual(net.input_shape, tuple(input_shape)) net_transposed_output = net_transpose(net_out) self.assertEqual(net_transposed_output.get_shape(), input_to_net.get_shape()) for i in range(len(net.layers)): self.assertEqual(net_transpose.layers[i].output_shape, net.layers[-1 - i].input_shape[1:-1]) self.assertEqual(net_transpose.layers[i].output_channels, net.layers[-1 - i].input_shape[-1]) def testCustomGetterTranspose(self): """Tests passing a custom getter to the transpose method.""" conv2d = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) input_shape = [10, 100, 100, 3] output_of_conv2d = conv2d(tf.zeros(dtype=tf.float32, shape=input_shape)) # We'll be able to check if the custom_getter was used by checking for # gradients. conv2d_transpose = conv2d.transpose( custom_getter=snt.custom_getters.stop_gradient) if tf.executing_eagerly(): with tf.GradientTape() as tape: output_of_transpose = conv2d_transpose(output_of_conv2d) conv2d_transpose_vars = conv2d_transpose.get_variables() self.assertTrue(len(conv2d_transpose_vars)) for tensor in tape.gradient(output_of_transpose, conv2d_transpose_vars): self.assertIsNone(tensor) else: output_of_transpose = conv2d_transpose(output_of_conv2d) conv2d_transpose_vars = conv2d_transpose.get_variables() self.assertTrue(len(conv2d_transpose_vars)) for tensor in tf.gradients(output_of_transpose, conv2d_transpose_vars): self.assertIsNone(tensor) def testNoCustomGetterTranspose(self): """Tests not passing a custom getter to the transpose method.""" conv2d = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, custom_getter=snt.custom_getters.stop_gradient) input_shape = [10, 100, 100, 3] input_to_conv2d = tf.zeros(dtype=tf.float32, shape=input_shape) if tf.executing_eagerly(): with tf.GradientTape() as tape0: output_of_conv2d = conv2d(input_to_conv2d) # Create a transpose without a custom getter conv2d_transpose = conv2d.transpose() with tf.GradientTape() as tape1: output_of_transpose = conv2d_transpose(output_of_conv2d) conv2d_vars = conv2d.get_variables() conv2d_grads = tape0.gradient(output_of_conv2d, conv2d_vars) conv2d_transpose_vars = conv2d_transpose.get_variables() conv2d_transpose_grads = tape1.gradient(output_of_transpose, conv2d_transpose_vars) else: output_of_conv2d = conv2d(input_to_conv2d) conv2d_vars = conv2d.get_variables() conv2d_grads = tf.gradients(output_of_conv2d, conv2d_vars) # Create a transpose without a custom getter conv2d_transpose = conv2d.transpose() output_of_transpose = conv2d_transpose(output_of_conv2d) conv2d_transpose_vars = conv2d_transpose.get_variables() conv2d_transpose_grads = tf.gradients(output_of_transpose, conv2d_transpose_vars) # Sanity check that the custom getter was indeed used for the conv net. self.assertTrue(len(conv2d_vars)) for tensor in conv2d_grads: self.assertIsNone(tensor) # Check the transpose did not use the custom getter that was passed to the # original conv net. self.assertTrue(len(conv2d_transpose_vars)) for tensor in conv2d_transpose_grads: self.assertIsNotNone(tensor) def testVariableMap(self): """Tests for regressions in variable names.""" use_bias = True use_batch_norm = True var_names_w = [ u"conv_net_2d/conv_2d_0/w:0", u"conv_net_2d/conv_2d_1/w:0", u"conv_net_2d/conv_2d_2/w:0", ] var_names_b = [ u"conv_net_2d/conv_2d_0/b:0", u"conv_net_2d/conv_2d_1/b:0", u"conv_net_2d/conv_2d_2/b:0", ] var_names_bn = [ u"conv_net_2d/batch_norm_0/beta:0", u"conv_net_2d/batch_norm_1/beta:0", ] correct_variable_names = set(var_names_w + var_names_b + var_names_bn) module = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, rates=self.rates, strides=self.strides, paddings=self.paddings, use_bias=use_bias, use_batch_norm=use_batch_norm) input_shape = [10, 100, 100, 3] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) _ = module(input_to_net, is_training=True) variable_names = [var.name for var in module.get_variables()] self.assertEqual(set(variable_names), correct_variable_names) def testPartitioners(self): if tf.executing_eagerly(): self.skipTest("Eager does not support partitioned variables.") partitioners = { "w": tf.variable_axis_size_partitioner(10), "b": tf.variable_axis_size_partitioner(8), } module = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, rates=self.rates, strides=self.strides, paddings=self.paddings, partitioners=partitioners) input_shape = [10, 100, 100, 3] input_to_net = tf.placeholder(tf.float32, shape=input_shape) _ = module(input_to_net) for layer in module._layers: self.assertEqual(type(layer.w), variables.PartitionedVariable) self.assertEqual(type(layer.b), variables.PartitionedVariable) def testCustomGetter(self): custom_getter = snt.custom_getters.Context(snt.custom_getters.stop_gradient) module = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, rates=self.rates, strides=self.strides, paddings=self.paddings, custom_getter=custom_getter) input_shape = [10, 100, 100, 3] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) if tf.executing_eagerly(): with tf.GradientTape() as tape0: out0 = module(input_to_net) with tf.GradientTape() as tape1: with custom_getter: out1 = module(input_to_net) all_vars = tf.trainable_variables() out0_grads = tape0.gradient(out0, all_vars) out1_grads = tape1.gradient(out1, all_vars) else: out0 = module(input_to_net) with custom_getter: out1 = module(input_to_net) all_vars = tf.trainable_variables() out0_grads = tf.gradients(out0, all_vars) out1_grads = tf.gradients(out1, all_vars) for grad in out0_grads: self.assertNotEqual(None, grad) self.assertEqual([None] * len(out1_grads), out1_grads) def testIncorrectRatesLength(self): rates = [1, 2] self.assertNotEqual(len(rates), len(self.output_channels)) with self.assertRaisesRegexp( ValueError, "rates must be of length 1 * or"): _ = snt.nets.ConvNet2D(output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, rates=rates, strides=self.strides, paddings=self.paddings) @parameterized.parameters( {"normalization_ctor": None, "normalization_kwargs": {}}, {"normalization_ctor": snt.LayerNorm, "normalization_kwargs": {}}, {"normalization_ctor": snt.LayerNorm, "normalization_kwargs": {"axis": [1, 2]}}, # Instance Norm. {"normalization_ctor": snt.BatchNorm, "normalization_kwargs": {}}) def testAlwaysProvideIsTraining(self, normalization_ctor, normalization_kwargs): # Test whether we can always provide is_training=True, even when it is # not supported by the underlying normalization constructor. mod = snt.nets.ConvNet2D( output_channels=[32, 32], kernel_shapes=(3,), strides=(1,), paddings=("SAME",), normalization_ctor=normalization_ctor, normalization_kwargs=normalization_kwargs) input_ = tf.random_uniform([16, 48, 48, 3]) _ = mod(input_, is_training=True) @contrib_eager.run_all_tests_in_graph_and_eager_modes class ConvNet2DTransposeTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super(ConvNet2DTransposeTest, self).setUp() self.output_channels = [2, 3, 4] self.output_shapes = [[100, 100]] self.kernel_shapes = [[3, 3]] self.strides = [1] self.paddings = [snt.SAME] def testConstructor(self): with self.assertRaisesRegexp(ValueError, "output_shapes must be of length 1 or *"): snt.nets.ConvNet2DTranspose(output_channels=self.output_channels, output_shapes=[], kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) with self.assertRaisesRegexp(ValueError, "output_shapes must be of length 1 or *"): snt.nets.ConvNet2DTranspose(output_channels=self.output_channels, output_shapes=[[1, 2], [1, 2]], kernel_shapes=self.kernel_shapes, strides=[], paddings=self.paddings) with self.assertRaisesRegexp(KeyError, "Invalid initializer keys.*"): snt.nets.ConvNet2DTranspose( output_channels=self.output_channels, output_shapes=self.output_shapes, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, initializers={"not_w": tf.truncated_normal_initializer(stddev=1.0)}) net = snt.nets.ConvNet2DTranspose(output_channels=self.output_channels, output_shapes=self.output_shapes, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) self.assertEqual(net.output_shapes, tuple(self.output_shapes) * len(self.output_channels)) self.assertLen(net.layers, len(self.output_channels)) for i, layer in enumerate(net.layers): self.assertEqual(layer.output_channels, self.output_channels[i]) self.assertEqual(layer.stride, (1,) + fill_shape(self.strides[0], 2) + (1,)) self.assertEqual(layer.kernel_shape, fill_shape(self.kernel_shapes[0], 2)) self.assertEqual(layer.padding, self.paddings[0]) self.assertEqual(layer.output_channels, net.output_channels[i]) self.assertEqual(layer.stride, (1,) + fill_shape(net.strides[i], 2) + (1,)) self.assertEqual(layer.kernel_shape, fill_shape(net.kernel_shapes[i], 2)) self.assertEqual(layer.padding, net.paddings[i]) with self.assertRaisesRegexp(TypeError, "output_shapes must be iterable"): snt.nets.ConvNet2DTranspose(output_channels=self.output_channels, output_shapes=False, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) def testTranspose(self): net = snt.nets.ConvNet2DTranspose(output_channels=self.output_channels, output_shapes=self.output_shapes, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) err = "Iterable output_channels length must match the number of layers" with self.assertRaisesRegexp(ValueError, err): net.transpose(output_channels=[42] * 18) net_transpose = net.transpose() input_shape = [10, 100, 100, 3] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) # Tests that trying to connect the trasposed network before connecting the # original nets raises an error. The reason is that the output_shapes and # output_channels are laziliy evaluated and not yet known. with self.assertRaisesRegexp(snt.Error, "Variables in {} not instantiated yet, " "__call__ the module first.".format( net.layers[-1].scope_name)): net_transpose(input_to_net) net_transpose = net.transpose(name="another_net_transpose") net_out = net(input_to_net, is_training=True) net_transposed_output = net_transpose(net_out) self.assertEqual(net_transposed_output.get_shape(), input_to_net.get_shape()) for i in range(len(net.layers)): self.assertEqual(net_transpose.layers[i].input_shape[1:-1], net.layers[-1 - i].output_shape) self.assertEqual(net_transpose.layers[i].output_channels, net.layers[-1 - i].input_shape[-1]) init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(net_transposed_output) def testPartitioners(self): if tf.executing_eagerly(): self.skipTest("Eager does not support partitioned variables.") partitioners = { "w": tf.variable_axis_size_partitioner(10), "b": tf.variable_axis_size_partitioner(8), } module = snt.nets.ConvNet2DTranspose(output_channels=self.output_channels, output_shapes=self.output_shapes, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, partitioners=partitioners) input_shape = [10, 100, 100, 3] input_to_net = tf.placeholder(tf.float32, shape=input_shape) _ = module(input_to_net) for layer in module._layers: self.assertEqual(type(layer.w), variables.PartitionedVariable) self.assertEqual(type(layer.b), variables.PartitionedVariable) @parameterized.parameters( {"normalization_ctor": None, "normalization_kwargs": {}}, {"normalization_ctor": snt.LayerNorm, "normalization_kwargs": {}}, {"normalization_ctor": snt.LayerNorm, "normalization_kwargs": {"axis": [1, 2]}}, # Instance Norm. {"normalization_ctor": snt.BatchNorm, "normalization_kwargs": {}}) def testAlwaysProvideIsTraining(self, normalization_ctor, normalization_kwargs): # Test whether we can always provide is_training=True, even when it is # not supported by the underlying normalization constructor. mod = snt.nets.ConvNet2DTranspose( output_shapes=self.output_shapes, output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, normalization_ctor=normalization_ctor, normalization_kwargs=normalization_kwargs) input_ = tf.random_uniform([16, 100, 100, 3]) _ = mod(input_, is_training=True) def testCustomGetter(self): custom_getter = snt.custom_getters.Context(snt.custom_getters.stop_gradient) module = snt.nets.ConvNet2DTranspose( output_shapes=self.output_shapes, output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, custom_getter=custom_getter) input_shape = [10, 100, 100, 3] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) if tf.executing_eagerly(): with tf.GradientTape() as tape0: out0 = module(input_to_net) with tf.GradientTape() as tape1: with custom_getter: out1 = module(input_to_net) all_vars = tf.trainable_variables() out0_grads = tape0.gradient(out0, all_vars) out1_grads = tape1.gradient(out1, all_vars) else: out0 = module(input_to_net) with custom_getter: out1 = module(input_to_net) all_vars = tf.trainable_variables() out0_grads = tf.gradients(out0, all_vars) out1_grads = tf.gradients(out1, all_vars) for grad in out0_grads: self.assertIsNotNone(grad) self.assertEqual([None] * len(out1_grads), out1_grads) def testCustomGetterTranspose(self): """Tests passing a custom getter to the transpose method.""" conv2d_t = snt.nets.ConvNet2DTranspose( output_shapes=self.output_shapes, output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings) input_shape = [10, 100, 100, 3] output_of_conv2d_t = conv2d_t(tf.zeros(dtype=tf.float32, shape=input_shape)) # We'll be able to check if the custom_getter was used by checking for # gradients. conv2d = conv2d_t.transpose(custom_getter=snt.custom_getters.stop_gradient) if tf.executing_eagerly(): with tf.GradientTape() as tape: output_of_conv = conv2d(output_of_conv2d_t) conv2d_vars = conv2d.get_variables() self.assertTrue(len(conv2d_vars)) for tensor in tape.gradient(output_of_conv, conv2d_vars): self.assertIsNone(tensor) else: output_of_conv = conv2d(output_of_conv2d_t) conv2d_vars = conv2d.get_variables() self.assertTrue(len(conv2d_vars)) for tensor in tf.gradients(output_of_conv, conv2d_vars): self.assertIsNone(tensor) def testNoCustomGetterTranspose(self): """Tests not passing a custom getter to the transpose method.""" conv2d_t = snt.nets.ConvNet2DTranspose( output_shapes=self.output_shapes, output_channels=self.output_channels, kernel_shapes=self.kernel_shapes, strides=self.strides, paddings=self.paddings, custom_getter=snt.custom_getters.stop_gradient) input_shape = [10, 100, 100, 3] input_to_conv2d_t = tf.zeros(dtype=tf.float32, shape=input_shape) if tf.executing_eagerly(): with tf.GradientTape() as tape0: output_of_conv2d_t = conv2d_t(input_to_conv2d_t) # Create a transpose without a custom getter conv2d = conv2d_t.transpose() with tf.GradientTape() as tape1: output_of_conv = conv2d(output_of_conv2d_t) conv2d_t_vars = conv2d_t.get_variables() conv2d_t_grads = tape0.gradient(output_of_conv2d_t, conv2d_t_vars) conv2d_vars = conv2d.get_variables() conv2d_grads = tape1.gradient(output_of_conv, conv2d_vars) else: output_of_conv2d_t = conv2d_t(input_to_conv2d_t) conv2d_t_vars = conv2d_t.get_variables() conv2d_t_grads = tf.gradients(output_of_conv2d_t, conv2d_t_vars) # Create a transpose without a custom getter conv2d = conv2d_t.transpose() output_of_conv = conv2d(output_of_conv2d_t) conv2d_vars = conv2d.get_variables() conv2d_grads = tf.gradients(output_of_conv, conv2d_vars) # Sanity check that the custom getter was indeed used for the conv net. self.assertTrue(len(conv2d_t_vars)) for tensor in conv2d_t_grads: self.assertIsNone(tensor) # Check the transpose did not use the custom getter that was passed to the # original conv net. self.assertTrue(len(conv2d_vars)) for tensor in conv2d_grads: self.assertIsNotNone(tensor) @contrib_eager.run_all_tests_in_graph_and_eager_modes class DefunTest(parameterized.TestCase, tf.test.TestCase): @parameterized.named_parameters( ("ConvNet2D", snt.nets.ConvNet2D), ("ConvNet2DTranspose", functools.partial(snt.nets.ConvNet2DTranspose, output_shapes=[[100, 100]]))) def testDefun(self, module): model = module(output_channels=[2, 3, 4], kernel_shapes=[[3, 3]], strides=[1], paddings=[snt.SAME]) model = contrib_eager.defun(model) input_to_net = tf.random_normal([1, 100, 100, 3]) output = model(input_to_net) self.assertListEqual(output.shape.as_list(), [1, 100, 100, 4]) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/nets/convnet_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Common network architectures implemented as Sonnet modules.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sonnet.python.modules.nets.alexnet import AlexNet from sonnet.python.modules.nets.alexnet import AlexNetFull from sonnet.python.modules.nets.alexnet import AlexNetMini from sonnet.python.modules.nets.convnet import ConvNet2D from sonnet.python.modules.nets.convnet import ConvNet2DTranspose from sonnet.python.modules.nets.dilation import Dilation from sonnet.python.modules.nets.dilation import identity_kernel_initializer from sonnet.python.modules.nets.dilation import noisy_identity_kernel_initializer from sonnet.python.modules.nets.mlp import MLP from sonnet.python.modules.nets.transformer import CompressiveTransformer from sonnet.python.modules.nets.transformer import future_mask from sonnet.python.modules.nets.transformer import TransformerTower from sonnet.python.modules.nets.transformer import TransformerXL from sonnet.python.modules.nets.vqvae import VectorQuantizer from sonnet.python.modules.nets.vqvae import VectorQuantizerEMA
sonnet-1
sonnet/python/modules/nets/__init__.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for snt.nets.alexnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools # Dependency imports from absl.testing import parameterized import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib.eager.python import tfe as contrib_eager from tensorflow.python.ops import variables @contrib_eager.run_all_tests_in_graph_and_eager_modes class AlexNetTest(parameterized.TestCase, tf.test.TestCase): def testCalcMinSize(self): """Test the minimum input size calculator.""" net = snt.nets.AlexNetMini() self.assertEqual(net._calc_min_size([(None, (3, 1), None)]), 3) self.assertEqual(net._calc_min_size([(None, (3, 1), (3, 2))]), 5) self.assertEqual(net._calc_min_size([(None, (3, 1), (3, 2)), (None, (3, 2), (5, 2))]), 25) @parameterized.named_parameters( ("full", functools.partial(snt.nets.AlexNet, mode=snt.nets.AlexNet.FULL)), ("mini", functools.partial(snt.nets.AlexNet, mode=snt.nets.AlexNet.MINI)), ("full_module", snt.nets.AlexNetFull), ("mini_module", snt.nets.AlexNetMini), ) def testModes(self, module): """Test that each mode can be instantiated.""" keep_prob = 0.7 net = module() input_shape = [1, net._min_size, net._min_size, 3] inputs = tf.ones(dtype=tf.float32, shape=input_shape) net(inputs, keep_prob, is_training=True) @parameterized.named_parameters( ("all_layers", True), ("conv_only", False)) def testBatchNorm(self, bn_on_fc_layers): """Test that batch norm can be instantiated.""" net = snt.nets.AlexNet( mode=snt.nets.AlexNet.FULL, use_batch_norm=True, bn_on_fc_layers=bn_on_fc_layers) input_shape = [net._min_size, net._min_size, 3] inputs = tf.ones(dtype=tf.float32, shape=[1] + input_shape) output = net(inputs, is_training=True) self.evaluate(tf.global_variables_initializer()) self.evaluate(output) # Check that an error is raised if we don't specify the is_training flag err = "is_training flag must be explicitly specified" with self.assertRaisesRegexp(ValueError, err): net(inputs) # Check Tensorflow flags work is_training = tf.constant(False) test_local_stats = tf.constant(False) net(inputs, is_training=is_training, test_local_stats=test_local_stats) # Check Python is_training flag works net(inputs, is_training=False, test_local_stats=False) # Check that the appropriate moving statistics variables have been created. variance_name = "alex_net/batch_norm/moving_variance:0" mean_name = "alex_net/batch_norm/moving_mean:0" var_names = [var.name for var in tf.global_variables()] self.assertIn(variance_name, var_names) self.assertIn(mean_name, var_names) if bn_on_fc_layers: self.assertEqual(35, len(var_names)) else: self.assertEqual(29, len(var_names)) def testBatchNormConfig(self): batch_norm_config = { "scale": True, } model = snt.nets.AlexNetFull(use_batch_norm=True, batch_norm_config=batch_norm_config) input_to_net = tf.ones(dtype=tf.float32, shape=(1, 224, 224, 3)) model(input_to_net, is_training=True) model_variables = model.get_variables() self.assertEqual(len(model_variables), 6 * 4) def testNoDropoutInTesting(self): """An exception should be raised if trying to use dropout when testing.""" net = snt.nets.AlexNetFull() input_shape = [net._min_size, net._min_size, 3] inputs = tf.ones(dtype=tf.float32, shape=[1] + input_shape) with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, "keep_prob"): output = net(inputs, keep_prob=0.7, is_training=False) self.evaluate(tf.global_variables_initializer()) self.evaluate(output) # No exception if keep_prob=1 output = net(inputs, keep_prob=1.0, is_training=False) self.evaluate(output) def testInputTooSmall(self): """Check that an error is raised if the input image is too small.""" keep_prob = 0.7 net = snt.nets.AlexNetFull() input_shape = [1, net._min_size, net._min_size, 1] inputs = tf.ones(dtype=tf.float32, shape=input_shape) net(inputs, keep_prob, is_training=True) with self.assertRaisesRegexp(snt.IncompatibleShapeError, "Image shape too small: (.*?, .*?) < .*?"): input_shape = [1, net._min_size - 1, net._min_size - 1, 1] inputs = tf.ones(dtype=tf.float32, shape=input_shape) net(inputs, keep_prob, is_training=True) def testSharing(self): """Check that the correct number of variables are made when sharing.""" net = snt.nets.AlexNetMini() inputs1 = tf.ones(dtype=tf.float32, shape=[1, 64, 64, 3]) inputs2 = tf.ones(dtype=tf.float32, shape=[1, 64, 64, 3]) keep_prob1 = 0.7 keep_prob2 = 0.5 net(inputs1, keep_prob1, is_training=True) net(inputs2, keep_prob2, is_training=True) self.assertLen(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES), 7 * 2) model_variables = net.get_variables() self.assertEqual(len(model_variables), 7 * 2) def testInvalidInitializationParameters(self): err = "Invalid initializer keys.*" with self.assertRaisesRegexp(KeyError, err): snt.nets.AlexNetMini( initializers={"not_w": tf.truncated_normal_initializer(stddev=1.0)}) err = "Initializer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.nets.AlexNetMini( initializers={"w": tf.zeros([1, 2, 3])}) def testInvalidRegularizationParameters(self): with self.assertRaisesRegexp(KeyError, "Invalid regularizer keys.*"): snt.nets.AlexNetMini( regularizers={"not_w": contrib_layers.l1_regularizer(scale=0.5)}) err = "Regularizer for 'w' is not a callable function" with self.assertRaisesRegexp(TypeError, err): snt.nets.AlexNetMini( regularizers={"w": tf.zeros([1, 2, 3])}) def testRegularizersInRegularizationLosses(self): regularizers = { "w": contrib_layers.l1_regularizer(scale=0.5), "b": contrib_layers.l2_regularizer(scale=0.5) } alex_net = snt.nets.AlexNetMini( regularizers=regularizers, name="alexnet1") input_shape = [alex_net._min_size, alex_net._min_size, 3] inputs = tf.ones(dtype=tf.float32, shape=[1] + input_shape) alex_net(inputs) graph_regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) alex_net_conv_layers = len(alex_net.conv_modules) self.assertEqual(len(graph_regularizers), 2 * alex_net_conv_layers) def testInitializers(self): initializers = { "w": tf.constant_initializer(1.5), "b": tf.constant_initializer(2.5), } alex_net = snt.nets.AlexNetFull(initializers=initializers) input_shape = [1, alex_net.min_input_size, alex_net.min_input_size, 3] inputs = tf.ones(dtype=tf.float32, shape=input_shape) alex_net(inputs) init = tf.global_variables_initializer() self.evaluate(init) for module in alex_net.conv_modules + alex_net.linear_modules: w_v, b_v = self.evaluate([module.w, module.b]) self.assertAllClose(w_v, 1.5 * np.ones(w_v.shape)) self.assertAllClose(b_v, 2.5 * np.ones(b_v.shape)) def testPartitioners(self): if tf.executing_eagerly(): self.skipTest("Eager does not support partitioned variables.") partitioners = { "w": tf.fixed_size_partitioner(num_shards=2), "b": tf.fixed_size_partitioner(num_shards=2), } alex_net = snt.nets.AlexNetMini( partitioners=partitioners, name="alexnet1") input_shape = [alex_net._min_size, alex_net._min_size, 3] inputs = tf.placeholder(tf.float32, shape=[None] + input_shape) alex_net(inputs) for conv_module in alex_net.conv_modules: self.assertEqual(type(conv_module.w), variables.PartitionedVariable) self.assertEqual(type(conv_module.b), variables.PartitionedVariable) for linear_module in alex_net.linear_modules: self.assertEqual(type(linear_module.w), variables.PartitionedVariable) self.assertEqual(type(linear_module.b), variables.PartitionedVariable) def testErrorHandling(self): err = "AlexNet construction mode 'BLAH' not recognised" with self.assertRaisesRegexp(snt.Error, err): snt.nets.AlexNet(mode="BLAH") def testGetLinearModules(self): alex_net = snt.nets.AlexNetFull() input_shape = [1, alex_net.min_input_size, alex_net.min_input_size, 3] inputs = tf.ones(dtype=tf.float32, shape=input_shape) alex_net(inputs) for mod in alex_net.linear_modules: self.assertEqual(mod.output_size, 4096) def testCustomGetterUsed(self): const = 42. def set_to_const(getter, *args, **kwargs): variable = getter(*args, **kwargs) return 0.0 * variable + const alex_net = snt.nets.AlexNetFull(custom_getter=set_to_const) input_shape = [1, alex_net.min_input_size, alex_net.min_input_size, 3] inputs = tf.ones(dtype=tf.float32, shape=input_shape) alex_net(inputs) self.evaluate(tf.global_variables_initializer()) for module in alex_net.conv_modules + alex_net.linear_modules: var_w, var_b = self.evaluate([module.w, module.b]) self.assertAllClose(var_w, np.zeros_like(var_w) + const) self.assertAllClose(var_b, np.zeros_like(var_b) + const) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/nets/alexnet_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A minimal interface mlp module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from six.moves import xrange # pylint: disable=redefined-builtin from sonnet.python.modules import base from sonnet.python.modules import basic from sonnet.python.modules import util import tensorflow.compat.v1 as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.layers import utils # pylint: enable=g-direct-tensorflow-import class MLP(base.AbstractModule, base.Transposable): """A Multi-Layer perceptron module.""" def __init__(self, output_sizes, activation=tf.nn.relu, activate_final=False, initializers=None, partitioners=None, regularizers=None, use_bias=True, use_dropout=False, custom_getter=None, name="mlp"): """Constructs an MLP module. Args: output_sizes: An iterable of output dimensionalities as defined in `basic.Linear`. Output size can be defined either as number or via a callable. In the latter case, since the function invocation is deferred to graph construction time, the user must only ensure that entries can be called when build is called. Each entry in the iterable defines properties in the corresponding linear layer. activation: An activation op. The activation is applied to intermediate layers, and optionally to the output of the final layer. activate_final: Boolean determining if the activation is applied to the output of the final layer. Default `False`. initializers: Optional dict containing ops to initialize the linear layers' weights (with key 'w') or biases (with key 'b'). partitioners: Optional dict containing partitioners to partition the linear layers' weights (with key 'w') or biases (with key 'b'). regularizers: Optional dict containing regularizers for the linear layers' weights (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. use_bias: Whether to include bias parameters in the linear layers. Default `True`. use_dropout: Whether to perform dropout on the linear layers. Default `False`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: KeyError: If initializers contains any keys other than 'w' or 'b'. KeyError: If regularizers contains any keys other than 'w' or 'b'. ValueError: If output_sizes is empty. TypeError: If `activation` is not callable; or if `output_sizes` is not iterable. """ super(MLP, self).__init__(custom_getter=custom_getter, name=name) if not isinstance(output_sizes, collections.Iterable): raise TypeError("output_sizes must be iterable") output_sizes = tuple(output_sizes) if not output_sizes: raise ValueError("output_sizes must not be empty") self._output_sizes = output_sizes self._num_layers = len(self._output_sizes) self._input_shape = None self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias) self._initializers = util.check_initializers( initializers, self.possible_keys) self._partitioners = util.check_partitioners( partitioners, self.possible_keys) self._regularizers = util.check_regularizers( regularizers, self.possible_keys) if not callable(activation): raise TypeError("Input 'activation' must be callable") self._activation = activation self._activate_final = activate_final self._use_bias = use_bias self._use_dropout = use_dropout self._instantiate_layers() def _instantiate_layers(self): """Instantiates all the linear modules used in the network. Layers are instantiated in the constructor, as opposed to the build function, because MLP implements the Transposable interface, and the transpose function can be called before the module is actually connected to the graph and build is called. Notice that this is safe since layers in the transposed module are instantiated using a lambda returning input_size of the mlp layers, and this doesn't have to return sensible values until the original module is connected to the graph. """ # Here we are entering the module's variable scope to name our submodules # correctly (not to create variables). As such it's safe to not check # whether we're in the same graph. This is important if we're constructing # the module in one graph and connecting it in another (e.g. with `defun` # the module is created in some default graph, and connected to a capturing # graph in order to turn it into a graph function). with self._enter_variable_scope(check_same_graph=False): # pylint: disable=g-complex-comprehension self._layers = [basic.Linear(self._output_sizes[i], name="linear_{}".format(i), initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, use_bias=self.use_bias) for i in xrange(self._num_layers)] # pylint: enable=g-complex-comprehension @classmethod def get_possible_initializer_keys(cls, use_bias=True): return basic.Linear.get_possible_initializer_keys(use_bias=use_bias) def _build(self, inputs, is_training=True, dropout_keep_prob=0.5): """Assembles the `MLP` and connects it to the graph. Args: inputs: A 2D Tensor of size `[batch_size, input_size]`. is_training: A bool or tf.Bool Tensor. Indicates whether we are currently training. Defaults to `True`. dropout_keep_prob: The probability that each element is kept when both `use_dropout` and `is_training` are True. Defaults to 0.5. Returns: A 2D Tensor of size `[batch_size, output_sizes[-1]]`. """ self._input_shape = tuple(inputs.get_shape().as_list()) net = inputs final_index = self._num_layers - 1 for layer_id in xrange(self._num_layers): net = self._layers[layer_id](net) if final_index != layer_id or self._activate_final: # Only perform dropout whenever we are activating the layer's outputs. if self._use_dropout: keep_prob = utils.smart_cond( is_training, true_fn=lambda: dropout_keep_prob, false_fn=lambda: tf.constant(1.0) ) net = tf.nn.dropout(net, rate=1-keep_prob) net = self._activation(net) return net @property def layers(self): """Returns a tuple containing the linear layers of the `MLP`.""" return self._layers @property def output_sizes(self): """Returns a tuple of all output sizes of all the layers.""" return tuple([l() if callable(l) else l for l in self._output_sizes]) @property def output_size(self): """Returns the size of the module output, not including the batch dimension. This allows the MLP to be used inside a DeepRNN. Returns: The scalar size of the module output. """ last_size = self._output_sizes[-1] return last_size() if callable(last_size) else last_size @property def use_bias(self): return self._use_bias @property def use_dropout(self): return self._use_dropout @property def initializers(self): """Returns the intializers dictionary.""" return self._initializers @property def partitioners(self): """Returns the partitioners dictionary.""" return self._partitioners @property def regularizers(self): """Returns the regularizers dictionary.""" return self._regularizers @property def activation(self): return self._activation @property def activate_final(self): return self._activate_final # Implements Transposable interface @property def input_shape(self): """Returns shape of input `Tensor` passed at last call to `build`.""" self._ensure_is_connected() return self._input_shape # Implements Transposable interface def transpose(self, name=None, activate_final=None): """Returns transposed `MLP`. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. Returns: Matching transposed `MLP` module. """ if name is None: name = self.module_name + "_transpose" if activate_final is None: activate_final = self.activate_final output_sizes = [lambda l=layer: l.input_shape[1] for layer in self._layers] output_sizes.reverse() return MLP( name=name, output_sizes=output_sizes, activation=self.activation, activate_final=activate_final, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, use_bias=self.use_bias, use_dropout=self.use_dropout) def clone(self, name=None): """Creates a new MLP with the same structure. Args: name: Optional string specifying the name of the new module. The default name is constructed by appending "_clone" to the original name. Returns: A cloned `MLP` module. """ if name is None: name = self.module_name + "_clone" return MLP( name=name, output_sizes=self.output_sizes, activation=self.activation, activate_final=self.activate_final, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, use_bias=self.use_bias, use_dropout=self.use_dropout)
sonnet-1
sonnet/python/modules/nets/mlp.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Implementation of (Yu & Koltun, 2016)'s Dilation module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from sonnet.python.modules import base from sonnet.python.modules import conv from sonnet.python.modules import sequential from sonnet.python.modules import util import tensorflow.compat.v1 as tf def _range_along_dimension(range_dim, shape): """Construct a Tensor whose values are the index along a dimension. Construct a Tensor that counts the distance along a single dimension. This is useful, for example, when constructing an identity matrix, >>> x = _range_along_dimension(0, [2, 2]).eval() >>> x array([[0, 0], [1, 1]], dtype=int32) >>> y = _range_along_dimension(1, [2, 2]).eval() >>> y array([[0, 1], [0, 1]], dtype=int32) >>> tf.cast(tf.equal(x, y), dtype=tf.int32).eval() array([[1, 0], [0, 1]], dtype=int32) Args: range_dim: int. Dimension to count indices on. shape: 1D Tensor of ints. Shape of Tensor to construct. Returns: A Tensor whose values are the same as the range along dimension range_dim. Raises: ValueError: If range_dim isn't a valid dimension. """ rank = len(shape) if range_dim >= rank: raise ValueError("Cannot calculate range along non-existent index.") indices = tf.range(start=0, limit=shape[range_dim]) indices = tf.reshape( indices, shape=[1 if i != range_dim else shape[range_dim] for i in range(rank)]) return tf.tile(indices, [shape[i] if i != range_dim else 1 for i in range(rank)]) # pylint: disable=unused-argument def identity_kernel_initializer(shape, dtype=tf.float32, partition_info=None): """An initializer for constructing identity convolution kernels. Constructs a convolution kernel such that applying it is the same as an identity operation on the input. Formally, the kernel has entry [i, j, in, out] = 1 if in equals out and i and j are the middle of the kernel and 0 otherwise. Args: shape: List of integers. Represents shape of result. dtype: data type for values in result. partition_info: Partition information for initializer functions. Ignored. Returns: Tensor of desired shape and dtype such that applying it as a convolution kernel results in the identity operation. Raises: ValueError: If shape does not define a valid kernel. If filter width and height differ. If filter width and height are not odd numbers. If number of input and output channels differ. """ if len(shape) != 4: raise ValueError("Convolution kernels must be rank 4.") filter_height, filter_width, in_channels, out_channels = shape if filter_width != filter_height: raise ValueError("Identity initializer only works for square filters.") if filter_width % 2 != 1: raise ValueError( "Identity initializer requires filters have odd height and width.") if in_channels != out_channels: raise ValueError( "in_channels must equal out_channels in order to construct per-channel" " identities.") middle_pixel = filter_height // 2 is_middle_pixel = tf.logical_and( tf.equal(_range_along_dimension(0, shape), middle_pixel), tf.equal(_range_along_dimension(1, shape), middle_pixel)) is_same_channel = tf.equal( _range_along_dimension(2, shape), _range_along_dimension(3, shape)) return tf.cast(tf.logical_and(is_same_channel, is_middle_pixel), dtype=dtype) def noisy_identity_kernel_initializer(base_num_channels, stddev=1e-8): """Build an initializer for constructing near-identity convolution kernels. Construct a convolution kernel where in_channels and out_channels are multiples of base_num_channels, but need not be equal. This initializer is essentially the same as identity_kernel_initializer, except that magnitude is "spread out" across multiple copies of the input. Args: base_num_channels: int. Number that divides both in_channels and out_channels. stddev: float. Standard deviation of truncated normal noise added to off-entries to break ties. Returns: Initializer function for building a noisy identity kernel. """ # pylint: disable=unused-argument def _noisy_identity_kernel_initializer(shape, dtype=tf.float32, partition_info=None): """Constructs a noisy identity kernel. Args: shape: List of integers. Represents shape of result. dtype: data type for values in result. partition_info: Partition information for initializer functions. Ignored. Returns: Tensor of desired shape and dtype such that applying it as a convolution kernel results in a noisy near-identity operation. Raises: ValueError: If shape does not define a valid kernel. If filter width and height differ. If filter width and height are not odd numbers. If number of input and output channels are not multiples of base_num_channels. """ if len(shape) != 4: raise ValueError("Convolution kernels must be rank 4.") filter_height, filter_width, in_channels, out_channels = shape if filter_width != filter_height: raise ValueError( "Noisy identity initializer only works for square filters.") if filter_width % 2 != 1: raise ValueError( "Noisy identity initializer requires filters have odd height and " "width.") if (in_channels % base_num_channels != 0 or out_channels % base_num_channels != 0): raise ValueError("in_channels and out_channels must both be multiples of " "base_num_channels.") middle_pixel = filter_height // 2 is_middle_pixel = tf.logical_and( tf.equal(_range_along_dimension(0, shape), middle_pixel), tf.equal(_range_along_dimension(1, shape), middle_pixel)) is_same_channel_multiple = tf.equal( tf.floordiv( _range_along_dimension(2, shape) * base_num_channels, in_channels), tf.floordiv( _range_along_dimension(3, shape) * base_num_channels, out_channels)) noise = tf.truncated_normal(shape, stddev=stddev, dtype=dtype) return tf.where( tf.logical_and(is_same_channel_multiple, is_middle_pixel), tf.ones( shape, dtype=dtype) * (base_num_channels / out_channels), noise) return _noisy_identity_kernel_initializer class Dilation(base.AbstractModule): """A convolutional module for per-pixel classification. Consists of 8 convolutional layers, 4 of which are dilated. When applied to the output of a model like VGG-16 (before fully connected layers), can be used to make predictions on a per-pixel basis. Note that the default initializers for the 'basic' model size require that the number of input channels be equal to the number of output classes, and the initializers for the 'large' model require it be a multiple. Based on: 'Multi-Scale Context Aggregation by Dilated Convolutions' Fisher Yu, Vladlen Koltun, ICLR 2016 https://arxiv.org/abs/1511.07122 Properties: conv_modules: list of sonnet modules. The 8 convolution layers used in the Dilation module. """ # Size of model to build. BASIC = "basic" LARGE = "large" # Keys for initializers. WEIGHTS = "w" BIASES = "b" POSSIBLE_INITIALIZER_KEYS = {WEIGHTS, BIASES} def __init__(self, num_output_classes, initializers=None, regularizers=None, model_size="basic", name="dilation"): """Creates a dilation module. Args: num_output_classes: Int. Number of output classes to predict for each pixel in an image. initializers: Optional dict containing ops to initialize filters (with key 'w') or biases (with key 'b'). The default initializer makes this module equivalent to the identity. regularizers: Optional dict containing regularizers for the weights (with key 'w') or biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. model_size: string. One of 'basic' or 'large'. name: string. Name of module. """ super(Dilation, self).__init__(name=name) self._num_output_classes = num_output_classes self._model_size = model_size self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _build(self, images): """Build dilation module. Args: images: Tensor of shape [batch_size, height, width, depth] and dtype float32. Represents a set of images with an arbitrary depth. Note that when using the default initializer, depth must equal num_output_classes. Returns: Tensor of shape [batch_size, height, width, num_output_classes] and dtype float32. Represents, for each image and pixel, logits for per-class predictions. Raises: IncompatibleShapeError: If images is not rank 4. ValueError: If model_size is not one of 'basic' or 'large'. """ num_classes = self._num_output_classes if len(images.get_shape()) != 4: raise base.IncompatibleShapeError( "'images' must have shape [batch_size, height, width, depth].") if self.WEIGHTS not in self._initializers: if self._model_size == self.BASIC: self._initializers[self.WEIGHTS] = identity_kernel_initializer elif self._model_size == self.LARGE: self._initializers[self.WEIGHTS] = noisy_identity_kernel_initializer( num_classes) else: raise ValueError("Unrecognized model_size: %s" % self._model_size) if self.BIASES not in self._initializers: self._initializers[self.BIASES] = tf.zeros_initializer() if self._model_size == self.BASIC: self._conv_modules = [ self._dilated_conv_layer(num_classes, 1, True, "conv1"), self._dilated_conv_layer(num_classes, 1, True, "conv2"), self._dilated_conv_layer(num_classes, 2, True, "conv3"), self._dilated_conv_layer(num_classes, 4, True, "conv4"), self._dilated_conv_layer(num_classes, 8, True, "conv5"), self._dilated_conv_layer(num_classes, 16, True, "conv6"), self._dilated_conv_layer(num_classes, 1, True, "conv7"), self._dilated_conv_layer(num_classes, 1, False, "conv8"), ] elif self._model_size == self.LARGE: self._conv_modules = [ self._dilated_conv_layer(2 * num_classes, 1, True, "conv1"), self._dilated_conv_layer(2 * num_classes, 1, True, "conv2"), self._dilated_conv_layer(4 * num_classes, 2, True, "conv3"), self._dilated_conv_layer(8 * num_classes, 4, True, "conv4"), self._dilated_conv_layer(16 * num_classes, 8, True, "conv5"), self._dilated_conv_layer(32 * num_classes, 16, True, "conv6"), self._dilated_conv_layer(32 * num_classes, 1, True, "conv7"), self._dilated_conv_layer(num_classes, 1, False, "conv8"), ] else: raise ValueError("Unrecognized model_size: %s" % self._model_size) dilation_mod = sequential.Sequential(self._conv_modules, name="dilation") return dilation_mod(images) def _dilated_conv_layer(self, output_channels, dilation_rate, apply_relu, name): """Create a dilated convolution layer. Args: output_channels: int. Number of output channels for each pixel. dilation_rate: int. Represents how many pixels each stride offset will move. A value of 1 indicates a standard convolution. apply_relu: bool. If True, a ReLU non-linearlity is added. name: string. Name for layer. Returns: a sonnet Module for a dilated convolution. """ layer_components = [ conv.Conv2D( output_channels, [3, 3], initializers=self._initializers, regularizers=self._regularizers, rate=dilation_rate, name="dilated_conv_" + name), ] if apply_relu: layer_components.append(lambda net: tf.nn.relu(net, name="relu_" + name)) return sequential.Sequential(layer_components, name=name) @property def conv_modules(self): self._ensure_is_connected() return self._conv_modules
sonnet-1
sonnet/python/modules/nets/dilation.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Implementation of Transformer networks. Size glossary: * Batch size (B). * Sequence length (N). * Memory size (M). The size of the optional memory, passed in via `state`. * Number of heads (H): the number of attention heads. * Value size (V): the size of each value embedding per head. * Key size (K): the size of each key embedding per head. Equally, the size of each query embedding per head. Typically K <= V. * Embedding size (HV). The size of the activation or embedding relating to each input between layers. Equal to value_size * num_heads. * All attention size (F). The size of all attention activations over every head. * QKV size (F / H): The size of the query, key and value per head. Equal to 2K + V or equivalently F / H. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports import numpy as np from sonnet.python import custom_getters from sonnet.python.modules import base from sonnet.python.modules import basic from sonnet.python.modules import conv as snt_conv from sonnet.python.modules import layer_norm as snt_ln from sonnet.python.modules import rnn_core from sonnet.python.modules import util from sonnet.python.modules.nets import mlp as snt_mlp import tensorflow.compat.v1 as tf AttentionState = collections.namedtuple('AttentionState', ('queries', 'keys', 'values', 'logits', 'weights', 'embeddings', 'read_words')) CompressedMemoryState = collections.namedtuple( 'CompressedMemoryState', ('episodic_memory', 'compressed_memory', 'index')) def rel_shift(position_logits): """Shifting of logits for relative attention. Args: position_logits: A tensor of shape [B, H, N, N + M]. Returns: The shifted logits. Example, for input (H=1, B=1): [5, 4, 3, 2, 1] [5, 4, 3, 2, 1] [5, 4, 3, 2, 1] [5, 4, 3, 2, 1] [5, 4, 3, 2, 1] the function outputs: [1, 0, 5, 4, 3] [2, 1, 0, 5, 4] [3, 2, 1, 0, 5] [4, 3, 2, 1, 0] [5, 4, 3, 2, 1] Raises: ValueError if position_logits is not 4D. Note: this is not an exact shift as the upper triangle is non-zero. This works as intended in the causally-masked case. If this is used with un-masked attention, we'd want these to also be zero. """ if position_logits.get_shape().ndims != 4: raise ValueError('Expected 4D position logits.') input_shape = tf.shape(position_logits) batch_size = input_shape[0] num_heads = input_shape[1] t1 = input_shape[2] t2 = input_shape[3] # We prepend zeros on the final timescale dimension. to_pad = tf.zeros([batch_size, num_heads, t1, 1]) position_logits = tf.concat([to_pad, position_logits], -1) # Reshape trick to shift input. position_logits = tf.reshape(position_logits, [batch_size, num_heads, t2 + 1, t1]) # Remove extra time dimension and re-shape. position_logits = position_logits[:, :, 1:] position_logits = tf.reshape(position_logits, input_shape) return position_logits def _layer_norm(inputs): if inputs.get_shape().ndims > 2: return basic.BatchApply(snt_ln.LayerNorm())(inputs) else: return snt_ln.LayerNorm()(inputs) def _concat_and_slice(prev_memory, new_memory): original_memory_size = prev_memory.get_shape().as_list()[1] concat_memory = tf.concat([prev_memory, new_memory], 1) memory = concat_memory[:, -original_memory_size:] return memory, concat_memory def simple_attention(queries, keys, values): logits = tf.matmul(queries, keys, transpose_b=True) weights = tf.nn.softmax(logits) return tf.matmul(weights, values) class ResidualDropoutWrapper(base.AbstractModule): """Wrapper class that applies residual connections, dropout and layer norm. By default applies a relu to the module output before the other operations. """ def __init__(self, layer, dropout_rate, layer_norm='input', name='residual_dropout_wrapper'): self._module = layer self._dropout_rate = dropout_rate self._layer_norm = layer_norm super(ResidualDropoutWrapper, self).__init__(name=name) def _build(self, inputs, *args, **kwargs): if self._layer_norm in ('both', 'input'): normed_inputs = _layer_norm(inputs) else: normed_inputs = inputs module_output = self._module(normed_inputs, *args, **kwargs) module_state = None # If module outputs multiple items, assumes (output, state) tuple. if isinstance(module_output, tuple): module_output, module_state = module_output if kwargs['is_training']: # kwargs must contain is_training. module_output = tf.nn.dropout(module_output, rate=self._dropout_rate) output = inputs + module_output if self._layer_norm in ('both', 'output'): output = _layer_norm(output) if module_state is None: return output else: return output, module_state def future_mask(chunk_size, dtype): """Creates attention mask to ensure an element i cannot attend to j > i.""" square = tf.ones([chunk_size, chunk_size], dtype=dtype) # Create upper diagonal matrix and remove diagonal entries (allow self-attn). mask = tf.matrix_band_part(square, 0, -1) - tf.matrix_band_part(square, 0, 0) # Multiply by -1e6 and expand to broadcast with [B, H, N, N] logits. mask = -1e6 * tf.reshape(mask, [1, 1, chunk_size, chunk_size]) return mask def _memory_size(state): if isinstance(state, CompressedMemoryState): return (state.episodic_memory.get_shape().as_list()[1] + state.compressed_memory.get_shape().as_list()[1]) else: return state.get_shape().as_list()[1] def create_mask(inputs, state, equal_window): """Creates mask for future sequence positions. Args: inputs: inputs tensor of shape [B, N, D] state: optional tensor of shape [B, M, D], CompressedMemoryState or a list where the ith entry corresponds to the ith layer's state. equal_window: if True, then each activation has an equally-sized attention window of length 'M'. This only makes sense if a state is given. Returns: Float tensor of shape [1, 1, N, N + M], to be summed with logits. """ chunk_size = inputs.get_shape().as_list()[1] dtype = inputs.dtype mask = future_mask(chunk_size, dtype) if state is not None: if isinstance(state, (tuple, list)): largest_memory_layer = np.argmax([_memory_size(s) for s in state]) state = state[largest_memory_layer] mem_size = _memory_size(state) mask = tf.concat( [tf.zeros([1, 1, chunk_size, mem_size], dtype=dtype), mask], 3) if equal_window: attn_mask = tf.ones([chunk_size, chunk_size], dtype=dtype) mask_dia = tf.cast(tf.matrix_band_part(attn_mask, 0, 0), dtype=dtype) mask_l = tf.cast(tf.matrix_band_part(attn_mask, -1, 0), dtype=dtype) start_mask = tf.reshape(mask_l - mask_dia, [1, 1, chunk_size, chunk_size]) * -1e6 mask = tf.concat( [mask[:, :, :, :chunk_size] + start_mask, mask[:, :, :, chunk_size:]], 3) return mask def default_mlp(hidden_sizes, activate_final=False, init_std=2., **kwargs): """Standard batch-applied MLP for transformer modules.""" init = {'w': tf.variance_scaling_initializer(init_std, distribution='normal')} mlp = snt_mlp.MLP( hidden_sizes, activate_final=activate_final, use_dropout=True, initializers=init, **kwargs) return basic.BatchApply(mlp) def get_position_encodings(sequence_length, hidden_size, clamp_value, max_timescale=10000., min_timescale=2.0): """Creates sinusoidal encodings of shape [1, N + M, D].""" # NOTE: when not using relative position encodings, min_timescale must be 2.0 # and hidden_size must be an even number. Otherwise, the dimensions do not # match. pos_seq = tf.range(sequence_length - 1, -1, -1.0) if clamp_value > 0: pos_seq = tf.minimum(pos_seq, clamp_value) freqs = tf.range(0, hidden_size, min_timescale) inv_freq = 1 / (max_timescale**(freqs / hidden_size)) sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) pos_emb = tf.expand_dims(pos_emb, 0) output_dim = pos_emb.get_shape().as_list()[-1] if output_dim != hidden_size: raise ValueError( 'position embedding dimension ({}) does not match that of the input ({}).' .format(output_dim, hidden_size)) return pos_emb class MultiheadAttention(base.AbstractModule): """Implements multi-head attention with optional state context.""" def __init__(self, value_size, key_size, num_heads, mask=None, scaling=True, positional_encodings=None, use_relative_positions=False, init_std=2., name='multihead_attention'): """Creates a MultiheadAttention module. Args: value_size: V parameter. See size glossary in class docstring. key_size: K parameter. See size glossary in class docstring. num_heads: The number of independent queries per timestep. mask: Optional mask to attention logits. This can prevent attending to future positions or unused memory slots. scaling: Whether to scale the attention logits. positional_encodings: Either None (none given), or an iterable of `(key_positional_encodings, query_positional_encodings)` tuples, where the first encodings in the list indicate the oldest entries in memory and the final encodings indicate the newest entries in memory and the sequence. use_relative_positions: If True then relative positions are incorporated, vs absolute, into the attention logits. This is done exactly as described in the TransformerXL, Dai et al. 2019. init_std: scaling of standard deviation for weight matrices init. name: Name of module. """ super(MultiheadAttention, self).__init__(name=name) self._value_size = value_size self._key_size = key_size self._sizes = { 'value': self._value_size, 'key': self._key_size, 'query': self._key_size, 'relative_keys': self._key_size, 'relative_keys_0': self._key_size, } self._num_heads = num_heads self._mask = mask self._scaling = scaling self._positional_encodings = positional_encodings self._use_relative_positions = use_relative_positions self._init = {'w': tf.variance_scaling_initializer(init_std)} @util.reuse_variables def multihead_linear(self, inputs, name): with tf.variable_scope(name, reuse=tf.AUTO_REUSE): hidden_size = self._sizes[name] input_size = inputs.shape[-1].value w = tf.get_variable( 'linear/w', shape=[input_size, self._num_heads * hidden_size], initializer=self._init['w']) w = tf.reshape(w, [input_size, self._num_heads, hidden_size]) out = tf.einsum('bij,jhk->bhik', inputs, w) return out def _build(self, inputs, query_inputs=None, state=None, is_training=False, dropout_keep_prob=0.5): embedding_size = self._value_size * self._num_heads q_inputs = inputs if query_inputs is None else query_inputs # Denoted by L. If query_inputs is None, L = N. _, query_size = q_inputs.get_shape().as_list()[:2] if state is not None: if isinstance(state, CompressedMemoryState): state_memory_list = [state.compressed_memory, state.episodic_memory] else: state_memory_list = [state] k_inputs = tf.concat(state_memory_list + [inputs], 1) v_inputs = k_inputs else: k_inputs = inputs v_inputs = inputs # Batch size denoted by B batch_size = tf.shape(inputs)[0] # Chunk_size denoted by N chunk_size = inputs.get_shape().as_list()[1] # Denoted by N + M att_size = k_inputs.get_shape().as_list()[1] if self._positional_encodings and not self._use_relative_positions: key_positions, query_positions = self._positional_encodings k_inputs += key_positions q_inputs += query_positions # [B, H, L, K] q = self.multihead_linear(q_inputs, 'query') # [B, H, N + M, K] k = self.multihead_linear(k_inputs, 'key') # [B, H, N + M, V] v = self.multihead_linear(v_inputs, 'value') # Scaling the dot-product if self._scaling: q *= self._key_size**-0.5 # [B, H, L, N + M] if self._use_relative_positions: r_w_bias = tf.get_variable( 'r_w_bias', [1, self._num_heads, 1, self._key_size], dtype=inputs.dtype) content_logits = tf.matmul(q + r_w_bias, k, transpose_b=True) all_relative_logits = [] # Loop over multiple positional encodings, for the case of multiple # memory types. for i, positional_encodings in enumerate(self._positional_encodings): key_positions, query_positions = positional_encodings if key_positions.get_shape().as_list()[-1] != att_size: key_positions = key_positions[:, -att_size:] # Crop to layer mem size is_final = i == len(self._positional_encodings) - 1 suffix = '' if is_final else '_%d' % i relative_keys = self.multihead_linear( key_positions, name='relative_keys' + suffix) # [B, H, N, D] r_r_bias = tf.get_variable( 'r_r_bias' + suffix, [1, self._num_heads, 1, self._key_size], dtype=inputs.dtype) relative_keys = tf.tile(relative_keys, [batch_size, 1, 1, 1]) relative_logits = tf.matmul( q + r_r_bias, relative_keys, transpose_b=True) relative_logits = rel_shift(relative_logits) if not is_final: # Include relative positions for input sequence. relative_logits = relative_logits[:, :, :, :-chunk_size] all_relative_logits.append(relative_logits) all_relative_logits = tf.concat(all_relative_logits, 3) logits = content_logits + all_relative_logits else: # [B, H, N, N + M] logits = tf.matmul(q, k, transpose_b=True) content_logits = logits if self._mask is not None: if self._mask.get_shape().as_list()[-1] != att_size: mask = self._mask[:, :, :, -att_size:] else: mask = self._mask logits += mask weights = tf.nn.softmax(logits) if is_training: weights = tf.nn.dropout(weights, dropout_keep_prob) # [B, L, H, V], where V is value_size output_transpose = tf.einsum('bhij,bhjk->bihk', weights, v) # [B, L, H, V] -> [B, L, HV] attended_inputs = basic.BatchReshape([query_size, embedding_size])( output_transpose) # Apply final mlp to mix information between heads. output = basic.BatchApply(basic.Linear(embedding_size))(attended_inputs) attention_state = AttentionState( queries=q, keys=k, values=v, weights=weights, logits=content_logits, embeddings=inputs, read_words=output) return output, attention_state class TransformerTower(base.AbstractModule): """Transformer tower. Deep residual network using blocks of attention and MLPs, specified in Vaswani et al. 2017. """ def __init__(self, value_size, num_heads, num_layers, causal=True, key_size=None, shared_attention=False, output_size=None, mlp_hidden_sizes=tuple([1024]), dropout_rate=0.1, use_relative_positions=True, clamp_time_range=0, same_attention_length=False, layer_norm='input', name='transformer_tower'): """Initializes TransformerTower. Args: value_size: dimensionality of values per-head. num_heads: number of attention heads. num_layers: number of transformer blocks, where each block contains a multi-head attention layer and an MLP. causal: if True, applies a causal mask. key_size: optional dimensionality of key size. If unspecified then it is set to `value_size`. shared_attention: if True, attention params are shared across all layers. output_size: if set, the desired output dimensionality. By default the output size is `value_size` x `num_heads`. mlp_hidden_sizes: tuple containing dimensionality of mlp layer(s). If multiple values are specified, the mlp contains multiple layers for each transformer block. dropout_rate: dropout rate applied to hidden activations, attention, and positional encodings. use_relative_positions: if False, applies absolute positional encodings. If true, uses relative positional encodings from Dai et al. 2019. clamp_time_range: clamps max temporal positional encoding if specified. same_attention_length: if True, attention is masked to ensure each position in the sequence contains the same length of attention. layer_norm: Where to apply layer-norm in Transformer block. Can be one of 'input' (Vaswani et al. 2017), 'output', or 'both'. name: name of variable scope. """ super(TransformerTower, self).__init__(name=name) self._causal = causal self._mask = None if key_size is None: key_size = value_size self._key_size = key_size self._value_size = value_size self._shared_attention = shared_attention self._num_heads = num_heads self._num_layers = num_layers self._output_size = output_size self._embedding_size = self._value_size * self._num_heads self._mlp_hidden_sizes = list(mlp_hidden_sizes) + [self._embedding_size] self._multihead_attention = None self._object_embeddings = None self._dropout_rate = dropout_rate self._positional_encodings = None self._use_relative_positions = use_relative_positions self._clamp_time_range = clamp_time_range self._same_attention_length = same_attention_length self._layer_norm = layer_norm self._attention_modules = [] self._object_mlps = [] def get_sublayers(self, is_training): if self._multihead_attention is None or not self._shared_attention: attention_module = MultiheadAttention( value_size=self._value_size, key_size=self._key_size, num_heads=self._num_heads, mask=self._mask, positional_encodings=self._positional_encodings, use_relative_positions=self._use_relative_positions, init_std=2. / np.sqrt(self._num_layers), ) self._multihead_attention = ResidualDropoutWrapper( attention_module, self._dropout_rate, layer_norm=self._layer_norm) mlp = default_mlp( self._mlp_hidden_sizes, init_std=2. / np.sqrt(self._num_layers)) object_mlp = ResidualDropoutWrapper( mlp, self._dropout_rate, layer_norm=self._layer_norm) self._attention_modules.append(attention_module) self._object_mlps.append(mlp) return self._multihead_attention, object_mlp def _build(self, inputs, state=None, condition=None, is_training=True): """Calculates multi-layer self attention and mlp transformation. Args: inputs: Tensor of shape [batch_size, num_steps, dim_size]. state: optional tensor of shape [batch_size, memory_size, dim_size]. condition: optional tensor to condition on. The shape is shape [batch_size, dim_size]. is_training: If true, dropout is applied. Returns: output: tensor of shape [batch_size, num_steps, output_dim_size]. state: list of length `num_layers` containing AttentionState tuples. """ # inputs: [B, N, F] if condition is not None: condition_tile = tf.tile( tf.expand_dims(condition, 1), [1, tf.shape(inputs)[1], 1]) inputs = tf.concat([inputs, condition_tile], -1) if state is None: memory_sizes = [0] elif isinstance(state[0], CompressedMemoryState): cm_mem_size = max(_memory_size(s.compressed_memory) for s in state) em_mem_size = max(_memory_size(s.episodic_memory) for s in state) memory_sizes = [cm_mem_size, em_mem_size] else: memory_sizes = [max([_memory_size(s) for s in state])] chunk_size = inputs.get_shape().as_list()[1] self._positional_encodings = [] # Creates positional encodings for different memory types. for i, memory_size in enumerate(memory_sizes): seq_len = chunk_size + memory_size key_positions = get_position_encodings( sequence_length=seq_len, hidden_size=inputs.get_shape().as_list()[2], clamp_value=self._clamp_time_range, ) if is_training: key_positions = tf.nn.dropout(key_positions, rate=self._dropout_rate) key_positions = tf.cast(key_positions, dtype=inputs.dtype) query_positions = key_positions[:, -chunk_size:, :] self._positional_encodings.append((key_positions, query_positions)) if self._causal: self._mask = create_mask(inputs, state, self._same_attention_length) layer_i_inputs = inputs attention_states = [] for i in range(self._num_layers): with tf.variable_scope('layer_%d' % i, reuse=tf.AUTO_REUSE): multihead_attention, object_mlp = self.get_sublayers(is_training) # Multihead attention with residuals. state_i = None if state is None else state[i] attention_outputs, attention_state = multihead_attention( layer_i_inputs, state=state_i, is_training=is_training, dropout_keep_prob=1. - self._dropout_rate) attention_states.append(attention_state) # Feed-forward with residuals. output = object_mlp( attention_outputs, is_training=is_training, dropout_keep_prob=1 - self._dropout_rate) layer_i_inputs = output if self._output_size is not None: output = basic.BatchApply( basic.Linear(self._output_size, use_bias=False))( output) return output, attention_states def attention_module(self, i): """Returns the i-th layer attention module.""" return self._attention_modules[i] class TransformerXL(rnn_core.RNNCore): """Transformer with memory of past activations. From Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context dai et al. 2019, https://arxiv.org/abs/1901.02860. The TransformerXL can be used in two modes: * batched, i.e. when chunk_size > 0. Here the model expects 3D input of size `[batch_size, chunk_size, input_dim]`. In practice, the input chunk size can be of varying (but statically defined) shape. * single-step, i.e. when chunk_size = 0. Here the model expects 2D input `[batch_size, input_dim]`. """ def __init__(self, core_config, memory_size, chunk_size, name='transformer_xl'): """Constructs TransformerXL graph. Args: core_config: dictionary with TransformerTower config. memory_size: size of memory. chunk_size: expected chunk size of inputs, if greater than zero inputs are of size [batch_size, chunk_size, input_dim]. If equal to zero inputs are of size [batch_size, input_dim]. name: name of variable scope. """ super(TransformerXL, self).__init__(name=name) self._core_config = core_config self._memory_size = memory_size self._chunk_size = chunk_size # Extract some size information from the core config. self._num_layers = self._core_config['num_layers'] self._value_size = self._core_config['value_size'] self._key_size = self._core_config.get('key_size') or self._value_size self._num_heads = self._core_config['num_heads'] self._dropout_rate = self._core_config.get('dropout_rate', 0.) self._embedding_size = self._num_heads * self._value_size def _build(self, inputs, prev_state, is_training=True): input_shape = inputs.get_shape().as_list() if len(input_shape) == 2: inputs = tf.expand_dims(inputs, 1) chunk_size = 1 else: _, chunk_size, _ = input_shape inputs = default_mlp([self._embedding_size], activate_final=True)( inputs, is_training=is_training, dropout_keep_prob=1 - self._dropout_rate) transformer = TransformerTower(**self._core_config) state_for_transformer = None if self._memory_size == 0 else prev_state output, attention_state = transformer( inputs, state=state_for_transformer, is_training=is_training) next_state = [] for i, state_i in enumerate(prev_state): # Append new elements to memory. attn_state_i = attention_state[i] memory = tf.concat([state_i, attn_state_i.embeddings], 1)[:, chunk_size:] next_state.append(memory) if self._chunk_size == 0: # For the use-case as a single-step RNN. output = tf.squeeze(output, 1) return output, next_state @property def state_size(self): memory_shape = tf.TensorShape([self._memory_size, self._embedding_size]) return [memory_shape] * self._num_layers @property def output_size(self): if self._chunk_size == 0: return tf.TensorShape([self._embedding_size]) else: return tf.TensorShape([self._chunk_size, self._embedding_size]) class PoolCompressor(base.AbstractModule): """Compress sequence using simple pooling.""" def __init__(self, compression_rate=2, kernel_size=0, pooling='AVG', compressed_memory_size=None, episodic_memory_size=None, name='pool_compressor'): """Instantiates compression module. Args: compression_rate: integer >= 1. The memory will be compressed from T time-steps to T / compression_rate. In implementation, this corresponds to the stride size of the module. kernel_size: The additional kernel size, if we wish for overlapping compressed vectors. The total conv1d kernel size is 'compression_rate + kernel_size', (as the stride is 'compression_rate'). pooling: AVG or MAX pooling. compressed_memory_size: Size of compressed memory store. episodic_memory_size: Size of episodic memory store. name: module name, used for variable scoping. """ super(PoolCompressor, self).__init__(name=name) self._compression_rate = compression_rate self._compressed_memory_size = compressed_memory_size self._episodic_memory_size = episodic_memory_size self._pooling = pooling self._kernel_size = kernel_size def _build(self, memory, **unused_kwargs): pooled_memories = tf.nn.pool( memory, window_shape=(self._compression_rate + self._kernel_size,), data_format='NWC', strides=(self._compression_rate,), padding='VALID', pooling_type=self._pooling) return pooled_memories, tf.zeros([], dtype=memory.dtype) class ConvCompressor(base.AbstractModule): """Compress sequence using convolutions, with respect to a desired loss.""" def __init__(self, compression_rate, compressed_memory_size, episodic_memory_size, kernel_size=0, dilation_rates=None, loss='mha', name='conv_compressor'): """Instantiates convolutional compression module. Args: compression_rate: integer >= 1. The memory will be compressed from T time-steps to T / compression_rate. In implementation, this corresponds to the stride size of the module. compressed_memory_size: Size of compressed memory store. episodic_memory_size: Size of regular memory equiv. to TXL's memory. kernel_size: The additional kernel size, if we wish for overlapping compressed vectors. The total conv1d kernel size is 'compression_rate + kernel_size', (as the stride is 'compression_rate'). dilation_rates: optional iterable of dilation rates for deep dilated convnet, e.g. [1, 2, 4]. loss: Either 'ae' for an auto-encoder compression loss, or 'mha' for a multi-head attention loss. The multi-head attention loss attempts to reconstruct the attention outputs between the (sequence, memory) and (sequence, compressed_memory). name: module name, used for variable scoping. """ super(ConvCompressor, self).__init__(name=name) self._loss = loss self._stride = compression_rate self._kernel_size = kernel_size self._dilation_rates = dilation_rates self._compressed_memory_size = compressed_memory_size self._episodic_memory_size = episodic_memory_size def _build(self, memory, attention_state=None, attention_module=None, is_training=False, dropout_keep_prob=0.5): """Builds graph to compress memory and return auxiliary loss. Args: memory: [batch, chunk_size, hidden_size] tensor to be compressed. attention_state: AttentionState named tuple containing the queries, keys, and values that were computed at a given layer. attention_module: the attention module (sonnet class). Useful for accessing the multi-head attention sub-modules, used to transform hidden states into queries, keys, and values. is_training: if is training, useful for dropout gating. dropout_keep_prob: the probability of dropout. Currently unused! Returns: (compressed_memory, loss) tuple. Compressed_memory is of size [batch, time / compression_rate, hidden_size]. The loss is a scalar. """ _, chunk_size, hidden_size = memory.get_shape().as_list() # Start of queryable sequence, from sequence of hiddens. If the memory is # larger than the chunk size, the whole sequence will be used for queries. seq_s = max(chunk_size - self._episodic_memory_size, 0) memory = tf.stop_gradient(memory) compressed_memory = memory if self._dilation_rates is not None: for rate in self._dilation_rates: conv = snt_conv.Conv1D( hidden_size, kernel_shape=2, rate=rate, use_bias=False, padding=snt_conv.VALID, name='conv_rate_%d' % rate, ) compressed_memory = conv(compressed_memory) compressed_memory = tf.nn.relu(compressed_memory) conv = snt_conv.Conv1D( hidden_size, kernel_shape=self._stride + self._kernel_size, stride=self._stride, use_bias=False, padding=snt_conv.VALID, ) # We stop gradients for the compression inputs. This is to avoid the network # shaping them to be compressible. We would like to compress them # *conditioned* on the task-specific representations that are learned. # Queries from current sequence. queries = tf.stop_gradient(attention_state.queries[:, :, seq_s:]) # Memory of past hidden activations to be compressed. compressed_memory = conv(compressed_memory) if self._loss == 'ae': transpose_conv = conv.transpose() recovered_memory = transpose_conv(compressed_memory) loss = tf.reduce_mean(tf.square(recovered_memory - memory)) elif self._loss == 'mha': # We share the attention module's parameters, but we stop gradients from # flowing to these parameters with respect to the auxiliary loss, as we # don't want the attention module to shape queries, keys, and values to # be compressible. stop_gradient_getter = custom_getters.Context( custom_getters.stop_gradient) with stop_gradient_getter: # Calculates attention from sequence over memory. memory_keys = attention_module.multihead_linear(memory, name='key') memory_values = attention_module.multihead_linear(memory, name='value') read_words_with_memory = simple_attention(queries, memory_keys, memory_values) # Calculates attention from sequence over compressed memory. compressed_keys = attention_module.multihead_linear( compressed_memory, name='key') compressed_values = attention_module.multihead_linear( compressed_memory, name='value') read_words_with_compressed_memory = simple_attention( queries, compressed_keys, compressed_values) loss = tf.reduce_mean( tf.square(read_words_with_memory - read_words_with_compressed_memory)) else: raise NotImplementedError( 'Unrecognised loss: %r, expected `ae` or `mha`' % self._loss) return compressed_memory, loss def _compute_avg_attention(attention_state, compressed_memory_size, episodic_memory_size, chunk_size, n_buckets=6): """Computes average attention for Compressive Transformer. Computes average attention for `n_buckets` over the sequence, episodic memory, and compressed memory. In total there are 3 x n_buckets. Args: attention_state: An AttentionState object. compressed_memory_size: scalar size of compressed memory. episodic_memory_size: scalar size of episodic memory. chunk_size: size of input sequence. n_buckets: number of buckets to average attention per memory, compressed memory, and sequence. Returns: Tuple of (names, avg_weights) where each is a list. The names are <segment_type>_<bucket_id>, i.e. cm_0, cm_1, em_0, em_1, seq_0, seq_1. The bucket index is ordered by time, higher values are for attention over more recent buckets of [seq/cm/em]. The avg_weights are the list of corresponding values. """ cm_size = compressed_memory_size em_size = episodic_memory_size split_sizes = [] split_names = [] if cm_size > 0: split_sizes += [int(cm_size / n_buckets)] * (n_buckets - 1) split_sizes += [cm_size - int(cm_size / n_buckets) * (n_buckets - 1)] split_names += ['cm_p%d' % i for i in range(n_buckets)] if em_size > 0: split_sizes += [int(em_size / n_buckets)] * (n_buckets - 1) split_sizes += [em_size - int(em_size / n_buckets) * (n_buckets - 1)] split_names += ['em_p%d' % i for i in range(n_buckets)] split_sizes += [int(chunk_size / n_buckets)] * (n_buckets - 1) split_sizes += [chunk_size - int(chunk_size / n_buckets) * (n_buckets - 1)] split_names += ['seq_p%d' % i for i in range(n_buckets)] avg_weights = tf.reduce_mean(attention_state.weights, axis=[0, 1, 2]) split_avg_weights = tf.split(avg_weights, split_sizes) split_avg_weights = [tf.reduce_sum(x) for x in split_avg_weights] return split_names, split_avg_weights class CompressiveTransformer(rnn_core.RNNCore): """Transformer with compressive memory. From "Compressive Transformers for Long-Range Sequence Modelling" Rae et al. 2019, https://arxiv.org/abs/1911.05507 """ def __init__(self, core_config, chunk_size, episodic_memory_size, compressed_memory_size, compression_rate=2, compression_ctor=ConvCompressor, compression_config=None, export_stats=False, name='compressive_transformer'): """Constructs Compressive Transformer. Wraps a TransformerTower and includes a slot-based memory (like the TransformerXL) alongside a compressed memory which is populated from the oldest slot-based memories, passed through a compression network. To train the compression network, an auxiliary compression loss is added to the collection 'auxiliary_losses'. Args: core_config: dictionary with TransformerTower config. chunk_size: expected chunk size of inputs, if greater than zero inputs are of size [batch_size, chunk_size, input_dim]. If equal to zero inputs are of size [batch_size, input_dim]. episodic_memory_size: size of slot-based memory (i.e. TransformerXL mem). compressed_memory_size: size of compressed memory. Total attention len is episodic_memory_size + compressed_memory_size + chunk_size. compression_rate: Factor of compression from episodic memories to compressed memories, i.e. `2` means M memories are mapped to M/2 compressed memories. compression_ctor: Constructor of compression network, e.g. ConvCompressor, PoolCompressor, or any newly specified network. compression_config: optional dictionary with keyword arguments for compression network. export_stats: exports compression loss and attention weight per layer to a tf collection 'stats_export' if true. Can slow down training. name: name of variable scope. """ super(CompressiveTransformer, self).__init__(name=name) self._core_config = core_config self._episodic_memory_size = episodic_memory_size self._compressed_memory_size = compressed_memory_size self._chunk_size = chunk_size self._compression_config = dict(compression_config or []) self._compression_rate = compression_rate self._compression_config.update({ 'compression_rate': compression_rate, 'compressed_memory_size': self._compressed_memory_size, 'episodic_memory_size': self._episodic_memory_size, }) self._compression_ctor = compression_ctor self._export_stats = export_stats # Extract some size information from the core config. self._num_layers = self._core_config['num_layers'] self._value_size = self._core_config['value_size'] self._key_size = self._core_config.get('key_size') or self._value_size self._num_heads = self._core_config['num_heads'] self._dropout_rate = self._core_config.get('dropout_rate', 0.) self._embedding_size = self._num_heads * self._value_size def _build(self, inputs, prev_state, is_training=True): """Builds graph. Args: inputs: 3D tensor of shape [batch_size, chunk_size, input_dim] or 2D tensor of shape [batch_size, input_dim]. prev_state: list of length `num_layers` containing `CompressedMemoryState` tuples. is_training: applies dropout if true. Returns: output: tensor equal in rank to `inputs` with final dimension equal to `embedding_size` = `key_size` * `num_heads`. next_state: list of length `num_layers` containing `CompressedMemoryState` tuples. """ input_shape = inputs.get_shape().as_list() if len(input_shape) == 2: inputs = tf.expand_dims(inputs, 1) _, chunk_size, _ = inputs.get_shape().as_list() num_layers_t = tf.constant(self._num_layers, dtype=inputs.dtype) inputs = default_mlp([self._embedding_size], activate_final=True)( inputs, is_training=is_training, dropout_keep_prob=1 - self._dropout_rate) transformer = TransformerTower(**self._core_config) state_for_transformer = (None if self._episodic_memory_size == 0 else prev_state) output, attention_state = transformer( inputs, state=state_for_transformer, is_training=is_training) min_num_to_compress = ( self._compression_rate + self._compression_config.get('kernel_size', 0)) num_to_compress = min(max(min_num_to_compress, chunk_size), chunk_size + self._episodic_memory_size - 1) def apply_compression_generic(attn_state, attn_module, mem_to_compress, prev_compressed_memory): """Instantiates compression module and returns fn to build graph.""" compress_module = self._compression_ctor(**self._compression_config) def _inner_fn(): """Returns (updated compressed memory, compression loss).""" next_compressed_memory, compression_loss = compress_module( mem_to_compress, attention_state=attn_state, attention_module=attn_module, is_training=is_training, dropout_keep_prob=1 - self._dropout_rate, ) compressed_memory, _ = _concat_and_slice(prev_compressed_memory, next_compressed_memory) return compressed_memory, compression_loss return _inner_fn def dont_apply_compression_generic(prev_compressed_memory): """Instantiates fn to build dummy graph that skips any compression.""" def _inner_fn(): return (prev_compressed_memory, tf.zeros([], dtype=prev_compressed_memory.dtype)) return _inner_fn next_state = [] compression_loss = tf.zeros([], dtype=inputs.dtype) global_attention_weights = [] stats_export_dict = {} for i, state_i in enumerate(prev_state): # Append new elements to memory. attn_state_i = attention_state[i] memory, concat_memory = _concat_and_slice(state_i.episodic_memory, attn_state_i.embeddings) sequence_index = state_i.index[0] # We special-case chunk_size=1, which is useful for sampling. In the # single time-step setting we only compress the memory every # 'compression_rate' steps. Otherwise we assume chunk_size is a multiple # of `compression_rate`, and thus multiple compressions can be performed # in parallel. to_compress = tf.logical_or( chunk_size > 1, tf.equal(sequence_index % self._compression_rate, self._compression_rate - 1))[0] apply_compression_fn = apply_compression_generic( attn_state=attn_state_i, attn_module=transformer.attention_module(i), mem_to_compress=concat_memory[:, :num_to_compress], prev_compressed_memory=state_i.compressed_memory, ) dont_apply_compression_fn = dont_apply_compression_generic( prev_compressed_memory=state_i.compressed_memory) compression_output = tf.cond(to_compress, apply_compression_fn, dont_apply_compression_fn) compressed_memory, compression_loss_i = compression_output compression_loss += compression_loss_i # Log useful stats, compression loss per layer. stats_export_dict['compression_loss_l%02d' % i] = compression_loss_i # Attention weights per layer. attn_names, attn_weights = _compute_avg_attention( attn_state_i, self._compressed_memory_size, self._episodic_memory_size, chunk_size) attn_names_i = [name + '_l%02d' % i for name in attn_names] stats_export_dict.update(dict(zip(attn_names_i, attn_weights))) # Avg global attention weights. if i == 0: global_attention_weights = [y / num_layers_t for y in attn_weights] else: global_attention_weights = [ (x + y / num_layers_t) for x, y in zip(global_attention_weights, attn_weights) ] next_state.append( CompressedMemoryState( index=state_i.index + 1, episodic_memory=memory, compressed_memory=compressed_memory)) next_state = tuple(next_state) compression_loss /= num_layers_t stats_export_dict.update(dict(zip(attn_names, global_attention_weights))) if is_training: tf.add_to_collections('auxiliary_losses', compression_loss) if self._export_stats: tf.add_to_collections('stats_export', stats_export_dict) if self._chunk_size == 0: # For the use-case as a single-step RNN. output = tf.squeeze(output, 1) return output, next_state @property def state_size(self): memory_shape = tf.TensorShape( [self._episodic_memory_size, self._embedding_size]) cm_shape = tf.TensorShape( [self._compressed_memory_size, self._embedding_size]) index_shape = tf.TensorShape([1]) shape_per_layer = CompressedMemoryState( index=index_shape, episodic_memory=memory_shape, compressed_memory=cm_shape) return tuple([shape_per_layer] * self._num_layers) @property def output_size(self): if self._chunk_size == 0: return tf.TensorShape([self._embedding_size]) else: return tf.TensorShape([self._chunk_size, self._embedding_size])
sonnet-1
sonnet/python/modules/nets/transformer.py
# Copyright 2018 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sonnet implementation of VQ-VAE https://arxiv.org/abs/1711.00937.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sonnet.python.modules import base import tensorflow.compat.v1 as tf from tensorflow.python.training import moving_averages class VectorQuantizer(base.AbstractModule): """Sonnet module representing the VQ-VAE layer. Implements the algorithm presented in 'Neural Discrete Representation Learning' by van den Oord et al. https://arxiv.org/abs/1711.00937 Input any tensor to be quantized. Last dimension will be used as space in which to quantize. All other dimensions will be flattened and will be seen as different examples to quantize. The output tensor will have the same shape as the input. For example a tensor with shape [16, 32, 32, 64] will be reshaped into [16384, 64] and all 16384 vectors (each of 64 dimensions) will be quantized independently. Args: embedding_dim: integer representing the dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: integer, the number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper - this variable is Beta). """ def __init__(self, embedding_dim, num_embeddings, commitment_cost, name='vq_layer'): super(VectorQuantizer, self).__init__(name=name) self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._commitment_cost = commitment_cost with self._enter_variable_scope(): initializer = tf.uniform_unit_scaling_initializer() self._w = tf.get_variable('embedding', [embedding_dim, num_embeddings], initializer=initializer, trainable=True) def _build(self, inputs, is_training): """Connects the module to some inputs. Args: inputs: Tensor, final dimension must be equal to embedding_dim. All other leading dimensions will be flattened and treated as a large batch. is_training: boolean, whether this connection is to training data. Returns: dict containing the following keys and values: quantize: Tensor containing the quantized version of the input. loss: Tensor containing the loss to optimize. perplexity: Tensor containing the perplexity of the encodings. encodings: Tensor containing the discrete encodings, ie which element of the quantized space each input element was mapped to. encoding_indices: Tensor containing the discrete encoding indices, ie which element of the quantized space each input element was mapped to. """ # Assert last dimension is same as self._embedding_dim input_shape = tf.shape(inputs) with tf.control_dependencies([ tf.Assert(tf.equal(input_shape[-1], self._embedding_dim), [input_shape])]): flat_inputs = tf.reshape(inputs, [-1, self._embedding_dim]) distances = (tf.reduce_sum(flat_inputs**2, 1, keepdims=True) - 2 * tf.matmul(flat_inputs, self._w) + tf.reduce_sum(self._w ** 2, 0, keepdims=True)) encoding_indices = tf.argmax(- distances, 1) encodings = tf.one_hot(encoding_indices, self._num_embeddings) encoding_indices = tf.reshape(encoding_indices, tf.shape(inputs)[:-1]) quantized = self.quantize(encoding_indices) e_latent_loss = tf.reduce_mean((tf.stop_gradient(quantized) - inputs) ** 2) q_latent_loss = tf.reduce_mean((quantized - tf.stop_gradient(inputs)) ** 2) loss = q_latent_loss + self._commitment_cost * e_latent_loss quantized = inputs + tf.stop_gradient(quantized - inputs) avg_probs = tf.reduce_mean(encodings, 0) perplexity = tf.exp(- tf.reduce_sum(avg_probs * tf.log(avg_probs + 1e-10))) return {'quantize': quantized, 'loss': loss, 'perplexity': perplexity, 'encodings': encodings, 'encoding_indices': encoding_indices,} @property def embeddings(self): return self._w def quantize(self, encoding_indices): with tf.control_dependencies([encoding_indices]): w = tf.transpose(self.embeddings.read_value(), [1, 0]) return tf.nn.embedding_lookup(w, encoding_indices, validate_indices=False) class VectorQuantizerEMA(base.AbstractModule): """Sonnet module representing the VQ-VAE layer. Implements a slightly modified version of the algorithm presented in 'Neural Discrete Representation Learning' by van den Oord et al. https://arxiv.org/abs/1711.00937 The difference between VectorQuantizerEMA and VectorQuantizer is that this module uses exponential moving averages to update the embedding vectors instead of an auxiliary loss. This has the advantage that the embedding updates are independent of the choice of optimizer (SGD, RMSProp, Adam, K-Fac, ...) used for the encoder, decoder and other parts of the architecture. For most experiments the EMA version trains faster than the non-EMA version. Input any tensor to be quantized. Last dimension will be used as space in which to quantize. All other dimensions will be flattened and will be seen as different examples to quantize. The output tensor will have the same shape as the input. For example a tensor with shape [16, 32, 32, 64] will be reshaped into [16384, 64] and all 16384 vectors (each of 64 dimensions) will be quantized independently. Args: embedding_dim: integer representing the dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: integer, the number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper). decay: float, decay for the moving averages. epsilon: small float constant to avoid numerical instability. """ def __init__(self, embedding_dim, num_embeddings, commitment_cost, decay, epsilon=1e-5, name='VectorQuantizerEMA'): super(VectorQuantizerEMA, self).__init__(name=name) self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._decay = decay self._commitment_cost = commitment_cost self._epsilon = epsilon with self._enter_variable_scope(): initializer = tf.random_normal_initializer() # w is a matrix with an embedding in each column. When training, the # embedding is assigned to be the average of all inputs assigned to that # embedding. self._w = tf.get_variable( 'embedding', [embedding_dim, num_embeddings], initializer=initializer, use_resource=True) self._ema_cluster_size = tf.get_variable( 'ema_cluster_size', [num_embeddings], initializer=tf.constant_initializer(0), use_resource=True) self._ema_w = tf.get_variable( 'ema_dw', initializer=self._w.initialized_value(), use_resource=True) def _build(self, inputs, is_training): """Connects the module to some inputs. Args: inputs: Tensor, final dimension must be equal to embedding_dim. All other leading dimensions will be flattened and treated as a large batch. is_training: boolean, whether this connection is to training data. When this is set to False, the internal moving average statistics will not be updated. Returns: dict containing the following keys and values: quantize: Tensor containing the quantized version of the input. loss: Tensor containing the loss to optimize. perplexity: Tensor containing the perplexity of the encodings. encodings: Tensor containing the discrete encodings, ie which element of the quantized space each input element was mapped to. encoding_indices: Tensor containing the discrete encoding indices, ie which element of the quantized space each input element was mapped to. """ # Ensure that the weights are read fresh for each timestep, which otherwise # would not be guaranteed in an RNN setup. Note that this relies on inputs # having a data dependency with the output of the previous timestep - if # this is not the case, there is no way to serialize the order of weight # updates within the module, so explicit external dependencies must be used. with tf.control_dependencies([inputs]): w = self._w.read_value() input_shape = tf.shape(inputs) with tf.control_dependencies([ tf.Assert(tf.equal(input_shape[-1], self._embedding_dim), [input_shape])]): flat_inputs = tf.reshape(inputs, [-1, self._embedding_dim]) distances = (tf.reduce_sum(flat_inputs**2, 1, keepdims=True) - 2 * tf.matmul(flat_inputs, w) + tf.reduce_sum(w ** 2, 0, keepdims=True)) encoding_indices = tf.argmax(- distances, 1) encodings = tf.one_hot(encoding_indices, self._num_embeddings) encoding_indices = tf.reshape(encoding_indices, tf.shape(inputs)[:-1]) quantized = self.quantize(encoding_indices) e_latent_loss = tf.reduce_mean((tf.stop_gradient(quantized) - inputs) ** 2) if is_training: updated_ema_cluster_size = moving_averages.assign_moving_average( self._ema_cluster_size, tf.reduce_sum(encodings, 0), self._decay) dw = tf.matmul(flat_inputs, encodings, transpose_a=True) updated_ema_w = moving_averages.assign_moving_average(self._ema_w, dw, self._decay) n = tf.reduce_sum(updated_ema_cluster_size) updated_ema_cluster_size = ( (updated_ema_cluster_size + self._epsilon) / (n + self._num_embeddings * self._epsilon) * n) normalised_updated_ema_w = ( updated_ema_w / tf.reshape(updated_ema_cluster_size, [1, -1])) with tf.control_dependencies([e_latent_loss]): update_w = tf.assign(self._w, normalised_updated_ema_w) with tf.control_dependencies([update_w]): loss = self._commitment_cost * e_latent_loss else: loss = self._commitment_cost * e_latent_loss quantized = inputs + tf.stop_gradient(quantized - inputs) avg_probs = tf.reduce_mean(encodings, 0) perplexity = tf.exp(- tf.reduce_sum(avg_probs * tf.log(avg_probs + 1e-10))) return {'quantize': quantized, 'loss': loss, 'perplexity': perplexity, 'encodings': encodings, 'encoding_indices': encoding_indices,} @property def embeddings(self): return self._w def quantize(self, encoding_indices): with tf.control_dependencies([encoding_indices]): w = tf.transpose(self.embeddings.read_value(), [1, 0]) return tf.nn.embedding_lookup(w, encoding_indices, validate_indices=False)
sonnet-1
sonnet/python/modules/nets/vqvae.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # pylint: disable=line-too-long """Implementation of AlexNet as a Sonnet module. `AlexNet` is a Sonnet module that implements two variants of 'ImageNet Classification with Deep Convolutional Neural Networks' Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, NIPS 2012 http://papers.nips.cc/paper/4824-imagenet-classification-w The two modes are FULL and MINI, corresponding to the full dual-gpu version and a cut-down version that is able to run on Cifar10. AlexNet is no longer state of the art and isn't considered a good starting point for a vision network. """ # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from sonnet.python.modules import base from sonnet.python.modules import basic from sonnet.python.modules import batch_norm from sonnet.python.modules import conv from sonnet.python.modules import util import tensorflow.compat.v1 as tf class AlexNet(base.AbstractModule): """Implementation of AlexNet with full and mini versions. Based on: 'ImageNet Classification with Deep Convolutional Neural Networks' Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, NIPS 2012 http://papers.nips.cc/paper/4824-imagenet-classification-w """ FULL = "FULL" MINI = "MINI" POSSIBLE_INITIALIZER_KEYS = {"w", "b"} def __init__(self, mode, use_batch_norm=False, batch_norm_config=None, initializers=None, partitioners=None, regularizers=None, bn_on_fc_layers=True, custom_getter=None, name="alex_net"): """Constructs AlexNet. Args: mode: Construction mode of network: `AlexNet.FULL` or `AlexNet.MINI`. use_batch_norm: Whether to use batch normalization between the output of a layer and the activation function. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializers are truncated normal initializers, which are commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). partitioners: Optional dict containing partitioners for the filters (with key 'w') and the biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. bn_on_fc_layers: If `use_batch_norm` is True, add batch normalization to the fully-connected layers. This is deprecated. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: base.Error: If the given `mode` is not one of `AlexNet.FULL`, or `AlexNet.MINI`. KeyError: If `initializers`, `partitioners` or `regularizers` contains any keys other than 'w' or 'b'. """ super(AlexNet, self).__init__(custom_getter=custom_getter, name=name) self._mode = mode self._use_batch_norm = use_batch_norm self._bn_on_fc_layers = bn_on_fc_layers if self._bn_on_fc_layers: tf.logging.warn("Using BatchNorm on the fully connected layers in " "AlexNet is not recommended. 'bn_on_fc_layers' is a " "deprecated option and will likely be removed.") self._batch_norm_config = batch_norm_config or {} if self._mode == self.FULL: # The full AlexNet, i.e. originally ran on two GPUs self._conv_layers = [ (96, (11, 4), (3, 2)), (256, (5, 1), (3, 2)), (384, (3, 1), None), (384, (3, 1), None), (256, (3, 1), (3, 2)), ] self._fc_layers = [4096, 4096] elif self._mode == self.MINI: # A cut down version of the half net for testing with Cifar10 self._conv_layers = [ (48, (3, 1), (3, 1)), (128, (3, 1), (3, 1)), (192, (3, 1), None), (192, (3, 1), None), (128, (3, 1), (3, 1)), ] self._fc_layers = [1024, 1024] else: raise base.Error("AlexNet construction mode '{}' not recognised, " "must be one of: '{}', '{}'".format( mode, self.FULL, self.MINI)) self._min_size = self._calc_min_size(self._conv_layers) self._conv_modules = [] self._linear_modules = [] self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _calc_min_size(self, conv_layers): """Calculates the minimum size of the input layer. Given a set of convolutional layers, calculate the minimum value of the `input_height` and `input_width`, i.e. such that the output has size 1x1. Assumes snt.VALID padding. Args: conv_layers: List of tuples `(output_channels, (kernel_size, stride), (pooling_size, pooling_stride))` Returns: Minimum value of input height and width. """ input_size = 1 for _, conv_params, max_pooling in reversed(conv_layers): if max_pooling is not None: kernel_size, stride = max_pooling input_size = input_size * stride + (kernel_size - stride) if conv_params is not None: kernel_size, stride = conv_params input_size = input_size * stride + (kernel_size - stride) return input_size def _build(self, inputs, keep_prob=None, is_training=None, test_local_stats=True): """Connects the AlexNet module into the graph. The is_training flag only controls the batch norm settings, if `False` it does not force no dropout by overriding any input `keep_prob`. To avoid any confusion this may cause, if `is_training=False` and `keep_prob` would cause dropout to be applied, an error is thrown. Args: inputs: A Tensor of size [batch_size, input_height, input_width, input_channels], representing a batch of input images. keep_prob: A scalar Tensor representing the dropout keep probability. When `is_training=False` this must be None or 1 to give no dropout. is_training: Boolean to indicate if we are currently training. Must be specified if batch normalization or dropout is used. test_local_stats: Boolean to indicate to `snt.BatchNorm` if batch normalization should use local batch statistics at test time. By default `True`. Returns: A Tensor of size [batch_size, output_size], where `output_size` depends on the mode the network was constructed in. Raises: base.IncompatibleShapeError: If any of the input image dimensions (input_height, input_width) are too small for the given network mode. ValueError: If `keep_prob` is not None or 1 when `is_training=False`. ValueError: If `is_training` is not explicitly specified when using batch normalization. """ # Check input shape if (self._use_batch_norm or keep_prob is not None) and is_training is None: raise ValueError("Boolean is_training flag must be explicitly specified " "when using batch normalization or dropout.") input_shape = inputs.get_shape().as_list() if input_shape[1] < self._min_size or input_shape[2] < self._min_size: raise base.IncompatibleShapeError( "Image shape too small: ({:d}, {:d}) < {:d}".format( input_shape[1], input_shape[2], self._min_size)) net = inputs # Check keep prob if keep_prob is not None: valid_inputs = tf.logical_or(is_training, tf.equal(keep_prob, 1.)) keep_prob_check = tf.assert_equal( valid_inputs, True, message="Input `keep_prob` must be None or 1 if `is_training=False`.") with tf.control_dependencies([keep_prob_check]): net = tf.identity(net) for i, params in enumerate(self._conv_layers): output_channels, conv_params, max_pooling = params kernel_size, stride = conv_params conv_mod = conv.Conv2D( name="conv_{}".format(i), output_channels=output_channels, kernel_shape=kernel_size, stride=stride, padding=conv.VALID, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers) if not self.is_connected: self._conv_modules.append(conv_mod) net = conv_mod(net) if self._use_batch_norm: bn = batch_norm.BatchNorm(**self._batch_norm_config) net = bn(net, is_training, test_local_stats) net = tf.nn.relu(net) if max_pooling is not None: pooling_kernel_size, pooling_stride = max_pooling net = tf.nn.max_pool( net, ksize=[1, pooling_kernel_size, pooling_kernel_size, 1], strides=[1, pooling_stride, pooling_stride, 1], padding=conv.VALID) net = basic.BatchFlatten(name="flatten")(net) for i, output_size in enumerate(self._fc_layers): linear_mod = basic.Linear( name="fc_{}".format(i), output_size=output_size, initializers=self._initializers, partitioners=self._partitioners) if not self.is_connected: self._linear_modules.append(linear_mod) net = linear_mod(net) if self._use_batch_norm and self._bn_on_fc_layers: bn = batch_norm.BatchNorm(**self._batch_norm_config) net = bn(net, is_training, test_local_stats) net = tf.nn.relu(net) if keep_prob is not None: net = tf.nn.dropout(net, keep_prob=keep_prob) return net @property def initializers(self): return self._initializers @property def partitioners(self): return self._partitioners @property def regularizers(self): return self._regularizers @property def min_input_size(self): """Returns integer specifying the minimum width and height for the input. Note that the input can be non-square, but both the width and height must be >= this number in size. Returns: The minimum size as an integer. """ return self._min_size @property def conv_modules(self): """Returns list containing convolutional modules of network. Returns: A list containing the Conv2D modules. """ self._ensure_is_connected() return self._conv_modules @property def linear_modules(self): """Returns list containing linear modules of network. Returns: A list containing the Linear modules. """ self._ensure_is_connected() return self._linear_modules class AlexNetFull(AlexNet): """AlexNet constructed in the 'FULL' mode.""" def __init__(self, use_batch_norm=False, batch_norm_config=None, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name="alex_net_full"): """Constructs AlexNet. Args: use_batch_norm: Whether to use batch normalization between the output of a layer and the activation function. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializers are truncated normal initializers, which are commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). partitioners: Optional dict containing partitioners for the filters (with key 'w') and the biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: KeyError: If `initializers`, `partitioners` or `regularizers` contains any keys other than 'w' or 'b'. """ super(AlexNetFull, self).__init__( mode=self.FULL, use_batch_norm=use_batch_norm, batch_norm_config=batch_norm_config, initializers=initializers, partitioners=partitioners, regularizers=regularizers, bn_on_fc_layers=False, custom_getter=custom_getter, name=name) class AlexNetMini(AlexNet): """AlexNet constructed in the 'MINI' mode.""" def __init__(self, use_batch_norm=False, batch_norm_config=None, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name="alex_net_mini"): """Constructs AlexNet. Args: use_batch_norm: Whether to use batch normalization between the output of a layer and the activation function. batch_norm_config: Optional mapping of additional configuration for the `snt.BatchNorm` modules. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializers are truncated normal initializers, which are commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). partitioners: Optional dict containing partitioners for the filters (with key 'w') and the biases (with key 'b'). As a default, no partitioners are used. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. custom_getter: Callable or dictionary of callables to use as custom getters inside the module. If a dictionary, the keys correspond to regexes to match variable names. See the `tf.get_variable` documentation for information about the custom_getter API. name: Name of the module. Raises: KeyError: If `initializers`, `partitioners` or `regularizers` contains any keys other than 'w' or 'b'. """ super(AlexNetMini, self).__init__( mode=self.MINI, use_batch_norm=use_batch_norm, batch_norm_config=batch_norm_config, initializers=initializers, partitioners=partitioners, regularizers=regularizers, bn_on_fc_layers=False, custom_getter=custom_getter, name=name)
sonnet-1
sonnet/python/modules/nets/alexnet.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests sonnet.python.modules.nets.mlp.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import parameterized import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib.eager.python import tfe as contrib_eager @contrib_eager.run_all_tests_in_graph_and_eager_modes class MLPTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super(MLPTest, self).setUp() self.output_sizes = [11, 13, 17] self.batch_size = 5 self.input_size = 7 self.module_name = "mlp" self.initializers = { "w": tf.truncated_normal_initializer(stddev=1.0), } self.regularizers = { "w": contrib_layers.l1_regularizer(scale=0.1), } self.partitioners = { "w": tf.fixed_size_partitioner(num_shards=2), } def testName(self): unique_name = "unique_name" with tf.variable_scope("scope"): mlp = snt.nets.MLP(name=unique_name, output_sizes=self.output_sizes) self.assertEqual(mlp.scope_name, "scope/" + unique_name) self.assertEqual(mlp.module_name, unique_name) @parameterized.named_parameters( ("MLPNoFinalActBiasDropout", False, True, True), ("MLPNoFinalActBiasNoDropout", False, True, False), ("MLPNoFinalActNoBiasDropout", False, False, True), ("MLPNoFinalActNoBiasNoDropout", False, False, False), ("MLPFinalActBiasDropout", True, True, True), ("MLPFinalActBiasNoDropout", True, True, False), ("MLPFinalActNoBiasDropout", True, False, True), ("MLPFinalActNoBiasNoDropout", True, False, False), ) def testConstructor(self, activate_final, use_bias, use_dropout): with self.assertRaisesRegexp(ValueError, "output_sizes must not be empty"): mlp = snt.nets.MLP(name=self.module_name, output_sizes=[], activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) with self.assertRaisesRegexp(KeyError, "Invalid initializer keys.*"): mlp = snt.nets.MLP( name=self.module_name, output_sizes=self.output_sizes, initializers={"not_w": tf.truncated_normal_initializer(stddev=1.0)}, activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) with self.assertRaisesRegexp(TypeError, "Initializer for 'w' is not a callable " "function or dictionary"): mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, initializers={"w": tf.zeros([1, 2, 3])}, activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) with self.assertRaisesRegexp(TypeError, "Input 'activation' must be callable"): mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, activation="not_a_function", activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) with self.assertRaisesRegexp(TypeError, "output_sizes must be iterable"): mlp = snt.nets.MLP(name=self.module_name, output_sizes=None, activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) self.assertEqual(self.initializers, mlp.initializers) self.assertEqual(self.regularizers, mlp.regularizers) self.assertEqual(self.partitioners, mlp.partitioners) self.assertEqual(len(mlp.layers), len(self.output_sizes)) for i in range(0, len(mlp.layers)): self.assertEqual(mlp.layers[i].output_size, self.output_sizes[i]) @parameterized.named_parameters( ("MLPNoFinalActBiasDropout", False, True, True), ("MLPNoFinalActBiasNoDropout", False, True, False), ("MLPNoFinalActNoBiasDropout", False, False, True), ("MLPNoFinalActNoBiasNoDropout", False, False, False), ("MLPFinalActBiasDropout", True, True, True), ("MLPFinalActBiasNoDropout", True, True, False), ("MLPFinalActNoBiasDropout", True, False, True), ("MLPFinalActNoBiasNoDropout", True, False, False), ) def testActivateBiasFlags(self, activate_final, use_bias, use_dropout): mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) inputs = tf.random_normal( dtype=tf.float32, shape=[self.batch_size, self.input_size]) net = mlp(inputs) if not tf.executing_eagerly(): if activate_final: self.assertEqual(net.op.type, "Relu") elif use_bias: self.assertIn(net.op.type, ("Add", "AddV2")) else: self.assertEqual(net.op.type, "MatMul") variables = mlp.get_variables() if use_bias: self.assertEqual(len(variables), len(self.output_sizes) * 2) else: self.assertEqual(len(variables), len(self.output_sizes)) def testShape(self): inputs = tf.random_normal( dtype=tf.float32, shape=[self.batch_size, self.input_size]) mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes) output = mlp(inputs) self.assertTrue(output.get_shape().is_compatible_with( [self.batch_size, self.output_sizes[-1]])) self.assertEqual((self.batch_size, self.input_size), mlp.input_shape) self.assertEqual(self.output_sizes, list(mlp.output_sizes)) @parameterized.named_parameters( ("MLPNoFinalActBiasDropout", False, True, True), ("MLPNoFinalActBiasNoDropout", False, True, False), ("MLPNoFinalActNoBiasDropout", False, False, True), ("MLPNoFinalActNoBiasNoDropout", False, False, False), ("MLPFinalActBiasDropout", True, True, True), ("MLPFinalActBiasNoDropout", True, True, False), ("MLPFinalActNoBiasDropout", True, False, True), ("MLPFinalActNoBiasNoDropout", True, False, False), ) def testRegularizersInRegularizationLosses(self, active_final, use_bias, use_dropout): if use_bias: regularizers = { "w": contrib_layers.l1_regularizer(scale=0.5), "b": contrib_layers.l2_regularizer(scale=0.5) } else: regularizers = {"w": contrib_layers.l1_regularizer(scale=0.5)} inputs = tf.random_normal( dtype=tf.float32, shape=[self.batch_size, self.input_size]) mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, regularizers=regularizers, use_dropout=use_dropout) mlp(inputs) graph_regularizers = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(len(graph_regularizers), 3 * (2 if use_bias else 1)) if not tf.executing_eagerly(): self.assertRegexpMatches(graph_regularizers[0].name, ".*l1_regularizer.*") if use_bias: self.assertRegexpMatches(graph_regularizers[1].name, ".*l2_regularizer.*") def testClone(self): with tf.variable_scope("scope1"): mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes) with tf.variable_scope("scope2"): mlp_clone = mlp.clone() self.assertEqual("scope1/" + self.module_name, mlp.scope_name) self.assertEqual(self.module_name, mlp.module_name) self.assertEqual("scope2/" + self.module_name + "_clone", mlp_clone.scope_name) input_to_mlp = tf.random_normal( dtype=tf.float32, shape=[self.batch_size, self.input_size]) mlp_out = mlp(input_to_mlp) mlp_clone_output = mlp_clone(mlp_out) self.assertEqual(mlp_out.get_shape(), mlp_clone_output.get_shape()) variables = mlp.get_variables() clone_variables = mlp_clone.get_variables() self.assertEqual(len(variables), len(clone_variables)) self.assertNotEqual( set(var.name for var in variables), set(var.name for var in clone_variables)) @parameterized.named_parameters( ("MLPNoFinalActBiasDropout", False, True, True), ("MLPNoFinalActBiasNoDropout", False, True, False), ("MLPNoFinalActNoBiasDropout", False, False, True), ("MLPNoFinalActNoBiasNoDropout", False, False, False), ("MLPFinalActBiasDropout", True, True, True), ("MLPFinalActBiasNoDropout", True, True, False), ("MLPFinalActNoBiasDropout", True, False, True), ("MLPFinalActNoBiasNoDropout", True, False, False), ) def testTranspose(self, activate_final, use_bias, use_dropout): with tf.variable_scope("scope1"): mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, activate_final=activate_final, use_bias=use_bias, use_dropout=use_dropout) with tf.variable_scope("scope2"): mlp_transpose = mlp.transpose() self.assertEqual("scope1/" + self.module_name, mlp.scope_name) self.assertEqual(self.module_name, mlp.module_name) self.assertEqual("scope2/" + self.module_name + "_transpose", mlp_transpose.scope_name) self.assertEqual(self.module_name + "_transpose", mlp_transpose.module_name) input_to_mlp = tf.random_normal( dtype=tf.float32, shape=[self.batch_size, self.input_size]) with self.assertRaisesRegexp(snt.Error, "Variables in {} not instantiated yet, " "__call__ the module first." .format(mlp.layers[-1].scope_name)): mlp_transpose(input_to_mlp) mlp_transpose = mlp.transpose(name="another_mlp_transpose") mlp_out = mlp(input_to_mlp) mlp_transposed_output = mlp_transpose(mlp_out) self.assertEqual(mlp_transposed_output.get_shape(), input_to_mlp.get_shape()) self.assertEqual(mlp_transpose.use_bias, mlp.use_bias) self.assertEqual(mlp_transpose.activate_final, mlp.activate_final) if not tf.executing_eagerly(): if activate_final: self.assertEqual(mlp_transposed_output.op.type, "Relu") elif use_bias: self.assertIn(mlp_transposed_output.op.type, ("Add", "AddV2")) else: self.assertEqual(mlp_transposed_output.op.type, "MatMul") for i in range(0, len(mlp.layers)): self.assertEqual(mlp_transpose.layers[i].output_size, mlp.layers[-1 - i].input_shape[1]) self.evaluate(tf.global_variables_initializer()) self.evaluate(mlp_transposed_output) variables = mlp_transpose.get_variables() if use_bias: self.assertEqual(len(variables), len(self.output_sizes) * 2) else: self.assertEqual(len(variables), len(self.output_sizes)) # Test transpose method's activate_final arg. mlp_activate_final = mlp.transpose(activate_final=True) mlp_no_activate_final = mlp.transpose(activate_final=False) mlp_inherit_activate_final = mlp.transpose() self.assertEqual(True, mlp_activate_final.activate_final) self.assertEqual(False, mlp_no_activate_final.activate_final) self.assertEqual(mlp.activate_final, mlp_inherit_activate_final.activate_final) def testVariableMap(self): """Tests for regressions in variable names.""" use_bias = True use_dropout = True var_names_w = [ u"mlp/linear_0/w:0", u"mlp/linear_1/w:0", u"mlp/linear_2/w:0", ] var_names_b = [ u"mlp/linear_0/b:0", u"mlp/linear_1/b:0", u"mlp/linear_2/b:0", ] correct_variable_names = set(var_names_w + var_names_b) mlp = snt.nets.MLP(name=self.module_name, output_sizes=self.output_sizes, activate_final=False, use_bias=use_bias, use_dropout=use_dropout) input_shape = [10, 100] input_to_net = tf.random_normal(dtype=tf.float32, shape=input_shape) _ = mlp(input_to_net) variable_names = [var.name for var in mlp.get_variables()] self.assertEqual(set(variable_names), set(correct_variable_names)) def testCustomGettersUsed(self): pi = 3.1415 def get_pi(getter, *args, **kwargs): """A custom getter which sets all variables to pi.""" variable = getter(*args, **kwargs) return variable * 0.0 + pi mlpi = snt.nets.MLP(output_sizes=[10], custom_getter=get_pi) mlpi(tf.zeros(shape=(2, 1))) mlp_variables = [mlpi.layers[0].w, mlpi.layers[0].b] self.evaluate(tf.global_variables_initializer()) for var_value in self.evaluate(mlp_variables): self.assertAllClose(var_value, np.zeros_like(var_value) + pi) def testDefun(self): mlp = snt.nets.MLP([1, 2, 3]) mlp = contrib_eager.defun(mlp) y = mlp(tf.ones([1, 1])) self.assertListEqual(y.shape.as_list(), [1, 3]) def testDropoutOff(self): """Make sure dropout layers aren't added to the computation graph.""" if tf.executing_eagerly(): self.skipTest("Test not supported when executing eagerly") mlp_name = "test_dropout_on_mlp" mlp = snt.nets.MLP([1], use_dropout=False, use_bias=False, activate_final=True, name=mlp_name) _ = mlp(tf.ones([1, 1]), is_training=True, dropout_keep_prob=0.5) op_names = [op.name for op in tf.get_default_graph().get_operations()] op_to_look_for = "{}_1/dropout/Shape".format(mlp_name) self.assertNotIn(op_to_look_for, op_names) def testDropout(self): if tf.executing_eagerly(): self.skipTest("Test not supported when executing eagerly") mlp_name = "test_dropout_on_mlp" mlp = snt.nets.MLP([1], use_dropout=True, use_bias=False, activate_final=True, name=mlp_name) _ = mlp(tf.ones([1, 1]), is_training=True, dropout_keep_prob=0.5) op_names = [op.name for op in tf.get_default_graph().get_operations()] op_to_look_for = "{}_1/dropout/Shape".format(mlp_name) self.assertIn(op_to_look_for, op_names) def testDropoutTensor(self): """Checks support for tf.Bool Tensors.""" if tf.executing_eagerly(): self.skipTest("Test not supported when executing eagerly") mlp_name = "test_dropout_on_mlp" mlp = snt.nets.MLP([1], use_dropout=True, use_bias=False, activate_final=True, name=mlp_name) _ = mlp(tf.ones([1, 1]), is_training=tf.convert_to_tensor(True, tf.bool), dropout_keep_prob=0.5) op_names = [op.name for op in tf.get_default_graph().get_operations()] op_to_look_for = "{}_1/dropout/Shape".format(mlp_name) self.assertIn(op_to_look_for, op_names) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/python/modules/nets/mlp_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script to train a multi-layer perceptron (MLP) on MNIST.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # Dependency imports import numpy as np import sonnet as snt from sonnet.examples import dataset_mnist_cifar10 as dataset_mnist import tensorflow.compat.v1 as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_float("learning_rate", 0.1, "Learning rate") tf.flags.DEFINE_integer("num_hidden", 100, "Number of hidden units in MLP.") tf.flags.DEFINE_integer("num_train_steps", 1001, "How many training steps to take.") tf.flags.DEFINE_integer("report_every", 10, "Interval, in mini-batches, to report progress.") tf.flags.DEFINE_integer("test_batch_size", 10000, "Batch size for test.") tf.flags.DEFINE_integer("test_every", 200, "Interval, in train mini-batches, to run test pass.") tf.flags.DEFINE_integer("train_batch_size", 200, "Batch size for training.") tf.flags.DEFINE_boolean("gpu_auto_mixed_precision", False, "Enable GPU automatic mixed precision training") def train_and_eval(train_batch_size, test_batch_size, num_hidden, learning_rate, num_train_steps, report_every, test_every, gpu_auto_mixed_precision=False): """Creates a basic MNIST model using Sonnet, then trains and evaluates it.""" data_dict = dataset_mnist.get_data("mnist", train_batch_size, test_batch_size) train_data = data_dict["train_iterator"] test_data = data_dict["test_iterator"] # Sonnet separates the configuration of a model from its attachment into the # graph. Here we configure the shape of the model, but this call does not # place any ops into the graph. mlp = snt.nets.MLP([num_hidden, data_dict["num_classes"]]) train_images, train_labels = train_data.get_next() test_images, test_labels = test_data.get_next() # Flatten images to pass to model. train_images = snt.BatchFlatten()(train_images) test_images = snt.BatchFlatten()(test_images) # Call our model, which creates it in the graph. Our build function # is parameterized by the source of images, and here we connect the model to # the training images. train_logits = mlp(train_images) # Training loss and optimizer. loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=train_labels, logits=train_logits) loss_avg = tf.reduce_mean(loss) optimizer = tf.train.GradientDescentOptimizer(learning_rate) env_enable_mixed_precision = ( os.environ.get("TF_ENABLE_AUTO_MIXED_PRECISION", default="0") == "1") if env_enable_mixed_precision or gpu_auto_mixed_precision: tf_version_list = tf.__version__.split(".") if int(tf_version_list[0]) < 2: if int(tf_version_list[1]) < 14: raise RuntimeError( "TensorFlow 1.14.0 or newer is required " "for GPU automatic mixed precision training.") optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite( optimizer) optimizer_step = optimizer.minimize(loss_avg) # As before, we make a second instance of our model in the graph, which shares # its parameters with the first instance of the model. The Sonnet Module code # takes care of the variable sharing for us: because we are calling the same # instance of Model, we will automatically reference the same, shared # variables. test_logits = mlp(test_images) test_classes = tf.nn.softmax(test_logits) test_correct = tf.nn.in_top_k(test_classes, test_labels, k=1) with tf.train.SingularMonitoredSession() as sess: for step_idx in range(num_train_steps): current_loss, _ = sess.run([loss_avg, optimizer_step]) if step_idx % report_every == 0: tf.logging.info("Step: %4d of %d - loss: %.02f.", step_idx + 1, num_train_steps, current_loss) if step_idx % test_every == 0: sess.run(test_data.initializer) current_correct = sess.run(test_correct) correct_count = np.count_nonzero(current_correct) tf.logging.info("Test: %d of %d correct.", correct_count, test_batch_size) def main(unused_argv): train_and_eval(FLAGS.train_batch_size, FLAGS.test_batch_size, FLAGS.num_hidden, FLAGS.learning_rate, FLAGS.num_train_steps, FLAGS.report_every, FLAGS.test_every, FLAGS.gpu_auto_mixed_precision) if __name__ == "__main__": tf.app.run()
sonnet-1
sonnet/examples/mnist_mlp.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script to train the Relational Memory Core. This is a reduced size version of the "Nth Farthest" task defined in: https://arxiv.org/abs/1806.01822 This resource intensive task and is advisable to run on GPU with 16GB RAM. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time # Dependency imports from absl import flags import six import sonnet as snt from sonnet.examples import dataset_nth_farthest import tensorflow.compat.v1 as tf FLAGS = flags.FLAGS flags.DEFINE_float("learning_rate", 1e-4, "Initial learning rate.") flags.DEFINE_float("min_learning_rate", 8e-5, "Minimum learning rate.") flags.DEFINE_integer("batch_size", 1600, "Batch size.") flags.DEFINE_integer("head_size", 2048, "Total memory size for the RMC.") flags.DEFINE_integer("num_heads", 1, "Attention heads for RMC.") flags.DEFINE_integer("num_mems", 4, "Number of memories for RMC.") flags.DEFINE_integer("num_blocks", 1, "Number of attention blocks for RMC.") flags.DEFINE_string("gate_style", "unit", "Gating style for RMC.") flags.DEFINE_integer("num_objects", 4, "Number of objects per dataset sample.") flags.DEFINE_integer("num_features", 4, "Feature size per object.") flags.DEFINE_integer("epochs", 1000000, "Total training epochs.") flags.DEFINE_integer("log_stride", 100, "Iterations between reports.") class SequenceModel(snt.AbstractModule): """Model to process n-th farthest sequence batches.""" def __init__( self, core, target_size, final_mlp, name="sequence_model"): super(SequenceModel, self).__init__(name=name) self._core = core self._target_size = target_size self._final_mlp = final_mlp def _build(self, inputs): """Dynamic unroll across input objects. Args: inputs: tensor (batch x num_objects x feature). Objects to sort. Returns: Tensor (batch x num_objects); logits indicating the reference objects. """ batch_size = inputs.get_shape()[0] output_sequence, _ = tf.nn.dynamic_rnn( cell=self._core, inputs=inputs, time_major=False, initial_state=self._core.initial_state( batch_size, trainable=False) ) outputs = snt.BatchFlatten()(output_sequence[:, -1, :]) outputs = self._final_mlp(outputs) logits = snt.Linear(self._target_size)(outputs) return logits def build_and_train(iterations, log_stride, test=False): """Construct the data, model, loss and optimizer then train.""" # Test mode settings. batch_size = 2 if test else FLAGS.batch_size num_mems = 2 if test else FLAGS.num_mems num_heads = 1 if test else FLAGS.num_mems num_blocks = 1 if test else FLAGS.num_mems head_size = 4 if test else FLAGS.head_size num_objects = 2 if test else FLAGS.num_objects num_features = 4 if test else FLAGS.num_features mlp_size = (20,) if test else (256, 256, 256, 256) with tf.Graph().as_default(): t0 = time.time() # Initialize the dataset. dataset = dataset_nth_farthest.NthFarthest( batch_size, num_objects, num_features) # Create the model. core = snt.RelationalMemory( mem_slots=num_mems, head_size=head_size, num_heads=num_heads, num_blocks=num_blocks, gate_style=FLAGS.gate_style) final_mlp = snt.nets.MLP( output_sizes=mlp_size, activate_final=True) model = SequenceModel( core=core, target_size=num_objects, final_mlp=final_mlp) tf.logging.info("Instantiated models ({:3f})".format(time.time() - t0)) # Get train and test data. inputs_train, labels_train = dataset.get_batch() inputs_test, labels_test = dataset.get_batch() # Define target accuracy. def compute_accuracy(logits, targets, name="accuracy"): correct_pred = tf.cast( tf.equal(tf.cast(targets, tf.int64), tf.argmax(logits, 1)), tf.float32) return tf.reduce_mean(correct_pred, name=name) # Define the loss & accuracy. def loss_fn(inputs, labels): """Creates the loss and the exports.""" logits = model(inputs) labels = tf.cast(labels, tf.int32) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels)) accuracy = compute_accuracy(logits, labels) return loss, accuracy # Get training step counter. global_step = tf.get_variable( name="global_step", shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) # Create the optimizer. learning_rate_op = tf.reduce_max([ tf.train.exponential_decay( FLAGS.learning_rate, global_step, decay_steps=FLAGS.epochs // 100, decay_rate=0.9, staircase=False), FLAGS.min_learning_rate ]) optimizer = tf.train.AdamOptimizer(learning_rate_op) train_loss, _ = loss_fn(inputs_train, labels_train) step_op = optimizer.minimize(train_loss, global_step=global_step) # Compute test accuracy logits_test = model(inputs_test) labels_test = tf.cast(labels_test, tf.int32) test_acc = compute_accuracy(logits_test, labels_test) tf.logging.info("Created losses and optimizers ({:3f})".format( time.time() - t0)) # Begin Training. t0 = time.time() train_losses = [] steps = [] test_accs = [] tf.logging.info("Starting training ({:3f})".format(time.time() - t0)) with tf.train.SingularMonitoredSession() as sess: for it in six.moves.range(iterations): sess.run([step_op, learning_rate_op]) if it % log_stride == 0: loss_v, acc_v = sess.run([train_loss, test_acc]) elapsed = time.time() - t0 tf.logging.info( "iter: {:2d}, train loss {:3f}; test acc {:3f} ({:3f})".format( it, loss_v, acc_v, elapsed)) train_losses.append(loss_v) steps.append(it) test_accs.append(acc_v) return steps, train_losses, test_accs def main(unused_argv): build_and_train(FLAGS.epochs, FLAGS.log_stride) if __name__ == "__main__": tf.app.run()
sonnet-1
sonnet/examples/rmc_nth_farthest.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for rnn_shakespeare.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import sonnet.examples.rnn_shakespeare as rnn_shakespeare import tensorflow.compat.v1 as tf class TinyShakespeareTest(tf.test.TestCase): def testRun(self): rnn_shakespeare.train(5, 5, 4) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/examples/rnn_shakespeare_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for brnn_ptb.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import string from sonnet.examples import brnn_ptb import tensorflow.compat.v1 as tf FLAGS = tf.flags.FLAGS def _make_random_word(): return ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase) for _ in range(random.randint(1, 15))) def _make_random_vocab(): # Make a limited vocab that all the sentences should be made out of, as the # BRNN model builds a finite vocab internally. return [_make_random_word() for _ in range(1000)] def _make_sentence_with_vocab(vocab): return ' '.join(vocab[random.randint(0, len(vocab) - 1)] for _ in range(random.randint(1, 30))) def _make_fake_corpus_with_vocab(vocab, corpus_size): return '\n'.join(_make_sentence_with_vocab(vocab) for _ in range(corpus_size)) class BrnnPtbTest(tf.test.TestCase): def testScriptRunsWithFakeData(self): # Make some small fake data in same format as real PTB. tmp_dir = tf.test.get_temp_dir() vocab = _make_random_vocab() with tf.gfile.GFile(os.path.join(tmp_dir, 'ptb.train.txt'), 'w') as f: f.write(_make_fake_corpus_with_vocab(vocab, 1000)) with tf.gfile.GFile(os.path.join(tmp_dir, 'ptb.valid.txt'), 'w') as f: f.write(_make_fake_corpus_with_vocab(vocab, 100)) with tf.gfile.GFile(os.path.join(tmp_dir, 'ptb.test.txt'), 'w') as f: f.write(_make_fake_corpus_with_vocab(vocab, 100)) # Make model small, only run for 1 epoch. FLAGS.num_training_epochs = 1 FLAGS.hidden_size = 50 FLAGS.embedding_size = 50 FLAGS.data_path = tmp_dir # Checkpoint to tmp directory so that test runs hermetically, and there is # no possibility of reusing checkpoints from previous runs. FLAGS.logbasedir = tmp_dir # Do training, test, evaluation. brnn_ptb.main(None) if __name__ == '__main__': tf.test.main()
sonnet-1
sonnet/examples/brnn_ptb_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Classes to load textual data from Shakespeare's plays.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os # Dependency imports import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf FLAGS = tf.flags.FLAGS SequenceDataOpsNoMask = collections.namedtuple("SequenceDataOpsNoMask", ("obs", "target")) class TokenDataSource(object): """Encapsulates loading/tokenization logic for disk-based data.""" ROOTS = [ "sonnet/examples/data/", os.path.join(os.path.dirname(os.path.realpath(__file__)), "data"), ] DEFAULT_START_TOKENS = ["_unk_", "_null_", "_eos_", "|"] UNK, NULL, WORD_EOS, CHAR_EOS = DEFAULT_START_TOKENS def __init__(self, data_file, vocab_data_file): """Creates a TokenDataSource instance. Args: data_file: file object containing text data to be tokenized. vocab_data_file: file object containing text data used to initialize the vocabulary. """ def reading_function(file_name): for root in self.ROOTS: file_path = os.path.join(root, file_name) if os.path.exists(file_path): break file_path = None assert file_path is not None, ("Couldn't locate %s in %r" % (file_name, self.ROOTS)) with open(file_path, mode="rb") as fp: return list(fp.read().decode().replace("\n", self.CHAR_EOS)) self._vocab_dict = {} self._inv_vocab_dict = {} token_list = reading_function(vocab_data_file) self.vocab_size = 0 for token in self.DEFAULT_START_TOKENS + token_list: if token not in self._vocab_dict: self._vocab_dict[token] = self.vocab_size self._inv_vocab_dict[self.vocab_size] = token self.vocab_size += 1 raw_data = reading_function(data_file) self.flat_data = np.array(self.tokenize(raw_data), dtype=np.int32) self.num_tokens = self.flat_data.shape[0] def tokenize(self, token_list): """Produces the list of integer indices corresponding to a token list.""" return [ self._vocab_dict.get(token, self._vocab_dict[self.UNK]) for token in token_list ] def decode(self, token_list): """Produces a human-readable representation of the token list.""" return "".join([self._inv_vocab_dict[token] for token in token_list]) class TinyShakespeareDataset(snt.AbstractModule): """Tiny Shakespeare sequence data.""" TRAIN = "train" VALID = "valid" TEST = "test" def __init__(self, num_steps=1, batch_size=1, subset="train", random=False, dtype=tf.float32, name="tiny_shakespeare_dataset"): """Initializes a TinyShakespeare sequence data object. Args: num_steps: sequence_length. batch_size: batch size. subset: 'train', 'valid' or 'test'. random: boolean indicating whether to do random sampling of sequences. Default is false (sequential sampling). dtype: type of generated tensors (both observations and targets). name: object name. Raises: ValueError: if subset is not train, valid or test. """ if subset not in [self.TRAIN, self.VALID, self.TEST]: raise ValueError("subset should be %s, %s, or %s. Received %s instead." % (self.TRAIN, self.VALID, self.TEST, subset)) super(TinyShakespeareDataset, self).__init__(name=name) # Generate vocab from train set. self._vocab_file = "ts.train.txt" self._data_file = "ts.{}.txt".format(subset) self._num_steps = num_steps self._batch_size = batch_size self._random_sampling = random self._dtype = dtype self._data_source = TokenDataSource( data_file=self._data_file, vocab_data_file=self._vocab_file) self._vocab_size = self._data_source.vocab_size self._flat_data = self._data_source.flat_data self._n_flat_elements = self._data_source.num_tokens self._num_batches = self._n_flat_elements // (self._num_steps * batch_size) self._reset_head_indices() self._queue_capacity = 10 @property def vocab_size(self): return self._vocab_size def _reset_head_indices(self): self._head_indices = np.random.randint( low=0, high=self._n_flat_elements, size=[self._batch_size]) def _one_hot(self, token): return tf.one_hot(token, self._vocab_size, axis=-1, dtype=self._dtype) def _get_batch(self): """Returns a batch of sequences. Returns: obs: np.int32 array of size [Time, Batch] target: np.int32 array of size [Time, Batch] """ batch_indices = np.mod( np.array([ np.arange(head_index, head_index + self._num_steps + 1) for head_index in self._head_indices]), self._n_flat_elements) obs = np.array([ self._flat_data[indices[:self._num_steps]] for indices in batch_indices]).T target = np.array([ self._flat_data[indices[1:self._num_steps + 1]] for indices in batch_indices]).T if self._random_sampling: self._reset_head_indices() else: self._head_indices = np.mod( self._head_indices + self._num_steps, self._n_flat_elements) return obs, target def _build(self): """Returns a tuple containing observation and target one-hot tensors.""" q = tf.FIFOQueue( self._queue_capacity, [self._dtype, self._dtype], shapes=[[self._num_steps, self._batch_size, self._vocab_size]]*2) obs, target = tf.py_func(self._get_batch, [], [tf.int32, tf.int32]) obs = self._one_hot(obs) target = self._one_hot(target) enqueue_op = q.enqueue([obs, target]) obs, target = q.dequeue() tf.train.add_queue_runner(tf.train.QueueRunner(q, [enqueue_op])) return SequenceDataOpsNoMask(obs, target) def cost(self, logits, target): """Returns cost. Args: logits: model output. target: target. Returns: Cross-entropy loss for a sequence of logits. The loss will be averaged across time steps if time_average_cost was enabled at construction time. """ logits = tf.reshape(logits, [self._num_steps * self._batch_size, -1]) target = tf.reshape(target, [self._num_steps * self._batch_size, -1]) xent = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=target) loss = tf.reduce_sum(xent) return loss / self._batch_size def to_human_readable(self, data, label_batch_entries=True, indices=None, sep="\n"): """Returns a human-readable version of a one-hot encoding of words. Args: data: A tuple with (obs, target). `obs` is a numpy array with one-hot encoding of words. label_batch_entries: bool. Whether to add numerical label before each batch element in the output string. indices: List of int or None. Used to select a subset of minibatch indices to print. None will print the whole minibatch. sep: A char separator which separates the output for each batch. Defaults to the newline character. Returns: String with the words from `data[0]`. """ obs = data[0] batch_size = obs.shape[1] result = [] indices = xrange(batch_size) if not indices else indices for b in indices: index_seq = np.argmax(obs[:, b], axis=1) prefix = "b_{}: ".format(b) if label_batch_entries else "" result.append(prefix + self._data_source.decode(index_seq)) return sep.join(result)
sonnet-1
sonnet/examples/dataset_shakespeare.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Gets MNIST or CIFAR10 dataset. MNIST: Handwritten digits dataset in grayscale images. CIFAR10: Dataset of 50,000 32x32 color training images, labeled over 10 categories, and 10,000 test images. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf def get_data(name, train_batch_size, test_batch_size): """Gets training and testing dataset iterators. Args: name: String. Name of dataset, either 'mnist' or 'cifar10'. train_batch_size: Integer. Batch size for training. test_batch_size: Integer. Batch size for testing. Returns: Dict containing: train_iterator: A tf.data.Iterator, over training data. test_iterator: A tf.data.Iterator, over test data. num_classes: Integer. Number of class labels. """ if name not in ['mnist', 'cifar10']: raise ValueError( 'Expected dataset \'mnist\' or \'cifar10\', but got %s' % name) dataset = getattr(tf.keras.datasets, name) num_classes = 10 # Extract the raw data. raw_data = dataset.load_data() (images_train, labels_train), (images_test, labels_test) = raw_data # Normalize inputs and fix types. images_train = images_train.astype(np.float32) / 255. images_test = images_test.astype(np.float32) / 255. labels_train = labels_train.astype(np.int32).squeeze() labels_test = labels_test.astype(np.int32).squeeze() # Add a dummy 'color channel' dimension if it is not present. if images_train.ndim == 3: images_train = np.expand_dims(images_train, -1) images_test = np.expand_dims(images_test, -1) # Put the data onto the graph as constants. train_data = tf.data.Dataset.from_tensor_slices((images_train, labels_train)) test_data = tf.data.Dataset.from_tensor_slices((images_test, labels_test)) # Create iterators for each dataset. train_iterator = ( train_data # Note: For larger datasets e.g. ImageNet, it will not be feasible to have # a shuffle buffer this large. .shuffle(buffer_size=len(images_train)) .batch(train_batch_size) .repeat() .make_one_shot_iterator() ) test_iterator = test_data.batch(test_batch_size).make_initializable_iterator() return dict( train_iterator=train_iterator, test_iterator=test_iterator, num_classes=num_classes)
sonnet-1
sonnet/examples/dataset_mnist_cifar10.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A fork of the Penn Treebank reader from TensorFlow's RNN tutorial.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os # Dependency imports import six import tensorflow.compat.v1 as tf def _read_words(filename): with tf.gfile.GFile(filename, "r") as f: if six.PY3: return f.read().replace("\n", "<eos>").split() else: return f.read().decode("utf-8").replace("\n", "<eos>").split() def _build_vocab(filename): data = _read_words(filename) counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) words, _ = list(zip(*count_pairs)) word_to_id = dict(zip(words, range(len(words)))) return word_to_id def _file_to_word_ids(filename, word_to_id): data = _read_words(filename) return [word_to_id[word] for word in data if word in word_to_id] def ptb_raw_data(data_path): """Load PTB raw data from data directory "data_path". Reads PTB text files, converts strings to integer ids, and performs mini-batching of the inputs. The PTB dataset comes from Tomas Mikolov's webpage: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz Args: data_path: string path to the directory where simple-examples.tgz has been extracted. Returns: tuple (train_data, valid_data, test_data, vocabulary) where each of the data objects can be passed to PTBIterator. """ train_path = os.path.join(data_path, "ptb.train.txt") valid_path = os.path.join(data_path, "ptb.valid.txt") test_path = os.path.join(data_path, "ptb.test.txt") word_to_id = _build_vocab(train_path) train_data = _file_to_word_ids(train_path, word_to_id) valid_data = _file_to_word_ids(valid_path, word_to_id) test_data = _file_to_word_ids(test_path, word_to_id) return train_data, valid_data, test_data, word_to_id def ptb_producer(raw_data, batch_size, num_steps, name=None): """Iterate on the raw PTB data. This chunks up raw_data into batches of examples and returns Tensors that are drawn from these batches. Args: raw_data: one of the raw data outputs from ptb_raw_data. batch_size: int, the batch size. num_steps: int, the number of unrolls. name: the name of this operation (optional). Returns: A pair of Tensors, each shaped [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises: tf.errors.InvalidArgumentError: if batch_size or num_steps are too high. """ with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]): raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32) data_len = tf.size(raw_data) batch_len = data_len // batch_size data = tf.reshape(raw_data[0 : batch_size * batch_len], [batch_size, batch_len]) epoch_size = (batch_len - 1) // num_steps assertion = tf.assert_positive( epoch_size, message="epoch_size == 0, decrease batch_size or num_steps") with tf.control_dependencies([assertion]): epoch_size = tf.identity(epoch_size, name="epoch_size") i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue() x = tf.strided_slice(data, [0, i * num_steps], [batch_size, (i + 1) * num_steps]) x.set_shape([batch_size, num_steps]) y = tf.strided_slice(data, [0, i * num_steps + 1], [batch_size, (i + 1) * num_steps + 1]) y.set_shape([batch_size, num_steps]) return x, y
sonnet-1
sonnet/examples/ptb_reader.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Open Source implementation of Bayesian RNN on Penn Treebank. Please see https://arxiv.org/pdf/1704.02798.pdf, section 7.1. Download the Penn Treebank (PTB) dataset from: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz Usage: python ./brnn_ptb.py --data_path=<path_to_dataset> Above, <path_to_dataset> is the path to the 'data' subdirectory within the directory resulting from unpacking the .tgz file whose link is given above. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os # Dependency imports import numpy as np import sonnet as snt from sonnet.examples import ptb_reader import sonnet.python.custom_getters.bayes_by_backprop as bbb import tensorflow.compat.v1 as tf import tensorflow_probability as tfp nest = tf.nest FLAGS = tf.flags.FLAGS # Data settings. tf.flags.DEFINE_string("data_path", "/tmp/ptb_data/data", "path to PTB data.") # Deep LSTM settings. tf.flags.DEFINE_integer("embedding_size", 650, "embedding size.") tf.flags.DEFINE_integer("hidden_size", 650, "network layer size") tf.flags.DEFINE_integer("n_layers", 2, "number of layers") # Training settings. tf.flags.DEFINE_integer("num_training_epochs", 70, "number of training epochs") tf.flags.DEFINE_integer("batch_size", 20, "SGD minibatch size") tf.flags.DEFINE_integer("unroll_steps", 35, "Truncated BPTT unroll length.") tf.flags.DEFINE_integer("high_lr_epochs", 20, "Number of epochs with lr_start.") tf.flags.DEFINE_float("lr_start", 1.0, "SGD learning rate initializer") tf.flags.DEFINE_float("lr_decay", 0.9, "Polynomical decay power.") # BBB settings. tf.flags.DEFINE_float("prior_pi", 0.25, "Determines the prior mixture weights.") tf.flags.DEFINE_float("prior_sigma1", np.exp(-1.0), "Prior component 1 stddev.") tf.flags.DEFINE_float("prior_sigma2", np.exp(-7.0), "Prior component 2 stddev.") # Logging settings. tf.flags.DEFINE_integer("print_every_batches", 500, "Sample every x batches.") tf.flags.DEFINE_string("logbasedir", "/tmp/bayesian_rnn", "directory for logs") tf.flags.DEFINE_string("logsubdir", "run1", "subdirectory for this experiment.") tf.flags.DEFINE_string( "mode", "train_test", "What mode to run in. Options: ['train_only', 'test_only', 'train_test']") tf.logging.set_verbosity(tf.logging.INFO) _LOADED = {} DataOps = collections.namedtuple("DataOps", "sparse_obs sparse_target") def _run_session_with_no_hooks(sess, *args, **kwargs): """Only runs of the training op should contribute to speed measurement.""" return sess._tf_sess().run(*args, **kwargs) # pylint: disable=protected-access def _get_raw_data(subset): """Loads the data or reads it from cache.""" raw_data = _LOADED.get(subset) if raw_data is not None: return raw_data, _LOADED["vocab"] else: train_data, valid_data, test_data, vocab = ptb_reader.ptb_raw_data( FLAGS.data_path) _LOADED.update({ "train": np.array(train_data), "valid": np.array(valid_data), "test": np.array(test_data), "vocab": vocab }) return _LOADED[subset], vocab class PTB(object): """Wraps the PTB reader of the TensorFlow tutorial.""" def __init__(self, subset, seq_len, batch_size, name="PTB"): self.raw_data, self.word2id = _get_raw_data(subset) self.id2word = {v: k for k, v in self.word2id.items()} self.seq_len = seq_len self.batch_size = batch_size self.name = name def to_string(self, idx_seq, join_token=" "): return join_token.join([self.id2word[idx] for idx in idx_seq]) def to_string_tensor(self, time_major_idx_seq_batch): def p_func(input_idx_seq): return self.to_string(input_idx_seq) return tf.py_func(p_func, [time_major_idx_seq_batch[:, 0]], tf.string) def __call__(self): x_bm, y_bm = ptb_reader.ptb_producer( self.raw_data, self.batch_size, self.seq_len, name=self.name) x_tm = tf.transpose(x_bm, [1, 0]) y_tm = tf.transpose(y_bm, [1, 0]) return DataOps(sparse_obs=x_tm, sparse_target=y_tm) @property def num_batches(self): return np.prod(self.raw_data.shape) // (self.seq_len * self.batch_size) @property def vocab_size(self): return len(self.word2id) class GlobalNormClippingOptimizer(tf.train.Optimizer): """Optimizer that clips gradients by global norm.""" def __init__(self, opt, clip_norm, use_locking=False, name="GlobalNormClippingOptimizer"): super(GlobalNormClippingOptimizer, self).__init__(use_locking, name) self._opt = opt self._clip_norm = clip_norm def compute_gradients(self, *args, **kwargs): return self._opt.compute_gradients(*args, **kwargs) def apply_gradients(self, grads_and_vars, *args, **kwargs): if self._clip_norm == np.inf: return self._opt.apply_gradients(grads_and_vars, *args, **kwargs) grads, vars_ = list(zip(*grads_and_vars)) clipped_grads, _ = tf.clip_by_global_norm(grads, self._clip_norm) return self._opt.apply_gradients(zip(clipped_grads, vars_), *args, **kwargs) class CustomScaleMixture(object): """A convenience class for the scale mixture.""" def __init__(self, pi, sigma1, sigma2): self.mu, self.pi, self.sigma1, self.sigma2 = ( np.float32(v) for v in (0.0, pi, sigma1, sigma2)) def log_prob(self, x): n1 = tfp.distributions.Normal(self.mu, self.sigma1) n2 = tfp.distributions.Normal(self.mu, self.sigma2) mix1 = tf.reduce_sum(n1.log_prob(x), -1) + tf.log(self.pi) mix2 = tf.reduce_sum(n2.log_prob(x), -1) + tf.log(np.float32(1.0 - self.pi)) prior_mix = tf.stack([mix1, mix2]) lse_mix = tf.reduce_logsumexp(prior_mix, [0]) return tf.reduce_sum(lse_mix) def custom_scale_mixture_prior_builder(getter, name, *args, **kwargs): """A builder for the gaussian scale-mixture prior of Fortunato et al. Please see https://arxiv.org/abs/1704.02798, section 7.1 Args: getter: The `getter` passed to a `custom_getter`. Please see the documentation for `tf.get_variable`. name: The `name` argument passed to `tf.get_variable`. *args: Positional arguments forwarded by `tf.get_variable`. **kwargs: Keyword arguments forwarded by `tf.get_variable`. Returns: An instance of `tfp.distributions.Distribution` representing the prior distribution over the variable in question. """ # This specific prior formulation doesn't need any of the arguments forwarded # from `get_variable`. del getter del name del args del kwargs return CustomScaleMixture( FLAGS.prior_pi, FLAGS.prior_sigma1, FLAGS.prior_sigma2) def lstm_posterior_builder(getter, name, *args, **kwargs): """A builder for a particular diagonal gaussian posterior. Args: getter: The `getter` passed to a `custom_getter`. Please see the documentation for `tf.get_variable`. name: The `name` argument passed to `tf.get_variable`. *args: Positional arguments forwarded by `tf.get_variable`. **kwargs: Keyword arguments forwarded by `tf.get_variable`. Returns: An instance of `tfp.distributions.Distribution` representing the posterior distribution over the variable in question. """ del args parameter_shapes = tfp.distributions.Normal.param_static_shapes( kwargs["shape"]) # The standard deviation of the scale mixture prior. prior_stddev = np.sqrt( FLAGS.prior_pi * np.square(FLAGS.prior_sigma1) + (1 - FLAGS.prior_pi) * np.square(FLAGS.prior_sigma2)) loc_var = getter( "{}/posterior_loc".format(name), shape=parameter_shapes["loc"], initializer=kwargs.get("initializer"), dtype=tf.float32) scale_var = getter( "{}/posterior_scale".format(name), initializer=tf.random_uniform( minval=np.log(np.exp(prior_stddev / 4.0) - 1.0), maxval=np.log(np.exp(prior_stddev / 2.0) - 1.0), dtype=tf.float32, shape=parameter_shapes["scale"])) return tfp.distributions.Normal( loc=loc_var, scale=tf.nn.softplus(scale_var) + 1e-5, name="{}/posterior_dist".format(name)) def non_lstm_posterior_builder(getter, name, *args, **kwargs): """A builder for a particular diagonal gaussian posterior. Args: getter: The `getter` passed to a `custom_getter`. Please see the documentation for `tf.get_variable`. name: The `name` argument passed to `tf.get_variable`. *args: Positional arguments forwarded by `tf.get_variable`. **kwargs: Keyword arguments forwarded by `tf.get_variable`. Returns: An instance of `tfp.distributions.Distribution` representing the posterior distribution over the variable in question. """ del args parameter_shapes = tfp.distributions.Normal.param_static_shapes( kwargs["shape"]) # The standard deviation of the scale mixture prior. prior_stddev = np.sqrt( FLAGS.prior_pi * np.square(FLAGS.prior_sigma1) + (1 - FLAGS.prior_pi) * np.square(FLAGS.prior_sigma2)) loc_var = getter( "{}/posterior_loc".format(name), shape=parameter_shapes["loc"], initializer=kwargs.get("initializer"), dtype=tf.float32) scale_var = getter( "{}/posterior_scale".format(name), initializer=tf.random_uniform( minval=np.log(np.exp(prior_stddev / 2.0) - 1.0), maxval=np.log(np.exp(prior_stddev / 1.0) - 1.0), dtype=tf.float32, shape=parameter_shapes["scale"])) return tfp.distributions.Normal( loc=loc_var, scale=tf.nn.softplus(scale_var) + 1e-5, name="{}/posterior_dist".format(name)) def build_modules(is_training, vocab_size): """Construct the modules used in the graph.""" # Construct the custom getter which implements Bayes by Backprop. if is_training: estimator_mode = tf.constant(bbb.EstimatorModes.sample) else: estimator_mode = tf.constant(bbb.EstimatorModes.mean) lstm_bbb_custom_getter = bbb.bayes_by_backprop_getter( posterior_builder=lstm_posterior_builder, prior_builder=custom_scale_mixture_prior_builder, kl_builder=bbb.stochastic_kl_builder, sampling_mode_tensor=estimator_mode) non_lstm_bbb_custom_getter = bbb.bayes_by_backprop_getter( posterior_builder=non_lstm_posterior_builder, prior_builder=custom_scale_mixture_prior_builder, kl_builder=bbb.stochastic_kl_builder, sampling_mode_tensor=estimator_mode) embed_layer = snt.Embed( vocab_size=vocab_size, embed_dim=FLAGS.embedding_size, custom_getter=non_lstm_bbb_custom_getter, name="input_embedding") cores = [] for i in range(FLAGS.n_layers): cores.append( snt.LSTM(FLAGS.hidden_size, custom_getter=lstm_bbb_custom_getter, forget_bias=0.0, name="lstm_layer_{}".format(i))) rnn_core = snt.DeepRNN( cores, skip_connections=False, name="deep_lstm_core") # Do BBB on weights but not biases of output layer. output_linear = snt.Linear( vocab_size, custom_getter={"w": non_lstm_bbb_custom_getter}) return embed_layer, rnn_core, output_linear def build_logits(data_ops, embed_layer, rnn_core, output_linear, name_prefix): """This is the core model logic. Unrolls a Bayesian RNN over the given sequence. Args: data_ops: A `sequence_data.SequenceDataOps` namedtuple. embed_layer: A `snt.Embed` instance. rnn_core: A `snt.RNNCore` instance. output_linear: A `snt.Linear` instance. name_prefix: A string to use to prefix local variable names. Returns: A 3D time-major tensor representing the model's logits for a sequence of predictions. Shape `[time_steps, batch_size, vocab_size]`. """ # Embed the input index sequence. embedded_input_seq = snt.BatchApply( embed_layer, name="input_embed_seq")(data_ops.sparse_obs) # Construct variables for holding the RNN state. initial_rnn_state = nest.map_structure( lambda t: tf.get_local_variable( # pylint: disable long lambda warning "{}/rnn_state/{}".format(name_prefix, t.op.name), initializer=t), rnn_core.initial_state(FLAGS.batch_size)) assign_zero_rnn_state = nest.map_structure( lambda x: x.assign(tf.zeros_like(x)), initial_rnn_state) assign_zero_rnn_state = tf.group(*nest.flatten(assign_zero_rnn_state)) # Unroll the RNN core over the sequence. rnn_output_seq, rnn_final_state = tf.nn.dynamic_rnn( cell=rnn_core, inputs=embedded_input_seq, initial_state=initial_rnn_state, time_major=True) # Persist the RNN state for the next unroll. update_rnn_state = nest.map_structure( tf.assign, initial_rnn_state, rnn_final_state) with tf.control_dependencies(nest.flatten(update_rnn_state)): rnn_output_seq = tf.identity(rnn_output_seq, name="rnn_output_seq") output_logits = snt.BatchApply( output_linear, name="output_embed_seq")(rnn_output_seq) return output_logits, assign_zero_rnn_state def build_loss(model_logits, sparse_targets): """Compute the log loss given predictions and targets.""" time_major_shape = [FLAGS.unroll_steps, FLAGS.batch_size] flat_batch_shape = [FLAGS.unroll_steps * FLAGS.batch_size, -1] xent = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(model_logits, flat_batch_shape), labels=tf.reshape(sparse_targets, flat_batch_shape[:-1])) xent = tf.reshape(xent, time_major_shape) # Sum over the sequence. sequence_neg_log_prob = tf.reduce_sum(xent, axis=0) # Average over the batch. return tf.reduce_mean(sequence_neg_log_prob, axis=0) def train(logdir): """Run a network on the PTB training set, checkpointing the weights.""" ptb_train = PTB( name="ptb_train", subset="train", seq_len=FLAGS.unroll_steps, batch_size=FLAGS.batch_size) # Connect to training set. data_ops = ptb_train() embed_layer, rnn_core, output_linear = build_modules( is_training=True, vocab_size=ptb_train.vocab_size) prediction_logits, zero_state_op = build_logits( data_ops, embed_layer, rnn_core, output_linear, name_prefix="train") data_loss = build_loss(prediction_logits, data_ops.sparse_target) # Add the KL cost. total_kl_cost = bbb.get_total_kl_cost() num_dataset_elements = FLAGS.batch_size * ptb_train.num_batches scaled_kl_cost = total_kl_cost / num_dataset_elements total_loss = tf.add(scaled_kl_cost, data_loss) # Optimize as usual. global_step = tf.get_variable( "num_weight_updates", initializer=tf.constant(0, dtype=tf.int32, shape=()), collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) learning_rate = tf.get_variable( "lr", initializer=tf.constant(FLAGS.lr_start, shape=(), dtype=tf.float32)) learning_rate_update = learning_rate.assign(learning_rate * FLAGS.lr_decay) optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate) optimizer = GlobalNormClippingOptimizer(optimizer, clip_norm=5.0) with tf.control_dependencies([optimizer.minimize(total_loss)]): global_step_and_train = global_step.assign_add(1) # Connect to valid set. ptb_valid = PTB( name="ptb_valid", subset="valid", seq_len=FLAGS.unroll_steps, batch_size=FLAGS.batch_size) valid_data_ops = ptb_valid() valid_logits, zero_valid_state = build_logits( valid_data_ops, embed_layer, rnn_core, output_linear, name_prefix="valid") valid_loss = build_loss(valid_logits, valid_data_ops.sparse_target) # Compute metrics for the sake of monitoring training. predictions = tf.cast( tf.argmax(prediction_logits, axis=-1), tf.int32, name="pred") correct_prediction_mask = tf.cast( tf.equal(predictions, data_ops.sparse_target), tf.int32) accuracy = tf.reduce_mean( tf.cast(correct_prediction_mask, tf.float32), name="acc") error_rate = tf.subtract(1.0, accuracy, name="err") label_probs = tf.nn.softmax(prediction_logits, dim=-1) predictive_entropy = tf.reduce_mean( label_probs * tf.log(label_probs + 1e-12) * -1.0) # Create tf.summary ops. log_ops_to_run = { "scalar": collections.OrderedDict([ ("task_loss", data_loss), ("train_err_rate", error_rate), ("pred_entropy", predictive_entropy), ("learning_rate", learning_rate), ("elbo_loss", total_loss), ("kl_cost", total_kl_cost), ("scaled_kl_cost", scaled_kl_cost), ]), "text": collections.OrderedDict([ ("labels", ptb_train.to_string_tensor(data_ops.sparse_target)), ("predictions", ptb_train.to_string_tensor(predictions)) ]) } for name, tensor in log_ops_to_run["scalar"].items(): tf.summary.scalar(os.path.join("train", name), tensor) # The remaining logic runs the training loop and logging. summary_writer = tf.summary.FileWriterCache.get(logdir=logdir) tf.logging.info( "Beginning training for {} epochs, each with {} batches.".format( FLAGS.num_training_epochs, ptb_train.num_batches)) with tf.train.MonitoredTrainingSession( is_chief=True, checkpoint_dir=logdir, save_summaries_secs=10) as sess: num_updates_v = _run_session_with_no_hooks(sess, global_step) epoch_idx_start, step_idx_start = divmod( num_updates_v, ptb_train.num_batches) tf.logging.info("On start, epoch: {}\t step: {}".format( epoch_idx_start, step_idx_start)) for epoch_idx in range(epoch_idx_start, FLAGS.num_training_epochs): tf.logging.info("Beginning Epoch {}/{}".format( epoch_idx, FLAGS.num_training_epochs)) tf.logging.info( ("Beginning by evaluating on the validation set, which has " "{} batches.".format(ptb_valid.num_batches))) valid_cost = 0 valid_steps = 0 _run_session_with_no_hooks(sess, zero_valid_state) for _ in range(ptb_valid.num_batches): valid_cost_v, num_updates_v = _run_session_with_no_hooks( sess, [valid_loss, global_step]) valid_cost += valid_cost_v valid_steps += FLAGS.unroll_steps tf.logging.info("Validation set perplexity: {}".format( np.exp(valid_cost / valid_steps))) summary = tf.summary.Summary() summary.value.add( tag="valid/word_level_perplexity", simple_value=np.exp(valid_cost / valid_steps)) summary_writer.add_summary(summary, num_updates_v) # Run a training epoch. epoch_cost = 0 epoch_steps = 0 for batch_idx in range(step_idx_start, ptb_train.num_batches): scalars_res, num_updates_v = sess.run( [log_ops_to_run["scalar"], global_step_and_train]) epoch_cost += scalars_res["task_loss"] epoch_steps += FLAGS.unroll_steps if (batch_idx - 1) % FLAGS.print_every_batches == 0: summary = tf.summary.Summary() summary.value.add( tag="train/word_level_perplexity", simple_value=np.exp(epoch_cost / epoch_steps)) summary_writer.add_summary(summary, num_updates_v) scalars_res, strings_res = _run_session_with_no_hooks( sess, [log_ops_to_run["scalar"], log_ops_to_run["text"]]) tf.logging.info("Num weight updates: {}".format(num_updates_v)) for name, result in scalars_res.items(): tf.logging.info("{}: {}".format(name, result)) for name, result in strings_res.items(): tf.logging.info("{}: {}".format(name, result)) word_level_perplexity = np.exp(epoch_cost / epoch_steps) tf.logging.info( "Train Perplexity after Epoch {}: {}".format( epoch_idx, word_level_perplexity)) end_of_epoch_fetches = [zero_state_op] if epoch_idx >= FLAGS.high_lr_epochs: end_of_epoch_fetches.append(learning_rate_update) _run_session_with_no_hooks(sess, end_of_epoch_fetches) tf.logging.info("Done training. Thanks for your time.") def test(logdir): """Run a network on the PTB test set, restoring from the latest checkpoint.""" global_step = tf.get_variable( "num_weight_updates", initializer=tf.constant(0, dtype=tf.int32, shape=()), collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) ptb_test = PTB( name="ptb_test", subset="test", seq_len=FLAGS.unroll_steps, batch_size=FLAGS.batch_size) # Connect to test set. data_ops = ptb_test() # The variables in these modules will be restored from the checkpoint. embed_layer, rnn_core, output_linear = build_modules( is_training=False, vocab_size=ptb_test.vocab_size) prediction_logits, _ = build_logits( data_ops, embed_layer, rnn_core, output_linear, name_prefix="test") avg_nats_per_sequence = build_loss(prediction_logits, data_ops.sparse_target) dataset_cost = 0 dataset_iters = 0 with tf.train.SingularMonitoredSession(checkpoint_dir=logdir) as sess: tf.logging.info("Running on test set in {} batches.".format( ptb_test.num_batches)) tf.logging.info("The model has trained for {} steps.".format( _run_session_with_no_hooks(sess, global_step))) for _ in range(ptb_test.num_batches): dataset_cost += _run_session_with_no_hooks(sess, avg_nats_per_sequence) dataset_iters += FLAGS.unroll_steps tf.logging.info("Final test set perplexity: {}.".format( np.exp(dataset_cost / dataset_iters))) def main(unused_argv): logdir = os.path.join(FLAGS.logbasedir, FLAGS.logsubdir) tf.logging.info("Log Directory: {}".format(logdir)) if FLAGS.mode == "train_only": train(logdir) elif FLAGS.mode == "test_only": test(logdir) elif FLAGS.mode == "train_test": tf.logging.info("Beginning a training phase of {} epochs.".format( FLAGS.num_training_epochs)) train(logdir) tf.logging.info("Beginning testing phase.") with tf.Graph().as_default(): # Enter new default graph so that we can read variables from checkpoint # without getting hit by name uniquification of sonnet variables. test(logdir) else: raise ValueError("Invalid mode {}. Please choose one of {}.".format( FLAGS.mode, "['train_only', 'test_only', 'train_test']")) if __name__ == "__main__": tf.app.run()
sonnet-1
sonnet/examples/brnn_ptb.py
# Copyright 2018 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Learning To Execute Dataset. Generated sequences of constant time mini-programs. Modes: * `TRAIN_COMBINE`: Uses Combined Curriulum for training. * `TRAIN_MIX`: Uses Mix Curriulum for training. * `TRAIN_NAIVE`: Uses Naive Curriulum for training. * `TEST`: Uses Baseline Currculum for testing. This module defines: 1. Set of curriculum classes. 2. Set of execution operation classes (this may be extended). 3. Methods for defining a vocabulary and code samples. 4. Class responsible for handling the tokenization of samples. 5. Dataset class to generate train/test batches. This dataset is generative and does not rely on any statically stored data. Therefore there is no limit to the samples generated. A generated batch will be of dimensionality [sequence, length, one_hot_encoding_size]. Finally, the dataset requires a maximum literal length and nesting level, for example: (25 if 10 < 2 else (333 - (22 + 4))) This has a maximum literal length of 3 (`333`) and nesting level of 3 (`(22 + 4)`). Finally, it should be mentioned that the dataset can operate also in two tokenization modes: tokenied and detokenized. In a detokenized mode the sequence is tokenized by character while in the tokenized mode the sample is tokenized by keywords, numbers and literals (illustrated by the spaces in the above example). This can set with the `token_by_char` arg where detokenized corresponds to `True`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import random from enum import Enum import numpy as np import six import tensorflow.compat.v1 as tf _SOS = "~" # Start of sequence symbol _EOS = "!" # End of sequence symbol _PAD = "." # Padding symbol DEFAULT_MIN_CURRICULUM_EVAL_TRIES = 10 # Minimum # of times to attempt update. @six.add_metaclass(abc.ABCMeta) class LTECurriculum(object): """Base class for code operations.""" MIN_LOSS_WINDOW_SIZE = 5 MAX_LOSS_WINDOW_SIZE = 10 def __init__(self, max_length, max_nesting, loss_threshold=0.05, min_tries=DEFAULT_MIN_CURRICULUM_EVAL_TRIES): """Initializes the curriculum. Args: max_length: The maximum literal length. max_nesting: The maximum nesting. loss_threshold: Fractional value under which the average difference in validation loss will trigger additional difficulty. min_tries: the minimum number of times required on a difficulty level. """ self._curr_length = 1 self._max_length = max_length self._curr_nesting = 1 self._max_nesting = max_nesting self._loss_threshold = loss_threshold self._min_tries = min_tries self._curr_tries = 0 self._set_loss_window() def _set_loss_window(self): """Initializes the queue that stores the losses.""" avg_window_size = max(min(self._min_tries, self.MAX_LOSS_WINDOW_SIZE), self.MIN_LOSS_WINDOW_SIZE) self._losses = collections.deque( [], maxlen=avg_window_size) # pytype: disable=wrong-arg-count @property def friendly_name(self): return "Root(" + str(self._loss_threshold) + ")" def update(self, loss, force=False): """Determines whether task level difficulty is to be increased. Collects loss values and difference since the last update. This is used to compute the fractional difference across the loss window. Args: loss: float indicating an loss value to determine whether to update the curriculum state. force: boolean that allows us to force a curriculum update. Returns: True if there was an update. """ if force: self._curr_tries = 0 self._set_loss_window() self._set_new_task = True return True self._losses.append(loss) if self._curr_tries < self._min_tries - 1: self._curr_tries += 1 return False # Average change in loss normalized by average loss. loss_diffs = [pair[0] - pair[1] for pair in zip(list(self._losses)[1:], list(self._losses)[:-1])] avg_loss_norm = np.mean(loss_diffs) / np.mean(self._losses) if avg_loss_norm < self._loss_threshold: self._set_new_task = True self._curr_tries = 0 self._set_loss_window() return True else: return False def fetch(self): """Getter for current curriculum nesting and length. Returns: Tuple of integer values indicating literal length and nesting depth. """ return self._curr_length, self._curr_nesting @property def current_level(self): """Gets current currciculum level (string).""" return str(self._curr_nesting) + "." + str(self._curr_length) @property def max_length(self): """Gets maximum literal depth.""" return self._max_length @property def max_nesting(self): """Gets maximum nesting depth.""" return self._max_nesting class BaselineCurriculum(LTECurriculum): """Baseline curriculum sets a fixed nesting and length.""" def __init__(self, length, nesting, threshold, min_tries=DEFAULT_MIN_CURRICULUM_EVAL_TRIES): tf.logging.info("Initializing Baseline curriculum. length=%d, nest=%d, " "valid threshold=%f", length, nesting, threshold) super(BaselineCurriculum, self).__init__(length, nesting, threshold, min_tries) self._curr_length = length self._curr_nesting = nesting @property def friendly_name(self): return "Baseline(" + str(self._loss_threshold) + ")" class NaiveCurriculum(LTECurriculum): """Naive curriculum increments length, nesting complexity by 1 on update.""" def __init__(self, length, nesting, threshold, min_tries=DEFAULT_MIN_CURRICULUM_EVAL_TRIES): tf.logging.info("Initializing Naive curriculum." " length=%d, nest=%d, valid threshold=%f", length, nesting, threshold) super(NaiveCurriculum, self).__init__(length, nesting, threshold, min_tries) def friendly_name(self): return "Naive(" + str(self._loss_threshold) + ")" def update(self, loss, force=False): """Increments level difficulty (length and nesting) by 1 until maximum.""" do_update = super(NaiveCurriculum, self).update(loss, force) if do_update: if self._curr_length < self._max_length: self._curr_length += 1 return True elif self._curr_nesting < self._max_nesting: self._curr_nesting += 1 else: self._set_new_task = False if self._set_new_task: tf.logging.info("New level: (length=%d, nesting=%d)", self._curr_length, self._curr_nesting) return self._set_new_task return False class MixCurriculum(LTECurriculum): """Mixed chooses randomly by batch up to a maximum length/nesting.""" def __init__(self, length, nesting, threshold, min_tries=DEFAULT_MIN_CURRICULUM_EVAL_TRIES): tf.logging.info("Initializing Mix curriculum." " length=%d, nest=%d, valid threshold=%f", length, nesting, threshold) super(MixCurriculum, self).__init__(length, nesting, threshold, min_tries) def friendly_name(self): return "Mix(" + str(self._loss_threshold) + ")" def fetch(self): """Samples up to maximum difficulty.""" length = np.random.randint(1, self._max_length + 1) nesting = np.random.randint(1, self._max_nesting + 1) return length, nesting class CombineCurriculum(LTECurriculum): """Combine uses both Mix and Naive strategy together.""" def __init__(self, length, nesting, threshold, min_tries=DEFAULT_MIN_CURRICULUM_EVAL_TRIES): tf.logging.info("Initializing Combine curriculum. length=%d, nest=%d, " "valid threshold=%f", length, nesting, threshold) super(CombineCurriculum, self).__init__(length, nesting, threshold, min_tries) @property def friendly_name(self): return "Combine(" + str(self._loss_threshold) + ")" def update(self, loss, force=False): """Increments level difficulty (length and nesting) by 1 until maximum.""" do_update = super(CombineCurriculum, self).update(loss, force) if not do_update: return False if self._curr_length < self._max_length: self._curr_length += 1 elif self._curr_nesting < self._max_nesting: self._curr_nesting += 1 else: self._set_new_task = False if self._set_new_task: tf.logging.info("New level: (length=%d, nesting=%d)", self._curr_length, self._curr_nesting) return self._set_new_task def fetch(self): """Samples up to current difficulty.""" length = np.random.randint(1, self._curr_length + 1) nesting = np.random.randint(1, self._curr_nesting + 1) return length, nesting @six.add_metaclass(abc.ABCMeta) class CodeOp(object): """Base class for code operations.""" def __init__(self, num_operands): """Constructor for base operations class. This constructor sets the operands for the operation as well as whether the operation is a "memory" operation - that is, one the output is a permuation or copy of the input. Args: num_operands: integer indicating number of operands for this operation. """ self._num_operands = num_operands self._is_memory = False @property def num_operands(self): """Property returning integer number of operands for the operation.""" return self._num_operands @property def is_memory(self): """Property indicating whether this is a memory Operation.""" return self._is_memory KEYWORDS = ["if", "for", "else", "range"] LITERALS = ["+", "-", "*", "=", ":", "/", "(", ")", " ", "x", "|", "<", ">", "[", "]", _SOS, _EOS, _PAD] def check_elems(self, elems, count, elem_type): """Ensures element list length and type valid. Args: elems: list of elements. count: how many elements are expected. elem_type: type of all elements. Raises: ValueError: When length and type of elems is not as expected. """ if len(elems) != count and all(isinstance(e, elem_type) for e in elems): raise ValueError("Not all elements valid: {}".format(elems)) @abc.abstractmethod def eval(self, values): """Evaluates the operation based with given values.""" return @abc.abstractmethod def get_code(self, codes): """Composes the operation code from code components.""" return class AddOp(CodeOp): """Add operation class.""" def __init__(self): super(AddOp, self).__init__(2) def eval(self, values): self.check_elems(values, 2, int) return values[0] + values[1] def get_code(self, codes): self.check_elems(codes, 2, str) return "+".join(codes[:2]) class SubtractOp(CodeOp): """Subtract operation class.""" def __init__(self): super(SubtractOp, self).__init__(2) def eval(self, values): self.check_elems(values, 2, int) return values[0] - values[1] def get_code(self, codes): self.check_elems(codes, 2, str) return "".join([codes[0], "-", codes[1]]) class MultiplyOp(CodeOp): """Multiply operation class.""" def __init__(self): super(MultiplyOp, self).__init__(2) def eval(self, values): self.check_elems(values, 2, int) return values[0] * values[1] def get_code(self, codes): self.check_elems(codes, 2, str) return "".join([codes[0], "*", codes[1]]) class DivideOp(CodeOp): """Divide operation class.""" def __init__(self): super(DivideOp, self).__init__(2) def eval(self, values): self.check_elems(values, 2, int) return values[0] / values[1] def get_code(self, codes): self.check_elems(codes, 2, str) return "".join([codes[0], "/", codes[1]]) class IfOp(CodeOp): """If operation class.""" def __init__(self): super(IfOp, self).__init__(4) self._comparators = ["<", ">"] def eval(self, values): self.check_elems(values, 4, int) comparator_idx = random.randint(0, len(self._comparators)-1) self._comparator = self._comparators[comparator_idx] if self._comparator == ">": return values[0] if values[1] > values[2] else values[3] elif self._comparator == "<": return values[0] if values[1] < values[2] else values[3] else: ValueError("Invalid comparator.") def get_code(self, codes): self.check_elems(codes, 4, str) if self._comparator == ">": return "".join([codes[0], "if", codes[1], ">", codes[2], "else", codes[3]]) elif self._comparator == "<": return "".join([codes[0], "if", codes[1], "<", codes[2], "else", codes[3]]) else: ValueError("Invalid comparator.") class ForOp(CodeOp): """For loop operation class.""" def __init__(self): super(ForOp, self).__init__(2) def eval(self, values): values = list(values) self.check_elems(values, 2, int) self._it = random.randint(1, 9) for _ in six.moves.range(self._it): values[0] += values[1] return values[0] def get_code(self, codes): self.check_elems(codes, 2, str) return "".join(["x=", codes[0], "for[" + str(self._it) + "]", "x+=", codes[1]]) class ReverseOp(CodeOp): """Outputs a reversal of the input.""" def __init__(self): """Constructor for ReverseOp.""" super(ReverseOp, self).__init__(1) self._is_memory = True def eval(self, values): """Evaluation method for reverse operation. Args: values: List of samples to compose operation. Returns: String representing reversed input. """ return str(values[0])[::-1] def get_code(self, codes): """Composes a code for double-copy operation. Args: codes: List of samples to compose operation. Returns: String for code of reversed input result. """ return "".join(codes) class CopyOp(CodeOp): """Outputs a copy of the input.""" def __init__(self): """Constructor for CopyOp.""" super(CopyOp, self).__init__(1) self._is_memory = True def eval(self, values): """Evaluation method for copy operation. Args: values: List of samples to compose operation. Returns: String representing copied input. """ return values[0] def get_code(self, codes): """Composes a code for double-copy operation. Args: codes: List of samples to compose operation code. Returns: String for code of copied input result. """ return "".join(codes) class DoubleCopyOp(CodeOp): """Outputs two concatenated copies of the input.""" def __init__(self): """Constructor for DoubleCopyOp.""" super(DoubleCopyOp, self).__init__(1) self._is_memory = True def eval(self, values): """Evaluation method for DoubleCopy operation. Args: values: List of samples to compose operation code. Returns: String representing doubled input result. """ return str(values[0]) + str(values[0]) def get_code(self, codes): """Composes a code for double-copy operation. Args: codes: List of samples to compose operation. Returns: String for code of double copied input result. """ return "".join(codes) def generate_code(max_length, max_nest, ops): """Generates code samples. Args: max_length: int. max literal length. max_nest: int. max nesting level. ops: CodeOp. set of allowable operations. Returns: 1. (str) output value. 2. (str) Code operation. """ stack = [] def fetch_one(): # Always use an existing nested value for one of the operands. if stack: return stack.pop() else: # Produce a numeral of max_length-digits. value = random.randint(10 ** (max_length - 1), 10 ** max_length - 1) code = str(value) return value, code def fetch(num_operands): values, codes = zip(*[fetch_one() for _ in six.moves.range(num_operands)]) return values, codes for _ in six.moves.range(max_nest): op = random.choice(ops) values, codes = fetch(op.num_operands) new_value = op.eval(values) new_code = op.get_code(codes) stack.append((new_value, "(" + new_code + ")")) final_value, final_code = stack.pop() final_code = final_code[1:-1] final_code.strip("()") if not op.is_memory: final_value = int(final_value) % 10 ** (max_length+1) return str(final_value), final_code def get_tokens(max_value): """Defines tokens. Args: max_value: the maximum numeric range for the token. Returns: list of string tokens in vocabulary. """ vocab = [str(i) for i in range(max_value)] vocab = set(vocab) vocab.update(CodeOp.LITERALS) vocab.update(CodeOp.KEYWORDS) vocab |= set("".join(vocab)) return sorted(vocab) def get_padding(): """Returns the padding character.""" return _PAD def get_start_token(): """Returns `start-of-sequence` character.""" return _SOS def get_end_token(): """Returns `end-of-sequence` character.""" return _EOS class TokenDataSource(object): """Encapsulates loading/tokenization logic for samples from generator.""" UNK = "_unk_" DEFAULT_START_TOKENS = ["_null_", "_eos_", "|"] NULL, WORD_EOS, CHAR_EOS = DEFAULT_START_TOKENS def __init__(self, curriculum_obj, batch_size, max_len, ops, token_by_char): """Creates a TokenDataSource instance. Args: curriculum_obj: (LTECurriculum) determines sample complexity. batch_size: (int) Batch size to generate. max_len: (int) This is the maximum size of any given sample sequence. ops: (list(CodeOp)). Task operations that inherit from CodeOp(). token_by_char: (bool) Whether to tokenize by char ("detokenized") or by keyword, literals and numbers. """ # Create the token and inverse-token dicts and fix the UNK token. self._vocab_dict = collections.defaultdict(lambda: 0) self._vocab_dict[self.UNK] = 0 self._inv_vocab_dict = collections.defaultdict(lambda: self.UNK) self.curriculum_obj = curriculum_obj self._max_seq_length = max_len self._ops = ops self._token_by_char = token_by_char self._batch_size = batch_size # Construct the vocabulary. num_token_digits = 1 if token_by_char else curriculum_obj.max_length token_list = get_tokens(10 ** num_token_digits) self.vocab_size = 1 for token in self.DEFAULT_START_TOKENS + token_list: if token not in self._vocab_dict: self._vocab_dict[token] = self.vocab_size self._inv_vocab_dict[self.vocab_size] = token self.vocab_size += 1 @property def vocabulary(self): """List of strings, dataset vocabulary.""" return self._vocab_dict.keys() def generate_flat_data(self): """Generates batched data in flat numpy arrays. Raises: ValueError: When too many generate calls are required. """ # Construct the string statements. all_statements = [] all_targets = [] self.sequence_sizes_in = [] self.sequence_sizes_out = [] for _ in six.moves.range(self._batch_size): length, nest = self.curriculum_obj.fetch() seq_size_in = self._max_seq_length # Generate batch within max length. is_valid_sample = False tries_remaining = 10 while not is_valid_sample: value, code = generate_code(length, nest, self._ops) tokens_in, seq_size_in = self.tokenize( code, self._max_seq_length, self._token_by_char) tokens_out, seq_size_out = self.tokenize( value, self._max_seq_length, self._token_by_char) is_valid_sample = self._max_seq_length >= seq_size_in if is_valid_sample: self.sequence_sizes_in.append(seq_size_in) self.sequence_sizes_out.append(seq_size_out) if tries_remaining == 0: raise ValueError("Could not generate a sample below the allowable " "maximum, consider reducing either max_length or " "max_nest.") else: tries_remaining -= 1 all_statements += tokens_in all_targets += tokens_out # Store the flattened data. self.flat_data = np.array(all_statements, dtype=np.int64) self.num_tokens = self.flat_data.shape[0] self.flat_targets = np.array(all_targets, dtype=np.int64) self.num_tokens_target = self.flat_targets.shape[0] self.start_token = np.array(self.tokenize( [get_start_token()], 1)[0], dtype=np.int64) self.end_token = np.array(self.tokenize( [get_end_token()], 1)[0], dtype=np.int64) def tokenize(self, char_input, max_len, by_char=False): """Produces the list of integer indices corresponding to a token list. Args: char_input: The character string to be tokenized. max_len: Truncation length. by_char: If true each character is a token - otherwise alpha-numeric groupings are tokens. Returns: A padded list of string tokens and the true sequence length. Raises: ValueError: the token sequence is too long. """ if by_char: tokenized_list = [self._vocab_dict[token] for token in char_input] else: tokenized_list = [] compound_token = "" for token in char_input: # Compose alphanumeric inputs into compound tokens. add_number = compound_token.isdigit() and not token.isdigit() add_word = compound_token.isalpha() and not token.isalpha() if add_number or add_word: tokenized_list.append(self._vocab_dict[compound_token]) compound_token = "" # Add token or build compound token. if token.isdigit(): compound_token += token elif token.isalpha(): compound_token += token else: tokenized_list.append(self._vocab_dict[token]) if compound_token: tokenized_list.append(self._vocab_dict[compound_token]) # To ensure uniform batch sequence length pad the sequence. seq_size = len(tokenized_list) if seq_size < max_len: padding = [self._vocab_dict[get_padding()]] * (max_len - seq_size) tokenized_list.extend(padding) elif seq_size > max_len: raise ValueError("Token sequence is too large: {}".format( len(tokenized_list))) return tokenized_list, seq_size def decode_to_string(self, token_list): """Produces a human-readable representation of the token list.""" return "".join([self._inv_vocab_dict[token] for token in token_list]) def decode_to_list(self, token_list): """Returns a list token index values.""" return [self._inv_vocab_dict[token] for token in token_list] # Task Types. class TaskType(Enum): ALGEBRA = 1 CONTROL = 2 ALL = 3 ALG_CTRL = 4 ADDITION = 5 COPY = 6 DOUBLE = 7 REVERSE = 8 # Task Groups. class TaskGroups(Enum): PROG_TASKS = 1 MEMORY_1 = 2 MEMORY_2 = 3 class LearnToExecuteState(object): """Learn-To-Execute dataset state class. Generated sequences of constant time mini-programs. Modes: * `train`: Uses Combined Curriulum for training. * `test`: Uses Baseline Currculum for testing. """ TASK_TYPE_OPS = { TaskType.ALGEBRA: [AddOp(), SubtractOp(), MultiplyOp(),], TaskType.CONTROL: [IfOp(), ForOp(),], TaskType.ALL: [AddOp(), SubtractOp(), MultiplyOp(), IfOp(), ForOp(),], TaskType.ALG_CTRL: [AddOp(), SubtractOp(), IfOp()], TaskType.ADDITION: [AddOp()], TaskType.COPY: [CopyOp()], TaskType.DOUBLE: [DoubleCopyOp()], TaskType.REVERSE: [ReverseOp()], } TASK_GROUPS = { TaskGroups.PROG_TASKS: ( TaskType.ALGEBRA, TaskType.ALL, TaskType.ADDITION, TaskType.ALG_CTRL, TaskType.CONTROL), TaskGroups.MEMORY_1: (TaskType.COPY, TaskType.REVERSE), TaskGroups.MEMORY_2: (TaskType.DOUBLE,) } def __init__(self, batch_size, max_length, max_nesting, curriculum, token_by_char=True, task_type="alg-ctrl"): """Creates a LearnToExecute Dataset. Initializes the dataset task set and input annd target sequence shapes. Maximum sequence sizes for input and target are computed based on maximum possible assignments. Also, curriculum is set, operations corresponding to the chosen task is set and the data source is initialized. Args: batch_size: (int). The number of elements in a mini-batch. max_length: (int). Maximum character length. max_nesting: (int). Maximum level of statement nesting. curriculum: (LTECurriculum). Curriculum strategy to use. token_by_char: (bool). Tokenize by character or words? task_type: (string) defines the task by allowable ops (see TASK_TYPE_OPS). Raises: ValueError: If task is invalid. """ super(LearnToExecuteState, self).__init__() self._token_by_char = token_by_char # Compute the max number of steps possible to take. if task_type in self.TASK_GROUPS[TaskGroups.PROG_TASKS]: if token_by_char: outer_nests_term = (max_length * 3 + 10) * (max_nesting - 1) inner_nest_term = max_length * 4 + 10 nest_tok_term = (max_nesting - 1) * 2 self._num_steps_out = max_length * 2 else: outer_nests_term = 10 * (max_nesting - 1) inner_nest_term = 11 nest_tok_term = (max_nesting - 1) * 2 self._num_steps_out = 1 self._num_steps = outer_nests_term + inner_nest_term + nest_tok_term elif task_type in self.TASK_GROUPS[TaskGroups.MEMORY_1]: self._token_by_char = True self._num_steps = max_length + 1 self._num_steps_out = max_length + 1 elif task_type in self.TASK_GROUPS[TaskGroups.MEMORY_2]: self._token_by_char = True self._num_steps = max_length + 1 self._num_steps_out = max_length * 2 + 1 else: raise ValueError("Unknown task: {}.".format(task_type)) self._batch_size = batch_size self._ops = LearnToExecuteState.get_task_ops(task_type) self._curriculum = curriculum num_steps = max(self._num_steps, self._num_steps_out) self._data_source = TokenDataSource( self._curriculum, self._batch_size, num_steps, self._ops, self._token_by_char) self.reset_data_source() @staticmethod def get_task_ops(task_type=TaskType.ALG_CTRL): """Returns an operations list based on the specified task index. Args: task_type: indicates the task type used. Returns: List of the eligible ops. """ try: return LearnToExecuteState.TASK_TYPE_OPS[task_type] except KeyError: raise KeyError("Bad task_type '%s', check config." % task_type) @property def vocabulary(self): """List of strings, dataset vocabulary.""" return self._data_source.vocabulary @property def vocab_size(self): return self._data_source.vocab_size def _np_one_hot(self, tensor, num_steps): tensor_oh = np.zeros((tensor.size, self.vocab_size)) tensor_oh[np.arange(tensor.size), tensor.flat] = 1 return tensor_oh.reshape( num_steps, self.batch_size, self.vocab_size).astype(np.float32) def reset_data_source(self): """Build the data source given the current curriculum state.""" self._data_source.generate_flat_data() def evaluate_curriculum(self, loss): """If the currciulum state has updated rebuild the data source.""" if self._curriculum.update(loss): self.reset_data_source() @property def num_steps(self): return self._num_steps @property def num_steps_out(self): return self._num_steps_out @property def batch_size(self): return self._batch_size @property def curriculum(self): """Property returning curriculum object for this dataset.""" return self._curriculum @property def level(self): return self._curriculum.current_level @property def seq_sizes_in(self): """Stores the input sequence size per batch.""" return self._data_source.sequence_sizes_in[:self.batch_size] @property def seq_sizes_out(self): """Stores the target sequence size per batch.""" return self._data_source.sequence_sizes_out[:self.batch_size] def make_batch(self): """Generator function for batchifying data for learning to execute. Yields: tuple: 1. one-hot input tensor, representing programmatic input 2. one-hot target tensor, the evaluation result. 3. one-hot decoder target, start symbol added for sequence decoding. 4. batch size tensor containing integer input sequence lengths. 5. batch size tensor containing integer output sequence lengths. """ while True: self.reset_data_source() obs = np.reshape(self._data_source.flat_data, [self.batch_size, -1])[:, :self._num_steps].T target = np.reshape( self._data_source.flat_targets, [self.batch_size, -1])[:, :self._num_steps_out].T start_tokens = np.ndarray([1, self.batch_size], dtype=np.int32) start_tokens.fill(self._data_source.start_token[0]) target_in = np.concatenate((start_tokens, target[:-1, :]), axis=0) yield (self._np_one_hot(obs, self._num_steps), self._np_one_hot(target, self._num_steps_out), self._np_one_hot(target_in, self._num_steps_out), self.seq_sizes_in, self.seq_sizes_out) def to_human_readable(self, data, label_batch_entries=True, indices=None, sep="\n"): """Returns a human-readable version of a one-hot encoding of words. Args: data: (numpy.ndarray S x B x OH). One-hot encoding of words. S is sequence length, B is batch size, OH is one hot dimensionality. label_batch_entries: (bool). Whether to add numerical label before each batch element in the output string. indices: (list(int) or None). Used to select a subset of minibatch indices to print. None will print the whole minibatch. sep: (str) separator which separates the output for each batch. Defaults to the newline character. Returns: String composed from the data. """ batch_size = data.shape[1] result = [] indices = indices or six.moves.range(batch_size) for b in indices: index_seq = np.argmax(data[:, b], axis=1) prefix = "b_{}: ".format(b) if label_batch_entries else "" result.append(prefix + self._data_source.decode_to_string(index_seq)) return sep.join(result) # Sampling curriculum modes. class Mode(Enum): TRAIN_COMBINE = 1 TRAIN_MIX = 2 TRAIN_NAIVE = 3 TEST = 4 def LearnToExecute( # pylint: disable=invalid-name batch_size, max_length=1, max_nesting=1, token_by_char=True, mode=Mode.TRAIN_COMBINE, loss_threshold=0.1, min_tries=DEFAULT_MIN_CURRICULUM_EVAL_TRIES, task_type=TaskType.ALG_CTRL): """Factory method for LearnToExecute Dataset module. Args: batch_size: (int). The number of elements in a mini-batch. max_length: (int). Maximum character length. max_nesting: (int). Maximum level of statement nesting. token_by_char: (bool). Tokenize by character or words? mode: (string). Either 'train', 'test'. loss_threshold: (int) curriculum threshold for error below which increase the task difficulty. min_tries: (int) minimum update tries for curriculum difficulty level. task_type: (string) defines the task by allowable ops (see TASK_TYPE_OPS). Returns: tf.Data.Dataset for LearnToExecute sample generator with the LearnToExecuteState monkey patched into the `state` attribute. Raises: ValueError: in case of bad `mode`. """ # defaults mode to "train-combine" if mode == Mode.TRAIN_COMBINE: curriculum = CombineCurriculum( max_length, max_nesting, loss_threshold, min_tries=min_tries) elif mode == Mode.TRAIN_MIX: curriculum = MixCurriculum( max_length, max_nesting, loss_threshold, min_tries=min_tries) elif mode == Mode.TRAIN_NAIVE: curriculum = NaiveCurriculum( max_length, max_nesting, loss_threshold, min_tries=min_tries) elif mode == Mode.TEST: curriculum = BaselineCurriculum( max_length, max_nesting, loss_threshold, min_tries=0) else: raise ValueError("Invalid mode.") lte = LearnToExecuteState(batch_size, max_length, max_nesting, curriculum, token_by_char, task_type=task_type) types_ = (tf.float32, tf.float32, tf.float32, tf.int64, tf.int64) shapes_ = (tf.TensorShape([lte.num_steps, batch_size, lte.vocab_size]), tf.TensorShape([lte.num_steps_out, batch_size, lte.vocab_size]), tf.TensorShape([lte.num_steps_out, batch_size, lte.vocab_size]), tf.TensorShape([batch_size,]), tf.TensorShape([batch_size,])) dataset = tf.data.Dataset.from_generator(lte.make_batch, types_, shapes_) dataset.state = lte return dataset
sonnet-1
sonnet/examples/learn_to_execute.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Examples.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
sonnet-1
sonnet/examples/__init__.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script to train a stacked LSTM on the Tiny Shakespeare dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import sonnet as snt from sonnet.examples import dataset_shakespeare import tensorflow.compat.v1 as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("num_training_iterations", 10000, "Number of iterations to train for.") tf.flags.DEFINE_integer("report_interval", 1000, "Iterations between reports (samples, valid loss).") tf.flags.DEFINE_integer("reduce_learning_rate_interval", 2500, "Iterations between learning rate reductions.") tf.flags.DEFINE_integer("lstm_depth", 3, "Number of LSTM layers.") tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.") tf.flags.DEFINE_integer("num_embedding", 32, "Size of embedding layer.") tf.flags.DEFINE_integer("num_hidden", 128, "Size of LSTM hidden layer.") tf.flags.DEFINE_integer("truncation_length", 64, "Sequence size for training.") tf.flags.DEFINE_integer("sample_length", 1000, "Sequence size for sampling.") tf.flags.DEFINE_float("max_grad_norm", 5, "Gradient clipping norm limit.") tf.flags.DEFINE_float("learning_rate", 0.1, "Optimizer learning rate.") tf.flags.DEFINE_float("reduce_learning_rate_multiplier", 0.1, "Learning rate is multiplied by this when reduced.") tf.flags.DEFINE_float("optimizer_epsilon", 0.01, "Epsilon used for Adam optimizer.") tf.flags.DEFINE_string("checkpoint_dir", "/tmp/tf/rnn_shakespeare", "Checkpointing directory.") tf.flags.DEFINE_integer("checkpoint_interval", 500, "Checkpointing step interval.") def _configure_saver(checkpoint_dir, checkpoint_interval): """Returns a tf.train.CheckpointSaverHook for autosaving checkpoints.""" saver = tf.train.Saver() return tf.train.CheckpointSaverHook( checkpoint_dir=checkpoint_dir, save_steps=checkpoint_interval, saver=saver) def build_graph(lstm_depth=3, batch_size=32, num_embedding=32, num_hidden=128, truncation_length=64, sample_length=1000, max_grad_norm=5, initial_learning_rate=0.1, reduce_learning_rate_multiplier=0.1, optimizer_epsilon=0.01): """Constructs the computation graph.""" # Get datasets. dataset_train = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="train", random=True, name="shake_train") dataset_valid = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="valid", random=False, name="shake_valid") dataset_test = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="test", random=False, name="shake_test") # Define model. model = TextModel( num_embedding=num_embedding, num_hidden=num_hidden, lstm_depth=lstm_depth, output_size=dataset_valid.vocab_size, use_dynamic_rnn=True, use_skip_connections=True) # Get the training loss. train_input_sequence, train_target_sequence = dataset_train() train_output_sequence_logits, train_final_state = model(train_input_sequence) # pylint: disable=not-callable train_loss = dataset_train.cost(train_output_sequence_logits, train_target_sequence) # Get the validation loss. valid_input_sequence, valid_target_sequence = dataset_valid() valid_output_sequence_logits, _ = model(valid_input_sequence) # pylint: disable=not-callable valid_loss = dataset_valid.cost(valid_output_sequence_logits, valid_target_sequence) # Get the test loss. test_input_sequence, test_target_sequence = dataset_test() test_output_sequence_logits, _ = model(test_input_sequence) # pylint: disable=not-callable test_loss = dataset_test.cost(test_output_sequence_logits, test_target_sequence) # Build graph to sample some strings during training. initial_logits = train_output_sequence_logits[truncation_length - 1] train_generated_string = model.generate_string( initial_logits=initial_logits, initial_state=train_final_state, sequence_length=sample_length) # Set up global norm clipping of gradients. trainable_variables = tf.trainable_variables() grads, _ = tf.clip_by_global_norm( tf.gradients(train_loss, trainable_variables), max_grad_norm) # Get learning rate and define annealing. learning_rate = tf.get_variable( "learning_rate", shape=[], dtype=tf.float32, initializer=tf.constant_initializer(initial_learning_rate), trainable=False) reduce_learning_rate = learning_rate.assign( learning_rate * reduce_learning_rate_multiplier) # Get training step counter. global_step = tf.get_variable( name="global_step", shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) # Define optimizer and training step. optimizer = tf.train.AdamOptimizer( learning_rate, epsilon=optimizer_epsilon) train_step = optimizer.apply_gradients( zip(grads, trainable_variables), global_step=global_step) graph_tensors = { "train_loss": train_loss, "valid_loss": valid_loss, "test_loss": test_loss, "train_generated_string": train_generated_string, "reduce_learning_rate": reduce_learning_rate, "global_step": global_step, "train_step": train_step } # Return dataset_train for translation to human readable text. return graph_tensors, dataset_train def train(num_training_iterations, report_interval, reduce_learning_rate_interval): """Trains a deep LSTM model on the Tiny Shakespeare dataset.""" # Build the computation graph. graph_tensors, dataset_train = build_graph( lstm_depth=FLAGS.lstm_depth, batch_size=FLAGS.batch_size, num_embedding=FLAGS.num_embedding, num_hidden=FLAGS.num_hidden, truncation_length=FLAGS.truncation_length, sample_length=FLAGS.sample_length, max_grad_norm=FLAGS.max_grad_norm, initial_learning_rate=FLAGS.learning_rate, reduce_learning_rate_multiplier=FLAGS.reduce_learning_rate_multiplier, optimizer_epsilon=FLAGS.optimizer_epsilon) # Configure a checkpoint saver. saver_hook = _configure_saver(FLAGS.checkpoint_dir, FLAGS.checkpoint_interval) # Train the network. with tf.train.SingularMonitoredSession( hooks=[saver_hook], checkpoint_dir=FLAGS.checkpoint_dir) as sess: start_iteration = sess.run(graph_tensors["global_step"]) for train_iteration in range(start_iteration, num_training_iterations): if (train_iteration + 1) % report_interval == 0: train_loss_v, valid_loss_v, _ = sess.run( (graph_tensors["train_loss"], graph_tensors["valid_loss"], graph_tensors["train_step"])) train_generated_string_v = sess.run( graph_tensors["train_generated_string"]) train_generated_string_human = dataset_train.to_human_readable( (train_generated_string_v, 0), indices=[0]) tf.logging.info("%d: Training loss %f. Validation loss %f. Sample = %s", train_iteration, train_loss_v, valid_loss_v, train_generated_string_human) else: train_loss_v, _ = sess.run((graph_tensors["train_loss"], graph_tensors["train_step"])) tf.logging.info("%d: Training loss %f.", train_iteration, train_loss_v) if (train_iteration + 1) % reduce_learning_rate_interval == 0: sess.run(graph_tensors["reduce_learning_rate"]) tf.logging.info("Reducing learning rate.") test_loss = sess.run(graph_tensors["test_loss"]) tf.logging.info("Test loss %f", test_loss) class TextModel(snt.AbstractModule): """A deep LSTM model, for use on the Tiny Shakespeare dataset.""" def __init__(self, num_embedding, num_hidden, lstm_depth, output_size, use_dynamic_rnn=True, use_skip_connections=True, name="text_model"): """Constructs a `TextModel`. Args: num_embedding: Size of embedding representation, used directly after the one-hot encoded input. num_hidden: Number of hidden units in each LSTM layer. lstm_depth: Number of LSTM layers. output_size: Size of the output layer on top of the DeepRNN. use_dynamic_rnn: Whether to use dynamic RNN unrolling. If `False`, it uses static unrolling. Default is `True`. use_skip_connections: Whether to use skip connections in the `snt.DeepRNN`. Default is `True`. name: Name of the module. """ super(TextModel, self).__init__(name=name) self._num_embedding = num_embedding self._num_hidden = num_hidden self._lstm_depth = lstm_depth self._output_size = output_size self._use_dynamic_rnn = use_dynamic_rnn self._use_skip_connections = use_skip_connections with self._enter_variable_scope(): self._embed_module = snt.Linear(self._num_embedding, name="linear_embed") self._output_module = snt.Linear(self._output_size, name="linear_output") self._subcores = [ snt.LSTM(self._num_hidden, name="lstm_{}".format(i)) for i in range(self._lstm_depth) ] if self._use_skip_connections: skips = [] current_input_shape = self._num_embedding for lstm in self._subcores: input_shape = tf.TensorShape([current_input_shape]) skip = snt.SkipConnectionCore( lstm, input_shape=input_shape, name="skip_{}".format(lstm.module_name)) skips.append(skip) # SkipConnectionCore concatenates the input with the output, so the # dimensionality increases with depth. current_input_shape += self._num_hidden self._subcores = skips self._core = snt.DeepRNN(self._subcores, skip_connections=False, name="deep_lstm") def _build(self, one_hot_input_sequence): """Builds the deep LSTM model sub-graph. Args: one_hot_input_sequence: A Tensor with the input sequence encoded as a one-hot representation. Its dimensions should be `[truncation_length, batch_size, output_size]`. Returns: Tuple of the Tensor of output logits for the batch, with dimensions `[truncation_length, batch_size, output_size]`, and the final state of the unrolled core,. """ input_shape = one_hot_input_sequence.get_shape() batch_size = input_shape[1] batch_embed_module = snt.BatchApply(self._embed_module) input_sequence = batch_embed_module(one_hot_input_sequence) input_sequence = tf.nn.relu(input_sequence) initial_state = self._core.initial_state(batch_size) if self._use_dynamic_rnn: output_sequence, final_state = tf.nn.dynamic_rnn( cell=self._core, inputs=input_sequence, time_major=True, initial_state=initial_state) else: rnn_input_sequence = tf.unstack(input_sequence) output, final_state = tf.nn.static_rnn( cell=self._core, inputs=rnn_input_sequence, initial_state=initial_state) output_sequence = tf.stack(output) batch_output_module = snt.BatchApply(self._output_module) output_sequence_logits = batch_output_module(output_sequence) return output_sequence_logits, final_state @snt.reuse_variables def generate_string(self, initial_logits, initial_state, sequence_length): """Builds sub-graph to generate a string, sampled from the model. Args: initial_logits: Starting logits to sample from. initial_state: Starting state for the RNN core. sequence_length: Number of characters to sample. Returns: A Tensor of characters, with dimensions `[sequence_length, batch_size, output_size]`. """ current_logits = initial_logits current_state = initial_state generated_letters = [] for _ in range(sequence_length): # Sample a character index from distribution. char_index = tf.squeeze(tf.multinomial(current_logits, 1)) char_one_hot = tf.one_hot(char_index, self._output_size, 1.0, 0.0) generated_letters.append(char_one_hot) # Feed character back into the deep_lstm. gen_out_seq, current_state = self._core( tf.nn.relu(self._embed_module(char_one_hot)), current_state) current_logits = self._output_module(gen_out_seq) generated_string = tf.stack(generated_letters) return generated_string def main(unused_argv): train( num_training_iterations=FLAGS.num_training_iterations, report_interval=FLAGS.report_interval, reduce_learning_rate_interval=FLAGS.reduce_learning_rate_interval) if __name__ == "__main__": tf.app.run()
sonnet-1
sonnet/examples/rnn_shakespeare.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Defines the dataset for generating sequences of n-th farthest problem. The "N-th Farthest" task is designed to stress a capacity for relational reasoning across time. Inputs are a sequence of randomly sampled vectors and targets are answers to a question of the form: "What is the n-th farthest vector (in Euclidean distance) from vector `m`?" where the vector values, their IDs, `n` and `m` are randomly sampled per sequence. The model must compute all pairwise distance relations to the reference vector `m` which it eventually sees at some point in the sequence. The vector distances must be implicitly sorted to produce an answer and the model must sort distance relations between vectors. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np from scipy.spatial import distance as spdistance import six import tensorflow.compat.v1 as tf class NthFarthest(object): """Choose the nth furthest object from the reference.""" def __init__(self, batch_size, num_objects, num_features): self._batch_size = batch_size self._num_objects = num_objects self._num_features = num_features def _get_single_set(self, num_objects, num_features): """Generate one input sequence and output label. Each sequences of objects has a feature that consists of the feature vector for that object plus the encoding for its ID, the reference vector ID and the n-th value relative ID for a total feature size of: `num_objects` * 3 + `num_features` Args: num_objects: int. number of objects in the sequence. num_features: int. feature size of each object. Returns: 1. np.ndarray (`num_objects`, (`num_features` + 3 * `num_objects`)). 2. np.ndarray (1,). Output object reference label. """ # Generate random binary vectors data = np.random.uniform(-1, 1, size=(num_objects, num_features)) distances = spdistance.squareform(spdistance.pdist(data)) distance_idx = np.argsort(distances) # Choose random distance nth = np.random.randint(0, num_objects) # Pick out the nth furthest for each object nth_furthest = distance_idx[:, nth] # Choose random reference object reference = np.random.randint(0, num_objects) # Get identity of object that is the nth furthest from reference object labels = nth_furthest[reference] # Compile data object_ids = np.identity(num_objects) nth_matrix = np.zeros((num_objects, num_objects)) nth_matrix[:, nth] = 1 reference_object = np.zeros((num_objects, num_objects)) reference_object[:, reference] = 1 inputs = np.concatenate([data, object_ids, reference_object, nth_matrix], axis=-1) inputs = np.random.permutation(inputs) labels = np.expand_dims(labels, axis=0) return inputs.astype(np.float32), labels.astype(np.float32) def _get_batch_data(self, batch_size, num_objects, num_features): """Assembles a batch of input tensors and output labels. Args: batch_size: int. number of sequence batches. num_objects: int. number of objects in the sequence. num_features: int. feature size of each object. Returns: 1. np.ndarray (`batch_size`, `num_objects`, (`num_features` + 3 * `num_objects`)). 2. np.ndarray (`batch_size`). Output object reference label. """ all_inputs = [] all_labels = [] for _ in six.moves.range(batch_size): inputs, labels = self._get_single_set(num_objects, num_features) all_inputs += [inputs] all_labels += [labels] input_data = np.concatenate(all_inputs, axis=0) label_data = np.concatenate(all_labels, axis=0) return input_data, label_data def get_batch(self): """Returns set of nth-farthest input tensors and labels. Returns: 1. tf.Tensor (`batch_size`, `num_objects`, (`num_features` + 3 * `num_objects`)). 2. tf.Tensor (`batch_size`). Output object reference label. """ params = [self._batch_size, self._num_objects, self._num_features] inputs, labels = tf.py_func(self._get_batch_data, params, [tf.float32, tf.float32]) inputs = tf.reshape(inputs, [self._batch_size, self._num_objects, self._num_features + self._num_objects * 3]) labels = tf.reshape(labels, [-1]) return inputs, labels
sonnet-1
sonnet/examples/dataset_nth_farthest.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.examples.rmc_nth_farthest.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sonnet as snt from sonnet.examples import learn_to_execute from sonnet.examples import rmc_learn_to_execute import tensorflow.compat.v1 as tf class RMCLearnTest(tf.test.TestCase): def setUp(self): self._batch_size = 2 self._seq_sz_in = 10 self._seq_sz_out = 3 self._feature_size = 8 self._nesting = 2 self._literal_length = 3 def test_object_sequence_model(self): """Test the model class.""" core = snt.RelationalMemory( mem_slots=2, head_size=4, num_heads=1, num_blocks=1, gate_style="unit") final_mlp = snt.nets.MLP( output_sizes=(5,), activate_final=True) model = rmc_learn_to_execute.SequenceModel( core=core, target_size=self._feature_size, final_mlp=final_mlp) dummy_in = tf.zeros( (self._seq_sz_in, self._batch_size, self._feature_size)) dummy_out = tf.zeros( (self._seq_sz_out, self._batch_size, self._feature_size)) sizes = tf.ones((self._batch_size)) logits = model(dummy_in, dummy_out, sizes, sizes) self.assertAllEqual( logits.shape, (self._seq_sz_out, self._batch_size, self._feature_size)) def test_build_and_train(self): """Test the example TF graph build.""" total_iterations = 2 reporting_interval = 1 rmc_learn_to_execute.build_and_train( total_iterations, reporting_interval, test=True) def test_learn_to_execute_datset(self): """Test the dataset class.""" dataset = learn_to_execute.LearnToExecute( self._batch_size, self._literal_length, self._nesting) dataset_iter = dataset.make_one_shot_iterator().get_next() logit_size = dataset.state.vocab_size seq_sz_in = dataset.state.num_steps seq_sz_out = dataset.state.num_steps_out self.assertAllEqual( dataset_iter[0].shape, (seq_sz_in, self._batch_size, logit_size)) self.assertAllEqual( dataset_iter[1].shape, (seq_sz_out, self._batch_size, logit_size)) self.assertAllEqual( dataset_iter[2].shape, (seq_sz_out, self._batch_size, logit_size)) self.assertAllEqual(dataset_iter[3].shape, (self._batch_size,)) self.assertAllEqual(dataset_iter[4].shape, (self._batch_size,)) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/examples/rmc_learn_to_execute_test.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script to train the Relational Memory Core. This is a reduced size version of the "Learning To Execute" (LTE) task defined in: https://arxiv.org/abs/1806.01822 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time # Dependency imports from absl import flags import six import sonnet as snt from sonnet.examples import learn_to_execute import tensorflow.compat.v1 as tf FLAGS = flags.FLAGS flags.DEFINE_float("learning_rate", 1e-4, "Initial learning rate.") flags.DEFINE_float("min_learning_rate", 8e-5, "Minimum learning rate.") flags.DEFINE_integer("batch_size", 1600, "Batch size.") flags.DEFINE_integer("head_size", 2048, "Total memory size for the RMC.") flags.DEFINE_integer("num_heads", 1, "Attention heads for RMC.") flags.DEFINE_integer("num_mems", 4, "Number of memories for RMC.") flags.DEFINE_integer("num_blocks", 1, "Number of attention blocks for RMC.") flags.DEFINE_string("gate_style", "unit", "Gating style for RMC.") flags.DEFINE_integer("max_length", 5, "LTE max literal length.") flags.DEFINE_integer("max_nest", 2, "LTE max nesting level.") flags.DEFINE_integer("epochs", 1000000, "Total training epochs.") flags.DEFINE_integer("log_stride", 500, "Iterations between reports.") class SequenceModel(snt.AbstractModule): """Seq2Seq Model to process LTE sequence batches.""" def __init__( self, core, target_size, final_mlp, name="sequence_model"): super(SequenceModel, self).__init__(name=name) self._core = core self._target_size = target_size self._final_mlp = final_mlp def _build( self, inputs, targets, input_sequence_length, output_sequence_length): """Dynamic unroll across input objects. Args: inputs: tensor (input_sequence_length x batch x feature_size). Encoder sequence. targets: tensor (output_sequence_length x batch x feature_size). Decoder sequence. input_sequence_length: tensor (batch). Size of each batched input sequence. output_sequence_length: tensor (batch). Size of each batched target sequence. Returns: Tensor (batch x num_objects); logits indicating the reference objects. """ # Connect decoding steps. batch_size = inputs.get_shape()[1] initial_state = self._core.initial_state(batch_size, trainable=False) _, state = tf.nn.dynamic_rnn( cell=self._core, inputs=inputs, sequence_length=input_sequence_length, time_major=True, initial_state=initial_state ) # Connect decoding steps. zero_input = tf.zeros(shape=targets.get_shape()) output_sequence, _ = tf.nn.dynamic_rnn( cell=self._core, inputs=zero_input, # Non-autoregressive model. Zeroed input. sequence_length=output_sequence_length, initial_state=state, time_major=True) outputs = snt.BatchApply(self._final_mlp)(output_sequence) logits = snt.BatchApply(snt.Linear(self._target_size))(outputs) tf.logging.info("Connected seq2seq model.") return logits def build_and_train(iterations, log_stride, test=False): """Construct the data, model, loss and optimizer then train.""" # Test mode settings. batch_size = 2 if test else FLAGS.batch_size num_mems = 2 if test else FLAGS.num_mems num_heads = 1 if test else FLAGS.num_mems num_blocks = 1 if test else FLAGS.num_mems head_size = 4 if test else FLAGS.head_size max_length = 3 if test else FLAGS.max_length max_nest = 2 if test else FLAGS.max_nest mlp_size = (20,) if test else (256, 256, 256, 256) with tf.Graph().as_default(): t0 = time.time() # Initialize the dataset. lte_train = learn_to_execute.LearnToExecute( batch_size, max_length, max_nest) lte_test = learn_to_execute.LearnToExecute( batch_size, max_length, max_nest, mode=learn_to_execute.Mode.TEST) train_data_iter = lte_train.make_one_shot_iterator().get_next() test_data_iter = lte_test.make_one_shot_iterator().get_next() output_size = lte_train.state.vocab_size # Create the model. core = snt.RelationalMemory( mem_slots=num_mems, head_size=head_size, num_heads=num_heads, num_blocks=num_blocks, gate_style=FLAGS.gate_style) final_mlp = snt.nets.MLP( output_sizes=mlp_size, activate_final=True) model = SequenceModel( core=core, target_size=output_size, final_mlp=final_mlp) tf.logging.info("Instantiated models ({:3f})".format(time.time() - t0)) # Define the loss & accuracy. def loss_fn(inputs, targets, input_sequence_length, output_sequence_length): """Creates the loss and the exports.""" logits = model( inputs, targets, input_sequence_length, output_sequence_length) targets = tf.cast(targets, tf.int32) sq_sz_out_max = targets.shape[0].value # Create a mask to ignore accuracy on buffer characters. sequence_sizes = tf.cast(output_sequence_length, tf.float32) lengths_transposed = tf.expand_dims(sequence_sizes, 1) range_row = tf.expand_dims( tf.range(0, sq_sz_out_max, 1, dtype=tf.float32), 0) mask = tf.cast(tf.transpose(tf.less(range_row, lengths_transposed)), tf.float32) # Compute token accuracy and solved. correct = tf.equal(tf.argmax(logits, 2), tf.argmax(targets, 2)) solved = tf.reduce_all(tf.boolean_mask(correct, tf.squeeze(mask)), axis=0) token_acc = tf.reduce_sum(tf.cast(correct, tf.float32) * mask) token_acc /= tf.reduce_sum(sequence_sizes) # Compute Loss. mask = tf.cast(tf.tile(tf.expand_dims(mask, 2), (1, 1, logits.shape[2])), tf.float32) masked_logits = logits * mask masked_target = tf.cast(targets, tf.float32) * mask logits_flat = tf.reshape(masked_logits, [sq_sz_out_max * batch_size, -1]) target_flat = tf.reshape(masked_target, [sq_sz_out_max * batch_size, -1]) xent = tf.nn.softmax_cross_entropy_with_logits(logits=logits_flat, labels=target_flat) loss = tf.reduce_mean(xent) return loss, token_acc, solved # Get training step counter. global_step = tf.train.get_or_create_global_step() # Create the optimizer. learning_rate_op = tf.reduce_max([ tf.train.exponential_decay( FLAGS.learning_rate, global_step, decay_steps=FLAGS.epochs // 100, decay_rate=0.9, staircase=False), FLAGS.min_learning_rate ]) optimizer = tf.train.AdamOptimizer(learning_rate_op) # Compute loss, accuracy & the step op. inputs, targets, _, input_lengths, output_lengths = train_data_iter train_loss, train_acc, train_sol = loss_fn( inputs, targets, input_lengths, output_lengths) step_op = optimizer.minimize(train_loss, global_step=global_step) inputs, targets, _, input_lengths, output_lengths = test_data_iter _, test_acc, test_sol = loss_fn( inputs, targets, input_lengths, output_lengths) tf.logging.info("Created losses and optimizers ({:3f})".format( time.time() - t0)) # Begin Training. t0 = time.time() tf.logging.info("Starting training ({:3f})".format(time.time() - t0)) with tf.train.SingularMonitoredSession() as sess: for it in six.moves.range(iterations): sess.run([step_op, learning_rate_op]) if it % log_stride == 0: loss_v, train_acc_v, test_acc_v, train_sol_v, test_sol_v = sess.run([ train_loss, train_acc, test_acc, train_sol, test_sol]) elapsed = time.time() - t0 tf.logging.info( "iter: {:2d}, train loss {:3f}; train acc {:3f}; test acc {:3f};" " train solved {:3f}; test solved {:3f}; ({:3f})".format( it, loss_v, train_acc_v, test_acc_v, train_sol_v, test_sol_v, elapsed)) def main(unused_argv): build_and_train(FLAGS.epochs, FLAGS.log_stride, test=True) if __name__ == "__main__": tf.app.run()
sonnet-1
sonnet/examples/rmc_learn_to_execute.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script using `snt.Module` to make a module with build method args. `snt.Sequential` has been deliberately designed for simple use cases. In particular, it assumes that the only arguments passed when called are inputs to the first layer. As such, one cannot easily control behaviour of submodules that do accept different arguments in their call method, such as `snt.BatchNorm` and the `is_training` flag. One may, however, quite easily replicate the same functionality using `snt.Module` to construct a module from a custom method, as shown in this script. To run this script (on CPU), use the following command: ``` bazel run -c opt module_with_build_args ``` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import sonnet as snt import tensorflow.compat.v1 as tf def custom_build(inputs, is_training, keep_prob): """A custom build method to wrap into a sonnet Module.""" outputs = snt.Conv2D(output_channels=32, kernel_shape=4, stride=2)(inputs) outputs = snt.BatchNorm()(outputs, is_training=is_training) outputs = tf.nn.relu(outputs) outputs = snt.Conv2D(output_channels=64, kernel_shape=4, stride=2)(outputs) outputs = snt.BatchNorm()(outputs, is_training=is_training) outputs = tf.nn.relu(outputs) outputs = snt.BatchFlatten()(outputs) outputs = tf.nn.dropout(outputs, keep_prob=keep_prob) outputs = snt.Linear(output_size=10)(outputs) return outputs def main(unused_argv): inputs = tf.random_uniform(shape=[10, 32, 32, 3]) targets = tf.random_uniform(shape=[10, 10]) # The line below takes custom_build and wraps it to construct a sonnet Module. module_with_build_args = snt.Module(custom_build, name='simple_net') train_model_outputs = module_with_build_args(inputs, is_training=True, keep_prob=tf.constant(0.5)) test_model_outputs = module_with_build_args(inputs, is_training=False, keep_prob=tf.constant(1.0)) loss = tf.nn.l2_loss(targets - train_model_outputs) # Ensure the moving averages for the BatchNorm modules are updated. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_step = tf.train.GradientDescentOptimizer(learning_rate=1e-3).minimize( loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(100): sess.run(train_step) # Check that evaluating train_model_outputs twice returns the same value. train_outputs, train_outputs_2 = sess.run([train_model_outputs, train_model_outputs]) assert (train_outputs == train_outputs_2).all() # Check that there is indeed a difference between train_model_outputs and # test_model_outputs. train_outputs, test_outputs = sess.run([train_model_outputs, test_model_outputs]) assert (train_outputs != test_outputs).any() if __name__ == '__main__': tf.app.run()
sonnet-1
sonnet/examples/module_with_build_args.py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.examples.rmc_nth_farthest.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sonnet as snt from sonnet.examples import dataset_nth_farthest from sonnet.examples import rmc_nth_farthest import tensorflow.compat.v1 as tf class RMCNthFarthestTest(tf.test.TestCase): def setUp(self): self._batch_size = 2 self._num_objects = 2 self._feature_size = 2 def test_object_sequence_model(self): """Test the model class.""" core = snt.RelationalMemory( mem_slots=2, head_size=4, num_heads=1, num_blocks=1, gate_style="unit") final_mlp = snt.nets.MLP( output_sizes=(5,), activate_final=True) model = rmc_nth_farthest.SequenceModel( core=core, target_size=self._num_objects, final_mlp=final_mlp) logits = model(tf.zeros( (self._batch_size, self._num_objects, self._feature_size))) self.assertAllEqual(logits.shape, (self._batch_size, self._num_objects)) def test_build_and_train(self): """Test the example TF graph build.""" total_iterations = 2 reporting_interval = 1 steps, train_losses, test_accs = rmc_nth_farthest.build_and_train( total_iterations, reporting_interval, test=True) self.assertEqual(len(steps), total_iterations) self.assertEqual(len(train_losses), total_iterations) self.assertEqual(len(test_accs), total_iterations) def test_nth_farthest_datset(self): """Test the dataset class.""" dataset = dataset_nth_farthest.NthFarthest( self._batch_size, self._num_objects, self._feature_size) inputs, _ = dataset.get_batch() final_feature_size = self._feature_size + 3 * self._num_objects self.assertAllEqual( inputs.shape, (self._batch_size, self._num_objects, final_feature_size)) if __name__ == "__main__": tf.test.main()
sonnet-1
sonnet/examples/rmc_nth_farthest_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Configure script to get build parameters from user. This should be run before building launchpad with Bazel. The easiest usage is `python3 configure.py`. It will use the version of python to suggest the correct paths to set for the bazel config. Shamelessly taken from TensorFlow: htps://github.com/tensorflow/tensorflow/blob/master/configure.py """ import argparse import os import subprocess import sys _LAUNCHPAD_BAZELRC_FILENAME = '.launchpad.bazelrc' _LAUNCHPAD_WORKSPACE_ROOT = '' _LAUNCHPAD_BAZELRC = '' def main(): global _LAUNCHPAD_WORKSPACE_ROOT global _LAUNCHPAD_BAZELRC parser = argparse.ArgumentParser() parser.add_argument( '--workspace', type=str, default=os.path.abspath(os.path.dirname(__file__)), help='The absolute path to your active Bazel workspace.') args = parser.parse_args() _LAUNCHPAD_WORKSPACE_ROOT = args.workspace _LAUNCHPAD_BAZELRC = os.path.join(_LAUNCHPAD_WORKSPACE_ROOT, _LAUNCHPAD_BAZELRC_FILENAME) # Make a copy of os.environ to be clear when functions and getting and setting # environment variables. environ_cp = dict(os.environ) reset_configure_bazelrc() setup_python(environ_cp) def get_from_env_or_user_or_default(environ_cp, var_name, ask_for_var, var_default): """Get var_name either from env, or user or default. If var_name has been set as environment variable, use the preset value, else ask for user input. If no input is provided, the default is used. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". ask_for_var: string for how to ask for user input. var_default: default value string. Returns: string value for var_name """ var = environ_cp.get(var_name) if not var: var = get_input(ask_for_var) print('\n') if not var: var = var_default return var def get_input(question): try: try: answer = raw_input(question) except NameError: answer = input(question) except EOFError: answer = '' return answer def setup_python(environ_cp): """Setup python related env variables.""" # Get PYTHON_BIN_PATH, default is the current running python. default_python_bin_path = sys.executable ask_python_bin_path = ('Please specify the location of python. [Default is ' '%s]: ') % default_python_bin_path while True: python_bin_path = get_from_env_or_user_or_default(environ_cp, 'PYTHON_BIN_PATH', ask_python_bin_path, default_python_bin_path) # Check if the path is valid if os.path.isfile(python_bin_path) and os.access(python_bin_path, os.X_OK): break elif not os.path.exists(python_bin_path): print('Invalid python path: %s cannot be found.' % python_bin_path) else: print('%s is not executable. Is it the python binary?' % python_bin_path) environ_cp['PYTHON_BIN_PATH'] = '' # Get PYTHON_LIB_PATH python_lib_path = environ_cp.get('PYTHON_LIB_PATH') if not python_lib_path: python_lib_paths = get_python_path(environ_cp, python_bin_path) if environ_cp.get('USE_DEFAULT_PYTHON_LIB_PATH') == '1': python_lib_path = python_lib_paths[0] else: print('Found possible Python library paths:\n %s' % '\n '.join(python_lib_paths)) default_python_lib_path = python_lib_paths[0] python_lib_path = get_input( 'Please input the desired Python library path to use. ' 'Default is [%s]\n' % python_lib_paths[0]) if not python_lib_path: python_lib_path = default_python_lib_path environ_cp['PYTHON_LIB_PATH'] = python_lib_path # Set-up env variables used by python_configure.bzl write_action_env_to_bazelrc('PYTHON_BIN_PATH', python_bin_path) write_action_env_to_bazelrc('PYTHON_LIB_PATH', python_lib_path) write_to_bazelrc('build --python_path=\"%s"' % python_bin_path) write_to_bazelrc('build --repo_env=PYTHON_BIN_PATH=\"%s"' % python_bin_path) environ_cp['PYTHON_BIN_PATH'] = python_bin_path # If choosen python_lib_path is from a path specified in the PYTHONPATH # variable, need to tell bazel to include PYTHONPATH if environ_cp.get('PYTHONPATH'): python_paths = environ_cp.get('PYTHONPATH').split(':') if python_lib_path in python_paths: write_action_env_to_bazelrc('PYTHONPATH', environ_cp.get('PYTHONPATH')) # Write tools/python_bin_path.sh with open( os.path.join(_LAUNCHPAD_WORKSPACE_ROOT, 'python_bin_path.sh'), 'w') as f: f.write('export PYTHON_BIN_PATH="%s"' % python_bin_path) def get_python_path(environ_cp, python_bin_path): """Get the python site package paths.""" python_paths = [] if environ_cp.get('PYTHONPATH'): python_paths = environ_cp.get('PYTHONPATH').split(':') try: stderr = open(os.devnull, 'wb') library_paths = run_shell([ python_bin_path, '-c', 'import site; print("\\n".join(site.getsitepackages()))' ], stderr=stderr).split('\n') except subprocess.CalledProcessError: library_paths = [ run_shell([ python_bin_path, '-c', 'from distutils.sysconfig import get_python_lib;' 'print(get_python_lib())' ]) ] all_paths = set(python_paths + library_paths) paths = [] for path in all_paths: if os.path.isdir(path): paths.append(path) return paths def run_shell(cmd, allow_non_zero=False, stderr=None): """Get var_name either from env, or user or default. Args: cmd: copy of the os.environ. allow_non_zero: string for name of environment variable, e.g. "TF_NEED stderr: string for how to ask for user input. Returns: string value output of the command executed. """ if stderr is None: stderr = sys.stdout if allow_non_zero: try: output = subprocess.check_output(cmd, stderr=stderr) except subprocess.CalledProcessError as e: output = e.output else: output = subprocess.check_output(cmd, stderr=stderr) return output.decode('UTF-8').strip() def write_action_env_to_bazelrc(var_name, var): write_to_bazelrc('build --action_env %s="%s"' % (var_name, str(var))) def write_to_bazelrc(line): with open(_LAUNCHPAD_BAZELRC, 'a') as f: f.write(line + '\n') def reset_configure_bazelrc(): """Reset file that contains customized config settings.""" open(_LAUNCHPAD_BAZELRC, 'w').close() if __name__ == '__main__': main()
launchpad-master
configure.py
from ctypes import cdll import pkgutil import os tf = pkgutil.get_loader("tensorflow") if tf: cdll.LoadLibrary(os.path.join(os.path.dirname(tf.path), 'libtensorflow_framework.so.2')) # pytype:disable=attribute-error del tf del cdll del pkgutil del os # Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Courier module.""" from courier.python.client import Client # pytype: disable=import-error from courier.python.client import list_methods # pytype: disable=import-error from courier.python.py_server import Server # pytype: disable=import-error
launchpad-master
courier/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python server bindings for Courier RPCs. Example usage: server = courier.Server('my_server') server.Bind('my_function', lambda a, b: a + b) server.Start() client = courier.Client('my_server') result = client.my_function(4, 7) # 11, evaluated on the server. """ from typing import Optional from courier.handlers.python import pybind from courier.python import router from courier.python import server # Numpy import needed for proper operation of ../serialization/py_serialize.cc import numpy import portpicker from six.moves import map import tree as nest class Server: """Server class for hosting Courier RPCs. This provides a convenience wrapper around the CLIF bindings. The thread pool size determines how many method handlers can be executed concurrently. Server start and termination. No RPCs are served before a call of Start is entered or after a call of Join or Stop has returned. A server may be started at most once. The functions Stop and Join may block if they need to wait for a concurrent Start to complete. """ def __init__( self, name: Optional[str] = None, port: Optional[int] = None, thread_pool_size: int = 16, ): if port is None: port = portpicker.pick_unused_port() self._port = port self._thread_pool_size = thread_pool_size self._router = router.Router() self._server = None @property def port(self) -> int: return self._port @property def address(self) -> str: return f'localhost:{self._port}' def BindHandler(self, method_name, handler, is_priority: bool = False): self._router.Bind(method_name, handler, is_priority) def Bind(self, method_name: str, py_func, is_priority: bool = False): self.BindHandler(method_name, pybind.BuildPyCallHandler(py_func), is_priority) def Join(self): if not self._server: raise ValueError('Server not started') self._server.Join() def Start(self): """Starts the Courier server.""" if self._server: raise ValueError('Server already started') if not self._server: self._server = server.BuildAndStart(self._router, self._port, self._thread_pool_size) def Stop(self): """Stops the Courier server.""" if not self._server: raise ValueError('Server not started yet') self._server.Stop() def Unbind(self, method_name): self._router.Unbind(method_name) def SetIsHealthy(self, is_healthy): """Changes the health status of the server. A server, which reports as unhealthy still accepts and serves incoming requests, but it prefers not to receive any. This is useful in the following scenarios: - Before the server is terminated, it starts reporting as unhealthy. This lets clients know not to send any further requests to this server. - When load-balancing requests over several servers and this server is experiencing problems (e.g. high disk latency). This lets the load-balancer know not to send any traffic until the problems have been resolved. Args: is_healthy: A boolean that indicates whether or not the server reports as healthy. """ if not self._server: raise ValueError('Cannot set health status; server not started.') self._server.SetIsHealthy(is_healthy) @property def has_started(self): """Returns True if the method `Start` has already been called. This method is not thread safe with regards to Start(). """ return self._server is not None
launchpad-master
courier/python/py_server.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python client bindings for Courier RPCs. Example usage: server = courier.Server('my_server') server.Bind('my_function', lambda a, b: a + b) server.Start() client = courier.Client('my_server') result = client.my_function(4, 7) # 11, evaluated on the server. """ from concurrent import futures import datetime from typing import List, Optional, Union import zoneinfo from courier.python import py_client # Numpy import needed for proper operation of ../serialization/py_serialize.cc import numpy from pybind11_abseil.status import StatusNotOk as StatusThrown # pytype: disable=import-error from pybind11_abseil.status import StatusNotOk # pytype: disable=import-error def translate_status(s): """Translate Pybind11 status to Exception.""" exc = StatusNotOk(s.message()) exc.code = s.code() return exc def exception_handler(func): def inner_function(*args, **kwargs): try: return func(*args, **kwargs) except StatusThrown as e: raise translate_status(e.status) from e return inner_function def _calculate_deadline( timeout: Optional[datetime.timedelta], propagate_deadline: bool ) -> datetime.datetime: """Calculate the out-bound deadline from timeout and existing deadline. Args: timeout: Timeout to apply to all calls. If set to None or a zero-length timedelta then no timeout is applied. propagate_deadline: Unsupported feature. Returns: Returns the sooner of (now + timeout) and the existing deadline. """ deadline = datetime.datetime.max.replace(tzinfo=zoneinfo.ZoneInfo('UTC')) if timeout: deadline_timeout = ( datetime.datetime.now(tz=zoneinfo.ZoneInfo('UTC')) + timeout ) deadline = min(deadline, deadline_timeout) return deadline class _AsyncClient: """Asynchronous client.""" def __init__( self, client: 'Client', wait_for_ready: bool, call_timeout: Optional[datetime.timedelta], compress: bool, chunk_tensors: bool, propagate_deadline: bool = False, ): self._client = client self._wait_for_ready = wait_for_ready self._call_timeout = call_timeout self._compress = compress self._chunk_tensors = chunk_tensors self._propagate_deadline = propagate_deadline def _build_handler(self, method: str): """Build a future handler for a given method.""" def call(*args, **kwargs): f = futures.Future() def set_exception(s): try: f.set_exception(translate_status(s)) except futures.InvalidStateError: # pytype: disable=module-attr # Call could have been already canceled by the user. pass def set_result(r): try: f.set_result(r) except futures.InvalidStateError: # Call could have been already canceled by the user. pass deadline = _calculate_deadline( self._call_timeout, self._propagate_deadline ) canceller = self._client.AsyncPyCall( method, list(args), kwargs, set_result, set_exception, self._wait_for_ready, deadline, self._compress, self._chunk_tensors, ) def done_callback(f): if f.cancelled(): canceller.Cancel() f.add_done_callback(done_callback) return f return call def __getattr__(self, method): """Gets a callable function for the method that returns a future. Args: method: Name of the method. Returns: Callable function for the method that returns a future. """ return self._build_handler(method) def __call__(self, *args, **kwargs): return self._build_handler('__call__')(*args, **kwargs) class Client: """Client class for using Courier RPCs. This provides a convenience wrapper around the CLIF bindings which allows calling server methods as if they were class methods. """ def __init__( self, server_address: str, compress: bool = False, call_timeout: Optional[Union[int, float, datetime.timedelta]] = None, wait_for_ready: bool = True, chunk_tensors: bool = False, *, load_balancing_policy: Optional[str] = None, propagate_deadline: bool = True, ): """Initiates a new client that will connect to a server. Args: server_address: Address of the server. If the string does not start with "/" or "localhost" then it will be interpreted as a custom BNS registered server_name (constructor passed to Server). compress: Whether to use compression. call_timeout: Sets a timeout to apply to all calls. If None or 0 then no timeout is applied. wait_for_ready: Sets `wait_for_ready` on the gRPC::ClientContext. This specifies whether to wait for a server to come online. chunk_tensors: Unsupported feature. load_balancing_policy: gRPC load balancing policy. Use 'round_robin' to spread the load across all backends. More details at: https://github.com/grpc/grpc/blob/master/doc/load-balancing.md propagate_deadline: Unsupported feature. """ self._init_args = (server_address, compress, call_timeout, wait_for_ready) self._address = str(server_address) self._compress = compress self._client = py_client.PyClient(self._address, load_balancing_policy) if call_timeout: if isinstance(call_timeout, datetime.timedelta): self._call_timeout = call_timeout else: self._call_timeout = datetime.timedelta(seconds=call_timeout) else: self._call_timeout = None self._wait_for_ready = wait_for_ready self._chunk_tensors = chunk_tensors self._async_client = _AsyncClient(self._client, self._wait_for_ready, self._call_timeout, self._compress, self._chunk_tensors, propagate_deadline) self._propagate_deadline = propagate_deadline def __del__(self): self._client.Shutdown() def __reduce__(self): return self.__class__, self._init_args @property def address(self) -> str: return self._address @property def futures(self) -> _AsyncClient: """Gets an asynchronous client on which a method call returns a future.""" return self._async_client def _build_handler(self, method: str): """Build a callable handler for a given method. Args: method: Name of the method to build. Returns: Handler for the method. """ @exception_handler def func(*args, **kwargs): deadline = _calculate_deadline( self._call_timeout, self._propagate_deadline ) return self._client.PyCall( method, list(args), kwargs, self._wait_for_ready, deadline, self._compress, self._chunk_tensors, ) return func def __getattr__(self, method: str): """Gets a callable function for the method and sets it as an attribute. Args: method: Name of the method. Returns: Callable function for the method. """ func = self._build_handler(method) setattr(self, method, func) return func @exception_handler def __call__(self, *args, **kwargs): return self._build_handler('__call__')(*args, **kwargs) @exception_handler def list_methods(client: Client) -> List[str]: """Lists the methods which are available on the server. Args: client: A client instance. Returns: List of method names. """ return client._client.ListMethods()
launchpad-master
courier/python/client.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for courier.python.py_client.""" from concurrent import futures import datetime import pickle import threading import time from typing import Optional, Union import zoneinfo from absl.testing import absltest from absl.testing import parameterized from courier.python import client # pytype: disable=import-error from courier.python import py_server # pytype: disable=import-error import mock import numpy as np from pybind11_abseil.status import StatusNotOk # pytype: disable=import-error class _A: def add(self, a, b): return a + b class PyIntegrationTest(parameterized.TestCase): def _call_sleep(self, duration, use_async): if use_async: self._client.futures.sleep(duration).result() else: self._client.sleep(duration) def setUp(self): super(PyIntegrationTest, self).setUp() self._server = py_server.Server() self._server.Bind('no_args', lambda: 1000) self._server.Bind('lambda_add', lambda a, b: a + b) self._server.Bind('method_add', _A().add) self._server.Bind('add_default', lambda a, b=100: a + b) self._server.Bind('echo', lambda a: a) def _exception_method(): raise ValueError('Exception method called') self._server.Bind('exception_method', _exception_method) self._server.Bind('sleep', time.sleep) self._server.Bind('rebind', lambda: 1234) self._server.Bind('bytes_value', lambda: b'1234') self._server.Bind('unicode_value', lambda: u'1234') self._server.Start() self._client = client.Client(self._server.address) def tearDown(self): self._server.Stop() self._server.Join() super(PyIntegrationTest, self).tearDown() def testLambdaCall(self): result = self._client.lambda_add(12, 5) self.assertEqual(result, 17) def testClassMethodCall(self): result = self._client.method_add(12, 5) self.assertEqual(result, 17) def testCallWithoutArguments(self): result = self._client.no_args() self.assertEqual(result, 1000) def testCallRebind(self): result = self._client.rebind() self.assertEqual(result, 1234) self._server.Bind('rebind', lambda: 2345) result = self._client.rebind() self.assertEqual(result, 2345) expected_msg = 'method rebind not found' self._server.Unbind('rebind') with self.assertRaisesRegex(StatusNotOk, expected_msg): result = self._client.rebind() self._server.Bind('rebind', lambda: 1234) result = self._client.rebind() self.assertEqual(result, 1234) def testCallWithDefaultArguments(self): result = self._client.add_default(23) self.assertEqual(result, 123) def testCallWithKwargs(self): result = self._client.add_default(23, b=500) self.assertEqual(result, 523) def testPythonErrorIsRaised(self): expected_msg = r'Exception method called' with self.assertRaisesRegex(StatusNotOk, expected_msg): self._client.exception_method() def testAsyncFutureCall(self): future = self._client.futures.add_default(23) self.assertEqual(future.result(), 123) def testAsyncFutureCancel(self): future = self._client.futures.sleep(2) self.assertTrue(future.cancel()) try: future.result() self.fail('Expected future to raise cancelled exception') except futures.CancelledError: pass except StatusNotOk as e: self.assertIn('CANCEL', e.message) def testAsyncFutureException(self): future = self._client.futures.exception_method() expected_msg = r'Exception method called' with self.assertRaisesRegex(StatusNotOk, expected_msg): future.result() def testListMethods(self): self.assertCountEqual( client.list_methods(self._client), [ 'no_args', 'lambda_add', 'add_default', 'exception_method', 'sleep', 'method_add', 'rebind', 'bytes_value', 'unicode_value', 'echo', ]) def testUnicodeAddress(self): client.Client(u'test') py_server.Server(u'test') def testBytesValue(self): result = self._client.bytes_value() self.assertEqual(result, b'1234') def testUnicodeValue(self): result = self._client.unicode_value() self.assertEqual(result, u'1234') def testClientWaitsUntilServerIsUp(self): my_server = py_server.Server() my_client = client.Client(my_server.address) f = my_client.futures.no_args() my_server.Bind('no_args', lambda: 1000) my_server.Start() self.assertEqual(f.result(), 1000) my_server.Stop() @parameterized.named_parameters( ('timeout_none', None), ('timeout_0', 0), ('timeout_timedelta_0', datetime.timedelta(seconds=0)), ) def testNoErrorWhenNoTimeoutSpecified(self, timeout): self._client = client.Client( self._server.address, call_timeout=timeout ) self._client.sleep(1) @parameterized.named_parameters( ('float', 2.0), ('int', 2), ('timedelta', datetime.timedelta(seconds=2)) ) def testClientInitHandlesDifferentTimeoutTypes( self, timeout: Optional[Union[int, float, datetime.timedelta]] ): self._client = client.Client(self._server.address, call_timeout=timeout) self._client.sleep(1) with self.assertRaisesRegex(StatusNotOk, 'Deadline Exceeded'): self._client.sleep(3) @parameterized.named_parameters(('async', True), ('sync', False)) def testNoErrorWhenDurationLessThanTimeout(self, use_async: bool): self._client = client.Client( self._server.address, call_timeout=datetime.timedelta(seconds=3) ) self._call_sleep(duration=2, use_async=use_async) @parameterized.named_parameters(('async', True), ('sync', False)) def testErrorDeadlineExceededWhenDurationGreaterThanTimeout( self, use_async: bool ): self._client = client.Client( self._server.address, call_timeout=datetime.timedelta(seconds=1) ) with self.assertRaisesRegex(StatusNotOk, 'Deadline Exceeded'): self._call_sleep(duration=2, use_async=use_async) @parameterized.named_parameters(('async', True), ('sync', False)) def testErrorDeadlineExceededWhenUnknownServerAddress(self, use_async: bool): self._client = client.Client( '[::]:12345', call_timeout=datetime.timedelta(seconds=1) ) with self.assertRaisesRegex(StatusNotOk, 'Deadline Exceeded'): self._call_sleep(duration=0, use_async=use_async) @parameterized.named_parameters(('async', True), ('sync', False)) def testErrorNotFoundWhenMethodDoesNotExist(self, use_async: bool): self._client = client.Client( self._server.address, call_timeout=datetime.timedelta(seconds=1) ) with self.assertRaisesRegex( StatusNotOk, 'method nonexistent_method not found' ): if use_async: self._client.futures.nonexistent_method().result() else: self._client.nonexistent_method() def testWaitForReady(self): my_client_bad = client.Client('[::]:12345', wait_for_ready=False) with self.assertRaisesRegex(StatusNotOk, 'failed to connect to all addresses'): my_client_bad.blah() if __name__ == '__main__': absltest.main()
launchpad-master
courier/python/client_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Placeholders of network addresses to be evaluated at runtime.""" import abc import os import re from typing import Optional from absl import logging import portpicker _ADDRESS_NAME_VALID_PATTERN = re.compile('[a-z][a-z0-9]*') class AbstractAddressBuilder(metaclass=abc.ABCMeta): """Base class for creating a platform-specific address at runtime.""" @abc.abstractmethod def build(self) -> str: """Builds an address.""" class SimpleLocalAddressBuilder(AbstractAddressBuilder): """Creates a locahost:port address, with port decided by portpicker.""" def __init__(self): # This automatically makes use of PORTSERVER_ADDRESS (usually set by test) self._address = 'localhost:{}'.format(portpicker.pick_unused_port()) def build(self) -> str: return self._address class Address(object): """A network address to be evaluated. 1. An unbound address is created using `address = Address()`. 2. An address should be assigned to exactly one node e.g. using `address.assign(node)`. 2. Upon launching, Launchpad will call bind() for each address to assign the address builder, which constructs the actual string format address at runtime. Launchpad has access to the addressed used in a program because each node maintains an `addresses` list of the nodes he knows about (it can be the address(es) the node own, or addresses that sub-nodes own. 3. At runtime, use `address.resolve()` to finally resolve it. Using an unbound address will trigger an error. Attributes: name: Name of this address. """ def __init__(self, name: Optional[str] = None): """Initializes an address object. Args: name: (Optional) Name of the address. """ if name is not None and not _ADDRESS_NAME_VALID_PATTERN.fullmatch(name): raise ValueError(f'Wrong address name: {name} does not match ' f'{_ADDRESS_NAME_VALID_PATTERN.pattern}.') self.name = name self._address_builder = None # type: AbstractAddressBuilder self._owning_node = None def bind(self, address_builder: AbstractAddressBuilder) -> None: """Sets a function that creates the platform-specific address at runtime.""" # The address cannot be evaluated before we launch, because we might not # have all the necessary info for evaluation self._address_builder = address_builder def resolve(self) -> str: """Returns the address as a string.""" if not self._address_builder: if self._owning_node is None: raise RuntimeError( "The lp.Address hasn't been assigned to any node, " 'thus it cannot be resolved. Use ' '`address.assign(node)` to assign an address to a node') raise RuntimeError( f'The lp.Address associated to the node {self._owning_node} has not ' 'been bound to any address builder. Launchpad is responsible for ' 'doing that at launch time. If you are in tests, ' 'you can use:\n\n' 'from launchpad.launch.test_multi_threading import address_builder as test_address_builder\n' '...\n' 'test_address_builder.bind_addresses([node])') return self._address_builder.build() def assign(self, node) -> None: """Assigns the Address to the specified node (must be done exactly once).""" if self._owning_node is not None: if self._owning_node is node: logging.warning( 'You are binding an lp.Address twice on the same node ' "of type %s it's probably a mistake.", node) return raise ValueError('You are associating a node to this lp.Address which ' 'is already assigned to another node. The previous node ' 'and the new node are:\n' f'{node}\n{self._owning_node}') self._owning_node = node node.addresses.append(self) def __getstate__(self): state = self.__dict__.copy() # Don't pickle `_owning_node`, as it's here only for launch-time checks. # Instead, store a description of the node. If a restored instance is # re-pickled, leave the existing node description unchanged. if not isinstance(self._owning_node, str): state['_owning_node'] = ('Restored from pickle node named: ' + repr(self._owning_node)) return state def get_port_from_address(address: str) -> int: """Returns the port from a given address. Note that Launchpad uses a convention where named ports are passed as environment variables. For example, for the named port 'baz', the actual port value will be stored in LP_PORT_baz environment variable. Args: address: address with a named port or a host:port address. Returns: The port number as an integer. """ port_name = address.split(':')[-1] if port_name.isdigit(): return int(port_name) else: return int(os.environ['LP_PORT_' + port_name])
launchpad-master
launchpad/address.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.program.""" from unittest import mock from absl.testing import absltest from launchpad import program as lp_program from launchpad.nodes import base class ProgramTest(absltest.TestCase): def test_add_node(self): program = lp_program.Program('foo') node_foo = mock.Mock(autospec=base.Node) program.add_node(node_foo, 'foo') node_bar = mock.Mock(autospec=base.Node) program.add_node(node_bar, 'bar') self.assertEqual(program.groups['foo'], [node_foo]) self.assertEqual(program.groups['bar'], [node_bar]) def test_add_nodes_to_group(self): program = lp_program.Program('foo') nodes_foo = [mock.Mock(autospec=base.Node), mock.Mock(autospec=base.Node)] with program.group('foo'): for node in nodes_foo: program.add_node(node) nodes_bar = [mock.Mock(autospec=base.Node), mock.Mock(autospec=base.Node)] with program.group('bar'): for node in nodes_bar: program.add_node(node) self.assertEqual(program.groups['foo'], nodes_foo) self.assertEqual(program.groups['bar'], nodes_bar) def test_add_node_without_label(self): program = lp_program.Program('foo') with self.assertRaisesRegexp(ValueError, 'Label should not be empty.'): program.add_node(mock.Mock(autospec=base.Node)) def test_add_node_with_empty_label(self): program = lp_program.Program('foo') with self.assertRaisesRegexp(ValueError, 'Label should not be empty.'): program.add_node(mock.Mock(autospec=base.Node), label='') def test_add_group_with_empty_label(self): program = lp_program.Program('foo') with self.assertRaisesRegexp(ValueError, 'Label should not be empty.'): with program.group(''): program.add_node(mock.Mock(autospec=base.Node)) def test_use_label_in_node_and_group(self): program = lp_program.Program('foo') with self.assertRaisesRegexp( ValueError, 'label does not match the current group'): with program.group('foo'): program.add_node(mock.Mock(autospec=base.Node), label='bar') # If the label matches the current group, then it's ok. with program.group('foo'): program.add_node(mock.Mock(autospec=base.Node), label='foo') def test_nested_groups(self): program = lp_program.Program('foo') with self.assertRaisesRegexp(ValueError, r'group\(\) cannot be nested.'): with program.group('foo'): with program.group('bar'): program.add_node(mock.Mock(autospec=base.Node)) def test_duplicated_label(self): program = lp_program.Program('foo') node1 = mock.Mock(autospec=base.Node) node2 = mock.Mock(autospec=base.Node) program.add_node(node1, 'foo') program.add_node(node2, 'foo') with program.group('bar'): program.add_node(node1) with program.group('bar'): program.add_node(node2) self.assertEqual(program.groups['foo'], [node1, node2]) self.assertEqual(program.groups['bar'], [node1, node2]) def test_get_all_nodes(self): nodes = [] program = lp_program.Program('test') node_foo = mock.Mock(autospec=base.Node) nodes.append(node_foo) program.add_node(node_foo, 'foo') node_bar = mock.Mock(autospec=base.Node) nodes.append(node_bar) program.add_node(node_bar, 'bar') with program.group('baz'): node_baz = mock.Mock(autospec=base.Node) nodes.append(node_baz) program.add_node(node_baz) self.assertCountEqual(program.get_all_nodes(), nodes) if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/program_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LazyLoader providing support for loading symbols upon first reference.""" import importlib import sys import typing # Set to true in your local workspace to work around issues with lazy imports. # Please report any cases of usage to stanczyk@, so we can address them. _DISABLE_LAZY_IMPORTS = False class LazyImports(): """Turns all imports performed in its scope into lazy. It is used to avoid pulling in large dependencies. """ def __init__(self, parent, add_to_globals=True): """Initializes LazyImports. Args: parent: Name of the parent module doing the imports. add_to_globals: Whether imported symbols should be added to importing module globals. Rule of thumb is to not add for __init__ modules, as it is important for these modules to resolve Lazy symbol upon its first access (not when accessing members of the Lazy import). """ self._parent = sys.modules[parent] self._globals = vars(self._parent) self._add_to_globals = add_to_globals self._symbols = dict() def parent(self): return self._parent def _find_and_load(self, name, import_): del import_ return _ModuleToLoad(name, self) def _handle_fromlist(self, module, fromlist, import_): del import_ assert len(fromlist) == 1 if not isinstance(module, _ModuleToLoad): return _ModuleToLoad(module.__name__, self) return module def __enter__(self): if typing.TYPE_CHECKING or _DISABLE_LAZY_IMPORTS: return # Start capturing import statements. self._org_find_and_load = importlib._bootstrap._find_and_load self._org_handle_fromlist = importlib._bootstrap._handle_fromlist importlib._bootstrap._find_and_load = self._find_and_load importlib._bootstrap._handle_fromlist = self._handle_fromlist def __exit__(self, type_, value, traceback): if typing.TYPE_CHECKING or _DISABLE_LAZY_IMPORTS: return # Stop capturing import statements. importlib._bootstrap._find_and_load = self._org_find_and_load importlib._bootstrap._handle_fromlist = self._org_handle_fromlist # If symbols are not added to globals then __getattr__ has to be patched. if not self._add_to_globals: self._parent.__getattr__ = self.__getattr__ # Make sure lazy symbols know their local name within the importing module. for name in list(self._globals.keys()): member = self._globals[name] if isinstance(member, _MemberToLoad): member.set_export_name(name) if not self._add_to_globals: del self._globals[name] self._symbols[name] = member def __getattr__(self, name): if name in self._symbols: res = self._symbols[name].load() self._parent.__dict__[name] = res return res raise AttributeError(f'module {self._parent!r} has no attribute {name!r}') class _MemberToLoad(): """Module member to load in a lazy way.""" def __init__(self, name, parent): self._name = name self._export_name = name self._parent = parent def __getattr__(self, item): return getattr(self.load(), item) def __call__(self, *args, **kwargs): return self.load()(*args, **kwargs) def load(self): try: res = importlib.import_module(f'{self._parent.name()}.{self._name}') except ModuleNotFoundError: res = importlib.import_module(self._parent.name()).__dict__[self._name] self._parent.parent().parent().__dict__[self._export_name] = res return res def set_export_name(self, name): self._export_name = name class _ModuleToLoad(): """Module to load in a lazy way.""" def __init__(self, name, parent): self._name = name self._parent = parent def name(self): return self._name def parent(self): return self._parent def __getattr__(self, item): return _MemberToLoad(item, self)
launchpad-master
launchpad/lazy_loader.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing all Launchpad flags.""" from absl import flags from launchpad import context FLAGS = flags.FLAGS _DEFAULT_LAUNCH_TYPE = context.LaunchType.LOCAL_MULTI_THREADING.value LAUNCH_TYPE = flags.DEFINE_enum( 'lp_launch_type', _DEFAULT_LAUNCH_TYPE, [t.value for t in context.LaunchType], 'How to launch a Launchpad program when launch() is called', allow_override=True) LP_TERMINATION_NOTICE_SECS = flags.DEFINE_integer( 'lp_termination_notice_secs', 10, 'Send termination notice to all nodes that many seconds before hard ' 'termination. Set to 0 to trigger hard termination righ away (skip ' 'termination notice), set to negative value to disable hard termination.') LP_WORKER_MANAGER_V2 = flags.DEFINE_bool( 'lp_worker_manager_v2', False, 'Use the new WorkerManager implementation (note: please do NOT use this ' 'flag. It will be removed once V2 is fully implemented).') flags.DEFINE_string('tmux_open_window', None, 'Window in new Tmux session to switch to.') flags.DEFINE_string('tmux_session_name', 'launchpad', 'Prefix session name to use for the Tmux session.')
launchpad-master
launchpad/flags.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launchpad is a tool to define a distributed topology.""" from launchpad import lazy_loader # Basic types from launchpad import flags from launchpad.context import LaunchType from launchpad.context import is_local_launch from launchpad.context import is_local_launch_or_test from launchpad.flags import LAUNCH_TYPE # Set via --lp_launch_type from launchpad.program import Program # Launch function from launchpad.launch.launch import launch # Nodes from launchpad.nodes.courier.node import CourierHandle from launchpad.nodes.courier.node import CourierNode from launchpad.nodes.courier.node import CourierClient from launchpad.nodes.multi_threading_colocation.node import MultiThreadingColocation from launchpad.nodes.python.node import PyClassNode from launchpad.nodes.python.node import PyNode # Addressing from launchpad.address import Address from launchpad.address import AbstractAddressBuilder from launchpad.address import get_port_from_address from launchpad.address import SimpleLocalAddressBuilder # Stopping a program from launchpad.launch.worker_manager_migration import register_stop_handler from launchpad.launch.worker_manager_migration import stop_event from launchpad.launch.worker_manager_migration import unregister_stop_handler from launchpad.launch.worker_manager_migration import wait_for_stop from launchpad.program_stopper.program_stopper import make_program_stopper from launchpad.stop_program.stop import stop with lazy_loader.LazyImports(__name__, False): from launchpad.nodes.reverb.node import ReverbNode from launchpad.nodes.python.xm_docker import DockerConfig from launchpad.nodes.courier.courier_utils import batched_handler
launchpad-master
launchpad/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Platform-specific configuration on the node.""" import enum import threading from typing import Any, Callable, Optional, Union class LaunchType(enum.Enum): """The different launch types supported by Launchpad. Launch type can be specified through `lp_launch_type` command line flag or by passing `launch_type` parameter to lp.launch() call. """ # Launch locally using multiple threads logging on the same terminal with # different colors. Upon crash it drops into PDB for the # thread that crashed, and locks output from all other threads. LOCAL_MULTI_THREADING = 'local_mt' # Launch locally using multiple processes. Can display logs from different # nodes in separate windows. The behavior can be controlled using the # `terminal` argument in `launch.launch`. LOCAL_MULTI_PROCESSING = 'local_mp' # Launch using multiple processes, as a test. TEST_MULTI_PROCESSING = 'test_mp' # Launch as a test using multiple threads (same as LOCAL_MULTI_THREADING but # terminates the process instead of dropping into PDB). TEST_MULTI_THREADING = 'test_mt' # Launch locally using docker containers, similar to local multi processing. # NOTE: Experimental, do not use. LOCAL_DOCKER = 'local_docker' # Launch on Google Cloud using Vertex AI (https://cloud.google.com/vertex-ai) # throught xmanager. For an example on how to use VERTEX_AI launch, please # refer to Launchpad's example: # https://github.com/deepmind/launchpad/tree/master/launchpad/examples/consumer_producers/launch_vertex_ai.py # It is also worth looking at RL agents examples from Acme, for instance: # https://github.com/deepmind/acme/tree/master/examples/gym/lp_d4pg.py # NOTE: Using this runtime involves prior GCP project configuration. # Please follow the steps described at # https://github.com/deepmind/xmanager#create-a-gcp-project. VERTEX_AI = 'vertex_ai' class LaunchContext(object): """Stores platform-specific launch config of a node. This is created and set on the node only at launch time. """ def __init__(self): self._launch_type = None self._launch_config = None self._program_stopper = None self._is_initialized = False @property def launch_type(self) -> LaunchType: self._check_inititialized() return self._launch_type @property def launch_config(self) -> Any: self._check_inititialized() return self._launch_config @property def program_stopper(self) -> Callable[[], None]: self._check_inititialized() return self._program_stopper def _check_inititialized(self): if not self._is_initialized: raise RuntimeError( 'Launch context is not yet initialized. It should be initialized by ' 'calling initialize() at launch time.') def initialize(self, launch_type: LaunchType, launch_config: Any, program_stopper: Optional[Callable[[], None]] = None): self._launch_config = launch_config self._launch_type = launch_type self._program_stopper = program_stopper self._is_initialized = True _LAUNCH_CONTEXT = threading.local() def get_context(): context = getattr(_LAUNCH_CONTEXT, 'lp_context', None) assert context, ("Launchpad context was not instantiated. Are you trying to " "access it outside of the node's main thread?") return context def set_context(context: LaunchContext): _LAUNCH_CONTEXT.lp_context = context def is_local_launch(launch_type: Union[LaunchType, str]) -> bool: """Returns true if launch type is local multithreading/multiprocessing. If you use `--lp_launch_type=...`, please call it with `is_local_launch(lp.LAUNCH_TYPE.value)`, where lp.LAUNCH_TYPE.value gives the value of `--lp_launch_type`. Args: launch_type: A string (e.g., 'local_mp') or a LaunchType object. Returns: True if launch_type is a local one, otherwise False. """ if isinstance(launch_type, str): launch_type = LaunchType(launch_type) return launch_type in [ LaunchType.LOCAL_MULTI_THREADING, LaunchType.LOCAL_MULTI_PROCESSING ] def is_local_launch_or_test(launch_type: Union[LaunchType, str]) -> bool: """Returns true if launch type is local/test multithreading/multiprocessing. If you use `--lp_launch_type=...`, please call it with `is_local_launch_or_test(lp.LAUNCH_TYPE.value)`, where lp.LAUNCH_TYPE.value gives the value of `--lp_launch_type`. Args: launch_type: A string (e.g., 'local_mp') or a LaunchType object. Returns: True if launch_type is local or unit test, otherwise False. """ if isinstance(launch_type, str): launch_type = LaunchType(launch_type) return launch_type in [ LaunchType.LOCAL_MULTI_THREADING, LaunchType.LOCAL_MULTI_PROCESSING, LaunchType.TEST_MULTI_PROCESSING, LaunchType.TEST_MULTI_THREADING ]
launchpad-master
launchpad/context.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Launchpad program.""" import contextlib import dataclasses import itertools from typing import Any, Dict, List, Optional, Tuple from launchpad.nodes import base HandleType = Any class Program(object): """A Launchpad program, representing a distributed program and its topology. A Launchpad program contains nodes, each node could be just a process, or provide a service, etc (please refer to Launchpad documentation for types of nodes). Homogenous nodes are organized as groups. Here's an example of adding nodes to a group: with program.group('actor'): program.add_node(lp.CourierNode(MyActor, ...)) `add_node()` returns a handle, which can be passed to another node for communication purpose, and is the way to set up distributed communication topology. For example: with program.group('learner'): learner = program.add_node(lp.CourierNode(MyLearner, ...)) with program.group('actor'): program.add_node(lp.CourierNode(MyActor, learner=leaner)) """ def __init__(self, name: str): self._name = name self._groups = {} # type: Dict[str, List[base.Node]] # Group to add nodes to. Used by group() self._current_group = None # type: str def add_node(self, node: base.Node, label: Optional[str] = None) -> HandleType: """Adds node to the program and returns the node handle.""" if self._current_group: if label and label != self._current_group: raise ValueError('The given label does not match the current group: ' f'{label} vs {self._current_group}.') label = self._current_group else: if not label: raise ValueError('Label should not be empty.') if label not in self._groups: self._groups[label] = [node] else: self._groups[label].append(node) return node.create_handle() @contextlib.contextmanager def group(self, label: str): """Creates a group for a collection of homogeneous nodes.""" if not label: raise ValueError('Label should not be empty.') if self._current_group: raise ValueError('group() cannot be nested.') try: self._current_group = label yield finally: # Try/finally is to make sure that the current_group is correctly # reset even if an exception occurs. self._current_group = None @property def current_group(self) -> str: if self._current_group is None: raise ValueError('Current group is only available in group context.') return self._current_group def get_all_nodes(self) -> List[base.Node]: return list(itertools.chain(*self._groups.values())) @property def name(self) -> str: return self._name @property def groups(self) -> Dict[str, List[base.Node]]: return self._groups def make_program(*nodes: base.Node, name: str = 'launchpad'): """A shortcut to create a program from a list of nodes. This simplifies the syntax. For example you can do a one-liner launch: lp.launch(lp.make_program(lp.PyNode(lambda: ...))) Args: *nodes: Nodes to run. name: An optional name of the program. Returns: A lp.Program object """ program = Program(name) for node in nodes: program.add_node(node) return program
launchpad-master
launchpad/program.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Stop a running Launchpad program.""" from absl import flags from launchpad import context FLAGS = flags.FLAGS def stop(): """Terminates the entire experiment. Only a node's main thread can do this. """ context.get_context().program_stopper()
launchpad-master
launchpad/stop_program/stop.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/stop_program/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/nodes/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Delaying object constructions.""" import abc from typing import Callable, Generic, TypeVar, Union from absl import flags import tree T = TypeVar('T') _LP_CATCH_DEFERRED_EXCEPTION = flags.DEFINE_boolean( 'lp_catch_deferred_exception', True, 'Whether exceptions raised by the constructors of deferred objects should ' 'be caught and annotated with the initiation stack of the object. A negative ' 'side effect of using this is that pdb-on-error will enter at the re-raise ' 'point rather than the source of the original exception.') class _Uninitialized: pass class Dereferenceable(Generic[T], abc.ABC): @abc.abstractmethod def dereference(self) -> T: """Dereferences itself.""" def maybe_dereference(obj: Union[T, Dereferenceable[T]]) -> T: if isinstance(obj, Dereferenceable): return obj.dereference() return obj _EXCEPTION_MESSAGE = ('Error ({error_msg}) occurred when evaluating Deferred ' 'defined at:\n{init_stack}\nNOTE! If you want pdb to ' 'enter at raise point of the original exception, ' 'please rerun with flag --nolp_catch_deferred_exception') class Deferred(Dereferenceable[T], Generic[T]): """Delays object construction to achieve serializability. Assuming we want to pass a non-serializable Python object, say an environment object, to an Actor, the following will lead to a serialization error: program.add_node(lp.CourierNode(Actor, envloader.load_from_settings( platform='Atari', settings={ 'levelName': 'pong', 'env_loader.version': requested_version, 'zero_indexed_actions': True, 'interleaved_pixels': True, }))) This helper class delays the object construction and fixes this error. The object is constructed when the Actor is actually instantiated remotely, where the Actor constructed will receive an actual environment object (just like how handles are dereferenced automatically): program.add_node(lp.CourierNode(Actor, lp.Deferred( envloader.load_from_settings, platform='Atari', settings={ 'levelName': 'pong', 'env_loader.version': requested_version, 'zero_indexed_actions': True, 'interleaved_pixels': True, }))) """ def __init__(self, constructor: Callable[..., T], *args, **kwargs) -> None: self._constructor = constructor self._args = args self._kwargs = kwargs self._init_stack = 'Stack trace missing' self._deferred_object = _Uninitialized() def dereference(self) -> T: if isinstance(self._deferred_object, _Uninitialized): args, kwargs = tree.map_structure(maybe_dereference, (self._args, self._kwargs)) if not _LP_CATCH_DEFERRED_EXCEPTION.value: # Allows the user to pdb where the exception happens, but won't show # where the deferred object was originally defined. return self._constructor(*args, **kwargs) try: self._deferred_object = self._constructor(*args, **kwargs) except Exception as e: new_message = _EXCEPTION_MESSAGE.format( init_stack=''.join(self._init_stack), # For clarity during pdb, we also inline the internal error message. error_msg=str(e)) raise RuntimeError(new_message) from e return self._deferred_object def _apply_to_args(self, fn): return tree.map_structure(fn, (self._args, self._kwargs))
launchpad-master
launchpad/nodes/dereference.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Launchpad Node. Node represents a service. It may return a handle for others to interact with it. """ import abc import functools from typing import Any, Generic, List, Optional, Sequence, Set, TypeVar from launchpad import address as lp_address from launchpad import context as lp_context from launchpad.nodes import dereference from launchpad.program_stopper import program_stopper ClientType = TypeVar('ClientType') HandleType = TypeVar('HandleType', bound='Handle') class Handle(dereference.Dereferenceable[ClientType], Generic[ClientType]): """Represents an interface of the service (the node). Call `.dereference()` to get the actual client object of this service (to be implemented in subclasses). """ def connect(self, node: 'Node[Handle[ClientType]]', label: str) -> None: """Called to let this handle know about it's connecting to a node. This is supposed to be called: 1. Before creating any executables 2. Before any address binding happens The motivation is we want to give the handle a chance to configure itself for the node, before it's turned into executables and addresses are finalized. Args: node: The node that the handle connects to. label: Label of the node. """ pass def transform(self, executables: Sequence[Any]) -> Sequence[Any]: """Transforms the executables that make use of this handle.""" return executables class Node(Generic[HandleType], metaclass=abc.ABCMeta): """Represents a service, and may return a Handle for interaction with it.""" def __init__(self) -> None: # This is a low-level API to allow Node/Handle to access launch config # during run time. It's only available after launch, and it's set by the # launcher. self._launch_context = lp_context.LaunchContext() # Handles used by this node (to interact with other nodes) self._input_handles = [] # type: List[Handle[Any]] # Handles created by this node # Note: `type: List[HandleType]` is not supported yet. self._created_handles = [] # type: List[Handle] # Addresses known to the node. This exists so that launchpad can, from # the program (which contains the nodes), list all the addresses that need # to be bind before launch. # `addresses` usually contains the address(es) owned by the node. However, # in case of nodes containing other nodes (e.g. multi-threading nodes), it # will also contain addresses owned by sub-nodes. # Thus, use `address.assign` to give ownership of an address to a node, # and `addresses.append` to only expose the address to launchpad launch # mechanism. self.addresses = [] # type: List[lp_address.Address] @property def launch_context(self): return self._launch_context def _initialize_context(self, launch_type: lp_context.LaunchType, launch_config: Any): self._launch_context.initialize( launch_type, launch_config, program_stopper.make_program_stopper(launch_type)) def _track_handle(self, handle: HandleType) -> HandleType: """Keeps track of created handles. MUST be called in create_handle(). This is called so that the node knows about the handle it creates. The reason we don't automate this is because we'll lose return annotation if we wrap create_handle() using a base class method (i.e., the base class wrapper method doesn't know about the subclass return type). Args: handle: The handle (MUST be created by this node) to track. Returns: The same handle that was passed in, for the nicer syntax on call site. """ self._created_handles.append(handle) return handle @abc.abstractmethod def create_handle(self) -> HandleType: """Creates a handle to interact with this node. MUST call _track_handle() after creating a handle. """ raise NotImplementedError() @abc.abstractstaticmethod def to_executables(nodes, label, context): """Creates executables for a specific launch type.""" raise NotImplementedError() def bind_addresses(self, **kwargs) -> None: """Binds addresses of the node.""" del kwargs # Unused. @property def input_handles(self) -> List[Handle[Any]]: return list(self._input_handles) def allocate_address(self, address: lp_address.Address) -> None: """Low-level API to add an address to listen to. Prefer `address.assign(node)`. This is a low level API and users shouldn't need to use it most of the time. Args: address: Address to listen to (i.e., to create a server). """ address.assign(self) @classmethod def default_launch_config(cls, launch_type: lp_context.LaunchType): """Defines the default launch config of this node type. This is optional. The returned config is conditional on the launch type. Args: launch_type: Return the launch_config for this launch_type. """ raise NotImplementedError( f'Launch config has to be explicitly specified for {cls.__name__}') def extract_handles( obj: Any, handles: List[Handle], visited: Optional[Set[int]] = None, ) -> None: """Extract the handles of `obj` to and add them into `handles`.""" visited = visited or set() # Transitive input_handles from Deferred objects are included. if isinstance(obj, dereference.Deferred): if id(obj) not in visited: visited.add(id(obj)) obj._apply_to_args( functools.partial(extract_handles, handles=handles, visited=visited)) elif isinstance(obj, Handle): handles.append(obj)
launchpad-master
launchpad/nodes/base.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/nodes/courier/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A PyClassNode subclass that also exposes the instance as a Courier server.""" import datetime from typing import Any, Callable, Generic, Optional, Mapping, TypeVar from absl import logging import courier from launchpad import address as lp_address from launchpad import flags as lp_flags from launchpad.launch import worker_manager from launchpad.launch import worker_manager_v2 from launchpad.nodes import base from launchpad.nodes.courier import courier_utils from launchpad.nodes.python import node as python WorkerType = TypeVar('WorkerType') CourierClient = courier.Client COURIER_PORT_NAME = 'courier' class CourierHandle(base.Handle[CourierClient]): """Handle of a CourierNode.""" def __init__(self, address: lp_address.Address, **kwargs): self._address = address self._kwargs = kwargs def __getattr__(self, method): raise AttributeError( f'\'CourierHandle\' object has no attribute \'{method}\'. ' 'Most likely you need to dereference handle before use ' '(see launchpad.maybe_dereference).') def set_client_kwargs(self, **kwargs): self._kwargs = kwargs def dereference(self) -> CourierClient: return CourierClient(self._address.resolve(), **self._kwargs) class CourierNode(Generic[WorkerType], python.PyClassNode[CourierHandle, WorkerType]): """Exposes a Python instance as a Courier server. This will initialize the object and expose all its public methods as Courier RPC methods. Attributes and method names starting with underscore will not be exposed. After that, run() will be called if it's provided. When run() is provided, the server will terminate at the end of run(). Otherwise, it will serve indefinitely (until the job/experiment terminates). Advanced usage: if the object has a set_courier_server() method, it will be called with the courier server object passed in as the only argument. The courier server will then be managed by the user (e.g., need to manually call Start() of the courier server). """ def __init__(self, constructor: Callable[..., WorkerType], *args, courier_kwargs: Optional[Mapping[str, Any]] = None, courier_client_kwargs: Optional[Mapping[str, Any]] = None, **kwargs): """Initializes a new instance of the `CourierNode` class. Args: constructor: Function that creates a new instance of the actual worker. *args: Positional arguments passed to `constructor`. courier_kwargs: Keyword arguments passed to the courier server. courier_client_kwargs: Keyword arguments passed to the courier clients. **kwargs: Keyword arguments passed to `constructor`. """ super().__init__(constructor, *args, **kwargs) self._address = lp_address.Address(COURIER_PORT_NAME) self.allocate_address(self._address) self._courier_kwargs = courier_kwargs or {} self._courier_client_kwargs = courier_client_kwargs or {} # Set in `run()` method. self._server: Optional[courier.Server] = None def configure(self, *args, **kwargs): """Sets the args and kwargs being passed to the constructor. This is useful for achieving cyclic referencing. E.g.: foo_node = CourierNode(_foo) foo_handle = foo_node.create_handle() bar_node = CourierNode(_bar) bar_handle = bar_node.create_handle() foo_node.configure(bar=bar_handle) bar_node.configure(foo=foo_handle) p.add_node(foo_node) p.add_node(bar_node) Args: *args: non-keyword arguments to pass to the constructor. **kwargs: keyword arguments to pass to the constructor. """ self._args = args self._kwargs = kwargs self._collect_input_handles() def create_handle(self) -> CourierHandle: """See `Node.create_handle`.""" return self._track_handle( CourierHandle(self._address, **self._courier_client_kwargs)) def run(self) -> None: """Creates the worker instance and executes the user-provided function.""" instance = self._construct_instance() courier_kwargs = dict(**self._courier_kwargs) if 'port' not in courier_kwargs: courier_kwargs['port'] = lp_address.get_port_from_address( self._address.resolve() ) self._server = courier_utils.make_courier_server(instance, **courier_kwargs) if hasattr(instance, 'set_courier_server'): # Transfer the ownership of the server to the instance, so that the user # can decide when to start and stop the courier server. instance.set_courier_server(self._server) if hasattr(instance, 'run') and self._should_run: instance.run() else: # Start the server after instantiation and serve forever self._server.Start() try: if hasattr(instance, 'run') and self._should_run: # If a run() method is provided, stop the server at the end of run(). instance.run() else: if lp_flags.LP_WORKER_MANAGER_V2.value: worker_manager_v2.wait_for_stop() else: worker_manager.wait_for_stop() finally: self._server.Stop() self._server.Join() @property def courier_address(self) -> lp_address.Address: """Returns the physical address of the courier server.""" return self._address
launchpad-master
launchpad/nodes/courier/node.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.nodes.courier.node.""" import datetime import sys import threading import time from unittest import mock from absl.testing import absltest import courier from launchpad.launch.test_multi_threading import address_builder from launchpad.nodes.courier import node as lp_courier class Server(object): """Terminates once it receives the first ping() call.""" def __init__(self): self._server = None # type: courier.Server self._has_ping = threading.Event() self._has_call = threading.Event() def ping(self): self._has_ping.set() return 'pong' def ping_slow(self): time.sleep(1) return self.ping() def __call__(self): self._has_call.set() return 'called' def set_courier_server(self, server: courier.Server): self._server = server def run(self): self._server.Start() self._has_ping.wait() self._has_call.wait() self._server.Stop() class CourierNodeTest(absltest.TestCase): def test_ping_pong(self): node = lp_courier.CourierNode(Server) handle = node.create_handle() # Bind all addresses address_builder.bind_addresses([node]) threading.Thread(target=node.run).start() client = handle.dereference() self.assertEqual(client.ping(), 'pong') self.assertEqual(client(), 'called') # Make sure Tensorflow is not imported. self.assertNotIn('tensorflow', sys.modules) def test_future_ping_pong(self): node = lp_courier.CourierNode(Server) handle = node.create_handle() # Bind all addresses address_builder.bind_addresses([node]) threading.Thread(target=node.run).start() client = handle.dereference() self.assertEqual(client.futures.ping().result(), 'pong') self.assertEqual(client.futures().result(), 'called') # Make sure Tensorflow is not imported. self.assertNotIn('tensorflow', sys.modules) def test_cyclic_reference(self): def _foo(bar): del bar # unused def _bar(foo): del foo # unused foo_node = lp_courier.CourierNode(_foo) foo_handle = foo_node.create_handle() bar_node = lp_courier.CourierNode(_bar) bar_handle = bar_node.create_handle() self.assertNotIn(foo_handle, bar_node._input_handles) self.assertNotIn(bar_handle, foo_node._input_handles) foo_node.configure(bar=bar_handle) bar_node.configure(foo=foo_handle) self.assertIn(foo_handle, bar_node._input_handles) self.assertIn(bar_handle, foo_node._input_handles) def test_courier_client_kwargs(self): node = lp_courier.CourierNode( Server, courier_client_kwargs={ 'call_timeout': datetime.timedelta(milliseconds=50) }) handle = node.create_handle() address_builder.bind_addresses([node]) client = handle.dereference() with self.assertRaisesRegex(Exception, 'Deadline Exceeded'): client.ping_slow() if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/nodes/courier/node_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Courier utilities.""" import datetime import functools import inspect from typing import Any, Callable, Text from absl import logging import courier from courier.handlers.python import pybind def batched_handler(batch_size, max_parallelism=1, timeout=datetime.timedelta(milliseconds=200), pad_batch=False): """A decorator to enable batching of the CourierNode method. IMPORTANT: A courier method wrapped with batched_handler(batch_sie) can use and block up to `batch_size` Courier serving threads from its pool-size. When only processing full batches (e.g. with timeout = 30 min), you can then dead-lock the Courier server. Configure Courier `thread_pool_size` to use more than batch_size threads for each function wrapped under `batched_handler`. `batch_size` calls to the method will be batched and executed in one go. Tensors and Numpy arrays are batched by adding an additional batching dimension. Each value inside of the dictionary as well as elements of the tupples are batched independently. Primitive types are batched by being wrapped in a list. Batched method is supposed to return a batched result, so that it can be unbatch and corresponding results send back to each caller. Class member functions should be wrapped in the __init__ function instead of decorated (as self parameter needs to be bound at the time of wrapping), for example: class Server: def __init__(self, batch_size): self.compute = lp.batched_handler(batch_size=batch_size)(self.compute) def compute(self, values): ... Args: batch_size: How many calls to batch together (at most). max_parallelism: How many parallel calls of the function being batched to allow. timeout: Timeout after which batched handler will be called even if `batch_size` calls has not been collected. pad_batch: Should the timed-out batch be padded to the batch_size. It guarantees that all executed batches are of the same size. Returns: The decorated function. """ def decorator_batch(func): args = inspect.getfullargspec(func).args # Make sure function being wrapped doesn't expect `self` as the first # argument. Otherwise it means it is a non-bound class member. assert not args or args[0] != 'self' or hasattr(func, '__self__'), ( 'Do not decorate class methods with @lp.batched_handler. ' 'Wrap them in the object constructor instead.') handler = pybind.BuildPyCallHandler(func) batcher = pybind.BuildBatchedHandlerWrapper(func.__name__, handler, batch_size, max_parallelism, timeout, pad_batch) @functools.wraps(func) def wrapper_batch(*args, **kwargs): return pybind.CallHandler(batcher, func.__name__, list(args), kwargs) wrapper_batch._batched_handler = True wrapper_batch._batch_size = batch_size wrapper_batch._max_parallelism = max_parallelism wrapper_batch._timeout = timeout wrapper_batch._pad_batch = pad_batch wrapper_batch._func = func return wrapper_batch return decorator_batch def _should_expose_method(func: Callable[..., Any], method_name: Text) -> bool: return (callable(func) and method_name != 'set_courier_server' and (not method_name.startswith('_') or method_name == '__call__')) def make_courier_server(instance: Any, *courier_args, **courier_kwargs) -> courier.Server: """Builds a courier.Server for an instance. Args: instance: The instance that the courier server associates with. *courier_args: positional arguments to pass to courier.Server(). **courier_kwargs: keyword arguments to pass to courier.Server(). Returns: A courier.Server object. """ server = courier.Server(*courier_args, **courier_kwargs) # Bind all non-private user-defined local methods. for method_name in dir(instance): func = getattr(instance, method_name) if _should_expose_method(func, method_name): logging.info('Binding: %s', method_name) handler = None if func.__dict__.get('_batched_handler', False): if handler is None: handler = pybind.BuildPyCallHandler(func.__dict__['_func']) batch_size = func.__dict__['_batch_size'] max_parallelism = func.__dict__['_max_parallelism'] timeout = func.__dict__['_timeout'] pad_batch = func.__dict__['_pad_batch'] handler = pybind.BuildBatchedHandlerWrapper(method_name, handler, batch_size, max_parallelism, timeout, pad_batch) if handler is None: handler = pybind.BuildPyCallHandler(func) server.BindHandler(method_name, handler) return server
launchpad-master
launchpad/nodes/courier/courier_utils.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to run PyNodes in Docker containers using XManager.""" import atexit import copy import dataclasses from distutils import dir_util import functools import os import pathlib import shutil import sys import tempfile from typing import Any, List, Optional, Sequence, Tuple import cloudpickle from launchpad.launch import serialization try: from xmanager import xm except ModuleNotFoundError: raise Exception('Launchpad requires `xmanager` for XM-based runtimes.' 'Please run `pip install xmanager`.') _DATA_FILE_NAME = 'job.pkl' _INIT_FILE_NAME = 'init.pkl' @dataclasses.dataclass class DockerConfig: """Local docker launch configuration. Attributes: code_directory: Path to directory containing any user code that may be required inside the Docker image. The user code from this directory is copied over into the Docker containers, as the user code may be needed during program execution. If needed, modify docker_instructions in xm.PythonContainer construction below if user code needs installation. docker_requirements: Path to requirements.txt specifying Python packages to install inside the Docker image. hw_requirements: Hardware requirements. python_path: Additional paths to be added to PYTHONPATH prior to executing an entry point. """ code_directory: Optional[str] = None docker_requirements: Optional[str] = None hw_requirements: Optional[xm.JobRequirements] = None python_path: Optional[List[str]] = None def initializer(python_path): sys.path = python_path + sys.path def to_docker_executables( nodes: Sequence[Any], label: str, docker_config: DockerConfig, ) -> List[Tuple[xm.PythonContainer, xm.JobRequirements]]: """Returns a list of `PythonContainer`s objects for the given `PyNode`s.""" if docker_config.code_directory is None or docker_config.docker_requirements is None: raise ValueError( 'code_directory and docker_requirements must be specified through' 'DockerConfig via local_resources when using "xm_docker" launch type.') # Generate tmp dir without '_' in the name, Vertex AI fails otherwise. tmp_dir = '_' while '_' in tmp_dir: tmp_dir = tempfile.mkdtemp() atexit.register(shutil.rmtree, tmp_dir, ignore_errors=True) command_line = f'python -m process_entry --data_file={_DATA_FILE_NAME}' # Add common initialization function for all nodes which sets up PYTHONPATH. if docker_config.python_path: command_line += f' --init_file={_INIT_FILE_NAME}' # Local 'path' is copied under 'tmp_dir' (no /tmp prefix) inside Docker. python_path = [ '/' + os.path.basename(tmp_dir) + os.path.abspath(path) for path in docker_config.python_path ] initializer_file_path = pathlib.Path(tmp_dir, _INIT_FILE_NAME) with open(initializer_file_path, 'wb') as f: cloudpickle.dump(functools.partial(initializer, python_path), f) data_file_path = str(pathlib.Path(tmp_dir, _DATA_FILE_NAME)) serialization.serialize_functions(data_file_path, label, [n.function for n in nodes]) file_path = pathlib.Path(__file__).absolute() shutil.copy(pathlib.Path(file_path.parent, 'process_entry.py'), tmp_dir) dir_util.copy_tree(docker_config.code_directory, tmp_dir) shutil.copy(docker_config.docker_requirements, pathlib.Path(tmp_dir, 'requirements.txt')) workdir_path = pathlib.Path(tmp_dir).name if not os.path.exists(docker_config.docker_requirements): raise FileNotFoundError('Please specify a path to a file with Python' 'package requirements through' 'docker_config.docker_requirements.') job_requirements = docker_config.hw_requirements if not job_requirements: job_requirements = xm.JobRequirements() # Make a copy of requirements since they are being mutated below. job_requirements = copy.deepcopy(job_requirements) if job_requirements.replicas != 1: raise ValueError( 'Number of replicas is computed by the runtime. ' 'Please do not set it explicitly in the requirements.' ) job_requirements.replicas = len(nodes) python_version = f'{sys.version_info.major}.{sys.version_info.minor}' base_image = f'python:{python_version}' return [(xm.PythonContainer( path=tmp_dir, base_image=base_image, entrypoint=xm.CommandList([command_line]), docker_instructions=[ 'RUN apt-get update && apt-get install -y git', 'RUN python -m pip install --upgrade pip', f'RUN apt-get -y install libpython{python_version}', f'COPY {workdir_path}/requirements.txt requirements.txt', 'RUN python -m pip install xmanager', 'RUN python -m pip install -r requirements.txt', f'COPY {workdir_path}/ {workdir_path}', f'WORKDIR {workdir_path}', ]), job_requirements)]
launchpad-master
launchpad/nodes/python/xm_docker.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/nodes/python/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to run PyNodes as multiple processes.""" import atexit import dataclasses import json import os import shutil import sys import tempfile from typing import Any, List, Mapping, Optional, Sequence, Union from absl import flags from absl import logging from launchpad import flags as lp_flags from launchpad.launch import serialization from launchpad.launch.local_multi_processing import commands as mp_commands import portpicker _INTERPRETER = sys.executable StrOrFloat = Union[str, float] def _to_cmd_arg(key: str, value: Any) -> str: """Converts key value pair to "--key=value".""" if isinstance(value, bool): return f'--{key}' if value else f'--no{key}' return f'--{key}={value}' @dataclasses.dataclass class PythonProcess: """Local multiprocessing launch configuration for a PyNode. Attributes: args: Arguments to pass to the user script. env: Additional environment variables to set. """ args: Mapping[str, StrOrFloat] = dataclasses.field(default_factory=dict) env: Mapping[str, StrOrFloat] = dataclasses.field(default_factory=dict) _absolute_interpreter_path: str = '' def _get_absolute_interpreter_path(self): """Resolve self.interpreter to an absolute path.""" return _INTERPRETER @property def absolute_interpreter_path(self) -> str: """Returns the absolute path to the interpreter binary.""" if not self._absolute_interpreter_path: self._absolute_interpreter_path = self._get_absolute_interpreter_path() return self._absolute_interpreter_path _DATA_FILE_NAME = 'job.pkl' def to_multiprocessing_executables( nodes: Sequence[Any], label: str, launch_config: PythonProcess, pdb_post_mortem: bool, ) -> List[mp_commands.Command]: """Returns a list of `Command`s objects for the given `PyNode`s.""" launch_config = launch_config or PythonProcess() if not isinstance(launch_config, PythonProcess): raise ValueError( 'Launch config for {} must be a PythonProcess.'.format(label)) entry_script_path = os.path.join(os.path.dirname(__file__), 'process_entry.py') tmp_dir = tempfile.mkdtemp() atexit.register(shutil.rmtree, tmp_dir, ignore_errors=True) data_file_path = os.path.join(tmp_dir, _DATA_FILE_NAME) serialization.serialize_functions(data_file_path, label, [n.function for n in nodes]) args = dict(launch_config.args) per_task_args = [{} for _ in nodes] per_task_interpreter_args = [{} for _ in nodes] per_task_env = [{} for _ in nodes] commands = [] for task_id, (_, task_args) in enumerate(zip(nodes, per_task_args)): command_as_list = [ launch_config.absolute_interpreter_path, entry_script_path ] all_args = {**args, **task_args} # Arguments to pass to the script for key, value in all_args.items(): command_as_list.append(_to_cmd_arg(key, value)) command_as_list.extend([ '--data_file', data_file_path, '--lp_task_id', str(task_id), ]) if pdb_post_mortem: command_as_list.append('--pdb_post_mortem') env = {**launch_config.env} env.update(per_task_env[task_id]) command = mp_commands.Command(command_as_list, env, label + '/' + str(task_id)) commands.append(command) return commands
launchpad-master
launchpad/nodes/python/local_multi_processing.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Nodes that run user-defined Python code. PyNode runs a user-defined function. PyClassNode constructs a Python object and calls its run() method (if provided). """ import functools import itertools from typing import Any, Callable, Generic, TypeVar from absl import flags from absl import logging from launchpad import context from launchpad import lazy_loader from launchpad.nodes import base from launchpad.nodes import dereference from launchpad.nodes.python import addressing from launchpad.nodes.python import local_multi_processing import tree FLAGS = flags.FLAGS T = TypeVar('T') HandleType = TypeVar('HandleType', bound=base.Handle) ReturnType = TypeVar('ReturnType') WorkerType = TypeVar('WorkerType') class _DummyHandle(base.Handle[Any]): def dereference(self) -> None: raise NotImplementedError('_DummyHandle cannot be dereferenced.') class PyNode(base.Node[HandleType], Generic[HandleType, ReturnType]): """Runs a user-defined Python function.""" # Used only for no-serialization launch NEXT_PY_NODE_ID = itertools.count() def __init__(self, function: Callable[..., ReturnType], *args, **kwargs): super().__init__() self._func_args = args self._func_kwargs = kwargs self._function = function self._partial_function = self._construct_function self.py_node_id = next(PyNode.NEXT_PY_NODE_ID) # Find input handles and put them in self._input_handles. tree.traverse( functools.partial(base.extract_handles, handles=self._input_handles), (self._func_args, self._func_kwargs)) def _construct_function(self): context.set_context(self._launch_context) args, kwargs = tree.map_structure(dereference.maybe_dereference, (self._func_args, self._func_kwargs)) return functools.partial(self._function, *args, **kwargs)() def create_handle(self) -> HandleType: """Doesn't expose an interface for others to interact with it.""" return _DummyHandle() @property def function(self) -> Callable[..., ReturnType]: return self._partial_function @staticmethod def to_executables(nodes, label, launch_context): """Creates Executables.""" if (launch_context.launch_type in [ context.LaunchType.LOCAL_MULTI_THREADING, context.LaunchType.TEST_MULTI_THREADING ]): return [node.function for node in nodes] elif (launch_context.launch_type is context.LaunchType.LOCAL_MULTI_PROCESSING): return local_multi_processing.to_multiprocessing_executables( nodes, label, launch_context.launch_config, pdb_post_mortem=True) elif ( launch_context.launch_type is context.LaunchType.TEST_MULTI_PROCESSING): return local_multi_processing.to_multiprocessing_executables( nodes, label, launch_context.launch_config, pdb_post_mortem=False, ) elif launch_context.launch_type == context.LaunchType.VERTEX_AI: from launchpad.nodes.python import xm_docker return xm_docker.to_docker_executables(nodes, label, launch_context.launch_config) raise NotImplementedError('Unsupported launch type: {}'.format( launch_context.launch_type)) def bind_addresses(self, **kwargs): if self._launch_context.launch_type in [ context.LaunchType.LOCAL_MULTI_THREADING, context.LaunchType.LOCAL_MULTI_PROCESSING, context.LaunchType.TEST_MULTI_PROCESSING, context.LaunchType.TEST_MULTI_THREADING, ]: addressing.bind_addresses_local(self.addresses) elif self._launch_context.launch_type == context.LaunchType.VERTEX_AI: addressing.bind_addresses_vertex_ai(self.addresses, **kwargs) else: raise NotImplementedError('Unsupported launch type: {}'.format( self._launch_context.launch_type)) @classmethod def default_launch_config(cls, launch_type: context.LaunchType): if launch_type in [ context.LaunchType.LOCAL_MULTI_THREADING, context.LaunchType.TEST_MULTI_THREADING ]: return None return super().default_launch_config(launch_type) class PyClassNode(PyNode[HandleType, type(None)], Generic[HandleType, WorkerType]): """Instantiates a Python object and runs its run() method (if provided). If disable_run() is called before launch, instance.run() method won't be called. This is useful in TAP-based integration tests, where users might need to step each worker synchronously. """ def __init__(self, constructor: Callable[..., WorkerType], *args, **kwargs): """Initializes a new instance of the `PyClassNode` class. Args: constructor: A function that when called returns a Python object with a run method. *args: Arguments passed to the constructor. **kwargs: Key word arguments passed to the constructor. """ super().__init__(self.run) self._constructor = constructor self._args = args self._kwargs = kwargs self._should_run = True self._collect_input_handles() self._instance = None def _collect_input_handles(self): self._input_handles.clear() try: # Find input handles and put them in self._input_handles. fn = functools.partial(base.extract_handles, handles=self._input_handles) _ = [fn(x) for x in tree.flatten((self._args, self._kwargs))] except TypeError as e: raise ValueError( f'Failed to construct the {self.__class__.__name__} with\n' f'- constructor: {self._constructor}\n' f'- args: {self._args}\n- kwargs: {self._kwargs}') from e def _construct_instance(self) -> WorkerType: if self._instance is None: args, kwargs = tree.map_structure(dereference.maybe_dereference, (self._args, self._kwargs)) self._instance = self._constructor(*args, **kwargs) return self._instance def disable_run(self) -> None: """Prevents the node from calling `run` on the Python object. Note that the Python object is still constructed even if `disable_run` has been called. """ self._should_run = False def enable_run(self) -> None: """Ensures `run` is called on the Python object. This is the default state and callers don't need to call `enable_run` unless `disable_run` has been called. """ self._should_run = True def run(self) -> None: """Constructs Python object and (maybe) calls its `run` method. The `run` method is not called if `disable_run` has ben called previously or if the constructed Python object does not have a `run` method. """ instance = self._construct_instance() if hasattr(instance, 'run') and self._should_run: instance.run() else: logging.warning( 'run() not defined on the instance (or disable_run() was called.).' 'Exiting...')
launchpad-master
launchpad/nodes/python/node.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Addressing for PyNodes.""" import collections import itertools import json import os import typing from typing import Any, List, Optional from absl import flags from absl import logging from launchpad import address as lp_address from launchpad import flags as lp_flags FLAGS = flags.FLAGS def bind_addresses_local(addresses: List[lp_address.Address]): """Binds addresses for the local launch.""" for address in addresses: address.bind(lp_address.SimpleLocalAddressBuilder()) class VertextAiAddressBuilder(lp_address.AbstractAddressBuilder): """Builds an address for Vertex AI.""" def __init__(self, cluster: str, instance: int): self._cluster = cluster self._instance = instance def build(self) -> str: cluster_spec = os.environ.get('CLUSTER_SPEC', None) return json.loads(cluster_spec).get('cluster').get( self._cluster)[self._instance] def bind_addresses_vertex_ai(addresses: List[lp_address.Address], cluster: str, instance: int): """Binds addresses for the execution using Vertex AI.""" if len(addresses) > 1: raise RuntimeError( f'Vertex AI supports only one port per node. {len(addresses)} requested.' ) if len(addresses) == 1: addresses[0].bind(VertextAiAddressBuilder(cluster, instance))
launchpad-master
launchpad/nodes/python/addressing.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entry of a PythonNode worker.""" import contextlib import functools import json import os import sys from absl import app from absl import flags from absl import logging import cloudpickle from launchpad import flags as lp_flags from launchpad.launch import worker_manager from launchpad.launch import worker_manager_v2 import six FLAGS = flags.FLAGS flags.DEFINE_integer( 'lp_task_id', None, 'a list index deciding which ' 'worker to run. given a list of workers (obtained from the' ' data_file)') flags.DEFINE_string('data_file', '', 'Pickle file location with entry points for all nodes') # An index of an entry point in a pickle file. Will not match work unit id if # entry points are saved to separate pickle files. flags.DEFINE_integer('lp_unit_id', None, 'Which work unit within pickle file to run.') flags.DEFINE_string( 'lp_job_name', '', 'The name of the job, used to access the correct pickle file resource when ' 'using the new launch API') flags.DEFINE_string( 'init_file', '', 'Pickle file location containing initialization module ' 'executed for each node prior to an entry point') flags.DEFINE_string('flags_to_populate', '{}', 'obsolete') _FLAG_TYPE_MAPPING = { str: flags.DEFINE_string, six.text_type: flags.DEFINE_string, float: flags.DEFINE_float, int: flags.DEFINE_integer, bool: flags.DEFINE_boolean, list: flags.DEFINE_list, } def _parse_process_entry_flags(all_argv: list[str]) -> list[str]: """Parse and consume all flags for the entry script; return the rest.""" # unconsumed_argv will still include all_argv[0], which is expected to be # the program name and is ignored by flag parsing. unconsumed_argv = FLAGS(all_argv, known_only=True) # JAX doesn't use absl flags and so we need to forward absl flags to JAX # explicitly. Here's a heuristic to detect JAX flags and forward them. if any(arg.startswith('--jax_') for arg in sys.argv): try: # pytype:disable=import-error import jax # pytype:enable=import-error jax.config.parse_flags_with_absl() except ImportError: pass return unconsumed_argv def _get_task_id(): """Returns current task's id.""" if FLAGS.lp_task_id is None: # Running under Vertex AI... cluster_spec = os.environ.get('CLUSTER_SPEC', None) return json.loads(cluster_spec).get('task').get('index') return FLAGS.lp_task_id def main(argv: list[str], process_argv: list[str]): # See `parse_flags_and_run()` for why arguments are passed in `process_argv` # instead. assert len(argv) == 1 del argv # Allow for importing modules from the current directory. sys.path.append(os.getcwd()) data_file = FLAGS.data_file init_file = FLAGS.init_file if os.environ.get('TF_CONFIG', None): # For GCP runtime log to STDOUT so that logs are not reported as errors. logging.get_absl_handler().python_handler.stream = sys.stdout if init_file: init_function = cloudpickle.load(open(init_file, 'rb')) init_function() functions = cloudpickle.load(open(data_file, 'rb')) # Now that the code that we intend to run has been unpickled, that should # have caused the registration of any remaining flags that the program needs. [unused_program_name, *unconsumed_argv] = FLAGS(process_argv, known_only=True) if unconsumed_argv: logging.warning('The following command-line arguments were passed to the ' 'program but are not used by anything that it imports: %s', unconsumed_argv) task_id = _get_task_id() if lp_flags.LP_WORKER_MANAGER_V2.value: worker_manager_v2.WorkerManager( handle_sigterm=True, register_in_thread=True) else: # Worker manager is used here to handle termination signals and provide # preemption support. worker_manager.WorkerManager( register_in_thread=True) with contextlib.suppress(): # no-op context manager functions[task_id]() def parse_flags_and_run(): # Parse flags for this module and the things it has already imported. # Pass whatever flags are left over to main() through a side channel, so that # app.run() doesn't try to parse them before we have set the scene. [program_name, *process_argv] = _parse_process_entry_flags(sys.argv) app.run(functools.partial(main, process_argv=[program_name, *process_argv]), argv=[program_name]) if __name__ == '__main__': parse_flags_and_run()
launchpad-master
launchpad/nodes/python/process_entry.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/nodes/multi_processing_colocation/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A node wrapper to colocate multiple PyNodes. See docstring of MultiProcessingColocation for usage. """ import atexit import collections from concurrent import futures import itertools import os import shutil import subprocess import tempfile from typing import Any from absl import flags from absl import logging import cloudpickle from launchpad import address as lp_address from launchpad.launch import serialization from launchpad.nodes.python import node as python HandleType = Any class _ResolvedAddressBuilder(lp_address.AbstractAddressBuilder): def __init__(self, resolved_address): self._resolved_address = resolved_address def build(self): return self._resolved_address class MultiProcessingColocation(python.PyNode): """A special node type for colocating multiple PyNodes as subprocesses. Please don't add inner nodes to the program, as they will become part of this colocation node. Example: actor_nodes = [] for _ in range(10): actor_nodes.append(lp.CourierNode(Actor, ...)) program.add_node(lp.MultiProcessingColocation(actor_nodes)) """ def __init__(self, nodes, num_retries_on_failure: int = 0): super().__init__(self.run) self._nodes = [] self._name_uniquifier = collections.defaultdict(itertools.count) self._num_retries_on_failure = num_retries_on_failure self._num_restarts = 0 for node in nodes: self.add_node(node) def add_node(self, node: python.PyNode) -> HandleType: if not isinstance(node, python.PyNode): raise ValueError('MultiProcessingColocation only works with PyNodes.') self._nodes.append(node) # Reference all the children addresses (not owned by this node, but only # referenced). for address in node.addresses: self.addresses.append(address) # Ensure unique address names (avoid name clash when creating named ports) address.name = address.name or 'lp' # Name might not be specified unique_id = str(next(self._name_uniquifier[address.name])) address.name = address.name + unique_id return node.create_handle() @property def nodes(self): return self._nodes def run(self): if not self._nodes: raise ValueError('MultiProcessingColocation requires at least one node.') for address in self.addresses: address._address_builder = _ResolvedAddressBuilder(address.resolve()) running_processes = [] with futures.ThreadPoolExecutor(max_workers=len(self._nodes)) as e: for node in self._nodes: running_processes.append(e.submit(self._run_subprocess, node.function)) done, _ = futures.wait( running_processes, return_when=futures.FIRST_EXCEPTION) for f in done: f.result() def _run_subprocess(self, function): _, data_file_path = tempfile.mkstemp() with open(data_file_path, 'wb') as f: serialization.enable_lru_cache_pickling_once() cloudpickle.dump([function], f) atexit.register(os.remove, data_file_path) subprocess_env = {} subprocess_env.update(os.environ) while True: temp_dir = tempfile.mkdtemp() subprocess_env['TMPDIR'] = temp_dir entry_script_path = os.path.join( os.path.dirname(__file__), 'process_entry.py') process = subprocess.Popen([ os.environ['_'], entry_script_path, '--', '--lp_task_id', '0', '--data_file', data_file_path, ], env=subprocess_env) exit_code = process.wait() shutil.rmtree(temp_dir) if exit_code == 0: return if self._num_restarts == self._num_retries_on_failure: raise RuntimeError('num_retries_on_failure (=%d) is reached.' % self._num_retries_on_failure) logging.info('Subprocess %d exited abnormally! Restarting.', process.pid) self._num_restarts += 1
launchpad-master
launchpad/nodes/multi_processing_colocation/node.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.nodes.multi_processing_colocation.node.""" import shutil import subprocess import tempfile from unittest import mock from absl.testing import absltest from launchpad.nodes.multi_processing_colocation import node as multi_processing_colocation from launchpad.nodes.python import node as python def _run_no_op(): pass class NodeTest(absltest.TestCase): @mock.patch.object(tempfile, 'mkdtemp') @mock.patch.object(subprocess, 'Popen') @mock.patch.object(shutil, 'rmtree') def test_one_subprocess(self, mock_rmtree, mock_popen, mock_mkdtemp): # Verify cleanups are done correctly mock_mkdtemp.return_value = 'temp_dir' mock_process = mock.Mock() mock_popen.return_value = mock_process mock_process.wait.return_value = 0 # return normally colocation = multi_processing_colocation.MultiProcessingColocation( [python.PyNode(_run_no_op)]) colocation.run() mock_mkdtemp.called_once_with() mock_popen.called_once() mock_rmtree.called_once_with('temp_dir') @mock.patch.object(tempfile, 'mkdtemp') @mock.patch.object(subprocess, 'Popen') @mock.patch.object(shutil, 'rmtree') def test_two_subprocesses(self, mock_rmtree, mock_popen, mock_mkdtemp): # Verify it works for more than one PyNode mock_mkdtemp.return_value = 'temp_dir' mock_process = mock.Mock() mock_popen.return_value = mock_process mock_process.wait.return_value = 0 # return normally colocation = multi_processing_colocation.MultiProcessingColocation( [python.PyNode(_run_no_op), python.PyNode(_run_no_op)]) colocation.run() self.assertEqual(mock_mkdtemp.call_count, 2) self.assertEqual(mock_popen.call_count, 2) self.assertEqual(mock_rmtree.call_count, 2) @mock.patch.object(tempfile, 'mkdtemp') @mock.patch.object(subprocess, 'Popen') @mock.patch.object(shutil, 'rmtree') def test_retry_on_failure(self, mock_rmtree, mock_popen, mock_mkdtemp): # Verify it retries after subprocess failure mock_mkdtemp.return_value = 'temp_dir' mock_process = mock.Mock() mock_popen.return_value = mock_process mock_process.pid = 42 def mock_wait(): # First time fail, then succeed if mock_popen.call_count == 1: return 1 return 0 mock_process.wait = mock_wait colocation = multi_processing_colocation.MultiProcessingColocation( [python.PyNode(_run_no_op)], num_retries_on_failure=1) colocation.run() self.assertEqual(mock_mkdtemp.call_count, 2) self.assertEqual(mock_popen.call_count, 2) self.assertEqual(mock_rmtree.call_count, 2) @mock.patch.object(tempfile, 'mkdtemp') @mock.patch.object(subprocess, 'Popen') @mock.patch.object(shutil, 'rmtree') def test_fail_without_retry(self, mock_rmtree, mock_popen, mock_mkdtemp): mock_mkdtemp.return_value = 'temp_dir' mock_process = mock.Mock() mock_popen.return_value = mock_process mock_process.wait.return_value = 1 # return abnormally colocation = multi_processing_colocation.MultiProcessingColocation( [python.PyNode(_run_no_op)], num_retries_on_failure=0) with self.assertRaisesRegexp( RuntimeError, r'num_retries_on_failure \(=0\) is reached.'): colocation.run() mock_mkdtemp.called_once_with() mock_popen.called_once() mock_rmtree.called_once_with('temp_dir') if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/nodes/multi_processing_colocation/node_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/nodes/reverb/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Reverb replay buffers.""" from typing import Any, Callable, Optional, Sequence from absl import logging from launchpad import address as lp_address from launchpad import context from launchpad.launch import worker_manager_migration from launchpad.nodes import base from launchpad.nodes.python import node as python import reverb PriorityTablesFactory = Callable[[], Sequence[reverb.Table]] CheckpointerFactory = Callable[[], reverb.checkpointers.CheckpointerBase] REVERB_PORT_NAME = 'reverb' class ReverbHandle(base.Handle): """Handle of the ReverbNode. When dereferenced a reverb-Client (see https://github.com/deepmind/reverb/client.py) is returned. This client should primarily be used for insert operations on the actors. For sampling and updates TFClient (see https://github.com/deepmind/reverb/tf_client.py) should be used. To construct a TFClient: ```python from reverb import tf_client as reverb_tf_client client = ... # reverb.Client tf_client = reverb_tf_client.TFClient(client.server_address) ``` The TF-client is not made directly available through LP as it would require a dependency on TF even when TF is not used (e.g many actors). """ def __init__(self, address: lp_address.Address): self._address = address def dereference(self): address = self._address.resolve() logging.info('Reverb client connecting to: %s', address) return reverb.Client(address) class ReverbNode(python.PyNode): """Represents a Reverb replay buffer in a Launchpad program.""" def __init__(self, priority_tables_fn: PriorityTablesFactory, checkpoint_ctor: Optional[CheckpointerFactory] = None, checkpoint_time_delta_minutes: Optional[int] = None): """Initialize a ReverbNode. Args: priority_tables_fn: A function that returns a sequence of tables to host on the server. checkpoint_ctor: Constructor for the checkpointer to be used. Passing None uses Reverb's default checkpointer. checkpoint_time_delta_minutes: Time between async (non-blocking) checkpointing calls. """ super().__init__(self.run) self._priority_tables_fn = priority_tables_fn self._checkpoint_ctor = checkpoint_ctor self._checkpoint_time_delta_minutes = checkpoint_time_delta_minutes self._address = lp_address.Address(REVERB_PORT_NAME) self.allocate_address(self._address) if (self._checkpoint_time_delta_minutes is not None and self._checkpoint_time_delta_minutes <= 0): raise ValueError( 'Replay checkpoint time delta must be positive when specified.') def create_handle(self): return self._track_handle(ReverbHandle(self._address)) def run(self): priority_tables = self._priority_tables_fn() if self._checkpoint_ctor is None: checkpointer = None else: checkpointer = self._checkpoint_ctor() self._server = reverb.Server( tables=priority_tables, port=lp_address.get_port_from_address(self._address.resolve()), checkpointer=checkpointer) if self._checkpoint_time_delta_minutes is not None: while not worker_manager_migration.wait_for_stop( self._checkpoint_time_delta_minutes * 60): self._server.localhost_client().checkpoint() else: worker_manager_migration.wait_for_stop() @staticmethod def to_executables(nodes: Sequence['ReverbNode'], label: str, launch_context: context.LaunchContext): return python.PyNode.to_executables(nodes, label, launch_context) @property def reverb_address(self) -> lp_address.Address: return self._address
launchpad-master
launchpad/nodes/reverb/node.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.nodes.reverb.node.""" import threading from unittest import mock from absl.testing import absltest from absl.testing import parameterized from launchpad import context from launchpad.launch.test_multi_threading import address_builder as test_address_builder from launchpad.nodes.reverb import node as reverb_node import numpy as np import reverb from reverb import rate_limiters _TABLE_NAME = 'dist' def priority_tables_fn(): return [ reverb.Table( name=_TABLE_NAME, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=100, rate_limiter=rate_limiters.MinSize(100)) ] class ReverbNodeTest(absltest.TestCase): def test_insert(self): node = reverb_node.ReverbNode(priority_tables_fn=priority_tables_fn) test_address_builder.bind_addresses([node]) threading.Thread(target=node.run).start() client = node.create_handle().dereference() client.insert([np.zeros((81, 81))], {_TABLE_NAME: 1}) node._server.stop() if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/nodes/reverb/node_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/nodes/multi_threading_colocation/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A special node type for colocating multiple PyNodes.""" import collections import itertools from typing import Any, Sequence from launchpad.launch import worker_manager_migration from launchpad.nodes.python import node as python HandleType = Any class MultiThreadingColocation(python.PyNode): """A special node type for colocating multiple PyNodes. Please don't add inner nodes to the program, as they will become part of this colocation node. Example: learner_node = lp.CacherNode(...) replay_node = lp.CourierNode(...) program.add_node(lp.MultiThreadingColocation([learner_node, replay_node])) In `__init__()`, `return_on_first_completed` defaults to False, meaning it will return from `run()` when 1) any of the colocated PyNodes throws an exception, or 2) all of them finish. This could be set to True so as to wait until any of the nodes finishes (or throws an exception). """ def __init__(self, nodes: Sequence[python.PyNode], return_on_first_completed=False): super().__init__(self.run) self._nodes = [] self._name_uniquifier = collections.defaultdict(itertools.count) self._return_on_first_completed = return_on_first_completed for node in nodes: self.add_node(node) def add_node(self, node: python.PyNode) -> HandleType: if not isinstance(node, python.PyNode): raise ValueError('MultiThreadingColocation only works with PyNodes.') self._nodes.append(node) # Reference all the children addresses (not owned by this node, but only # referenced). for address in node.addresses: self.addresses.append(address) # Ensure unique address names (avoid name clash when creating named ports) address.name = address.name or 'lp' # Name might not be specified unique_id = str(next(self._name_uniquifier[address.name])) address.name = address.name + unique_id return node.create_handle() @property def nodes(self): return self._nodes def run(self): if not self._nodes: raise ValueError('MultiThreadingColocation requires at least one node.') group_name = f'coloc_{id(self)}' manager = worker_manager_migration.get_worker_manager() for n in self._nodes: n._launch_context = self._launch_context manager.thread_worker(group_name, n.function) manager.wait( [group_name], return_on_first_completed=self._return_on_first_completed, raise_error=True, # Any error from the inner threads will surface. ) return manager
launchpad-master
launchpad/nodes/multi_threading_colocation/node.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.nodes.multi_threading_colocation.node.""" import threading from absl.testing import absltest import courier import launchpad as lp from launchpad.launch import worker_manager class NodeTest(absltest.TestCase): def test_ping(self): program = lp.Program('test') server_address = lp.Address() def run_client(): client = courier.Client(server_address.resolve()) client.ping() has_ping = threading.Event() def run_server(): server = courier.Server( port=lp.get_port_from_address(server_address.resolve())) server.Bind('ping', has_ping.set) server.Start() lp.wait_for_stop() server.Stop() client_node = lp.PyNode(run_client) server_node = lp.PyNode(run_server) server_node.allocate_address(server_address) program.add_node( lp.MultiThreadingColocation([client_node, server_node]), label='client_server') lp.launch( program, launch_type='test_mt', test_case=self, serialize_py_nodes=False) # Disable serialization due to `Lock` objects has_ping.wait() def test_preemption(self): program = lp.Program('test') ready_to_preempt = threading.Event() preemption_ok = threading.Event() def node(): ready_to_preempt.set() lp.wait_for_stop() preemption_ok.set() def stopper(): ready_to_preempt.wait() lp.stop() program.add_node( lp.MultiThreadingColocation([lp.PyNode(node), lp.PyNode(stopper)]), label='coloc') # Disable serialization due to `Lock` objects lp.launch(program, launch_type='test_mt', test_case=self, serialize_py_nodes=False) preemption_ok.wait() def test_exception_propagation(self): def raise_error(): raise RuntimeError('Foo') def wait_test_end(): lp.wait_for_stop() error_node = lp.PyNode(raise_error) waiter_node = lp.PyNode(wait_test_end) colo_node = lp.MultiThreadingColocation([error_node, waiter_node]) parent_manager = worker_manager.WorkerManager(register_in_thread=True) with self.assertRaisesRegex(RuntimeError, 'Foo'): manager = colo_node.run() self.addCleanup(manager.cleanup_after_test, self) # pytype: disable=attribute-error del parent_manager def test_first_completed(self): manager = worker_manager.WorkerManager(register_in_thread=True) self.addCleanup(manager.cleanup_after_test, self) quick_done = threading.Event() slow_done = threading.Event() slow_can_start = threading.Event() def quick(): quick_done.set() def slow(): slow_can_start.wait() slow_done.set() colo_node = lp.MultiThreadingColocation( [lp.PyNode(quick), lp.PyNode(slow)], return_on_first_completed=True) colo_node.run() # Returns immediately without waiting for the slow node. self.assertTrue(quick_done.is_set()) self.assertFalse(slow_done.is_set()) # Let the slow one finish. slow_can_start.set() slow_done.wait() def test_all_completed(self): manager = worker_manager.WorkerManager(register_in_thread=True) self.addCleanup(manager.cleanup_after_test, self) f1_done = threading.Event() f2_done = threading.Event() colo_node = lp.MultiThreadingColocation( [lp.PyNode(f1_done.set), lp.PyNode(f2_done.set)], return_on_first_completed=False) colo_node.run() # Returns after both f1 and f2 finish. self.assertTrue(f1_done.is_set()) self.assertTrue(f2_done.is_set()) def test_stop(self): def _sleep(): lp.wait_for_stop() def _stop(): lp.stop() program = lp.Program('stop') program.add_node( lp.MultiThreadingColocation([lp.PyNode(_sleep), lp.PyNode(_stop)]), label='node') waiter = lp.launch(program, launch_type='test_mt', test_case=self) waiter.wait() def test_nested_stop(self): def _sleep(): lp.wait_for_stop() def _stop(): lp.stop() program = lp.Program('stop') program.add_node( lp.MultiThreadingColocation([ lp.PyNode(_sleep), lp.MultiThreadingColocation([lp.PyNode(_sleep), lp.PyNode(_stop)]) ]), label='node') waiter = lp.launch(program, launch_type='test_mt', test_case=self) waiter.wait() if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/nodes/multi_threading_colocation/node_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define Launchpad version information.""" # We follow Semantic Versioning (https://semver.org/) _MAJOR_VERSION = '0' _MINOR_VERSION = '6' _PATCH_VERSION = '0' # When building releases, we can update this value on the release branch to # reflect the current release candidate ('rc0', 'rc1') or, finally, the official # stable release (indicated by `_REL_SUFFIX = ''`). Outside the context of a # release branch, the current version is by default assumed to be a # 'development' version, labeled 'dev'. _DEV_SUFFIX = 'dev' _REL_SUFFIX = 'rc0' # Example, '0.4.0rc0' __version__ = '.'.join([ _MAJOR_VERSION, _MINOR_VERSION, _PATCH_VERSION, ]) __dev_version__ = '{}.{}'.format(__version__, _DEV_SUFFIX) __rel_version__ = '{}{}'.format(__version__, _REL_SUFFIX) __tensorflow_version__ = 'tensorflow~=2.12.0' __reverb_version__ = 'dm-reverb==0.12.0' __nightly_tensorflow_version__ = 'tf-nightly' __nightly_reverb_version__ = 'dm-reverb-nightly'
launchpad-master
launchpad/pip_package/launchpad_version.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build and installs dm-launchpad.""" import argparse import codecs import datetime import fnmatch import os import sys from setuptools import setup from setuptools.command.install import install as InstallCommandBase from setuptools.dist import Distribution from version import launchpad_version class BinaryDistribution(Distribution): def has_ext_modules(self): return True def find_files(pattern, root): """Return all the files matching pattern below root dir.""" for dirpath, _, files in os.walk(root): for filename in fnmatch.filter(files, pattern): yield os.path.join(dirpath, filename) class InstallCommand(InstallCommandBase): """Override the dir where the headers go.""" def finalize_options(self): ret = super().finalize_options() # We need to set this manually because we are not using setuptools to # compile the shared libraries we are distributing. self.install_lib = self.install_platlib return ret class SetupToolsHelper(object): """Helper to execute `setuptools.setup()`.""" def __init__(self, release): """Initialize ReleaseBuilder class. Args: release: True to do a release build. False for a nightly build. """ self.release = release def _get_version(self): """Returns the version and project name to associate with the build.""" if self.release: project_name = 'dm-launchpad' version = launchpad_version.__rel_version__ else: project_name = 'dm-launchpad-nightly' version = launchpad_version.__dev_version__ version += datetime.datetime.now().strftime('%Y%m%d') return version, project_name def _get_required_packages(self): """Returns list of required packages.""" required_packages = [ 'absl-py', 'cloudpickle', 'dm-tree', 'grpcio', 'mock', 'portpicker', 'protobuf', 'psutil', 'termcolor', ] return required_packages def _get_tensorflow_packages(self): """Returns packages needed to install Tensorflow.""" if self.release: return [launchpad_version.__tensorflow_version__] else: return [launchpad_version.__nightly_tensorflow_version__] def _get_reverb_packages(self): """Returns packages needed to install Reverb.""" if self.release: return [launchpad_version.__reverb_version__] else: return [launchpad_version.__nightly_reverb_version__] def run_setup(self): # Builds the long description from the README. root_path = os.path.abspath(os.path.dirname(__file__)) with codecs.open( os.path.join(root_path, 'README.md'), encoding='utf-8') as f: long_description = f.read() version, project_name = self._get_version() setup( name=project_name, version=version, description=('Launchpad is a library that simplifies writing ' 'distributed programs and seamlessly launching them ' 'on a range of supported platforms.'), long_description=long_description, long_description_content_type='text/markdown', author='DeepMind', author_email='DeepMind <[email protected]>', url='https://github.com/deepmind/launchpad', license='Apache 2.0', packages=['courier', 'launchpad'], headers=list(find_files('*.proto', 'launchpad')), include_package_data=True, install_requires=self._get_required_packages(), extras_require={ 'tensorflow': self._get_tensorflow_packages(), 'reverb': self._get_reverb_packages(), 'xmanager': ['xmanager'], }, distclass=BinaryDistribution, cmdclass={ 'install': InstallCommand, }, python_requires='>=3', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], keywords='deepmind reinforcement learning machine distributed', ) if __name__ == '__main__': # Hide argparse help so `setuptools.setup` help prints. This pattern is an # improvement over using `sys.argv` and then `sys.argv.remove`, which also # did not provide help about custom arguments. parser = argparse.ArgumentParser(add_help=False) parser.add_argument( '--release', action='store_true', default=False, help='Pass as true to do a release build.') FLAGS, unparsed = parser.parse_known_args() # Go forward with only non-custom flags. sys.argv.clear() # Downstream `setuptools.setup` expects args to start at the second element. unparsed.insert(0, 'foo') sys.argv.extend(unparsed) setup_tools_helper = SetupToolsHelper(release=FLAGS.release) setup_tools_helper.run_setup()
launchpad-master
launchpad/pip_package/setup.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Ongoing refactoring for WorkerManager.""" import collections from concurrent import futures import dataclasses import functools import signal import subprocess import threading import time from typing import Any, Callable, Iterable, List, Mapping, MutableMapping, Optional, Sequence, Tuple from absl import logging from launchpad import flags as lp_flags import psutil import termcolor _WORKER_MANAGERS = threading.local() def _call_once(func): """Calls the function only once, regardless of arguments.""" @functools.wraps(func) def _wrapper(): # If we haven't been called yet, actually invoke func and save the result. if not _wrapper.has_run(): _wrapper.mark_as_run() _wrapper.return_value = func() return _wrapper.return_value _wrapper._has_run = False _wrapper.has_run = lambda: _wrapper._has_run _wrapper.mark_as_run = lambda: setattr(_wrapper, '_has_run', True) return _wrapper def _register_signal_handler(sig: signal.Signals, handler: Callable[[], None]): """Registers a signal handler.""" # We only call the handler once. handler = _call_once(handler) old_handler = signal.getsignal(sig) def _run_handler(sig=sig, frame=None, handler=handler, old_handler=old_handler): handler() if isinstance(old_handler, Callable): old_handler(sig, frame) signal.signal(sig, _run_handler) def wait_for_stop(timeout_secs: Optional[float] = None): """Blocks until termination of the node's program starts or timeout passes. Args: timeout_secs: Floating point number specifying a timeout for the operation, in seconds. If not provided, timeout is infinite. Returns: True if program is being terminated, False if timeout was reached. Usage examples: - Perform cleanup at the end of the run: start_server() lp.wait_for_stop() stop_server() checkpoint() - Perform some work until program is terminated: while not lp.wait_for_stop(0): # Return immediately. ... do some work ... - Perform some task every 5 seconds: while not lp.wait_for_stop(5.0): ... perform periodic task ... """ return get_worker_manager().wait_for_stop(timeout_secs) def get_worker_manager(): manager = getattr(_WORKER_MANAGERS, 'manager', None) if not manager: raise RuntimeError('Worker manager is only available from a PyNode thread.') return manager @dataclasses.dataclass class ThreadWorker: thread: threading.Thread future: futures.Future[Any] def _get_child_processes_with_depth(process: psutil.Process, depth: int) -> Iterable[psutil.Process]: """Returns child processes at the given depth.""" if depth == 0: return [process] if depth == 1: return process.children(recursive=False) children_at_depth = [] for child in process.children(recursive=False): children_at_depth.extend(_get_child_processes_with_depth(child, depth - 1)) return children_at_depth def _send_signal_to_processes_with_depth(processes: Iterable[psutil.Process], sig: signal.Signals, depth: int): for process in processes: for child in _get_child_processes_with_depth(process, depth): try: child.send_signal(sig) except psutil.NoSuchProcess: pass class WorkerManager: """Manages running threads and processes of a Launchpad Program.""" def __init__( self, termination_notice_secs: Optional[int] = None, kill_all_upon_sigint: bool = False, kill_workers_upon_sigint: bool = False, handle_sigterm: bool = False, register_in_thread: bool = False, process_tree_depth: int = 0, ): """Initializes a WorkerManager. Args: termination_notice_secs: 1) when >0, it's the countdown before a SIGKILL is issued upon a user-requested stop (relies on handle_user_stop=True). 2) when =0, SIGKILL happens immediately upon user-requested stop. kill_all_upon_sigint: When True, set the stop event and kill all worker subprocesses, as well as the main process upon SIGINT. This allows the user to stop the program with Ctrl+C. It should be set to True for local_mp and local_mt. kill_workers_upon_sigint: When True, similar to kill_all_upon_sigint, except that it doesn't kill the main process. This is needed in test_mp so as not to fail the test upon cleanup. handle_sigterm: When this is True, kill all workers upon SIGTERM, by 1) forwarding SIGTERM to process workers 2) setting stop event for thread workers. Set this to True in process_entry.py so that the stop event will be triggered in the subprocesses via SIGTERM. register_in_thread: Make the worker manager accessible through `get_worker_manager()` in the current thread (needed by `stop_event()` for example). It should be False if we don't need to access `get_worker_manager()` , e.g. at the launcher thread of local_mt and local_mp. It should be True for process_entry.py. process_tree_depth: the depth of Launchpad subprocesses in the process tree. For example, when the process is managed by GNOME, this value should be 2, so that in a tree of gnome-terminal -> bash -> interpreter """ if termination_notice_secs is None: termination_notice_secs = lp_flags.LP_TERMINATION_NOTICE_SECS.value if termination_notice_secs < 0: raise ValueError('termination_notice_secs must be >= 0.') self._termination_notice_secs = termination_notice_secs if kill_all_upon_sigint and kill_workers_upon_sigint: raise ValueError( 'Only one of kill_all_upon_sigint and kill_workers_upon_sigint can ' 'be True.') if kill_all_upon_sigint: _register_signal_handler(signal.SIGINT, functools.partial(self._handle_sigint, True)) elif kill_workers_upon_sigint: _register_signal_handler(signal.SIGINT, functools.partial(self._handle_sigint, False)) if handle_sigterm: _register_signal_handler( signal.SIGTERM, self._set_stop_event_and_terminate_process_workers) self._stop_event = threading.Event() self._thread_workers: MutableMapping[ str, List[ThreadWorker]] = collections.defaultdict(list) self._process_workers: MutableMapping[ str, List[psutil.Process]] = collections.defaultdict(list) self._mutex = threading.Lock() if register_in_thread: _WORKER_MANAGERS.manager = self self._process_tree_depth = process_tree_depth @property def stop_event(self): return self._stop_event def wait_for_stop(self, timeout_secs: Optional[float] = None): """Blocks until managed runtime is terminating or timeout is reached.""" return self._stop_event.wait(timeout_secs) def thread_worker(self, name: str, function: Callable[[], Any]): """Registers and starts a new thread worker. Args: name: Name of the worker group. function: Entrypoint function to execute in a worker. """ future = futures.Future() def run_inner(f=function, future=future, manager=self): _WORKER_MANAGERS.manager = manager try: future.set_result(f()) except BaseException as e: future.set_exception(e) builder = lambda t, n: threading.Thread(target=t, name=n) thread = builder(run_inner, name) thread.setDaemon(True) thread.start() with self._mutex: self._thread_workers[name].append(ThreadWorker(thread, future)) def register_existing_process(self, name: str, pid: int): """Registers already started worker process. Args: name: Name of the workers' group. pid: Pid of the process to monitor. """ with self._mutex: self._process_workers[name].append(psutil.Process(pid)) def process_worker(self, name, command, env: Optional[Mapping[str, Any]] = None, **kwargs): """Adds process worker to the runtime. Args: name: Name of the worker's group. command: Command to execute in the worker. env: Environment variables to set for the worker. **kwargs: Other parameters to be passed to `subprocess.Popen`. """ with self._mutex: process = subprocess.Popen(command, env=env or {}, **kwargs) self._process_workers[name].append(psutil.Process(process.pid)) def _has_active_workers(self): _, has_active_workers = self._update_and_get_recently_finished() return has_active_workers def _update_and_get_recently_finished( self) -> Tuple[List[futures.Future[Any]], bool]: """Update self._thread_workers and return a tuple representing the change. This will update self._thread_workers so that it only contains active workers. Returns: A tuple. The first element of the tuple are futures for recently finished workers, and the second is a bool indicating if there are still active workers. """ recently_finished = [] has_active_workers = False with self._mutex: active_threads = collections.defaultdict(list) for label in self._thread_workers: for worker in self._thread_workers[label]: if worker.thread.is_alive(): active_threads[label].append(worker) has_active_workers = True else: recently_finished.append(worker.future) self._thread_workers = active_threads active_processes = collections.defaultdict(list) for label, processes in self._process_workers.items(): for process in processes: if process.is_running() and process.status() != psutil.STATUS_ZOMBIE: has_active_workers = True active_processes[label].append(process) else: future = futures.Future() res = process.wait() if res and not self._stop_event.is_set(): # Here we make sure stop_event hasn't been set yet, before we # propagate the non-zero exit code. This is because when we # forcefully terminate the program (e.g., due to `lp.stop()`), # some subprocesses might have non-zero exit code. future.set_exception( RuntimeError(f'A "{label}" worker exited with code {res}.')) else: future.set_result(None) recently_finished.append(future) self._process_workers = active_processes return recently_finished, has_active_workers def check_for_thread_worker_exception(self): """Raises an error if there's an exception in one of the workers.""" recently_finished, _ = self._update_and_get_recently_finished() for future in recently_finished: future.result() def wait(self, labels_to_wait_for: Optional[Sequence[str]] = None): """Waits until all thread workers finish. Raises errors if any. Args: labels_to_wait_for: labels of the workers to wait for. If None, wait for all workers. """ has_active_worker = True while has_active_worker: try: has_active_worker = False # Will raise errors, if any. self.check_for_thread_worker_exception() with self._mutex: # check_for_thread_worker_exception() will update self._thread_workers # so that it only contains active workers. If there are still # non-empty lists, it means some workers have not finished yet. for label, workers in self._thread_workers.items(): if labels_to_wait_for and label not in labels_to_wait_for: continue if workers: has_active_worker = True break for label, processes in self._process_workers.items(): if labels_to_wait_for and label not in labels_to_wait_for: continue if processes: has_active_worker = True break time.sleep(0.1) except KeyboardInterrupt: pass def _set_stop_event_and_terminate_process_workers( self, sig: signal.Signals = signal.SIGTERM): self._stop_event.set() for _, processes in self._process_workers.items(): _send_signal_to_processes_with_depth(processes, sig, self._process_tree_depth) def _handle_sigint(self, kill_main_process: bool): """Handles SIGINT. This does the following: 1. Set the stop event. Nodes can listen to the stop event and perform cleanup actions. 2. Wait for termination_notice_secs (specified from __init__()`), since the workers might need some time for cleanup. 3. SIGKILL the remaining workers. if kill_main_process=True, also kill the main process. This should be set True for local_mp, but not for test_mp as it will fail the test case. Args: kill_main_process: whether or not to kill the main process after killing all the subprocesses. """ print( termcolor.colored('User-requested termination. Asking workers to stop.', 'blue')) # Notify all the thread workers. self._stop_event.set() # Notify all the process workers. for _, processes in self._process_workers.items(): _send_signal_to_processes_with_depth(processes, signal.SIGTERM, self._process_tree_depth) def _force_stop(kill_main_process=kill_main_process): # Since we are forcefully stopping the system, we send signals to all # levels of the process trees. This makes sure to kill # tmux/gnome-terminal/etc, processes that create the Launchpad # subprocesses. for _, processes in self._process_workers.items(): for process in processes: for child in process.children(recursive=True): child.send_signal(signal.SIGKILL) process.send_signal(signal.SIGKILL) if kill_main_process: signal.raise_signal(signal.SIGKILL) if self._termination_notice_secs > 0: print(termcolor.colored('Press CTRL+C to terminate immediately.', 'blue')) _register_signal_handler(signal.SIGINT, _force_stop) pending_secs = self._termination_notice_secs while self._has_active_workers() and pending_secs: print( termcolor.colored( f'Waiting for workers to stop for {pending_secs}s.', 'blue'), end='\r') time.sleep(1) pending_secs -= 1 if self._has_active_workers(): print(termcolor.colored('\nKilling entire runtime.', 'blue')) _force_stop()
launchpad-master
launchpad/launch/worker_manager_v2.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/launch/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.launch.signal_handling.""" import os import signal from absl.testing import absltest from launchpad.launch import signal_handling import mock from six.moves import range class SignalHandlingTest(absltest.TestCase): @mock.patch('sys.exit') def test_can_intercept_sigint(self, exit_mock): signal_handling.exit_gracefully_on_sigint() os.kill(os.getpid(), signal.SIGINT) exit_mock.assert_called_once_with(0) @mock.patch('sys.exit') def test_can_intercept_sigquit(self, exit_mock): signal_handling.exit_gracefully_on_sigquit() os.kill(os.getpid(), signal.SIGQUIT) exit_mock.assert_called_once_with(0) @mock.patch('sys.exit') def test_ignore_multiple_sigints(self, exit_mock): signal_handling.exit_gracefully_on_sigint() for _ in range(100): os.kill(os.getpid(), signal.SIGINT) exit_mock.assert_called_once_with(0) if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/launch/signal_handling_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WorkerManager handles thread and process-based runtimes.""" import atexit import collections from concurrent import futures import os import signal import subprocess import sys import threading import time import traceback from typing import Optional, Sequence, Text from absl import flags from absl import logging from absl.testing import absltest from launchpad import flags as lp_flags import psutil import termcolor FLAGS = flags.FLAGS ThreadWorker = collections.namedtuple('ThreadWorker', ['thread', 'future']) _WORKER_MANAGERS = threading.local() _HAS_MAIN_MANAGER = False _SIGNAL_HANDLERS = None def _log_and_print_with_color(severity: int, message: str, *args) -> None: logging.log(severity, message, *args) if severity >= logging.ERROR: color = 'red' else: color = 'blue' print(termcolor.colored(message % args, color)) def get_worker_manager(): manager = getattr(_WORKER_MANAGERS, 'manager', None) if not manager: raise RuntimeError('Worker manager is only available from the Launchpad''s ' 'program node thread.') return manager def _signal_dispatcher(sig, frame=None): """Dispatches a given signal to all registered handlers.""" if sig != signal.SIGALRM and sig != signal.SIGUSR1: # Notify user-registered stop handler(s) before other once. _signal_dispatcher(signal.SIGUSR1, frame) dispatchers = _SIGNAL_HANDLERS[sig].copy() if sig != signal.SIGALRM: _SIGNAL_HANDLERS[sig].clear() for dispatcher in dispatchers: try: try: dispatcher(sig, frame) except TypeError: dispatcher() # pytype: disable=wrong-arg-count except KeyboardInterrupt: pass def _register_signal_dispatcher(sig): """Registers signal dispatcher for a given signal type.""" assert sig not in _SIGNAL_HANDLERS _SIGNAL_HANDLERS[sig] = set() try: old_signal = signal.signal(sig, _signal_dispatcher) except ValueError: logging.warning( 'Launchpad cannot register its signal handler. This is likely because ' 'you are not running lp.launch() from the main thread. Launchpad will ' 'NOT attempt to handle signal %s.', sig) if callable(old_signal): _SIGNAL_HANDLERS[sig].add(old_signal) def _register_signal_handler(sig, handler): """Registers a signal handler.""" global _SIGNAL_HANDLERS if _SIGNAL_HANDLERS is None: _SIGNAL_HANDLERS = dict() _register_signal_dispatcher(signal.SIGTERM) _register_signal_dispatcher(signal.SIGQUIT) _register_signal_dispatcher(signal.SIGINT) _register_signal_dispatcher(signal.SIGALRM) _SIGNAL_HANDLERS[signal.SIGUSR1] = set() assert sig in _SIGNAL_HANDLERS _SIGNAL_HANDLERS[sig].add(handler) def _remove_signal_handler(sig, handler): """Unregisters a signal handler.""" if not _SIGNAL_HANDLERS: return try: _SIGNAL_HANDLERS[sig].remove(handler) except KeyError: pass def register_stop_handler(handler): """Registers a stop handler, which is called upon program termination. Stop handler can also be registered outside of the program's execution scope. It is guaranted that handler will be called at most once. Args: handler: Handler to be called. """ _register_signal_handler(signal.SIGUSR1, handler) def unregister_stop_handler(handler): """Unregisters a stop handler previously registered with register_stop_handler.""" _remove_signal_handler(signal.SIGUSR1, handler) def wait_for_stop(timeout_secs: Optional[float] = None): """Blocks until termination of the node's program starts or timeout passes. Args: timeout_secs: Floating point number specifying a timeout for the operation, in seconds. If not provided, timeout is infinite. Returns: True if program is being terminated, False if timeout was reached. Usage examples: - Perform cleanup at the end of the run: start_server() lp.wait_for_stop() stop_server() checkpoint() - Perform some work until program is terminated: while not lp.wait_for_stop(0): # Return immediately. ... do some work ... - Perform some task every 5 seconds: while not lp.wait_for_stop(5.0): ... perform periodic task ... """ return get_worker_manager().wait_for_stop(timeout_secs) def stop_event() -> threading.Event: """Returns a threading.Event used to wait for termination signal on a Program. Usage examples: - Perform cleanup at the end of the run: start_server() lp.stop_event().wait() stop_server() checkpoint() """ return get_worker_manager().stop_event() class WorkerManager: """Encapsulates running threads and processes of a Launchpad Program.""" def __init__( self, kill_main_thread=True, register_in_thread=False, ): """Initializes a WorkerManager. Args: kill_main_thread: When True (the default), it will kill the current process (program launcher or the node) after killing all th subprocesses, to guarantee complete cleanup of the program. Setting it to False disables this behavior, which can be useful in test_mp, where killing the main process causes a test to fail. register_in_thread: Make the worker manager accessible through `get_worker_manager()` in the current thread (needed by `stop_event()` for example). It should be False if we don't need to access `get_worker_manager()` , e.g. at the launcher thread of local_mt and local_mp. """ self._mutex = threading.Lock() self._termination_notice_secs = -1 handle_user_stop = True global _HAS_MAIN_MANAGER if not _HAS_MAIN_MANAGER: # This logic resolves the potential conflict between two WorkerManagers # in the same process. In particular, only the first one will execute the # "countdown-and-sigkill" logic upon Ctrl+C. self._termination_notice_secs = FLAGS.lp_termination_notice_secs _HAS_MAIN_MANAGER = True self._active_workers = collections.defaultdict(list) self._workers_count = collections.defaultdict(lambda: 0) self._first_failure = None self._stop_counter = 0 self._kill_main_thread = kill_main_thread self._stop_event = threading.Event() self._main_thread = threading.current_thread().ident _register_signal_handler(signal.SIGTERM, self._sigterm) _register_signal_handler(signal.SIGQUIT, self._sigquit) if handle_user_stop: _register_signal_handler(signal.SIGINT, self._stop_by_user) if register_in_thread: _WORKER_MANAGERS.manager = self def _disable_signals(self): self._disable_alarm() _remove_signal_handler(signal.SIGTERM, self._sigterm) _remove_signal_handler(signal.SIGQUIT, self._sigquit) _remove_signal_handler(signal.SIGINT, self._stop_by_user) def _sigterm(self): """Handles SIGTERM by stopping the workers.""" self._stop() def _sigquit(self): self._kill() def wait_for_stop(self, timeout_secs: Optional[float] = None): """Blocks until managed runtime is terminating or timeout is reached.""" return self._stop_event.wait(timeout_secs) def stop_event(self): """Returns an event used to wait for termination signal on a Program.""" return self._stop_event def thread_worker(self, name, function): """Registers and starts a new thread worker. Args: name: Name of the worker group. function: Entrypoint function to execute in a worker. """ with self._mutex: future = futures.Future() def run_inner(f=function, future=future, manager=self): _WORKER_MANAGERS.manager = manager try: future.set_result(f()) except BaseException as e: future.set_exception(e) builder = lambda t, n: threading.Thread(target=t, name=n) thread = builder(run_inner, name) thread.setDaemon(True) thread.start() self._workers_count[name] += 1 worker = ThreadWorker(thread=thread, future=future) self._active_workers[name].append(worker) def process_worker(self, name, command, env=None, **kwargs): """Adds process worker to the runtime. Args: name: Name of the worker's group. command: Command to execute in the worker. env: Environment variables to set for the worker. **kwargs: Other parameters to be passed to `subprocess.Popen`. """ with self._mutex: process = subprocess.Popen(command, env=env or {}, **kwargs) self._workers_count[name] += 1 self._active_workers[name].append(process) def register_existing_process(self, name: str, pid: int): """Registers already started worker process. Args: name: Name of the workers' group. pid: Pid of the process to monitor. """ with self._mutex: self._workers_count[name] += 1 self._active_workers[name].append(psutil.Process(pid)) def _stop_by_user(self): """Handles stopping of the runtime by a user.""" _log_and_print_with_color( logging.WARNING, 'User-requested termination. Asking workers to stop.') if self._termination_notice_secs > 0: _log_and_print_with_color(logging.INFO, 'Press CTRL+C to terminate immediately.') if self._termination_notice_secs >= 0: signal.signal(signal.SIGINT, lambda sig, frame: self._kill()) self._stop() def _kill_process_tree(self, pid): """Kills all child processes of the current process.""" parent = psutil.Process(pid) processes = [parent] for process in parent.children(recursive=True): processes.append(process) for process in processes: try: process.send_signal(signal.SIGKILL) except psutil.NoSuchProcess: pass def _kill(self): """Kills all workers (and main thread/process if needed).""" _log_and_print_with_color(logging.ERROR, 'Killing entire runtime.') kill_self = self._kill_main_thread for workers in self._active_workers.values(): for worker in workers: if isinstance(worker, ThreadWorker): # Not possible to kill a thread without killing the process. kill_self = True else: self._kill_process_tree(worker.pid) if kill_self: self._kill_process_tree(os.getpid()) def _stop_or_kill(self): """Stops all workers; kills them if they don't stop on time.""" pending_secs = self._termination_notice_secs - self._stop_counter if pending_secs == 0: if self._termination_notice_secs > 0: still_running = [ label for label in self._active_workers if self._active_workers[label] ] _log_and_print_with_color( logging.ERROR, 'Worker groups that did not terminate in time: %s', still_running) self._kill() return if pending_secs >= 0: _log_and_print_with_color(logging.INFO, 'Waiting for workers to stop for %ds.', pending_secs) self._stop_counter += 1 # Notify ThreadWorkers which registered for notifications. _signal_dispatcher(signal.SIGUSR1) for workers in self._active_workers.values(): for worker in workers: if isinstance(worker, ThreadWorker): # Thread workers should use wait_for_stop or register_stop_handler. pass elif isinstance(worker, subprocess.Popen): try: worker.send_signal(signal.SIGTERM) except psutil.NoSuchProcess: pass else: # Notify all workers running under a proxy process. children = worker.children(recursive=True) worker_found = False for process in children: try: process_name = process.name() if process_name != 'bash' and 'envelope_' not in process_name: worker_found = True process.send_signal(signal.SIGTERM) except psutil.NoSuchProcess: pass if not worker_found: # No more workers running, so we can kill the proxy itself. try: worker.send_signal(signal.SIGKILL) except psutil.NoSuchProcess: pass if pending_secs >= 0: signal.alarm(1) def _stop(self): """Requests all workers to stop and schedule delayed termination.""" self._stop_event.set() try: if self._termination_notice_secs > 0: _register_signal_handler(signal.SIGALRM, self._stop_or_kill) except ValueError: # This happens when we attempt to register a signal handler but not in the # main thread. Send a SIGTERM to redirect to the main thread. psutil.Process(os.getpid()).send_signal(signal.SIGTERM) return self._stop_or_kill() def _disable_alarm(self): _remove_signal_handler(signal.SIGALRM, self._stop_or_kill) signal.alarm(0) def stop_and_wait(self): """Requests stopping all workers and wait for termination.""" with self._mutex: self._stop() self.wait(raise_error=False) def join(self): self.wait() def wait(self, labels_to_wait_for: Optional[Sequence[Text]] = None, raise_error=True, return_on_first_completed=False): """Waits for workers to finish. Also stops the program upon worker failures. Args: labels_to_wait_for: If supplied, only wait for these groups' workers to finish. Wait for all workers otherwise. raise_error: Raise an exception upon any worker failure. return_on_first_completed: Whether to return upon the first completed (or failed) worker. Raises: RuntimeError: if any worker raises an exception. """ active_workers = True while active_workers: with self._mutex: self._check_workers() active_workers = False if self._first_failure and raise_error: failure = self._first_failure self._first_failure = None raise failure for label in labels_to_wait_for or self._active_workers.keys(): if self._active_workers[label]: active_workers = True if (return_on_first_completed and len(self._active_workers[label]) < self._workers_count[label]): return time.sleep(0.1) def cleanup_after_test(self, test_case: absltest.TestCase): """Cleanups runtime after a test.""" del test_case with self._mutex: self._check_workers() self._stop() self._disable_signals() self.wait(raise_error=False) with self._mutex: if self._first_failure: raise self._first_failure def check_for_thread_worker_exception(self): with self._mutex: for label in self._active_workers: for worker in self._active_workers[label]: if not worker.thread.is_alive(): worker.thread.join() # This will raise the exception, if any. worker.future.result() def _check_workers(self): """Checks status of running workers, terminate runtime in case of errors. This REQUIRES holding self._mutex. """ has_workers = False for label in self._active_workers: still_active = [] for worker in self._active_workers[label]: active = True if isinstance(worker, ThreadWorker): if not worker.thread.is_alive(): worker.thread.join() if not self._stop_counter: try: worker.future.result() except BaseException as e: if not self._first_failure and not self._stop_counter: self._first_failure = e _log_and_print_with_color(logging.ERROR, 'Node %s crashed: %s', worker, traceback.format_exc()) active = False elif isinstance(worker, subprocess.Popen): try: res = worker.wait(0) active = False if res and not self._first_failure and not self._stop_counter: self._first_failure = RuntimeError( f'One of the workers exited with code {res}.') except subprocess.TimeoutExpired: pass else: try: # We can't obtain return code of external process, so clean # termination is assumed. res = worker.wait(0) active = False except psutil.TimeoutExpired: pass if active: has_workers = True still_active.append(worker) self._active_workers[label] = still_active if has_workers and self._first_failure and not self._stop_counter: self._stop() elif not has_workers: self._disable_alarm() def __del__(self): try: if sys.is_finalizing(): return except AttributeError: # AttributeError can be thrown when `sys` was already destroyed upon # finalization. return self._disable_signals()
launchpad-master
launchpad/launch/worker_manager.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launch program in different ways based on FLAGS.lp_launch_type.""" import sys import typing from typing import Any, Dict, Mapping, Optional, Sequence, Tuple, Union, cast from absl import flags from absl import logging from absl.testing import absltest from launchpad import context from launchpad import flags as lp_flags from launchpad import program as lp_program from launchpad.launch.local_multi_processing import launch as launch_local_multiprocessed from launchpad.launch.local_multi_threading import launch as launch_local_multithreaded from launchpad.launch.test_multi_processing import launch as launch_test_multiprocessed from launchpad.launch.test_multi_threading import launch as launch_test_multithreaded FLAGS = flags.FLAGS def launch( programs: Union[lp_program.Program, Sequence[lp_program.Program], ], launch_type: Optional[Union[context.LaunchType, str]] = None, xm_resources: Optional[Union[Dict[str, Any], Sequence[Dict[str, Any]]]] = None, local_resources: Optional[Dict[str, Any]] = None, test_case: Optional[absltest.TestCase] = None, terminal: Optional[str] = None, *, serialize_py_nodes: Optional[bool] = None, controller_xm_requirements: Optional[Mapping[str, Any]] = None, ) -> Any: """Launches a Launchpad program. Args: programs: One or more programs to launch, or a Controller instance to launch launch_type: Type of launch. If this is None it will read from FLAGS.lp_launch_type. See the definition of context.LaunchType for the valid choices. The benefit of setting it to None is you can control the launch type from command line (by just passing --lp_launch_type=...). # local_resources: (for local/test multiprocessing launch) A dictionary to specify per-node launch configuration. test_case: (for test multiprocessing launch) test case in which the program is launched. terminal: (for local multiprocessing launch) Terminal to use to run the commands. Valid choices are gnome-terminal, gnome-terminal-tabs, xterm, tmux_session, current_terminal, and output_to_files. serialize_py_nodes: If `True`, `local_mt` & `test_mt` will fail if the nodes are not serializable. This can be useful to debug xmanager experiments in tests or locally. If `False`, the nodes won't be serialized. If `None` (the default), it will default to the implementation default value ( Returns: Anything returns from the specific launcher. """ # Make sure that flags are parsed before launching the program. Not all users # parse the flags. if not FLAGS.is_parsed(): FLAGS(sys.argv, known_only=True) launch_type = launch_type or lp_flags.LAUNCH_TYPE.value if isinstance(launch_type, str): launch_type = context.LaunchType(launch_type) if not isinstance(programs, Sequence): programs = cast(Sequence[lp_program.Program], [programs]) if len(programs) > 1: writer = print writer( 'Multiple programs are provided but launch type is {}. Launching only ' 'the first program...'.format(launch_type)) program = programs[0] if launch_type is context.LaunchType.LOCAL_MULTI_THREADING: return launch_local_multithreaded.launch( program, serialize_py_nodes=serialize_py_nodes) elif launch_type is context.LaunchType.LOCAL_MULTI_PROCESSING: return launch_local_multiprocessed.launch(program, local_resources, terminal) elif launch_type is context.LaunchType.VERTEX_AI: from launchpad.launch.xm_docker import launch as launch_xm_docker return launch_xm_docker.launch(program, context.LaunchType.VERTEX_AI, xm_resources) elif launch_type is context.LaunchType.TEST_MULTI_THREADING: return launch_test_multithreaded.launch( program, test_case=test_case, serialize_py_nodes=serialize_py_nodes) elif launch_type is context.LaunchType.TEST_MULTI_PROCESSING: assert test_case is not None return launch_test_multiprocessed.launch( program, test_case=test_case, local_resources=local_resources) else: logging.fatal('Unknown launch type: %s', launch_type)
launchpad-master
launchpad/launch/launch.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to redirect calls to both versions of WorkerManager.""" from typing import Optional, Union from launchpad import flags as lp_flags from launchpad.launch import worker_manager from launchpad.launch import worker_manager_v2 def wait_for_stop(timeout_secs: Optional[float] = None) -> bool: if lp_flags.LP_WORKER_MANAGER_V2.value: return worker_manager_v2.wait_for_stop(timeout_secs) else: return worker_manager.wait_for_stop(timeout_secs) def get_worker_manager( ) -> Union[worker_manager.WorkerManager, worker_manager_v2.WorkerManager]: if lp_flags.LP_WORKER_MANAGER_V2.value: return worker_manager_v2.get_worker_manager() else: return worker_manager.get_worker_manager() def register_stop_handler(handler): if lp_flags.LP_WORKER_MANAGER_V2.value: worker_manager_v2.get_worker_manager().register_stop_handler(handler) else: return worker_manager.register_stop_handler(handler) def unregister_stop_handler(handler): if lp_flags.LP_WORKER_MANAGER_V2.value: worker_manager_v2.get_worker_manager().unregister_stop_handler(handler) else: return worker_manager.unregister_stop_handler(handler) def stop_event(): if lp_flags.LP_WORKER_MANAGER_V2.value: return worker_manager_v2.get_worker_manager().stop_event else: return worker_manager.get_worker_manager().stop_event()
launchpad-master
launchpad/launch/worker_manager_migration.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Signal handling utilities for use when running LaunchPad interactively.""" import atexit import signal import sys from typing import Callable tty_write = print def _exit_gracefully(signum, unused_frame): if signum == signal.SIGINT: # Ignore subsequent SIGINTs in order to prevent the exit handlers from being # interrupted during cleanup if CTRL+C is pressed multiple times. signal.signal(signal.SIGINT, signal.SIG_IGN) tty_write('Control-C pressed. Exiting ...\n') elif signum == signal.SIGQUIT: tty_write('SIGQUIT received. Exiting ...\n') sys.exit(0) def exit_gracefully_on_sigint(): signal.signal(signal.SIGINT, _exit_gracefully) def exit_gracefully_on_sigquit(): signal.signal(signal.SIGQUIT, _exit_gracefully) def register_exit_handler(handler: Callable[..., None], *args, **kargs): """Register an exit handler.""" return atexit.register(handler, *args, **kargs) def register_exit_handler_and_exit_gracefully_on_sigint(handler: Callable[..., None], *args, **kargs): """Register an exit handler and gracefully handle SIGINT.""" exit_handler = register_exit_handler(handler, *args, **kargs) exit_gracefully_on_sigint() return exit_handler
launchpad-master
launchpad/launch/signal_handling.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests & test utils for serialization.py.""" import functools import threading from absl.testing import absltest import cloudpickle from launchpad import program as lp_program from launchpad.launch import serialization from launchpad.nodes.python import node as python class NotSeriazableNode(python.PyNode): def __init__(self): self._event = threading.Event() # Not serializable def __call__(self): return @absltest.skip('base class') class ErrorOnSerializationMixin(absltest.TestCase): """A mixin class to be used in tests for launch code using `serialization`.""" @property def _launch(self): raise NotImplementedError('Any child class should override _get_launch.') def _get_program(self): program = lp_program.Program('quick_stop') program.add_node(python.PyNode(NotSeriazableNode()), label='my_node') return program def test_raises_error_on_serialize_py_nodes(self): program = self._get_program() with self.assertRaisesRegex( RuntimeError, "The nodes associated to the label 'my_node'" ): self._launch(program, test_case=self, serialize_py_nodes=True).wait() def test_serialize_py_nodes_is_false(self): program = self._get_program() self._launch(program, test_case=self, serialize_py_nodes=False).wait() class SerializationTest(absltest.TestCase): def test_quick_stop(self): nodes = [python.PyNode(NotSeriazableNode())] with self.assertRaisesRegex(RuntimeError, 'The nodes associated to'): serialization.check_nodes_are_serializable('my_node', nodes) def test_lru_cache(self): serialization.enable_lru_cache_pickling_once() call_count = [0] @functools.lru_cache(maxsize=1) def increase_call_count(): call_count[0] += 1 return call_count[0] f0, f1 = cloudpickle.loads(cloudpickle.dumps([increase_call_count] * 2)) f0() f1() self.assertEqual(f0(), 1) self.assertEqual(f1(), 1) if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/launch/serialization_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A utility to serialize nodes and raise an error if they are not serializable. For the launch configurations that use this feature, one can test them using: ``` from launchpad.launch import serialization_test class SerializationTest(serialization_test.ErrorOnSerializationMixin): @property def _launch(self): return launch.launch ``` """ import copyreg import functools from absl import flags import cloudpickle from launchpad import flags as lp_flags FLAGS = flags.FLAGS @functools.lru_cache(maxsize=1) def enable_lru_cache_pickling_once(): """Enables pickling for functools.lru_cache.""" lru_cache_type = type(functools.lru_cache()(lambda: None)) def new_lru_cache(func, cache_kwargs): return functools.lru_cache(**cache_kwargs)(func) def _pickle_lru_cache(obj): params = {} if hasattr(obj, "cache_parameters"): params = obj.cache_parameters() return new_lru_cache, (obj.__wrapped__, params) copyreg.pickle(lru_cache_type, _pickle_lru_cache) def _cloudpickle_dump_with_user_friendly_error(functions, description: str, file=None): """Serializes functions, and throws user-friendly error upon failure.""" try: if file: return cloudpickle.dump(functions, file) else: return cloudpickle.dumps(functions) except Exception as e: # When using `pdb`, we want to be able to go up the stack that goes into # the serialization error, not through the call-stack up to functions like # `check_nodes_are_serializable`. Thus, we need to propagate the traceback. raise RuntimeError( str(e.__class__.__name__) + ": " + str(e) + "\n" f"The nodes associated to {description} were " "not serializable using cloudpickle. Make them picklable, or pass " "`serialize_py_nodes=False` to `lp.launch` if you want to disable this " "check, for example when you want to use FLAGS, mocks, threading.Event " "etc, in your node definition." ).with_traceback(e.__traceback__) from e def check_nodes_are_serializable(label, nodes): """Raises an exception if some `PyNode` objects are not serializable.""" enable_lru_cache_pickling_once() # We only try to serialize `PyNode` objects (as they are the only nodes for # which the default implementation of `to_executables` will do serialization # of `node.function`). functions = [node.function for node in nodes if hasattr(node, "function")] _cloudpickle_dump_with_user_friendly_error(functions, f"{label} ({type(nodes[0])}") def serialize_functions(data_file_path: str, description: str, functions): """Serializes into a file at path `data_file_path` for PyNode functions. Args: data_file_path: The path of the (local) file to write to. description: Describes the functions, e,g., the label of the group they belongs to. This is propagated to enrich the error message. functions: PyNode functions as a list or list-like object. """ enable_lru_cache_pickling_once() with open(data_file_path, "wb") as f: _cloudpickle_dump_with_user_friendly_error(functions, description, f)
launchpad-master
launchpad/launch/serialization.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.launch.worker_manager.""" import os import signal import threading import time from absl.testing import absltest from launchpad.launch import worker_manager import mock class WorkerManagerTest(absltest.TestCase): def setUp(self): super().setUp() worker_manager._HAS_MAIN_MANAGER = False self._sigterm_patcher = mock.patch.object( signal, 'SIGTERM', new=signal.SIGUSR1) self._sigterm_patcher.start() self._sigint_patcher = mock.patch.object( signal, 'SIGINT', new=signal.SIGUSR2) self._sigint_patcher.start() self._manager = worker_manager.WorkerManager() self.addCleanup(self._manager.cleanup_after_test, self) def tearDown(self): self._sigterm_patcher.stop() self._sigint_patcher.stop() super().tearDown() def test_wait_for_stop(self): def waiter(): self.assertTrue(self._manager.wait_for_stop()) self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) self.assertTrue(self._manager.wait_for_stop()) def test_stop_event(self): def waiter(): self.assertTrue(self._manager.stop_event().wait()) self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) self.assertTrue(self._manager.wait_for_stop()) def test_wait_for_stop_timeout(self): checks_done = threading.Event() def waiter(): self.assertFalse(self._manager.wait_for_stop(0)) self.assertFalse(self._manager.wait_for_stop(0.1)) checks_done.set() self.assertTrue(self._manager.wait_for_stop(10)) self._manager.thread_worker('worker', waiter) self.assertTrue(checks_done.wait()) os.kill(os.getpid(), signal.SIGTERM) self.assertTrue(self._manager.wait_for_stop()) def test_slow_termination(self): def waiter(): self.assertTrue(self._manager.wait_for_stop()) time.sleep(1) self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) self.assertTrue(self._manager.wait_for_stop()) def test_system_exit(self): def waiter(): self.assertTrue(self._manager.wait_for_stop(100.0)) self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) self.assertTrue(self._manager.wait_for_stop()) def test_stop_and_wait(self): def waiter(): self.assertTrue(self._manager.wait_for_stop()) self._manager.thread_worker('worker1', waiter) self._manager.thread_worker('worker2', waiter) self._manager.thread_worker('worker3', waiter) self._manager.stop_and_wait() def test_failure_wait(self): def waiter(): self.assertTrue(self._manager.wait_for_stop()) def failure(): raise Exception('Error') self._manager.thread_worker('waiter', waiter) self._manager.thread_worker('failure', failure) with self.assertRaisesRegexp( Exception, 'Error'): self._manager.wait(['waiter']) self._manager.wait() def test_return_on_first_completed(self): def waiter(): self.assertTrue(self._manager.wait_for_stop()) def worker(): pass self._manager.thread_worker('waiter', waiter) self._manager.thread_worker('worker', worker) self._manager.wait(return_on_first_completed=True) def test_dont_raise_error(self): def failure(): raise Exception('Error') self._manager.thread_worker('failure', failure) self._manager.wait(raise_error=False) with self.assertRaisesRegexp( Exception, 'Error'): self._manager.wait() def test_process_worker_stop(self): self._manager.process_worker('sleep', ['sleep', '3600']) self._manager.stop_and_wait() def test_process_worker_failure(self): self._manager.process_worker('failure', ['cat', 'missing_file']) with self.assertRaisesRegexp( RuntimeError, 'One of the workers exited'): self._manager.wait() def test_two_worker_managers(self): another_manager = worker_manager.WorkerManager() self.assertGreater(self._manager._termination_notice_secs, 0) # The other WM won't duplicate the "countdown-and-sigkill" logic. self.assertEqual(another_manager._termination_notice_secs, -1) self.assertIn(self._manager._stop_by_user, worker_manager._SIGNAL_HANDLERS[signal.SIGINT]) # The other WM will still be able to handle signal correctly. self.assertIn(another_manager._stop_by_user, worker_manager._SIGNAL_HANDLERS[signal.SIGINT]) if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/launch/worker_manager_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/launch/xm_docker/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launches a Launchpad program using local docker containers via XManager.""" import collections import hashlib from typing import Any, Dict, Optional from absl import logging from google.auth import exceptions as google_auth_exceptions from launchpad import context from launchpad import program as lp_program from launchpad.launch import signal_handling import termcolor from xmanager import xm from xmanager import xm_local def launch(program: lp_program.Program, launch_type: context.LaunchType, xm_resources: Optional[Dict[str, Any]] = None): """Launches a program using local docker containers via XManager.""" # Set up the launch context (launch type & launch config) for all nodes xm_resources = xm_resources or {} for label, nodes in program.groups.items(): for node in nodes: if label in xm_resources: launch_config = xm_resources[label] else: # If launch config not specified, try to use a default. launch_config = node.default_launch_config(launch_type) xm_resources[label] = launch_config node._initialize_context( launch_type, launch_config=launch_config) # Notify the input handles for label, nodes in program.groups.items(): for node in nodes: for handle in node.input_handles: handle.connect(node, label) # Vertex AI supports only 4 worker pools, so we group nodes with the same # requirements. nodes_by_container = collections.defaultdict(list) for label, nodes in program.groups.items(): launch_config = nodes[0].launch_context.launch_config hash_value = hashlib.md5() hash_value.update((launch_config.code_directory).encode()) hash_value.update((launch_config.docker_requirements).encode()) hash_value.update(str(launch_config.hw_requirements).encode()) nodes_by_container[hash_value.hexdigest()].extend([ (node, label) for node in nodes ]) # Vertex AI requires the first worker pool to have exactly 1 replica... nodes_for_jobs = list(nodes_by_container.values()) for index, nodes in enumerate(nodes_for_jobs): if len(nodes) == 1: nodes_for_jobs = [nodes_for_jobs[ index]] + nodes_for_jobs[:index] + nodes_for_jobs[index + 1:] break if len(nodes_for_jobs[0]) != 1: nodes_for_jobs.append(nodes_for_jobs[0][1:]) nodes_for_jobs[0] = [nodes_for_jobs[0][0]] # Make sure there are at most 4 worker pools (required by Vertex AI). cluster_names = ['workerpool0', 'workerpool1', 'workerpool2', 'workerpool3'] if len(nodes_for_jobs) > len(cluster_names): raise RuntimeError(( 'Too many nodes with different requirements specified.' f'Vertex AI supports up to {len(cluster_names)} types.' )) # Bind addresses for index, nodes_with_labels in enumerate(nodes_for_jobs): for instance, (node, label) in enumerate(nodes_with_labels): node.bind_addresses(cluster=cluster_names[index], instance=instance) containers = [] for index, nodes_with_labels in enumerate(nodes_for_jobs): nodes = [node for (node, label) in nodes_with_labels] # find the container # to_executables() is a static method, so we can call it from any of the # nodes in this group. # pytype: disable=wrong-arg-count # this is to_docker_executables based on LaunchType docker_executables = nodes[0].to_executables(nodes, cluster_names[index], nodes[0].launch_context) assert len(docker_executables) == 1 containers.append(docker_executables[0]) # pytype: enable=wrong-arg-count signal_handling.exit_gracefully_on_sigint() signal_handling.exit_gracefully_on_sigquit() with xm_local.create_experiment(experiment_title=program.name) as experiment: jobs = {} job_id = 0 for executable_spec, requirements in containers: if launch_type == context.LaunchType.VERTEX_AI: executor = xm_local.Caip(requirements=requirements) executor_spec = xm_local.Caip.Spec() else: logging.fatal('Unknown launch type: %s', launch_type) try: [executable] = experiment.package([ xm.Packageable( executable_spec=executable_spec, executor_spec=executor_spec ), ]) except google_auth_exceptions.DefaultCredentialsError: raise google_auth_exceptions.DefaultCredentialsError( 'GCP project seems not to be configured correctly. Please follow' ' instructions at ' 'https://github.com/deepmind/xmanager#create-a-gcp-project.') job_id += 1 jobs[str(job_id)] = xm.Job(executable=executable, executor=executor) experiment.add(xm.JobGroup(**jobs)) print(termcolor.colored('Program launched successfully.', 'blue')) print( termcolor.colored('Node names mapping used in Vertex AI runtime:', 'blue')) # Print nodes' labels mapping to the worker pool names. def _name_range(name: str, start_idx: int, count: int): if count == 1: return f'{name}-{start_idx}' return f'{name}-[{start_idx}:{start_idx+count}]' node_index = collections.defaultdict(int) for cluster_index, nodes in enumerate(nodes_for_jobs): node_count = 0 for i, (node, label) in enumerate(nodes): node_count += 1 if i == len(nodes) - 1 or label != nodes[i+1][1]: start_idx = node_index[label] label_range = _name_range(label, start_idx, node_count) worker_range = _name_range(cluster_names[cluster_index], i - node_count + 1, node_count) print(termcolor.colored(f'{label_range} -> {worker_range}', 'blue')) node_index[label] += node_count node_count = 0
launchpad-master
launchpad/launch/xm_docker/launch.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.launch.xm_docker.launch.""" import os from absl.testing import absltest import launchpad as lp from launchpad.nodes.python import xm_docker class HelloWorld: def __init__(self) -> None: pass def run(self) -> None: print('Hello World!!!') def make_program() -> lp.Program: program = lp.Program('hello_world') node = lp.PyClassNode(HelloWorld) program.add_node(node, label='hello_printer') return program class LaunchTest(absltest.TestCase): def test_launch(self): os.environ['GOOGLE_CLOUD_BUCKET_NAME'] = 'lpbucket' launchpad_dir = os.path.dirname( os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) docker_requirements = os.path.join( launchpad_dir, 'examples/consumer_producers/requirements.txt') docker_config = xm_docker.DockerConfig(launchpad_dir, docker_requirements) resources = {'hello_printer': docker_config} program = make_program() # Launch should fail accessing GCP. exception_msg = ( 'Request failed|404|The specified bucket does not exist|CP project ' 'seems not to be configured correctly' # We allow digit-only messages, assuming this is a KeyError as reported # in b/241629570. Should be fixed together with # https://github.com/python/cpython/issues/91351. r'|\d+') with self.assertRaisesRegex(Exception, exception_msg): lp.launch( program, launch_type=lp.LaunchType.VERTEX_AI, xm_resources=resources) if __name__ == '__main__': absltest.main()
launchpad-master
launchpad/launch/xm_docker/launch_test.py
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
launchpad-master
launchpad/launch/test_multi_processing/__init__.py