python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run verification for feedforward ReLU networks.""" import os import time from typing import Any, Callable, Mapping from absl import app from absl import flags from absl import logging import jax.numpy as jnp from jax_verify.extensions.functional_lagrangian import attacks from jax_verify.extensions.functional_lagrangian import bounding from jax_verify.extensions.functional_lagrangian import data from jax_verify.extensions.functional_lagrangian import dual_solve from jax_verify.extensions.functional_lagrangian import model from jax_verify.extensions.functional_lagrangian import verify_utils from jax_verify.extensions.sdp_verify import utils as sdp_utils import ml_collections from ml_collections import config_flags PROJECT_PATH = os.getcwd() config_flags.DEFINE_config_file( 'config', f'{PROJECT_PATH}/configs/config_ood_stochastic_model.py', 'ConfigDict for the experiment.') FLAGS = flags.FLAGS def make_logger(log_message: str) -> Callable[[int, Mapping[str, Any]], None]: """Creates a logger. Args: log_message: description message for the logs. Returns: Function that accepts a step counter and measurements, and logs them. """ def log_fn(step, measures): msg = f'[{log_message}] step={step}' for k, v in measures.items(): msg += f', {k}={v}' logging.info(msg) return log_fn def main(unused_argv): config = FLAGS.config logging.info('Config: \n %s', config) data_spec = data.make_data_spec(config.problem, config.assets_dir) spec_type = {e.value: e for e in verify_utils.SpecType}[config.spec_type] if spec_type == verify_utils.SpecType.UNCERTAINTY: if data_spec.true_label in config.labels_in_distribution: return else: if data_spec.true_label == data_spec.target_label: return params = model.load_model( root_dir=config.assets_dir, model_name=config.problem.model_name, num_std_for_bound=config.problem.get('num_std_for_bound'), ) params_elided, bounds, bp_bound, bp_time = ( bounding.make_elided_params_and_bounds(config, data_spec, spec_type, params)) dual_state = ml_collections.ConfigDict(type_safe=False) def spec_fn(inputs): # params_elided is a list of network parameters, with the final # layer elided with the objective (output size is 1, and not num classes) return jnp.squeeze(sdp_utils.predict_cnn(params_elided, inputs), axis=-1) def run(mode: str): logger = make_logger(log_message=mode.title()) start_time = time.time() prng_key = dual_solve.solve_dual( dual_state=dual_state, config=config, bounds=bounds, spec_type=spec_type, spec_fn=spec_fn, params=params_elided, mode=mode, logger=logger) elapsed_time = time.time() - start_time adv_objective = attacks.adversarial_attack( # pytype: disable=wrong-arg-types # jax-devicearray params, data_spec, spec_type, prng_key, config.attack.num_steps, config.attack.learning_rate, config.attack.get('num_samples', 1)) output_dict = { 'dataset_idx': config.problem.dataset_idx, 'true_label': data_spec.true_label, 'target_label': data_spec.target_label, 'epsilon': config.problem.epsilon_unprocessed, 'verified_ub': dual_state.loss, 'verification_time': elapsed_time, 'adv_lb': adv_objective, 'adv_success': adv_objective > config.problem.feasibility_margin, 'bp_bound': bp_bound, 'bp_time': bp_time, } logger = make_logger(log_message=mode.title()) logger(0, output_dict) run('train') run('eval') if __name__ == '__main__': app.run(main)
jax_verify-master
jax_verify/extensions/functional_lagrangian/run/run_functional_lagrangian.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config for experiments on uncertainty spec with stochastic neural networks.""" import ml_collections def get_uncertainty_config(num_layers): """Running mixed solver strategy.""" config = ml_collections.ConfigDict() config.train = ml_collections.ConfigDict() config.train.optim_type = 'mixed' u_config_train = { 'optim_type': 'uncertainty', 'n_iter': 1_000, 'n_pieces': 0, 'solve_max': 'exp', 'learning_rate': 1.0, } solver_config = {'optim_type': 'lp'} config.train.mixed_strat = [[solver_config]] * num_layers + [[u_config_train]] config.train.solver_weights = [[1.0]] * (num_layers + 1) u_config_eval = { 'optim_type': 'uncertainty', 'n_iter': 0, 'n_pieces': 100, 'solve_max': 'exp_bound', } config.eval = ml_collections.ConfigDict() config.eval.optim_type = 'mixed' config.eval.mixed_strat = [[solver_config]] * num_layers + [[u_config_eval]] config.eval.solver_weights = [[1.0]] * (num_layers + 1) return config def get_attack_config(): """Attack config.""" # Config to use for adversarial attak lower bound config = ml_collections.ConfigDict() config.num_steps = 200 config.learning_rate = 1. config.num_samples = 50 return config def get_dual_config(): """Dual config.""" # type of lagrangian functional: e.g. dense_quad, mlp config = ml_collections.ConfigDict() config.lagrangian_form = ml_collections.ConfigDict({ 'name': 'linear', 'kwargs': {}, }) config.affine_before_relu = False return config def get_config(model_name='mnist_mlp_2_128'): """Main configdict.""" config = ml_collections.ConfigDict() config.assets_dir = '/tmp/jax_verify' # directory to download data and models if model_name.startswith('mnist_mlp'): dataset = 'emnist' num_layers = 3 num_std_for_bound = 3.0 epsilon = 0.01 elif model_name.startswith('mnist_cnn'): dataset = 'emnist' num_layers = 5 num_std_for_bound = None epsilon = 0.01 elif model_name.startswith('cifar_vgg'): dataset = 'cifar100' num_layers = 6 num_std_for_bound = None epsilon = 0.001 config.seed = 23 config.use_gpu = False config.spec_type = 'uncertainty' config.labels_in_distribution = [] config.use_best = False # PGA may be overly optimistic config.problem = ml_collections.ConfigDict() config.problem.model_name = model_name config.problem.dataset = dataset config.problem.dataset_idx = 0 # which example from dataset to verify? config.problem.target_label_idx = 0 # which class to target? config.problem.epsilon_unprocessed = epsilon # radius before preprocessing config.problem.scale_center = False config.problem.num_std_for_bound = num_std_for_bound # check adversary cannot bring loss below feasibility_margin config.problem.feasibility_margin = 0.0 config.dual = get_dual_config() config.attack = get_attack_config() # whether to block asynchronous dispatch at each iteration for precise timing config.block_to_time = False # Choose boundprop method: e.g. 'nonconvex', 'ibp', 'crown_ibp' config.boundprop_type = 'nonconvex' # Choose boundprop method: e.g. 'ibp', 'crown' config.bilinear_boundprop_type = 'nonconvex' # nonconvex boundprop params, only used if config.boundprop_type = 'nonconvex' config.nonconvex_boundprop_steps = 100 config.nonconvex_boundprop_nodes = 128 config.outer_opt = ml_collections.ConfigDict() config.outer_opt.lr_init = 1e-3 # initial learning rate config.outer_opt.steps_per_anneal = 250 # steps between each anneal config.outer_opt.anneal_lengths = '' # steps per epoch config.outer_opt.anneal_factor = 0.1 # learning rate anneal factor config.outer_opt.num_anneals = 3 # # of times to anneal learning rate config.outer_opt.opt_name = 'adam' # Optix class: "adam" "sgd", "rmsprop" config.outer_opt.opt_kwargs = {} # Momentum for gradient descent' config.inner_opt = get_uncertainty_config(num_layers) return config
jax_verify-master
jax_verify/extensions/functional_lagrangian/run/configs/config_ood_stochastic_model.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verification configuration.""" import ml_collections def get_input_uncertainty_config(num_layers=2): """Running mixed solver strategy.""" config = ml_collections.ConfigDict() config.train = ml_collections.ConfigDict() config.train.optim_type = 'mixed' u_config = { 'optim_type': 'uncertainty', 'solve_max': 'exp', 'n_iter': 20, 'n_pieces': 30, 'learning_rate': 1. } solver_config_input_init = { 'optim_type': 'uncertainty_input', 'layer_type': 'input', 'sig_max': .1 } solver_config_input_first = { 'optim_type': 'uncertainty_input', 'layer_type': 'first', 'sig_max': .1 } solver_config = {'optim_type': 'lp'} config.train.mixed_strat = ( [[solver_config_input_init], [solver_config_input_first]] + [[solver_config]] * num_layers + [[u_config]]) config.train.solver_weights = [[1.0]] * (num_layers + 3) u_config_eval = { 'optim_type': 'uncertainty', 'n_iter': 0, 'n_pieces': 100, 'solve_max': 'exp_bound', } config.eval = ml_collections.ConfigDict() config.eval.optim_type = 'mixed' config.eval.mixed_strat = ( [[solver_config_input_init], [solver_config_input_first]] + [[solver_config]] * num_layers + [[u_config_eval]]) config.eval.solver_weights = [[1.0]] * (num_layers + 3) return config def get_dual_config(): """Dual config.""" config = ml_collections.ConfigDict() names = ['linear_exp', 'linear', 'linear', 'linear', 'linear'] config.lagrangian_form = [] for name in names: config.lagrangian_form.append( ml_collections.ConfigDict({ 'name': name, 'kwargs': {}, })) config.affine_before_relu = False return config def get_attack_config(): """Attack config.""" # Config to use for adversarial attak lower bound config = ml_collections.ConfigDict() config.num_steps = 200 config.learning_rate = 1. return config def get_config(): """Main configdict.""" config = ml_collections.ConfigDict() config.assets_dir = '/tmp/jax_verify' # directory to download data and models config.seed = 23 config.use_gpu = True config.spec_type = 'uncertainty' config.labels_in_distribution = [] config.use_best = True config.problem = ml_collections.ConfigDict() config.problem.dataset = 'emnist_CEDA' config.problem.dataset_idx = 0 # which example from dataset to verify? config.problem.target_label_idx = 4 # which class to target? config.problem.epsilon_unprocessed = 0.04 # radius before preprocessing config.problem.probability_threshold = .97 config.problem.input_shape = (28, 28, 1) # Use inception_preprocessing i.e. [-1,1]-scaled inputs config.problem.scale_center = False config.problem.model_name = 'mnist_ceda' # check adversary cannot bring loss below feasibility_margin config.problem.feasibility_margin = 0.0 config.add_input_noise = True config.dual = get_dual_config() config.attack = get_attack_config() # whether to block asynchronous dispatch at each iteration for precise timing config.block_to_time = False # Choose boundprop method: e.g. 'nonconvex', 'ibp', 'crown_ibp' config.boundprop_type = 'nonconvex' config.bilinear_boundprop_type = 'ibp' # nonconvex boundprop params, only used if config.boundprop_type = 'nonconvex' config.nonconvex_boundprop_steps = 100 config.nonconvex_boundprop_nodes = 128 config.outer_opt = ml_collections.ConfigDict() config.outer_opt.lr_init = 1e-4 # initial learning rate config.outer_opt.steps_per_anneal = 10 # steps between each anneal config.outer_opt.anneal_lengths = '60000, 20000, 20000' # steps per epoch config.outer_opt.anneal_factor = 0.1 # learning rate anneal factor config.outer_opt.num_anneals = 2 # # of times to anneal learning rate config.outer_opt.opt_name = 'adam' # Optix class: "adam" "sgd", "rmsprop" config.outer_opt.opt_kwargs = {} # Momentum for gradient descent' config.inner_opt = get_input_uncertainty_config() return config
jax_verify-master
jax_verify/extensions/functional_lagrangian/run/configs/config_ood_stochastic_input.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verification configuration.""" import ml_collections def get_pga_params_config_dict(): """Create config dict with for running PGA.""" pga_config = ml_collections.ConfigDict() pga_config.optim_type = 'pga' pga_config.n_iter = 10000 pga_config.lr = 0.1 pga_config.n_restarts = 300 pga_config.method = 'square' pga_config.finetune_n_iter = 50 pga_config.finetune_lr = 0.1 pga_config.finetune_method = 'pgd' pga_config.normalize = False return pga_config def get_adv_softmax_config(num_layers): """Running mixed solver strategy.""" # Train config config = ml_collections.ConfigDict() config.train = ml_collections.ConfigDict() config.train.optim_type = 'mixed' u_config_train = get_pga_params_config_dict() solver_config = {'optim_type': 'lp'} config.train.mixed_strat = [[solver_config]] * num_layers + [[u_config_train]] config.train.solver_weights = [[1.0]] * (num_layers + 1) # Eval config config.eval = ml_collections.ConfigDict() u_config_eval = { 'optim_type': 'uncertainty', 'solve_max': 'exp_bound', } config.eval.optim_type = 'mixed' config.eval.mixed_strat = [[solver_config]] * num_layers + [[u_config_eval]] config.eval.solver_weights = [[1.0]] * (num_layers + 1) return config def get_attack_config(): """Attack config.""" # Config to use for adversarial attak lower bound config = ml_collections.ConfigDict() config.num_steps = 200 config.learning_rate = 1. config.num_samples = 50 return config def get_dual_config(): """Dual config.""" # type of lagrangian functional: e.g. dense_quad, mlp config = ml_collections.ConfigDict() config.lagrangian_form = ml_collections.ConfigDict({ 'name': 'linear', 'kwargs': {}, }) config.affine_before_relu = False return config def get_config(model_name='mnist_mlp_1_128'): """Main configdict.""" if model_name.startswith('mnist_mlp_1'): dataset = 'mnist' num_layers = 2 num_std_for_bound = 3.0 elif model_name.startswith('mnist_mlp_2'): dataset = 'mnist' num_layers = 3 num_std_for_bound = 3.0 elif model_name.startswith('mnist_cnn'): dataset = 'mnist' num_layers = 5 num_std_for_bound = None elif model_name.startswith('cifar_vgg'): dataset = 'cifar10' num_layers = 6 num_std_for_bound = None config = ml_collections.ConfigDict() config.assets_dir = '/tmp/jax_verify' # directory to download data and models config.seed = 23 config.use_gpu = True config.spec_type = 'adversarial_softmax' config.labels_in_distribution = [] config.use_best = False # PGA may be overly optimistic config.problem = ml_collections.ConfigDict() config.problem.dataset = dataset config.problem.dataset_idx = 0 # which example from dataset to verify? config.problem.target_label_idx = 0 # which class to target? config.problem.epsilon_unprocessed = 0.001 # radius before preprocessing config.problem.scale_center = False config.problem.num_std_for_bound = num_std_for_bound # check adversary cannot bring loss below feasibility_margin config.problem.feasibility_margin = 0.0 config.problem.model_name = model_name config.dual = get_dual_config() config.attack = get_attack_config() # whether to block asynchronous dispatch at each iteration for precise timing config.block_to_time = False # Choose boundprop method: e.g. 'nonconvex', 'ibp', 'crown_ibp' config.boundprop_type = 'nonconvex' config.bilinear_boundprop_type = 'ibp' # nonconvex boundprop params, only used if config.boundprop_type = 'nonconvex' config.nonconvex_boundprop_steps = 0 config.nonconvex_boundprop_nodes = 128 config.outer_opt = ml_collections.ConfigDict() config.outer_opt.lr_init = 1e-3 # initial learning rate config.outer_opt.steps_per_anneal = 1000 # steps between each anneal config.outer_opt.anneal_lengths = '' # steps per epoch config.outer_opt.anneal_factor = 0.1 # learning rate anneal factor config.outer_opt.num_anneals = 3 # # of times to anneal learning rate config.outer_opt.opt_name = 'adam' # Optix class: "adam" "sgd", "rmsprop" config.outer_opt.opt_kwargs = {} # Momentum for gradient descent' config.inner_opt = get_adv_softmax_config(num_layers) return config
jax_verify-master
jax_verify/extensions/functional_lagrangian/run/configs/config_adv_stochastic_model.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Interval Bound Propagation. """ import functools from typing import Callable, Mapping, Tuple, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import synthetic_primitives from jax_verify.src import utils from jax_verify.src.linear import linear_relaxations from jax_verify.src.types import ArgsKwargsCallable, Primitive, Tensor # pylint: disable=g-multiple-import IntervalBound = bound_propagation.IntervalBound def _make_ibp_passthrough_primitive( primitive: Primitive, ) -> ArgsKwargsCallable[ graph_traversal.LayerInput[IntervalBound], IntervalBound]: """Generate a function that simply apply the primitive to the bounds. Args: primitive: jax primitive Returns: ibp_primitive: Function applying transparently the primitive to both upper and lower bounds. """ def ibp_primitive( *args: bound_propagation.LayerInput, **kwargs) -> IntervalBound: # We assume that one version should be called with all the 'lower' bound and # one with the upper bound. If there is some argument that is not a bound, # we assumed it's just simple parameters and pass them through. lower_args = [arg.lower if isinstance(arg, bound_propagation.Bound) else arg for arg in args] upper_args = [arg.upper if isinstance(arg, bound_propagation.Bound) else arg for arg in args] out_lb = primitive.bind(*lower_args, **kwargs) out_ub = primitive.bind(*upper_args, **kwargs) return IntervalBound(out_lb, out_ub) return ibp_primitive def _decompose_affine_argument( hs: bound_propagation.LayerInput) -> Tuple[Tensor, Tensor]: """Decompose an argument for a (bound, parameter) IBP propagation. We do not need to know which argument is the bound and which one is the parameter because we can simply decompose the operation. To propagate W * x, we can simply do out_diff = abs(W) * (x.upper - x.lower) / 2 out_mean = W * (x.upper + x.lower) / 2 out_ub = out_mean + out_diff out_lb = out_mean - out_diff This function will separate W and x in the two components we need so that we do not have to worry about argument order. Args: hs: Either an IntervalBound or a jnp.array Returns: part1, part2: jnp.ndarrays """ if isinstance(hs, bound_propagation.Bound): return (hs.upper - hs.lower) / 2, (hs.upper + hs.lower) / 2 else: return jnp.abs(hs), hs def _ibp_bilinear( primitive: Primitive, lhs: bound_propagation.LayerInput, rhs: bound_propagation.LayerInput, **kwargs) -> bound_propagation.LayerInput: """Propagation of IBP bounds through a bilinear primitive (product, conv). We don't know if the bound is on the left or right hand side, but we expect that one hand is a bound and the other is a constant/parameter. Args: primitive: Bilinear primitive. lhs: First input to the primitive. rhs: Second input to the primitive. **kwargs: Parameters of the primitive. Returns: out_bounds: IntervalBound on the output of the primitive. """ if (isinstance(lhs, bound_propagation.Bound) != isinstance(rhs, bound_propagation.Bound)): # This is the case where one is a Bound and the other is not. lhses = _decompose_affine_argument(lhs) rhses = _decompose_affine_argument(rhs) forward_mean = primitive.bind(lhses[1], rhses[1], **kwargs) forward_range = primitive.bind(lhses[0], rhses[0], **kwargs) out_lb = forward_mean - forward_range out_ub = forward_mean + forward_range return IntervalBound(out_lb, out_ub) elif ((not isinstance(lhs, bound_propagation.Bound)) and (not isinstance(rhs, bound_propagation.Bound))): # Both are arrays, so can simply go through return primitive.bind(lhs, rhs, **kwargs) elif primitive == lax.dot_general_p: # If both inputs are bounds and this is a `dot_general_p` primitive, we have # a special implementation for it with the tighter bounds of using the exact # bounds instead of relying on McCormick based bounds. return _ibp_dotgeneral_bilinear(lhs, rhs, **kwargs) else: # If both inputs are bounds but this is not the special case of the # dotgeneral primitive, we can use McCormick inequalities for bilinear # functions to compute the interval bounds. # If x in [x_l, x_u] and y in [y_l, y_u], then the following hold: # xy >= y_l*x + x_l*y - x_l*y_l # xy >= y_u*x + x_u*y - x_u*y_u # xy <= y_u*x + x_l*y - x_l*y_u # xy <= y_l*x + x_u*y - x_u*y_l # These bounds are also used in the fastlin approach proposed in # https://arxiv.org/pdf/2002.06622.pdf # TODO: Tighten the bounds further to min/max of # x_l*y_l, x_l*y_u, x_u*y_l, and x_u*y_u for more primitives. # Use the first McCormick lower bound out_lb1 = _ibp_bilinear(primitive, lhs, rhs.lower, **kwargs).lower out_lb1 += _ibp_bilinear(primitive, lhs.lower, rhs, **kwargs).lower out_lb1 -= _ibp_bilinear(primitive, lhs.lower, rhs.lower, **kwargs) # Use the second McCormick lower bound out_lb2 = _ibp_bilinear(primitive, lhs, rhs.upper, **kwargs).lower out_lb2 += _ibp_bilinear(primitive, lhs.upper, rhs, **kwargs).lower out_lb2 -= _ibp_bilinear(primitive, lhs.upper, rhs.upper, **kwargs) # Choose the best lower bound out of the two out_lb = jnp.maximum(out_lb1, out_lb2) # Use the first McCormick upper bound out_ub1 = _ibp_bilinear(primitive, lhs, rhs.upper, **kwargs).upper out_ub1 += _ibp_bilinear(primitive, lhs.lower, rhs, **kwargs).upper out_ub1 -= _ibp_bilinear(primitive, lhs.lower, rhs.upper, **kwargs) # Use the second McCormick upper bound out_ub2 = _ibp_bilinear(primitive, lhs, rhs.lower, **kwargs).upper out_ub2 += _ibp_bilinear(primitive, lhs.upper, rhs, **kwargs).upper out_ub2 -= _ibp_bilinear(primitive, lhs.upper, rhs.lower, **kwargs) # Choose the best upper bound out of the two out_ub = jnp.minimum(out_ub1, out_ub2) return IntervalBound(out_lb, out_ub) def _move_axes( bound: bound_propagation.Bound, cdims: Tuple[int, ...], bdims: Tuple[int, ...], orig_axis: int, new_axis: int, ) -> Tuple[IntervalBound, Tuple[int, ...], Tuple[int, ...]]: """Reorganise the axis of a bound, and the dimension_numbers indexing it. The axis in position `orig_axis` gets moved to position `new_axis`. Args: bound: Bound whose axis needs to be re-organised. cdims: Contracting dimensions, pointing at some axis of bound. bdims: Batch dimensions, pointing at some axis of bound. orig_axis: Index of the axis to move. new_axis: New position for this axis. Returns: new_bound: Re-organised bound. new_cdims: Re-organised cdims. new_bdims: Re-organised bdims. """ def new_axis_fn(old_axis): if old_axis == orig_axis: # This is the axis being moved. Return its new position. return new_axis elif (old_axis < orig_axis) and (old_axis >= new_axis): # The original axis being moved was after, but it has now moved to before # (or at this space). This means that this axis gets shifted back return old_axis + 1 elif (old_axis > orig_axis) and (old_axis <= new_axis): # The original axis being moved was before this one, but it has now moved # to after. This means that this axis gets shifted forward. return old_axis - 1 else: # Nothing should be changing. return old_axis mapping = {old_axis: new_axis_fn(old_axis) for old_axis in range(len(bound.lower.shape))} permutation = sorted(range(len(bound.lower.shape)), key=lambda x: mapping[x]) new_bound = IntervalBound(jax.lax.transpose(bound.lower, permutation), jax.lax.transpose(bound.upper, permutation)) new_cdims = tuple(new_axis_fn(old_axis) for old_axis in cdims) new_bdims = tuple(new_axis_fn(old_axis) for old_axis in bdims) return new_bound, new_cdims, new_bdims def _ibp_dotgeneral_bilinear(lhs: bound_propagation.Bound, rhs: bound_propagation.Bound, **kwargs ) -> IntervalBound: """IBP propagation through a dotgeneral primitive with two bound input. Args: lhs: First input to the dotgeneral rhs: Second input to the primitive. **kwargs: Parameters of the primitive. Returns: out_bounds: Bound on the output of the general dot product. """ (lhs_cdims, rhs_cdims), (lhs_bdims, rhs_bdims) = kwargs['dimension_numbers'] # Move the contracting dimensions to the front. for cdim_index in range(len(lhs_cdims)): lhs, lhs_cdims, lhs_bdims = _move_axes(lhs, lhs_cdims, lhs_bdims, lhs_cdims[cdim_index], cdim_index) rhs, rhs_cdims, rhs_bdims = _move_axes(rhs, rhs_cdims, rhs_bdims, rhs_cdims[cdim_index], cdim_index) # Because we're going to scan over the contracting dimensions, the # batch dimensions are appearing len(cdims) earlier. new_lhs_bdims = tuple(bdim - len(lhs_cdims) for bdim in lhs_bdims) new_rhs_bdims = tuple(bdim - len(rhs_cdims) for bdim in rhs_bdims) merge_cdims = lambda x: x.reshape((-1,) + x.shape[len(lhs_cdims):]) operands = ((merge_cdims(lhs.lower), merge_cdims(lhs.upper)), (merge_cdims(rhs.lower), merge_cdims(rhs.upper))) batch_shape = tuple(lhs.lower.shape[axis] for axis in lhs_bdims) lhs_contr_shape = tuple(dim for axis, dim in enumerate(lhs.lower.shape) if axis not in lhs_cdims + lhs_bdims) rhs_contr_shape = tuple(dim for axis, dim in enumerate(rhs.lower.shape) if axis not in rhs_cdims + rhs_bdims) out_shape = batch_shape + lhs_contr_shape + rhs_contr_shape init_carry = (jnp.zeros(out_shape), jnp.zeros(out_shape)) new_dim_numbers = (((), ()), (new_lhs_bdims, new_rhs_bdims)) unreduced_dotgeneral = functools.partial(jax.lax.dot_general, dimension_numbers=new_dim_numbers) def scan_fun(carry: Tuple[Tensor, Tensor], inp: Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]] ) -> Tuple[Tuple[Tensor, Tensor], None]: """Accumulates the minimum and maximum as inp traverse the first dimension. (The first dimension is where we have merged all contracting dimensions.) Args: carry: Current running sum of the lower bound and upper bound inp: Slice of the input tensors. Returns: updated_carry: New version of the running sum including these elements. None """ (lhs_low, lhs_up), (rhs_low, rhs_up) = inp carry_min, carry_max = carry opt_1 = unreduced_dotgeneral(lhs_low, rhs_low) opt_2 = unreduced_dotgeneral(lhs_low, rhs_up) opt_3 = unreduced_dotgeneral(lhs_up, rhs_low) opt_4 = unreduced_dotgeneral(lhs_up, rhs_up) elt_min = jnp.minimum(jnp.minimum(jnp.minimum(opt_1, opt_2), opt_3), opt_4) elt_max = jnp.maximum(jnp.maximum(jnp.maximum(opt_1, opt_2), opt_3), opt_4) return (carry_min + elt_min, carry_max + elt_max), None (lower, upper), _ = jax.lax.scan(scan_fun, init_carry, operands) return IntervalBound(lower, upper) def _ibp_div( lhs: bound_propagation.LayerInput, rhs: Tensor, ) -> bound_propagation.LayerInput: """Propagation of IBP bounds through Elementwise division. We don't support the propagation of bounds through the denominator. Args: lhs: Numerator of the division. rhs: Denominator of the division. Returns: out_bounds: Bound on the output of the division. """ if isinstance(rhs, bound_propagation.Bound): raise ValueError('Bound propagation through the denominator unsupported.') return _ibp_bilinear(lax.mul_p, lhs, 1. / rhs) def _ibp_add( lhs: bound_propagation.LayerInput, rhs: bound_propagation.LayerInput, ) -> IntervalBound: """Propagation of IBP bounds through an addition. Args: lhs: Lefthand side of addition. rhs: Righthand side of addition. Returns: out_bounds: IntervalBound. """ if isinstance(lhs, bound_propagation.Bound): if isinstance(rhs, bound_propagation.Bound): new_lower = lhs.lower + rhs.lower new_upper = lhs.upper + rhs.upper else: new_lower = lhs.lower + rhs new_upper = lhs.upper + rhs else: # At least one of the inputs is a bound new_lower = rhs.lower + lhs new_upper = rhs.upper + lhs return IntervalBound(new_lower, new_upper) def _ibp_neg(inp: IntervalBound) -> IntervalBound: """Propagation of IBP bounds through a negation. Args: inp: Bounds that need to be negated. Returns: out_bounds: IntervalBound """ return IntervalBound(-inp.upper, -inp.lower) def _ibp_sub( lhs: bound_propagation.LayerInput, rhs: bound_propagation.LayerInput, ) -> IntervalBound: """Propagation of IBP bounds through a substraction. Args: lhs: Lefthand side of substraction. rhs: Righthand side of substraction. Returns: out_bounds: IntervalBound. """ if isinstance(lhs, bound_propagation.Bound): if isinstance(rhs, bound_propagation.Bound): return IntervalBound(lhs.lower - rhs.upper, lhs.upper - rhs.lower) else: return IntervalBound(lhs.lower - rhs, lhs.upper - rhs) else: # At least one of the inputs is a bound return IntervalBound(lhs - rhs.upper, lhs - rhs.lower) def _ibp_softmax(logits: bound_propagation.LayerInput, axis) -> IntervalBound: """Propagation of IBP bounds through softmax. Args: logits: logits, or their bounds axis: the axis or axes along which the softmax should be computed Returns: out_bounds: softmax output or its bounds """ if isinstance(logits, bound_propagation.Bound): # TODO: This bound of the softmax is not as tight as it could be # because in the normalization term it uses all upper rather than all except # 1 upper. log_z_ub = jax.nn.logsumexp(logits.upper, keepdims=True, axis=axis) out_lb = jnp.exp(logits.lower - log_z_ub) log_z_lb = jax.nn.logsumexp(logits.lower, keepdims=True, axis=axis) out_ub = jnp.exp(jnp.minimum(logits.upper - log_z_lb, 0)) return IntervalBound(out_lb, out_ub) else: # If the inputs are not bounds, return softmax of logits return jax.nn.softmax(logits, axis=axis) def _ibp_unimodal_0min( fun: Callable[[Tensor], Tensor], x: IntervalBound ) -> IntervalBound: """Propagation of IBP bounds through unimodal function whose min is 0. Args: fun: Elementwise function which is decreasing before 0 and increasing after, achieving its minimum value is at 0. x: Bounds on the inputs to the function. Returns: Bounds on the output of the function. """ lower_out = fun(x.lower) upper_out = fun(x.upper) out_lb = jnp.where(jnp.logical_and(x.upper >= 0., x.lower <= 0.), fun(jnp.zeros_like(x.lower)), jnp.minimum(lower_out, upper_out)) out_ub = jnp.maximum(lower_out, upper_out) return IntervalBound(out_lb, out_ub) def _ibp_unimodal_0max( fun: Callable[[Tensor], Tensor], x: IntervalBound ) -> IntervalBound: """Propagation of IBP bounds through unimodal function whose max is 0. Args: fun: Elementwise function which is increasing before 0 and decreasing after, achieving its maximum value is at 0. x: Bounds on the inputs to the function. Returns: Bounds on the output of the function. """ lower_out = fun(x.lower) upper_out = fun(x.upper) out_lb = jnp.minimum(lower_out, upper_out) out_ub = jnp.where(jnp.logical_and(x.upper >= 0., x.lower <= 0.), fun(jnp.zeros_like(x.lower)), jnp.maximum(lower_out, upper_out)) return IntervalBound(out_lb, out_ub) def _ibp_leaky_relu(x: IntervalBound, negative_slope: Union[float, Tensor]) -> IntervalBound: """Propagation of IBP bounds through leaky Relu. Considers the case where the negative slope is negative. Args: x: Bounds on the inputs to the leaky ReLU. negative_slope: Slope for negative inputs. Returns: out_bounds: Bounds on the output of the leaky ReLU. """ sigma_l = jax.nn.leaky_relu(x.lower, negative_slope) sigma_u = jax.nn.leaky_relu(x.upper, negative_slope) l_sigma = jnp.where( jnp.logical_and(x.lower < 0., x.upper > 0.), jnp.minimum(jnp.minimum(sigma_l, sigma_u), 0.), jnp.minimum(sigma_l, sigma_u)) u_sigma = jnp.maximum(sigma_l, sigma_u) return IntervalBound(l_sigma, u_sigma) def _ibp_integer_pow(x: bound_propagation.LayerInput, y: int) -> IntervalBound: """Propagation of IBP bounds through integer_pow. Args: x: Argument be raised to a power, element-wise y: fixed integer exponent Returns: out_bounds: integer_pow output or its bounds. """ if y < 0: raise NotImplementedError l_pow = lax.integer_pow(x.lower, y) u_pow = lax.integer_pow(x.upper, y) if y % 2 == 0: # Even powers contains_zero = jnp.logical_and( jnp.less_equal(x.lower, 0), jnp.greater_equal(x.upper, 0)) lower = jnp.where(contains_zero, jnp.zeros_like(x.lower), jnp.minimum(l_pow, u_pow)) upper = jnp.maximum(l_pow, u_pow) return IntervalBound(lower, upper) else: # Odd powers return IntervalBound(l_pow, u_pow) def _ibp_linear(*args, **kwargs) -> IntervalBound: """Propagation of IBP bounds through a linear primitive treated as a blackbox. Args: *args: All inputs to the linear operation, which can be either Tensor or bounds. **kwargs: Parameters of the primitive, which would include the subgraph that explains how to implement them. Returns: Bound on the output of the linear primitive. """ primitive = synthetic_primitives.linear_p apply_fun = utils.bind_nonbound_args(primitive.bind, *args, **kwargs) bound_args = [arg for arg in args if isinstance(arg, bound_propagation.Bound)] all_args = tuple(range(len(bound_args))) jac_fn = jax.jacfwd(apply_fun, argnums=all_args) zero_inp_args = [jnp.zeros(b_arg.shape) for b_arg in bound_args] offset = apply_fun(*zero_inp_args) jacobians = jac_fn(*zero_inp_args) pos_jacs = jax.tree_map(lambda x: jnp.maximum(x, 0.), jacobians) neg_jacs = jax.tree_map(lambda x: jnp.minimum(x, 0.), jacobians) new_lower = offset new_upper = offset for p_jac, n_jac, b_arg in zip(pos_jacs, neg_jacs, bound_args): sum_dims = tuple(range(-len(b_arg.shape), 0)) new_lower += (p_jac * b_arg.lower + n_jac * b_arg.upper).sum(sum_dims) new_upper += (p_jac * b_arg.upper + n_jac * b_arg.lower).sum(sum_dims) return IntervalBound(new_lower, new_upper) def _ibp_reciprocal(x: bound_propagation.LayerInput) -> IntervalBound: """Propagation of IBP bounds through reciprocal, assuming positive input. Args: x: Argument to get the inverse of. Returns: out_bounds: Reciprocal of the bounds. """ return IntervalBound(1. / jax.nn.relu(x.upper), 1. / jax.nn.relu(x.lower)) _input_transform = lambda x: IntervalBound(x.lower, x.upper) # Define the mapping from jaxpr primitive to the IBP version. _primitives_to_pass_through = [ *bound_propagation.RESHAPE_PRIMITIVES, lax.reduce_sum_p, lax.max_p, lax.scatter_add_p, lax.exp_p, lax.sinh_p, lax.log_p, lax.tanh_p, synthetic_primitives.softplus_p, synthetic_primitives.relu_p, synthetic_primitives.sigmoid_p, lax.sqrt_p, lax.sign_p, ] _primitive_transform: Mapping[ Primitive, ArgsKwargsCallable[ graph_traversal.LayerInput[IntervalBound], IntervalBound], ] = { **{primitive: _make_ibp_passthrough_primitive(primitive) for primitive in _primitives_to_pass_through}, **{primitive: functools.partial(_ibp_bilinear, primitive) for primitive in bound_propagation.BILINEAR_PRIMITIVES}, lax.abs_p: functools.partial(_ibp_unimodal_0min, lax.abs), lax.add_p: _ibp_add, lax.cosh_p: functools.partial(_ibp_unimodal_0min, lax.cosh), lax.sub_p: _ibp_sub, lax.neg_p: _ibp_neg, lax.div_p: _ibp_div, lax.integer_pow_p: _ibp_integer_pow, synthetic_primitives.sech_p: functools.partial( _ibp_unimodal_0max, synthetic_primitives.sech_p.bind), synthetic_primitives.leaky_relu_p: _ibp_leaky_relu, synthetic_primitives.parametric_leaky_relu_p: _ibp_leaky_relu, synthetic_primitives.softmax_p: _ibp_softmax, synthetic_primitives.posreciprocal_p: _ibp_reciprocal, } bound_transform = graph_traversal.OpwiseGraphTransform( _input_transform, _primitive_transform) fused_linear_ibp_transform = graph_traversal.OpwiseGraphTransform( _input_transform, _primitive_transform | {synthetic_primitives.linear_p: _ibp_linear}) def interval_bound_propagation(function, *bounds, fused_linear=False): """Performs IBP as described in https://arxiv.org/abs/1810.12715. Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBounds, bounds on the inputs of the function. fused_linear: Boolean indicating whether to treat sequence of linear operations as a single operation, by materializing the equivalent weights. This has the potential to be tighter, but may be less efficient. Returns: output_bound: Bounds on the output of the function obtained by IBP """ transform = fused_linear_ibp_transform if fused_linear else bound_transform output_bound, _ = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(transform), function, *bounds) return output_bound
jax_verify-master
jax_verify/src/ibp.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Traverses a network, applying a transformation to each node in the graph. This is accomplished by traversing the JaxPR representation of the computation. """ import abc import collections import dataclasses import functools from typing import Any, Callable, Generic, List, Mapping, MutableMapping, Optional, Sequence, Tuple, TypeVar, Union import jax import jax.numpy as jnp from jax_verify.src import synthetic_primitives from jax_verify.src.types import ArgsKwargsCallable, Index, Nest, Primitive, Tensor # pylint: disable=g-multiple-import import typing_extensions class InputBound(metaclass=abc.ABCMeta): """Abstract input bound.""" @property @abc.abstractmethod def lower(self) -> Tensor: """Concrete lower bound.""" @property @abc.abstractmethod def upper(self) -> Tensor: """Concrete upper bound.""" @property @abc.abstractmethod def shape(self) -> Tuple[int, ...]: """Shape of the node.""" @property @abc.abstractmethod def dtype(self) -> jnp.dtype: """Dtype of the node.""" GraphInput = Union[InputBound, Tensor] class TransformedNode(metaclass=abc.ABCMeta): """Abstract transformed node, e.g. a propagated bound.""" Repr = TypeVar('Repr') FwdRepr = TypeVar('FwdRepr', bound=TransformedNode) BackRepr = TypeVar('BackRepr') LayerInput = Union[Repr, Tensor] class SubgraphHandler(typing_extensions.Protocol, Generic[Repr]): """Function to recursively handle a sub-graph.""" def __call__( self, transform: Any, subgraph: jax.core.Jaxpr, *args: LayerInput[Repr], ) -> Sequence[Any]: pass @dataclasses.dataclass class TransformContext(Generic[Repr]): """Transform context. Attributes: index: Integer path identifying the input node. subgraph_handler: Function to recursively handle a sub-graph. """ index: Index subgraph_handler: Optional[SubgraphHandler[Repr]] class GraphTransform(Generic[FwdRepr], metaclass=abc.ABCMeta): """Abstract forward Node transformation method.""" @abc.abstractmethod def input_transform( self, context: TransformContext[FwdRepr], input_bound: InputBound, ) -> FwdRepr: """Constructs input representations from a concrete input bound. Args: context: Transform context containing node index. input_bound: Original concrete bounds on the input. Returns: Method-specific representation for the inputs. """ @abc.abstractmethod def primitive_transform( self, context: TransformContext[FwdRepr], primitive: Primitive, *args: LayerInput[FwdRepr], **params, ) -> FwdRepr: """Applies the given primitive operation to its arguments' representations. Args: context: Transform context containing node index. primitive: Primitive Jax operation to transform. *args: Arguments of the primitive. Arguments are expressed as method-specific representations if they have any dependence on the network's original inputs, or tensors otherwise. **params: Keyword arguments of the primitive. Returns: Method-specific representation for the operation's output. """ def should_handle_as_subgraph(self, primitive: Primitive) -> bool: """Returns whether the primitive should be handled via its sub-graph. If not, it will be handled by treating it as a single primitive. This function is intended to be overridden. The default implementation specifies that all synthetic primitives are to be handled as primitives. Args: primitive: Primitive Jax operation to transform. Returns: Whether to handle as a single primitive, as opposed to recursively processing the sub-graph's child nodes. """ return primitive in synthetic_primitives.SUBGRAPH_PRIMITIVES def equation_transform( self, context: TransformContext[FwdRepr], primitive: Primitive, *args: LayerInput[FwdRepr], **params, ) -> Sequence[FwdRepr]: """Applies the given primitive operation to its arguments' representations. By default this invokes `primitive_transform()` which will be overridden for primitive-specific behaviour. However, this function consults `context.subgraph_handler` allowing primitive-specific customisation of sub-graph handling. Args: context: Transform context containing node index. primitive: Primitive Jax operation to transform. *args: Arguments of the primitive. Arguments are expressed as method-specific representations if they have any dependence on the network's original inputs, or tensors otherwise. **params: Keyword arguments of the primitive. Returns: Method-specific representation for the operation's outputs. """ if self.should_handle_as_subgraph(primitive): subgraph = synthetic_primitives.jax_primitive_subgraph( primitive, **params) return context.subgraph_handler(self, subgraph, *args) # `primitive_transform` is for "regular" single-output primitives. return [self.primitive_transform(context, primitive, *args, **params)] class BackwardGraphTransform(Generic[BackRepr], metaclass=abc.ABCMeta): """Abstract Backward graph propagation method.""" @abc.abstractmethod def primitive_backtransform( self, context: TransformContext[BackRepr], primitive: Primitive, eqn_outval: BackRepr, *args: LayerInput[TransformedNode], **params, ) -> Sequence[Sequence[Optional[BackRepr]]]: """Propagate backward to the `*args` inputs of `primitive`. Args: context: Transform context containing node index. primitive: Primitive Jax operation to transform. eqn_outval: Method-specific representation of the output of the primitive. *args: Arguments of the primitive, as determined by an earlier forward pass. Arguments are expressed in a representation specific to the forward method, NOT `BackRepr`. **params: Keyword arguments of the primitive. Returns: Method-specific representation for the operation's inputs. For each input of the primitive there will be a list of values according to the fan-out of this network node; these will be reduced with the `aggregate`function. The inputs' value lists will each be singleton `[None]` in the case that none of them have any dependence on the network's non-fixed inputs. """ def should_handle_as_subgraph(self, primitive: Primitive) -> bool: """Returns whether the primitive should be handled via its sub-graph. If not, it will be handled by treating it as a single primitive. This function is intended to be overridden. The default implementation specifies that all synthetic primitives are to be handled as primitives. Args: primitive: Primitive Jax operation to transform. Returns: Whether to handle as a single primitive, as opposed to recursively processing the sub-graph's child nodes. """ return primitive in synthetic_primitives.SUBGRAPH_PRIMITIVES def equation_backtransform( self, context: TransformContext[BackRepr], primitive: Primitive, eqn_outval: BackRepr, *args: LayerInput[BackRepr], **params, ) -> Sequence[Sequence[Optional[BackRepr]]]: """Applies the given primitive operation to its arguments' representations. Normally this invokes `primitive_backtransform()` which will be overridden for primitive-specific behaviour. However, as can be customised in `should_handle_as_subgraph`, this may decide instead to process the subgraph's child nodes recursively. Args: context: Transform context containing node index. primitive: Primitive Jax operation to transform. eqn_outval: Backward representation of the output of the primitive. *args: Arguments of the primitive. Arguments need to either be a bound or a tensor if they do not depend on the input. **params: Keyword arguments of the primitive. Returns: Method-specific representation for each of the operation's input, or None if the input is a Tensor. """ if self.should_handle_as_subgraph(primitive): subgraph = synthetic_primitives.jax_primitive_subgraph( primitive, **params) return context.subgraph_handler(self, subgraph, eqn_outval) return self.primitive_backtransform( context, primitive, eqn_outval, *args, **params) @abc.abstractmethod def aggregate(self, eqn_outvals: Sequence[BackRepr]) -> BackRepr: """Aggregate the representations coming from different branches.""" class PrimitiveBacktransformFn(typing_extensions.Protocol, Generic[BackRepr]): def __call__( self, outval: BackRepr, *args: LayerInput[TransformedNode], **params, ) -> Sequence[Optional[BackRepr]]: pass class BackwardOpwiseTransform(BackwardGraphTransform[BackRepr]): """Backward Propagation method defined by functions for each primitive op.""" def __init__( self, primitive_backtransform: Mapping[Primitive, PrimitiveBacktransformFn], aggregation_fun: Callable[[Sequence[BackRepr]], BackRepr]): self._primitive_backtransform = primitive_backtransform self._aggregation_fun = aggregation_fun def primitive_backtransform( self, context: TransformContext[BackRepr], primitive: Primitive, eqn_outval: BackRepr, *args: LayerInput[TransformedNode], **params, ) -> Sequence[Sequence[Optional[BackRepr]]]: if primitive not in self._primitive_backtransform: raise NotImplementedError(f'Unknown Primitive: {primitive}.') del context params = synthetic_primitives.filter_jaxverify_kwargs(params) # Promote each output to a single-length list. # This is for consistency with the sub-graph handler, in which output is # returned as a list according to the multiple paths through the graph. return list(zip(self._primitive_backtransform[primitive]( eqn_outval, *args, **params))) def should_handle_as_subgraph(self, primitive: Primitive) -> bool: if (isinstance(primitive, synthetic_primitives.FakePrimitive) and primitive not in self._primitive_backtransform): return True return super().should_handle_as_subgraph(primitive) def aggregate(self, eqn_outvals: Sequence[BackRepr]) -> BackRepr: """Aggregate the representations coming from different branches.""" return self._aggregation_fun(eqn_outvals) class OpwiseGraphTransform(GraphTransform[FwdRepr]): """Bound propagation method defined by functions for each primitive op.""" def __init__( self, input_transform: Callable[[InputBound], FwdRepr], primitive_transform: Mapping[ Primitive, ArgsKwargsCallable[LayerInput[FwdRepr], FwdRepr]]): self._input_transform = input_transform self._primitive_transform = primitive_transform def input_transform( self, context: TransformContext[FwdRepr], input_bound: InputBound, ) -> FwdRepr: del context return self._input_transform(input_bound) def primitive_transform( self, context: TransformContext[FwdRepr], primitive: Primitive, *args: LayerInput[FwdRepr], **params, ) -> FwdRepr: if primitive not in self._primitive_transform: raise NotImplementedError(f'Unknown Primitive: {primitive}') del context params = synthetic_primitives.filter_jaxverify_kwargs(params) return self._primitive_transform[primitive](*args, **params) def should_handle_as_subgraph(self, primitive: Primitive) -> bool: if (isinstance(primitive, synthetic_primitives.FakePrimitive) and primitive not in self._primitive_transform): return True return super().should_handle_as_subgraph(primitive) class UpdatedGraphTransform(GraphTransform[FwdRepr]): """Graph transform with a base transform and updated primitive transform.""" def __init__( self, base_transform: GraphTransform[FwdRepr], updated_primitive_transform: Mapping[ Primitive, ArgsKwargsCallable[LayerInput[FwdRepr], FwdRepr]]): self._base_transform = base_transform self._updated_primitive_transform = updated_primitive_transform def input_transform( self, context: TransformContext[FwdRepr], input_bound: InputBound, ) -> FwdRepr: return self._base_transform.input_transform(context, input_bound) def primitive_transform( self, context: TransformContext[FwdRepr], primitive: Primitive, *args: LayerInput[FwdRepr], **params, ) -> FwdRepr: if primitive in self._updated_primitive_transform: return self._updated_primitive_transform[primitive]( context.index, *args, **params) return self._base_transform.equation_transform( context, primitive, *args, **params)[0] def should_handle_as_subgraph(self, primitive: Primitive) -> bool: if (isinstance(primitive, synthetic_primitives.FakePrimitive) and primitive not in self._updated_primitive_transform): return True return self._base_transform.should_handle_as_subgraph(primitive) JaxVar = Union[jax.core.Var, jax.core.Literal] class IndexCounter: """Maintains and navigates a path consisting of integers.""" def __init__(self, initial_index: Optional[Index] = None): self._index = [0] if initial_index is None else list(initial_index) def incr(self): self._index[-1] += 1 def decr(self): self._index[-1] -= 1 def begin_child(self, initial_index: int = 0): self._index.append(initial_index) def end_child(self): del self._index[-1] def child_index(self) -> int: return self._index[-1] def as_tuple(self) -> Index: return tuple(self._index) def read_env( env: Mapping[jax.core.Var, LayerInput[Repr]], var: JaxVar, ) -> LayerInput[Repr]: """Read the value from the environment.""" if isinstance(var, jax.core.Literal): # Literals are values baked into the Jaxpr, e.g. ReLU's '0' arg to 'max'. return var.val else: val = env[var] if isinstance(val, list): return [elt for elt in val if elt is not None] else: return val class PropagationGraph: """Holds a computational graph and the environment holding the variables. """ def __init__(self, graph: jax.core.Jaxpr, literals: Sequence[Tensor]): self._graph = graph self._literals = literals self._index_to_node: MutableMapping[Index, jax.core.Var] = {} self._last_index = None @property def inputs(self) -> Sequence[jax.core.Var]: return self._graph.invars @property def outputs(self) -> Sequence[jax.core.Var]: return [outvar for outvar in self._graph.outvars if isinstance(outvar, jax.core.Var)] def jaxpr_node(self, index: Index) -> jax.core.Var: return self._index_to_node[index] @property def indices(self) -> Sequence[Index]: return list(self._index_to_node.keys()) def forward_propagation( self, transform: GraphTransform[FwdRepr], bounds: Nest[GraphInput], ) -> Tuple[Nest[FwdRepr], Mapping[jax.core.Var, LayerInput[FwdRepr]]]: """Performs forward propagation on the parsed computation graph. This is accomplished by traversing the JaxPR representation of the computation and translating the computational graph, using the `primitive_transform` replacement for each jax primitive. Args: transform: Basic Jax primitive ops' equivalents for operating on the representation (e.g. bound propagation). bounds: Nest of `InputBound` objects containing the bounds on all the inputs, or `Tensor`s containing known inputs directly. Returns: outvals: Propagated values corresponding to the graph output. env: Dictionary holding the computed bounds on nodes of the graph. """ # Initialize the environment based on the provided bounds. env = {} is_bound = lambda b: isinstance(b, InputBound) flat_bounds, _ = jax.tree_util.tree_flatten(bounds, is_leaf=is_bound) invals = [] index = IndexCounter() for bound, invar in zip(flat_bounds, self._graph.invars): if is_bound(bound): input_val = transform.input_transform( TransformContext(index.as_tuple(), None), bound) self._index_to_node[index.as_tuple()] = invar index.incr() else: # Input is a fixed tensor. input_val = bound invals.append(input_val) env.update(zip(self._graph.invars, invals)) env.update(zip(self._graph.constvars, self._literals)) for eqn in self._graph.eqns: self._forward_prop_eqn(transform, env, index, eqn) self._last_index = index.as_tuple() outvals = jax.tree_util.tree_map( functools.partial(read_env, env), self._graph.outvars) return outvals, env def _forward_prop_eqn( self, transform: GraphTransform[FwdRepr], env: MutableMapping[jax.core.Var, LayerInput[FwdRepr]], index: IndexCounter, eqn: jax.core.JaxprEqn): """Recursive step of `forward_propagation`.""" def subgraph_handler( sub_transform: GraphTransform[FwdRepr], sub_graph: jax.core.Jaxpr, *invals: LayerInput[FwdRepr], ) -> Sequence[LayerInput[FwdRepr]]: assert len(invals) == len(sub_graph.invars) == len(eqn.invars) if sub_transform is transform: # We must use the same environment, so that transformed equations # in the sub-graph are included in it. assert all(read_env(env, invar) is inval for invar, inval in zip(eqn.invars, invals)) invals = [read_env(env, invar) for invar in eqn.invars] sub_env = env else: # We must leave the environment intact, because it contains # equations transformed by a different transformer. # Set up a new environment. sub_env = {} # Add the sub-graph's inputs to the environment. sub_env.update({ sub_invar: inval for sub_invar, inval in zip(sub_graph.invars, invals) if isinstance(sub_invar, jax.core.Var)}) # Recursively propagate through the sub-graph. index.begin_child() try: for sub_eqn in sub_graph.eqns: self._forward_prop_eqn(sub_transform, sub_env, index, sub_eqn) finally: index.end_child() # Associate the sub-graph's outputs with the enclosing equation outputs. return [read_env(sub_env, sub_outvar) for sub_outvar in sub_graph.outvars] eqn_invars_vals = jax.tree_util.tree_map( functools.partial(read_env, env), eqn.invars) idx = index.as_tuple() if (eqn.primitive in synthetic_primitives.SUBGRAPH_PRIMITIVES or synthetic_primitives.always_make_node(eqn.primitive) or any(isinstance(inval, TransformedNode) for inval in eqn_invars_vals)): if len(eqn.outvars) == 1: if (idx in self._index_to_node and self._index_to_node[idx] != eqn.outvars[0]): raise ValueError('A node with this index pointing to another Node' 'already exists.') eqn_outvals = transform.equation_transform( TransformContext(idx, subgraph_handler), eqn.primitive, *eqn_invars_vals, **eqn.params) if len(eqn.outvars) == 1: self._index_to_node[idx] = eqn.outvars[0] else: # No dependence on the network's inputs. eqn_outvals = eqn.primitive.bind(*eqn_invars_vals, **eqn.params) # `bind` usually emits a tensor, but sometimes a list. # This may even be of length one, for example in the case of `sort_p`. if not isinstance(eqn_outvals, list): assert len(eqn.outvars) == 1 eqn_outvals = [eqn_outvals] index.incr() env.update({ outvar: outval for outvar, outval in zip(eqn.outvars, eqn_outvals)}) def _propagate_backward( self, transform: BackwardGraphTransform[BackRepr], forward_env: Mapping[jax.core.Var, LayerInput[TransformedNode]], backward_env: MutableMapping[jax.core.Var, List[BackRepr]], target_indices: Sequence[Index], ) -> Tuple[ Sequence[Optional[BackRepr]], Mapping[jax.core.Var, Sequence[BackRepr]]]: """Performs backward propagation on the parsed computational graph. Args: transform: Backward Transformation to implement reverse bound propagation. forward_env: Environment providing bounds over the nodes of the network, as obtained by a forward propagation. backward_env: Backward environment to hold the bounds being propagated backward. target_indices: Indices of the nodes for which we want to obtain backward bounds. Returns: targets: Propagated values corresponding to the required target_indices. backward_env: Backward environment holding the bounds being propagated backward. """ index = IndexCounter(self._last_index) limit_index = sorted(target_indices)[0] for eqn in reversed(self._graph.eqns): self._backward_prop_eqn(transform, forward_env, backward_env, index, eqn) if index.as_tuple() <= limit_index: break targets = [] for target_idx in target_indices: node_ref = self._index_to_node[target_idx] if node_ref in backward_env: targets.append(transform.aggregate(read_env(backward_env, node_ref))) else: targets.append(None) return targets, backward_env def backward_propagation( self, transform: BackwardGraphTransform[BackRepr], forward_env: Mapping[jax.core.Var, LayerInput[TransformedNode]], backward_bounds: Mapping[jax.core.Var, BackRepr], target_indices: Sequence[Index], ) -> Tuple[ Sequence[Optional[BackRepr]], Mapping[jax.core.Var, Sequence[BackRepr]]]: """Performs backward prop from an intermediate node up to target nodes. Args: transform: Backward Transformation to implement reverse bound propagation. forward_env: Environment providing bounds over the nodes of the network, as obtained by a forward propagation. backward_bounds: Dict mapping the initial bounds that we want to propagate backward. target_indices: Indices of the nodes in the graph that we want to reach. It is the responsibility of the caller to ensure that valid bounds can be derived with only these bounds. Returns: targets: Propagated values corresponding to the required target_indices. """ backward_env = collections.defaultdict(list) for node_ref, node_out in backward_bounds.items(): backward_env[node_ref].append(node_out) return self._propagate_backward(transform, forward_env, backward_env, target_indices) def _backward_prop_eqn( self, transform: BackwardGraphTransform[BackRepr], forward_env: Mapping[jax.core.Var, LayerInput[TransformedNode]], backward_env: MutableMapping[jax.core.Var, List[BackRepr]], index: IndexCounter, eqn: jax.core.JaxprEqn): """Recursive step of `backward_propagation`.""" def subgraph_handler( sub_transform, sub_graph, outval: BackRepr, ) -> Sequence[Sequence[BackRepr]]: assert len(eqn.outvars) == 1 if outval is not None: # If we are actually backpropagating something, update the backward # environment correctly. outvals = [outval] if sub_transform is transform: # We must use the same environment, so that transformed equations # in the sub-graph are included in it. outvals = [read_env(backward_env, outvar) for outvar in eqn.outvars] else: # We must leave the environment intact, because it contains # equations transformed by a different transformer. # Set up a new environment. raise NotImplementedError( 'Upstream backward transform attempting to process a sub-graph ' 'that was not processed by the principal backward transform.') # Add the sub-graph's outputs to the environment. backward_env.update({ # pytype: disable=container-type-mismatch # jax-ndarray sub_outvar: outval for sub_outvar, outval in zip(sub_graph.outvars, outvals)}) # Recursively back-propagate through the sub-graph. index.begin_child(len(sub_graph.eqns)) try: for sub_eqn in reversed(sub_graph.eqns): self._backward_prop_eqn(transform, forward_env, backward_env, index, sub_eqn) if index.child_index() != 0: raise ValueError('Forward/backward indexing mismatch') finally: index.end_child() # Associate the sub-graph's inputs with the enclosing equation inputs. # However, if it's a synthetic primitive, then its input variables _are_ # the sub-graph's input variables (no proxying with `_Ref`); # in this case just return empty lists because the input vars have already # received their back-propagated values during sub-graph traversal. eqn_invals = [ [] if sub_invar is invar else read_env(backward_env, sub_invar) for sub_invar, invar in zip(sub_graph.invars, eqn.invars)] return eqn_invals # Decrement the index to match the indexing in the forward propagation. index.decr() if all(not isinstance(read_env(forward_env, outvar), TransformedNode) for outvar in eqn.outvars): # None of the outputs are bounds, which means that there is no dependency # on the network's bound inputs. eqn_invals = [[None] for _ in eqn.invars] elif len(eqn.outvars) == 1: # If there is only a single output and it's a bound, perform backward # transformation if eqn.outvars[0] != self._index_to_node[index.as_tuple()]: raise ValueError('Forward/backward indexing mismatch') # Check if a repr is being propagated backward through this primitive. repr_on_outvar = eqn.outvars[0] in backward_env eqn_outval = None if repr_on_outvar: # Get the BackReprs on the outvar so that we can ensure that it's not # just an empty list. outvar_reprs = read_env(backward_env, eqn.outvars[0]) if outvar_reprs: eqn_outval = transform.aggregate(outvar_reprs) if (eqn_outval is not None or transform.should_handle_as_subgraph(eqn.primitive)): # The two cases where we want to recurse into the primitives are: # - If we have something to propagate backward on the output of the # primitive (so eqn_outval is not None) # - If this primitive should be handled as a subgraph, because the # backward_env might contain something to backpropagate on the # intermediate nodes. eqn_invars_vals = jax.tree_util.tree_map( functools.partial(read_env, forward_env), eqn.invars) eqn_invals = transform.equation_backtransform( TransformContext(index.as_tuple(), subgraph_handler), eqn.primitive, eqn_outval, *eqn_invars_vals, **eqn.params) else: # If we do not propagate backward through this primitive, we do not want # to fill the backward_env with dummy None variables. This way the # parents of this bound will also not be executed unless a backward # bound was defined on them. eqn_invals = [] else: # This multi output primitive produces a bound, which is not # supported yet. raise NotImplementedError('Multiple outputs primitives are not ' 'supported.') for in_var, in_val in zip(eqn.invars, eqn_invals): # If it's a literal, there are no updates to perform. if not isinstance(in_var, jax.core.Literal): backward_env[in_var].extend(in_val)
jax_verify-master
jax_verify/src/graph_traversal.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bound with L1 constraints.""" import jax from jax import numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import opt_utils from jax_verify.src.types import Tensor class SimplexIntervalBound(bound_propagation.IntervalBound): """Represent a bound for which we have a constraint on the sum of coordinates. Each coordinate is subject to interval constraints, and the sum of all coordinates must be equal to a given value. """ def __init__(self, lower_bound: Tensor, upper_bound: Tensor, simplex_sum: float): super(SimplexIntervalBound, self).__init__(lower_bound, upper_bound) self._simplex_sum = simplex_sum @property def simplex_sum(self) -> float: return self._simplex_sum @classmethod def from_jittable( cls, jittable_simplexint_bound: bound_propagation.JittableInputBound ) -> 'SimplexIntervalBound': return cls(jittable_simplexint_bound.lower, jittable_simplexint_bound.upper, jittable_simplexint_bound.kwargs['simplex_sum']) def to_jittable(self) -> bound_propagation.JittableInputBound: return bound_propagation.JittableInputBound( self.lower, self.upper, {SimplexIntervalBound: None}, {'simplex_sum': self.simplex_sum}) def project_onto_bound(self, tensor: Tensor) -> Tensor: return opt_utils.project_onto_interval_simplex(self.lower, self.upper, self.simplex_sum, tensor) def concretize_linear_function_simplexinterval_constraints( linexp, input_bound: SimplexIntervalBound) -> Tensor: """Compute the lower bound of a linear function under Simplex constraints.""" solve_lin = jax.vmap(opt_utils.fractional_exact_knapsack, in_axes=(0, None, None, None)) # We are maximizing -lin_coeffs*x in order to minimize lin_coeffs*x neg_sum_lin_bound = solve_lin(-linexp.lin_coeffs, input_bound.simplex_sum, input_bound.lower, input_bound.upper) return linexp.offset - neg_sum_lin_bound def concretizing_input_simplexinterval_constraints( linexp, input_bound: SimplexIntervalBound) -> Tensor: """Compute the input that achieves the lower bound of a linear function.""" flat_lower = jnp.reshape(input_bound.lower, (-1,)) flat_upper = jnp.reshape(input_bound.upper, (-1,)) flat_lin_coeffs = jnp.reshape(linexp.lin_coeffs, (-1, flat_lower.size)) def single_linexpr_concretizing_inp(coeffs): _, sorted_lower, sorted_upper, sorted_idx = jax.lax.sort( (coeffs, flat_lower, flat_upper, jnp.arange(coeffs.size)), num_keys=1) sorted_assignment = opt_utils.sorted_knapsack(sorted_lower, sorted_upper, input_bound.simplex_sum, backward=False) # This is a cute trick to avoid using a jnp.take_along_axis, which is # usually quite slow, particularly on TPU, when you do permutation. # jax.lax.sort can take multiple arguments, and will sort them according # to the ordering of the first tensor. # When we did the sorting of the weights, we also sorted the index of each # coordinate. By sorting by it, we will recover the initial ordering. _, assignment = jax.lax.sort((sorted_idx, sorted_assignment), num_keys=1) return assignment flat_conc_input = jax.vmap(single_linexpr_concretizing_inp)(flat_lin_coeffs) return jnp.reshape(flat_conc_input, linexp.lin_coeffs.shape)
jax_verify-master
jax_verify/src/simplex_bound.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define convex relaxations for primitives.""" import dataclasses import functools from typing import Callable, Mapping, Optional, Sequence, Tuple, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import mccormick from jax_verify.src import opt_utils from jax_verify.src import simplex_bound from jax_verify.src import synthetic_primitives from jax_verify.src import utils from jax_verify.src.types import Primitive, Tensor, TensorFun # pylint: disable=g-multiple-import import typing_extensions def posbilinear_piecewise_linear_relaxation( inp_x: bound_propagation.Bound, inp_y: bound_propagation.Bound, **params): """Piecewise linear relaxation of a Positive Bilinear primitive. This uses pairwise interpolations of the McCormick inequalities. For x in [x_l, x_u] and y in [y_l, y_u], the bound imposed are: x·y >= x·y_l + x_l·y - x_l·y_l x·y >= x·y_u + x_h·y - x_h·y_u x·y <= x·y_u + x_l·y - x_l·y_u x·y <= x·y_l + x_u·y - x_l·y_u Args: inp_x: Bounds on the first input. inp_y: Bounds on the second input. **params: Keywords parameters, notably containing the `jax_verify_subgraph` that defines the bilinear primitive. Returns: lb_funs: Pair of linear lower-bounding functions. ub_funs: Pair of linear upper-bounding functions. """ lb_fun0, lb_fun1, ub_fun0, ub_fun1 = ( mccormick.posbilinear_mccormick_relaxations( functools.partial(synthetic_primitives.posbilinear_p.bind, **params), inp_x.lower, inp_x.upper, inp_y.lower, inp_y.upper)) return (lb_fun0, lb_fun1), (ub_fun0, ub_fun1) def fused_relu_relaxation(linear_out: bound_propagation.Bound, *linear_inps: bound_propagation.LayerInput, **params): """Performs the relaxation of a Fused ReLU primitive. Args: linear_out: Output of a linear primitive, input to the ReLU. *linear_inps: Inputs to the linear layer that produced linear_out. **params: Params of the Fused Relu operation, mainly the jaxpr defining it. Returns: lb_fun, ub_fun """ del linear_out # Check that we can handle the primitive that we have been given. subgraph = params['jax_verify_subgraph'] lin_eqn = params['jax_verify_fusedlinear'] # Ensure that we have the expected structure. assert len(subgraph.eqns) == 1 relu_eqn = subgraph.eqns[0] assert relu_eqn.primitive is synthetic_primitives.relu_p assert relu_eqn.invars[0] is lin_eqn.outvars[0] # Get the linear part isolated bound_args = [(i, arg) for i, arg in enumerate(linear_inps) if isinstance(arg, bound_propagation.Bound)] # Ensure that we have a single bound input. assert len(bound_args) == 1 bound_arg_index, bound_arg = bound_args[0] # The input to the ReLU is always going to be an intermediate value, by # construction, so the inputs to the lin_eqn are the same as the input # to the fused_relu. bound_linear_fun = utils.bind_nonbound_args(lin_eqn.primitive.bind, *linear_inps, **lin_eqn.params) def flat_bound_linear_fun(flat_inp): inp = jnp.reshape(flat_inp, bound_arg.shape) out = bound_linear_fun(inp) return jnp.ravel(out) zero_bound_inp = jnp.zeros(bound_arg.shape) flat_zero_bound_inp = jnp.ravel(zero_bound_inp) flat_lbs = jnp.ravel(bound_arg.lower) flat_ubs = jnp.ravel(bound_arg.upper) flat_lin_weight = jax.jacrev(flat_bound_linear_fun)(flat_zero_bound_inp) lin_bias = bound_linear_fun(zero_bound_inp) flat_lin_bias = jnp.ravel(lin_bias) lb_fun = functools.partial(synthetic_primitives.fused_relu_p.bind, **params) if True: # Define the relaxation of the Fused ReLU over a hypercube - interval bound. single_neuron_ub_fun = alt_fused_relu_hypercube_upper_bound( flat_lbs, flat_ubs ) flat_param_ub_fun = jax.vmap(single_neuron_ub_fun, in_axes=(0, 0, None)) flat_ub_fun = functools.partial(flat_param_ub_fun, flat_lin_weight, flat_lin_bias) def ub_fun(linear_out, *linear_inps): del linear_out # Find the input corresponding to the bound input to the linear. bound_inp = linear_inps[bound_arg_index] flat_bound_inp = jnp.ravel(bound_inp) flat_upper_bound = flat_ub_fun(flat_bound_inp) return jnp.reshape(flat_upper_bound, lin_bias.shape) return lb_fun, ub_fun def fused_relu_ubfun( bound: graph_traversal.InputBound ) -> Callable[[Tensor, Tensor, Tensor, Tensor], Tensor]: """Get the function upper bounding a ReLU still parameterized by z.""" if True: _, solve_given_z = fused_relu_hypercube_upper_bound( bound.lower.flatten(), bound.upper.flatten()) return solve_given_z def alt_fused_relu_hypercube_upper_bound( flat_lbs: Tensor, flat_ubs: Tensor ) -> Callable[[Tensor, Tensor, Tensor], Tensor]: """Performs the relaxation of the FusedReLU over an hypercube. This is based on the algorithm described in: " The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification " Args: flat_lbs: Tensor of flattened lower bounds. flat_ubs: Tensor of flattened upper bounds. Returns: ub_fun: Function computing the concave upper bound of a fused relu when given the coefficient of a linear function, the bias, and the point at which to evaluate the upper bound. """ def ub_fun(coeffs: Tensor, bias: float, x: Tensor) -> float: # Let's define l_cup and u_cup. # l_cup contains the bound value that each neuron should be at when we want # to achieve the lowest possible value after the linear layer. # u_cup contains the value when we want to achieve the highest values. l_cup = jnp.where(coeffs >= 0, flat_lbs, flat_ubs) u_cup = flat_lbs + flat_ubs - l_cup # We define the value L(I) to be # sum_{i in I} w_i l_cup(i) + sum_{i not in I} w_i u_cup(i) + b # This corresponds to the value at a specific vertex of the input domain to # the fused relu. # Computing an upper bound requires to find a set I such that: # L(I) >= 0 # and L(I + {h}) < 0 # The corresponding bound is given by: # (a) sum_{i in I} w_i (x_i - l_cup(i)) # (b) + L(I) * (x_h - l_cup(h)) / (u_cup(h) - l_cup(h)) # We compute scores that indicate to us in which order we are going to add # elements to the set I. This is based on (x - l_cup) / (u_cup - l_cup), but # we are also putting all the elements with weights = 0 at the end. # We also need to be careful for the cases where u_cup is equal to l_cup, in # which case the input has no impact on L(I), on score(h) or on the bound. # Proposition 1-2 in the paper explain why this is the right order to get # the tightest bound. tied_bounds = jnp.abs(u_cup - l_cup) < 1e-6 safe_denom = jnp.where(tied_bounds, 1., u_cup - l_cup) scores = (x - l_cup) / safe_denom no_zw_scores = jnp.where((coeffs == 0.) | tied_bounds, jnp.inf, scores) # We are going to compute the L(I) as a function of the number of elements # that we have added into the I set so far, based on the order given by # `score_order`. # ini_li is equivalent to computing the upper bound with IBP. This # corresponds to an empty set I. ini_li = jnp.sum(u_cup * coeffs) + bias # li_inc is how much you change l_i by adding a given variable to the I set. # It is necessarily negative, (because we switch from a positive # contribution to a negative contribution.) li_inc = coeffs * (l_cup - u_cup) # w_xml is the contribution of a given variable to the evaluated bound if it # is in the I set. w_xml = coeffs * (x - l_cup) # Compute all the reorganized arrays together to avoid having to do costly # take_along_axis operations. scores_sorted, li_inc_sorted, wxml_sorted = jax.lax.sort( [no_zw_scores, li_inc, w_xml], num_keys=1) li_end = ini_li + jnp.cumsum(li_inc_sorted) # This is L(I) from which we are progressively going to take. We need to # remove the contribution so that index=0 actually corresponds to the set I # with 0 elements. li = li_end - li_inc_sorted # iopt is the index just before h, the last index for which L(I) is > 0. # As L(I) is strictly decreasing, this will be a one-hot vector. i_opt_mask = jnp.diff(li <= 0., append=jnp.array([True])) # Similarly as for the L(I) computation, we remove the increment from the # cumsum so that we represent correctly the case where I is empty acced_sorted_wxml = jnp.cumsum(wxml_sorted) - wxml_sorted # Let's now compute the corresponding bound, as described above. We will # use the i_opt_mask to select the correct values. a_part = acced_sorted_wxml b_part = li * scores_sorted relaxation_upper_bound = ((a_part + b_part) * i_opt_mask).sum() # The relaxation computed so far is only valid if the ReLU is ambiguous. # In the other cases, we now exactly the values of the output bound. ibp_ub = ini_li ibp_lb = jnp.sum(l_cup * coeffs) + bias pass_through = jnp.sum(x * coeffs) + bias upper_bound = jnp.where(ibp_lb > 0., pass_through, jnp.where(ibp_ub < 0., 0., relaxation_upper_bound)) return upper_bound return ub_fun # pytype: disable=bad-return-type # jax-ndarray def fused_relu_hypercube_upper_bound( flat_lbs: Tensor, flat_ubs: Tensor ) -> Tuple[Callable[[Tensor, Tensor, Tensor], Tensor], Callable[[Tensor, Tensor, Tensor, Tensor], Tensor]]: """Performs the relaxation of the FusedReLU over an hypercube. This corresponds to the upper bound obtained based on the Sharp formulation, as described in Equation (1) of the "Bounds for Verified Compressed Sensing" document. We return two upper bounds because there exists two different settings: - If the fused ReLU is defined only over a hypercube, we can use the first bound as we know how to efficiently maximize over z. - If the fused ReLU is defined over a product of domains, the problem is more complex. We need to optimize z based on the maximization produced by *all* the domains, so we need to return the un-optimized (over z) bound, so that we can construct the overall bound function. Args: flat_lbs: Tensor of flattened lower bounds. flat_ubs: Tensor of flattened upper bounds. Returns: ub_fun: Concave upper bound operating on the flattened input to the FusedReLU. solve_given_z: Upper bound over the output of the ReLU which is still dependent on z. """ bound_gap = flat_ubs - flat_lbs def solve_given_z(coeffs: Tensor, bias: float, x: Tensor, z: float): alpha_equal_w_case = (coeffs * x + (1 - z) * (jnp.maximum(-coeffs, 0) * bound_gap - coeffs * flat_lbs)) alpha_equal_0_case = z * (jax.nn.relu(coeffs) * bound_gap + coeffs * flat_lbs) return jnp.minimum(alpha_equal_w_case, alpha_equal_0_case).sum() + bias * z eval_all_z = jax.vmap(solve_given_z, in_axes=(None, None, None, 0)) def single_neuron_ub_fun(coeffs, bias, x): ibp_upper = (jnp.maximum(coeffs, 0) * flat_ubs + jnp.minimum(coeffs, 0) * flat_lbs) ibp_lower = (jnp.maximum(coeffs, 0) * flat_lbs + jnp.minimum(coeffs, 0) * flat_ubs) ibp_bound_gap = ibp_upper - ibp_lower safe_gap = jnp.where(ibp_bound_gap != 0., ibp_bound_gap, 1.) possible_z = (coeffs * x - ibp_lower) / safe_gap possible_z = jnp.concatenate((possible_z, jnp.array([0., 1.]))) vals_all_z = eval_all_z(coeffs, bias, x, possible_z) return jnp.max(vals_all_z) return single_neuron_ub_fun, solve_given_z # pytype: disable=bad-return-type # jax-ndarray def convex_fn_relaxation( primitive: Primitive, *args: Union[bound_propagation.Bound, Tensor], **params) -> Tuple[TensorFun, TensorFun]: """Relaxation of an element-wise convex primitive. Args: primitive: Convex primitive to relax. *args: Inputs to the convex function: bounds on the input, unnamed params. **params: Params of the convex operation, mainly the jaxpr defining it. Returns: lb_fun, ub_fun """ prim_fun = utils.bind_nonbound_args(primitive.bind, *args, **params) inp, = [arg for arg in args if isinstance(arg, bound_propagation.Bound)] x_lb, x_ub = inp.lower, inp.upper y_lb, y_ub = prim_fun(x_lb), prim_fun(x_ub) has_interval = x_ub != x_lb denom = jnp.where(has_interval, x_ub - x_lb, jnp.ones_like(x_lb)) chord_slope = jnp.where( has_interval, (y_ub - y_lb) / denom, jnp.zeros_like(x_lb)) chord_intercept = jnp.where( has_interval, (y_lb * x_ub - y_ub * x_lb) / denom, y_lb) chord_fun = lambda x: chord_slope * x + chord_intercept return prim_fun, chord_fun def relu_piecewise_linear_relaxation(inp: bound_propagation.Bound) -> Tuple[ Tuple[TensorFun, TensorFun], Tuple[TensorFun]]: """Piecewise linear relaxation of the ReLU function. Args: inp: Bound on the inputs to the ReLU. Returns: lb_funs: Pair of linear lower-bounding functions. ub_funs: Linear upper-bounding function. """ lb_fun0 = jnp.zeros_like lb_fun1 = lambda x: x _, chord_fun = convex_fn_relaxation(synthetic_primitives.relu_p, inp) return (lb_fun0, lb_fun1), (chord_fun,) def leaky_relu_piecewise_linear_relaxation( inp: bound_propagation.Bound, *, negative_slope: float, ) -> Tuple[Sequence[TensorFun], Sequence[TensorFun]]: """Piecewise linear relaxation of the leaky ReLU. Depending on how negative_slope compares to 1.0, the leaky_relu function is going to either be convex or concave. The other function is going to be given by its chord. Args: inp: Bounds on the leaky ReLU input. negative_slope: Slope for negative inputs. Returns: lb_funs: Pair of linear lower-bounding functions (or single function if negative_slope > 1). ub_funs: Linear upper-bounding function (or pair if negative_slope > 1). """ lr_fun0 = lambda x: negative_slope * x lr_fun1 = lambda x: x _, chord_fun = convex_fn_relaxation( synthetic_primitives.leaky_relu_p, inp, negative_slope=negative_slope) if negative_slope > 1.: # The leaky ReLu is a concave function return (chord_fun,), (lr_fun0, lr_fun1) else: # The leaky Relu is a convex function return (lr_fun0, lr_fun1), (chord_fun,) def cvx_parametric_leaky_relu_pl_relaxation( inp: bound_propagation.Bound, negative_slope: Tensor, ) -> Tuple[Sequence[TensorFun], Sequence[TensorFun]]: """Piecewise linear relaxation of convex (slope < 1) parametric leaky ReLU. NOTE: the relaxation is valid only if the function is convex: jnp.all(negative_slope < 1.) TODO: could be adapted to work for all prelus by returning two lower and upper bounding functions in any case. This would require handling in other places where piecewise_linear_relaxation_fn is employed (e.g., mip_solver/relaxation.py) Args: inp: Bounds on the leaky ReLU input. negative_slope: Slope for negative inputs. Returns: lb_funs: Pair of linear lower-bounding functions. ub_funs: Linear upper-bounding function. """ # All returned functions accept two inputs to comply with the primitive. # The second input (negative_slope) is not used as it's passed in this scope. lr_fun0 = lambda x, y: negative_slope * x lr_fun1 = lambda x, y: x _, chord_fun = convex_fn_relaxation( synthetic_primitives.parametric_leaky_relu_p, inp, negative_slope) # NOTE: assumes the leaky Relu is a convex function (negative_slope < 1) return (lr_fun0, lr_fun1), (lambda x, y: chord_fun(x),) def clip_piecewise_linear_relaxation( inp: bound_propagation.Bound, a_min: float, a_max: float, ) -> Tuple[Sequence[TensorFun], Sequence[TensorFun]]: """Piecewise linear relaxation of the Clipping function. Args: inp: Bounds on the clipped input. a_min: Minimum value imposed on the output. a_max: Maximum value imposed on the output. Returns: lb_funs: Pair of linear lower-bounding functions. ub_funs: Pair of linear upper-bounding functions. """ clip_fun = functools.partial(jnp.clip, a_min=a_min, a_max=a_max) x_lb, x_ub = inp.lower, inp.upper y_lb, y_ub = clip_fun(inp.lower), clip_fun(inp.upper) passing_has_interval = y_ub != y_lb passing_ub_denom = jnp.where(passing_has_interval, y_ub - x_lb, jnp.ones_like(x_lb)) passing_ub_slope = jnp.where(passing_has_interval, (y_ub - y_lb) / passing_ub_denom, jnp.zeros_like(x_lb)) passing_ub_intercept = jnp.where(passing_has_interval, y_lb - passing_ub_slope * x_lb, y_ub) passing_ub = lambda x, *_: passing_ub_slope * x + passing_ub_intercept clipped_ub = lambda x, *_: a_max * jnp.ones_like(x_lb) passing_lb_denom = jnp.where(passing_has_interval, x_ub - y_lb, jnp.ones_like(x_lb)) passing_lb_slope = jnp.where(passing_has_interval, (y_ub - y_lb) / passing_lb_denom, jnp.zeros_like(x_lb)) passing_lb_intercept = jnp.where(passing_has_interval, y_lb * (1 - passing_lb_slope), y_lb) passing_lb = lambda x, *_: passing_lb_slope * x + passing_lb_intercept clipped_lb = lambda x, *_: a_min * jnp.ones_like(x_lb) return (clipped_lb, passing_lb), (passing_ub, clipped_ub) def abs_piecewise_linear_relaxation(inp: bound_propagation.Bound) -> Tuple[ Tuple[TensorFun, TensorFun], Tuple[TensorFun]]: """Piecewise linear relaxation of the abs function. Args: inp: Bound on the inputs to the Abs. Returns: lb_funs: Pair of linear lower-bounding functions. ub_funs: Linear upper-bounding function. """ lb_fun0 = lambda x: -x lb_fun1 = lambda x: x _, chord_fun = convex_fn_relaxation(lax.abs_p, inp) return (lb_fun0, lb_fun1), (chord_fun,) def _find_s_shape_upper_bound_tangent( fun: TensorFun, dfun: TensorFun, approx_tang_pt: TensorFun, range_lb: Tensor, range_ub: Tensor, tol: float) -> Tensor: """Search the point where the concave hull of s-shape fun stops being linear. The concave upper bound of an s-shape function can be several things: - It can be the function itself (if the interval considered is in R+) - It can be linear (If the upper bound is small enough. This is a bit more general that just if the interval is in R-) - It can start linear and at some tangent point become the function. This functions searches for the tangent point. For the other cases, another function would have narrowed the search range such that range_lb = range_ub and we early exit from the loop. This is a combination of a binary search and of the Newton method. Args: fun: Function for which we are trying to find the cutoff. dfun: Derivative of the function for which we are trying to find the cutoff. approx_tang_pt: Approximate solution of the cutoff when the lower bound is large. range_lb: Lower bound of the domain on which to define the convex hull. range_ub: Upper bound of the domain on which to define the convex hull. tol: Tolerance criterion for convergence Returns: final_t: Tangent point at which the concave upper bound of the sigmoid should go from linear to sigmoid. If range_lb == range_ub, that number should be returned. """ flat_range_lb = jnp.reshape(range_lb, (-1,)) flat_range_ub = jnp.reshape(range_ub, (-1,)) # The point that we are looking for is the point where: # dfun(x) = (fun(x) - fun(lb)) / (x - lb) to_root_fun = lambda x, lb: dfun(x) - (fun(x)-fun(lb))/jnp.maximum(x-lb, tol) to_root_val_and_grad = jax.vmap(jax.value_and_grad(to_root_fun)) search_lb = jnp.maximum(flat_range_lb, 0.) search_ub = jnp.maximum(flat_range_ub, 0.) upper_bound_for_large_l = jnp.where(flat_range_lb < -1e3, approx_tang_pt(flat_range_lb), float('inf')) search_ub = jnp.minimum(flat_range_ub, upper_bound_for_large_l) t_k = 0.5 * (search_lb + search_ub) it = jnp.array(0) def body_fun(loop_args): it, t, lb, ub = loop_args new_it = it + 1 f, df = to_root_val_and_grad(t, flat_range_lb) new_lb = jnp.where(f >= 0., jnp.maximum(lb, t), lb) new_ub = jnp.where(f <= 0., jnp.minimum(ub, t), ub) newton_t = t - f / df out_of_bounds_t = (newton_t <= new_lb) | (newton_t >= new_ub) new_t = jnp.where((jnp.abs(df) <= tol) | out_of_bounds_t, 0.5 * (new_lb + new_ub), newton_t) return new_it, new_t, new_lb, new_ub def continue_search(loop_args): it, t, lb, ub = loop_args # Points that have not converged have both # - high value on the difference between average slope and sig derivative # - high value on the gap between upper bound and lower bound # If any one of this criterion is not satisfied, the point has converged. not_converged = ((jnp.abs(to_root_fun(t, flat_range_lb)) >= tol) & ((ub - lb) >= tol)) # We keep searching as long as: # - we don't exceed 100 iterations # - There is at least 1 point that has not converged. return jnp.logical_and(it <= 100, jnp.any(not_converged)) _, final_t, _, _ = jax.lax.while_loop( continue_search, body_fun, (it, t_k, search_lb, search_ub)) final_t = jax.lax.stop_gradient(final_t) # The search that we implemented is only valid when we are looking for the # tangent point in R^+. In case we have called the search function with # negative values, we should recover those. final_t = jnp.clip(final_t, flat_range_lb, flat_range_ub) final_t = jnp.reshape(final_t, range_lb.shape) return final_t def _find_upperbound_s_shape_linear_cutoff( fun: TensorFun, dfun: TensorFun, approx_tang_pt: TensorFun, lbs: Tensor, ubs: Tensor, tol: float ) -> Tensor: """Find the point where the s-shape concave upper bound stops being linear. This function restricts the search space to a single point for the cases where the concave upper bound is simply the function or is fully linear. It then calls the binary search function. Args: fun: Function for which we are trying to find the cutoff. dfun: Derivative of the function for which we are trying to find the cutoff. approx_tang_pt: Approximate solution of the cutoff when the lower bound is lbs: Lower bound of the domain on which to define the convex hull. ubs: Upper bound of the domain on which to define the convex hull. tol: Tolerance for numerical operations Returns: linear_cutoff_pt: Tangent point at which the concave upper bound of the s-shaped function should go from linear to s-shaped function. """ dfun_ub = dfun(ubs) avg_slope = (fun(ubs) - fun(lbs)) / jnp.maximum(ubs - lbs, tol) t_lb = jnp.where((lbs <= 0.) & (dfun_ub >= avg_slope), ubs, lbs) t_ub = jnp.where(lbs >= 0, lbs, ubs) binary_search_fun = functools.partial(_find_s_shape_upper_bound_tangent, fun, dfun, approx_tang_pt, tol=tol) short_circuit_fun = lambda l, u: l linear_cutoff_pt = jax.lax.cond(jnp.all(t_lb == t_ub), short_circuit_fun, binary_search_fun, t_lb, t_ub) return linear_cutoff_pt def s_shape_relaxation( fun: TensorFun, dfun: TensorFun, approx_tang_pt: TensorFun, inp: bound_propagation.Bound, tol: float = 1e-6, ) -> Tuple[TensorFun, TensorFun]: """Perform the relaxation of an S-shape function. See the supplementary materials of https://arxiv.org/pdf/2002.10410.pdf for the derivation. The tricky part is to determine when does the function concave upper bound ( respectively convex lower bound) switch from being linear to being the function itself. We solve the problem of finding where the cutoff point is between those two parts. Args: fun: Function to get the convex hull of, assumed to be s-shape. What this means is that the function is: - Odd (f(-x) = - f(x)) - Monotonically increasing. - The derivative is 0. at -inf and +inf. - The function is convex over R^- and concave over R^+ dfun: Derivative of the function. approx_tang_pt: Upper bound on the position of the tangent point when the lower bound of the domain is very large. inp: Bound on the inputs to the S-shape function. tol: Tolerance criterion Returns: lb_fun, ub_fun """ lbs = inp.lower ubs = inp.upper # Derive the concave upper bound, find where the cutoff is between the linear # part and the s-shaped part up_tangent_point = _find_upperbound_s_shape_linear_cutoff( fun, dfun, approx_tang_pt, lbs, ubs, tol) up_lin_slope = (fun(up_tangent_point) - fun(lbs)) / ( jnp.maximum(up_tangent_point - lbs, tol)) up_lin_offset = fun(up_tangent_point) - up_lin_slope * up_tangent_point def s_shape_upper_concave(x): return jnp.where(jnp.greater_equal(x, up_tangent_point), fun(x), up_lin_slope * x + up_lin_offset) # Derive the convex lower bound, find there the cutoff is between the s-shaped # part and the linear part. By symmetry, we can reuse the upper bound code. neg_low_tangent_point = _find_upperbound_s_shape_linear_cutoff( fun, dfun, approx_tang_pt, -ubs, -lbs, tol) low_tang_point = -neg_low_tangent_point low_lin_slope = (fun(ubs) - fun(low_tang_point)) / ( jnp.maximum(ubs - low_tang_point, tol)) low_lin_offset = fun(low_tang_point) - low_lin_slope * low_tang_point def s_shape_lower_convex(x): return jnp.where(jnp.less_equal(x, low_tang_point), fun(x), low_lin_slope * x + low_lin_offset) return s_shape_lower_convex, s_shape_upper_concave def sigmoid_relaxation(inp: bound_propagation.Bound, tol: float = 1e-6 )->Tuple[TensorFun, TensorFun]: """Perform the relaxation of the sigmoid. See the supplementary materials of https://arxiv.org/pdf/2002.10410.pdf for the derivation. Args: inp: Bound on the inputs to the Sigmoid tol: Tolerance criterion Returns: lb_fun, ub_fun """ sigmoid = jax.nn.sigmoid dsigmoid = lambda x: sigmoid(x) * (1 - sigmoid(x)) # In the case where l is very large (in the negative), we can have an # approximate solution of the tangent point. We can use this to shrink the # search space, making the binary search converge significantly faster. # If lb<-1e3, fun(lb)=0, so we can just solve: # dfun(x) = fun(x) / (x - lb). # <=> fun(X) (1 - fun(x)) = fun(x) / (x - lb) # <=> 1 - fun(x) = 1 / (x - lb) # <=> exp(-x) / (1 + exp(-x)) = 1 / (x - lb) # <=> exp(-x) * (x - lb - 1) = 1 # <=> exp(x) - x = -lb -1 # Given that we know x >=0 for a tangent point, we have exp(x) < - lb - 1 # Therefore the solution is upper bounded by log(-lb-1) # We add some padding (+1) around that value to make sure we are not excluding # a valid solution from the search space. approx_sig_tang = lambda lb: jnp.log(jnp.maximum(-lb - 1., 1.)) + 1. return s_shape_relaxation(sigmoid, dsigmoid, approx_sig_tang, inp, tol) def tanh_relaxation( inp: bound_propagation.Bound, tol: float = 1e-6, ) -> Tuple[TensorFun, TensorFun]: """Perform the relaxation of the hyperbolic tangent. This is an implementation modeled on the convex hull of the sigmoid. Args: inp: Bound on the inputs to the hyperbolic tangent. tol: Tolerance criterion Returns: lb_fun, ub_fun """ tanh = jax.nn.tanh dtanh = lambda x: 1 - tanh(x)**2 # In the case where l is very large, in the negative, we can have an # approximate solution. # If lb <-1e3, fun(lb) = -1 # dfun(x) = (fun(x) + 1) / (x - lb) # <=> 1 - fun(x)**2 = (fun(x) + 1) / (x - lb) # <=> (1 - fun(x)) * (1 + fun(x)) = (fun(x) + 1) / (x - lb) # <=> (1 - fun(x)) = 1 / (x - lb) # <=> 2 / (exp(2x) + 1) = 1 / (x - lb) # <=> exp(2x) - 2x = -2*lb - 1 # We know that for the tangent point we are searching, x >= 0, # so we know that for our solution exp(2x) <= -2 * lb - 1 # Therefore, we know that the solution is upperbounded by 0.5 * log(-2*lb -1.) # We'll add some padding to ensure we are not excluding any valid solution. approx_tanh_tang = lambda lb: 0.5*jnp.log(jnp.maximum(-2*lb-1., 1.)) + 1. return s_shape_relaxation(tanh, dtanh, approx_tanh_tang, inp, tol) def posreciprocal_relaxation( inp: bound_propagation.Bound, ) -> Tuple[TensorFun, TensorFun]: """Relaxation of reciprocal, on strictly positive inputs. The (unchecked) assumption is that inputs are always positive, and 1/x is therefore convex. Args: inp: Bounds on the input. Returns: lb_fun, ub_fun """ safe_inp = bound_propagation.IntervalBound( utils.safe_pos(inp.lower), utils.safe_pos(inp.upper)) return convex_fn_relaxation(synthetic_primitives.posreciprocal_p, safe_inp) class RelaxationFn(typing_extensions.Protocol): def __call__( self, *inputs: bound_propagation.Bound, **params, ) -> Tuple[TensorFun, TensorFun]: """Convex relation. Args: *inputs: Bound on the inputs to the function. **params: Keyword parameters of the primitive. Returns: Convex lower bound and concave upper bound. """ class PiecewiseLinearRelaxationFn(typing_extensions.Protocol): def __call__( self, *inputs: bound_propagation.Bound, **params, ) -> Tuple[Sequence[TensorFun], Sequence[TensorFun]]: """Piecewise linear convex relation. Args: *inputs: Bound on the inputs to the function. **params: Keyword parameters of the primitive. Returns: Lists of lower and upper bounding linear functions. """ @dataclasses.dataclass class ActivationRelaxation: """Activation function traits, including convex relaxation. Attributes: relaxation_fn: Accepts input bounds and params; returns convex lower bound and concave upper bound. piecewise_linear_relaxation_fn: Optional; accepts input bounds and params; returns lists of lower and upper bounding linear functions. pos_neg_linear: Whether this positive and negative parts of this 1D activation function are both affine, e.g. ReLU, sign. convex: Whether the activation function is convex. eltwise_increasing: Whether the activation function is known to be element-wise monotonically increasing. """ relaxation_fn: RelaxationFn piecewise_linear_relaxation_fn: Optional[PiecewiseLinearRelaxationFn] = None pos_neg_linear: bool = False convex: bool = False eltwise_increasing: bool = False def intersection_relaxation( piecewise_linear_relaxation_fn: PiecewiseLinearRelaxationFn, *inputs: Union[bound_propagation.Bound, Tensor], **params, ) -> Tuple[TensorFun, TensorFun]: """Relaxation based on intersection of piecewise linear components. Args: piecewise_linear_relaxation_fn: Accepts input bounds and params; returns lists of lower and upper bounding linear functions. *inputs: Inputs to the convex function: bounds on the input, unnamed params. **params: Keyword parameters of the primitive. Returns: lb_fun, ub_fun """ lb_funs, ub_funs = piecewise_linear_relaxation_fn(*inputs, **params) def lower_bound(*x): return functools.reduce(jnp.maximum, [lb_fun(*x) for lb_fun in lb_funs]) def upper_bound(*x): return functools.reduce(jnp.minimum, [ub_fun(*x) for ub_fun in ub_funs]) return lower_bound, upper_bound relaxation_fns: Mapping[Primitive, ActivationRelaxation] = { synthetic_primitives.relu_p: ActivationRelaxation( functools.partial( intersection_relaxation, relu_piecewise_linear_relaxation), piecewise_linear_relaxation_fn=relu_piecewise_linear_relaxation, pos_neg_linear=True, convex=True, eltwise_increasing=True), synthetic_primitives.leaky_relu_p: ActivationRelaxation( functools.partial( intersection_relaxation, leaky_relu_piecewise_linear_relaxation), piecewise_linear_relaxation_fn=leaky_relu_piecewise_linear_relaxation, pos_neg_linear=True), # NOTE: only convex (negative_slope < 1.) parametric ReLUs are supported synthetic_primitives.parametric_leaky_relu_p: ActivationRelaxation( functools.partial( intersection_relaxation, cvx_parametric_leaky_relu_pl_relaxation), piecewise_linear_relaxation_fn=cvx_parametric_leaky_relu_pl_relaxation, pos_neg_linear=True), synthetic_primitives.clip_p: ActivationRelaxation( functools.partial( intersection_relaxation, clip_piecewise_linear_relaxation), piecewise_linear_relaxation_fn=clip_piecewise_linear_relaxation, eltwise_increasing=True), lax.abs_p: ActivationRelaxation( functools.partial( intersection_relaxation, abs_piecewise_linear_relaxation), piecewise_linear_relaxation_fn=abs_piecewise_linear_relaxation, pos_neg_linear=True, convex=True), synthetic_primitives.softplus_p: ActivationRelaxation( functools.partial( convex_fn_relaxation, synthetic_primitives.softplus_p), convex=True, eltwise_increasing=True), lax.exp_p: ActivationRelaxation( functools.partial(convex_fn_relaxation, lax.exp_p), convex=True, eltwise_increasing=True), synthetic_primitives.posreciprocal_p: ActivationRelaxation( posreciprocal_relaxation, convex=True), synthetic_primitives.sigmoid_p: ActivationRelaxation( sigmoid_relaxation, eltwise_increasing=True), lax.tanh_p: ActivationRelaxation( tanh_relaxation, eltwise_increasing=True), synthetic_primitives.posbilinear_p: ActivationRelaxation( functools.partial( intersection_relaxation, posbilinear_piecewise_linear_relaxation), piecewise_linear_relaxation_fn=posbilinear_piecewise_linear_relaxation), synthetic_primitives.fused_relu_p: ActivationRelaxation( fused_relu_relaxation), }
jax_verify-master
jax_verify/src/activation_relaxation.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Propagate the bounds through the network. This is accomplished by traversing the JaxPR representation of the computation and translating the computational graph. """ import abc import collections from typing import Generic, Mapping, Sequence, Tuple, TypeVar, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import graph_traversal from jax_verify.src import synthetic_primitives from jax_verify.src.types import Nest, Primitive, SpecFn, Tensor # pylint: disable=g-multiple-import Repr = TypeVar('Repr', bound=graph_traversal.TransformedNode) # (lower, upper) input bound represented as a Tensor nest so that it can # be passed as a parameter to a Jax jitted function. # `bound_type` should be a dictionary using the desired bound class as a key # (the value that the key maps to is unimportant). This way, jax does not # complain about it not being a jax type. # Example: {jax_verify.IntervalBound: None} # Additional arguments can be provided in `kwargs`, # The Bound class should implement a `from_jittable` class method, to # instantiate the object based on the jittable bound. JittableInputBound = collections.namedtuple( 'JittableInputBound', ['lower', 'upper', 'bound_type', 'kwargs']) JittableGraphInput = Union[JittableInputBound, Tensor] class Bound(graph_traversal.TransformedNode, metaclass=abc.ABCMeta): """Abstract propagated bound.""" @property @abc.abstractmethod def lower(self) -> Tensor: """Concrete lower bound.""" @property @abc.abstractmethod def upper(self) -> Tensor: """Concrete upper bound.""" @property def shape(self) -> Tuple[int, ...]: """Shape of the node.""" return self.lower.shape @property def dtype(self) -> jnp.dtype: """Data type of the node.""" return self.lower.dtype def unwrap(self) -> 'Bound': """Underlying bound of method-specific type, without extra constraints. Usually this returns `self`. However, subclasses that wrap the bound to provide additional information (for example externally imposed interval constraints) will return the wrapped bound. Returns: Underlying bound arising directly from bound propagation. """ return self LayerInput = graph_traversal.LayerInput[Bound] TransformContext = graph_traversal.TransformContext[Bound] class IntervalBound(Bound, graph_traversal.InputBound): """Represent an interval where some activations might be valid.""" def __init__(self, lower_bound: Tensor, upper_bound: Tensor): # pylint: disable=super-init-not-called # Pylint complains that the __init__ method of the base class Bound is not # called, despite the fact that Bound does not have an __init__ method. self._lower_bound = lower_bound self._upper_bound = upper_bound @property def lower(self) -> Tensor: return self._lower_bound @property def upper(self) -> Tensor: return self._upper_bound def update_bounds(self, lower, upper): self._lower_bound = lower self._upper_bound = upper @classmethod def from_jittable(cls, jittable_bound: JittableInputBound): return cls(jittable_bound.lower, jittable_bound.upper) def to_jittable(self) -> JittableInputBound: return JittableInputBound(self.lower, self.upper, {IntervalBound: None}, {}) def project_onto_bound(self, tensor: Tensor) -> Tensor: return jnp.clip(tensor, a_min=self._lower_bound, a_max=self._upper_bound) def unwrapping(fn): """Create a wrapper function to unwrap the bound arguments. Use as a decorator. If a propagation function has been defined assuming its input bound arguments are of the method-specific type (e.g. `fastlin.LinearBound`), then applying this decorator will allow the function to accept wrapped bound arguments with extra constraints (e.g. `intersection.ConstrainedBound`) which it will ignore. Args: fn: Function accepting possibly wrapped bound arguments. Returns: Function accepting bound arguments of the method-specific type. """ unwrap = lambda x: x.unwrap() if isinstance(x, Bound) else x def fn_unwrapped(*args, **kwargs): return fn(*[unwrap(arg) for arg in args], **kwargs) return fn_unwrapped BoundTransform = graph_traversal.GraphTransform[Bound] class PropagationAlgorithm(Generic[Repr], metaclass=abc.ABCMeta): @abc.abstractmethod def propagate( self, graph: graph_traversal.PropagationGraph, bounds: Nest[graph_traversal.GraphInput], ) -> Tuple[Nest[Repr], Mapping[jax.core.Var, Union[Repr, Tensor]]]: """Propagate the given input bounds on the given graph.""" class ForwardPropagationAlgorithm(PropagationAlgorithm[Repr]): """Forward graph propagation method.""" def __init__(self, graph_transform: graph_traversal.GraphTransform[Repr]): self._graph_transform = graph_transform def propagate( self, graph: graph_traversal.PropagationGraph, bounds: Nest[graph_traversal.GraphInput], ) -> Tuple[Nest[Repr], Mapping[jax.core.Var, Union[Repr, Tensor]]]: """Propagate forward the given input bounds on the given graph.""" return graph.forward_propagation(self._graph_transform, bounds) def jit_inputs( *inputs: Nest[graph_traversal.GraphInput], ) -> Sequence[Nest[JittableGraphInput]]: """Replace all the bound objects by jittable bounds.""" is_bound = lambda b: isinstance(b, Bound) jit_bound = lambda b: b.to_jittable() return jax.tree_util.tree_map( lambda b: jit_bound(b) if is_bound(b) else b, inputs, is_leaf=is_bound) def unjit_inputs( *inputs: Nest[JittableGraphInput], ) -> Sequence[Nest[graph_traversal.GraphInput]]: """Replace all the jittable bounds by standard bound objects.""" is_jittable_bound = lambda b: isinstance(b, JittableInputBound) unjit_bound = lambda b: next(iter(b.bound_type)).from_jittable(b) return jax.tree_util.tree_map( lambda b: unjit_bound(b) if is_jittable_bound(b) else b, inputs, is_leaf=is_jittable_bound) def bound_propagation( prop_alg: PropagationAlgorithm[Repr], function: SpecFn, *bounds: Nest[graph_traversal.GraphInput], graph_simplifier=synthetic_primitives.default_simplifier, ) -> Tuple[ Nest[Union[Repr, Tensor]], Mapping[jax.core.Var, Union[Repr, Tensor, Bound]]]: """Performs Bound Propagation on the model implemented by `function`. Args: prop_alg: Algorithm specifying how to traverse the graph and how to transform each node. function: Pure function inputs -> outputs. If the function to propagate through has a more complex signature, the use of `functools.partial` can solve that problem. *bounds: Nest of `IntervalBound` objects containing the lower and upper bounds on all the inputs, or `Tensor`s containing known inputs directly. graph_simplifier: Function transforming the JaxPR graph into a simpler graph. Default value is a function identifying specific activation functions, followed by grouping of linear sequences and quadratic forms. Returns: bounds: Bounds over all the outputs of the function, with the same structure as the output of `function` env: Mapping from the node of the computations to their representation. """ # Parse the computation graph. placeholder_inputs = jax.tree_util.tree_map( lambda b: b.lower if isinstance(b, graph_traversal.InputBound) else b, bounds) parsed = synthetic_primitives.make_jaxpr_nojit(function, *placeholder_inputs) output_shapes = jax.eval_shape(function, *placeholder_inputs) flat_is_bound, _ = jax.tree_util.tree_flatten( jax.tree_util.tree_map( lambda b: isinstance(b, graph_traversal.InputBound), bounds)) inp_is_bound = {var: is_bound for var, is_bound in zip(parsed.jaxpr.invars, flat_is_bound)} simplified_graph = synthetic_primitives.simplify_graph( graph_simplifier, parsed.jaxpr, inp_is_bound) graph = graph_traversal.PropagationGraph(simplified_graph, parsed.literals) outvals, env = prop_alg.propagate(graph, bounds) # Make outvals into the same tree structure than the output of the function. tree_structure = jax.tree_util.tree_structure(output_shapes) outvals = jax.tree_util.tree_unflatten(tree_structure, outvals) return outvals, env RESHAPE_PRIMITIVES: Sequence[Primitive] = [ lax.copy_p, lax.reshape_p, lax.slice_p, lax.dynamic_slice_p, lax.squeeze_p, lax.transpose_p, lax.broadcast_in_dim_p, lax.concatenate_p, lax.gather_p, lax.scatter_p, *([lax.select_p] if hasattr(lax, 'select_p') else []), *([lax.select_n_p] if hasattr(lax, 'select_n_p') else []), synthetic_primitives.convert_float32_p, ] BILINEAR_PRIMITIVES: Sequence[Primitive] = [ lax.mul_p, lax.dot_general_p, lax.conv_general_dilated_p, ] # Note that synthetic_primitives.posbilinear_p is not present in the list of # BILINEAR_PRIMITIVES. This is because it's only created by the bilinear # primitive simplifier and therefore will always be tagging specific bilinear # operation (and not just bilinear primitive which will be affine because one # argument is a weight tensor). This allows us to avoid including posbilinear # into AFFINE_PRIMITIVES. AFFINE_PRIMITIVES: Sequence[Primitive] = [ lax.scatter_add_p, lax.add_p, lax.sub_p, lax.reduce_sum_p, lax.neg_p, synthetic_primitives.linear_p, *BILINEAR_PRIMITIVES, ] # lax.div_p can also be treated as an affine primitive, subject to checking # that its second arg (the divisor) is a constant.
jax_verify-master
jax_verify/src/bound_propagation.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mccormick relaxations for bilinear terms. Create mc-cormick relaxations of bilinear terms for boundprop and verification. """ from typing import Callable, Tuple import jax.numpy as jnp from jax_verify.src.types import Tensor BilinearFun = Callable[[Tensor, Tensor], Tensor] def mccormick_ibp( lx: Tensor, ux: Tensor, ly: Tensor, uy: Tensor, matrix: Tensor, ) -> Tuple[Tensor, Tensor]: """Compute bounds in x.T * matrix * y s.t x in [lx, ux], y in [ly, uy]. Args: lx: Lower bounds on x (d,) ux: Upper bounds on x (d,) ly: Lower bounds on y (d,) uy: Upper bounds on y (d,) matrix: (d, d) matrix Returns: Lower and upper bounds on x.T * matrix * y """ ll = matrix * jnp.outer(lx, ly) lu = matrix * jnp.outer(lx, uy) ul = matrix * jnp.outer(ux, ly) uu = matrix * jnp.outer(ux, uy) lb_elementwise = jnp.minimum(jnp.minimum(ll, lu), jnp.minimum(ul, uu)) ub_elementwise = jnp.maximum(jnp.maximum(ll, lu), jnp.maximum(ul, uu)) return jnp.sum(lb_elementwise), jnp.sum(ub_elementwise) def posbilinear_mccormick_relaxations( fn: BilinearFun, x_lb: Tensor, x_ub: Tensor, y_lb: Tensor, y_ub: Tensor, ) -> Tuple[BilinearFun, BilinearFun, BilinearFun, BilinearFun]: """Constructs all four McCormick relaxation of a positive bilinear primitive. For x in [x_l, x_u] and y in [y_l, y_u], the bound imposed are: x·y >= x·y_l + x_l·y - x_l·y_l x·y >= x·y_u + x_h·y - x_h·y_u x·y <= x·y_u + x_l·y - x_l·y_u x·y <= x·y_l + x_u·y - x_l·y_u Args: fn: Positive definite bilinear function. x_lb: Lower bounds on x x_ub: Upper bounds on x y_lb: Lower bounds on y y_ub: Upper bounds on y Returns: lb_fun0, lb_fun1, ub_fun0, ub_fun1 """ def lb_fun0(x, y): return fn(x, y_lb) + fn(x_lb, y) - fn(x_lb, y_lb) def lb_fun1(x, y): return fn(x, y_ub) + fn(x_ub, y) - fn(x_ub, y_ub) def ub_fun0(x, y): return fn(x, y_ub) + fn(x_lb, y) - fn(x_lb, y_ub) def ub_fun1(x, y): return fn(x, y_lb) + fn(x_ub, y) - fn(x_ub, y_lb) return lb_fun0, lb_fun1, ub_fun0, ub_fun1 def mccormick_outer_product(x: Tensor, y: Tensor, x_lb: Tensor, x_ub: Tensor, y_lb: Tensor, y_ub: Tensor, ) -> Tensor: """McCormick Upper Bound on bilinear term x @ y.T. Args: x: Input tensor y: Input tensor x_lb: Lower bounds on x x_ub: Upper bounds on x y_lb: Lower bounds on y y_ub: Upper bounds on y Returns: bd: Nonconvex bound. """ def outer(x, y): x = jnp.reshape(x, [-1, 1]) y = jnp.reshape(y, [-1, 1]) return jnp.dot(x, y.T) output_lb_a, output_lb_b, output_ub_a, output_ub_b = [ relax_fn(x, y) for relax_fn in posbilinear_mccormick_relaxations( outer, x_lb, x_ub, y_lb, y_ub)] return (jnp.maximum(output_lb_a, output_lb_b), # pytype: disable=bad-return-type # jax-ndarray jnp.minimum(output_ub_a, output_ub_b))
jax_verify-master
jax_verify/src/mccormick.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bound propagation utilities.""" from typing import Generic, Mapping, Tuple, TypeVar import jax import jax.numpy as jnp import jax_verify from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import synthetic_primitives from jax_verify.src.types import Index, Nest, Primitive, SpecFn, Tensor # pylint: disable=g-multiple-import T = TypeVar('T', bound=graph_traversal.TransformedNode) class FixedBoundApplier(bound_propagation.BoundTransform): """Fixed bound constraints. Use with `IntersectionBoundTransform` to apply branching decisions to existing bounds. """ def __init__(self, fixed_bounds: Mapping[Index, Tuple[Tensor, Tensor]]): self._fixed_bounds = fixed_bounds def input_transform( self, context: bound_propagation.TransformContext, input_bound: graph_traversal.InputBound, ) -> bound_propagation.Bound: return jax_verify.IntervalBound(*self._fixed_bounds[context.index]) def primitive_transform( self, context: bound_propagation.TransformContext, primitive: Primitive, *args: bound_propagation.LayerInput, **kwargs, ) -> bound_propagation.Bound: if (context.index not in self._fixed_bounds and isinstance(primitive, synthetic_primitives.FakePrimitive)): # Bound is missing at the synthetic primitive level. # Try and infer the bound from its sub-graph. subgraph = kwargs['jax_verify_subgraph'] bound, = context.subgraph_handler(self, subgraph, *args) return bound return jax_verify.IntervalBound(*self._fixed_bounds[context.index]) class BoundRetriever(Generic[T], graph_traversal.GraphTransform[T]): """Retrieves bounds' concrete values. The concrete values of the bound is only obtained when the bounds are queried. """ def __init__(self, base_transform: graph_traversal.GraphTransform[T]): self._base_transform = base_transform self._base_bounds = {} def input_transform( self, context: graph_traversal.TransformContext[T], input_bound: graph_traversal.InputBound, ) -> T: bound = self._base_transform.input_transform(context, input_bound) self._base_bounds[context.index] = bound return bound def primitive_transform( self, context: graph_traversal.TransformContext[T], primitive: Primitive, *args: graph_traversal.LayerInput[T], **kwargs, ) -> T: bound, = self._base_transform.equation_transform( context, primitive, *args, **kwargs) self._base_bounds[context.index] = bound return bound def should_handle_as_subgraph(self, primitive: Primitive) -> bool: return self._base_transform.should_handle_as_subgraph(primitive) @property def concrete_bounds(self) -> Mapping[Index, Tuple[Tensor, Tensor]]: return {index: (bound.lower, bound.upper) for index, bound in self._base_bounds.items()} @property def base_transform(self): return self._base_transform class BoundRetrieverAlgorithm( bound_propagation.PropagationAlgorithm[bound_propagation.Bound]): """Algorithm to collect concrete bounds. Compared to a BoundRetriever Transform, this allows to obtain the final bounds in the environment, such as when bounds in the environment are modified by different transforms. """ def __init__( self, base_algorithm: bound_propagation.PropagationAlgorithm[ bound_propagation.Bound]): self._base_algorithm = base_algorithm self._base_bounds = {} def propagate( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], ) -> Tuple[ Nest[bound_propagation.Bound], Mapping[jax.core.Var, bound_propagation.LayerInput], ]: outvals, env = self._base_algorithm.propagate(graph, inputs) self._base_bounds = { index: graph_traversal.read_env(env, graph.jaxpr_node(index)) for index in graph.indices} return outvals, env @property def concrete_bounds(self) -> Mapping[Index, Tuple[Tensor, Tensor]]: return {index: (bound.lower, bound.upper) for index, bound in self._base_bounds.items()} class VacuousBoundTransform(bound_propagation.BoundTransform): """Generates vacuously loose bounds.""" def input_transform( self, context: bound_propagation.TransformContext, input_bound: graph_traversal.InputBound ) -> bound_propagation.Bound: return _vacuous_bounds(input_bound.lower) def primitive_transform( self, context: bound_propagation.TransformContext, primitive: Primitive, *args: bound_propagation.LayerInput, **kwargs, ) -> bound_propagation.Bound: template_args = [ jnp.zeros_like(arg.lower) if isinstance(arg, bound_propagation.Bound) else arg for arg in args] return _vacuous_bounds(primitive.bind(*template_args, **kwargs)) def _vacuous_bounds(template: Tensor) -> bound_propagation.Bound: ones = jnp.ones_like(template) return jax_verify.IntervalBound(-float('inf') * ones, +float('inf') * ones) class GraphNode(bound_propagation.Bound): """Node of a Jax computation graph.""" def __init__(self, index: Index, primitive, *args, **kwargs): self.index = index self.primitive = primitive self.args = args self.kwargs = kwargs if self.is_input(): input_bound: graph_traversal.InputBound = args[0] self._shape = input_bound.lower.shape self._dtype = input_bound.lower.dtype else: kwarged_fun = lambda x: primitive.bind(*x, **kwargs) shape_and_type = jax.eval_shape(kwarged_fun, args) self._shape = shape_and_type.shape self._dtype = shape_and_type.dtype def is_input(self): return self.primitive is None @property def shape(self): return self._shape @property def dtype(self): return self._dtype @property def lower(self): return -float('inf') * jnp.ones(self._shape, self._dtype) @property def upper(self): return float('inf') * jnp.ones(self._shape, self._dtype) class GraphInspector(graph_traversal.GraphTransform[GraphNode]): """Graph traverser that exposes the nodes.""" def __init__(self, subgraph_decider=None): self._nodes = {} self._subgraph_decider = subgraph_decider def should_handle_as_subgraph(self, primitive: Primitive) -> bool: if self._subgraph_decider: return self._subgraph_decider(primitive) else: return super().should_handle_as_subgraph(primitive) def input_transform( self, context: graph_traversal.TransformContext[GraphNode], input_bound: graph_traversal.InputBound, ) -> GraphNode: self._nodes[context.index] = GraphNode(context.index, None, input_bound) return self._nodes[context.index] def primitive_transform( self, context: graph_traversal.TransformContext[GraphNode], primitive: Primitive, *args: graph_traversal.LayerInput[GraphNode], **kwargs, ) -> GraphNode: self._nodes[context.index] = GraphNode( context.index, primitive, *args, **kwargs) return self._nodes[context.index] @property def nodes(self) -> Mapping[Index, GraphNode]: return self._nodes def computation_graph_nodes( spec_fn: SpecFn, *init_bound: Nest[graph_traversal.GraphInput], ) -> Mapping[Index, GraphNode]: """Extract a mapping from index to primitives.""" inspector = GraphInspector() bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(inspector), spec_fn, *init_bound) return inspector.nodes
jax_verify-master
jax_verify/src/bound_utils.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common type definitions used by jax_verify.""" from typing import Any, Generic, Mapping, Sequence, Tuple, TypeVar, Union import jax import jax.numpy as jnp import typing_extensions Primitive = jax.core.Primitive Tensor = jnp.ndarray T = TypeVar('T') U = TypeVar('U') Nest = Union[T, Sequence['Nest[T]'], Mapping[Any, 'Nest[T]']] Index = Tuple[int, ...] class TensorFun(typing_extensions.Protocol): def __call__(self, *inputs: Tensor) -> Tensor: pass class SpecFn(typing_extensions.Protocol): """Specification, expressed as all outputs are <=0.""" def __call__(self, *inputs: Nest[Tensor]) -> Nest[Tensor]: pass class ArgsKwargsCallable(typing_extensions.Protocol, Generic[T, U]): def __call__(self, *args: T, **kwargs) -> U: pass
jax_verify-master
jax_verify/src/types.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generic Optimizers for optimization based bound computation.""" import abc import functools from typing import Callable, Optional, Sequence, Tuple import jax from jax import numpy as jnp from jax_verify.src import utils from jax_verify.src.types import Nest, Tensor # pylint: disable=g-multiple-import import optax ParamSet = Nest[Tensor] ProgressStats = Nest[Tensor] TensorFun = Callable[[ParamSet], Tensor] ProjectFun = Callable[[ParamSet], ParamSet] class Optimizer(metaclass=abc.ABCMeta): """Base class defining the interface of the optimizers for JaxVerify.""" def __init__(self, log_optimization: bool = False): self._log_optimization = log_optimization self._opt_vals = None @abc.abstractmethod def optimize_fn(self, obj_fun: TensorFun, project_params: ProjectFun ) -> Callable[[ParamSet], ParamSet]: """Return a function that minimizes obj_fun. The parameters should be in the set onto which `project_params` project to. Args: obj_fun: Function to minimize. project_params: Function to project parameters onto the feasible set of parameters. Returns the feasible arguments as a tuple. Returns: opt_fun: Function taking initial parameters and returning optimized ones. """ def get_last_opt_run(self) -> Tensor: if not self._log_optimization: raise ValueError('Optimizer not configured to collect objective values.') if self._opt_vals is None: raise ValueError('Optimizer not called.') return self._opt_vals class OptaxOptimizer(Optimizer): """Optimizer relying on Optax GradientTransformation to minimize an objective. Performs num_steps steps of updates, while keeping track of the lowest result obtained so far. """ def __init__( self, opt_gt: optax.GradientTransformation, *, num_steps: int, log_optimization: bool = False, ): super().__init__(log_optimization) self._opt_gt = opt_gt self._num_steps = num_steps def optimize_fn( self, obj_fun: TensorFun, project_params: ProjectFun, ) -> Callable[[ParamSet], ParamSet]: """Returns a function that minimizes obj_fun.""" val_and_grad_fn = jax.value_and_grad(obj_fun) def update_state( state: Tuple[ParamSet, ParamSet, ParamSet, Tensor], ) -> Tuple[ParamSet, ParamSet, ParamSet, Tensor]: """Update the state of the optimization. The loop state consists of: - params: Current value of the parameters in the optimization. - opt_state: State of the optax optimizer. - best_params: Value of the parameters that gave the lowest results. - best_val: Objective value achieved for the best params. Args: state: The loop state. Returns: next_state: The updated status of the loop after one more step of optimization. val: The value of the optimzation at this point. """ params, opt_state, best_params, best_val = state val, params_grad = val_and_grad_fn(params) # Compute the next step in the optimization process. updates, next_opt_state = self._opt_gt.update(params_grad, opt_state) next_params = optax.apply_updates(params, updates) next_params = project_params(next_params) # Update the best params seen. where_improved = functools.partial(jnp.where, val < best_val) next_best_params = jax.tree_util.tree_map(where_improved, params, best_params) next_best_val = where_improved(val, best_val) next_state = (next_params, next_opt_state, next_best_params, next_best_val) return next_state, val def opt_fun(init_params): best_params = init_params if self._num_steps: # Perform the optimization if we do at least one step. init_opt_state = self._opt_gt.init(init_params) _, _, best_params, _ = self.opt_loop( update_state, (init_params, init_opt_state, best_params, jnp.inf)) return best_params return opt_fun def opt_loop(self, body_fun, init_vals): """Calls `body_fun` num_steps times to perform the optimization.""" if self._log_optimization: step_fun = lambda carry, _: body_fun(carry) final_carry, opt_vals = jax.lax.scan(step_fun, init_vals, None, length=self._num_steps) self._opt_vals = opt_vals return final_carry else: # We drop the first value passed to the step function, because it # correspond to the iteration number. # We drop the second returned value, which is the current # value of the optimization that we do not need to log. step_fun = lambda _, carry: body_fun(carry)[0] return utils.fori_loop_no_backprop(0, self._num_steps, step_fun, init_vals) def _sum_fn(fn, *args, **kwargs): out = fn(*args, **kwargs) summand = out[0] if isinstance(out, tuple) else out return summand.sum(), out def _quad_approx(x: ParamSet, y: ParamSet, grad_y: ParamSet, step_size: Tensor ) -> Tensor: """Compute the quadratic term used in the backtracking linesearch.""" def quad_approx_var(x_var: Tensor, y_var: Tensor, grady_var: Tensor): diff = x_var - y_var return ((diff * grady_var).sum() + 0.5 / step_size * (diff**2).sum()) per_var_quad_approx = jax.tree_util.tree_map(quad_approx_var, x, y, grad_y) return sum(jax.tree_util.tree_leaves(per_var_quad_approx)) def _broadcast_back_like(to_brd: Tensor, target: Tensor) -> Tensor: """Broadcast matching dimensions from the front rather than the back. By default, numpy/jax match dimensions from the back. In this case, we want to have a different step-size for each batch-element (so the common dimension is at the front). This function adds dummy dimensions so that broadcasting can happen as we want it. Args: to_brd: Tensor that we want to broadcast. target: Tensor that we want to be able to be broadcasted against. Returns: brd: Broadcasted tensor. """ nb_add_dims = target.ndim - to_brd.ndim return jnp.reshape(to_brd, to_brd.shape + (1,) * nb_add_dims) class LinesearchFistaOptimizer(Optimizer): """FISTA with line search. As done in the "An efficient nonconvex reformulation of stagewise convex optimization problems" NeurIPS2020 submission. This is a reimplementation of the code at: l/d/r/r_v/verification/ibp/verification/nonconvex_optimizable_bounds.py """ def __init__(self, num_steps: int, max_step_size: float = 100.0, min_step_size: float = 1e-5, beta_l: float = 0.5, beta_h: float = 1.5, check_convergence_every: int = 1, log_optimization: bool = False): super().__init__(log_optimization) self._num_steps = num_steps self._max_step_size = max_step_size self._min_step_size = min_step_size self._beta_l = beta_l self._beta_h = beta_h self._check_convergence_every = check_convergence_every def optimize_fn( self, obj_fun: TensorFun, project_params: ProjectFun, not_converged_fun: Optional[Callable[[ParamSet], bool]] = None): """Returns a function that minimizes obj_fun. Args: obj_fun: Functions to minimize (If this is an array, we assume that all outputs needs to be minimized.) project_params: Function to project parameters onto the feasible set of parameters. not_converged_fun: Function to indicate whether the optimization can be early stopped because it has converged. Returns: opt_fun: Function taking initial parameters and returning optimized ones. """ # If no function is provided to identify convergence, we assume # that the optmization has not converged at all time. not_converged_fun = not_converged_fun or (lambda *_: True) to_grad_fun = functools.partial(_sum_fn, obj_fun) val_and_grad_fn = jax.value_and_grad(to_grad_fun, has_aux=True) ## Define the functions for the backtracking line search def pgd_step(current: ParamSet, grad: ParamSet, step_size: Tensor): def step_per_var(curr, g): brd_step_size = _broadcast_back_like(step_size, g) return curr - brd_step_size * g gd_step = jax.tree_util.tree_map(step_per_var, current, grad) return project_params(gd_step) def should_decrease(step_size: Tensor, y_stats: Tuple[ParamSet, ParamSet, ParamSet]): y, obj_y, grad_y = y_stats new_x = pgd_step(y, grad_y, step_size) val_newx = obj_fun(new_x) val_qapprox = obj_y + _quad_approx(new_x, y, grad_y, step_size) per_sp_insufficient_progress = val_newx >= val_qapprox step_size_not_min = step_size > self._min_step_size # Perform the updates return jnp.logical_and(step_size_not_min, per_sp_insufficient_progress) # This will be performed in jax.lax.while_loop, with the following arguments # ls_loop_args: # need_lower: Boolean array indicating for each step_size if we still # needs to lower the step size. # step_size: Array of step size being used. # y_stats: Tuple with y, f(y) and grad(y), so that we don't have to keep # recomputing it. def lower_stepsize_if_needed(ls_loop_args): """Reduce the step size for all the optimization target that need it. Update the check to see if it needs to be reduced further. Args: ls_loop_args: Line search loop arguments Returns: new_ls_loop_args: Updated line search loop arguments """ need_lower, step_size, y_stats = ls_loop_args new_step_size = jnp.where(need_lower, self._beta_l * step_size, step_size) new_need_lower = should_decrease(new_step_size, y_stats) return new_need_lower, new_step_size, y_stats need_lower_stepsize = lambda ls_loop_args: ls_loop_args[0].any() ## Define the function for the optimization loop # Perform the Fista with backtracking line search algorithm, as described # in "A Fast Iterative Shrinkage-Thresholding Algorithm", Beck and Teboulle # The only change is that we increase the step size by a factor of # self._beta_h for step size that didn't need to be reduced at all during # the linesearch. # This is performed in a jax.lax.while_loop, with the following arguments: # opt_loop_args: # it: Iteration counter # x, y: variable set # gamma: float, coefficient used for the momentum (t_k in the paper) # step_size: Array containing the current values of the step size. # last_obj_value: Last value of obj(j) # We stop either based on a maximum number of iterations, or based on the # given convergence criterion, which is checked every # self._check_convergence_every iterations. def fista_with_linesearch_step(opt_loop_args): it, x, y, gamma, step_size, _ = opt_loop_args # Compute f_y and d(f_y)/d(y) # We ignore the first returned value which correspond to the sum of the # objectives rather than the individual objectives. (_, obj_y), grad_y = val_and_grad_fn(y) # Compute the step size to use with a line search y_stats = y, obj_y, grad_y ini_need_lower = should_decrease(step_size, y_stats) _, new_step_size, _ = jax.lax.while_loop( need_lower_stepsize, lower_stepsize_if_needed, (ini_need_lower, step_size, y_stats)) # Perform the updates new_x = pgd_step(y, grad_y, new_step_size) new_gamma = 1 + jnp.sqrt(1 + gamma ** 2) / 2 coeff = (gamma - 1) / new_gamma new_y = jax.tree_util.tree_map( lambda new, old: new + coeff * (new - old), new_x, x) # Increase the step size of the samples that didn't need reducing. new_step_size = jnp.where(ini_need_lower, new_step_size, self._beta_h * new_step_size) return it + 1, new_x, new_y, new_gamma, new_step_size, obj_y def continue_criterion(opt_loop_args): it, x, *_ = opt_loop_args not_all_iterations = it < self._num_steps opt_not_converged = jax.lax.cond( (it % self._check_convergence_every) == 0., not_converged_fun, lambda _: jnp.array(True), operand=x) return jnp.logical_and(opt_not_converged, not_all_iterations) def optimize(ini_x: ParamSet) -> ParamSet: ini_y = ini_x gamma = jnp.array(0.) nb_targets = jax.eval_shape(obj_fun, ini_x).shape step_size = self._max_step_size * jnp.ones(nb_targets) init_val = jnp.inf * jnp.ones(nb_targets) it = jnp.array(0) _, final_x, _, _, _, _ = self.opt_loop( continue_criterion, fista_with_linesearch_step, (it, ini_x, ini_y, gamma, step_size, init_val)) return final_x return optimize def opt_loop(self, continue_fun, update_fun, init_vals): """Performs the optimzation. The step is defined by the `update_fun` function, and the optimization is run for a maximum of self._num_steps, unless `continue_fun` returns False at any point. Args: continue_fun: Function indicating whether the optimization has converged. update_fun: Function performing one step of optimization. init_vals: Initial value of the optimizition variables. Returns: The final state of the optimzation variables. """ if self._log_optimization: # We want to log the data throughout so we need the number of steps to # remain the same whatever happens, but we also don't want the # optimization (including the early stopping) to change just because we're # logging it. We're wrapping the function to add a marker of whether or # not the optimization has finished. If it has, we just stop updating the # values. # We also extract the value of the objective, which is the last element of # the carry, so that we can extract it from the scan loop. def step_fun(wrapped_loop_args, _): stopped, *opt_loop_args = wrapped_loop_args should_continue = continue_fun(opt_loop_args) new_stopped = jnp.logical_or(stopped, jnp.logical_not(should_continue)) new_opt_loop_args = jax.lax.cond(new_stopped, tuple, update_fun, operand=opt_loop_args) val = new_opt_loop_args[-1] return (new_stopped, *new_opt_loop_args), val ini_stopped = jnp.array(True) (_, *final_carry), opt_vals = jax.lax.scan( step_fun, (ini_stopped, *init_vals), None, length=self._num_steps) self._opt_vals = opt_vals return final_carry else: return jax.lax.while_loop(continue_fun, update_fun, init_vals) class PortfolioOptimizer(Optimizer): """Optimizer that combines several existing optimizers. Runs all of them independently and give the best result. """ def __init__(self, optimizers: Sequence[Optimizer], log_optimization: bool = False): super().__init__(log_optimization) self._optimizers = optimizers if log_optimization: self._best_optimizer = 0 def optimize_fn(self, obj_fun: TensorFun, project_params: ProjectFun ) -> Callable[[ParamSet], ParamSet]: """Returns a functions that minimizes obj_fun.""" base_opt_funs = [choice_opt.optimize_fn(obj_fun, project_params) for choice_opt in self._optimizers] def opt_fun(initial_params): best_params = initial_params best_score = jnp.inf for opt_idx, base_opt_fun in enumerate(base_opt_funs): opt_params = base_opt_fun(initial_params) score = obj_fun(opt_params).sum() where_improved = functools.partial(jnp.where, score < best_score) best_params = jax.tree_util.tree_map(where_improved, opt_params, best_params) if self._log_optimization: self._best_optimizer = where_improved(jnp.asarray(opt_idx), self._best_optimizer) best_score = where_improved(score, best_score) return best_params return opt_fun def get_last_opt_run(self) -> Tensor: if not self._log_optimization: raise ValueError('Optimizer not configured to collect objective values.') # TODO: Make this jit compliant if it becomes necessary by padding # things to size. return self._optimizers[int(self._best_optimizer)].get_last_opt_run()
jax_verify-master
jax_verify/src/optimizers.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines to solve basic optimization problems.""" from typing import Callable, Tuple import jax from jax import numpy as jnp from jax_verify.src import utils from jax_verify.src.types import Tensor def greedy_assign(upper: Tensor, total_sum: float): """Perform a greedy assignment respecting an upper bound constraint. Args: upper: Maximum value to assign to each coordinate. total_sum: Total value to assign to the coordinates. Returns: A tensor of greedy assignment. """ return jnp.clip(total_sum - (jnp.cumsum(upper) - upper), a_min=0., a_max=upper) def sorted_knapsack(lower: Tensor, upper: Tensor, total_sum: float, backward: bool = False): """Perform a fractional knapsack assuming coordinates sorted by weights. Args: lower: Smallest allowable value on each of the coordinates. upper: Largest allowable value on each of the coordinates. total_sum: Total sum that need to be achieved. backward: Whether to perform the greedy assignment from the start of the tensor or from the end of it. Returns: Assignment to the variable of the knapsack problem. """ assignment_budget = upper - lower if backward: # If we want to do the assignment backward, we will follow the strategy of # initially putting all the values at their upper bound, and then greeedily # removing from the beginning of the Tensor until the budget is met, which # would give the same result as if we were assigning in order from the back. return upper - greedy_assign(assignment_budget, upper.sum() - total_sum) # pytype: disable=wrong-arg-types # jax-ndarray else: return lower + greedy_assign(assignment_budget, total_sum - lower.sum()) # pytype: disable=wrong-arg-types # jax-ndarray def fractional_exact_knapsack(weights: Tensor, simplex_sum: float, lower_bound: Tensor, upper_bound: Tensor ) -> float: """Solve the fractional knapsack problem. max sum_i w_i x_i such that l_i <= x_i <= u_i forall i sum_i x_i = simplex_sum Note that this is not exactly the classic fractional knapsack problem which would have had the constraint sum_i x_i <= simplex_sum. This causes a difference in the case where negative weights might be present, in which case the results would differ. The problem is solved using a greedy algorithm based on sorting the weights rather than using a weighted-median type algorithm. @TODO Ensure some error checking. What if the simplex sum is too high (greater than the sum of upper bounds) or too low (smaller than sum of lower bounds?). Args: weights: w_i, the linear coefficients on the coordinates. simplex_sum: The total value that the sum of all constraints need to sum to. lower_bound: Lower bound on the coordinates. upper_bound: Upper bound on the coordinates. Returns: val: the value of the optimum solution of the optimization problem. """ flat_lower = jnp.reshape(lower_bound, (-1,)) flat_upper = jnp.reshape(upper_bound, (-1,)) flat_weights = jnp.reshape(weights, (-1,)) sorted_weights, sorted_lower, sorted_upper = jax.lax.sort( (flat_weights, flat_lower, flat_upper), num_keys=1) sorted_assignment = sorted_knapsack(sorted_lower, sorted_upper, simplex_sum, backward=True) return (sorted_weights * sorted_assignment).sum() # pytype: disable=bad-return-type # jax-types def concave_1d_max( obj_fn: Callable[[Tensor], Tensor], x_lb: Tensor, x_ub: Tensor, *, num_steps: int = 30, ) -> Tuple[Tensor, Tensor]: """Maximises the given element-wise function using golden ratio search. Args: obj_fn: Function to be maximised. Its inputs and outputs must have the same shape, and its computation is assumed to be independent across its elements. x_lb: Lower bounds on the inputs to `obj_fn`. x_ub: Upper bounds on the inputs to `obj_fn`. num_steps: Number of optimisation steps. Every five steps give approximately one additional decimal digit of accuracy of `y`. Returns: x: Tensor of same shape as inputs to `obj_fn` containing the argmax. y: Tensor of same shape as inputs/outputs of `obj_fn` containing its max. """ phi = 0.61803398875 # inverse golden ratio def loop_init(): # Initialise with four abcissae spaced at intervals phi^2 : phi^3 : phi^2 . xs = [ x_lb, phi * x_lb + (1.-phi) * x_ub, (1.-phi) * x_lb + phi * x_ub, x_ub, ] ys = [ None, obj_fn(xs[1]), obj_fn(xs[2]), None, ] return xs, ys def loop_step(_, val): xs, ys = val # Insert two new abcissae, so we have # xs[0] ... left_x ... xs[1] ... xs[2] ... right_x ... xs[3] # spaced at intervals phi^3 : phi^4 : phi^3 : phi^4 : phi^3 . left_x = phi * xs[0] + (1.-phi) * xs[2] right_x = (1.-phi) * xs[1] + phi * xs[3] # Select either leftmost or rightmost four abcissae, whichever contains # the maximum. select = ys[1] > ys[2] xs = [ jnp.where(select, xs[0], xs[1]), jnp.where(select, left_x, xs[2]), jnp.where(select, xs[1], right_x), jnp.where(select, xs[2], xs[3]), ] ys = [ None, jnp.where(select, obj_fn(left_x), ys[2]), jnp.where(select, ys[1], obj_fn(right_x)), None, ] return xs, ys xs, _ = utils.fori_loop_no_backprop(0, num_steps, loop_step, loop_init()) # Extract optimal (argmax) x without gradients. x = jax.lax.stop_gradient((xs[1] + xs[2]) / 2.) # Re-evaluate at max with gradients. return x, obj_fn(x) def project_onto_interval_simplex(lower: Tensor, upper: Tensor, simplex_sum: float, point: Tensor) -> Tensor: """Solve the projection on the intersection of simplex and interval domains. The problem being solved is: x_opt = argmin_x 0.5 || x - x_0 ||^2 s.t sum(x) = s l <= x <= u By dualising the simplex constraint and looking at the lagrangian, we can show that x_opt = clip(x_0 - mu, l, u) where mu is the lagrangian variable associated with the simplex constraint. We are looking for which mu results in the constraint sum(x) = s to be satisfied. sum(x_opt) is going to be a 1D piecewise linear function. We are going to find its root by identifying which of the linear pieces cross zero, and then using linear interpolation to find where the crossing happen. Args: lower: Lower bound on the admissible values. (l in equations) upper: Upper bound on the admissible values. (u in equations) simplex_sum: Value that all coordinates need to sum to (s in equations) point: Point that we are trying to project (x_0 in equations) Returns: x_opt: Projection of `point` onto the set of constraints. """ flat_lb = jnp.reshape(lower, (-1,)) flat_ub = jnp.reshape(upper, (-1,)) flat_pt = jnp.reshape(point, (-1,)) # We're also considering fake breakpoints outside of the actual ones, to avoid # some numerical errors in the case where the breakpoints would be exactly at # some upper bounds / lower bounds. out_lower = flat_pt.min() - flat_ub.max() - 1.0 out_upper = flat_pt.max() - flat_lb.min() + 1.0 all_breakpoints = jax.lax.concatenate( (flat_pt - flat_lb, flat_pt - flat_ub, jnp.array([out_lower, out_upper])), dimension=0) sorted_breakpoints = jax.lax.sort(all_breakpoints) brd_break = jnp.expand_dims(sorted_breakpoints, 1) brd_lb = jnp.expand_dims(flat_lb, 0) brd_ub = jnp.expand_dims(flat_ub, 0) brd_point = jnp.expand_dims(flat_pt, 0) terms = jnp.clip(brd_point - brd_break, a_min=brd_lb, a_max=brd_ub) fun_val = terms.sum(axis=1) - simplex_sum dy = jnp.diff(fun_val) dx = jnp.diff(sorted_breakpoints) safe_dy = jnp.where(dy != 0, dy, 1.) # We need to use a safe version of dy to avoid creating NaNs when dy==0. # The replacement of the values by 1. does not cause any problems for the # computation of the opt_mu coefficient later. interp = sorted_breakpoints[:-1] - fun_val[:-1] * dx / safe_dy # interp gets multiplied by a mask of jnp.diff(fun_val >= 0.), so for # incorrect value of interp, if dy == 0, then it means that fun_val was # unchanged, so the jnp.diff would be set to False and mask out the # incorrect value. opt_mu = (interp * jnp.diff(fun_val >= 0.)).sum() flat_x_opt = jnp.clip(flat_pt - opt_mu, a_min=flat_lb, a_max=flat_ub) return jnp.reshape(flat_x_opt, lower.shape)
jax_verify-master
jax_verify/src/opt_utils.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils used for JAX neural network verification.""" import math import os from typing import Callable, Sequence, Tuple, TypeVar, Union import jax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src.types import Nest, Tensor, TensorFun # pylint: disable=g-multiple-import import numpy as np import urllib.request EPSILON = 1.e-12 def safe_pos(x: Tensor) -> Tensor: """Returns `x` forced to be strictly positive.""" return jnp.maximum(x, EPSILON) def safe_neg(x: Tensor) -> Tensor: """Returns `x` forced to be strictly negitive.""" return jnp.minimum(x, -EPSILON) ######## File Loading ######## def open_file(name, *open_args, root_dir='/tmp/jax_verify', **open_kwargs): """Load file, downloading to /tmp/jax_verify first if necessary.""" local_path = os.path.join(root_dir, name) if not os.path.exists(os.path.dirname(local_path)): os.makedirs(os.path.dirname(local_path)) if not os.path.exists(local_path): gcp_bucket_url = 'https://storage.googleapis.com/deepmind-jax-verify/' download_url = gcp_bucket_url + name urllib.request.urlretrieve(download_url, local_path) return open(local_path, *open_args, **open_kwargs) ######### Miscellaneous ######### def bind_nonbound_args( fun: TensorFun, *all_in_args: bound_propagation.LayerInput, **kwargs, ) -> TensorFun: """Take a function and bind all keyword arguments and non-bound arguments.""" def tensorbound_fun(*bound_args): fun_inps = [] bound_arg_pos = 0 for arg in all_in_args: if isinstance(arg, bound_propagation.Bound): fun_inps.append(bound_args[bound_arg_pos]) bound_arg_pos += 1 else: fun_inps.append(arg) assert len(bound_args) == bound_arg_pos return fun(*fun_inps, **kwargs) return tensorbound_fun def batch_value_and_grad(fun, batch_dims, *args, **kwargs): """Equivalent to jax `value_and_grad` function but allows batched function. This is to go around the fact that jax.value_and_grad only supports scalar outputs. Args: fun: Function, operating in batch, to obtain gradients for. batch_dims: Dimensions to batch over. *args: Positional arguments for jax.value_and_grad **kwargs: Named arguments for jax.value_and_grad. Returns: batch_value_and_grad_fn: Function returning the value and gradients of the batched function """ add_batch_dim = lambda x: jnp.expand_dims(x, batch_dims) remove_batch_dim = lambda x: x.squeeze(batch_dims) def nobatch_fun(*nobatch_inps): batch_inps = jax.tree_util.tree_map(add_batch_dim, nobatch_inps) batch_out = fun(*batch_inps) nobatch_out = jax.tree_util.tree_map(remove_batch_dim, batch_out) return nobatch_out nobatch_value_and_grad = jax.value_and_grad(nobatch_fun, *args, **kwargs) batch_value_and_grad_fn = nobatch_value_and_grad for batch_dim in batch_dims: batch_value_and_grad_fn = jax.vmap(batch_value_and_grad_fn, in_axes=batch_dim, out_axes=batch_dim) return batch_value_and_grad_fn def objective_chunk( obj_shape: Sequence[int], chunk_index: int, nb_parallel_nodes: int, ): """Returns a one-hot tensor to select a chunk of elements from an objective. Args: obj_shape: Shape of the objective tensor to be chunked. chunk_index: Index of the optimization chunk to generate. nb_parallel_nodes: How large should the optimization chunks be. If 0, optimize all problems at once. Returns: One-hot tensor of shape (nb_parallel_nodes, *obj_shape) specifying, for each index in the chunk, an element of the objective. """ total_nb_nodes_to_opt = int(np.prod(obj_shape)) start_node = chunk_index * nb_parallel_nodes if (nb_parallel_nodes == 0) or (total_nb_nodes_to_opt <= nb_parallel_nodes): nb_nodes_to_opt = total_nb_nodes_to_opt else: nb_nodes_to_opt = nb_parallel_nodes # In order to be able to use the function in the while loop, we have to have # all tensors remain the same size so we're going to always create a tensor # of the same size, but will not necessarily fill all the rows. flat_obj = jnp.zeros((nb_nodes_to_opt, total_nb_nodes_to_opt)) opt_idx = jnp.arange(nb_nodes_to_opt) node_idx = jnp.minimum(start_node + opt_idx, total_nb_nodes_to_opt-1) to_add = ((start_node + opt_idx) < total_nb_nodes_to_opt).astype(jnp.float32) flat_obj = flat_obj.at[(opt_idx, node_idx)].add( to_add, indices_are_sorted=True, unique_indices=False) obj = jnp.reshape(flat_obj, (nb_nodes_to_opt, *obj_shape)) return obj def chunked_bounds( bound_shape: Tuple[int, ...], max_parallel_nodes: int, bound_fn: Callable[[Tensor], Tuple[Tensor, Tensor]], ) -> Tuple[Tensor, Tensor]: """Perform computation of the bounds in chunks. Args: bound_shape: Shape of the bounds to compute max_parallel_nodes: How many activations' bounds to compute at once. If zero, compute all the activations' bounds simultaneously. bound_fn: Function to compute bounds for a chunk, given a one-hot tensor of shape (nb_parallel_nodes, *obj_shape) specifying the activation elements to compute. Returns: Computed lower and upper bounds. """ def bound_chunk(chunk_index: int) -> Tuple[Tensor, Tensor]: # Create the objective matrix obj = objective_chunk(bound_shape, chunk_index, max_parallel_nodes) return bound_fn(obj) nb_act = int(np.prod(bound_shape)) if (max_parallel_nodes == 0) or (nb_act <= max_parallel_nodes): flat_lbs, flat_ubs = bound_chunk(0) else: nb_bound_chunk = math.ceil(nb_act / max_parallel_nodes) chunk_indices = jnp.arange(nb_bound_chunk) (map_lbs, map_ubs) = jax.lax.map(bound_chunk, chunk_indices) # Remove the padding elements flat_lbs = jnp.reshape(map_lbs, (-1,))[:nb_act] flat_ubs = jnp.reshape(map_ubs, (-1,))[:nb_act] lbs = jnp.reshape(flat_lbs, bound_shape) ubs = jnp.reshape(flat_ubs, bound_shape) return lbs, ubs LoopVal = TypeVar('LoopVal') def fori_loop_no_backprop( lower: Union[int, Tensor], upper: Union[int, Tensor], body_fun: Callable[[int, LoopVal], LoopVal], init_val: LoopVal): """Loop by reduction to `lax.while_loop`, saving memory by avoiding backprop. `lax.fori_loop` will reduce to `lax.scan` if `lower` and `upper` are both known at tracing time, so as to support back-propagation. In contrast, this function will always reduce to `lax.while_loop`, which precludes back-prop but avoids retaining the loop state for all iterations. Args: lower: Lower bound (inclusive) of the "for" loop index. upper: Upper bound (exclusive) of the "for" loop index. body_fun: Operation to perform in each iteration of the loop. init_val: Input loop value for first iteration of the loop. Returns: final_val: Output loop value from the last iteration of the loop. """ _, final_val = jax.lax.while_loop( lambda i_val: i_val[0] < upper, lambda i_val: (i_val[0] + 1, body_fun(i_val[0], i_val[1])), (lower, init_val)) return final_val def maybe_interp(vals: Sequence[Tensor], interp_params: Nest[Tensor]) -> Tensor: if len(vals) == 1: # Interpolation is trivial. val, = vals return val else: # Assume two pieces, so we can interpolate with a single parameter. assert len(vals) == 2 val0, val1 = vals return (1. - interp_params) * val0 + interp_params * val1
jax_verify-master
jax_verify/src/utils.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mechanism to combine input bounds from multiple methods.""" from typing import Optional import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src.types import Primitive, Tensor # pylint: disable=g-multiple-import class IntersectionBound(bound_propagation.Bound): """Concretises to intersection of constituent bounds.""" def __init__(self, *base_bounds: bound_propagation.Bound): self.base_bounds = base_bounds @property def lower(self) -> Tensor: return jnp.array([bound.lower for bound in self.base_bounds]).max(axis=0) @property def upper(self) -> Tensor: return jnp.array([bound.upper for bound in self.base_bounds]).min(axis=0) class ConstrainedBound(bound_propagation.Bound): """Wraps a Bound with additional concrete constraints.""" def __init__( self, base_bound: bound_propagation.Bound, lower: Optional[Tensor], upper: Optional[Tensor], ): self._base_bound = base_bound self._lower = lower self._upper = upper def unwrap(self) -> bound_propagation.Bound: return self._base_bound.unwrap() @property def lower(self) -> Tensor: if self._lower is None: return self._base_bound.lower else: return jnp.maximum(self._base_bound.lower, self._lower) @property def upper(self) -> Tensor: if self._upper is None: return self._base_bound.upper else: return jnp.minimum(self._base_bound.upper, self._upper) class IntersectionBoundTransform(bound_propagation.BoundTransform): """Aggregates several bound transforms, intersecting their concrete bounds.""" def __init__(self, *base_transforms: bound_propagation.BoundTransform): self._base_transforms = base_transforms def input_transform( self, context: bound_propagation.TransformContext, input_bound: graph_traversal.InputBound, ) -> IntersectionBound: """Constructs initial input bounds for each constituent bound type. Args: context: Transform context containing node index. input_bound: Original concrete bounds on the input. Returns: Intersection of the constituent input bounds. """ return IntersectionBound(*[ transform.input_transform(context, input_bound) for transform in self._base_transforms]) def primitive_transform( self, context: bound_propagation.TransformContext, primitive: Primitive, *args: bound_propagation.LayerInput, **kwargs, ) -> IntersectionBound: """Propagates bounds for each constituent bound type. Args: context: Transform context containing node index. primitive: Primitive Jax operation to transform. *args: Arguments of the primitive, wrapped as `IntersectionBound`s. **kwargs: Keyword Arguments of the primitive. Returns: Intersection of the propagated constituent output bounds. """ def base_args_for_arg(arg): if isinstance(arg, bound_propagation.Bound): return [ConstrainedBound(bound, arg.lower, arg.upper) for bound in arg.unwrap().base_bounds] else: # Broadcast over the intersection components. return [arg for _ in self._base_transforms] base_args = [base_args_for_arg(arg) for arg in args] return IntersectionBound(*[ transform.equation_transform(context, primitive, *args, **kwargs)[0] for transform, *args in zip(self._base_transforms, *base_args)]) def should_handle_as_subgraph(self, primitive: Primitive) -> bool: # Handle as a sub-graph only if _all_ intersectands can. # Otherwise handle at the higher (synthetic primitive) level. return all(base_transform.should_handle_as_subgraph(primitive) for base_transform in self._base_transforms)
jax_verify-master
jax_verify/src/intersection.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides methods to simplify the JaxPR computation graph. """ import collections import functools from typing import Any, Callable, Mapping, MutableMapping, Optional, Sequence, TypeVar, Union import jax from jax import lax from jax.experimental import pjit from jax.interpreters import mlir import jax.numpy as jnp from jax_verify.src.types import Primitive, Tensor, TensorFun # pylint: disable=g-multiple-import import numpy as np VarIsBoundDict = MutableMapping[jax.core.Var, bool] T = TypeVar('T') ListNest = Union[T, Sequence['ListNest[T]']] GraphSimplifier = ListNest[ Callable[[jax.core.Jaxpr, VarIsBoundDict], jax.core.Jaxpr]] SimpleSimplifier = Callable[[jax.core.Jaxpr], jax.core.Jaxpr] SUBGRAPH_PRIMITIVES: Sequence[Primitive] = ( jax.custom_derivatives.custom_jvp_call_jaxpr_p, jax.custom_derivatives.custom_jvp_call_p, jax.interpreters.pxla.xla_pmap_p, pjit.pjit_p, ) def jax_primitive_subgraph(primitive: Primitive, **params) -> jax.core.Jaxpr: """Returns the sub-graph for the given equation.""" if primitive == pjit.pjit_p: return params['jaxpr'].jaxpr elif primitive == jax.custom_derivatives.custom_jvp_call_jaxpr_p: return params['fun_jaxpr'].jaxpr elif primitive in SUBGRAPH_PRIMITIVES: if isinstance(params['call_jaxpr'], jax.core.ClosedJaxpr): return params['call_jaxpr'].jaxpr else: assert isinstance(params['call_jaxpr'], jax.core.Jaxpr) return params['call_jaxpr'] else: return params['jax_verify_subgraph'] def _replace_jax_primitive_subgraph( primitive: Primitive, params: MutableMapping[str, Any], subgraph: jax.core.Jaxpr, ): """Updates the sub-graph for the given equation.""" if primitive == jax.custom_derivatives.custom_jvp_call_jaxpr_p: params['fun_jaxpr'] = params['fun_jaxpr'].replace(jaxpr=subgraph) elif primitive in SUBGRAPH_PRIMITIVES: if primitive == pjit.pjit_p: params['jaxpr'] = params['jaxpr'].replace(jaxpr=subgraph) elif isinstance(params['call_jaxpr'], jax.core.ClosedJaxpr): params['call_jaxpr'] = params['call_jaxpr'].replace(jaxpr=subgraph) else: assert isinstance(params['call_jaxpr'], jax.core.Jaxpr) params['call_jaxpr'] = subgraph else: params['jax_verify_subgraph'] = subgraph def filter_jaxverify_kwargs(kwargs: Mapping[str, Any]) -> Mapping[str, Any]: if 'jax_verify_keepjvargs' in kwargs and kwargs['jax_verify_keepjvargs']: return kwargs else: return {k: v for k, v in kwargs.items() if not k.startswith('jax_verify')} def make_jaxpr_nojit(fun, *inps, **kwargs): kwarged_fun = functools.partial(fun, **kwargs) with jax.disable_jit(): make_jaxpr = jax.make_jaxpr(kwarged_fun) return make_jaxpr(*inps) def simplify_graph( graph_simplifier: GraphSimplifier, graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict, ) -> jax.core.Jaxpr: """Recursively apply the graph simplifier to the graph and its subgraphs. Starts by filling in var_is_bound with the results for all variables. Args: graph_simplifier: Function simplifying the eqns in a jaxpr but ignoring the subgraphs graph: Jaxpr to simplify var_is_bound: Dict mapping whether a given variable is a bound or not. Returns: Simplified Jaxpr, where all the subgraphs are also simplified. """ _propagate_var_is_bound(graph, var_is_bound) return _simplify_graph(var_is_bound, graph, graph_simplifier) def _simplify_graph( var_is_bound: VarIsBoundDict, graph: jax.core.Jaxpr, graph_simplifier: GraphSimplifier, ) -> jax.core.Jaxpr: """Recursively apply the graph simplifier to the graph and its subgraphs. Args: var_is_bound: Dict mapping whether a given variable is a bound or not. graph: Jaxpr to simplify graph_simplifier: Function simplifying the eqns in a jaxpr but ignoring the subgraphs Returns: Simplified Jaxpr, where all the subgraphs are also simplified. """ if isinstance(graph_simplifier, list): # Recursively apply each child simplifier to the entire graph. return functools.reduce( functools.partial(_simplify_graph, var_is_bound), graph_simplifier, graph) else: # Apply this 'leaf' simplifier to the graph. simplified_graph = graph_simplifier(graph, var_is_bound) # Also recursively apply it to all sub-graphs. for eqn in simplified_graph.eqns: if eqn.primitive in SUBGRAPH_PRIMITIVES: subgraph = jax_primitive_subgraph(eqn.primitive, **eqn.params) _replace_jax_primitive_subgraph( eqn.primitive, eqn.params, _simplify_graph(var_is_bound, subgraph, graph_simplifier), ) return simplified_graph capture_float32 = object() class SyntheticPrimitiveSpec: """Traced graph of a function used to specify a synthetic primitive..""" def __init__( self, fn: TensorFun, upstream_simplifier: Optional[SimpleSimplifier], primitive: 'FakePrimitive', *arg_shapes_dtypes: Union[tuple[Sequence[int], jnp.dtype], Callable[[], Tensor]], **params): """Constructs a specification from the given function. Traces `fn` with placeholder inputs specified by `arg_shapes_dtypes`, and records the resulting Jaxpr. This will subsequently be used a reference graph for detecting occurrences of `fn` within other graphs, allowing them to be replaced with `primitive`. The `upstream_simplifier` is important if this synthetic primitive is to be detected _after_ the upstream graph simplifier has already been applied to the main graph. In that case, occurrences of the synthetic primitive will already have received upstream simplifications. We must apply the same simplifications to this reference graph so that they match. Args: fn: Traceable function defining the computation to detect. upstream_simplifier: Optional simplifier to apply to the reference graph. primitive: Synthetic primitive to denote occurrences of `fn`. *arg_shapes_dtypes: Shapes and dtypes of placeholder inputs to `fn`, or a function producing the placeholder. **params: Keyword parameters qualifying `primitive`. Any parameter may be `capture_float32`, in which case the parameter value will be determined during the match by capturing the actual value passed as keyword param to `fn`. """ # Replace `capture_float32` params with thunks that look up the actual # captured values passed as keyword params to `fn`. subscript = lambda key, captures: captures[key] params = {key: functools.partial(subscript, key) if param is capture_float32 else param for key, param in params.items()} capture_keys = [key for key, param in params.items() if callable(param)] placeholder_inputs = [] for asd in arg_shapes_dtypes: if isinstance(asd, tuple): shape, dtype = asd placeholder_inputs.append(jnp.zeros(shape, dtype)) else: placeholder_inputs.append(asd()) placeholder_params = {key: 7. for key in capture_keys} closed_jaxpr = make_jaxpr_nojit(fn, *placeholder_inputs, **placeholder_params) self._graph = closed_jaxpr.jaxpr self._capture_literals = {} for capture_key in capture_keys: # Re-trace using a different placeholder value for this param only. # The actual values are immaterial; we simply need them to be different # so that we can detect which literals correspond to this keyword param. alt_params = {key: 8. if key == capture_key else 7. for key in capture_keys} closed_jaxpr = make_jaxpr_nojit(fn, *placeholder_inputs, **alt_params) alt_graph = closed_jaxpr.jaxpr for literal in _differing_literal_indices(self._graph, alt_graph): assert literal not in self._capture_literals self._capture_literals[literal] = capture_key if upstream_simplifier: self._graph = upstream_simplifier(self._graph) self._primitive = primitive self._params = params @property def graph(self) -> jax.core.Jaxpr: return self._graph @property def capture_literals(self) -> Mapping[tuple[int, int], str]: """Literals whose values are to be captured. Returns: Python ids of literals whose values are to be captured, mapping to the name of the spec function's keyword param that supplies the value. """ return self._capture_literals @property def primitive(self) -> 'FakePrimitive': return self._primitive @property def params(self) -> Mapping[str, Any]: return self._params def simplify(self, graph_simplifier: SimpleSimplifier): """Applies an upstream graph simplifier to this reference graph. This is important if this synthetic primitive is to be detected _after_ the upstream graph simplifier has already been applied to the main graph. In that case, occurrences of the synthetic primitive will already have received upstream simplifications. We must apply the same simplifications to this reference graph so that they match. Args: graph_simplifier: Upstream graph simplifier to apply. """ self._graph = graph_simplifier(self._graph) def _mark_outputs_whether_bounds(eqn, var_is_bound): non_literal_inps = [invar for invar in eqn.invars if not isinstance(invar, jax.core.Literal)] # If any of the input is a bound, the outputs are bounds too. outputs_are_bounds = any(var_is_bound[invar] for invar in non_literal_inps) for outvar in eqn.outvars: var_is_bound[outvar] = outputs_are_bounds def _propagate_var_is_bound(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict): """Fill in the var_is_bound dictionary to indicate which variables are bounds. Args: graph: The graph to check the variables of. var_is_bound: Dictionary to fill in. """ for cvar in graph.constvars: var_is_bound[cvar] = False for eqn in graph.eqns: _mark_outputs_whether_bounds(eqn, var_is_bound) if eqn.primitive in SUBGRAPH_PRIMITIVES: eqn_subgraph = jax_primitive_subgraph(eqn.primitive, **eqn.params) subgraph_var_is_bound = {} for subgraph_invar, eqn_invar in zip(eqn_subgraph.invars, eqn.invars): if isinstance(eqn_invar, jax.core.Var): subgraph_var_is_bound[subgraph_invar] = var_is_bound[eqn_invar] else: subgraph_var_is_bound[subgraph_invar] = False _propagate_var_is_bound(eqn_subgraph, subgraph_var_is_bound) var_is_bound.update(subgraph_var_is_bound) def detect( synthetic_primitive_specs: Sequence[SyntheticPrimitiveSpec], graph: jax.core.Jaxpr, ) -> jax.core.Jaxpr: """Attempts to simplify the graph by identifying specific activations. This is done by recognizing part of the graph and fusing them into synthetic primitives. Args: synthetic_primitive_specs: Specifies graph features to be detected as synthetic primitives. graph: Unprocessed JaxPR graph. Returns: Potentially modified JaxPR graph. """ new_eqns = [] eqn_idx = 0 while eqn_idx < len(graph.eqns): eqn, eqn_idx = _next_equation(synthetic_primitive_specs, graph, eqn_idx) new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) def _next_equation( synthetic_primitive_specs: Sequence[SyntheticPrimitiveSpec], graph: jax.core.Jaxpr, eqn_idx: int, ) -> tuple[jax.core.JaxprEqn, int]: """Determines the next equation in the Jaxpr, possibly a substitution. Args: synthetic_primitive_specs: Specification of what graph patterns can be replaced with fake primitives. graph: Jaxpr graph. eqn_idx: Index of the equation in the Jaxpr graph. Returns: eqn: Next equation in the Jaxpr, which may be a fake primitive. eqn_idx: Index of the following equation in the Jaxpr. """ for spec in synthetic_primitive_specs: ( spec_matches, match_len, primitive_invars, primitive_outvars, captures ) = _matches(spec.graph, spec.capture_literals, graph, eqn_idx) if spec_matches: sub_jaxpr = jax.core.Jaxpr( constvars=[], invars=primitive_invars, outvars=primitive_outvars, eqns=graph.eqns[eqn_idx:(eqn_idx + match_len)]) # Replace deferred keyword params with captured literals. spec_params = { key: param(captures) if callable(param) else param for key, param in spec.params.items()} return jax.core.new_jaxpr_eqn( primitive_invars, primitive_outvars, spec.primitive, {'jax_verify_subgraph': sub_jaxpr, **spec_params}, jax.core.no_effects, graph.eqns[eqn_idx].source_info), eqn_idx + match_len return graph.eqns[eqn_idx], eqn_idx + 1 def _equal_literal_values(lhs, rhs) -> bool: # Check that the literals have the same value, using the appropriate # comparison method. if isinstance(lhs, jnp.ndarray): return np.all(lhs.item() == rhs.item()) else: # literal.val might be an int / float return lhs == rhs def _matches( spec: jax.core.Jaxpr, capture_literals: Mapping[tuple[int, int], str], graph: jax.core.Jaxpr, eqn_idx: int, ) -> tuple[ bool, int, Sequence[jax.core.Var], Sequence[Union[jax.core.Var, jax.core.Literal]], Mapping[str, Any], ]: """Determines whether the graph continues with the given reference graph. Args: spec: Reference Jaxpr graph specifying the fake primitive to match. capture_literals: Python ids of literals whose value is to be captured, mapping to capture param name. graph: Jaxpr graph. eqn_idx: Index of the current equation in the Jaxpr graph, at which to check for a match. Returns: spec_matches: Whether the graph matches the spec. match_len: How many (top-level) equations constitute the match. invars: Varables of `graph` that correspond to `spec.invars`. outvars: Varables of `graph` that correspond to `spec.outvars`. captures: Captured literal values, keyed by param name. """ no_match = False, 0, [], [], {} eqn_idx_orig = eqn_idx graph_vars_by_spec_var = {} captures = {} def inputs_correspond(spec_eqn_invars, graph_eqn_invars, eqn_pos) -> bool: # Check that the equation's inputs correspond. if len(spec_eqn_invars) != len(graph_eqn_invars): return False for invar_idx, (spec_eqn_invar, graph_eqn_invar) in enumerate(zip( spec_eqn_invars, graph_eqn_invars)): if isinstance(spec_eqn_invar, jax.core.Literal): if not isinstance(graph_eqn_invar, jax.core.Literal): return False # Check that the literals hold values of the same type. if not isinstance(spec_eqn_invar.val, type(graph_eqn_invar.val)): return False if (eqn_pos, invar_idx) in capture_literals: # The value of this literal in the specification graph is just a # placeholder. Instead of an equality comparison, we capture the # corresponding value in the actual graph. key = capture_literals[(eqn_pos, invar_idx)] if key in captures and not _equal_literal_values( graph_eqn_invar.val, captures[key]): # Same keyword param has already captured a different value. return False captures[key] = graph_eqn_invar.val elif not _equal_literal_values(spec_eqn_invar.val, graph_eqn_invar.val): return False else: if ((spec_eqn_invar in spec.invars or spec_eqn_invar in spec.constvars) and spec_eqn_invar not in graph_vars_by_spec_var): # Encountering an input for the first time. graph_vars_by_spec_var[spec_eqn_invar] = graph_eqn_invar if graph_vars_by_spec_var[spec_eqn_invar] != graph_eqn_invar: return False return True for spec_eqn in spec.eqns: if eqn_idx >= len(graph.eqns): return no_match graph_eqn = graph.eqns[eqn_idx] eqn_pos = eqn_idx - eqn_idx_orig eqn_idx += 1 # Check that the primitives are the same. if graph_eqn.primitive != spec_eqn.primitive: return no_match if spec_eqn.primitive in (jax.lax.add_p, jax.lax.mul_p): backup_graph_vars_by_spec_var = {**graph_vars_by_spec_var} backup_captures = {**captures} if not inputs_correspond(spec_eqn.invars, graph_eqn.invars, eqn_pos): # Jax will sometimes silently reverse the order of args of these # commutative ops, for example if one arg is a literal. graph_vars_by_spec_var = backup_graph_vars_by_spec_var captures = backup_captures if not inputs_correspond(spec_eqn.invars, list(reversed(graph_eqn.invars)), eqn_pos): return no_match else: if not inputs_correspond(spec_eqn.invars, graph_eqn.invars, eqn_pos): return no_match # Check that the equation's params are equal. if set(spec_eqn.params) != set(graph_eqn.params): return no_match for key in set(spec_eqn.params): spec_param = spec_eqn.params[key] graph_param = graph_eqn.params[key] if key in ('fun_jaxpr', 'call_jaxpr', 'jax_verify_subgraph', 'jaxpr'): # Recursively check that the sub-graphs match. if isinstance(spec_param, jax.core.ClosedJaxpr): assert isinstance(graph_param, jax.core.ClosedJaxpr) subspec = spec_param.jaxpr subgraph = graph_param.jaxpr else: assert isinstance(spec_param, jax.core.Jaxpr) assert isinstance(graph_param, jax.core.Jaxpr) subspec = spec_param subgraph = graph_param ( subgraph_matches, _, subgraph_invars, subgraph_outvars, subgraph_captures ) = _matches(subspec, capture_literals, subgraph, 0) captures.update(subgraph_captures) if not subgraph_matches: return no_match if subgraph.invars != subgraph_invars: return no_match if subgraph.outvars != subgraph_outvars: return no_match # Assimilate the captured literal values from the sub-graph. if any(key in captures and not _equal_literal_values(capture, captures[key]) for key, capture in subgraph_captures.items()): # Same keyword param has already captured a different value. return no_match elif key in ('shape', 'new_sizes', 'start_indices', 'limit_indices', 'slice_sizes'): # Don't check shape, but do check rank. if len(spec_param) != len(graph_param): return no_match elif not callable(spec_param): if spec_param != graph_param: return no_match # Record the correspondence between the equation's outputs. graph_vars_by_spec_var.update({ spec_eqn_outvar: graph_eqn_outvar for spec_eqn_outvar, graph_eqn_outvar in zip( spec_eqn.outvars, graph_eqn.outvars)}) # It's a match. # Look up the input and output variables in the graph. graph_invars = [ graph_vars_by_spec_var[spec_invar] for spec_invar in spec.invars] assert all(graph_invar is not None for graph_invar in graph_invars) graph_outvars = [ graph_vars_by_spec_var[spec_outvar] if isinstance(spec_outvar, jax.core.Var) else spec_outvar for spec_outvar in spec.outvars] assert all(graph_outvar is not None for graph_outvar in graph_outvars) return True, eqn_idx - eqn_idx_orig, graph_invars, graph_outvars, captures def _differing_literal_indices( graph: jax.core.Jaxpr, alt_graph: jax.core.Jaxpr, ) -> Sequence[tuple[int, int]]: """Returns indices of literals taking different values in the two graphs.""" literals = [] assert len(graph.eqns) == len(alt_graph.eqns), 'Different number of equations' for eqn_idx, (eqn, alt_eqn) in enumerate(zip(graph.eqns, alt_graph.eqns)): assert eqn.primitive == alt_eqn.primitive, 'Different primitives' # Check that the equation's inputs correspond. for invar_idx, (eqn_invar, alt_eqn_invar) in enumerate(zip(eqn.invars, alt_eqn.invars, strict=True)): assert ( isinstance(eqn_invar, jax.core.Literal) == isinstance(alt_eqn_invar, jax.core.Literal) ), 'Different literal occurrences' if (isinstance(eqn_invar, jax.core.Literal) and not _equal_literal_values(eqn_invar.val, alt_eqn_invar.val)): literals.append((eqn_idx, invar_idx)) assert set(eqn.params) == set(alt_eqn.params), 'Different param key sets' for key in set(eqn.params): param = eqn.params[key] alt_param = alt_eqn.params[key] if key in ('fun_jaxpr', 'call_jaxpr', 'jax_verify_subgraph', 'jaxpr'): # Recursively match the sub-graphs. subgraph = param.jaxpr if isinstance( param, jax.core.ClosedJaxpr) else param alt_subgraph = alt_param.jaxpr if isinstance( alt_param, jax.core.ClosedJaxpr) else alt_param literals.extend(_differing_literal_indices(subgraph, alt_subgraph)) return literals def _is_linear_eqn(eqn: jax.core.JaxprEqn, var_is_bound: VarIsBoundDict): """Identify if an eqn is a linear transformation of inputs that are bounds. Args: eqn: The equation to check. var_is_bound: Dictionary indicating whether each variable represent a bound or a Tensor. Returns: is_linear: boolean indicating whether the equation is linear. """ # Handle the case where a subgraph primitive contains only linear operations. # We will simplify the graph and see if it amounts to a single primitive. if eqn.primitive in SUBGRAPH_PRIMITIVES: subgraph = jax_primitive_subgraph(eqn.primitive, **eqn.params) grouped_subgraph = group_linear_sequence(subgraph, var_is_bound) return (len(grouped_subgraph.eqns) == 1 and grouped_subgraph.eqns[0].primitive is linear_p) # Otherwise, check simply the primitive prim = eqn.primitive non_literal_inps = [invar for invar in eqn.invars if not isinstance(invar, jax.core.Literal)] nb_bound_input = sum(var_is_bound[invar] for invar in non_literal_inps) if not any(var_is_bound[outvar] for outvar in eqn.outvars): return False # Make sure that if this produces bounds,there is only one output assert len(eqn.outvars) == 1 return (prim in LINEAR_OP or (prim in BILINEAR_OP and nb_bound_input == 1) or (prim is jax.lax.div_p and nb_bound_input == 1 and not isinstance(eqn.invars[0], jax.core.Literal) and var_is_bound[eqn.invars[0]])) def _is_posbilinear_eqn(eqn, var_is_bound): """Identify if an eqn is a Posbilinear transformation. Note that a PosBilinear primitive with only one of the inputs being a bound is considered a linear transformation, not a posbilinear one. Args: eqn: The equation to check. var_is_bound: Dictionary indicating whether each variable represent a bound or a Tensor. Returns: is_posbilinear: boolean indicating whether the equation is posbilinear. """ # Handle the case where a subgraph primitive contains only a quadratic # operation. This is often how the results of einsum are generated. if eqn.primitive in SUBGRAPH_PRIMITIVES: subgraph = jax_primitive_subgraph(eqn.primitive, **eqn.params) grouped_subgraph = group_posbilinear(subgraph, var_is_bound) return (len(grouped_subgraph.eqns) == 1 and grouped_subgraph.eqns[0].primitive is posbilinear_p) # Otherwise, simply check the primitive prim = eqn.primitive non_literal_inps = [invar for invar in eqn.invars if not isinstance(invar, jax.core.Literal)] nb_bound_input = sum(var_is_bound[invar] for invar in non_literal_inps) return (prim in BILINEAR_OP) and (nb_bound_input == 2) def _find_eqn(eqn_list: Sequence[jax.core.JaxprEqn], var: jax.core.Var) -> int: """Find the equation producing the var, and returns its index.""" eqn_idx = 0 for eqn_idx, eqn in enumerate(eqn_list): if eqn.outvars[0] == var: return eqn_idx else: assert False def group_posbilinear(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict, ) -> jax.core.Jaxpr: """Simplifier identifying the PosBilinear terms in the graph. A PosBilinear equation can be written in the form of: x^T M y where x and y are variable for which we have bound and M is a matrix with positive entries. Args: graph: Jaxpr to simplify var_is_bound: Dict mapping whether a given variable is a bound or not. Returns: Simplified Jaxpr, where all the PosBilinear have been identified. """ new_eqns = [] for eqn in graph.eqns: # Identify the posbilinear operations if _is_posbilinear_eqn(eqn, var_is_bound): non_literal_invars = [invar for invar in eqn.invars if isinstance(invar, jax.core.Var)] posbilinear_jaxpr = jax.core.Jaxpr( constvars=[], invars=non_literal_invars, outvars=eqn.outvars, eqns=[eqn]) new_eqns.append(jax.core.new_jaxpr_eqn( posbilinear_jaxpr.invars, posbilinear_jaxpr.outvars, posbilinear_p, {'jax_verify_subgraph': posbilinear_jaxpr, 'jax_verify_keepjvargs': True}, jax.core.no_effects)) else: new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) def group_linear_sequence(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict, ) -> jax.core.Jaxpr: """Attempt to fold linear sequences together into synthetic linear primitives. Args: graph: Unprocessed JaxPR graph. var_is_bound: Dict mapping whether a given variable is a bound or not. Returns: Potentially modified JaxPR graph. """ consumed_by_linear = set() consumed_by = collections.Counter() is_linear_result = {} # Do a first pass through the graph to identify the Linear sequences for eqn in graph.eqns: is_linear = _is_linear_eqn(eqn, var_is_bound) outvar = eqn.outvars[0] is_linear_result[outvar] = is_linear for invar in eqn.invars: if not isinstance(invar, jax.core.Literal) and var_is_bound[invar]: consumed_by[invar] += 1 if is_linear: consumed_by_linear.add(invar) for outvar in graph.outvars: if isinstance(outvar, jax.core.Var): consumed_by[outvar] += 1 # Now collect the equations, merging the Linear sequences together new_eqns = [] to_be_folded = {} for eqn in graph.eqns: outvar = eqn.outvars[0] if is_linear_result[outvar]: # This is a Linear operation. Let's construct it, possibly including # previous linear operations that were waiting to be folded in. lin_invars = [] linear_eqns = [] for invar in eqn.invars: if isinstance(invar, jax.core.Var): # Filter out the literals, which should not be registered as inputs to # a subgraph. if invar in to_be_folded: subg = to_be_folded[invar] for sub_invar in subg.invars: lin_invars.append(sub_invar) linear_eqns.extend(subg.eqns) del to_be_folded[invar] else: lin_invars.append(invar) # Remove duplicates, preserving order. lin_invars = list(dict.fromkeys(lin_invars)) lin_outvars = [outvar] if eqn.primitive is linear_p: linear_eqns.extend(eqn.params['jax_verify_subgraph'].eqns) else: linear_eqns.append(eqn) sub_jaxpr = jax.core.Jaxpr(constvars=[], invars=lin_invars, outvars=lin_outvars, eqns=linear_eqns) if (consumed_by[outvar] == 1) and (outvar in consumed_by_linear): # If it's going to be consumed by only a linear operation, put it in the # to_be_folded dictionary, it will be included with the following linear # equation. to_be_folded[outvar] = sub_jaxpr else: # If it's consumed by multiple things, or by a non-linear operation, or # is a terminal output, it does not need folding and should be included # now. agg_lin_eqn = jax.core.new_jaxpr_eqn( sub_jaxpr.invars, sub_jaxpr.outvars, linear_p, {'jax_verify_subgraph': sub_jaxpr, 'jax_verify_keepjvargs': True}, jax.core.no_effects) new_eqns.append(agg_lin_eqn) else: # Non linear operation just gets included directly new_eqns.append(eqn) assert not to_be_folded simple_graph = jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) # There are some cases where this analysis misses combining some linear # operations that can be combined, because there is a branching factor that # can be resolved. # One example: Making the output of a linear layer mean 0 would be this: # y=Linear(x) -------------------> u = y - t ----> # \--->t = mean(y)---/ # It appears that y is consumed by two different operations, but in practice, # those two operations can be part of the same operation. # Re-applying the simplification will succeed in merging those, so we will # recursively simplify, until we have reached a fixed point (counted as a # number of eqns in the graph.) # In this example, after the first pass we would have identified two linear # blocks: # y = Linear(x) # and # u = y - mean(y). # While in the first pass, it looks like y is consumed by two operations, they # get agglomerated together which means that y has now only one dependent. if len(new_eqns) != len(graph.eqns): return group_linear_sequence(simple_graph, var_is_bound) else: return simple_graph def group_fused_relu(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict ) -> jax.core.Jaxpr: """Simplifier identifying FusedRelus (Linear followed by a ReLU). The ReLU primitive will be replaced by a FusedRelu primitive, which is responsible for implementing the ReLU, but will in appearance also take the inputs to the linear as input and have as a special parameter the implementation of the linear layer. From a graph like this, o ----[linear]------> o -----[relu]----------> o we will move to graph like this: >------------------------------| | v o -----[linear]----> o -----[fused_relu]----> o fused_linear:[linear] The goal of this is that we can use the knowledge we have of the preceding linear operation to get a tighter relaxation of the ReLU. Args: graph: Jaxpr to simplify. var_is_bound: Dict mapping whether a given variable is a bound or not. Returns: Simplified Jaxpr, where all the fused ReLU have been identified. """ # Pass through the network to find what variables are eligible to be # the intermediate variable of a fused ReLU. # The conditions are: # - produced by a linear. # - consumed by a ReLU. # - Not consumed by anything else. is_linear_variable = {} consumed_by = collections.Counter() for eqn in graph.eqns: for invar in eqn.invars: if not isinstance(invar, jax.core.Literal) and var_is_bound[invar]: consumed_by[invar] += 1 is_linear_variable[eqn.outvars[0]] = eqn.primitive is linear_p # Increase consumed_by for graph_input so that we don't fuse a graph output. for outvar in graph.outvars: if isinstance(outvar, jax.core.Var): consumed_by[outvar] += 1 # Identify exactly which variables are involved in FusedRelus, based on the # information collected. fused_relu_interm_to_output = {} for eqn in graph.eqns: if (eqn.primitive is relu_p and is_linear_variable[eqn.invars[0]] and consumed_by[eqn.invars[0]] == 1): fused_relu_interm_to_output[eqn.invars[0]] = eqn.outvars[0] # Let's now create the new list of eqns where we replace the eqns involved in # the fused ReLU by the fused ReLU. new_eqns = [] for eqn in graph.eqns: if eqn.outvars[0] in fused_relu_interm_to_output: # This is the linear part of the fused ReLU. linear_eqn = eqn # Get the corresponding ReLU. relu_eqn_idx = _find_eqn(graph.eqns, fused_relu_interm_to_output[eqn.outvars[0]]) relu_eqn = graph.eqns[relu_eqn_idx] # Let's now build the fused ReLU primitive non_literal_invars = [invar for invar in eqn.invars if isinstance(invar, jax.core.Var)] fused_relu_invars = [eqn.outvars[0], *non_literal_invars] fused_relu_jaxpr = jax.core.Jaxpr( constvars=[], invars=fused_relu_invars, outvars=relu_eqn.outvars, eqns=[relu_eqn]) # Keep the linear eqn in the jaxpr, so that we can concretize it. new_eqns.append(linear_eqn) # Insert the relu at that level, with an addition of a copy of the # linear operation preceding it so that we can use it for the # relaxation. new_eqns.append(jax.core.new_jaxpr_eqn( fused_relu_jaxpr.invars, fused_relu_jaxpr.outvars, fused_relu_p, {'jax_verify_subgraph': fused_relu_jaxpr, 'jax_verify_keepjvargs': True, 'jax_verify_fusedlinear': linear_eqn}, jax.core.no_effects)) elif (eqn.primitive is relu_p and eqn.invars[0] in fused_relu_interm_to_output): # This is the relu part of the fused relu. We already included it. pass else: new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) def hoist_constant_computations(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict ) -> jax.core.Jaxpr: """Rearrange the equations to make for easier to reason about JaxPr. All constant computations should be done at the beginning. Args: graph: Jaxpr to simplify var_is_bound: Dict mapping whether a given variable is a bound or not. Returns: Simplified Jaxpr, where all non-bound computation are at the beginning. """ new_eqns = [] # Do a pass, including all the constant computations. for eqn in graph.eqns: if not var_is_bound[eqn.outvars[0]]: new_eqns.append(eqn) # Do a pass, including all the bound computations for eqn in graph.eqns: if var_is_bound[eqn.outvars[0]]: new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) def _get_count_and_suffix(graph: jax.core.Jaxpr) -> tuple[int, str]: # We are going to be creating new variables. # Let's find out what level we need to start counting from. max_count = 0 suffix = '' for eqn in graph.eqns: for outvar in eqn.outvars: if outvar.count > max_count: max_count = outvar.count suffix = outvar.suffix return max_count, suffix def expand_softmax_simplifier(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict ) -> jax.core.Jaxpr: """Replace the softmax synthetic primitives by its decomposition. It might seem like what we would want to do is simply not detect the softmax, but simplifying the softmax and then expanding it makes it more verification friendly. For example, this allows to remove the primitives that are employed for numerical stability (reduce_max, stop_gradient and sub), but don't affect output and that we might not handle. Note that we as we create new variables, we will modify `var_is_bound` to keep it complete. Args: graph: Jaxpr to simplify var_is_bound: Dict mapping whether a given variable is a bound or not. Returns: Simplified Jaxpr, where all softmax have been expanded into Exponential -> sum -> Reciprocal -> multiplication |----------------------------/ """ max_count, suffix = _get_count_and_suffix(graph) new_var_idx = max_count + 1 new_eqns = [] find_prim = lambda eqns, prim: [eqn.primitive for eqn in eqns].index(prim) for eqn in graph.eqns: if eqn.primitive == softmax_p: # We will ignore the operations performed for numerical stability , (the # removal of the constant) and keep only the operations we need to # propagate bound through. We will also replace the division by a # reciprocal, and a multiplication. # In order to take away some of the guess work, we will spy what the aval # are, and the configurations for some of the parameters. softmax_subgraph = eqn.params['jax_verify_subgraph'] if ( len(softmax_subgraph.eqns) == 1 and softmax_subgraph.eqns[0].primitive == jax.custom_derivatives.custom_jvp_call_p ): # The softmax is wrapped inside of a custom_jvp. We'll use the custom # jvp subgraph as the softmax subgraph. softmax_subgraph = softmax_subgraph.eqns[0].params['call_jaxpr'] exp_index = find_prim(softmax_subgraph.eqns, lax.exp_p) full_size_aval = softmax_subgraph.eqns[exp_index].outvars[0].aval exp_var = jax.core.Var(new_var_idx, suffix, full_size_aval) var_is_bound[exp_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( eqn.invars, [exp_var], lax.exp_p, {}, jax.core.no_effects)) # Let's find the parameters of the reduce_sum and of the broadcast # operation in the original softmax implementation so that we don't have # to do guesswork # Add the reduce sum eqn reduce_sum_index = find_prim(softmax_subgraph.eqns, lax.reduce_sum_p) orig_reduce_sum = softmax_subgraph.eqns[reduce_sum_index] reduced_size_aval = orig_reduce_sum.outvars[0].aval exp_sum_var = jax.core.Var(new_var_idx, suffix, reduced_size_aval) var_is_bound[exp_sum_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( [exp_var], [exp_sum_var], lax.reduce_sum_p, orig_reduce_sum.params, jax.core.no_effects)) # Add the broadcasting of it. broadcast_index = find_prim(softmax_subgraph.eqns, lax.broadcast_in_dim_p) orig_broadcast = softmax_subgraph.eqns[broadcast_index] broad_size_aval = orig_broadcast.outvars[0].aval broad_expsum_var = jax.core.Var(new_var_idx, suffix, broad_size_aval) var_is_bound[broad_expsum_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( [exp_sum_var], [broad_expsum_var], lax.broadcast_in_dim_p, orig_broadcast.params, jax.core.no_effects)) # Take the inverse of the exp sum inv_expsum_var = jax.core.Var(new_var_idx, suffix, broad_size_aval) var_is_bound[inv_expsum_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( [broad_expsum_var], [inv_expsum_var], posreciprocal_p, {}, jax.core.no_effects)) # Multiply the exponential to the (inv exp sum) softmax_var = eqn.outvars[0] new_eqns.append(jax.core.new_jaxpr_eqn( [exp_var, inv_expsum_var], [softmax_var], jax.lax.mul_p, {}, jax.core.no_effects)) else: new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) def replace_eltwise_minimum(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict, ) -> jax.core.Jaxpr: """Replace the elementwise min primitive by an equivalent max formulation.""" max_count, suffix = _get_count_and_suffix(graph) new_var_idx = max_count + 1 new_eqns = [] for eqn in graph.eqns: if (eqn.primitive == lax.min_p) and var_is_bound[eqn.outvars[0]]: # Create negation of the first argument. neg_inp_0_var = jax.core.Var(new_var_idx, suffix, eqn.invars[0].aval) var_is_bound[neg_inp_0_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( eqn.invars[0:1], [neg_inp_0_var], lax.neg_p, {}, jax.core.no_effects)) # Create negation of the second argument. neg_inp_1_var = jax.core.Var(new_var_idx, suffix, eqn.invars[1].aval) var_is_bound[neg_inp_1_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( eqn.invars[1:2], [neg_inp_1_var], lax.neg_p, {}, jax.core.no_effects)) # Create the elementwise maximum neg_min = jax.core.Var(new_var_idx, suffix, eqn.outvars[0].aval) var_is_bound[neg_min] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( [neg_inp_0_var, neg_inp_1_var], [neg_min], lax.max_p, {}, jax.core.no_effects)) # Negate to obtain the elementwise minimum elt_min_outvar = eqn.outvars[0] new_eqns.append(jax.core.new_jaxpr_eqn( [neg_min], [elt_min_outvar], lax.neg_p, {}, jax.core.no_effects)) else: new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) def replace_eltwise_maximum(graph: jax.core.Jaxpr, var_is_bound: VarIsBoundDict, ) -> jax.core.Jaxpr: """Replace the elementwise max primitive by a ReLU and sum.""" max_count, suffix = _get_count_and_suffix(graph) new_var_idx = max_count + 1 new_eqns = [] for eqn in graph.eqns: # If this in an elementwise maximum, that is not a ReLU if ((eqn.primitive == lax.max_p) and var_is_bound[eqn.outvars[0]] and not (isinstance(eqn.invars[1], jax.core.Literal) and eqn.invars[1] == 0.)): # We know that this is a an elementwise maximum operation max(a, b). # We are going to rewrite it as b + ReLU(a - b) # Create the difference between the two arguments of the elementwise max. diff_var = jax.core.Var(new_var_idx, suffix, eqn.invars[0].aval) var_is_bound[diff_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( eqn.invars, [diff_var], lax.sub_p, {}, jax.core.no_effects)) # Create the ReLU of the difference relued_diff_var = jax.core.Var(new_var_idx, suffix, eqn.outvars[0].aval) var_is_bound[relued_diff_var] = True new_var_idx += 1 new_eqns.append(jax.core.new_jaxpr_eqn( [diff_var], [relued_diff_var], relu_p, {}, jax.core.no_effects)) # Add the second term back. max_outvar = eqn.outvars[0] new_eqns.append(jax.core.new_jaxpr_eqn( [relued_diff_var, eqn.invars[1]], [max_outvar], lax.add_p, {}, jax.core.no_effects)) else: new_eqns.append(eqn) return jax.core.Jaxpr(graph.constvars, graph.invars, graph.outvars, new_eqns) class FakePrimitive(jax.core.Primitive): """This wraps an implementation of a primitive we want to identify. This way our code that assumes that it can go through the primitive by calling `bind` will work transparently. We don't want to define it properly as a primitive because otherwise operations like the jit will assume that it's a real primitive and not have definitions for it. """ def __init__(self, name, impl, always_make_node=False): # pylint: disable=redefined-outer-name self._name = name self._impl = impl self._always_make_node = always_make_node self._register_lowering() def bind(self, *args, **kwargs): params = {k: v for k, v in kwargs.items() if k != 'jax_verify_subgraph'} return self._impl(*args, **params) @property def name(self): return self._name @property def always_make_node(self): return self._always_make_node def __str__(self): return self._name def __repr__(self): return f'SyntheticPrimitive[{self._name}]' def _register_lowering(self): """Register the lowering of the primitive. In order to be usable inside a pjit, any primitive need to have defined a lowering rule. The FakePrimitive are all traceable, so we will use lower_fun to produce their lowering rule. """ lowering_rule = mlir.lower_fun(self.bind, multiple_results=False) mlir.register_lowering(self, lowering_rule) def always_make_node(primitive: Primitive): return isinstance(primitive, FakePrimitive) and primitive.always_make_node def simplifier_composition(*graph_simplifiers: GraphSimplifier ) -> GraphSimplifier: """Apply each simplifier one after the other.""" # We leave it as a list of simplifiers, and let `_simplify_graph` handle # the aggregation. This will allows the first simplifier to be applied to # the entire graph including sub-graphs, before the next simplifier is # applied. return list(graph_simplifiers) def _subgraph_bind(*args, **kwargs): """Implement the primitive by iterating through the subgraph.""" jax_verify_subgraph = kwargs['jax_verify_subgraph'] return jax.core.eval_jaxpr(jax_verify_subgraph, [], *args)[0] class SubgraphPrimitive(FakePrimitive): """Fake primitive delegating to the implementation to jax_verify_subgraph.""" def __init__(self, name): super().__init__(name, _subgraph_bind) def bind(self, *args, **kwargs): return self._impl(*args, **kwargs) convert_float32_p = FakePrimitive( 'ConvertFloat32', functools.partial(lax.convert_element_type, new_dtype=jnp.float32)) sigmoid_p = FakePrimitive('Sigmoid', jax.nn.sigmoid) softplus_p = FakePrimitive('Softplus', jax.nn.softplus) softmax_p = FakePrimitive('Softmax', jax.nn.softmax) relu_p = FakePrimitive('ReLU', jax.nn.relu) leaky_relu_p = FakePrimitive('LeakyRelu', jax.nn.leaky_relu) parametric_leaky_relu_p = FakePrimitive( 'ParametricLeakyRelu', jax.nn.leaky_relu) clip_p = FakePrimitive('Clip', jnp.clip) posreciprocal_p = FakePrimitive('PosReciprocal', jax.lax.reciprocal) sech_p = FakePrimitive('Sech', lambda x: 1. / jnp.cosh(x)) linear_p = SubgraphPrimitive('Linear') posbilinear_p = SubgraphPrimitive('PosBilinear') quadratic_p = SubgraphPrimitive('Quadratic') fused_relu_p = SubgraphPrimitive('FusedRelu') def _make_specs( fn: TensorFun, upstream_simplifier: Optional[SimpleSimplifier], primitive: 'FakePrimitive', *arg_shapes_dtypes: Union[tuple[Sequence[int], jnp.dtype], Callable[[], Tensor]], **params) -> Sequence[SyntheticPrimitiveSpec]: """Create specs for the variants of the function that we might encounter.""" specs = [SyntheticPrimitiveSpec( fn, upstream_simplifier, primitive, *arg_shapes_dtypes, **params)] if hasattr(fn, '__wrapped__'): specs.append(SyntheticPrimitiveSpec( fn.__wrapped__, upstream_simplifier, primitive, *arg_shapes_dtypes, **params)) return specs def activation_specs() -> Sequence[SyntheticPrimitiveSpec]: """Returns specs of activations to be replaced with synthetic primitives.""" synthetic_primitive_specs = [] # # ReLU. synthetic_primitive_specs.extend(_make_specs( jax.nn.relu, None, relu_p, ([], jnp.float32))) # ReLU may also occur as an explicit max with zero. synthetic_primitive_specs.extend(_make_specs( lambda x: jnp.maximum(x, 0.), None, relu_p, ([], jnp.float32))) # Clipped synthetic_primitive_specs.extend(_make_specs( jnp.clip, None, clip_p, ([], jnp.float32), a_min=capture_float32, a_max=capture_float32)) # Clipped, with tensors inputs. synthetic_primitive_specs.extend(_make_specs( jnp.clip, None, clip_p, ([], jnp.float32), ([], jnp.float32), ([], jnp.float32))) # Softplus. synthetic_primitive_specs.extend(_make_specs( jax.nn.softplus, None, softplus_p, ([], jnp.float32))) # Softmax (n-D). for rank in range(1, 9): synthetic_primitive_specs.extend(_make_specs( jax.nn.softmax, None, softmax_p, ([2] * rank, jnp.float32), axis=(rank - 1))) # LeakyRelu synthetic_primitive_specs.extend(_make_specs( jax.nn.leaky_relu, None, leaky_relu_p, ([], jnp.float32), negative_slope=capture_float32)) # LeakyRelu with a learnable negative_slope per neuron (input to the function) synthetic_primitive_specs.extend(_make_specs( jax.nn.leaky_relu, None, parametric_leaky_relu_p, ([], jnp.float32), ([], jnp.float32))) # Sigmoid synthetic_primitive_specs.extend(_make_specs( jax.nn.sigmoid, None, sigmoid_p, ([], jnp.float32))) # Hyperbolic Secant synthetic_primitive_specs.extend(_make_specs( lambda x: 1. / jnp.cosh(x), None, sech_p, ([], jnp.float32))) # Convert to float32. # We mostly assume that all of our bounds are float32 tensors. However, if # they are only weakly typed, this will result in convert_element_type # primitives. These are fine (and are identity from our point of view). # We however want to avoid ignoring all of such primitives (in case for # example there is a conversion to int in the network, which we definitely # would like to error on.) # The plan is to detect the primitive we accept and handle them correctly, # while not detecting the ones we don't, and let the code error. synthetic_primitive_specs.extend(_make_specs( functools.partial(lax.convert_element_type, new_dtype=jnp.float32), None, convert_float32_p, lambda: jnp.asarray(0.))) return synthetic_primitive_specs LINEAR_OP: Sequence[Primitive] = [ lax.neg_p, lax.concatenate_p, lax.reshape_p, lax.squeeze_p, lax.transpose_p, lax.broadcast_in_dim_p, lax.gather_p, lax.reduce_sum_p, lax.add_p, lax.scatter_add_p, lax.dynamic_slice_p, lax.slice_p, lax.sub_p, linear_p, convert_float32_p, *([lax.select_p] if hasattr(lax, 'select_p') else []), *([lax.select_n_p] if hasattr(lax, 'select_n_p') else []), ] BILINEAR_OP: Sequence[Primitive] = [ lax.dot_general_p, lax.conv_general_dilated_p, lax.mul_p, lax.scatter_mul_p, posbilinear_p, ] # Don't use `functools.partial` here. We need to defer the invocation of # `activation_specs()`, because it relies on Jax having been initialised. activation_detector = lambda graph: detect(activation_specs(), graph) activation_simplifier = lambda graph, _: activation_detector(graph) default_simplifier = simplifier_composition( activation_simplifier, replace_eltwise_minimum, replace_eltwise_maximum, hoist_constant_computations, group_linear_sequence, group_posbilinear, ) fused_relu_simplifier = simplifier_composition(default_simplifier, group_fused_relu)
jax_verify-master
jax_verify/src/synthetic_primitives.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bound propagation utilities.""" import abc from typing import Any, Callable, Generic, Mapping, Tuple, TypeVar import jax import jax.numpy as jnp import jax_verify from jax_verify.src import bound_propagation from jax_verify.src import bound_utils from jax_verify.src import graph_traversal from jax_verify.src import utils from jax_verify.src.types import Index, Nest, Primitive, Tensor # pylint: disable=g-multiple-import T = TypeVar('T', bound=graph_traversal.TransformedNode) class BackwardConcretizingTransform( graph_traversal.BackwardGraphTransform[T], Generic[T], # Explicitly restate this, to aid PyType resolution. metaclass=abc.ABCMeta): """Abstract class for a Backward Transformation that can concretize bounds.""" @abc.abstractmethod def concretize_args(self, primitive: Primitive) -> bool: """Return whether the arguments needs to be concretized. Args: primitive: Primitive that we are encountering. """ @abc.abstractmethod def concrete_bound_chunk( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], env: Mapping[jax.core.Var, bound_propagation.LayerInput], node: jax.core.Var, obj: Tensor, ) -> Tensor: """Computes concrete bounds for a chunk of neurons in the given layer. Args: graph: Graph to perform Backward Propagation on. inputs: Bounds on the inputs. env: Environment containing intermediate bound and shape information. node: Graph node to obtain a bound for. obj: One-hot tensor of shape (chunk_size, *node_shape) specifying, for each index in the chunk, an element of the objective. Non-zero entries may be +1 or -1 to request lower or upper bounds respectively. Returns: Bound of shape (chunk_size,) on the activation at `node`. """ class BackwardConcretizer(metaclass=abc.ABCMeta): """Abstract producer of concretize bounds by back-propagation.""" @abc.abstractmethod def should_handle_as_subgraph(self, primitive: Primitive) -> bool: """Returns whether the primitive should be handled via its sub-graph.""" @abc.abstractmethod def concretize_args(self, primitive: Primitive) -> bool: """Return whether the arguments needs to be concretized. Args: primitive: Primitive that we are encountering. """ @abc.abstractmethod def concrete_bound( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], env: Mapping[jax.core.Var, bound_propagation.LayerInput], node_ref: jax.core.Var, ) -> jax_verify.IntervalBound: """Perform backward linear bound computation for the node `index`. Args: graph: Graph to perform Backward Propagation on. inputs: Bounds on the inputs. env: Environment containing intermediate bound and shape information. node_ref: Graph node to obtain a bound for. Returns: concrete_bound: IntervalBound on the activation at `node`. """ class ChunkedBackwardConcretizer(BackwardConcretizer): """Concretizer that invokes the given transform in chunks for each layer.""" def __init__(self, concretizing_transform: BackwardConcretizingTransform[Any], max_chunk_size: int = 0): self._concretizing_transform = concretizing_transform self._max_chunk_size = max_chunk_size def should_handle_as_subgraph(self, primitive: Primitive) -> bool: return self._concretizing_transform.should_handle_as_subgraph(primitive) def concretize_args(self, primitive: Primitive) -> bool: return self._concretizing_transform.concretize_args(primitive) def concrete_bound( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], env: Mapping[jax.core.Var, bound_propagation.LayerInput], node_ref: jax.core.Var, ) -> jax_verify.IntervalBound: """Perform backward linear bound computation for the node `index`. Args: graph: Graph to perform Backward Propagation on. inputs: Bounds on the inputs. env: Environment containing intermediate bound and shape information. node_ref: Reference of the node to obtain a bound for. Returns: concrete_bound: IntervalBound on the activation at `node_ref`. """ node = graph_traversal.read_env(env, node_ref) def bound_fn(obj: Tensor) -> Tuple[Tensor, Tensor]: # Handle lower bounds and upper bounds independently in the same chunk. obj = jnp.concatenate([obj, -obj], axis=0) all_bounds = self._concretizing_transform.concrete_bound_chunk( graph, inputs, env, node_ref, obj) # Separate out the lower and upper bounds. lower_bound, neg_upper_bound = jnp.split(all_bounds, 2, axis=0) upper_bound = -neg_upper_bound return lower_bound, upper_bound return jax_verify.IntervalBound( *utils.chunked_bounds(node.shape, self._max_chunk_size, bound_fn)) def stop_gradient_postprocess( index: Index, concrete_bound: bound_propagation.Bound, ) -> bound_propagation.Bound: del index # unused return jax_verify.IntervalBound( jax.lax.stop_gradient(concrete_bound.lower), jax.lax.stop_gradient(concrete_bound.upper)) class BackwardConcretizingAlgorithm( bound_propagation.PropagationAlgorithm[bound_propagation.Bound]): """Abstract Backward graph propagation method with forward concretization. A trace through the network is first obtained, then backward bound computations are performed for each of the node requiring to be concretized, such as intermediate nodes that are inputs to non-linearity or output values. Note that the resulting environment of intermediate bounds (returned by `propagate` alongside the concrete output bound) is sparse, in the sense that many nodes will only contain a placeholder `GraphNode` with vacuous bounds. The only nodes guaranteed to contain genuine bounds are the args to concretised nodes, and the final outputs. In addition, the graph inputs are included in concrete form for convenience. """ def __init__( self, backward_concretizer: BackwardConcretizer, bound_postprocess_fn: Callable[ [Index, bound_propagation.LayerInput], bound_propagation.LayerInput] = lambda _, x: x): self._backward_concretizer = backward_concretizer self._bound_postprocess_fn = bound_postprocess_fn def propagate( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], ) -> Tuple[ Nest[bound_propagation.LayerInput], Mapping[jax.core.Var, bound_propagation.LayerInput]]: subgraph_decider = self._backward_concretizer.should_handle_as_subgraph graph_inspector = bound_utils.GraphInspector(subgraph_decider) inspector_algorithm = bound_propagation.ForwardPropagationAlgorithm( graph_inspector) gn_outvals, env = inspector_algorithm.propagate(graph, inputs) env = dict(env) # take a modifiable copy def lazily_concretize(index, *, is_output): jaxpr_node = graph.jaxpr_node(index) graph_node = env[jaxpr_node] if isinstance(graph_node, bound_utils.GraphNode): # This node has not yet been concretized. Perform concretization. concrete_bound = self._backward_concretizer.concrete_bound( graph, inputs, env, jaxpr_node) if not is_output: concrete_bound = self._bound_postprocess_fn(index, concrete_bound) # Update the environment, replacing the graph node with the concretised # bound. Note that the same graph node may occur multiple times, under # separate variables as we step into or out of a subgraph. for k, v in env.items(): if v is graph_node: env[k] = concrete_bound # Iterate over the nodes in order so that we get intermediate bounds in # the order where we need them. for node in graph_inspector.nodes.values(): if (not node.is_input() and self._backward_concretizer.concretize_args(node.primitive)): for node_arg in node.args: if isinstance(node_arg, bound_propagation.Bound): lazily_concretize(node_arg.index, is_output=False) # Iterate over the outputs, making sure to concretize all of them. outvals = [] for gn in gn_outvals: lazily_concretize(gn.index, is_output=True) outvals.append(env[graph.jaxpr_node(gn.index)]) # Fill in the bounds for the inputs. # This is unnecessary for backward methods themselves, but may be useful # if the resulting `env` is used as a set of base bounds for a forward # method. flat_inputs, _ = jax.tree_util.tree_flatten(inputs) for in_jaxpr_node, in_bound in zip(graph.inputs, flat_inputs): if isinstance(env[in_jaxpr_node], bound_utils.GraphNode): env[in_jaxpr_node] = in_bound return outvals, env class BackwardAlgorithmForwardConcretization( bound_propagation.PropagationAlgorithm[bound_propagation.Bound]): """Abstract Backward graph propagation with forward concretization.""" def __init__(self, forward_transform: bound_propagation.BoundTransform, backward_concretizer: BackwardConcretizer): self._forward_algorithm = bound_propagation.ForwardPropagationAlgorithm( forward_transform) self._backward_concretizer = backward_concretizer def propagate( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], ) -> Tuple[ Nest[bound_propagation.LayerInput], Mapping[jax.core.Var, bound_propagation.LayerInput]]: # Perform the forward propagation so that all intermediate bounds are # concretized. _, env = self._forward_algorithm.propagate(graph, inputs) env = dict(env) # take a modifiable copy # Iterate over the outputs, computing each one separately. outvals = [] for out_var in graph.outputs: concrete_outvar_bound = self._backward_concretizer.concrete_bound( graph, inputs, env, out_var) outvals.append(concrete_outvar_bound) env[out_var] = concrete_outvar_bound return outvals, env
jax_verify-master
jax_verify/src/concretization.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pre-canned non-convex methods.""" from typing import Callable from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import ibp from jax_verify.src import synthetic_primitives from jax_verify.src.nonconvex import duals from jax_verify.src.nonconvex import nonconvex from jax_verify.src.nonconvex import optimizers from jax_verify.src.types import Nest, Tensor # pylint: disable=g-multiple-import def nonconvex_ibp_bound_propagation( function: Callable[..., Nest[Tensor]], *bounds: Nest[graph_traversal.GraphInput], graph_simplifier=synthetic_primitives.default_simplifier, ) -> Nest[nonconvex.NonConvexBound]: """Builds the non-convex objective using IBP. Args: function: Function performing computation to obtain bounds for. Takes as only arguments the network inputs. *bounds: Bounds on the inputs of the function. graph_simplifier: What graph simplifier to use. Returns: output_bounds: NonConvex bounds that can be optimized with a solver. """ algorithm = nonconvex.nonconvex_algorithm( duals.WolfeNonConvexBound, nonconvex.BaseBoundConcretizer(), base_boundprop=ibp.bound_transform) output_bounds, _ = bound_propagation.bound_propagation( algorithm, function, *bounds, graph_simplifier=graph_simplifier) return output_bounds def nonconvex_constopt_bound_propagation( function: Callable[..., Nest[Tensor]], *bounds: Nest[graph_traversal.GraphInput], graph_simplifier=synthetic_primitives.default_simplifier, ) -> Nest[nonconvex.NonConvexBound]: """Builds the optimizable objective. Args: function: Function performing computation to obtain bounds for. Takes as only arguments the network inputs. *bounds: Bounds on the inputs of the function. graph_simplifier: What graph simplifier to use. Returns: output_bounds: NonConvex bounds that can be optimized with a solver. """ nostep_optimizer = optimizers.OptimizingConcretizer( optimizers.PGDOptimizer(0, 0., optimize_dual=False), max_parallel_nodes=512) algorithm = nonconvex.nonconvex_algorithm( duals.WolfeNonConvexBound, nostep_optimizer) output_bounds, _ = bound_propagation.bound_propagation( algorithm, function, *bounds, graph_simplifier=graph_simplifier) return output_bounds
jax_verify-master
jax_verify/src/nonconvex/methods.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides optimizers to use with the NonConvexBound in `nonconvex.py`. """ import abc import functools from typing import Tuple, Callable, Mapping, Optional, Sequence, Union import jax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import ibp from jax_verify.src import optimizers from jax_verify.src import utils from jax_verify.src.branching import branch_selection from jax_verify.src.nonconvex import nonconvex from jax_verify.src.types import Index, Tensor # pylint: disable=g-multiple-import import optax ParamSet = nonconvex.ParamSet class BoundOptimizer(metaclass=abc.ABCMeta): """Abstract Class to define the API of optimizer. Each subclass defines an optimization algorithm to solve the optimization problem defined by a NonConvexBound. This is done by overloading the `optimize` function. """ @abc.abstractmethod def optimize_fun(self, non_convex_bound: nonconvex.NonConvexBound ) -> Callable[[ParamSet, ParamSet], ParamSet]: pass class OptimizingConcretizer(nonconvex.Concretizer): """Concretizer based on optimizing the intermediate bounds. This needs to be initialized with an optimizer, and concrete bounds will be obtained by solving the relaxation for the intermediate activations. """ def __init__( self, optimizer: BoundOptimizer, max_parallel_nodes: int = 512, branching_constraints: Optional[ branch_selection.BranchingDecisionList] = None, branching_optimizer: Optional[optax.GradientTransformation] = None, branching_opt_number_steps: int = 0): self._optimizer = optimizer self._max_parallel_nodes = max_parallel_nodes self._branching_constraints = [] self._branching_optimizer = None self._branching_opt_number_steps = branching_opt_number_steps if branching_constraints is not None: self._branching_constraints = branching_constraints # Keep the optimizer for the branching constraints dual variables. if (branching_optimizer is None) or (branching_opt_number_steps == 0): raise ValueError('If branching constraints are imposed, an optimizer ' 'and a number of optimization steps for the lagrangian' ' variables corresponding to them needs to be ' 'provided.') self._branching_optimizer = branching_optimizer self._branching_opt_number_steps = branching_opt_number_steps def concrete_bound( self, graph: graph_traversal.PropagationGraph, env: Mapping[jax.core.Var, Union[bound_propagation.Bound, Tensor]], nonconvex_bound: nonconvex.NonConvexBound) -> bound_propagation.Bound: return self.get_bounds(nonconvex_bound) def get_bounds(self, to_opt_bound: nonconvex.NonConvexBound ) -> bound_propagation.Bound: optimize_fun = self._optimizer.optimize_fun(to_opt_bound) def bound_fn(obj: Tensor) -> Tuple[Tensor, Tensor]: var_shapes, chunk_objectives = _create_opt_problems(to_opt_bound, obj) ini_var_set = {key: 0.5 * jnp.ones(shape) for key, shape in var_shapes.items()} def solve_problem(objectives: ParamSet) -> Tensor: # Optimize the bound for primal variables. opt_var_set = optimize_fun(objectives, ini_var_set) # Compute the resulting bound _, bound_vals = to_opt_bound.dual(jax.lax.stop_gradient(opt_var_set), objectives) return bound_vals if any(node_idx <= to_opt_bound.index for (node_idx, *_) in self._branching_constraints): # There exists constraints that needs to be taken into account. # The dual vars per constraint are scalars, but we need to apply them # for each of the optimization objective. nb_targets = chunk_objectives[to_opt_bound.index].shape[0] # Create the dual variables for them. active_branching_constraints = [ (node_idx, neuron_idx, val, side) for (node_idx, neuron_idx, val, side) in self._branching_constraints if node_idx <= to_opt_bound.index] nb_constraints = len(active_branching_constraints) dual_vars = [jnp.zeros([nb_targets])] * nb_constraints # Define the objective function to optimize. The branching constraints # are lifted into the objective function. def unbranched_objective(dual_vars: ParamSet) -> Tuple[float, Tensor]: objectives = dict(chunk_objectives) base_term = jnp.zeros([nb_targets]) for ((node_idx, neuron_idx, val, side), branch_dvar) in zip(active_branching_constraints, dual_vars): # Adjust the objective function to incorporate the dual variables. if node_idx not in objectives: objectives[node_idx] = jnp.zeros(var_shapes[node_idx]) # The branching constraint is encoded as: # side * neuron >= side * val # (when side==1, this is neuron >= lb, # and when side==-1, this is -neuron >= -ub ) # To put in a canonical form \lambda_b() <= 0, this is: # \lambda_b() = side * val - side * neuron # Lifting the branching constraints takes us from the problem: # min_{z} f(z) # s.t. \mu_i() <= z_i <= \eta_i() \forall i # \lambda_b() <= 0 \forall b # # to # max_{\rho_b} min_{z} f(z) + \rho_b \lambda_b() # s.t \mu_i() <= z_i <= \eta_i() \forall i # s.t rho_b >= 0 # Add the term corresponding to the dual variables to the linear # objective function. coeff_to_add = -side * branch_dvar index_to_update = jnp.index_exp[:, neuron_idx] flat_node_obj = jnp.reshape(objectives[node_idx], (nb_targets, -1)) flat_updated_node_obj = flat_node_obj.at[index_to_update].add( coeff_to_add) updated_node_obj = jnp.reshape(flat_updated_node_obj, var_shapes[node_idx]) objectives[node_idx] = updated_node_obj # Don't forget the terms based on the bound. base_term = base_term + (side * val * branch_dvar) network_term = solve_problem(objectives) bound = network_term + base_term return bound.sum(), bound # pytype: disable=bad-return-type # jax-ndarray def evaluate_bound(ini_dual_vars: Sequence[Tensor]) -> Tensor: ini_state = self._branching_optimizer.init(ini_dual_vars) eval_and_grad_fun = jax.grad(unbranched_objective, argnums=0, has_aux=True) # The carry consists of: # - The best set of dual variables seen so far. # - The current set of dual variables. # - The best bound obtained so far. # - The state of the optimizer. # For each of the step, we will: # - Evaluate the bounds by the current set of dual variables. # - Update the best set of dual variables if progress was achieved. # - Do an optimization step on the current set of dual variables. # This way, we are guaranteed that we keep track of the dual variables # producing the best bound at the end. def opt_step( carry: Tuple[Sequence[Tensor], Sequence[Tensor], Tensor, optax.OptState], _ ) -> Tuple[Tuple[Sequence[Tensor], Sequence[Tensor], Tensor, optax.OptState], None]: best_lagdual, lagdual, best_bound, state = carry # Compute the bound and their gradients. lagdual_grads, new_bound = eval_and_grad_fun(lagdual) # Update the lagrangian dual variables for the best bound seen. improve_best = new_bound > best_bound new_best_lagdual = [] for best_dvar, new_dvar in zip(best_lagdual, lagdual): new_best_lagdual.append(jnp.where(improve_best, new_dvar, best_dvar)) # Update the best bound seen new_best_bound = jnp.maximum(best_bound, new_bound) # Perform optimization step updates, new_state = self._branching_optimizer.update( lagdual_grads, state, lagdual) unc_dual = optax.apply_updates(lagdual, updates) new_lagdual = jax.tree_map(lambda x: jnp.maximum(x, 0.), unc_dual) return ((new_best_lagdual, new_lagdual, new_best_bound, new_state), None) dummy_bound = -float('inf')*jnp.ones([nb_targets]) initial_carry = (ini_dual_vars, ini_dual_vars, dummy_bound, ini_state) (best_lagdual, *_), _ = jax.lax.scan( opt_step, initial_carry, None, length=self._branching_opt_number_steps) _, bound_vals = unbranched_objective( jax.lax.stop_gradient(best_lagdual)) return bound_vals bound_vals = evaluate_bound(dual_vars) else: bound_vals = solve_problem(chunk_objectives) chunk_lbs, chunk_ubs = _unpack_opt_problem(bound_vals) return chunk_lbs, chunk_ubs return ibp.IntervalBound(*utils.chunked_bounds( to_opt_bound.shape, self._max_parallel_nodes, bound_fn)) def _create_opt_problems( non_convex_bound: nonconvex.NonConvexBound, obj: Tensor, ) -> Tuple[Mapping[Index, Tuple[int, ...]], ParamSet]: """Define the objective function and the necessary variables shape. Iteratively yields the objectives to minimize in order to limit memory usage. Args: non_convex_bound: Bound for which to create the optimization problems. obj: One-hot tensor of shape (nb_parallel_nodes, *obj_shape) specifying the elements of the objective to optimise. Returns: var_to_opt: shapes of the variables to optimize to compute the bounds. objectives_by_layer: Objectives to minimize, in the form of a dictionary mapping the position of activations to the linear coefficients of the objective function. """ # Get the objective for the upper bounds. lb_obj = obj ub_obj = -obj obj = jnp.concatenate([lb_obj, ub_obj], axis=0) # Generate the shape of the variables necessary to solve the problem var_to_opt = {} for pos, var_shape in non_convex_bound.variables.items(): var_to_opt[pos] = (obj.shape[0],) + var_shape objectives_by_layer = {non_convex_bound.index: obj} return var_to_opt, objectives_by_layer def _unpack_opt_problem(dual_vals: Tensor) -> Tuple[Tensor, Tensor]: """Extract the lower bounds and upper bounds from the result of optmization. Args: dual_vals: Value of the dual returned by the optimization process. Returns: lb: Tensor containing lower bounds were they were computed and 0 elsewhere. ub: Tensor containing upper bounds were they were computed and 0 elsewhere. """ lb_duals, ub_duals = jnp.split(dual_vals, 2, axis=0) return lb_duals, -ub_duals class LinesearchFistaOptimizer(BoundOptimizer): """FISTA with line search.""" def __init__(self, num_steps: int, max_step_size: float = 100.0, min_step_size: float = 1e-5, beta_l: float = 0.5, beta_h: float = 1.5, check_convergence_every: int = 1, check_relative_dual_gap: bool = False, termination_dual_gap: float = 1e-2): self._optimizer = optimizers.LinesearchFistaOptimizer( num_steps, max_step_size, min_step_size, beta_l, beta_h, check_convergence_every) self._check_relative_dual_gap = check_relative_dual_gap self._termination_dual_gap = termination_dual_gap def optimize_fun(self, non_convex_bound: nonconvex.NonConvexBound )->Callable[[ParamSet, ParamSet], ParamSet]: """Returns a function optimizing the primal variables. Args: non_convex_bound: NonConvex object to define the objective function over Returns: optimize: Optimization function. """ def fun_to_opt(objectives, opt_vars): """Target functions to minimize. The functions to minimize are the primal objectives, given by non_convex_bound.primal function. This function also returns the intermediate activation as an auxiliary output, which we want to ignore. Args: objectives: Linear coefficients of the objective function on the activations. opt_vars: Value of the parameters to evaluate. Returns: obj: sum of the objective functions. """ obj, _ = non_convex_bound.primal_fn(opt_vars, objectives) return obj proj_fun = lambda opt_var: jnp.clip(opt_var, 0., 1.) project_all_params = lambda opt_vars: jax.tree_map(proj_fun, opt_vars) def any_not_done(objectives, opt_vars): primal, dual = non_convex_bound.dual(opt_vars, objectives) dgap_value = primal - dual if self._check_relative_dual_gap: bound_scale = 0.5 * (jnp.abs(primal) + jnp.abs(dual)) termination_gap = (1 + bound_scale) * self._termination_dual_gap else: termination_gap = self._termination_dual_gap return (dgap_value > termination_gap).any() def optimize(objectives: ParamSet, var_set: ParamSet) -> ParamSet: obj_fun = functools.partial(fun_to_opt, objectives) not_conv_fun = functools.partial(any_not_done, objectives) opt_fun = self._optimizer.optimize_fn(obj_fun, project_all_params, not_conv_fun) return opt_fun(var_set) return optimize class PGDOptimizer(BoundOptimizer): """Projected Gradient Optimizer. Optimization can either by taking gradients with respect to the primal or the dual objective. Passing a number of steps equal to zero will result in the bound derived from the initialization. """ def __init__(self, num_steps: int, step_size: float, optimize_dual: bool = False): # Define the optimizer. Because we are minimizing the objective function, # we will scale the gradient by a negative step size. gradient_transform = optax.scale(-step_size) self._optimizer = optimizers.OptaxOptimizer( gradient_transform, num_steps=num_steps) self._optimize_dual = optimize_dual def optimize_fun(self, non_convex_bound: nonconvex.NonConvexBound, ) -> Callable[[ParamSet, ParamSet], ParamSet]: """Returns a function optimizing the primal variables. Args: non_convex_bound: NonConvex object to define the objective function over Returns: optimize: Optimization function. """ # If we are going to actually perform optimization, define the function to # minimize (either the primal, or the negative of the dual), # its gradient and the projection function to use. def fun_to_opt(opt_vars, objectives): if self._optimize_dual: _, dual_vals = non_convex_bound.dual(opt_vars, objectives) obj = -jnp.sum(dual_vals) else: obj, _ = non_convex_bound.primal_sumfn(opt_vars, objectives) return obj proj_fun = lambda x: jnp.clip(x, 0., 1.) project_all_params = lambda x: jax.tree_map(proj_fun, x) # Define the function to optimize a chunk of the nodes of the activation. def optimize(objectives: ParamSet, var_set: ParamSet) -> ParamSet: obj_fun = lambda opt_vars: fun_to_opt(opt_vars, objectives) opt_fun = self._optimizer.optimize_fn(obj_fun, project_all_params) return opt_fun(var_set) return optimize
jax_verify-master
jax_verify/src/nonconvex/optimizers.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implement the dual computations for the NonConvex Reformulation.""" import collections import functools from typing import Callable, DefaultDict, Mapping, MutableMapping, MutableSequence, Optional, Sequence, Tuple, Union import jax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import synthetic_primitives from jax_verify.src.nonconvex import nonconvex from jax_verify.src.types import Index, Primitive, Tensor # pylint: disable=g-multiple-import ParamSet = nonconvex.ParamSet EvalFunArgs = [ParamSet, ParamSet, ParamSet] WolfeDualFn = Callable[[ParamSet, Tensor, ParamSet, Tensor, Tensor, ParamSet], Tensor] LagrangianLevelFn = Callable[[Tensor, ParamSet], Tensor] LagrangianBoundingFn = Callable[[Tensor, ParamSet], Tensor] LagrangianVarTerm = Tuple[Union[str, Primitive], Callable[..., Tensor]] LagrangianDict = DefaultDict[Index, MutableSequence[LagrangianVarTerm]] LagrangianVartermsFn = Callable[[Tensor, LagrangianDict], None] def _sum_fn(fn, *args, **kwargs): out = fn(*args, **kwargs) summand = out[0] if isinstance(out, tuple) else out return summand.sum(), out def _sum_over_acts(var: Tensor) -> Tensor: return var.sum(axis=tuple(range(1, var.ndim))) CVX_HULL_PRIMITIVES = (synthetic_primitives.relu_p, synthetic_primitives.softplus_p, synthetic_primitives.posbilinear_p, ) class WolfeNonConvexBound(nonconvex.ConstrainedNonConvexBound): """This subclass allows the computation of the WolfeDual. This is done through the `wolfe_dual_fn`, which propagates the dual variables backwards. The quantity propagated backwards (dvar) needs to be split between pos_dvar (dual variable on [lb_fun() - z]) and neg_dvar (dual variable on [z - ub_fun()]). In the presence of imposed (concrete) constraints, those need to be specified differently. We need: (bound_posdvar - bound_negdvar) + (boundfun_posdvar - boundfun_negdvar) = dvar_cte + sum_{j>i} (boundfun_posdvar_j * lb_fun() - boundfun_negdvar_j * ub_fun()) which means that we have degrees of freedom. Current implementation decides based on a greedy approach, ignoring the downstream consequences. This could be improved. """ def __init__( self, wolfe_dual_fn: WolfeDualFn, index: Index, shape: Tuple[int, ...], previous_bounds: MutableMapping[Index, 'WolfeNonConvexBound'], eval_fn: Callable[EvalFunArgs, Tensor], variables: Mapping[Index, Tuple[int, ...]], concretized_bounds: Optional[bound_propagation.Bound] = None): """Create a NonConvexBound that can compute the WolfeDual. Args: wolfe_dual_fn: Function performing backward propagation of bounds for the wolfe dual and computing the contribution of this layer to the dual. index: Unique index representing the position of this activation in the computation graph. shape: Shape of the activations that this bound represent. previous_bounds: Dict mapping index of activation to the bound representing it. We need it to be able to obtain the contributions of previous layers to the Lagrangian. eval_fn: Function to evaluate the bound computation problem in the primal variables: Dict mapping index of activation to the shape of variables required to optimize them. concretized_bounds: (Optional) Precomputed bounds for this NonConvexBound. """ super().__init__(index, shape, previous_bounds, eval_fn, variables, concretized_bounds) self.wolfe_dual_fn = wolfe_dual_fn def dual(self, var_set: ParamSet, objectives: ParamSet ) -> Tuple[Tensor, Tensor]: dual_vars, acts = self._compute_dualvars_convexgrad(var_set, objectives) primal = self._objective_fn(acts, objectives) dual_gap = 0 index_bound_list = list(self.previous_bounds.items()) for index, intermediate_bound in reversed(index_bound_list): wolfe_dual_fn = intermediate_bound.wolfe_dual_fn if intermediate_bound.is_constrained(): wolfe_dual_contrib = wolfe_dual_fn( var_set, dual_vars[index], acts, intermediate_bound.lower, intermediate_bound.upper, dual_vars) else: wolfe_dual_contrib = wolfe_dual_fn( var_set, dual_vars[index], acts, None, None, dual_vars) dual_gap = dual_gap + wolfe_dual_contrib wolfe_dual = primal + dual_gap return primal, wolfe_dual @classmethod def get_initial_bound_constructor( cls: Callable[..., 'WolfeNonConvexBound'], index: Index, lb: Tensor, ub: Tensor) -> Callable[..., 'WolfeNonConvexBound']: def wolfe_dual_fn( var_set: ParamSet, dvar: Tensor, acts: ParamSet, bound_lb: Tensor, bound_ub: Tensor, dual_vars: ParamSet, ) -> Tensor: del var_set del bound_lb del bound_ub del dual_vars pos_dvar = jnp.maximum(dvar, 0.) neg_dvar = jnp.maximum(-dvar, 0.) x_0 = acts[index] dual_contrib = _sum_over_acts(pos_dvar * (lb - x_0) + neg_dvar * (x_0 - ub)) return dual_contrib return functools.partial(cls, wolfe_dual_fn) @classmethod def get_linear_activation_constructor( cls: Callable[..., 'WolfeNonConvexBound'], index: Index, vlin_fun: Callable[..., Tensor], in_vals: Sequence[Union['WolfeNonConvexBound', Tensor]], ) -> Callable[..., 'WolfeNonConvexBound']: def wolfe_dual_fn( var_set: ParamSet, dvar: Tensor, acts: ParamSet, bound_lb: Tensor, bound_ub: Tensor, dual_vars: ParamSet, ) -> Tensor: pos_dvar = jnp.maximum(dvar, 0.) neg_dvar = jnp.maximum(-dvar, 0.) all_inps = [nonconvex.eval_if_nonconvexbound(inp, var_set, None, acts) for inp in in_vals] if bound_lb is not None: bound_fun_eval = vlin_fun(all_inps) brd_bound_lb = jnp.expand_dims(bound_lb, 0) brd_bound_ub = jnp.expand_dims(bound_ub, 0) bound_posdvar = jnp.where(brd_bound_lb >= bound_fun_eval, pos_dvar, jnp.zeros_like(pos_dvar)) pos_dvar = pos_dvar - bound_posdvar bound_negdvar = jnp.where(brd_bound_ub <= bound_fun_eval, neg_dvar, jnp.zeros_like(neg_dvar)) neg_dvar = neg_dvar - bound_negdvar _, backprop = jax.vjp(vlin_fun, all_inps) all_pp_dvars = backprop(pos_dvar)[0] all_nq_dvars = backprop(neg_dvar)[0] for i, inp_i in enumerate(in_vals): if not isinstance(inp_i, nonconvex.NonConvexBound): continue prev_dvar = all_pp_dvars[i] - all_nq_dvars[i] if inp_i.index in dual_vars: prev_dvar = dual_vars[inp_i.index] + prev_dvar dual_vars[inp_i.index] = prev_dvar if bound_lb is not None: act_out_eval = acts[index] bound_fun_to_out = bound_fun_eval - act_out_eval dual_contrib = _sum_over_acts( jnp.where(bound_posdvar > 0, bound_posdvar * (brd_bound_lb - act_out_eval), jnp.zeros_like(bound_posdvar)) + jnp.where(bound_negdvar > 0, bound_negdvar * (act_out_eval - brd_bound_ub), jnp.zeros_like(bound_negdvar)) + (pos_dvar - neg_dvar) * bound_fun_to_out) return dual_contrib else: # There shouldn't be a contrib term here; everything cancels out. return 0 return functools.partial(cls, wolfe_dual_fn) @classmethod def get_nonlinearity_activation_constructor( cls: Callable[..., 'WolfeNonConvexBound'], index: Index, act_type: Primitive, lb_fun: Callable[[Tensor], Tensor], ub_fun: Callable[[Tensor], Tensor], *inp: 'WolfeNonConvexBound', ) -> Callable[..., 'WolfeNonConvexBound']: def wolfe_dual_fn( var_set: ParamSet, dvar: Tensor, acts: ParamSet, bound_lb: Tensor, bound_ub: Tensor, dual_vars: ParamSet, ) -> Tensor: pos_dvar = jnp.maximum(dvar, 0.) neg_dvar = jnp.maximum(-dvar, 0.) inp_val = [inp_i.evaluate(var_set, {}, acts) for inp_i in inp] lb_val, lb_backprop = jax.vjp(lb_fun, *inp_val) ub_val, ub_backprop = jax.vjp(ub_fun, *inp_val) if bound_lb is not None: brd_bound_lb = jnp.expand_dims(bound_lb, 0) brd_bound_ub = jnp.expand_dims(bound_ub, 0) bound_posdvar = jnp.where(brd_bound_lb >= lb_val, pos_dvar, jnp.zeros_like(pos_dvar)) pos_dvar = pos_dvar - bound_posdvar bound_negdvar = jnp.where(brd_bound_ub <= ub_val, neg_dvar, jnp.zeros_like(neg_dvar)) neg_dvar = neg_dvar - bound_negdvar backprop_pos = lb_backprop(pos_dvar) backprop_neg = ub_backprop(neg_dvar) for (i, inp_i) in enumerate(inp): prev_dvar = backprop_pos[i] - backprop_neg[i] if inp_i.index in dual_vars: prev_dvar = dual_vars[inp_i.index] + prev_dvar dual_vars[inp_i.index] = prev_dvar out_val = acts[index] dual_contrib = _sum_over_acts(neg_dvar * (out_val - ub_val) + pos_dvar * (lb_val - out_val)) if bound_lb is not None: dual_contrib = dual_contrib + _sum_over_acts( jnp.where(bound_posdvar > 0, bound_posdvar * (brd_bound_lb - out_val), jnp.zeros_like(bound_posdvar)) + jnp.where(bound_negdvar > 0, bound_negdvar * (out_val - brd_bound_ub), jnp.zeros_like(bound_negdvar))) return dual_contrib return functools.partial(cls, wolfe_dual_fn) def requires_concretizing(self, consuming_primitive): needs_concretizing = (consuming_primitive is None or consuming_primitive in CVX_HULL_PRIMITIVES) return (self._concretized_bounds is None) and needs_concretizing def _initial_lagrangian_term(dvar: Tensor, lb: Tensor, ub: Tensor, x: Tensor ) -> Tensor: pos_dvar = jnp.maximum(dvar, 0.) neg_dvar = jnp.maximum(-dvar, 0.) dual_contrib = (neg_dvar * (x - ub) + pos_dvar * (lb - x)) return dual_contrib class LinLagrangianNonConvexBound(nonconvex.NonConvexBound): """This subclass allows the computation of the Linearized Lagrangian dual. The lagrangian and its linearization are obtained through the `lagrangian_level_fn` which compute the contribution of this layer to the lagrangian, based on precomputed activation. The minimization of linear function (such as the linearized lagrangian) over the feasible domain is done through the `bounding_fn` function. """ def __init__( self, lagrangian_level_fn: LagrangianLevelFn, bounding_fn: LagrangianBoundingFn, index: Index, shape: Tuple[int, ...], previous_bounds: MutableMapping[Index, 'LinLagrangianNonConvexBound'], eval_fn: Callable[EvalFunArgs, Tensor], variables: Mapping[Index, Tuple[int, ...]], concretized_bounds: Optional[bound_propagation.Bound] = None): """Create a NonConvexBound that can compute the Linearized Lagrangian dual. Args: lagrangian_level_fn: Function returning the contribution of this layer to the lagrangian, based on precomputed activations. bounding_fn: Function to perform linear minimization over the domain of an activation. index: Unique index representing the position of this activation in the computation graph. shape: Shape of the activations that this bound represent. previous_bounds: Dict mapping index of activation to the bound representing it. We need it to be able to obtain the contributions of previous layers to the Lagrangian. eval_fn: Function to evaluate the bound computation problem in the primal variables: Dict mapping index of activation to the shape of variables required to optimize them. concretized_bounds: (Optional) Precomputed bounds for this NonConvexBound. """ super(LinLagrangianNonConvexBound, self).__init__( index, shape, previous_bounds, eval_fn, variables, concretized_bounds) self.lagrangian_level_fn = lagrangian_level_fn self.bounding_fn = bounding_fn def lagrangian(acts: ParamSet, objectives: ParamSet, dual_vars: Tensor, ) -> Tuple[Tensor, ParamSet]: primals = self._objective_fn(acts, objectives) lagrangian = primals for index, intermediate_bound in self.previous_bounds.items(): lagrangian_level_fn = intermediate_bound.lagrangian_level_fn dvar = dual_vars[index] contrib = lagrangian_level_fn(dvar, acts) lagrangian += contrib return lagrangian, primals self._lagrangian_fn = lagrangian self._lagrangian_sumfn = functools.partial(_sum_fn, lagrangian) def dual(self, var_set: ParamSet, objectives: ParamSet) -> Tensor: dual_vars, acts = self._compute_dualvars_nonconvexgrad(var_set, objectives) # Compute the gradients of all the lagrangians (done by taking their sum), # with regards to the activations. lag_grad_fun = jax.value_and_grad(self._lagrangian_sumfn, argnums=0, has_aux=True) ((_, (lagrangians, primals)), laggrad_wrt_acts) = lag_grad_fun(acts, objectives, dual_vars) lin_duals = lagrangians for index, intermediate_bound in self.previous_bounds.items(): bounding_fn = intermediate_bound.bounding_fn lag_grad = laggrad_wrt_acts[index] contrib = bounding_fn(lag_grad, acts) lin_duals += contrib return primals, lin_duals # pytype: disable=bad-return-type # jax-ndarray @classmethod def get_initial_bound_constructor( cls: Callable[..., 'LinLagrangianNonConvexBound'], index: Index, lb: Tensor, ub: Tensor) -> Callable[..., 'LinLagrangianNonConvexBound']: def lagrangian_level_fn(dvar: Tensor, acts: ParamSet) -> Tensor: x_0 = acts[index] dual_contrib = _sum_over_acts(_initial_lagrangian_term(dvar, lb, ub, x_0)) return dual_contrib def bounding_fn(lag_grad: Tensor, acts: ParamSet) -> Tensor: x_0 = acts[index] bound_contrib = _sum_over_acts(jnp.maximum(lag_grad, 0.) * (lb - x_0) + jnp.minimum(lag_grad, 0.) * (ub - x_0)) return bound_contrib return functools.partial(cls, lagrangian_level_fn, bounding_fn) @classmethod def get_linear_activation_constructor( cls: Callable[..., 'LinLagrangianNonConvexBound'], index: Index, vlin_fun: Callable[..., Tensor], in_vals: Tuple[Union['LinLagrangianNonConvexBound', Tensor], ...] ) -> Callable[..., 'LinLagrangianNonConvexBound']: def lagrangian_level_fn(dvar: Tensor, acts: ParamSet) -> Tensor: act_inp_eval = [ acts[inp.index] if isinstance(inp, nonconvex.NonConvexBound) else inp for inp in in_vals] # Because this is linear, the function is both the lower bound and the # upper bound. act_out_eval = acts[index] f_inp_eval = vlin_fun(act_inp_eval) dual_contrib = _sum_over_acts(dvar * (f_inp_eval - act_out_eval)) return dual_contrib def bounding_fn(lag_grad: Tensor, acts: ParamSet) -> Tensor: act_out_eval = acts[index] # We need to minimize the dotproduct between the lagrangian and the output # of that linear layer. Let's take the gradient (because everything is # linear and then we can simply assign bounds based on sign of gradient # coefficients.) dot_lagrangian_output = lambda x: (lag_grad * vlin_fun(x)).sum() act_inp_eval = [ acts[inp.index] if isinstance(inp, nonconvex.NonConvexBound) else inp for inp in in_vals] minimizing_inps = [] grads = jax.grad(dot_lagrangian_output)(act_inp_eval) for inp, grad in zip(in_vals, grads): if isinstance(inp, nonconvex.NonConvexBound): broad_lb = jnp.expand_dims(inp.lower, 0) broad_ub = jnp.expand_dims(inp.upper, 0) minimizing_inps.append(jnp.where(grad >= 0, broad_lb, broad_ub)) else: minimizing_inps.append(inp) bound_contrib = _sum_over_acts((vlin_fun(minimizing_inps) - act_out_eval) * lag_grad) return bound_contrib return functools.partial(cls, lagrangian_level_fn, bounding_fn) @classmethod def get_nonlinearity_activation_constructor( cls: Callable[..., 'LinLagrangianNonConvexBound'], index: Index, act_type: Primitive, lb_fun: Callable[[Tensor], Tensor], ub_fun: Callable[[Tensor], Tensor], *inp: 'LinLagrangianNonConvexBound', ) -> Callable[..., 'LinLagrangianNonConvexBound']: assert len(inp) == 1 inp = inp[0] def lagrangian_level_fn(dvar: Tensor, acts: ParamSet) -> Tensor: pos_dvar = jnp.maximum(dvar, 0.) neg_dvar = jnp.maximum(-dvar, 0.) act_inp_eval = acts[inp.index] act_out_eval = acts[index] lb_val = lb_fun(act_inp_eval) ub_val = ub_fun(act_inp_eval) dual_contrib = _sum_over_acts(neg_dvar * (act_out_eval - ub_val) + pos_dvar * (lb_val - act_out_eval)) return dual_contrib # We consider convex monotonous activation functions, so # - The lower bound is exact. # - The lower/upper bound on the output can be obtained by forwarding # through the exact function the lower/upper bound on the input. out_lb = lb_fun(jnp.expand_dims(inp.lower, 0)) out_ub = lb_fun(jnp.expand_dims(inp.upper, 0)) def bounding_fn(lag_grad: Tensor, acts: ParamSet) -> Tensor: act_out_eval = acts[index] lb_val = jnp.expand_dims(out_lb, 0) ub_val = jnp.expand_dims(out_ub, 0) bound_contrib = _sum_over_acts( jnp.maximum(lag_grad, 0.) * (lb_val - act_out_eval) + jnp.minimum(lag_grad, 0.) * (ub_val - act_out_eval)) return bound_contrib return functools.partial(cls, lagrangian_level_fn, bounding_fn) def requires_concretizing(self, consuming_primitive): return self._concretized_bounds is None class MinLagrangianNonConvexBound(nonconvex.NonConvexBound): """This subclass allows the computation of the primal minimized lagrangian. The contribution of each primal variables are collected by the `lagrangian_varterms_fn`. It does not directly compute the lagrangian but fills in a dictionary mapping variables to the terms that involve them. This is done so that we can reorganize the lagrangian per variable, and then minimize it one variable at a time. """ def __init__( self, lagrangian_varterms_fn: LagrangianVartermsFn, index: Index, shape: Tuple[int, ...], previous_bounds: MutableMapping[Index, 'MinLagrangianNonConvexBound'], eval_fn: Callable[EvalFunArgs, Tensor], variables: Mapping[Index, Tuple[int, ...]], concretized_bounds: Optional[bound_propagation.Bound] = None): """Create a NonConvexBound that can compute the primal minimized Lagrangian. Args: lagrangian_varterms_fn: Function filling in a dictionary mapping each variable to the terms involving it in the lagrangian. index: Unique index representing the position of this activation in the computation graph. shape: Shape of the activations that this bound represent. previous_bounds: Dict mapping index of activation to the bound representing it. We need it to be able to obtain the contributions of previous layers to the Lagrangian. eval_fn: Function to evaluate the bound computation problem in the primal variables: Dict mapping index of activation to the shape of variables required to optimize them. concretized_bounds: (Optional) Precomputed bounds for this NonConvexBound. """ super(MinLagrangianNonConvexBound, self).__init__( index, shape, previous_bounds, eval_fn, variables, concretized_bounds) self.lagrangian_varterms_fn = lagrangian_varterms_fn def collect_lagrangian_varterms(self, objectives: ParamSet, dual_vars: ParamSet) -> LagrangianDict: lagrangian_dict = collections.defaultdict(list) for index, intermediate_bound in self.previous_bounds.items(): lagrangian_varterms_fn = intermediate_bound.lagrangian_varterms_fn dvar = dual_vars[index] lagrangian_varterms_fn(dvar, lagrangian_dict) return lagrangian_dict def dual(self, var_set: ParamSet, objectives: ParamSet) -> Tensor: dual_vars, acts = self._compute_dualvars_nonconvexgrad(var_set, objectives) nb_targets = objectives[self.index].shape[0] # Compute the primals. This is not based on the activation minimizing the # lagrangian (because those are not necessarily primal feasible) primals = self._objective_fn(acts, objectives) lagrangian_terms = self.collect_lagrangian_varterms(objectives, dual_vars) # For each item in the network, we have a list of all the terms it is # involved in. Let's use this to minimize the lagrangian. opt_acts = {} for index, lag_terms in lagrangian_terms.items(): intermediate_bound = self.previous_bounds[index] broad_lb = jnp.repeat(jnp.expand_dims(intermediate_bound.lower, axis=0), nb_targets, axis=0) broad_ub = jnp.repeat(jnp.expand_dims(intermediate_bound.upper, axis=0), nb_targets, axis=0) opt_acts[index] = _optimize_lagrangian_terms(lag_terms, broad_lb, broad_ub) minimized_lagrangian = self._objective_fn(opt_acts, objectives) for index, lag_terms in lagrangian_terms.items(): for _, lag_term_fn in lag_terms: out_term = lag_term_fn(opt_acts[index]) minimized_lagrangian = minimized_lagrangian + _sum_over_acts(out_term) return primals, minimized_lagrangian # pytype: disable=bad-return-type # jax-ndarray @classmethod def get_initial_bound_constructor( cls: Callable[..., 'MinLagrangianNonConvexBound'], index: Index, lb: Tensor, ub: Tensor) -> Callable[..., 'MinLagrangianNonConvexBound']: def lagrangian_varterms_fn(dvar: Tensor, lagrangian_dict: LagrangianDict): lagrangian_dict[index].append( ('Linear', functools.partial(_initial_lagrangian_term, dvar, lb, ub))) return functools.partial(cls, lagrangian_varterms_fn) @classmethod def get_linear_activation_constructor( cls: Callable[..., 'MinLagrangianNonConvexBound'], index: Index, vlin_fun: Callable[..., Tensor], in_vals: Sequence[Union['MinLagrangianNonConvexBound', Tensor]], ) -> Callable[..., 'MinLagrangianNonConvexBound']: def lagrangian_varterms_fn(dvar: Tensor, lagrangian_dict: LagrangianDict): # There is a linear term of dvar over the outputs. lagrangian_dict[index].append(('Linear', lambda x: (-dvar*x))) # If only one of the input is a variable, we can do things in a simple # way. Special casing this pattern avoids a bunch of failures on TPUs. inp_is_bound = list(isinstance(inp, nonconvex.NonConvexBound) for inp in in_vals) if sum(inp_is_bound) == 1: bound_arg_pos = inp_is_bound.index(True) # The linear function has only one input, so we can just use it # directly. def single_input_vlin_fun(x): inps = [inp if not is_bound else x for inp, is_bound in zip(in_vals, inp_is_bound)] return dvar * vlin_fun(inps) lagrangian_dict[in_vals[bound_arg_pos].index].append( # pytype: disable=attribute-error # jax-ndarray ('Linear', single_input_vlin_fun)) else: # There is multiple inputs, so we need to separate the contribution of # each one, and assign the bias to one of them. inps = [] for inp in in_vals: if isinstance(inp, nonconvex.NonConvexBound): # Add the opt dimension, and put in all the examples to 0, so that # we can identify the bias term. shape = inp.shape inp_shape = (dvar.shape[0],) + shape example_inp = jnp.zeros(inp_shape) inps.append(example_inp) else: inps.append(inp) # Get the linear term over the inputs through auto-diff def lag_inp_contrib(x): contrib = dvar * vlin_fun(x) contrib = _sum_over_acts(contrib) return contrib.sum(), contrib (_, bias), grads = jax.value_and_grad(lag_inp_contrib, has_aux=True)(inps) grad_dot_prod = lambda grad, bias, x: _sum_over_acts(grad * x) + bias for inp, grad in zip(in_vals, grads): if isinstance(inp, nonconvex.NonConvexBound): lagrangian_dict[inp.index].append( ('Linear', functools.partial(grad_dot_prod, grad, bias))) # Zero out the bias now that it has been included in one term. bias = 0. * bias return functools.partial(cls, lagrangian_varterms_fn) @classmethod def get_nonlinearity_activation_constructor( cls: Callable[..., 'MinLagrangianNonConvexBound'], index: Index, act_type: Primitive, lb_fun: Callable[[Tensor], Tensor], ub_fun: Callable[[Tensor], Tensor], *inp: 'MinLagrangianNonConvexBound', ) -> Callable[..., 'MinLagrangianNonConvexBound']: assert len(inp) == 1 assert act_type in _lagrangian_opt_fns inp = inp[0] def lagrangian_varterms_fn(dvar: Tensor, lagrangian_dict: LagrangianDict): # There is a linear term of dvar over the outputs. lagrangian_dict[index].append(('Linear', lambda x: (-dvar*x))) # For the inputs, there is a linear term through the upper bound: pos_dvar = jnp.maximum(dvar, 0.) neg_dvar = jnp.maximum(-dvar, 0.) negdvar_dot_ub = lambda x: (-neg_dvar * ub_fun(x)) lagrangian_dict[inp.index].append(('Linear', negdvar_dot_ub)) # For the inputs, there is a ReLU term through the lower bound lagrangian_dict[inp.index].append( (act_type, lambda x: (pos_dvar * lb_fun(x)))) return functools.partial(cls, lagrangian_varterms_fn) def requires_concretizing(self, consuming_primitive): return self._concretized_bounds is None def _optimize_lagrangian_terms(lagrangian_terms: Sequence[LagrangianVarTerm], lower_bound: Tensor, upper_bound: Tensor) -> Tensor: """Minimize the part of the lagrangian corresponding to a given variable. Args: lagrangian_terms: A list of the terms involving that variable. lower_bound: A tensor with the lower bound on the variable to optimize. upper_bound: A tensor with the upper bound on the variable to optimize. Returns: opt_act: A tensor with the inputs minimizing the lagrangian terms for each optimization target. """ act_term = None # Get the total linear term def linear_term(x): out = 0 for act_type, lag_term_fn in lagrangian_terms: if act_type == 'Linear': out += lag_term_fn(x).sum() return out # Identify the NonLinear term if there is one for act_type, lag_term_fn in lagrangian_terms: if act_type in _lagrangian_opt_fns: if act_term is not None: raise ValueError('Variable involved in several activations.') act_term = act_type, lag_term_fn elif act_type == 'Linear': pass else: raise ValueError('Unexpected contribution: ' + act_type) # Perform the minimization lin_coeffs = jax.grad(linear_term)(lower_bound) if act_term is None: # This does not involve a non linearity; this is just a linear term. return jnp.where(lin_coeffs >= 0, lower_bound, upper_bound) else: act_type, lag_term_fn = act_term return _lagrangian_opt_fns[act_type]( lin_coeffs, lag_term_fn, lower_bound, upper_bound) def _optimize_softplus_lagrangian(lin_coeffs: Tensor, nonlin_term: Callable[[Tensor], Tensor], lower_bound: Tensor, upper_bound: Tensor) -> Tensor: """Compute the input minimizing a sum of a linear term and a softplus. To minimize a * softplus(x) + b * x Either cancel gradient is feasible: a * (1 / (1 + exp(-x))) + b = 0 <=> a + b * (1 + exp(-x)) = 0 <=> - (a + b) / b = exp(-x) <=> x = ln(- b / (a + b)) If b=0, this is just normal linear minimization. If b / (a + b) > 0, that means there is no point where the gradient cancels, which means that the minimum will be obtained at one of the extremum. We can simply do linear minimization with the gradient. Otherwise, the minimum is for x = ln(-b / (a+b)), clipped to valid bounds. Args: lin_coeffs: b in the previous equation. nonlin_term: x -> a * softplus(x) lower_bound: Lower bound on the input we're minimizing over. upper_bound: Upper bound on the input we're minimizing over. Returns: opt_act: A tensor with the inputs minimizing the function specified. """ # Get the coefficients on the softplus dummy_inp = jnp.ones_like(lower_bound) softplus_coeffs = nonlin_term(dummy_inp) / jax.nn.softplus(dummy_inp) grad_at_lb = lin_coeffs + softplus_coeffs * jax.nn.sigmoid(lower_bound) # Check condition where we can disregard the 0-gradient solution safe_denom = jnp.where(lin_coeffs + softplus_coeffs != 0, lin_coeffs + softplus_coeffs, 1e-12) inner_log = -lin_coeffs / safe_denom safe_inner_log = jnp.where(inner_log > 0, inner_log, jnp.ones_like(inner_log)) zero_grad_infeasible = jnp.any( jnp.stack([(lin_coeffs + jnp.zeros_like(softplus_coeffs)) == 0, lin_coeffs + softplus_coeffs == 0, inner_log <= 0], axis=0), axis=0) return jnp.where(zero_grad_infeasible, jnp.where(grad_at_lb >= 0, lower_bound, upper_bound), jnp.clip(jnp.log(safe_inner_log), a_min=lower_bound, a_max=upper_bound)) def _optimize_relu_lagrangian(lin_coeffs: Tensor, nonlin_term: Callable[[Tensor], Tensor], lower_bound: Tensor, upper_bound: Tensor) -> Tensor: """Compute the input minimizing a sum of a linear term and a ReLU. To minimize a * relu(x) + b * x, We know that the function is piecewise linear. We will stack the three possible solutions along axis = 0 and then keep the minimum one. Args: lin_coeffs: b in the previous equation. nonlin_term: x -> a * relu(x) lower_bound: Lower bound on the input we're minimizing over. upper_bound: Upper bound on the input we're minimizing over. Returns: opt_act: A tensor with the inputs minimizing the function specified. """ zero_inp = jnp.zeros_like(lower_bound) possible_inps = jnp.stack([ lower_bound, jnp.clip(zero_inp, a_min=lower_bound, a_max=upper_bound), upper_bound], axis=0) out_val = lin_coeffs * possible_inps + nonlin_term(possible_inps) choice = out_val.argmin(axis=0) return jnp.choose(choice, possible_inps, mode='clip') _lagrangian_opt_fns = { synthetic_primitives.relu_p: _optimize_relu_lagrangian, synthetic_primitives.softplus_p: _optimize_softplus_lagrangian, }
jax_verify-master
jax_verify/src/nonconvex/duals.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build the nonconvex reformulation of the convex approximation of the network. This is accomplished by traversing the JaxPR representation of the computation and translating the computational graph. This is based on the paper "An efficient nonconvex reformulation of stagewise convex optimization problems" and the implementation was inspired by the tensorflow version at: /l/d/r/robust_verified/verification/ibp/verification/ nonconvex_optimizable_bounds.py """ import abc import functools from typing import Callable, Generic, Mapping, MutableMapping, Optional, Sequence, Tuple, Type, TypeVar, Union from absl import logging import jax from jax import lax import jax.numpy as jnp from jax_verify.src import activation_relaxation from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import intersection from jax_verify.src import synthetic_primitives from jax_verify.src import utils from jax_verify.src.types import Index, Nest, Primitive, Tensor, TensorFun # pylint: disable=g-multiple-import NnCvx = TypeVar('NnCvx', bound='NonConvexBound') # Mapping of a position in the computation to a set of parameters. # These can be variables, gradients, or coefficients. ParamSet = MutableMapping[Index, Tensor] def _sum_fn(fn, *args, **kwargs): out = fn(*args, **kwargs) summand = out[0] if isinstance(out, tuple) else out return summand.sum(), out def _sum_over_acts(var: Tensor) -> Tensor: return var.sum(axis=tuple(range(1, var.ndim))) class NonConvexBound(bound_propagation.Bound, metaclass=abc.ABCMeta): """Represent a bound that can be optimized. This is the object that gets propagated through the network. The important elements it exposes are the following: - variables: Specifies what is the shape of the parameters that need to be provided such that a bound can be computed. - dual: A function that takes as input variables as specified by `variables` and a set of linear function over the activations, in the form of a dict mapping activation index to (batch_dim , nb_opt, *act_dims) tensor, and that returns the value of the primal objectives when those variables are used, as well as a dual bound on those linear objectives. Different options for dual computation are available, each implemented in a separate sub-class. - primal_fn: Similar function, but does not compute the dual objective. It also has an additional `dummy_inps` inputs. When gradients with regards to the activation needs to be obtained, these can obtained by providing "0 activations" through this parameters, which would be added to the network activations. Differentiating with regards to these parameters will allow to obtain derivatives with regards to activations. Making use of these elements has already been implemented in the `BoundOptimizer` classes. Important bits of machinery shared by all subclasses: - _eval_fn is a function that takes as inputs tensors as specified by `variables` and evaluate the activations. - concretizer is an instance of `Concretizer`, that exposes a `concrete_bound` method. This is used during the bound propagation when concrete bounds are required (such as when defining the convex hull relaxation of a ReLU.). The choice of concretizer impacts of those intermediate concrete bounds are computed. This can be done by relying on a fallback method such as IBP, or by optimization. In addition, the subclass are responsible for encoding some additional mechanisms required for the computation of the dual they implement. """ def __init__( self, index: Index, shape: Tuple[int, ...], previous_bounds: MutableMapping[Index, 'NonConvexBound'], eval_fn: Callable[[ParamSet, ParamSet, ParamSet], Tensor], variables: Mapping[Index, Tuple[int, ...]], concretized_bounds: Optional[bound_propagation.Bound] = None): """Shared computation for the creation of NonConvexBound. Args: index: Unique index representing the position of this activation in the computation graph. shape: Shape of the activations that this bound represent. previous_bounds: Dict mapping index of activation to the bound representing it. We need it to be able to obtain the contributions of previous layers to the Lagrangian. eval_fn: Function to evaluate the bound computation problem in the primal variables: Dict mapping index of activation to the shape of variables required to optimize them. concretized_bounds: (Optional) Precomputed bounds for this NonConvexBound. """ self.index = index self._shape = shape self.previous_bounds = previous_bounds self.previous_bounds[index] = self self._eval_fn = eval_fn self.variables = variables self._concretized_bounds = concretized_bounds def primal(var_set: ParamSet, objectives: ParamSet, dummy_inps: Optional[ParamSet] = None ) -> Tuple[Tensor, ParamSet]: """Evaluate the primal objective of the problem. dummy_inps are inputs which are always zeros, and that we will add to every intermediate activations of the network for which we need gradients. This way, computing the gradients with regards to those "inputs" allows us to compute gradients with regards to intermediate activations, as required for the definition of the dual variables. Args: var_set: Dictionary mapping the position in network to a tensor containing the primal variables. objectives: Dict mapping the position in network to the coefficient of the linear objective function over the activations. dummy_inps: Dictionary mapping the position in network to a zero tensor. Returns: primals: All primal objectives. """ acts = {} self.evaluate(var_set, dummy_inps, acts) primals = self._objective_fn(acts, objectives) return primals, acts self.primal_fn = primal self.primal_sumfn = functools.partial(_sum_fn, primal) def _objective_fn(self, acts, objectives): """Default objective function is a dot product with the activations.""" primal_objs = sum(_sum_over_acts(acts[index] * act_objectives) for index, act_objectives in objectives.items()) return primal_objs @property def shape(self): return self._shape @property def dtype(self): return jnp.float32 @property def lower(self) -> Tensor: if self._concretized_bounds is None: logging.warning('.lower called on a non-concretized bound.' 'Returning spurious bounds.') return -float('inf') * jnp.ones(self.shape, self.dtype) return self._concretized_bounds.lower @property def upper(self) -> Tensor: if self._concretized_bounds is None: logging.warning('.upper called on a non-concretized bound.' 'Returning spurious bounds.') return float('inf') * jnp.ones(self.shape, self.dtype) return self._concretized_bounds.upper def evaluate(self, var_set: ParamSet, dummy_inps: Optional[ParamSet] = None, acts: Optional[ParamSet] = None) -> Tensor: if acts is None: acts = {} if dummy_inps is None: dummy_inps = {} if self.index in acts: return acts[self.index] else: val = self._eval_fn(var_set, dummy_inps, acts) if self.index in dummy_inps: val = val + dummy_inps[self.index] acts[self.index] = val return val @abc.abstractmethod def dual(self, var_set: ParamSet, objectives: ParamSet) -> Tensor: """Compute the dual, using dual variables derived from primals in var_set. Returns both primal and dual, so that this can be used to compute dual gap. Args: var_set: Relaxation variables to use to compute the primal activations and derive the duals from. objectives: Dict mapping the position in network to the coefficient of the linear objective function over the activations. """ @classmethod @abc.abstractmethod def get_initial_bound_constructor( cls: Type[NnCvx], index: Index, lb: Tensor, ub: Tensor) -> Callable[..., NnCvx]: """Class specific initialization for the input bounds of the network.""" raise NotImplementedError('Initial bound constructor not implemented') @classmethod @abc.abstractmethod def get_linear_activation_constructor( cls: Type[NnCvx], index: Index, vlin_fun: Callable[..., Tensor], in_vals: Tuple[Tensor, ...]) -> Callable[..., NnCvx]: """Class specific initialization for the output of a linear function.""" raise NotImplementedError('Linear activation constructor not implemented') @classmethod @abc.abstractmethod def get_nonlinearity_activation_constructor( cls: Type[NnCvx], index: Index, inp: NnCvx, act_type: Primitive, lb_fun: Callable[[Tensor], Tensor], ub_fun: Callable[[Tensor], Tensor]) -> Callable[..., NnCvx]: """Class specific initialization for the output of a non-linearity.""" raise NotImplementedError('Nonlinearity activation constructor not' 'implemented') @abc.abstractmethod def requires_concretizing(self, primitive) -> bool: """Returns whether the bounds need to be concretized. Args: primitive: Primitive where this bound is going to be fed into. None indicates it is an output of the network. Returns: requires_concretizing: Indicate whether concretizing is required. """ raise NotImplementedError('Specification of when concretization is required' 'is not implemented.') def _compute_dualvars_nonconvexgrad(self, var_set: ParamSet, objectives: ParamSet ) -> Tuple[ParamSet, ParamSet]: """Obtain dual vars based on derivatives of the nonconvex reformulation. Compute the gradients of all the primals objectives, (done by taking their sum), with regards to the dummy inputs of each activation. This differentiation is for the function as expressed in the nonconvex formulation, where each activation is a function of the previous activations. Args: var_set: Interpolation coefficients to derive the activations from. objectives: Arguments for the objective function. Returns: dual_vars: Dual variables corresponding to the derivatives of the primals wrt to the network activation, in the nonconvex reformulation. acts: Activations of the network. """ grad_fun = jax.grad(self.primal_sumfn, argnums=2, has_aux=True) dummy_acts = {key: 0*val for key, val in var_set.items()} dual_vars, (_, acts) = grad_fun(var_set, objectives, dummy_acts) return dual_vars, acts def _compute_dualvars_convexgrad(self, var_set: ParamSet, objectives: ParamSet ) -> Tuple[ParamSet, ParamSet]: """Obtain dual vars based on derivatives of the objective function. Compute the gradients of all the primal objectives with regards to each activation. This differentiation is for the objective function expressed in the convex sense, where all the activation are considered variables rather than functions. Args: var_set: Interpolation coefficients to derive the activations from. objectives: Arguments for the objective function. Returns: dual_vars: Dual variables corresponding to the derivatives of the primals wrt to the network activation, in the convex formulation. acts: Activations of the network. """ acts = {} self.evaluate(var_set, {}, acts) primal_gradfun_wrt_act = utils.batch_value_and_grad( self._objective_fn, (0,)) _, dual_vars = primal_gradfun_wrt_act(acts, objectives) return dual_vars, acts def concretize(self, concretizer: 'Concretizer', graph, env): self._concretized_bounds = concretizer.concrete_bound(graph, env, self) @classmethod def initial_nonconvex_bound( cls: Type[NnCvx], index: Index, lower_bound: Tensor, upper_bound: Tensor) -> NnCvx: shape = lower_bound.shape variables = {index: lower_bound.shape} lb = jnp.expand_dims(lower_bound, axis=0) ub = jnp.expand_dims(upper_bound, axis=0) previous_bounds = {} def eval_fn(var_set, *_): val = lb + (ub - lb) * var_set[index] return val bound_ctor = cls.get_initial_bound_constructor(index, lb, ub) return bound_ctor( index, shape, previous_bounds, eval_fn, variables, bound_propagation.IntervalBound(lower_bound, upper_bound)) class ConstrainedNonConvexBound(NonConvexBound, metaclass=abc.ABCMeta): """This special case of NonConvexBound supports `imposed_bounds` constraints. The assumption is that, before any evaluation of the primal or dual, the `set_imposed_bounds` function is called. As a result, these should be created through a `_ConstrainedNonConvexTransform` * `lower` and `upper` return those by default before being concretized. * Concretizing will result in the concretized bounds being the tightest between the bounds obtained by concretizing and the imposed ones. * Imposing bounds will also constrain any existing concretized bounds. * Evaluating an activation represented by this bound will return the evaluation projected into the admissible bounds. """ def __init__( self, index: Index, shape: Tuple[int, ...], previous_bounds: MutableMapping[Index, 'ConstrainedNonConvexBound'], eval_fn: Callable[[ParamSet, ParamSet, ParamSet], Tensor], variables: Mapping[Index, Tuple[int, ...]], concretized_bounds: Optional[bound_propagation.Bound] = None): super().__init__(index, shape, previous_bounds, eval_fn, variables, concretized_bounds) self._imposed_bounds = None def is_constrained(self) -> bool: return self._imposed_bounds is not None def imposed_bounds(self) -> bound_propagation.Bound: if self._imposed_bounds is None: raise ValueError('No imposed bounds') return self._imposed_bounds def set_imposed_bounds(self, imposed_bounds: bound_propagation.Bound): self._imposed_bounds = imposed_bounds if self._concretized_bounds is not None: self._concretized_bounds = intersection.IntersectionBound( self._concretized_bounds, self._imposed_bounds) def evaluate(self, var_set: ParamSet, dummy_inps: Optional[ParamSet] = None, acts: Optional[ParamSet] = None) -> Tensor: """Activation implied by `var_set`, projected onto the bounds.""" unconstrained_eval = super().evaluate(var_set, dummy_inps, acts) if not self.is_constrained(): return unconstrained_eval brd_lower = jnp.expand_dims(self.lower, 0) brd_upper = jnp.expand_dims(self.upper, 0) if dummy_inps and (self.index in dummy_inps): # The dummy inp was added to the unconstrained eval, but we need to make # sure that it's present even in the constrained version. dummy_inp = dummy_inps[self.index] constrained_eval = jnp.clip(unconstrained_eval, brd_lower + dummy_inp, brd_upper + dummy_inp) else: constrained_eval = jnp.clip(unconstrained_eval, brd_lower, brd_upper) if acts: acts[self.index] = constrained_eval return constrained_eval @property def lower(self) -> Tensor: if self._imposed_bounds is not None and self._concretized_bounds is None: return self._imposed_bounds.lower return super().lower @property def upper(self) -> Tensor: if self._imposed_bounds is not None and self._concretized_bounds is None: return self._imposed_bounds.upper return super().upper def concretize(self, concretizer: 'Concretizer', graph, env): super().concretize(concretizer, graph, env) if self._imposed_bounds is not None: # Ensure that the concretized bounds respect the imposed bounds. self._concretized_bound = intersection.IntersectionBound( self._concretized_bounds, self._imposed_bounds) class Concretizer(abc.ABC): """Abstract class to define the API of concretizer. The role of Concretizer is to give access to concrete bounds to define relaxation while propagating NonConvexBound which are solver based. """ @abc.abstractmethod def concrete_bound( self, graph: graph_traversal.PropagationGraph, env: Mapping[jax.core.Var, bound_propagation.LayerInput], nonconvex_bound: NonConvexBound) -> bound_propagation.Bound: """Returns a concretized bound.""" class BaseBoundConcretizer(Concretizer): """Concretizer based on performing a parallel propagation with another method. This should be constructed with an environment resulting from forward propagation of another bound propagation method. """ def concrete_bound( self, graph: graph_traversal.PropagationGraph, env: Mapping[jax.core.Var, bound_propagation.LayerInput], nonconvex_bound: NonConvexBound) -> bound_propagation.Bound: return env[graph.jaxpr_node(nonconvex_bound.index)] def eval_if_nonconvexbound( inp: graph_traversal.LayerInput[NonConvexBound], var_set: ParamSet, dummy_inps: Optional[ParamSet], activations: Optional[ParamSet]) -> Tensor: if isinstance(inp, NonConvexBound): return inp.evaluate(var_set, dummy_inps, activations) else: return inp def _nonconvex_linear_op( primitive: Primitive, bound_cls: Type[NnCvx], index: Index, *in_vals: graph_traversal.LayerInput[NonConvexBound], **kwargs) -> NnCvx: """Propagation of NonConvex bounds through a linear operation. Args: primitive: Primitive that this linear operation implement. bound_cls: Bound class to use. index: Unique integer identifying position *in_vals: Input of the bound propagation in the forward pass **kwargs: Dict with the parameters of the linear operation Returns: out_bounds: nonconvex bounds on the operation's output """ in_axes_to_vmap = [0 if isinstance(inp, NonConvexBound) else None for inp in in_vals] kwarged_lin_fun = lambda args: primitive.bind(*args, **kwargs) vlin_fun = jax.vmap(kwarged_lin_fun, [in_axes_to_vmap], 0) bound_parents = [inp for inp in in_vals if isinstance(inp, NonConvexBound)] # We first merge the requirements of the inputs variables = {} previous_bounds = {} for parent in bound_parents: variables.update(parent.variables) previous_bounds.update(parent.previous_bounds) # Compute the shape of the output placeholder_invals = [] for inp in in_vals: if isinstance(inp, NonConvexBound): placeholder_invals.append(jax.core.ShapedArray(inp.shape, jnp.float32)) else: placeholder_invals.append(inp) output_shape = jax.eval_shape(kwarged_lin_fun, placeholder_invals).shape def eval_fn(var_set: ParamSet, dummy_inps: Optional[ParamSet], activations: Optional[ParamSet]) -> Tensor: """Evaluate the value of the activation in the relaxation. Note: This fills up `activations` by side-effect. Args: var_set: Variables for the relaxed problems. dummy_inps: Variables to add so that we can obtain gradients with regards to intermediate activations. activations: Cache for already computed activations. Returns: out: Tensor with the value of the activation. """ inps = [eval_if_nonconvexbound(inp, var_set, dummy_inps, activations) for inp in in_vals] out = vlin_fun(inps) return out variables[index] = output_shape new_bound_ctor = bound_cls.get_linear_activation_constructor( index, vlin_fun, in_vals) return new_bound_ctor(index, output_shape, previous_bounds, eval_fn, variables) def _nonconvex_div( bound_cls: Type[NnCvx], index: Index, lhs: graph_traversal.LayerInput[NonConvexBound], rhs: graph_traversal.LayerInput[NonConvexBound], ) -> NnCvx: """Propagation of NonConvex bounds bounds through Elementwise division. We don't support the propagation of bounds through the denominator. Args: bound_cls: Bound class to use. index: Unique integer identifying position in the computational graph. lhs: Numerator of the division. rhs: Denominator of the division. Returns: out_bounds: Bound on the output of the division. """ if isinstance(rhs, bound_propagation.Bound): raise ValueError('Bound propagation through the denominator unsupported.') return _nonconvex_linear_op(lax.mul_p, bound_cls, index, lhs, 1. / rhs) def _activation_convex_relaxation( bound_cls: Type[NnCvx], index: Index, inputs: Sequence[NnCvx], act_type: Primitive, lb_fun: Callable[..., Tensor], ub_fun: Callable[..., Tensor], precomputed_bound: Optional[bound_propagation.Bound]) -> NnCvx: """Builds the NonConvexBound object corresponding to after non-linearities. Args: bound_cls: Bound class to use. index: Index of the computation. inputs: Inputs of the non-linearity. act_type: Type of activation lb_fun: Function to evaluate the upper bound of the activation for an input. ub_fun: Function to evaluate the upper bound of the activation for an input. precomputed_bound: Bound on the NonConvexBound to generate. Returns: out_bounds: NonConvexBound for the output of the non-linearity """ bound_parents = [inp for inp in inputs if isinstance(inp, NonConvexBound)] # We first merge the requirements of the inputs variables = {} previous_bounds = {} for parent in bound_parents: variables.update(parent.variables) previous_bounds.update(parent.previous_bounds) inputs_lb = [jnp.expand_dims(inp.lower, 0) for inp in inputs] output_shape_with_target = jax.eval_shape(lb_fun, *inputs_lb).shape output_shape = output_shape_with_target[1:] variables[index] = output_shape def eval_fn(var_set, dummy_inps, activations): """Evaluate the value of the primal.""" inp_eval = [inp.evaluate(var_set, dummy_inps, activations) for inp in inputs] lb_val = lb_fun(*inp_eval) ub_val = ub_fun(*inp_eval) theta = var_set[index] out_val = lb_val + theta * (ub_val - lb_val) return out_val shape = output_shape new_bound_ctor = bound_cls.get_nonlinearity_activation_constructor( index, act_type, lb_fun, ub_fun, *inputs) return new_bound_ctor(index, shape, previous_bounds, eval_fn, variables, precomputed_bound) def _nonconvex_activation( act_type: Primitive, relaxation: Callable[..., Tuple[TensorFun, TensorFun]], bound_cls: Type[NnCvx], index: Index, *inps: Union[NnCvx, Tensor], eltwise_increasing: bool = False, **params) -> NnCvx: """Propagation of NonConvexBounds through a non-linear operation. Args: act_type: Activation type, e.g. 'Softplus' or 'ReLU'. relaxation: Function accepting (*inps, **params) and returning convex lower bound and concave upper bound functions. bound_cls: Bound class to use. index: Node index. *inps: Nonconvex bounds on the inputs to the operation. eltwise_increasing: Whether the operation is known to be element-wise monotonic increasing, in which case we can pre-compute its bounds. **params: Parameters of the operation. Returns: out_bounds: Nonconvex bounds on the operation's output. """ lb_fun, ub_fun = relaxation(*inps, **params) if eltwise_increasing: # The function is assumed to be monotonically increasing, so we # can readily pre-compute interval bounds on its output. # `lb_fun` will be the original function whenever this is reached. precomputed_bound = bound_propagation.IntervalBound( lb_fun(*[inp.lower for inp in inps]), # pytype: disable=attribute-error # jax-ndarray lb_fun(*[inp.upper for inp in inps])) # pytype: disable=attribute-error # jax-ndarray else: precomputed_bound = None lb_fun = jax.vmap(lb_fun, in_axes=0, out_axes=0) ub_fun = jax.vmap(ub_fun, in_axes=0, out_axes=0) return _activation_convex_relaxation( bound_cls, index, [inp for inp in inps if isinstance(inp, NonConvexBound)], act_type, lb_fun, ub_fun, precomputed_bound) def _make_activation_primitive_transform( primitive: Primitive, activation: activation_relaxation.ActivationRelaxation, ) -> Callable[..., NonConvexBound]: return functools.partial( _nonconvex_activation, primitive, activation.relaxation_fn, eltwise_increasing=activation.eltwise_increasing) _linear_op_primitives: Sequence[Primitive] = [ *bound_propagation.AFFINE_PRIMITIVES, *bound_propagation.RESHAPE_PRIMITIVES, ] _nonconvex_primitive_transform: Mapping[ Primitive, Callable[..., NonConvexBound], ] = { **{primitive: functools.partial(_nonconvex_linear_op, primitive) for primitive in _linear_op_primitives}, lax.div_p: _nonconvex_div, **{primitive: _make_activation_primitive_transform(primitive, act) for primitive, act in activation_relaxation.relaxation_fns.items()}, } class _NonConvexTransform( Generic[NnCvx], graph_traversal.GraphTransform[NnCvx]): """Graph Transform to build a NonConvex Relaxation, which can be optimized.""" def __init__( self, bound_cls: Type[NnCvx], concretizer: Concretizer, graph: graph_traversal.PropagationGraph, env: Mapping[jax.core.Var, bound_propagation.LayerInput], ): self._bound_cls = bound_cls self._concretizer = concretizer self._graph = graph self._env = env def input_transform( self, context: graph_traversal.TransformContext[NnCvx], input_bound: graph_traversal.InputBound, ) -> NnCvx: return self._bound_cls.initial_nonconvex_bound( context.index, input_bound.lower, input_bound.upper) def primitive_transform( self, context: graph_traversal.TransformContext[NnCvx], primitive: Primitive, *args: graph_traversal.LayerInput[NnCvx], **params, ) -> NnCvx: for arg in args: if (isinstance(arg, NonConvexBound) and arg.requires_concretizing(primitive)): arg.concretize(self._concretizer, self._graph, self._env) params = synthetic_primitives.filter_jaxverify_kwargs(params) new_bound = _nonconvex_primitive_transform[primitive]( self._bound_cls, context.index, *args, **params) return new_bound class _ConstrainedNonConvexTransform( _NonConvexTransform[ConstrainedNonConvexBound]): """Graph Transform performing parallel boundprop and imposing bounds.""" def __init__( self, bound_cls: Type[ConstrainedNonConvexBound], imposed_boundprop: bound_propagation.BoundTransform, concretizer: Concretizer, graph: graph_traversal.PropagationGraph, env: Mapping[jax.core.Var, bound_propagation.LayerInput], ): super().__init__(bound_cls, concretizer, graph, env) self._imposed_boundprop = imposed_boundprop def input_transform( self, context: graph_traversal.TransformContext[ConstrainedNonConvexBound], input_bound: graph_traversal.InputBound, ) -> ConstrainedNonConvexBound: bound = super().input_transform(context, input_bound) bound.set_imposed_bounds(self._imposed_boundprop.input_transform( context, input_bound)) return bound def primitive_transform( self, context: graph_traversal.TransformContext[ConstrainedNonConvexBound], primitive: Primitive, *args: graph_traversal.LayerInput[ConstrainedNonConvexBound], **params, ) -> ConstrainedNonConvexBound: bound = super().primitive_transform(context, primitive, *args, **params) imposed_bound_args = [ arg.imposed_bounds() if isinstance(arg, bound_propagation.Bound) else arg for arg in args] bound.set_imposed_bounds(self._imposed_boundprop.equation_transform( context, primitive, *imposed_bound_args, **params)[0]) return bound class NonConvexAlgorithm( Generic[NnCvx], bound_propagation.PropagationAlgorithm[NnCvx]): """Forward algorithm with an optional initial pass for 'base' bounds.""" def __init__( self, nonconvex_transform_ctor: Callable[..., bound_propagation.BoundTransform], concretizer: Concretizer, base_boundprop: Optional[bound_propagation.BoundTransform] = None): super().__init__() self._nonconvex_transform_ctor = nonconvex_transform_ctor self._concretizer = concretizer self._base_boundprop = base_boundprop def propagate( self, graph: graph_traversal.PropagationGraph, bounds: Nest[graph_traversal.GraphInput], ) -> Tuple[ Nest[bound_propagation.Bound], Mapping[jax.core.Var, bound_propagation.LayerInput], ]: if self._base_boundprop is not None: # Propagate the 'base' bounds in advance, for subsequent use by # the concretiser. _, base_env = bound_propagation.ForwardPropagationAlgorithm( self._base_boundprop).propagate(graph, bounds) else: # No 'base' boundprop method specified. # This is fine as long as the concretiser does not rely on base bounds. base_env = None nonconvex_transform = self._nonconvex_transform_ctor( self._concretizer, graph, base_env) output_bounds, env = bound_propagation.ForwardPropagationAlgorithm( nonconvex_transform).propagate(graph, bounds) # Always concretize the returned bounds so that `lower` and `upper` are # accessible for out_bound in jax.tree_util.tree_leaves(output_bounds): if out_bound.requires_concretizing(None): out_bound.concretize(self._concretizer, graph, base_env) return output_bounds, env def nonconvex_algorithm( bound_cls: Type[NnCvx], concretizer: Concretizer, *, base_boundprop: Optional[bound_propagation.BoundTransform] = None, imposed_boundprop: Optional[bound_propagation.BoundTransform] = None, ) -> bound_propagation.PropagationAlgorithm[NnCvx]: """Builds a bound propagation algorithm for the non-convex formulation. Args: bound_cls: Bound class to use. This determines what dual formulation will be computed. concretizer: Concretizer to use to obtain intermediate bounds. base_boundprop: Underlying bound propagation method for obtaining concrete bounds. imposed_boundprop: Additional bounds to apply as constraints, e.g. from a branching decision. Returns: Propagation algorithm. """ if imposed_boundprop is None: bound_transform_ctor = functools.partial(_NonConvexTransform, bound_cls) else: bound_transform_ctor = functools.partial( _ConstrainedNonConvexTransform, bound_cls, imposed_boundprop) return NonConvexAlgorithm(bound_transform_ctor, concretizer, base_boundprop)
jax_verify-master
jax_verify/src/nonconvex/nonconvex.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Backward Crown / Fastlin. """ import abc import functools from typing import Mapping, Optional, Sequence, Tuple import jax from jax import lax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import bound_utils from jax_verify.src import concretization from jax_verify.src import graph_traversal from jax_verify.src import ibp from jax_verify.src import optimizers from jax_verify.src import synthetic_primitives from jax_verify.src import utils from jax_verify.src.linear import linear_relaxations from jax_verify.src.types import Index, Nest, Primitive, SpecFn, Tensor # pylint: disable=g-multiple-import import optax def _sum_linear_backward_bounds( linbound_seq: Sequence[linear_relaxations.LinearExpression], ) -> linear_relaxations.LinearExpression: if len(linbound_seq) == 1: return linbound_seq[0] else: return linbound_seq[0] + _sum_linear_backward_bounds(linbound_seq[1:]) def _backpropagate_linear_functions( linfun: linear_relaxations.LinFun, outval: linear_relaxations.LinearExpression, *invals: bound_propagation.LayerInput, )-> Sequence[Optional[linear_relaxations.LinearExpression]]: """Propagate a linear function backward through the linfun function. Args: linfun: Linear function to propagate through. outval: Coefficients of a linear functions over the output of linfun. *invals: Tensor or Bounds that are inputs to linfun Returns: new_in_args: Coefficients of a linear functions over the input of linfun, representing the same linear function as was represented by outval. """ # Figure out the bias of the linear transformation, which will need to be # added to the offset. zero_in_args = [jnp.zeros(arg.shape) for arg in invals if isinstance(arg, bound_propagation.Bound)] nb_bound_inputs = len(zero_in_args) linfun_onlybound_input = utils.bind_nonbound_args(linfun, *invals) linfun_bias, vjp_fun = jax.vjp(linfun_onlybound_input, *zero_in_args) # Let's evaluate what offset this would correspond to, based on the what the # outval is. broad_bias = jnp.expand_dims(linfun_bias, 0) dims_to_reduce = tuple(range(1, broad_bias.ndim)) # We're splitting the offset between all the bounds that we propagate # backward. This contains both the offset that was already present on the # bounds being propagated backward and the ones coming from this level # of the relaxation. total_offset = (outval.offset + jnp.sum(outval.lin_coeffs * broad_bias, dims_to_reduce)) shared_offset = total_offset / nb_bound_inputs # Let's vmap the target dimension, so as to backpropagate for all targets. vjp_fun = jax.vmap(vjp_fun, in_axes=0, out_axes=0) in_args_lin_coeffs = vjp_fun(outval.lin_coeffs) new_in_args = [] bound_arg_pos = 0 for arg in invals: if isinstance(arg, bound_propagation.Bound): new_in_args.append(linear_relaxations.LinearExpression( in_args_lin_coeffs[bound_arg_pos], shared_offset)) bound_arg_pos += 1 else: new_in_args.append(None) return new_in_args def _handle_linear_relaxation( lb_fun: linear_relaxations.LinFun, ub_fun: linear_relaxations.LinFun, outval: linear_relaxations.LinearExpression, *invals: bound_propagation.LayerInput, ) -> Sequence[Optional[linear_relaxations.LinearExpression]]: """Propagate a linear function backward through a linear relaxation. This is employed when we have a non-linear primitive, once we have obtained its linear lower bounding and linear upper bounding function. We backpropagate through this linear relaxation of a non-linear primitive. Args: lb_fun: Linear lower bound of the primitive to propagate backwards through. ub_fun: Linear upper bound of the primitive to progagate backwards through. outval: Coefficients of a linear function over the output of the primitive relaxed by lb_fun and ub_fun. *invals: Tensor or Bounds that are inputs to the primitive relaxed by lb_fun and ub_fun. Returns: new_in_args: Coefficients of a linear function over the input of the primitive, representing the same linear function as was represented by outval. """ # We're going to split the linear function over the output into two parts, # depending on the sign of the coefficients. # The one with positive coefficients will be backpropagated through the # lower bound, the one with the negative coefficients will be propagated # through the upper bound. # The offset can go on either as it is not actually backpropagated, we just # need to make sure that it is not double-counted. pos_outval = linear_relaxations.LinearExpression( jnp.maximum(outval.lin_coeffs, 0.), outval.offset) neg_outval = linear_relaxations.LinearExpression( jnp.minimum(outval.lin_coeffs, 0.), jnp.zeros_like(outval.offset)) through_pos_inlinfuns = _backpropagate_linear_functions( lb_fun, pos_outval, *invals) through_neg_inlinfuns = _backpropagate_linear_functions( ub_fun, neg_outval, *invals) new_in_args = [] for pos_contrib, neg_contrib in zip(through_pos_inlinfuns, through_neg_inlinfuns): # The None should be in the same position, whether through the lower or # upper bound. assert (pos_contrib is None) == (neg_contrib is None) if pos_contrib is None: new_in_args.append(None) else: new_in_args.append(pos_contrib + neg_contrib) return new_in_args class LinearBoundBackwardConcretizingTransform( concretization.BackwardConcretizingTransform[ linear_relaxations.LinearExpression], metaclass=abc.ABCMeta): """Transformation to propagate linear bounds backwards and concretize them. This transform propagates instances of the same `LinearExpression` type as used in `forward_linear_bounds`, but note that it interprets them differently: - `lin_coeffs` has shape [nb_outputs, *input_shape] - `offset` has shape [nb_outputs] """ def __init__( self, concretization_fn: linear_relaxations.ConcretizationFn = linear_relaxations.concretize_linear_expression): self._concretization_fn = concretization_fn def aggregate( self, eqn_outvals: Sequence[linear_relaxations.LinearExpression], ) -> linear_relaxations.LinearExpression: return _sum_linear_backward_bounds(eqn_outvals) def concrete_bound_chunk( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], env: Mapping[jax.core.Var, bound_propagation.LayerInput], node_ref: jax.core.Var, obj: Tensor, ) -> Tensor: initial_linear_expression = identity(obj) flat_inputs, _ = jax.tree_util.tree_flatten(inputs) bound_inputs = [inp for inp in flat_inputs if isinstance(inp, bound_propagation.Bound)] input_nodes_indices = [(i,) for i in range(len(bound_inputs))] inputs_linfuns, _ = graph.backward_propagation( self, env, {node_ref: initial_linear_expression}, input_nodes_indices) flat_bound = jnp.zeros(()) for input_linfun, inp_bound in zip(inputs_linfuns, bound_inputs): if input_linfun is not None: # Only concretize when the input_linfun is not None. It is possible, # especially when computing intermediate bounds, that not all of the # inputs will have an impact on each bound to compute. # Example: # a -> Linear -> Relu -> sum -> out # b -------------------/ # When computing the bound on the input to the ReLU, the backward # bound on b will be None, and can be safely ignored. inp_contrib = self._concretization_fn(input_linfun, inp_bound) flat_bound = flat_bound + inp_contrib return flat_bound class LinearBoundBackwardTransform(LinearBoundBackwardConcretizingTransform): """Transformation to propagate linear bounds backwards and concretize them.""" def __init__( self, relaxer: linear_relaxations.LinearBoundsRelaxer, primitive_needs_concrete_bounds: Tuple[Primitive, ...], concretization_fn: linear_relaxations.ConcretizationFn = linear_relaxations.concretize_linear_expression ): super().__init__(concretization_fn) self.relaxer = relaxer self._primitive_needs_concrete_bounds = primitive_needs_concrete_bounds def concretize_args(self, primitive: Primitive) -> bool: return primitive in self._primitive_needs_concrete_bounds def primitive_backtransform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], primitive: Primitive, eqn_outval: linear_relaxations.LinearExpression, *args: bound_propagation.LayerInput, **params, ) -> Sequence[Sequence[Optional[linear_relaxations.LinearExpression]]]: if (primitive in bound_propagation.AFFINE_PRIMITIVES or primitive in bound_propagation.RESHAPE_PRIMITIVES): lin_fun = functools.partial(primitive.bind, **params) in_linfun = _backpropagate_linear_functions(lin_fun, eqn_outval, *args) else: # This is not an affine primitive. We need to go through a relaxation. # Obtain the linear bounds. index = context.index lb_linrelaxfun, ub_linrelaxfun = self.relaxer.linearize_primitive( index, primitive, *args, **params) in_linfun = _handle_linear_relaxation(lb_linrelaxfun, ub_linrelaxfun, eqn_outval, *args) return list(zip(in_linfun)) class _RelaxationScanner( graph_traversal.BackwardGraphTransform[bound_propagation.LayerInput]): """Identifies the node relaxations relevant to the graph.""" def __init__( self, relaxer: linear_relaxations.ParameterizedLinearBoundsRelaxer): self._relaxer = relaxer self._node_relaxations = {} @property def node_relaxations(self) -> Mapping[ Index, linear_relaxations.ParameterizedNodeRelaxation]: return self._node_relaxations def aggregate( self, eqn_outvals: Sequence[bound_propagation.LayerInput], ) -> bound_propagation.LayerInput: # In the case of fan-out, the same forward value should have been # encountered on every possible backward path. assert all(eqn_outval is eqn_outvals[0] for eqn_outval in eqn_outvals) return eqn_outvals[0] def primitive_backtransform( self, context: graph_traversal.TransformContext[bound_propagation.LayerInput], primitive: Primitive, eqn_outval: bound_propagation.LayerInput, *args: bound_propagation.LayerInput, **params) -> Sequence[Sequence[Optional[bound_propagation.LayerInput]]]: if not (primitive in bound_propagation.AFFINE_PRIMITIVES or primitive in bound_propagation.RESHAPE_PRIMITIVES): # This is not an affine primitive. We need to go through a relaxation. # Obtain the linear bounds. input_info = [(arg.shape, isinstance(arg, bound_propagation.Bound)) for arg in args] self._node_relaxations[context.index] = ( self._relaxer.parameterized_linearizer( context.index, primitive, *input_info, **params)) # We're using this back-transform to traverse the nodes, rather than to # compute anything. Arbitrarily return the forward bounds associated with # each node. return [[arg if isinstance(arg, bound_propagation.Bound) else None] for arg in args] class OptimizingLinearBoundBackwardTransform( concretization.BackwardConcretizingTransform[ linear_relaxations.LinearExpression]): """Transformation to propagate linear bounds backwards and concretize them. This transform propagates instances of the same `LinearExpression` type as used in `forward_linear_bounds`, but note that it interprets them differently: - `lin_coeffs` has shape [nb_outputs, *input_shape] - `offset` has shape [nb_outputs] """ def __init__( self, relaxer: linear_relaxations.ParameterizedLinearBoundsRelaxer, primitive_needs_concrete_bounds: Tuple[Primitive, ...], optimizer: optimizers.Optimizer, concretization_fn: linear_relaxations.ConcretizationFn = linear_relaxations.concretize_linear_expression, ): """Constructs a per-node concretizer that performs an inner optimisation. Args: relaxer: Specifies the parameterised linear relaxation to use for each primitive operation. primitive_needs_concrete_bounds: Which primitive operations need to be concretised. optimizer: Optimizer used to minimise the upper bounds (and the negative lower bounds) with respect to the linear relaxation parameters. concretization_fn: Function to concretize the linear bounds at the end. """ self._relaxer = relaxer self._primitive_needs_concrete_bounds = primitive_needs_concrete_bounds self._optimizer = optimizer self._concretization_fn = concretization_fn def concretize_args(self, primitive: Primitive) -> bool: return primitive in self._primitive_needs_concrete_bounds def aggregate( self, eqn_outvals: Sequence[linear_relaxations.LinearExpression], ) -> linear_relaxations.LinearExpression: raise NotImplementedError() def primitive_backtransform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], primitive: Primitive, eqn_outval: linear_relaxations.LinearExpression, *args: bound_propagation.LayerInput, **params, ) -> Sequence[Sequence[Optional[linear_relaxations.LinearExpression]]]: raise NotImplementedError() def concrete_bound_chunk( self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], env: Mapping[jax.core.Var, bound_propagation.LayerInput], node_ref: jax.core.Var, obj: Tensor, ) -> Tensor: # Analyse the relevant parts of the graph. flat_inputs, _ = jax.tree_util.tree_flatten(inputs) bound_inputs = [ inp for inp in flat_inputs if isinstance(inp, graph_traversal.InputBound)] input_nodes_indices = [(i,) for i in range(len(bound_inputs))] scanner = _RelaxationScanner(self._relaxer) graph.backward_propagation( scanner, env, {node_ref: graph_traversal.read_env(env, node_ref)}, input_nodes_indices) # Allow lookup of any node's input bounds, for parameter initialisation. graph_inspector = bound_utils.GraphInspector() bound_propagation.ForwardPropagationAlgorithm( graph_inspector).propagate(graph, inputs) def input_bounds(index: Index) -> Sequence[bound_propagation.LayerInput]: graph_node = graph_inspector.nodes[index] return [env[graph.jaxpr_node(arg.index)] if isinstance(arg, bound_utils.GraphNode) else arg for arg in graph_node.args] # Define optimisation for a single neuron's bound. (We'll vmap afterwards.) # This ensures that each neuron uses independent relaxation parameters. def optimized_concrete_bound(one_obj): def concrete_bound(relax_params): return self._bind( scanner.node_relaxations, relax_params).concrete_bound_chunk( graph, inputs, env, node_ref, jnp.expand_dims(one_obj, 0)) # Define function to optimise: summary tightness of guaranteed bounds. def objective(relax_params): # TODO: At the moment we are optimizing the sum of the bounds # but some of the optimizers (Fista + Linesearch) support optimizing # independently each objectives, which would work better. lb_min = concrete_bound(relax_params) return jnp.sum(-lb_min) # Define function to project on feasible parameters. project_params = functools.partial(self._project_params, scanner) opt_fun = self._optimizer.optimize_fn(objective, project_params) initial_params = self._initial_params(scanner, input_bounds) best_relax_params = opt_fun(initial_params) # Evaluate the relaxation at these parameters. return concrete_bound(jax.lax.stop_gradient(best_relax_params)) return jax.vmap(optimized_concrete_bound)(obj) def _initial_params(self, scanner, input_bounds): return {index: node_relaxation.initial_params(*input_bounds(index)) for index, node_relaxation in scanner.node_relaxations.items()} def _project_params(self, scanner, unc_params): return { index: node_relaxation.project_params(unc_params[index]) for index, node_relaxation in scanner.node_relaxations.items()} def _bind( self, node_relaxations: Mapping[ Index, linear_relaxations.ParameterizedNodeRelaxation], relax_params: Mapping[Index, Tensor], ) -> LinearBoundBackwardConcretizingTransform: return LinearBoundBackwardTransform( linear_relaxations.BindRelaxerParams(node_relaxations, relax_params), self._primitive_needs_concrete_bounds, self._concretization_fn) def identity(obj: Tensor) -> linear_relaxations.LinearExpression: """Returns identity linear expression for lower bound of objective.""" initial_lin_coeffs = obj initial_offsets = jnp.zeros(obj.shape[:1]) return linear_relaxations.LinearExpression(initial_lin_coeffs, initial_offsets) CONCRETIZE_ARGS_PRIMITIVE = ( synthetic_primitives.leaky_relu_p, synthetic_primitives.parametric_leaky_relu_p, synthetic_primitives.relu_p, synthetic_primitives.clip_p, synthetic_primitives.sigmoid_p, synthetic_primitives.posbilinear_p, synthetic_primitives.posreciprocal_p, synthetic_primitives.fused_relu_p, lax.abs_p, lax.exp_p, ) backward_crown_transform = LinearBoundBackwardTransform( linear_relaxations.crown_rvt_relaxer, CONCRETIZE_ARGS_PRIMITIVE) backward_fastlin_transform = LinearBoundBackwardTransform( linear_relaxations.fastlin_rvt_relaxer, CONCRETIZE_ARGS_PRIMITIVE) backward_crown_concretizer = concretization.ChunkedBackwardConcretizer( backward_crown_transform) backward_fastlin_concretizer = concretization.ChunkedBackwardConcretizer( backward_fastlin_transform) def crownibp_bound_propagation( function: SpecFn, *bounds: Nest[graph_traversal.GraphInput], ) -> Nest[bound_propagation.LayerInput]: """Performs Crown-IBP as described in https://arxiv.org/abs/1906.06316. We first perform IBP to obtain intermediate bounds and then propagate linear bounds backwards. Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBounds, bounds on the inputs of the function. Returns: output_bounds: Bounds on the outputs of the function obtained by Crown-IBP """ crown_ibp_algorithm = concretization.BackwardAlgorithmForwardConcretization( ibp.bound_transform, backward_crown_concretizer) output_bounds, _ = bound_propagation.bound_propagation( crown_ibp_algorithm, function, *bounds) return output_bounds def backward_crown_bound_propagation( function: SpecFn, *bounds: Nest[graph_traversal.GraphInput], ) -> Nest[bound_propagation.LayerInput]: """Performs CROWN as described in https://arxiv.org/abs/1811.00866. Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBound, bounds on the inputs of the function. Returns: output_bound: Bounds on the output of the function obtained by FastLin """ backward_crown_algorithm = concretization.BackwardConcretizingAlgorithm( backward_crown_concretizer) output_bound, _ = bound_propagation.bound_propagation( backward_crown_algorithm, function, *bounds) return output_bound def backward_rvt_bound_propagation( function: SpecFn, *bounds: Nest[graph_traversal.GraphInput], ) -> Nest[bound_propagation.LayerInput]: """Performs CROWN as described in https://arxiv.org/abs/1811.00866. Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBound, bounds on the inputs of the function. Returns: output_bound: Bounds on the output of the function obtained by FastLin """ backward_crown_algorithm = concretization.BackwardConcretizingAlgorithm( backward_crown_concretizer) expand_softmax_simplifier_chain = synthetic_primitives.simplifier_composition( synthetic_primitives.activation_simplifier, synthetic_primitives.hoist_constant_computations, synthetic_primitives.expand_softmax_simplifier, synthetic_primitives.group_linear_sequence, synthetic_primitives.group_posbilinear) output_bound, _ = bound_propagation.bound_propagation( backward_crown_algorithm, function, *bounds, graph_simplifier=expand_softmax_simplifier_chain) return output_bound def backward_fastlin_bound_propagation( function: SpecFn, *bounds: Nest[graph_traversal.GraphInput], ) -> Nest[bound_propagation.LayerInput]: """Performs FastLin as described in https://arxiv.org/abs/1804.09699. Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBound, bounds on the inputs of the function. Returns: output_bound: Bounds on the output of the function obtained by FastLin """ backward_fastlin_algorithm = concretization.BackwardConcretizingAlgorithm( backward_fastlin_concretizer) output_bound, _ = bound_propagation.bound_propagation( backward_fastlin_algorithm, function, *bounds) return output_bound class JointOptimizationConcretizationAlgorithm( bound_propagation.PropagationAlgorithm[bound_propagation.Bound] ): """Algorithm to jointly optimize all the bounds in the network.""" def __init__(self, relaxer: linear_relaxations.ParameterizedLinearBoundsRelaxer, opt: optax.GradientTransformation, num_opt_steps: int, max_chunk_size: int = 0): self._relaxer = relaxer self._opt = opt self._num_opt_steps = num_opt_steps self._max_chunk_size = max_chunk_size def propagate(self, graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput]): # Inspect the graph to figure out what are the nodes needing concretization. graph_inspector = bound_utils.GraphInspector() inspector_algorithm = bound_propagation.ForwardPropagationAlgorithm( graph_inspector) gn_outvals, env = inspector_algorithm.propagate(graph, inputs) flat_inputs, _ = jax.tree_util.tree_flatten(inputs) flat_bounds = [inp for inp in flat_inputs if isinstance(inp, bound_propagation.Bound)] input_nodes_indices = [(i,) for i in range(len(flat_bounds))] # For every node that requires relaxations, we will use a RelaxationScanner # to collect the node that it requires. relaxations = {} def collect_relaxations(graph_node): if graph_node.index not in relaxations: index_to_concretize = graph_node.index jaxpr_node = graph.jaxpr_node(index_to_concretize) scanner = _RelaxationScanner(self._relaxer) graph.backward_propagation( scanner, env, {jaxpr_node: graph_node}, input_nodes_indices) relaxations[index_to_concretize] = scanner.node_relaxations for node in graph_inspector.nodes.values(): node_primitive = node.primitive if node_primitive and node_primitive in CONCRETIZE_ARGS_PRIMITIVE: for node_arg in node.args: collect_relaxations(node_arg) # Iterate over the outputs, making notes of their index so that we can use # them to specify the objective function, and collecting the relaxations we # need to define to use them. objective_nodes = [] for gn in gn_outvals: collect_relaxations(gn) jaxpr_node = graph.jaxpr_node(gn.index) objective_nodes.append(jaxpr_node) env_with_final_bounds = self.jointly_optimize_relaxations( relaxations, graph, inputs, env, objective_nodes) outvals = [env_with_final_bounds[jaxpr_node_opted] for jaxpr_node_opted in objective_nodes] return outvals, env_with_final_bounds def jointly_optimize_relaxations( self, relaxations: Mapping[Index, Mapping[ Index, linear_relaxations.ParameterizedNodeRelaxation]], graph: graph_traversal.PropagationGraph, inputs: Nest[graph_traversal.GraphInput], env: Mapping[jax.core.Var, bound_propagation.LayerInput], objective_nodes: Sequence[jax.core.Var]): """Perform the joint optimization of all the bounds. For a network that is (index in parentheses): Inp -> Linear(1) -> Relu(2) -> Linear(3) -> Relu(4) -> Linear(5) We would have relaxations be a dict of the form: { (1,): {}, # When we concretize 1, we don't need any relaxations (3,): {(2,): relaxation} # Concretizing 3, we need to relax 2 (5,): {(2,): relaxation, (4,): relaxation} } Args: relaxations: Dict mapping each index to a relaxation dict mapping the preceding primitives to their parameterized relaxer. graph: Graph to perform the backward propagation on to obtain bounds. inputs: Bounds on the inputs env: Environment containing shape information objective_nodes: List of jaxpr_nodes indicating which bound to use as objective functions. Returns: env_with_bounds: Environment with concretized bounds. """ # Initialize the parameters for the optimization default_init = lambda relax: relax.initial_params(*((None,) * relax.arity)) initial_params = jax.tree_map(default_init, relaxations) initial_state = self._opt.init(initial_params) param_and_state = initial_params, initial_state # Define a function that compute all bounds that we have parameterized. # This will concretize each intermediate bounds using the parameters # corresponding to that level of the relaxation. def all_bounds(params: Mapping[Index, Mapping[Index, Nest[Tensor]]]): specific_env = dict(env) for inter_index, node_relaxations in relaxations.items(): relax_params = params[inter_index] jaxpr_node = graph.jaxpr_node(inter_index) backward_transform = LinearBoundBackwardTransform( linear_relaxations.BindRelaxerParams(node_relaxations, relax_params), CONCRETIZE_ARGS_PRIMITIVE) chunked_backward_transform = concretization.ChunkedBackwardConcretizer( backward_transform, self._max_chunk_size) concrete_bound = chunked_backward_transform.concrete_bound( graph, inputs, specific_env, jaxpr_node) specific_env[jaxpr_node] = concrete_bound return specific_env # Define the objective function of the optimization. This will be the # range of the final bound, as indicated by the objective_nodes argument. def objective_fun(params: Mapping[Index, Mapping[Index, Nest[Tensor]]]): env_with_bounds = all_bounds(params) obj = 0 for jaxpr_node_to_opt in objective_nodes: bound_to_opt = env_with_bounds[jaxpr_node_to_opt] obj = obj + jnp.sum(bound_to_opt.upper - bound_to_opt.lower) return obj grad_fn = jax.grad(objective_fun) # Define the optimization step, and call it as a fori-loop def update_fun(_, param_and_state): params, opt_state = param_and_state updates, next_opt_state = self._opt.update(grad_fn(params), opt_state) next_params = optax.apply_updates(params, updates) next_params = jax.tree_util.tree_map( lambda relax, param: relax.project_params(param), relaxations, next_params) return next_params, next_opt_state relax_params, _ = utils.fori_loop_no_backprop( 0, self._num_opt_steps, update_fun, param_and_state) # Compute the bounds corresponding to the final set of optimized # parameters, and extract the final bounds that we were optimizing. env_with_final_bounds = all_bounds(relax_params) return env_with_final_bounds
jax_verify-master
jax_verify/src/linear/backward_crown.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for Linear Bounds. """ import abc import functools from typing import Callable, Generic, Mapping, Optional, Sequence, Tuple, TypeVar import jax from jax import lax import jax.numpy as jnp from jax_verify.src import activation_relaxation from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import mccormick from jax_verify.src import synthetic_primitives from jax_verify.src import utils from jax_verify.src.types import ArgsKwargsCallable, Index, Nest, Primitive, Tensor, TensorFun # pylint: disable=g-multiple-import import numpy as np LinFun = TensorFun # Representation of a linear function used in a relaxation. # Can be a linear jax function (LinFun), or can be a LinearExpression. LinearRelax = TypeVar('LinearRelax') class LinearExpression: """Describes a set of linear expressions.""" def __init__(self, lin_coeffs, offset): """Creates a LinearExpression object. Args: lin_coeffs: nb_coeffs x (array shape) offset: (array shape) """ self.lin_coeffs = lin_coeffs self.offset = offset @property def shape(self): return self.offset.shape @property def dtype(self): return self.offset.dtype def __add__(self, other): if isinstance(other, LinearExpression): return LinearExpression(self.lin_coeffs + other.lin_coeffs, self.offset + other.offset) else: return LinearExpression(self.lin_coeffs, self.offset + other) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): if isinstance(other, LinearExpression): return LinearExpression(self.lin_coeffs - other.lin_coeffs, self.offset - other.offset) else: return LinearExpression(self.lin_coeffs, self.offset - other) def __rsub__(self, other): if isinstance(other, LinearExpression): return LinearExpression(other.lin_coeffs - self.lin_coeffs, other.offset - self.offset) else: return LinearExpression(-self.lin_coeffs, other - self.offset,) def __neg__(self): return LinearExpression(-self.lin_coeffs, -self.offset) def __truediv__(self, other): return LinearExpression(self.lin_coeffs / other, self.offset / other) def transpose(self, in_shape: Tuple[int]) -> 'LinearExpression': """Transposes the LinearExpression. Convert the linear expression that are in the format of: [flattenned_in_shape, *out_shape] to the alternative format, which is [flattenned_out_shape, *unflattened_in_shape]. Args: in_shape: Shape of the inputs to the linear functions. The product of the dimension needs to match the leading dimension of the lincoeffs. Returns: Expression in the transposed format. """ out_shape = self.offset.shape flattened_out_shape = np.prod(out_shape) coeffs_all_flattened = jnp.reshape(self.lin_coeffs, (-1, flattened_out_shape)) transposed_flattened_coeffs = jnp.transpose(coeffs_all_flattened, (1, 0)) new_lin_coeffs = jnp.reshape(transposed_flattened_coeffs, (flattened_out_shape, *in_shape)) new_offset = jnp.reshape(self.offset, (flattened_out_shape,)) return LinearExpression(new_lin_coeffs, new_offset) ConcretizationFn = Callable[[LinearExpression, graph_traversal.GraphInput], Tensor] def concretize_linear_expression( linexp: LinearExpression, input_bound: graph_traversal.InputBound) -> Tensor: """Compute the lower bound value of a linear expression. Args: linexp: Coefficients of linear functions. The leading batch dimension corresponds to different output neurons that need to be concretized. Shape is [nb_linfun, *input_bound.shape] input_bound: Bound on the activations of that layer. Its shape should match the coefficients of the linear functions to concretize. Shape is [*input_bound.shape] Returns: bound: A concretized bound on the value of the functions represented by linexp. Shape is [nb_linfun] """ return concretize_linear_function_interval_bounds(linexp, input_bound) def concretize_linear_function_interval_bounds( linexp: LinearExpression, input_bound: graph_traversal.InputBound) -> Tensor: """Compute the lower bound of a linear function under interval constraints.""" act_lower = jnp.expand_dims(input_bound.lower, 0) act_upper = jnp.expand_dims(input_bound.upper, 0) dims_to_reduce = tuple(range(1, act_lower.ndim)) return linexp.offset + jnp.sum( jnp.minimum(linexp.lin_coeffs, 0.) * act_upper + jnp.maximum(linexp.lin_coeffs, 0.) * act_lower, dims_to_reduce) class LinearBoundsRelaxer(metaclass=abc.ABCMeta): @abc.abstractmethod def linearize_primitive( self, index: Index, primitive: Primitive, *inps: bound_propagation.LayerInput, **params) -> Tuple[LinFun, LinFun]: """Obtain the parameters of the linearized relaxation of a given primitive. The relaxation holds when the inputs are within range of the bounds described by `inps`. Args: index: Index of the node in the bound propagation. primitive: Primitive to relax. *inps: Bounds on the inputs of the primitive or Tensors. **params: Parameters of the primitive. Returns: lb_linfun: Function evaluating the linear lower bound relaxing that primitive. ub_linfun: Function evaluating the linear upper bound relaxing that primitive. """ class OpwiseLinearBoundsRelaxer(LinearBoundsRelaxer): """Relaxer mapping each primitive to a predefined linear relaxation. This relaxation admits no additional parameters. """ def __init__( self, primitive_mapper: Mapping[ Primitive, ArgsKwargsCallable[ bound_propagation.LayerInput, Tuple[LinFun, LinFun]]], default_relaxer: Optional[LinearBoundsRelaxer] = None): self._primitive_mapper = primitive_mapper self._default_relaxer = default_relaxer def linearize_primitive( self, index: Index, primitive: Primitive, *inps: bound_propagation.LayerInput, **params) -> Tuple[LinFun, LinFun]: if primitive in self._primitive_mapper: params = synthetic_primitives.filter_jaxverify_kwargs(params) return self._primitive_mapper[primitive](*inps, **params) elif self._default_relaxer: return self._default_relaxer.linearize_primitive( index, primitive, *inps, **params) else: raise ValueError(f'Unsupported primitive to relax: {primitive}.') class ParameterizedNodeRelaxation(Generic[LinearRelax], metaclass=abc.ABCMeta): """Computes upper/lower linearisations using optimisable parameters.""" @property @abc.abstractmethod def arity(self) -> int: """Returns the number of input arguments expected by this relaxation.""" @abc.abstractmethod def linearize( self, relax_params: Nest[Tensor], *inps: bound_propagation.LayerInput, ) -> Tuple[LinearRelax, LinearRelax]: """Returns linearised relaxation for given optimisable parameters.""" @abc.abstractmethod def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: """Returns initial values of optimisable parameters.""" @abc.abstractmethod def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: """Projects optimisable parameters to their valid domain.""" class ParameterizedLinearBoundsRelaxer(metaclass=abc.ABCMeta): """Relaxer mapping each primitive to an optimisable linear relaxation.""" @abc.abstractmethod def parameterized_linearizer( self, index: Index, primitive: Primitive, *input_info: Tuple[Sequence[int], bool], **params) -> ParameterizedNodeRelaxation[LinFun]: """Obtain a parameterised family of linear relaxations of a given primitive. Args: index: Index of the node in the bound propagation. primitive: Primitive to relax. *input_info: Tuples of (shape, is_bound) of the inputs of the primitive. **params: Parameters of the primitive. Returns: Object producing linearised lower/upper bounds given relaxation parameters. """ class OpwiseParameterizedLinearBoundsRelaxer(ParameterizedLinearBoundsRelaxer): """Relaxer mapping each primitive to a parameterized linear relaxation.""" def __init__( self, primitive_mapper: Mapping[ Primitive, ArgsKwargsCallable[Sequence[int], ParameterizedNodeRelaxation[LinFun]]], default_param_relaxer: Optional[ParameterizedLinearBoundsRelaxer] = None): self._primitive_mapper = primitive_mapper self._default_parameterized_relaxer = default_param_relaxer def parameterized_linearizer( self, index: Index, primitive: Primitive, *input_info: Tuple[Sequence[int], bool], **params) -> ParameterizedNodeRelaxation[LinFun]: if primitive in self._primitive_mapper: params = synthetic_primitives.filter_jaxverify_kwargs(params) return self._primitive_mapper[primitive](*input_info, **params) elif self._default_parameterized_relaxer: return self._default_parameterized_relaxer.parameterized_linearizer( index, primitive, *input_info, **params) else: raise ValueError(f'Unsupported primitive to relax: {primitive}.') class ParameterizedLinearBoundsGlobalRelaxer(metaclass=abc.ABCMeta): """Relaxer mapping each primitive to an optimisable linear propagator.""" @abc.abstractmethod def parameterized_global_linearizer( self, index: Index, primitive: Primitive, network_input_spec: bound_propagation.Bound, *input_shapes: Sequence[int], **params) -> ParameterizedNodeRelaxation[LinearExpression]: """Obtain a parameterised family of linear bound propagator. Compared to the non-global version, this requires the additional network_input_spec parameters. Args: index: Index of the node in the bound propagation. primitive: Primitive to relax. network_input_spec: Bound over the input of the network. *input_shapes: Shapes of the inputs of the primitive. **params: Parameters of the primitive. Returns: Object producing linearised lower/upper bounds given relaxation parameters. """ class OpwiseParameterizedLinearBoundsGlobalRelaxer( ParameterizedLinearBoundsGlobalRelaxer): """Relaxer mapping each primitive to a parameterized linear relaxation.""" def __init__( self, primitive_mapper: Mapping[ Primitive, Callable[..., ParameterizedNodeRelaxation[LinearExpression]]], default_param_relaxer: Optional[ParameterizedLinearBoundsGlobalRelaxer ] = None): self._primitive_mapper = primitive_mapper self._default_parameterized_relaxer = default_param_relaxer def parameterized_global_linearizer( self, index: Index, primitive: Primitive, network_input_spec: bound_propagation.Bound, *input_shapes: Sequence[int], **params) -> ParameterizedNodeRelaxation[LinearExpression]: if primitive in self._primitive_mapper: params = synthetic_primitives.filter_jaxverify_kwargs(params) return self._primitive_mapper[primitive](network_input_spec, *input_shapes, **params) elif self._default_parameterized_relaxer: return ( self._default_parameterized_relaxer.parameterized_global_linearizer( index, primitive, network_input_spec, *input_shapes, **params)) else: raise ValueError(f'Unsupported primitive to relax: {primitive}.') class BindRelaxerParams(LinearBoundsRelaxer): """Relaxer formed from binding parameters into a parameterised relaxer.""" def __init__( self, node_relaxations: Mapping[Index, ParameterizedNodeRelaxation[LinFun]], relax_params: Mapping[Index, Tensor], ): self._node_relaxations = node_relaxations self._relax_params = relax_params def linearize_primitive( self, index: Index, primitive: Primitive, *inps: bound_propagation.LayerInput, **params) -> Tuple[LinFun, LinFun]: return self._node_relaxations[index].linearize( self._relax_params[index], *inps) class ParameterizedLinFun(Generic[LinearRelax], metaclass=abc.ABCMeta): """Linearisation of lower OR upper bound using optimisable parameters.""" @property @abc.abstractmethod def arity(self) -> int: """Returns the number of input arguments expected by the linear function.""" @abc.abstractmethod def linearize( self, relax_params: Nest[Tensor], *inps: bound_propagation.LayerInput, ) -> LinearRelax: """Returns linearised half-bound for given optimisable parameters.""" @abc.abstractmethod def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: """Returns initial values of optimisable parameters.""" @abc.abstractmethod def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: """Projects optimisable parameters to their valid domain.""" class LowerUpperRelaxation(ParameterizedNodeRelaxation[LinearRelax]): """Adapts two parameterised half-bounds into a parameterised relaxation.""" def __init__(self, lower: ParameterizedLinFun[LinearRelax], upper: ParameterizedLinFun[LinearRelax]): super().__init__() self._lower = lower self._upper = upper @property def arity(self) -> int: return self._lower.arity def linearize( self, relax_params: Nest[Tensor], *inps: bound_propagation.LayerInput, ) -> Tuple[LinearRelax, LinearRelax]: lower_relax_params, upper_relax_params = relax_params return ( self._lower.linearize(lower_relax_params, *inps), self._upper.linearize(upper_relax_params, *inps)) def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: return ( self._lower.initial_params(*inps), self._upper.initial_params(*inps)) def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: lower_relax_params, upper_relax_params = relax_params return ( self._lower.project_params(lower_relax_params), self._upper.project_params(upper_relax_params)) class _NoParamRelaxation(ParameterizedNodeRelaxation[LinearRelax]): """Adapts a simple relaxer function into a zero-parameter relaxer function.""" def __init__( self, relaxer: ArgsKwargsCallable[ bound_propagation.LayerInput, Tuple[LinFun, LinFun]], *input_info: Tuple[Sequence[int], bool], **params): self._relaxer = relaxer self._input_info = input_info self._params = params @property def arity(self): return len(self._input_info) def linearize( self, relax_params: Nest[Tensor], *inps: bound_propagation.LayerInput, ) -> Tuple[LinearRelax, LinearRelax]: return self._relaxer(*inps, **self._params) def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: return () def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return relax_params no_params = lambda relaxer: functools.partial(_NoParamRelaxation, relaxer) def linearized(fn: TensorFun, *primals: Tensor) -> LinFun: """Returns linear function that is tangent to `fn` at given primal point.""" val, deriv = jax.linearize(fn, *primals) return lambda *xs: val + deriv(*[x - p for x, p in zip(xs, primals)]) class SupportingHyperplane(ParameterizedLinFun[LinFun]): """Linearisation of primitive, parameterised by primal point.""" def __init__( self, fn: TensorFun, *input_info: Tuple[Sequence[int], bool]): super().__init__() self._fn = fn self._input_info = input_info @property def arity(self) -> int: return len(self._input_info) def linearize( self, relax_params: Nest[Tensor], *inps: bound_propagation.LayerInput, ) -> LinFun: primals = [ alpha * inp.upper + (1.-alpha) * inp.lower if isinstance(inp, bound_propagation.Bound) else inp for inp, alpha in zip(inps, relax_params)] return linearized(self._fn, *primals) def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: # If an input is [known to be] a fixed tensor, don't allocate a # relaxation parameter for it. return [ # pytype: disable=bad-return-type # jax-ndarray .5 * jnp.ones(shape=inp_shape) if inp is None or isinstance(inp, bound_propagation.Bound) else None for inp, (inp_shape, _) in zip(inps, self._input_info)] def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return jax.tree_map(lambda x: jnp.clip(x, 0., 1.), relax_params) def eltwise_linfun_from_coeff(slope: Tensor, offset: Tensor) -> LinFun: return lambda x: slope * x + offset class ElementwiseChord(ParameterizedLinFun[LinFun]): """Chord between input bounds of an element-wise primitive.""" arity = 1 def __init__( self, fn: TensorFun, input_info: Tuple[Sequence[int], bool]): super().__init__() self._fn = fn self._input_info = input_info def linearize( self, relax_params: Nest[Tensor], inp: bound_propagation.LayerInput, ) -> LinFun: inp_lower, inp_upper = inp.lower, inp.upper outp_lower, outp_upper = self._fn(inp_lower), self._fn(inp_upper) has_interval = inp_upper != inp_lower denom = jnp.where( has_interval, inp_upper - inp_lower, jnp.ones_like(inp_lower)) slope = jnp.where( has_interval, (outp_upper - outp_lower) / denom, jnp.zeros_like(inp_lower)) offset = jnp.where( has_interval, (outp_lower * inp_upper - outp_upper * inp_lower) / denom, outp_lower) return eltwise_linfun_from_coeff(slope, offset) def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: return () def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return relax_params def elementwise_convex_fn_relaxer( primitive: Primitive, input_info: Tuple[Sequence[int], bool], **params) -> ParameterizedNodeRelaxation[LinFun]: fn = functools.partial(primitive.bind, **params) lower = SupportingHyperplane(fn, input_info) upper = ElementwiseChord(fn, input_info) return LowerUpperRelaxation(lower, upper) def elementwise_concave_fn_relaxer( primitive: Primitive, input_info: Tuple[Sequence[int], bool], **params) -> ParameterizedNodeRelaxation[LinFun]: fn = functools.partial(primitive.bind, **params) lower = ElementwiseChord(fn, input_info) upper = SupportingHyperplane(fn, input_info) return LowerUpperRelaxation(lower, upper) class _SmoothConvexRelaxation(LowerUpperRelaxation): """Linear relaxation from supporting hyperplanes of a convex relaxation.""" def __init__( self, convex_relaxer: activation_relaxation.RelaxationFn, *input_info: Tuple[Sequence[int], bool], **params): # Create a skeleton `ParameterizedLinFun` for initialisation and projection # relaxation parameters. This doesn't need the lower/upper bound functions. skeleton = SupportingHyperplane((lambda *_: None), *input_info) super().__init__(skeleton, skeleton) self._convex_relaxer = convex_relaxer self._input_info = input_info self._params = params def linearize( self, relax_params: Nest[Tensor], *inps: bound_propagation.LayerInput, ) -> Tuple[LinFun, LinFun]: # First obtain convex lower and concave upper bounds. # Do so at this late stage because they depend on the current input bounds. lb_fun, ub_fun = self._convex_relaxer(*inps, **self._params) lower = SupportingHyperplane(lb_fun, *self._input_info) upper = SupportingHyperplane(ub_fun, *self._input_info) lower_relax_params, upper_relax_params = relax_params return ( lower.linearize(lower_relax_params, *inps), upper.linearize(upper_relax_params, *inps)) def linear_from_smooth_convex( convex_relaxer: activation_relaxation.RelaxationFn, ) -> ArgsKwargsCallable[Sequence[int], ParameterizedNodeRelaxation]: return functools.partial(_SmoothConvexRelaxation, convex_relaxer) def midpoint_relaxer( primitive: Primitive, *inputs: bound_propagation.LayerInput, convex: bool = False, **params) -> Tuple[LinFun, LinFun]: """Obtains relaxation by linearising convex relaxation about the midpoint. In the case of a ReLU, this relaxes the ReLU with the adaptive choice of lower bounds as described for CROWN-ada in https://arxiv.org/abs/1811.00866. Args: primitive: Primitive to relax. *inputs: All inputs to the primitive, bounds or Tensor. convex: Whether the primitive is known to be convex. **params: Parameters of the primitive. Returns: lb_linfun, ub_linfun: Linear lower and upper bound functions. """ activation = activation_relaxation.relaxation_fns[primitive] lb_fun, ub_fun = activation.relaxation_fn(*inputs, **params) mid_points = [ 0.5 * (x.lower + x.upper) if isinstance(x, bound_propagation.Bound) else x for x in inputs] lb_lin_fun = linearized(lb_fun, *mid_points) ub_lin_fun = ub_fun if convex else linearized(ub_fun, *mid_points) return lb_lin_fun, ub_lin_fun def _fastlin_relu_relaxer( inp: bound_propagation.Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear ReLU relaxation as in FastLin. This relaxes the ReLU with the parallel bounds of slope (ub) / (ub - lb) Args: inp: Input to the ReLU. Returns: lb_linfun, ub_linfun: Linear functions bounding the ReLU """ inp_lower, inp_upper = inp.lower, inp.upper relu_on = (inp_lower >= 0.) relu_amb = jnp.logical_and(inp_lower < 0., inp_upper >= 0.) slope = relu_on.astype(jnp.float32) slope += jnp.where( relu_amb, inp_upper / utils.safe_pos(inp_upper - inp_lower), jnp.zeros_like(inp_lower)) ub_offset = jnp.where( relu_amb, -slope * inp_lower, jnp.zeros_like(inp_lower)) lb_offset = jnp.zeros_like(inp_lower) return (eltwise_linfun_from_coeff(slope, lb_offset), eltwise_linfun_from_coeff(slope, ub_offset)) def _rvt_exp_relaxer(inp: bound_propagation.Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear exp relaxation as in RVT. Lower bound is obtained based on tangent, due to convexity. Choice of point where the tangent is computed is taken from https://arxiv.org/pdf/2002.06622.pdf Chord connecting two endpoints provides upper bound for exp(x) due to convexity. Args: inp: Input to the exp. Returns: lb_linfun, ub_linfun: Linear functions bounding the Exponential """ lower, upper = inp.lower, inp.upper thresh = 12.0 min_input = -30. forced_zeros = upper < min_input unsafe_to_relax = (upper - lower)**2 < utils.EPSILON unsafe = jnp.logical_or(forced_zeros, unsafe_to_relax) def stable_exp(x): """If x is greater than thresh, use first order Taylor's expansion.""" return jnp.where( jnp.greater(x, thresh), jnp.exp(thresh)*(1 + x - thresh), jnp.exp(x)) point = jnp.minimum((lower+upper)/2, lower + 0.99) lb_slope = stable_exp(point) lb_offset = lb_slope * (1 - point) # If the relaxation is over too narrow a domain, use the lower bound # constant as linear lower bounding function. lb_slope = jnp.where(unsafe, jnp.zeros_like(lower), lb_slope) lb_offset = jnp.where(unsafe, stable_exp(lower), lb_offset) ub_slope = (stable_exp(upper)-stable_exp(lower))/(upper - lower) ub_offset = stable_exp(lower) - ub_slope*lower # If the relaxation is over too narrow a domain, or if even the upper bound # is extremely small, we replace the upper bound by a bound with slope of 0. ub_slope = jnp.where(unsafe, jnp.zeros_like(lower), ub_slope) ub_offset = jnp.where(unsafe, stable_exp(upper), ub_offset) lb_fun = eltwise_linfun_from_coeff(lb_slope, lb_offset) ub_fun = eltwise_linfun_from_coeff(ub_slope, ub_offset) return lb_fun, ub_fun def _rvt_posbilinear_relaxer( x: bound_propagation.Bound, y: bound_propagation.Bound, **params) -> Tuple[LinFun, LinFun]: """Obtains the parameters of a linear relaxation of a bilinear function. Rather than using all 4 of the McCormick inequalities, https://arxiv.org/pdf/2002.06622.pdf use only two: For x in [x_l, x_u] and y in [y_l, y_u], the bound imposed are: x·y >= x·y_l + x_l·y - x_l·y_l x·y <= x·y_u + x_l·y - x_l·y_u Args: x: First input to the positive bilinear primitive. y: Second input to the positive bilinear primitive **params: Returns: lb_linfun, ub_linfun """ lb_fun, _, ub_fun, _ = ( mccormick.posbilinear_mccormick_relaxations( functools.partial(synthetic_primitives.posbilinear_p.bind, **params), x.lower, x.upper, y.lower, y.upper)) # These functions are linear by construction. return lb_fun, ub_fun def _maybe_interp_funs( funs: Sequence[TensorFun], interp_params: Nest[Tensor], *args: Tensor, ) -> Tensor: """Interpolates between `funs` according to the given interpolation params.""" vals = [fun(*args) for fun in funs] return utils.maybe_interp(vals, interp_params) class ParameterizedPiecewiseLinearSubgradient( ParameterizedNodeRelaxation[LinFun]): """Relaxation of a piecewise-linear function. This implementation currently assumes exactly two pieces. """ def __init__( self, primitive: Primitive, piecewise_linear_relaxation_fn: ( activation_relaxation.PiecewiseLinearRelaxationFn), *input_info: Tuple[Sequence[int], bool], soft_init: bool = True, **params): super().__init__() self._primitive = primitive self._piecewise_linear_relaxation_fn = piecewise_linear_relaxation_fn self._input_info = input_info self._soft_init = soft_init self._params = params @property def arity(self): return len(self._input_info) def linearize( self, relax_params: Nest[Tensor], *inputs: bound_propagation.LayerInput, ) -> Tuple[LinFun, LinFun]: lb_funs, ub_funs = self._piecewise_linear_relaxation_fn(*inputs, **self._params) lb_relax_params, ub_relax_params = relax_params return ( functools.partial(_maybe_interp_funs, lb_funs, lb_relax_params), functools.partial(_maybe_interp_funs, ub_funs, ub_relax_params)) def initial_params( self, *inps: Optional[bound_propagation.LayerInput], ) -> Nest[Tensor]: if len(inps) == 1 and self._soft_init: soft_init_inp, = inps else: soft_init_inp = None if soft_init_inp is not None: # When interpolating between linear bound pieces (xb_fun0, xb_fun1), # initialise close to xb_fun1 if input interval has more positive mass # than negative, and close to xb_fun0 otherwise. # This assumes that xb_fun0 is the effective piece for lower inputs # and xb_fun1 is the effective piece for upper inputs. # This is the case for ReLU for example, where (lb_fun0, lb_fun1) # is (x:->0, x:->x). This amounts to a softened version of CROWN. params = jnp.clip( soft_init_inp.upper / utils.safe_pos(soft_init_inp.upper - soft_init_inp.lower), 0., 1.) else: # Include an interpolation parameter for each output. output_shape = jax.eval_shape( self._primitive.bind, *[jnp.zeros(shape) for shape, _ in self._input_info], **self._params).shape params = .5 * jnp.ones(shape=output_shape, dtype=jnp.float32) # Determine the number of linear pieces of the lower and upper bounds. lb_funs, ub_funs = self._piecewise_linear_relaxation_fn( *[ bound_propagation.IntervalBound(jnp.zeros(shape), jnp.zeros(shape)) if is_bound else jnp.zeros(shape) for shape, is_bound in self._input_info ], **self._params) return (() if len(lb_funs) <= 1 else params, () if len(ub_funs) <= 1 else params) def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return jax.tree_map(lambda x: jnp.clip(x, 0., 1.), relax_params) _crown_mapper: Mapping[ Primitive, ArgsKwargsCallable[bound_propagation.LayerInput, Tuple[LinFun, LinFun]], ] = { **{prim: functools.partial(midpoint_relaxer, prim, convex=activation.convex) for prim, activation in activation_relaxation.relaxation_fns.items()}, lax.exp_p: _rvt_exp_relaxer, synthetic_primitives.posbilinear_p: _rvt_posbilinear_relaxer, } crown_rvt_relaxer = OpwiseLinearBoundsRelaxer(_crown_mapper) _fastlin_mapper: Mapping[ Primitive, ArgsKwargsCallable[bound_propagation.LayerInput, Tuple[LinFun, LinFun]], ] = { **{prim: functools.partial(midpoint_relaxer, prim, convex=activation.convex) for prim, activation in activation_relaxation.relaxation_fns.items()}, synthetic_primitives.relu_p: _fastlin_relu_relaxer, lax.exp_p: _rvt_exp_relaxer, synthetic_primitives.posbilinear_p: _rvt_posbilinear_relaxer, } fastlin_rvt_relaxer = OpwiseLinearBoundsRelaxer(_fastlin_mapper) def _make_parameterized_relaxer( primitive: Primitive, activation: activation_relaxation.ActivationRelaxation, ) -> ArgsKwargsCallable[Sequence[int], ParameterizedNodeRelaxation]: """Makes a linear relaxation based on the given convex relatation.""" if activation.piecewise_linear_relaxation_fn: return functools.partial( ParameterizedPiecewiseLinearSubgradient, primitive, activation.piecewise_linear_relaxation_fn, soft_init=activation.pos_neg_linear) elif activation.convex: return functools.partial(elementwise_convex_fn_relaxer, primitive) else: return linear_from_smooth_convex(activation.relaxation_fn) _parameterized_mapper: Mapping[ Primitive, ArgsKwargsCallable[Sequence[int], ParameterizedNodeRelaxation], ] = { primitive: _make_parameterized_relaxer(primitive, activation) for primitive, activation in activation_relaxation.relaxation_fns.items()} parameterized_relaxer = OpwiseParameterizedLinearBoundsRelaxer( _parameterized_mapper)
jax_verify-master
jax_verify/src/linear/linear_relaxations.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Beta-Crown. Branching decisions are given by a Tuple of fixed tensor. LayIdx is an integer tensor with size (max_splits, MAX_JAXPR_DEPTH) indicating which layer to split on. MAX_JAXPR_DEPTH corresponds to a maximum nesting of indexes that we will specify. All other tensors are 1D with length max_splits. NeurIdx is a 1D integer tensor indicating the neuron in that layer. BranchVal is a 1D floating point tensor indicating where the cut is. IsUpperBranch is a boolean tensor indicating if the inequality is neur > branch_val (True) neur < branch_val (False) """ from typing import Mapping, Optional, Sequence, Tuple from jax import numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import concretization from jax_verify.src import graph_traversal from jax_verify.src import optimizers from jax_verify.src.branching import branch_selection from jax_verify.src.linear import backward_crown from jax_verify.src.linear import linear_relaxations from jax_verify.src.types import Index, Nest, Primitive, SpecFn, Tensor # pylint: disable=g-multiple-import import optax def _update_lin_with_lagrangian(eqn_lincoeffs: Tensor, eqn_offset: Tensor, active_branch_mask: Tensor, lagrangian_variables: Tensor, neur_idxs: Tensor, branch_val: Tensor, is_upper: Tensor) -> Tuple[Tensor, Tensor]: """Include the contribution of the lagrangian to the linear bounds. Args: eqn_lincoeffs: (nb_targets, *act_shape)[float ]coefficients of the linear function bounding the output as a function of this layer's activation. eqn_offset: (nb_targets,)[float] constant term of the linear function bounding the output. active_branch_mask: (nb_splits,)[bool] Boolean array indicating which branching constraints are active at this level. lagrangian_variables: (nb_splits,)[float] Value of the lagrangian multiplier associated with each branching constraint. neur_idxs: (nb_splits,)[int] Indication of what neuron is branched on. The integers represent the location in the flattened activation array. branch_val: (nb_splits,)[float] Cut-off point of the split constraint. is_upper: (nb_splits,)[bool] Whether the constraint enforce the activation to be above branch_val or below. Returns: lagrangianed_lincoeffs: Coefficients of the linear function, including the lagrangian contribution. lagrangianed_offset: Constant term of the linear function, including the lagrangian contribution. """ # masked_lagrangian is (nb_splits,) masked_lagrangian = active_branch_mask * lagrangian_variables signed_masked_lagrangian = jnp.where(is_upper, -masked_lagrangian, masked_lagrangian) # We obtain here a scalar term, this is the contribution to the constant # term (not a function of the input) of the linear equation by the # lagrangian. # We sum over the splits (because we take into consideration all the # lagrangians of that layer, and we have masked the irrelevant ones). lagrangian_constant_term = (-signed_masked_lagrangian * branch_val).sum() lagrangianed_offset = (eqn_offset + jnp.expand_dims(lagrangian_constant_term, 0)) # We now compute the new linear function to be lower-bounded. # We want to add the lagrangian contribution to the function, for each of # the target. # We start by converting the array into the flat array flat_lincoeffs = jnp.reshape(eqn_lincoeffs, (eqn_lincoeffs.shape[0], -1)) # We now gather the lin coefficients to update. to_update = flat_lincoeffs.at[:, neur_idxs] # and add the lagrangian contribution to them. flat_lagrangianed_lincoeffs = to_update.add(signed_masked_lagrangian, mode='drop') lagrangianed_lincoeffs = jnp.reshape(flat_lagrangianed_lincoeffs, eqn_lincoeffs.shape) return lagrangianed_lincoeffs, lagrangianed_offset class ConstrainedLinearBoundBackwardTransform( backward_crown.LinearBoundBackwardConcretizingTransform): """Backward transformation adding the linear contributions from branching. Those contributions come from the defined branching decisions and the lagrangian variables associated with them, which should have been bound. """ def __init__( self, base_backward_transform: ( backward_crown.LinearBoundBackwardConcretizingTransform), branching_decisions: branch_selection.JittableBranchingDecisions, lagrangian_variables: Tensor, concretization_fn: linear_relaxations.ConcretizationFn = ( linear_relaxations.concretize_linear_expression), ): super().__init__(concretization_fn) self._base_backward_transform = base_backward_transform self._branching_decisions = branching_decisions self._lagrangian_variables = lagrangian_variables def concretize_args(self, primitive: Primitive) -> bool: return self._base_backward_transform.concretize_args(primitive) def primitive_backtransform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], primitive: Primitive, eqn_outval: linear_relaxations.LinearExpression, *args: bound_propagation.LayerInput, **params, ) -> Sequence[Sequence[Optional[linear_relaxations.LinearExpression]]]: lay_idxs, neur_idxs, branch_val, is_upper = self._branching_decisions index = context.index max_jaxpr_depth = lay_idxs.shape[1] index_tensor = jnp.array(index + (0,) * (max_jaxpr_depth - len(index))) branching_in_this_layer = (lay_idxs == index_tensor).all(axis=1) active_branch_mask = branching_in_this_layer.astype(jnp.float32) # Include the lagrangian terms into the linear bounds that we are # propagating. # Note: I had an attempt at gating this function which is still relatively # expensive behind a jax.lax.cond, in case the active_branch_mask was all # false but this resulted in the whole bounding process being almost twice # as slow. lagrangianed_lincoeffs, lagrangianed_offset = _update_lin_with_lagrangian( eqn_outval.lin_coeffs, eqn_outval.offset, active_branch_mask, self._lagrangian_variables, neur_idxs, branch_val, is_upper) # This new linear expression is equivalent to the initial linear expression # except that it now also include the contribution of the lagrangian. lagrangianed_eqn_outval = linear_relaxations.LinearExpression( lagrangianed_lincoeffs, lagrangianed_offset) # We can now pass it on to the underlying primitive, to propagate backward. return self._base_backward_transform.primitive_backtransform( context, primitive, lagrangianed_eqn_outval, *args, **params) def slope_and_lagrangian_optimizer( slope_opt: optax.GradientTransformation, lag_opt: optax.GradientTransformation, ) -> optax.GradientTransformation: """Creates an optimizer that handles the slopes and dual parameters. We want to optimize them differently. Args: slope_opt: Optax optimizer for the slope coefficients. lag_opt: Optax optimizer for the Lagrangian variable coefficients. Returns: optimizer: Optax optimizer for the combined set of params. """ param_schema = ('slope_params', 'dual_params') opt_for_param = {'slope_params': slope_opt, 'dual_params': lag_opt} return optax.multi_transform(transforms=opt_for_param, param_labels=param_schema) class BranchedOptimizingLinearBoundBackwardTransform( backward_crown.OptimizingLinearBoundBackwardTransform): """Backward transform that concretize bounds through optimization. The optimization is done over both the relaxation parameters and the lagrangian variables associated with the branching constraints. """ def __init__( self, branching_decisions: branch_selection.JittableBranchingDecisions, relaxer: linear_relaxations.ParameterizedLinearBoundsRelaxer, primitive_needs_concrete_bounds: Tuple[Primitive, ...], optimizer: optimizers.Optimizer, concretization_fn: linear_relaxations.ConcretizationFn = ( linear_relaxations.concretize_linear_expression), ): """Constructs a per-node concretizer that performs an inner optimisation. This supports the addition of additional branching constraints. Args: branching_decisions: Branching decisions that needs to be enforced. relaxer: Specifies the parameterised linear relaxation to use for each primitive operation. primitive_needs_concrete_bounds: Which primitive operations need to be concretised. optimizer: Optimizer to use to compute the bound. concretization_fn: Function to use to concretize the linear bounds. """ super().__init__(relaxer, primitive_needs_concrete_bounds, optimizer, concretization_fn) self._branching_decisions = branching_decisions def _initial_params( self, scanner, input_bounds, ) -> Tuple[Mapping[Index, Tensor], Tensor]: slope_params = super()._initial_params(scanner, input_bounds) dual_vars = jnp.zeros(self._branching_decisions[0].shape[0]) return slope_params, dual_vars def _project_params(self, scanner, unc_params): unc_slope_params, unc_dual_vars = unc_params slope_params = super()._project_params(scanner, unc_slope_params) dual_vars = jnp.maximum(unc_dual_vars, 0.) return slope_params, dual_vars def _bind( self, node_relaxations: Mapping[ Index, linear_relaxations.ParameterizedNodeRelaxation], all_params: Tuple[Mapping[Index, Tensor], Tensor], ) -> backward_crown.LinearBoundBackwardConcretizingTransform: slope_params, dual_vars = all_params base_backward_transform = super()._bind(node_relaxations, slope_params) return ConstrainedLinearBoundBackwardTransform( base_backward_transform, self._branching_decisions, dual_vars, self._concretization_fn) def lagrangian_backward_linear_compute_bounds( slope_optimizer: optax.GradientTransformation, lag_optimizer: optax.GradientTransformation, num_opt_steps: int, function: SpecFn, branching_decisions: branch_selection.JittableBranchingDecisions, *bounds: Nest[graph_traversal.GraphInput], ) -> Nest[bound_propagation.LayerInput]: """Performs bound computation in the style of Beta-Crown. https://arxiv.org/abs/2103.06624 Args: slope_optimizer: Optax gradient transformation to use for optimizing the alpha (slope of the relaxation of non-linearities) parameters. lag_optimizer: Optax gradient transformation to use for optimizing the beta (lagrangian variables for the branching constraints) parameters. num_opt_steps: How many optimization steps to take for each bound computation. function: Function performing computation to obtain bounds for. Takes as only arguments the network inputs. branching_decisions: 4-tuple of tensors describing the branching constraints to impose. Detailed description at the top of the module. *bounds: Bounds on the input to the network. Returns: output_bound: Bounds on the output of the function. """ parameterized_relaxer = linear_relaxations.parameterized_relaxer concretize_args_primitive = backward_crown.CONCRETIZE_ARGS_PRIMITIVE optimizer = optimizers.OptaxOptimizer( slope_and_lagrangian_optimizer(slope_optimizer, lag_optimizer), num_steps=num_opt_steps) backward_concretizer = concretization.ChunkedBackwardConcretizer( BranchedOptimizingLinearBoundBackwardTransform( branching_decisions, parameterized_relaxer, concretize_args_primitive, optimizer), max_chunk_size=128) backward_algorithm = concretization.BackwardConcretizingAlgorithm( backward_concretizer) output_bound, _ = bound_propagation.bound_propagation( backward_algorithm, function, *bounds) return output_bound
jax_verify-master
jax_verify/src/linear/backward_linearbounds_with_branching.py
# coding=utf-8 # Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for Linear Bounds. """ import abc import functools from typing import Callable, Dict, Optional, Sequence, Tuple, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import activation_relaxation from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import synthetic_primitives from jax_verify.src import utils Bound = bound_propagation.Bound Primitive = bound_propagation.Primitive Tensor = bound_propagation.Tensor Nest = bound_propagation.Nest LinFun = Callable[..., Tensor] TensorFun = activation_relaxation.TensorFunction EPSILON = 1e-5 class LinearExpression: """Describes a set of linear expressions.""" def __init__(self, lin_coeffs, offset): """Creates a LinearExpression object. Args: lin_coeffs: nb_coeffs x (array shape) offset: (array shape) """ self.lin_coeffs = lin_coeffs self.offset = offset @property def shape(self): return self.offset.shape def __add__(self, other): if isinstance(other, LinearExpression): return LinearExpression(self.lin_coeffs + other.lin_coeffs, self.offset + other.offset) else: return LinearExpression(self.lin_coeffs, self.offset + other) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): if isinstance(other, LinearExpression): return LinearExpression(self.lin_coeffs - other.lin_coeffs, self.offset - other.offset) else: return LinearExpression(self.lin_coeffs, self.offset - other) def __rsub__(self, other): if isinstance(other, LinearExpression): return LinearExpression(other.lin_coeffs - self.lin_coeffs, other.offset - self.offset) else: return LinearExpression(-self.lin_coeffs, other - self.offset,) def __truediv__(self, other): return LinearExpression(self.lin_coeffs / other, self.offset / other) class LinearBoundsRelaxer(metaclass=abc.ABCMeta): @abc.abstractmethod def linearize_primitive( self, index: graph_traversal.Index, primitive: Primitive, *inps: Union[Bound, Tensor], **params) -> Tuple[LinFun, LinFun]: """Obtain the parameters of the linearized relaxation of a given primitive. The relaxation holds when the inputs are within range of the bounds described by `inps`. Args: index: Index of the node in the bound propagation. primitive: Primitive to relax. *inps: Bounds on the inputs of the primitive or Tensors. **params: Parameters of the primitive. Returns: lb_linfun: Function evaluating the linear lower bound relaxing that primitive. ub_linfun: Function evaluating the linear upper bound relaxing that primitive. """ class OpwiseLinearBoundsRelaxer(LinearBoundsRelaxer): """Relaxer mapping each primitive to a predefined linear relaxation. This relaxation admits no additional parameters. """ def __init__( self, primitive_mapper: Dict[Primitive, Callable[..., Tuple[LinFun, LinFun]]], default_relaxer: Optional[LinearBoundsRelaxer] = None): self._primitive_mapper = primitive_mapper self._default_relaxer = default_relaxer def linearize_primitive( self, index: graph_traversal.Index, primitive: Primitive, *inps: Union[Bound, Tensor], **params) -> Tuple[LinFun, LinFun]: if primitive in self._primitive_mapper: return self._primitive_mapper[primitive](index, *inps, **params) elif self._default_relaxer: return self._default_relaxer.linearize_primitive( index, primitive, *inps, **params) else: raise ValueError(f'Unsupported primitive to relax: {primitive}.') class ParameterizedNodeRelaxation(metaclass=abc.ABCMeta): """Computes upper/lower linearisations using optimisable parameters.""" @abc.abstractproperty def arity(self) -> int: """Returns the number of input argument that this relaxation expects.""" @abc.abstractmethod def linearize( self, relax_params: Nest[Tensor], *inps: Union[Bound, Tensor], ) -> Tuple[LinFun, LinFun]: """Returns linearised relaxation for given optimisable parameters.""" @abc.abstractmethod def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: """Returns initial values of optimisable parameters.""" @abc.abstractmethod def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: """Projects optimisable parameters to their valid domain.""" class ParameterizedLinearBoundsRelaxer(metaclass=abc.ABCMeta): """Relaxer mapping each primitive to an optimisable linear relaxation.""" @abc.abstractmethod def parameterized_linearizer( self, index: graph_traversal.Index, primitive: Primitive, *input_shapes: Sequence[int], **params) -> ParameterizedNodeRelaxation: """Obtain a parameterised family of linear relaxations of a given primitive. The relaxations hold when the inputs are within range of the bounds described by `inps`. Args: index: Index of the node in the bound propagation. primitive: Primitive to relax. *input_shapes: Shapes of the inputs of the primitive. **params: Parameters of the primitive. Returns: Object producing linearised lower/upper bounds given relaxation parameters. """ class OpwiseParameterizedLinearBoundsRelaxer(ParameterizedLinearBoundsRelaxer): """Relaxer mapping each primitive to a parameterized linear relaxation.""" def __init__( self, primitive_mapper: Dict[ Primitive, Callable[..., ParameterizedNodeRelaxation]], default_param_relaxer: Optional[ParameterizedLinearBoundsRelaxer] = None): self._primitive_mapper = primitive_mapper self._default_parameterized_relaxer = default_param_relaxer def parameterized_linearizer( self, index: graph_traversal.Index, primitive: Primitive, *input_shapes: Sequence[int], **params) -> ParameterizedNodeRelaxation: if primitive in self._primitive_mapper: return self._primitive_mapper[primitive](index, *input_shapes, **params) elif self._default_parameterized_relaxer: return self._default_parameterized_relaxer.parameterized_linearizer( index, primitive, *input_shapes, **params) else: raise ValueError(f'Unsupported primitive to relax: {primitive}.') class BindRelaxerParams(LinearBoundsRelaxer): """Relaxer formed from binding parameters into a parameterised relaxer.""" def __init__( self, node_relaxations: Dict[ graph_traversal.Index, ParameterizedNodeRelaxation], relax_params: Dict[graph_traversal.Index, Tensor], ): self._node_relaxations = node_relaxations self._relax_params = relax_params def linearize_primitive( self, index: graph_traversal.Index, primitive: Primitive, *inps: Union[Bound, Tensor], **params) -> Tuple[LinFun, LinFun]: return self._node_relaxations[index].linearize( self._relax_params[index], *inps) class ParameterizedLinFun(metaclass=abc.ABCMeta): """Linearisation of lower OR upper bound using optimisable parameters.""" @abc.abstractproperty def arity(self) -> int: """Returns the number of input argument that the linear function expects.""" @abc.abstractmethod def linearize( self, relax_params: Nest[Tensor], *inps: Union[Bound, Tensor], ) -> LinFun: """Returns linearised half-bound for given optimisable parameters.""" @abc.abstractmethod def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: """Returns initial values of optimisable parameters.""" @abc.abstractmethod def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: """Projects optimisable parameters to their valid domain.""" class LowerUpperRelaxation(ParameterizedNodeRelaxation): """Adapts two parameterised half-bounds into a parameterised relaxation.""" def __init__( self, lower: ParameterizedLinFun, upper: ParameterizedLinFun): super().__init__() self._lower = lower self._upper = upper @property def arity(self) -> int: return self._lower.arity def linearize( self, relax_params: Nest[Tensor], *inps: Union[Bound, Tensor], ) -> Tuple[LinFun, LinFun]: lower_relax_params, upper_relax_params = relax_params return ( self._lower.linearize(lower_relax_params, *inps), self._upper.linearize(upper_relax_params, *inps)) def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: return ( self._lower.initial_params(*inps), self._upper.initial_params(*inps)) def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: lower_relax_params, upper_relax_params = relax_params return ( self._lower.project_params(lower_relax_params), self._upper.project_params(upper_relax_params)) class _NoParamRelaxation(ParameterizedNodeRelaxation): """Adapts a simple relaxer function into a zero-parameter relaxer function.""" def __init__( self, relaxer: Callable[..., Tuple[LinFun, LinFun]], *input_shapes: Sequence[int], **params): self._relaxer = relaxer self._input_shapes = input_shapes self._params = params @property def arity(self): return len(self._input_shapes) def linearize( self, relax_params: Nest[Tensor], *inps: Union[Bound, Tensor], ) -> Tuple[LinFun, LinFun]: return self._relaxer(*inps, **self._params) def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: return () def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return relax_params no_params = lambda relaxer: functools.partial(_NoParamRelaxation, relaxer) def linearized(fn: Callable[..., Tensor], *primals: Tensor) -> LinFun: """Returns linear function that is tangent to `fn` at given primal point.""" val, deriv = jax.linearize(fn, *primals) return lambda *xs: val + deriv(*[x - p for x, p in zip(xs, primals)]) class SupportingHyperplane(ParameterizedLinFun): """Linearisation of primitive, parameterised by primal point.""" def __init__( self, fn: TensorFun, *input_shapes: Sequence[int]): super().__init__() self._fn = fn self._input_shapes = input_shapes @property def arity(self) -> int: return len(self._input_shapes) def linearize( self, relax_params: Nest[Tensor], *inps: Union[Bound, Tensor], ) -> LinFun: primals = [ alpha * inp.upper + (1.-alpha) * inp.lower if isinstance(inp, Bound) else inp for inp, alpha in zip(inps, relax_params)] return linearized(self._fn, *primals) def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: # If an input is [known to be] a fixed tensor, don't allocate a # relaxation parameter for it. return [ .5 * jnp.ones(shape=inp_shape) if inp is None or isinstance(inp, Bound) else None for inp, inp_shape in zip(inps, self._input_shapes)] def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return jax.tree_map(lambda x: jnp.clip(x, 0., 1.), relax_params) def eltwise_linfun_from_coeff(slope: Tensor, offset: Tensor) -> LinFun: return lambda x: slope * x + offset class ElementwiseChord(ParameterizedLinFun): """Chord between input bounds of an element-wise primitive.""" arity = 1 def __init__( self, fn: TensorFun, input_shape: Sequence[int]): super().__init__() self._fn = fn self._input_shape = input_shape def linearize( self, relax_params: Nest[Tensor], inp: Union[Bound, Tensor], ) -> LinFun: inp_lower, inp_upper = inp.lower, inp.upper outp_lower, outp_upper = self._fn(inp_lower), self._fn(inp_upper) has_interval = inp_upper != inp_lower denom = jnp.where( has_interval, inp_upper - inp_lower, jnp.ones_like(inp_lower)) slope = jnp.where( has_interval, (outp_upper - outp_lower) / denom, jnp.zeros_like(inp_lower)) offset = jnp.where( has_interval, (outp_lower * inp_upper - outp_upper * inp_lower) / denom, outp_lower) return eltwise_linfun_from_coeff(slope, offset) def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: return () def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return relax_params def elementwise_convex_fn_relaxer( primitive: Primitive, input_shape: Sequence[int], **params) -> ParameterizedNodeRelaxation: fn = functools.partial(primitive.bind, **params) lower = SupportingHyperplane(fn, input_shape) upper = ElementwiseChord(fn, input_shape) return LowerUpperRelaxation(lower, upper) def elementwise_concave_fn_relaxer( primitive: Primitive, input_shape: Sequence[int], **params) -> ParameterizedNodeRelaxation: fn = functools.partial(primitive.bind, **params) lower = ElementwiseChord(fn, input_shape) upper = SupportingHyperplane(fn, input_shape) return LowerUpperRelaxation(lower, upper) class _SmoothConvexRelaxation(LowerUpperRelaxation): """Linear relaxation from supporting hyperplanes of a convex relaxation.""" def __init__( self, convex_relaxer: Callable[..., Tuple[TensorFun, TensorFun]], *input_shapes: Sequence[int], **params): # Create a skeleton `ParameterizedLinFun` for initialisation and projection # relaxation parameters. This doesn't need the lower/upper bound functions. skeleton = SupportingHyperplane((lambda *_: None), *input_shapes) super().__init__(skeleton, skeleton) self._convex_relaxer = convex_relaxer self._input_shapes = input_shapes self._params = params def linearize( self, relax_params: Nest[Tensor], *inps: Union[Bound, Tensor], ) -> Tuple[LinFun, LinFun]: # First obtain convex lower and concave upper bounds. # Do so at this late stage because they depend on the current input bounds. lb_fun, ub_fun = self._convex_relaxer(*inps, **self._params) lower = SupportingHyperplane(lb_fun, *self._input_shapes) upper = SupportingHyperplane(ub_fun, *self._input_shapes) lower_relax_params, upper_relax_params = relax_params return ( lower.linearize(lower_relax_params, *inps), upper.linearize(upper_relax_params, *inps)) def linear_from_smooth_convex( convex_relaxer: Callable[..., Tuple[TensorFun, TensorFun]], ) -> Callable[..., ParameterizedNodeRelaxation]: return functools.partial(_SmoothConvexRelaxation, convex_relaxer) def _crown_relu_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear ReLU relaxation as in CROWN. This relaxes the ReLU with the adaptive choice of lower bounds as described for CROWN-ada in https://arxiv.org/abs/1811.00866. Args: inp: Input to the ReLU. Returns: lb_linfun, ub_linfun: Linear functions bounding the ReLU """ inp_lower, inp_upper = inp.lower, inp.upper relu_on = (inp_lower >= 0.) relu_amb = jnp.logical_and(inp_lower < 0., inp_upper >= 0.) ub_slope = relu_on.astype(jnp.float32) ub_slope += jnp.where(relu_amb, inp_upper / jnp.maximum(inp_upper - inp_lower, 1e-12), jnp.zeros_like(inp_lower)) ub_offset = jnp.where(relu_amb, - ub_slope * inp_lower, jnp.zeros_like(inp_lower)) lb_slope = (ub_slope >= 0.5).astype(jnp.float32) lb_offset = jnp.zeros_like(inp_lower) return (eltwise_linfun_from_coeff(lb_slope, lb_offset), eltwise_linfun_from_coeff(ub_slope, ub_offset)) def _fastlin_relu_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear ReLU relaxation as in FastLin. This relaxes the ReLU with the parallel bounds of slope (ub) / (ub - lb) Args: inp: Input to the ReLU. Returns: lb_linfun, ub_linfun: Linear functions bounding the ReLU """ inp_lower, inp_upper = inp.lower, inp.upper relu_on = (inp_lower >= 0.) relu_amb = jnp.logical_and(inp_lower < 0., inp_upper >= 0.) slope = relu_on.astype(jnp.float32) slope += jnp.where(relu_amb, inp_upper / jnp.maximum(inp_upper - inp_lower, 1e-12), jnp.zeros_like(inp_lower)) ub_offset = jnp.where(relu_amb, - slope * inp_lower, jnp.zeros_like(inp_lower)) lb_offset = jnp.zeros_like(inp_lower) return (eltwise_linfun_from_coeff(slope, lb_offset), eltwise_linfun_from_coeff(slope, ub_offset)) class ReluSubgradient(ParameterizedLinFun): """Lower bound of a ReLU-like function. This applies to any two-piece linear function passing through the origin. """ arity = 1 def __init__( self, input_shape: Sequence[int], neg_slope: float = 0., pos_slope: float = 1.): super().__init__() self._input_shape = input_shape self._neg_slope = neg_slope self._pos_slope = pos_slope def linearize( self, relax_params: Nest[Tensor], inp: Union[Bound, Tensor], ) -> LinFun: inp_lower, inp_upper = inp.lower, inp.upper lower_slope = jnp.where(inp_lower < 0., self._neg_slope, self._pos_slope) upper_slope = jnp.where(inp_upper > 0., self._pos_slope, self._neg_slope) slope = relax_params * upper_slope + (1.-relax_params) * lower_slope offset = jnp.zeros_like(inp_lower) return eltwise_linfun_from_coeff(slope, offset) def initial_params( self, inp: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: if inp is None: return .5 * jnp.ones(shape=self._input_shape, dtype=jnp.float32) else: # Initialise close to pos_slope if input interval has more positive mass # than negative, and vice versa. # This is a softened version of CROWN. return jax.nn.sigmoid(inp.lower + inp.upper) def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: return jnp.clip(relax_params, 0., 1.) def _parameterized_relu_relaxer( primitive: Primitive, input_shape: Sequence[int], neg_slope: float = 0., pos_slope: float = 1., **params) -> ParameterizedNodeRelaxation: """Parameterised relaxation for ReLU-like functions. This applies to any two-piece linear function passing through the origin. Args: primitive: ReLU-like primitive to relax. input_shape: Shapes of the input of the primitive. neg_slope: Gradient of the primitive for negative inputs. pos_slope: Gradient of the primitive for positive inputs. **params: Parameters of the primitive. Returns: Object producing linearised lower/upper bounds given relaxation parameters. """ fn = functools.partial(primitive.bind, **params) subgradient = ReluSubgradient(input_shape, neg_slope, pos_slope) chord = ElementwiseChord(fn, input_shape) if neg_slope <= pos_slope: return LowerUpperRelaxation(lower=subgradient, upper=chord) else: # E.g. leaky ReLU with negative slope >1. This is concave. return LowerUpperRelaxation(lower=chord, upper=subgradient) def _rvt_exp_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear exp relaxation as in RVT. Lower bound is obtained based on tangent, due to convexity. Choice of point where the tangent is computed is taken from https://arxiv.org/pdf/2002.06622.pdf Chord connecting two endpoints provides upper bound for exp(x) due to convexity. Args: inp: Input to the exp. Returns: lb_linfun, ub_linfun: Linear functions bounding the Exponential """ lower, upper = inp.lower, inp.upper thresh = 12.0 min_input = -30. forced_zeros = upper < min_input unsafe_to_relax = (upper - lower) < EPSILON unsafe = jnp.logical_or(forced_zeros, unsafe_to_relax) def stable_exp(x): """If x is greater than thresh, use first order Taylor's expansion.""" return jnp.where( jnp.greater(x, thresh), jnp.exp(thresh)*(1 + x - thresh), jnp.exp(x)) point = jnp.minimum((lower+upper)/2, lower + 0.99) lb_slope = stable_exp(point) lb_offset = lb_slope * (1 - point) # If the relaxation is over too narrow a domain, use the lower bound # constant as linear lower bounding function. lb_slope = jnp.where(unsafe, jnp.zeros_like(lower), lb_slope) lb_offset = jnp.where(unsafe, stable_exp(lower), lb_offset) ub_slope = (stable_exp(upper)-stable_exp(lower))/(upper - lower) ub_offset = stable_exp(lower) - ub_slope*lower # If the relaxation is over too narrow a domain, or if even the upper bound # is extremely small, we replace the upper bound by a bound with slope of 0. ub_slope = jnp.where(unsafe, jnp.zeros_like(lower), ub_slope) ub_offset = jnp.where(unsafe, stable_exp(upper), ub_offset) lb_fun = eltwise_linfun_from_coeff(lb_slope, lb_offset) ub_fun = eltwise_linfun_from_coeff(ub_slope, ub_offset) return lb_fun, ub_fun def _rvt_posreciprocal_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear relaxation of reciprocal. The (unchecked) assumption is that inputs are always positive, and 1/x is therefore convex. Tangent provides lower bound for 1/x due to convexity when x > 0. We use the midpoint to compute the tangent following the suggestion in https://arxiv.org/pdf/2002.06622.pdf Chord connecting the two endpoints provides upper bound for 1/x due to convexity. Args: inp: Linear bounds for input to reciprocate, assumed to always be positive. Returns: lb_linfun, ub_linfun: Linear functions bounding the 1/x function for x > 0. """ lower, upper = inp.lower, inp.upper safe_lower = jnp.maximum(lower, 1e-6) safe_upper = jnp.maximum(upper, 1e-6) point = (safe_lower + safe_upper)/2 lb_slope = -1.0/(point*point) lb_offset = 2./point ub_slope = -1.0 / (safe_upper * safe_lower) ub_offset = 1.0 / safe_upper + 1.0 / safe_lower lb_fun = eltwise_linfun_from_coeff(lb_slope, lb_offset) ub_fun = eltwise_linfun_from_coeff(ub_slope, ub_offset) return lb_fun, ub_fun def _fixed_abs_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtains the parameters of a linear relaxation of the abs function. This is obtained by linearizing the function (as it is convex) for the lower bound, and taking the chord for the upper bound. Args: inp: Bound on the inputs of the absolute value. Returns: lb_linfun, ub_linfun. """ lb_fun, ub_fun = activation_relaxation.convex_fn_relaxation(lax.abs_p, inp) # Linearizing in the mid point of the lower bound means that we are going to # pick either x or -x as the linear lower bound, depending on which one # represents the larger region, which is a reasonably good default. mid_point = 0.5 * (inp.lower + inp.upper) lb_linfun = linearized(lb_fun, mid_point) # We know that the upper bound is already linear, so we can simply use it. return lb_linfun, ub_fun _parameterized_abs_relaxer = functools.partial( _parameterized_relu_relaxer, neg_slope=-1., pos_slope=1.) def _fixed_leaky_relu_relaxer( inp: Bound, *, negative_slope: float) -> Tuple[LinFun, LinFun]: """Obtains the parameters of a linear relaxation of the LeakyReLU function. Args: inp: Bound on the inputs of the leaky relu. negative_slope: Slope for the negative inputs. Returns: lb_linfun, ub_linfun. """ lb_fun, ub_fun = activation_relaxation.leaky_relu_relaxation( inp, negative_slope=negative_slope) mid_point = 0.5 * (inp.lower + inp.upper) return linearized(lb_fun, mid_point), linearized(ub_fun, mid_point) def _parameterized_leaky_relu_relaxer( primitive: Primitive, input_shape: Sequence[int], *, negative_slope: float, ) -> ParameterizedNodeRelaxation: return _parameterized_relu_relaxer( primitive, input_shape, neg_slope=negative_slope, negative_slope=negative_slope) # pass `negative_slope` again as **params def _fixed_sigmoid_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtains the parameters of a linear relaxation of the sigmoid function. Args: inp: Bound on the inputs of the sigmoid. Returns: lb_linfun, ub_linfun. """ lb_fun, ub_fun = activation_relaxation.sigmoid_relaxation(inp) mid_point = 0.5 * (inp.lower + inp.upper) return linearized(lb_fun, mid_point), linearized(ub_fun, mid_point) def _rvt_posbilinear_relaxer( x: Bound, y: Bound, **params) -> Tuple[LinFun, LinFun]: """Obtains the parameters of a linear relaxation of a bilinear function. Rather than using all 4 of the McCormick inequalities, https://arxiv.org/pdf/2002.06622.pdf use only two: For x in [x_l, x_u] and y in [y_l, y_u], the bound imposed are: x·y >= x·y_l + x_l·y - x_l·y_l x·y <= x·y_u + x_l·y - x_l·y_u Args: x: First input to the positive bilinear primitive. y: Second input to the positive bilinear primitive **params: Returns: lb_linfun, ub_linfun """ assert isinstance(x, Bound) assert isinstance(y, Bound) x_lower = x.lower y_lower, y_upper = y.lower, y.upper fn = functools.partial(synthetic_primitives.posbilinear_p.bind, **params) def lb_fun(x: Tensor, y: Tensor): return fn(x, y_lower) + fn(x_lower, y) - fn(x_lower, y_lower) def ub_fun(x: Tensor, y: Tensor): return fn(x, y_upper) + fn(x_lower, y) - fn(x_lower, y_upper) # These functions are linear by construction. return lb_fun, ub_fun class ParameterizedPosbilinearRelaxer(ParameterizedNodeRelaxation): """Parameterized linear relaxation of a bilinear function. This uses pairwise interpolations of the McCormick inequalities. For x in [x_l, x_u] and y in [y_l, y_u], the bound imposed are: x·y >= x·y_l + x_l·y - x_l·y_l x·y >= x·y_u + x_h·y - x_h·y_u x·y <= x·y_u + x_l·y - x_l·y_u x·y <= x·y_l + x_u·y - x_l·y_u """ arity = 2 def __init__( self, x_shape: Sequence[int], y_shape: Sequence[int], **params): super().__init__() self._x_shape = x_shape self._y_shape = y_shape self._params = params def linearize( self, relax_params: Nest[Tensor], x: Union[Bound, Tensor], y: Union[Bound, Tensor]) -> Tuple[LinFun, LinFun]: assert isinstance(x, Bound) assert isinstance(y, Bound) x_lower, x_upper = x.lower, x.upper y_lower, y_upper = y.lower, y.upper fn = functools.partial( synthetic_primitives.posbilinear_p.bind, **self._params) lower_relax_params, upper_relax_params = relax_params def lb_fun(x: Tensor, y: Tensor): lb0 = fn(x, y_lower) + fn(x_lower, y) - fn(x_lower, y_lower) lb1 = fn(x, y_upper) + fn(x_upper, y) - fn(x_upper, y_upper) return lower_relax_params * lb0 + (1.-lower_relax_params) * lb1 def ub_fun(x: Tensor, y: Tensor): ub0 = fn(x, y_upper) + fn(x_lower, y) - fn(x_lower, y_upper) ub1 = fn(x, y_lower) + fn(x_upper, y) - fn(x_upper, y_lower) return upper_relax_params * ub0 + (1.-upper_relax_params) * ub1 # These functions are linear by construction. return lb_fun, ub_fun def initial_params( self, *inps: Optional[Union[Bound, Tensor]], ) -> Nest[Tensor]: fn = functools.partial( synthetic_primitives.posbilinear_p.bind, **self._params) # Include a lower and an upper interpolation parameter for each output. output_shape = jax.eval_shape( fn, jnp.zeros(self._x_shape), jnp.zeros(self._y_shape)).shape return ( .5 * jnp.ones(shape=output_shape, dtype=jnp.float32), .5 * jnp.ones(shape=output_shape, dtype=jnp.float32)) def project_params(self, relax_params: Nest[Tensor]) -> Nest[Tensor]: lower_relax_params, upper_relax_params = relax_params return ( jnp.clip(lower_relax_params, 0., 1.), jnp.clip(upper_relax_params, 0., 1.)) _parameterized_posbilinear_relaxer = functools.partial( ParameterizedPosbilinearRelaxer) _crown_mapper = { synthetic_primitives.leaky_relu_p: _fixed_leaky_relu_relaxer, synthetic_primitives.relu_p: _crown_relu_relaxer, synthetic_primitives.sigmoid_p: _fixed_sigmoid_relaxer, lax.abs_p: _fixed_abs_relaxer, lax.exp_p: _rvt_exp_relaxer, synthetic_primitives.posbilinear_p: _rvt_posbilinear_relaxer, synthetic_primitives.posreciprocal_p: _rvt_posreciprocal_relaxer, } _crown_mapper = {prim: utils.simple_propagation(relax) for prim, relax in _crown_mapper.items()} crown_rvt_relaxer = OpwiseLinearBoundsRelaxer(_crown_mapper) _fastlin_mapper = { synthetic_primitives.leaky_relu_p: _fixed_leaky_relu_relaxer, synthetic_primitives.relu_p: _fastlin_relu_relaxer, synthetic_primitives.sigmoid_p: _fixed_sigmoid_relaxer, lax.abs_p: _fixed_abs_relaxer, lax.exp_p: _rvt_exp_relaxer, synthetic_primitives.posreciprocal_p: _rvt_posreciprocal_relaxer, synthetic_primitives.posbilinear_p: _rvt_posbilinear_relaxer, } _fastlin_mapper = {prim: utils.simple_propagation(relax) for prim, relax in _fastlin_mapper.items()} fastlin_rvt_relaxer = OpwiseLinearBoundsRelaxer(_fastlin_mapper) _parameterized_mapper = { synthetic_primitives.leaky_relu_p: functools.partial( _parameterized_leaky_relu_relaxer, synthetic_primitives.leaky_relu_p), synthetic_primitives.relu_p: functools.partial( _parameterized_relu_relaxer, synthetic_primitives.relu_p), synthetic_primitives.sigmoid_p: linear_from_smooth_convex( activation_relaxation.sigmoid_relaxation), lax.abs_p: functools.partial(_parameterized_abs_relaxer, lax.abs_p), synthetic_primitives.softplus_p: functools.partial( elementwise_convex_fn_relaxer, synthetic_primitives.softplus_p), lax.exp_p: functools.partial(elementwise_convex_fn_relaxer, lax.exp_p), synthetic_primitives.posreciprocal_p: functools.partial( elementwise_concave_fn_relaxer, synthetic_primitives.posreciprocal_p), synthetic_primitives.posbilinear_p: _parameterized_posbilinear_relaxer, } _parameterized_mapper = {prim: utils.simple_propagation(relax) for prim, relax in _parameterized_mapper.items()} parameterized_relaxer = OpwiseParameterizedLinearBoundsRelaxer( _parameterized_mapper)
jax_verify-master
jax_verify/src/linear/linear_bound_utils.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Forward propagation of linear bounds.""" import abc import functools from typing import Iterator, MutableMapping, Sequence, Tuple, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import ibp from jax_verify.src import intersection from jax_verify.src import synthetic_primitives from jax_verify.src import utils from jax_verify.src.linear import linear_relaxations from jax_verify.src.types import Index, Primitive, Tensor # pylint: disable=g-multiple-import import numpy as np class RefBound: """Wrapper around a bound so that we can use it as a key.""" def __init__(self, index: Index, bound: graph_traversal.InputBound): self.index = index self.bound = bound self.nb_coeffs = np.prod(bound.shape) def __hash__(self): return hash(self.index) def __eq__(self, other): return self.index == other.index class LinearFunction: """Represent a pair of linear functions that encompass feasible activations. We store the linear functions as LinearExpressions objects in `lower_lin` and `upper_lin`, and also maintain a reference to the initial bounds on the input to be able to concretize the bounds when needed. The LinearExpression that we use to represent the bounds are represented by two tensors: - lin_coeffs of shape [nb_elements_ref_bounds, *act_dim] - offset of shape [*act_dim] where nb_elements_ref_bounds is the number of entries in the reference bound (essentially the size if it was flattened) and act_dim are the dimension of the bounds that we are representing. """ def __init__(self, lower_linexp: linear_relaxations.LinearExpression, upper_linexp: linear_relaxations.LinearExpression, reference_bound: RefBound,): self.lower_lin = lower_linexp self.upper_lin = upper_linexp self.reference_bound = reference_bound @property def shape(self): return self.lower_lin.shape @property def dtype(self): return self.lower_lin.dtype @property def nb_coeffs(self): return self.reference_bound.nb_coeffs def concretize(self) -> Tuple[Tensor, Tensor]: """Concretize the linear functions to obtain scalar bounds.""" ref_bound = self.reference_bound.bound inp_shape = ref_bound.shape concrete_lb = jnp.reshape( linear_relaxations.concretize_linear_expression( self.lower_lin.transpose(inp_shape), ref_bound), self.shape) concrete_ub = -jnp.reshape( linear_relaxations.concretize_linear_expression( -self.upper_lin.transpose(inp_shape), ref_bound), self.shape) return concrete_lb, concrete_ub def __add__(self, other: Union['LinearFunction', Tensor]) -> 'LinearFunction': if isinstance(other, LinearFunction): if self.reference_bound != other.reference_bound: raise ValueError('Adding linear functions referring to ' 'different inputs.') return LinearFunction(self.lower_lin + other.lower_lin, self.upper_lin + other.upper_lin, self.reference_bound) else: return LinearFunction(self.lower_lin + other, self.upper_lin + other, self.reference_bound) def __radd__(self, other: Union['LinearFunction', Tensor] ) -> 'LinearFunction': return self.__add__(other) def __sub__(self, other: Union['LinearFunction', Tensor]) -> 'LinearFunction': if isinstance(other, LinearFunction): if self.reference_bound != other.reference_bound: raise ValueError('Substracting linear functions referring to ' 'different inputs.') return LinearFunction(self.lower_lin - other.upper_lin, self.upper_lin - other.lower_lin, self.reference_bound) else: return LinearFunction(self.lower_lin - other, self.upper_lin - other, self.reference_bound) def __rsub__(self, other: Union['LinearFunction', Tensor] ) -> 'LinearFunction': if isinstance(other, LinearFunction): if self.reference_bound != other.reference_bound: raise ValueError('Substracting linear functions referring to ' 'different inputs.') return LinearFunction(other.lower_lin - self.upper_lin, other.upper_lin - self.lower_lin, self.reference_bound) else: return LinearFunction(other - self.upper_lin, other - self.lower_lin, self.reference_bound) def identity_lin_coeffs(bound: graph_traversal.InputBound) -> Tensor: input_dim = np.prod(bound.shape) return jnp.reshape(jnp.eye(input_dim), (input_dim, *bound.shape)) class LinearBound(bound_propagation.Bound): """Linear bound over activations. This is composed of several linear functions because the networks might have several inputs. """ def __init__(self, linear_functions: Sequence[LinearFunction]): self._refbound_to_linfun: MutableMapping[RefBound, LinearFunction] = {} for function in linear_functions: ref_bound = function.reference_bound if ref_bound in self._refbound_to_linfun: self._refbound_to_linfun[ref_bound] += function else: self._refbound_to_linfun[ref_bound] = function self._concretized = None self._shape = next(iter(linear_functions)).shape self._dtype = next(iter(linear_functions)).dtype @property def lower(self): if self._concretized is None: self.concretize() return self._concretized.lower @property def upper(self): if self._concretized is None: self.concretize() return self._concretized.upper @property def shape(self): return self._shape @property def dtype(self): return self._dtype def concretize(self): if self._concretized is not None: return self._concretized lb = jnp.zeros(()) ub = jnp.zeros(()) for lin_fun in self._refbound_to_linfun.values(): lin_fun_lb, lin_fun_ub = lin_fun.concretize() lb = lb + lin_fun_lb ub = ub + lin_fun_ub self._concretized = ibp.IntervalBound(lb, ub) return self._concretized def set_concretized(self, interval_bound): self._concretized = interval_bound @staticmethod def initial_linear_bound(index: Index, input_bound: graph_traversal.InputBound): lin_coeffs = identity_lin_coeffs(input_bound) offsets = jnp.zeros_like(input_bound.lower) identity_lin = linear_relaxations.LinearExpression(lin_coeffs, offsets) lin_function = LinearFunction(identity_lin, identity_lin, RefBound(index, input_bound)) lin_bound = LinearBound([lin_function]) lin_bound.set_concretized( ibp.IntervalBound(input_bound.lower, input_bound.upper)) return lin_bound def get_linfun(self, ref_bound: RefBound) -> LinearFunction: """Get the coefficients of this linear bound with regards to the RefBound.""" if ref_bound in self._refbound_to_linfun: return self._refbound_to_linfun[ref_bound] else: # This LinearBound does not depend on the input requested. Equivalently, # it depends on it with all-coefficients and offsets equal to 0. lincoeffs_shape = (ref_bound.nb_coeffs, *self.shape) zero_lincoeffs = jnp.zeros(lincoeffs_shape) zero_offsets = jnp.zeros(self.shape) zero_linexpr = linear_relaxations.LinearExpression( zero_lincoeffs, zero_offsets) return LinearFunction(zero_linexpr, zero_linexpr, ref_bound) def linear_functions(self) -> Iterator[LinearFunction]: for lin_fun in self._refbound_to_linfun.values(): yield lin_fun def reference_bounds(self) -> Iterator[RefBound]: for ref_bound in self._refbound_to_linfun: yield ref_bound def get_linop_parts( lin_op: linear_relaxations.LinFun, invals: Sequence[LinearBound], lin_is_positive: bool = False, lin_is_negative: bool = False, ) -> Tuple[ Tuple[linear_relaxations.LinFun, linear_relaxations.LinFun], Tuple[linear_relaxations.LinFun, linear_relaxations.LinFun], Tensor, ]: """Extract the functions that implement positive/negative parts of lin_op. For convenience, we will also return their vmapped version. Args: lin_op: Linear function to decompose into a positive and negative part. invals: Inputs to the function. lin_is_positive: Optional argument to guarantee that the linear function has only positive coefficients. lin_is_negative: Optional argument to guarantee that the linear function has only negative coefficients. Returns: pos_part_op, neg_part_op: Linear function implementing the positive/negative part of lin_op pos_part_vop, neg_part_vop: Vmapped version of those functions. offset: Constant part of the lin_op """ zero_inps = [jnp.zeros(inval.shape, inval.dtype) for inval in invals] offset = lin_op(*zero_inps) # In case we are told that the linear function has only positive, or only # negative coefficients, we do not need to do do parameter identification. # We also set up a dummy function doing no computation in the part that does # not exist. # If we have no guarantees, we have to identify the positive and negative part # of the linear function. if lin_is_positive: assert not lin_is_negative pos_part_op = lambda *args: lin_op(*args) - offset neg_part_op = lambda *_: jnp.zeros(()) pos_part_vop = jax.vmap(pos_part_op, in_axes=0, out_axes=0) neg_part_vop = neg_part_op elif lin_is_negative: pos_part_op = lambda *_: jnp.zeros(()) neg_part_op = lambda *args: lin_op(*args) - offset pos_part_vop = pos_part_op neg_part_vop = jax.vmap(neg_part_op, in_axes=0, out_axes=0) else: jac_fun = jax.jacfwd(lin_op, argnums=tuple(range(len(zero_inps)))) jacobians = jac_fun(*zero_inps) def pos_part_op(*args): pospart = jnp.zeros(()) for arg, jac in zip(args, jacobians): pos_jac = jnp.maximum(jac, 0.) pospart += (arg * pos_jac).sum(axis=tuple(range(-arg.ndim, 0))) return pospart def neg_part_op(*args): negpart = jnp.zeros(()) for arg, jac in zip(args, jacobians): neg_jac = jnp.minimum(jac, 0.) negpart += (arg * neg_jac).sum(axis=tuple(range(-arg.ndim, 0))) return negpart pos_part_vop = jax.vmap(pos_part_op, in_axes=0, out_axes=0) neg_part_vop = jax.vmap(neg_part_op, in_axes=0, out_axes=0) return (pos_part_op, neg_part_op), (pos_part_vop, neg_part_vop), offset def _forward_propagate_linear_bounds(lb_lin_op: linear_relaxations.LinFun, ub_lin_op: linear_relaxations.LinFun, invals: Sequence[LinearBound], lin_is_positive: bool = False, lin_is_negative: bool = False ) -> LinearBound: """Propagate linear bounds through a primitive relaxed to its linear bounds. We assume that we have linear bounds on the inputs of the function. The lin_is_positive/lin_is_negative arguments are optional but will help making the propagation more efficient if we have some information about the linear function that we need to propagate through. Args: lb_lin_op: Linear function, with only bound arguments that is a lower bound on the function we want to propagate through. All the constant inputs and parameters should have been bound. ub_lin_op: Linear function, with only bound arguments that is an upper bound on the function we want to propagate through. All the constant inputs and parameters should have been bound. invals: List of bounds that are inputs to lb_lin_op / ub_lin_op lin_is_positive: Optional argument, set to True if the linear functions are guaranteed to have only positive coefficients. lin_is_negative: Optional argument, set to True if the linear functions are guaranteed to have only negative coefficients. Returns: out_lin_bound: LinearBound on the output of the linear function. """ ((lb_pospart_op, lb_negpart_op), (lb_pospart_vop, lb_negpart_vop), lb_offset) = get_linop_parts(lb_lin_op, invals, lin_is_positive, lin_is_negative) ((ub_pospart_op, ub_negpart_op), (ub_pospart_vop, ub_negpart_vop), ub_offset) = get_linop_parts(ub_lin_op, invals, lin_is_positive, lin_is_negative) all_ref_bound = set() for arg in invals: for ref_bound in arg.reference_bounds(): all_ref_bound.add(ref_bound) out_linfuns = [] lb_offset_shared = lb_offset / len(all_ref_bound) ub_offset_shared = ub_offset / len(all_ref_bound) for ref_bound in all_ref_bound: in_linfuns = [] for arg in invals: in_linfuns.append(arg.get_linfun(ref_bound)) lower_lincoeffs = (lb_pospart_vop(*(linfun.lower_lin.lin_coeffs for linfun in in_linfuns)) + lb_negpart_vop(*(linfun.upper_lin.lin_coeffs for linfun in in_linfuns))) lower_offset = (lb_pospart_op(*(linfun.lower_lin.offset for linfun in in_linfuns)) + lb_negpart_op(*(linfun.upper_lin.offset for linfun in in_linfuns)) + lb_offset_shared) lower_linexpr = linear_relaxations.LinearExpression( lower_lincoeffs, lower_offset) upper_lincoeffs = (ub_pospart_vop(*(linfun.upper_lin.lin_coeffs for linfun in in_linfuns)) + ub_negpart_vop(*(linfun.lower_lin.lin_coeffs for linfun in in_linfuns))) upper_offset = (ub_pospart_op(*(linfun.upper_lin.offset for linfun in in_linfuns)) + ub_negpart_op(*(linfun.lower_lin.offset for linfun in in_linfuns)) + ub_offset_shared) upper_linexpr = linear_relaxations.LinearExpression( upper_lincoeffs, upper_offset) out_linfun = LinearFunction(lower_linexpr, upper_linexpr, ref_bound) out_linfuns.append(out_linfun) return LinearBound(out_linfuns) def _fastlin_bilinearwithparam_op(primitive: Primitive, lhs: Union[LinearBound, Tensor], rhs: Union[LinearBound, Tensor], **kwargs) -> LinearBound: """Propagation of Linear bounds through an affine operation. This operation is implemented by one of the bilinear primitives so we know exactly how to do the bound propagation without having to materialize the jacobian to obtain weights. Args: primitive: Linear function to pass through. lhs: Either parameters or LinearBound. rhs: Either parameters or LinearBound. **kwargs: Dict with the parameters of the linear operation. Returns: out_bounds: LinearBound """ # Detect which order things are in, so that we can do forward propagation # simply by calling `fun_call(bound_arg, param_arg)`, whatever the ordering # initially was. if isinstance(lhs, bound_propagation.Bound): assert not isinstance(rhs, bound_propagation.Bound) bound_arg = lhs param_arg = rhs fun_call = functools.partial(primitive.bind, **kwargs) else: assert isinstance(rhs, bound_propagation.Bound) bound_arg = rhs param_arg = lhs fun_call = lambda b_arg, p_arg: primitive.bind(p_arg, b_arg, **kwargs) vmap_funcall = jax.vmap(fun_call, in_axes=(0, None), out_axes=0) # Extract the parameters for the bound propagation. abs_params = jnp.abs(param_arg) # Get access to the LinearBound, in case it is wrapped in an # IntersectionBound. unwrapped_bound = bound_arg.unwrap() # Iterate over the different linear functions that the bound is composed of. out_linfuns = [] for lin_fun in unwrapped_bound.linear_functions(): range_lin = (lin_fun.upper_lin - lin_fun.lower_lin) / 2 mean_lin = (lin_fun.upper_lin + lin_fun.lower_lin) / 2 ref_bound = lin_fun.reference_bound out_range_lin_coeffs = vmap_funcall(range_lin.lin_coeffs, abs_params) out_range_offset = fun_call(range_lin.offset, abs_params) out_mean_lin_coeffs = vmap_funcall(mean_lin.lin_coeffs, param_arg) out_mean_offset = fun_call(mean_lin.offset, param_arg) out_lowerlinexp = linear_relaxations.LinearExpression( out_mean_lin_coeffs - out_range_lin_coeffs, out_mean_offset - out_range_offset) out_upperlinexp = linear_relaxations.LinearExpression( out_mean_lin_coeffs + out_range_lin_coeffs, out_mean_offset + out_range_offset) out_linfun = LinearFunction(out_lowerlinexp, out_upperlinexp, ref_bound) out_linfuns.append(out_linfun) return LinearBound(out_linfuns) @bound_propagation.unwrapping def _fastlin_add(lhs, rhs): return lhs + rhs @bound_propagation.unwrapping def _fastlin_sub(lhs, rhs): return lhs - rhs def _fastlin_div(lhs, rhs): """Propagation of Linear bounds through Elementwise division. We don't support the propagation of bounds through the denominator. Args: lhs: Numerator of the division. rhs: Denominator of the division. Returns: out_bounds: Bound on the output of the division. """ if isinstance(rhs, bound_propagation.Bound): raise ValueError('Bound propagation through the denominator unsupported.') return _fastlin_bilinearwithparam_op(lax.mul_p, lhs, 1./rhs) def forward_fastlin_bound_propagation(function, *bounds): """Performs forward linear bound propagation. This is using the relu relaxation of Fastlin. (https://arxiv.org/abs/1804.09699) Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBound, bounds on the inputs of the function. Returns: output_bound: Bounds on the output of the function obtained by FastLin """ output_bound, _ = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(forward_fastlin_transform), function, *bounds) return output_bound def forward_crown_bound_propagation(function, *bounds): """Performs forward linear bound propagation. This is using the relu relaxation of CROWN. (https://arxiv.org/abs/1811.00866) Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBound, bounds on the inputs of the function. Returns: output_bound: Bounds on the output of the function obtained by FastLin """ forward_crown_transform = ConcretizingForwardLinearBoundTransform( linear_relaxations.crown_rvt_relaxer) output_bound, _ = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(forward_crown_transform), function, *bounds) return output_bound def ibpforwardfastlin_bound_propagation(function, *bounds): """Obtains the best of IBP and ForwardFastlin bounds. Args: function: Function performing computation to obtain bounds for. Takes as only argument the network inputs. *bounds: jax_verify.IntervalBound, bounds on the inputs of the function. Returns: output_bound: Bounds on the output of the function obtained by FastLin """ output_bound, _ = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm( intersection.IntersectionBoundTransform(ibp.bound_transform, forward_fastlin_transform)), function, *bounds) return output_bound class ForwardLinearBoundTransform( graph_traversal.GraphTransform[LinearBound], metaclass=abc.ABCMeta): """Propagate Linear bounds forward through the network.""" def __init__(self, linear_elision: bool = False): self._linear_elision = linear_elision def should_handle_as_subgraph(self, primitive: Primitive) -> bool: if primitive is synthetic_primitives.linear_p: # If we do linear elision, we do not want to treat linear_p as a subgraph. # (we want to treat it as a single layer.) return not self._linear_elision else: return super().should_handle_as_subgraph(primitive) def input_transform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], input_bound: graph_traversal.InputBound, ) -> LinearBound: return LinearBound.initial_linear_bound(context.index, input_bound) def primitive_transform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], primitive: Primitive, *args: graph_traversal.LayerInput[LinearBound], **params, ) -> LinearBound: # We specialise bilinear and reshape operation because we can compute them # in a more lightweight manner, without having to resort to identifying # parameters. if primitive in bound_propagation.BILINEAR_PRIMITIVES: return _fastlin_bilinearwithparam_op(primitive, *args, **params) elif (primitive in bound_propagation.AFFINE_PRIMITIVES or primitive in bound_propagation.RESHAPE_PRIMITIVES or (primitive is lax.div_p and isinstance(args[1], Tensor))): is_positive = primitive in POSLINEAR_PRIMITIVES safe_params = synthetic_primitives.filter_jaxverify_kwargs(params) lin_fun = utils.bind_nonbound_args(primitive.bind, *args, **safe_params) lin_bound_inputs = [arg.unwrap() for arg in args if isinstance(arg, bound_propagation.Bound)] return _forward_propagate_linear_bounds(lin_fun, lin_fun, lin_bound_inputs, lin_is_positive=is_positive) else: # This is not an affine primitive. We need to go through a relaxation. return self.nonlinear_primitive_transform(context, primitive, *args, **params) @abc.abstractmethod def nonlinear_primitive_transform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], primitive: Primitive, *args: graph_traversal.LayerInput[LinearBound], **params, ) -> LinearBound: pass class ConcretizingForwardLinearBoundTransform(ForwardLinearBoundTransform): """Forward linear bound propagation with concretization at every node.""" def __init__(self, relaxer: linear_relaxations.LinearBoundsRelaxer, linear_elision: bool = False): super().__init__(linear_elision) self.relaxer = relaxer def nonlinear_primitive_transform( self, context: graph_traversal.TransformContext[ linear_relaxations.LinearExpression], primitive: Primitive, *args: graph_traversal.LayerInput[LinearBound], **params, ) -> LinearBound: # This is not an affine primitive. We need to go through a relaxation. # Obtain the linear bounds. lb_linfun, ub_linfun = self.relaxer.linearize_primitive( context.index, primitive, *args, **params) # Translate to functions that only accept variable (linear bound) inputs. lb_linfun = utils.bind_nonbound_args(lb_linfun, *args) ub_linfun = utils.bind_nonbound_args(ub_linfun, *args) lin_bound_inputs = [arg.unwrap() for arg in args if isinstance(arg, bound_propagation.Bound)] is_positive = primitive in POSITIVE_RELAXATION_PRIMITIVES is_negative = primitive in NEGATIVE_RELAXATION_PRIMITIVES return _forward_propagate_linear_bounds( lb_linfun, ub_linfun, lin_bound_inputs, lin_is_positive=is_positive, lin_is_negative=is_negative) POSLINEAR_PRIMITIVES = [ lax.scatter_add_p, lax.add_p, lax.reduce_sum_p, *bound_propagation.RESHAPE_PRIMITIVES, ] POSITIVE_RELAXATION_PRIMITIVES = [ synthetic_primitives.relu_p, lax.exp_p, ] NEGATIVE_RELAXATION_PRIMITIVES = [ synthetic_primitives.posreciprocal_p, ] forward_fastlin_transform = ConcretizingForwardLinearBoundTransform( linear_relaxations.fastlin_rvt_relaxer)
jax_verify-master
jax_verify/src/linear/forward_linear_bounds.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Algorithms for branch/bound minimisation by partitioning activation space. Each of the algorithms provided here maintains the current partitioning, i.e. the set of leaves of the branching decision tree. This is represented as a priority queue, such that the leaf (partition) with the highest value of the output bound to be minimised appears first. The algorithms iteratively branch by splitting the highest priority partition. On each new sub-partition, its output bound and next branching point are recomputed. """ import functools import heapq from typing import Any, Callable, Mapping, Optional, Sequence, Tuple, Union from absl import logging import jax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import bound_utils from jax_verify.src import graph_traversal from jax_verify.src import intersection from jax_verify.src.branching import branch_selection from jax_verify.src.types import Index, Nest, SpecFn, Tensor # pylint: disable=g-multiple-import import numpy as np BoundsOnMax = Tuple[Tensor, Tensor] BranchEvaluationFn = Callable[[ branch_selection.BranchingDecisionList, ], Tuple[ BoundsOnMax, Optional[branch_selection.BranchPlane], # Next branch plane. ]] JittableBranchEvaluationFn = Callable[[ branch_selection.JittableBranchingDecisions, ], Tuple[ Tuple[Tensor, Tensor], # Bounds on the branch. Tuple[ branch_selection.JittableBranchingDecisions, # Next lower branch. branch_selection.JittableBranchingDecisions, # Next upper branch. ], ]] BoundFn = Callable[[ branch_selection.BranchingDecisionList, ], Tuple[ Tensor, # Upper bound on output. Mapping[Index, Tuple[Tensor, Tensor]], # All intermediate bounds. ]] BranchScoringFn = Callable[[ Mapping[Index, Tuple[Tensor, Tensor]], # All intermediate bounds. ], Tuple[ Mapping[Index, Tensor], # Scores for each neuron. Optional[Mapping[Index, Tensor]], # Branch values for each neuron (or 0). ]] def upper_bound_with_branching( transform: bound_propagation.BoundTransform, branch_neuron_selector: branch_selection.BranchNeuronSelector, spec_fn: SpecFn, *input_bounds: Nest[graph_traversal.GraphInput], num_branches: int, stop_at_negative_ub: bool = False, ) -> Tensor: """Applies the given bound prop method repeatedly with branching. Args: transform: Forward bound propagation method to apply. branch_neuron_selector: Strategy for selecting branch planes. spec_fn: Function for which to find an upper bound. *input_bounds: Bounds on inputs to `spec_fn`. num_branches: Number of branches to perform. The number of leaves will be one more than this. stop_at_negative_ub: Early stop the branch and bound if the upper bound becomes negative. Returns: Component-wise upper-bound on output of `spec_fn`. """ root_bounds = bound_utils.BoundRetriever(bound_utils.VacuousBoundTransform()) bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(root_bounds), spec_fn, *input_bounds) def bound_fn(branching_decisions: branch_selection.BranchingDecisionList): branch_constraint = bound_utils.FixedBoundApplier( branch_selection.concrete_branch_bounds( root_bounds.concrete_bounds, branching_decisions)) branch_bounds = bound_utils.BoundRetriever( intersection.IntersectionBoundTransform(transform, branch_constraint)) output_bound, _ = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(branch_bounds), spec_fn, *input_bounds) return output_bound.upper, { 'intermediate_bounds': branch_bounds.concrete_bounds, } branch_scoring_fn = functools.partial( branch_neuron_selector.score_neurons, branch_neuron_selector.analyse_inputs(spec_fn, *input_bounds)) _, all_upper_bounds, _ = run_branching( functools.partial(evaluate_branch, bound_fn, branch_scoring_fn), num_branches, stop_at_negative_ub) return all_upper_bounds[-1] def run_branching( branch_evaluation_fn: BranchEvaluationFn, num_branches: int, stop_at_negative_ub: bool = False, ) -> Tensor: """Use branch-and-bound to find a tight upper bound for the network. Args: branch_evaluation_fn: Callable computing an upper bound and determining the next branch plane, given a branch specified by decision list. num_branches: Number of branches to perform. The number of leaves will be one more than this. stop_at_negative_ub: Early stop the branch and bound if the upper bound becomes negative. Returns: Tensor of shape [num_branches, batch_size, spec_size] containing, at each branching iteration, upper bounds for each example in the batch, associated with the worst leaf branch, Tensor with number of solved subproblems """ # Maintain branches (leaves of the branching tree) as a priority queue, # enabling us to branch on the cases with highest Lagrangian first. all_branches = BranchQueue() upper_bounds = [] def push_branch(branching_decisions: branch_selection.BranchingDecisionList): bounds, next_branch_plane = branch_evaluation_fn( branching_decisions) all_branches.push(bounds, next_branch_plane, args=(branching_decisions,)) push_branch([]) upper_bounds.append(all_branches.max_bounds()) for _ in range(num_branches): if not all_branches.can_pop(): break # The worst-scoring branch cannot be split further. if stop_at_negative_ub and (all_branches.max_bounds().max() < 0. or np.amax(all_branches.empirical_max()) > 0.): break # We are early stopping and can already prove/disprove robustness. next_branch_plane, (branching_decisions,), _ = all_branches.pop() # Replace this branching choice with two new ones. push_branch(branching_decisions + [next_branch_plane.lower_branch]) push_branch(branching_decisions + [next_branch_plane.upper_branch]) upper_bounds.append(all_branches.max_bounds()) empirical_max = all_branches.empirical_max() batch_size = empirical_max.shape[0] return empirical_max, jnp.array( # pytype: disable=bad-return-type # jax-ndarray upper_bounds), jnp.ones(batch_size) * all_branches.n_subproblems() def run_batched_branching( batch_size: int, max_branching_depth: int, max_index_depth: int, batched_branch_evaluation_fn: JittableBranchEvaluationFn, num_evals: int, stop_at_negative_ub: bool = False, ) -> Tensor: """Use branch-and-bound to find a tight upper bound for the network. This method evaluates several sub-domains at once in order to be quicker. Args: batch_size: How many subdomains to evaluate at the same time. max_branching_depth: How many constraints can we impose on a single subdomain. max_index_depth: What is the maximum level of depth in the index. batched_branch_evaluation_fn: Function to evaluate a batch of set of branching decision. This takes as input the branching decision in jitted form, and returns: - (lower bound, upper bound) on the minimum over the subdomain. - The next branching decision to perform on this subdomain, in jitted form. num_evals: How many branching evaluations to perform. stop_at_negative_ub: Early stop the branch and bound if the upper bound becomes negative or the lower bound becomes positive. Returns: Tensor of shape [num_branches, batch_size, spec_size] containing, at each branching iteration, upper bounds for each example in the batch, associated with the worst leaf branch, Tensor with number of solved subproblems """ # Maintain branches (leaves of the branching tree) as a priority queue, # enabling us to branch on the cases with highest Lagrangian first. all_branches = BranchQueue() upper_bounds = [] empty_branching_decisions = branch_selection.branching_decisions_tensors( [], max_branching_depth, max_index_depth) array_empty_bdecs = jax.tree_map(lambda x: jnp.expand_dims(x, 0), empty_branching_decisions) def push_branches( bdec_list: Sequence[branch_selection.BranchingDecisionList]): list_bdec_tensors = [branch_selection.branching_decisions_tensors( bdecs, max_branching_depth, max_index_depth) for bdecs in bdec_list] array_bdecs_tensors = jax.tree_map( lambda *bdec_ten: jnp.stack([*bdec_ten], axis=0), *list_bdec_tensors) nb_branches_to_eval = len(bdec_list) nb_branches_to_pad = batch_size - nb_branches_to_eval if nb_branches_to_pad: array_padding_bdecs = jax.tree_map( lambda x: jnp.repeat(x, nb_branches_to_pad, 0), array_empty_bdecs) to_eval_branches = jax.tree_map(lambda x, y: jnp.concatenate([x, y]), array_bdecs_tensors, array_padding_bdecs) else: to_eval_branches = array_bdecs_tensors ((lower_bounds, upper_bounds), (next_lower_branches, next_upper_branches)) = batched_branch_evaluation_fn( to_eval_branches) # For each existing subdomain, find out which position to insert a new # constraint. lower_bounds = np.array(lower_bounds) upper_bounds = np.array(upper_bounds) next_node_indices = [tuple(idx) for idx in next_lower_branches.node_indices.tolist()] next_neuron_indices = next_lower_branches.neuron_indices.tolist() next_lower_vals = next_lower_branches.branch_vals.tolist() next_upper_vals = next_upper_branches.branch_vals.tolist() for subprob_idx, parent_bdecs in enumerate(bdec_list): bounds = (lower_bounds[subprob_idx], upper_bounds[subprob_idx]) lower_branch_dec = branch_selection.BranchDecision( next_node_indices[subprob_idx], next_neuron_indices[subprob_idx], next_lower_vals[subprob_idx], False) upper_branch_dec = branch_selection.BranchDecision( next_node_indices[subprob_idx], next_neuron_indices[subprob_idx], next_upper_vals[subprob_idx], True) next_branch_plane = branch_selection.BranchPlane(lower_branch_dec, upper_branch_dec) all_branches.push(bounds, next_branch_plane, args=(parent_bdecs,)) push_branches([[]]) for _ in range(num_evals): subdomains = [] while len(subdomains) < batch_size: if not all_branches.can_pop(): break # Queue empty / worst scoring branch cannot be split further. next_branch_plane, (branching_decisions,), _ = all_branches.pop() subdomains.append(branching_decisions + [next_branch_plane.lower_branch]) subdomains.append(branching_decisions + [next_branch_plane.upper_branch]) if subdomains: push_branches(subdomains) else: # We don't have any subdomain to evaluate. break max_bound = all_branches.max_bounds() upper_bounds.append(max_bound) emp_max = np.amax(all_branches.empirical_max() > 0.) if stop_at_negative_ub and (max_bound.max() < 0. or emp_max > 0.): # We can disprove robustness, or we can prove robustness for all # remaining subdomains. break empirical_max = all_branches.empirical_max() batch_size = empirical_max.shape[0] return empirical_max, jnp.array( # pytype: disable=bad-return-type # jax-ndarray upper_bounds), jnp.ones(batch_size) * all_branches.n_subproblems() def evaluate_branch( bound_fn: BoundFn, branch_scoring_fn: BranchScoringFn, branching_decisions: branch_selection.BranchingDecisionList, ) -> Tuple[BoundsOnMax, Optional[branch_selection.BranchPlane]]: """Evaluates a branch by first computing its intermediate bounds. Use `functools.partial` to bind the `bound_fn` and `branch_scoring_fn` args, to make this conform to `BranchEvaluationFn`. Args: bound_fn: A function that takes as input branching decisions and input bounds and will compute final and intermediate bounds. branch_scoring_fn: A function that takes as input information produced by the bounding function and will return a score for all neurons, indicating which ones to branch on. This will typically be based on `branch_selection.BranchNeuronSelector.score_neurons`. branching_decisions: Specifies the branch in question. Returns: bounds_on_max: Lower and upper bounds on the max attainable for each example in the batch. next_branch_plane: The next branching decision to make. """ # Obtain the bound for this set of branching decisions, and get the next # branches to investigate. upper_bound, branch_heuristics = bound_fn(branching_decisions) # Obtain the scores for all the branching decisions. branching_scores, branch_vals = branch_scoring_fn(branch_heuristics) next_branch_plane = branch_selection.highest_score_branch_plane( branching_scores, branch_vals) emp_max_est = branch_heuristics.get( 'emp_max_est', -jnp.inf * jnp.ones_like(upper_bound)) return (emp_max_est, upper_bound), next_branch_plane # pytype: disable=bad-return-type # jax-ndarray def evaluate_branch_with_filtering( full_bound_fn: BoundFn, appx_bound_fn: BoundFn, branch_scoring_fn: BranchScoringFn, branching_decisions: branch_selection.BranchingDecisionList, *, num_filtered_neurons: int, bound_agg: str, ) -> Tuple[BoundsOnMax, Optional[branch_selection.BranchPlane]]: """Evaluates a branch by filtering via approximate intermediate bounds. Use `functools.partial` to bind the `full_bound_fn`, `appx_bound_fn`, and `branch_scoring_fn` args, to make this conform to `BranchEvaluationFn`. Args: full_bound_fn: A function that takes as input branching decisions and input bounds and will compute final and intermediate bounds. appx_bound_fn: Efficient approximation of `full_bound_fn`, used to compute final branching scores for filtered neurons. branch_scoring_fn: A function that takes as input information produced by the bounding function and will return a score for all neurons, indicating which ones to branch on. This will typically be based on `branch_selection.BranchNeuronSelector.score_neurons`. branching_decisions: Specifies the branch in question. num_filtered_neurons: number of filtered neurons per layer. bound_agg: string indicating how to aggregate bounds for upper and lower branches that are computed via `appx_bound_fn`. Returns: bounds_on_max: Lower and upper bounds on the max attainable for each example in the batch. next_branch_plane: The next branching decision to make. """ # Obtain the bound for this set of branching decisions, and get the next # branches to investigate. upper_bound, branch_heuristics = full_bound_fn(branching_decisions) # Obtain the initial scores for all the branching decisions, which are # used to filter promising ones. init_branching_scores, branch_vals = branch_scoring_fn(branch_heuristics) next_branch_plane = branch_selection.highest_score_branch_plane( init_branching_scores, branch_vals) # Compute scores for all filtered neurons and select the one for branching best_branch_score = jnp.inf for index in init_branching_scores: flat_scores = jnp.reshape(init_branching_scores[index], [-1]) neuron_indices = jnp.argsort(-flat_scores) for neuron_index in neuron_indices[:num_filtered_neurons]: neuron_score = flat_scores[neuron_index] if not jnp.isinf(neuron_score): curr_branch_plane = branch_selection.make_branch_plane( index, neuron_index, branch_vals) lower_branch_bound, _ = appx_bound_fn( [*branching_decisions, curr_branch_plane.lower_branch]) upper_branch_bound, _ = appx_bound_fn( [*branching_decisions, curr_branch_plane.upper_branch]) curr_branch_score = branch_selection.aggregate_ambiguities(bound_agg)( jnp.max(lower_branch_bound), jnp.max(upper_branch_bound)) if curr_branch_score < best_branch_score: best_branch_score = curr_branch_score next_branch_plane = curr_branch_plane else: # This is an infeasible choice, so we do not need to waste time # evaluating it. # In addition, in case we have poor convergence, it's entirely possible # that by bad luck, this would be the best results, in which case we # would end up in an infinite loop. # (This branch gets picked, nothing gets changed, the bound remain the # same and we keep on landing in the same place). pass emp_max_est = branch_heuristics.get( 'emp_max_est', -jnp.inf * jnp.ones_like(upper_bound)) return (emp_max_est, upper_bound), next_branch_plane # pytype: disable=bad-return-type # jax-ndarray class BranchQueue: """Set of branch leaves, organised as a priority queue.""" def __init__(self, log=True, drop_negative_ub=False): self._all_branches = [] self._j = 0 self._log = log self._empirical_max = -np.inf self._highest_negative_ub = -np.inf self._bound_shape = None self._drop_negative_ub = drop_negative_ub def push( self, bounds: BoundsOnMax, next_branch_plane: Optional[Union[bool, branch_selection.BranchPlane]], *, args: Optional[Sequence[Any]] = None, jax_args: Optional[Sequence[Any]] = None): """Pushes the branch to the priority queue. Args: bounds: Per-example upper bound for this branch. next_branch_plane: Neuron to split for the next branching. args: Auxiliary arguments to store with the branch. jax_args: Auxiliary arguments to store with the branch that are jax objects. We're separating them so that we can hold them off device. """ args = args or () jax_args = jax_args or () # Move tensors off the device. # There may be many branches, and there would be a risk of running out of # device memory if every entry in the queue held their tensors on-device. (emp_max, upper_bound), next_branch_plane, jax_args = _device_pop( (bounds, next_branch_plane, jax_args)) if self._log: logging.info('Branch %d: %s', self._j, ''.join( f'[Sample {idx}] Bound {np.amax(bd):.04f} ' for idx, bd in enumerate(upper_bound))) if np.amax(emp_max) > np.amax(self._empirical_max): logging.info('New Empirical max: %.04f', np.amax(emp_max)) self._bound_shape = bounds[1].shape # Queue entries are tuples beginning with `(priority, j, ...)`, # where `j` is a unique identifier in case priorities are equal. priority = -np.max(upper_bound) entry = priority, self._j, upper_bound, next_branch_plane, args, jax_args if (priority < 0.): # This is a bound that will have to be split. heapq.heappush(self._all_branches, entry) elif not self._drop_negative_ub: # We are not trying to save memory and are keeping all the bounds. heapq.heappush(self._all_branches, entry) else: # This is a bound that we want to drop, it's a negative upper bound. # We'll just update our running tally of what would be the limiting bound # when we cross zero. self._highest_negative_ub = np.maximum(self._highest_negative_ub, upper_bound) self._j += 1 # Update the highest value seen. self._empirical_max = np.maximum(self._empirical_max, emp_max) def can_pop(self) -> bool: """Returns whether the branch with the highest Lagrangian can be split.""" if self._all_branches: top_branch = self._all_branches[0] next_branch_plane = top_branch[3] return next_branch_plane is not None else: return False def pop(self) -> Tuple[ branch_selection.BranchPlane, Sequence[Any], Sequence[Any]]: """Pops the branch with the highest upper bound (averaged over batch). Returns: next_branch_plane: Neuron to split for the next branching. args: Auxiliary arguments passed to `push`. jax_args: Auxiliary arguments passed to `push` that are jax objects. """ entry = heapq.heappop(self._all_branches) _, j, bounds, next_branch_plane, args, jax_args = entry if self._log: logging.info('Splitting branch %d: %s', j, ''.join( f'[Sample {idx}] Bound {np.amax(bd):.04f} ' for idx, bd in enumerate(bounds))) return next_branch_plane, args, jax_args def max_bounds(self) -> Tensor: """Returns the effective upper bound: the worst case over all leaves.""" if self._drop_negative_ub and not self._all_branches: # We have dropped all the negative bounds, and have run out of new leaves # to branch. The remaining bound will be the one that we kept in the # running tally of highest negative upper bound. return self._highest_negative_ub if np.prod(self._bound_shape) == 1: # If we have a single output being bounded, we know where it is in the # priority queue. worst_priority = self._all_branches[0][0] return np.reshape(-worst_priority, self._bound_shape) else: # If there is multiple outputs, then we need to go through the whole queue # because otherwise we don't know which is the worst bound for a given # coordinate. bounds = np.stack(tuple(branch[2] for branch in self._all_branches)) # Extract bounds from each (priority, j, bounds, ...) entry. return np.amax(bounds, axis=0) def empirical_max(self) -> Tensor: return self._empirical_max def n_subproblems(self) -> int: return self._j def _device_pop(x: Nest[jnp.ndarray]) -> Nest[np.ndarray]: """Moves a tensor (or nest thereof) off the device. Any other references to the tensor will become invalid. Args: x: Nest of Jax tensors. Returns: Nest of numpy tensors corresponding to `x`. """ x_np = jax.device_get(x) jax.tree_map(lambda x: x.delete() if isinstance(x, jnp.ndarray) else None, x) return x_np
jax_verify-master
jax_verify/src/branching/branch_algorithm.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of utils for Branch-and-Bound algorithms. Contains for example algorithm to evaluate the inputs that concretize the backward linear bounds. """ from typing import Mapping, Tuple import jax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import bound_utils from jax_verify.src import graph_traversal from jax_verify.src import utils from jax_verify.src.linear import backward_crown from jax_verify.src.linear import linear_relaxations from jax_verify.src.types import Index, Nest, Tensor # pylint: disable=g-multiple-import class NominalEvaluateConcretizingInputAlgorithm( bound_propagation.PropagationAlgorithm[Tensor]): """Find the input concretizing a backward linear transform and evaluate it. """ def __init__(self, intermediate_bounds: Mapping[Index, Tuple[Tensor, Tensor]], backward_transform: backward_crown.LinearBoundBackwardTransform): self._forward_bnd_algorithm = bound_propagation.ForwardPropagationAlgorithm( bound_utils.FixedBoundApplier(intermediate_bounds)) self._backward_transform = backward_transform def propagate(self, graph: graph_traversal.PropagationGraph, *bounds: Nest[graph_traversal.GraphInput]): assert len(graph.outputs) == 1 (out,), bound_env = self._forward_bnd_algorithm.propagate(graph, *bounds) max_output = (out.upper == out.upper.max()).astype(jnp.float32) max_output = jnp.expand_dims(max_output, 0) initial_linear_expression = backward_crown.identity(-max_output) flat_inputs, _ = jax.tree_util.tree_flatten(*bounds) bound_inputs = [inp for inp in flat_inputs if isinstance(inp, bound_propagation.Bound)] input_nodes_indices = [(i,) for i in range(len(bound_inputs))] inputs_linfuns, back_env = graph.backward_propagation( self._backward_transform, bound_env, {graph.outputs[0]: initial_linear_expression}, input_nodes_indices) concretizing_bound_inputs = [] for input_linfun, inp_bound in zip(inputs_linfuns, bound_inputs): if input_linfun is not None: conc_inp = minimizing_concretizing_input(input_linfun, inp_bound) concretizing_bound_inputs.append(conc_inp[0]) def eval_model(*graph_inputs): # We are going to only pass Tensor. # Forward propagation simply evaluate the primitive when there is no # bound inputs. outvals, _ = graph.forward_propagation(None, graph_inputs) # pytype: disable=wrong-arg-types return outvals eval_model_boundinps = utils.bind_nonbound_args(eval_model, *flat_inputs) nominal_outs = eval_model_boundinps(*concretizing_bound_inputs) return nominal_outs, back_env def minimizing_concretizing_input( backward_linexp: linear_relaxations.LinearExpression, input_bound: bound_propagation.Bound) -> Tensor: """Get the input that concretize the backward bound to its lower bound. Args: backward_linexp: Coefficients of linear functions. The leading batch dimension corresponds to different output neurons that need to be concretized. input_bound: Bound on the activations of that layer. Its shape should match the coefficients of the linear functions to concretize. Returns: concretizing_inp: The input that correspond to the lower bound of the linear function given by backward_linexp. """ return concretizing_input_interval_bounds(backward_linexp, input_bound) def concretizing_input_interval_bounds( backward_linexp: linear_relaxations.LinearExpression, input_bound: bound_propagation.Bound) -> Tensor: """Compute the inputs that achieves the lower bound of a linear function.""" act_lower = jnp.expand_dims(input_bound.lower, 0) act_upper = jnp.expand_dims(input_bound.upper, 0) return jnp.where(backward_linexp.lin_coeffs > 0., act_lower, act_upper)
jax_verify-master
jax_verify/src/branching/branch_utils.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Strategies for selecting the neuron on which to branch.""" import abc import collections import enum import functools import math from typing import Any, Callable, Mapping, NamedTuple, Optional, Sequence, Tuple, Union import jax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import bound_utils from jax_verify.src import graph_traversal from jax_verify.src import synthetic_primitives from jax_verify.src.branching import backpropagation from jax_verify.src.linear import linear_relaxations from jax_verify.src.types import Index, Nest, Primitive, SpecFn, Tensor # pylint: disable=g-multiple-import BranchDecision = NamedTuple('BranchDecision', [ ('node_index', Index), ('neuron_index', int), ('branch_val', float), ('is_upper', int), ]) BranchPlane = NamedTuple('BranchPlane', [ ('lower_branch', BranchDecision), ('upper_branch', BranchDecision) ]) BranchingDecisionList = Sequence[BranchDecision] JittableBranchingDecisions = NamedTuple('JittableBranchingDecisions', [ ('node_indices', Tensor), ('neuron_indices', Tensor), ('branch_vals', Tensor), ('is_upper_branch', Tensor)]) InputAnalysis = Any ScoringInputs = Any BranchHeuristicInputs = Mapping[str, Any] BranchVal = Union[Tensor, Tuple[Tensor, Tensor]] relaxation_area = lambda lb, ub: -ub * lb mid_point = lambda lb, ub: (lb + ub) / 2.0 class AnalysisType(enum.Enum): RELU_INDICES = 'relu_indices' SENSITIVITY = 'sensitivity' BOUND_INFO = 'bound_info' GRAD_SENSITIVITY = 'grad_sensitivity' class BranchNeuronSelector(metaclass=abc.ABCMeta): """Strategy for selecting the neuron on which to branch.""" @abc.abstractmethod def analyse_inputs( self, spec_fn: SpecFn, *init_bound: Nest[graph_traversal.GraphInput], ) -> InputAnalysis: """Performs pre-computation for an input. The output of this will remain the same throughout the verification procedure, and not be dependent on the current state of the branch and bound algorithm. Args: spec_fn: Network under verification, including specification (objective). *init_bound: Interval bounds on the input tensor(s). Returns: input_analysis: Pre-computed input-dependent data. """ @abc.abstractmethod def score_neurons( self, input_analysis: InputAnalysis, heuristic_inputs: BranchHeuristicInputs, ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Compute branching scores for all neurons. Args: input_analysis: Result of the analysis of the inputs. heuristic_inputs: Statistics depending on the current state of the branch and bound tree, based on which the branching decision needs to be made. This will for example contain the intermediate bounds of the networks, but may contain additional information. Returns: scores: Score for each graph node. branch_vals: Critical values of all neurons for each graph node. If `None` then simply use zero for all critical values. """ def selector_scoring_fn( spec_fn: SpecFn, branch_neuron_selector: BranchNeuronSelector, heuristic_inputs: BranchHeuristicInputs, *jit_input_bounds: Nest[bound_propagation.JittableInputBound] ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Score the neurons in a jittable fashion for a BranchNeuronSelector. The best way to use this function is to bind the first two arguments at the beginning, and then to jit it, so as to have the neuron scoring be jittable. Args: spec_fn: Function whose bounds we are trying to obtain. branch_neuron_selector: Strategy that we use for branching. heuristic_inputs: Statistics depending on the current state of the branch and bound tree. *jit_input_bounds: Bounds on the inputs. Returns: scores_and_branch_vals: Score and branching values for each possible branching decision throughout the network. """ input_bounds = bound_propagation.unjit_inputs(*jit_input_bounds) input_analysis = branch_neuron_selector.analyse_inputs( spec_fn, *input_bounds) return branch_neuron_selector.score_neurons(input_analysis, heuristic_inputs) class NodeSelector(BranchNeuronSelector, metaclass=abc.ABCMeta): """Component capable of handling branching for a specific type of Nodes.""" @abc.abstractmethod def analysis_type(self) -> AnalysisType: """Returns the type of analysis required by the Selector. The value returned from this function will be used to determine what the inputs to `score_handled_nodes` should be. Every NodeSelector that returns the same value will receive the same inputs to compute the scores with. This allows to share computation between different NodeSelector that have similar requirements, rather than recomputing the `preprocess_heurisitics` several times. """ def score_neurons( self, input_analysis: InputAnalysis, heuristic_inputs: BranchHeuristicInputs, ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: score_inps = self.preprocess_heuristics(input_analysis, heuristic_inputs) return self.score_handled_nodes(score_inps) def preprocess_heuristics( self, input_analysis: InputAnalysis, heuristic_inputs: BranchHeuristicInputs, ) -> ScoringInputs: """Performs preprocessing of the analysis. This may be shared by several NodeSelector if they have the same type. Through the intermediate bounds that are given, this will depend on the current node in the branch and bound tree that is being branched on. By default, if this function is not overloaded, it will return exactly its arguments. Args: input_analysis: Result of the analysis of the inputs. heuristic_inputs: Statistics depending on the current state of the branch and bound tree, based on which the branching decision needs to be made. This will for example contain the intermediate bounds of the networks, but may contain additional information. Returns: scoring_inputs: Inputs that the score_handled_nodes function require. """ return input_analysis, heuristic_inputs @abc.abstractmethod def score_handled_nodes( self, scoring_inputs: ScoringInputs, ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Returns the branching decisions as well as a score for each of them.""" class CompositeNodeSelector(BranchNeuronSelector): """Combine NodeSelectors that propose branches on different network parts.""" def __init__(self, selectors: Sequence[NodeSelector], coefficients: Sequence[float]): super().__init__() self._selectors = selectors self._coefficients = coefficients def analyse_inputs(self, spec_fn: SpecFn, *init_bounds) -> InputAnalysis: input_analyses = {} for selector in self._selectors: if selector.analysis_type() not in input_analyses: input_analyses[selector.analysis_type()] = selector.analyse_inputs( spec_fn, *init_bounds) return input_analyses def score_neurons( self, input_analysis: InputAnalysis, heuristic_inputs: BranchHeuristicInputs, ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: weigh_scores = lambda weight, x: weight * x scoring_inputs = {} scores = {} branch_vals = {} for selector, coeff in zip(self._selectors, self._coefficients): analysis_type = selector.analysis_type() if selector.analysis_type not in scoring_inputs: scoring_inputs[analysis_type] = selector.preprocess_heuristics( input_analysis[analysis_type], heuristic_inputs) selector_scores, selector_branch_vals = selector.score_handled_nodes( scoring_inputs[analysis_type]) mul_by_coeff = functools.partial(weigh_scores, coeff) weighted_selector_scores = jax.tree_map(mul_by_coeff, selector_scores) if set(scores) & set(weighted_selector_scores): raise ValueError('Several branching heuristics are operating on the' 'same nodes.') scores.update(weighted_selector_scores) branch_vals.update(selector_branch_vals) return scores, branch_vals class ReluSelector(NodeSelector): """Strategy for selecting the neuron on which to branch.""" def analysis_type(self) -> AnalysisType: return AnalysisType.RELU_INDICES def analyse_inputs( self, spec_fn: SpecFn, *init_bound: Nest[graph_traversal.GraphInput], ) -> InputAnalysis: """Performs pre-computation for an input.""" graph_nodes = computation_graph_nodes(spec_fn, *init_bound) relu_preact_indices = primitive_preact_indices( graph_nodes, [synthetic_primitives.relu_p]) if not relu_preact_indices: raise ValueError('Cannot branch because this network has no ReLUs.') return relu_preact_indices def score_handled_nodes( self, scoring_inputs: ScoringInputs ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Compute ambiguity scores for ReLU pre-activation.""" preact_indices, heuristic_inputs = scoring_inputs bounds = heuristic_inputs['intermediate_bounds'] def masked_ambiguity(lower: Tensor, upper: Tensor) -> Tensor: ambiguous = (lower < 0.) & (upper > 0.) return jnp.where(ambiguous, relaxation_area(lower, upper), -jnp.inf) return ( {index: masked_ambiguity(*bounds[index]) for index in preact_indices}, {index: jnp.zeros_like(bounds[index][0]) for index in preact_indices}, ) class BoundInfoSelector(NodeSelector): """Branching strategies specialised depending on the type of Node.""" def analysis_type(self) -> AnalysisType: return AnalysisType.BOUND_INFO def analyse_inputs( self, spec_fn: SpecFn, *init_bound: Nest[graph_traversal.GraphInput], ) -> InputAnalysis: """Performs pre-computation for an input.""" bound_info = {} input_info = bound_input_info(*init_bound) bound_info.update(input_info) graph_nodes = computation_graph_nodes(spec_fn, *init_bound) bound_info['relu_preact_indices'] = primitive_preact_indices( graph_nodes, [synthetic_primitives.relu_p]) bound_info['sign_preact_indices'] = primitive_preact_indices( graph_nodes, [jax.lax.sign_p]) return bound_info class InputSelector(BoundInfoSelector): """Strategy for selecting the input dimension on which to branch.""" def __init__( self, ambiguity: Callable[[Tensor, Tensor], Tensor]): super().__init__() def unfixed_ambiguity(lower: Tensor, upper: Tensor) -> Tensor: unfixed = upper != lower return jnp.where(unfixed, ambiguity(lower, upper), -jnp.inf) self._ambiguity = unfixed_ambiguity def score_handled_nodes( self, scoring_inputs: ScoringInputs, ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, Tensor]]: """Compute ambiguity scores for inputs.""" input_analysis, heuristic_inputs = scoring_inputs input_indices = input_analysis['input_indices'] bounds = heuristic_inputs['intermediate_bounds'] return ( {index: self._ambiguity(*bounds[index]) for index in input_indices}, {index: mid_point(*bounds[index]) for index in input_indices}, ) class SensitivitySelector(NodeSelector, metaclass=abc.ABCMeta): """Neuron selection strategy based on estimated influence on output objective. """ def __init__( self, ambiguity_agg: str = 'min', sensitivity_of_max: bool = True): """Initialises the neuron selector for a given network. Args: ambiguity_agg: Method ('min', 'max', 'avg') for combining the two possible ambiguity measures of a ReLU relaxation. The two possibilities arise from the choice of triangle: its vertices are (lb,0), (ub,ub), and _either_ (ub,0) _or_ (lb,lb). sensitivity_of_max: Whether to compute the neuron sensitivity with respect to the worst bound. By default, will compute the sensitivity with respect to all outputs. """ super().__init__() self._ambiguity_agg = ambiguity_agg self._sensitivity_of_max = sensitivity_of_max def analysis_type(self) -> AnalysisType: return AnalysisType.SENSITIVITY def analyse_inputs( self, spec_fn: SpecFn, *init_bounds: Nest[graph_traversal.GraphInput], ) -> InputAnalysis: """Performs pre-computation for an input.""" graph_nodes = computation_graph_nodes(spec_fn, *init_bounds) preact_indices = primitive_preact_indices(graph_nodes, [synthetic_primitives.relu_p]) bound_info = bound_input_info(*init_bounds) input_indices = bound_info['input_indices'] if (not preact_indices) and (not input_indices): raise ValueError('Cannot branch because this network has no ReLUs' ' and no branchable inputs.') # Extract the bias terms. inspector = bound_utils.GraphInspector() output_node, _ = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(inspector), spec_fn, *init_bounds) biases = {} for node in inspector.nodes.values(): # Forward-propagate the bias. if node.is_input(): input_bound: graph_traversal.InputBound = node.args[0] bias = jnp.zeros_like(input_bound.lower) else: is_bound = lambda b: isinstance(b, bound_propagation.Bound) arg_biases = [ jnp.zeros_like(biases[arg.index]) if is_bound(arg) else arg for arg in node.args] bias = node.primitive.bind(*arg_biases, **node.kwargs) # Network inputs and ReLU outputs have no bias. if node.is_input() or node.primitive == synthetic_primitives.relu_p: bias = jnp.zeros_like(bias) biases[node.index] = bias return (spec_fn, init_bounds, graph_nodes, bound_info, output_node.index, biases) def preprocess_heuristics( self, input_analysis: InputAnalysis, heuristic_inputs: BranchHeuristicInputs, ) -> Tuple[InputAnalysis, BranchHeuristicInputs, Mapping[Index, Tensor]]: """Compute scores to determine the influential ReLUs on which to branch.""" (spec_fn, init_bounds, graph_nodes, bound_info, output_node_index, _) = input_analysis bounds = heuristic_inputs['intermediate_bounds'] preact_indices = primitive_preact_indices(graph_nodes, [synthetic_primitives.relu_p, jax.lax.sign_p]) input_indices = bound_info['input_indices'] output_sensitivity = None if self._sensitivity_of_max: output_upper = bounds[output_node_index][1] worst_output = (output_upper == output_upper.max()) output_sensitivity = -worst_output.astype(jnp.float32) sensitivity_targets = preact_indices + input_indices sensitivity_algorithm = backpropagation.SensitivityAlgorithm( bound_utils.FixedBoundApplier(bounds), sensitivity_targets, output_sensitivity) bound_propagation.bound_propagation( sensitivity_algorithm, spec_fn, *init_bounds) sensitivities = {index: sens for index, sens in zip( sensitivity_targets, sensitivity_algorithm.target_sensitivities)} return input_analysis, heuristic_inputs, sensitivities class SmartReluSelector(SensitivitySelector): """Neuron selection strategy based on estimated influence on output objective. """ def score_handled_nodes( self, scoring_inputs: Tuple[InputAnalysis, BranchHeuristicInputs, Mapping[Index, Tensor]], ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Compute neuron scores for a given node, given sensitivity and bounds. This implements Equation (9) in "Branch and Bound for Piecewise Linear Neural Network Verification", https://arxiv.org/pdf/1909.06588.pdf. Args: scoring_inputs: Tuple composed of the results of the input analysis, the statistics at that point of the branch-and-bound tree, as well as the computed sensitivities Returns: scores: Scores for branching on each ReLU of the network. branch_vals: Branching values for the ReLUs (always 0). """ input_analysis, heuristic_inputs, sensitivities = scoring_inputs _, _, graph_nodes, _, _, biases = input_analysis bounds = heuristic_inputs['intermediate_bounds'] relu_preact_indices = primitive_preact_indices( graph_nodes, [synthetic_primitives.relu_p]) scores = {} branch_vals = {} for index in relu_preact_indices: lower_bound, upper_bound = bounds[index] bias = biases.get(index, 0.) sensitivity = sensitivities[index] # Only consider 'ambiguous' ReLUs: those whose input bounds straddle zero. ambiguous = jnp.logical_and(lower_bound < 0., upper_bound > 0.) # For excluded ReLUs, adjust bounds to a safe non-zero value. upper_bound = jnp.maximum(upper_bound, jnp.finfo(jnp.float32).eps) bias_score = aggregate_ambiguities(self._ambiguity_agg)( sensitivity * bias, (sensitivity * lower_bound / upper_bound) * bias) intercept_score = -lower_bound * jnp.maximum(sensitivity, 0.) scores[index] = jnp.where(ambiguous, jnp.abs(bias_score + intercept_score), -jnp.inf) branch_vals[index] = jnp.zeros_like(lower_bound) return scores, branch_vals class SmartSignSelector(SensitivitySelector): """Neuron selection strategy based on estimated influence on output objective. """ def score_handled_nodes( self, scoring_inputs: Tuple[InputAnalysis, BranchHeuristicInputs, Mapping[Index, Tensor]], ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Compute neuron scores for a given node, given sensitivity and bounds. This implements Equation (9) in "Branch and Bound for Piecewise Linear Neural Network Verification", https://arxiv.org/pdf/1909.06588.pdf. Args: scoring_inputs: Tuple composed of the results of the input analysis, the statistics at that point of the branch-and-bound tree, as well as the computed sensitivities Returns: scores: Scores for branching on each ReLU of the network. branch_vals: Branching values for the ReLUs (always 0). """ input_analysis, heuristic_inputs, sensitivities = scoring_inputs _, _, graph_nodes, _, _, _ = input_analysis bounds = heuristic_inputs['intermediate_bounds'] sign_preact_indices = primitive_preact_indices( graph_nodes, [jax.lax.sign_p]) scores = {} branch_vals = {} for index in sign_preact_indices: lower_bound, upper_bound = bounds[index] sensitivity = sensitivities[index] # Only consider 'ambiguous' sign: those whose input bounds straddle zero. ambiguous = jnp.logical_and(lower_bound < 0., upper_bound > 0.) scores[index] = jnp.where(ambiguous, 2*jnp.abs(sensitivity), -jnp.inf) branch_vals[index] = jnp.zeros_like(lower_bound) return scores, branch_vals class SensitivityReluSelector(SensitivitySelector): """Neuron selection strategy based on estimated influence on output objective. """ def score_handled_nodes( self, scoring_inputs: Tuple[InputAnalysis, BranchHeuristicInputs, Mapping[Index, Tensor]], ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Compute neuron scores for a given node, given sensitivity and bounds. This uses the sensitivity to estimate the impact of a change in what the K&W bound would be, based on a local approximation. This does not take into account: - The impact on subsequent bounds being tightened. - The impact on sensitivities going further towards the beginnning of the network. It only consider the impact involving the sensitivity at node preact_index. The formula for the K&W bound is: bound = -sum_{k=1}^n nu_{k+1}b_k - u_0 [nuhat_1]+ + l_0 [nuhat_1]- + sum_{k=2}^n u_k * l_k/(u_k - l_k) * [nuhat_k]+ where nu / nuhat are the sensitivities. for ambiguous relu, nu = u/(u-l) * nuhat for positive relu, nu = nuhat for negative relu, nu = 0 Args: scoring_inputs: Tuple composed of the results of the input analysis, the statistics at that point of the branch-and-bound tree, as well as the computed sensitivities Returns: scores: Scores for branching on each ReLU of the network. branch_vals: Tensor of zero values, as this is the value over which ReLU branch. """ input_analysis, heuristic_inputs, sensitivities = scoring_inputs bounds = heuristic_inputs['intermediate_bounds'] _, _, graph_nodes, _, _, biases = input_analysis relu_preact_indices = primitive_preact_indices( graph_nodes, [synthetic_primitives.relu_p]) scores = {} branch_vals = {} for index in relu_preact_indices: lower_bound, upper_bound = bounds[index] bias = biases.get(index, 0.) sensitivity = sensitivities[index] # Only consider 'ambiguous' ReLUs: those whose input bounds straddle zero. ambiguous = jnp.logical_and(lower_bound < 0., upper_bound > 0.) # For excluded ReLUs, adjust bounds to a safe non-zero value. upper_bound = jnp.maximum(upper_bound, jnp.finfo(jnp.float32).eps) nuhat = sensitivity * (upper_bound - lower_bound) / upper_bound # In the case of an ambiguous ReLU, the contribution to the bound is: # nu = sensitivity = u / (u-l) * nuhat score_amb = (sensitivity * bias + jnp.maximum(sensitivity, 0.) * lower_bound) # If we are blocking the ReLU to be on, the contribution to the bound is: # (as nu = nuhat) score_on = nuhat * bias + jnp.maximum(nuhat, 0.) * lower_bound # If we are blocking the ReLU to be off, the contribution to the bound is: # (as nu = 0) score_off = jnp.maximum(nuhat, 0.) * lower_bound # We're going to compare the estimated improvements in bounds that we # would gain by splitting on the ReLU, aggregating them in the chosen way. # score_amb is the contribution to the upper bound as the ReLU was # ambiguous so its difference with score_on and score_off represent the # expected improvement we would get by splitting. improvements = aggregate_ambiguities(self._ambiguity_agg)( jnp.maximum(score_amb - score_on, 0.), jnp.maximum(score_amb - score_off, 0.)) scores[index] = jnp.where(ambiguous, improvements, -jnp.inf) branch_vals[index] = jnp.zeros_like(lower_bound) return scores, branch_vals class SensitivityLinfSelector(SensitivitySelector): """Input selection strategy based on estimated influence on output objective. """ def score_handled_nodes( self, scoring_inputs: Tuple[InputAnalysis, BranchHeuristicInputs, Mapping[Index, Tensor]], ) -> Tuple[Mapping[Index, Tensor], Mapping[Index, BranchVal]]: """Compute Input branching scores given sensitivity and bounds. This only relies on the sensitivity of the output node and ignores the impact on intermediate bounds. Args: scoring_inputs: Tuple composed of the results of the input analysis, the statistics at that point of the branch-and-bound tree, as well as the computed sensitivities Returns: scores: Scores for branching on each L_inf bound input of the network. branch_vals: Mid-point for the interval bounds """ input_analysis, heuristic_inputs, sensitivities = scoring_inputs bounds = heuristic_inputs['intermediate_bounds'] _, _, _, bound_info, _, _ = input_analysis scores = {} branch_vals = {} for index in bound_info['input_indices']: if index in bound_info['index_to_nze']: # Skip the L0 bounds continue lower_bound, upper_bound = bounds[index] sensitivity = sensitivities[index] unfixed = lower_bound != upper_bound # Given that the sensitivity is based on propagating the same way # through the upper and lower bound of activation, we only have # one relaxation. # The bound it corresponds to is sensitivity * inp. # Assuming the sensitivity is constant, depending on the sign of the # coordinate, it will either increase the final bound in the lower branch, # or in the upper branch, based on the amount of movement. improvement = jnp.abs(sensitivity) * (upper_bound - lower_bound) / 2 scores[index] = jnp.where(unfixed, improvement, -jnp.inf) branch_vals[index] = 0.5 * (lower_bound + upper_bound) return scores, branch_vals def aggregate_ambiguities( ambiguity_agg: str) -> Callable[[Tensor, Tensor], Tensor]: if ambiguity_agg == 'min': return jnp.minimum elif ambiguity_agg == 'max': return jnp.maximum elif ambiguity_agg == 'avg': return lambda x, y: (x+y)/2. else: raise ValueError('Unknown ambiguity aggregation method: {ambiguity_agg}') def bound_input_info( *init_bound: Nest[graph_traversal.GraphInput], ) -> Mapping[str, Any]: """Returns useful information on inputs suitable for branching.""" is_bound = lambda b: isinstance(b, graph_traversal.InputBound) input_count = 0 index = graph_traversal.IndexCounter() flat_bounds, _ = jax.tree_util.tree_flatten(init_bound, is_leaf=is_bound) input_indices = [] index_to_input = {} for bound in flat_bounds: if is_bound(bound): if isinstance(bound, bound_propagation.IntervalBound): index_to_input[index.as_tuple()] = input_count else: raise ValueError('Unknown input bound type') input_indices.append(index.as_tuple()) index.incr() input_count = input_count + 1 return { 'input_indices': input_indices, 'index_to_input': index_to_input, } def computation_graph_nodes( spec_fn: SpecFn, *init_bound: Nest[graph_traversal.GraphInput], ) -> Mapping[Index, bound_utils.GraphNode]: """Extract a mapping from index to primitives.""" inspector = bound_utils.GraphInspector() bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(inspector), spec_fn, *init_bound) return inspector.nodes def primitive_preact_indices( graph_nodes: Mapping[Index, bound_utils.GraphNode], target_primitives: Sequence[Primitive], ) -> Sequence[Index]: """Extract the index of the input to the required primitives.""" preact_indices = [] for _, node in graph_nodes.items(): if node.primitive in target_primitives: preact_indices.append(node.args[0].index) return preact_indices @jax.jit def identify_highest_scoring_neuron( all_scores: Sequence[Tensor] )-> Tuple[float, int, int]: """Identifies the most fitting neuron on which to branch. Args: all_scores: Scores for neurons in candidate graph nodes, indicating fitness for branching. Returns: max_score: score of the highest scoring neuron. node_pos: Position of the node containing the highest scoring neuron. neuron_idx: Location within the flattened tensor of the selected neuron. """ # Select the pre-activation neuron with the greatest ambiguity. # First select the node. all_max_scores = jnp.array([jnp.amax(score) for score in all_scores]) all_neuron_index = jnp.array([jnp.argmax(score) for score in all_scores]) max_score = jnp.amax(all_max_scores) node_pos = jnp.argmax(all_max_scores) # Next select the highest-scoring neuron within that node. neuron_idx = all_neuron_index[node_pos] return max_score, node_pos, neuron_idx def highest_score_branch_plane( scores: Mapping[Index, Tensor], branch_vals: Mapping[Index, BranchVal], ) -> Optional[BranchPlane]: """Determines the neuron on which to branch. Args: scores: Score for each graph node. branch_vals: Critical values of all neurons for each graph node. Returns: `None` if no suitable neuron found, otherwise: node_index: Graph node containing the selected neuron. neuron_index: Location within the flattened tensor of the selected neuron. branch_val: Critical value of the selected neuron on which to branch. """ indices, flat_scores = zip(*scores.items()) max_score, max_index, neuron_idx = identify_highest_scoring_neuron( flat_scores) index = indices[max_index] if max_score == -jnp.inf: return None return make_branch_plane(index, neuron_idx, branch_vals) @jax.jit def get_branch_vals( neuron_idx: int, branch_vals: BranchVal ) -> Tuple[float, float]: """Get the lower and upper branching values associated with a neuron index.""" neuron_branch_val = lambda bvals: jnp.reshape(bvals, (-1,))[neuron_idx] if isinstance(branch_vals, tuple): lower_branch_vals, upper_branch_vals = branch_vals else: lower_branch_vals = upper_branch_vals = branch_vals lower_branch_val = neuron_branch_val(lower_branch_vals) upper_branch_val = neuron_branch_val(upper_branch_vals) return lower_branch_val, upper_branch_val def make_branch_plane( index: Index, neuron_idx: int, branch_vals: Mapping[Index, BranchVal], ) -> BranchPlane: """Returns branch plane with the specified content.""" index_branch_vals = branch_vals[index] lower_branch_val, upper_branch_val = get_branch_vals(neuron_idx, index_branch_vals) return BranchPlane( BranchDecision(index, neuron_idx, lower_branch_val, -1), BranchDecision(index, neuron_idx, upper_branch_val, 1)) def concrete_branch_bounds( root_bounds: Mapping[Index, Tuple[Tensor, Tensor]], branching_decisions: BranchingDecisionList, ) -> Mapping[Index, Tuple[Tensor, Tensor]]: """Materialises a branch's decision path as concrete interval bounds. Args: root_bounds: Initial concrete bounds for each graph node; may be vacuous. branching_decisions: Specifies a branch's decision path. Returns: Copy of root_bounds, refined according to the current branch constraints. """ branch_bounds = dict(root_bounds) for node, neuron_idx, branch_val, side in branching_decisions: lower, upper = branch_bounds[node] if side > 0: lower = _set_element(lower, neuron_idx, branch_val) # pytype: disable=wrong-arg-types # jax-ndarray else: upper = _set_element(upper, neuron_idx, branch_val) # pytype: disable=wrong-arg-types # jax-ndarray branch_bounds[node] = lower, upper return branch_bounds def _set_element(x: Tensor, i: int, v: Tensor) -> Tensor: """Returns a copy of `x` with its `i`th element set to v.""" shape = x.shape x = jnp.reshape(x, [-1]) y = x.at[i].set(v) return jnp.reshape(y, shape) def max_index_depth( spec_fn: SpecFn, *input_bounds: graph_traversal.GraphInput) -> int: """Geth the maximum number of integers to use to identify a node.""" inspector = bound_utils.GraphInspector() bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(inspector), spec_fn, *input_bounds) return max(len(node.index) for node in inspector.nodes.values()) def split_branching_decisions( branching_decisions: BranchingDecisionList, index_to_input: Mapping[Index, int], ) -> Tuple[BranchingDecisionList, BranchingDecisionList]: """Split branching decisions into activation based and input based.""" activation_branching_decisions = [] input_branching_decisions = [] for branch_dec in branching_decisions: if branch_dec.node_index in index_to_input: input_branching_decisions.append(branch_dec) else: activation_branching_decisions.append(branch_dec) return activation_branching_decisions, input_branching_decisions def branching_decisions_tensors( branching_decisions: BranchingDecisionList, initial_max_branching_depth: int, max_idx_depth: int ) -> JittableBranchingDecisions: """Create the tensor version of `branching_decisions`. Args: branching_decisions: List of branching decisions, where branching decisions are a branching plane and an integer indicating whether it is the upper or lower branch. initial_max_branching_depth: Length of the tensors to use to represent the branching decisions in jitted form. Padding will be added to the `branching_decisions` elements to make it to that length. If the length of `branching_decisions` is larger than this, we will instead pad to the nearest power of two multiple of this. max_idx_depth: Max number of coordinates that we will use to identify a node in the computation graph. Returns: Tensorial representation of `branching_decisions`. """ node_indices = [] neuron_indices = [] branch_vals = [] is_upper_branch = [] for node_index, neuron_index, branch_val, side in branching_decisions: node_indices.append(node_index + (0,)*(max_idx_depth - len(node_index))) neuron_indices.append(neuron_index) branch_vals.append(branch_val) is_upper_branch.append(side > 0) # Pad the tensors to one of the accepted lengths. tensor_len = target_pad_length(len(branching_decisions), initial_max_branching_depth) while len(node_indices) < tensor_len: node_indices.append((0,)*max_idx_depth) neuron_indices.append(-1) branch_vals.append(0.) is_upper_branch.append(True) return JittableBranchingDecisions( jnp.array(node_indices, dtype=jnp.int32), jnp.array(neuron_indices, dtype=jnp.int32), jnp.array(branch_vals, dtype=jnp.float32), jnp.array(is_upper_branch, dtype=jnp.bool_)) def target_pad_length(actual_length: int, pad_scale: int) -> int: factor = actual_length / pad_scale safe_factor = max(1, factor) next_2pow = math.ceil(math.log2(safe_factor)) return int(pad_scale * (2 ** next_2pow)) def branch_inputs( input_branching_decisions: BranchingDecisionList, *input_bounds: Nest[graph_traversal.GraphInput], ) -> Nest[graph_traversal.GraphInput]: """Split input domain according to input branching decisions. Args: input_branching_decisions: Specifies a branch's decision path. *input_bounds: Original input domain. Returns: Copy of input_bounds, refined according to the current branch constraints, """ is_bound = lambda b: isinstance(b, graph_traversal.InputBound) input_bounds = bound_propagation.unjit_inputs(*input_bounds) flat_bounds, _ = jax.tree_util.tree_flatten(input_bounds, is_leaf=is_bound) per_input_lower_decisions = collections.defaultdict(list) per_input_upper_decisions = collections.defaultdict(list) for (node, neuron_idx, branch_val, side) in input_branching_decisions: if side > 0: # This decision modifies the lower bound. per_input_lower_decisions[node].append((neuron_idx, branch_val)) else: # This decision modifies the upper bound. per_input_upper_decisions[node].append((neuron_idx, branch_val)) index = graph_traversal.IndexCounter() new_flat_bounds = [] for bound in flat_bounds: if is_bound(bound): node_lower_decs = per_input_lower_decisions[index.as_tuple()] if node_lower_decs: lower_n_indices, lower_branch_vals = zip(*node_lower_decs) lower_tensor_len = target_pad_length(len(lower_n_indices), 4) lower_to_pad = lower_tensor_len - len(lower_n_indices) lower_n_indices = lower_n_indices + (0,) * lower_to_pad lower_branch_vals = lower_branch_vals + (-jnp.inf,) * lower_to_pad new_lower = _impose_constraints('max', bound.lower, jnp.array(lower_n_indices), jnp.array(lower_branch_vals)) else: new_lower = bound.lower node_upper_decs = per_input_upper_decisions[index.as_tuple()] if node_upper_decs: upper_n_indices, upper_branch_vals = zip(*node_upper_decs) upper_tensor_len = target_pad_length(len(upper_n_indices), 4) upper_to_pad = upper_tensor_len - len(upper_n_indices) upper_n_indices = upper_n_indices + (0,) * upper_to_pad upper_branch_vals = upper_branch_vals + (jnp.inf,) * upper_to_pad new_upper = _impose_constraints('min', bound.upper, jnp.array(upper_n_indices), jnp.array(upper_branch_vals)) else: new_upper = bound.upper if isinstance(bound, bound_propagation.IntervalBound): new_flat_bounds.append(bound_propagation.IntervalBound( new_lower, new_upper)) else: raise ValueError('Unknown input bound type for branching.') index.incr() else: new_flat_bounds.append(bound) new_input_bounds = jax.tree_util.tree_unflatten( jax.tree_util.tree_structure(input_bounds, is_leaf=is_bound), new_flat_bounds) return new_input_bounds @jax.jit def infeasible_bounds(*input_bounds: Nest[bound_propagation.JittableGraphInput] ) -> bool: """Return whether there is any infeasibility in a set of bounds.""" is_bound = lambda b: isinstance(b, bound_propagation.Bound) input_bounds = bound_propagation.unjit_inputs(input_bounds) flat_inputs, _ = jax.tree_util.tree_flatten(input_bounds, is_bound) infeasible = False for inp in flat_inputs: if isinstance(inp, jnp.ndarray): pass elif is_bound(inp): # Anything that is a bound should be checked for crossing between lower # and upper bound. infeasible = jnp.logical_or(infeasible, bounds_crossing(inp)) else: raise ValueError('Unknown type of input.') return infeasible # pytype: disable=bad-return-type # jax-types def bounds_crossing(bound: bound_propagation.Bound, tol: float = 1e-6) -> bool: """Return a boolean tensor indicating whether any bounds are crossing.""" return (bound.upper - bound.lower < -tol).any() @functools.partial(jax.jit, static_argnums=(0,)) def _impose_constraints(update_rule: str, ini_tensor: Tensor, indices: Tensor, values: Tensor) -> Tensor: """Impose a set of constraints over various coordinates of a tensor. Args: update_rule: Either 'min' or 'max', indicate how to modify the given tensor. ini_tensor: Tensor to update. indices: Coordinates of the tensor that we are imposing constraints on. values: Values of the constraint that we are imposing. Returns: updated_tensor """ shape = ini_tensor.shape flat_tensor = jnp.reshape(ini_tensor, (-1,)) to_update = flat_tensor.at[indices] if update_rule == 'max': updated_flat_tensor = to_update.max(values) elif update_rule == 'min': updated_flat_tensor = to_update.min(values) else: raise ValueError('Unknown update rule.') return jnp.reshape(updated_flat_tensor, shape) def enforce_jittable_branching_decisions( branching_decisions: JittableBranchingDecisions, index: Index, bound: bound_propagation.Bound, ) -> bound_propagation.Bound: """Ensure that a bound is consistent with a list of branching decisions. Args: branching_decisions: List of constraints that need to be enforced. index: Index of the node at which this bounds lives. bound: Bound that need to be consistent with the constraints. Returns: enforced_bound: Modified version of `bound` guaranteed to respect the constraints """ lay_idxs, neur_idxs, branch_vals, is_upper = branching_decisions max_idx_depth = lay_idxs.shape[1] index_tensor = jnp.array(index + (0,) * (max_idx_depth - len(index))) layer_mask = (lay_idxs == index_tensor).all(axis=1) update_lower = layer_mask & is_upper update_upper = layer_mask & ~is_upper update_low_val = jnp.where(update_lower, branch_vals, -jnp.inf) update_upper_val = jnp.where(update_upper, branch_vals, jnp.inf) flat_lower = jnp.reshape(bound.lower, [-1]) enforced_flat_lower = flat_lower.at[neur_idxs].max(update_low_val, mode='drop') enforced_lower = jnp.reshape(enforced_flat_lower, bound.lower.shape) flat_upper = jnp.reshape(bound.upper, [-1]) enforced_flat_upper = flat_upper.at[neur_idxs].min(update_upper_val, mode='drop') enforced_upper = jnp.reshape(enforced_flat_upper, bound.upper.shape) return bound_propagation.IntervalBound(enforced_lower, enforced_upper)
jax_verify-master
jax_verify/src/branching/branch_selection.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Backpropagation of sensitivity values. This computes a measure of dependence of the output objective upon each intermediate value of a ReLU-based neural network. This sensitivity measure is constructed by back-propagating through the network, and linearising each ReLU. This sensitivity measure is derived in "Provable Defenses via the Convex Outer Adversarial Polytope", https://arxiv.org/pdf/1711.00851.pdf. """ import functools from typing import Mapping, Optional, Sequence, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import synthetic_primitives from jax_verify.src.types import Index, Nest, Primitive, Tensor # pylint: disable=g-multiple-import def _sensitivity_linear_op( primitive: Primitive, outval: Tensor, *args: Union[bound_propagation.Bound, Tensor], **kwargs) -> Sequence[Optional[Tensor]]: """Back-propagates sensitivity through a linear Jax operation. For linear ops, sensitivity of the inputs is computed by applying the transpose of the op to the sensitivity of the outputs. Args: primitive: Linear (or affine) primitive op through which to backprop. outval: Sensitivity value for the op's output. *args: Inputs to the linear op, in the form of interval bounds (for variables) and primal values (for constants). **kwargs: Additional parameters to the linear op. Returns: Sensitivitity values for the op's variable inputs. Entries will be `None` for constant inputs. """ # Use auto-diff to perform the transpose-product. primal_args = [ jnp.zeros_like(arg.lower) if isinstance(arg, bound_propagation.Bound) else arg for arg in args] _, vjp = jax.vjp(functools.partial(primitive.bind, **kwargs), *primal_args) return vjp(outval) def _sensitivity_relu( outval: Tensor, inp: bound_propagation.Bound ) -> Tensor: """Back-propagates sensitivity through a ReLU. For the purposes of back-propagating sensitivity, the ReLU uses a linear approximation given by the chord from (lower_bound, ReLU(lower_bound)) to (upper_bound, ReLU(upper_bound)) Args: outval: Sensitivity values for the ReLU outputs. inp: Interval bounds on the ReLU input Returns: Sensitivity values for the ReLU input. """ # Arrange for always-blocking and always-passing ReLUs to give a slope # of zero and one respectively. lower_bound = jnp.minimum(inp.lower, 0.) upper_bound = jnp.maximum(inp.upper, 0.) chord_slope = upper_bound / jnp.maximum( upper_bound - lower_bound, jnp.finfo(jnp.float32).eps) return chord_slope * outval, # pytype: disable=bad-return-type # jax-ndarray _LINEAR_PRIMITIVES: Sequence[Primitive] = [ *bound_propagation.AFFINE_PRIMITIVES, *bound_propagation.RESHAPE_PRIMITIVES, lax.div_p, ] def _build_sensitivity_ops() -> Mapping[ Primitive, graph_traversal.PrimitiveBacktransformFn]: """Builds functions to back-prop 'sensitivity' through individual primitives. Returns: Sensitivity computation functions, in the form suitable to be passed to `PropagationGraph.backward_propagation()`. """ sensitivity_primitive_ops = { primitive: functools.partial(_sensitivity_linear_op, primitive) for primitive in _LINEAR_PRIMITIVES} sensitivity_primitive_ops[synthetic_primitives.relu_p] = _sensitivity_relu # Through the sign function, we don't really have a sensitivity. sensitivity_sign = lambda outval, _: (jnp.zeros_like(outval),) sensitivity_primitive_ops[jax.lax.sign_p] = sensitivity_sign return sensitivity_primitive_ops sensitivity_backward_transform = graph_traversal.BackwardOpwiseTransform( _build_sensitivity_ops(), sum) class SensitivityAlgorithm(bound_propagation.PropagationAlgorithm[Tensor]): """Propagation algorithm computing output sensitivity to intermediate nodes.""" def __init__( self, forward_bound_transform: bound_propagation.BoundTransform, sensitivity_targets: Sequence[Index], output_sensitivity: Optional[Tensor] = None): """Define the sensitivity that needs to be computed. Args: forward_bound_transform: Transformation to use to compute intermediate bounds. sensitivity_targets: Index of the nodes for which we want to obtain sensitivities. output_sensitivity: (Optional) Linear coefficients for which we want the sensitivity, defined over the output. """ self._forward_bnd_algorithm = bound_propagation.ForwardPropagationAlgorithm( forward_bound_transform) self._output_sensitivity = output_sensitivity self._sensitivity_targets = sensitivity_targets self.target_sensitivities = [] def propagate(self, graph: graph_traversal.PropagationGraph, *bounds: Nest[graph_traversal.GraphInput]): assert len(graph.outputs) == 1 out, bound_env = self._forward_bnd_algorithm.propagate(graph, bounds) if self._output_sensitivity is not None: output_sensitivity = self._output_sensitivity else: output_sensitivity = -jnp.ones(out[0].shape) sensitivities, backward_env = graph.backward_propagation( sensitivity_backward_transform, bound_env, {graph.outputs[0]: output_sensitivity}, self._sensitivity_targets) self.target_sensitivities = sensitivities return out, backward_env
jax_verify-master
jax_verify/src/branching/backpropagation.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines to solve the subproblem during verification.""" from typing import Dict, List, Mapping, Optional, Tuple, Union from absl import logging import cvxpy as cp from cvxpy.reductions.solvers.defines import INSTALLED_MI_SOLVERS as MIP_SOLVERS import jax import jax.numpy as jnp from jax_verify.src import utils from jax_verify.src.mip_solver import relaxation import numpy as np CvxpyConstraint = cp.constraints.constraint.Constraint Tensor = np.ndarray Variable = Union[relaxation.RelaxVariable, relaxation.BinaryVariable] Solution = Mapping[str, jnp.ndarray] class CvxpySolver(relaxation.RelaxationSolver): """Holder class to represent problem being built.""" def __init__(self): """Build and solve the relaxation using CVXPY.""" self.solver_variables: Dict[str, cp.Variable] = {} self.constraints: List[CvxpyConstraint] = [] self.problem_kwargs = {} def _variable_already_created(self, var: Variable) -> bool: return var.name in self.solver_variables def _create_solver_relax_variable( self, relax_var: relaxation.RelaxVariable, index: int): """Create a new bound-constrained CVXPY variable based on a RelaxVariable. Args: relax_var: Variable generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ lower = np.reshape(relax_var.lower[index, ...], [-1]) upper = np.reshape(relax_var.upper[index, ...], [-1]) var = cp.Variable(lower.shape) self.constraints += [lower <= var] self.constraints += [var <= upper] self.solver_variables[relax_var.name] = var def create_linear_solver_constraint(self, constraint: relaxation.LinearConstraint, index: int): """Create a new CVXPY linear constraint. Args: constraint: Constraint generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ rhs = cp.expressions.constants.Constant(constraint.bias(index)) for (constraint_variable, (cpts, coeffs)) in constraint.vars_and_coeffs(index): if isinstance(constraint_variable, relaxation.RelaxVariable): current_variable = self.solver_variables[constraint_variable.name] for component, coeff in zip(cpts, coeffs): if np.abs(coeff) > utils.EPSILON: rhs += current_variable[component] * coeff.item() if constraint.sense == 0: self.constraints += [rhs == 0] if constraint.sense == 1: self.constraints += [rhs <= 0] if constraint.sense == -1: self.constraints += [rhs >= 0] def create_activation_solver_constraint( self, constraint: relaxation.RelaxActivationConstraint, act_index: int, slope: float, bias: float): """Create the linear constraint involved in the activation relaxation. Args: constraint: Constraint generated by the relaxation bound propagation. act_index: Index of the activation to encode (in the variables involved in constraint) slope : Slope coefficients of the linear inequality. bias: Bias of the linear inequality """ outvar = self.solver_variables[constraint.outvar.name] invar = self.solver_variables[constraint.invar.name] expression = invar[act_index] * slope + bias - outvar[act_index] if constraint.sense == 0: self.constraints += [expression == 0] if constraint.sense == 1: self.constraints += [expression <= 0] if constraint.sense == -1: self.constraints += [expression >= 0] def minimize_objective( self, var_name: str, objective: Tensor, objective_bias: float, time_limit: Optional[int] = None, ) -> Tuple[float, Solution, bool]: """Minimize a linear function. Args: var_name: Index of the variable to define a linear function over the components. objective: Coefficients of the linear function. objective_bias: Bias of the linear function. time_limit: Maximum solve time in ms. Use None for unbounded. CVXPY does not support time_limit so any other value will raise a ValueError. Returns: val: Value of the minimum. solution: solution of the problem status: Status of the optimization function. """ if time_limit is not None: raise ValueError('Cvxpy Solver does not support time limit.') # Define the objective function obj = cp.expressions.constants.Constant(0.) for i, coeff in enumerate(objective): if np.abs(coeff) > utils.EPSILON: obj += self.solver_variables[var_name][i] * coeff.item() objective = cp.Minimize(obj) prob = cp.Problem(objective, self.constraints) logging.info('Starting problem solve.') prob.solve(solver=cp.ECOS, **self.problem_kwargs) logging.info('Problem status is %s', prob.status) val = obj.value if val is not None: val += objective_bias solution = jax.tree_map(lambda x: jnp.array(x.value), self.solver_variables) return val, solution, prob.status in (cp.settings.OPTIMAL, cp.settings.OPTIMAL_INACCURATE) class CvxpyMIPSolver(CvxpySolver, relaxation.MIPSolver): # pytype: disable=signature-mismatch # maybe_create_solver_variable uses parameter contravariance """Holder class to represent problem being built.""" def __init__(self): """Build and solve the MIP encoding using CVXPY.""" super(CvxpyMIPSolver, self).__init__() if not MIP_SOLVERS: raise NotImplementedError('No MIP solver is available.') self.problem_kwargs.update(solver=MIP_SOLVERS[0]) def _create_solver_bool_variable( self, bin_var: relaxation.BinaryVariable, index: int): """Create a new bound-constrained CVXPY variable based on a BinaryVariable. Args: bin_var: Variable generated by the MIP formulation. index: Index in the batch for which to build the variable. """ shape = np.prod(bin_var.shape[1:]) self.solver_variables[bin_var.name] = cp.Variable(shape, boolean=True) def create_mip_activation_solver_constraint( self, constraint: relaxation.MIPActivationConstraint, act_index: int, binslope: float, slope: float, bias: float, ): """Create the mip constraint involved in the activation constraint. Encodes outvar =(>)(<) slope * invar + binslope * binvar + bias. Args: constraint: Constraint generated by the relaxation bound propagation. act_index: Index of the activation to encode (in the variables involved in constraint) binslope: Multiplicative coefficient for the binary variable. slope : Slope coefficients of the linear inequality. bias: Bias of the linear inequality """ binvar = self.solver_variables[constraint.binvar.name] outvar = self.solver_variables[constraint.outvar.name] invar = self.solver_variables[constraint.invar.name] expression = (invar[act_index] * slope + binvar[act_index] * binslope + bias - outvar[act_index]) if constraint.sense == 0: self.constraints += [expression == 0] if constraint.sense == 1: self.constraints += [expression <= 0] if constraint.sense == -1: self.constraints += [expression >= 0]
jax_verify-master
jax_verify/src/mip_solver/cvxpy_relaxation_solver.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Propagate the relaxation through the network. This is accomplished by traversing the JaxPR representation of the computation and translating the computational graph. """ import abc import functools from typing import Callable, Tuple, List, Mapping, Optional, Union import jax from jax import lax import jax.numpy as jnp from jax_verify.src import activation_relaxation from jax_verify.src import bound_propagation from jax_verify.src import graph_traversal from jax_verify.src import ibp from jax_verify.src import synthetic_primitives from jax_verify.src.types import Index, Primitive, Tensor # pylint: disable=g-multiple-import import numpy as np class RelaxVariable(bound_propagation.Bound): """Variable used to build relaxation.""" def __init__(self, idx: Index, base_bound): self.base_bound = base_bound self.name = 'rlxvar' for idx_cpt in idx: self.name += f'_{idx_cpt}' self.idx = idx self.constraints = None def set_constraints(self, constraints): self.constraints = constraints @property def lower(self): return self.base_bound.lower @property def upper(self): return self.base_bound.upper class OptRelaxVariable(RelaxVariable): """Variant of RelaxVariable with lazy optimization tightening.""" def __init__(self, base_relax_variable, optimize_transform): super(OptRelaxVariable, self).__init__(base_relax_variable.idx, base_relax_variable.base_bound) self._shape = base_relax_variable.shape self._opted_bounds = None self._optimize_transform = optimize_transform @property def shape(self): # Need to specify a shape method, because otherwise, a call to `.shape` # will attempt to read `.lower` and trigger optimization return self._shape @property def dtype(self): # Need to specify a type method, because otherwise, a call to `.dtype` # will attempt to read `.lower` and trigger optimization return self._dtype @property def lower(self): return self._optimized_bounds.lower @property def upper(self): return self._optimized_bounds.upper @property def _optimized_bounds(self): if self._opted_bounds is None: self._opted_bounds = self._optimize_transform.tight_bounds(self) return self._opted_bounds class BinaryVariable(): """Binary variable.""" def __init__(self, idx, shape): self.shape = shape self.name = f'boolvar_{idx}' self.idx = idx class MIPActivationConstraint: """MIP constraint to encode activation.""" def __init__(self, outvar, invar, binvar, mask, binscale, scale, bias, sense): """Represents: outvar =(>)(<) scale * invar + binscale * binvar + bias.""" self.outvar = outvar self.invar = invar self.binvar = binvar self.binscale = binscale self.mask = mask self.scale = scale self.bias = bias self.sense = sense def encode_into_solver(self, solver: 'MIPSolver', index: int): """Encode the linear constraints into the provided solver. Args: solver: MIPSolver to create the exact constraint into. index: Index in the batch for which to build the variable. """ biases = np.reshape(self.bias[index, ...], [-1]) slopes = np.reshape(self.scale[index, ...], [-1]) binslopes = np.reshape(self.binscale[index, ...], [-1]) mask = np.reshape(self.mask[index, ...], [-1]) for act_index, (binslope, slope, bias) in enumerate( zip(binslopes, slopes, biases)): if mask[act_index]: solver.create_mip_activation_solver_constraint( self, act_index, binslope=binslope.item(), slope=slope.item(), bias=bias.item()) class LinearConstraint: """Linear constraint, to be encoded into a solver.""" def __init__(self, vars_and_coeffs, bias, sense): self._vars_and_coeffs = vars_and_coeffs self._bias = bias self.sense = sense self.sample_dependent = bool(self._bias.shape) def bias(self, index: int): """Get the bias corresponding to the minibatch sample `index`. If bias has a dimension, it means it is sample dependent. Otherwise, the bias is the same for all samples. Args: index: Index in the batch for which to build the variable. Returns: bias: value of the bias. """ return self._bias[index] if self.sample_dependent else self._bias def vars_and_coeffs(self, index: int): """Get the variable and coefficients corresponding to the sample `index`. If coeffs has a dimension, the coefficients are sample dependent. Otherwise, the coefficients are the same for all samples. Args: index: Index in the batch for which to build the variable. Returns: vars_and_coeffs: vars_and_coeffs list where the coefficients are the one corresponding to the sample `index` """ if self.sample_dependent: return [(var, (cpts, coeffs[index])) for (var, (cpts, coeffs)) in self._vars_and_coeffs] else: return self._vars_and_coeffs def encode_into_solver(self, solver: 'RelaxationSolver', index: int): """Encode the linear constraints into the provided solver. Args: solver: RelaxationSolver to create the linear constraint into. index: Index in the batch for which to build the variable. """ solver.create_linear_solver_constraint(self, index) class RelaxActivationConstraint: """Linear constraint involved in the relaxation of an activation.""" def __init__(self, outvar, invar, mask, scale, bias, sense): """Represents the constraint outvar =(>)(<) scale * invar + bias.""" self.outvar = outvar self.invar = invar self.mask = mask self.scale = scale self.bias = bias self.sense = sense def encode_into_solver(self, solver: 'RelaxationSolver', index: int): """Encode the linear constraints into the provided solver. Args: solver: RelaxationSolver to create the linear constraint into. index: Index in the batch for which to build the variable. """ biases = np.reshape(self.bias[index, ...], [-1]) slopes = np.reshape(self.scale[index, ...], [-1]) mask = np.reshape(self.mask[index, ...], [-1]) for act_index, (slope, bias) in enumerate(zip(slopes, biases)): if mask[act_index]: solver.create_activation_solver_constraint( self, act_index, slope.item(), bias.item()) class RelaxationSolver(metaclass=abc.ABCMeta): """Abstract solver for the relaxation.""" def maybe_create_solver_variable( self, var: RelaxVariable, index: int): """Create a new solver variable for var if it has not been created yet. Args: var: Variable generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ if not self._variable_already_created(var): self._create_solver_relax_variable(var, index) @abc.abstractmethod def _create_solver_relax_variable( self, var: RelaxVariable, index: int): """Create a new bound-constrained variable based on a RelaxVariable. Args: var: Variable generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ @abc.abstractmethod def _variable_already_created( self, var: Union[RelaxVariable, BinaryVariable], ) -> bool: """Check whether the solver has already created a variable for var. Args: var: Variable generated by the relaxation bound propagation. """ @abc.abstractmethod def create_linear_solver_constraint( self, constraint: LinearConstraint, index: int): """Create a new solver linear constraint. Args: constraint: Constraint generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ @abc.abstractmethod def create_activation_solver_constraint( self, constraint: RelaxActivationConstraint, act_index: int, slope: float, bias: float): """Create the linear constraint involved in the activation relaxation. Args: constraint: Constraint generated by the relaxation bound propagation. act_index: Index of the activation to encode (in the variables involved in constraint) slope : Slope coefficients of the linear inequality. bias: Bias of the linear inequality """ @abc.abstractmethod def minimize_objective( self, var_name: str, objective: Tensor, objective_bias: float, time_limit_millis: Optional[int], ) -> Tuple[float, Mapping[str, Tensor], bool]: """Minimize a linear function. Args: var_name: Index of the variable to define a linear function over the components. objective: Coefficients of the linear function. objective_bias: Bias of the linear function. time_limit_millis: Maximum solve time in ms. Use None for unbounded. Returns: val: Value of the minimum. solution: Solution found. status: Status of the optimization function. """ class MIPSolver(RelaxationSolver): """Abstract solver for the MIP encoding.""" def maybe_create_solver_variable( self, var: Union[RelaxVariable, BinaryVariable], index: int): """Create a new solver variable for var if it has not been created yet. Args: var: Variable generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ if not self._variable_already_created(var): if isinstance(var, BinaryVariable): self._create_solver_bool_variable(var, index) else: self._create_solver_relax_variable(var, index) @abc.abstractmethod def _create_solver_bool_variable( self, var: BinaryVariable, index: int): """Create a new bound-constrained variable based on a BinaryVariable. Args: var: Variable generated by the relaxation bound propagation. index: Index in the batch for which to build the variable. """ @abc.abstractmethod def create_mip_activation_solver_constraint( self, constraint: MIPActivationConstraint, act_index: int, binslope: float, slope: float, bias: float): """Create the linear constraint involved in the activation relaxation. Args: constraint: Constraint generated by the relaxation bound propagation. act_index: Index of the activation to encode (in the variables involved in constraint) binslope: Slope coefficients for the binary variable. slope : Slope coefficients for the input variable. bias: Bias of the linear inequality """ def encode_relaxation( solver_ctor: Callable[[], RelaxationSolver], env: Mapping[jax.core.Var, Union[RelaxVariable, Tensor]], index: int, ) -> RelaxationSolver: """Creates a solver and encodes the relaxation into it. Args: solver_ctor: Constructor for the solver. env: Environment created by applying boundprop with relaxation.py index: The index in the minibatch for which the relaxation should be encoded. Returns: solver: Solver containing the relaxation of the network encoded. """ solver = solver_ctor() for key in env.keys(): if isinstance(env[key], RelaxVariable): variable = env[key] # Create the variable in the solver. solver.maybe_create_solver_variable(variable, index) # Create the constraints in the solver. if variable.constraints: for constraint in variable.constraints: if isinstance(constraint, MIPActivationConstraint): # create manually the binary variable because it is not collected # automatically by the graph propagation. solver.maybe_create_solver_variable(constraint.binvar, index) constraint.encode_into_solver(solver, index) return solver def solve_relaxation( solver_ctor: Callable[[], RelaxationSolver], objective: Tensor, objective_bias: float, variable_opt: RelaxVariable, env: Mapping[jax.core.Var, Union[RelaxVariable, Tensor]], index: int, time_limit_millis: Optional[int] = None, ) -> Tuple[float, Mapping[str, Tensor], bool]: """Solves the relaxation using the provided LP solver. Args: solver_ctor: Constructor for the solver. objective: Objective to optimize, given as an array of coefficients to be applied to the variable to form a linear objective function objective_bias: Bias to add to objective variable_opt: RelaxVariable over which the linear function to optimize is defined. env: Environment created by applying boundprop with relaxation.py index: The index in the minibatch for which the LP should be solved time_limit_millis: Time limit on solver. None if unbounded. Returns: opt: Value of the solution found. solution: Solution found by the solver. status: Whether the optimal solution has been achieved. """ solver = encode_relaxation(solver_ctor, env, index) return solver.minimize_objective(variable_opt.name, objective, objective_bias, time_limit_millis) def _get_linear(primitive, outval, *eqn_invars, **params): """Get linear expressions corresponding to an affine layer. Args: primitive: jax primitive outval: dummy tensor shaped according to a single example's outputs *eqn_invars: Arguments of the primitive, wrapped as RelaxVariables **params: Keyword Arguments of the primitive. Returns: For each output component, a pair `(bias, coefficients)`, where `coefficients` is a list of `(component, coefficient)` pairs. """ def funx(x): if isinstance(x, RelaxVariable): return jnp.zeros(x.shape) else: return x def fungrad(i, args): return jnp.reshape(primitive.bind(*args, **params)[0, ...], [-1])[i] results = [] # Loop over output dimensions one at a time to avoid creating a large # materialized tensor # TODO: Replace with something more efficient for i in range(outval.size): fung = functools.partial(fungrad, i) bias, current_grad = jax.value_and_grad(fung, allow_int=True)( [funx(x) for x in eqn_invars]) coefficients = [] for res, in_var in zip(current_grad, eqn_invars): if isinstance(in_var, RelaxVariable): components = jnp.flatnonzero(res) coefficients.append((components, res.ravel()[components])) else: coefficients.append(None) results.append((bias, coefficients)) return results def _relax_input( index: Index, in_bounds: bound_propagation.Bound, ) -> RelaxVariable: """Generates the initial inputs for the relaxation. Args: index: Integer identifying the input node. in_bounds: Concrete bounds on the input node. Returns: `RelaxVariable` for the initial inputs. """ # Wrap initial bound as RelaxVariable bound. in_variable = RelaxVariable(index, in_bounds) return in_variable _order_preserving_reshapes = [lax.reshape_p, lax.squeeze_p] _affine_primitives_list = [ *bound_propagation.AFFINE_PRIMITIVES, *bound_propagation.RESHAPE_PRIMITIVES, lax.div_p, ] def _relax_primitive( index: Index, out_bounds: bound_propagation.Bound, primitive: Primitive, *args, use_mip: bool = False, **kwargs ) -> RelaxVariable: """Generates the relaxation for a given primitive op. Args: index: Integer identifying the computation node. out_bounds: Concrete bounds on the outputs of the primitive op. primitive: jax primitive. *args: Arguments of the primitive, wrapped as RelaxVariables use_mip: whether to use mixed integer programming for the activation constraints. **kwargs: Keyword Arguments of the primitive. Returns: `RelaxVariable` that contains the output of this primitive for the relaxation, with all the constraints linking the output to inputs. """ # Create variable for output of this primitive out_variable = RelaxVariable(index, out_bounds) # Create constraints linking output and input of primitive constraints = [] if primitive in _order_preserving_reshapes: invar = args[0] constraints = [RelaxActivationConstraint(outvar=out_variable, invar=invar, mask=jnp.ones(invar.shape), scale=jnp.ones(invar.shape), bias=jnp.zeros(invar.shape), sense=0)] elif primitive in _affine_primitives_list: if primitive == lax.div_p and isinstance(args[1], RelaxVariable): raise NotImplementedError( 'Division with non-constant divisor is not supported') results = _get_linear(primitive, out_bounds.lower[0, ...], *args, **kwargs) for i, (bias, coeffs) in enumerate(results): # Coefficients of the input variable(s). vars_and_coeffs = [ (arg, coeff) for arg, coeff in zip(args, coeffs) if isinstance(arg, RelaxVariable)] # Equate with the output variable, by using a coefficient of -1. out_coeff = (np.array([i], dtype=np.int64), np.array([-1.])) vars_and_coeffs.append((out_variable, out_coeff)) constraints.append(LinearConstraint(vars_and_coeffs, bias, 0)) elif primitive in activation_relaxation.relaxation_fns: # Generate convex relaxation. safe_kwargs = synthetic_primitives.filter_jaxverify_kwargs(kwargs) activation = activation_relaxation.relaxation_fns[primitive] lb_funs, ub_funs = activation.piecewise_linear_relaxation_fn(*args, **safe_kwargs) invar, = args zeros = jnp.zeros_like(invar.lower) ones = jnp.ones_like(invar.lower) if activation.pos_neg_linear and (len(lb_funs) == 1 or len(ub_funs) == 1): # Use equality constraints if linear over the entire interval. ambiguous = (invar.lower < 0) & (invar.upper > 0) chord, = lb_funs if len(lb_funs) == 1 else ub_funs constraints.append(RelaxActivationConstraint( outvar=out_variable, invar=invar, mask=(~ambiguous), scale=(chord(ones) - chord(zeros)), bias=chord(zeros), sense=0)) else: ambiguous = ones for lb_fun in lb_funs: # act(x) >= lb(x) constraints.append(RelaxActivationConstraint( outvar=out_variable, invar=invar, mask=ambiguous, scale=(lb_fun(ones) - lb_fun(zeros)), bias=lb_fun(zeros), sense=1)) for ub_fun in ub_funs: # act(x) <= ub(x) constraints.append(RelaxActivationConstraint( outvar=out_variable, invar=invar, mask=ambiguous, scale=(ub_fun(ones) - ub_fun(zeros)), bias=ub_fun(zeros), sense=-1)) if use_mip: if primitive is not synthetic_primitives.relu_p: raise ValueError( f'Only ReLU activations supported. Encountered {primitive}') binvar = BinaryVariable(index, out_bounds.lower.shape) constraints += [ # outvar <= upper_bound * binvar MIPActivationConstraint(outvar=out_variable, invar=invar, binvar=binvar, binscale=invar.upper, mask=ambiguous, scale=zeros, bias=zeros, sense=-1), # outvar <= invar - lower_bound * (1. - binvar) MIPActivationConstraint(outvar=out_variable, invar=invar, binvar=binvar, binscale=invar.lower, mask=ambiguous, scale=ones, bias=-invar.lower, sense=-1), ] else: raise NotImplementedError(f'Unsupported primitive: {primitive}') out_variable.set_constraints(constraints) return out_variable class RelaxationTransform(graph_traversal.GraphTransform[RelaxVariable]): """Transform to produce `RelaxVariable`s for each op.""" def __init__( self, boundprop_transform: bound_propagation.BoundTransform, use_mip: bool = False, ): """Defines relaxation constraint propagation. Args: boundprop_transform: Basic Jax primitive ops' equivalents for the underlying bound propagation method. use_mip: whether to use mixed integer programming for the activation constraints. """ self._boundprop_transform = boundprop_transform self._use_mip = use_mip def input_transform(self, context, input_bound): in_bounds = self._boundprop_transform.input_transform( context, input_bound) return _relax_input(context.index, in_bounds) def primitive_transform(self, context, primitive, *args, **params): interval_args = [arg.base_bound if isinstance(arg, RelaxVariable) else arg for arg in args] out_bounds, = self._boundprop_transform.equation_transform( context, primitive, *interval_args, **params) return _relax_primitive( context.index, out_bounds, primitive, *args, use_mip=self._use_mip, **params) class OptimizedRelaxationTransform( graph_traversal.GraphTransform[OptRelaxVariable]): """Wraps a RelaxVariable-producing BoundTransform to add optimization.""" def __init__( self, transform: graph_traversal.GraphTransform[RelaxVariable], solver_ctor: Callable[[], RelaxationSolver], time_limit_millis: Optional[int] = None): self._transform = transform self.solver_ctor = solver_ctor self.solvers: List[RelaxationSolver] = [] self._time_limit_millis = time_limit_millis def tight_bounds(self, variable: RelaxVariable) -> ibp.IntervalBound: """Compute tighter bounds based on the LP relaxation. Args: variable: Variable as created by the base boundprop transform. This is a RelaxVariable that has already been encoded into the solvers. Returns: tightened_base_bound: Bounds tightened by optimizing with the LP solver. """ lbs = [] ubs = [] for solver in self.solvers: nb_targets = np.prod(variable.shape[1:]) sample_lbs = [] sample_ubs = [] for target_idx in range(nb_targets): objective = (jnp.arange(nb_targets) == target_idx).astype(jnp.float32) lb, _, optimal_lb = solver.minimize_objective( variable.name, objective, 0., self._time_limit_millis) assert optimal_lb neg_ub, _, optimal_ub = solver.minimize_objective( variable.name, -objective, 0., self._time_limit_millis) assert optimal_ub sample_lbs.append(lb) sample_ubs.append(-neg_ub) lbs.append(sample_lbs) ubs.append(sample_ubs) tightened_base_bound = ibp.IntervalBound( jnp.reshape(jnp.array(lbs), variable.shape), jnp.reshape(jnp.array(ubs), variable.shape)) return tightened_base_bound def input_transform( self, context: graph_traversal.TransformContext[OptRelaxVariable], input_bound: graph_traversal.InputBound, ) -> RelaxVariable: in_bounds = self._transform.input_transform( context, input_bound) for minibatch_index in range(in_bounds.shape[0]): # Create one solver instance for each problem in the batch because they # will have different constraints. if minibatch_index >= len(self.solvers): self.solvers.append(self.solver_ctor()) solver = self.solvers[minibatch_index] solver.maybe_create_solver_variable(in_bounds, minibatch_index) return in_bounds def primitive_transform( self, context: graph_traversal.TransformContext[OptRelaxVariable], primitive: Primitive, *args: Union[RelaxVariable, Tensor], **params, ) -> RelaxVariable: basic_relax_var, = self._transform.equation_transform( context, primitive, *args, **params) opt_relax_var = OptRelaxVariable(basic_relax_var, self) for minibatch_index, solver in enumerate(self.solvers): # Encode the new variable and the associated constraints. We encode the # basic variable, not the optimized one. This way, the optimization is # only performed if the lower / upper bounds are required and the bounds # on that variable are accessed "from outside". solver.maybe_create_solver_variable(basic_relax_var, minibatch_index) if basic_relax_var.constraints: for constraint in basic_relax_var.constraints: if isinstance(constraint, MIPActivationConstraint): # create manually the binary variable because it is not collected # automatically by the graph propagation. solver.maybe_create_solver_variable( constraint.binvar, minibatch_index) constraint.encode_into_solver(solver, minibatch_index) return opt_relax_var
jax_verify-master
jax_verify/src/mip_solver/relaxation.py
# coding=utf-8 # Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods for solving relaxation generated by relaxation.py. This file mainly calls out to relaxation.RelaxationSolvers defined in other files, and provides a higher-level interface than using relaxation.py directly. """ from jax_verify.src import bound_propagation from jax_verify.src.mip_solver import cvxpy_relaxation_solver from jax_verify.src.mip_solver import relaxation def solve_planet_relaxation( logits_fn, initial_bounds, boundprop_transform, objective, objective_bias, index, solver=cvxpy_relaxation_solver.CvxpySolver): """Solves the "Planet" (Ehlers 17) or "triangle" relaxation. The general approach is to use jax_verify to generate constraints, which can then be passed to generic solvers. Note that using CVXPY will incur a large overhead when defining the LP, because we define all constraints element-wise, to avoid representing convolutional layers as a single matrix multiplication, which would be inefficient. In CVXPY, defining large numbers of constraints is slow. Args: logits_fn: Mapping from inputs (batch_size x input_size) -> (batch_size, num_classes) initial_bounds: `IntervalBound` with initial bounds on inputs, with lower and upper bounds of dimension (batch_size x input_size). boundprop_transform: bound_propagation.BoundTransform instance, such as `jax_verify.ibp_transform`. Used to pre-compute interval bounds for intermediate activations used in defining the Planet relaxation. objective: Objective to optimize, given as an array of coefficients to be applied to the output of logits_fn defining the objective to minimize objective_bias: Bias to add to objective index: Index in the batch for which to solve the relaxation solver: A relaxation.RelaxationSolver, which specifies the backend to solve the resulting LP. Returns: val: The optimal value from the relaxation solution: The optimal solution found by the solver status: The status of the relaxation solver """ relaxation_transform = relaxation.RelaxationTransform(boundprop_transform) variable, env = bound_propagation.bound_propagation( bound_propagation.ForwardPropagationAlgorithm(relaxation_transform), logits_fn, initial_bounds) value, solution, status = relaxation.solve_relaxation( solver, objective, objective_bias, variable, env, index=index, time_limit_millis=None) return value, solution, status
jax_verify-master
jax_verify/src/mip_solver/solve_relaxation.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Slowfast Norm-Free Nets (https://arxiv.org/abs/2111.12124). This class of network contains a fast and a slow branch, both based on the NFNet backbone (https://arxiv.org/abs/2102.06171). The is also a fushion layer mixing fast features to the slow branch. The NFNet backbone follows the original implementation: https://github.com/deepmind/deepmind-research/blob/master/nfnets/nfnet.py with changes to allow for customized kernel and stride patterns. """ from typing import Text, Optional, Sequence, Any import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np from slowfast_nfnets import base class NFNet(hk.Module): """Normalizer-Free networks, The Next Generation.""" variant_dict = base.slowfast_nfnet_params def __init__(self, variant: Text = 'F0', width: float = 1.0, se_ratio: float = 0.5, alpha: float = 0.2, stochdepth_rate: float = 0.1, drop_rate: Optional[float] = None, activation: Text = 'gelu', # Multiplier for the final conv channel count final_conv_mult: int = 2, final_conv_ch: Optional[int] = None, use_two_convs: bool = True, name: Optional[Text] = 'NFNet'): super().__init__(name=name) self.variant = variant self.width = width self.se_ratio = se_ratio # Get variant info block_params = self.variant_dict[self.variant] self.width_pattern = block_params['width'] self.depth_pattern = block_params['depth'] self.bneck_pattern = block_params['expansion'] self.group_pattern = block_params['group_width'] self.big_pattern = block_params['big_width'] stem_kernel_pattern = block_params['stem_kernel_pattern'] stem_stride_pattern = block_params['stem_stride_pattern'] kernel_pattern = block_params['kernel_pattern'] stride_pattern = block_params['stride_pattern'] self.activation = base.nonlinearities[activation] if drop_rate is None: self.drop_rate = block_params['drop_rate'] else: self.drop_rate = drop_rate self.which_conv = base.WSConv2D # Stem ch = self.width_pattern[0] // 2 self.stem = hk.Sequential([ self.which_conv(ch // 8, kernel_shape=stem_kernel_pattern[0], stride=stem_stride_pattern[0], padding='SAME', name='stem_conv0'), self.activation, self.which_conv(ch // 4, kernel_shape=stem_kernel_pattern[1], stride=stem_stride_pattern[1], padding='SAME', name='stem_conv1'), self.activation, self.which_conv(ch // 2, kernel_shape=stem_kernel_pattern[2], stride=stem_stride_pattern[2], padding='SAME', name='stem_conv2'), self.activation, self.which_conv(ch, kernel_shape=stem_kernel_pattern[3], stride=stem_stride_pattern[3], padding='SAME', name='stem_conv3'), ]) # Body self.blocks = [] expected_std = 1.0 num_blocks = sum(self.depth_pattern) index = 0 # Overall block index block_args = zip(self.width_pattern, self.depth_pattern, self.bneck_pattern, self.group_pattern, self.big_pattern, kernel_pattern, stride_pattern) for (block_width, stage_depth, expand_ratio, group_size, big_width, kernel, stride) in block_args: for block_index in range(stage_depth): # Scalar pre-multiplier so each block sees an N(0,1) input at init beta = 1./ expected_std # Block stochastic depth drop-rate block_stochdepth_rate = stochdepth_rate * index / num_blocks out_ch = (int(block_width * self.width)) self.blocks += [NFBlock(ch, out_ch, expansion=expand_ratio, se_ratio=se_ratio, group_size=group_size, kernel_shape=kernel, stride=stride if block_index == 0 else (1, 1), beta=beta, alpha=alpha, activation=self.activation, which_conv=self.which_conv, stochdepth_rate=block_stochdepth_rate, big_width=big_width, use_two_convs=use_two_convs, )] ch = out_ch index += 1 # Reset expected std but still give it 1 block of growth if block_index == 0: expected_std = 1.0 expected_std = (expected_std **2 + alpha**2)**0.5 # Head if final_conv_mult is None: if final_conv_ch is None: raise ValueError('Must provide one of final_conv_mult or final_conv_ch') ch = final_conv_ch else: ch = int(final_conv_mult * ch) self.final_conv = self.which_conv(ch, kernel_shape=1, padding='SAME', name='final_conv') def __call__(self, x: chex.Array, is_training: bool) -> chex.Array: """Return the output of the final layer without any [log-]softmax.""" # Stem out = self.stem(x) # Blocks for block in self.blocks: out, _ = block(out, is_training=is_training) # Final-conv->activation, pool, dropout, classify out = self.activation(self.final_conv(out)) out = jnp.mean(out, [1, 2]) return out class NFBlock(hk.Module): """Normalizer-Free Net Block.""" def __init__(self, in_ch: int, out_ch: int, expansion: float = 0.5, se_ratio: float = 0.5, kernel_shape: Sequence[int] = (3, 1), second_conv_kernel_shape: Sequence[int] = (1, 3), group_size: int = 128, stride: Sequence[int] = (1, 1), beta: float = 1.0, alpha: float = 0.2, which_conv: Any = base.WSConv2D, activation: Any = jax.nn.gelu, big_width: bool = True, use_two_convs: bool = True, stochdepth_rate: Optional[float] = None, name: Optional[Text] = None): super().__init__(name=name) self.in_ch, self.out_ch = in_ch, out_ch self.expansion = expansion self.se_ratio = se_ratio self.kernel_shape = kernel_shape self.activation = activation self.beta, self.alpha = beta, alpha # Mimic resnet style bigwidth scaling? width = int((self.out_ch if big_width else self.in_ch) * expansion) # Round expanded with based on group count self.groups = width // group_size self.width = group_size * self.groups self.stride = stride self.use_two_convs = use_two_convs # Conv 0 (typically expansion conv) self.conv0 = which_conv(self.width, kernel_shape=1, padding='SAME', name='conv0') # Grouped NxN conv self.conv1 = which_conv(self.width, kernel_shape=kernel_shape, stride=stride, padding='SAME', feature_group_count=self.groups, name='conv1') if self.use_two_convs: self.conv1b = which_conv(self.width, kernel_shape=second_conv_kernel_shape, stride=1, padding='SAME', feature_group_count=self.groups, name='conv1b') # Conv 2, typically projection conv self.conv2 = which_conv(self.out_ch, kernel_shape=1, padding='SAME', name='conv2') # Use shortcut conv on channel change or downsample. self.use_projection = np.prod(stride) > 1 or self.in_ch != self.out_ch if self.use_projection: self.conv_shortcut = which_conv(self.out_ch, kernel_shape=1, padding='SAME', name='conv_shortcut') # Squeeze + Excite Module self.se = base.SqueezeExcite(self.out_ch, self.out_ch, self.se_ratio) # Are we using stochastic depth? self._has_stochdepth = (stochdepth_rate is not None and stochdepth_rate > 0. and stochdepth_rate < 1.0) if self._has_stochdepth: self.stoch_depth = base.StochDepth(stochdepth_rate) def __call__(self, x: chex.Array, is_training: bool) -> chex.Array: out = self.activation(x) * self.beta if np.prod(self.stride) > 1: # Average-pool downsample. pool_size = [1] + list(self.stride) + [1] shortcut = hk.avg_pool(out, window_shape=pool_size, strides=pool_size, padding='SAME') if self.use_projection: shortcut = self.conv_shortcut(shortcut) elif self.use_projection: shortcut = self.conv_shortcut(out) else: shortcut = x out = self.conv0(out) out = self.conv1(self.activation(out)) if self.use_two_convs: out = self.conv1b(self.activation(out)) out = self.conv2(self.activation(out)) out = (self.se(out) * 2) * out # Multiply by 2 for rescaling # Get average residual standard deviation for reporting metrics. res_avg_var = jnp.mean(jnp.var(out, axis=[0, 1, 2])) # Apply stochdepth if applicable. if self._has_stochdepth: out = self.stoch_depth(out, is_training) # SkipInit Gain out = out * hk.get_parameter('skip_gain', (), out.dtype, init=jnp.zeros) return out * self.alpha + shortcut, res_avg_var class FuseFast2Slow(hk.Module): """Fuses the information from the Fast pathway to the Slow pathway.""" def __init__(self, channels: int, kernel_size: Sequence[int] = (7, 1), stride: Sequence[int] = (4, 1), which_conv: Any = base.WSConv2D, activation: Any = jax.nn.gelu, name: Optional[Text] = None): super().__init__(name=name) self._activation = activation self._which_conv = which_conv self._conv_f2s = which_conv(channels, kernel_shape=kernel_size, stride=stride, padding='SAME', with_bias=True, name='conv_f2s') def __call__(self, x_f: chex.Array, x_s: chex.Array, is_training: bool) -> chex.Array: fuse = self._conv_f2s(x_f) fuse = self._activation(fuse) x_s_fuse = jnp.concatenate([x_s, fuse], axis=-1) return x_s_fuse class SlowFastNFNet(hk.Module): """Slow fast NFNet-F0.""" def __init__(self, variant: Text = 'F0', time_ratio: int = 4, activation: Any = jax.nn.gelu, fusion_conv_channel_ratio: int = 2, name: Optional[Text] = None): super().__init__(name=name) self._time_ratio = time_ratio self._activation = activation self._fast_net = NFNet(variant=f'{variant}-fast') self._slow_net = NFNet(variant=f'{variant}-slow') self._depth_pattern = self._slow_net.depth_pattern self._fast2slow = [] for channels in self._fast_net.width_pattern[0] * np.array([1, 4, 8, 16]): self._fast2slow.append( FuseFast2Slow( channels=channels * fusion_conv_channel_ratio)) def __call__(self, x: chex.Array, is_training: bool) -> chex.Array: h_s = hk.max_pool( x, window_shape=(1, self._time_ratio, 1, 1), strides=(1, self._time_ratio, 1, 1), padding='SAME') h_f = x h_s = self._slow_net.stem(h_s) h_f = self._fast_net.stem(h_f) depth = 0 for block_group, num_blocks in enumerate(self._depth_pattern): f2s_block = self._fast2slow[block_group] h_s = f2s_block(h_f, h_s, is_training) for _ in range(num_blocks): fast_block = self._fast_net.blocks[depth] slow_block = self._slow_net.blocks[depth] h_f, _ = fast_block(h_f, is_training=is_training) h_s, _ = slow_block(h_s, is_training=is_training) depth += 1 assert depth == len(self._fast_net.blocks) h_f = self._activation(self._fast_net.final_conv(h_f)) h_s = self._activation(self._slow_net.final_conv(h_s)) h_f = jnp.mean(h_f, [1, 2]) h_s = jnp.mean(h_s, [1, 2]) out = jnp.concatenate([h_f, h_s], axis=-1) return out
slowfast_nfnets-main
slowfast_nfnet.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slowfast_nfnets.slowfast_nfnet.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import numpy as np from slowfast_nfnets import slowfast_nfnet rng = np.random.default_rng(12345) _RAND_SPEC = rng.uniform(-1., 1., size=(2, 400, 128, 1)).astype(np.float32) class SlowfastNfnetTest(parameterized.TestCase): def test_slow_nfnet_f0_runs(self): def forward(inputs): model = slowfast_nfnet.NFNet(variant='F0-slow') return model(inputs, is_training=True) init_fn, apply_fn = hk.transform_with_state(forward) key = jax.random.PRNGKey(42) params, state = init_fn(key, _RAND_SPEC) out, _ = jax.jit(apply_fn)(params, state, key, _RAND_SPEC) self.assertListEqual(list(out.shape), [2, 3072]) def test_fast_nfnet_f0_runs(self): def forward(inputs): model = slowfast_nfnet.NFNet(variant='F0-fast') return model(inputs, is_training=True) init_fn, apply_fn = hk.transform_with_state(forward) key = jax.random.PRNGKey(42) params, state = init_fn(key, _RAND_SPEC) out, _ = jax.jit(apply_fn)(params, state, key, _RAND_SPEC) self.assertListEqual(list(out.shape), [2, 384]) def test_slowfast_nfnet_f0_runs(self): def forward(inputs): model = slowfast_nfnet.SlowFastNFNet() return model(inputs, is_training=True) init_fn, apply_fn = hk.transform_with_state(forward) key = jax.random.PRNGKey(42) params, state = init_fn(key, _RAND_SPEC) out, _ = jax.jit(apply_fn)(params, state, key, _RAND_SPEC) self.assertListEqual(list(out.shape), [2, 3456]) if __name__ == '__main__': absltest.main()
slowfast_nfnets-main
slowfast_nfnet_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Architecture definitions for different models.""" import haiku as hk import jax import jax.numpy as jnp import numpy as np slowfast_nfnet_params = { 'F0-slow': { 'width': [256, 512, 1536, 1536], 'depth': [1, 2, 6, 3], 'expansion': [0.5] * 4, 'group_width': [128] * 4, 'big_width': [True] * 4, 'drop_rate': 0.2, 'stem_kernel_pattern': [[1, 3], [1, 3], [1, 3], [3, 3]], 'stem_stride_pattern': [[2, 2], [1, 1], [1, 1], [2, 2]], 'kernel_pattern': [[1, 1], [1, 1], [3, 1], [3, 1]], 'stride_pattern': [[1, 1], [1, 2], [1, 2], [1, 2]], }, 'F0-fast': { 'width': [32, 64, 192, 192], 'depth': [1, 2, 6, 3], 'expansion': [0.5] * 4, 'group_width': [16] * 4, 'big_width': [True] * 4, 'drop_rate': 0.2, 'stem_kernel_pattern': [[3, 3], [1, 3], [1, 3], [3, 3]], 'stem_stride_pattern': [[2, 2], [1, 1], [1, 1], [2, 2]], 'kernel_pattern': [[3, 1], [3, 1], [3, 1], [3, 1]], 'stride_pattern': [[1, 1], [1, 2], [1, 2], [1, 2]], }, } # Nonlinearities with magic constants (gamma) baked in. # Note that not all nonlinearities will be stable, especially if they are # not perfectly monotonic. Good choices include relu, silu, and gelu. nonlinearities = { 'identity': lambda x: x, 'celu': lambda x: jax.nn.celu(x) * 1.270926833152771, 'elu': lambda x: jax.nn.elu(x) * 1.2716004848480225, 'gelu': lambda x: jax.nn.gelu(x) * 1.7015043497085571, 'glu': lambda x: jax.nn.glu(x) * 1.8484294414520264, 'leaky_relu': lambda x: jax.nn.leaky_relu(x) * 1.70590341091156, 'log_sigmoid': lambda x: jax.nn.log_sigmoid(x) * 1.9193484783172607, 'log_softmax': lambda x: jax.nn.log_softmax(x) * 1.0002083778381348, 'relu': lambda x: jax.nn.relu(x) * 1.7139588594436646, 'relu6': lambda x: jax.nn.relu6(x) * 1.7131484746932983, 'selu': lambda x: jax.nn.selu(x) * 1.0008515119552612, 'sigmoid': lambda x: jax.nn.sigmoid(x) * 4.803835391998291, 'silu': lambda x: jax.nn.silu(x) * 1.7881293296813965, 'soft_sign': lambda x: jax.nn.soft_sign(x) * 2.338853120803833, 'softplus': lambda x: jax.nn.softplus(x) * 1.9203323125839233, 'tanh': lambda x: jnp.tanh(x) * 1.5939117670059204, } class WSConv2D(hk.Conv2D): """2D Convolution with Scaled Weight Standardization and affine gain+bias.""" @hk.transparent def standardize_weight(self, weight, eps=1e-4): """Apply scaled WS with affine gain.""" mean = jnp.mean(weight, axis=(0, 1, 2), keepdims=True) var = jnp.var(weight, axis=(0, 1, 2), keepdims=True) fan_in = np.prod(weight.shape[:-1]) # Get gain gain = hk.get_parameter('gain', shape=(weight.shape[-1],), dtype=weight.dtype, init=jnp.ones) # Manually fused normalization, eq. to (w - mean) * gain / sqrt(N * var) scale = jax.lax.rsqrt(jnp.maximum(var * fan_in, eps)) * gain shift = mean * scale return weight * scale - shift def __call__(self, inputs: jnp.ndarray, eps: float = 1e-4) -> jnp.ndarray: w_shape = self.kernel_shape + ( inputs.shape[self.channel_index] // self.feature_group_count, self.output_channels) # Use fan-in scaled init, but WS is largely insensitive to this choice. w_init = hk.initializers.VarianceScaling(1.0, 'fan_in', 'normal') w = hk.get_parameter('w', w_shape, inputs.dtype, init=w_init) weight = self.standardize_weight(w, eps) out = jax.lax.conv_general_dilated( inputs, weight, window_strides=self.stride, padding=self.padding, lhs_dilation=self.lhs_dilation, rhs_dilation=self.kernel_dilation, dimension_numbers=self.dimension_numbers, feature_group_count=self.feature_group_count) # Always add bias bias_shape = (self.output_channels,) bias = hk.get_parameter('bias', bias_shape, inputs.dtype, init=jnp.zeros) return out + bias class SqueezeExcite(hk.Module): """Simple Squeeze+Excite module.""" def __init__(self, in_ch, out_ch, se_ratio=0.5, hidden_ch=None, activation=jax.nn.relu, name=None): super().__init__(name=name) self.in_ch, self.out_ch = in_ch, out_ch if se_ratio is None: if hidden_ch is None: raise ValueError('Must provide one of se_ratio or hidden_ch') self.hidden_ch = hidden_ch else: self.hidden_ch = max(1, int(self.in_ch * se_ratio)) self.activation = activation self.fc0 = hk.Linear(self.hidden_ch, with_bias=True) self.fc1 = hk.Linear(self.out_ch, with_bias=True) def __call__(self, x): h = jnp.mean(x, axis=[1, 2]) # Mean pool over HW extent h = self.fc1(self.activation(self.fc0(h))) h = jax.nn.sigmoid(h)[:, None, None] # Broadcast along H, W return h class StochDepth(hk.Module): """Batchwise Dropout used in EfficientNet, optionally sans rescaling.""" def __init__(self, drop_rate, scale_by_keep=False, name=None): super().__init__(name=name) self.drop_rate = drop_rate self.scale_by_keep = scale_by_keep def __call__(self, x, is_training) -> jnp.ndarray: if not is_training: return x batch_size = x.shape[0] r = jax.random.uniform(hk.next_rng_key(), [batch_size, 1, 1, 1], dtype=x.dtype) keep_prob = 1. - self.drop_rate binary_tensor = jnp.floor(keep_prob + r) if self.scale_by_keep: x = x / keep_prob return x * binary_tensor
slowfast_nfnets-main
base.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Configuration for `train_main.py`.""" from ml_collections import config_dict def get_cifar10_config(): config = config_dict.ConfigDict() config.crop_size = (32, 32, 3) config.image_size = (32, 32, 3) config.train_subset = 'train' config.test_subset = 'test' return config def get_mnist_config(): config = config_dict.ConfigDict() config.crop_size = (28, 28, 1) config.image_size = (28, 28, 1) config.train_subset = 'train' config.test_subset = 'test' return config def get_wide_resnet_model_config(): config = config_dict.ConfigDict() config.kwargs = config_dict.ConfigDict() config.kwargs.depth = 28 config.kwargs.width = 8 config.kwargs.activation = 'softplus' config.kwargs.activation_kwargs = {} return config def get_optimizer_config(): config = config_dict.ConfigDict() config.learning_rate = 0.1 config.lr_decay_factor = 0.1 config.lr_boundaries = (int(80e3), int(88e3), int(96e3)) config.momentum = 0.9 return config def get_llr_config(): """Local linearity regularisation.""" config = config_dict.ConfigDict() config.loss_weight = 4. # Weight placed on |d^T grad L|. config.smoothing_factor = .3 # PGD settings, for the search for point furthest from the linear approx. config.num_steps = 10 config.epsilon = 8./255. config.warm_start = 500 return config def get_training_config(): """Training configuration, including adversarial and regularisers.""" config = config_dict.ConfigDict() config.l2_regularizer_weight = 0.0002 config.nominal_loss_weight = 2. config.adversarial_loss_weight = 0. config.epsilon = 8./255. config.train_pgd_steps = 20 config.test_pgd_steps = 50 config.llr = get_llr_config() return config def get_config(): """Full experimental configuration for CIFAR.""" config = config_dict.ConfigDict() config.dataset = 'cifar10' config.cifar10 = get_cifar10_config() config.mnist = get_mnist_config() config.model = get_wide_resnet_model_config() config.optimizer = get_optimizer_config() config.train = get_training_config() return config
local_linearity_regularizer-main
local_linearity_regularizer/config.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Batch normalisation.""" import sonnet as snt import tensorflow.compat.v1 as tf class BatchNorm(snt.AbstractModule): """Batch Normalisation layer that computes moving averages of statistics.""" def __init__(self, decay_rate=0.1, scale=True, offset=True, eps=1e-5, name='BatchNorm'): super(BatchNorm, self).__init__(name=name) self.decay_rate = decay_rate self.eps = eps self.name = name self.use_scale = scale self.use_offset = offset def _build( self, inputs, is_training=True, test_local_stats=False, get_stats=None, set_stats=None): """Applies batch normalisation to the inputs. Args: inputs: Tensor to which batch normalisation is to be applied. is_training: Whether to update the exponential moving averages with the input's batch statistics. test_local_stats: If `True`, normalises the inputs using its own batch statistics. If `False`, normalises using the current exponential moving averages. get_stats: Optional `dict` to populate with batch stats. set_stats: Optional `dict` containing override values of batch stats. Returns: Normalised copy of `inputs`. """ # Compute the batch statistics. axis = list(range(inputs.shape.ndims - 1)) mean = tf.reduce_mean(inputs, axis=axis) mean_square = tf.reduce_mean(inputs ** 2, axis=axis) var = mean_square - mean ** 2 if self.use_scale: self.gamma = tf.get_variable( 'gamma', shape=mean.shape.as_list(), initializer=tf.ones_initializer(), trainable=True) else: self.gamma = None if self.use_offset: self.beta = tf.get_variable( 'beta', shape=mean.shape.as_list(), initializer=tf.zeros_initializer(), trainable=True) else: self.beta = None # Exponential moving averages. accum_counter = tf.get_variable( 'accumulation_counter', shape=[], dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=False) accum_mean = tf.get_variable( 'accumulated_mean', shape=mean.shape.as_list(), initializer=tf.zeros_initializer(), trainable=False) accum_var = tf.get_variable( 'accumulated_var', shape=mean.shape.as_list(), initializer=tf.ones_initializer(), trainable=False) # Handle getting/setting batch statistics. if get_stats is not None: # Get the batch statistics. # Save them into the `get_stats` dict. Use the `accum_xxx` # variables as keys, because we can rely on them being reused. get_stats[accum_mean] = mean get_stats[accum_var] = var elif set_stats is not None: # Set the batch statistics. # These are provided in the `set_stats` dict, populated by having # been passed to an earlier connection as `get_stats`. mean = set_stats[accum_mean] var = set_stats[accum_var] # Update the moving averages with the batch statistics, if in training mode. if is_training: tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.group([ tf.assign_add(accum_counter, 1.), tf.assign_sub(accum_mean, self.decay_rate * (accum_mean - mean)), tf.assign_sub(accum_var, self.decay_rate * (accum_var - var)), ])) # Base the batch normalisation either on the moving averages, # or on the batch statistics. return tf.nn.batch_normalization( inputs, mean if test_local_stats else accum_mean, var if test_local_stats else accum_var, offset=self.beta, scale=self.gamma, variance_epsilon=self.eps)
local_linearity_regularizer-main
local_linearity_regularizer/batchnorm.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Smoke tests for training the model, using mock data.""" import functools from absl.testing import absltest import ml_collections import tensorflow.compat.v1 as tf from local_linearity_regularizer import datasets from local_linearity_regularizer import graph from local_linearity_regularizer import training_loop from local_linearity_regularizer import wide_resnet class TrainTest(absltest.TestCase): def test_training(self): image_shape = (32, 32, 3) num_classes = 10 train_batch_size = 5 test_batch_size = 3 # Train and test datasets. dataset_config = ml_collections.config_dict.ConfigDict({ 'image_size': image_shape, 'crop_size': image_shape, 'train_subset': 'train', 'test_subset': 'test', }) dataset_ctor = functools.partial(MockDataset, image_shape, num_classes) train_input_fn, test_input_fn = graph.dataset_input_fns( dataset_config, dataset_ctor, train_batch_size, test_batch_size) # Classification model. model = wide_resnet.WideResNet( num_classes=num_classes, depth=28, width=8, activation='softplus', activation_kwargs={}) config = ml_collections.config_dict.ConfigDict({ 'optimizer': { 'learning_rate': 1.e-2, 'lr_boundaries': [4, 7], 'lr_decay_factor': .5, 'momentum': .9, }, 'train': { 'nominal_loss_weight': 1., 'adversarial_loss_weight': 0., 'l2_regularizer_weight': 0., 'llr': { 'loss_weight': .01, 'smoothing_factor': .3, 'num_steps': 2, 'epsilon': .04, 'warm_start': 2, }, 'epsilon': .03, 'train_pgd_steps': 2, 'test_pgd_steps': 3, }, }) loss, train_measures, test_measures, init_step_fn = graph.build_graph( config, train_input_fn, test_input_fn, datasets.cifar10_model_preprocess, model) checkpoint = MockCheckpoint() training_loop.train( loss, train_measures, test_measures, init_step_fn, checkpoint, num_runs=10, test_every=3, num_test_runs=2) class MockCheckpoint(training_loop.Checkpoint): """Placeholder for checkpointing.""" def __init__(self): super().__init__() self._state = {} def restore_or_save(self, session): pass def save(self, session, step): pass @property def state(self): return self._state class MockDataset(object): """Dataset with random image pixels and labels.""" def __init__( self, image_shape, num_classes, batch_size, *, subset, shuffle, preprocess_fn=(lambda x: x)): super().__init__() self._image_shape = image_shape self._num_classes = num_classes self._batch_size = batch_size self._subset = subset self._shuffle = shuffle self._preprocess_fn = preprocess_fn def __call__(self): return self._make_one_shot_iterator().get_next() def _make_one_shot_iterator(self): return self def get_next(self): data_batch = { 'image': tf.random.uniform( minval=0., maxval=1., dtype=tf.float32, shape=[self._batch_size, *self._image_shape]), 'label': tf.random.uniform( maxval=self._num_classes, dtype=tf.int64, shape=[self._batch_size]), } if self._preprocess_fn is not None: data_batch = self._preprocess_fn(data_batch) return data_batch if __name__ == '__main__': absltest.main()
local_linearity_regularizer-main
local_linearity_regularizer/train_test.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Builds the robust training graph.""" import collections import functools from interval_bound_propagation.src import attacks import tensorflow.compat.v1 as tf from local_linearity_regularizer import datasets from local_linearity_regularizer import regularizers DatasetInputFns = collections.namedtuple('DatasetInputFns', ['train', 'test']) def dataset_input_fns(config, dataset_ctor, train_batch_size, test_batch_size): """Returns functions to create TensorFlow graph for loading from dataset. Args: config: Dataset configuration. dataset_ctor: Dataset's constructor. train_batch_size: Batch size for the training set. test_batch_size: Batch size for the test set. Returns: train_input_fn: Callable returning the training data as a nest of tensors. test_input_fn: Callable returning the test data as a nest of tensors. """ train_preprocess_fn = datasets.random_crop_preprocess_fn( config.image_size, config.crop_size) train_dataset = dataset_ctor( train_batch_size, subset=config.train_subset, shuffle=True, preprocess_fn=train_preprocess_fn) train_input_fn = ( lambda: tf.data.make_one_shot_iterator(train_dataset).get_next()) test_dataset = dataset_ctor( test_batch_size, subset=config.test_subset, shuffle=False) test_input_fn = ( lambda: tf.data.make_one_shot_iterator(test_dataset).get_next()) return DatasetInputFns(train=train_input_fn, test=test_input_fn) def _linear_schedule(step, init_step, final_step, init_value, final_value): """Returns a scalar interpolated between `init_value` and `final_value`.""" rate = tf.cast(step - init_step, tf.float32) / float(final_step - init_step) linear_value = rate * (final_value - init_value) + init_value return tf.clip_by_value( linear_value, min(init_value, final_value), max(init_value, final_value)) def _top_k_accuracy(labels, logits, k=1): """Proportion of examples having true label amongst the top k predicted. Args: labels: 3D int64 tensor containing labels. Its shape is (num_steps_per_run, num_replicas, batch_size_per_replica). logits: 4D float32 tensor of shape (labels_shape..., num_classes) containing predicted logits. k: Positive integer. Returns: Float32 scalar containing proportion of examples whose true label is amongst the top `k` logits. """ # Combine the leading dimensions into a single batch dimension. labels = tf.reshape(labels, [-1]) logits = tf.reshape(logits, [-1, tf.shape(logits)[-1]]) in_top_k = tf.nn.in_top_k(predictions=logits, targets=labels, k=k) return tf.reduce_mean(tf.cast(in_top_k, tf.float32)) def _optimizer(optimizer_config, global_step): """Returns the optimizer with the configured learning rate schedule.""" lr_values = [optimizer_config.learning_rate] for _ in optimizer_config.lr_boundaries: lr_values.append(lr_values[-1] * optimizer_config.lr_decay_factor) learning_rate = tf.train.piecewise_constant( global_step, values=lr_values, boundaries=optimizer_config.lr_boundaries) return tf.train.MomentumOptimizer(learning_rate, optimizer_config.momentum) def _margin_logit_loss(model_logits, true_class, clip_loss_value=-30.): """Computes difference between logit for true label and next highest.""" num_classes = model_logits.get_shape().as_list()[-1] logit_mask = tf.one_hot(true_class, depth=num_classes, axis=-1) label_logits = tf.reduce_sum(logit_mask * model_logits, axis=-1) logits_with_true_label_neg_inf = model_logits - logit_mask * 10000 highest_nonlabel_logits = tf.reduce_max( logits_with_true_label_neg_inf, axis=-1) loss = -(highest_nonlabel_logits - label_logits) loss = tf.maximum(loss, clip_loss_value) return tf.reduce_mean(loss) def carlini_wagner_attack( model_fn, images, labels, image_bounds, epsilon, num_steps, learning_rate=0.1): """PGD using loss from Carlini-Wagner https://arxiv.org/abs/1608.04644. More specifically this implements: * Projected Gradient Descent [Madry, Kurakin] * on the margin loss described in [Carlini Wagner] * using the Adam optimizer [Kingma and Ba] These defaults are chosen as we find this attack to reliably converge to slightly better solutions than vanilla iterative FGSM. Note that while this method is named `carlini_wagner`, it does not implement the original attack described in the Carlini-Wagner paper. The CW attack treats the norm constraint as a Lagrangian penalty, and performs binary search on the penalty weight to find the smallest possible perturbation. Here, we use a fixed perturbation radius, and enforce this constraint with projection. Args: model_fn: Callable taking image tensor and returning logits tensor. images: Tensor of minibatch of images. labels: Integer 1D tensor containing true labels. image_bounds: Range of each element of `images`. epsilon: Admissible L-infinity perturbation radius for the attack. num_steps: Number of PGD iterations to perform. learning_rate: PGD learning rate. Returns: Tensor of adversarial images found by the attack. """ def loss_fn(image): model_logits = model_fn(image) return _margin_logit_loss(model_logits, labels) return attacks.pgd_attack( loss_fn, images, epsilon, num_steps, optimizer=attacks.UnrolledAdam(learning_rate), image_bounds=image_bounds) def _model_with_preprocess_fn(model, model_preprocess_fn): """Combines the model with its preprocessing function. Args: model: Callable taking (preprocessed_images, is_training, test_local_stats) and returning logits. model_preprocess_fn: Image pre-processing to be combined with `model`. Returns: Callable taking (raw_images, is_training, test_local_stats) and returning logits. """ def model_with_preprocess(images, **batchnorm_kwargs): # Transform inputs from [0, 1] to roughly [-1, +1], which is the range used # by ResNets. (This may entail slightly different transformations for each # channel to reflect the dataset statistics.) # Do so here (instead of during dataset loading) because # adversarial attacks assume that the model inputs are [0, 1]. images = model_preprocess_fn(images) return model(images, **batchnorm_kwargs) return model_with_preprocess def _train_step(config, model, global_step, optimizer, batch): """Creates TensorFlow graph for a single training step. Args: config: Experiment configuration. model: Callable taking (images, is_training, test_local_stats) and returning logits. global_step: TensorFlow global step counter. optimizer: Training optimiser. batch: Dict of tensors for the minibatch, under keys 'image' and 'label'. Returns: loss: Training loss being minimised. logits: Nominal logits, of shape [batch_size, num_classes]. adv_logits: Adversarial logits, of shape [batch_size, num_classes]. labels: True labels of the examples in the minibatch. """ images = batch['image'] labels = batch['label'] # Nominal. logits = model(images, is_training=True, test_local_stats=True) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels) # Adversarial. if config.adversarial_loss_weight > 0.: adv_images = carlini_wagner_attack( functools.partial(model, is_training=False, test_local_stats=False), images, labels, image_bounds=(0., 1.), epsilon=config.epsilon, num_steps=config.train_pgd_steps) adv_logits = model(adv_images, is_training=False, test_local_stats=True) adv_cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=adv_logits, labels=labels) else: adv_logits = tf.zeros_like(logits) adv_cross_entropy = tf.zeros_like(cross_entropy) # Local linearity regulariser. if config.llr.loss_weight > 0.: linear_epsilon = _linear_schedule( global_step, 0, config.llr.warm_start, 0, config.llr.epsilon) linearity_loss = regularizers.local_linearity( model, images, labels, epsilon=linear_epsilon, num_steps=config.llr.num_steps, smoothing_factor=config.llr.smoothing_factor) else: linearity_loss = 0. # Combine the losses. classification_loss = tf.reduce_mean( config.nominal_loss_weight * cross_entropy + config.adversarial_loss_weight * adv_cross_entropy) regularization_loss = ( regularizers.l2_regularization_loss(config.l2_regularizer_weight) + config.llr.loss_weight * linearity_loss) loss = tf.add(classification_loss, regularization_loss, name='loss') # Optimise. train_op = optimizer.minimize(loss, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops + [train_op]): loss = tf.identity(loss) return loss, logits, adv_logits, labels def _test_step(config, model, batch): """Creates TensorFlow graph for a model evaluation step. Args: config: Experiment configuration. model: Callable taking (images, is_training, test_local_stats) and returning logits. batch: Dict of tensors for the minibatch, under keys 'image' and 'label'. Returns: logits: Nominal logits, of shape [batch_size, num_classes]. adv_logits: Adversarial logits, of shape [batch_size, num_classes]. labels: True labels of the examples in the minibatch. """ images = batch['image'] labels = batch['label'] # Nominal. logits = model(images, is_training=False, test_local_stats=False) # Adversarial. adv_images = carlini_wagner_attack( functools.partial(model, is_training=False, test_local_stats=False), images, labels, image_bounds=(0., 1.), epsilon=config.epsilon, num_steps=config.test_pgd_steps) adv_logits = model(adv_images, is_training=False, test_local_stats=False) return logits, adv_logits, labels def build_graph( config, train_input_fn, test_input_fn, model_preprocess_fn, model): """Builds the training graph. Args: config: Training configuration. train_input_fn: Callable returning the training data as a nest of tensors. test_input_fn: Callable returning the test data as a nest of tensors. model_preprocess_fn: Image pre-processing that should be combined with the model for adversarial evaluation. model: Callable taking (preprocessed_images, is_training, test_local_stats) and returning logits. Returns: loss: 0D tensor containing the loss to be minimised. train_measures: Dict (with string keys) of 0D tensors containing training measurements. test_measures: Dict (with string keys) of 0D tensors containing test set evaluation measurements. init_step_fn: Function taking (session, initial_step_val) to be invoked to initialise the global training step. """ global_step = tf.train.get_or_create_global_step() optimizer = _optimizer(config.optimizer, global_step) model_with_preprocess = _model_with_preprocess_fn( model, model_preprocess_fn) # Training step. loss, train_logits, train_adv_logits, train_labels = _train_step( config.train, model_with_preprocess, global_step, optimizer, train_input_fn()) train_measures = { 'acc': _top_k_accuracy(train_labels, train_logits), } if config.train.adversarial_loss_weight > 0.: train_measures.update({ 'adv_acc': _top_k_accuracy(train_labels, train_adv_logits), }) # Test evaluation. with tf.name_scope('test_accuracy'): test_logits, test_adv_logits, test_labels = _test_step( config.train, model_with_preprocess, test_input_fn()) test_measures = { 'acc': _top_k_accuracy(test_labels, test_logits), 'adv_acc': _top_k_accuracy(test_labels, test_adv_logits), } initial_step = tf.placeholder(shape=(), dtype=tf.int64) init_global_step_op = tf.assign(global_step, initial_step) def init_step_fn(session, initial_step_val): session.run(init_global_step_op, feed_dict={initial_step: initial_step_val}) return loss, train_measures, test_measures, init_step_fn
local_linearity_regularizer-main
local_linearity_regularizer/graph.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Dataset preprocessing utilities.""" import functools import numpy as np import tensorflow.compat.v1 as tf CIFAR10_CLASSES = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck', ] def random_crop(image, image_shape, crop_shape): """Data augmentation used in training. Args: image: 4D tensor of shape (batch_size, image_height, image_width, channels) image_shape: A tuple of (image_height, image_width, channels) crop_shape: A tuple of (crop_height, crop_width, channels) Returns: fn: A cropping function, which takes a Tensor for a single image and returns a Tensor for a cropped version of the image. """ has_batch = len(image.shape) > len(image_shape) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.reshape(image, [-1] + list(image_shape)) image = tf.image.random_flip_left_right(image) image = tf.pad( image, paddings=[[0, 0], [4, 4], [4, 4], [0, 0]], mode='REFLECT') image = tf.random_crop(image, [tf.shape(image)[0]] + list(crop_shape)) # Remove the batch dimension if it didn't originally have one. if not has_batch: image = tf.squeeze(image, axis=0) return image def random_crop_preprocess_fn(image_shape, crop_shape): """Pre-processing to occur as part of the training dataset. Pre-processing for the training set entails random cropping. The test set receives no pre-processing: it's just the identity function. Args: image_shape: A tuple of (image_height, image_width, channels) crop_shape: A tuple of (crop_height, crop_width, channels) Returns: Data batch preprocessing function, accepting and returning a `dict` with keys 'image' and 'label'. """ image_fn = functools.partial( random_crop, image_shape=image_shape, crop_shape=crop_shape) return lambda x: {'image': image_fn(x['image']), 'label': x['label']} def cifar10_model_preprocess(image): """Processing which should be combined with model for adv eval. Performs an affine transform on each element of the image tensor to map them to a range that straddles zero. A slightly different transform is applied to each channel to reflect the statistics of the Cifar-10 dataset. Args: image: 4D NHWC image tensor with float32 values in the range [0, 1]. Returns: 4D NHWC image tensor with float32 values in the approximate range [-1, +1]. """ cifar_means = [125.3, 123.0, 113.9] cifar_devs = [63.0, 62.1, 66.7] rescaled_means = np.array([x / 255. for x in cifar_means]) rescaled_devs = np.array([x / 255. for x in cifar_devs]) return (image - rescaled_means) / rescaled_devs def mnist_model_preprocess(image): """Processing which should be combined with model for adv eval.""" return 2. * image - 1.
local_linearity_regularizer-main
local_linearity_regularizer/datasets.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Robust training and evaluation loop.""" import abc from absl import logging import numpy as np import tensorflow.compat.v1 as tf class Checkpoint(metaclass=abc.ABCMeta): """Interface for regularly saving progress, in case of interruption.""" @abc.abstractmethod def restore_or_save(self, session): """Restores an existing checkpoint if any; otherwise saves an initial one. If a checkpoint is already present from an earlier abortive run (as determined by the implementation), it is loaded so that training can resume from where it left off. Both the TensorFlow trainable variables and the Python loop state are restored. If no such checkpoint is present, so there have been no earlier partial attempts at this training, an initial checkpoint is saved. Args: session: TensorFlow session. """ @abc.abstractmethod def save(self, session, step): """Saves a new checkpoint. Both the TensorFlow trainable variables and the Python loop state are saved, in case the run is accidentally interrupted. Args: session: TensorFlow session. step: Training step, so that the implementation can elect to save a checkpoint only every n steps. """ @property @abc.abstractmethod def state(self): """String-keyed dictionary of Python loop state.""" def train(loss, train_measures, test_measures, init_step_fn, checkpoint, num_runs, test_every=0, num_test_runs=0, master='', train_writer=None, test_writer=None): """Builds and trains model. Args: loss: 0D tensor containing the loss to be minimised. train_measures: Dict (with string keys) of 0D tensors containing training measurements. test_measures: Dict (with string keys) of 0D tensors containing test set evaluation measurements. init_step_fn: Function taking (session, initial_step_val) to be invoked to initialise the global training step. checkpoint: Checkpoint to save progress for resilience against interruption. num_runs: Number of training runs to perform. Each run consists of several training steps, as specified by `num_steps_per_run`. test_every: Frequency (expressed as 'every n training runs') with which to perform a full test set evaluation. Zero means never. num_test_runs: Number of test runs to perform in order to complete a full test set evaluation. master: Name of the TensorFlow master to use. train_writer: Optional XData writer to record `train_measures`. test_writer: Optional XData writer to record `test_measures`. """ checkpoint.state['completed_runs'] = 0 full_test_set_evaluation = _make_full_test_set_evaluation_fn( test_measures, num_test_runs, test_writer=test_writer) with tf.train.MonitoredTrainingSession( master=master, is_chief=True, chief_only_hooks=[], hooks=[], config=tf.ConfigProto( allow_soft_placement=True) ) as session: checkpoint.restore_or_save(session._tf_sess()) # pylint: disable=protected-access # Initialise the global training step. # This is necessary because it's not stored in the checkpoint. initial_step_val = checkpoint.state['completed_runs'] init_step_fn(session, initial_step_val) while checkpoint.state['completed_runs'] < num_runs: # Training step. loss_val, train_measure_vals = session.run([loss, train_measures]) run = checkpoint.state['completed_runs'] + 1 step = run logging.info( '[%d] loss = %f, training measurements: %s', step, loss_val, train_measure_vals) if train_writer is not None: train_writer.write({ 'step': step, **{'train_' + key: val for key, val in train_measure_vals.items()}, }) if test_every > 0 and run % test_every == 0: full_test_set_evaluation(session, step) checkpoint.state['completed_runs'] = run checkpoint.save(session._tf_sess(), run) # pylint: disable=protected-access def evaluate(test_measures, num_test_runs=0, master='', test_writer=None): """Builds and trains model. Args: test_measures: Dict (with string keys) of 0D tensors containing test set evaluation measurements. num_test_runs: Number of test runs to perform in order to complete a full test set evaluation. master: Name of the TensorFlow master to use. test_writer: Optional XData writer to record `test_measures`. """ full_test_set_evaluation = _make_full_test_set_evaluation_fn( test_measures, num_test_runs, test_writer=test_writer) with tf.train.MonitoredTrainingSession( master=master, is_chief=True, chief_only_hooks=[], hooks=[], config=tf.ConfigProto( allow_soft_placement=True) ) as session: # Use step=0 because there is only a single evaluation run in this case. full_test_set_evaluation(session, step=0) def _make_full_test_set_evaluation_fn( test_measures, num_test_runs, test_writer=None): """Returns a function to perform a full test set evaluation. Args: test_measures: Dict (with string keys) of 0D tensors containing test set evaluation measurements. num_test_runs: Number of test runs to perform in order to complete a full test set evaluation. test_writer: Optional XData writer to record `test_measures`. Returns: Callable accepting `(session, step)` to perform a full test set evaluation. """ def run(session, step): test_measure_vals = tf.nest.map_structure( lambda *x: np.mean(x), *[session.run(test_measures) for _ in range(num_test_runs)]) logging.info( '[%d] test set evaluation on %d batches: %s', step, num_test_runs, test_measure_vals) if test_writer is not None: test_writer.write({ 'step': step, **{'test_' + key: val for key, val in test_measure_vals.items()}, }) return run
local_linearity_regularizer-main
local_linearity_regularizer/training_loop.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Regularizers for robust training.""" from absl import logging from interval_bound_propagation.src import attacks import tensorflow.compat.v1 as tf REGULARIZED_VARIABLES = 'REGULARIZED_VARIABLES' def l2_regularization_loss(weight): """Returns L2 regularization loss on the trainable variables. Args: weight: Controls the size of the regularization loss. May be zero if no regularization is required. Returns: L2 regularization loss. """ if not (tf.trainable_variables() and weight > 0): return tf.constant(0.) # Names of all variables that have already been regularized. regularization_losses = tf.get_collection(REGULARIZED_VARIABLES) reg_vars_names = {v.op.name for v in regularization_losses} def should_be_regularized(var): """Checks if a variable is a valid one to be regularized. A variable is valid if its name ends with '/w', 'w_dw' or '/w_pw' i.e. is not a bias or a batch norm variable. This function makes sure that a variable is not regularized twice. Args: var: A candidate tensorflow variable. Returns: A boolean to indicate whether the variable should be regularized. """ var_name = var.op.name valid_name = var_name.endswith(('/w', '/w_dw', '/w_pw')) already_regularized = var_name in reg_vars_names return valid_name and not already_regularized def l2(tensor): with tf.name_scope(None, 'L2Regularizer', [tensor]): l2_weight = tf.convert_to_tensor( weight, dtype=tensor.dtype.base_dtype, name='weight') return tf.multiply(l2_weight, tf.nn.l2_loss(tensor), name='value') regularized_variables = [] reg_losses = [] for var in tf.trainable_variables(): if should_be_regularized(var): reg_losses.append(l2(var)) tf.add_to_collection(REGULARIZED_VARIABLES, var) regularized_variables.append(var.op.name) logging.info('regularizing: %s', ', '.join(sorted(regularized_variables))) return tf.add_n(reg_losses, name='regularization_loss') def local_linearity( model, inputs, labels, epsilon=8./255., num_steps=10, smoothing_factor=2.): """Finds the greatest violation of the linear surface in the epsilon-vicinity. Args: model: Callable taking (inputs, is_training, test_local_stats, get_stats, set_stats) and returning logits. inputs: Tensor containing nominal inputs to the model. labels: 1D int64 Tensor containing ground truth labels of the inputs. epsilon: Perturbation radius of the linearity attack. num_steps: Number of steps of PGD optimization. smoothing_factor: Weight placed on |d^T grad L|. Returns: 0D Tensor containing the linearity attack loss. """ batch_stats = {} logits = model( inputs, is_training=False, test_local_stats=True, get_stats=batch_stats) # Use one-hot probs instead of sparse labels. # This is necessary because tf.nn.sparse_softmax_cross_entropy_with_logits # does not allow taking the gradient of its gradient. probs = tf.one_hot(labels, logits.shape[-1].value) loss = tf.nn.softmax_cross_entropy_with_logits_v2( logits=logits, labels=probs) loss_grad = tf.gradients(loss, [inputs])[0] loss_grad_sg = tf.stop_gradient(loss_grad) def loss_fn(new_inputs, stop_grad=True, add_extra=False): """Local linearity measure for inputs.""" new_logits = model( new_inputs, is_training=False, test_local_stats=True, set_stats=batch_stats) new_loss = tf.nn.softmax_cross_entropy_with_logits_v2( logits=new_logits, labels=probs) perturbation = tf.stop_gradient(new_inputs - inputs) delta_grad = tf.reduce_sum( perturbation * (loss_grad_sg if stop_grad else loss_grad), axis=list(range(1, inputs.shape.ndims))) diff = new_loss - (loss + delta_grad) attack_loss = tf.sign(diff) * diff if add_extra: attack_loss += smoothing_factor * tf.sign(delta_grad) * delta_grad return -tf.reduce_mean(attack_loss) adv_x = attacks.pgd_attack( loss_fn, inputs, epsilon=epsilon, num_steps=num_steps, image_bounds=(0., 1.), optimizer=attacks.UnrolledAdam(0.1)) return -loss_fn(adv_x, stop_grad=False, add_extra=True)
local_linearity_regularizer-main
local_linearity_regularizer/regularizers.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the training graph building.""" import functools from absl.testing import absltest import ml_collections import sonnet as snt import tensorflow.compat.v1 as tf from local_linearity_regularizer import graph class GraphTest(absltest.TestCase): def test_dataset_input_fns(self): train_batch_size = 5 test_batch_size = 7 image_height = 11 image_width = 13 image_channels = 3 dataset_config = ml_collections.config_dict.ConfigDict({ 'image_size': (image_height, image_width, image_channels), 'crop_size': (image_height, image_width, image_channels), 'train_subset': '_train', 'test_subset': '_test', }) # Keep track of calls to the dataset constructor. dataset_instances = [] def dataset_ctor(*args, **kwargs): dataset_instance = MockDataset( (image_height, image_width, image_channels), *args, **kwargs) dataset_instances.append(dataset_instance) return dataset_instance train_input_fn, test_input_fn = graph.dataset_input_fns( dataset_config, dataset_ctor, train_batch_size, test_batch_size) # The dataset constructor should have been called twice: once for the # train subset shuffled, and once for the test subset unshuffled. self.assertLen(dataset_instances, 2) self.assertEqual(train_batch_size, dataset_instances[0].batch_size) self.assertEqual('_train', dataset_instances[0].subset) self.assertEqual(True, dataset_instances[0].shuffle) self.assertEqual(test_batch_size, dataset_instances[1].batch_size) self.assertEqual('_test', dataset_instances[1].subset) self.assertEqual(False, dataset_instances[1].shuffle) # Check that each dataset instance yields batches of the correct size. train_batch = train_input_fn() self.assertEqual( [train_batch_size, image_height, image_width, image_channels], train_batch.shape.as_list()) test_batch = test_input_fn() self.assertEqual( [test_batch_size, image_height, image_width, image_channels], test_batch.shape.as_list()) def test_build_graph(self): train_batch_size = 5 test_batch_size = 7 config = ml_collections.config_dict.ConfigDict({ 'optimizer': self._optimizer_config(), 'train': { 'nominal_loss_weight': 1., 'adversarial_loss_weight': 0., 'l2_regularizer_weight': 0., 'llr': { 'loss_weight': 0., }, 'epsilon': .1, 'train_pgd_steps': 20, 'test_pgd_steps': 50, }, }) model = MockModel(num_classes=11) loss, train_measures, test_measures, _ = graph.build_graph( config, functools.partial(self._make_input, train_batch_size), functools.partial(self._make_input, test_batch_size), model_preprocess_fn=(lambda x: x), model=model, ) # The module should be connected several times - see below. self.assertLen(model.connection_kwargs, 4) # Nominal training. self.assertEqual(True, model.connection_kwargs[0]['is_training']) self.assertEqual(True, model.connection_kwargs[0]['test_local_stats']) # Nominal testing. self.assertEqual(False, model.connection_kwargs[1]['is_training']) self.assertEqual(False, model.connection_kwargs[1]['test_local_stats']) # Adversarial testing: attack loop. self.assertEqual(False, model.connection_kwargs[2]['is_training']) self.assertEqual(False, model.connection_kwargs[2]['test_local_stats']) # Adversarial testing: evaluating adversarial example. self.assertEqual(False, model.connection_kwargs[3]['is_training']) self.assertEqual(False, model.connection_kwargs[3]['test_local_stats']) self._assert_is_scalar(loss) self._assert_is_scalar(train_measures['acc']) self._assert_is_scalar(test_measures['acc']) def test_model_preprocess(self): train_batch_size = 5 test_batch_size = 7 config = ml_collections.config_dict.ConfigDict({ 'optimizer': self._optimizer_config(), 'train': { 'nominal_loss_weight': 1., 'adversarial_loss_weight': 0., 'l2_regularizer_weight': 0., 'llr': { 'loss_weight': 0., }, 'epsilon': .1, 'train_pgd_steps': 20, 'test_pgd_steps': 50, }, }) # Keep track of invocations of the preprocess function. model_preprocess_calls = [] def model_preprocess_fn(x): model_preprocess_calls.append(x) return 1. - x graph.build_graph( config, functools.partial(self._make_input, train_batch_size), functools.partial(self._make_input, test_batch_size), model_preprocess_fn=model_preprocess_fn, model=MockModel(num_classes=11), ) # Check that the preprocess function was called for train and test inputs. self.assertLen(model_preprocess_calls, 4) # Nominal training. self.assertEqual(train_batch_size, model_preprocess_calls[0].shape[0].value) # Nominal testing. self.assertEqual(test_batch_size, model_preprocess_calls[1].shape[0].value) # Adversarial testing: attack loop. self.assertEqual(test_batch_size, model_preprocess_calls[2].shape[0].value) # Adversarial testing: evaluating adversarial example. self.assertEqual(test_batch_size, model_preprocess_calls[3].shape[0].value) def _optimizer_config(self): return { 'learning_rate': 1.e-2, 'lr_boundaries': [1000], 'lr_decay_factor': .5, 'momentum': .9, } def _make_input( self, batch_size, image_height=17, image_width=19, image_channels=3): return { 'image': tf.placeholder(dtype=tf.float32, shape=[ batch_size, image_height, image_width, image_channels]), 'label': tf.placeholder(dtype=tf.int64, shape=[batch_size]), } def _assert_is_scalar(self, x): self.assertEqual(x.dtype, tf.float32) self.assertEqual(x.shape.as_list(), []) class MockDataset(object): """Trivial dataset that records its call arguments.""" def __init__( self, image_shape, batch_size, subset, shuffle=True, preprocess_fn=None): super().__init__() self._image_shape = image_shape self._batch_size = batch_size self._subset = subset self._shuffle = shuffle self._preprocess_fn = preprocess_fn @property def batch_size(self): return self._batch_size @property def subset(self): return self._subset @property def shuffle(self): return self._shuffle def __call__(self): return self._make_one_shot_iterator().get_next() def _make_one_shot_iterator(self): return self def get_next(self): return tf.placeholder( dtype=tf.float32, shape=[self._batch_size, *self._image_shape]) class MockModel(snt.AbstractModule): """Trivial Sonnet module that records its call arguments.""" def __init__(self, num_classes): super().__init__() self._num_classes = num_classes self._connection_kwargs = [] @property def connection_kwargs(self): return self._connection_kwargs def _build(self, inputs, **kwargs): # Log the arguments for this connection to the graph. self._connection_kwargs.append(kwargs) mean = tf.reduce_mean(inputs, axis=list(range(1, inputs.shape.ndims))) b = tf.get_variable('b', dtype=tf.float32, shape=[self._num_classes]) return tf.expand_dims(mean, 1) + b if __name__ == '__main__': absltest.main()
local_linearity_regularizer-main
local_linearity_regularizer/graph_test.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """TensorFlow version of the Wide ResNet model from Zagoruyko et al 2016. This implementation is modeled after the reference implementation at: https://github.com/szagoruyko/wide-residual-networks/tree/master/pytorch References: "Wide Residual Networks". (Zagoruyko et al 2016). https://arxiv.org/pdf/1605.07146.pdf "Deep Residual Learning for Image Recognition" (He et al 2015a). https://arxiv.org/pdf/1512.03385.pdf "Identity Mappings in Deep Residual Networks" (He et al 2015b) https://arxiv.org/pdf/1603.05027.pdf """ import sonnet as snt import tensorflow.compat.v1 as tf from local_linearity_regularizer import batchnorm def he_normal_initializer(seed=None, dtype=tf.float32): """He initialization (also called MSR or MSRA initialization). Args: seed: A Python integer. Used to create random seeds. dtype: The data type. Only floating point types are supported. Returns: An initializer. Compared to Glorot initialization (TF default), He initialization uses double the standard deviation (becaue of ReLUs), and typically uses Gaussians rather than uniform distributions. ResNet papers typically use He initialization, and it tends to result slightly (~0.2%) higher accuracy, though sometimes with BatchNorm this doesn't matter at all. """ return tf.variance_scaling_initializer( scale=2.0, mode='fan_in', distribution='normal', seed=seed, dtype=dtype) _DEFAULT_INITIALIZERS = {'w': he_normal_initializer()} def _bn_activations( inputs, activation='relu', activation_kwargs=None, decay_rate=0.1, **batchnorm_kwargs): """Batch norm plus activation layer. Args: inputs: 4D NHWC tensor of pre-activations. activation: Name of activation function within `tf.nn`. activation_kwargs: Additional keyword arguments to `activation`. decay_rate: Batch norm decay rate. **batchnorm_kwargs: Keyword arguments to pass through to the batch normalisation layer. Returns: 4D NHWC tensor of activations. """ activation_kwargs = activation_kwargs or {} batchnorm_layer = batchnorm.BatchNorm( decay_rate=decay_rate, scale=True, offset=True) pre_activations = batchnorm_layer(inputs, **batchnorm_kwargs) return getattr(tf.nn, activation)(pre_activations, **activation_kwargs) class WideResNetBlock(snt.AbstractModule): """Wide ResNet Block, as implemented in Zagoruyko 2016. Specifically, this is a pre-activation ResNet block, described in He et al 2015b, where each block consists of repeated applications of (BN - ReLU - Conv). See Fig. 2b from He et al 2015b for further explanation. All filters use a 3x3 receptive field. When `num_bottleneck_layers=1`, this corresponds to the "basic" block in Zagoruyko et al, which is the recommended block. This also corresponds to the original block structure from He et al 2015a. The last difference is that when projection shortcuts are used, the convolutional shortcut layer is applied to the result of the activation, rather than to the original input. I haven't noticed this documented in the papers, but I suspect the idea is that there are never two consecutive convolutional layers without a batch norm layer in between. """ def __init__(self, num_filters, num_bottleneck_layers=1, stride=1, projection_shortcut=False, activation='relu', activation_kwargs=None, decay_rate=0.1, initializers=None, name='wide_res_net_block'): """A Wide ResNet block, as in Zagoruyko 2016. Args: num_filters: An integer, the output dimension of each convolutional layer in the block. num_bottleneck_layers: An integer. The number of convolutional layers between residual connections is `num_bottleneck_layers + 1`. The Wide ResNet paper recommends that this be fixed at 1, and that depth instead by modified by changing the number of blocks per layer. stride: An integer. Stride greater than 1 will spatially downsample the input. Typically, this is 2 for the first block in every layer (except the first), and 1 for every other block. projection_shortcut: A boolean. If `False` (default), an identity connection is used. Otherwise a convolutional layer is applied after the first activation. This should be `True` whenever n_in != n_out or stride > 1. See discussion in class documentation above. activation: Name of activation function within `tf.nn`. activation_kwargs: Additional keyword arguments to `activation`. decay_rate: Batch norm decay rate. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializers are the He or MSRA initializers. Use `initializers=None` for Glorot initialization (TF default). name: A string, the name of the Sonnet module. """ super(WideResNetBlock, self).__init__(name=name) self._num_filters = num_filters self._num_bottleneck_layers = num_bottleneck_layers self._stride = stride self._projection_shortcut = projection_shortcut if stride > 1 and not projection_shortcut: raise ValueError('need a projection shortcut with stride > 1') self._initializers = initializers or _DEFAULT_INITIALIZERS self._activation = activation self._activation_kwargs = activation_kwargs self._decay_rate = decay_rate def _build(self, x, **batchnorm_kwargs): orig_x = x for i in range(self._num_bottleneck_layers + 1): stride = self._stride if i == 0 else 1 x = _bn_activations( x, activation=self._activation, activation_kwargs=self._activation_kwargs, decay_rate=self._decay_rate, **batchnorm_kwargs) # When using a projection shortcut, the residual connection should # be applied from after the first activation, rather than before. if self._projection_shortcut and i == 0: orig_x = x x = snt.Conv2D( self._num_filters, [3, 3], stride=stride, use_bias=False, initializers=self._initializers, name='conv_{}'.format(i))(x) if self._projection_shortcut: shortcut_x = snt.Conv2D( self._num_filters, [1, 1], stride=self._stride, use_bias=False, initializers=self._initializers, name='shortcut_x')(orig_x) x += shortcut_x else: x += orig_x return x class WideResNet(snt.AbstractModule): """Wide ResNet architecture used for experiments in Zagoruyko et al 2016. For best results, training and evaluation should use the CIFAR-10 pre- processing functions defined in `datasets.py`. This model achieves 96.0% accuracy on the CIFAR10 test set. A ResNet model consists of a single 3x3 convolutional layer, followed by three ResNet "layers", followed by a non-linearity, spatial average pooling, and a final linear layer. Each ResNet "layer" (not to be confused with a single layer of a neural network) consists of a number of ResNet Blocks, which is determined by the `depth` parameter. Within each layer, the first ResNet block should use a projection shortcut, and all others should use identity shortcuts. Each layer also operates at a different spatial resolution (32x32, 16x16, and 8x8), which means that the first ResNet block in each ResNet layer, other than the first, should also use a stride of 2. """ def __init__(self, depth=28, width=10, num_classes=10, activation='relu', activation_kwargs=None, decay_rate=0.1, initializers=None, name='wide_res_net'): """A Wide ResNet block, as in Zagoruyko 2016. Args: depth: Number of layers. Must be 6n+4 for some positive integer n. width: Controls the number of channels per hidden layer. The number of channels will be initially `16*num_width`, increasing to `64*num_width`. num_classes: Number of output classes. activation: Name of activation function within `tf.nn`. activation_kwargs: Additional keyword arguments to `activation`. decay_rate: Batch norm decay rate. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializers are the He or MSRA initializers. Use `initializers=None` for Glorot initialization (TF default). name: A string, the name of the Sonnet module. """ super(WideResNet, self).__init__(name=name) if (depth - 4) % 6 != 0 or depth < 10: raise ValueError('depth is {}, but must be 6n+4'.format(depth)) self._depth = depth self._width = width self._num_classes = num_classes self._initializers = initializers or _DEFAULT_INITIALIZERS self._activation = activation self._activation_kwargs = activation_kwargs self._decay_rate = decay_rate def _build(self, x, **batchnorm_kwargs): blocks_per_layer = (self._depth - 4) // 6 filter_sizes = [self._width * n for n in [16, 32, 64]] x = snt.Conv2D( filter_sizes[0], [3, 3], stride=1, use_bias=False, initializers=self._initializers, name='init_conv')(x) for layer_num, filter_size in enumerate(filter_sizes): for i in range(blocks_per_layer): stride = 2 if (layer_num != 0 and i == 0) else 1 projection_shortcut = (i == 0) block = WideResNetBlock( filter_size, num_bottleneck_layers=1, stride=stride, projection_shortcut=projection_shortcut, activation=self._activation, activation_kwargs=self._activation_kwargs, decay_rate=self._decay_rate, initializers=self._initializers, name='resnet_lay_{}_block_{}'.format(layer_num, i)) x = block(x, **batchnorm_kwargs) x = _bn_activations( x, activation=self._activation, activation_kwargs=self._activation_kwargs, decay_rate=self._decay_rate, **batchnorm_kwargs) x = tf.reduce_mean(x, axis=[1, 2], keepdims=False, name='avg_pool') x = snt.Linear(self._num_classes, initializers=self._initializers)(x) return x
local_linearity_regularizer-main
local_linearity_regularizer/wide_resnet.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Training script using Wide ResNet. To run locally: python3 train_main.py --config=config.py """ import functools from absl import app from absl import flags from ml_collections import config_flags import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds from local_linearity_regularizer import datasets from local_linearity_regularizer import graph from local_linearity_regularizer import training_loop from local_linearity_regularizer import wide_resnet flags.DEFINE_integer('train_batch_size', 64, 'Batch size for training.') flags.DEFINE_integer('num_runs', 100000, 'Number of training steps to execute.') flags.DEFINE_integer('test_every', 4000, 'Number of runs between accuracy tests (<=0 to disable).') flags.DEFINE_integer('test_batch_size', 80, 'Batch size to use for accuracy tests.') flags.DEFINE_integer('num_test_runs', 125, 'Number of test set batches for accuracy tests.') config_flags.DEFINE_config_file( 'config', 'config.py', 'Configuration file for the experimental setup.') FLAGS = flags.FLAGS class NullCheckpoint(training_loop.Checkpoint): """Placeholder for checkpointing.""" def __init__(self): super().__init__() self._state = {} def restore_or_save(self, session): pass def save(self, session, step): pass @property def state(self): return self._state def tfds_preprocess(batch): """Map image pixel values from uint8 [0,255] to float32 [0,1].""" return { 'image': tf.cast(batch['image'], tf.float32) / 255., 'label': batch['label'], } def tfds_load(name, batch_size, subset, shuffle, preprocess_fn=None): """Loads a TFDS dataset, with shuffle/preprocess dictated by the training. Args: name: TFDS name, e.g. 'cifar10'. batch_size: Batch size. subset: Dataset split, e.g. 'train'. shuffle: Whether to shuffle the dataset. preprocess_fn: Preprocessing requested by the training algorithm, for example random cropping. Returns: TF Dataset structured as {'image': batch of HWC images with values in [0,1], 'label': batch of integer labels}. """ ds = tfds.load(name, split=subset).cache().repeat() if shuffle: ds = ds.shuffle(10 * batch_size, seed=0) ds = ds.batch(batch_size) ds = ds.map(tfds_preprocess) if preprocess_fn: ds = ds.map(preprocess_fn) return ds def main(_): config = FLAGS.config # Train and test datasets. if config.dataset == 'cifar10': model_preprocess_fn = datasets.cifar10_model_preprocess elif config.dataset == 'mnist': model_preprocess_fn = datasets.mnist_model_preprocess else: raise ValueError('Unsupported dataset: ' + config.dataset) _, dataset_info = tfds.load(config.dataset, split='train', with_info=True) num_classes = dataset_info.features['label'].num_classes train_input_fn, test_input_fn = graph.dataset_input_fns( config[config.dataset], functools.partial(tfds_load, config.dataset), FLAGS.train_batch_size, FLAGS.test_batch_size) # Classification model. model = wide_resnet.WideResNet( num_classes=num_classes, **config.model.kwargs.to_dict()) loss, train_measures, test_measures, init_step_fn = graph.build_graph( config, train_input_fn, test_input_fn, model_preprocess_fn, model) checkpoint = NullCheckpoint() training_loop.train( loss, train_measures, test_measures, init_step_fn, checkpoint, num_runs=FLAGS.num_runs, test_every=FLAGS.test_every, num_test_runs=FLAGS.num_test_runs) if __name__ == '__main__': tf.enable_resource_variables() app.run(main)
local_linearity_regularizer-main
local_linearity_regularizer/train_main.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for zipfs_gridworld.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np from zipfian_environments.gridworld import zipfs_gridworld as zipf_env from zipfian_environments.gridworld import zipfs_gridworld_core as zipf_env_core class ZipfFindEnvironmentTest(parameterized.TestCase): def test_full_wrapper(self): env = zipf_env.ZipfsGridworldEnvironment( rng=np.random.default_rng(seed=0) ) result = env.reset() self.assertIsNone(result.reward) scroll_crop_size = zipf_env.SCROLL_CROP_SIZE upsample_size = zipf_env.UPSAMPLE_SIZE self.assertEqual(result.observation[0].shape, (scroll_crop_size * upsample_size, scroll_crop_size * upsample_size, 3)) us = zipf_env.UPSAMPLE_SIZE scs = zipf_env.SCROLL_CROP_SIZE offset = us * (scs // 2) for i in range(8): # check all actions work result = env.step(i) self.assertEqual(result.observation[0].shape, (scroll_crop_size * upsample_size, scroll_crop_size * upsample_size, 3)) if not result.step_type.last: # check egocentric scrolling is working, by checking agent is in center np.testing.assert_array_almost_equal( result.observation[0][offset:offset + us, offset:offset + us, :], zipf_env._CHAR_TO_TEMPLATE_BASE[zipf_env_core.AGENT_CHAR] / 255.) # check goal object cue in the top left as intended np.testing.assert_array_almost_equal( result.observation[0][:us, :us, :], env._cue_template / 255.) @parameterized.parameters( "uniform", "uniform_rare", "zipf_1", "zipf_1.5", "zipf_2", ) def test_simple_builder(self, level_name): env = zipf_env.simple_builder(level_name) env.reset() scroll_crop_size = zipf_env.SCROLL_CROP_SIZE upsample_size = zipf_env.UPSAMPLE_SIZE for i in range(8): result = env.step(i) # check all 8 movements work self.assertEqual(result.observation[0].shape, (scroll_crop_size * upsample_size, scroll_crop_size * upsample_size, 3)) if __name__ == "__main__": absltest.main()
zipfian_environments-main
gridworld/zipfs_gridworld_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The pycolab core of the environment for Zipf's Gridworld.""" import curses import enum from absl import app from absl import flags from absl import logging import numpy as np from pycolab import ascii_art from pycolab import human_ui from pycolab import things as plab_things from pycolab.prefab_parts import sprites as prefab_sprites from zipfian_environments.gridworld import map_building FLAGS = flags.FLAGS DEFAULT_NUM_ROOMS = (3, 3) DEFAULT_ROOM_SIZE = (3, 3) # note one square around each room will be wall. DEFAULT_NUM_MAPS = 20 DEFAULT_NUM_OBJECTS = 20 DEFAULT_ZIPF_EXPONENT = 2 AGENT_CHAR = map_building.AGENT_CHAR WALL_CHAR = map_building.WALL_CHAR FLOOR_CHAR = map_building.FLOOR_CHAR OBJECT_SHAPES = [ "triangle", "empty_square", "plus", "inverse_plus", "ex", "inverse_ex", "circle", "empty_circle", "tee", "upside_down_tee", "h", "u", "upside_down_u", "vertical_stripes", "horizontal_stripes" ] COLORS = { "red": np.array([255, 0, 0]), "green": np.array([0, 255, 0]), "blue": np.array([0, 0, 255]), "purple": np.array([128, 0, 128]), "orange": np.array([255, 165, 0]), "yellow": np.array([255, 255, 0]), "brown": np.array([128, 64, 0]), "pink": np.array([255, 64, 255]), "cyan": np.array([0, 255, 255]), "dark_green": np.array([0, 100, 0]), "dark_red": np.array([100, 0, 0]), "dark_blue": np.array([0, 0, 100]), "teal": np.array([0, 100, 100]), "lavender": np.array([215, 200, 255]), "rose": np.array([255, 205, 230]), } def zipf_dist(n, exponent=1.): vals = 1./(np.arange(1, n + 1))**exponent return vals / np.sum(vals) def uniform_rare_dist(n): vals = np.zeros([n], dtype=np.float32) num_rare = n // 5 vals[-num_rare:] = 1. / num_rare return vals # movement directions / actions for agent class DIRECTIONS(enum.IntEnum): N = 0 NE = 1 E = 2 SE = 3 S = 4 SW = 5 W = 6 NW = 7 class ObjectDrape(plab_things.Drape): """A `Drape` for objects that are to be found.""" def __init__(self, curtain, character, color, shape, value=0.): super(ObjectDrape, self).__init__(curtain, character) self.color = color self.shape = shape self.value = value def update(self, actions, board, layers, backdrop, things, the_plot): if self.curtain[things[AGENT_CHAR].position]: # Award the player the appropriate amount of reward. the_plot.add_reward(self.value) the_plot.terminate_episode() class PlayerSprite(prefab_sprites.MazeWalker): """The player / agent character.""" def __init__(self, corner, position, character): super(PlayerSprite, self).__init__( corner, position, character, impassable="#") def update(self, actions, board, layers, backdrop, things, the_plot): # agent can move around to look for the target if actions == DIRECTIONS.N: self._north(board, the_plot) elif actions == DIRECTIONS.NE: self._northeast(board, the_plot) elif actions == DIRECTIONS.E: self._east(board, the_plot) elif actions == DIRECTIONS.SE: self._southeast(board, the_plot) elif actions == DIRECTIONS.S: self._south(board, the_plot) elif actions == DIRECTIONS.SW: self._southwest(board, the_plot) elif actions == DIRECTIONS.W: self._west(board, the_plot) elif actions == DIRECTIONS.NW: self._northwest(board, the_plot) def make_game(house_map, objects_and_properties): """Uses pycolab to turn an ascii map into a game. Args: house_map: the ascii art map to use, from generate_map. objects_and_properties: list of (character, color, shape, value), for setting up object properties. Returns: this_game: Pycolab engine running the specified game. """ sprites = {AGENT_CHAR: PlayerSprite} drape_creators = {} char_to_color_shape = [] # add dancers to level for obj, color, shape, value in objects_and_properties: drape_creators[obj] = ascii_art.Partial( ObjectDrape, color=color, shape=shape, value=value) char_to_color_shape.append((obj, color + " " + shape)) if value > 0.: target_color_shape = color + " " + shape this_game = ascii_art.ascii_art_to_game( art=house_map, what_lies_beneath=" ", sprites=sprites, drapes=drape_creators, update_schedule=[[AGENT_CHAR], [x[0] for x in objects_and_properties]]) this_game.the_plot["target_color_shape"] = target_color_shape this_game.the_plot["char_to_color_shape"] = char_to_color_shape return this_game def builder( num_maps=DEFAULT_NUM_MAPS, num_rooms=DEFAULT_NUM_ROOMS, room_size=DEFAULT_ROOM_SIZE, num_objects=DEFAULT_NUM_OBJECTS, zipf_exponent=DEFAULT_ZIPF_EXPONENT, override_dist_function=None, rng=None): """Builds a game (a single episode) of Zipf's Gridworld. Args: num_maps: The number of maps to sample from. num_rooms: (n, m) to create a n x m grid of rooms. room_size: (k, l) to create a k x l room shape. num_objects: The number of objects to include per map. zipf_exponent: the exponent to use for the Zipfian distribution, or 0 for uniform. override_dist_function: A function that takes as input a number of items, and outputs a vector giving distribution over that number of items. This is used for custom evaluation, e.g. on only the rare items. rng: Optional np rng for reproducible results, e.g. rng=np.random.default_rng(seed=0). Returns: A pycolab game sampled according to the specified distributions. """ if override_dist_function is None: dist_function = lambda n: zipf_dist(n, exponent=zipf_exponent) else: dist_function = override_dist_function # set up distribution over and sample index map_weighting = dist_function(num_maps) if rng is None: rng = np.random.default_rng(1234) map_index = rng.choice(np.arange(num_maps), p=map_weighting) # always same map for given index map_rng = np.random.default_rng(seed=1234 + map_index) current_map, objects_in_map = map_building.generate_map( n_rooms=num_rooms, room_size=room_size, n_objs=num_objects, rng=map_rng ) # set up object weighting and sample target object object_weighting = dist_function(num_objects) target_index = rng.choice(np.arange(num_objects), p=object_weighting) values = [1. if i == target_index else 0. for i in range(num_objects)] # generate set of colors and shapes such that all pairings are unique these_colors = [] these_shapes = [] while len(these_colors) < num_objects or len(these_shapes) < num_objects: these_colors = map_rng.choice(list(COLORS.keys()), num_objects + 10, replace=True) these_shapes = map_rng.choice(OBJECT_SHAPES[:], num_objects + 10, replace=True) # ensure unique pairings these_colors_and_shapes = sorted(list(set(zip(these_colors, these_shapes)))) map_rng.shuffle(these_colors_and_shapes) these_colors, these_shapes = zip(*these_colors_and_shapes) objects_and_properties = list(zip(objects_in_map, these_colors, these_shapes, values)) logging.info( "Making game with map_index %i and objects %s", map_index, str(objects_and_properties)) game = make_game(current_map, objects_and_properties) return game def main(argv): del argv # unused game = builder() # Note that these colors are only for human UI fg_colors = { AGENT_CHAR: (999, 999, 999), # Agent is white WALL_CHAR: (300, 300, 300), # Wall, dark grey FLOOR_CHAR: (0, 0, 0), # Floor } obj_chars = map_building.POSSIBLE_OBJECT_CHARS[:20] cols = [(999 * x / 255.).astype(np.int32)for x in COLORS.values()] cols = [tuple(x.tolist()) for x in cols] * 2 obj_chars_and_colors = zip( obj_chars, cols ) fg_colors.update(dict(obj_chars_and_colors)) bg_colors = { c: (0, 0, 0) for c in map_building.RESERVED_CHARS + obj_chars } ui = human_ui.CursesUi( keys_to_actions={ # Basic movement. curses.KEY_UP: DIRECTIONS.N, curses.KEY_DOWN: DIRECTIONS.S, curses.KEY_LEFT: DIRECTIONS.W, curses.KEY_RIGHT: DIRECTIONS.E, "w": DIRECTIONS.N, "d": DIRECTIONS.E, "x": DIRECTIONS.S, "a": DIRECTIONS.W, "q": DIRECTIONS.NW, "e": DIRECTIONS.NE, "z": DIRECTIONS.SW, "c": DIRECTIONS.SE, -1: 8, # Do nothing. }, delay=500, colour_fg=fg_colors, colour_bg=bg_colors) ui.play(game) if __name__ == "__main__": app.run(main)
zipfian_environments-main
gridworld/zipfs_gridworld_core.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A pycolab environment for finding objects in skewed environments. Both the maps and the objects to find in each map are zipfian distributed. The room is upsampled at a size of 9 pixels per square to render a view for the agent, which is cropped in egocentric perspective, i.e. the agent is always in the center of its view (see https://arxiv.org/abs/1910.00571). """ from absl import flags import dm_env import numpy as np from pycolab import cropping from zipfian_environments.gridworld import zipfs_gridworld_core as env_core FLAGS = flags.FLAGS UPSAMPLE_SIZE = 9 # pixels per game square SCROLL_CROP_SIZE = 7 # in game squares OBJECT_SHAPES = env_core.OBJECT_SHAPES COLORS = env_core.COLORS def _generate_template(object_name): """Generates a template object image, given a name with color and shape.""" object_color, object_type = object_name.split() template = np.zeros((UPSAMPLE_SIZE, UPSAMPLE_SIZE)) half = UPSAMPLE_SIZE // 2 if object_type == "triangle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if (j <= half and i >= 2 * (half - j)) or (j > half and i >= 2 * (j - half)): template[i, j] = 1. elif object_type == "square": template[:, :] = 1. elif object_type == "empty_square": template[:2, :] = 1. template[-2:, :] = 1. template[:, :2] = 1. template[:, -2:] = 1. elif object_type == "plus": template[:, half - 1:half + 2] = 1. template[half - 1:half + 2, :] = 1. elif object_type == "inverse_plus": template[:, :] = 1. template[:, half - 1:half + 2] = 0. template[half - 1:half + 2, :] = 0. elif object_type == "ex": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if abs(i - j) <= 1 or abs(UPSAMPLE_SIZE - 1 - j - i) <= 1: template[i, j] = 1. elif object_type == "inverse_ex": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if not (abs(i - j) <= 1 or abs(UPSAMPLE_SIZE - 1 - j - i) <= 1): template[i, j] = 1. elif object_type == "circle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if (i - half)**2 + (j - half)**2 <= half**2: template[i, j] = 1. elif object_type == "empty_circle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if abs((i - half)**2 + (j - half)**2 - half**2) < 6: template[i, j] = 1. elif object_type == "tee": template[:, half - 1:half + 2] = 1. template[:3, :] = 1. elif object_type == "upside_down_tee": template[:, half - 1:half + 2] = 1. template[-3:, :] = 1. elif object_type == "h": template[:, :3] = 1. template[:, -3:] = 1. template[half - 1:half + 2, :] = 1. elif object_type == "u": template[:, :3] = 1. template[:, -3:] = 1. template[-3:, :] = 1. elif object_type == "upside_down_u": template[:, :3] = 1. template[:, -3:] = 1. template[:3, :] = 1. elif object_type == "vertical_stripes": for j in range(half + UPSAMPLE_SIZE % 2): template[:, 2*j] = 1. elif object_type == "horizontal_stripes": for i in range(half + UPSAMPLE_SIZE % 2): template[2*i, :] = 1. else: raise ValueError("Unknown object: {}".format(object_type)) if object_color not in COLORS: raise ValueError("Unknown color: {}".format(object_color)) template = np.tensordot(template, COLORS[object_color], axes=0) return template # Agent and wall templates _CHAR_TO_TEMPLATE_BASE = { env_core.AGENT_CHAR: np.tensordot( np.ones([UPSAMPLE_SIZE, UPSAMPLE_SIZE]), np.array([255, 255, 255]), axes=0), env_core.WALL_CHAR: np.tensordot( np.ones([UPSAMPLE_SIZE, UPSAMPLE_SIZE]), np.array([40, 40, 40]), axes=0), } # cue background color is light gray CUE_BACKGROUND = np.array([180, 180, 180]) def add_background_color_to_image(image, background_color): """Replaces zeros in the image with background color.""" return np.where( np.all(image == 0., axis=-1, keepdims=True), background_color[None, None, :], image ) def get_scrolling_cropper(rows=SCROLL_CROP_SIZE, cols=SCROLL_CROP_SIZE, crop_pad_char=env_core.FLOOR_CHAR): """Sets up cropper for egocentric agent view.""" return cropping.ScrollingCropper(rows=rows, cols=cols, to_track=[env_core.AGENT_CHAR], pad_char=crop_pad_char, scroll_margins=(None, None)) class ZipfsGridworldEnvironment(dm_env.Environment): """A Python environment API for finding tasks.""" def __init__( self, num_maps=env_core.DEFAULT_NUM_MAPS, num_rooms=env_core.DEFAULT_NUM_ROOMS, room_size=env_core.DEFAULT_ROOM_SIZE, num_objects=env_core.DEFAULT_NUM_OBJECTS, zipf_exponent=env_core.DEFAULT_ZIPF_EXPONENT, override_dist_function=None, max_steps=100, rng=None): """Construct a dm_env-compatible wrapper for pycolab games for agent use. This class inherits from dm_env and has all the expected methods and specs. It also renders the game from ascii art to pixel observations. Args: num_maps: The number of possible maps to sample from. num_rooms: The number of rooms per map, as a tuple of (num_rooms_x, num_rooms_y); rooms are layed out in a grid of this size. room_size: Tuple of (size_x, size_y) for each room, measured in game squares. num_objects: The number of objects to place in each map. zipf_exponent: The strength of the skew, use 0 for a uniform distribution. override_dist_function: Function that generates a distribution, in lieu of the zipf_distribution function. max_steps: The maximum number of steps to allow in an episode, after which it will terminate. rng: An optional numpy Random Generator, to set a fixed seed use e.g. `rng=np.random.default_rng(seed=...)` """ # args self._builder_kwargs = dict( num_maps=num_maps, num_rooms=num_rooms, room_size=room_size, num_objects=num_objects, zipf_exponent=zipf_exponent, override_dist_function=override_dist_function ) self._max_steps = max_steps # internal state if rng is None: rng = np.random.default_rng(seed=1234) self._rng = rng self._current_game = None # Current pycolab game instance. self._state = None # Current game step state. self._game_over = None # Whether the game has ended. self._char_to_template = None # Mapping of chars to images. self._cue_template = None # rendering tools self._cropper = get_scrolling_cropper(SCROLL_CROP_SIZE, SCROLL_CROP_SIZE, env_core.FLOOR_CHAR) def _render_observation(self, observation): """Renders from raw pycolab image observation to agent-usable pixel ones.""" observation = self._cropper.crop(observation) obs_rows, obs_cols = observation.board.shape image = np.zeros([obs_rows * UPSAMPLE_SIZE, obs_cols * UPSAMPLE_SIZE, 3], dtype=np.float32) for i in range(obs_rows): for j in range(obs_cols): this_char = chr(observation.board[i, j]) if this_char != env_core.FLOOR_CHAR: image[ i * UPSAMPLE_SIZE:(i + 1) * UPSAMPLE_SIZE, j * UPSAMPLE_SIZE:(j + 1) * UPSAMPLE_SIZE] = self._char_to_template[ this_char] # insert cue image, always in agent's top left corner image[:UPSAMPLE_SIZE, :UPSAMPLE_SIZE] = self._cue_template image /= 255. return (image,) def reset(self): """Start a new episode.""" # Build a new game and retrieve its first set of state/reward/discount. self._current_game = env_core.builder( rng=self._rng, **self._builder_kwargs) # set up rendering, cropping, and state for current game self._char_to_template = { k: _generate_template(v) for k, v in self._current_game.the_plot[ "char_to_color_shape"]} self._char_to_template.update(_CHAR_TO_TEMPLATE_BASE) self._cue_template = add_background_color_to_image( _generate_template( self._current_game.the_plot["target_color_shape"]), CUE_BACKGROUND) self._cropper.set_engine(self._current_game) self._state = dm_env.StepType.FIRST # let's go! observation, _, _ = self._current_game.its_showtime() observation = self._render_observation(observation) return dm_env.TimeStep( step_type=self._state, reward=None, discount=None, observation=observation) def step(self, action): """Apply action, step the world forward, and return observations.""" # If needed, reset and start new episode. if self._state == dm_env.StepType.LAST: self._clear_state() if self._current_game is None: return self.reset() # Execute the action in pycolab. observation, reward, discount = self._current_game.play(action) self._game_over = self._is_game_over() reward = reward if reward is not None else 0. observation = self._render_observation(observation) # Check the current status of the game. if self._game_over: self._state = dm_env.StepType.LAST else: self._state = dm_env.StepType.MID return dm_env.TimeStep( step_type=self._state, reward=reward, discount=discount, observation=observation) def observation_spec(self): image_shape = (SCROLL_CROP_SIZE * UPSAMPLE_SIZE, SCROLL_CROP_SIZE * UPSAMPLE_SIZE, 3) return ( # vision dm_env.specs.Array( shape=image_shape, dtype=np.float32, name="image"), ) def action_spec(self): return dm_env.specs.BoundedArray( shape=[], dtype="int32", minimum=0, maximum=7, name="grid_actions") def _is_game_over(self): """Returns whether it is game over, either from the engine or timeout.""" return (self._current_game.game_over or (self._current_game.the_plot.frame >= self._max_steps)) def _clear_state(self): """Clear all the internal information about the game.""" self._state = None self._current_game = None self._char_to_template = None self._game_over = None def simple_builder(level_name, level_kwargs_overrides=None): """Simplifies building from fixed defs. Args: level_name: one of 'uniform', 'uniform_rare', or 'zipf_{exponent}' for {exponent} interpretable as a float. level_kwargs_overrides: optional dict of overrides to default level settings, e.g. to run on larger maps or with more objects. Returns: A ZipfsGridworldEnvironment with the requested settings. """ level_args = dict( num_maps=env_core.DEFAULT_NUM_MAPS, num_rooms=env_core.DEFAULT_NUM_ROOMS, room_size=env_core.DEFAULT_ROOM_SIZE, num_objects=env_core.DEFAULT_NUM_OBJECTS, ) if level_kwargs_overrides is not None: level_args.update(level_kwargs_overrides) if level_name == "uniform": level_args["zipf_exponent"] = 0 elif level_name == "uniform_rare": level_args["zipf_exponent"] = 0 level_args["override_dist_function"] = env_core.uniform_rare_dist elif level_name[:4] == "zipf": level_args["zipf_exponent"] = float(level_name[5:]) else: raise ValueError("Unrecognized level name: " + level_name) return ZipfsGridworldEnvironment(**level_args)
zipfian_environments-main
gridworld/zipfs_gridworld.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for building ascii maps with multiple rooms.""" import itertools import numpy as np AGENT_CHAR = "A" WALL_CHAR = "#" FLOOR_CHAR = " " RESERVED_CHARS = [AGENT_CHAR, WALL_CHAR, FLOOR_CHAR] POSSIBLE_OBJECT_CHARS = [ chr(i) for i in range(65, 91) if chr(i) not in RESERVED_CHARS ] def manhattan_dist(x, y): return abs(x[0] - y[0]) + abs(x[1] - y[1]) def get_neighbors(room, rooms_list): return [other for other in rooms_list if manhattan_dist(room, other) == 1] def ensure_connected(rooms_list, room_doors, rng): """Adds doors until all rooms are connected to each other.""" connected = rooms_list[:1] unconnected = [] uncertain = rooms_list[1:] while uncertain or unconnected: if uncertain: connected_new = [] for room in uncertain: for other in connected: if room in room_doors[other]: connected.append(room) connected_new.append(room) break if connected_new: # remove from uncertain uncertain = list(set(uncertain) - set(connected_new)) else: # nothing new, remaining are unconnected unconnected = uncertain uncertain = [] elif unconnected: connected_new = [] rng.shuffle(unconnected) for room in unconnected: connected_neighbors = get_neighbors(room, connected) if connected_neighbors: rng.shuffle(connected_neighbors) other = connected_neighbors[0] room_doors[room].append(other) room_doors[other].append(room) connected_new.append(room) connected.append(room) break # otherwise we may overdo it on connections assert connected_new # should be at least 1 adjacency uncertain = list(set(unconnected) - set(connected_new)) unconnected = [] return room_doors def generate_map(n_rooms=(3, 3), room_size=(3, 3), n_objs=20, rng=None): """Generates a map for Zipf's Gridworld.""" if rng is None: rng = np.random.default_rng(seed=0) rooms_list = list(itertools.product(range(n_rooms[0]), range(n_rooms[1]))) room_doors = {room: [] for room in rooms_list} # start by adding a random door to each room for room in rooms_list: if not room_doors[room]: # if it doesn't already have a door neighbors = get_neighbors(room, rooms_list) other = neighbors[rng.integers(len(neighbors))] room_doors[room].append(other) room_doors[other].append(room) # now make sure it's connected room_doors = ensure_connected(rooms_list, room_doors, rng) # generate level row_skip = room_size[0] + 1 # extra for walls col_skip = room_size[1] + 1 num_rows = n_rooms[0] * row_skip + 1 num_cols = n_rooms[1] * col_skip + 1 level_layout = np.array([[" "] * num_cols] * num_rows) # insert walls for i in range(n_rooms[0] + 1): level_layout[i * row_skip, :] = WALL_CHAR for i in range(n_rooms[1] + 1): level_layout[:, i * col_skip] = WALL_CHAR # add doors alldoors = [] for room in rooms_list: for other in set(room_doors[room]): if other[0] < room[0]: loc = (room[0] * row_skip, room[1] * col_skip + rng.integers(1, col_skip)) level_layout[loc] = FLOOR_CHAR alldoors.append(loc) elif other[1] < room[1]: loc = (room[0] * row_skip + rng.integers(1, row_skip), room[1] * col_skip) level_layout[loc] = FLOOR_CHAR alldoors.append(loc) # add objects (and agent start) where they will not block anything valid_locations = [] for i in range(num_rows): for j in range(num_cols): this_loc = (i, j) if (i % row_skip) == 0 or (j % col_skip) == 0: continue # inside wall if not (((i % row_skip) in (1, row_skip - 1)) or ((j % col_skip) in (1, col_skip - 1))): continue # not against a wall adjacencies = [(i, j - 1), (i, j + 1), (i - 1, j), (i + 1, j)] if any(x in alldoors for x in adjacencies): continue # blocking a door valid_locations.append(this_loc) objs = POSSIBLE_OBJECT_CHARS[:n_objs] + [AGENT_CHAR] assert len(valid_locations) > len(objs) rng.shuffle(valid_locations) for obj, loc in zip(objs, valid_locations): level_layout[loc] = obj objs_to_drape = objs[:-1] # convert to pycolab's ascii format level_layout = ["".join(x) for x in level_layout.tolist()] return level_layout, objs_to_drape
zipfian_environments-main
gridworld/map_building.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dm_zipf_playroom.load_from_disk.""" from absl import flags from absl.testing import absltest from absl.testing import parameterized from dm_env import test_utils import dm_zipf_playroom FLAGS = flags.FLAGS flags.DEFINE_string('path', '', 'Directory that contains dm_zipf_playroom environment.') class LoadFromDiskTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return dm_zipf_playroom.load_from_disk( FLAGS.path, settings=dm_zipf_playroom.EnvironmentSettings( seed=123, level_name='lift/lift_shape_zipf2')) class FastMappingTaskTest(parameterized.TestCase): @parameterized.parameters( dm_zipf_playroom.ZIPFIAN_DISTRIBUTIONS_TASK_LEVEL_NAMES) def test_load_level(self, level_name): self.assertIsNotNone( dm_zipf_playroom.load_from_disk( FLAGS.path, settings=dm_zipf_playroom.EnvironmentSettings( seed=123, level_name=level_name))) if __name__ == '__main__': absltest.main()
zipfian_environments-main
playroom/load_from_disk_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python utility functions for loading DeepMind Zipfian Distributions Tasks.""" import codecs import collections import json import os import re import subprocess import time import typing from absl import logging import dm_env import docker import grpc import numpy as np import portpicker from dm_env_rpc.v1 import connection as dm_env_rpc_connection from dm_env_rpc.v1 import dm_env_adaptor from dm_env_rpc.v1 import dm_env_rpc_pb2 from dm_env_rpc.v1 import error from dm_env_rpc.v1 import tensor_utils # Maximum number of times to attempt gRPC connection. _MAX_CONNECTION_ATTEMPTS = 10 # Port to expect the docker environment to internally listen on. _DOCKER_INTERNAL_GRPC_PORT = 10000 _DEFAULT_DOCKER_IMAGE_NAME = 'gcr.io/google.com/deepmind-environments-staging/dm_zipfian_distributions:dm_zipfian_distributions_staging_gcr_20220629_RC00' _ZIPFIAN_DISTRIBUTIONS_TASK_OBSERVATIONS = ['RGB_INTERLEAVED', 'TEXT'] ZIPFIAN_DISTRIBUTIONS_TASK_LEVEL_NAMES = frozenset(( 'lift/lift_shape_uniform_rare', 'lift/lift_shape_zipf2', 'lift/lift_shape_zipf3', 'lift/lift_shape_zipf4', 'lift/lift_shape_uniform', 'put/lift_shape_many_zipf1', 'put/lift_shape_zipf2', 'put/lift_shape_uniform', 'put/lift_shape_many_zipf4', 'put/put_on_bed_tray_frequent', 'put/put_near_bed_tray_frequent', 'put/put_on_bed_tray_all', 'put/lift_shape_uniform_rare', 'put/put_on_bed_tray_rare', 'supervised/find_shape_zipf3', 'supervised/find_shape_uniform_rare', 'supervised/find_shape_zipf2', 'supervised/find_shape_uniform', )) _ConnectionDetails = collections.namedtuple('_ConnectionDetails', ['channel', 'connection', 'specs']) class _ZipfianDistributionsTasksEnv(dm_env_adaptor.DmEnvAdaptor): """An implementation of dm_env_rpc.DmEnvAdaptor for Zipfian Distributions tasks.""" def __init__(self, connection_details, requested_observations, num_action_repeats): super(_ZipfianDistributionsTasksEnv, self).__init__(connection_details.connection, connection_details.specs, requested_observations) self._channel = connection_details.channel self._num_action_repeats = num_action_repeats def close(self): super(_ZipfianDistributionsTasksEnv, self).close() self._channel.close() def step(self, action): """Implementation of dm_env.step that supports repeated actions.""" timestep = None discount = None reward = None for _ in range(self._num_action_repeats): next_timestep = super(_ZipfianDistributionsTasksEnv, self).step(action) # Accumulate reward per timestep. if next_timestep.reward is not None: reward = (reward or 0.) + next_timestep.reward # Calculate the product for discount. if next_timestep.discount is not None: discount = discount if discount else [] discount.append(next_timestep.discount) timestep = dm_env.TimeStep(next_timestep.step_type, reward, # Note: np.product(None) returns None. np.product(discount), next_timestep.observation) if timestep.last(): return timestep return timestep class _ZipfianDistributionsTasksContainerEnv(_ZipfianDistributionsTasksEnv): """An implementation of _ZipfianDistributionsTasksEnv. Ensures that the provided Docker container is closed on exit. """ def __init__(self, connection_details, requested_observations, num_action_repeats, container): super(_ZipfianDistributionsTasksContainerEnv, self).__init__(connection_details, requested_observations, num_action_repeats) self._container = container def close(self): super(_ZipfianDistributionsTasksContainerEnv, self).close() try: self._container.kill() except docker.errors.NotFound: pass # Ignore, container has already been closed. class _ZipfianDistributionsTasksProcessEnv(_ZipfianDistributionsTasksEnv): """An implementation of _ZipfianDistributionsTasksEnv. Ensure that the provided running process is closed on exit. """ def __init__(self, connection_details, requested_observations, num_action_repeats, process): super(_ZipfianDistributionsTasksProcessEnv, self).__init__(connection_details, requested_observations, num_action_repeats) self._process = process def close(self): super(_ZipfianDistributionsTasksProcessEnv, self).close() self._process.terminate() self._process.wait() def _check_grpc_channel_ready(channel): """Helper function to check the gRPC channel is ready N times.""" for _ in range(_MAX_CONNECTION_ATTEMPTS - 1): try: return grpc.channel_ready_future(channel).result(timeout=1) except grpc.FutureTimeoutError: pass return grpc.channel_ready_future(channel).result(timeout=1) def _can_send_message(connection): """Returns if `connection` is healthy and able to process requests.""" try: # This should return a response with an error unless the server isn't yet # receiving requests. connection.send(dm_env_rpc_pb2.StepRequest()) except error.DmEnvRpcError: return True except grpc.RpcError: return False def _create_channel_and_connection(port): """Returns a tuple of `(channel, connection)`.""" for _ in range(_MAX_CONNECTION_ATTEMPTS): channel = grpc.secure_channel('localhost:{}'.format(port), grpc.local_channel_credentials()) _check_grpc_channel_ready(channel) connection = dm_env_rpc_connection.Connection(channel) if _can_send_message(connection): break else: # A gRPC server running within Docker sometimes reports that the channel # is ready but transitively returns an error (status code 14) on first # use. Giving the server some time to breath and retrying often fixes the # problem. connection.close() channel.close() time.sleep(1.0) return channel, connection def _parse_exception_message(message): """Returns a human-readable version of a dm_env_rpc json error message.""" try: match = re.match(r'^message\:\ \"(.*)\"$', message) json_data = codecs.decode(match.group(1), 'unicode-escape') parsed_json_data = json.loads(json_data) return ValueError(json.dumps(parsed_json_data, indent=4)) except: # pylint: disable=bare-except return message def _wrap_send(send): """Wraps `send` in order to reformat exceptions.""" try: return send() except ValueError as e: e.args = [_parse_exception_message(e.args[0])] raise def _connect_to_environment(port, settings): """Helper function for connecting to a running dm_zipfian_distributions environment.""" if settings.level_name not in ZIPFIAN_DISTRIBUTIONS_TASK_LEVEL_NAMES: raise ValueError( 'Level named "{}" is not a valid dm_zipfian_distributions level.' .format(settings.level_name)) channel, connection = _create_channel_and_connection(port) original_send = connection.send connection.send = lambda request: _wrap_send(lambda: original_send(request)) world_name = connection.send( dm_env_rpc_pb2.CreateWorldRequest( settings={ 'seed': tensor_utils.pack_tensor(settings.seed), 'episodeId': tensor_utils.pack_tensor(0), 'levelName': tensor_utils.pack_tensor(settings.level_name), })).world_name join_world_settings = { 'width': tensor_utils.pack_tensor(settings.width), 'height': tensor_utils.pack_tensor(settings.height), 'EpisodeLengthSeconds': tensor_utils.pack_tensor(settings.episode_length_seconds), 'ShowReachabilityHUD': tensor_utils.pack_tensor(False), } specs = connection.send( dm_env_rpc_pb2.JoinWorldRequest( world_name=world_name, settings=join_world_settings)).specs return _ConnectionDetails(channel=channel, connection=connection, specs=specs) class EnvironmentSettings(typing.NamedTuple): """Collection of settings used to start a specific Zipfian Distributions task. Required attributes: seed: Seed to initialize the environment's RNG. level_name: Name of the level to load. Optional attributes: width: Width (in pixels) of the desired RGB observation; defaults to 96. height: Height (in pixels) of the desired RGB observation; defaults to 72. episode_length_seconds: Maximum episode length (in seconds); defaults to 120. num_action_repeats: Number of times to step the environment with the provided action in calls to `step()`. """ seed: int level_name: str width: int = 96 height: int = 72 episode_length_seconds: float = 120.0 num_action_repeats: int = 1 def _validate_environment_settings(settings): """Helper function to validate the provided environment settings.""" if settings.episode_length_seconds <= 0.0: raise ValueError('episode_length_seconds must have a positive value.') if settings.num_action_repeats <= 0: raise ValueError('num_action_repeats must have a positive value.') if settings.width <= 0 or settings.height <= 0: raise ValueError('width and height must have a positive value.') def load_from_disk(path, settings): """Loads Zipfian Distributions Tasks from disk. Args: path: Directory containing dm_zipfian_distributions environment. settings: EnvironmentSettings required to start the environment. Returns: An implementation of dm_env.Environment. Raises: RuntimeError: If unable to start environment process. """ _validate_environment_settings(settings) executable_path = os.path.join(path, 'Linux64Player') libosmesa_path = os.path.join(path, 'external_libosmesa_llvmpipe.so') if not os.path.exists(executable_path) or not os.path.exists(libosmesa_path): raise RuntimeError( 'Cannot find dm_zipfian_distributions executable or dependent files at path: {}' .format(path)) port = portpicker.pick_unused_port() process_flags = [ executable_path, # Unity command-line flags. '-logfile', '-batchmode', '-noaudio', # Other command-line flags. '--logtostderr', '--server_type=GRPC', '--uri_address=[::]:{}'.format(port), ] os.environ.update({ 'UNITY_RENDERER': 'software', 'UNITY_OSMESA_PATH': libosmesa_path, }) process = subprocess.Popen( process_flags, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) if process.poll() is not None: raise RuntimeError( 'Failed to start dm_zipfian_distributions process correctly.') return _ZipfianDistributionsTasksProcessEnv( _connect_to_environment(port, settings), _ZIPFIAN_DISTRIBUTIONS_TASK_OBSERVATIONS, settings.num_action_repeats, process) def load_from_docker(settings, name=None): """Load Zipfian Distributions Tasks from docker container. Args: settings: EnvironmentSettings required to start the environment. name: Optional name of Docker image that contains the dm_zipfian_distributions environment. If left unset, uses the dm_zipfian_distributions default name. Returns: An implementation of dm_env.Environment """ _validate_environment_settings(settings) name = name or _DEFAULT_DOCKER_IMAGE_NAME client = docker.from_env() port = portpicker.pick_unused_port() try: client.images.get(name) except docker.errors.ImageNotFound: logging.info('Downloading docker image "%s"...', name) client.images.pull(name) logging.info('Download finished.') container = client.containers.run( name, auto_remove=True, detach=True, ports={_DOCKER_INTERNAL_GRPC_PORT: port}) return _ZipfianDistributionsTasksContainerEnv( _connect_to_environment(port, settings), _ZIPFIAN_DISTRIBUTIONS_TASK_OBSERVATIONS, settings.num_action_repeats, container)
zipfian_environments-main
playroom/load_environment.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python utilities for running dm_zipfian_distributions.""" from zipfian_environments.playroom import load_environment EnvironmentSettings = load_environment.EnvironmentSettings ZIPFIAN_DISTRIBUTIONS_TASK_LEVEL_NAMES = load_environment.ZIPFIAN_DISTRIBUTIONS_TASK_LEVEL_NAMES load_from_disk = load_environment.load_from_disk load_from_docker = load_environment.load_from_docker
zipfian_environments-main
playroom/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dm_zipf_playroom.zipfs_playroom.load_from_docker.""" from absl import flags from absl.testing import absltest from absl.testing import parameterized from dm_env import test_utils from zipfian_environments import playroom as zipfs_playroom DOCKER_IMAGE_NAME = flags.DEFINE_string( 'docker_image_name', None, 'Name of the Docker image that contains the Zipfian Distributions Tasks. ' 'If None, uses the default dm_zipf_playroom name') class LoadFromDockerTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return zipfs_playroom.load_from_docker( name=DOCKER_IMAGE_NAME.value, settings=zipfs_playroom.EnvironmentSettings( seed=123, level_name='lift/lift_shape_zipf2')) class ZipfianDistributionsTaskTest(parameterized.TestCase): @parameterized.parameters( zipfs_playroom.ZIPFIAN_DISTRIBUTIONS_TASK_LEVEL_NAMES) def test_load_level(self, level_name): self.assertIsNotNone( zipfs_playroom.load_from_docker( name=DOCKER_IMAGE_NAME.value, settings=zipfs_playroom.EnvironmentSettings( seed=123, level_name=level_name))) if __name__ == '__main__': absltest.main()
zipfian_environments-main
playroom/load_from_docker_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example human agent for interacting with DeepMind Zipfian Distributions Tasks.""" from absl import app from absl import flags from absl import logging from dm_zipf_playroom import EnvironmentSettings from dm_zipf_playroom import load_from_docker import numpy as np import pygame FLAGS = flags.FLAGS _SCREEN_SIZE = flags.DEFINE_list( 'screen_size', [640, 480], 'Screen width/height in pixels. Scales the environment RGB observations to ' 'fit the screen size.') _DOCKER_IMAGE_NAME = flags.DEFINE_string( 'docker_image_name', None, 'Name of the Docker image that contains the Zipfian Distributions Tasks. ' 'If None, uses the default dm_zipfian_distributions name') _SEED = flags.DEFINE_integer('seed', 123, 'Environment seed.') _LEVEL_NAME = flags.DEFINE_string('level_name', 'lift/lift_shape_zipf2', 'Name of task to run.') _FRAMES_PER_SECOND = 30 _KEYS_TO_ACTION = { pygame.K_w: {'MOVE_BACK_FORWARD': 1}, pygame.K_s: {'MOVE_BACK_FORWARD': -1}, pygame.K_a: {'STRAFE_LEFT_RIGHT': -1}, pygame.K_d: {'STRAFE_LEFT_RIGHT': 1}, pygame.K_UP: {'LOOK_DOWN_UP': -1}, pygame.K_DOWN: {'LOOK_DOWN_UP': 1}, pygame.K_LEFT: {'LOOK_LEFT_RIGHT': -1}, pygame.K_RIGHT: {'LOOK_LEFT_RIGHT': 1}, pygame.K_SPACE: {'HAND_GRIP': 1}, } # pyformat: disable _NO_ACTION = { 'MOVE_BACK_FORWARD': 0, 'STRAFE_LEFT_RIGHT': 0, 'LOOK_LEFT_RIGHT': 0, 'LOOK_DOWN_UP': 0, 'HAND_GRIP': 0, } def main(_): pygame.init() try: pygame.mixer.quit() except NotImplementedError: pass pygame.display.set_caption('Zipfian Distributions Tasks Human Agent') episode_length_seconds = 120.0 env_settings = EnvironmentSettings( seed=_SEED.value, level_name=_LEVEL_NAME.value, episode_length_seconds=episode_length_seconds) with load_from_docker( name=_DOCKER_IMAGE_NAME.value, settings=env_settings) as env: screen = pygame.display.set_mode( (int(_SCREEN_SIZE.value[0]), int(_SCREEN_SIZE.value[1]))) rgb_spec = env.observation_spec()['RGB_INTERLEAVED'] surface = pygame.Surface((rgb_spec.shape[1], rgb_spec.shape[0])) actions = _NO_ACTION score = 0 clock = pygame.time.Clock() while True: # Do not close with CTRL-C as otherwise the docker container may be left # running on exit. for event in pygame.event.get(): if event.type == pygame.QUIT: return elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: return key_actions = _KEYS_TO_ACTION.get(event.key, {}) for name, action in key_actions.items(): actions[name] += action elif event.type == pygame.KEYUP: key_actions = _KEYS_TO_ACTION.get(event.key, {}) for name, action in key_actions.items(): actions[name] -= action timestep = env.step(actions) frame = np.swapaxes(timestep.observation['RGB_INTERLEAVED'], 0, 1) font = pygame.font.SysFont('Sans', 10) pygame.surfarray.blit_array(surface, frame) text = font.render(timestep.observation['TEXT'], True, (0, 0, 0)) surface.blit(text, (0, 0)) pygame.transform.smoothscale(surface, screen.get_size(), screen) pygame.display.update() if timestep.reward: score += timestep.reward logging.info('Total score: %1.1f, reward: %1.1f', score, timestep.reward) clock.tick(_FRAMES_PER_SECOND) if __name__ == '__main__': app.run(main)
zipfian_environments-main
playroom/examples/human_agent.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Zipfian distribution over DMLab-30 levels. To use this environment, you will need to have DMLab installed. For instructions, see: https://github.com/deepmind/lab#getting-started-on-linux For more information on the DMLab-30 levels, see the level definitions: https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30 """ from typing import Sequence import dm_env import numpy as np import deepmind_lab LEVELS_DMLAB30_FORWARD = [ 'rooms_collect_good_objects_train', 'rooms_exploit_deferred_effects_train', 'rooms_select_nonmatching_object', 'rooms_watermaze', 'rooms_keys_doors_puzzle', 'language_select_described_object', 'language_select_located_object', 'language_execute_random_task', 'language_answer_quantitative_question', 'lasertag_one_opponent_small', 'lasertag_three_opponents_small', 'lasertag_one_opponent_large', 'lasertag_three_opponents_large', 'natlab_fixed_large_map', 'natlab_varying_map_regrowth', 'natlab_varying_map_randomized', 'skymaze_irreversible_path_hard', 'skymaze_irreversible_path_varied', 'psychlab_arbitrary_visuomotor_mapping', 'psychlab_continuous_recognition', 'psychlab_sequential_comparison', 'psychlab_visual_search', 'explore_object_locations_small', 'explore_object_locations_large', 'explore_obstructed_goals_small', 'explore_obstructed_goals_large', 'explore_goal_locations_small', 'explore_goal_locations_large', 'explore_object_rewards_few', 'explore_object_rewards_many' ] # Reverse distribution LEVELS_DMLAB30_REVERSED = list(reversed(LEVELS_DMLAB30_FORWARD)) DEFAULT_OBS = ('RGB_INTERLEAVED', 'INSTR') # default observations def zipf_dist(n, exponent=1.): vals = 1. / (np.arange(1, n + 1))**exponent return vals / np.sum(vals) def uniform_rare_dist(n): vals = np.zeros([n], dtype=np.float32) num_rare = n // 5 vals[-num_rare:] = 1. / num_rare return vals def process_action_spec(lab_action_spec): """Processes action specs into dm_env format + produces action map.""" action_spec = {} action_map = {} action_count = len(lab_action_spec) for i, spec in enumerate(lab_action_spec): name = spec['name'] action_map[name] = i action_spec[name] = dm_env.specs.BoundedArray( dtype=np.dtype('int32'), shape=(), name=name, minimum=spec['min'], maximum=spec['max']) return action_spec, action_map, action_count def process_observation_spec(lab_observation_spec, observation_names): """Filters observation specs and converts to dm_env format.""" observation_spec = {} for spec in lab_observation_spec: name = spec['name'] shape = spec['shape'] if name in observation_names: observation_spec[name] = dm_env.specs.Array( dtype=spec['dtype'], shape=shape, name=name) return observation_spec class ZipfsLabyrinth(dm_env.Environment): """Zipf's Labyrinth environment.""" def __init__(self, distribution: str = 'zipf1', reverse_order: bool = False, observations_to_include: Sequence[str] = DEFAULT_OBS) -> None: """Create the environment. Args: distribution: name of probability distribution over levels; one of the following items ['uniform', 'uniform_rare', 'zipf1']. reverse_order: whether to reverse the order of the levels. observations_to_include: observations to keep from the environment, defaults to vision + instruction. """ # set up distribution if distribution == 'uniform': self._distribution = np.ones((30,), dtype=np.float32) / 30 elif distribution == 'uniform_rare': self._distribution = uniform_rare_dist(30) elif distribution[:4] == 'zipf': self._distribution = zipf_dist(30, exponent=float(distribution[4:])) # get level names if reverse_order: levels = LEVELS_DMLAB30_REVERSED else: levels = LEVELS_DMLAB30_FORWARD self.levels = ['contributed/dmlab30/' + l for l in levels] # build environments self._observations_to_include = observations_to_include self._environments = [] observation_specs = [] action_specs = [] action_maps = [] action_count = None for level in self.levels: env = deepmind_lab.Lab(level, ['RGB_INTERLEAVED', 'INSTR']) self._environments.append(env) # observation specs observation_spec = env.observation_spec() observation_spec = process_observation_spec(observation_spec, observations_to_include) observation_specs.append(observation_spec) # action specs action_spec = env.action_spec() action_spec, action_map, action_count = process_action_spec(action_spec) action_specs.append(action_spec) action_maps.append(action_map) self._action_count = action_count assert all([spec == action_specs[0] for spec in action_specs[1:]]) self._action_spec = action_specs[0] assert all([action_map == action_maps[0] for action_map in action_maps[1:]]) self._action_map = action_maps[0] assert all([spec == observation_specs[0] for spec in observation_specs[1:]]) self._observation_spec = observation_specs[0] self._current_env = None self._needs_reset = True def _sample_env(self): self._current_env = np.random.choice(self._environments, p=self._distribution) return self._current_env def _observation(self): return { name: np.asarray(data, dtype=self._observation_spec[name].dtype) for name, data in self._current_env.observations().items() } def reset(self): """Start a new episode.""" # sample an environment self._sample_env() self._current_env.reset() self._needs_reset = False return dm_env.restart(self._observation()) def step(self, action): if self._needs_reset: return self.reset() lab_action = np.empty(self._action_count, dtype=np.dtype('int32')) for name, value in action.items(): lab_action[self._action_map[name]] = value reward = self._current_env.step(lab_action) if self._current_env.is_running(): return dm_env.transition(reward=reward, observation=self._observation()) else: self._needs_reset = True return dm_env.termination(reward=reward, observation=self._observation()) @property def observation_spec(self): return self._observation_spec @property def action_spec(self): return self._action_spec
zipfian_environments-main
labyrinth/zipfs_labyrinth.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for zipfs_gridworld.""" import os from absl.testing import absltest from absl.testing import parameterized import numpy as np from zipfian_environments.labyrinth import zipfs_labyrinth as zipf_env import deepmind_lab class ZipfsLabyrinthTest(parameterized.TestCase): @parameterized.named_parameters( dict(testcase_name="uniform", distribution="uniform", reverse_order=False), dict(testcase_name="uniform_rare", distribution="uniform_rare", reverse_order=False), dict(testcase_name="zipf_reversed", distribution="zipf1", reverse_order=True), ) def test_labyrinth(self, distribution, reverse_order): env = zipf_env.ZipfsLabyrinth( distribution=distribution, reverse_order=reverse_order ) for _ in range(3): timestep = env.reset() observation = timestep.observation self.assertEqual(set(observation.keys()), set(["RGB_INTERLEAVED", "INSTR"])) # Instruction shuold be single string self.assertEqual(observation["INSTR"].shape, tuple()) self.assertIsInstance(observation["INSTR"].item(), str) # vision should be RGB ints vision_shape = observation["RGB_INTERLEAVED"].shape self.assertLen(vision_shape, 3) self.assertEqual(vision_shape[-1], 3) self.assertEqual(observation["RGB_INTERLEAVED"].dtype, np.uint8) for i in [0, 1]: dummy_action = {k: i for k in env.action_spec.keys()} env.step(dummy_action) if __name__ == "__main__": dmlab_runfiles_path = None # set path here if dmlab_runfiles_path is not None: deepmind_lab.set_runfiles_path(dmlab_runfiles_path) absltest.main()
zipfian_environments-main
labyrinth/zipfs_labyrinth_test.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple tests for surface metric computations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import google3 from absl.testing import absltest from absl.testing import parameterized import numpy as np import surface_distance from surface_distance.surface_distance import metrics class SurfaceDistanceTest(parameterized.TestCase, absltest.TestCase): def _assert_almost_equal(self, expected, actual, places): """Assertion wrapper correctly handling NaN equality.""" if np.isnan(expected) and np.isnan(actual): return self.assertAlmostEqual(expected, actual, places) def _assert_metrics(self, surface_distances, mask_gt, mask_pred, expected_average_surface_distance, expected_hausdorff_100, expected_hausdorff_95, expected_surface_overlap_at_1mm, expected_surface_dice_at_1mm, expected_volumetric_dice, places=3): actual_average_surface_distance = ( surface_distance.compute_average_surface_distance(surface_distances)) for i in range(2): self._assert_almost_equal( expected_average_surface_distance[i], actual_average_surface_distance[i], places=places) self._assert_almost_equal( expected_hausdorff_100, surface_distance.compute_robust_hausdorff(surface_distances, 100), places=places) self._assert_almost_equal( expected_hausdorff_95, surface_distance.compute_robust_hausdorff(surface_distances, 95), places=places) actual_surface_overlap_at_1mm = ( surface_distance.compute_surface_overlap_at_tolerance( surface_distances, tolerance_mm=1)) for i in range(2): self._assert_almost_equal( expected_surface_overlap_at_1mm[i], actual_surface_overlap_at_1mm[i], places=places) self._assert_almost_equal( expected_surface_dice_at_1mm, surface_distance.compute_surface_dice_at_tolerance( surface_distances, tolerance_mm=1), places=places) self._assert_almost_equal( expected_volumetric_dice, surface_distance.compute_dice_coefficient(mask_gt, mask_pred), places=places) @parameterized.parameters(( np.zeros([2, 2, 2], dtype=bool), np.zeros([2, 2], dtype=bool), [1, 1], ), ( np.zeros([2, 2], dtype=bool), np.zeros([2, 2, 2], dtype=bool), [1, 1], ), ( np.zeros([2, 2], dtype=bool), np.zeros([2, 2], dtype=bool), [1, 1, 1], )) def test_compute_surface_distances_raises_on_incompatible_shapes( self, mask_gt, mask_pred, spacing_mm): with self.assertRaisesRegex(ValueError, 'The arguments must be of compatible shape'): surface_distance.compute_surface_distances(mask_gt, mask_pred, spacing_mm) @parameterized.parameters(( np.zeros([2], dtype=bool), np.zeros([2], dtype=bool), [1], ), ( np.zeros([2, 2, 2, 2], dtype=bool), np.zeros([2, 2, 2, 2], dtype=bool), [1, 1, 1, 1], )) def test_compute_surface_distances_raises_on_invalid_shapes( self, mask_gt, mask_pred, spacing_mm): with self.assertRaisesRegex(ValueError, 'Only 2D and 3D masks are supported'): surface_distance.compute_surface_distances(mask_gt, mask_pred, spacing_mm) class SurfaceDistance2DTest(SurfaceDistanceTest, parameterized.TestCase): def test_on_2_pixels_2mm_away(self): mask_gt = np.zeros((128, 128), bool) mask_pred = np.zeros((128, 128), bool) mask_gt[50, 70] = 1 mask_pred[50, 72] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(2, 1)) diag = 0.5 * math.sqrt(2**2 + 1**2) expected_distances = { 'surfel_areas_gt': np.asarray([diag, diag, diag, diag]), 'surfel_areas_pred': np.asarray([diag, diag, diag, diag]), 'distances_gt_to_pred': np.asarray([1., 1., 2., 2.]), 'distances_pred_to_gt': np.asarray([1., 1., 2., 2.]), } self.assertEqual(len(expected_distances), len(surface_distances)) for key, expected_value in expected_distances.items(): np.testing.assert_array_equal(expected_value, surface_distances[key]) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(1.5, 1.5), expected_hausdorff_100=2.0, expected_hausdorff_95=2.0, expected_surface_overlap_at_1mm=(0.5, 0.5), expected_surface_dice_at_1mm=0.5, expected_volumetric_dice=0.0) def test_two_squares_shifted_by_one_pixel(self): # We make sure we do not have active pixels on the border of the image, # because this will add additional 2D surfaces on the border of the image # because the image is padded with background. mask_gt = np.asarray( [ [0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=bool) mask_pred = np.asarray( [ [0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=bool) vertical = 2 horizontal = 1 diag = 0.5 * math.sqrt(horizontal**2 + vertical**2) surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(vertical, horizontal)) # We go from top left corner, clockwise to describe the surfaces and # distances. The 2 surfaces are: # # /-\ /-\ # | | | | # \-/ | | # \-/ expected_surfel_areas_gt = np.asarray( [diag, horizontal, diag, vertical, diag, horizontal, diag, vertical]) expected_surfel_areas_pred = np.asarray([ diag, horizontal, diag, vertical, vertical, diag, horizontal, diag, vertical, vertical ]) expected_distances_gt_to_pred = np.asarray([0] * 5 + [horizontal] + [0] * 2) expected_distances_pred_to_gt = np.asarray([0] * 5 + [vertical] * 3 + [0] * 2) # We sort these using the same sorting algorithm (expected_distances_gt_to_pred, expected_surfel_areas_gt) = ( metrics._sort_distances_surfels(expected_distances_gt_to_pred, expected_surfel_areas_gt)) (expected_distances_pred_to_gt, expected_surfel_areas_pred) = ( metrics._sort_distances_surfels(expected_distances_pred_to_gt, expected_surfel_areas_pred)) expected_distances = { 'surfel_areas_gt': expected_surfel_areas_gt, 'surfel_areas_pred': expected_surfel_areas_pred, 'distances_gt_to_pred': expected_distances_gt_to_pred, 'distances_pred_to_gt': expected_distances_pred_to_gt, } self.assertEqual(len(expected_distances), len(surface_distances)) for key, expected_value in expected_distances.items(): np.testing.assert_array_equal(expected_value, surface_distances[key]) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=( surface_distance.compute_average_surface_distance( expected_distances)), expected_hausdorff_100=(surface_distance.compute_robust_hausdorff( expected_distances, 100)), expected_hausdorff_95=surface_distance.compute_robust_hausdorff( expected_distances, 95), expected_surface_overlap_at_1mm=( surface_distance.compute_surface_overlap_at_tolerance( expected_distances, tolerance_mm=1)), expected_surface_dice_at_1mm=( surface_distance.compute_surface_dice_at_tolerance( surface_distances, tolerance_mm=1)), expected_volumetric_dice=(surface_distance.compute_dice_coefficient( mask_gt, mask_pred))) def test_empty_prediction_mask(self): mask_gt = np.zeros((128, 128), bool) mask_pred = np.zeros((128, 128), bool) mask_gt[50, 60] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(np.inf, np.nan), expected_hausdorff_100=np.inf, expected_hausdorff_95=np.inf, expected_surface_overlap_at_1mm=(0.0, np.nan), expected_surface_dice_at_1mm=0.0, expected_volumetric_dice=0.0) def test_empty_ground_truth_mask(self): mask_gt = np.zeros((128, 128), bool) mask_pred = np.zeros((128, 128), bool) mask_pred[50, 60] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(np.nan, np.inf), expected_hausdorff_100=np.inf, expected_hausdorff_95=np.inf, expected_surface_overlap_at_1mm=(np.nan, 0.0), expected_surface_dice_at_1mm=0.0, expected_volumetric_dice=0.0) def test_both_empty_masks(self): mask_gt = np.zeros((128, 128), bool) mask_pred = np.zeros((128, 128), bool) surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(np.nan, np.nan), expected_hausdorff_100=np.inf, expected_hausdorff_95=np.inf, expected_surface_overlap_at_1mm=(np.nan, np.nan), expected_surface_dice_at_1mm=np.nan, expected_volumetric_dice=np.nan) class SurfaceDistance3DTest(SurfaceDistanceTest): def test_on_2_pixels_2mm_away(self): mask_gt = np.zeros((128, 128, 128), bool) mask_pred = np.zeros((128, 128, 128), bool) mask_gt[50, 60, 70] = 1 mask_pred[50, 60, 72] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2, 1)) self._assert_metrics(surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(1.5, 1.5), expected_hausdorff_100=2.0, expected_hausdorff_95=2.0, expected_surface_overlap_at_1mm=(0.5, 0.5), expected_surface_dice_at_1mm=0.5, expected_volumetric_dice=0.0) def test_two_cubes_shifted_by_one_pixel(self): mask_gt = np.zeros((100, 100, 100), bool) mask_pred = np.zeros((100, 100, 100), bool) mask_gt[0:50, :, :] = 1 mask_pred[0:51, :, :] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(2, 1, 1)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(0.322, 0.339), expected_hausdorff_100=2.0, expected_hausdorff_95=2.0, expected_surface_overlap_at_1mm=(0.842, 0.830), expected_surface_dice_at_1mm=0.836, expected_volumetric_dice=0.990) def test_empty_prediction_mask(self): mask_gt = np.zeros((128, 128, 128), bool) mask_pred = np.zeros((128, 128, 128), bool) mask_gt[50, 60, 70] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2, 1)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(np.inf, np.nan), expected_hausdorff_100=np.inf, expected_hausdorff_95=np.inf, expected_surface_overlap_at_1mm=(0.0, np.nan), expected_surface_dice_at_1mm=0.0, expected_volumetric_dice=0.0) def test_empty_ground_truth_mask(self): mask_gt = np.zeros((128, 128, 128), bool) mask_pred = np.zeros((128, 128, 128), bool) mask_pred[50, 60, 72] = 1 surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2, 1)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(np.nan, np.inf), expected_hausdorff_100=np.inf, expected_hausdorff_95=np.inf, expected_surface_overlap_at_1mm=(np.nan, 0.0), expected_surface_dice_at_1mm=0.0, expected_volumetric_dice=0.0) def test_both_empty_masks(self): mask_gt = np.zeros((128, 128, 128), bool) mask_pred = np.zeros((128, 128, 128), bool) surface_distances = surface_distance.compute_surface_distances( mask_gt, mask_pred, spacing_mm=(3, 2, 1)) self._assert_metrics( surface_distances, mask_gt, mask_pred, expected_average_surface_distance=(np.nan, np.nan), expected_hausdorff_100=np.inf, expected_hausdorff_95=np.inf, expected_surface_overlap_at_1mm=(np.nan, np.nan), expected_surface_dice_at_1mm=np.nan, expected_volumetric_dice=np.nan) if __name__ == '__main__': absltest.main()
surface-distance-master
surface_distance_test.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Surface distance module: https://github.com/deepmind/surface-distance .""" from .surface_distance import * # pylint: disable=wildcard-import
surface-distance-master
__init__.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyPI package definition.""" from setuptools import setup setup(name="Surface Distance Based Measures", version="0.1", description=( "Library containing utilities to compute performance metrics for " "segmentation"), url="https://github.com/deepmind/surface-distance", author="DeepMind", license="Apache License, Version 2.0", packages=["surface_distance"], install_requires=["numpy", "scipy", "absl-py"])
surface-distance-master
setup.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module exposing surface distance based measures.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from . import lookup_tables # pylint: disable=relative-beyond-top-level import numpy as np from scipy import ndimage def _assert_is_numpy_array(name, array): """Raises an exception if `array` is not a numpy array.""" if not isinstance(array, np.ndarray): raise ValueError("The argument {!r} should be a numpy array, not a " "{}".format(name, type(array))) def _check_nd_numpy_array(name, array, num_dims): """Raises an exception if `array` is not a `num_dims`-D numpy array.""" if len(array.shape) != num_dims: raise ValueError("The argument {!r} should be a {}D array, not of " "shape {}".format(name, num_dims, array.shape)) def _check_2d_numpy_array(name, array): _check_nd_numpy_array(name, array, num_dims=2) def _check_3d_numpy_array(name, array): _check_nd_numpy_array(name, array, num_dims=3) def _assert_is_bool_numpy_array(name, array): _assert_is_numpy_array(name, array) if array.dtype != bool: raise ValueError("The argument {!r} should be a numpy array of type bool, " "not {}".format(name, array.dtype)) def _compute_bounding_box(mask): """Computes the bounding box of the masks. This function generalizes to arbitrary number of dimensions great or equal to 1. Args: mask: The 2D or 3D numpy mask, where '0' means background and non-zero means foreground. Returns: A tuple: - The coordinates of the first point of the bounding box (smallest on all axes), or `None` if the mask contains only zeros. - The coordinates of the second point of the bounding box (greatest on all axes), or `None` if the mask contains only zeros. """ num_dims = len(mask.shape) bbox_min = np.zeros(num_dims, np.int64) bbox_max = np.zeros(num_dims, np.int64) # max projection to the x0-axis proj_0 = np.amax(mask, axis=tuple(range(num_dims))[1:]) idx_nonzero_0 = np.nonzero(proj_0)[0] if len(idx_nonzero_0) == 0: # pylint: disable=g-explicit-length-test return None, None bbox_min[0] = np.min(idx_nonzero_0) bbox_max[0] = np.max(idx_nonzero_0) # max projection to the i-th-axis for i in {1, ..., num_dims - 1} for axis in range(1, num_dims): max_over_axes = list(range(num_dims)) # Python 3 compatible max_over_axes.pop(axis) # Remove the i-th dimension from the max max_over_axes = tuple(max_over_axes) # numpy expects a tuple of ints proj = np.amax(mask, axis=max_over_axes) idx_nonzero = np.nonzero(proj)[0] bbox_min[axis] = np.min(idx_nonzero) bbox_max[axis] = np.max(idx_nonzero) return bbox_min, bbox_max def _crop_to_bounding_box(mask, bbox_min, bbox_max): """Crops a 2D or 3D mask to the bounding box specified by `bbox_{min,max}`.""" # we need to zeropad the cropped region with 1 voxel at the lower, # the right (and the back on 3D) sides. This is required to obtain the # "full" convolution result with the 2x2 (or 2x2x2 in 3D) kernel. # TODO: This is correct only if the object is interior to the # bounding box. cropmask = np.zeros((bbox_max - bbox_min) + 2, np.uint8) num_dims = len(mask.shape) # pyformat: disable if num_dims == 2: cropmask[0:-1, 0:-1] = mask[bbox_min[0]:bbox_max[0] + 1, bbox_min[1]:bbox_max[1] + 1] elif num_dims == 3: cropmask[0:-1, 0:-1, 0:-1] = mask[bbox_min[0]:bbox_max[0] + 1, bbox_min[1]:bbox_max[1] + 1, bbox_min[2]:bbox_max[2] + 1] # pyformat: enable else: assert False return cropmask def _sort_distances_surfels(distances, surfel_areas): """Sorts the two list with respect to the tuple of (distance, surfel_area). Args: distances: The distances from A to B (e.g. `distances_gt_to_pred`). surfel_areas: The surfel areas for A (e.g. `surfel_areas_gt`). Returns: A tuple of the sorted (distances, surfel_areas). """ sorted_surfels = np.array(sorted(zip(distances, surfel_areas))) return sorted_surfels[:, 0], sorted_surfels[:, 1] def compute_surface_distances(mask_gt, mask_pred, spacing_mm): """Computes closest distances from all surface points to the other surface. This function can be applied to 2D or 3D tensors. For 2D, both masks must be 2D and `spacing_mm` must be a 2-element list. For 3D, both masks must be 3D and `spacing_mm` must be a 3-element list. The description is done for the 2D case, and the formulation for the 3D case is present is parenthesis, introduced by "resp.". Finds all contour elements (resp surface elements "surfels" in 3D) in the ground truth mask `mask_gt` and the predicted mask `mask_pred`, computes their length in mm (resp. area in mm^2) and the distance to the closest point on the other contour (resp. surface). It returns two sorted lists of distances together with the corresponding contour lengths (resp. surfel areas). If one of the masks is empty, the corresponding lists are empty and all distances in the other list are `inf`. Args: mask_gt: 2-dim (resp. 3-dim) bool Numpy array. The ground truth mask. mask_pred: 2-dim (resp. 3-dim) bool Numpy array. The predicted mask. spacing_mm: 2-element (resp. 3-element) list-like structure. Voxel spacing in x0 anx x1 (resp. x0, x1 and x2) directions. Returns: A dict with: "distances_gt_to_pred": 1-dim numpy array of type float. The distances in mm from all ground truth surface elements to the predicted surface, sorted from smallest to largest. "distances_pred_to_gt": 1-dim numpy array of type float. The distances in mm from all predicted surface elements to the ground truth surface, sorted from smallest to largest. "surfel_areas_gt": 1-dim numpy array of type float. The length of the of the ground truth contours in mm (resp. the surface elements area in mm^2) in the same order as distances_gt_to_pred. "surfel_areas_pred": 1-dim numpy array of type float. The length of the of the predicted contours in mm (resp. the surface elements area in mm^2) in the same order as distances_gt_to_pred. Raises: ValueError: If the masks and the `spacing_mm` arguments are of incompatible shape or type. Or if the masks are not 2D or 3D. """ # The terms used in this function are for the 3D case. In particular, surface # in 2D stands for contours in 3D. The surface elements in 3D correspond to # the line elements in 2D. _assert_is_bool_numpy_array("mask_gt", mask_gt) _assert_is_bool_numpy_array("mask_pred", mask_pred) if not len(mask_gt.shape) == len(mask_pred.shape) == len(spacing_mm): raise ValueError("The arguments must be of compatible shape. Got mask_gt " "with {} dimensions ({}) and mask_pred with {} dimensions " "({}), while the spacing_mm was {} elements.".format( len(mask_gt.shape), mask_gt.shape, len(mask_pred.shape), mask_pred.shape, len(spacing_mm))) num_dims = len(spacing_mm) if num_dims == 2: _check_2d_numpy_array("mask_gt", mask_gt) _check_2d_numpy_array("mask_pred", mask_pred) # compute the area for all 16 possible surface elements # (given a 2x2 neighbourhood) according to the spacing_mm neighbour_code_to_surface_area = ( lookup_tables.create_table_neighbour_code_to_contour_length(spacing_mm)) kernel = lookup_tables.ENCODE_NEIGHBOURHOOD_2D_KERNEL full_true_neighbours = 0b1111 elif num_dims == 3: _check_3d_numpy_array("mask_gt", mask_gt) _check_3d_numpy_array("mask_pred", mask_pred) # compute the area for all 256 possible surface elements # (given a 2x2x2 neighbourhood) according to the spacing_mm neighbour_code_to_surface_area = ( lookup_tables.create_table_neighbour_code_to_surface_area(spacing_mm)) kernel = lookup_tables.ENCODE_NEIGHBOURHOOD_3D_KERNEL full_true_neighbours = 0b11111111 else: raise ValueError("Only 2D and 3D masks are supported, not " "{}D.".format(num_dims)) # compute the bounding box of the masks to trim the volume to the smallest # possible processing subvolume bbox_min, bbox_max = _compute_bounding_box(mask_gt | mask_pred) # Both the min/max bbox are None at the same time, so we only check one. if bbox_min is None: return { "distances_gt_to_pred": np.array([]), "distances_pred_to_gt": np.array([]), "surfel_areas_gt": np.array([]), "surfel_areas_pred": np.array([]), } # crop the processing subvolume. cropmask_gt = _crop_to_bounding_box(mask_gt, bbox_min, bbox_max) cropmask_pred = _crop_to_bounding_box(mask_pred, bbox_min, bbox_max) # compute the neighbour code (local binary pattern) for each voxel # the resulting arrays are spacially shifted by minus half a voxel in each # axis. # i.e. the points are located at the corners of the original voxels neighbour_code_map_gt = ndimage.filters.correlate( cropmask_gt.astype(np.uint8), kernel, mode="constant", cval=0) neighbour_code_map_pred = ndimage.filters.correlate( cropmask_pred.astype(np.uint8), kernel, mode="constant", cval=0) # create masks with the surface voxels borders_gt = ((neighbour_code_map_gt != 0) & (neighbour_code_map_gt != full_true_neighbours)) borders_pred = ((neighbour_code_map_pred != 0) & (neighbour_code_map_pred != full_true_neighbours)) # compute the distance transform (closest distance of each voxel to the # surface voxels) if borders_gt.any(): distmap_gt = ndimage.morphology.distance_transform_edt( ~borders_gt, sampling=spacing_mm) else: distmap_gt = np.Inf * np.ones(borders_gt.shape) if borders_pred.any(): distmap_pred = ndimage.morphology.distance_transform_edt( ~borders_pred, sampling=spacing_mm) else: distmap_pred = np.Inf * np.ones(borders_pred.shape) # compute the area of each surface element surface_area_map_gt = neighbour_code_to_surface_area[neighbour_code_map_gt] surface_area_map_pred = neighbour_code_to_surface_area[ neighbour_code_map_pred] # create a list of all surface elements with distance and area distances_gt_to_pred = distmap_pred[borders_gt] distances_pred_to_gt = distmap_gt[borders_pred] surfel_areas_gt = surface_area_map_gt[borders_gt] surfel_areas_pred = surface_area_map_pred[borders_pred] # sort them by distance if distances_gt_to_pred.shape != (0,): distances_gt_to_pred, surfel_areas_gt = _sort_distances_surfels( distances_gt_to_pred, surfel_areas_gt) if distances_pred_to_gt.shape != (0,): distances_pred_to_gt, surfel_areas_pred = _sort_distances_surfels( distances_pred_to_gt, surfel_areas_pred) return { "distances_gt_to_pred": distances_gt_to_pred, "distances_pred_to_gt": distances_pred_to_gt, "surfel_areas_gt": surfel_areas_gt, "surfel_areas_pred": surfel_areas_pred, } def compute_average_surface_distance(surface_distances): """Returns the average surface distance. Computes the average surface distances by correctly taking the area of each surface element into account. Call compute_surface_distances(...) before, to obtain the `surface_distances` dict. Args: surface_distances: dict with "distances_gt_to_pred", "distances_pred_to_gt" "surfel_areas_gt", "surfel_areas_pred" created by compute_surface_distances() Returns: A tuple with two float values: - the average distance (in mm) from the ground truth surface to the predicted surface - the average distance from the predicted surface to the ground truth surface. """ distances_gt_to_pred = surface_distances["distances_gt_to_pred"] distances_pred_to_gt = surface_distances["distances_pred_to_gt"] surfel_areas_gt = surface_distances["surfel_areas_gt"] surfel_areas_pred = surface_distances["surfel_areas_pred"] average_distance_gt_to_pred = ( np.sum(distances_gt_to_pred * surfel_areas_gt) / np.sum(surfel_areas_gt)) average_distance_pred_to_gt = ( np.sum(distances_pred_to_gt * surfel_areas_pred) / np.sum(surfel_areas_pred)) return (average_distance_gt_to_pred, average_distance_pred_to_gt) def compute_robust_hausdorff(surface_distances, percent): """Computes the robust Hausdorff distance. Computes the robust Hausdorff distance. "Robust", because it uses the `percent` percentile of the distances instead of the maximum distance. The percentage is computed by correctly taking the area of each surface element into account. Args: surface_distances: dict with "distances_gt_to_pred", "distances_pred_to_gt" "surfel_areas_gt", "surfel_areas_pred" created by compute_surface_distances() percent: a float value between 0 and 100. Returns: a float value. The robust Hausdorff distance in mm. """ distances_gt_to_pred = surface_distances["distances_gt_to_pred"] distances_pred_to_gt = surface_distances["distances_pred_to_gt"] surfel_areas_gt = surface_distances["surfel_areas_gt"] surfel_areas_pred = surface_distances["surfel_areas_pred"] if len(distances_gt_to_pred) > 0: # pylint: disable=g-explicit-length-test surfel_areas_cum_gt = np.cumsum(surfel_areas_gt) / np.sum(surfel_areas_gt) idx = np.searchsorted(surfel_areas_cum_gt, percent/100.0) perc_distance_gt_to_pred = distances_gt_to_pred[ min(idx, len(distances_gt_to_pred)-1)] else: perc_distance_gt_to_pred = np.Inf if len(distances_pred_to_gt) > 0: # pylint: disable=g-explicit-length-test surfel_areas_cum_pred = (np.cumsum(surfel_areas_pred) / np.sum(surfel_areas_pred)) idx = np.searchsorted(surfel_areas_cum_pred, percent/100.0) perc_distance_pred_to_gt = distances_pred_to_gt[ min(idx, len(distances_pred_to_gt)-1)] else: perc_distance_pred_to_gt = np.Inf return max(perc_distance_gt_to_pred, perc_distance_pred_to_gt) def compute_surface_overlap_at_tolerance(surface_distances, tolerance_mm): """Computes the overlap of the surfaces at a specified tolerance. Computes the overlap of the ground truth surface with the predicted surface and vice versa allowing a specified tolerance (maximum surface-to-surface distance that is regarded as overlapping). The overlapping fraction is computed by correctly taking the area of each surface element into account. Args: surface_distances: dict with "distances_gt_to_pred", "distances_pred_to_gt" "surfel_areas_gt", "surfel_areas_pred" created by compute_surface_distances() tolerance_mm: a float value. The tolerance in mm Returns: A tuple of two float values. The overlap fraction in [0.0, 1.0] of the ground truth surface with the predicted surface and vice versa. """ distances_gt_to_pred = surface_distances["distances_gt_to_pred"] distances_pred_to_gt = surface_distances["distances_pred_to_gt"] surfel_areas_gt = surface_distances["surfel_areas_gt"] surfel_areas_pred = surface_distances["surfel_areas_pred"] rel_overlap_gt = ( np.sum(surfel_areas_gt[distances_gt_to_pred <= tolerance_mm]) / np.sum(surfel_areas_gt)) rel_overlap_pred = ( np.sum(surfel_areas_pred[distances_pred_to_gt <= tolerance_mm]) / np.sum(surfel_areas_pred)) return (rel_overlap_gt, rel_overlap_pred) def compute_surface_dice_at_tolerance(surface_distances, tolerance_mm): """Computes the _surface_ DICE coefficient at a specified tolerance. Computes the _surface_ DICE coefficient at a specified tolerance. Not to be confused with the standard _volumetric_ DICE coefficient. The surface DICE measures the overlap of two surfaces instead of two volumes. A surface element is counted as overlapping (or touching), when the closest distance to the other surface is less or equal to the specified tolerance. The DICE coefficient is in the range between 0.0 (no overlap) to 1.0 (perfect overlap). Args: surface_distances: dict with "distances_gt_to_pred", "distances_pred_to_gt" "surfel_areas_gt", "surfel_areas_pred" created by compute_surface_distances() tolerance_mm: a float value. The tolerance in mm Returns: A float value. The surface DICE coefficient in [0.0, 1.0]. """ distances_gt_to_pred = surface_distances["distances_gt_to_pred"] distances_pred_to_gt = surface_distances["distances_pred_to_gt"] surfel_areas_gt = surface_distances["surfel_areas_gt"] surfel_areas_pred = surface_distances["surfel_areas_pred"] overlap_gt = np.sum(surfel_areas_gt[distances_gt_to_pred <= tolerance_mm]) overlap_pred = np.sum(surfel_areas_pred[distances_pred_to_gt <= tolerance_mm]) surface_dice = (overlap_gt + overlap_pred) / ( np.sum(surfel_areas_gt) + np.sum(surfel_areas_pred)) return surface_dice def compute_dice_coefficient(mask_gt, mask_pred): """Computes soerensen-dice coefficient. compute the soerensen-dice coefficient between the ground truth mask `mask_gt` and the predicted mask `mask_pred`. Args: mask_gt: 3-dim Numpy array of type bool. The ground truth mask. mask_pred: 3-dim Numpy array of type bool. The predicted mask. Returns: the dice coeffcient as float. If both masks are empty, the result is NaN. """ volume_sum = mask_gt.sum() + mask_pred.sum() if volume_sum == 0: return np.NaN volume_intersect = (mask_gt & mask_pred).sum() return 2*volume_intersect / volume_sum
surface-distance-master
surface_distance/metrics.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lookup tables used by surface distance metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np ENCODE_NEIGHBOURHOOD_3D_KERNEL = np.array([[[128, 64], [32, 16]], [[8, 4], [2, 1]]]) # _NEIGHBOUR_CODE_TO_NORMALS is a lookup table. # For every binary neighbour code # (2x2x2 neighbourhood = 8 neighbours = 8 bits = 256 codes) # it contains the surface normals of the triangles (called "surfel" for # "surface element" in the following). The length of the normal # vector encodes the surfel area. # # created using the marching_cube algorithm # see e.g. https://en.wikipedia.org/wiki/Marching_cubes # pylint: disable=line-too-long _NEIGHBOUR_CODE_TO_NORMALS = [ [[0, 0, 0]], [[0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125]], [[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0]], [[0.125, -0.125, 0.125]], [[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25]], [[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]], [[-0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, 0.125, 0.125]], [[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25]], [[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125]], [[-0.5, 0.0, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], [[0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25]], [[-0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, -0.5, 0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]], [[0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, 0.0, -0.5], [0.25, 0.25, 0.25], [-0.125, -0.125, -0.125]], [[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [0.125, -0.125, -0.125]], [[0.125, 0.125, 0.125], [0.375, 0.375, 0.375], [0.0, -0.25, 0.25], [-0.25, 0.0, 0.25]], [[0.125, -0.125, -0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[0.375, 0.375, 0.375], [0.0, 0.25, -0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]], [[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.125, 0.125, 0.125]], [[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25]], [[0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125]], [[0.0, -0.25, 0.25], [0.0, 0.25, -0.25]], [[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25]], [[0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.125, -0.125, 0.125], [-0.25, -0.0, -0.25], [0.25, 0.0, 0.25]], [[0.0, -0.25, 0.25], [0.0, 0.25, -0.25], [0.125, -0.125, 0.125]], [[-0.375, -0.375, 0.375], [-0.0, 0.25, 0.25], [0.125, 0.125, -0.125], [-0.25, -0.0, -0.25]], [[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, 0.125, 0.125]], [[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.25, 0.25, -0.25], [0.25, 0.25, -0.25], [0.125, 0.125, -0.125], [-0.125, -0.125, 0.125]], [[0.125, -0.125, 0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125], [0.125, -0.125, 0.125]], [[0.0, 0.25, -0.25], [0.375, -0.375, -0.375], [-0.125, 0.125, 0.125], [0.25, 0.25, 0.0]], [[-0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0]], [[0.0, 0.5, 0.0], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125]], [[0.0, 0.5, 0.0], [0.125, -0.125, 0.125], [-0.25, 0.25, -0.25]], [[0.0, 0.5, 0.0], [0.0, -0.5, 0.0]], [[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], [0.125, -0.125, 0.125]], [[-0.375, -0.375, -0.375], [-0.25, 0.0, 0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]], [[0.125, 0.125, 0.125], [0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125]], [[0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125]], [[-0.125, 0.125, 0.125], [0.25, -0.25, 0.0], [-0.25, 0.25, 0.0]], [[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.375, 0.375, -0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]], [[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]], [[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0]], [[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0]], [[-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.25, -0.25, 0.0], [0.25, 0.25, -0.0]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25]], [[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.375, -0.375, 0.375], [0.0, -0.25, -0.25], [-0.125, 0.125, -0.125], [0.25, 0.25, 0.0]], [[-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25]], [[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125]], [[-0.25, 0.25, -0.25], [-0.25, 0.25, -0.25], [-0.125, 0.125, -0.125], [-0.125, 0.125, -0.125]], [[-0.25, 0.0, -0.25], [0.375, -0.375, -0.375], [0.0, 0.25, -0.25], [-0.125, 0.125, 0.125]], [[0.5, 0.0, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125]], [[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25]], [[-0.0, 0.0, 0.5], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [0.25, 0.0, -0.25]], [[-0.25, -0.0, -0.25], [-0.375, 0.375, 0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, 0.125]], [[0.0, 0.0, -0.5], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]], [[-0.0, 0.0, 0.5], [0.0, 0.0, 0.5]], [[0.125, 0.125, 0.125], [0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5]], [[0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5]], [[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], [-0.125, 0.125, 0.125]], [[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [0.25, 0.0, -0.25]], [[0.125, -0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[0.25, 0.0, 0.25], [-0.375, -0.375, 0.375], [-0.25, 0.25, 0.0], [-0.125, -0.125, 0.125]], [[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125], [0.0, -0.25, 0.25], [0.0, 0.25, -0.25]], [[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.125, -0.125, 0.125]], [[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.0, 0.25, -0.25]], [[0.0, 0.25, 0.25], [0.0, 0.25, 0.25], [0.125, -0.125, -0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125]], [[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, -0.125]], [[0.5, 0.0, -0.0], [0.25, -0.25, -0.25], [0.125, -0.125, -0.125]], [[-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125]], [[0.375, -0.375, 0.375], [0.0, 0.25, 0.25], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]], [[0.0, -0.5, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[-0.375, -0.375, 0.375], [0.25, -0.25, 0.0], [0.0, 0.25, 0.25], [-0.125, -0.125, 0.125]], [[-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.0, 0.0, 0.5]], [[0.125, 0.125, 0.125], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25]], [[0.0, 0.25, 0.25], [0.0, 0.25, 0.25]], [[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.125, 0.125, 0.125]], [[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125]], [[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], [0.125, 0.125, 0.125]], [[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125]], [[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.125, 0.125, 0.125]], [[0.0, 0.25, 0.25], [0.0, 0.25, 0.25]], [[0.125, 0.125, 0.125], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25]], [[-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.0, 0.0, 0.5]], [[-0.375, -0.375, 0.375], [0.25, -0.25, 0.0], [0.0, 0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.0, -0.5, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[0.375, -0.375, 0.375], [0.0, 0.25, 0.25], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]], [[-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125]], [[0.5, 0.0, -0.0], [0.25, -0.25, -0.25], [0.125, -0.125, -0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[0.0, 0.25, 0.25], [0.0, 0.25, 0.25], [0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25]], [[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.125, -0.125, 0.125]], [[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125], [0.0, -0.25, 0.25], [0.0, 0.25, -0.25]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[0.125, 0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125]], [[0.25, 0.0, 0.25], [-0.375, -0.375, 0.375], [-0.25, 0.25, 0.0], [-0.125, -0.125, 0.125]], [[0.125, -0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25]], [[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], [-0.125, 0.125, 0.125]], [[0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5]], [[0.125, 0.125, 0.125], [0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5]], [[-0.0, 0.0, 0.5], [0.0, 0.0, 0.5]], [[0.0, 0.0, -0.5], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]], [[-0.25, -0.0, -0.25], [-0.375, 0.375, 0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [0.25, 0.0, -0.25]], [[-0.0, 0.0, 0.5], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25]], [[0.5, 0.0, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125]], [[-0.25, 0.0, -0.25], [0.375, -0.375, -0.375], [0.0, 0.25, -0.25], [-0.125, 0.125, 0.125]], [[-0.25, 0.25, -0.25], [-0.25, 0.25, -0.25], [-0.125, 0.125, -0.125], [-0.125, 0.125, -0.125]], [[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125]], [[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125]], [[0.375, -0.375, 0.375], [0.0, -0.25, -0.25], [-0.125, 0.125, -0.125], [0.25, 0.25, 0.0]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125]], [[0.0, -0.25, 0.25], [0.0, -0.25, 0.25]], [[-0.125, -0.125, 0.125], [-0.25, -0.25, 0.0], [0.25, 0.25, -0.0]], [[-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, -0.125, 0.125]], [[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0]], [[0.125, 0.125, 0.125], [-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0]], [[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [-0.125, -0.125, 0.125]], [[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [0.25, 0.25, -0.0]], [[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]], [[-0.375, 0.375, -0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]], [[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.25, -0.25, 0.0], [-0.25, 0.25, 0.0]], [[0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125]], [[0.125, 0.125, 0.125], [0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125]], [[-0.375, -0.375, -0.375], [-0.25, 0.0, 0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]], [[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], [0.125, -0.125, 0.125]], [[0.0, 0.5, 0.0], [0.0, -0.5, 0.0]], [[0.0, 0.5, 0.0], [0.125, -0.125, 0.125], [-0.25, 0.25, -0.25]], [[0.0, 0.5, 0.0], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125]], [[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0]], [[-0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.0, 0.25, -0.25], [0.375, -0.375, -0.375], [-0.125, 0.125, 0.125], [0.25, 0.25, 0.0]], [[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125], [0.125, -0.125, 0.125]], [[0.125, -0.125, 0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[0.25, 0.25, -0.25], [0.25, 0.25, -0.25], [0.125, 0.125, -0.125], [-0.125, -0.125, 0.125]], [[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, 0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125]], [[-0.375, -0.375, 0.375], [-0.0, 0.25, 0.25], [0.125, 0.125, -0.125], [-0.25, -0.0, -0.25]], [[0.0, -0.25, 0.25], [0.0, 0.25, -0.25], [0.125, -0.125, 0.125]], [[0.125, -0.125, 0.125], [-0.25, -0.0, -0.25], [0.25, 0.0, 0.25]], [[0.125, -0.125, 0.125], [0.125, -0.125, 0.125]], [[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25]], [[0.0, -0.25, 0.25], [0.0, 0.25, -0.25]], [[0.125, 0.125, 0.125], [0.125, -0.125, 0.125]], [[0.125, -0.125, 0.125]], [[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25]], [[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.125, 0.125, 0.125]], [[0.375, 0.375, 0.375], [0.0, 0.25, -0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]], [[0.125, -0.125, -0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[0.125, 0.125, 0.125], [0.375, 0.375, 0.375], [0.0, -0.25, 0.25], [-0.25, 0.0, 0.25]], [[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[-0.125, 0.125, 0.125], [0.125, -0.125, -0.125]], [[-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, 0.0, -0.5], [0.25, 0.25, 0.25], [-0.125, -0.125, -0.125]], [[0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, -0.5, 0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]], [[-0.125, -0.125, 0.125], [0.125, -0.125, -0.125]], [[0.0, -0.25, -0.25], [0.0, 0.25, 0.25]], [[0.125, -0.125, -0.125]], [[0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], [[-0.5, 0.0, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125]], [[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125]], [[0.25, -0.25, 0.0], [0.25, -0.25, 0.0]], [[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125]], [[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25]], [[0.125, 0.125, 0.125], [-0.125, 0.125, 0.125]], [[-0.125, 0.125, 0.125]], [[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]], [[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]], [[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25]], [[0.125, -0.125, 0.125]], [[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0]], [[-0.125, -0.125, 0.125]], [[0.125, 0.125, 0.125]], [[0, 0, 0]]] # pylint: enable=line-too-long def create_table_neighbour_code_to_surface_area(spacing_mm): """Returns an array mapping neighbourhood code to the surface elements area. Note that the normals encode the initial surface area. This function computes the area corresponding to the given `spacing_mm`. Args: spacing_mm: 3-element list-like structure. Voxel spacing in x0, x1 and x2 direction. """ # compute the area for all 256 possible surface elements # (given a 2x2x2 neighbourhood) according to the spacing_mm neighbour_code_to_surface_area = np.zeros([256]) for code in range(256): normals = np.array(_NEIGHBOUR_CODE_TO_NORMALS[code]) sum_area = 0 for normal_idx in range(normals.shape[0]): # normal vector n = np.zeros([3]) n[0] = normals[normal_idx, 0] * spacing_mm[1] * spacing_mm[2] n[1] = normals[normal_idx, 1] * spacing_mm[0] * spacing_mm[2] n[2] = normals[normal_idx, 2] * spacing_mm[0] * spacing_mm[1] area = np.linalg.norm(n) sum_area += area neighbour_code_to_surface_area[code] = sum_area return neighbour_code_to_surface_area # In the neighbourhood, points are ordered: top left, top right, bottom left, # bottom right. ENCODE_NEIGHBOURHOOD_2D_KERNEL = np.array([[8, 4], [2, 1]]) def create_table_neighbour_code_to_contour_length(spacing_mm): """Returns an array mapping neighbourhood code to the contour length. For the list of possible cases and their figures, see page 38 from: https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc14/06/thesis.pdf In 2D, each point has 4 neighbors. Thus, are 16 configurations. A configuration is encoded with '1' meaning "inside the object" and '0' "outside the object". The points are ordered: top left, top right, bottom left, bottom right. The x0 axis is assumed vertical downward, and the x1 axis is horizontal to the right: (0, 0) --> (0, 1) | (1, 0) Args: spacing_mm: 2-element list-like structure. Voxel spacing in x0 and x1 directions. """ neighbour_code_to_contour_length = np.zeros([16]) vertical = spacing_mm[0] horizontal = spacing_mm[1] diag = 0.5 * math.sqrt(spacing_mm[0]**2 + spacing_mm[1]**2) # pyformat: disable neighbour_code_to_contour_length[int("00" "01", 2)] = diag neighbour_code_to_contour_length[int("00" "10", 2)] = diag neighbour_code_to_contour_length[int("00" "11", 2)] = horizontal neighbour_code_to_contour_length[int("01" "00", 2)] = diag neighbour_code_to_contour_length[int("01" "01", 2)] = vertical neighbour_code_to_contour_length[int("01" "10", 2)] = 2*diag neighbour_code_to_contour_length[int("01" "11", 2)] = diag neighbour_code_to_contour_length[int("10" "00", 2)] = diag neighbour_code_to_contour_length[int("10" "01", 2)] = 2*diag neighbour_code_to_contour_length[int("10" "10", 2)] = vertical neighbour_code_to_contour_length[int("10" "11", 2)] = diag neighbour_code_to_contour_length[int("11" "00", 2)] = horizontal neighbour_code_to_contour_length[int("11" "01", 2)] = diag neighbour_code_to_contour_length[int("11" "10", 2)] = diag # pyformat: enable return neighbour_code_to_contour_length
surface-distance-master
surface_distance/lookup_tables.py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Surface distance module: https://github.com/deepmind/surface-distance .""" from .metrics import * # pylint: disable=wildcard-import __version__ = "0.1"
surface-distance-master
surface_distance/__init__.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TAP-Net model definition.""" import functools from typing import Optional, Mapping, Tuple import chex from einshape import jax_einshape as einshape import haiku as hk import jax import jax.numpy as jnp from tapnet.models import tsm_resnet from tapnet.utils import model_utils from tapnet.utils import transforms def create_batch_norm( x: chex.Array, is_training: bool, cross_replica_axis: Optional[str] ) -> chex.Array: """Function to allow TSM-ResNet to create batch norm layers.""" return hk.BatchNorm( create_scale=True, create_offset=True, decay_rate=0.9, cross_replica_axis=cross_replica_axis, )(x, is_training) class TAPNet(hk.Module): """Joint model for performing flow-based tasks.""" def __init__( self, feature_grid_stride: int = 8, num_heads: int = 1, cross_replica_axis: Optional[str] = 'i', num_frames: int = 24, ): """Initialize the model and provide kwargs for the various components. Args: feature_grid_stride: Stride to extract features. For TSM-ResNet, supported values are 8 (default), 16, and 32. num_heads: Number of heads in the cost volume. cross_replica_axis: Which cross replica axis to use for the batch norm. num_frames: Number of frames passed into TSM-ResNet. """ super().__init__() self.feature_grid_stride = feature_grid_stride self.num_heads = num_heads self.softmax_temperature = 10.0 self.tsm_resnet = tsm_resnet.TSMResNetV2( normalize_fn=functools.partial( create_batch_norm, cross_replica_axis=cross_replica_axis ), num_frames=num_frames, channel_shift_fraction=[0.125, 0.125, 0.0, 0.0], name='tsm_resnet_video', ) self.cost_volume_track_mods = { 'hid1': hk.Conv3D( 16, [1, 3, 3], name='cost_volume_regression_1', stride=[1, 1, 1], ), 'hid2': hk.Conv3D( 1, [1, 3, 3], name='cost_volume_regression_2', stride=[1, 1, 1], ), 'hid3': hk.Conv3D( 32, [1, 3, 3], name='cost_volume_occlusion_1', stride=[1, 2, 2], ), 'hid4': hk.Linear(16, name='cost_volume_occlusion_2'), 'occ_out': hk.Linear(1, name='occlusion_out'), 'regression_hid': hk.Linear(128, name='regression_hid'), 'regression_out': hk.Linear(2, name='regression_out'), } def tracks_from_cost_volume( self, interp_feature_heads: chex.Array, feature_grid_heads: chex.Array, query_points: Optional[chex.Array], im_shp: Optional[chex.Shape] = None, ) -> Tuple[chex.Array, chex.Array]: """Converts features into tracks by computing a cost volume. The computed cost volume will have shape [batch, num_queries, time, height, width, num_heads], which can be very memory intensive. Args: interp_feature_heads: A tensor of features for each query point, of shape [batch, num_queries, channels, heads]. feature_grid_heads: A tensor of features for the video, of shape [batch, time, height, width, channels, heads]. query_points: When computing tracks, we assume these points are given as ground truth and we reproduce them exactly. This is a set of points of shape [batch, num_points, 3], where each entry is [t, y, x] in frame/ raster coordinates. im_shp: The shape of the original image, i.e., [batch, num_frames, time, height, width, 3]. Returns: A 2-tuple of the inferred points (of shape [batch, num_points, num_frames, 2] where each point is [x, y]) and inferred occlusion (of shape [batch, num_points, num_frames], where each is a logit where higher means occluded) """ mods = self.cost_volume_track_mods # Note: time is first axis to prevent the TPU from padding cost_volume = jnp.einsum( 'bncd,bthwcd->tbnhwd', interp_feature_heads, feature_grid_heads, ) shape = cost_volume.shape cost_volume = einshape('tbnhwd->t(bn)hwd', cost_volume) occlusion = mods['hid1'](cost_volume) occlusion = jax.nn.relu(occlusion) pos = mods['hid2'](occlusion) pos = jax.nn.softmax(pos * self.softmax_temperature, axis=(-2, -3)) pos = einshape('t(bn)hw1->bnthw', pos, n=shape[2]) points = model_utils.heatmaps_to_points( pos, im_shp, query_points=query_points ) occlusion = mods['hid3'](occlusion) occlusion = jnp.mean(occlusion, axis=(-2, -3)) occlusion = mods['hid4'](occlusion) occlusion = jax.nn.relu(occlusion) occlusion = mods['occ_out'](occlusion) occlusion = jnp.transpose(occlusion, (1, 0, 2)) assert occlusion.shape[1] == shape[0] occlusion = jnp.reshape(occlusion, (shape[1], shape[2], shape[0])) return points, occlusion def __call__( self, video: chex.Array, is_training: bool, query_points: chex.Array, compute_regression: bool = True, query_chunk_size: Optional[int] = None, get_query_feats: bool = False, feature_grid: Optional[chex.Array] = None, ) -> Mapping[str, chex.Array]: """Runs a forward pass of the model. Args: video: A 4-D or 5-D tensor representing a batch of sequences of images. In the 4-D case, we assume the entire batch has been concatenated along the batch dimension, one sequence after the other. This can speed up inference on the TPU and save memory. is_training: Whether we are training. query_points: The query points for which we compute tracks. compute_regression: if True, compute tracks using cost volumes; otherwise simply compute features (required for the baseline) query_chunk_size: When computing cost volumes, break the queries into chunks of this size to save memory. get_query_feats: If True, also return the features for each query obtained using bilinear interpolation from the feature grid feature_grid: If specified, use this as the feature grid rather than computing it from the pixels. Returns: A dict of outputs, including: feature_grid: a TSM-ResNet feature grid of shape [batch, num_frames, height//stride, width//stride, channels] query_feats (optional): A feature for each query point, of size [batch, num_queries, channels] occlusion: Occlusion logits, of shape [batch, num_queries, num_frames] where higher indicates more likely to be occluded. tracks: predicted point locations, of shape [batch, num_queries, num_frames, 2], where each point is [x, y] in raster coordinates """ num_frames = None if feature_grid is None: latent = self.tsm_resnet( video, is_training=is_training, output_stride=self.feature_grid_stride, out_num_frames=num_frames, final_endpoint='tsm_resnet_unit_2', ) feature_grid = latent / jnp.sqrt( jnp.maximum( jnp.sum(jnp.square(latent), axis=-1, keepdims=True), 1e-12, )) shape = video.shape if num_frames is not None and len(shape) < 5: shape = (shape[0] // num_frames, num_frames) + shape[1:] # shape is [batch_size, time, height, width, channels]; conversion needs # [time, width, height] position_in_grid = transforms.convert_grid_coordinates( query_points, shape[1:4], feature_grid.shape[1:4], coordinate_format='tyx', ) interp_features = jax.vmap( jax.vmap( model_utils.interp, in_axes=(3, None), out_axes=1, ) )(feature_grid, position_in_grid) feature_grid_heads = einshape( 'bthw(cd)->bthwcd', feature_grid, d=self.num_heads ) interp_features_heads = einshape( 'bn(cd)->bncd', interp_features, d=self.num_heads, ) out = {'feature_grid': feature_grid} if get_query_feats: out['query_feats'] = interp_features if compute_regression: assert query_chunk_size is not None all_occ = [] all_pts = [] infer = functools.partial(self.tracks_from_cost_volume, im_shp=shape) for i in range(0, query_points.shape[1], query_chunk_size): points, occlusion = infer( interp_features_heads[:, i:i + query_chunk_size], feature_grid_heads, query_points[:, i:i + query_chunk_size], ) all_occ.append(occlusion) all_pts.append(points) occlusion = jnp.concatenate(all_occ, axis=1) points = jnp.concatenate(all_pts, axis=1) out['occlusion'] = occlusion out['tracks'] = points return out
tapnet-main
tapnet_model.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstract task interface with documentation. """ import abc from typing import Mapping, Optional, Tuple import chex import typing_extensions class SharedModule(typing_extensions.Protocol): def __call__( self, video: chex.Array, is_training: bool, query_points: chex.Array, query_chunk_size: Optional[int] = None, get_query_feats: bool = False, **kwargs, ) -> Mapping[str, chex.Array]: """Runs a forward pass of a module. Args: video: A 4-D or 5-D tensor representing a batch of sequences of images. In the 4-D case, we assume the entire batch has been concatenated along the batch dimension, one sequence after the other. This can speed up inference on the TPU and save memory. is_training: Whether we are training. query_points: The query points for which we compute tracks. query_chunk_size: When computing cost volumes, break the queries into chunks of this size to save memory. get_query_feats: If True, also return the features for each query obtained using bilinear interpolation from the feature grid **kwargs: Additional module-specific parameters. Returns: Module outputs. """ class WrappedForwardFn(typing_extensions.Protocol): """Forward function, wrapped by haiku. This wrapped forward function will inject the shared_modules and allow them to use shared params. It should be called inside a loss_fn using the same signature as `Task.forward_fn` (minus the shared_modules). """ def __call__( self, params: chex.ArrayTree, state: chex.ArrayTree, rng: chex.PRNGKey, inputs: chex.ArrayTree, is_training: bool, input_key: Optional[str] = None, query_chunk_size: int = 16, get_query_feats: bool = True, ) -> Mapping[str, chex.Array]: """Forward pass for predicting point tracks. Args: params: hk.Params with the model parameters state: hk.State with the model state rng: jax.random.PRNGKey for random number generation. inputs: Input dict. Inference will be performed on will be performed on inputs[input_key]['video'] (with fallback to the input_key specified in the constructor). Input videos should be a standard video tensor ([batch, num_frames, height, width, 3]) normalize to [-1,1]. inputs[input_key]['query_points'] specifies the query point locations, of shape [batch, num_queries, 3], where each query is [t,y,x] coordinates normalized to between -1 and 1. is_training: Whether the model is in training mode. input_key: Run on inputs[input_key]['video']. If None, use the input_key from the constructor. query_chunk_size: Compute predictions on this many queries simultaneously. This saves memory as the cost volumes can be very large. get_query_feats: If True, also return features for each query. Returns: Result dict produced by calling the model. """ class Task(abc.ABC): """An abstract Task definition.""" @abc.abstractmethod def forward_fn( self, inputs: chex.ArrayTree, is_training: bool, shared_modules: Optional[Mapping[str, SharedModule]] = None, ) -> chex.ArrayTree: """Run the model forward pass and construct all required Haiku modules. Args: inputs: model input tensors. This is a dict keyed by dataset name, where the value for each key is an item from the specified dataset. is_training: Is the forward pass in training mode or not. shared_modules: A dict of Haiku modules, keyed by module name, which can be used to construct the modules which are shared across different tasks. Returns: Anything. The important part is that this must construct all modules that Haiku needs to initialize. """ def get_gradients( self, params: chex.ArrayTree, state: chex.ArrayTree, inputs: chex.ArrayTree, rng: chex.PRNGKey, global_step: chex.Array, wrapped_forward_fn: WrappedForwardFn, is_training: bool = True, ) -> Tuple[chex.ArrayTree, chex.ArrayTree, Mapping[str, chex.Array]]: """Get gradients for this tasks's loss function. Params, state, inputs, rng, and global_step are pmapped, i.e. a separate copy on each device. Args: params: Haiku parameters state: Haiku state inputs: model input tensors. This is a dict keyed by dataset name, where the value for each key is an item from the specified dataset. rng: random number state global_step: global step wrapped_forward_fn: A wrapper for the forward function that will inject the shared_modules and allow them to use shared params. It should be called inside a loss_fn using the same signature as forward_fn (minus the shared_modules). is_training: Is the forward pass in training mode or not. Returns: grads: A set of gradients compatible with optax apply_gradients (these will be summed across tasks). state: An updated Haiku state. The returned state will be passed to the next task in the list. scalars: A dict of (pmapped) scalars to be logged for this task. All dict keys will have the task name prepended before they are logged. """ raise NotImplementedError() def evaluate( self, global_step: chex.Array, params: chex.ArrayTree, state: chex.ArrayTree, rng: chex.PRNGKey, wrapped_forward_fn: WrappedForwardFn, mode: str, ) -> Mapping[str, chex.Array]: """Evaluate this task's performance on a downstream benchmark. Args: global_step: global step params: Haiku parameters state: Haiku state rng: random number state wrapped_forward_fn: A wrapper for the forward function that will inject the shared_modules and allow them to use shared params. mode: A string mode used to determine, e.g., which dataset or split to evaluate on. This will be the same value as the 'mode' parameter used to launch different eval jobs in Jaxline. Returns: scalars: A dict of scalars to be logged for this task. All dict keys will have the task name prepended before they are logged. """ raise NotImplementedError()
tapnet-main
task.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluation dataset creation functions.""" import csv import functools import io import os from os import path import pickle import random from typing import Iterable, Mapping, Optional, Tuple, Union from absl import logging from kubric.challenges.point_tracking import dataset import mediapy as media import numpy as np from PIL import Image import scipy.io as sio import tensorflow as tf import tensorflow_datasets as tfds from tapnet.utils import transforms DatasetElement = Mapping[str, Mapping[str, Union[np.ndarray, str]]] def resize_video(video: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray: """Resize a video to output_size.""" # If you have a GPU, consider replacing this with a GPU-enabled resize op, # such as a jitted jax.image.resize. It will make things faster. return media.resize_video(video, output_size[1:3]) def compute_tapvid_metrics( query_points: np.ndarray, gt_occluded: np.ndarray, gt_tracks: np.ndarray, pred_occluded: np.ndarray, pred_tracks: np.ndarray, query_mode: str, ) -> Mapping[str, np.ndarray]: """Computes TAP-Vid metrics (Jaccard, Pts. Within Thresh, Occ. Acc.) See the TAP-Vid paper for details on the metric computation. All inputs are given in raster coordinates. The first three arguments should be the direct outputs of the reader: the 'query_points', 'occluded', and 'target_points'. The paper metrics assume these are scaled relative to 256x256 images. pred_occluded and pred_tracks are your algorithm's predictions. This function takes a batch of inputs, and computes metrics separately for each video. The metrics for the full benchmark are a simple mean of the metrics across the full set of videos. These numbers are between 0 and 1, but the paper multiplies them by 100 to ease reading. Args: query_points: The query points, an in the format [t, y, x]. Its size is [b, n, 3], where b is the batch size and n is the number of queries gt_occluded: A boolean array of shape [b, n, t], where t is the number of frames. True indicates that the point is occluded. gt_tracks: The target points, of shape [b, n, t, 2]. Each point is in the format [x, y] pred_occluded: A boolean array of predicted occlusions, in the same format as gt_occluded. pred_tracks: An array of track predictions from your algorithm, in the same format as gt_tracks. query_mode: Either 'first' or 'strided', depending on how queries are sampled. If 'first', we assume the prior knowledge that all points before the query point are occluded, and these are removed from the evaluation. Returns: A dict with the following keys: occlusion_accuracy: Accuracy at predicting occlusion. pts_within_{x} for x in [1, 2, 4, 8, 16]: Fraction of points predicted to be within the given pixel threshold, ignoring occlusion prediction. jaccard_{x} for x in [1, 2, 4, 8, 16]: Jaccard metric for the given threshold average_pts_within_thresh: average across pts_within_{x} average_jaccard: average across jaccard_{x} """ metrics = {} eye = np.eye(gt_tracks.shape[2], dtype=np.int32) if query_mode == 'first': # evaluate frames after the query frame query_frame_to_eval_frames = np.cumsum(eye, axis=1) - eye elif query_mode == 'strided': # evaluate all frames except the query frame query_frame_to_eval_frames = 1 - eye else: raise ValueError('Unknown query mode ' + query_mode) query_frame = query_points[..., 0] query_frame = np.round(query_frame).astype(np.int32) evaluation_points = query_frame_to_eval_frames[query_frame] > 0 # Occlusion accuracy is simply how often the predicted occlusion equals the # ground truth. occ_acc = np.sum( np.equal(pred_occluded, gt_occluded) & evaluation_points, axis=(1, 2), ) / np.sum(evaluation_points) metrics['occlusion_accuracy'] = occ_acc # Next, convert the predictions and ground truth positions into pixel # coordinates. visible = np.logical_not(gt_occluded) pred_visible = np.logical_not(pred_occluded) all_frac_within = [] all_jaccard = [] for thresh in [1, 2, 4, 8, 16]: # True positives are points that are within the threshold and where both # the prediction and the ground truth are listed as visible. within_dist = np.sum( np.square(pred_tracks - gt_tracks), axis=-1, ) < np.square(thresh) is_correct = np.logical_and(within_dist, visible) # Compute the frac_within_threshold, which is the fraction of points # within the threshold among points that are visible in the ground truth, # ignoring whether they're predicted to be visible. count_correct = np.sum( is_correct & evaluation_points, axis=(1, 2), ) count_visible_points = np.sum(visible & evaluation_points, axis=(1, 2)) frac_correct = count_correct / count_visible_points metrics['pts_within_' + str(thresh)] = frac_correct all_frac_within.append(frac_correct) true_positives = np.sum( is_correct & pred_visible & evaluation_points, axis=(1, 2) ) # The denominator of the jaccard metric is the true positives plus # false positives plus false negatives. However, note that true positives # plus false negatives is simply the number of points in the ground truth # which is easier to compute than trying to compute all three quantities. # Thus we just add the number of points in the ground truth to the number # of false positives. # # False positives are simply points that are predicted to be visible, # but the ground truth is not visible or too far from the prediction. gt_positives = np.sum(visible & evaluation_points, axis=(1, 2)) false_positives = (~visible) & pred_visible false_positives = false_positives | ((~within_dist) & pred_visible) false_positives = np.sum(false_positives & evaluation_points, axis=(1, 2)) jaccard = true_positives / (gt_positives + false_positives) metrics['jaccard_' + str(thresh)] = jaccard all_jaccard.append(jaccard) metrics['average_jaccard'] = np.mean( np.stack(all_jaccard, axis=1), axis=1, ) metrics['average_pts_within_thresh'] = np.mean( np.stack(all_frac_within, axis=1), axis=1, ) return metrics def latex_table(mean_scalars: Mapping[str, float]) -> str: """Generate a latex table for displaying TAP-Vid and PCK metrics.""" if 'average_jaccard' in mean_scalars: latex_fields = [ 'average_jaccard', 'average_pts_within_thresh', 'occlusion_accuracy', 'jaccard_1', 'jaccard_2', 'jaccard_4', 'jaccard_8', 'jaccard_16', 'pts_within_1', 'pts_within_2', 'pts_within_4', 'pts_within_8', 'pts_within_16', ] header = ( 'AJ & $<\\delta^{x}_{avg}$ & OA & Jac. $\\delta^{0}$ & ' + 'Jac. $\\delta^{1}$ & Jac. $\\delta^{2}$ & ' + 'Jac. $\\delta^{3}$ & Jac. $\\delta^{4}$ & $<\\delta^{0}$ & ' + '$<\\delta^{1}$ & $<\\delta^{2}$ & $<\\delta^{3}$ & ' + '$<\\delta^{4}$' ) else: latex_fields = ['[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]'] header = ' & '.join(latex_fields) body = ' & '.join( [f'{float(np.array(mean_scalars[x]*100)):.3}' for x in latex_fields] ) return '\n'.join([header, body]) def sample_queries_strided( target_occluded: np.ndarray, target_points: np.ndarray, frames: np.ndarray, query_stride: int = 5, ) -> Mapping[str, np.ndarray]: """Package a set of frames and tracks for use in TAPNet evaluations. Given a set of frames and tracks with no query points, sample queries strided every query_stride frames, ignoring points that are not visible at the selected frames. Args: target_occluded: Boolean occlusion flag, of shape [n_tracks, n_frames], where True indicates occluded. target_points: Position, of shape [n_tracks, n_frames, 2], where each point is [x,y] scaled between 0 and 1. frames: Video tensor, of shape [n_frames, height, width, 3]. Scaled between -1 and 1. query_stride: When sampling query points, search for un-occluded points every query_stride frames and convert each one into a query. Returns: A dict with the keys: video: Video tensor of shape [1, n_frames, height, width, 3]. The video has floats scaled to the range [-1, 1]. query_points: Query points of shape [1, n_queries, 3] where each point is [t, y, x] scaled to the range [-1, 1]. target_points: Target points of shape [1, n_queries, n_frames, 2] where each point is [x, y] scaled to the range [-1, 1]. trackgroup: Index of the original track that each query point was sampled from. This is useful for visualization. """ tracks = [] occs = [] queries = [] trackgroups = [] total = 0 trackgroup = np.arange(target_occluded.shape[0]) for i in range(0, target_occluded.shape[1], query_stride): mask = target_occluded[:, i] == 0 query = np.stack( [ i * np.ones(target_occluded.shape[0:1]), target_points[:, i, 1], target_points[:, i, 0], ], axis=-1, ) queries.append(query[mask]) tracks.append(target_points[mask]) occs.append(target_occluded[mask]) trackgroups.append(trackgroup[mask]) total += np.array(np.sum(target_occluded[:, i] == 0)) return { 'video': frames[np.newaxis, ...], 'query_points': np.concatenate(queries, axis=0)[np.newaxis, ...], 'target_points': np.concatenate(tracks, axis=0)[np.newaxis, ...], 'occluded': np.concatenate(occs, axis=0)[np.newaxis, ...], 'trackgroup': np.concatenate(trackgroups, axis=0)[np.newaxis, ...], } def sample_queries_first( target_occluded: np.ndarray, target_points: np.ndarray, frames: np.ndarray, ) -> Mapping[str, np.ndarray]: """Package a set of frames and tracks for use in TAPNet evaluations. Given a set of frames and tracks with no query points, use the first visible point in each track as the query. Args: target_occluded: Boolean occlusion flag, of shape [n_tracks, n_frames], where True indicates occluded. target_points: Position, of shape [n_tracks, n_frames, 2], where each point is [x,y] scaled between 0 and 1. frames: Video tensor, of shape [n_frames, height, width, 3]. Scaled between -1 and 1. Returns: A dict with the keys: video: Video tensor of shape [1, n_frames, height, width, 3] query_points: Query points of shape [1, n_queries, 3] where each point is [t, y, x] scaled to the range [-1, 1] target_points: Target points of shape [1, n_queries, n_frames, 2] where each point is [x, y] scaled to the range [-1, 1] """ valid = np.sum(~target_occluded, axis=1) > 0 target_points = target_points[valid, :] target_occluded = target_occluded[valid, :] query_points = [] for i in range(target_points.shape[0]): index = np.where(target_occluded[i] == 0)[0][0] x, y = target_points[i, index, 0], target_points[i, index, 1] query_points.append(np.array([index, y, x])) # [t, y, x] query_points = np.stack(query_points, axis=0) return { 'video': frames[np.newaxis, ...], 'query_points': query_points[np.newaxis, ...], 'target_points': target_points[np.newaxis, ...], 'occluded': target_occluded[np.newaxis, ...], } def create_jhmdb_dataset( jhmdb_path: str, resolution: Optional[Tuple[int, int]] = (256, 256) ) -> Iterable[DatasetElement]: """JHMDB dataset, including fields required for PCK evaluation.""" videos = [] for file in tf.io.gfile.listdir(path.join(gt_dir, 'splits')): # JHMDB file containing the first split, which is standard for this type of # evaluation. if not file.endswith('split1.txt'): continue video_folder = '_'.join(file.split('_')[:-2]) for video in tf.io.gfile.GFile(path.join(gt_dir, 'splits', file), 'r'): video, traintest = video.split() video, _ = video.split('.') traintest = int(traintest) video_path = path.join(video_folder, video) if traintest == 2: videos.append(video_path) if not videos: raise ValueError('No JHMDB videos found in directory ' + str(jhmdb_path)) # Shuffle so numbers converge faster. random.shuffle(videos) for video in videos: logging.info(video) joints = path.join(gt_dir, 'joint_positions', video, 'joint_positions.mat') if not tf.io.gfile.exists(joints): logging.info('skip %s', video) continue gt_pose = sio.loadmat(tf.io.gfile.GFile(joints, 'rb'))['pos_img'] gt_pose = np.transpose(gt_pose, [1, 2, 0]) frames = path.join(gt_dir, 'Rename_Images', video, '*.png') framefil = tf.io.gfile.glob(frames) framefil.sort() def read_frame(f): im = Image.open(tf.io.gfile.GFile(f, 'rb')) im = im.convert('RGB') im_data = np.array(im.getdata(), np.uint8) return im_data.reshape([im.size[1], im.size[0], 3]) frames = [read_frame(x) for x in framefil] frames = np.stack(frames) height = frames.shape[1] width = frames.shape[2] invalid_x = np.logical_or( gt_pose[:, 0:1, 0] < 0, gt_pose[:, 0:1, 0] >= width, ) invalid_y = np.logical_or( gt_pose[:, 0:1, 1] < 0, gt_pose[:, 0:1, 1] >= height, ) invalid = np.logical_or(invalid_x, invalid_y) invalid = np.tile(invalid, [1, gt_pose.shape[1]]) invalid = invalid[:, :, np.newaxis].astype(np.float32) gt_pose_orig = gt_pose if resolution is not None and resolution != frames.shape[1:3]: frames = resize_video(frames, resolution) frames = frames / (255.0 / 2.0) - 1.0 queries = gt_pose[:, 0] queries = np.concatenate( [queries[..., 0:1] * 0, queries[..., ::-1]], axis=-1, ) gt_pose = transforms.convert_grid_coordinates( gt_pose, np.array([width, height]), np.array([frames.shape[2], frames.shape[1]]), ) # Set invalid poses to -1 (outside the frame) gt_pose = (1.0 - invalid) * gt_pose + invalid * (-1.0) if gt_pose.shape[1] < frames.shape[0]: # Some videos have pose sequences that are shorter than the frame # sequence (usually because the person disappears). In this case, # truncate the video. logging.warning('short video!!') frames = frames[: gt_pose.shape[1]] converted = { 'video': frames[np.newaxis, ...], 'query_points': queries[np.newaxis, ...], 'target_points': gt_pose[np.newaxis, ...], 'gt_pose': gt_pose[np.newaxis, ...], 'gt_pose_orig': gt_pose_orig[np.newaxis, ...], 'occluded': gt_pose[np.newaxis, ..., 0] * 0, 'fname': video, 'im_size': np.array([height, width]), } yield {'jhmdb': converted} def create_kubric_eval_train_dataset( mode: str, train_size: Tuple[int, int] = (256, 256), max_dataset_size: int = 100, ) -> Iterable[DatasetElement]: """Dataset for evaluating performance on Kubric training data.""" res = dataset.create_point_tracking_dataset( split='train', train_size=train_size, batch_dims=[1], shuffle_buffer_size=None, repeat=False, vflip='vflip' in mode, random_crop=False, ) np_ds = tfds.as_numpy(res) num_returned = 0 for data in np_ds: if num_returned >= max_dataset_size: break num_returned += 1 yield {'kubric': data} def create_kubric_eval_dataset( mode: str, train_size: Tuple[int, int] = (256, 256) ) -> Iterable[DatasetElement]: """Dataset for evaluating performance on Kubric val data.""" res = dataset.create_point_tracking_dataset( split='validation', train_size=train_size, batch_dims=[1], shuffle_buffer_size=None, repeat=False, vflip='vflip' in mode, random_crop=False, ) np_ds = tfds.as_numpy(res) for data in np_ds: yield {'kubric': data} def create_davis_dataset( davis_points_path: str, query_mode: str = 'strided', full_resolution=False, resolution: Optional[Tuple[int, int]] = (256, 256), ) -> Iterable[DatasetElement]: """Dataset for evaluating performance on DAVIS data.""" pickle_path = davis_points_path with tf.io.gfile.GFile(pickle_path, 'rb') as f: davis_points_dataset = pickle.load(f) if full_resolution: ds, _ = tfds.load( 'davis/full_resolution', split='validation', with_info=True ) to_iterate = tfds.as_numpy(ds) else: to_iterate = davis_points_dataset.keys() for tmp in to_iterate: if full_resolution: frames = tmp['video']['frames'] video_name = tmp['metadata']['video_name'].decode() else: video_name = tmp frames = davis_points_dataset[video_name]['video'] if resolution is not None and resolution != frames.shape[1:3]: frames = resize_video(frames, resolution) frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0 target_points = davis_points_dataset[video_name]['points'] target_occ = davis_points_dataset[video_name]['occluded'] target_points = target_points * np.array([frames.shape[2], frames.shape[1]]) if query_mode == 'strided': converted = sample_queries_strided(target_occ, target_points, frames) elif query_mode == 'first': converted = sample_queries_first(target_occ, target_points, frames) else: raise ValueError(f'Unknown query mode {query_mode}.') yield {'davis': converted} def create_rgb_stacking_dataset( robotics_points_path: str, query_mode: str = 'strided', resolution: Optional[Tuple[int, int]] = (256, 256), ) -> Iterable[DatasetElement]: """Dataset for evaluating performance on robotics data.""" pickle_path = robotics_points_path with tf.io.gfile.GFile(pickle_path, 'rb') as f: robotics_points_dataset = pickle.load(f) for example in robotics_points_dataset: frames = example['video'] if resolution is not None and resolution != frames.shape[1:3]: frames = resize_video(frames, resolution) frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0 target_points = example['points'] target_occ = example['occluded'] target_points = target_points * np.array([frames.shape[2], frames.shape[1]]) if query_mode == 'strided': converted = sample_queries_strided(target_occ, target_points, frames) elif query_mode == 'first': converted = sample_queries_first(target_occ, target_points, frames) else: raise ValueError(f'Unknown query mode {query_mode}.') yield {'robotics': converted} def create_kinetics_dataset( kinetics_path: str, query_mode: str = 'strided', resolution: Optional[Tuple[int, int]] = (256, 256), ) -> Iterable[DatasetElement]: """Dataset for evaluating performance on Kinetics point tracking.""" all_paths = tf.io.gfile.glob(path.join(kinetics_path, '*_of_0010.pkl')) for pickle_path in all_paths: with open(pickle_path, 'rb') as f: data = pickle.load(f) if isinstance(data, dict): data = list(data.values()) # idx = random.randint(0, len(data) - 1) for idx in range(len(data)): example = data[idx] frames = example['video'] if isinstance(frames[0], bytes): # TAP-Vid is stored and JPEG bytes rather than `np.ndarray`s. def decode(frame): byteio = io.BytesIO(frame) img = Image.open(byteio) return np.array(img) frames = np.array([decode(frame) for frame in frames]) if resolution is not None and resolution != frames.shape[1:3]: frames = resize_video(frames, resolution) frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0 target_points = example['points'] target_occ = example['occluded'] target_points *= np.array([frames.shape[2], frames.shape[1]]) if query_mode == 'strided': converted = sample_queries_strided(target_occ, target_points, frames) elif query_mode == 'first': converted = sample_queries_first(target_occ, target_points, frames) else: raise ValueError(f'Unknown query mode {query_mode}.') yield {'kinetics': converted} def create_csv_dataset( dataset_name: str, csv_path: str, video_base_path: str, query_mode: str = 'strided', resolution: Optional[Tuple[int, int]] = (256, 256), max_video_frames: Optional[int] = 1000, ) -> Iterable[DatasetElement]: """Create an evaluation iterator out of human annotations and videos. Args: dataset_name: Name to the dataset. csv_path: Path to annotations csv. video_base_path: Path to annotated videos. query_mode: sample query points from first frame or strided. resolution: The video resolution in (height, width). max_video_frames: Max length of annotated video. Yields: Samples for evaluation. """ point_tracks_all = dict() with tf.io.gfile.GFile(csv_path, 'r') as f: reader = csv.reader(f, delimiter=',') for row in reader: video_id = row[0] point_tracks = np.array(row[1:]).reshape(-1, 3) if video_id in point_tracks_all: point_tracks_all[video_id].append(point_tracks) else: point_tracks_all[video_id] = [point_tracks] for video_id in point_tracks_all: if video_id.endswith('.mp4'): video_path = path.join(video_base_path, video_id) else: video_path = path.join(video_base_path, video_id + '.mp4') frames = media.read_video(video_path) if resolution is not None and resolution != frames.shape[1:3]: frames = media.resize_video(frames, resolution) frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0 point_tracks = np.stack(point_tracks_all[video_id], axis=0) point_tracks = point_tracks.astype(np.float32) if frames.shape[0] < point_tracks.shape[1]: logging.info('Warning: short video!') point_tracks = point_tracks[:, : frames.shape[0]] point_tracks, occluded = point_tracks[..., 0:2], point_tracks[..., 2] occluded = occluded > 0 target_points = point_tracks * np.array([frames.shape[2], frames.shape[1]]) num_splits = int(np.ceil(frames.shape[0] / max_video_frames)) if num_splits > 1: print(f'Going to split the video {video_id} into {num_splits}') for i in range(num_splits): start_index = i * frames.shape[0] // num_splits end_index = (i + 1) * frames.shape[0] // num_splits sub_occluded = occluded[:, start_index:end_index] sub_target_points = target_points[:, start_index:end_index] sub_frames = frames[start_index:end_index] if query_mode == 'strided': converted = sample_queries_strided( sub_occluded, sub_target_points, sub_frames ) elif query_mode == 'first': converted = sample_queries_first( sub_occluded, sub_target_points, sub_frames ) else: raise ValueError(f'Unknown query mode {query_mode}.') yield {dataset_name: converted}
tapnet-main
evaluation_datasets.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Live Demo for Online TAPIR.""" import functools import time import cv2 import haiku as hk import jax import jax.numpy as jnp import numpy as np from tapnet import tapir_model NUM_POINTS = 8 def construct_initial_causal_state(num_points, num_resolutions): """Construct initial causal state.""" value_shapes = { "tapir/~/pips_mlp_mixer/block_1_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_1_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_2_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_2_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_3_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_3_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_4_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_4_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_5_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_5_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_6_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_6_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_7_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_7_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_8_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_8_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_9_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_9_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_10_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_10_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_11_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_11_causal_2": (1, num_points, 2, 2048), "tapir/~/pips_mlp_mixer/block_causal_1": (1, num_points, 2, 512), "tapir/~/pips_mlp_mixer/block_causal_2": (1, num_points, 2, 2048), } fake_ret = { k: jnp.zeros(v, dtype=jnp.float32) for k, v in value_shapes.items() } return [fake_ret] * num_resolutions * 4 def preprocess_frames(frames): """Preprocess frames to model inputs. Args: frames: [num_frames, height, width, 3], [0, 255], np.uint8 Returns: frames: [num_frames, height, width, 3], [-1, 1], np.float32 """ frames = frames.astype(np.float32) frames = frames / 255 * 2 - 1 return frames def postprocess_frames(frames): """Postprocess frames back to traditional image format. Args: frames: [num_frames, height, width, 3], [-1, 1], np.float32 Returns: frames: [num_frames, height, width, 3], [0, 255], np.uint8 """ frames = (frames + 1) / 2 * 255 frames = np.round(frames).astype(np.uint8) return frames def postprocess_occlusions(occlusions, exp_dist): """Postprocess occlusions to boolean visible flag. Args: occlusions: [num_points, num_frames], [-inf, inf], np.float32 exp_dist: [num_points, num_frames], [-inf, inf], np.float32 Returns: visibles: [num_points, num_frames], bool """ # visibles = occlusions < 0 pred_occ = jax.nn.sigmoid(occlusions) pred_occ = 1 - (1 - pred_occ) * (1 - jax.nn.sigmoid(exp_dist)) return pred_occ < 0.5 def load_checkpoint(checkpoint_path): ckpt_state = np.load(checkpoint_path, allow_pickle=True).item() return ckpt_state["params"], ckpt_state["state"] def build_online_model_init(frames, points): model = tapir_model.TAPIR( use_causal_conv=True, bilinear_interp_with_depthwise_conv=False ) feature_grids = model.get_feature_grids(frames, is_training=False) features = model.get_query_features( frames, is_training=False, query_points=points, feature_grids=feature_grids, ) return features def build_online_model_predict(frames, features, causal_context): """Compute point tracks and occlusions given frames and query points.""" model = tapir_model.TAPIR( use_causal_conv=True, bilinear_interp_with_depthwise_conv=False ) feature_grids = model.get_feature_grids(frames, is_training=False) trajectories = model.estimate_trajectories( frames.shape[-3:-1], is_training=False, feature_grids=feature_grids, query_features=features, query_points_in_video=None, query_chunk_size=64, causal_context=causal_context, get_causal_context=True, ) causal_context = trajectories["causal_context"] del trajectories["causal_context"] return {k: v[-1] for k, v in trajectories.items()}, causal_context def get_frame(video_capture): r_val, image = video_capture.read() trunc = np.abs(image.shape[1] - image.shape[0]) // 2 if image.shape[1] > image.shape[0]: image = image[:, trunc:-trunc] elif image.shape[1] < image.shape[0]: image = image[trunc:-trunc] return r_val, image print("Welcome to the TAPIR live demo.") print("Please note that if the framerate is low (<~12 fps), TAPIR performance") print("may degrade and you may need a more powerful GPU.") print("Loading checkpoint...") # -------------------- # Load checkpoint and initialize params, state = load_checkpoint( "tapnet/checkpoints/causal_tapir_checkpoint.npy" ) print("Creating model...") online_init = hk.transform_with_state(build_online_model_init) online_init_apply = jax.jit(online_init.apply) online_predict = hk.transform_with_state(build_online_model_predict) online_predict_apply = jax.jit(online_predict.apply) rng = jax.random.PRNGKey(42) online_init_apply = functools.partial( online_init_apply, params=params, state=state, rng=rng ) online_predict_apply = functools.partial( online_predict_apply, params=params, state=state, rng=rng ) print("Initializing camera...") # -------------------- # Start point tracking vc = cv2.VideoCapture(0) vc.set(cv2.CAP_PROP_FRAME_HEIGHT, 240) if vc.isOpened(): # try to get the first frame rval, frame = get_frame(vc) else: raise ValueError("Unable to open camera.") pos = tuple() query_frame = True have_point = [False] * NUM_POINTS query_features = None causal_state = None next_query_idx = 0 print("Compiling jax functions (this may take a while...)") # -------------------- # Call one time to compile query_points = jnp.zeros([NUM_POINTS, 3], dtype=jnp.float32) query_features, _ = online_init_apply( frames=preprocess_frames(frame[None, None]), points=query_points[None, 0:1], ) jax.block_until_ready(query_features) query_features, _ = online_init_apply( frames=preprocess_frames(frame[None, None]), points=query_points[None], ) causal_state = construct_initial_causal_state( NUM_POINTS, len(query_features.resolutions) - 1 ) (prediction, causal_state), _ = online_predict_apply( frames=preprocess_frames(frame[None, None]), features=query_features, causal_context=causal_state, ) jax.block_until_ready(prediction["tracks"]) last_click_time = 0 def mouse_click(event, x, y, flags, param): del flags, param global pos, query_frame, last_click_time # event fires multiple times per click sometimes?? if (time.time() - last_click_time) < 0.5: return if event == cv2.EVENT_LBUTTONDOWN: pos = (y, frame.shape[1] - x) query_frame = True last_click_time = time.time() cv2.namedWindow("Point Tracking") cv2.setMouseCallback("Point Tracking", mouse_click) t = time.time() step_counter = 0 while rval: rval, frame = get_frame(vc) if query_frame: query_points = jnp.array((0,) + pos, dtype=jnp.float32) init_query_features, _ = online_init_apply( frames=preprocess_frames(frame[None, None]), points=query_points[None, None], ) init_causal_state = construct_initial_causal_state( 1, len(query_features.resolutions) - 1 ) # cv2.circle(frame, (pos[0], pos[1]), 5, (255,0,0), -1) query_frame = False def upd(s1, s2): return s1.at[:, next_query_idx : next_query_idx + 1].set(s2) causal_state = jax.tree_map(upd, causal_state, init_causal_state) query_features = tapir_model.QueryFeatures( lowres=jax.tree_map( upd, query_features.lowres, init_query_features.lowres ), hires=jax.tree_map( upd, query_features.hires, init_query_features.hires ), resolutions=query_features.resolutions, ) have_point[next_query_idx] = True next_query_idx = (next_query_idx + 1) % NUM_POINTS if pos: (prediction, causal_state), _ = online_predict_apply( frames=preprocess_frames(frame[None, None]), features=query_features, causal_context=causal_state, ) track = prediction["tracks"][0, :, 0] occlusion = prediction["occlusion"][0, :, 0] expected_dist = prediction["expected_dist"][0, :, 0] visibles = postprocess_occlusions(occlusion, expected_dist) track = np.round(track) for i in range(len(have_point)): if visibles[i] and have_point[i]: cv2.circle( frame, (int(track[i, 0]), int(track[i, 1])), 5, (255, 0, 0), -1 ) if track[i, 0] < 16 and track[i, 1] < 16: print((i, next_query_idx)) cv2.imshow("Point Tracking", frame[:, ::-1]) if pos: step_counter += 1 if time.time() - t > 5: print(f"{step_counter/(time.time()-t)} frames per second") t = time.time() step_counter = 0 else: t = time.time() key = cv2.waitKey(1) if key == 27: # exit on ESC break cv2.destroyWindow("Point Tracking") vc.release()
tapnet-main
live_demo.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Optimizer utils.""" from typing import Callable, Sequence, NamedTuple, Optional, Text import haiku as hk import jax import jax.numpy as jnp import optax NORM_NAMES = ["layer_norm", "batch_norm", "_bn", "linear_classifier"] def _weight_decay_exclude( exclude_names: Optional[Sequence[Text]] = None, ) -> Callable[[str, str, jnp.ndarray], bool]: """Logic for deciding which parameters to include for weight decay.. Args: exclude_names: an optional list of names to include for weight_decay. ['w'] by default. Returns: A predicate that returns False for params that need to be excluded from weight_decay. """ # By default weight_decay the weights but not the biases. if exclude_names is None: exclude_names = ["b"] def include(module_name: Text, name: Text, value: jnp.ndarray): del value # Do not weight decay the parameters of normalization blocks. if any([norm_name in module_name for norm_name in NORM_NAMES]): return False else: return name not in exclude_names return include class AddWeightDecayState(NamedTuple): """Stateless transformation.""" def add_weight_decay( weight_decay: float, exclude_names: Optional[Sequence[Text]] = None, ) -> optax.GradientTransformation: """Add parameter scaled by `weight_decay` to the `updates`. Same as optax.add_decayed_weights but can exclude some parameters. Args: weight_decay: weight_decay coefficient. exclude_names: an optional list of names to exclude for weight_decay. ['b'] by default. Returns: An (init_fn, update_fn) tuple. """ def init_fn(_): return AddWeightDecayState() def update_fn(updates, state, params): include = _weight_decay_exclude(exclude_names=exclude_names) u_in, u_ex = hk.data_structures.partition(include, updates) p_in, _ = hk.data_structures.partition(include, params) u_in = jax.tree_map(lambda g, p: g + weight_decay * p, u_in, p_in) updates = hk.data_structures.merge(u_ex, u_in) return updates, state return optax.GradientTransformation(init_fn, update_fn)
tapnet-main
optimizers.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Jaxline script for training and evaluating TAPNet.""" import sys from typing import Callable, Dict, Iterable, Iterator, Mapping, Optional, Tuple from absl import app from absl import flags from absl import logging import chex import haiku as hk import jax import jax.numpy as jnp from jaxline import experiment from jaxline import platform from jaxline import utils from kubric.challenges.point_tracking import dataset from ml_collections import config_dict import numpy as np import optax import tensorflow as tf import tensorflow_datasets as tfds from tapnet import supervised_point_prediction from tapnet import tapir_model from tapnet import tapnet_model from tapnet import task from tapnet.utils import experiment_utils as exputils class Experiment(experiment.AbstractExperiment): """TAPNet experiment. This constructs a set of tasks which are used to compute gradients, as well as a set of datasets which are passed into every task. After the tasks compute gradients using the data, this experiment will aggregate and apply those gradients using an optimizer. This experiment is organized around the needs of Haiku's multi transform: each task specifies its own forward function, but different tasks need to share parameters. Therefore, the design of this experiment is that each task has a forward function, but the global Experiment class is responsible for creating the multi transform out of these. The Experiment class keeps track of the variables. Each task doesn't directly call its own forward function. Instead receives a "wrapped" forward function which contains the Haiku state, which injected (via closure) by the Experiment class. To do its job, multi transform needs two things: a function which initializes all variables, and the set of forward functions that need to be called separately, one for each task. The latter is just the set of forward functions for each task. The initialization function is just a function that calls every forward function sequentially. """ # A map from object properties that will be checkpointed to their name # in a checkpoint. Currently we assume that these are all sharded # device arrays. CHECKPOINT_ATTRS = { '_params': 'params', '_state': 'state', '_opt_state': 'opt_state', } def __init__( self, mode: str, init_rng: jnp.ndarray, config: config_dict.ConfigDict, ): """Initializes the experiment. This includes constructing all of the requested tasks, creating the Haiku transforms, and pmapping the update function that will be used throughout training. Currently the two supported training tasks are 'selfsup_tracks' and 'kubric'. Args: mode: either 'train' (for training) or one of the recognized eval modes (see Experiment.evaluate). init_rng: jax.random.PRNGKey for random number generation. config: config options. See configs/tapnet_config.py for an example. """ super().__init__(mode=mode, init_rng=init_rng) self.mode = mode self.init_rng = init_rng self.config = config # Checkpointed experiment state. self._params = None self._state = None self._opt_state = None self._optimizer = None # Input pipelines. self._train_input = None self._eval_input = None self.point_prediction = ( supervised_point_prediction.SupervisedPointPrediction( config, **config.supervised_point_prediction_kwargs ) ) def forward(*args, is_training=True, **kwargs): shared_modules = self._construct_shared_modules() return self.point_prediction.forward_fn( *args, shared_modules=shared_modules, is_training=is_training, **kwargs, ) self._transform = hk.transform_with_state(forward) # NOTE: We "donate" the `params, state, opt_state` arguments which allows # JAX (on some backends) to reuse the device memory associated with these # inputs to store the outputs of our function (which also start with # `params, state, opt_state`). self._update_func = jax.pmap( self._update_func, axis_name='i', donate_argnums=(0, 1, 2)) def _construct_shared_modules(self) -> Mapping[str, task.SharedModule]: """Constructs the TAPNet module which is used for all tasks. More generally, these are Haiku modules that are passed to all tasks so that weights are shared across tasks. Returns: A dict with a single key 'tapnet_model' containing the tapnet model. """ shared_module_constructors = { 'tapnet_model': tapnet_model.TAPNet, 'tapir_model': tapir_model.TAPIR, } shared_modules = {} for shared_mod_name in self.config.shared_modules.shared_module_names: ctor = shared_module_constructors[shared_mod_name] kwargs = self.config.shared_modules[shared_mod_name + '_kwargs'] shared_modules[shared_mod_name] = ctor(**kwargs) return shared_modules # _ _ # | |_ _ __ __ _(_)_ __ # | __| '__/ _` | | '_ \ # | |_| | | (_| | | | | | # \__|_| \__,_|_|_| |_| # def step( # pytype: disable=signature-mismatch # numpy-scalars self, global_step: chex.Array, rng: chex.PRNGKey, *unused_args, **unused_kwargs, ) -> Dict[str, chex.Array]: """See base class.""" if self._train_input is None: self._initialize_train() inputs = next(self._train_input) self._params, self._state, self._opt_state, scalars = self._update_func( self._params, self._state, self._opt_state, inputs, rng, global_step, ) scalars = utils.get_first(scalars) if ((utils.get_first(global_step) + 1) % self.config.evaluate_every) == 0: for mode in self.config.eval_modes: eval_scalars = self.evaluate(global_step, rng=rng, mode=mode) scalars.update(eval_scalars) return scalars def _initialize_train(self): """Initializes the training parameters using the first training input. self._multi_transform.init will call the forward_fn, which allows Haiku to identify the params that need to be initialized. """ self._train_input = utils.py_prefetch(self._build_train_input) total_steps = self.config.training.n_training_steps # Scale by the (negative) learning rate. # Check we haven't already restored params if self._params is None: logging.info('Initializing parameters.') inputs = next(self._train_input) init_net = jax.pmap( lambda *a: self._transform.init(*a, is_training=True), axis_name='i', ) # Init uses the same RNG key on all hosts+devices to ensure everyone # computes the same initial state. init_rng = utils.bcast_local_devices(self.init_rng) self._params, self._state = init_net(init_rng, inputs) self._lr_schedule = exputils.get_lr_schedule( total_steps, self.config.optimizer, ) self._optimizer = exputils.make_optimizer( self.config.optimizer, self._lr_schedule, ) init_opt = jax.pmap(self._optimizer.init, axis_name='i') if self._opt_state is None: self._opt_state = init_opt(self._params) def _build_train_input( self, ) -> Iterable[Mapping[str, Mapping[str, np.ndarray]]]: """Builds the training input. For each dataset specified in the config, this will call the appropriate constructor for the dataset and then yield elements from each dataset. Currently supported datasets are 'selfsup_kinetics_tracks' and 'kubric'. Yields: Elements of a joint dataset, where each item is a dict. The keys are the dataset names, and the associated values are items generated by those dataset classes. """ # Note: a dataset constructor is a function which takes only kwargs from # the experiment config, and returns a dataset. # # A dataset consists of a generator function (calling next() on it will # produce a data value) dataset_constructors = { 'kubric': dataset.create_point_tracking_dataset, } dataset_generators = {} for dset_name in self.config.datasets.dataset_names: ds_generator = self.create_dataset_generator( dataset_constructors, dset_name, color_augmentation=True, ) dataset_generators[dset_name] = ds_generator while True: combined_dset = {} for dset_name in self.config.datasets.dataset_names: next_data = next(dataset_generators[dset_name]) combined_dset[dset_name] = next_data yield combined_dset def create_dataset_generator( self, dataset_constructors: Mapping[str, Callable[..., tf.data.Dataset]], dset_name: str, color_augmentation: bool = False, ) -> Iterator[Mapping[str, np.ndarray]]: # Batch data on available devices. # Number of devices is unknown when an interpreter reads a config file. # Here we re-define batch dims to guide jax for right batching. batch_dims = [ jax.local_device_count(), self.config.datasets[dset_name + '_kwargs'].batch_dims, ] dset_kwargs = dict(self.config.datasets[dset_name + '_kwargs']) dset_kwargs['batch_dims'] = [] ds = dataset_constructors[dset_name](**dset_kwargs) if color_augmentation: ds = exputils.add_default_data_augmentation(ds) for dim in batch_dims[::-1]: ds = ds.batch(dim) np_ds = tfds.as_numpy(ds) return iter(np_ds) def _update_func( self, params: chex.ArrayTree, state: chex.ArrayTree, opt_state: chex.ArrayTree, inputs: chex.ArrayTree, rng: chex.PRNGKey, global_step: chex.Array, ) -> Tuple[chex.Array, chex.Array, chex.Array, Mapping[str, chex.Numeric]]: """Applies an update to parameters and returns new state.""" updates = None grads, state, scalars = self.point_prediction.get_gradients( params, state, inputs, rng, global_step, self._transform.apply, is_training=True, ) scalars = {**scalars} # Mutable copy. if grads is not None: grads = jax.lax.psum(grads, axis_name='i') task_updates, opt_state = self._optimizer.update( grads, opt_state, params, ) # We accumulate task_updates across tasks; if this is the first task # processed, then updates is None and we just initialize with the # updates from the first task. if updates is None: updates = task_updates else: updates = jax.tree_map(jnp.add, updates, task_updates) scalars['gradient_norm'] = optax.global_norm(grads) # Grab the learning rate to log before performing the step. learning_rate = self._lr_schedule(global_step) # Make the BYOL predictor train faster than everything else. def multiply_lr(variable_name, variable_update): need_fast_lr = False for substr in self.config.fast_variables: need_fast_lr = need_fast_lr or any([substr in x for x in variable_name]) if need_fast_lr: logging.info('Boosting learning rate for: %s', '/'.join(variable_name)) return variable_update * 10. return variable_update mapping_type = type(updates) def map_fn(nested_dict, prefix=None): prefix = prefix or [] result = {} for k, v in nested_dict.items(): if isinstance(v, mapping_type): result[k] = map_fn(v, prefix + [k]) else: result[k] = multiply_lr(prefix + [k], v) return mapping_type(**result) updates = map_fn(updates) params = optax.apply_updates(params, updates) n_params = 0 for k in params.keys(): # pytype: disable=attribute-error # numpy-scalars for l in params[k]: n_params = n_params + np.prod(params[k][l].shape) # pytype: disable=attribute-error # numpy-scalars # Scalars to log (note: we log the mean across all hosts/devices). scalars.update({ 'learning_rate': learning_rate, 'n_params (M)': float(n_params / 1e6), }) scalars = jax.lax.pmean(scalars, axis_name='i') return params, state, opt_state, scalars # _ # _____ ____ _| | # / _ \ \ / / _` | | # | __/\ V / (_| | | # \___| \_/ \__,_|_| # def evaluate( # pytype: disable=signature-mismatch # numpy-scalars self, global_step: chex.Array, rng: chex.PRNGKey, mode: Optional[str] = None, **unused_args, ) -> Dict[str, chex.Array]: mode = mode or self.mode point_prediction_task = self.point_prediction forward_fn = self._transform.apply eval_scalars = point_prediction_task.evaluate( global_step=global_step, params=self._params, state=self._state, rng=rng, wrapped_forward_fn=forward_fn, mode=mode, ) return { f'eval/{mode}/{key}': value for key, value in eval_scalars.items() } def main(_): flags.mark_flag_as_required('config') # Keep TF off the GPU; otherwise it hogs all the memory and leaves none for # JAX. tf.config.experimental.set_visible_devices([], 'GPU') tf.config.experimental.set_visible_devices([], 'TPU') platform.main( Experiment, sys.argv[1:], checkpointer_factory=exputils.NumpyFileCheckpointer.create, ) if __name__ == '__main__': app.run(main)
tapnet-main
experiment.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Perceiver task module.""" import functools from os import path from typing import Any, Dict, Iterable, Mapping, Optional, Sequence, Tuple from absl import logging import chex import jax import jax.numpy as jnp from jaxline import utils import matplotlib import mediapy as media from ml_collections import config_dict import numpy as np import optax import tensorflow_datasets as tfds import tensorflow as tf from tapnet import evaluation_datasets from tapnet import task from tapnet.utils import model_utils from tapnet.utils import transforms from tapnet.utils import viz_utils matplotlib.use('Agg') class SupervisedPointPrediction(task.Task): """A task for predicting point tracks and training on ground-truth. This task has a simple forward pass which predicts points, which is also used for running evaluators on datasets where ground-truth is known. """ def __init__( self, config: config_dict.ConfigDict, input_key: str = 'kubric', model_key: str = 'tapnet_model', prediction_algo: str = 'cost_volume_regressor', softmax_temperature: float = 20.0, contrastive_loss_weight: float = 0.05, position_loss_weight: float = 0.05, expected_dist_thresh: float = 6.0, train_chunk_size: int = 32, eval_chunk_size: int = 16, eval_inference_resolution=(256, 256), eval_metrics_resolution=(256, 256), ): """Constructs a task for supervised learning on Kubric. Args: config: a ConfigDict for configuring this experiment, notably including the paths for checkpoints and datasets. input_key: The forward pass takes an input dict. Inference or learning will be performed on inputs[input_key]['video'] model_key: The model to use from shared_modules prediction_algo: specifies the network architecture to use to make predictions. Can be 'cost_volume_regressor' for the algorithm presented in the TAPNet paper, or 'cost_volume_cycle_consistency' for the VFS-Like algorithm presented in the earlier Kubric paper. softmax_temperature: temperature applied to cost volume before softmax. This is only used with cost_volume_cycle_consistency. contrastive_loss_weight: Weight for the additional contrastive loss that's applied alongside the trajectory prediction loss. position_loss_weight: Weight for position loss. expected_dist_thresh: threshold for expected distance. Will be ignored if the model does not return expected_dist. train_chunk_size: Compute predictions on this many queries simultaneously. This saves memory as the cost volumes can be very large. eval_chunk_size: Compute predictions on this many queries simultaneously. This saves memory as the cost volumes can be very large. eval_inference_resolution: The video resolution during model inference in (height, width). It can be different from the training resolution. eval_metrics_resolution: The video resolution during evaluation metric computation in (height, width). Point tracks will be re-scaled to this resolution. """ super().__init__() self.config = config self.input_key = input_key self.model_key = model_key self.prediction_algo = prediction_algo self.contrastive_loss_weight = contrastive_loss_weight self.softmax_temperature = softmax_temperature self.position_loss_weight = position_loss_weight self.expected_dist_thresh = expected_dist_thresh self.train_chunk_size = train_chunk_size self.eval_chunk_size = eval_chunk_size self.eval_inference_resolution = eval_inference_resolution self.eval_metrics_resolution = eval_metrics_resolution def forward_fn( self, inputs: chex.ArrayTree, is_training: bool, shared_modules: Optional[Mapping[str, task.SharedModule]] = None, input_key: Optional[str] = None, query_chunk_size: int = 32, get_query_feats: bool = False, ) -> Mapping[str, chex.Array]: """Forward pass for predicting point tracks. Args: inputs: Input dict. Inference will be performed on will be performed on inputs[input_key]['video'] (with fallback to the input_key specified in the constructor). Input videos should be a standard video tensor ([batch, num_frames, height, width, 3]) normalize to [-1,1]. inputs[input_key]['query_points'] specifies the query point locations, of shape [batch, num_queries, 3], where each query is [t,y,x] coordinates in frame/raster coordinates. is_training: Is the model in training mode. shared_modules: Haiku modules, injected by experiment.py. shared_modules['tapnet_model'] should be a JointModel. input_key: Run on inputs[input_key]['video']. If None, use the input_key from the constructor. query_chunk_size: Compute predictions on this many queries simultaneously. This saves memory as the cost volumes can be very large. get_query_feats: If True, also return features for each query. Returns: Result dict produced by calling the joint model. See tapnet_model.py. """ if input_key is None: input_key = self.input_key frames = inputs[input_key]['video'] if self.prediction_algo in [ 'cost_volume_regressor', 'cost_volume_cycle_consistency', ]: return shared_modules[self.model_key]( frames, is_training=is_training, query_points=inputs[input_key]['query_points'], query_chunk_size=query_chunk_size, get_query_feats=get_query_feats, ) else: raise ValueError('Unsupported prediction_algo:' + self.prediction_algo) def _loss_fn( self, params: chex.ArrayTree, state: chex.ArrayTree, inputs: chex.ArrayTree, rng: chex.PRNGKey, wrapped_forward_fn: task.WrappedForwardFn, is_training: bool = True, input_key: Optional[str] = None, ): """Loss function, used for training, depending on the algorithm. This includes the Huber and softmax cross entropy losses for cost volume regression, plus the contrastive loss for cost volume regression and the baseline cost volume cycle consistency. Args: params: hk.Params with the model parameters state: hk.State with the model state inputs: Input dict. Inference will be performed on will be performed on inputs[input_key]['video'] (with fallback to the input_key specified in the constructor). Input videos should be a standard video tensor ([batch, num_frames, height, width, 3]) normalize to [-1,1]. inputs[input_key]['query_points'] specifies the query point locations, of shape [batch, num_queries, 3], where each query is [t,y,x] coordinates in frame/raster coordinates. inputs[input_key]['target_points'] is the ground-truth locations on each frame, of shape [batch, num_queries, num_frames, 2], where each point is [x,y] raster coordinates (in the range [0,width]/[0,height]). inputs[input_key]['occluded'] is the ground-truth occlusion flag, a boolean of shape [batch, num_queries, num_frames], where True indicates occluded. rng: jax.random.PRNGKey for random number generation. wrapped_forward_fn: A wrapper around self.forward which can inject Haiku parameters. is_training: Is the model in training mode. input_key: Run on inputs[input_key]['video']. If None, use the input_key from the constructor. Returns: A 2-tuple consisting of the summed loss, and a 2-tuple containing scalar outputs and the updated state. The loss scalars are broken down into the position loss, occlusion loss, and contrastive loss. """ if input_key is None: input_key = self.input_key output, state = functools.partial( wrapped_forward_fn, input_key=input_key, query_chunk_size=self.train_chunk_size, )(params, state, rng, inputs, is_training=is_training) def tapnet_loss( points, occlusion, target_points, target_occ, shape, expected_dist=None ): # Huber loss is by default measured under 256x256 resolution points = transforms.convert_grid_coordinates( points, shape[3:1:-1], (256, 256), coordinate_format='xy' ) target_points = transforms.convert_grid_coordinates( target_points, shape[3:1:-1], (256, 256), coordinate_format='xy' ) loss_huber = model_utils.huber_loss(points, target_points, target_occ) loss_huber = jnp.mean(loss_huber) * self.position_loss_weight if expected_dist is None: loss_prob = 0.0 else: loss_prob = model_utils.prob_loss( jax.lax.stop_gradient(points), expected_dist, target_points, target_occ, self.expected_dist_thresh, ) loss_prob = jnp.mean(loss_prob) target_occ = target_occ.astype(occlusion.dtype) # pytype: disable=attribute-error loss_occ = optax.sigmoid_binary_cross_entropy(occlusion, target_occ) loss_occ = jnp.mean(loss_occ) return loss_huber, loss_occ, loss_prob loss_scalars = {} loss = 0.0 if self.prediction_algo in ['cost_volume_regressor']: loss_huber, loss_occ, loss_prob = tapnet_loss( output['tracks'], output['occlusion'], inputs[input_key]['target_points'], inputs[input_key]['occluded'], inputs[input_key]['video'].shape, # pytype: disable=attribute-error # numpy-scalars output['expected_dist'] if 'expected_dist' in output else None, ) loss = loss_huber + loss_occ + loss_prob loss_scalars['position_loss'] = loss_huber loss_scalars['occlusion_loss'] = loss_occ if 'expected_dist' in output: loss_scalars['prob_loss'] = loss_prob if 'unrefined_tracks' in output: for l in range(len(output['unrefined_tracks'])): loss_huber, loss_occ, loss_prob = tapnet_loss( output['unrefined_tracks'][l], output['unrefined_occlusion'][l], inputs[input_key]['target_points'], inputs[input_key]['occluded'], inputs[input_key]['video'].shape, # pytype: disable=attribute-error # numpy-scalars output['unrefined_expected_dist'][l] if 'unrefined_expected_dist' in output else None, ) loss += loss_huber + loss_occ + loss_prob loss_scalars[f'position_loss_{l}'] = loss_huber loss_scalars[f'occlusion_loss_{l}'] = loss_occ if 'unrefined_expected_dist' in output: loss_scalars[f'prob_loss_{l}'] = loss_prob if self.prediction_algo in ['cost_volume_cycle_consistency']: feature_grid = output['feature_grid'] query_feats = output['query_feats'] loss_contrast = [] # This computes the contrastive loss from the paper. We break the set of # queries up into chunks in order to save memory. for qchunk in range(0, query_feats.shape[1], self.train_chunk_size): qchunk_low = qchunk qchunk_high = qchunk + self.train_chunk_size all_pairs_dots = jnp.einsum( 'bnc,bthwc->bnthw', query_feats[:, qchunk_low:qchunk_high], feature_grid, ) all_pairs_softmax = jax.nn.log_softmax( all_pairs_dots * self.softmax_temperature, axis=(2, 3, 4) ) im_shp = inputs[input_key]['video'].shape # pytype: disable=attribute-error # numpy-scalars target_points = inputs[input_key]['target_points'] position_in_grid2 = transforms.convert_grid_coordinates( target_points[:, qchunk_low:qchunk_high], im_shp[3:1:-1], feature_grid.shape[3:1:-1], ) # result is shape [batch, num_queries, time] # Interp handles a single 2D slice. We need to vmap it across all # batch, queries, and time to extract the softmax value associated with # the entire trajectory. # # Note: grid positions are in [x, y] format, but interp needs # coordinates in [y, x] format. interp_softmax = jax.vmap(jax.vmap(jax.vmap(model_utils.interp)))( all_pairs_softmax, position_in_grid2[..., ::-1], ) target_occ = inputs[input_key]['occluded'] target_occ = target_occ[:, qchunk_low:qchunk_high] loss_contrast.append( jnp.mean(interp_softmax * (1.0 - target_occ), axis=-1) ) loss_contrast = -jnp.mean(jnp.concatenate(loss_contrast, 1)) loss += loss_contrast * self.contrastive_loss_weight loss_scalars['loss_contrast'] = loss_contrast loss_scalars['loss'] = loss scaled_loss = loss / jax.device_count() return scaled_loss, (loss_scalars, state) def get_gradients( self, params: chex.ArrayTree, state: chex.ArrayTree, inputs: chex.ArrayTree, rng: chex.PRNGKey, global_step: chex.Array, wrapped_forward_fn: task.WrappedForwardFn, is_training: bool = True, ) -> Tuple[chex.ArrayTree, chex.ArrayTree, Mapping[str, chex.Array]]: """Gets the gradients for the loss function. See _loss_fn.""" # This function computes the gradient of the first output of loss_fn and # passes through the other arguments unchanged. grad_loss_fn = jax.grad(self._loss_fn, has_aux=True) scaled_grads, (loss_scalars, state) = grad_loss_fn( params, state, inputs, rng, wrapped_forward_fn, is_training=is_training, ) grads = jax.lax.psum(scaled_grads, axis_name='i') scalars = {} scalars.update(loss_scalars) scalars = jax.lax.pmean(scalars, axis_name='i') return grads, state, scalars def evaluate( self, global_step: chex.Array, params: chex.ArrayTree, state: chex.ArrayTree, rng: chex.PRNGKey, wrapped_forward_fn: task.WrappedForwardFn, mode: str, ) -> Mapping[str, chex.Array]: """Run an evaluation epoch. See base class.""" global_step = np.array(utils.get_first(global_step)) if mode == 'eval_inference': scalars = jax.device_get( self._eval_inference( global_step, utils.get_first(state), utils.get_first(params), utils.get_first(rng), wrapped_forward_fn, ) ) else: scalars = jax.device_get( self._eval_epoch( global_step, utils.get_first(state), utils.get_first(params), utils.get_first(rng), wrapped_forward_fn, mode, ) ) logging.info('[Step %d] Eval scalars: %s', global_step, scalars) return scalars def _infer_batch( self, params: chex.ArrayTree, state: chex.ArrayTree, inputs: chex.ArrayTree, rng: chex.PRNGKey, wrapped_forward_fn: task.WrappedForwardFn, input_key: Optional[str] = None, ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """Runs inference on a single batch and compute metrics. For cost_volume_regressor we return the outputs directly inferred from the model. For cost_volume_cycle_consistency, we compute the tracks by computing the soft argmax operation (which tapnet_model.py doesn't compute) and then use cycle-consistency to infer occlusion. Args: params: hk.Params with the model parameters state: hk.State with the model state inputs: Input dict. Inference will be performed on will be performed on inputs[input_key]['video'] (with fallback to the input_key specified in the constructor). Input videos should be a standard video tensor ([batch, num_frames, height, width, 3]) normalize to [-1,1]. inputs[input_key]['query_points'] specifies the query point locations, of shape [batch, num_queries, 3], where each query is [t,y,x] coordinates in frame/raster coordinates. inputs[input_key]['target_points'] is the ground-truth locations on each frame, of shape [batch, num_queries, num_frames, 2], where each point is [x,y] raster coordinates (in the range [0,width]/[0,height]). inputs[input_key]['occluded'] is the ground-truth occlusion flag, a boolean of shape [batch, num_queries, num_frames], where True indicates occluded. rng: jax.random.PRNGKey for random number generation. wrapped_forward_fn: A wrapper around self.forward_fn which can inject Haiku parameters. It expects the same inputs as self.forward, plus Haiku parameters, state, and a jax.random.PRNGKey. It's the result of applying hk.transform to self.forward_fn. input_key: Run on inputs[input_key]['video']. If None, use the input_key from the constructor. Returns: A 2-tuple consisting of the occlusion logits, of shape [batch, num_queries, num_frames], the predicted position, of shape [batch, num_queries, num_frames, 2], and a dict of loss scalars. """ # Features for each query point are required when using cycle consistency. get_query_feats = self.prediction_algo in ['cost_volume_cycle_consistency'] output, _ = functools.partial(wrapped_forward_fn, input_key=input_key)( params, state, rng, inputs, is_training=False, query_chunk_size=self.eval_chunk_size, get_query_feats=get_query_feats, ) loss_scalars = {} if self.prediction_algo in ['cost_volume_regressor']: # Outputs are already in the correct format for cost_volume_regressor. tracks = output['tracks'] loss_occ = optax.sigmoid_binary_cross_entropy( output['occlusion'], inputs[input_key]['occluded'] ) loss_occ = jnp.mean(loss_occ, axis=(1, 2)) occlusion = output['occlusion'] loss_scalars['loss_occ'] = loss_occ else: # compute forward-backward cycle consistency to infer occlusions. feature_grid = output['feature_grid'] query_feats = output['query_feats'] all_tracks = [] all_occlusion = [] # We again chunk the queries to save memory; these einsums are big. for qchunk in range(0, query_feats.shape[1], self.eval_chunk_size): # Compute pairwise dot products between queries and all other features all_pairs_dots = jnp.einsum( 'bnc,bthwc->bnthw', query_feats[:, qchunk : qchunk + self.eval_chunk_size], feature_grid, ) # Compute the soft argmax for each frame query_point_chunk = inputs[input_key]['query_points'][ :, qchunk : qchunk + self.eval_chunk_size ] im_shp = inputs[input_key]['video'].shape # pytype: disable=attribute-error # numpy-scalars tracks = model_utils.heatmaps_to_points( jax.nn.softmax( all_pairs_dots * self.softmax_temperature, axis=(-1, -2) ), im_shp, query_points=query_point_chunk, ) # Extract the argmax feature from each frame for each query using # bilinear interpolation. frame_id = jnp.broadcast_to( jnp.arange(tracks.shape[-2])[..., jnp.newaxis], tracks[..., :1].shape, ) position_in_grid = jnp.concatenate( [frame_id, tracks[..., ::-1]], axis=-1 ) position_in_grid = transforms.convert_grid_coordinates( position_in_grid, im_shp[1:4], feature_grid.shape[1:4], coordinate_format='tyx', ) # vmap over channels, duplicating the coordinates vmap_interp = jax.vmap( model_utils.interp, in_axes=(3, None), out_axes=1 ) # vmap over frames, using the same queries for each frame vmap_interp = jax.vmap(vmap_interp, in_axes=(None, 0), out_axes=0) # vmap over the batch vmap_interp = jax.vmap(vmap_interp) # interp_features is [batch_size,num_queries,num_frames,channels] interp_features = vmap_interp(feature_grid, position_in_grid) # For each query point, extract the features for the frame which # contains the query. # query_frame is [batch_size, num_queries] query_frame = transforms.convert_grid_coordinates( inputs[input_key]['query_points'][ :, qchunk : qchunk + self.eval_chunk_size, ... ], im_shp[1:4], feature_grid.shape[1:4], coordinate_format='tyx', )[..., 0] query_frame = jnp.array(jnp.round(query_frame), jnp.int32) # target_features is [batch_size, chunk, height, width, num_channels] target_features = jnp.take_along_axis( feature_grid, query_frame[:, :, np.newaxis, np.newaxis, np.newaxis], axis=1, ) # For each output point along the track, compare the features with all # features in the frame that the query came from all_pairs_dots = jnp.einsum( 'bntc,bnhwc->bnthw', interp_features, target_features ) # Again, take the soft argmax to see if we come back to the place we # started from. # inverse_tracks is [batch_size, chunk, num_frames, 2] inverse_tracks = model_utils.heatmaps_to_points( jax.nn.softmax( all_pairs_dots * self.softmax_temperature, axis=(-2, -1), ), im_shp, ) query_points = inputs[input_key]['query_points'] query_points = query_points[:, qchunk : qchunk + self.eval_chunk_size] dist = jnp.square(inverse_tracks - query_points[jnp.newaxis, 2:0:-1]) dist = jnp.sum(dist, axis=-1) occlusion = dist > jnp.square(48.0) # We need to return logits, but the cycle consistency rule is binary. # So we just convert the binary values into large real values. occlusion = occlusion * 20.0 - 10.0 all_occlusion.append(occlusion) all_tracks.append(tracks) tracks = jnp.concatenate(all_tracks, axis=1) occlusion = jnp.concatenate(all_occlusion, axis=1) outputs = {'tracks': tracks, 'occlusion': occlusion} if 'expected_dist' in output: outputs['expected_dist'] = output['expected_dist'] return outputs, loss_scalars def _eval_batch( self, params: chex.Array, state: chex.Array, inputs: chex.Array, rng: chex.PRNGKey, wrapped_forward_fn: task.WrappedForwardFn, mode: str = '', input_key: Optional[str] = None, ) -> Tuple[Mapping[str, chex.Array], Mapping[str, chex.Array]]: """Evaluates the model on a single batch and compute metrics. Args: params: hk.Params with the model parameters state: hk.State with the model state inputs: Input dict. Inference will be performed on will be performed on inputs[input_key]['video'] (with fallback to the input_key specified in the constructor). Input videos should be a standard video tensor ([batch, num_frames, height, width, 3]) normalize to [-1,1]. inputs[input_key]['query_points'] specifies the query point locations, of shape [batch, num_queries, 3], where each query is [t,y,x] coordinates in frame/raster coordinates. inputs[input_key]['target_points'] is the ground-truth locations on each frame, of shape [batch, num_queries, num_frames, 2], where each point is [x,y] raster coordinates (in the range [0,width]/[0,height]). inputs[input_key]['occluded'] is the ground-truth occlusion flag, a boolean of shape [batch, num_queries, num_frames], where True indicates occluded. rng: jax.random.PRNGKey for random number generation. wrapped_forward_fn: A wrapper around self.forward_fn which can inject Haiku parameters. It expects the same inputs as self.forward, plus Haiku parameters, state, and a jax.random.PRNGKey. It's the result of applying hk.transform to self.forward_fn. mode: Which evaluation we're running. For most it will compute standard occlusion accuracy, points within thresholds, and jaccard metrics. For eval_jhmdb, however, we will compute standard PCK. input_key: Run on inputs[input_key]['video']. If None, use the input_key from the constructor. Returns: A 2-tuple consisting of a dict of loss scalars and a dict of outputs. The latter consists of the occlusion logits, of shape [batch, num_queries, num_frames] and the predicted position, of shape [batch, num_queries, num_frames, 2]. """ outputs, loss_scalars = self._infer_batch( params, state, inputs, rng, wrapped_forward_fn, input_key ) loss_scalars = {**loss_scalars} # Mutable copy. gt_occluded = inputs[input_key]['occluded'] gt_target_points = inputs[input_key]['target_points'] query_points = inputs[input_key]['query_points'] tracks = outputs['tracks'] # Huber loss is by default measured under 256x256 resolution shape = inputs[input_key]['video'].shape target_points = transforms.convert_grid_coordinates( gt_target_points, shape[3:1:-1], (256, 256), coordinate_format='xy' ) points = transforms.convert_grid_coordinates( tracks, shape[3:1:-1], (256, 256), coordinate_format='xy' ) loss_huber = model_utils.huber_loss(points, target_points, gt_occluded) loss_scalars['position_loss'] = loss_huber occlusion_logits = outputs['occlusion'] pred_occ = jax.nn.sigmoid(occlusion_logits) if 'expected_dist' in outputs: expected_dist = outputs['expected_dist'] pred_occ = 1 - (1 - pred_occ) * (1 - jax.nn.sigmoid(expected_dist)) pred_occ = pred_occ > 0.5 # threshold if self.eval_inference_resolution != self.eval_metrics_resolution: # Resize prediction and groundtruth to standard evaluation resolution query_points = transforms.convert_grid_coordinates( query_points, (1,) + inputs[input_key]['video'].shape[2:4], # (1, height, width) (1,) + self.eval_metrics_resolution, # (1, height, width) coordinate_format='tyx', ) gt_target_points = transforms.convert_grid_coordinates( gt_target_points, inputs[input_key]['video'].shape[3:1:-1], # (width, height) self.eval_metrics_resolution[::-1], # (width, height) coordinate_format='xy', ) tracks = transforms.convert_grid_coordinates( tracks, inputs[input_key]['video'].shape[3:1:-1], # (width, height) self.eval_metrics_resolution[::-1], # (width, height) coordinate_format='xy', ) query_mode = 'first' if 'q_first' in mode else 'strided' metrics = evaluation_datasets.compute_tapvid_metrics( query_points=query_points, gt_occluded=gt_occluded, gt_tracks=gt_target_points, pred_occluded=pred_occ, pred_tracks=tracks, query_mode=query_mode, ) loss_scalars.update(metrics) return loss_scalars, {'tracks': tracks, 'occlusion': occlusion_logits} def _build_eval_input( self, mode: str, ) -> Iterable[evaluation_datasets.DatasetElement]: """Build evalutation data reader generator. Args: mode: evaluation mode. Can be one of 'eval_davis_points', 'eval_robotics_points', 'eval_kinetics_points', 'eval_davis_points_q_first', 'eval_robotics_points_q_first', 'eval_kinetics_points_q_first', 'eval_jhmdb', 'eval_kubric', Yields: A dict with one key (for the dataset), containing a dict with the keys: video: Video tensor of shape [1, num_frames, height, width, 3] query_points: Query points of shape [1, n_queries, 3] where each point is [t, y, x] in pixel/raster coordinates target_points: Target points of shape [1, n_queries, n_frames, 2] where each point is [x, y] raster coordinates (in the range [0,width]/[0,height]) trackgroup (optional): Index of the original track that each query point was sampled from. This is useful for visualization. pad_extra_frames (optional): the number of pad frames that were added to reach num_frames. """ query_mode = 'first' if 'q_first' in mode else 'strided' if 'eval_kubric_train' in mode: yield from evaluation_datasets.create_kubric_eval_train_dataset( mode, train_size=self.config.datasets.kubric_kwargs.train_size ) elif 'eval_kubric' in mode: yield from evaluation_datasets.create_kubric_eval_dataset( mode, train_size=self.config.datasets.kubric_kwargs.train_size ) elif 'eval_davis_points' in mode: yield from evaluation_datasets.create_davis_dataset( self.config.davis_points_path, query_mode=query_mode, resolution=self.eval_inference_resolution, ) elif 'eval_jhmdb' in mode: yield from evaluation_datasets.create_jhmdb_dataset( self.config.jhmdb_path, resolution=self.eval_inference_resolution ) elif 'eval_robotics_points' in mode: yield from evaluation_datasets.create_rgb_stacking_dataset( self.config.robotics_points_path, query_mode=query_mode, resolution=self.eval_inference_resolution, ) elif 'eval_kinetics_points' in mode: yield from evaluation_datasets.create_kinetics_dataset( self.config.kinetics_points_path, query_mode=query_mode, resolution=self.eval_inference_resolution, ) elif 'eval_robotap' in mode: yield from evaluation_datasets.create_csv_dataset( dataset_name='robotap', csv_path=self.config.robotap_csv_path, video_base_path=self.config.robotap_video_path, query_mode=query_mode, resolution=self.eval_inference_resolution, ) elif 'eval_perception_test' in mode: yield from evaluation_datasets.create_csv_dataset( dataset_name='perception_test', csv_path=self.config.perception_test_csv_path, video_base_path=self.config.perception_test_video_path, query_mode=query_mode, resolution=self.eval_inference_resolution, ) else: raise ValueError(f'Unrecognized eval mode {mode}') def compute_pck( self, dist_all: Sequence[np.ndarray], dist_thresh: float, ) -> Sequence[float]: pck_all = np.zeros((len(dist_all),)) for pidx in range(len(dist_all)): idxs = np.argwhere(dist_all[pidx] <= dist_thresh) pck = 100.0 * len(idxs) / max(1e-12, len(dist_all[pidx])) pck_all[pidx] = pck return pck_all def pck_evaluate( self, results: Sequence[Mapping[str, np.ndarray]], ) -> Mapping[str, np.ndarray]: num_keypoints = 15 dist_all = [np.zeros((0, 0)) for _ in range(num_keypoints)] for vid_idx in range(len(results)): sample = results[vid_idx] # [2, 15, clip_len] pred_poses = np.transpose(sample['pred_pose'][0], (2, 0, 1)) gt_poses = sample['gt_pose_orig'][0] width = sample['im_size'][1] height = sample['im_size'][0] # input is shape [15, clip_len, 2] invalid_x = np.logical_or( gt_poses[:, 0:1, 0] < 0, gt_poses[:, 0:1, 0] >= width ) invalid_y = np.logical_or( gt_poses[:, 0:1, 1] < 0, gt_poses[:, 0:1, 1] >= height ) invalid = np.logical_or(invalid_x, invalid_y) joint_visible = np.logical_not(np.tile(invalid, [1, gt_poses.shape[1]])) gt_poses = np.transpose(gt_poses, (2, 0, 1)) clip_len = pred_poses.shape[-1] assert ( pred_poses.shape == gt_poses.shape ), f'{pred_poses.shape} vs {gt_poses.shape}' # [15, clip_len] valid_max_gt_poses = gt_poses.copy() valid_max_gt_poses[:, ~joint_visible] = -1 valid_min_gt_poses = gt_poses.copy() valid_min_gt_poses[:, ~joint_visible] = 1e6 boxes = np.stack( ( valid_max_gt_poses[0].max(axis=0) - valid_min_gt_poses[0].min(axis=0), valid_max_gt_poses[1].max(axis=0) - valid_min_gt_poses[1].min(axis=0), ), axis=0, ) # [clip_len] boxes = 0.6 * np.linalg.norm(boxes, axis=0) for img_idx in range(clip_len): for t in range(num_keypoints): if not joint_visible[t, img_idx]: continue predx = pred_poses[0, t, img_idx] predy = pred_poses[1, t, img_idx] gtx = gt_poses[0, t, img_idx] gty = gt_poses[1, t, img_idx] dist = np.linalg.norm(np.subtract([predx, predy], [gtx, gty])) dist = dist / boxes[img_idx] dist_all[t] = np.append(dist_all[t], [[dist]]) pck_ranges = (0.1, 0.2, 0.3, 0.4, 0.5) pck_all = [] for pck_range in pck_ranges: pck_all.append(self.compute_pck(dist_all, pck_range)) eval_results = {} for alpha, pck in zip(pck_ranges, pck_all): eval_results[f'PCK@{alpha}'] = np.mean(pck) return eval_results def _eval_jhmdb( self, pred_pose: chex.Array, gt_pose: chex.Array, gt_pose_orig: chex.Array, im_size: chex.Array, fname: str, is_first: bool = False, ) -> Mapping[str, np.ndarray]: if is_first: self.all_results = [] self.all_results.append({ 'pred_pose': np.array(pred_pose), 'gt_pose': np.array(gt_pose), 'gt_pose_orig': np.array(gt_pose_orig), 'im_size': np.array(im_size), }) return self.pck_evaluate(self.all_results) def _eval_epoch( self, global_step: chex.Array, state: chex.ArrayTree, params: chex.ArrayTree, rng: chex.PRNGKey, wrapped_forward_fn: task.WrappedForwardFn, mode: str, ) -> Mapping[str, chex.Array]: """Evaluates an epoch.""" num_samples = 0.0 summed_scalars = None batch_id = 0 outdir = path.join(self.config.checkpoint_dir, mode, str(global_step)) logging.info('Saving videos to %s', outdir) try: tf.io.gfile.makedirs(outdir) except FileExistsError: print(f'Path {outdir} exists. Skip creating a new dir.') if 'eval_kinetics' in mode: input_key = 'kinetics' elif 'eval_davis_points' in mode: input_key = 'davis' elif 'eval_jhmdb' in mode: input_key = 'jhmdb' elif 'eval_robotics_points' in mode: input_key = 'robotics' elif 'eval_robotap' in mode: input_key = 'robotap' elif 'eval_perception_test' in mode: input_key = 'perception_test' else: input_key = 'kubric' eval_batch_fn = functools.partial( self._eval_batch, wrapped_forward_fn=wrapped_forward_fn, mode=mode, input_key=input_key, ) for inputs in self._build_eval_input(mode): batch_size = inputs[input_key]['video'].shape[0] # pytype: disable=attribute-error # 'video' entry is array-valued num_samples += batch_size scalars, viz = eval_batch_fn(params, state, inputs, rng) write_viz = batch_id < 0 if 'eval_davis_points' in mode or 'eval_robotics_points' in mode: # Only write videos sometimes for the small datasets; otherwise # there will be a crazy number of videos dumped. write_viz = write_viz and (global_step % 10 == 0) if 'eval_jhmdb' in mode: pix_pts = viz['tracks'] grid_size = np.array( [inputs[input_key]['im_size'][1], inputs[input_key]['im_size'][0]] ) pix_pts = transforms.convert_grid_coordinates( pix_pts, ( self.eval_inference_resolution[1], self.eval_inference_resolution[0], ), grid_size, ) mean_scalars = self._eval_jhmdb( pix_pts, inputs[input_key]['gt_pose'], inputs[input_key]['gt_pose_orig'], inputs[input_key]['im_size'], inputs[input_key]['fname'], is_first=batch_id == 0, ) scalars = {} if write_viz: pix_pts = viz['tracks'] targ_pts = None if 'eval_kinetics' in mode: targ_pts = inputs[input_key]['target_points'] outname = [ f'{outdir}/{x}.mp4' for x in range(batch_size * batch_id, batch_size * (batch_id + 1)) ] viz_utils.write_visualization( (inputs[input_key]['video'] + 1.0) * (255.0 / 2.0), pix_pts, jax.nn.sigmoid(viz['occlusion']), outname, gt_points=targ_pts, gt_occluded=inputs[input_key]['occluded'], trackgroup=inputs[input_key]['trackgroup'] if 'trackgroup' in inputs[input_key] else None, ) del viz batch_id += 1 logging.info('eval batch: %d', batch_id) # Accumulate the sum of scalars for each step. scalars = jax.tree_map(lambda x: jnp.sum(x, axis=0), scalars) if summed_scalars is None: summed_scalars = scalars else: summed_scalars = jax.tree_map(jnp.add, summed_scalars, scalars) if 'eval_jhmdb' not in mode: mean_scalars = jax.tree_map(lambda x: x / num_samples, summed_scalars) logging.info(mean_scalars) logging.info(evaluation_datasets.latex_table(mean_scalars)) return mean_scalars def _eval_inference( self, global_step: chex.Array, state: chex.ArrayTree, params: chex.ArrayTree, rng: chex.PRNGKey, wrapped_forward_fn: task.WrappedForwardFn, ) -> Mapping[str, chex.Array]: """Inferences a single video.""" def _sample_random_points(frame_max_idx, height, width, num_points): """Sample random points with (time, height, width) order.""" y = np.random.randint(0, height, (num_points, 1)) x = np.random.randint(0, width, (num_points, 1)) t = np.random.randint(0, frame_max_idx + 1, (num_points, 1)) points = np.concatenate((t, y, x), axis=-1).astype(np.int32) return points config = self.config.inference input_video_path = config.input_video_path output_video_path = config.output_video_path resize_height, resize_width = config.resize_height, config.resize_width num_points = config.num_points logging.info('load video from %s', input_video_path) video = media.read_video(input_video_path) num_frames, fps = video.metadata.num_images, video.metadata.fps logging.info('resize video to (%s, %s)', resize_height, resize_width) video = media.resize_video(video, (resize_height, resize_width)) video = video.astype(np.float32) / 255 * 2 - 1 query_points = _sample_random_points( num_frames, resize_height, resize_width, num_points ) occluded = np.zeros((num_points, num_frames), dtype=np.float32) inputs = { self.input_key: { 'video': video[np.newaxis], 'query_points': query_points[np.newaxis], 'occluded': occluded[np.newaxis], } } outputs, _ = self._infer_batch( params, state, inputs, rng, wrapped_forward_fn, self.input_key, ) occluded = outputs['occlusion'] > 0 video = (video + 1) * 255 / 2 video = video.astype(np.uint8) painted_frames = viz_utils.paint_point_track( video, outputs['tracks'][0], ~occluded[0], ) media.write_video(output_video_path, painted_frames, fps=fps) logging.info('Inference result saved to %s', output_video_path) return {'': 0} # pytype: disable=bad-return-type # numpy-scalars
tapnet-main
supervised_point_prediction.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TAPIR model definition.""" import functools from typing import Any, Dict, List, Mapping, NamedTuple, Optional, Sequence, Tuple import chex from einshape import jax_einshape as einshape import haiku as hk import jax import jax.numpy as jnp from tapnet.models import resnet from tapnet.utils import model_utils from tapnet.utils import transforms def layernorm(x): return hk.LayerNorm(axis=-1, create_scale=True, create_offset=False)(x) def depthwise_conv_residual( x: chex.Array, kernel_shape: int = 3, use_causal_conv: bool = False, causal_context: Optional[Mapping[str, chex.Array]] = None, get_causal_context: bool = False, ) -> Tuple[chex.Array, Dict[str, chex.Array]]: """First mlp in mixer.""" cur_name = hk.experimental.current_name() name1 = cur_name + '_causal_1' if causal_context is not None: x = jnp.concatenate([causal_context[name1], x], axis=-2) # Because we're adding extra frames, the output of this convolution will # also have extra (invalid) frames that need to be removed afterward. num_extra = causal_context[name1].shape[-2] new_causal_context = {} if get_causal_context: # Keep only as many frames of x as needed for future frames. This may be up # to (kernel_shape - 1) frames. new_causal_context[name1] = x[..., -(kernel_shape - 1) :, :] x = hk.DepthwiseConv1D( channel_multiplier=4, kernel_shape=kernel_shape, data_format='NWC', stride=1, padding=[(kernel_shape - 1, 0)] if use_causal_conv else 'SAME', name='mlp1_up', )(x) x = jax.nn.gelu(x) name2 = cur_name + '_causal_2' if causal_context is not None: x = jnp.concatenate([causal_context[name2], x[..., num_extra:, :]], axis=-2) num_extra = causal_context[name2].shape[-2] if get_causal_context: new_causal_context[name2] = x[..., -(kernel_shape - 1) :, :] x = hk.DepthwiseConv1D( channel_multiplier=1, kernel_shape=kernel_shape, data_format='NWC', stride=1, padding=[(kernel_shape - 1, 0)] if use_causal_conv else 'SAME', name='mlp1_up', )(x) if causal_context is not None: x = x[..., num_extra:, :] return ( x[..., 0::4] + x[..., 1::4] + x[..., 2::4] + x[..., 3::4], new_causal_context, ) def conv_channels_mixer(x): """Second mlp in mixer.""" in_channels = x.shape[-1] x = hk.Linear(in_channels * 4, name='mlp2_up')(x) x = jax.nn.gelu(x) x = hk.Linear(in_channels, name='mlp2_down')(x) return x class PIPsConvBlock(hk.Module): """Transformer block (mha and ffw).""" def __init__(self, name='block', kernel_shape=3, use_causal_conv=False): super().__init__(name=name) self.kernel_shape = kernel_shape self.use_causal_conv = use_causal_conv def __call__(self, x, causal_context=None, get_causal_context=False): to_skip = x x = layernorm(x) x, new_causal_context = depthwise_conv_residual( x, self.kernel_shape, self.use_causal_conv, causal_context, get_causal_context, ) x = x + to_skip to_skip = x x = layernorm(x) x = conv_channels_mixer(x) x = x + to_skip return x, new_causal_context class PIPSMLPMixer(hk.Module): """Depthwise-conv version of PIPs's MLP Mixer.""" def __init__( self, output_channels, hidden_dim=512, num_blocks=12, kernel_shape=3, use_causal_conv=False, name='pips_mlp_mixer', ): super().__init__(name=name) self._output_channels = output_channels self.hidden_dim = hidden_dim self._num_blocks = num_blocks self.kernel_shape = kernel_shape self.use_causal_conv = use_causal_conv def __call__(self, x, causal_context=None, get_causal_context=False): x = hk.Linear(self.hidden_dim)(x) all_causal_context = {} for _ in range(self._num_blocks): x, new_causal_context = PIPsConvBlock( kernel_shape=self.kernel_shape, use_causal_conv=self.use_causal_conv )(x, causal_context, get_causal_context) if get_causal_context: all_causal_context.update(new_causal_context) x = layernorm(x) return hk.Linear(self._output_channels)(x), all_causal_context def construct_patch_kernel(pos, grid_size, patch_size=7): """A conv kernel that performs bilinear interpolation for a point.""" # pos is n-by-2, [y,x] # grid_size is [heigh,width] # result is [1,n,kernel_height,kernel_width] pos = pos + (patch_size) / 2 - 1 def gen_bump(pos, num): # pos is shape [n] # result is shape [n,num] res = jnp.arange(num) return jnp.maximum( 0, 1 - jnp.abs(res[jnp.newaxis, :] - pos[:, jnp.newaxis]) ) x_bump = gen_bump(pos[:, 1], grid_size[1] - patch_size + 1) y_bump = gen_bump(pos[:, 0], grid_size[0] - patch_size + 1) kernel = ( x_bump[:, jnp.newaxis, jnp.newaxis, :] * y_bump[:, jnp.newaxis, :, jnp.newaxis] ) return kernel def extract_patch_depthwise_conv(pos, corrs, patch_size=7): """Use a depthwise conv to extract a patch via bilinear interpolation.""" # pos is n-by-2, [y,x], raster coordinates # arr is [num_points, height, width] # result is [num_points, height, width] # add an extra batch axis because conv needs it corrs = jnp.pad( corrs, ( (0, 0), (patch_size - 1, patch_size - 1), (patch_size - 1, patch_size - 1), ), )[jnp.newaxis, ...] kernel = construct_patch_kernel(pos, corrs.shape[2:4], patch_size) dim_nums = jax.lax.ConvDimensionNumbers( lhs_spec=(0, 1, 2, 3), rhs_spec=(0, 1, 2, 3), out_spec=(0, 1, 2, 3) ) # the [0] gets rid of the extra batch axis res = jax.lax.conv_general_dilated( corrs, kernel, (1, 1), 'VALID', (1, 1), (1, 1), dim_nums, feature_group_count=kernel.shape[0], )[0] return res def is_same_res(r1, r2): """Test if two image resolutions are the same.""" return all([x == y for x, y in zip(r1, r2)]) class FeatureGrids(NamedTuple): """Feature grids for a video, used to compute trajectories. These are per-frame outputs of the encoding resnet. Attributes: lowres: Low-resolution features, one for each resolution; 256 channels. hires: High-resolution features, one for each resolution; 64 channels. resolutions: Resolutions used for trajectory computation. There will be one entry for the initialization, and then an entry for each PIPs refinement resolution. """ lowres: Sequence[chex.Array] hires: Sequence[chex.Array] resolutions: Sequence[Tuple[int, int]] class QueryFeatures(NamedTuple): """Query features used to compute trajectories. These are sampled from the query frames and are a full descriptor of the tracked points. They can be acquired from a query image and then reused in a separate video. Attributes: lowres: Low-resolution features, one for each resolution; each has shape [batch, num_query_points, 256] hires: High-resolution features, one for each resolution; each has shape [batch, num_query_points, 64] resolutions: Resolutions used for trajectory computation. There will be one entry for the initialization, and then an entry for each PIPs refinement resolution. """ lowres: Sequence[chex.Array] hires: Sequence[chex.Array] resolutions: Sequence[Tuple[int, int]] class TAPIR(hk.Module): """TAPIR model.""" def __init__( self, bilinear_interp_with_depthwise_conv: bool = False, num_pips_iter: int = 4, pyramid_level: int = 1, mixer_hidden_dim: int = 512, num_mixer_blocks: int = 12, mixer_kernel_shape: int = 3, patch_size: int = 7, softmax_temperature: float = 20.0, use_causal_conv: bool = False, parallelize_query_extraction: bool = False, initial_resolution: Tuple[int, int] = (256, 256), name: str = 'tapir', ): super().__init__(name=name) self.highres_dim = 128 self.lowres_dim = 256 self.resnet = resnet.ResNet( resnet_v2=True, normalization='instancenorm', strides=(1, 2, 2, 1), blocks_per_group=(2, 2, 2, 2), channels_per_group=(64, self.highres_dim, 256, self.lowres_dim), use_projection=(True, True, True, True), use_max_pool=False, name='resnet', ) self.cost_volume_track_mods = { 'hid1': hk.Conv2D( 16, [3, 3], name='cost_volume_regression_1', stride=[1, 1], ), 'hid2': hk.Conv2D( 1, [3, 3], name='cost_volume_regression_2', stride=[1, 1], ), 'hid3': hk.Conv2D( 32, [3, 3], name='cost_volume_occlusion_1', stride=[2, 2], ), 'hid4': hk.Linear(16, name='cost_volume_occlusion_2'), 'occ_out': hk.Linear(2, name='occlusion_out'), 'regression_hid': hk.Linear(128, name='regression_hid'), 'regression_out': hk.Linear(2, name='regression_out'), 'conv_stats_conv1': hk.Conv2D( 256, [5, 5], name='conv_stats_conv1', stride=[1, 1], ), 'conv_stats_conv2': hk.Conv2D( 256, [3, 3], name='conv_stats_conv2', stride=[1, 1], ), 'conv_stats_linear': hk.Linear(32, name='conv_stats_linear'), } self.pips_mixer = PIPSMLPMixer( 4 + self.highres_dim + self.lowres_dim, hidden_dim=mixer_hidden_dim, num_blocks=num_mixer_blocks, kernel_shape=mixer_kernel_shape, use_causal_conv=use_causal_conv, ) self.bilinear_interp_with_depthwise_conv = ( bilinear_interp_with_depthwise_conv ) self.parallelize_query_extraction = parallelize_query_extraction self.num_pips_iter = num_pips_iter self.pyramid_level = pyramid_level self.patch_size = patch_size self.softmax_temperature = softmax_temperature self.initial_resolution = tuple(initial_resolution) def tracks_from_cost_volume( self, interp_feature: chex.Array, feature_grid: chex.Array, query_points: Optional[chex.Array], im_shp: Optional[chex.Shape] = None, ) -> Tuple[chex.Array, chex.Array, chex.Array]: """Converts features into tracks by computing a cost volume. The computed cost volume will have shape [batch, num_queries, time, height, width], which can be very memory intensive. Args: interp_feature: A tensor of features for each query point, of shape [batch, num_queries, channels, heads]. feature_grid: A tensor of features for the video, of shape [batch, time, height, width, channels, heads]. query_points: When computing tracks, we assume these points are given as ground truth and we reproduce them exactly. This is a set of points of shape [batch, num_points, 3], where each entry is [t, y, x] in frame/ raster coordinates. im_shp: The shape of the original image, i.e., [batch, num_frames, time, height, width, 3]. Returns: A 2-tuple of the inferred points (of shape [batch, num_points, num_frames, 2] where each point is [x, y]) and inferred occlusion (of shape [batch, num_points, num_frames], where each is a logit where higher means occluded) """ mods = self.cost_volume_track_mods # Note: time is first axis to prevent the TPU from padding cost_volume = jnp.einsum( 'bnc,bthwc->tbnhw', interp_feature, feature_grid, ) shape = cost_volume.shape batch_size, num_points = cost_volume.shape[1:3] cost_volume = einshape('tbnhw->(tbn)hw1', cost_volume) occlusion = mods['hid1'](cost_volume) occlusion = jax.nn.relu(occlusion) pos = mods['hid2'](occlusion) pos_rshp = einshape('(tb)hw1->t(b)hw1', pos, t=shape[0]) pos = einshape('t(bn)hw1->bnthw', pos_rshp, b=batch_size, n=num_points) pos = jax.nn.softmax(pos * self.softmax_temperature, axis=(-2, -1)) points = model_utils.heatmaps_to_points( pos, im_shp, query_points=query_points ) occlusion = mods['hid3'](occlusion) occlusion = jax.nn.relu(occlusion) occlusion = jnp.mean(occlusion, axis=(-2, -3)) occlusion = mods['hid4'](occlusion) occlusion = jax.nn.relu(occlusion) occlusion = mods['occ_out'](occlusion) expected_dist = einshape( '(tbn)1->bnt', occlusion[..., 1:2], n=shape[2], t=shape[0] ) occlusion = einshape( '(tbn)1->bnt', occlusion[..., 0:1], n=shape[2], t=shape[0] ) return points, occlusion, expected_dist def refine_pips( self, target_feature, frame_features, pyramid, pos_guess, occ_guess, expd_guess, orig_hw, last_iter=None, mixer_iter=0.0, resize_hw=None, causal_context=None, get_causal_context=False, ): # frame_features is batch, num_frames, height, width, channels # target_features is batch, num_points, channels # pos_guess is batch, num_points, num_frames,2 orig_h, orig_w = orig_hw resized_h, resized_w = resize_hw corrs_pyr = [] assert len(target_feature) == len(pyramid) for pyridx, (query, grid) in enumerate(zip(target_feature, pyramid)): # note: interp needs [y,x] coords = transforms.convert_grid_coordinates( pos_guess, (orig_w, orig_h), grid.shape[-2:-4:-1] )[..., ::-1] last_iter_query = None if last_iter is not None: if pyridx == 0: last_iter_query = last_iter[..., : self.highres_dim] else: last_iter_query = last_iter[..., self.highres_dim :] if not self.bilinear_interp_with_depthwise_conv: # on CPU, gathers are cheap and matmuls are expensive ctxx, ctxy = jnp.meshgrid(jnp.arange(-3, 4), jnp.arange(-3, 4)) ctx = jnp.stack([ctxy, ctxx], axis=-1) ctx = jnp.reshape(ctx, [-1, 2]) coords2 = ( coords[:, :, :, jnp.newaxis, :] + ctx[jnp.newaxis, jnp.newaxis, jnp.newaxis, ...] ) # grid is batch, frames, height, width, channels # coords is batch, num_points, frames, spatial, x/y # neighborhood = batch, num_points, frames, patch_height, patch_width, # channels neighborhood = jax.vmap( # across batch jax.vmap( # across frames jax.vmap( # across patch context size jax.vmap( # across channels functools.partial(model_utils.interp, mode='constant'), in_axes=(-1, None), out_axes=-1, ), in_axes=(None, -2), out_axes=-2, ), in_axes=(0, 1), out_axes=1, ) )(grid, coords2) # s is spatial context size if last_iter_query is None: patches = jnp.einsum('bnfsc,bnc->bnfs', neighborhood, query) else: patches = jnp.einsum( 'bnfsc,bnfc->bnfs', neighborhood, last_iter_query ) else: # on TPU, matmul is cheap and gather is expensive, so we rewrite # the interpolation with a depthwise conv. if last_iter_query is None: corrs = jnp.einsum('bfhwc,bnc->bnfhw', grid, query) else: corrs = jnp.einsum('bfhwc,bnfc->bnfhw', grid, last_iter_query) n = corrs.shape[1] # coords is bnfs2 # patches is batch,n,frames,height,width # vmap across batch dimension (because we have different points across # the batch) and across the frame axis (this could potentially be rolled # into the depthwise conv) extract_patch_depthwise_conv_ = functools.partial( extract_patch_depthwise_conv, patch_size=self.patch_size ) patches = jax.vmap(extract_patch_depthwise_conv_)( einshape('bnfc->b(nf)c', coords), einshape('bnfhw->b(nf)hw', corrs) ) patches = einshape('b(nf)hw->bnf(hw)', patches, n=n) corrs_pyr.append(patches) corrs_pyr = jnp.concatenate(corrs_pyr, axis=-1) corrs_chunked = corrs_pyr pos_guess_input = pos_guess occ_guess_input = occ_guess[..., jnp.newaxis] expd_guess_input = expd_guess[..., jnp.newaxis] # mlp_input is batch, num_points, num_chunks, frames_per_chunk, channels if last_iter is None: both_feature = jnp.concatenate( [target_feature[0], target_feature[1]], axis=-1 ) mlp_input_features = jnp.tile( both_feature[:, :, jnp.newaxis, :], (1, 1) + corrs_chunked.shape[-2:-1] + (1,), ) else: mlp_input_features = last_iter pos_guess_input = jnp.zeros_like(pos_guess_input) mlp_input = jnp.concatenate( [ pos_guess_input, occ_guess_input, expd_guess_input, mlp_input_features, corrs_chunked, ], axis=-1, ) x = einshape('bnfc->(bn)fc', mlp_input) if causal_context is not None: causal_context = jax.tree_map( lambda x: einshape('bn...->(bn)...', x), causal_context ) res, new_causal_context = self.pips_mixer( x, causal_context, get_causal_context ) res = einshape('(bn)fc->bnfc', res, b=mlp_input.shape[0]) if get_causal_context: new_causal_context = jax.tree_map( lambda x: einshape('(bn)...->bn...', x, b=mlp_input.shape[0]), new_causal_context, ) pos_update = transforms.convert_grid_coordinates( res[..., :2], (resized_w, resized_h), (orig_w, orig_h), ) return ( pos_update + pos_guess, res[..., 2] + occ_guess, res[..., 3] + expd_guess, res[..., 4:] + (mlp_input_features if last_iter is None else last_iter), new_causal_context, ) def get_feature_grids( self, video: chex.Array, is_training: bool, refinement_resolutions: Optional[List[Tuple[int, int]]] = None, ) -> FeatureGrids: """Computes feature grids. Args: video: A 5-D tensor representing a batch of sequences of images. is_training: Whether we are training. refinement_resolutions: A list of (height, width) tuples. Refinement will be repeated at each specified resolution, in order to achieve high accuracy on resolutions higher than what TAPIR was trained on. If None, reasonable refinement resolutions will be inferred from the input video size. Returns: A FeatureGrids object which contains the required features for every required resolution. Note that there will be one more feature grid than there are refinement_resolutions, because there is always a feature grid computed for TAP-Net initialization. """ if refinement_resolutions is None: refinement_resolutions = model_utils.generate_default_resolutions( video.shape[2:4], self.initial_resolution ) all_required_resolutions = [self.initial_resolution] all_required_resolutions.extend(refinement_resolutions) feature_grid = [] hires_feats = [] resize_im_shape = [] curr_resolution = (-1, -1) for resolution in all_required_resolutions: if resolution[0] % 8 != 0 or resolution[1] % 8 != 0: raise ValueError('Image resolution must be a multiple of 8.') if not is_same_res(curr_resolution, resolution): if is_same_res(curr_resolution, video.shape[-3:-1]): video_resize = video else: video_resize = jax.image.resize( video, video.shape[0:2] + resolution + (3,), method='bilinear' ) curr_resolution = resolution resnet_out = hk.BatchApply(self.resnet)( video_resize, is_training=is_training ) latent = resnet_out['resnet_unit_3'] hires = resnet_out['resnet_unit_1'] latent = latent / jnp.sqrt( jnp.maximum( jnp.sum(jnp.square(latent), axis=-1, keepdims=True), 1e-12, ) ) hires = hires / jnp.sqrt( jnp.maximum( jnp.sum(jnp.square(hires), axis=-1, keepdims=True), 1e-12, ) ) feature_grid.append(latent) hires_feats.append(hires) resize_im_shape.append(video_resize.shape[2:4]) return FeatureGrids( tuple(feature_grid), tuple(hires_feats), tuple(resize_im_shape) ) def get_query_features( self, video: chex.Array, is_training: bool, query_points: chex.Array, feature_grids: Optional[FeatureGrids] = None, refinement_resolutions: Optional[List[Tuple[int, int]]] = None, ) -> QueryFeatures: """Computes query features, which can be used for estimate_trajectories. Args: video: A 5-D tensor representing a batch of sequences of images. is_training: Whether we are training. query_points: The query points for which we compute tracks. feature_grids: If passed, we'll use these feature grids rather than computing new ones. refinement_resolutions: A list of (height, width) tuples. Refinement will be repeated at each specified resolution, in order to achieve high accuracy on resolutions higher than what TAPIR was trained on. If None, reasonable refinement resolutions will be inferred from the input video size. Returns: A QueryFeatures object which contains the required features for every required resolution. """ if feature_grids is None: feature_grids = self.get_feature_grids( video, is_training=is_training, refinement_resolutions=refinement_resolutions, ) feature_grid = feature_grids.lowres hires_feats = feature_grids.hires resize_im_shape = feature_grids.resolutions shape = video.shape # shape is [batch_size, time, height, width, channels]; conversion needs # [time, width, height] curr_resolution = (-1, -1) query_feats = [] hires_query_feats = [] for i, resolution in enumerate(resize_im_shape): if is_same_res(curr_resolution, resolution): query_feats.append(query_feats[-1]) hires_query_feats.append(hires_query_feats[-1]) continue position_in_grid = transforms.convert_grid_coordinates( query_points, shape[1:4], feature_grid[i].shape[1:4], coordinate_format='tyx', ) position_in_grid_hires = transforms.convert_grid_coordinates( query_points, shape[1:4], hires_feats[i].shape[1:4], coordinate_format='tyx', ) if self.parallelize_query_extraction: # Extracting query features involves gathering features across frames; # a naive implementation will cause the model to do an all gather of # the full video feature tensor, which consumes lots of memory. # Therefore, we instead perform the x,y gather for every point on every # single frame, and then mask out the gathers on the incorrect frames. # This could be made more efficient by gathering exactly one query # feature per device (rather than per frame). # # interp_features is now [batch, time, num_points, features] interp_features = jax.vmap( jax.vmap( jax.vmap( model_utils.interp, in_axes=(2, None), out_axes=-1, ), in_axes=(0, None), ) )(feature_grid[i], position_in_grid[..., 1:]) # is_correct_frame is [batch, time, num_points] frame_id = jnp.array( jnp.round(position_in_grid[:, jnp.newaxis, :, 0]), jnp.int32 ) is_correct_frame = jax.nn.one_hot( frame_id, feature_grid[i].shape[1], axis=1 ) interp_features = jnp.sum( interp_features * is_correct_frame[..., jnp.newaxis], axis=1 ) hires_interp = jax.vmap( jax.vmap( jax.vmap( model_utils.interp, in_axes=(2, None), out_axes=-1, ), in_axes=(0, None), ) )(hires_feats[i], position_in_grid_hires[..., 1:]) hires_interp = jnp.sum( hires_interp * is_correct_frame[..., jnp.newaxis], axis=1 ) else: interp_features = jax.vmap( jax.vmap( model_utils.interp, in_axes=(3, None), out_axes=1, ) )(feature_grid[i], position_in_grid) hires_interp = jax.vmap( jax.vmap( model_utils.interp, in_axes=(3, None), out_axes=1, ) )(hires_feats[i], position_in_grid_hires) hires_query_feats.append(hires_interp) query_feats.append(interp_features) return QueryFeatures( tuple(query_feats), tuple(hires_query_feats), tuple(resize_im_shape) ) def estimate_trajectories( self, video_size: Tuple[int, int], is_training: bool, feature_grids: FeatureGrids, query_features: QueryFeatures, query_points_in_video: Optional[chex.Array], query_chunk_size: Optional[int] = None, causal_context: Optional[Sequence[Mapping[str, chex.Array]]] = None, get_causal_context: bool = False, ) -> Mapping[str, Any]: """Estimates trajectories given features for a video and query features. Args: video_size: A 2-tuple containing the original [height, width] of the video. Predictions will be scaled with respect to this resolution. is_training: Whether we are training. feature_grids: a FeatureGrids object computed for the given video. query_features: a QueryFeatures object computed for the query points. query_points_in_video: If provided, assume that the query points come from the same video as feature_grids, and therefore constrain the resulting trajectories to (approximately) pass through them. query_chunk_size: When computing cost volumes, break the queries into chunks of this size to save memory. causal_context: if running online, this will be features computed for each trajectory on earlier frames. If None, no context is assumed. get_causal_context: if True, the output dict will also include features that can be passed as causal_context to future frames when running online. Returns: A dict of outputs, including: occlusion: Occlusion logits, of shape [batch, num_queries, num_frames] where higher indicates more likely to be occluded. tracks: predicted point locations, of shape [batch, num_queries, num_frames, 2], where each point is [x, y] in raster coordinates expected_dist: uncertainty estimate logits, of shape [batch, num_queries, num_frames], where higher indicates more likely to be far from the correct answer. causal_context: (if get_causal_context is True) a pytree which can be passed as causal_context to subsequent calls if running the model online. In the current model, it is a list of dicts, one per PIPs refinement iteration, where for each dict the values are hidden units from the temporal depthwise conv layers, and the keys are names derived from Haiku's layer names. """ def train2orig(x): return transforms.convert_grid_coordinates( x, self.initial_resolution[::-1], video_size[::-1], coordinate_format='xy', ) occ_iters = [] pts_iters = [] expd_iters = [] new_causal_context = [] num_iters = self.num_pips_iter * (len(feature_grids.lowres) - 1) # This contains both middle step points and final step points. for _ in range(num_iters + 1): occ_iters.append([]) pts_iters.append([]) expd_iters.append([]) new_causal_context.append([]) del new_causal_context[-1] infer = functools.partial( self.tracks_from_cost_volume, im_shp=feature_grids.lowres[0].shape[0:2] + self.initial_resolution + (3,), ) num_queries = query_features.lowres[0].shape[1] # Note: the permutation is required in order to randomize which tracks # get the stop_gradient. if causal_context is None: perm = jax.random.permutation(hk.next_rng_key(), num_queries) else: if is_training: # Need to handle permutation if we want to train with causal context. raise ValueError('Training with causal context is not supported.') perm = jnp.arange(num_queries, dtype=jnp.int32) inv_perm = jnp.zeros_like(perm) inv_perm = inv_perm.at[perm].set(jnp.arange(num_queries)) for ch in range(0, num_queries, query_chunk_size): perm_chunk = perm[ch : ch + query_chunk_size] chunk = query_features.lowres[0][:, perm_chunk] if causal_context is not None: cc_chunk = jax.tree_map(lambda x: x[:, perm_chunk], causal_context) # pylint: disable=cell-var-from-loop if query_points_in_video is not None: infer_query_points = query_points_in_video[ :, perm[ch : ch + query_chunk_size] ] num_frames = feature_grids.lowres[0].shape[1] infer_query_points = transforms.convert_grid_coordinates( infer_query_points, (num_frames,) + video_size, (num_frames,) + self.initial_resolution, coordinate_format='tyx', ) else: infer_query_points = None points, occlusion, expected_dist = infer( chunk, feature_grids.lowres[0], infer_query_points, ) pts_iters[0].append(train2orig(points)) occ_iters[0].append(occlusion) expd_iters[0].append(expected_dist) mixer_feats = None for i in range(num_iters): feature_level = i // self.num_pips_iter + 1 queries = [ query_features.hires[feature_level][:, perm_chunk], query_features.lowres[feature_level][:, perm_chunk], ] for _ in range(self.pyramid_level): queries.append(queries[-1]) pyramid = [ feature_grids.hires[feature_level], feature_grids.lowres[feature_level], ] for _ in range(self.pyramid_level): pyramid.append( hk.avg_pool( pyramid[-1], [1, 1, 2, 2, 1], [1, 1, 2, 2, 1], 'VALID' ) ) # Note: even when the pyramids are higher resolution, the points are # all scaled according to the original resolution. This is because # the raw points are input into the model, and need to be scaled that # way. # # TODO(doersch): this should constrain the output to match the query # points. cc = cc_chunk[i] if causal_context is not None else None refined = self.refine_pips( queries, None, pyramid, points, occlusion, expected_dist, orig_hw=self.initial_resolution, last_iter=mixer_feats, mixer_iter=i, resize_hw=feature_grids.resolutions[feature_level], causal_context=cc, get_causal_context=get_causal_context, ) if ch > 0: refined = jax.lax.stop_gradient(refined) points = refined[0] occlusion = refined[1] expected_dist = refined[2] mixer_feats = refined[3] new_causal_context[i].append(refined[4]) pts_iters[i + 1].append(train2orig(points)) occ_iters[i + 1].append(occlusion) expd_iters[i + 1].append(expected_dist) if (i + 1) % self.num_pips_iter == 0: mixer_feats = None expected_dist = expd_iters[0][-1] occlusion = occ_iters[0][-1] occlusion = [] points = [] expd = [] for i in range(len(occ_iters)): occlusion.append(jnp.concatenate(occ_iters[i], axis=1)[:, inv_perm]) points.append(jnp.concatenate(pts_iters[i], axis=1)[:, inv_perm]) expd.append(jnp.concatenate(expd_iters[i], axis=1)[:, inv_perm]) for i in range(len(new_causal_context)): new_causal_context[i] = jax.tree_map( lambda *x: jnp.concatenate(x, axis=1)[:, inv_perm], *new_causal_context[i], ) out = dict( occlusion=occlusion, tracks=points, expected_dist=expd, ) if get_causal_context: out['causal_context'] = new_causal_context return out def __call__( self, video: chex.Array, is_training: bool, query_points: chex.Array, query_chunk_size: Optional[int] = None, get_query_feats: bool = False, refinement_resolutions: Optional[List[Tuple[int, int]]] = None, ) -> Mapping[str, chex.Array]: """Runs a forward pass of the model. Args: video: A 5-D tensor representing a batch of sequences of images. is_training: Whether we are training. query_points: The query points for which we compute tracks. query_chunk_size: When computing cost volumes, break the queries into chunks of this size to save memory. get_query_feats: Return query features for other losses like contrastive. Not supported in the current version. refinement_resolutions: A list of (height, width) tuples. Refinement will be repeated at each specified resolution, in order to achieve high accuracy on resolutions higher than what TAPIR was trained on. If None, reasonable refinement resolutions will be inferred from the input video size. Returns: A dict of outputs, including: occlusion: Occlusion logits, of shape [batch, num_queries, num_frames] where higher indicates more likely to be occluded. tracks: predicted point locations, of shape [batch, num_queries, num_frames, 2], where each point is [x, y] in raster coordinates expected_dist: uncertainty estimate logits, of shape [batch, num_queries, num_frames], where higher indicates more likely to be far from the correct answer. """ if get_query_feats: raise ValueError('Get query feats not supported in TAPIR.') feature_grids = self.get_feature_grids( video, is_training, refinement_resolutions, ) query_features = self.get_query_features( video, is_training, query_points, feature_grids, refinement_resolutions, ) trajectories = self.estimate_trajectories( video.shape[-3:-1], is_training, feature_grids, query_features, query_points, query_chunk_size, ) # The prediction is the average of the iterative refinement output across # every resolution. At training time there's only one iteration, so we'll # just get the final refined output. At test time, however, there will be # more. The lowest resolution is at index self.num_pips_iter; # self.num_pips_iter iterations after that will be the next resolution, # and so on. p = self.num_pips_iter out = dict( occlusion=jnp.mean(jnp.stack(trajectories['occlusion'][p::p]), axis=0), tracks=jnp.mean(jnp.stack(trajectories['tracks'][p::p]), axis=0), expected_dist=jnp.mean( jnp.stack(trajectories['expected_dist'][p::p]), axis=0 ), unrefined_occlusion=trajectories['occlusion'][:-1], unrefined_tracks=trajectories['tracks'][:-1], unrefined_expected_dist=trajectories['expected_dist'][:-1], ) return out
tapnet-main
tapir_model.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Clustering TAPIR tracks based on independent motion.""" import functools import time from typing import NamedTuple from einshape import jax_einshape as einshape import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax from tapnet import tapir_model class TrainingState(NamedTuple): """Container for the training state.""" params: hk.Params state: hk.State opt_state: optax.OptState rng: jax.Array step: jax.Array def make_projection_matrix(pred_mat): """Convert predicted projection matrix parameters to a projection matrix.""" pred_mat = einshape('n(coi)->ncoi', pred_mat, o=3, i=4) @jax.custom_vjp def f(x): return x def f_fwd(x): return f(x), tuple() def f_bwd(_, g): return (jnp.clip(g, -100, 100),) f.defvjp(f_fwd, f_bwd) pred_mat = f(pred_mat) orth1 = jnp.ones_like(pred_mat[..., 0:1, :-1]) * jnp.array([0.0, 0.0, 1.0]) orth2 = pred_mat[..., 1:2, :-1] * jnp.array([1.0, 1.0, 0.0]) orth2 = orth2 / jnp.sqrt( jnp.maximum(jnp.sum(jnp.square(orth2), axis=-1, keepdims=True), 1e-12) ) orth3 = pred_mat[..., 2:3, :-1] * jnp.array([1.0, 1.0, 0.0]) orth3 = orth3 - orth2 * jnp.sum(orth3 * orth2, axis=-1, keepdims=True) orth3 = orth3 / jnp.sqrt( jnp.maximum(jnp.sum(jnp.square(orth3), axis=-1, keepdims=True), 1e-12) ) cross_prod = jnp.cross(orth1, orth2) orth3 = orth3 * jnp.sign(jnp.sum(cross_prod * orth3, axis=-1, keepdims=True)) orth = jnp.concatenate([orth3, orth2, orth1], axis=-2) pred_mat = jnp.concatenate([orth, pred_mat[..., -1:]], axis=-1) return pred_mat def project(pred_mat, pos_pred): """Project 3D points to 2D, with penalties for depth out-of-range.""" pos_pred = jnp.concatenate( [pos_pred[..., :3], pos_pred[..., 0:1] * 0 + 1], axis=-1 ) pred_pos = jnp.einsum('fcoi,nci->nfco', pred_mat, pos_pred) depth = jnp.minimum(2.0, jnp.maximum(pred_pos[..., 2:3] + 1.0, 0.5)) oob = jnp.maximum(pred_pos[..., 2:3] - 2.0, 0.0) + jnp.maximum( 0.5 - pred_pos[..., 2:3], 0.0 ) all_pred = pred_pos[..., 0:2] / depth all_pred = ( all_pred + 0.1 * jax.random.normal(hk.next_rng_key(), shape=oob.shape) * oob ) return all_pred, depth[..., 0] def forward( fr_idx, pts_idx, pts, vis, num_cats=4, is_training=True, sequence_boundaries=tuple(), ): """Model forward pass.""" def bn(x): return hk.BatchNorm(create_scale=True, create_offset=True, decay_rate=0.99)( x, is_training=is_training ) pts_shape = pts.shape pts = jnp.reshape(pts * vis[..., jnp.newaxis], [pts.shape[0], -1]) pt_state = hk.get_parameter('point_state', [pts_shape[0], 64], init=jnp.zeros) def centroid_init(shp, dtype): del shp # unused centroid_weights = jax.nn.one_hot( jax.random.randint(hk.next_rng_key(), [384], 0, pts.shape[0]), pts.shape[0], axis=0, ) centroids = jnp.transpose(centroid_weights) @ pts centroid_vis = jnp.transpose(centroid_weights) @ vis time_weight = centroid_vis centroids = jnp.concatenate([centroids, time_weight * 100.0], axis=1) centroids = jnp.transpose(centroids) return jnp.array(centroids, dtype=dtype) centroids = hk.get_parameter( 'centroids', [pts_shape[1] * 3, 384], init=centroid_init ) time_weight = jnp.abs(centroids[pts_shape[1] * 2 :, :]) / 100.0 centroids = centroids[: pts_shape[1] * 2, :] vis_tile = jnp.reshape( jnp.tile(vis[:, :, jnp.newaxis], [1, 1, 2]), [pts.shape[0], -1] ) tw_tile = jnp.reshape( jnp.tile(time_weight[:, jnp.newaxis, :], [1, 2, 1]), [-1, 384] ) dists = jnp.square(pts * vis_tile) @ jnp.square(tw_tile) dists -= 2 * (pts * vis_tile) @ (centroids * tw_tile) dists += jnp.square(vis_tile) @ jnp.square(centroids * tw_tile) dists = jnp.exp(-dists * 10.0) dists = dists / jnp.maximum(jnp.sum(dists, axis=-1, keepdims=True), 1e-8) pt_state += hk.Linear(64)(dists) frame_state_nosmooth = hk.get_parameter( 'frame_state', [pts_shape[1], 64], init=hk.initializers.TruncatedNormal(1.0), ) conv = hk.Conv1D(64, 128, feature_group_count=64) frame_state = [] for bnd in sequence_boundaries: frame_state.append(conv(frame_state_nosmooth[bnd[0] : bnd[1]])) frame_state = jnp.concatenate(frame_state, axis=0) frame_state = bn(frame_state) pt_state = bn(pt_state) state = jax.nn.relu(hk.Linear(64)(pt_state)) state += hk.Linear(64)(jax.nn.relu(bn(hk.Linear(32)(state)))) state += hk.Linear(64)(jax.nn.relu(bn(hk.Linear(32)(state)))) truncated_normal = hk.initializers.TruncatedNormal base_pred = hk.get_parameter( 'cat_pred_base', [3 * 64 * pts_shape[0], num_cats], init=truncated_normal(1.0), ) fork1_pred = hk.get_parameter( 'cat_pred_fork1', [3 * 64 * pts_shape[0], num_cats], init=lambda *args: truncated_normal(1.0)(*args) * 0.0001 + base_pred, ) fork2_pred = hk.get_parameter( 'cat_pred_fork2', [3 * 64 * pts_shape[0], num_cats], init=lambda *args: truncated_normal(1.0)(*args) * 0.0001 + base_pred, ) def mul(mat): mat = einshape('(pio)c->pcio', mat, i=64, o=3) return jnp.einsum('pcio,pi->pco', mat, state) * 0.01 pos_pred_base = mul(base_pred)[pts_idx] pos_pred_fork1 = mul(fork1_pred)[pts_idx] pos_pred_fork2 = mul(fork2_pred)[pts_idx] state = frame_state state = jax.nn.relu(hk.Linear(128)(state)) state += hk.Linear(128)(bn(jax.nn.relu(hk.Linear(64)(state)))) state += hk.Linear(128)(bn(jax.nn.relu(hk.Linear(64)(state)))) state = state * 0.01 base = hk.get_parameter( 'mat_pred_base', [state.shape[-1], num_cats * 12], init=hk.initializers.TruncatedNormal(1.0), ) fork1 = hk.get_parameter( 'mat_pred_fork1', [state.shape[-1], num_cats * 12], init=hk.initializers.TruncatedNormal(1.0), ) fork2 = hk.get_parameter( 'mat_pred_fork2', [state.shape[-1], num_cats * 12], init=hk.initializers.TruncatedNormal(1.0), ) pred_mat_base = state @ base pred_mat_fork1 = state @ fork1 pred_mat_fork2 = state @ fork2 pred_mat_base = make_projection_matrix(pred_mat_base)[fr_idx] pred_mat_fork1 = make_projection_matrix(pred_mat_fork1)[fr_idx] pred_mat_fork2 = make_projection_matrix(pred_mat_fork2)[fr_idx] if not is_training: pred_pos_all, depth_all = project(pred_mat_base, pos_pred_base) return pred_pos_all, depth_all else: return { 'pos_pred_base': pos_pred_base, 'pos_pred_fork1': pos_pred_fork1, 'pos_pred_fork2': pos_pred_fork2, 'pred_mat_base': pred_mat_base, 'pred_mat_fork1': pred_mat_fork1, 'pred_mat_fork2': pred_mat_fork2, } # Create the loss. @hk.transform_with_state def loss_fn( data, num_cats=4, delete_mode=False, sequence_boundaries=tuple(), final_num_cats=28, ): """Computes the (scalar) LM loss on `data` w.r.t. params.""" pts, vis, _ = data pts_idx = jax.random.permutation(hk.next_rng_key(), pts.shape[0])[:2048] fr_idx = jax.random.permutation(hk.next_rng_key(), pts.shape[1])[:1024] fwd = forward( fr_idx, pts_idx, pts, vis, num_cats=num_cats, sequence_boundaries=sequence_boundaries, ) pts = pts[pts_idx][:, fr_idx] print(pts.shape) vis = vis[pts_idx][:, fr_idx] def do_fork(base, fork1, fork2, i, chunk=1): chunk1 = base[..., : i * chunk] chunk2 = fork1[..., i * chunk : ((1 + i) * chunk)] chunk3 = fork2[..., i * chunk : ((1 + i) * chunk)] chunk4 = base[..., (1 + i) * chunk :] return jnp.concatenate([chunk1, chunk2, chunk3, chunk4], axis=-1) def do_delete(base, i, chunk=1): chunk1 = base[..., : i * chunk] chunk4 = base[..., (1 + i) * chunk :] return jnp.concatenate([chunk1, chunk4], axis=-1) losses = [] sum_vis = jnp.sum(vis) if delete_mode: all_pred, _ = project(fwd['pred_mat_base'], fwd['pos_pred_base']) all_err = get_err(pts, vis, all_pred) for i in range(fwd['pred_mat_base'].shape[-3]): err_i = do_delete(all_err, i) losses.append(loss_internal(err_i, sum_vis)) else: all_pred_base, _ = project(fwd['pred_mat_base'], fwd['pos_pred_base']) all_err_base = get_err(pts, vis, all_pred_base) all_pred_fork1, _ = project(fwd['pred_mat_fork1'], fwd['pos_pred_fork1']) all_err_fork1 = get_err(pts, vis, all_pred_fork1) all_pred_fork2, _ = project(fwd['pred_mat_fork2'], fwd['pos_pred_fork2']) all_err_fork2 = get_err(pts, vis, all_pred_fork2) for i in range(fwd['pred_mat_base'].shape[-3]): err_i = do_fork(all_err_base, all_err_fork1, all_err_fork2, i) losses.append(loss_internal(err_i, sum_vis)) if delete_mode: topk, _ = jax.lax.top_k(-jnp.array(losses), num_cats - final_num_cats + 3) accum_loss = jnp.mean(-topk) else: accum_loss = jnp.min(jnp.array(losses)) return accum_loss, jnp.array(losses) def huber(x): sqrt_x = jnp.sqrt(jnp.maximum(x, 1e-12)) return jnp.where(x < 0.004, x, 0.004 * (2 * sqrt_x - 0.004)) * 100.0 def get_err(pts, vis, all_pred): tmp = pts[:, :, jnp.newaxis, :] - all_pred tmp = jnp.sum(jnp.square(tmp) * vis[:, :, jnp.newaxis, jnp.newaxis], axis=-1) return jnp.sum(tmp, axis=1) def loss_internal(err_summed, sum_vis): min_loss = jnp.sum(jnp.min(err_summed, axis=1)) / sum_vis return min_loss def loss_fn_wrapper(*args, **kwargs): (loss, aux), state = loss_fn.apply(*args, **kwargs) return loss, (state, aux) def update( state, data, lr_mul=1.0, num_cats=4, delete_mode=False, sequence_boundaries=tuple(), optimiser=None, final_num_cats=28, ): """Does an SGD step and returns metrics.""" rng, new_rng = jax.random.split(state.rng) loss_and_grad_fn = jax.value_and_grad( functools.partial( loss_fn_wrapper, num_cats=num_cats, delete_mode=delete_mode, sequence_boundaries=sequence_boundaries, final_num_cats=final_num_cats, ), has_aux=True, ) (loss, (new_state, losses)), gradients = loss_and_grad_fn( state.params, state.state, rng, data ) updates, new_opt_state = optimiser.update(gradients, state.opt_state) updates = jax.tree_map(lambda x: x * lr_mul, updates) new_params = optax.apply_updates(state.params, updates) new_state = TrainingState( params=new_params, state=new_state, opt_state=new_opt_state, rng=new_rng, step=state.step + 1, ) metrics = { 'step': state.step, 'loss': loss, 'losses': losses, } return new_state, metrics @hk.transform_with_state def forward_fn(pts_idx, pts, vis, num_cats=4, sequence_boundaries=tuple()): """Test-time forward function.""" preds_all, depth_all = forward( jnp.arange(pts.shape[1], dtype=jnp.int32), pts_idx, pts, vis, num_cats=num_cats, is_training=False, sequence_boundaries=sequence_boundaries, ) pts = pts[pts_idx] vis = vis[pts_idx] err = jnp.sum(jnp.square(pts[:, :, jnp.newaxis, :] - preds_all), axis=-1) return err * vis[:, :, jnp.newaxis], preds_all, depth_all def pts_eval( state, pts_idx, pts, vis, num_cats=4, sequence_boundaries=tuple(), ): """Evaluate the errors for some points.""" (err, pred_all, depth_all), _ = forward_fn.apply( state.params, state.state, state.rng, pts_idx, pts, vis, num_cats=num_cats, sequence_boundaries=sequence_boundaries, ) return err, pred_all, depth_all def init(rng, data, num_cats=1, sequence_boundaries=tuple(), optimiser=None): rng, init_rng = jax.random.split(rng) initial_params, initial_state = loss_fn.init( init_rng, data, num_cats=num_cats, sequence_boundaries=sequence_boundaries ) initial_opt_state = optimiser.init(initial_params) return TrainingState( params=initial_params, state=initial_state, opt_state=initial_opt_state, rng=rng, step=jnp.array(0), ) def compute_clusters( separation_tracks_dict, separation_visibility_dict, demo_episode_ids, separation_video_shapes, query_features=None, final_num_cats=15, max_num_cats=25, low_visibility_threshold=0.1, ): """Compute clustering. Args: separation_tracks_dict: dict of tracks keyed by episode id, each of shape [num_points, num frames, 2]. separation_visibility_dict: dict of visibility values keyed by episode id, each of shape [num_points, num frames]. demo_episode_ids: demo episode ids separation_video_shapes: dict of video sizes (i.e. num_frames, height, width, channels), keyed by episode id. Currently assumes that they are all the same height, width. query_features: query features associated with each points (short ones will be removed) final_num_cats: the number of output clusters max_num_cats: the maximum number of clusters after splitting, before beginning to merge. low_visibility_threshold: throw out tracks with less than this fraction of visible frames. Returns: A dict, where low-visibility points have been removed. "classes" is the class id's for remaining points, and "sum_error" is the sum of error for visible points. """ iters_before_split = 500 num_iters = ( max_num_cats + (max_num_cats - final_num_cats) - 1 ) * iters_before_split separation_tracks = np.concatenate( [separation_tracks_dict[x] for x in demo_episode_ids], axis=1 ) separation_visibility = np.concatenate( [separation_visibility_dict[x] for x in demo_episode_ids], axis=1 ) enough_visible = ( np.mean(separation_visibility, axis=-1) > low_visibility_threshold ) separation_tracks = separation_tracks[enough_visible] separation_visibility = separation_visibility[enough_visible] if query_features is not None: query_features = jax.tree_map( lambda x: x[:, enough_visible] if len(x.shape) > 1 else x, query_features, ) separation_tracks_dict = jax.tree_map( lambda x: x[enough_visible], separation_tracks_dict ) separation_visibility_dict = jax.tree_map( lambda x: x[enough_visible], separation_visibility_dict ) cur = 0 sequence_boundaries = [] for shp in [separation_video_shapes[x] for x in demo_episode_ids]: sequence_boundaries.append((cur, cur + shp[0])) cur += shp[0] sequence_boundaries = tuple(sequence_boundaries) # Create the optimiser. optimiser = optax.chain( optax.clip_by_global_norm(1e-3), optax.adam(5e-2, b1=0.9, b2=0.99), ) # Initialise the model parameters. rng = jax.random.PRNGKey(42) shp = separation_video_shapes[demo_episode_ids[0]] data = ( jnp.array(separation_tracks / np.array([shp[2], shp[1]])), jnp.array(separation_visibility), ) state = init( rng, data + (1,), num_cats=1, sequence_boundaries=sequence_boundaries, optimiser=optimiser, ) # +(np.zeros([100],dtype=np.int32),np.zeros([100],dtype=np.int32))) # Start training (note we don't include any explicit eval in this example). prev_time = time.time() log_every = 10 num_cats = 1 loss_curve = [] loss_moving_average = 0 num_since_fork = 1000 delete_mode = False need_compile = True for step in range(num_iters): if step % iters_before_split == iters_before_split - 1: if delete_mode: num_cats -= 1 to_delete = np.argmin(loss_moving_average) print('deleting:' + str(to_delete) + '; new num_cats:' + str(num_cats)) def do_delete(val, chunk=1): val = np.array(val) lb = to_delete * chunk # pylint: disable=cell-var-from-loop ub = (to_delete + 1) * chunk # pylint: disable=cell-var-from-loop return np.concatenate([val[:, :lb], val[:, ub:]], axis=1) def delete_dict(param_dict): param_dict['cat_pred_base'] = do_delete(param_dict['cat_pred_base']) # pylint: disable=cell-var-from-loop param_dict['cat_pred_fork1'] = do_delete(param_dict['cat_pred_fork1']) # pylint: disable=cell-var-from-loop param_dict['cat_pred_fork2'] = do_delete(param_dict['cat_pred_fork2']) # pylint: disable=cell-var-from-loop param_dict['mat_pred_base'] = do_delete( # pylint: disable=cell-var-from-loop param_dict['mat_pred_base'], chunk=12 ) param_dict['mat_pred_fork1'] = do_delete( # pylint: disable=cell-var-from-loop param_dict['mat_pred_fork1'], chunk=12 ) param_dict['mat_pred_fork2'] = do_delete( # pylint: disable=cell-var-from-loop param_dict['mat_pred_fork2'], chunk=12 ) delete_dict(state.params['~']) delete_dict(state.opt_state[1][0].mu['~']) delete_dict(state.opt_state[1][0].nu['~']) else: num_cats += 1 to_split = jnp.argmin(loss_moving_average) print('splitting:' + str(to_split) + '; new num_cats:' + str(num_cats)) def do_fork(base, fork1, fork2, chunk=1, noise=0.0, mul=1.0): base = np.array(base) fork1 = np.array(fork1) fork2 = np.array(fork2) lb = to_split * chunk # pylint: disable=cell-var-from-loop ub = (to_split + 1) * chunk # pylint: disable=cell-var-from-loop base[:, lb:ub] = fork1[:, lb:ub] base = np.concatenate([base, fork2[:, lb:ub]], axis=-1) def reinit(fork): fork = np.concatenate( [ fork, ( fork[:, lb:ub] + np.random.normal(size=[fork.shape[0], chunk]) * noise ), ], axis=-1, ) fork[:, lb:ub] = ( fork[:, lb:ub] + np.random.normal(size=[fork.shape[0], chunk]) * noise ) if noise > 0: fork = np.copy(base) + np.random.normal(size=base.shape) * noise fork = fork * mul return fork return base, reinit(fork1), reinit(fork2) def fork_dict(param_dict, noise=0.0, mul=1.0): new_cpb, new_cpf1, new_cpf2 = do_fork( # pylint: disable=cell-var-from-loop param_dict['cat_pred_base'], param_dict['cat_pred_fork1'], param_dict['cat_pred_fork2'], noise=noise, mul=mul, ) param_dict['cat_pred_base'] = new_cpb param_dict['cat_pred_fork1'] = new_cpf1 param_dict['cat_pred_fork2'] = new_cpf2 new_mpb, new_mpf1, new_mpf2 = do_fork( # pylint: disable=cell-var-from-loop param_dict['mat_pred_base'], param_dict['mat_pred_fork1'], param_dict['mat_pred_fork2'], chunk=12, noise=noise, mul=mul, ) param_dict['mat_pred_base'] = new_mpb param_dict['mat_pred_fork1'] = new_mpf1 param_dict['mat_pred_fork2'] = new_mpf2 fork_dict(state.params['~'], noise=0.000001) fork_dict(state.opt_state[1][0].mu['~'], mul=0.0) fork_dict(state.opt_state[1][0].nu['~'], mul=1.0) state = TrainingState( params=state.params, state=state.state, opt_state=optimiser.init(state.params), rng=state.rng, step=state.step, ) delete_mode = num_cats == max_num_cats num_since_fork = 0 loss_moving_average = 0 need_compile = True if need_compile: update_jit = jax.jit( functools.partial( update, num_cats=num_cats, delete_mode=delete_mode, sequence_boundaries=sequence_boundaries, optimiser=optimiser, final_num_cats=final_num_cats, ) ) need_compile = False lr_mul = min(1.0, (num_since_fork + 1) / 20.0) # TODO(doersch): hardcoding the LR schedule isn't very smart if state.step > num_iters * 0.25: lr_mul = lr_mul / 2.0 if state.step > num_iters * 0.50: lr_mul = lr_mul / 2.0 if state.step > num_iters * 0.75: lr_mul = lr_mul / 2.0 state, metrics = update_jit(state, data + (state.step,), lr_mul) loss_curve.append(metrics['loss']) loss_moving_average = 0.9 * loss_moving_average + 0.1 * metrics['losses'] if step % log_every == 0: steps_per_sec = log_every / (time.time() - prev_time) prev_time = time.time() metrics |= {'steps_per_sec': steps_per_sec} print( { k: float(v) if k != 'losses' else list(np.array(v)) for k, v in metrics.items() } ) num_since_fork += 1 pts_eval_jit = jax.jit( functools.partial( pts_eval, num_cats=num_cats, sequence_boundaries=sequence_boundaries, ) ) sum_error = [] for i in range(0, separation_tracks.shape[0], 128): err, _, _ = pts_eval_jit( state, np.arange(i, min(separation_tracks.shape[0], i + 128)), data[0], data[1], ) sum_error.append(np.sum(err, axis=1)) sum_error = np.concatenate(sum_error, axis=0) return { 'classes': np.array(np.argmin(np.array(sum_error), axis=-1)), 'sum_error': sum_error, 'separation_visibility': separation_visibility_dict, 'separation_tracks': separation_tracks_dict, 'query_features': query_features, 'demo_episode_ids': demo_episode_ids, } def construct_fake_causal_state( query_features, convert_to_jax=False, channel_multiplier=4 ): """Constructs a fake TAPIR causal state which can be used to reduce jitting. Please not this function is very fragile and only works for the current version of tapir. It will likely need to be updated if TAPIR changes, but it is helpful for quick iterations. Args: query_features: Query features which will be used to infer shapes. convert_to_jax: Whether to convert it to a jax array (helps prevent recompiles) channel_multiplier: for compatibility with smaller models Returns: A causal state. """ num_points = query_features_count(query_features) num_resolutions = len(query_features.resolutions) dims = 512 * channel_multiplier value_shapes = { 'tapir/~/pips_mlp_mixer/block_1_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_1_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_2_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_2_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_3_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_3_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_4_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_4_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_5_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_5_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_6_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_6_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_7_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_7_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_8_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_8_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_9_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_9_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_10_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_10_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_11_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_11_causal_2': (1, num_points, 2, dims), 'tapir/~/pips_mlp_mixer/block_causal_1': (1, num_points, 2, 512), 'tapir/~/pips_mlp_mixer/block_causal_2': (1, num_points, 2, dims), } fake_ret = {k: np.zeros(v) for k, v in value_shapes.items()} fake_ret = [fake_ret] * num_resolutions * 4 if convert_to_jax: fake_ret = jax.tree_map(jnp.array, fake_ret) return fake_ret def _build_online_model_init(frames, query_points, *, tapir_model_kwargs): """Build tapir model for initialisation and tracking. Args: frames: query_points: tapir_model_kwargs: Returns: Raises: <Any>: """ if not tapir_model_kwargs['use_causal_conv']: raise ValueError('Online model requires causal TAPIR training.') model = tapir_model.TAPIR(**tapir_model_kwargs) feature_grids = model.get_feature_grids( frames, is_training=False, ) query_features = model.get_query_features( frames, is_training=True, query_points=query_points, feature_grids=feature_grids, ) return query_features def _build_online_model_predict( frames, query_features, causal_context, *, tapir_model_kwargs, query_chunk_size=256, query_points_in_video=None, ): """Compute point tracks and occlusions given frames and query points.""" if not tapir_model_kwargs['use_causal_conv']: raise ValueError('Online model requires causal TAPIR training.') model = tapir_model.TAPIR(**tapir_model_kwargs) feature_grids = model.get_feature_grids( frames, is_training=False, ) trajectories = model.estimate_trajectories( frames.shape[-3:-1], is_training=False, feature_grids=feature_grids, query_features=query_features, query_points_in_video=query_points_in_video, query_chunk_size=query_chunk_size, causal_context=causal_context, get_causal_context=True, ) trajectories = dict(trajectories) causal_context = trajectories['causal_context'] del trajectories['causal_context'] return {k: v[-1] for k, v in trajectories.items()}, causal_context def build_models( checkpoint_path, query_chunk_size=256, ): """Build tapir model for initialisation and tracking.""" ckpt_state = np.load(checkpoint_path, allow_pickle=True).item() params, state = ckpt_state['params'], ckpt_state['state'] num_params = hk.data_structures.tree_size(params) num_bytes = hk.data_structures.tree_bytes(params) print('TAPIR model') print( f'Number of params: {num_params}', ) print(f'Number of bytes: {num_bytes / 1e6:.2f} MB') tapir_model_kwargs = dict( use_causal_conv=True, bilinear_interp_with_depthwise_conv=False ) online_model_init_fn = functools.partial( _build_online_model_init, tapir_model_kwargs=tapir_model_kwargs, ) online_init = hk.transform_with_state(online_model_init_fn) online_init_apply = jax.jit(online_init.apply, backend='cpu') online_model_predict_fn = functools.partial( _build_online_model_predict, tapir_model_kwargs=tapir_model_kwargs, query_chunk_size=query_chunk_size, ) online_predict = hk.transform_with_state(online_model_predict_fn) # Jit is broken here unfortunately. online_predict_apply_cpu = online_predict.apply online_predict_apply_gpu = jax.jit(online_predict.apply, backend='gpu') # online_predict_apply = online_predict.apply rng = jax.random.PRNGKey(42) online_init_apply = functools.partial( online_init_apply, params=params, state=state, rng=rng ) online_predict_apply_cpu = functools.partial( online_predict_apply_cpu, params=params, state=state, rng=rng ) online_predict_apply_gpu = functools.partial( online_predict_apply_gpu, params=params, state=state, rng=rng ) return online_init_apply, online_predict_apply_cpu, online_predict_apply_gpu def query_features_join(feature_list): """Merge a list of query features int a single query features structure.""" lowres = [x.lowres for x in feature_list] hires = [x.hires for x in feature_list] joined_features = tapir_model.QueryFeatures( lowres=tuple(np.concatenate(x, axis=1) for x in zip(*lowres)), hires=tuple(np.concatenate(x, axis=1) for x in zip(*hires)), resolutions=feature_list[0].resolutions, ) return joined_features def query_features_count(features): """Number of points within a query features structure.""" return features.lowres[0].shape[1] def predictions_to_tracks_visibility(predictions, single_step=True): """Extract tracks and visibility from TAPIR predictions. Args: predictions: Predictions output of TAPIR single_step: Whether we are processing a single step or a whole episode. Returns: * Tracks of shape [num_points, (t), xy] * Visibility of shape [num_points, (t)]. Float between 0 and 1. """ tracks = predictions['tracks'][0] occlusion = predictions['occlusion'][0] expected_dist = predictions['expected_dist'][0] if single_step: tracks = tracks[:, 0] occlusion = occlusion[:, 0] expected_dist = expected_dist[:, 0] pred_occ = jax.nn.sigmoid(occlusion) visibility = (1 - pred_occ) * (1 - jax.nn.sigmoid(expected_dist)) return tracks, visibility def preprocess_frames(frames: np.ndarray) -> np.ndarray: """Preprocess frames to model inputs. Args: frames: [num_frames, height, width, 3], [0, 255], np.uint8 Returns: frames: [num_frames, height, width, 3], [-1, 1], np.float32 """ frames = frames.astype(np.float32) frames = frames / 255 * 2 - 1 return frames def track_many_points( separation_videos, demo_episode_ids, checkpoint_path, frame_stride=4, points_per_frame=8, point_batch_size=2048, sample_box_corners=(0.1, 0.1, 0.9, 0.9), ): """Track random points sampled from the videos. Args: separation_videos: dict of uint8 tensors, keyed by demo_episode_ids. demo_episode_ids: demo episode ids. checkpoint_path: path to TAPIR checkpoint file frame_stride: sample points from one out of every this number of frames points_per_frame: from each selected frame, sample this many points point_batch_size: how many points to run through tapir simultaneously. sample_box_corners: sample within this box. Format is [x_lower, y_lower, x_upper, y_upper], in normalized coordinates. Returns: a dict with tracked points """ tapir_init, _, tapir_predict = build_models( checkpoint_path, query_chunk_size=512 ) np.random.seed(42) query_features = [] query_features2 = [] query_points = [] tmp_query_points = [] def merge_struct(query_features, tmp_query_points): query_features2.append(query_features_join(query_features)) query_points.append( [ np.concatenate([x[i] for x in tmp_query_points], axis=0) for i in range(3) ] ) for sv_idx, sv in enumerate([separation_videos[x] for x in demo_episode_ids]): print(f'extracting query features for video {sv_idx}') for i in range(0, len(sv), frame_stride): x_scl = sample_box_corners[2] - sample_box_corners[0] y_scl = sample_box_corners[3] - sample_box_corners[1] x_add = sample_box_corners[0] y_add = sample_box_corners[1] qp = ( np.random.uniform(0.0, 1.0, [points_per_frame, 3]) * np.array([0.0, sv.shape[1] * y_scl, sv.shape[2] * x_scl])[None, ...] + np.array([0.0, sv.shape[1] * y_add, sv.shape[2] * x_add])[None, ...] ) tmp_query_points.append(( np.array([sv_idx] * points_per_frame), np.array([i] * points_per_frame), qp[..., 1:], )) qf, _ = tapir_init( frames=preprocess_frames(sv[None, None, i]), query_points=qp[None], ) query_features.append(qf) if len(query_features) == point_batch_size // points_per_frame: merge_struct(query_features, tmp_query_points) query_features = [] tmp_query_points = [] print('Done extracting query features') num_extra = 0 if query_features: merge_struct(query_features, tmp_query_points) out_query_features = query_features_join(query_features2) out_query_points = [ np.concatenate([x[i] for x in query_points], axis=0) for i in range(3) ] if query_features: del query_features2[-1] del query_points[-1] while len(query_features) < point_batch_size // points_per_frame: query_features.append(query_features[-1]) tmp_query_points.append(tmp_query_points[-1]) num_extra += points_per_frame merge_struct(query_features, tmp_query_points) all_separation_tracks = [] all_separation_visibility = [] print('Note that TAPIR compilation takes a while.') print('You may not see GPU usage immediately.') for qf_idx, query_features in enumerate(query_features2): print(f'query feature batch {qf_idx}/{len(query_features2)}') separation_tracks = [] separation_visibility = [] for sv_idx, sv in enumerate( [separation_videos[x] for x in demo_episode_ids] ): print(f'tracking in video {sv_idx}/{len(demo_episode_ids)}') causal_state = construct_fake_causal_state( query_features, convert_to_jax=True, channel_multiplier=4, ) for i in range(len(sv)): (prediction, causal_state), _ = tapir_predict( frames=preprocess_frames(sv[None, None, i]), query_features=query_features, causal_context=causal_state, ) prediction = jax.tree_map(np.array, prediction) res = predictions_to_tracks_visibility(prediction) separation_tracks.append(res[0]) separation_visibility.append(res[1] > 0.5) # Threshold all_separation_visibility.append(np.stack(separation_visibility, axis=1)) all_separation_tracks.append(np.stack(separation_tracks, axis=1)) separation_visibility = np.concatenate(all_separation_visibility, axis=0) separation_tracks = np.concatenate(all_separation_tracks, axis=0) pad_start = separation_tracks.shape[0] - num_extra separation_tracks = separation_tracks[:pad_start] separation_visibility = separation_visibility[:pad_start] separation_video_shapes = [ separation_videos[x].shape for x in demo_episode_ids ] bnds = [] cur = 0 for shp in separation_video_shapes: bnds.append((cur, cur + shp[0])) cur += shp[0] separation_visibility = { k: separation_visibility[:, lb:ub] for k, (lb, ub) in zip(demo_episode_ids, bnds) } separation_tracks = { k: separation_tracks[:, lb:ub] for k, (lb, ub) in zip(demo_episode_ids, bnds) } return { 'separation_visibility': separation_visibility, 'separation_tracks': separation_tracks, 'video_shape': { x: separation_video_shapes[i] for i, x in enumerate(demo_episode_ids) }, 'query_features': jax.tree_map(np.array, out_query_features), 'demo_episode_ids': demo_episode_ids, 'query_points': out_query_points, }
tapnet-main
tapir_clustering.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities and losses for building and training TAP models.""" from typing import Optional import chex import jax import jax.numpy as jnp import numpy as np import optax from tapnet.utils import transforms def huber_loss( tracks: chex.Array, target_points: chex.Array, occluded: chex.Numeric ) -> chex.Array: """Huber loss for point trajectories.""" error = tracks - target_points # Huber loss with a threshold of 4 pixels distsqr = jnp.sum(jnp.square(error), axis=-1) dist = jnp.sqrt(distsqr + 1e-12) # add eps to prevent nan delta = 4.0 loss_huber = jnp.where( dist < delta, distsqr / 2, delta * (jnp.abs(dist) - delta / 2) ) loss_huber *= 1.0 - occluded loss_huber = jnp.mean(loss_huber, axis=[1, 2]) return loss_huber def prob_loss( tracks: chex.Array, expd: chex.Array, target_points: chex.Array, occluded: chex.Array, expected_dist_thresh: float = 8.0, ): """Loss for classifying if a point is within pixel threshold of its target.""" # Points with an error larger than 8 pixels are likely to be useless; marking # them as occluded will actually improve Jaccard metrics and give # qualitatively better results. err = jnp.sum(jnp.square(tracks - target_points), axis=-1) invalid = (err > expected_dist_thresh**2).astype(expd.dtype) logprob = optax.sigmoid_binary_cross_entropy(expd, invalid) logprob *= 1.0 - occluded logprob = jnp.mean(logprob, axis=[1, 2]) return logprob def interp(x: chex.Array, y: chex.Array, mode: str = 'nearest') -> chex.Array: """Bilinear interpolation. Args: x: Grid of features to be interpolated, of shape [height, width] y: Points to be interpolated, of shape [num_points, 2], where each point is [y, x] in pixel coordinates, or [num_points, 3], where each point is [z, y, x]. Note that x and y are assumed to be raster coordinates: i.e. (0, 0) refers to the upper-left corner of the upper-left pixel. z, however, is assumed to be frame coordinates, so 0 is the first frame, and 0.5 is halfway between the first and second frames. mode: mode for dealing with samples outside the range, passed to jax.scipy.ndimage.map_coordinates. Returns: The interpolated value, of shape [num_points]. """ # If the coordinate format is [z,y,x], we need to handle the z coordinate # differently per the docstring. if y.shape[-1] == 3: y = jnp.concatenate([y[..., 0:1], y[..., 1:] - 0.5], axis=-1) else: y = y - 0.5 return jax.scipy.ndimage.map_coordinates( x, jnp.transpose(y), order=1, mode=mode, ) def soft_argmax_heatmap( softmax_val: chex.Array, threshold: chex.Numeric = 5, ) -> chex.Array: """Computes the soft argmax a heatmap. Finds the argmax grid cell, and then returns the average coordinate of surrounding grid cells, weighted by the softmax. Args: softmax_val: A heatmap of shape [height, width], containing all positive values summing to 1 across the entire grid. threshold: The radius of surrounding cells to consider when computing the average. Returns: The soft argmax, which is a single point [x,y] in grid coordinates. """ x, y = jnp.meshgrid( jnp.arange(softmax_val.shape[1]), jnp.arange(softmax_val.shape[0]), ) coords = jnp.stack([x + 0.5, y + 0.5], axis=-1) argmax_pos = jnp.argmax(jnp.reshape(softmax_val, -1)) pos = jnp.reshape(coords, [-1, 2])[argmax_pos, jnp.newaxis, jnp.newaxis, :] valid = jnp.sum( jnp.square(coords - pos), axis=-1, keepdims=True, ) < jnp.square(threshold) weighted_sum = jnp.sum( coords * valid * softmax_val[:, :, jnp.newaxis], axis=(0, 1), ) sum_of_weights = jnp.maximum( jnp.sum(valid * softmax_val[:, :, jnp.newaxis], axis=(0, 1)), 1e-12, ) return weighted_sum / sum_of_weights def heatmaps_to_points( all_pairs_softmax: chex.Array, image_shape: chex.Shape, threshold: chex.Numeric = 5, query_points: Optional[chex.Array] = None, ) -> chex.Array: """Given a batch of heatmaps, compute a soft argmax. If query points are given, constrain that the query points are returned verbatim. Args: all_pairs_softmax: A set of heatmaps, of shape [batch, num_points, time, height, width]. image_shape: The shape of the original image that the feature grid was extracted from. This is needed to properly normalize coordinates. threshold: Threshold for the soft argmax operation. query_points (optional): If specified, we assume these points are given as ground truth and we reproduce them exactly. This is a set of points of shape [batch, num_points, 3], where each entry is [t, y, x] in frame/ raster coordinates. Returns: predicted points, of shape [batch, num_points, time, 2], where each point is [x, y] in raster coordinates. These are the result of a soft argmax ecept where the query point is specified, in which case the query points are returned verbatim. """ # soft_argmax_heatmap operates over a single heatmap. We vmap it across # batch, num_points, and frames. vmap_sah = soft_argmax_heatmap for _ in range(3): vmap_sah = jax.vmap(vmap_sah, (0, None)) out_points = vmap_sah(all_pairs_softmax, threshold) feature_grid_shape = all_pairs_softmax.shape[1:] # Note: out_points is now [x, y]; we need to divide by [width, height]. # image_shape[3] is width and image_shape[2] is height. out_points = transforms.convert_grid_coordinates( out_points, feature_grid_shape[3:1:-1], image_shape[3:1:-1], ) assert feature_grid_shape[1] == image_shape[1] if query_points is not None: # The [..., 0:1] is because we only care about the frame index. query_frame = transforms.convert_grid_coordinates( query_points, image_shape[1:4], feature_grid_shape[1:4], coordinate_format='tyx', )[..., 0:1] query_frame = jnp.array(jnp.round(query_frame), jnp.int32) frame_indices = jnp.arange(image_shape[1], dtype=jnp.int32)[ jnp.newaxis, jnp.newaxis, : ] is_query_point = query_frame == frame_indices is_query_point = is_query_point[:, :, :, jnp.newaxis] out_points = ( out_points * (1 - is_query_point) + query_points[:, :, jnp.newaxis, 2:0:-1] * is_query_point ) return out_points def generate_default_resolutions(full_size, train_size, num_levels=None): """Generate a list of logarithmically-spaced resolutions. Generated resolutions are between train_size and full_size, inclusive, with num_levels different resolutions total. Useful for generating the input to refinement_resolutions in PIPs. Args: full_size: 2-tuple of ints. The full image size desired. train_size: 2-tuple of ints. The smallest refinement level. Should typically match the training resolution, which is (256, 256) for TAPIR. num_levels: number of levels. Typically each resolution should be less than twice the size of prior resolutions. Returns: A list of resolutions. """ if all([x == y for x, y in zip(train_size, full_size)]): return [train_size] if num_levels is None: size_ratio = np.array(full_size) / np.array(train_size) num_levels = int(np.ceil(np.max(np.log2(size_ratio))) + 1) if num_levels <= 1: return [train_size] h, w = full_size[0], full_size[1] if h % 8 != 0 or w % 8 != 0: print( 'Warning: output size is not a multiple of 8. Final layer ' + 'will round size down.' ) ll_h, ll_w = train_size[0], train_size[1] sizes = [] for i in range(num_levels): size = ( int(round((ll_h * (h / ll_h) ** (i / (num_levels - 1))) // 8)) * 8, int(round((ll_w * (w / ll_w) ** (i / (num_levels - 1))) // 8)) * 8, ) sizes.append(size) return sizes
tapnet-main
utils/model_utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Logging and other experiment utilities.""" import os from typing import Mapping, Optional import jax from jaxline import utils from ml_collections import config_dict import numpy as np import optax import tensorflow as tf from tapnet import optimizers def get_lr_schedule( total_steps: int, optimizer_config: config_dict.ConfigDict, ) -> optax.Schedule: """Build the LR schedule function.""" base_lr = optimizer_config.base_lr schedule_type = optimizer_config.schedule_type if schedule_type == 'cosine': warmup_steps = (optimizer_config.cosine_decay_kwargs.warmup_steps) # Batch scale the other lr values as well: init_value = optimizer_config.cosine_decay_kwargs.init_value end_value = optimizer_config.cosine_decay_kwargs.end_value schedule_fn = optax.warmup_cosine_decay_schedule( init_value=init_value, peak_value=base_lr, warmup_steps=warmup_steps, decay_steps=total_steps, end_value=end_value) elif schedule_type == 'constant_cosine': # Convert end_value to alpha, used by cosine_decay_schedule. alpha = optimizer_config.constant_cosine_decay_kwargs.end_value / base_lr # Number of steps spent in constant phase. constant_steps = int( optimizer_config.constant_cosine_decay_kwargs.constant_fraction * total_steps) decay_steps = total_steps - constant_steps constant_phase = optax.constant_schedule(value=base_lr) decay_phase = optax.cosine_decay_schedule( init_value=base_lr, decay_steps=decay_steps, alpha=alpha) schedule_fn = optax.join_schedules( schedules=[constant_phase, decay_phase], boundaries=[constant_steps]) else: raise ValueError(f'Unknown learning rate schedule: {schedule_type}') return schedule_fn def make_optimizer( optimizer_config: config_dict.ConfigDict, lr_schedule: optax.Schedule, ) -> optax.GradientTransformation: """Construct the optax optimizer with given LR schedule.""" # Decay learned position embeddings by default. weight_decay_exclude_names = ['b'] optax_chain = [] if optimizer_config.max_norm > 0: optax_chain.append(optax.clip_by_global_norm(optimizer_config.max_norm)) if optimizer_config.optimizer == 'sgd': optax_chain.extend([ optax.trace(**optimizer_config.sgd_kwargs), optimizers.add_weight_decay( optimizer_config.weight_decay, exclude_names=weight_decay_exclude_names) ]) elif optimizer_config.optimizer == 'adam': optax_chain.extend([ optax.scale_by_adam(**optimizer_config.adam_kwargs), optimizers.add_weight_decay( optimizer_config.weight_decay, exclude_names=weight_decay_exclude_names) ]) else: raise ValueError(f'Undefined optimizer {optimizer_config.optimizer}') optax_chain.extend([ optax.scale_by_schedule(lr_schedule), optax.scale(-1), ]) optimizer = optax.chain(*optax_chain) optimizer = optax.apply_if_finite(optimizer, max_consecutive_errors=5) return optimizer class NumpyFileCheckpointer(utils.Checkpointer): """A Jaxline checkpointer which saves to numpy files on disk.""" def __init__(self, config: config_dict.ConfigDict, mode: str): self._checkpoint_file = os.path.join(config.checkpoint_dir, 'checkpoint.npy') self._checkpoint_state = config_dict.ConfigDict() del mode def get_experiment_state(self, ckpt_series: str) -> config_dict.ConfigDict: """Returns the experiment state for a given checkpoint series.""" if ckpt_series != 'latest': raise ValueError('multiple checkpoint series are not supported') return self._checkpoint_state def save(self, ckpt_series: str) -> None: """Saves the checkpoint.""" if ckpt_series != 'latest': raise ValueError('multiple checkpoint series are not supported') exp_mod = self._checkpoint_state.experiment_module global_step = self._checkpoint_state.global_step f_np = lambda x: np.array(jax.device_get(utils.get_first(x))) to_save = {} for attr, name in exp_mod.CHECKPOINT_ATTRS.items(): if name == 'global_step': raise ValueError( 'global_step attribute would overwrite jaxline global step') np_params = jax.tree_map(f_np, getattr(exp_mod, attr)) to_save[name] = np_params to_save['global_step'] = global_step with tf.io.gfile.GFile(self._checkpoint_file + '_tmp', 'wb') as fp: np.save(fp, to_save) tf.io.gfile.rename( self._checkpoint_file + '_tmp', self._checkpoint_file, overwrite=True, ) def can_be_restored(self, ckpt_series: str) -> bool: """Returns whether or not a given checkpoint series can be restored.""" if ckpt_series != 'latest': raise ValueError('multiple checkpoint series are not supported') return tf.io.gfile.exists(self._checkpoint_file) def restore(self, ckpt_series: str) -> None: """Restores the checkpoint.""" experiment_state = self.get_experiment_state(ckpt_series) with tf.io.gfile.GFile(self._checkpoint_file, 'rb') as fp: ckpt_state = np.load(fp, allow_pickle=True).item() experiment_state.global_step = int(ckpt_state['global_step']) exp_mod = experiment_state.experiment_module for attr, name in exp_mod.CHECKPOINT_ATTRS.items(): setattr(exp_mod, attr, utils.bcast_local_devices(ckpt_state[name])) def restore_path(self, ckpt_series: str) -> Optional[str]: """Returns the restore path for the checkpoint, or None.""" if not self.can_be_restored(ckpt_series): return None return self._checkpoint_file def wait_for_checkpointing_to_finish(self) -> None: """Waits for any async checkpointing to complete.""" @classmethod def create( cls, config: config_dict.ConfigDict, mode: str, ) -> utils.Checkpointer: return cls(config, mode) def default_color_augmentation_fn( inputs: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]: """Standard color augmentation for videos. Args: inputs: A DatasetElement containing the item 'video' which will have augmentations applied to it. Returns: A DatasetElement with all the same data as the original, except that the video has augmentations applied. """ zero_centering_image = True prob_color_augment = 0.8 prob_color_drop = 0.2 frames = inputs['video'] if frames.dtype != tf.float32: raise ValueError('`frames` should be in float32.') def color_augment(video: tf.Tensor) -> tf.Tensor: """Do standard color augmentations.""" # Note the same augmentation will be applied to all frames of the video. if zero_centering_image: video = 0.5 * (video + 1.0) video = tf.image.random_brightness(video, max_delta=32. / 255.) video = tf.image.random_saturation(video, lower=0.6, upper=1.4) video = tf.image.random_contrast(video, lower=0.6, upper=1.4) video = tf.image.random_hue(video, max_delta=0.2) video = tf.clip_by_value(video, 0.0, 1.0) if zero_centering_image: video = 2 * (video-0.5) return video def color_drop(video: tf.Tensor) -> tf.Tensor: video = tf.image.rgb_to_grayscale(video) video = tf.tile(video, [1, 1, 1, 3]) return video # Eventually applies color augmentation. coin_toss_color_augment = tf.random.uniform( [], minval=0, maxval=1, dtype=tf.float32) frames = tf.cond( pred=tf.less(coin_toss_color_augment, tf.cast(prob_color_augment, tf.float32)), true_fn=lambda: color_augment(frames), false_fn=lambda: frames) # Eventually applies color drop. coin_toss_color_drop = tf.random.uniform( [], minval=0, maxval=1, dtype=tf.float32) frames = tf.cond( pred=tf.less(coin_toss_color_drop, tf.cast(prob_color_drop, tf.float32)), true_fn=lambda: color_drop(frames), false_fn=lambda: frames) result = {**inputs} result['video'] = frames return result def add_default_data_augmentation(ds: tf.data.Dataset) -> tf.data.Dataset: return ds.map( default_color_augmentation_fn, num_parallel_calls=tf.data.AUTOTUNE)
tapnet-main
utils/experiment_utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for transforming image coordinates.""" from typing import Sequence import chex import numpy as np def convert_grid_coordinates( coords: chex.Array, input_grid_size: Sequence[int], output_grid_size: Sequence[int], coordinate_format: str = 'xy', ) -> chex.Array: """Convert image coordinates between image grids of different sizes. By default, it assumes that the image corners are aligned. Therefore, it adds .5 (since (0,0) is assumed to be the center of the upper-left grid cell), multiplies by the size ratio, and then subtracts .5. Args: coords: The coordinates to be converted. It is of shape [..., 2] if coordinate_format is 'xy' or [..., 3] if coordinate_format is 'tyx'. input_grid_size: The size of the image/grid that the coordinates currently are with respect to. This is a 2-tuple of the format [width, height] if coordinate_format is 'xy' or a 3-tuple of the format [num_frames, height, width] if coordinate_format is 'tyx'. output_grid_size: The size of the target image/grid that you want the coordinates to be with respect to. This is a 2-tuple of the format [width, height] if coordinate_format is 'xy' or a 3-tuple of the format [num_frames, height, width] if coordinate_format is 'tyx'. coordinate_format: Which format the coordinates are in. This can be one of 'xy' (the default) or 'tyx', which are the only formats used in this project. Returns: The transformed coordinates, of the same shape as coordinates. Raises: ValueError: if coordinates don't match the given format. """ if isinstance(input_grid_size, tuple): input_grid_size = np.array(input_grid_size) if isinstance(output_grid_size, tuple): output_grid_size = np.array(output_grid_size) if coordinate_format == 'xy': if input_grid_size.shape[0] != 2 or output_grid_size.shape[0] != 2: raise ValueError( 'If coordinate_format is xy, the shapes must be length 2.') elif coordinate_format == 'tyx': if input_grid_size.shape[0] != 3 or output_grid_size.shape[0] != 3: raise ValueError( 'If coordinate_format is tyx, the shapes must be length 3.') if input_grid_size[0] != output_grid_size[0]: raise ValueError('converting frame count is not supported.') else: raise ValueError('Recognized coordinate formats are xy and tyx.') position_in_grid = coords position_in_grid = position_in_grid * output_grid_size / input_grid_size return position_in_grid
tapnet-main
utils/transforms.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Visualization utility functions.""" import colorsys import random from typing import List, Optional, Sequence, Tuple from absl import logging import matplotlib.pyplot as plt import mediapy as media import numpy as np # Generate random colormaps for visualizing different points. def get_colors(num_colors: int) -> List[Tuple[int, int, int]]: """Gets colormap for points.""" colors = [] for i in np.arange(0.0, 360.0, 360.0 / num_colors): hue = i / 360.0 lightness = (50 + np.random.rand() * 10) / 100.0 saturation = (90 + np.random.rand() * 10) / 100.0 color = colorsys.hls_to_rgb(hue, lightness, saturation) colors.append( (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)) ) random.shuffle(colors) return colors def paint_point_track( frames: np.ndarray, point_tracks: np.ndarray, visibles: np.ndarray, colormap: Optional[List[Tuple[int, int, int]]] = None, ) -> np.ndarray: """Converts a sequence of points to color code video. Args: frames: [num_frames, height, width, 3], np.uint8, [0, 255] point_tracks: [num_points, num_frames, 2], np.float32, [0, width / height] visibles: [num_points, num_frames], bool colormap: colormap for points, each point has a different RGB color. Returns: video: [num_frames, height, width, 3], np.uint8, [0, 255] """ num_points, num_frames = point_tracks.shape[0:2] if colormap is None: colormap = get_colors(num_colors=num_points) height, width = frames.shape[1:3] dot_size_as_fraction_of_min_edge = 0.015 radius = int(round(min(height, width) * dot_size_as_fraction_of_min_edge)) diam = radius * 2 + 1 quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1) quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1) icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0 sharpness = 0.15 icon = np.clip(icon / (radius * 2 * sharpness), 0, 1) icon = 1 - icon[:, :, np.newaxis] icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)]) icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)]) icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)]) icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)]) video = frames.copy() for t in range(num_frames): # Pad so that points that extend outside the image frame don't crash us image = np.pad( video[t], [ (radius + 1, radius + 1), (radius + 1, radius + 1), (0, 0), ], ) for i in range(num_points): # The icon is centered at the center of a pixel, but the input coordinates # are raster coordinates. Therefore, to render a point at (1,1) (which # lies on the corner between four pixels), we need 1/4 of the icon placed # centered on the 0'th row, 0'th column, etc. We need to subtract # 0.5 to make the fractional position come out right. x, y = point_tracks[i, t, :] + 0.5 x = min(max(x, 0.0), width) y = min(max(y, 0.0), height) if visibles[i, t]: x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32) x2, y2 = x1 + 1, y1 + 1 # bilinear interpolation patch = ( icon1 * (x2 - x) * (y2 - y) + icon2 * (x2 - x) * (y - y1) + icon3 * (x - x1) * (y2 - y) + icon4 * (x - x1) * (y - y1) ) x_ub = x1 + 2 * radius + 2 y_ub = y1 + 2 * radius + 2 image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[ y1:y_ub, x1:x_ub, : ] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :] # Remove the pad video[t] = image[ radius + 1 : -radius - 1, radius + 1 : -radius - 1 ].astype(np.uint8) return video def plot_tracks_v2( rgb: np.ndarray, points: np.ndarray, occluded: np.ndarray, gt_points: Optional[np.ndarray] = None, gt_occluded: Optional[np.ndarray] = None, trackgroup: Optional[np.ndarray] = None, ) -> np.ndarray: """Plot tracks with matplotlib.""" disp = [] cmap = plt.cm.hsv # pytype: disable=module-attr z_list = ( np.arange(points.shape[0]) if trackgroup is None else np.array(trackgroup) ) # random permutation of the colors so nearby points in the list can get # different colors z_list = np.random.permutation(np.max(z_list) + 1)[z_list] colors = cmap(z_list / (np.max(z_list) + 1)) figure_dpi = 64 figs = [] for i in range(rgb.shape[0]): fig = plt.figure( figsize=(256 / figure_dpi, 256 / figure_dpi), dpi=figure_dpi, frameon=False, facecolor='w', ) figs.append(fig) ax = fig.add_subplot() ax.axis('off') ax.imshow(rgb[i] / 255.0) colalpha = np.concatenate( [colors[:, :-1], 1 - occluded[:, i : i + 1]], axis=1 ) plt.scatter(points[:, i, 0], points[:, i, 1], s=9, c=colalpha) occ2 = occluded[:, i : i + 1] if gt_occluded is not None: occ2 *= 1 - gt_occluded[:, i : i + 1] colalpha = np.concatenate([colors[:, :-1], occ2], axis=1) if gt_points is not None: colalpha = np.concatenate( [colors[:, :-1], 1 - gt_occluded[:, i : i + 1]], axis=1 ) plt.scatter( gt_points[:, i, 0], gt_points[:, i, 1], s=15, c=colalpha, marker='D' ) plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() img = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8').reshape( int(height), int(width), 3 ) disp.append(np.copy(img)) for fig in figs: plt.close(fig) return np.stack(disp, axis=0) def plot_tracks_v3( rgb: np.ndarray, points: np.ndarray, occluded: np.ndarray, gt_points: np.ndarray, gt_occluded: np.ndarray, trackgroup: Optional[np.ndarray] = None, ) -> np.ndarray: """Plot tracks in a 2x2 grid.""" if trackgroup is None: trackgroup = np.arange(points.shape[0]) else: trackgroup = np.array(trackgroup) utg = np.unique(trackgroup) chunks = np.array_split(utg, 4) plots = [] for ch in chunks: valid = np.any(trackgroup[:, np.newaxis] == ch[np.newaxis, :], axis=1) new_trackgroup = np.argmax( trackgroup[valid][:, np.newaxis] == ch[np.newaxis, :], axis=1 ) plots.append( plot_tracks_v2( rgb, points[valid], occluded[valid], None if gt_points is None else gt_points[valid], None if gt_points is None else gt_occluded[valid], new_trackgroup, ) ) p1 = np.concatenate(plots[0:2], axis=2) p2 = np.concatenate(plots[2:4], axis=2) return np.concatenate([p1, p2], axis=1) def write_visualization( video: np.ndarray, points: np.ndarray, occluded: np.ndarray, visualization_path: Sequence[str], gt_points: Optional[np.ndarray] = None, gt_occluded: Optional[np.ndarray] = None, trackgroup: Optional[np.ndarray] = None, ): """Write a visualization.""" for i in range(video.shape[0]): logging.info('rendering...') video_frames = plot_tracks_v2( video[i], points[i], occluded[i], gt_points[i] if gt_points is not None else None, gt_occluded[i] if gt_occluded is not None else None, trackgroup[i] if trackgroup is not None else None, ) logging.info('writing...') with media.VideoWriter( visualization_path[i], shape=video_frames.shape[-3:-1], fps=5, codec='h264', bps=600000, ) as video_writer: for j in range(video_frames.shape[0]): fr = video_frames[j] video_writer.add_image(fr.astype(np.uint8))
tapnet-main
utils/viz_utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils functions for TSM.""" from typing import Tuple import chex import jax import jax.numpy as jnp def prepare_inputs(inputs: chex.Array) -> Tuple[jnp.ndarray, str, int]: """Deduces input mode for TSM.""" # Deduce if we run on TPU based on input shape. if len(inputs.shape) == 5: # Input is given in the standard [B, T, H, W, 3] format. tsm_mode = 'gpu' num_frames = inputs.shape[1] inputs = jnp.reshape(inputs, [-1] + list(inputs.shape[2:])) else: # Input is given in the [T * B, H, W, 3] format. tsm_mode = 'tpu' num_frames = None return inputs, tsm_mode, num_frames def prepare_outputs( outputs: chex.Array, tsm_mode: str, num_frames: int, reduce_mean: bool = True, ) -> jnp.ndarray: """Processes output of TSM to undo the merging of batch and time.""" # Get the shape without the batch/time dimension (for TSM batch and time are # merged in the first dimension). shape_no_bt = list(outputs.shape[1:]) if tsm_mode == 'tpu': # Outputs are of the shape [num_frames * B, ..., n_channels] outputs = jnp.reshape(outputs, [num_frames, -1] + shape_no_bt) if reduce_mean: # We average over time and space. outputs = jnp.mean( outputs, axis=[0] + list(range(2, len(shape_no_bt) + 1))) else: outputs = jnp.transpose( outputs, axes=[1, 0] + list(range(2, len(shape_no_bt) + 2))) elif tsm_mode == 'gpu': # Outputs are of the shape [B * num_frames, ..., n_channels]. outputs = jnp.reshape(outputs, [-1, num_frames] + shape_no_bt) if reduce_mean: outputs = jnp.mean( outputs, axis=[1] + list(range(2, len(shape_no_bt) + 1))) elif tsm_mode.startswith('deflated'): # In deflated mode, outputs are already in the right format. pass else: raise ValueError('`tsm_mode` should be \'tpu\' or \'gpu\' or ' f'\'deflated_0.x\' ({tsm_mode} given)') return outputs # pytype: disable=bad-return-type # numpy-scalars def apply_temporal_shift( x: chex.Array, tsm_mode: str, num_frames: int, channel_shift_fraction: float = 0.125, ) -> jnp.ndarray: """Performs a temporal shift: https://arxiv.org/abs/1811.08383 with mode.""" if tsm_mode == 'tpu': outputs = temporal_shift_tpu(x, num_frames, channel_shift_fraction) elif tsm_mode == 'gpu': outputs = temporal_shift_gpu(x, num_frames, channel_shift_fraction) elif tsm_mode.startswith('deflated'): alpha = float(tsm_mode.split('_')[1]) outputs = temporal_shift_image_mode(x, channel_shift_fraction, alpha) else: raise ValueError('`tsm_mode` should be \'tpu\' or \'gpu\' or ' f'\'deflated_0.x\' ({tsm_mode} given)') return outputs def temporal_shift_image_mode(x, channel_shift_fraction=0.125, alpha=0.3): """Temporal shift applied on single image (to emulate a fixed video).""" # B, H, W, C = batch_size, im_height, im_width, channels. # Input is (B, H, W, C). orig_shp = tuple(x.shape) n_channels = orig_shp[-1] n_shift = int(n_channels * channel_shift_fraction) # Alpha emulates the effect of the padding when using a single frame. shifted_backward = alpha * x[:, :, :, -n_shift:] shifted_forward = alpha * x[:, :, :, :n_shift] no_shift = x[:, :, :, n_shift:-n_shift] shifted_x = jnp.concatenate([shifted_backward, no_shift, shifted_forward], axis=3) return shifted_x def temporal_shift_gpu( x: chex.Array, num_frames: int, channel_shift_fraction: float = 0.125, ) -> jnp.ndarray: """Performs a temporal shift: https://arxiv.org/abs/1811.08383.""" # B, T, H, W, C = batch_size, num_frames, im_height, im_width, channels. # Input is (B * T, H, W, C). orig_shp = tuple(x.shape) reshaped_x = jnp.reshape(x, (-1, num_frames) + orig_shp[1:]) n_channels = orig_shp[-1] n_shift = int(n_channels * channel_shift_fraction) new_shp = tuple(reshaped_x.shape) # shifted_backward = reshaped_x[:, 1:, :, :, -n_shift:]. shifted_backward = jax.lax.slice( reshaped_x, (0, 1, 0, 0, new_shp[4] - n_shift), (new_shp[0], new_shp[1], new_shp[2], new_shp[3], new_shp[4])) shifted_backward_padding = ((0, 0), (0, 1), (0, 0), (0, 0), (0, 0)) shifted_backward = jnp.pad(shifted_backward, shifted_backward_padding) # shifted_forward = reshaped_x[:, :-1, :, :, :n_shift]. shifted_forward = jax.lax.slice( reshaped_x, (0, 0, 0, 0, 0), (new_shp[0], new_shp[1] - 1, new_shp[2], new_shp[3], n_shift)) shifted_forward_padding = ((0, 0), (1, 0), (0, 0), (0, 0), (0, 0)) shifted_forward = jnp.pad(shifted_forward, shifted_forward_padding) no_shift = reshaped_x[:, :, :, :, n_shift:-n_shift] shifted_x = jnp.concatenate([shifted_backward, no_shift, shifted_forward], axis=4) return jnp.reshape(shifted_x, (-1,) + orig_shp[1:]) def temporal_shift_tpu( x: chex.Array, num_frames: int, channel_shift_fraction: float = 0.125, ) -> jnp.ndarray: """Performs a temporal shift: https://arxiv.org/abs/1811.08383. TPU optimized version of TSM. Reshape is avoided by having the images reshaped in [T * B, :] so that frames corresponding to same time frame in videos are contiguous in memory. Finally, to avoid concatenate that prevent some fusion from happening we simply sum masked version of the features. Args: x: Input expected to be [T * B, H, W, C] (where the batch has been reshaped from a time major version of the input). num_frames: number of frames T per video. channel_shift_fraction: fraction of the channel to shift forward and backward. Returns: The temporal shifted version of x. """ # B, T, H, W, C = batch_size, num_frames, im_height, im_width, channels. # Input is (T * B, H, W, C). original_dtype = x.dtype original_shape = list(x.shape) batch_size = int(original_shape[0] / num_frames) n_channels = int(original_shape[-1]) n_shift = int(n_channels * channel_shift_fraction) # Cast to bfloat16. x = x.astype(jnp.bfloat16) # For the following, assume that x has 3 channels [x1, x2, x3] and n_shift=1. # Shift backward, we first pad by zeros [x1, x2, x3, 0, 0]. orig_shp = list(x.shape) shifted_backward_padding = ((0, batch_size, 0), (0, 0, 0), (0, 0, 0), (0, n_channels - n_shift, 0)) x_backward_padding = jax.lax.pad( x, padding_value=jnp.bfloat16(0.), padding_config=shifted_backward_padding) # The following shift gets to [x3^+1, 0, 0] (where +1 means from the future). shifted_backward = jax.lax.slice(x_backward_padding, (batch_size, 0, 0, n_channels - n_shift), (orig_shp[0] + batch_size, orig_shp[1], orig_shp[2], 2 * n_channels - n_shift)) # Shift forward, we first pad by zeros [0, 0, x1, x2, x3]. shifted_forward_padding = ((batch_size, 0, 0), (0, 0, 0), (0, 0, 0), (n_channels - n_shift, 0, 0)) x_forward_padding = jax.lax.pad( x, padding_value=jnp.bfloat16(0.), padding_config=shifted_forward_padding) # The following shift gets to [0, 0, x1^-1] (where -1 means from the past). shifted_forward = jax.lax.slice( x_forward_padding, (0, 0, 0, 0), (orig_shp[0], orig_shp[1], orig_shp[2], n_channels)) # No shift is in the middle, this gets [0, x2, 0]. mask_noshift = (jnp.reshape((jnp.arange(n_channels) >= n_shift) & (jnp.arange(n_channels) < n_channels - n_shift), (1, 1, 1, -1))).astype(jnp.bfloat16) no_shift = mask_noshift * x # By summing everything together, we end up with [x3^+1, x2, x1^-1]. # Note: channels have been reordered but that doesn't matter for the model. shifted_x = shifted_backward + shifted_forward + no_shift return shifted_x.astype(original_dtype)
tapnet-main
models/tsm_utils.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Temporal Shift Module w/ ResNet-50 and ResNet-101. Based on: TSM: Temporal Shift Module for Efficient Video Understanding Ji Lin, Chuang Gan, Song Han https://arxiv.org/pdf/1811.08383.pdf. """ from typing import Optional, Sequence, Union from absl import logging import chex import haiku as hk import jax import jax.numpy as jnp import typing_extensions from tapnet.models import tsm_utils as tsmu class NormalizeFn(typing_extensions.Protocol): def __call__(self, x: chex.Array, is_training: bool) -> chex.Array: pass class TSMResNetBlock(hk.Module): """A ResNet subblock with Temporal Channel Shifting. Combines a typical ResNetV2 block implementation (see https://arxiv.org/abs/1512.03385) with a pre-convolution Temporal Shift Module (see https://arxiv.org/pdf/1811.08383.pdf) in the residual. """ def __init__( self, output_channels: int, stride: int, use_projection: bool, tsm_mode: str, normalize_fn: Optional[NormalizeFn] = None, channel_shift_fraction: float = 0.125, num_frames: int = 8, rate: int = 1, use_bottleneck: bool = False, name: str = 'TSMResNetBlock', ): """Initializes the TSMResNetBlock module. Args: output_channels: Number of output channels. stride: Stride used in convolutions. use_projection: Whether to use a projection for the shortcut. tsm_mode: Mode for TSM ('gpu' or 'tpu' or 'deflated_0.x'). normalize_fn: Function used for normalization. channel_shift_fraction: The fraction of temporally shifted channels. If `channel_shift_fraction` is 0, the block is the same as a normal ResNet block. num_frames: Size of frame dimension in a single batch example. rate: dilation rate. use_bottleneck: use a bottleneck (resnet-50 and above), name: The name of the module. """ super().__init__(name=name) self._output_channels = ( output_channels if use_bottleneck else output_channels // 4) self._bottleneck_channels = output_channels // 4 self._stride = stride self._rate = rate self._use_projection = use_projection self._normalize_fn = normalize_fn self._tsm_mode = tsm_mode self._channel_shift_fraction = channel_shift_fraction self._num_frames = num_frames self._use_bottleneck = use_bottleneck def __call__( self, inputs: chex.Array, is_training: bool = True, ) -> chex.Array: """Connects the ResNetBlock module into the graph. Args: inputs: A 4-D float array of shape `[B, H, W, C]`. is_training: Whether to use training mode. Returns: A 4-D float array of shape `[B * num_frames, new_h, new_w, output_channels]`. """ # ResNet V2 uses pre-activation, where the batch norm and relu are before # convolutions, rather than after as in ResNet V1. preact = inputs if self._normalize_fn is not None: preact = self._normalize_fn(preact, is_training=is_training) preact = jax.nn.relu(preact) if self._use_projection: shortcut = hk.Conv2D( output_channels=self._output_channels, kernel_shape=1, stride=self._stride, with_bias=False, padding='SAME', name='shortcut_conv', )(preact) else: shortcut = inputs # Eventually applies Temporal Shift Module. if self._channel_shift_fraction != 0: preact = tsmu.apply_temporal_shift( preact, tsm_mode=self._tsm_mode, num_frames=self._num_frames, channel_shift_fraction=self._channel_shift_fraction) # First convolution. residual = hk.Conv2D( self._bottleneck_channels, kernel_shape=1 if self._use_bottleneck else 3, stride=1 if self._use_bottleneck else self._stride, with_bias=False, padding='SAME', name='conv_0', )(preact) if self._use_bottleneck: # Second convolution. if self._normalize_fn is not None: residual = self._normalize_fn(residual, is_training=is_training) residual = jax.nn.relu(residual) residual = hk.Conv2D( output_channels=self._bottleneck_channels, kernel_shape=3, stride=self._stride, rate=self._rate, with_bias=False, padding='SAME', name='conv_1', )(residual) # Third convolution. if self._normalize_fn is not None: residual = self._normalize_fn(residual, is_training=is_training) residual = jax.nn.relu(residual) residual = hk.Conv2D( output_channels=self._output_channels, kernel_shape=1 if self._use_bottleneck else 3, stride=1, with_bias=False, padding='SAME', name='conv_2', )(residual) # NOTE: we do not use block multiplier. output = shortcut + residual return output class TSMResNetUnit(hk.Module): """Block group for TSM ResNet.""" def __init__( self, output_channels: int, num_blocks: int, stride: int, tsm_mode: str, num_frames: int, normalize_fn: Optional[NormalizeFn] = None, channel_shift_fraction: float = 0.125, rate: int = 1, use_bottleneck: bool = False, name: str = 'tsm_resnet_unit', ): """Creates a TSMResNet Unit. Args: output_channels: Number of output channels. num_blocks: Number of ResNet blocks in the unit. stride: Stride of the unit. tsm_mode: Which temporal shift module to use. num_frames: Size of frame dimension in a single batch example. normalize_fn: Function used for normalization. channel_shift_fraction: The fraction of temporally shifted channels. If `channel_shift_fraction` is 0, the block is the same as a normal ResNet block. rate: dilation rate. use_bottleneck: use a bottleneck (resnet-50 and above). name: The name of the module. """ super().__init__(name=name) self._output_channels = output_channels self._num_blocks = num_blocks self._normalize_fn = normalize_fn self._stride = stride self._tsm_mode = tsm_mode self._channel_shift_fraction = channel_shift_fraction self._num_frames = num_frames self._rate = rate self._use_bottleneck = use_bottleneck def __call__( self, inputs: chex.Array, is_training: bool, ) -> chex.Array: """Connects the module to inputs. Args: inputs: A 4-D float array of shape `[B * num_frames, H, W, C]`. is_training: Whether to use training mode. Returns: A 4-D float array of shape `[B * num_frames, H // stride, W // stride, output_channels]`. """ net = inputs for idx_block in range(self._num_blocks): net = TSMResNetBlock( self._output_channels, stride=(self._stride if idx_block == 0 else 1), rate=(max(self._rate // 2, 1) if idx_block == 0 else self._rate), use_projection=(idx_block == 0), normalize_fn=self._normalize_fn, tsm_mode=self._tsm_mode, channel_shift_fraction=self._channel_shift_fraction, num_frames=self._num_frames, name=f'block_{idx_block}', )(net, is_training=is_training) return net class TSMResNetV2(hk.Module): """TSM based on ResNet V2 as described in https://arxiv.org/abs/1603.05027.""" # Endpoints of the model in order. VALID_ENDPOINTS = ( 'tsm_resnet_stem', 'tsm_resnet_unit_0', 'tsm_resnet_unit_1', 'tsm_resnet_unit_2', 'tsm_resnet_unit_3', 'last_conv', 'Embeddings', ) def __init__( self, normalize_fn: Optional[NormalizeFn] = None, depth: int = 18, num_frames: int = 16, channel_shift_fraction: Union[float, Sequence[float]] = 0.125, width_mult: int = 1, name: str = 'TSMResNetV2', ): """Constructs a ResNet model. Args: normalize_fn: Function used for normalization. depth: Depth of the desired ResNet. num_frames: Number of frames (used in TPU mode). channel_shift_fraction: Fraction of channels that are temporally shifted, if `channel_shift_fraction` is 0, a regular ResNet is returned. width_mult: Whether or not to use a width multiplier. name: The name of the module. Raises: ValueError: If `channel_shift_fraction` or `depth` has invalid value. """ super().__init__(name=name) if isinstance(channel_shift_fraction, float): channel_shift_fraction = [channel_shift_fraction] * 4 if not all([0. <= x <= 1.0 for x in channel_shift_fraction]): raise ValueError(f'channel_shift_fraction ({channel_shift_fraction})' ' all have to be in [0, 1].') self._num_frames = num_frames self._channels = (256, 512, 1024, 2048) num_blocks = { 18: (2, 2, 2, 2), 34: (3, 4, 6, 3), 50: (3, 4, 6, 3), 101: (3, 4, 23, 3), 152: (3, 8, 36, 3), 200: (3, 24, 36, 3), } if depth not in num_blocks: raise ValueError( f'`depth` should be in {list(num_blocks.keys())} ({depth} given).') self._num_blocks = num_blocks[depth] self._width_mult = width_mult self._channel_shift_fraction = channel_shift_fraction self._normalize_fn = normalize_fn self._use_bottleneck = (depth >= 50) def __call__( self, inputs: chex.Array, is_training: bool = True, final_endpoint: str = 'Embeddings', is_deflated: bool = False, alpha_deflation: float = 0.3, out_num_frames: Optional[int] = None, output_stride: int = 8, ) -> chex.Array: """Connects the TSM ResNetV2 module into the graph. Args: inputs: The input may be in one of two shapes; if the shape is `[B, T, H, W, C]`, this module assumes the backend is a GPU (setting `tsm_mode='gpu'`) and `T` is treated the time dimension, with `B` being the batch dimension. This mode cannot be used when `is_deflated` is `true`. In this mode, the num_frames parameter passed to the constructor is ignored. If the shape is `[B, H, W, C]`, then the batch dimension is assumed to be of the form [B*T, H, W, C], where `T` is the number of frames in each video. This value may be set by passing `num_frames=n` to the constructor. The default value is `n=16` (beware this default is not the same as the default for the `TSMResNetBlock`, which has a default of 8 frames). In this case, the module assumes it is being run on a TPU, and emits instructions that are more efficient for that case, using`tsm_mode`='tpu'` for the downstream blocks. is_training: Whether to use training mode. final_endpoint: Up to which endpoint to run / return. is_deflated: Whether or not to use the deflated version of the network. alpha_deflation: Deflation parameter to use for dealing with the padding effect. out_num_frames: Whether time is on first axis, for TPU performance output_stride: Stride of the final feature grid; possible values are 4, 8, 16, or 32. 32 is the standard for TSM-ResNet. Others strides are achieved by converting strided to un-strided convolutions later in the network, while increasing the dilation rate for later layers. Returns: Network output at location `final_endpoint`. A float array which shape depends on `final_endpoint`. Raises: ValueError: If `final_endpoint` is not recognized. """ # Prepare inputs for TSM. if is_deflated: if len(inputs.shape) != 4: raise ValueError( 'In deflated mode inputs should be given as [B, H, W, 3]') logging.warning( 'Deflation is an experimental feature and the API might change.') tsm_mode = f'deflated_{alpha_deflation}' num_frames = 1 else: inputs, tsm_mode, num_frames = tsmu.prepare_inputs(inputs) num_frames = num_frames or out_num_frames or self._num_frames self._final_endpoint = final_endpoint if self._final_endpoint not in self.VALID_ENDPOINTS: raise ValueError(f'Unknown final endpoint {self._final_endpoint}') # Stem convolution. end_point = 'tsm_resnet_stem' net = hk.Conv2D( output_channels=64 * self._width_mult, kernel_shape=7, stride=2, with_bias=False, name=end_point, padding='SAME', )(inputs) net = hk.MaxPool( window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding='SAME', )(net) if self._final_endpoint == end_point: net = tsmu.prepare_outputs(net, tsm_mode, num_frames, reduce_mean=False) return net if output_stride == 4: strides = (1, 1, 1, 1) rates = (1, 2, 4, 8) elif output_stride == 8: strides = (1, 2, 1, 1) rates = (1, 1, 2, 4) elif output_stride == 16: strides = (1, 2, 2, 1) rates = (1, 1, 1, 2) elif output_stride == 32: strides = (1, 2, 2, 2) rates = (1, 1, 1, 1) else: raise ValueError('unsupported output stride') # Residual block. for unit_id, (channels, num_blocks, stride, rate) in enumerate( zip(self._channels, self._num_blocks, strides, rates)): end_point = f'tsm_resnet_unit_{unit_id}' net = TSMResNetUnit( output_channels=channels * self._width_mult, num_blocks=num_blocks, stride=stride, rate=rate, normalize_fn=self._normalize_fn, channel_shift_fraction=self._channel_shift_fraction[unit_id], num_frames=num_frames, tsm_mode=tsm_mode, use_bottleneck=self._use_bottleneck, name=end_point, )(net, is_training=is_training) if self._final_endpoint == end_point: net = tsmu.prepare_outputs(net, tsm_mode, num_frames, reduce_mean=False) return net if self._normalize_fn is not None: net = self._normalize_fn(net, is_training=is_training) net = jax.nn.relu(net) end_point = 'last_conv' if self._final_endpoint == end_point: net = tsmu.prepare_outputs(net, tsm_mode, num_frames, reduce_mean=False) return net net = jnp.mean(net, axis=(1, 2)) # Prepare embedding outputs for TSM (temporal average of features). net = tsmu.prepare_outputs(net, tsm_mode, num_frames, reduce_mean=True) assert self._final_endpoint == 'Embeddings' return net
tapnet-main
models/tsm_resnet.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNet with BatchNorm, LayerNorm, InstanceNorm or None.""" from typing import Mapping, Optional, Sequence, Union import haiku as hk import jax FloatStrOrBool = Union[str, float, bool] class BlockV1(hk.Module): """ResNet V1 block with optional bottleneck.""" def __init__( self, channels: int, stride: Union[int, Sequence[int]], use_projection: bool, bn_config: Mapping[str, FloatStrOrBool], bottleneck: bool, normalization: Optional[str] = None, name: Optional[str] = None, ): super().__init__(name=name) self.use_projection = use_projection self.normalization = normalization if normalization == "batchnorm": bn_config = dict(bn_config) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) bn_config.setdefault("decay_rate", 0.9) bn_config.setdefault("cross_replica_axis", "i") elif normalization == "layernorm": bn_config = dict(bn_config) bn_config.setdefault("axis", [-1, -2, -3]) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) elif normalization == "instancenorm": bn_config = dict(bn_config) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) if self.use_projection: self.proj_conv = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=stride, with_bias=False, padding="SAME", name="shortcut_conv") if normalization == "batchnorm": self.proj_batchnorm = hk.BatchNorm( name="shortcut_batchnorm", **bn_config ) elif normalization == "layernorm": self.proj_norm = hk.LayerNorm(name="shortcut_layernorm", **bn_config) elif normalization == "instancenorm": self.proj_norm = hk.InstanceNorm( name="shortcut_instancenorm", **bn_config ) channel_div = 4 if bottleneck else 1 conv_0 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=1 if bottleneck else 3, stride=1 if bottleneck else stride, with_bias=False, padding="SAME", name="conv_0") if normalization == "batchnorm": bn_0 = hk.BatchNorm(name="batchnorm_0", **bn_config) elif normalization == "layernorm": bn_0 = hk.LayerNorm(name="layernorm_0", **bn_config) elif normalization == "instancenorm": bn_0 = hk.InstanceNorm(name="instancenorm_0", **bn_config) conv_1 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=3, stride=stride if bottleneck else 1, with_bias=False, padding="SAME", name="conv_1") if normalization == "batchnorm": bn_1 = hk.BatchNorm(name="batchnorm_1", **bn_config) elif normalization == "layernorm": bn_1 = hk.LayerNorm(name="layernorm_1", **bn_config) elif normalization == "instancenorm": bn_1 = hk.InstanceNorm(name="instancenorm_1", **bn_config) layers = ((conv_0, bn_0), (conv_1, bn_1)) if bottleneck: conv_2 = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=1, with_bias=False, padding="SAME", name="conv_2") if normalization == "batchnorm": bn_2 = hk.BatchNorm(name="batchnorm_2", **bn_config) elif normalization == "layernorm": bn_2 = hk.LayerNorm(name="layernorm_2", **bn_config) elif normalization == "instancenorm": bn_2 = hk.InstanceNorm(name="instancenorm_2", **bn_config) layers = layers + ((conv_2, bn_2),) self.layers = layers def __call__(self, inputs, is_training, test_local_stats): out = shortcut = inputs if self.use_projection: shortcut = self.proj_conv(shortcut) if self.normalization == "batchnorm": shortcut = self.proj_batchnorm(shortcut, is_training, test_local_stats) elif self.normalization in ["layernorm", "instancenorm"]: shortcut = self.proj_norm(shortcut) for i, (conv_i, bn_i) in enumerate(self.layers): out = conv_i(out) if self.normalization == "batchnorm": out = bn_i(out, is_training, test_local_stats) elif self.normalization in ["layernorm", "instancenorm"]: out = bn_i(out) if i < len(self.layers) - 1: # Don't apply relu on last layer out = jax.nn.relu(out) return jax.nn.relu(out + shortcut) class BlockV2(hk.Module): """ResNet V2 block with optional bottleneck.""" def __init__( self, channels: int, stride: Union[int, Sequence[int]], use_projection: bool, bn_config: Mapping[str, FloatStrOrBool], bottleneck: bool, normalization: Optional[str] = None, name: Optional[str] = None, ): super().__init__(name=name) self.use_projection = use_projection self.normalization = normalization bn_config = dict(bn_config) if normalization == "batchnorm": bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) bn_config.setdefault("decay_rate", 0.9) bn_config.setdefault("cross_replica_axis", "i") elif normalization == "layernorm": bn_config.setdefault("axis", [-1, -2, -3]) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) elif normalization == "instancenorm": bn_config = dict(bn_config) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) if self.use_projection: self.proj_conv = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=stride, with_bias=False, padding="SAME", name="shortcut_conv") channel_div = 4 if bottleneck else 1 conv_0 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=1 if bottleneck else 3, stride=1 if bottleneck else stride, with_bias=False, padding="SAME", name="conv_0") if normalization == "batchnorm": bn_0 = hk.BatchNorm(name="batchnorm_0", **bn_config) elif normalization == "layernorm": bn_0 = hk.LayerNorm(name="layernorm_0", **bn_config) elif normalization == "instancenorm": bn_0 = hk.InstanceNorm(name="instancenorm_0", **bn_config) conv_1 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=3, stride=stride if bottleneck else 1, with_bias=False, padding="SAME", name="conv_1") if normalization == "batchnorm": bn_1 = hk.BatchNorm(name="batchnorm_1", **bn_config) elif normalization == "layernorm": bn_1 = hk.LayerNorm(name="layernorm_1", **bn_config) elif normalization == "instancenorm": bn_1 = hk.InstanceNorm(name="instancenorm_1", **bn_config) layers = ((conv_0, bn_0), (conv_1, bn_1)) if bottleneck: conv_2 = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=1, with_bias=False, padding="SAME", name="conv_2") if normalization == "batchnorm": bn_2 = hk.BatchNorm(name="batchnorm_2", **bn_config) elif normalization == "layernorm": bn_2 = hk.LayerNorm(name="layernorm_2", **bn_config) elif normalization == "instancenorm": bn_2 = hk.InstanceNorm(name="instancenorm_2", **bn_config) layers = layers + ((conv_2, bn_2),) self.layers = layers def __call__(self, inputs, is_training, test_local_stats): x = shortcut = inputs for i, (conv_i, bn_i) in enumerate(self.layers): if self.normalization == "batchnorm": x = bn_i(x, is_training, test_local_stats) elif self.normalization in ["layernorm", "instancenorm"]: x = bn_i(x) x = jax.nn.relu(x) if i == 0 and self.use_projection: shortcut = self.proj_conv(x) x = conv_i(x) return x + shortcut class BlockGroup(hk.Module): """Higher level block for ResNet implementation.""" def __init__( self, channels: int, num_blocks: int, stride: Union[int, Sequence[int]], bn_config: Mapping[str, FloatStrOrBool], resnet_v2: bool, bottleneck: bool, use_projection: bool, normalization: Optional[str] = None, name: Optional[str] = None, ): super().__init__(name=name) block_cls = BlockV2 if resnet_v2 else BlockV1 self.blocks = [] for i in range(num_blocks): self.blocks.append( block_cls( channels=channels, stride=(1 if i else stride), use_projection=(i == 0 and use_projection), bottleneck=bottleneck, normalization=normalization, bn_config=bn_config, name="block_%d" % i, ) ) def __call__(self, inputs, is_training, test_local_stats): out = inputs for block in self.blocks: out = block(out, is_training, test_local_stats) return out def check_length(length, value, name): if len(value) != length: raise ValueError(f"`{name}` must be of length 4 not {len(value)}") class ResNet(hk.Module): """ResNet model.""" CONFIGS = { 18: { "blocks_per_group": (2, 2, 2, 2), "bottleneck": False, "channels_per_group": (64, 128, 256, 512), "use_projection": (False, True, True, True), }, 34: { "blocks_per_group": (3, 4, 6, 3), "bottleneck": False, "channels_per_group": (64, 128, 256, 512), "use_projection": (False, True, True, True), }, 50: { "blocks_per_group": (3, 4, 6, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 101: { "blocks_per_group": (3, 4, 23, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 152: { "blocks_per_group": (3, 8, 36, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 200: { "blocks_per_group": (3, 24, 36, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, } BlockGroup = BlockGroup # pylint: disable=invalid-name BlockV1 = BlockV1 # pylint: disable=invalid-name BlockV2 = BlockV2 # pylint: disable=invalid-name def __init__( self, blocks_per_group: Sequence[int], bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, normalization: Optional[str] = "batchnorm", bottleneck: bool = False, channels_per_group: Sequence[int] = (64, 128, 256, 512), use_projection: Sequence[bool] = (True, True, True, True), name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), use_max_pool: bool = True, ): """Constructs a ResNet model. Args: blocks_per_group: A sequence of length 4 that indicates the number of blocks created in each group. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. By default the ``decay_rate`` is ``0.9`` and ``eps`` is ``1e-5``. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. normalization: Use `batchnorm`, `layernorm`, `instancenorm` or None. bottleneck: Whether the block should bottleneck or not. Defaults to ``True``. channels_per_group: A sequence of length 4 that indicates the number of channels used for each block in each group. use_projection: A sequence of length 4 that indicates whether each residual block should use projection. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. use_max_pool: Whether use max pooling after first convolution layer. """ super().__init__(name=name) self.resnet_v2 = resnet_v2 self.normalization = normalization self.use_max_pool = use_max_pool if normalization == "batchnorm": bn_config = dict(bn_config or {}) bn_config.setdefault("decay_rate", 0.9) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) bn_config.setdefault("cross_replica_axis", "i") elif normalization == "layernorm": bn_config = dict(bn_config or {}) bn_config.setdefault("axis", [-1, -2, -3]) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) elif normalization == "instancenorm": bn_config = dict(bn_config or {}) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) # Number of blocks in each group for ResNet. check_length(4, blocks_per_group, "blocks_per_group") check_length(4, channels_per_group, "channels_per_group") check_length(4, strides, "strides") initial_conv_config = dict(initial_conv_config or {}) initial_conv_config.setdefault("output_channels", 64) initial_conv_config.setdefault("kernel_shape", 7) initial_conv_config.setdefault("stride", 2) initial_conv_config.setdefault("with_bias", False) initial_conv_config.setdefault("padding", "SAME") initial_conv_config.setdefault("name", "initial_conv") self.initial_conv = hk.Conv2D(**initial_conv_config) if not self.resnet_v2 and normalization == "batchnorm": self.initial_batchnorm = hk.BatchNorm( name="initial_batchnorm", **bn_config) elif not self.resnet_v2 and normalization == "layernorm": self.initial_norm = hk.LayerNorm(name="initial_layernorm", **bn_config) elif not self.resnet_v2 and normalization == "instancenorm": self.initial_norm = hk.InstanceNorm( name="initial_instancenorm", **bn_config ) self.block_groups = [] for i, stride in enumerate(strides): self.block_groups.append( BlockGroup( channels=channels_per_group[i], num_blocks=blocks_per_group[i], stride=stride, bn_config=bn_config, normalization=normalization, resnet_v2=resnet_v2, bottleneck=bottleneck, use_projection=use_projection[i], name="block_group_%d" % i, ) ) def __call__(self, inputs, is_training, test_local_stats=False): out = inputs out = self.initial_conv(out) if not self.resnet_v2: if self.normalization == "batchnorm": out = self.initial_batchnorm(out, is_training, test_local_stats) elif self.normalization in ["layernorm", "instancenorm"]: out = self.initial_norm(out) out = jax.nn.relu(out) if self.use_max_pool: out = hk.max_pool( out, window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding="SAME" ) result = {} for block_id, block_group in enumerate(self.block_groups): out = block_group(out, is_training, test_local_stats) result[f"resnet_unit_{block_id}"] = out return result
tapnet-main
models/resnet.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Default config to train the TapNet.""" from jaxline import base_config from ml_collections import config_dict # We define the experiment launch config in the same file as the experiment to # keep things self-contained in a single file. def get_config() -> config_dict.ConfigDict: """Return config object for training.""" config = base_config.get_base_config() # Experiment config. config.training_steps = 100000 # NOTE: duplicates not allowed. config.shared_module_names = ('tapnet_model',) config.dataset_names = ('kubric',) # Note: eval modes must always start with 'eval_'. config.eval_modes = ( 'eval_davis_points', 'eval_jhmdb', 'eval_robotics_points', 'eval_kinetics_points', ) config.checkpoint_dir = '/tmp/tapnet_training/' config.evaluate_every = 10000 config.experiment_kwargs = config_dict.ConfigDict( dict( config=dict( sweep_name='default_sweep', save_final_checkpoint_as_npy=True, # `enable_double_transpose` should always be false when using 1D. # For other D It is also completely untested and very unlikely # to work. optimizer=dict( base_lr=2e-3, max_norm=-1, # < 0 to turn off. weight_decay=1e-2, schedule_type='cosine', cosine_decay_kwargs=dict( init_value=0.0, warmup_steps=5000, end_value=0.0, ), optimizer='adam', # Optimizer-specific kwargs. adam_kwargs=dict( b1=0.9, b2=0.95, eps=1e-8, ), ), fast_variables=tuple(), shared_modules=dict( shared_module_names=config.get_oneway_ref( 'shared_module_names', ), tapnet_model_kwargs=dict(), ), datasets=dict( dataset_names=config.get_oneway_ref('dataset_names'), kubric_kwargs=dict( batch_dims=8, shuffle_buffer_size=128, train_size=(256, 256), ), ), supervised_point_prediction_kwargs=dict( prediction_algo='cost_volume_regressor', ), checkpoint_dir=config.get_oneway_ref('checkpoint_dir'), evaluate_every=config.get_oneway_ref('evaluate_every'), eval_modes=config.get_oneway_ref('eval_modes'), # If true, run evaluate() on the experiment once before # you load a checkpoint. # This is useful for getting initial values of metrics # at random weights, or when debugging locally if you # do not have any train job running. davis_points_path='', jhmdb_path='', robotics_points_path='', training=dict( # Note: to sweep n_training_steps, DO NOT sweep these # fields directly. Instead sweep config.training_steps. # Otherwise, decay/stopping logic # is not guaranteed to be consistent. n_training_steps=config.get_oneway_ref('training_steps'), ), inference=dict( input_video_path='', output_video_path='', resize_height=256, # video height resized to before inference resize_width=256, # video width resized to before inference num_points=20, # number of random points to sample ), ) ) ) # Set up where to store the resulting model. config.train_checkpoint_all_hosts = False config.save_checkpoint_interval = 10 config.eval_initial_weights = True # Prevents accidentally setting keys that aren't recognized (e.g. in tests). config.lock() return config
tapnet-main
configs/tapnet_config.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Default config to train the TAPIR.""" from jaxline import base_config from ml_collections import config_dict # We define the experiment launch config in the same file as the experiment to # keep things self-contained in a single file. def get_config() -> config_dict.ConfigDict: """Return config object for training.""" config = base_config.get_base_config() # Experiment config. config.training_steps = 100000 # NOTE: duplicates not allowed. config.shared_module_names = ('tapir_model',) config.dataset_names = ('kubric',) # Note: eval modes must always start with 'eval_'. config.eval_modes = ( 'eval_davis_points', 'eval_jhmdb', 'eval_robotics_points', 'eval_kinetics_points', ) config.checkpoint_dir = '/tmp/tapnet_training/' config.evaluate_every = 10000 config.experiment_kwargs = config_dict.ConfigDict( dict( config=dict( sweep_name='default_sweep', save_final_checkpoint_as_npy=True, # `enable_double_transpose` should always be false when using 1D. # For other D It is also completely untested and very unlikely # to work. optimizer=dict( base_lr=1e-3, max_norm=-1, # < 0 to turn off. weight_decay=1e-1, schedule_type='cosine', cosine_decay_kwargs=dict( init_value=0.0, warmup_steps=1000, end_value=0.0, ), optimizer='adam', # Optimizer-specific kwargs. adam_kwargs=dict( b1=0.9, b2=0.95, eps=1e-8, ), ), fast_variables=tuple(), shared_modules=dict( shared_module_names=config.get_oneway_ref( 'shared_module_names', ), tapir_model_kwargs=dict( bilinear_interp_with_depthwise_conv=True, use_causal_conv=False, initial_resolution=(256, 256), ), ), datasets=dict( dataset_names=config.get_oneway_ref('dataset_names'), kubric_kwargs=dict( batch_dims=8, shuffle_buffer_size=128, train_size=(256, 256), ), ), supervised_point_prediction_kwargs=dict( prediction_algo='cost_volume_regressor', model_key='tapir_model', ), checkpoint_dir=config.get_oneway_ref('checkpoint_dir'), evaluate_every=config.get_oneway_ref('evaluate_every'), eval_modes=config.get_oneway_ref('eval_modes'), # If true, run evaluate() on the experiment once before # you load a checkpoint. # This is useful for getting initial values of metrics # at random weights, or when debugging locally if you # do not have any train job running. davis_points_path='', jhmdb_path='', robotics_points_path='', training=dict( # Note: to sweep n_training_steps, DO NOT sweep these # fields directly. Instead sweep config.training_steps. # Otherwise, decay/stopping logic # is not guaranteed to be consistent. n_training_steps=config.get_oneway_ref('training_steps'), ), inference=dict( input_video_path='', output_video_path='', resize_height=256, # video height resized to before inference resize_width=256, # video width resized to before inference num_points=20, # number of random points to sample ), ) ) ) # Set up where to store the resulting model. config.train_checkpoint_all_hosts = False config.save_checkpoint_interval = 10 config.eval_initial_weights = True # Prevents accidentally setting keys that aren't recognized (e.g. in tests). config.lock() return config
tapnet-main
configs/tapir_config.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python script to generate a pickle with annotations from raw videos.""" import csv import dataclasses import io import math import os import pickle from typing import Dict, Iterator, List, Sequence, Tuple from absl import app from absl import flags from absl import logging import ffmpeg import numpy as np from PIL import Image FLAGS = flags.FLAGS flags.DEFINE_string('input_csv_path', None, 'Path to the input csv.') flags.DEFINE_string( 'output_base_path', None, 'Path to the output folder where pickle files will be stored.', ) flags.DEFINE_string( 'video_root_path', None, ( 'Path to the root directory of the extracted Kinetics-700-2020 videos' ' from the validation set.' ), ) flags.DEFINE_integer('num_shards', 10, 'Number of pickle shards to output.') _JPEG_HEADER = b'\xff\xd8' @dataclasses.dataclass(frozen=True) class Point: x: float y: float occluded: bool @dataclasses.dataclass(frozen=True) class Track: points: Tuple[Point, ...] @dataclasses.dataclass(frozen=True) class Video: youtube_id: str start_time_sec: int end_time_sec: int video_path: str tracks: Tuple[Track, ...] def csv_to_dataset( csv_path: str, videos_path: Dict[str, str] ) -> Tuple[Video, ...]: """Reads the input CSV and creates a list of `Video`s out of that.""" def points(row: Sequence[str]) -> Iterator[Point]: for i in range(250): x, y, occ = row[3 + 3 * i : 3 + 3 * i + 3] x = float(x) y = float(y) assert occ in ('0', '1') occ = occ == '1' yield Point(x, y, occ) logging.info('Reading CSV "%s".', csv_path) with open(csv_path) as f: reader = csv.reader(f, delimiter=',') tracks_per_video: Dict[Tuple[str, int, int], List[Track]] = {} for row in reader: assert len(row) == 3 + 3 * 250 youtube_id, start_time_sec, end_time_sec = row[:3] start_time_sec = int(start_time_sec) end_time_sec = int(end_time_sec) key = (youtube_id, start_time_sec, end_time_sec) track = Track(tuple(points(row))) if key not in tracks_per_video: tracks_per_video[key] = [] tracks_per_video[key].append(track) def videos() -> Iterator[Video]: for key, tracks in tracks_per_video.items(): youtube_id, start_time_sec, end_time_sec = key name = f'{youtube_id}_{start_time_sec:06}_{end_time_sec:06}' if name not in videos_path: logging.warning('Video "%s" not downloaded. Skipping it.', name) continue video_path = videos_path[name] yield Video( youtube_id, start_time_sec, end_time_sec, video_path, tuple(tracks) ) return tuple(videos()) def get_paths_to_videos(video_root_path: str) -> Dict[str, str]: """Returns the relative path to each downloaded video.""" logging.info('Reading all videos in subfolders of "%s".', video_root_path) video_to_path: Dict[str, str] = {} for folder_or_video in os.listdir(video_root_path): path = os.path.join(video_root_path, folder_or_video) if os.path.isdir(path): subfolder_paths = get_paths_to_videos(path) for k, v in subfolder_paths.items(): assert k not in video_to_path video_to_path[k] = v elif folder_or_video.endswith('.mp4'): name = folder_or_video[:-4] # Remove '.mp4'. assert name not in video_to_path video_to_path[name] = path return video_to_path def extract_frames(video_path: str, fps: float) -> Tuple[bytes, ...]: """Extracts list of jpeg bytes from the given video using ffmpeg.""" cmd = ( ffmpeg.input(video_path) .filter('fps', fps=fps) .output('pipe:', format='image2pipe') ) jpeg_bytes, _ = cmd.run(capture_stdout=True, quiet=True) jpeg_bytes = jpeg_bytes.split(_JPEG_HEADER)[1:] jpeg_bytes = map(lambda x: _JPEG_HEADER + x, jpeg_bytes) return tuple(jpeg_bytes) def generate_example(video: Video) -> Dict[str, np.ndarray]: """Generates a dictionary with the info from a `Video`.""" example: Dict[str, np.ndarray] = {} imgs_encoded = extract_frames(video.video_path, 25.0) if len(imgs_encoded) > 250: imgs_encoded = imgs_encoded[:250] if len(imgs_encoded) < 250: # Clip is shorter than 10s. num_frames = len(imgs_encoded) new_tracks = tuple( Track(tuple(t.points[:num_frames])) for t in video.tracks ) video = Video( video.youtube_id, video.start_time_sec, video.end_time_sec, video.video_path, new_tracks, ) example['video'] = np.array(imgs_encoded) byteio = io.BytesIO(imgs_encoded[0]) img = Image.open(byteio) height, width, _ = np.array(img).shape points = [] occluded = [] for track in video.tracks: points.append( [ [(p.x * width - 0.5) / width, (p.y * height - 0.5) / height] for p in track.points ] ) occluded.append([p.occluded for p in track.points]) example['points'] = np.array(points, dtype=np.float64) example['occluded'] = np.array(occluded, dtype=bool) return example def main(argv: Sequence[str]) -> None: del argv output_folder = FLAGS.output_base_path if output_folder and not os.path.exists(output_folder): os.makedirs(output_folder) # Reads data. videos_path = get_paths_to_videos(FLAGS.video_root_path) videos = csv_to_dataset(FLAGS.input_csv_path, videos_path) # Process the dataset and store pickles. num_examples_per_shard = int(math.ceil(len(videos) / FLAGS.num_shards)) shard = 0 data = [] for i, video in enumerate(videos): print( 'Processing example %d of %d (%d%%) \r' % (i, len(videos), i * 100 / len(videos)), end='', ) data.append(generate_example(video)) if i == len(videos) - 1 or len(data) == num_examples_per_shard: shard_path = os.path.join( output_folder, f'{shard:04}_of_{FLAGS.num_shards:04}.pkl' ) logging.info('Writing file "%s".', shard_path) with open(shard_path, 'wb') as f: pickle.dump(data, f) data.clear() shard += 1 if __name__ == '__main__': app.run(main)
tapnet-main
data/generate_tapvid.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Visualize frames of a random video of the given dataset.""" import io import pickle import random from typing import Sequence from absl import app from absl import flags from absl import logging import mediapy as media import numpy as np from PIL import Image from tapnet.utils import viz_utils FLAGS = flags.FLAGS flags.DEFINE_string( 'input_path', None, 'Path to the pickle file.', required=True ) flags.DEFINE_string( 'output_path', None, 'Path to the output mp4 video.', required=True ) def main(argv: Sequence[str]) -> None: del argv logging.info('Loading data from %s. This takes time.', FLAGS.input_path) with open(FLAGS.input_path, 'rb') as f: data = pickle.load(f) if isinstance(data, dict): data = list(data.values()) idx = random.randint(0, len(data) - 1) video = data[idx] frames = video['video'] if isinstance(frames[0], bytes): # Tapnet is stored and JPEG bytes rather than `np.ndarray`s. def decode(frame): byteio = io.BytesIO(frame) img = Image.open(byteio) return np.array(img) frames = np.array([decode(frame) for frame in frames]) if frames.shape[1] > 360: frames = media.resize_video(frames, (360, 640)) scale_factor = np.array(frames.shape[2:0:-1])[np.newaxis, np.newaxis, :] painted_frames = viz_utils.paint_point_track( frames, video['points'] * scale_factor, ~video['occluded'], ) media.write_video(FLAGS.output_path, painted_frames, fps=25) logging.info('Examplar point visualization saved to %s', FLAGS.output_path) if __name__ == '__main__': app.run(main)
tapnet-main
data/visualize.py
# -*- coding:utf-8 -*- import argparse import glob import os import collections import re import cPickle as pickle import logging from collections import defaultdict logging.basicConfig(level=logging.INFO) class ConvertFunctionError(RuntimeError): pass def extractFunctions(functions, inputPath): functionRegex = {} totalFunctions = 0 totalArguments = 0 for function in functions: typeRegex = "\w+" funcNameRegex = function functionRegex[function] = re.compile(""" ^ # Start of line (%s) # Type (group 1) \ # Space %s # Function name \s* # Optional whitespace \( # Open bracket ([^()]*) # All of the arguments \) # Close bracket \s* # Optional whitespace $ # End of line """ % (typeRegex, funcNameRegex) , re.VERBOSE) inFunctionDeclaration = None argumentTypes = None arguments = None with open(inputPath, 'r') as inputFile: for line in inputFile: if inFunctionDeclaration: if line.startswith("{"): argumentsWithTypes = [] logging.debug(argumentTypes) for arg in arguments: if arg in argumentTypes: argumentsWithTypes.append((arg, argumentTypes[arg])) elif arg + "[]" in argumentTypes: # If we can't find the argument directly, check whether it was stored as an array type argumentsWithTypes.append((arg + "[]", argumentTypes[arg + "[]"])) else: raise RuntimeError("Cannot find type for argument %s" % (arg,)) functionDescription = { 'returnType' : returnType, 'functionName' : inFunctionDeclaration, 'arguments' : argumentsWithTypes, 'origin' : inputPath } yield functionDescription inFunctionDeclaration = None else: lineBeforeSemicolon = line.split(";")[0] lineWords = lineBeforeSemicolon.split() typeName = None if lineWords[0] == "register": typeName = lineWords[1] lineWords = lineWords[2:] logging.debug("REGISTER :" + typeName + " " + str(lineWords)) else: typeName = lineWords[0] lineWords = lineWords[1:] logging.debug("NORMAL :" + typeName + " " + str(lineWords)) for argumentName in "".join(lineWords).strip().split(","): if argumentName.startswith("*"): argumentTypes[argumentName[1:]] = typeName + " *" else: argumentTypes[argumentName] = typeName else: for function in functions: match = functionRegex[function].match(line) if match: logging.debug("Found function %s:" % (function,)) logging.debug(line) logging.debug(match.groups()) returnType = match.group(1) arguments = [ x.strip(" ,") for x in match.group(2).split(",") ] totalArguments += len(arguments) totalFunctions += 1 logging.debug("return type: " + returnType) logging.debug("arguments " + str(arguments)) inFunctionDeclaration = function argumentTypes = {} parser = argparse.ArgumentParser() parser.add_argument("functionList") parser.add_argument("outputPath") parser.add_argument("--input", action='append') parser.add_argument("--debug", action='store_true') args = parser.parse_args() if args.debug: logging.getLogger().setLevel(logging.DEBUG) with open(args.functionList, 'r') as functionFile: functions = functionFile.read().split() allFunctions = defaultdict(lambda: []) seenNames = set() for inputDir in args.input: sectionName = os.path.basename(inputDir) logging.info("Processing directory %s" %(sectionName,)) for cFile in glob.glob(os.path.join(inputDir,"*.c")): logging.info("Looking for functions in %s" %(cFile)) for function in extractFunctions(functions, cFile): logging.info("Extracted function %s" % (function['functionName'],)) allFunctions[sectionName].append(function) seenNames.add(function['functionName']) logging.info("Writing function list to: " + str(args.outputPath)) with open(args.outputPath, 'w') as outputFile: pickle.dump(dict(allFunctions), outputFile) missingNames = set(functions) - seenNames for name in missingNames: logging.warn("Could not find %s" % (name,))
torch-cephes-master
makewrap/extractFunctions.py
import cPickle as pickle import os import argparse import itertools import logging logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument("functions") parser.add_argument("--outputDir", default="tests") parser.add_argument("--debug", action='store_true') args = parser.parse_args() if args.debug: logging.getLogger().setLevel(logging.DEBUG) testValues = { # 'double' : [0.0, 1.0, 10.0, "math.huge"], 'double' : [0.5], 'int' : [1], 'cmplx' : ["cephes.new_cmplx(1, 1);"], 'fract' : ["nil ; error('TODO: fract parameter needed!')"], 'cmplx *' : ["cephes.new_cmplx(1, 1) ; error(' TODO: check this pointer makes sense!')"], 'void *' : ["nil ; error(' TODO: void * parameter needed!')"], 'double *' : ['ffi.new("double[1]", {0}) ; error(" TODO: check this array is sensible!")'], 'int *' : ['ffi.new("int[1]", {0}) ; error(" TODO: check this array is sensible!")'], 'fract *' : ["nil ; error(' TODO: fract * parameter needed!')"] } def testsForFunction(function): logging.debug("Generating tests for %s" % (function['functionName'],)) logging.debug("Return type: " + function['returnType']) logging.debug("Args: " + str(function['arguments'])) functionCArgs = ", ".join(argType + " " + argName for argName, argType in function['arguments']) for i, (argName, argType) in enumerate(function['arguments']): if argName.endswith("[]"): argType += " *" argName = argName[0:-2] function['arguments'][i] = (argName, argType) valueGenerators = [ testValues[argType] for argName, argType in function['arguments'] ] testString = """ -- Test simple calls for {functionName} -- Signature: {returnType} {functionName}({functionCArgs}) function callTests.test_{functionName}() """.format( returnType = function['returnType'], functionName = function['functionName'], functionCArgs = functionCArgs ) argNames = [ argName for argName, _ in function['arguments'] ] for argValues in itertools.product(*valueGenerators): testString += """ {argDeclarations} tester:assert(cephes.{functionName}({functionArgs}))""".format( functionName = function['functionName'], functionArgs = ", ".join(str(x) for x in argNames), argDeclarations = "\n ".join("local %s = %s" % (argNames[i], argValue) for i, argValue in enumerate(argValues)) ) testString += """ end """ return testString with open(args.functions, 'r') as inputFile: allFunctions = pickle.load(inputFile) for sectionName, functions in allFunctions.iteritems(): testFilePath = os.path.join(args.outputDir, "test_%s.lua" % (sectionName,)) with open(testFilePath, 'w') as testFile: testFile.write(""" require 'cephes' local ffi = require 'ffi' local callTests = {} local tester = torch.Tester() """) for function in functions: testFile.write(testsForFunction(function)) testFile.write(""" tester:add(callTests) tester:run() """)
torch-cephes-master
makewrap/createTests.py
import cPickle as pickle import argparse parser = argparse.ArgumentParser() parser.add_argument("functions") args = parser.parse_args() def ffiForFunction(function): functionString = str(function['returnType']) + " " + str(function['functionName']) argsWithTypes = [ typeName + " " + arg for (arg, typeName) in function['arguments'] ] functionString += "(" + (", ".join(argsWithTypes)) + ");\n" return " " + functionString with open(args.functions, 'r') as inputFile: allFunctions = pickle.load(inputFile) seenFiles = set() ffiFilePath = "ffi.lua" with open(ffiFilePath, 'w') as ffiFile: ffiFile.write( """ local ffi = require("ffi") cephes = ffi.load(package.searchpath('libcephes', package.cpath)) -- Define cmplx struct ffi.cdef[[ typedef struct { double r; double i; }cmplx; ]] """) for sectionName, functions in allFunctions.iteritems(): ffiFile.write( """ -- imports for folder %s ffi.cdef[[ """ % (sectionName,)) for function in functions: if not function['origin'] in seenFiles: ffiFile.write(" // %s\n" %(function['origin'],)) seenFiles.add(function['origin']) ffiFile.write(ffiForFunction(function)) ffiFile.write("]]\n") ffiFile.write( """ return cephes """)
torch-cephes-master
makewrap/createFFI.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Install script for setuptools.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import imp from setuptools import find_packages from setuptools import setup setup( name='dm-memorytasks', version=imp.load_source('_version', 'dm_memorytasks/_version.py').__version__, description=('DeepMind Memory Tasks, a set of Unity-based machine-' 'learning research tasks.'), author='DeepMind', license='Apache License, Version 2.0', keywords='reinforcement-learning python machine learning', packages=find_packages(exclude=['examples']), install_requires=[ 'absl-py', 'dm-env', 'dm-env-rpc<1.1.0', 'docker', 'grpcio', 'numpy', 'portpicker', ], tests_require=['nose'], python_requires='>=3.7', extras_require={'examples': ['pygame']}, test_suite='nose.collector', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
dm_memorytasks-master
setup.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example random agent for interacting with DeepMind Memory Tasks.""" from absl import app from absl import flags from absl import logging from dm_env import specs import dm_memorytasks import numpy as np FLAGS = flags.FLAGS flags.DEFINE_string( 'docker_image_name', None, 'Name of the Docker image that contains the Memory Tasks. ' 'If None, uses the default dm_memorytask name') flags.DEFINE_integer('seed', 123, 'Environment seed.') flags.DEFINE_string('level_name', 'spot_diff_extrapolate', 'Name of memory task to run.') class RandomAgent(object): """Basic random agent for DeepMind Memory Tasks.""" def __init__(self, action_spec): self.action_spec = action_spec def act(self): action = {} for name, spec in self.action_spec.items(): # Uniformly sample BoundedArray actions. if isinstance(spec, specs.BoundedArray): action[name] = np.random.uniform(spec.minimum, spec.maximum, spec.shape) else: action[name] = spec.generate_value() return action def main(_): env_settings = dm_memorytasks.EnvironmentSettings( seed=FLAGS.seed, level_name=FLAGS.level_name) with dm_memorytasks.load_from_docker( name=FLAGS.docker_image_name, settings=env_settings) as env: agent = RandomAgent(env.action_spec()) timestep = env.reset() score = 0 while not timestep.last(): action = agent.act() timestep = env.step(action) if timestep.reward: score += timestep.reward logging.info('Total score: %1.1f, reward: %1.1f', score, timestep.reward) if __name__ == '__main__': app.run(main)
dm_memorytasks-master
examples/random_agent.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example human agent for interacting with DeepMind Memory Tasks.""" from absl import app from absl import flags from absl import logging import dm_memorytasks import numpy as np import pygame FLAGS = flags.FLAGS flags.DEFINE_list( 'screen_size', [640, 480], 'Screen width/height in pixels. Scales the environment RGB observations to ' 'fit the screen size.') flags.DEFINE_string( 'docker_image_name', None, 'Name of the Docker image that contains the Memory Tasks. ' 'If None, uses the default dm_memorytask name') flags.DEFINE_integer('seed', 123, 'Environment seed.') flags.DEFINE_string('level_name', 'spot_diff_extrapolate', 'Name of memory task to run.') _FRAMES_PER_SECOND = 30 _KEYS_TO_ACTION = { pygame.K_w: {'MOVE_BACK_FORWARD': 1}, pygame.K_s: {'MOVE_BACK_FORWARD': -1}, pygame.K_a: {'STRAFE_LEFT_RIGHT': -1}, pygame.K_d: {'STRAFE_LEFT_RIGHT': 1}, pygame.K_UP: {'LOOK_DOWN_UP': -1}, pygame.K_DOWN: {'LOOK_DOWN_UP': 1}, pygame.K_LEFT: {'LOOK_LEFT_RIGHT': -1}, pygame.K_RIGHT: {'LOOK_LEFT_RIGHT': 1}, } # pyformat: disable _NO_ACTION = { 'MOVE_BACK_FORWARD': 0, 'STRAFE_LEFT_RIGHT': 0, 'LOOK_LEFT_RIGHT': 0, 'LOOK_DOWN_UP': 0, } def main(_): pygame.init() try: pygame.mixer.quit() except NotImplementedError: pass pygame.display.set_caption('Memory Tasks Human Agent') env_settings = dm_memorytasks.EnvironmentSettings( seed=FLAGS.seed, level_name=FLAGS.level_name) with dm_memorytasks.load_from_docker(name=FLAGS.docker_image_name, settings=env_settings) as env: screen = pygame.display.set_mode( (int(FLAGS.screen_size[0]), int(FLAGS.screen_size[1]))) rgb_spec = env.observation_spec()['RGB_INTERLEAVED'] surface = pygame.Surface((rgb_spec.shape[1], rgb_spec.shape[0])) actions = _NO_ACTION score = 0 clock = pygame.time.Clock() while True: # Do not close with CTRL-C as otherwise the docker container may be left # running on exit. for event in pygame.event.get(): if event.type == pygame.QUIT: return elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: return key_actions = _KEYS_TO_ACTION.get(event.key, {}) for name, action in key_actions.items(): actions[name] += action elif event.type == pygame.KEYUP: key_actions = _KEYS_TO_ACTION.get(event.key, {}) for name, action in key_actions.items(): actions[name] -= action timestep = env.step(actions) frame = np.swapaxes(timestep.observation['RGB_INTERLEAVED'], 0, 1) pygame.surfarray.blit_array(surface, frame) pygame.transform.smoothscale(surface, screen.get_size(), screen) pygame.display.update() if timestep.reward: score += timestep.reward logging.info('Total score: %1.1f, reward: %1.1f', score, timestep.reward) clock.tick(_FRAMES_PER_SECOND) if __name__ == '__main__': app.run(main)
dm_memorytasks-master
examples/human_agent.py
# Lint as: python3 # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Python utility functions for loading DeepMind Memory Tasks.""" import codecs import collections import json import os import re import subprocess import time import typing from absl import logging import dm_env import docker import grpc import numpy as np import portpicker from dm_env_rpc.v1 import connection as dm_env_rpc_connection from dm_env_rpc.v1 import dm_env_adaptor from dm_env_rpc.v1 import dm_env_rpc_pb2 from dm_env_rpc.v1 import error from dm_env_rpc.v1 import tensor_utils # Maximum number of times to attempt gRPC connection. _MAX_CONNECTION_ATTEMPTS = 10 # Port to expect the docker environment to internally listen on. _DOCKER_INTERNAL_GRPC_PORT = 10000 _DEFAULT_DOCKER_IMAGE_NAME = 'gcr.io/deepmind-environments/dm_memorytasks:v1.0.1' _MEMORY_TASK_OBSERVATIONS = ['RGB_INTERLEAVED', 'AvatarPosition', 'Score'] MEMORY_TASK_LEVEL_NAMES = frozenset(( 'invisible_goal_empty_arena_extrapolate', 'invisible_goal_empty_arena_holdout_extrapolate', 'invisible_goal_empty_arena_holdout_interpolate', 'invisible_goal_empty_arena_holdout_large', 'invisible_goal_empty_arena_holdout_small', 'invisible_goal_empty_arena_interpolate', 'invisible_goal_empty_arena_train', 'invisible_goal_with_buildings_extrapolate', 'invisible_goal_with_buildings_holdout_extrapolate', 'invisible_goal_with_buildings_holdout_interpolate', 'invisible_goal_with_buildings_holdout_large', 'invisible_goal_with_buildings_holdout_small', 'invisible_goal_with_buildings_interpolate', 'invisible_goal_with_buildings_train', 'spot_diff_extrapolate', 'spot_diff_holdout_extrapolate', 'spot_diff_holdout_interpolate', 'spot_diff_holdout_large', 'spot_diff_holdout_small', 'spot_diff_interpolate', 'spot_diff_motion_extrapolate', 'spot_diff_motion_holdout_extrapolate', 'spot_diff_motion_holdout_interpolate', 'spot_diff_motion_holdout_large', 'spot_diff_motion_holdout_small', 'spot_diff_motion_interpolate', 'spot_diff_motion_train', 'spot_diff_multi_extrapolate', 'spot_diff_multi_holdout_extrapolate', 'spot_diff_multi_holdout_interpolate', 'spot_diff_multi_holdout_large', 'spot_diff_multi_holdout_small', 'spot_diff_multi_interpolate', 'spot_diff_multi_train', 'spot_diff_passive_extrapolate', 'spot_diff_passive_holdout_extrapolate', 'spot_diff_passive_holdout_interpolate', 'spot_diff_passive_holdout_large', 'spot_diff_passive_holdout_small', 'spot_diff_passive_interpolate', 'spot_diff_passive_train', 'spot_diff_train', 'transitive_inference_extrapolate', 'transitive_inference_holdout_extrapolate', 'transitive_inference_holdout_interpolate', 'transitive_inference_holdout_large', 'transitive_inference_holdout_small', 'transitive_inference_interpolate', 'transitive_inference_train_large', 'transitive_inference_train_small', 'visible_goal_with_buildings_extrapolate', 'visible_goal_with_buildings_holdout_extrapolate', 'visible_goal_with_buildings_holdout_interpolate', 'visible_goal_with_buildings_holdout_large', 'visible_goal_with_buildings_holdout_small', 'visible_goal_with_buildings_interpolate', 'visible_goal_with_buildings_train', )) _ConnectionDetails = collections.namedtuple('_ConnectionDetails', ['channel', 'connection', 'specs']) class _MemoryTasksEnv(dm_env_adaptor.DmEnvAdaptor): """An implementation of dm_env_rpc.DmEnvAdaptor for memory tasks.""" def __init__(self, connection_details, requested_observations, num_action_repeats): super(_MemoryTasksEnv, self).__init__(connection_details.connection, connection_details.specs, requested_observations) self._channel = connection_details.channel self._num_action_repeats = num_action_repeats def close(self): super(_MemoryTasksEnv, self).close() self._channel.close() def step(self, action): """Implementation of dm_env.step that supports repeated actions.""" timestep = None discount = None reward = None for _ in range(self._num_action_repeats): next_timestep = super(_MemoryTasksEnv, self).step(action) # Accumulate reward per timestep. if next_timestep.reward is not None: reward = (reward or 0.) + next_timestep.reward # Calculate the product for discount. if next_timestep.discount is not None: discount = discount if discount else [] discount.append(next_timestep.discount) timestep = dm_env.TimeStep(next_timestep.step_type, reward, # Note: np.product(None) returns None. np.product(discount), next_timestep.observation) if timestep.last(): return timestep return timestep class _MemoryTasksContainerEnv(_MemoryTasksEnv): """An implementation of _MemoryTasksEnv. Ensures that the provided Docker container is closed on exit. """ def __init__(self, connection_details, requested_observations, num_action_repeats, container): super(_MemoryTasksContainerEnv, self).__init__(connection_details, requested_observations, num_action_repeats) self._container = container def close(self): super(_MemoryTasksContainerEnv, self).close() try: self._container.kill() except docker.errors.NotFound: pass # Ignore, container has already been closed. class _MemoryTasksProcessEnv(_MemoryTasksEnv): """An implementation of _MemoryTasksEnv. Ensure that the provided running process is closed on exit. """ def __init__(self, connection_details, requested_observations, num_action_repeats, process): super(_MemoryTasksProcessEnv, self).__init__(connection_details, requested_observations, num_action_repeats) self._process = process def close(self): super(_MemoryTasksProcessEnv, self).close() self._process.terminate() self._process.wait() def _check_grpc_channel_ready(channel): """Helper function to check the gRPC channel is ready N times.""" for _ in range(_MAX_CONNECTION_ATTEMPTS - 1): try: return grpc.channel_ready_future(channel).result(timeout=1) except grpc.FutureTimeoutError: pass return grpc.channel_ready_future(channel).result(timeout=1) def _can_send_message(connection): """Returns if `connection` is healthy and able to process requests.""" try: # This should return a response with an error unless the server isn't yet # receiving requests. connection.send(dm_env_rpc_pb2.StepRequest()) except error.DmEnvRpcError: return True except grpc.RpcError: return False def _create_channel_and_connection(port): """Returns a tuple of `(channel, connection)`.""" for _ in range(_MAX_CONNECTION_ATTEMPTS): channel = grpc.secure_channel('localhost:{}'.format(port), grpc.local_channel_credentials()) _check_grpc_channel_ready(channel) connection = dm_env_rpc_connection.Connection(channel) if _can_send_message(connection): break else: # A gRPC server running within Docker sometimes reports that the channel # is ready but transitively returns an error (status code 14) on first # use. Giving the server some time to breath and retrying often fixes the # problem. connection.close() channel.close() time.sleep(1.0) return channel, connection def _parse_exception_message(message): """Returns a human-readable version of a dm_env_rpc json error message.""" try: match = re.match(r'^message\:\ \"(.*)\"$', message) json_data = codecs.decode(match.group(1), 'unicode-escape') parsed_json_data = json.loads(json_data) return ValueError(json.dumps(parsed_json_data, indent=4)) except: # pylint: disable=bare-except return message def _wrap_send(send): """Wraps `send` in order to reformat exceptions.""" try: return send() except ValueError as e: e.args = [_parse_exception_message(e.args[0])] raise def _connect_to_environment(port, settings): """Helper function for connecting to a running dm_memorytask environment.""" if settings.level_name not in MEMORY_TASK_LEVEL_NAMES: raise ValueError( 'Level named "{}" is not a valid dm_memorytask level.'.format( settings.level_name)) channel, connection = _create_channel_and_connection(port) original_send = connection.send connection.send = lambda request: _wrap_send(lambda: original_send(request)) world_name = connection.send( dm_env_rpc_pb2.CreateWorldRequest( settings={ 'seed': tensor_utils.pack_tensor(settings.seed), 'episodeId': tensor_utils.pack_tensor(0), 'levelName': tensor_utils.pack_tensor(settings.level_name), })).world_name join_world_settings = { 'width': tensor_utils.pack_tensor(settings.width), 'height': tensor_utils.pack_tensor(settings.height), 'EpisodeLengthSeconds': tensor_utils.pack_tensor(settings.episode_length_seconds), } specs = connection.send( dm_env_rpc_pb2.JoinWorldRequest( world_name=world_name, settings=join_world_settings)).specs return _ConnectionDetails(channel=channel, connection=connection, specs=specs) class EnvironmentSettings(typing.NamedTuple): """Collection of settings used to start a specific Memory task. Required attributes: seed: Seed to initialize the environment's RNG. level_name: Name of the level to load. Optional attributes: width: Width (in pixels) of the desired RGB observation; defaults to 96. height: Height (in pixels) of the desired RGB observation; defaults to 72. episode_length_seconds: Maximum episode length (in seconds); defaults to 120. num_action_repeats: Number of times to step the environment with the provided action in calls to `step()`. """ seed: int level_name: str width: int = 96 height: int = 72 episode_length_seconds: float = 120.0 num_action_repeats: int = 1 def _validate_environment_settings(settings): """Helper function to validate the provided environment settings.""" if settings.episode_length_seconds <= 0.0: raise ValueError('episode_length_seconds must have a positive value.') if settings.num_action_repeats <= 0: raise ValueError('num_action_repeats must have a positive value.') if settings.width <= 0 or settings.height <= 0: raise ValueError('width and height must have a positive value.') def load_from_disk(path, settings): """Load Memory Tasks from disk. Args: path: Directory containing dm_memorytasks environment. settings: EnvironmentSettings required to start the environment. Returns: An implementation of dm_env.Environment. Raises: RuntimeError: If unable to start environment process. """ _validate_environment_settings(settings) executable_path = os.path.join(path, 'Linux64Player') libosmesa_path = os.path.join(path, 'external_libosmesa_llvmpipe.so') if not os.path.exists(executable_path) or not os.path.exists(libosmesa_path): raise RuntimeError( 'Cannot find dm_memorytasks executable or dependent files at path: {}' .format(path)) port = portpicker.pick_unused_port() process_flags = [ executable_path, # Unity command-line flags. '-logfile', '-batchmode', '-noaudio', # Other command-line flags. '--logtostderr', '--server_type=GRPC', '--uri_address=[::]:{}'.format(port), ] os.environ.update({ 'UNITY_RENDERER': 'software', 'UNITY_OSMESA_PATH': libosmesa_path, }) process = subprocess.Popen( process_flags, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) if process.poll() is not None: raise RuntimeError('Failed to start dm_memorytasks process correctly.') return _MemoryTasksProcessEnv( _connect_to_environment(port, settings), _MEMORY_TASK_OBSERVATIONS, settings.num_action_repeats, process) def load_from_docker(settings, name=None): """Load Memory Tasks from docker container. Args: settings: EnvironmentSettings required to start the environment. name: Optional name of Docker image that contains the dm_memorytasks environment. If left unset, uses the dm_memorytasks default name. Returns: An implementation of dm_env.Environment """ _validate_environment_settings(settings) name = name or _DEFAULT_DOCKER_IMAGE_NAME client = docker.from_env() port = portpicker.pick_unused_port() try: client.images.get(name) except docker.errors.ImageNotFound: logging.info('Downloading docker image "%s"...', name) client.images.pull(name) logging.info('Download finished.') container = client.containers.run( name, auto_remove=True, detach=True, ports={_DOCKER_INTERNAL_GRPC_PORT: port}) return _MemoryTasksContainerEnv( _connect_to_environment(port, settings), _MEMORY_TASK_OBSERVATIONS, settings.num_action_repeats, container)
dm_memorytasks-master
dm_memorytasks/_load_environment.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Package version for dm_memorytasks. Kept in separate file so it can be used during installation. """ __version__ = '1.0.3' # https://www.python.org/dev/peps/pep-0440/
dm_memorytasks-master
dm_memorytasks/_version.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for dm_memorytasks.load_from_disk.""" from absl import flags from absl.testing import absltest from absl.testing import parameterized from dm_env import test_utils import dm_memorytasks FLAGS = flags.FLAGS flags.DEFINE_string('path', '', 'Directory that contains dm_memorytasks environment.') class LoadFromDiskTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return dm_memorytasks.load_from_disk( FLAGS.path, settings=dm_memorytasks.EnvironmentSettings( seed=123, level_name='spot_diff_extrapolate')) class MemoryTaskTest(parameterized.TestCase): @parameterized.parameters(dm_memorytasks.MEMORY_TASK_LEVEL_NAMES) def test_load_level(self, level_name): self.assertIsNotNone( dm_memorytasks.load_from_disk( FLAGS.path, settings=dm_memorytasks.EnvironmentSettings( seed=123, level_name=level_name))) if __name__ == '__main__': absltest.main()
dm_memorytasks-master
dm_memorytasks/load_from_disk_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Python utilities for running dm_memorytasks.""" from dm_memorytasks import _load_environment from dm_memorytasks._version import __version__ EnvironmentSettings = _load_environment.EnvironmentSettings MEMORY_TASK_LEVEL_NAMES = _load_environment.MEMORY_TASK_LEVEL_NAMES load_from_disk = _load_environment.load_from_disk load_from_docker = _load_environment.load_from_docker
dm_memorytasks-master
dm_memorytasks/__init__.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for dm_memorytasks.load_from_docker.""" from absl import flags from absl.testing import absltest from absl.testing import parameterized from dm_env import test_utils import dm_memorytasks FLAGS = flags.FLAGS flags.DEFINE_string( 'docker_image_name', None, 'Name of the Docker image that contains the Memory Tasks. ' 'If None, uses the default dm_memorytask name') class LoadFromDockerTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return dm_memorytasks.load_from_docker( name=FLAGS.docker_image_name, settings=dm_memorytasks.EnvironmentSettings( seed=123, level_name='spot_diff_extrapolate')) class MemoryTaskTest(parameterized.TestCase): @parameterized.parameters(dm_memorytasks.MEMORY_TASK_LEVEL_NAMES) def test_load_level(self, level_name): self.assertIsNotNone( dm_memorytasks.load_from_docker( name=FLAGS.docker_image_name, settings=dm_memorytasks.EnvironmentSettings( seed=123, level_name=level_name))) if __name__ == '__main__': absltest.main()
dm_memorytasks-master
dm_memorytasks/load_from_docker_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for extraction.""" import base64 import dataclasses import gzip from typing import BinaryIO, Iterable from absl.testing import absltest import extraction from fs import memoryfs @dataclasses.dataclass(frozen=True) class _WMTDocInput: date: str sentence_split: str unsplit: str @dataclasses.dataclass(frozen=True) class _ArchiveFileInput: docs: list[_WMTDocInput] file_name: str class ExtractionTest(absltest.TestCase): def setUp(self): super(ExtractionTest, self).setUp() self.mfs = memoryfs.MemoryFS() self.addCleanup(self.mfs.close) def test_get_wmt_docs_from_archive_file_paths(self): deduplicated_wmt_sorting_keys = [ ('20190101000000000000\x00\x01' '1d377af8d421d226f274f12d31d4' 'cc15e7c6f85e2e1eb2530e19b123d019d776\x00\x01'), ('20190102000000000000\x00\x01' 'e1587db7b0a1fd73546c5b475626' '2c39f3309f8b8cc2b63a5034a80928eb533a\x00\x01'), ('20200103000000000000\x00\x01' 'f86e132442e069c17be5b53fa9f2' '890b54007a4f12332e717e29f35d3b96accc\x00\x01'), ] deduplicated_wmt_sorting_keys_file_name = 'wmt_ids.gz' with self.mfs.openbin(deduplicated_wmt_sorting_keys_file_name, 'wb') as f: _write_doc_lines_to_archive( [k.encode() for k in deduplicated_wmt_sorting_keys], f) archive_file_inputs = [ _ArchiveFileInput( docs=[ _WMTDocInput('20190101', 'sentence_split_1', 'unsplit_1'), _WMTDocInput('20190102', 'sentence_split_2', 'unsplit_2'), ], file_name='news-docs.2019.en.filtered.gz', ), _ArchiveFileInput( docs=[ _WMTDocInput('20200103', 'sentence_split_3', 'unsplit_3'), _WMTDocInput('20200103', 'duplicate', 'duplicate'), ], file_name='news-docs.2020.en.filtered.gz', ), ] _write_test_inputs(archive_file_inputs, self.mfs) wmt_docs = [] for archive_file_input in archive_file_inputs: with self.mfs.openbin(deduplicated_wmt_sorting_keys_file_name, 'rb') as keys_file: with self.mfs.openbin(archive_file_input.file_name, 'rb') as archive_file: wmt_docs_for_archive = extraction.get_deduplicated_wmt_docs( wmt_archive_files=[archive_file], deduplicated_sorting_keys_file=keys_file, ) wmt_docs.extend(wmt_docs_for_archive) wmt_docs.sort(key=lambda x: x.sorting_key) self.assertEqual([ extraction.WMTDoc( sorting_key=deduplicated_wmt_sorting_keys[0], publication_ts=1546300800, text=b'sentence_split_1', ), extraction.WMTDoc( sorting_key=deduplicated_wmt_sorting_keys[1], publication_ts=1546387200, text=b'sentence_split_2', ), extraction.WMTDoc( sorting_key=deduplicated_wmt_sorting_keys[2], publication_ts=1578009600, text=b'sentence_split_3', ) ], wmt_docs) def test_get_wmt_passages_from_docs(self): self.assertEqual([ extraction.WMTPassage(id='doc_0_0', text=b'1. 2. 3. 4. 5. 6.'), extraction.WMTPassage(id='doc_0_1', text=b'7.'), extraction.WMTPassage(id='doc_1_0', text=b'1. 2. 3. 4. 5.'), extraction.WMTPassage(id='doc_2_0', text=b'1. 2. 3. 4. 5.'), extraction.WMTPassage(id='doc_3_0', text=b'1. 2. 3. 4. 5.'), extraction.WMTPassage(id='doc_4_0', text=b'1. 2. 3. 4. 5? 6. 7.'), ], list( extraction.get_wmt_passages_from_docs( [ extraction.WMTDoc( sorting_key='doc_0', publication_ts=0, text=b'1. 2. 3. 4. 5. 6. 7.'), extraction.WMTDoc( sorting_key='doc_1', publication_ts=0, text=b'1. 2. 3. 4. 5.'), extraction.WMTDoc( sorting_key='doc_2', publication_ts=0, text=b'1. 2. 3. 4.\n5.'), extraction.WMTDoc( sorting_key='doc_3', publication_ts=0, text=b'1. 2. 3. 4.\n 5.'), extraction.WMTDoc( sorting_key='doc_4', publication_ts=0, text=b'1. 2. 3. 4. 5? 6. 7.'), ], prepend_date=False))) self.assertEqual([ extraction.WMTPassage( id='doc_0_0', text=b'Thursday, January 1, 1970. 1. 2. 3. 4. 5. 6.', ), extraction.WMTPassage( id='doc_0_1', text=b'Thursday, January 1, 1970. 7.', ), ], list( extraction.get_wmt_passages_from_docs([ extraction.WMTDoc( sorting_key='doc_0', publication_ts=0, text=b'1. 2. 3. 4. 5. 6. 7.') ]))) def _write_test_inputs(archive_file_inputs: Iterable[_ArchiveFileInput], memory_fs: memoryfs.MemoryFS): for archive in archive_file_inputs: doc_lines = [_get_doc_line(doc) for doc in archive.docs] with memory_fs.openbin(archive.file_name, 'wb') as f: _write_doc_lines_to_archive(doc_lines, f) def _get_doc_line(wmt_doc: _WMTDocInput) -> bytes: return b'\t'.join([ wmt_doc.date.encode(), base64.b64encode(wmt_doc.sentence_split.encode()), base64.b64encode(wmt_doc.unsplit.encode()), ]) def _write_doc_lines_to_archive(doc_lines: Iterable[bytes], file_object: BinaryIO): with gzip.open(file_object, 'wb') as gfb: gfb.write(b'\n'.join(doc_lines)) if __name__ == '__main__': absltest.main()
streamingqa-main
extraction_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """WMT docs extraction. The exported functions are: `get_deduplicated_wmt_docs` 1) takes the `gz` document-split versions of the WMT News Crawl from 'https://data.statmt.org/news-crawl/README', 2) extracts the documents, 3) filters out duplicates, 4) and then yields the lines parsed into `WMTDoc` objects. `get_wmt_passages_from_docs` 1) takes the `WMTDoc`s from the previous output 2) splits the articles into sentences 3) and yields them as `WMTPassage` chunks. """ import base64 import dataclasses import datetime import gzip import hashlib from typing import BinaryIO, Iterable, Iterator, Union import pytz _EXTRACTION_FIELD_SEPARATOR = b'\t' _EXTRACTION_DATE_FORMAT = '%Y%m%d' _SORTING_KEY_DATE_FORMAT = '%Y%m%d%H%M%S%f' _SORTING_KEY_FIELD_SEPARATOR = '\x00\x01' _PASSAGE_ID = '{sorting_key}_{passage_idx}' _PASSAGE_SENTENCE_SEPARATOR = b'. ' _PASSAGE_NUM_SENTENCES = 6 _PASSAGE_DATE_PREFIX_FORMAT = '%A, %B %-d, %Y' @dataclasses.dataclass(frozen=True) class WMTDoc: """The input extracted from the WMT archive files. Attributes: sorting_key: The assigned sorting key to the document. publication_ts: Publication date of the document as UTC timestamp seconds. text: The processed document text / article. """ sorting_key: str publication_ts: int text: bytes @dataclasses.dataclass(frozen=True) class WMTPassage: """A passage from a sequence of `WMTDoc` article sentence chunks. Attributes: id: Assigned ID consisting of the original `WMTDoc` `sorting_key` and an index for the passage position in the original article. text: A chunk from a sequence of sentences extracted from the `WMTDoc` article. """ id: str text: bytes def get_deduplicated_wmt_docs( wmt_archive_files: Iterable[Union[str, BinaryIO]], deduplicated_sorting_keys_file: Union[str, BinaryIO]) -> Iterator[WMTDoc]: """Reads and yields deduplicated `WMTDoc`s from the WMT News Crawl. Args: wmt_archive_files: List of file paths or file path objects of the WMT News Crawl dataset `.gz` files. deduplicated_sorting_keys_file: File path to the gzipped newline delimited txt file of deduplicated WMT sorting key IDs. Yields: Extracted and filtered `WMTDoc` objects. """ with gzip.open(deduplicated_sorting_keys_file) as f: sorting_keys = set(line.strip().decode() for line in f) for file_path_or_object in wmt_archive_files: with gzip.open(file_path_or_object) as f: for line in f: doc = _extract_doc(line) if doc.sorting_key in sorting_keys: yield doc def get_wmt_passages_from_docs( wmt_docs: Iterable[WMTDoc], prepend_date: bool = True) -> Iterator[WMTPassage]: """Yields `WMTPassage`s based on sentence split and chunked `WMTDoc` articles. Args: wmt_docs: The articles to be sentence split and chunked into passages. prepend_date: If True, will prepend the article publication date to each extracted passage. Yields: WMT passages as ID and text which can be used for the retrieval search space. """ for doc in wmt_docs: article = doc.text + b' ' article = article.replace(b'.\n', _PASSAGE_SENTENCE_SEPARATOR) sentences = [s.strip() for s in article.split(_PASSAGE_SENTENCE_SEPARATOR)] sentences = [s for s in sentences if s] for p_i, s_i in enumerate(range(0, len(sentences), _PASSAGE_NUM_SENTENCES)): chunk = sentences[s_i:s_i + _PASSAGE_NUM_SENTENCES] passage = _PASSAGE_SENTENCE_SEPARATOR.join(chunk) + b'.' if prepend_date: prefix = datetime.datetime.fromtimestamp( doc.publication_ts).strftime(_PASSAGE_DATE_PREFIX_FORMAT).encode() passage = _PASSAGE_SENTENCE_SEPARATOR.join([prefix, passage]) passage_id = _PASSAGE_ID.format( sorting_key=doc.sorting_key, passage_idx=p_i) yield WMTPassage(id=passage_id, text=passage) def _extract_doc(doc_line: bytes) -> WMTDoc: """Processes a doc line (= one line per doc) from the WMT dataset file.""" try: publication_date, sentence_split_doc_line, unsplit_doc_line = ( doc_line.strip().split(_EXTRACTION_FIELD_SEPARATOR)) except ValueError as e: raise ValueError('Failed to parse doc line') from e # pylint: disable=g-tzinfo-replace publication_dt = datetime.datetime.strptime( publication_date.decode(), _EXTRACTION_DATE_FORMAT).replace(tzinfo=pytz.UTC) line_hash = hashlib.sha256(unsplit_doc_line).hexdigest() sorting_key = _SORTING_KEY_FIELD_SEPARATOR.join([ publication_dt.strftime(_SORTING_KEY_DATE_FORMAT), line_hash, '', ]) return WMTDoc( sorting_key=sorting_key, publication_ts=int(publication_dt.timestamp()), text=base64.b64decode(sentence_split_doc_line), )
streamingqa-main
extraction.py
# Copyright 2017-2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Install script for setuptools.""" import fnmatch import logging import os import platform import subprocess import sys import mujoco import setuptools from setuptools import find_packages from setuptools import setup from setuptools.command import install from setuptools.command import test PLATFORM = platform.system() # Relative paths to the binding generator script and the output directory. AUTOWRAP_PATH = 'dm_control/autowrap/autowrap.py' MJBINDINGS_DIR = 'dm_control/mujoco/wrapper/mjbindings' # We specify the header filenames explicitly rather than listing the contents # of the `HEADERS_DIR` at runtime, since it will probably contain other stuff # (e.g. `glfw.h`). HEADER_FILENAMES = [ 'mjdata.h', 'mjmodel.h', 'mjrender.h', 'mjtnum.h', 'mjui.h', 'mjvisualize.h', 'mjxmacro.h', 'mujoco.h', ] def _initialize_mjbindings_options(cmd_instance): """Set default values for options relating to `build_mjbindings`.""" # A default value must be assigned to each user option here. cmd_instance.inplace = 0 cmd_instance.headers_dir = mujoco.HEADERS_DIR def _finalize_mjbindings_options(cmd_instance): """Post-process options relating to `build_mjbindings`.""" headers_dir = os.path.expanduser(cmd_instance.headers_dir) header_paths = [] for filename in HEADER_FILENAMES: full_path = os.path.join(headers_dir, filename) if not os.path.exists(full_path): raise IOError('Header file {!r} does not exist.'.format(full_path)) header_paths.append(full_path) cmd_instance.header_paths = ' '.join(header_paths) class BuildMJBindingsCommand(setuptools.Command): """Runs `autowrap.py` to generate the low-level ctypes bindings for MuJoCo.""" description = __doc__ user_options = [ # The format is (long option, short option, description). ('headers-dir=', None, 'Path to directory containing MuJoCo headers.'), ('inplace=', None, 'Place generated files in source directory rather than `build-lib`.'), ] boolean_options = ['inplace'] def initialize_options(self): _initialize_mjbindings_options(self) def finalize_options(self): _finalize_mjbindings_options(self) def run(self): cwd = os.path.realpath(os.curdir) if self.inplace: dist_root = cwd else: build_cmd = self.get_finalized_command('build') dist_root = os.path.realpath(build_cmd.build_lib) output_dir = os.path.join(dist_root, MJBINDINGS_DIR) command = [ sys.executable or 'python', AUTOWRAP_PATH, '--header_paths={}'.format(self.header_paths), '--output_dir={}'.format(output_dir) ] self.announce('Running command: {}'.format(command), level=logging.DEBUG) try: # Prepend the current directory to $PYTHONPATH so that internal imports # in `autowrap` can succeed before we've installed anything. old_environ = os.environ.copy() new_pythonpath = [cwd] if 'PYTHONPATH' in old_environ: new_pythonpath.append(old_environ['PYTHONPATH']) os.environ['PYTHONPATH'] = ':'.join(new_pythonpath) subprocess.check_call(command) finally: os.environ = old_environ class InstallCommand(install.install): """Runs 'build_mjbindings' before installation.""" user_options = ( install.install.user_options + BuildMJBindingsCommand.user_options) boolean_options = ( install.install.boolean_options + BuildMJBindingsCommand.boolean_options) def initialize_options(self): install.install.initialize_options(self) _initialize_mjbindings_options(self) def finalize_options(self): install.install.finalize_options(self) _finalize_mjbindings_options(self) def run(self): self.reinitialize_command('build_mjbindings', inplace=self.inplace, headers_dir=self.headers_dir) self.run_command('build_mjbindings') install.install.run(self) class TestCommand(test.test): """Prepends path to generated sources before running unit tests.""" def run(self): # Generate ctypes bindings in-place so that they can be imported in tests. self.reinitialize_command('build_mjbindings', inplace=1) self.run_command('build_mjbindings') test.test.run(self) def find_data_files(package_dir, patterns, excludes=()): """Recursively finds files whose names match the given shell patterns.""" paths = set() def is_excluded(s): for exclude in excludes: if fnmatch.fnmatch(s, exclude): return True return False for directory, _, filenames in os.walk(package_dir): if is_excluded(directory): continue for pattern in patterns: for filename in fnmatch.filter(filenames, pattern): # NB: paths must be relative to the package directory. relative_dirpath = os.path.relpath(directory, package_dir) full_path = os.path.join(relative_dirpath, filename) if not is_excluded(full_path): paths.add(full_path) return list(paths) setup( name='dm_control', version='1.0.14', description='Continuous control environments and MuJoCo Python bindings.', long_description=""" # `dm_control`: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. An **introductory tutorial** for this package is available as a Colaboratory notebook: [Open In Google Colab](https://colab.research.google.com/github/deepmind/dm_control/blob/main/tutorial.ipynb). """, long_description_content_type='text/markdown', author='DeepMind', author_email='[email protected]', url='https://github.com/deepmind/dm_control', license='Apache License 2.0', classifiers=[ 'License :: OSI Approved :: Apache Software License', ], keywords='machine learning control physics MuJoCo AI', python_requires='>=3.8', install_requires=[ 'absl-py>=0.7.0', 'dm-env', 'dm-tree != 0.1.2', 'glfw', 'labmaze', 'lxml', 'mujoco >= 2.3.7', 'numpy >= 1.9.0', 'protobuf >= 3.19.4', # TensorFlow requires protobuf<3.20 (b/182876485) 'pyopengl >= 3.1.4', 'pyparsing >= 3.0.0', 'requests', 'setuptools!=50.0.0', # https://github.com/pypa/setuptools/issues/2350 'scipy', 'tqdm', ], extras_require={ 'HDF5': ['h5py'], }, tests_require=[ 'mock', 'nose', 'pillow>=9.0.1', # https://github.com/advisories/GHSA-8vj2-vxx3-667w ], test_suite='nose.collector', packages=find_packages(), package_data={ 'dm_control': find_data_files( package_dir='dm_control', patterns=[ '*.amc', '*.msh', '*.png', '*.skn', '*.stl', '*.xml', '*.textproto', '*.h5' ], excludes=[ '*/dog_assets/extras/*', '*/kinova/meshes/*', # Exclude non-decimated meshes. ]), }, cmdclass={ 'build_mjbindings': BuildMJBindingsCommand, 'install': InstallCommand, 'test': TestCommand, }, entry_points={}, )
dm_control-main
setup.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================
dm_control-main
dm_control/__init__.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `mjcf.debugging`.""" import contextlib import os import re import shutil import sys from absl.testing import absltest from dm_control import mjcf from dm_control.mjcf import code_for_debugging_test as test_code from dm_control.mjcf import debugging ORIGINAL_DEBUG_MODE = debugging.debug_mode() class DebuggingTest(absltest.TestCase): def tearDown(self): super().tearDown() if ORIGINAL_DEBUG_MODE: debugging.enable_debug_mode() else: debugging.disable_debug_mode() def setup_debug_mode(self, debug_mode_enabled, full_dump_enabled=False): if debug_mode_enabled: debugging.enable_debug_mode() else: debugging.disable_debug_mode() if full_dump_enabled: base_dir = absltest.get_default_test_tmpdir() self.dump_dir = os.path.join(base_dir, 'mjcf_debugging_test') shutil.rmtree(self.dump_dir, ignore_errors=True) os.mkdir(self.dump_dir) else: self.dump_dir = '' debugging.set_full_dump_dir(self.dump_dir) def assertStackFromTestCode(self, stack, function_name, line_ref): self.assertEqual(stack[-1].function_name, function_name) self.assertStartsWith(test_code.__file__, stack[-1].filename) line_info = test_code.LINE_REF['.'.join([function_name, line_ref])] self.assertEqual(stack[-1].line_number, line_info.line_number) self.assertEqual(stack[-1].text, line_info.text) @contextlib.contextmanager def assertRaisesTestCodeRef(self, line_ref): filename, _ = os.path.splitext(test_code.__file__) expected_message = ( filename + '.py:' + str(test_code.LINE_REF[line_ref].line_number)) print(expected_message) with self.assertRaisesRegex(ValueError, expected_message): yield def test_get_current_stack_trace(self): self.setup_debug_mode(debug_mode_enabled=True) stack_trace = debugging.get_current_stack_trace() self.assertStartsWith( sys.modules[__name__].__file__, stack_trace[-1].filename) self.assertEqual(stack_trace[-1].function_name, 'test_get_current_stack_trace') self.assertEqual(stack_trace[-1].text, 'stack_trace = debugging.get_current_stack_trace()') def test_disable_debug_mode(self): self.setup_debug_mode(debug_mode_enabled=False) mjcf_model = test_code.make_valid_model() test_code.break_valid_model(mjcf_model) self.assertFalse(mjcf_model.get_init_stack()) my_actuator = mjcf_model.find('actuator', 'my_actuator') my_actuator_attrib_stacks = ( my_actuator.get_last_modified_stacks_for_all_attributes()) for stack in my_actuator_attrib_stacks.values(): self.assertFalse(stack) def test_element_and_attribute_stacks(self): self.setup_debug_mode(debug_mode_enabled=True) mjcf_model = test_code.make_valid_model() test_code.break_valid_model(mjcf_model) self.assertStackFromTestCode(mjcf_model.get_init_stack(), 'make_valid_model', 'mjcf_model') my_actuator = mjcf_model.find('actuator', 'my_actuator') self.assertStackFromTestCode(my_actuator.get_init_stack(), 'make_valid_model', 'my_actuator') my_actuator_attrib_stacks = ( my_actuator.get_last_modified_stacks_for_all_attributes()) # `name` attribute was assigned at the same time as the element was created. self.assertEqual(my_actuator_attrib_stacks['name'], my_actuator.get_init_stack()) # `joint` attribute was modified later on. self.assertStackFromTestCode(my_actuator_attrib_stacks['joint'], 'break_valid_model', 'my_actuator.joint') def test_valid_physics(self): self.setup_debug_mode(debug_mode_enabled=True) mjcf_model = test_code.make_valid_model() mjcf.Physics.from_mjcf_model(mjcf_model) # Should not raise def test_physics_error_message_outside_of_debug_mode(self): self.setup_debug_mode(debug_mode_enabled=False) mjcf_model = test_code.make_broken_model() # Make sure that we advertise debug mode if it's currently disabled. with self.assertRaisesRegex(ValueError, '--pymjcf_debug'): mjcf.Physics.from_mjcf_model(mjcf_model) def test_physics_error_message_in_debug_mode(self): self.setup_debug_mode(debug_mode_enabled=True) mjcf_model_1 = test_code.make_broken_model() with self.assertRaisesTestCodeRef('make_broken_model.my_actuator'): mjcf.Physics.from_mjcf_model(mjcf_model_1) mjcf_model_2 = test_code.make_valid_model() physics = mjcf.Physics.from_mjcf_model(mjcf_model_2) # Should not raise. test_code.break_valid_model(mjcf_model_2) with self.assertRaisesTestCodeRef('break_valid_model.my_actuator.joint'): physics.reload_from_mjcf_model(mjcf_model_2) def test_full_debug_dump(self): self.setup_debug_mode(debug_mode_enabled=True, full_dump_enabled=False) mjcf_model = test_code.make_valid_model() test_code.break_valid_model(mjcf_model) # Make sure that we advertise full dump mode if it's currently disabled. with self.assertRaisesRegex(ValueError, '--pymjcf_debug_full_dump_dir'): mjcf.Physics.from_mjcf_model(mjcf_model) self.setup_debug_mode(debug_mode_enabled=True, full_dump_enabled=True) with self.assertRaises(ValueError): mjcf.Physics.from_mjcf_model(mjcf_model) with open(os.path.join(self.dump_dir, 'model.xml')) as f: dumped_xml = f.read() dumped_xml = [line.strip() for line in dumped_xml.strip().split('\n')] xml_line_pattern = re.compile(r'^(.*)<!--pymjcfdebug:(\d+)-->$') uninstrumented_pattern = re.compile(r'({})'.format( '|'.join([ r'<mujoco model=".*">', r'</mujoco>', r'<default class=".*/"/?>', r'</default>' ]))) for xml_line in dumped_xml: print(xml_line) xml_line_match = xml_line_pattern.match(xml_line) if not xml_line_match: # Only uninstrumented lines are allowed to have no metadata. self.assertIsNotNone(uninstrumented_pattern.match(xml_line)) else: xml_element = xml_line_match.group(1) debug_id = int(xml_line_match.group(2)) with open(os.path.join(self.dump_dir, str(debug_id) + '.dump')) as f: element_dump = f.read() self.assertIn(xml_element, element_dump) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mjcf/debugging_test.py