python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Helpers for modifying a walker to match mocap data.""" from dm_control import composer from dm_control import mjcf from dm_control.locomotion.mocap import mocap_pb2 from dm_control.locomotion.walkers import rescale import numpy as np class WalkerInfo: """Encapsulates routines that modify a walker to match mocap data.""" def __init__(self, proto): """Initializes this object. Args: proto: A `mocap_pb2.Walker` protocol buffer. """ self._proto = proto def check_walker_is_compatible(self, walker): """Checks whether a given walker is compatible with this `WalkerInfo`.""" mocap_model = getattr(walker, 'mocap_walker_model', None) if mocap_model is not None and mocap_model != self._proto.model: model_type_name = list(mocap_pb2.Walker.Model.keys())[list( mocap_pb2.Walker.Model.values()).index(self._proto.model)] raise ValueError('Walker is not compatible with model type {!r}: got {}' .format(model_type_name, walker)) def rescale_walker(self, walker): """Rescales a given walker to match the data in this `WalkerInfo`.""" self.check_walker_is_compatible(walker) for subtree_info in self._proto.scaling.subtree: body = walker.mjcf_model.find('body', subtree_info.body_name) subtree_root = body.parent if subtree_info.parent_length: position_factor = subtree_info.parent_length / np.linalg.norm(body.pos) else: position_factor = subtree_info.size_factor rescale.rescale_subtree( subtree_root, position_factor, subtree_info.size_factor) if self._proto.mass: physics = mjcf.Physics.from_mjcf_model(walker.mjcf_model.root_model) current_mass = physics.bind(walker.root_body).subtreemass mass_factor = self._proto.mass / current_mass for body in walker.root_body.find_all('body'): inertial = getattr(body, 'inertial', None) if inertial: inertial.mass *= mass_factor for geom in walker.root_body.find_all('geom'): if geom.mass is not None: geom.mass *= mass_factor else: current_density = geom.density if geom.density is not None else 1000 geom.density = current_density * mass_factor def add_marker_sites(self, walker, size=0.01, rgba=(0., 0., 1., .3), default_to_random_position=True, random_state=None): """Adds sites corresponding to mocap tracking markers.""" self.check_walker_is_compatible(walker) random_state = random_state or np.random sites = [] if self._proto.markers: mocap_class = walker.mjcf_model.default.add('default', dclass='mocap') mocap_class.site.set_attributes(type='sphere', size=(size,), rgba=rgba, group=composer.SENSOR_SITES_GROUP) for marker_info in self._proto.markers.marker: body = walker.mjcf_model.find('body', marker_info.parent) if not body: raise ValueError('Walker model does not contain a body named {!r}' .format(str(marker_info.parent))) pos = marker_info.position if not pos: if default_to_random_position: pos = random_state.uniform(-0.005, 0.005, size=3) else: pos = np.zeros(3) sites.append( body.add( 'site', name=str(marker_info.name), pos=pos, dclass=mocap_class)) walker.list_of_site_names = [site.name for site in sites] return sites
dm_control-main
dm_control/locomotion/mocap/walkers.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """File loader for DeepMind-preprocessed version of the CMU motion capture data. The raw CMU point-cloud data is fitted onto the `dm_control.locomotion` CMU Humanoid walker model and re-exported as an HDF5 file (https://www.hdfgroup.org/solutions/hdf5/) that can be read by the `dm_control.locomotion.mocap` package. The original database is produced and hosted by Carnegie Mellon University at http://mocap.cs.cmu.edu/, and may be copied, modified, or redistributed without explicit permission (see http://mocap.cs.cmu.edu/faqs.php). """ import hashlib import os import requests import tqdm H5_FILENAME = {'2019': 'cmu_2019_08756c01.h5', '2020': 'cmu_2020_dfe3e9e0.h5'} H5_PATHS = {k: (os.path.join(os.path.dirname(__file__), v), os.path.join('~/.dm_control', v)) for k, v in H5_FILENAME.items()} H5_URL_BASE = 'https://storage.googleapis.com/dm_control/' H5_URL = {'2019': H5_URL_BASE+'cmu_2019_08756c01.h5', '2020': H5_URL_BASE+'cmu_2020_dfe3e9e0.h5'} H5_BYTES = {'2019': 488143314, '2020': 476559420} H5_SHA256 = { '2019': '08756c01cb4ac20da9918e70e85c32d4880c6c8c16189b02a18b79a5e79afa2b', '2020': 'dfe3e9e0b08d32960bdafbf89e541339ca8908a9a5e7f4a2c986362890d72863'} def _get_cached_file_path(version): """Returns the path to the cached data file if one exists.""" for path in H5_PATHS[version]: expanded_path = os.path.expanduser(path) try: if os.path.getsize(expanded_path) != H5_BYTES[version]: continue with open(expanded_path, 'rb'): return expanded_path except IOError: continue return None def _download_and_cache(version): """Downloads CMU data into one of the candidate paths in H5_PATHS.""" for path in H5_PATHS[version]: expanded_path = os.path.expanduser(path) try: os.makedirs(os.path.dirname(expanded_path), exist_ok=True) f = open(expanded_path, 'wb+') except IOError: continue with f: try: _download_into_file(f, version) except: os.unlink(expanded_path) raise return expanded_path raise IOError('cannot open file to write download data into, ' f'paths attempted: {H5_PATHS[version]}') def _download_into_file(f, version, validate_hash=True): """Download the CMU data into a file object that has been opened for write.""" with requests.get(H5_URL[version], stream=True) as req: req.raise_for_status() total_bytes = int(req.headers['Content-Length']) progress_bar = tqdm.tqdm( desc='Downloading CMU mocap data', total=total_bytes, unit_scale=True, unit_divisor=1024) try: for chunk in req.iter_content(chunk_size=102400): if chunk: f.write(chunk) progress_bar.update(len(chunk)) finally: progress_bar.close() if validate_hash: f.seek(0) if hashlib.sha256(f.read()).hexdigest() != H5_SHA256[version]: raise RuntimeError('downloaded file is corrupted') def get_path_for_cmu(version='2020'): """Path to mocap data fitted to a version of the CMU Humanoid model.""" assert version in H5_FILENAME.keys() path = _get_cached_file_path(version) if path is None: path = _download_and_cache(version) return path
dm_control-main
dm_control/locomotion/mocap/cmu_mocap_data.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================
dm_control-main
dm_control/locomotion/mocap/__init__.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Represents a motion-captured trajectory.""" import collections import copy from dm_control.locomotion.mocap import mocap_pb2 from dm_control.locomotion.mocap import props as mocap_props from dm_control.locomotion.mocap import walkers as mocap_walkers import numpy as np STEP_TIME_TOLERANCE = 1e-4 _REPEATED_POSITION_FIELDS = ('end_effectors', 'appendages', 'body_positions') _REPEATED_QUATERNION_FIELDS = ('body_quaternions',) def _zero_out_velocities(timestep_proto): out_proto = copy.deepcopy(timestep_proto) for walker in out_proto.walkers: walker.velocity[:] = np.zeros_like(walker.velocity) walker.angular_velocity[:] = np.zeros_like(walker.angular_velocity) walker.joints_velocity[:] = np.zeros_like(walker.joints_velocity) for prop in out_proto.props: prop.velocity[:] = np.zeros_like(prop.velocity) prop.angular_velocity[:] = np.zeros_like(prop.angular_velocity) return out_proto class Trajectory: """Represents a motion-captured trajectory.""" def __init__(self, proto, start_time=None, end_time=None, start_step=None, end_step=None, zero_out_velocities=True): """A wrapper around a mocap trajectory proto. Args: proto: proto representing the mocap trajectory. start_time: Start time of the mocap trajectory if only a subset of the underlying clip is desired. Defaults to the start of the full clip. Cannot be used when start_step is provided. end_time: End time of the mocap trajectory if only a subset of the underlying clip is desired. Defaults to the end of the full clip. Cannot be used when end_step is provided. start_step: Like start_time but using time indices. Defaults to the start of the full clip. Cannot be used when start_time is provided. end_step: Like end_time but using time indices. Defaults to the start of the full clip. Cannot be used when end_time is provided. zero_out_velocities: Whether to zero out the velocities in the last time step of the requested trajectory. Depending on the use-case it may be beneficial to use a stable end pose. """ self._proto = proto self._zero_out_velocities = zero_out_velocities if (start_time and start_step) or (end_time and end_step): raise ValueError(('Please specify either start and end times' 'or start and end steps but not both.')) if start_step: start_time = start_step * self._proto.dt if end_step: end_time = end_step * self._proto.dt self._set_start_time(start_time or 0.) self._set_end_time(end_time or (len(self._proto.timesteps)*self._proto.dt)) self._walkers_info = tuple(mocap_walkers.WalkerInfo(walker_proto) for walker_proto in self._proto.walkers) self._dict = None def as_dict(self): """Return trajectory as dictionary.""" if self._dict is None: self._dict = dict() if self._proto.timesteps: initial_timestep = self._proto.timesteps[0] num_walkers = len(initial_timestep.walkers) for i in range(num_walkers): key_prefix = 'walker_{:d}/'.format( i) if num_walkers > 1 else 'walker/' for field in mocap_pb2.WalkerPose.DESCRIPTOR.fields: field_name = field.name def walker_field(timestep, i=i, field_name=field_name): values = getattr(timestep.walkers[i], field_name) if field_name in _REPEATED_POSITION_FIELDS: values = np.reshape(values, (-1, 3)) elif field_name in _REPEATED_QUATERNION_FIELDS: values = np.reshape(values, (-1, 4)) return np.array(values) self._dict[key_prefix + field_name] = walker_field num_props = len(initial_timestep.props) for i in range(len(initial_timestep.props)): key_prefix = 'prop_{:d}/'.format(i) if num_props > 1 else 'prop/' for field in mocap_pb2.PropPose.DESCRIPTOR.fields: field_name = field.name def prop_field(timestep, i=i, field_name=field_name): return np.array(getattr(timestep.props[i], field_name)) self._dict[key_prefix + field_name] = prop_field self._create_all_items(self._dict) for k in self._dict: # make trajectory immutable by default self._dict[k].flags.writeable = False # pytype: disable=attribute-error return {k: v[self._start_step:self._end_step] for k, v in self._dict.items()} def _create_single_item(self, get_field_in_timestep): if not self._proto.timesteps: return np.empty((0)) for i, timestep in enumerate(self._proto.timesteps): values = get_field_in_timestep(timestep) if i == 0: array = np.empty((len(self._proto.timesteps),) + values.shape) array[i, :] = values return array def _create_all_items(self, dictionary): for key, value in dictionary.items(): if callable(value): dictionary[key] = self._create_single_item(value) return dictionary def _get_quantized_time(self, time): if time == float('inf'): return len(self._proto.timesteps) - 1 else: divided_time = time / self._proto.dt quantized_time = int(np.round(divided_time)) if np.abs(quantized_time - divided_time) > STEP_TIME_TOLERANCE: raise ValueError('`time` should be a multiple of dt = {}: got {}' .format(self._proto.dt, time)) return quantized_time def _get_step_id(self, time): quantized_time = self._get_quantized_time(time) return np.clip(quantized_time + self._start_step, self._start_step, self._end_step - 1) def get_modified_trajectory(self, proto_modifier, random_state=None): modified_proto = copy.deepcopy(self._proto) if isinstance(proto_modifier, collections.abc.Iterable): for proto_mod in proto_modifier: proto_mod(modified_proto, random_state=random_state) else: proto_modifier(modified_proto, random_state=random_state) return type(self)(modified_proto, self.start_time, self.end_time) @property def identifier(self): return self._proto.identifier @property def start_time(self): return self._start_step * self._proto.dt def _set_start_time(self, new_value): self._start_step = np.clip(self._get_quantized_time(new_value), 0, len(self._proto.timesteps) - 1) @start_time.setter def start_time(self, new_value): self._set_start_time(new_value) @property def start_step(self): return self._start_step @start_step.setter def start_step(self, new_value): self._start_step = np.clip(int(new_value), 0, len(self._proto.timesteps) - 1) @property def end_step(self): return self._end_step @end_step.setter def end_step(self, new_value): self._end_step = np.clip(int(new_value), 0, len(self._proto.timesteps) - 1) @property def end_time(self): return (self._end_step - 1) * self._proto.dt @property def clip_end_time(self): """Length of the full clip.""" return (len(self._proto.timesteps) -1) * self._proto.dt def _set_end_time(self, new_value): self._end_step = 1 + np.clip(self._get_quantized_time(new_value), 0, len(self._proto.timesteps) - 1) if self._zero_out_velocities: self._last_timestep = _zero_out_velocities( self._proto.timesteps[self._end_step - 1]) else: self._last_timestep = self._proto.timesteps[self._end_step - 1] @end_time.setter def end_time(self, new_value): self._set_end_time(new_value) @property def duration(self): return self.end_time - self.start_time @property def num_steps(self): return self._end_step - self._start_step @property def dt(self): return self._proto.dt def configure_walkers(self, walkers): try: walkers = iter(walkers) except TypeError: walkers = iter((walkers,)) for walker, walker_info in zip(walkers, self._walkers_info): walker_info.rescale_walker(walker) walker_info.add_marker_sites(walker) def create_props(self, proto_modifier=None, priority_friction=False, prop_factory=None): proto = self._proto prop_factory = prop_factory or mocap_props.Prop if proto_modifier is not None: proto = copy.copy(proto) proto_modifier(proto) return tuple( prop_factory(prop_proto, priority_friction=priority_friction) for prop_proto in proto.props) def get_timestep_data(self, time): step_id = self._get_step_id(time) if step_id == self._end_step - 1: return self._last_timestep else: return self._proto.timesteps[step_id] def set_walker_poses(self, physics, walkers): timestep = self._proto.timesteps[self._get_step_id(physics.time())] for walker, walker_timestep in zip(walkers, timestep.walkers): walker.set_pose(physics, position=walker_timestep.position, quaternion=walker_timestep.quaternion) physics.bind(walker.mocap_joints).qpos = walker_timestep.joints def set_prop_poses(self, physics, props): timestep = self._proto.timesteps[self._get_step_id(physics.time())] for prop, prop_timestep in zip(props, timestep.props): prop.set_pose(physics, position=prop_timestep.position, quaternion=prop_timestep.quaternion)
dm_control-main
dm_control/locomotion/mocap/trajectory.py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: mocap.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0bmocap.proto\x12\x1b\x64m_control.locomotion.mocap\"T\n\x06Marker\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06parent\x18\x02 \x01(\t\x12\x14\n\x08position\x18\x03 \x03(\x01\x42\x02\x10\x01\x12\x16\n\nquaternion\x18\x04 \x03(\x01\x42\x02\x10\x01\">\n\x07Markers\x12\x33\n\x06marker\x18\x01 \x03(\x0b\x32#.dm_control.locomotion.mocap.Marker\"O\n\x0eSubtreeScaling\x12\x11\n\tbody_name\x18\x01 \x01(\t\x12\x15\n\rparent_length\x18\x02 \x01(\x01\x12\x13\n\x0bsize_factor\x18\x03 \x01(\x01\"M\n\rWalkerScaling\x12<\n\x07subtree\x18\x01 \x03(\x0b\x32+.dm_control.locomotion.mocap.SubtreeScaling\"\xa2\x03\n\x06Walker\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x38\n\x05model\x18\x02 \x01(\x0e\x32).dm_control.locomotion.mocap.Walker.Model\x12;\n\x07scaling\x18\x03 \x01(\x0b\x32*.dm_control.locomotion.mocap.WalkerScaling\x12\x35\n\x07markers\x18\x04 \x01(\x0b\x32$.dm_control.locomotion.mocap.Markers\x12\x0c\n\x04mass\x18\x05 \x01(\x01\x12\x1a\n\x12\x65nd_effector_names\x18\x06 \x03(\t\x12\x17\n\x0f\x61ppendage_names\x18\x07 \x03(\t\"\x98\x01\n\x05Model\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0c\n\x08\x43MU_2019\x10\x01\x12\x17\n\x13RESERVED_MODEL_ID_2\x10\x02\x12\x17\n\x13RESERVED_MODEL_ID_3\x10\x03\x12\x0c\n\x08\x43MU_2020\x10\x04\x12\x17\n\x13RESERVED_MODEL_ID_5\x10\x05\x12\x17\n\x13RESERVED_MODEL_ID_6\x10\x06\"\x9b\x01\n\x04Prop\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x36\n\x05shape\x18\x02 \x01(\x0e\x32\'.dm_control.locomotion.mocap.Prop.Shape\x12\x10\n\x04size\x18\x03 \x03(\x01\x42\x02\x10\x01\x12\x0c\n\x04mass\x18\x04 \x01(\x01\"-\n\x05Shape\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\n\n\x06SPHERE\x10\x01\x12\x07\n\x03\x42OX\x10\x02\"\xa8\x02\n\nWalkerPose\x12\x14\n\x08position\x18\x01 \x03(\x01\x42\x02\x10\x01\x12\x16\n\nquaternion\x18\x02 \x03(\x01\x42\x02\x10\x01\x12\x12\n\x06joints\x18\x03 \x03(\x01\x42\x02\x10\x01\x12\x1a\n\x0e\x63\x65nter_of_mass\x18\x04 \x03(\x01\x42\x02\x10\x01\x12\x19\n\rend_effectors\x18\x05 \x03(\x01\x42\x02\x10\x01\x12\x14\n\x08velocity\x18\x06 \x03(\x01\x42\x02\x10\x01\x12\x1c\n\x10\x61ngular_velocity\x18\x07 \x03(\x01\x42\x02\x10\x01\x12\x1b\n\x0fjoints_velocity\x18\x08 \x03(\x01\x42\x02\x10\x01\x12\x16\n\nappendages\x18\t \x03(\x01\x42\x02\x10\x01\x12\x1a\n\x0e\x62ody_positions\x18\n \x03(\x01\x42\x02\x10\x01\x12\x1c\n\x10\x62ody_quaternions\x18\x0b \x03(\x01\x42\x02\x10\x01\"l\n\x08PropPose\x12\x14\n\x08position\x18\x01 \x03(\x01\x42\x02\x10\x01\x12\x16\n\nquaternion\x18\x02 \x03(\x01\x42\x02\x10\x01\x12\x14\n\x08velocity\x18\x03 \x03(\x01\x42\x02\x10\x01\x12\x1c\n\x10\x61ngular_velocity\x18\x04 \x03(\x01\x42\x02\x10\x01\"~\n\x0cTimestepData\x12\x38\n\x07walkers\x18\x01 \x03(\x0b\x32\'.dm_control.locomotion.mocap.WalkerPose\x12\x34\n\x05props\x18\x02 \x03(\x0b\x32%.dm_control.locomotion.mocap.PropPose\"\x82\x02\n\x10\x46ittedTrajectory\x12\x12\n\nidentifier\x18\x01 \x01(\t\x12\x0c\n\x04year\x18\x02 \x01(\x05\x12\r\n\x05month\x18\x03 \x01(\x05\x12\x0b\n\x03\x64\x61y\x18\x04 \x01(\x05\x12\n\n\x02\x64t\x18\x05 \x01(\x01\x12\x34\n\x07walkers\x18\x06 \x03(\x0b\x32#.dm_control.locomotion.mocap.Walker\x12\x30\n\x05props\x18\x07 \x03(\x0b\x32!.dm_control.locomotion.mocap.Prop\x12<\n\ttimesteps\x18\x08 \x03(\x0b\x32).dm_control.locomotion.mocap.TimestepDatab\x06proto3') _MARKER = DESCRIPTOR.message_types_by_name['Marker'] _MARKERS = DESCRIPTOR.message_types_by_name['Markers'] _SUBTREESCALING = DESCRIPTOR.message_types_by_name['SubtreeScaling'] _WALKERSCALING = DESCRIPTOR.message_types_by_name['WalkerScaling'] _WALKER = DESCRIPTOR.message_types_by_name['Walker'] _PROP = DESCRIPTOR.message_types_by_name['Prop'] _WALKERPOSE = DESCRIPTOR.message_types_by_name['WalkerPose'] _PROPPOSE = DESCRIPTOR.message_types_by_name['PropPose'] _TIMESTEPDATA = DESCRIPTOR.message_types_by_name['TimestepData'] _FITTEDTRAJECTORY = DESCRIPTOR.message_types_by_name['FittedTrajectory'] _WALKER_MODEL = _WALKER.enum_types_by_name['Model'] _PROP_SHAPE = _PROP.enum_types_by_name['Shape'] Marker = _reflection.GeneratedProtocolMessageType('Marker', (_message.Message,), { 'DESCRIPTOR' : _MARKER, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.Marker) }) _sym_db.RegisterMessage(Marker) Markers = _reflection.GeneratedProtocolMessageType('Markers', (_message.Message,), { 'DESCRIPTOR' : _MARKERS, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.Markers) }) _sym_db.RegisterMessage(Markers) SubtreeScaling = _reflection.GeneratedProtocolMessageType('SubtreeScaling', (_message.Message,), { 'DESCRIPTOR' : _SUBTREESCALING, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.SubtreeScaling) }) _sym_db.RegisterMessage(SubtreeScaling) WalkerScaling = _reflection.GeneratedProtocolMessageType('WalkerScaling', (_message.Message,), { 'DESCRIPTOR' : _WALKERSCALING, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.WalkerScaling) }) _sym_db.RegisterMessage(WalkerScaling) Walker = _reflection.GeneratedProtocolMessageType('Walker', (_message.Message,), { 'DESCRIPTOR' : _WALKER, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.Walker) }) _sym_db.RegisterMessage(Walker) Prop = _reflection.GeneratedProtocolMessageType('Prop', (_message.Message,), { 'DESCRIPTOR' : _PROP, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.Prop) }) _sym_db.RegisterMessage(Prop) WalkerPose = _reflection.GeneratedProtocolMessageType('WalkerPose', (_message.Message,), { 'DESCRIPTOR' : _WALKERPOSE, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.WalkerPose) }) _sym_db.RegisterMessage(WalkerPose) PropPose = _reflection.GeneratedProtocolMessageType('PropPose', (_message.Message,), { 'DESCRIPTOR' : _PROPPOSE, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.PropPose) }) _sym_db.RegisterMessage(PropPose) TimestepData = _reflection.GeneratedProtocolMessageType('TimestepData', (_message.Message,), { 'DESCRIPTOR' : _TIMESTEPDATA, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.TimestepData) }) _sym_db.RegisterMessage(TimestepData) FittedTrajectory = _reflection.GeneratedProtocolMessageType('FittedTrajectory', (_message.Message,), { 'DESCRIPTOR' : _FITTEDTRAJECTORY, '__module__' : 'mocap_pb2' # @@protoc_insertion_point(class_scope:dm_control.locomotion.mocap.FittedTrajectory) }) _sym_db.RegisterMessage(FittedTrajectory) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _MARKER.fields_by_name['position']._options = None _MARKER.fields_by_name['position']._serialized_options = b'\020\001' _MARKER.fields_by_name['quaternion']._options = None _MARKER.fields_by_name['quaternion']._serialized_options = b'\020\001' _PROP.fields_by_name['size']._options = None _PROP.fields_by_name['size']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['position']._options = None _WALKERPOSE.fields_by_name['position']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['quaternion']._options = None _WALKERPOSE.fields_by_name['quaternion']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['joints']._options = None _WALKERPOSE.fields_by_name['joints']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['center_of_mass']._options = None _WALKERPOSE.fields_by_name['center_of_mass']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['end_effectors']._options = None _WALKERPOSE.fields_by_name['end_effectors']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['velocity']._options = None _WALKERPOSE.fields_by_name['velocity']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['angular_velocity']._options = None _WALKERPOSE.fields_by_name['angular_velocity']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['joints_velocity']._options = None _WALKERPOSE.fields_by_name['joints_velocity']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['appendages']._options = None _WALKERPOSE.fields_by_name['appendages']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['body_positions']._options = None _WALKERPOSE.fields_by_name['body_positions']._serialized_options = b'\020\001' _WALKERPOSE.fields_by_name['body_quaternions']._options = None _WALKERPOSE.fields_by_name['body_quaternions']._serialized_options = b'\020\001' _PROPPOSE.fields_by_name['position']._options = None _PROPPOSE.fields_by_name['position']._serialized_options = b'\020\001' _PROPPOSE.fields_by_name['quaternion']._options = None _PROPPOSE.fields_by_name['quaternion']._serialized_options = b'\020\001' _PROPPOSE.fields_by_name['velocity']._options = None _PROPPOSE.fields_by_name['velocity']._serialized_options = b'\020\001' _PROPPOSE.fields_by_name['angular_velocity']._options = None _PROPPOSE.fields_by_name['angular_velocity']._serialized_options = b'\020\001' _MARKER._serialized_start=44 _MARKER._serialized_end=128 _MARKERS._serialized_start=130 _MARKERS._serialized_end=192 _SUBTREESCALING._serialized_start=194 _SUBTREESCALING._serialized_end=273 _WALKERSCALING._serialized_start=275 _WALKERSCALING._serialized_end=352 _WALKER._serialized_start=355 _WALKER._serialized_end=773 _WALKER_MODEL._serialized_start=621 _WALKER_MODEL._serialized_end=773 _PROP._serialized_start=776 _PROP._serialized_end=931 _PROP_SHAPE._serialized_start=886 _PROP_SHAPE._serialized_end=931 _WALKERPOSE._serialized_start=934 _WALKERPOSE._serialized_end=1230 _PROPPOSE._serialized_start=1232 _PROPPOSE._serialized_end=1340 _TIMESTEPDATA._serialized_start=1342 _TIMESTEPDATA._serialized_end=1468 _FITTEDTRAJECTORY._serialized_start=1471 _FITTEDTRAJECTORY._serialized_end=1729 # @@protoc_insertion_point(module_scope)
dm_control-main
dm_control/locomotion/mocap/mocap_pb2.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Helpers for loading a collection of trajectories.""" import abc import collections import operator from dm_control.composer import variation from dm_control.locomotion.mocap import mocap_pb2 from dm_control.locomotion.mocap import trajectory from dm_control.utils import transformations as tr import numpy as np from google.protobuf import descriptor class TrajectoryLoader(metaclass=abc.ABCMeta): """Base class for helpers that load and decode mocap trajectories.""" def __init__(self, trajectory_class=trajectory.Trajectory, proto_modifier=()): """Initializes this loader. Args: trajectory_class: A Python class that wraps a loaded trajectory proto. proto_modifier: (optional) A callable, or an iterable of callables, that modify each trajectory proto in-place after it has been deserialized from the SSTable. Raises: ValueError: If `proto_modifier` is specified, but contains a non-callable entry. """ self._trajectory_class = trajectory_class if not isinstance(proto_modifier, collections.abc.Iterable): if proto_modifier is None: # backwards compatibility proto_modifier = () else: proto_modifier = (proto_modifier,) for modifier in proto_modifier: if not callable(modifier): raise ValueError('{} is not callable'.format(modifier)) self._proto_modifiers = proto_modifier @abc.abstractmethod def keys(self): """The sequence of identifiers for the loaded trajectories.""" @abc.abstractmethod def _get_proto_for_key(self, key): """Returns a protocol buffer message corresponding to the requested key.""" def get_trajectory(self, key, start_time=None, end_time=None, start_step=None, end_step=None, zero_out_velocities=True): """Retrieves a trajectory identified by `key` from the SSTable.""" proto = self._get_proto_for_key(key) for modifier in self._proto_modifiers: modifier(proto) return self._trajectory_class(proto, start_time=start_time, end_time=end_time, start_step=start_step, end_step=end_step, zero_out_velocities=zero_out_velocities) class HDF5TrajectoryLoader(TrajectoryLoader): """A helper for loading and decoding mocap trajectories from HDF5. In order to use this class, h5py must be installed (it's an optional dependency of dm_control). """ def __init__(self, path, trajectory_class=trajectory.Trajectory, proto_modifier=()): # h5py is an optional dependency of dm_control, so only try to import # if it's used. try: import h5py # pylint: disable=g-import-not-at-top except ImportError as e: raise ImportError( 'h5py not found. When installing dm_control, ' 'use `pip install dm_control[HDF5]` to enable HDF5TrajectoryLoader.' ) from e self._h5_file = h5py.File(path, mode='r') self._keys = tuple(sorted(self._h5_file.keys())) super().__init__( trajectory_class=trajectory_class, proto_modifier=proto_modifier) def keys(self): return self._keys def _fill_primitive_proto_fields(self, proto, h5_group, skip_fields=()): for field in proto.DESCRIPTOR.fields: if field.name in skip_fields or field.name not in h5_group.attrs: continue elif field.type not in (descriptor.FieldDescriptor.TYPE_GROUP, descriptor.FieldDescriptor.TYPE_MESSAGE): if field.label == descriptor.FieldDescriptor.LABEL_REPEATED: getattr(proto, field.name).extend(h5_group.attrs[field.name]) else: setattr(proto, field.name, h5_group.attrs[field.name]) def _fill_repeated_proto_message_fields(self, proto_container, h5_container, h5_prefix): for item_id in range(len(h5_container)): h5_item = h5_container['{:s}_{:d}'.format(h5_prefix, item_id)] proto = proto_container.add() self._fill_primitive_proto_fields(proto, h5_item) def _get_proto_for_key(self, key): """Returns a trajectory protocol buffer message for the specified key.""" if isinstance(key, str): key = key.encode('utf-8') h5_trajectory = self._h5_file[key] num_steps = h5_trajectory.attrs['num_steps'] proto = mocap_pb2.FittedTrajectory() proto.identifier = key self._fill_primitive_proto_fields(proto, h5_trajectory, skip_fields=('identifier',)) for _ in range(num_steps): proto.timesteps.add() h5_walkers = h5_trajectory['walkers'] for walker_id in range(len(h5_walkers)): h5_walker = h5_walkers['walker_{:d}'.format(walker_id)] walker_proto = proto.walkers.add() self._fill_primitive_proto_fields(walker_proto, h5_walker) self._fill_repeated_proto_message_fields( walker_proto.scaling.subtree, h5_walker['scaling'], h5_prefix='subtree') self._fill_repeated_proto_message_fields( walker_proto.markers.marker, h5_walker['markers'], h5_prefix='marker') walker_fields = dict() for field in mocap_pb2.WalkerPose.DESCRIPTOR.fields: walker_fields[field.name] = np.asarray(h5_walker[field.name]) for timestep_id, timestep in enumerate(proto.timesteps): walker_timestep = timestep.walkers.add() for k, v in walker_fields.items(): getattr(walker_timestep, k).extend(v[:, timestep_id]) h5_props = h5_trajectory['props'] for prop_id in range(len(h5_props)): h5_prop = h5_props['prop_{:d}'.format(prop_id)] prop_proto = proto.props.add() self._fill_primitive_proto_fields(prop_proto, h5_prop) prop_fields = dict() for field in mocap_pb2.PropPose.DESCRIPTOR.fields: prop_fields[field.name] = np.asarray(h5_prop[field.name]) for timestep_id, timestep in enumerate(proto.timesteps): prop_timestep = timestep.props.add() for k, v in prop_fields.items(): getattr(prop_timestep, k).extend(v[:, timestep_id]) return proto class PropMassLimiter: """A trajectory proto modifier that enforces a maximum mass for each prop.""" def __init__(self, max_mass): self._max_mass = max_mass def __call__(self, proto, random_state=None): for prop in proto.props: prop.mass = min(prop.mass, self._max_mass) class PropResizer: """A trajectory proto modifier that changes prop sizes and mass.""" def __init__(self, size_factor=None, size_delta=None, mass=None): if size_factor and size_delta: raise ValueError( 'Only one of `size_factor` or `size_delta` can be specified.') elif size_factor: self._size_variation = size_factor self._size_op = operator.mul else: self._size_variation = size_delta self._size_op = operator.add self._mass = mass def __call__(self, proto, random_state=None): for prop in proto.props: size_value = variation.evaluate(self._size_variation, random_state=random_state) if not np.shape(size_value): size_value = np.full(len(prop.size), size_value) for i in range(len(prop.size)): prop.size[i] = self._size_op(prop.size[i], size_value[i]) prop.mass = variation.evaluate(self._mass, random_state=random_state) class ZOffsetter: """A trajectory proto modifier that shifts the z position of a trajectory.""" def __init__(self, z_offset=0.0): self._z_offset = z_offset def _add_z_offset(self, proto_field): if len(proto_field) % 3: raise ValueError('Length of proto_field is not a multiple of 3.') for i in range(2, len(proto_field), 3): proto_field[i] += self._z_offset def __call__(self, proto, random_state=None): for t in proto.timesteps: for walker_pose in t.walkers: # shift walker position. self._add_z_offset(walker_pose.position) self._add_z_offset(walker_pose.body_positions) self._add_z_offset(walker_pose.center_of_mass) for prop_pose in t.props: # shift prop position self._add_z_offset(prop_pose.position) class AppendageFixer: def __call__(self, proto, random_state=None): for t in proto.timesteps: for walker_pose in t.walkers: xpos = np.asarray(walker_pose.position) xquat = np.asarray(walker_pose.quaternion) appendages = np.reshape(walker_pose.appendages, (-1, 3)) xmat = tr.quat_to_mat(xquat)[:3, :3] walker_pose.appendages[:] = np.ravel((appendages - xpos) @ xmat)
dm_control-main
dm_control/locomotion/mocap/loader.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Props that are constructed from motion-capture data.""" from dm_control import composer from dm_control import mjcf from dm_control.composer import define from dm_control.composer.observation import observable from dm_control.locomotion.mocap import mocap_pb2 import numpy as np _DEFAULT_LIGHT_PROP_RGBA = np.array([0.77, 0.64, 0.21, 1.]) _DEFAULT_LIGHT_PROP_MASS = 3. _DEFAULT_HEAVY_PROP_RGBA = np.array([0.77, 0.34, 0.21, 1.]) _DEFAULT_HEAVY_PROP_MASS = 10. _PROP_SHAPE = { mocap_pb2.Prop.SPHERE: 'sphere', mocap_pb2.Prop.BOX: 'box', } def _default_prop_rgba(prop_mass): normalized_mass = np.clip( (prop_mass - _DEFAULT_LIGHT_PROP_MASS) / (_DEFAULT_HEAVY_PROP_MASS - _DEFAULT_LIGHT_PROP_MASS), 0., 1.) return ((1 - normalized_mass) * _DEFAULT_LIGHT_PROP_RGBA + normalized_mass * _DEFAULT_HEAVY_PROP_RGBA) class Prop(composer.Entity): """A prop that is constructed from motion-capture data.""" def _build(self, prop_proto, rgba=None, priority_friction=False): rgba = rgba or _default_prop_rgba(prop_proto.mass) self._mjcf_root = mjcf.RootElement(model=str(prop_proto.name)) self._geom = self._mjcf_root.worldbody.add( 'geom', type=_PROP_SHAPE[prop_proto.shape], size=prop_proto.size, mass=prop_proto.mass, rgba=rgba) if priority_friction: self._geom.priority = 1 self._geom.condim = 6 # Torsional and rolling friction have units of length which correspond # to the scale of the surface contact "patch" that they approximate. self._geom.friction = [.7, prop_proto.size[0]/4, prop_proto.size[0]/2] self._body_geom_ids = () self._position = self._mjcf_root.sensor.add( 'framepos', name='position', objtype='geom', objname=self.geom) self._orientation = self._mjcf_root.sensor.add( 'framequat', name='orientation', objtype='geom', objname=self.geom) def _build_observables(self): return Observables(self) @property def mjcf_model(self): return self._mjcf_root def update_with_new_prop(self, prop): self._geom.size = prop.geom.size self._geom.mass = prop.geom.mass self._geom.rgba = prop.geom.rgba @property def geom(self): return self._geom def after_compile(self, physics, random_state): del random_state # unused self._body_geom_ids = (physics.bind(self._geom).element_id,) @property def body_geom_ids(self): return self._body_geom_ids @property def position(self): """Ground truth pos sensor.""" return self._position @property def orientation(self): """Ground truth orientation sensor.""" return self._orientation class Observables(composer.Observables): @define.observable def position(self): return observable.MJCFFeature('sensordata', self._entity.position) @define.observable def orientation(self): return observable.MJCFFeature('sensordata', self._entity.orientation)
dm_control-main
dm_control/locomotion/mocap/props.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for loader.""" import os from absl.testing import absltest from dm_control.locomotion.mocap import loader from dm_control.locomotion.mocap import mocap_pb2 from dm_control.locomotion.mocap import trajectory from google.protobuf import descriptor from google.protobuf import text_format from dm_control.utils import io as resources TEXTPROTOS = [ os.path.join(os.path.dirname(__file__), 'test_001.textproto'), os.path.join(os.path.dirname(__file__), 'test_002.textproto'), ] HDF5 = os.path.join(os.path.dirname(__file__), 'test_trajectories.h5') class HDF5TrajectoryLoaderTest(absltest.TestCase): def assert_proto_equal(self, x, y, msg=''): self.assertEqual(type(x), type(y), msg=msg) for field in x.DESCRIPTOR.fields: x_field = getattr(x, field.name) y_field = getattr(y, field.name) if field.label == descriptor.FieldDescriptor.LABEL_REPEATED: if field.type == descriptor.FieldDescriptor.TYPE_MESSAGE: for i, (x_child, y_child) in enumerate(zip(x_field, y_field)): self.assert_proto_equal( x_child, y_child, msg=os.path.join(msg, '{}[{}]'.format(field.name, i))) else: self.assertEqual(list(x_field), list(y_field), msg=os.path.join(msg, field.name)) else: if field.type == descriptor.FieldDescriptor.TYPE_MESSAGE: self.assert_proto_equal( x_field, y_field, msg=os.path.join(msg, field.name)) else: self.assertEqual(x_field, y_field, msg=os.path.join(msg, field.name)) def test_hdf5_agrees_with_textprotos(self): hdf5_loader = loader.HDF5TrajectoryLoader( resources.GetResourceFilename(HDF5)) for textproto_path in TEXTPROTOS: trajectory_textproto = resources.GetResource(textproto_path) trajectory_from_textproto = mocap_pb2.FittedTrajectory() text_format.Parse(trajectory_textproto, trajectory_from_textproto) trajectory_identifier = ( trajectory_from_textproto.identifier.encode('utf-8')) self.assert_proto_equal( hdf5_loader.get_trajectory(trajectory_identifier)._proto, trajectory.Trajectory(trajectory_from_textproto)._proto) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/mocap/loader_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for dm_control.locomotion.walkers.base.""" from absl.testing import absltest from dm_control import mjcf from dm_control.locomotion.walkers import base import numpy as np class FakeWalker(base.Walker): def _build(self): self._mjcf_root = mjcf.RootElement(model='walker') self._torso_body = self._mjcf_root.worldbody.add( 'body', name='torso', xyaxes=[0, 1, 0, -1, 0, 0]) @property def mjcf_model(self): return self._mjcf_root @property def actuators(self): return [] @property def root_body(self): return self._torso_body @property def observable_joints(self): return [] class BaseWalkerTest(absltest.TestCase): def testTransformVectorToEgocentricFrame(self): walker = FakeWalker() physics = mjcf.Physics.from_mjcf_model(walker.mjcf_model) # 3D vectors np.testing.assert_allclose( walker.transform_vec_to_egocentric_frame(physics, [0, 1, 0]), [1, 0, 0], atol=1e-10) np.testing.assert_allclose( walker.transform_vec_to_egocentric_frame(physics, [-1, 0, 0]), [0, 1, 0], atol=1e-10) np.testing.assert_allclose( walker.transform_vec_to_egocentric_frame(physics, [0, 0, 1]), [0, 0, 1], atol=1e-10) # 2D vectors; z-component is ignored np.testing.assert_allclose( walker.transform_vec_to_egocentric_frame(physics, [0, 1]), [1, 0], atol=1e-10) np.testing.assert_allclose( walker.transform_vec_to_egocentric_frame(physics, [-1, 0]), [0, 1], atol=1e-10) def testTransformMatrixToEgocentricFrame(self): walker = FakeWalker() physics = mjcf.Physics.from_mjcf_model(walker.mjcf_model) rotation_atob = np.array([[0, 1, 0], [0, 0, -1], [-1, 0, 0]]) ego_rotation_atob = np.array([[0, 0, -1], [0, -1, 0], [-1, 0, 0]]) np.testing.assert_allclose( walker.transform_xmat_to_egocentric_frame(physics, rotation_atob), ego_rotation_atob, atol=1e-10) flat_rotation_atob = np.reshape(rotation_atob, -1) flat_rotation_ego_atob = np.reshape(ego_rotation_atob, -1) np.testing.assert_allclose( walker.transform_xmat_to_egocentric_frame(physics, flat_rotation_atob), flat_rotation_ego_atob, atol=1e-10) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/base_test.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Function to rescale the walkers.""" from dm_control import mjcf def rescale_subtree(body, position_factor, size_factor): """Recursively rescales an entire subtree of an MJCF model.""" for child in body.all_children(): if getattr(child, 'fromto', None) is not None: new_pos = position_factor * 0.5 * (child.fromto[3:] + child.fromto[:3]) new_size = size_factor * 0.5 * (child.fromto[3:] - child.fromto[:3]) child.fromto[:3] = new_pos - new_size child.fromto[3:] = new_pos + new_size if getattr(child, 'pos', None) is not None: child.pos *= position_factor if getattr(child, 'size', None) is not None: child.size *= size_factor if child.tag == 'body' or child.tag == 'worldbody': rescale_subtree(child, position_factor, size_factor) def rescale_humanoid(walker, position_factor, size_factor=None, mass=None): """Rescales a humanoid walker's lengths, sizes, and masses.""" body = walker.mjcf_model.find('body', 'root') subtree_root = body.parent if size_factor is None: size_factor = position_factor rescale_subtree(subtree_root, position_factor, size_factor) if mass is not None: physics = mjcf.Physics.from_mjcf_model(walker.mjcf_model.root_model) current_mass = physics.bind(walker.root_body).subtreemass mass_factor = mass / current_mass for body in walker.root_body.find_all('body'): inertial = getattr(body, 'inertial', None) if inertial: inertial.mass *= mass_factor for geom in walker.root_body.find_all('geom'): if geom.mass is not None: geom.mass *= mass_factor else: current_density = geom.density if geom.density is not None else 1000 geom.density = current_density * mass_factor
dm_control-main
dm_control/locomotion/walkers/rescale.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Base class for Walkers.""" import abc from dm_control import composer from dm_control.composer.observation import observable from dm_control.locomotion.walkers import base from dm_control.locomotion.walkers import initializers from dm_control.mujoco.wrapper.mjbindings import mjlib import numpy as np _RANGEFINDER_SCALE = 10.0 _TOUCH_THRESHOLD = 1e-3 class Walker(base.Walker): """Legacy base class for Walker robots.""" def _build(self, initializer=None): self._end_effectors_pos_sensors = [] self._obs_on_other = {} try: self._initializers = tuple(initializer) except TypeError: self._initializers = (initializer or initializers.UprightInitializer(),) @property def upright_pose(self): return base.WalkerPose() def _build_observables(self): return WalkerObservables(self) def reinitialize_pose(self, physics, random_state): for initializer in self._initializers: initializer.initialize_pose(physics, self, random_state) def aliveness(self, physics): """A measure of the aliveness of the walker. Aliveness measure could be used for deciding on termination (ant flipped over and it's impossible for it to recover), or used as a shaping reward to maintain an alive pose that we desired (humanoids remaining upright). Args: physics: an instance of `Physics`. Returns: a `float` in the range of [-1., 0.] where -1 means not alive and 0. means alive. In walkers for which the concept of aliveness does not make sense, the default implementation is to always return 0.0. """ return 0. @property @abc.abstractmethod def ground_contact_geoms(self): """Geoms in this walker that are expected to be in contact with the ground. This property is used by some tasks to determine contact-based failure termination. It should only contain geoms that are expected to be in contact with the ground during "normal" locomotion. For example, for a humanoid model, this property would be expected to contain only the geoms that make up the two feet. Note that certain specialized tasks may also allow geoms that are not listed here to be in contact with the ground. For example, a humanoid cartwheel task would also allow the hands to touch the ground in addition to the feet. """ raise NotImplementedError def after_compile(self, physics, unused_random_state): super().after_compile(physics, unused_random_state) self._end_effector_geom_ids = set() for eff_body in self.end_effectors: eff_geom = eff_body.find_all('geom') self._end_effector_geom_ids |= set(physics.bind(eff_geom).element_id) self._body_geom_ids = set( physics.bind(geom).element_id for geom in self.mjcf_model.find_all('geom')) self._body_geom_ids.difference_update(self._end_effector_geom_ids) @property def end_effector_geom_ids(self): return self._end_effector_geom_ids @property def body_geom_ids(self): return self._body_geom_ids @property def obs_on_other(self): return self._obs_on_other def end_effector_contacts(self, physics): """Collect the contacts with the end effectors. This function returns any contacts being made with any of the end effectors, both the other geom with which contact is being made as well as the magnitude. Args: physics: an instance of `Physics`. Returns: a dict with as key a tuple of geom ids, of which one is an end effector, and as value the total magnitude of all contacts between these geoms """ return self.collect_contacts(physics, self._end_effector_geom_ids) def body_contacts(self, physics): """Collect the contacts with the body. This function returns any contacts being made with any of body geoms, except the end effectors, both the other geom with which contact is being made as well as the magnitude. Args: physics: an instance of `Physics`. Returns: a dict with as key a tuple of geom ids, of which one is a body geom, and as value the total magnitude of all contacts between these geoms """ return self.collect_contacts(physics, self._body_geom_ids) def collect_contacts(self, physics, geom_ids): contacts = {} forcetorque = np.zeros(6) for i, contact in enumerate(physics.data.contact): if ((contact.geom1 in geom_ids) or (contact.geom2 in geom_ids)) and contact.dist < contact.includemargin: mjlib.mj_contactForce(physics.model.ptr, physics.data.ptr, i, forcetorque) contacts[(contact.geom1, contact.geom2)] = (forcetorque[0] + contacts.get( (contact.geom1, contact.geom2), 0.)) return contacts @property @abc.abstractmethod def end_effectors(self): raise NotImplementedError @property @abc.abstractmethod def egocentric_camera(self): raise NotImplementedError @composer.cached_property def touch_sensors(self): return self._mjcf_root.sensor.get_children('touch') @property def prev_action(self): """Returns the actuation actions applied in the previous step. Concrete walker implementations should provide caching mechanism themselves in order to access this observable (for example, through `apply_action`). """ raise NotImplementedError def after_substep(self, physics, random_state): del random_state # Unused. # As of MuJoCo v2.0, updates to `mjData->subtree_linvel` will be skipped # unless these quantities are needed by the simulation. We need these in # order to calculate `torso_{x,y}vel`, so we therefore call `mj_subtreeVel` # explicitly. # TODO(b/123065920): Consider using a `subtreelinvel` sensor instead. mjlib.mj_subtreeVel(physics.model.ptr, physics.data.ptr) @composer.cached_property def mocap_joints(self): return tuple(self.mjcf_model.find_all('joint')) def actuator_force(self, physics): return physics.bind(self.observable_joints).qfrc_actuator @composer.cached_property def mocap_to_observable_joint_order(self): mocap_to_obs = [self.mocap_joints.index(j) for j in self.observable_joints] return mocap_to_obs @composer.cached_property def observable_to_mocap_joint_order(self): obs_to_mocap = [self.observable_joints.index(j) for j in self.mocap_joints] return obs_to_mocap @property def end_effectors_pos_sensors(self): return self._end_effectors_pos_sensors class WalkerObservables(base.WalkerObservables): """Legacy base class for Walker obserables.""" @composer.observable def joints_vel(self): return observable.MJCFFeature('qvel', self._entity.observable_joints) @composer.observable def body_height(self): return observable.MJCFFeature('xpos', self._entity.root_body)[2] @composer.observable def end_effectors_pos(self): """Position of end effectors relative to torso, in the egocentric frame.""" self._entity.end_effectors_pos_sensors[:] = [] for effector in self._entity.end_effectors: objtype = effector.tag if objtype == 'body': objtype = 'xbody' self._entity.end_effectors_pos_sensors.append( self._entity.mjcf_model.sensor.add( 'framepos', name=effector.name + '_end_effector', objtype=objtype, objname=effector, reftype='xbody', refname=self._entity.root_body)) def relative_pos_in_egocentric_frame(physics): return np.reshape( physics.bind(self._entity.end_effectors_pos_sensors).sensordata, -1) return observable.Generic(relative_pos_in_egocentric_frame) @composer.observable def world_zaxis(self): """The world's z-vector in this Walker's torso frame.""" return observable.MJCFFeature('xmat', self._entity.root_body)[6:] @composer.observable def sensors_velocimeter(self): return observable.MJCFFeature('sensordata', self._entity.mjcf_model.sensor.velocimeter) @composer.observable def sensors_force(self): return observable.MJCFFeature('sensordata', self._entity.mjcf_model.sensor.force) @composer.observable def sensors_torque(self): return observable.MJCFFeature('sensordata', self._entity.mjcf_model.sensor.torque) @composer.observable def sensors_touch(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.touch, corruptor= lambda v, random_state: np.array(v > _TOUCH_THRESHOLD, dtype=float)) @composer.observable def sensors_rangefinder(self): def tanh_rangefinder(physics): raw = physics.bind(self._entity.mjcf_model.sensor.rangefinder).sensordata raw = np.array(raw) raw[raw == -1.0] = np.inf return _RANGEFINDER_SCALE * np.tanh(raw / _RANGEFINDER_SCALE) return observable.Generic(tanh_rangefinder) @composer.observable def egocentric_camera(self): return observable.MJCFCamera(self._entity.egocentric_camera, width=64, height=64) @composer.observable def position(self): return observable.MJCFFeature('xpos', self._entity.root_body) @composer.observable def orientation(self): return observable.MJCFFeature('xmat', self._entity.root_body) def add_egocentric_vector(self, name, world_frame_observable, enabled=True, origin_callable=None, **kwargs): def _egocentric(physics, origin_callable=origin_callable): vec = world_frame_observable.observation_callable(physics)() origin_callable = origin_callable or (lambda physics: np.zeros(vec.size)) delta = vec - origin_callable(physics) return self._entity.transform_vec_to_egocentric_frame(physics, delta) self._observables[name] = observable.Generic(_egocentric, **kwargs) self._observables[name].enabled = enabled def add_egocentric_xmat(self, name, xmat_observable, enabled=True, **kwargs): def _egocentric(physics): return self._entity.transform_xmat_to_egocentric_frame( physics, xmat_observable.observation_callable(physics)()) self._observables[name] = observable.Generic(_egocentric, **kwargs) self._observables[name].enabled = enabled # Semantic groupings of Walker observables. def _collect_from_attachments(self, attribute_name): out = [] for entity in self._entity.iter_entities(exclude_self=True): out.extend(getattr(entity.observables, attribute_name, [])) return out @property def proprioception(self): return ([self.joints_pos, self.joints_vel, self.body_height, self.end_effectors_pos, self.world_zaxis] + self._collect_from_attachments('proprioception')) @property def kinematic_sensors(self): return ([self.sensors_gyro, self.sensors_velocimeter, self.sensors_accelerometer] + self._collect_from_attachments('kinematic_sensors')) @property def dynamic_sensors(self): return ([self.sensors_force, self.sensors_torque, self.sensors_touch] + self._collect_from_attachments('dynamic_sensors')) # Convenience observables for defining rewards and terminations. @composer.observable def veloc_strafe(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.velocimeter)[1] @composer.observable def veloc_up(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.velocimeter)[2] @composer.observable def veloc_forward(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.velocimeter)[0] @composer.observable def gyro_backward_roll(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.gyro)[0] @composer.observable def gyro_rightward_roll(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.gyro)[1] @composer.observable def gyro_anticlockwise_spin(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.gyro)[2] @composer.observable def torso_xvel(self): return observable.MJCFFeature('subtree_linvel', self._entity.root_body)[0] @composer.observable def torso_yvel(self): return observable.MJCFFeature('subtree_linvel', self._entity.root_body)[1] @composer.observable def prev_action(self): return observable.Generic(lambda _: self._entity.prev_action)
dm_control-main
dm_control/locomotion/walkers/legacy_base.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the Rodent.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import composer from dm_control import mjcf from dm_control.composer.observation.observable import base as observable_base from dm_control.locomotion.arenas import corridors as corr_arenas from dm_control.locomotion.tasks import corridors as corr_tasks from dm_control.locomotion.walkers import rodent import numpy as np _CONTROL_TIMESTEP = .02 _PHYSICS_TIMESTEP = 0.001 def _get_rat_corridor_physics(): walker = rodent.Rat() arena = corr_arenas.EmptyCorridor() task = corr_tasks.RunThroughCorridor( walker=walker, arena=arena, walker_spawn_position=(5, 0, 0), walker_spawn_rotation=0, physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP) env = composer.Environment( time_limit=30, task=task, strip_singleton_obs_buffer_dim=True) return walker, env class RatTest(parameterized.TestCase): def test_can_compile_and_step_simulation(self): _, env = _get_rat_corridor_physics() physics = env.physics for _ in range(100): physics.step() @parameterized.parameters([ 'egocentric_camera', 'head', 'left_arm_root', 'right_arm_root', 'root_body', 'pelvis_body', ]) def test_get_element_property(self, name): attribute_value = getattr(rodent.Rat(), name) self.assertIsInstance(attribute_value, mjcf.Element) @parameterized.parameters([ 'actuators', 'bodies', 'mocap_tracking_bodies', 'end_effectors', 'mocap_joints', 'observable_joints', ]) def test_get_element_tuple_property(self, name): attribute_value = getattr(rodent.Rat(), name) self.assertNotEmpty(attribute_value) for item in attribute_value: self.assertIsInstance(item, mjcf.Element) def test_set_name(self): name = 'fred' walker = rodent.Rat(name=name) self.assertEqual(walker.mjcf_model.model, name) @parameterized.parameters( 'tendons_pos', 'tendons_vel', 'actuator_activation', 'appendages_pos', 'head_height', 'sensors_torque', ) def test_evaluate_observable(self, name): walker, env = _get_rat_corridor_physics() physics = env.physics observable = getattr(walker.observables, name) observation = observable(physics) self.assertIsInstance(observation, (float, np.ndarray)) def test_proprioception(self): walker = rodent.Rat() for item in walker.observables.proprioception: self.assertIsInstance(item, observable_base.Observable) def test_can_create_two_rats(self): rat1 = rodent.Rat(name='rat1') rat2 = rodent.Rat(name='rat2') arena = corr_arenas.EmptyCorridor() arena.add_free_entity(rat1) arena.add_free_entity(rat2) mjcf.Physics.from_mjcf_model(arena.mjcf_model) # Should not raise an error. rat1.mjcf_model.model = 'rat3' rat2.mjcf_model.model = 'rat4' mjcf.Physics.from_mjcf_model(arena.mjcf_model) # Should not raise an error. if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/rodent_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the CMU humanoid.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import mjcf from dm_control.composer.observation.observable import base as observable_base from dm_control.locomotion.walkers import cmu_humanoid import numpy as np class CMUHumanoidTest(parameterized.TestCase): @parameterized.parameters([ cmu_humanoid.CMUHumanoid, cmu_humanoid.CMUHumanoidPositionControlled, ]) def test_can_compile_and_step_simulation(self, walker_type): walker = walker_type() physics = mjcf.Physics.from_mjcf_model(walker.mjcf_model) for _ in range(100): physics.step() @parameterized.parameters([ cmu_humanoid.CMUHumanoid, cmu_humanoid.CMUHumanoidPositionControlled, ]) def test_actuators_sorted_alphabetically(self, walker_type): walker = walker_type() actuator_names = [ actuator.name for actuator in walker.mjcf_model.find_all('actuator')] np.testing.assert_array_equal(actuator_names, sorted(actuator_names)) def test_actuator_to_mocap_joint_mapping(self): walker = cmu_humanoid.CMUHumanoid() with self.subTest('Forward mapping'): for actuator_num, cmu_mocap_joint_num in enumerate(walker.actuator_order): self.assertEqual(walker.actuator_to_joint_order[cmu_mocap_joint_num], actuator_num) with self.subTest('Inverse mapping'): for cmu_mocap_joint_num, actuator_num in enumerate( walker.actuator_to_joint_order): self.assertEqual(walker.actuator_order[actuator_num], cmu_mocap_joint_num) def test_cmu_humanoid_position_controlled_has_correct_actuators(self): walker_torque = cmu_humanoid.CMUHumanoid() walker_pos = cmu_humanoid.CMUHumanoidPositionControlled() actuators_torque = walker_torque.mjcf_model.find_all('actuator') actuators_pos = walker_pos.mjcf_model.find_all('actuator') actuator_pos_params = { params.name: params for params in cmu_humanoid._POSITION_ACTUATORS} self.assertEqual(len(actuators_torque), len(actuators_pos)) for actuator_torque, actuator_pos in zip(actuators_torque, actuators_pos): self.assertEqual(actuator_pos.name, actuator_torque.name) self.assertEqual(actuator_pos.joint.full_identifier, actuator_torque.joint.full_identifier) self.assertEqual(actuator_pos.tag, 'general') self.assertEqual(actuator_pos.ctrllimited, 'true') np.testing.assert_array_equal(actuator_pos.ctrlrange, (-1, 1)) expected_params = actuator_pos_params[actuator_pos.name] self.assertEqual(actuator_pos.biasprm[1], -expected_params.kp) np.testing.assert_array_equal(actuator_pos.forcerange, expected_params.forcerange) @parameterized.parameters([ 'body_camera', 'egocentric_camera', 'head', 'left_arm_root', 'right_arm_root', 'root_body', ]) def test_get_element_property(self, name): attribute_value = getattr(cmu_humanoid.CMUHumanoid(), name) self.assertIsInstance(attribute_value, mjcf.Element) @parameterized.parameters([ 'actuators', 'bodies', 'end_effectors', 'marker_geoms', 'mocap_joints', 'observable_joints', ]) def test_get_element_tuple_property(self, name): attribute_value = getattr(cmu_humanoid.CMUHumanoid(), name) self.assertNotEmpty(attribute_value) for item in attribute_value: self.assertIsInstance(item, mjcf.Element) def test_set_name(self): name = 'fred' walker = cmu_humanoid.CMUHumanoid(name=name) self.assertEqual(walker.mjcf_model.model, name) def test_set_marker_rgba(self): marker_rgba = (1., 0., 1., 0.5) walker = cmu_humanoid.CMUHumanoid(marker_rgba=marker_rgba) for marker_geom in walker.marker_geoms: np.testing.assert_array_equal(marker_geom.rgba, marker_rgba) @parameterized.parameters( 'actuator_activation', 'appendages_pos', 'body_camera', 'head_height', 'sensors_torque', ) def test_evaluate_observable(self, name): walker = cmu_humanoid.CMUHumanoid() observable = getattr(walker.observables, name) physics = mjcf.Physics.from_mjcf_model(walker.mjcf_model) observation = observable(physics) self.assertIsInstance(observation, (float, np.ndarray)) def test_proprioception(self): walker = cmu_humanoid.CMUHumanoid() for item in walker.observables.proprioception: self.assertIsInstance(item, observable_base.Observable) def test_cmu_pose_to_actuation(self): walker = cmu_humanoid.CMUHumanoidPositionControlled() random_state = np.random.RandomState(123) expected_actuation = random_state.uniform(-1, 1, len(walker.actuator_order)) cmu_limits = zip(*(joint.range for joint in walker.mocap_joints)) cmu_lower, cmu_upper = (np.array(limit) for limit in cmu_limits) cmu_pose = cmu_lower + (cmu_upper - cmu_lower) * ( 1 + expected_actuation[walker.actuator_to_joint_order]) / 2 actual_actuation = walker.cmu_pose_to_actuation(cmu_pose) np.testing.assert_allclose(actual_actuation, expected_actuation) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/cmu_humanoid_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for scaled actuators.""" from absl.testing import absltest from dm_control import mjcf from dm_control.locomotion.walkers import scaled_actuators import numpy as np class ScaledActuatorsTest(absltest.TestCase): def setUp(self): super().setUp() self._mjcf_model = mjcf.RootElement() self._min = -1.4 self._max = 2.3 self._gain = 1.7 self._scaled_min = -0.8 self._scaled_max = 1.3 self._range = self._max - self._min self._scaled_range = self._scaled_max - self._scaled_min self._joints = [] for _ in range(2): body = self._mjcf_model.worldbody.add('body') body.add('geom', type='sphere', size=[1]) self._joints.append(body.add('joint', type='hinge')) self._scaled_actuator_joint = self._joints[0] self._standard_actuator_joint = self._joints[1] self._random_state = np.random.RandomState(3474) def _set_actuator_controls(self, physics, normalized_ctrl, scaled_actuator=None, standard_actuator=None): if scaled_actuator is not None: physics.bind(scaled_actuator).ctrl = ( normalized_ctrl * self._scaled_range + self._scaled_min) if standard_actuator is not None: physics.bind(standard_actuator).ctrl = ( normalized_ctrl * self._range + self._min) def _assert_same_qfrc_actuator(self, physics, joint1, joint2): np.testing.assert_allclose(physics.bind(joint1).qfrc_actuator, physics.bind(joint2).qfrc_actuator) def test_position_actuator(self): scaled_actuator = scaled_actuators.add_position_actuator( target=self._scaled_actuator_joint, kp=self._gain, qposrange=(self._min, self._max), ctrlrange=(self._scaled_min, self._scaled_max)) standard_actuator = self._mjcf_model.actuator.add( 'position', joint=self._standard_actuator_joint, kp=self._gain, ctrllimited=True, ctrlrange=(self._min, self._max)) physics = mjcf.Physics.from_mjcf_model(self._mjcf_model) # Zero torque. physics.bind(self._scaled_actuator_joint).qpos = ( 0.2345 * self._range + self._min) self._set_actuator_controls(physics, 0.2345, scaled_actuator) np.testing.assert_allclose( physics.bind(self._scaled_actuator_joint).qfrc_actuator, 0, atol=1e-15) for _ in range(100): normalized_ctrl = self._random_state.uniform() physics.bind(self._joints).qpos = ( self._random_state.uniform() * self._range + self._min) self._set_actuator_controls(physics, normalized_ctrl, scaled_actuator, standard_actuator) self._assert_same_qfrc_actuator( physics, self._scaled_actuator_joint, self._standard_actuator_joint) def test_velocity_actuator(self): scaled_actuator = scaled_actuators.add_velocity_actuator( target=self._scaled_actuator_joint, kv=self._gain, qvelrange=(self._min, self._max), ctrlrange=(self._scaled_min, self._scaled_max)) standard_actuator = self._mjcf_model.actuator.add( 'velocity', joint=self._standard_actuator_joint, kv=self._gain, ctrllimited=True, ctrlrange=(self._min, self._max)) physics = mjcf.Physics.from_mjcf_model(self._mjcf_model) # Zero torque. physics.bind(self._scaled_actuator_joint).qvel = ( 0.5432 * self._range + self._min) self._set_actuator_controls(physics, 0.5432, scaled_actuator) np.testing.assert_allclose( physics.bind(self._scaled_actuator_joint).qfrc_actuator, 0, atol=1e-15) for _ in range(100): normalized_ctrl = self._random_state.uniform() physics.bind(self._joints).qvel = ( self._random_state.uniform() * self._range + self._min) self._set_actuator_controls(physics, normalized_ctrl, scaled_actuator, standard_actuator) self._assert_same_qfrc_actuator( physics, self._scaled_actuator_joint, self._standard_actuator_joint) def test_invalid_kwargs(self): invalid_kwargs = dict(joint=self._scaled_actuator_joint, ctrllimited=False) with self.assertRaisesWithLiteralMatch( TypeError, scaled_actuators._GOT_INVALID_KWARGS.format(sorted(invalid_kwargs))): scaled_actuators.add_position_actuator( target=self._scaled_actuator_joint, qposrange=(self._min, self._max), **invalid_kwargs) def test_invalid_target(self): invalid_target = self._mjcf_model.worldbody with self.assertRaisesWithLiteralMatch( TypeError, scaled_actuators._GOT_INVALID_TARGET.format(invalid_target)): scaled_actuators.add_position_actuator( target=invalid_target, qposrange=(self._min, self._max)) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/scaled_actuators_test.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A quadruped "ant" walker.""" import os from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable from dm_control.locomotion.walkers import base from dm_control.locomotion.walkers import legacy_base import numpy as np _XML_DIRNAME = os.path.join(os.path.dirname(__file__), '../../third_party/ant') _XML_FILENAME = 'ant.xml' class Ant(legacy_base.Walker): """A quadruped "Ant" walker.""" def _build(self, name='walker', marker_rgba=None, initializer=None): """Build an Ant walker. Args: name: name of the walker. marker_rgba: (Optional) color the ant's front legs with marker_rgba. initializer: (Optional) A `WalkerInitializer` object. """ super()._build(initializer=initializer) self._appendages_sensors = [] self._bodies_pos_sensors = [] self._bodies_quats_sensors = [] self._mjcf_root = mjcf.from_path(os.path.join(_XML_DIRNAME, _XML_FILENAME)) if name: self._mjcf_root.model = name # Set corresponding marker color if specified. if marker_rgba is not None: for geom in self.marker_geoms: geom.set_attributes(rgba=marker_rgba) # Initialize previous action. self._prev_action = np.zeros(shape=self.action_spec.shape, dtype=self.action_spec.dtype) def initialize_episode(self, physics, random_state): self._prev_action = np.zeros_like(self._prev_action) def apply_action(self, physics, action, random_state): super().apply_action(physics, action, random_state) # Updates previous action. self._prev_action[:] = action def _build_observables(self): return AntObservables(self) @property def mjcf_model(self): return self._mjcf_root @property def upright_pose(self): return base.WalkerPose() @property def marker_geoms(self): return [self._mjcf_root.find('geom', 'front_left_leg_geom'), self._mjcf_root.find('geom', 'front_right_leg_geom')] @composer.cached_property def actuators(self): return self._mjcf_root.find_all('actuator') @composer.cached_property def root_body(self): return self._mjcf_root.find('body', 'torso') @composer.cached_property def bodies(self): return tuple(self.mjcf_model.find_all('body')) @composer.cached_property def mocap_tracking_bodies(self): """Collection of bodies for mocap tracking.""" return tuple(self.mjcf_model.find_all('body')) @property def mocap_joints(self): return self.mjcf_model.find_all('joint') @property def _foot_bodies(self): return (self._mjcf_root.find('body', 'front_left_foot'), self._mjcf_root.find('body', 'front_right_foot'), self._mjcf_root.find('body', 'back_right_foot'), self._mjcf_root.find('body', 'back_left_foot')) @composer.cached_property def end_effectors(self): return self._foot_bodies @composer.cached_property def observable_joints(self): return [actuator.joint for actuator in self.actuators] # pylint: disable=not-an-iterable @composer.cached_property def egocentric_camera(self): return self._mjcf_root.find('camera', 'egocentric') def aliveness(self, physics): return (physics.bind(self.root_body).xmat[-1] - 1.) / 2. @composer.cached_property def ground_contact_geoms(self): foot_geoms = [] for foot in self._foot_bodies: foot_geoms.extend(foot.find_all('geom')) return tuple(foot_geoms) @property def prev_action(self): return self._prev_action @property def appendages_sensors(self): return self._appendages_sensors @property def bodies_pos_sensors(self): return self._bodies_pos_sensors @property def bodies_quats_sensors(self): return self._bodies_quats_sensors class AntObservables(legacy_base.WalkerObservables): """Observables for the Ant.""" @composer.observable def appendages_pos(self): """Equivalent to `end_effectors_pos` with the head's position appended.""" appendages = self._entity.end_effectors self._entity.appendages_sensors[:] = [] for body in appendages: self._entity.appendages_sensors.append( self._entity.mjcf_model.sensor.add( 'framepos', name=body.name + '_appendage', objtype='xbody', objname=body, reftype='xbody', refname=self._entity.root_body)) def appendages_ego_pos(physics): return np.reshape( physics.bind(self._entity.appendages_sensors).sensordata, -1) return observable.Generic(appendages_ego_pos) @composer.observable def bodies_quats(self): """Orientations of the bodies as quaternions, in the egocentric frame.""" bodies = self._entity.bodies self._entity.bodies_quats_sensors[:] = [] for body in bodies: self._entity.bodies_quats_sensors.append( self._entity.mjcf_model.sensor.add( 'framequat', name=body.name + '_ego_body_quat', objtype='xbody', objname=body, reftype='xbody', refname=self._entity.root_body)) def bodies_ego_orientation(physics): return np.reshape( physics.bind(self._entity.bodies_quats_sensors).sensordata, -1) return observable.Generic(bodies_ego_orientation) @composer.observable def bodies_pos(self): """Position of bodies relative to root, in the egocentric frame.""" bodies = self._entity.bodies self._entity.bodies_pos_sensors[:] = [] for body in bodies: self._entity.bodies_pos_sensors.append( self._entity.mjcf_model.sensor.add( 'framepos', name=body.name + '_ego_body_pos', objtype='xbody', objname=body, reftype='xbody', refname=self._entity.root_body)) def bodies_ego_pos(physics): return np.reshape( physics.bind(self._entity.bodies_pos_sensors).sensordata, -1) return observable.Generic(bodies_ego_pos) @property def proprioception(self): return ([self.joints_pos, self.joints_vel, self.body_height, self.end_effectors_pos, self.appendages_pos, self.world_zaxis, self.bodies_quats, self.bodies_pos] + self._collect_from_attachments('proprioception'))
dm_control-main
dm_control/locomotion/walkers/ant.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Walkers for Locomotion tasks.""" from dm_control.locomotion.walkers.ant import Ant from dm_control.locomotion.walkers.cmu_humanoid import CMUHumanoidPositionControlled from dm_control.locomotion.walkers.cmu_humanoid import CMUHumanoidPositionControlledV2020 # Import removed. from dm_control.locomotion.walkers.jumping_ball import JumpingBallWithHead from dm_control.locomotion.walkers.jumping_ball import RollingBallWithHead from dm_control.locomotion.walkers.rodent import Rat
dm_control-main
dm_control/locomotion/walkers/__init__.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Position & velocity actuators whose controls are scaled to a given range.""" _DISALLOWED_KWARGS = frozenset( ['biastype', 'gainprm', 'biasprm', 'ctrllimited', 'joint', 'tendon', 'site', 'slidersite', 'cranksite']) _ALLOWED_TAGS = frozenset(['joint', 'tendon', 'site']) _GOT_INVALID_KWARGS = 'Received invalid keyword argument(s): {}' _GOT_INVALID_TARGET = '`target` tag type should be one of {}: got {{}}'.format( sorted(_ALLOWED_TAGS)) def _check_target_and_kwargs(target, **kwargs): invalid_kwargs = _DISALLOWED_KWARGS.intersection(kwargs) if invalid_kwargs: raise TypeError(_GOT_INVALID_KWARGS.format(sorted(invalid_kwargs))) if target.tag not in _ALLOWED_TAGS: raise TypeError(_GOT_INVALID_TARGET.format(target)) def add_position_actuator(target, qposrange, ctrlrange=(-1, 1), kp=1.0, **kwargs): """Adds a scaled position actuator that is bound to the specified element. This is equivalent to MuJoCo's built-in `<position>` actuator where an affine transformation is pre-applied to the control signal, such that the minimum control value corresponds to the minimum desired position, and the maximum control value corresponds to the maximum desired position. Args: target: A PyMJCF joint, tendon, or site element object that is to be controlled. qposrange: A sequence of two numbers specifying the allowed range of target position. ctrlrange: A sequence of two numbers specifying the allowed range of this actuator's control signal. kp: The gain parameter of this position actuator. **kwargs: Additional MJCF attributes for this actuator element. The following attributes are disallowed: `['biastype', 'gainprm', 'biasprm', 'ctrllimited', 'joint', 'tendon', 'site', 'slidersite', 'cranksite']`. Returns: A PyMJCF actuator element that has been added to the MJCF model containing the specified `target`. Raises: TypeError: `kwargs` contains an unrecognized or disallowed MJCF attribute, or `target` is not an allowed MJCF element type. """ _check_target_and_kwargs(target, **kwargs) kwargs[target.tag] = target slope = (qposrange[1] - qposrange[0]) / (ctrlrange[1] - ctrlrange[0]) g0 = kp * slope b0 = kp * (qposrange[0] - slope * ctrlrange[0]) b1 = -kp b2 = 0 return target.root.actuator.add('general', biastype='affine', gainprm=[g0], biasprm=[b0, b1, b2], ctrllimited=True, ctrlrange=ctrlrange, **kwargs) def add_velocity_actuator(target, qvelrange, ctrlrange=(-1, 1), kv=1.0, **kwargs): """Adds a scaled velocity actuator that is bound to the specified element. This is equivalent to MuJoCo's built-in `<velocity>` actuator where an affine transformation is pre-applied to the control signal, such that the minimum control value corresponds to the minimum desired velocity, and the maximum control value corresponds to the maximum desired velocity. Args: target: A PyMJCF joint, tendon, or site element object that is to be controlled. qvelrange: A sequence of two numbers specifying the allowed range of target velocity. ctrlrange: A sequence of two numbers specifying the allowed range of this actuator's control signal. kv: The gain parameter of this velocity actuator. **kwargs: Additional MJCF attributes for this actuator element. The following attributes are disallowed: `['biastype', 'gainprm', 'biasprm', 'ctrllimited', 'joint', 'tendon', 'site', 'slidersite', 'cranksite']`. Returns: A PyMJCF actuator element that has been added to the MJCF model containing the specified `target`. Raises: TypeError: `kwargs` contains an unrecognized or disallowed MJCF attribute, or `target` is not an allowed MJCF element type. """ _check_target_and_kwargs(target, **kwargs) kwargs[target.tag] = target slope = (qvelrange[1] - qvelrange[0]) / (ctrlrange[1] - ctrlrange[0]) g0 = kv * slope b0 = kv * (qvelrange[0] - slope * ctrlrange[0]) b1 = 0 b2 = -kv return target.root.actuator.add('general', biastype='affine', gainprm=[g0], biasprm=[b0, b1, b2], ctrllimited=True, ctrlrange=ctrlrange, **kwargs)
dm_control-main
dm_control/locomotion/walkers/scaled_actuators.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Walkers based on an actuated jumping ball.""" import os from dm_control import composer from dm_control import mjcf from dm_control.locomotion.walkers import legacy_base import numpy as np _ASSETS_PATH = os.path.join(os.path.dirname(__file__), 'assets/jumping_ball') class JumpingBallWithHead(legacy_base.Walker): """A rollable and jumpable ball with a head.""" def _build(self, name='walker', marker_rgba=None, camera_control=False, initializer=None, add_ears=False, camera_height=None): """Build a JumpingBallWithHead. Args: name: name of the walker. marker_rgba: RGBA value set to walker.marker_geoms to distinguish between walkers (in multi-agent setting). camera_control: If `True`, the walker exposes two additional actuated degrees of freedom to control the egocentric camera height and tilt. initializer: (Optional) A `WalkerInitializer` object. add_ears: a boolean. Same as the nose above but the red/blue balls are placed to the left/right of the agent. Better for egocentric vision. camera_height: A float specifying the height of the camera, or `None` if the camera height should be left as specified in the XML model. """ super()._build(initializer=initializer) self._mjcf_root = self._mjcf_root = mjcf.from_path(self._xml_path) if name: self._mjcf_root.model = name if camera_height is not None: self._mjcf_root.find('body', 'egocentric_camera').pos[2] = camera_height if add_ears: # Large ears head = self._mjcf_root.find('body', 'head_body') head.add('site', type='sphere', size=(.26,), pos=(.22, 0, 0), rgba=(.7, 0, 0, 1)) head.add('site', type='sphere', size=(.26,), pos=(-.22, 0, 0), rgba=(0, 0, .7, 1)) # Set corresponding marker color if specified. if marker_rgba is not None: for geom in self.marker_geoms: geom.set_attributes(rgba=marker_rgba) self._root_joints = None self._camera_control = camera_control if not camera_control: for name in ('camera_height', 'camera_tilt'): self._mjcf_root.find('actuator', name).remove() self._mjcf_root.find('joint', name).remove() @property def _xml_path(self): return os.path.join(_ASSETS_PATH, 'jumping_ball_with_head.xml') @property def marker_geoms(self): return [self._mjcf_root.find('geom', 'head')] def create_root_joints(self, attachment_frame): root_class = self._mjcf_root.find('default', 'root') root_x = attachment_frame.add( 'joint', name='root_x', type='slide', axis=[1, 0, 0], dclass=root_class) root_y = attachment_frame.add( 'joint', name='root_y', type='slide', axis=[0, 1, 0], dclass=root_class) root_z = attachment_frame.add( 'joint', name='root_z', type='slide', axis=[0, 0, 1], dclass=root_class) self._root_joints = [root_x, root_y, root_z] def set_pose(self, physics, position=None, quaternion=None): if position is not None: if self._root_joints is not None: physics.bind(self._root_joints).qpos = position else: super().set_pose(physics, position, quaternion=None) physics.bind(self._mjcf_root.find_all('joint')).qpos = 0. if quaternion is not None: # This walker can only rotate along the z-axis, so we extract only that # component from the quaternion. z_angle = np.arctan2( 2 * (quaternion[0] * quaternion[3] + quaternion[1] * quaternion[2]), 1 - 2 * (quaternion[2] ** 2 + quaternion[3] ** 2)) physics.bind(self._mjcf_root.find('joint', 'steer')).qpos = z_angle def initialize_episode(self, physics, unused_random_state): # gravity compensation if self._camera_control: gravity = np.hstack([physics.model.opt.gravity, [0, 0, 0]]) comp_bodies = physics.bind(self._mjcf_root.find('body', 'egocentric_camera')) comp_bodies.xfrc_applied = -gravity * comp_bodies.mass[..., None] @property def mjcf_model(self): return self._mjcf_root @composer.cached_property def actuators(self): return self._mjcf_root.find_all('actuator') @composer.cached_property def root_body(self): return self._mjcf_root.find('body', 'head_body') @composer.cached_property def end_effectors(self): return [self._mjcf_root.find('body', 'head_body')] @composer.cached_property def observable_joints(self): return [self._mjcf_root.find('joint', 'kick')] @composer.cached_property def egocentric_camera(self): return self._mjcf_root.find('camera', 'egocentric') @composer.cached_property def ground_contact_geoms(self): return (self._mjcf_root.find('geom', 'shell'),) class RollingBallWithHead(JumpingBallWithHead): """A rollable ball with a head.""" def _build(self, **kwargs): super()._build(**kwargs) self._mjcf_root.find('actuator', 'kick').remove() self._mjcf_root.find('joint', 'kick').remove() @composer.cached_property def observable_joints(self): return []
dm_control-main
dm_control/locomotion/walkers/jumping_ball.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the Jumping Ball.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import composer from dm_control import mjcf from dm_control.composer.observation.observable import base as observable_base from dm_control.locomotion.arenas import corridors as corr_arenas from dm_control.locomotion.tasks import corridors as corr_tasks from dm_control.locomotion.walkers import jumping_ball import numpy as np _CONTROL_TIMESTEP = .02 _PHYSICS_TIMESTEP = 0.005 def _get_jumping_ball_corridor_physics(): walker = jumping_ball.JumpingBallWithHead() arena = corr_arenas.EmptyCorridor() task = corr_tasks.RunThroughCorridor( walker=walker, arena=arena, walker_spawn_position=(5, 0, 0), walker_spawn_rotation=0, physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP) env = composer.Environment( time_limit=30, task=task, strip_singleton_obs_buffer_dim=True) return walker, env class JumpingBallWithHeadTest(parameterized.TestCase): def test_can_compile_and_step_simulation(self): _, env = _get_jumping_ball_corridor_physics() physics = env.physics for _ in range(100): physics.step() @parameterized.parameters([ 'egocentric_camera', ]) def test_get_element_property(self, name): attribute_value = getattr(jumping_ball.JumpingBallWithHead(), name) self.assertIsInstance(attribute_value, mjcf.Element) @parameterized.parameters([ 'actuators', 'end_effectors', 'observable_joints', ]) def test_get_element_tuple_property(self, name): attribute_value = getattr(jumping_ball.JumpingBallWithHead(), name) self.assertNotEmpty(attribute_value) for item in attribute_value: self.assertIsInstance(item, mjcf.Element) def test_set_name(self): name = 'fred' walker = jumping_ball.JumpingBallWithHead(name=name) self.assertEqual(walker.mjcf_model.model, name) @parameterized.parameters( 'sensors_velocimeter', 'world_zaxis', ) def test_evaluate_observable(self, name): walker, env = _get_jumping_ball_corridor_physics() physics = env.physics observable = getattr(walker.observables, name) observation = observable(physics) self.assertIsInstance(observation, (float, np.ndarray)) def test_proprioception(self): walker = jumping_ball.JumpingBallWithHead() for item in walker.observables.proprioception: self.assertIsInstance(item, observable_base.Observable) @parameterized.parameters( dict(camera_control=True, add_ears=True, camera_height=1.), dict(camera_control=True, add_ears=False, camera_height=1.), dict(camera_control=False, add_ears=True, camera_height=1.), dict(camera_control=False, add_ears=False, camera_height=1.), dict(camera_control=True, add_ears=True, camera_height=None), dict(camera_control=True, add_ears=False, camera_height=None), dict(camera_control=False, add_ears=True, camera_height=None), dict(camera_control=False, add_ears=False, camera_height=None), ) def test_instantiation(self, camera_control, add_ears, camera_height): jumping_ball.JumpingBallWithHead(camera_control=camera_control, add_ears=add_ears, camera_height=camera_height) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/jumping_ball_test.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A Rodent walker.""" import os import re from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable from dm_control.locomotion.walkers import base from dm_control.locomotion.walkers import legacy_base from dm_control.mujoco import wrapper as mj_wrapper import numpy as np _XML_PATH = os.path.join(os.path.dirname(__file__), 'assets/rodent.xml') _RAT_MOCAP_JOINTS = [ 'vertebra_1_extend', 'vertebra_2_bend', 'vertebra_3_twist', 'vertebra_4_extend', 'vertebra_5_bend', 'vertebra_6_twist', 'hip_L_supinate', 'hip_L_abduct', 'hip_L_extend', 'knee_L', 'ankle_L', 'toe_L', 'hip_R_supinate', 'hip_R_abduct', 'hip_R_extend', 'knee_R', 'ankle_R', 'toe_R', 'vertebra_C1_extend', 'vertebra_C1_bend', 'vertebra_C2_extend', 'vertebra_C2_bend', 'vertebra_C3_extend', 'vertebra_C3_bend', 'vertebra_C4_extend', 'vertebra_C4_bend', 'vertebra_C5_extend', 'vertebra_C5_bend', 'vertebra_C6_extend', 'vertebra_C6_bend', 'vertebra_C7_extend', 'vertebra_C9_bend', 'vertebra_C11_extend', 'vertebra_C13_bend', 'vertebra_C15_extend', 'vertebra_C17_bend', 'vertebra_C19_extend', 'vertebra_C21_bend', 'vertebra_C23_extend', 'vertebra_C25_bend', 'vertebra_C27_extend', 'vertebra_C29_bend', 'vertebra_cervical_5_extend', 'vertebra_cervical_4_bend', 'vertebra_cervical_3_twist', 'vertebra_cervical_2_extend', 'vertebra_cervical_1_bend', 'vertebra_axis_twist', 'vertebra_atlant_extend', 'atlas', 'mandible', 'scapula_L_supinate', 'scapula_L_abduct', 'scapula_L_extend', 'shoulder_L', 'shoulder_sup_L', 'elbow_L', 'wrist_L', 'finger_L', 'scapula_R_supinate', 'scapula_R_abduct', 'scapula_R_extend', 'shoulder_R', 'shoulder_sup_R', 'elbow_R', 'wrist_R', 'finger_R' ] _UPRIGHT_POS = (0.0, 0.0, 0.0) _UPRIGHT_QUAT = (1., 0., 0., 0.) _TORQUE_THRESHOLD = 60 class Rat(legacy_base.Walker): """A position-controlled rat with control range scaled to [-1, 1].""" def _build(self, params=None, name='walker', torque_actuators=False, foot_mods=False, initializer=None): self.params = params self._mjcf_root = mjcf.from_path(_XML_PATH) if name: self._mjcf_root.model = name self.body_sites = [] super()._build(initializer=initializer) # modify actuators if torque_actuators: for actuator in self._mjcf_root.find_all('actuator'): actuator.gainprm = [actuator.forcerange[1]] del actuator.biastype del actuator.biasprm # modify ankle and toe limits if foot_mods: self._mjcf_root.find('default', 'ankle').joint.range = [-0.1, 2.] self._mjcf_root.find('default', 'toe').joint.range = [-0.7, 0.87] @property def upright_pose(self): """Reset pose to upright position.""" return base.WalkerPose(xpos=_UPRIGHT_POS, xquat=_UPRIGHT_QUAT) @property def mjcf_model(self): """Return the model root.""" return self._mjcf_root @composer.cached_property def actuators(self): """Return all actuators.""" return tuple(self._mjcf_root.find_all('actuator')) @composer.cached_property def root_body(self): """Return the body.""" return self._mjcf_root.find('body', 'torso') @composer.cached_property def pelvis_body(self): """Return the body.""" return self._mjcf_root.find('body', 'pelvis') @composer.cached_property def head(self): """Return the head.""" return self._mjcf_root.find('body', 'skull') @composer.cached_property def left_arm_root(self): """Return the left arm.""" return self._mjcf_root.find('body', 'scapula_L') @composer.cached_property def right_arm_root(self): """Return the right arm.""" return self._mjcf_root.find('body', 'scapula_R') @composer.cached_property def ground_contact_geoms(self): """Return ground contact geoms.""" return tuple( self._mjcf_root.find('body', 'foot_L').find_all('geom') + self._mjcf_root.find('body', 'foot_R').find_all('geom') + self._mjcf_root.find('body', 'hand_L').find_all('geom') + self._mjcf_root.find('body', 'hand_R').find_all('geom') + self._mjcf_root.find('body', 'vertebra_C1').find_all('geom') ) @composer.cached_property def standing_height(self): """Return standing height.""" return self.params['_STAND_HEIGHT'] @composer.cached_property def end_effectors(self): """Return end effectors.""" return (self._mjcf_root.find('body', 'lower_arm_R'), self._mjcf_root.find('body', 'lower_arm_L'), self._mjcf_root.find('body', 'foot_R'), self._mjcf_root.find('body', 'foot_L')) @composer.cached_property def observable_joints(self): """Return observable joints.""" return tuple(actuator.joint for actuator in self.actuators # This lint is mistaken; pylint: disable=not-an-iterable if actuator.joint is not None) @composer.cached_property def observable_tendons(self): return self._mjcf_root.find_all('tendon') @composer.cached_property def mocap_joints(self): return tuple( self._mjcf_root.find('joint', name) for name in _RAT_MOCAP_JOINTS) @composer.cached_property def mocap_joint_order(self): return tuple([jnt.name for jnt in self.mocap_joints]) # This lint is mistaken; pylint: disable=not-an-iterable @composer.cached_property def bodies(self): """Return all bodies.""" return tuple(self._mjcf_root.find_all('body')) @composer.cached_property def mocap_tracking_bodies(self): """Return bodies for mocap comparison.""" return tuple(body for body in self._mjcf_root.find_all('body') if not re.match(r'(vertebra|hand|toe)', body.name)) @composer.cached_property def primary_joints(self): """Return primary (non-vertebra) joints.""" return tuple(jnt for jnt in self._mjcf_root.find_all('joint') if 'vertebra' not in jnt.name) @composer.cached_property def vertebra_joints(self): """Return vertebra joints.""" return tuple(jnt for jnt in self._mjcf_root.find_all('joint') if 'vertebra' in jnt.name) @composer.cached_property def primary_joint_order(self): joint_names = self.mocap_joint_order primary_names = tuple([jnt.name for jnt in self.primary_joints]) # pylint: disable=not-an-iterable primary_order = [] for nm in primary_names: primary_order.append(joint_names.index(nm)) return primary_order @composer.cached_property def vertebra_joint_order(self): joint_names = self.mocap_joint_order vertebra_names = tuple([jnt.name for jnt in self.vertebra_joints]) # pylint: disable=not-an-iterable vertebra_order = [] for nm in vertebra_names: vertebra_order.append(joint_names.index(nm)) return vertebra_order @composer.cached_property def egocentric_camera(self): """Return the egocentric camera.""" return self._mjcf_root.find('camera', 'egocentric') @property def _xml_path(self): """Return the path to th model .xml file.""" return self.params['_XML_PATH'] @composer.cached_property def joint_actuators(self): """Return all joint actuators.""" return tuple([act for act in self._mjcf_root.find_all('actuator') if act.joint]) @composer.cached_property def joint_actuators_range(self): act_joint_range = [] for act in self.joint_actuators: # This lint is mistaken; pylint: disable=not-an-iterable associated_joint = self._mjcf_root.find('joint', act.name) act_range = associated_joint.dclass.joint.range act_joint_range.append(act_range) return act_joint_range def pose_to_actuation(self, pose): # holds for joint actuators, find desired torque = 0 # u_ref = [2 q_ref - (r_low + r_up) ]/(r_up - r_low) r_lower = np.array([ajr[0] for ajr in self.joint_actuators_range]) # This lint is mistaken; pylint: disable=not-an-iterable r_upper = np.array([ajr[1] for ajr in self.joint_actuators_range]) # This lint is mistaken; pylint: disable=not-an-iterable num_tendon_actuators = len(self.actuators) - len(self.joint_actuators) tendon_actions = np.zeros(num_tendon_actuators) return np.hstack([tendon_actions, (2*pose[self.joint_actuator_order]- (r_lower+r_upper))/(r_upper-r_lower)]) @composer.cached_property def joint_actuator_order(self): joint_names = self.mocap_joint_order joint_actuator_names = tuple([act.name for act in self.joint_actuators]) # This lint is mistaken; pylint: disable=not-an-iterable actuator_order = [] for nm in joint_actuator_names: actuator_order.append(joint_names.index(nm)) return actuator_order def _build_observables(self): return RodentObservables(self) class RodentObservables(legacy_base.WalkerObservables): """Observables for the Rat.""" @composer.observable def head_height(self): """Observe the head height.""" return observable.MJCFFeature('xpos', self._entity.head)[2] @composer.observable def sensors_torque(self): """Observe the torque sensors.""" return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.torque, corruptor=lambda v, random_state: np.tanh(2 * v / _TORQUE_THRESHOLD) ) @composer.observable def tendons_pos(self): return observable.MJCFFeature('length', self._entity.observable_tendons) @composer.observable def tendons_vel(self): return observable.MJCFFeature('velocity', self._entity.observable_tendons) @composer.observable def actuator_activation(self): """Observe the actuator activation.""" model = self._entity.mjcf_model return observable.MJCFFeature('act', model.find_all('actuator')) @composer.observable def appendages_pos(self): """Equivalent to `end_effectors_pos` with head's position appended.""" def relative_pos_in_egocentric_frame(physics): end_effectors_with_head = ( self._entity.end_effectors + (self._entity.head,)) end_effector = physics.bind(end_effectors_with_head).xpos torso = physics.bind(self._entity.root_body).xpos xmat = \ np.reshape(physics.bind(self._entity.root_body).xmat, (3, 3)) return np.reshape(np.dot(end_effector - torso, xmat), -1) return observable.Generic(relative_pos_in_egocentric_frame) @property def proprioception(self): """Return proprioceptive information.""" return [ self.joints_pos, self.joints_vel, self.tendons_pos, self.tendons_vel, self.actuator_activation, self.body_height, self.end_effectors_pos, self.appendages_pos, self.world_zaxis ] + self._collect_from_attachments('proprioception') @composer.observable def egocentric_camera(self): """Observable of the egocentric camera.""" if not hasattr(self, '_scene_options'): # Don't render this walker's geoms. self._scene_options = mj_wrapper.MjvOption() collision_geom_group = 2 self._scene_options.geomgroup[collision_geom_group] = 0 cosmetic_geom_group = 1 self._scene_options.geomgroup[cosmetic_geom_group] = 0 return observable.MJCFCamera(self._entity.egocentric_camera, width=64, height=64, scene_option=self._scene_options )
dm_control-main
dm_control/locomotion/walkers/rodent.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A CMU humanoid walker.""" import abc import collections import os from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable from dm_control.locomotion.walkers import base from dm_control.locomotion.walkers import legacy_base from dm_control.locomotion.walkers import rescale from dm_control.locomotion.walkers import scaled_actuators from dm_control.mujoco import wrapper as mj_wrapper import numpy as np _XML_PATH = os.path.join(os.path.dirname(__file__), 'assets/humanoid_CMU_V{model_version}.xml') _WALKER_GEOM_GROUP = 2 _WALKER_INVIS_GROUP = 1 _CMU_MOCAP_JOINTS = ( 'lfemurrz', 'lfemurry', 'lfemurrx', 'ltibiarx', 'lfootrz', 'lfootrx', 'ltoesrx', 'rfemurrz', 'rfemurry', 'rfemurrx', 'rtibiarx', 'rfootrz', 'rfootrx', 'rtoesrx', 'lowerbackrz', 'lowerbackry', 'lowerbackrx', 'upperbackrz', 'upperbackry', 'upperbackrx', 'thoraxrz', 'thoraxry', 'thoraxrx', 'lowerneckrz', 'lowerneckry', 'lowerneckrx', 'upperneckrz', 'upperneckry', 'upperneckrx', 'headrz', 'headry', 'headrx', 'lclaviclerz', 'lclaviclery', 'lhumerusrz', 'lhumerusry', 'lhumerusrx', 'lradiusrx', 'lwristry', 'lhandrz', 'lhandrx', 'lfingersrx', 'lthumbrz', 'lthumbrx', 'rclaviclerz', 'rclaviclery', 'rhumerusrz', 'rhumerusry', 'rhumerusrx', 'rradiusrx', 'rwristry', 'rhandrz', 'rhandrx', 'rfingersrx', 'rthumbrz', 'rthumbrx') # pylint: disable=bad-whitespace PositionActuatorParams = collections.namedtuple( 'PositionActuatorParams', ['name', 'forcerange', 'kp']) _POSITION_ACTUATORS = [ PositionActuatorParams('headrx', [-20, 20 ], 20 ), PositionActuatorParams('headry', [-20, 20 ], 20 ), PositionActuatorParams('headrz', [-20, 20 ], 20 ), PositionActuatorParams('lclaviclery', [-20, 20 ], 20 ), PositionActuatorParams('lclaviclerz', [-20, 20 ], 20 ), PositionActuatorParams('lfemurrx', [-120, 120], 120), PositionActuatorParams('lfemurry', [-80, 80 ], 80 ), PositionActuatorParams('lfemurrz', [-80, 80 ], 80 ), PositionActuatorParams('lfingersrx', [-20, 20 ], 20 ), PositionActuatorParams('lfootrx', [-50, 50 ], 50 ), PositionActuatorParams('lfootrz', [-50, 50 ], 50 ), PositionActuatorParams('lhandrx', [-20, 20 ], 20 ), PositionActuatorParams('lhandrz', [-20, 20 ], 20 ), PositionActuatorParams('lhumerusrx', [-60, 60 ], 60 ), PositionActuatorParams('lhumerusry', [-60, 60 ], 60 ), PositionActuatorParams('lhumerusrz', [-60, 60 ], 60 ), PositionActuatorParams('lowerbackrx', [-120, 120], 150), PositionActuatorParams('lowerbackry', [-120, 120], 150), PositionActuatorParams('lowerbackrz', [-120, 120], 150), PositionActuatorParams('lowerneckrx', [-20, 20 ], 20 ), PositionActuatorParams('lowerneckry', [-20, 20 ], 20 ), PositionActuatorParams('lowerneckrz', [-20, 20 ], 20 ), PositionActuatorParams('lradiusrx', [-60, 60 ], 60 ), PositionActuatorParams('lthumbrx', [-20, 20 ], 20) , PositionActuatorParams('lthumbrz', [-20, 20 ], 20 ), PositionActuatorParams('ltibiarx', [-80, 80 ], 80 ), PositionActuatorParams('ltoesrx', [-20, 20 ], 20 ), PositionActuatorParams('lwristry', [-20, 20 ], 20 ), PositionActuatorParams('rclaviclery', [-20, 20 ], 20 ), PositionActuatorParams('rclaviclerz', [-20, 20 ], 20 ), PositionActuatorParams('rfemurrx', [-120, 120], 120), PositionActuatorParams('rfemurry', [-80, 80 ], 80 ), PositionActuatorParams('rfemurrz', [-80, 80 ], 80 ), PositionActuatorParams('rfingersrx', [-20, 20 ], 20 ), PositionActuatorParams('rfootrx', [-50, 50 ], 50 ), PositionActuatorParams('rfootrz', [-50, 50 ], 50 ), PositionActuatorParams('rhandrx', [-20, 20 ], 20 ), PositionActuatorParams('rhandrz', [-20, 20 ], 20 ), PositionActuatorParams('rhumerusrx', [-60, 60 ], 60 ), PositionActuatorParams('rhumerusry', [-60, 60 ], 60 ), PositionActuatorParams('rhumerusrz', [-60, 60 ], 60 ), PositionActuatorParams('rradiusrx', [-60, 60 ], 60 ), PositionActuatorParams('rthumbrx', [-20, 20 ], 20 ), PositionActuatorParams('rthumbrz', [-20, 20 ], 20 ), PositionActuatorParams('rtibiarx', [-80, 80 ], 80 ), PositionActuatorParams('rtoesrx', [-20, 20 ], 20 ), PositionActuatorParams('rwristry', [-20, 20 ], 20 ), PositionActuatorParams('thoraxrx', [-80, 80 ], 100), PositionActuatorParams('thoraxry', [-80, 80 ], 100), PositionActuatorParams('thoraxrz', [-80, 80 ], 100), PositionActuatorParams('upperbackrx', [-80, 80 ], 80 ), PositionActuatorParams('upperbackry', [-80, 80 ], 80 ), PositionActuatorParams('upperbackrz', [-80, 80 ], 80 ), PositionActuatorParams('upperneckrx', [-20, 20 ], 20 ), PositionActuatorParams('upperneckry', [-20, 20 ], 20 ), PositionActuatorParams('upperneckrz', [-20, 20 ], 20 ), ] PositionActuatorParamsV2020 = collections.namedtuple( 'PositionActuatorParams', ['name', 'forcerange', 'kp', 'damping']) _POSITION_ACTUATORS_V2020 = [ PositionActuatorParamsV2020('headrx', [-40, 40 ], 40 , 2 ), PositionActuatorParamsV2020('headry', [-40, 40 ], 40 , 2 ), PositionActuatorParamsV2020('headrz', [-40, 40 ], 40 , 2 ), PositionActuatorParamsV2020('lclaviclery', [-80, 80 ], 80 , 20), PositionActuatorParamsV2020('lclaviclerz', [-80, 80 ], 80 , 20), PositionActuatorParamsV2020('lfemurrx', [-300, 300], 300, 15), PositionActuatorParamsV2020('lfemurry', [-200, 200], 200, 10), PositionActuatorParamsV2020('lfemurrz', [-200, 200], 200, 10), PositionActuatorParamsV2020('lfingersrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('lfootrx', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('lfootrz', [-50, 50 ], 50 , 3 ), PositionActuatorParamsV2020('lhandrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('lhandrz', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('lhumerusrx', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('lhumerusry', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('lhumerusrz', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('lowerbackrx', [-300, 300], 300, 15), PositionActuatorParamsV2020('lowerbackry', [-180, 180], 180, 20), PositionActuatorParamsV2020('lowerbackrz', [-200, 200], 200, 20), PositionActuatorParamsV2020('lowerneckrx', [-120, 120 ],120, 20), PositionActuatorParamsV2020('lowerneckry', [-120, 120 ],120, 20), PositionActuatorParamsV2020('lowerneckrz', [-120, 120 ],120, 20), PositionActuatorParamsV2020('lradiusrx', [-90, 90 ], 90 , 5 ), PositionActuatorParamsV2020('lthumbrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('lthumbrz', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('ltibiarx', [-160, 160], 160, 8 ), PositionActuatorParamsV2020('ltoesrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('lwristry', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rclaviclery', [-80, 80 ], 80 , 20), PositionActuatorParamsV2020('rclaviclerz', [-80, 80 ], 80 , 20), PositionActuatorParamsV2020('rfemurrx', [-300, 300], 300, 15), PositionActuatorParamsV2020('rfemurry', [-200, 200], 200, 10), PositionActuatorParamsV2020('rfemurrz', [-200, 200], 200, 10), PositionActuatorParamsV2020('rfingersrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rfootrx', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('rfootrz', [-50, 50 ], 50 , 3 ), PositionActuatorParamsV2020('rhandrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rhandrz', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rhumerusrx', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('rhumerusry', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('rhumerusrz', [-120, 120], 120, 6 ), PositionActuatorParamsV2020('rradiusrx', [-90, 90 ], 90 , 5 ), PositionActuatorParamsV2020('rthumbrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rthumbrz', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rtibiarx', [-160, 160], 160, 8 ), PositionActuatorParamsV2020('rtoesrx', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('rwristry', [-20, 20 ], 20 , 1 ), PositionActuatorParamsV2020('thoraxrx', [-300, 300], 300, 15), PositionActuatorParamsV2020('thoraxry', [-80, 80], 80 , 8 ), PositionActuatorParamsV2020('thoraxrz', [-200, 200], 200, 12), PositionActuatorParamsV2020('upperbackrx', [-300, 300], 300, 15), PositionActuatorParamsV2020('upperbackry', [-80, 80], 80 , 8 ), PositionActuatorParamsV2020('upperbackrz', [-200, 200], 200, 12), PositionActuatorParamsV2020('upperneckrx', [-60, 60 ], 60 , 10), PositionActuatorParamsV2020('upperneckry', [-60, 60 ], 60 , 10), PositionActuatorParamsV2020('upperneckrz', [-60, 60 ], 60 , 10), ] # pylint: enable=bad-whitespace _UPRIGHT_POS = (0.0, 0.0, 0.94) _UPRIGHT_POS_V2020 = (0.0, 0.0, 1.143) _UPRIGHT_QUAT = (0.859, 1.0, 1.0, 0.859) # Height of head above which the humanoid is considered standing. _STAND_HEIGHT = 1.5 _TORQUE_THRESHOLD = 60 class _CMUHumanoidBase(legacy_base.Walker, metaclass=abc.ABCMeta): """The abstract base class for walkers compatible with the CMU humanoid.""" def _build(self, name='walker', marker_rgba=None, include_face=False, initializer=None): self._mjcf_root = mjcf.from_path(self._xml_path) if name: self._mjcf_root.model = name # Set corresponding marker color if specified. if marker_rgba is not None: for geom in self.marker_geoms: geom.set_attributes(rgba=marker_rgba) self._actuator_order = np.argsort(_CMU_MOCAP_JOINTS) self._inverse_order = np.argsort(self._actuator_order) super()._build(initializer=initializer) if include_face: head = self._mjcf_root.find('body', 'head') head.add( 'geom', type='capsule', name='face', size=(0.065, 0.014), pos=(0.000341465, 0.048184, 0.01), quat=(0.717887, 0.696142, -0.00493334, 0), mass=0., contype=0, conaffinity=0) face_forwardness = head.pos[1]-.02 head_geom = self._mjcf_root.find('geom', 'head') nose_size = head_geom.size[0] / 4.75 face = head.add( 'body', name='face', pos=(0.0, 0.039, face_forwardness)) face.add('geom', type='capsule', name='nose', size=(nose_size, 0.01), pos=(0.0, 0.0, 0.0), quat=(1, 0.7, 0, 0), mass=0., contype=0, conaffinity=0, group=_WALKER_INVIS_GROUP) def _build_observables(self): return CMUHumanoidObservables(self) @property @abc.abstractmethod def _xml_path(self): raise NotImplementedError @composer.cached_property def mocap_joints(self): return tuple( self._mjcf_root.find('joint', name) for name in _CMU_MOCAP_JOINTS) @property def actuator_order(self): """Index of joints from the CMU mocap dataset sorted alphabetically by name. Actuators in this walkers are ordered alphabetically by name. This property provides a mapping between from actuator ordering to canonical CMU ordering. Returns: A list of integers corresponding to joint indices from the CMU dataset. Specifically, the n-th element in the list is the index of the CMU joint index that corresponds to the n-th actuator in this walker. """ return self._actuator_order @property def actuator_to_joint_order(self): """Index of actuators corresponding to each CMU mocap joint. Actuators in this walkers are ordered alphabetically by name. This property provides a mapping between from canonical CMU ordering to actuator ordering. Returns: A list of integers corresponding to actuator indices within this walker. Specifically, the n-th element in the list is the index of the actuator in this walker that corresponds to the n-th joint from the CMU mocap dataset. """ return self._inverse_order @property def upright_pose(self): return base.WalkerPose(xpos=_UPRIGHT_POS, xquat=_UPRIGHT_QUAT) @property def mjcf_model(self): return self._mjcf_root @composer.cached_property def actuators(self): return tuple(self._mjcf_root.find_all('actuator')) @composer.cached_property def root_body(self): return self._mjcf_root.find('body', 'root') @composer.cached_property def head(self): return self._mjcf_root.find('body', 'head') @composer.cached_property def left_arm_root(self): return self._mjcf_root.find('body', 'lclavicle') @composer.cached_property def right_arm_root(self): return self._mjcf_root.find('body', 'rclavicle') @composer.cached_property def ground_contact_geoms(self): return tuple(self._mjcf_root.find('body', 'lfoot').find_all('geom') + self._mjcf_root.find('body', 'rfoot').find_all('geom')) @composer.cached_property def standing_height(self): return _STAND_HEIGHT @composer.cached_property def end_effectors(self): return (self._mjcf_root.find('body', 'rradius'), self._mjcf_root.find('body', 'lradius'), self._mjcf_root.find('body', 'rfoot'), self._mjcf_root.find('body', 'lfoot')) @composer.cached_property def observable_joints(self): return tuple(actuator.joint for actuator in self.actuators if actuator.joint is not None) @composer.cached_property def bodies(self): return tuple(self._mjcf_root.find_all('body')) @composer.cached_property def mocap_tracking_bodies(self): """Collection of bodies for mocap tracking.""" # remove root body root_body = self._mjcf_root.find('body', 'root') return tuple( b for b in self._mjcf_root.find_all('body') if b != root_body) @composer.cached_property def egocentric_camera(self): return self._mjcf_root.find('camera', 'egocentric') @composer.cached_property def body_camera(self): return self._mjcf_root.find('camera', 'bodycam') @property def marker_geoms(self): return (self._mjcf_root.find('geom', 'rradius'), self._mjcf_root.find('geom', 'lradius')) class CMUHumanoid(_CMUHumanoidBase): """A CMU humanoid walker.""" @property def _xml_path(self): return _XML_PATH.format(model_version='2019') class CMUHumanoidPositionControlled(CMUHumanoid): """A position-controlled CMU humanoid with control range scaled to [-1, 1].""" def _build(self, model_version='2019', **kwargs): self._version = model_version if 'scale_default' in kwargs: scale_default = kwargs['scale_default'] del kwargs['scale_default'] else: scale_default = False super()._build(**kwargs) if scale_default: # NOTE: This rescaling doesn't affect the attached hands rescale.rescale_humanoid(self, 1.2, 1.2, 70) # modify actuators if self._version == '2020': position_actuators = _POSITION_ACTUATORS_V2020 else: position_actuators = _POSITION_ACTUATORS self._mjcf_root.default.general.forcelimited = 'true' self._mjcf_root.actuator.motor.clear() for actuator_params in position_actuators: associated_joint = self._mjcf_root.find('joint', actuator_params.name) if hasattr(actuator_params, 'damping'): associated_joint.damping = actuator_params.damping actuator = scaled_actuators.add_position_actuator( name=actuator_params.name, target=associated_joint, kp=actuator_params.kp, qposrange=associated_joint.range, ctrlrange=(-1, 1), forcerange=actuator_params.forcerange) if self._version == '2020': actuator.dyntype = 'filter' actuator.dynprm = [0.030] limits = zip(*(actuator.joint.range for actuator in self.actuators)) # pylint: disable=not-an-iterable lower, upper = (np.array(limit) for limit in limits) self._scale = upper - lower self._offset = upper + lower @property def _xml_path(self): return _XML_PATH.format(model_version=self._version) def cmu_pose_to_actuation(self, target_pose): """Creates the control signal corresponding a CMU mocap joints pose. Args: target_pose: An array containing the target position for each joint. These must be given in "canonical CMU order" rather than "qpos order", i.e. the order of `target_pose[self.actuator_order]` should correspond to the order of `physics.bind(self.actuators).ctrl`. Returns: An array of the same shape as `target_pose` containing inputs for position controllers. Writing these values into `physics.bind(self.actuators).ctrl` will cause the actuators to drive joints towards `target_pose`. """ return (2 * target_pose[self.actuator_order] - self._offset) / self._scale class CMUHumanoidPositionControlledV2020(CMUHumanoidPositionControlled): """A 2020 updated CMU humanoid walker; includes nose for head orientation.""" def _build(self, **kwargs): super()._build( model_version='2020', scale_default=True, include_face=True, **kwargs) @property def upright_pose(self): return base.WalkerPose(xpos=_UPRIGHT_POS_V2020, xquat=_UPRIGHT_QUAT) class CMUHumanoidObservables(legacy_base.WalkerObservables): """Observables for the Humanoid.""" @composer.observable def body_camera(self): options = mj_wrapper.MjvOption() # Don't render this walker's geoms. options.geomgroup[_WALKER_GEOM_GROUP] = 0 return observable.MJCFCamera( self._entity.body_camera, width=64, height=64, scene_option=options) @composer.observable def egocentric_camera(self): options = mj_wrapper.MjvOption() # Don't render this walker's geoms. options.geomgroup[_WALKER_INVIS_GROUP] = 0 return observable.MJCFCamera(self._entity.egocentric_camera, width=64, height=64, scene_option=options) @composer.observable def head_height(self): return observable.MJCFFeature('xpos', self._entity.head)[2] @composer.observable def sensors_torque(self): return observable.MJCFFeature( 'sensordata', self._entity.mjcf_model.sensor.torque, corruptor=lambda v, random_state: np.tanh(2 * v / _TORQUE_THRESHOLD)) @composer.observable def actuator_activation(self): return observable.MJCFFeature('act', self._entity.mjcf_model.find_all('actuator')) @composer.observable def appendages_pos(self): """Equivalent to `end_effectors_pos` with the head's position appended.""" def relative_pos_in_egocentric_frame(physics): end_effectors_with_head = ( self._entity.end_effectors + (self._entity.head,)) end_effector = physics.bind(end_effectors_with_head).xpos torso = physics.bind(self._entity.root_body).xpos xmat = np.reshape(physics.bind(self._entity.root_body).xmat, (3, 3)) return np.reshape(np.dot(end_effector - torso, xmat), -1) return observable.Generic(relative_pos_in_egocentric_frame) @property def proprioception(self): return [ self.joints_pos, self.joints_vel, self.actuator_activation, self.body_height, self.end_effectors_pos, self.appendages_pos, self.world_zaxis ] + self._collect_from_attachments('proprioception')
dm_control-main
dm_control/locomotion/walkers/cmu_humanoid.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the Ant.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import composer from dm_control import mjcf from dm_control.composer.observation.observable import base as observable_base from dm_control.locomotion.arenas import corridors as corr_arenas from dm_control.locomotion.tasks import corridors as corr_tasks from dm_control.locomotion.walkers import ant import numpy as np _CONTROL_TIMESTEP = .02 _PHYSICS_TIMESTEP = 0.005 def _get_ant_corridor_physics(): walker = ant.Ant() arena = corr_arenas.EmptyCorridor() task = corr_tasks.RunThroughCorridor( walker=walker, arena=arena, walker_spawn_position=(5, 0, 0), walker_spawn_rotation=0, physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP) env = composer.Environment( time_limit=30, task=task, strip_singleton_obs_buffer_dim=True) return walker, env class AntTest(parameterized.TestCase): def test_can_compile_and_step_simulation(self): _, env = _get_ant_corridor_physics() physics = env.physics for _ in range(100): physics.step() @parameterized.parameters([ 'egocentric_camera', 'root_body', ]) def test_get_element_property(self, name): attribute_value = getattr(ant.Ant(), name) self.assertIsInstance(attribute_value, mjcf.Element) @parameterized.parameters([ 'actuators', 'end_effectors', 'observable_joints', ]) def test_get_element_tuple_property(self, name): attribute_value = getattr(ant.Ant(), name) self.assertNotEmpty(attribute_value) for item in attribute_value: self.assertIsInstance(item, mjcf.Element) def test_set_name(self): name = 'fred' walker = ant.Ant(name=name) self.assertEqual(walker.mjcf_model.model, name) @parameterized.parameters( 'appendages_pos', 'sensors_touch', ) def test_evaluate_observable(self, name): walker, env = _get_ant_corridor_physics() physics = env.physics observable = getattr(walker.observables, name) observation = observable(physics) self.assertIsInstance(observation, (float, np.ndarray)) def test_proprioception(self): walker = ant.Ant() for item in walker.observables.proprioception: self.assertIsInstance(item, observable_base.Observable) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/ant_test.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for rescaling bodies.""" from absl.testing import absltest from dm_control import mjcf from dm_control.locomotion.walkers import rescale import numpy as np class RescaleTest(absltest.TestCase): def setUp(self): super().setUp() # build a simple three-link chain with an endpoint site self._mjcf_model = mjcf.RootElement() body = self._mjcf_model.worldbody.add('body', pos=[0, 0, 0]) body.add('geom', type='capsule', fromto=[0, 0, 0, 0, 0, -0.4], size=[0.06]) body.add('joint', type='ball') body = body.add('body', pos=[0, 0, -0.5]) body.add('geom', type='capsule', pos=[0, 0, -0.15], size=[0.06, 0.15]) body.add('joint', type='ball') body = body.add('body', pos=[0, 0, -0.4]) body.add('geom', type='capsule', fromto=[0, 0, 0, 0.3, 0, -0.4], size=[0.06]) body.add('joint', type='ball') body.add('site', name='endpoint', type='sphere', pos=[0.3, 0, -0.4], size=[0.1]) def test_rescale(self): # verify endpoint is where expected physics = mjcf.Physics.from_mjcf_model(self._mjcf_model) np.testing.assert_allclose(physics.named.data.site_xpos['endpoint'], np.array([0.3, 0., -1.3]), atol=1e-15) # rescale chain and verify endpoint is where expected after modification subtree_root = self._mjcf_model position_factor = .5 size_factor = .5 rescale.rescale_subtree(subtree_root, position_factor, size_factor) physics = mjcf.Physics.from_mjcf_model(self._mjcf_model) np.testing.assert_allclose(physics.named.data.site_xpos['endpoint'], np.array([0.15, 0., -0.65]), atol=1e-15) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/walkers/rescale_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Base class for Walkers.""" import abc import collections from dm_control import composer from dm_control.composer.observation import observable from dm_env import specs import numpy as np def _make_readonly_float64_copy(value): if np.isscalar(value): return np.float64(value) else: out = np.array(value, dtype=np.float64) out.flags.writeable = False return out class WalkerPose(collections.namedtuple( 'WalkerPose', ('qpos', 'xpos', 'xquat'))): """A named tuple representing a walker's joint and Cartesian pose.""" __slots__ = () def __new__(cls, qpos=None, xpos=(0, 0, 0), xquat=(1, 0, 0, 0)): """Creates a new WalkerPose. Args: qpos: The joint position for the pose, or `None` if the `qpos0` values in the `mjModel` should be used. xpos: A Cartesian displacement, for example if the walker should be lifted or lowered by a specific amount for this pose. xquat: A quaternion displacement for the root body. Returns: A new instance of `WalkerPose`. """ return super(WalkerPose, cls).__new__( cls, qpos=_make_readonly_float64_copy(qpos) if qpos is not None else None, xpos=_make_readonly_float64_copy(xpos), xquat=_make_readonly_float64_copy(xquat)) def __eq__(self, other): return (np.all(self.qpos == other.qpos) and np.all(self.xpos == other.xpos) and np.all(self.xquat == other.xquat)) class Walker(composer.Robot, metaclass=abc.ABCMeta): """Abstract base class for Walker robots.""" def create_root_joints(self, attachment_frame) -> None: attachment_frame.add('freejoint') def _build_observables(self) -> 'WalkerObservables': return WalkerObservables(self) def transform_vec_to_egocentric_frame(self, physics, vec_in_world_frame): """Linearly transforms a world-frame vector into walker's egocentric frame. Note that this function does not perform an affine transformation of the vector. In other words, the input vector is assumed to be specified with respect to the same origin as this walker's egocentric frame. This function can also be applied to matrices whose innermost dimensions are either 2 or 3. In this case, a matrix with the same leading dimensions is returned where the innermost vectors are replaced by their values computed in the egocentric frame. Args: physics: An `mjcf.Physics` instance. vec_in_world_frame: A NumPy array with last dimension of shape (2,) or (3,) that represents a vector quantity in the world frame. Returns: The same quantity as `vec_in_world_frame` but reexpressed in this entity's egocentric frame. The returned np.array has the same shape as np.asarray(vec_in_world_frame). Raises: ValueError: if `vec_in_world_frame` does not have shape ending with (2,) or (3,). """ return super().global_vector_to_local_frame(physics, vec_in_world_frame) def transform_xmat_to_egocentric_frame(self, physics, xmat): """Transforms another entity's `xmat` into this walker's egocentric frame. This function takes another entity's (E) xmat, which is an SO(3) matrix from E's frame to the world frame, and turns it to a matrix that transforms from E's frame into this walker's egocentric frame. Args: physics: An `mjcf.Physics` instance. xmat: A NumPy array of shape (3, 3) or (9,) that represents another entity's xmat. Returns: The `xmat` reexpressed in this entity's egocentric frame. The returned np.array has the same shape as np.asarray(xmat). Raises: ValueError: if `xmat` does not have shape (3, 3) or (9,). """ return super().global_xmat_to_local_frame(physics, xmat) @property @abc.abstractmethod def root_body(self): raise NotImplementedError @property @abc.abstractmethod def observable_joints(self): raise NotImplementedError @property def action_spec(self): if not self.actuators: minimum, maximum = (), () else: minimum, maximum = zip(*[ a.ctrlrange if a.ctrlrange is not None else (-1., 1.) for a in self.actuators ]) return specs.BoundedArray( shape=(len(self.actuators),), dtype=float, minimum=minimum, maximum=maximum, name='\t'.join([actuator.name for actuator in self.actuators])) def apply_action(self, physics, action, random_state): """Apply action to walker's actuators.""" del random_state physics.bind(self.actuators).ctrl = action class WalkerObservables(composer.Observables): """Base class for Walker obserables.""" @composer.observable def joints_pos(self): return observable.MJCFFeature('qpos', self._entity.observable_joints) @composer.observable def sensors_gyro(self): return observable.MJCFFeature('sensordata', self._entity.mjcf_model.sensor.gyro) @composer.observable def sensors_accelerometer(self): return observable.MJCFFeature('sensordata', self._entity.mjcf_model.sensor.accelerometer) @composer.observable def sensors_framequat(self): return observable.MJCFFeature('sensordata', self._entity.mjcf_model.sensor.framequat) # Semantic groupings of Walker observables. def _collect_from_attachments(self, attribute_name): out = [] for entity in self._entity.iter_entities(exclude_self=True): out.extend(getattr(entity.observables, attribute_name, [])) return out @property def proprioception(self): return ([self.joints_pos] + self._collect_from_attachments('proprioception')) @property def kinematic_sensors(self): return ([self.sensors_gyro, self.sensors_accelerometer, self.sensors_framequat] + self._collect_from_attachments('kinematic_sensors')) @property def dynamic_sensors(self): return self._collect_from_attachments('dynamic_sensors')
dm_control-main
dm_control/locomotion/walkers/base.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make tail for the dog model.""" import collections from dm_control import mjcf import numpy as np def create_tail( caudal_dofs_per_vertebra, bone_size, model, bone_position, parent ): """Add tail in the dog model. Args: caudal_dofs_per_vertebra: a number that the determines how many dofs are going to be used between each pair of caudal vetebrae. bone_size: dictionary containing the scale of the geometry. model: model in which we want to add the tail. bone_position: a dictionary of bones positions. parent: parent object on which we should start attaching new components. Returns: A list of caudal joints. """ # Caudal spine (tail) bodies: caudal_bones = ['Ca_' + str(i + 1) for i in range(21)] parent_pos = bone_position['Pelvis'] caudal_bodies = [] caudal_geoms = [] for bone in caudal_bones: bone_pos = bone_position[bone] rel_pos = bone_pos - parent_pos xyaxes = np.hstack((-rel_pos, (0, 1, 0))) xyaxes[1] = 0 child = parent.add('body', name=bone, pos=rel_pos) caudal_bodies.append(child) geom = child.add('geom', name=bone, mesh=bone, pos=-bone_pos, dclass='bone') caudal_geoms.append(geom) parent = child parent_pos = bone_pos # Reload physics = mjcf.Physics.from_mjcf_model(model) # Caudal spine joints: caudal_axis = collections.OrderedDict() caudal_axis['extend'] = np.array((0.0, 1.0, 0.0)) scale = np.asarray([bone_size[bone] for bone in caudal_bones]).mean() joint_pos = np.array((0.3, 0, 0.26)) * scale num_dofs = 0 caudal_joints = [] caudal_joint_names = [] parent = model.find('geom', 'Sacrum') for i, vertebra in enumerate(caudal_bodies): while num_dofs < (i + 1) * caudal_dofs_per_vertebra: dof = num_dofs % 2 dof_name = list(caudal_axis.keys())[dof] caudal_joint_names.append(vertebra.name + '_' + dof_name) rel_pos = physics.bind(parent).xpos - physics.bind(vertebra).xpos twist_dir = rel_pos / np.linalg.norm(rel_pos) bend_dir = np.cross(caudal_axis['extend'], twist_dir) caudal_axis['bend'] = bend_dir joint_pos = twist_dir * physics.bind(caudal_geoms[i]).size[2] joint = vertebra.add( 'joint', name=caudal_joint_names[-1], dclass='caudal_' + dof_name, axis=caudal_axis[dof_name], pos=joint_pos, ) caudal_joints.append(joint) num_dofs += 1 parent = vertebra parent.add('site', name='tail_tip', dclass='sensor', size=(0.005,)) physics = mjcf.Physics.from_mjcf_model(model) all_geoms = model.find_all('geom') for geom in all_geoms: if 'Ca_' in geom.name: sc = (float(geom.name[3:]) + 1) / 4 scale = np.array((1.2, sc, 1)) bound_geom = physics.bind(geom) geom.parent.add( 'geom', name=geom.name + '_collision', pos=bound_geom.pos, size=bound_geom.size * scale, quat=bound_geom.quat, dclass='collision_primitive', ) return caudal_joints
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/build_tail.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make torso for the dog model.""" import collections from dm_control import mjcf import numpy as np def create_torso( model, bones, bone_position, lumbar_dofs_per_vertebra, side_sign, parent ): """Add torso in the dog model. Args: model: model in which we want to add the torso. bones: a list of strings with all the names of the bones. bone_position: a dictionary of bones positions. lumbar_dofs_per_vertebra: a number that the determines how many dofs are going to be used between each pair of lumbar vetebrae. side_sign: a dictionary with two axis representing the signs of translations. parent: parent object on which we should start attaching new components. Returns: The tuple `(pelvic_bones, lumbar_joints)`. """ # Lumbar Spine def_lumbar_extend = model.default.find('default', 'lumbar_extend') def_lumbar_bend = model.default.find('default', 'lumbar_bend') def_lumbar_twist = model.default.find('default', 'lumbar_twist') lumbar_defaults = { 'extend': def_lumbar_extend, 'bend': def_lumbar_bend, 'twist': def_lumbar_twist, } thoracic_spine = [m for m in bones if 'T_' in m] ribs = [m for m in bones if 'Rib' in m and 'cage' not in m] sternum = [m for m in bones if 'Sternum' in m] torso_bones = thoracic_spine + ribs + sternum # + ['Xiphoid_cartilage'] torso = parent.add('body', name='torso') torso.add('freejoint', name='root') torso.add('site', name='root', size=(0.01,), rgba=[0, 1, 0, 1]) torso.add('light', name='light', mode='trackcom', pos=[0, 0, 3]) torso.add( 'camera', name='y-axis', mode='trackcom', pos=[0, -1.5, 0.8], xyaxes=[1, 0, 0, 0, 0.6, 1], ) torso.add( 'camera', name='x-axis', mode='trackcom', pos=[2, 0, 0.5], xyaxes=[0, 1, 0, -0.3, 0, 1], ) torso_geoms = [] for bone in torso_bones: torso_geoms.append( torso.add('geom', name=bone, mesh=bone, dclass='light_bone') ) # Reload, get CoM position, set pos physics = mjcf.Physics.from_mjcf_model(model) torso_pos = np.array(physics.bind(model.find('body', 'torso')).xipos) torso.pos = torso_pos for geom in torso_geoms: geom.pos = -torso_pos # Collision primitive for torso torso.add( 'geom', name='collision_torso', dclass='nonself_collision_primitive', type='ellipsoid', pos=[0, 0, 0], size=[0.2, 0.09, 0.11], euler=[0, 10, 0], density=200, ) # Lumbar spine bodies: lumbar_bones = ['L_1', 'L_2', 'L_3', 'L_4', 'L_5', 'L_6', 'L_7'] parent = torso parent_pos = torso_pos lumbar_bodies = [] lumbar_geoms = [] for i, bone in enumerate(lumbar_bones): bone_pos = bone_position[bone] child = parent.add('body', name=bone, pos=bone_pos - parent_pos) lumbar_bodies.append(child) geom = child.add('geom', name=bone, mesh=bone, pos=-bone_pos, dclass='bone') child.add( 'geom', name=bone + '_collision', type='sphere', size=[0.05], pos=[0, 0, -0.02], dclass='nonself_collision_primitive', ) lumbar_geoms.append(geom) parent = child parent_pos = bone_pos l_7 = parent # Lumbar spine joints: lumbar_axis = collections.OrderedDict() lumbar_axis['extend'] = np.array((0.0, 1.0, 0.0)) lumbar_axis['bend'] = np.array((0.0, 0.0, 1.0)) lumbar_axis['twist'] = np.array((1.0, 0.0, 0)) num_dofs = 0 lumbar_joints = [] lumbar_joint_names = [] for i, vertebra in enumerate(lumbar_bodies): while num_dofs < (i + 1) * lumbar_dofs_per_vertebra: dof = num_dofs % 3 dof_name = list(lumbar_axis.keys())[dof] dof_axis = lumbar_axis[dof_name] lumbar_joint_names.append(vertebra.name + '_' + dof_name) joint = vertebra.add( 'joint', name=lumbar_joint_names[-1], dclass='lumbar_' + dof_name, axis=dof_axis, ) lumbar_joints.append(joint) num_dofs += 1 # Scale joint defaults relative to 3 lumbar_dofs_per_veterbra for dof in lumbar_axis.keys(): axis_scale = 7.0 / [dof in joint for joint in lumbar_joint_names].count( True ) lumbar_defaults[dof].joint.range *= axis_scale # Pelvis: pelvis = l_7.add( 'body', name='pelvis', pos=bone_position['Pelvis'] - bone_position['L_7'] ) pelvic_bones = ['Sacrum', 'Pelvis'] pelvic_geoms = [] for bone in pelvic_bones: geom = pelvis.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Pelvis'], dclass='bone', ) pelvic_geoms.append(geom) # Collision primitives for pelvis for side in ['_L', '_R']: pos = np.array((0.01, -0.02, -0.01)) * side_sign[side] pelvis.add( 'geom', name='collision_pelvis' + side, pos=pos, size=[0.05, 0.05, 0], euler=[0, 70, 0], dclass='nonself_collision_primitive', ) return pelvic_bones, lumbar_joints
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/build_torso.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make dog model.""" import os from absl import app from absl import flags from dm_control import mjcf from dm_control.locomotion.walkers.assets.dog_v2 import add_torque_actuators from dm_control.locomotion.walkers.assets.dog_v2 import build_back_legs from dm_control.locomotion.walkers.assets.dog_v2 import build_front_legs from dm_control.locomotion.walkers.assets.dog_v2 import build_neck from dm_control.locomotion.walkers.assets.dog_v2 import build_tail from dm_control.locomotion.walkers.assets.dog_v2 import build_torso from dm_control.locomotion.walkers.assets.dog_v2 import create_skin from lxml import etree import numpy as np from dm_control.utils import io as resources flags.DEFINE_boolean('make_skin', True, 'Whether to make a new dog_skin.skn') flags.DEFINE_float( 'lumbar_dofs_per_vertebra', 1.5, 'Number of degrees of freedom per vertebra in lumbar spine.', ) flags.DEFINE_float( 'cervical_dofs_per_vertebra', 1.5, 'Number of degrees of freedom vertebra in cervical spine.', ) flags.DEFINE_float( 'caudal_dofs_per_vertebra', 1, 'Number of degrees of freedom vertebra in caudal spine.', ) FLAGS = flags.FLAGS BASE_MODEL = 'dog_base.xml' ASSET_RELPATH = '../../../../suite/dog_assets' ASSET_DIR = os.path.dirname(__file__) + '/' + ASSET_RELPATH print(ASSET_DIR) def exclude_contacts(model): """Exclude contacts from model. Args: model: model in which we want to exclude contacts. """ physics = mjcf.Physics.from_mjcf_model(model) excluded_pairs = [] for c in physics.data.contact: body1 = physics.model.id2name(physics.model.geom_bodyid[c.geom1], 'body') body2 = physics.model.id2name(physics.model.geom_bodyid[c.geom2], 'body') pair = body1 + ':' + body2 if pair not in excluded_pairs: excluded_pairs.append(pair) model.contact.add('exclude', name=pair, body1=body1, body2=body2) # manual exclusions model.contact.add( 'exclude', name='C_1:jaw', body1=model.find('body', 'C_1'), body2=model.find('body', 'jaw'), ) model.contact.add( 'exclude', name='torso:lower_arm_L', body1=model.find('body', 'torso'), body2='lower_arm_L', ) model.contact.add( 'exclude', name='torso:lower_arm_R', body1=model.find('body', 'torso'), body2='lower_arm_R', ) model.contact.add( 'exclude', name='C_4:scapula_R', body1='C_4', body2='scapula_R' ) model.contact.add( 'exclude', name='C_4:scapula_L', body1='C_4', body2='scapula_L' ) model.contact.add( 'exclude', name='C_5:upper_arm_R', body1='C_5', body2='upper_arm_R' ) model.contact.add( 'exclude', name='C_5:upper_arm_L', body1='C_5', body2='upper_arm_L' ) model.contact.add( 'exclude', name='C_6:upper_arm_R', body1='C_6', body2='upper_arm_R' ) model.contact.add( 'exclude', name='C_6:upper_arm_L', body1='C_6', body2='upper_arm_L' ) model.contact.add( 'exclude', name='C_7:upper_arm_R', body1='C_7', body2='upper_arm_R' ) model.contact.add( 'exclude', name='C_7:upper_arm_L', body1='C_7', body2='upper_arm_L' ) model.contact.add( 'exclude', name='upper_leg_L:upper_leg_R', body1='upper_leg_L', body2='upper_leg_R', ) for side in ['_L', '_R']: model.contact.add( 'exclude', name='lower_leg' + side + ':pelvis', body1='lower_leg' + side, body2='pelvis', ) model.contact.add( 'exclude', name='upper_leg' + side + ':foot' + side, body1='upper_leg' + side, body2='foot' + side, ) def main(argv): del argv # Read flags. if FLAGS.is_parsed(): lumbar_dofs_per_vert = FLAGS.lumbar_dofs_per_vertebra cervical_dofs_per_vertebra = FLAGS.cervical_dofs_per_vertebra caudal_dofs_per_vertebra = FLAGS.caudal_dofs_per_vertebra make_skin = FLAGS.make_skin else: lumbar_dofs_per_vert = FLAGS['lumbar_dofs_per_vertebra'].default cervical_dofs_per_vertebra = FLAGS['cervical_dofs_per_vertebra'].default caudal_dofs_per_vertebra = FLAGS['caudal_dofs_per_vertebra'].default make_skin = FLAGS['make_skin'].default print('Load base model.') with open(BASE_MODEL, 'r') as f: model = mjcf.from_file(f) # Helper constants: side_sign = { '_L': np.array((1.0, -1.0, 1.0)), '_R': np.array((1.0, 1.0, 1.0)), } primary_axis = { '_abduct': np.array((-1.0, 0.0, 0.0)), '_extend': np.array((0.0, 1.0, 0.0)), '_supinate': np.array((0.0, 0.0, -1.0)), } # Add meshes: print('Loading all meshes, getting positions and sizes.') meshdir = ASSET_DIR model.compiler.meshdir = meshdir texturedir = ASSET_DIR model.compiler.texturedir = texturedir bones = [] for dirpath, _, filenames in resources.WalkResources(meshdir): prefix = 'extras/' if 'extras' in dirpath else '' for filename in filenames: if 'dog_skin.msh' in filename: skin_msh = model.asset.add( 'mesh', name='skin_msh', file=filename, scale=(1.25, 1.25, 1.25) ) name = filename[4:-4] name = name.replace('*', ':') if filename.startswith('BONE'): if 'Lingual' not in name: bones.append(name) model.asset.add('mesh', name=name, file=prefix + filename) # Put all bones in worldbody, get positions, remove bones: bone_geoms = [] for bone in bones: geom = model.worldbody.add( 'geom', name=bone, mesh=bone, type='mesh', contype=0, conaffinity=0, rgba=[1, 0.5, 0.5, 0.4], ) bone_geoms.append(geom) physics = mjcf.Physics.from_mjcf_model(model) bone_position = {} bone_size = {} for bone in bones: geom = model.find('geom', bone) bone_position[bone] = np.array(physics.bind(geom).xpos) bone_size[bone] = np.array(physics.bind(geom).rbound) geom.remove() # Torso print('Torso, lumbar spine, pelvis.') pelvic_bones, lumbar_joints = build_torso.create_torso( model, bones, bone_position, lumbar_dofs_per_vert, side_sign, parent=model.worldbody, ) print('Neck, skull, jaw.') # Cervical spine (neck) bodies: cervical_joints = build_neck.create_neck( model, bone_position, cervical_dofs_per_vertebra, bones, side_sign, bone_size, parent=model.find('body', 'torso'), ) print('Back legs.') nails, sole_sites = build_back_legs.create_back_legs( model, primary_axis, bone_position, bones, side_sign, bone_size, pelvic_bones, parent=model.find('body', 'pelvis'), ) print('Shoulders, front legs.') palm_sites = build_front_legs.create_front_legs( nails, model, primary_axis, bones, side_sign, parent=model.find('body', 'torso'), ) print('Tail.') caudal_joints = build_tail.create_tail( caudal_dofs_per_vertebra, bone_size, model, bone_position, parent=model.find('body', 'pelvis'), ) print('Collision geoms, fixed tendons.') physics = mjcf.Physics.from_mjcf_model(model) print('Unify ribcage and jaw meshes.') for body in model.find_all('body'): body_meshes = [ geom for geom in body.all_children() if geom.tag == 'geom' and hasattr(geom, 'mesh') and geom.mesh is not None ] if len(body_meshes) > 10: mergables = [ ('torso', 'Ribcage'), ('jaw', 'Jaw'), ('skull', 'MergedSkull'), ] for bodyname, meshname in mergables: if body.name == bodyname: print('==== Merging ', bodyname) for mesh in body_meshes: print(mesh.name) body.add( 'inertial', mass=physics.bind(body).mass, pos=physics.bind(body).ipos, quat=physics.bind(body).iquat, diaginertia=physics.bind(body).inertia, ) for mesh in body_meshes: if 'eye' not in mesh.name: model.find('mesh', mesh.name).remove() mesh.remove() body.add( 'geom', name=meshname, mesh=meshname, dclass='bone', pos=-bone_position[meshname], ) print('Add Actuators') actuated_joints = add_torque_actuators.add_motors( physics, model, lumbar_joints, cervical_joints, caudal_joints ) print('Excluding contacts.') exclude_contacts(model) if make_skin: create_skin.create(model, skin_msh) # Add skin from .skn print('Adding Skin.') skin_texture = model.asset.add( 'texture', name='skin', file='skin_texture.png', type='2d' ) skin_material = model.asset.add('material', name='skin', texture=skin_texture) model.asset.add( 'skin', name='skin', file='dog_skin.skn', material=skin_material ) skin_msh.remove() print('Removing non-essential sites.') all_sites = model.find_all('site') for site in all_sites: if site.dclass is None: site.remove() physics = mjcf.Physics.from_mjcf_model(model) # sensors model.sensor.add( 'accelerometer', name='accelerometer', site=model.find('site', 'head') ) model.sensor.add( 'velocimeter', name='velocimeter', site=model.find('site', 'head') ) model.sensor.add('gyro', name='gyro', site=model.find('site', 'head')) model.sensor.add( 'subtreelinvel', name='torso_linvel', body=model.find('body', 'torso') ) model.sensor.add( 'subtreeangmom', name='torso_angmom', body=model.find('body', 'torso') ) for site in palm_sites + sole_sites: model.sensor.add('touch', name=site.name, site=site) anchors = [site for site in model.find_all('site') if 'anchor' in site.name] for site in anchors: model.sensor.add('force', name=site.name.replace('_anchor', ''), site=site) # Print stuff joint_acts = [model.find('actuator', j.name) for j in actuated_joints] print( '{:20} {:>10} {:>10} {:>10} {:>10} {:>10}'.format( 'name', 'mass', 'damping', 'stiffness', 'ratio', 'armature' ) ) for i, j in enumerate(actuated_joints): dmp = physics.bind(j).damping[0] mass_eff = physics.bind(j).M0[0] dmp = physics.bind(j).damping[0] stf = physics.bind(joint_acts[i]).gainprm[0] arma = physics.bind(j).armature[0] print( '{:20} {:10.4} {:10} {:10.4} {:10.4} {:10}'.format( j.name, mass_eff, dmp, stf, dmp / (2 * np.sqrt(mass_eff * stf)), arma, ) ) print('Finalising and saving model.') xml_string = model.to_xml_string('float', precision=4, zero_threshold=1e-7) root = etree.XML(xml_string, etree.XMLParser(remove_blank_text=True)) print('Remove hashes from filenames') assets = list(root.find('asset').iter()) for asset in assets: asset_filename = asset.get('file') if asset_filename is not None: name = asset_filename[:-4] extension = asset_filename[-4:] asset.set('file', name[:-41] + extension) print('Add <compiler meshdir/>, for locally-loadable model') compiler = etree.Element( 'compiler', meshdir=ASSET_RELPATH, texturedir=ASSET_RELPATH ) root.insert(0, compiler) print('Remove class="/"') default_elem = root.find('default') root.insert(6, default_elem[0]) root.remove(default_elem) xml_string = etree.tostring(root, pretty_print=True) xml_string = xml_string.replace(b' class="/"', b'') print('Insert spaces between top level elements') lines = xml_string.splitlines() newlines = [] for line in lines: newlines.append(line) if line.startswith(b' <'): if line.startswith(b' </') or line.endswith(b'/>'): newlines.append(b'') newlines.append(b'') xml_string = b'\n'.join(newlines) # Save to file. f = open('dog.xml', 'wb') f.write(xml_string) f.close() if __name__ == '__main__': app.run(main)
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/build_dog.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make front legs for the dog model.""" from dm_control import mjcf import numpy as np def create_front_legs(nails, model, primary_axis, bones, side_sign, parent): """Add front legs in the model. Args: nails: a list of string with the geoms representing nails. model: model in which we want to add the front legs. primary_axis: a dictionary of numpy arrays representing axis of rotation. bones: a list of strings with all the names of the bones. side_sign: a dictionary with two axis representing the signs of translations. parent: parent object on which we should start attaching new components. Returns: A list of palm sites. """ def_scapula_supinate = model.default.find('default', 'scapula_supinate') def_scapula_abduct = model.default.find('default', 'scapula_abduct') def_scapula_extend = model.default.find('default', 'scapula_extend') scapula_defaults = { '_abduct': def_scapula_abduct, '_extend': def_scapula_extend, '_supinate': def_scapula_supinate, } torso = parent # Shoulders scapula = {} scapulae = [b for b in bones if 'Scapula' in b] scapula_pos = np.array((0.08, -0.02, 0.14)) for side in ['_L', '_R']: body_pos = scapula_pos * side_sign[side] arm = torso.add('body', name='scapula' + side, pos=body_pos) scapula[side] = arm for bone in [b for b in scapulae if side in b]: arm.add( 'geom', name=bone, mesh=bone, pos=-torso.pos - body_pos, dclass='bone' ) # Shoulder joints for dof in ['_supinate', '_abduct', '_extend']: joint_axis = primary_axis[dof].copy() joint_pos = scapula_defaults[dof].joint.pos.copy() if dof != '_extend': joint_axis *= 1.0 if side == '_R' else -1.0 joint_pos *= side_sign[side] else: joint_axis += ( 0.3 * (1 if side == '_R' else -1) * primary_axis['_abduct'] ) arm.add( 'joint', name='scapula' + side + dof, dclass='scapula' + dof, axis=joint_axis, pos=joint_pos, ) # Shoulder sites shoulder_pos = np.array((0.075, -0.033, -0.13)) arm.add( 'site', name='shoulder' + side, size=[0.01], pos=shoulder_pos * side_sign[side], ) # Upper Arms: upper_arm = {} parent_pos = {} humeri = ['humerus_R', 'humerus_L'] for side in ['_L', '_R']: body_pos = shoulder_pos * side_sign[side] parent = scapula[side] parent_pos[side] = torso.pos + parent.pos arm = parent.add('body', name='upper_arm' + side, pos=body_pos) upper_arm[side] = arm for bone in [b for b in humeri if side in b]: arm.add( 'geom', name=bone, mesh=bone, pos=-parent_pos[side] - body_pos, dclass='bone', ) parent_pos[side] += body_pos # Shoulder joints for dof in ['_supinate', '_extend']: joint_axis = primary_axis[dof].copy() if dof == '_supinate': joint_axis[0] = 1 joint_axis *= 1.0 if side == '_R' else -1.0 arm.add( 'joint', name='shoulder' + side + dof, dclass='shoulder' + dof, axis=joint_axis, ) # Elbow sites elbow_pos = np.array((-0.05, -0.015, -0.145)) arm.add( 'site', type='cylinder', name='elbow' + side, size=[0.003, 0.02], zaxis=(0, 1, -(1.0 if side == '_R' else -1.0) * 0.2), pos=elbow_pos * side_sign[side], ) # Lower arms: lower_arm = {} lower_arm_bones = [ b for b in bones if 'ulna' in b.lower() or 'Radius' in b or 'accessory' in b ] for side in ['_L', '_R']: body_pos = elbow_pos * side_sign[side] arm = upper_arm[side].add('body', name='lower_arm' + side, pos=body_pos) lower_arm[side] = arm for bone in [b for b in lower_arm_bones if side in b]: arm.add( 'geom', name=bone, mesh=bone, pos=-parent_pos[side] - body_pos, dclass='bone', ) # Elbow joints elbow_axis = upper_arm[side].find_all('site')[0].zaxis arm.add('joint', name='elbow' + side, dclass='elbow', axis=elbow_axis) parent_pos[side] += body_pos # Wrist sites wrist_pos = np.array((0.003, 0.015, -0.19)) arm.add( 'site', type='cylinder', name='wrist' + side, size=[0.004, 0.017], zaxis=(0, 1, 0), pos=wrist_pos * side_sign[side], ) # Hands: hands = {} hand_bones = [ b for b in bones if ('carpal' in b.lower() and 'acces' not in b and 'ulna' not in b) or ('distalis_digiti_I_' in b) ] for side in ['_L', '_R']: body_pos = wrist_pos * side_sign[side] hand_anchor = lower_arm[side].add( 'body', name='hand_anchor' + side, pos=body_pos ) hand_anchor.add( 'geom', name=hand_anchor.name, dclass='foot_primitive', type='box', size=(0.005, 0.005, 0.005), contype=0, conaffinity=0, ) hand_anchor.add('site', name=hand_anchor.name, dclass='sensor') hand = hand_anchor.add('body', name='hand' + side) hands[side] = hand for bone in [b for b in hand_bones if side in b]: hand.add( 'geom', name=bone, mesh=bone, pos=-parent_pos[side] - body_pos, dclass='bone', ) # Wrist joints hand.add('joint', name='wrist' + side, dclass='wrist', axis=(0, -1, 0)) hand.add( 'geom', name=hand.name + '_collision', size=[0.03, 0.016, 0.012], pos=[0.01, 0, -0.04], euler=(0, 65, 0), dclass='collision_primitive', type='box', ) parent_pos[side] += body_pos # Finger sites finger_pos = np.array((0.02, 0, -0.06)) hand.add( 'site', type='cylinder', name='finger' + side, size=[0.003, 0.025], zaxis=((1.0 if side == '_R' else -1.0) * 0.2, 1, 0), pos=finger_pos * side_sign[side], ) # Fingers: finger_bones = [ b for b in bones if 'Phalanx' in b and 'distalis_digiti_I_' not in b ] palm_sites = [] for side in ['_L', '_R']: body_pos = finger_pos * side_sign[side] hand = hands[side].add('body', name='finger' + side, pos=body_pos) for bone in [b for b in finger_bones if side in b]: geom = hand.add( 'geom', name=bone, mesh=bone, pos=-parent_pos[side] - body_pos, dclass='bone', ) if 'distalis' in bone: nails.append(bone) geom.dclass = 'visible_bone' # Finger joints finger_axis = upper_arm[side].find_all('site')[0].zaxis hand.add('joint', name='finger' + side, dclass='finger', axis=finger_axis) hand.add( 'geom', name=hand.name + '0_collision', size=[0.018, 0.012], pos=[0.012, 0, -0.012], euler=(90, 0, 0), dclass='foot_primitive', ) hand.add( 'geom', name=hand.name + '1_collision', size=[0.01, 0.015], pos=[0.032, 0, -0.02], euler=(90, 0, 0), dclass='foot_primitive', ) hand.add( 'geom', name=hand.name + '2_collision', size=[0.008, 0.01], pos=[0.042, 0, -0.022], euler=(90, 0, 0), dclass='foot_primitive', ) palm = hand.add( 'site', name='palm' + side, size=(0.028, 0.03, 0.007), pos=(0.02, 0, -0.024), type='box', dclass='sensor', ) palm_sites.append(palm) physics = mjcf.Physics.from_mjcf_model(model) for side in ['_L', '_R']: # scapula: scap = scapula[side] geom = scap.get_children('geom')[0] bound_geom = physics.bind(geom) scap.add( 'geom', name=geom.name + '_collision', pos=bound_geom.pos, size=bound_geom.size * 0.8, quat=bound_geom.quat, type='box', dclass='collision_primitive', ) # upper arm: arm = upper_arm[side] geom = arm.get_children('geom')[0] bound_geom = physics.bind(geom) arm.add( 'geom', name=geom.name + '_collision', pos=bound_geom.pos, size=[0.02, 0.08], quat=bound_geom.quat, dclass='collision_primitive', ) all_geoms = model.find_all('geom') for geom in all_geoms: if 'Ulna' in geom.name: bound_geom = physics.bind(geom) geom.parent.add( 'geom', name=geom.name + '_collision', pos=bound_geom.pos, size=[0.015, 0.06], quat=bound_geom.quat, dclass='collision_primitive', ) if 'Radius' in geom.name: bound_geom = physics.bind(geom) pos = bound_geom.pos + np.array((-0.005, 0.0, -0.01)) geom.parent.add( 'geom', name=geom.name + '_collision', pos=pos, size=[0.017, 0.09], quat=bound_geom.quat, dclass='collision_primitive', ) return palm_sites
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/build_front_legs.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make back legs for the dog model.""" from dm_control import mjcf import numpy as np def create_back_legs( model, primary_axis, bone_position, bones, side_sign, bone_size, pelvic_bones, parent, ): """Add back legs in the model. Args: model: model in which we want to add the back legs. primary_axis: a dictionary of numpy arrays representing axis of rotation. bone_position: a dictionary of bones positions. bones: a list of strings with all the names of the bones. side_sign: a dictionary with two axis representing the signs of translations. bone_size: dictionary containing the scale of the geometry. pelvic_bones: list of string of the pelvic bones. parent: parent object on which we should start attaching new components. Returns: The tuple `(nails, sole_sites)`. """ pelvis = parent # Hip joint sites: scale = np.asarray([bone_size[bone] for bone in pelvic_bones]).mean() hip_pos = np.array((-0.23, -0.6, -0.16)) * scale for side in ['_L', '_R']: pelvis.add( 'site', name='hip' + side, size=[0.011], pos=hip_pos * side_sign[side] ) # Upper legs: upper_leg = {} femurs = [b for b in bones if 'Fem' in b] use_tendons = False if not use_tendons: femurs += [b for b in bones if 'Patella' in b] for side in ['_L', '_R']: body_pos = hip_pos * side_sign[side] leg = pelvis.add('body', name='upper_leg' + side, pos=body_pos) upper_leg[side] = leg for bone in [b for b in femurs if side in b]: leg.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Pelvis'] - body_pos, dclass='bone', ) # Hip joints for dof in ['_supinate', '_abduct', '_extend']: axis = primary_axis[dof].copy() if dof != '_extend': axis *= 1.0 if side != '_R' else -1.0 leg.add('joint', name='hip' + side + dof, dclass='hip' + dof, axis=axis) # Knee sites scale = bone_size['Femoris_L'] knee_pos = np.array((-0.2, -0.27, -1.45)) * scale leg.add( 'site', type='cylinder', name='knee' + side, size=[0.003, 0.02], zaxis=(0, 1, 0), pos=knee_pos * side_sign[side], ) pos = np.array((-0.01, -0.02, -0.08)) * side_sign[side] euler = [-10 * (1.0 if side == '_R' else -1.0), 20, 0] leg.add( 'geom', name=leg.name + '0_collision', pos=pos, size=[0.04, 0.08], euler=euler, dclass='collision_primitive', ) pos = np.array((-0.03, 0, -0.05)) euler = [-10 * (1.0 if side == '_R' else -1.0), 5, 0] leg.add( 'geom', name=leg.name + '1_collision', pos=pos, size=[0.04, 0.04], euler=euler, dclass='collision_primitive', ) # Patella if use_tendons: # Make patella body pass # Lower legs: lower_leg = {} lower_leg_bones = [b for b in bones if 'Tibia_' in b or 'Fibula' in b] for side in ['_L', '_R']: body_pos = knee_pos * side_sign[side] leg = upper_leg[side].add('body', name='lower_leg' + side, pos=body_pos) lower_leg[side] = leg for bone in [b for b in lower_leg_bones if side in b]: leg.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Pelvis'] - upper_leg[side].pos - body_pos, dclass='bone', ) # Knee joints leg.add('joint', name='knee' + side, dclass='knee', axis=(0, -1, 0)) # Ankle sites scale = bone_size['Tibia_L'] ankle_pos = np.array((-1.27, 0.04, -0.98)) * scale leg.add( 'site', type='cylinder', name='ankle' + side, size=[0.003, 0.013], zaxis=(0, 1, 0), pos=ankle_pos * side_sign[side], ) # Feet: foot = {} foot_bones = [b for b in bones if 'tars' in b.lower() or 'tuber' in b] for side in ['_L', '_R']: body_pos = ankle_pos * side_sign[side] leg = lower_leg[side].add('body', name='foot' + side, pos=body_pos) foot[side] = leg for bone in [b for b in foot_bones if side in b]: leg.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Pelvis'] - upper_leg[side].pos - lower_leg[side].pos - body_pos, dclass='bone', ) # Ankle joints leg.add('joint', name='ankle' + side, dclass='ankle', axis=(0, 1, 0)) pos = np.array((-0.01, -0.005, -0.05)) * side_sign[side] leg.add( 'geom', name=leg.name + '_collision', size=[0.015, 0.07], pos=pos, dclass='collision_primitive', ) # Toe sites scale = bone_size['Metatarsi_R_2'] toe_pos = np.array((-0.37, -0.2, -2.95)) * scale leg.add( 'site', type='cylinder', name='toe' + side, size=[0.003, 0.025], zaxis=(0, 1, 0), pos=toe_pos * side_sign[side], ) # Toes: toe_bones = [b for b in bones if 'Phalange' in b] toe_geoms = [] sole_sites = [] nails = [] for side in ['_L', '_R']: body_pos = toe_pos * side_sign[side] foot_anchor = foot[side].add( 'body', name='foot_anchor' + side, pos=body_pos ) foot_anchor.add( 'geom', name=foot_anchor.name, dclass='foot_primitive', type='box', size=(0.005, 0.005, 0.005), contype=0, conaffinity=0, ) foot_anchor.add('site', name=foot_anchor.name, dclass='sensor') leg = foot_anchor.add('body', name='toe' + side) for bone in [b for b in toe_bones if side in b]: geom = leg.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Pelvis'] - upper_leg[side].pos - lower_leg[side].pos - foot[side].pos - body_pos, dclass='bone', ) if 'B_3' in bone: nails.append(bone) geom.dclass = 'visible_bone' else: toe_geoms.append(geom) # Toe joints leg.add('joint', name='toe' + side, dclass='toe', axis=(0, 1, 0)) # Collision geoms leg.add( 'geom', name=leg.name + '0_collision', size=[0.018, 0.012], pos=[0.015, 0, -0.02], euler=(90, 0, 0), dclass='foot_primitive', ) leg.add( 'geom', name=leg.name + '1_collision', size=[0.01, 0.015], pos=[0.035, 0, -0.028], euler=(90, 0, 0), dclass='foot_primitive', ) leg.add( 'geom', name=leg.name + '2_collision', size=[0.008, 0.01], pos=[0.045, 0, -0.03], euler=(90, 0, 0), dclass='foot_primitive', ) sole = leg.add( 'site', name='sole' + side, size=(0.025, 0.03, 0.008), pos=(0.026, 0, -0.033), type='box', dclass='sensor', ) sole_sites.append(sole) physics = mjcf.Physics.from_mjcf_model(model) for side in ['_L', '_R']: # lower leg: leg = lower_leg[side] leg.add( 'geom', name=leg.name + '_collision', pos=physics.bind(leg).ipos * 1.3, size=[0.02, 0.1], quat=physics.bind(leg).iquat, dclass='collision_primitive', ) return nails, sole_sites
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/build_back_legs.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make neck for the dog model.""" import collections from dm_control import mjcf import numpy as np def create_neck( model, bone_position, cervical_dofs_per_vertebra, bones, side_sign, bone_size, parent, ): """Add neck and head in the dog model. Args: model: model in which we want to add the neck. bone_position: a dictionary of bones positions. cervical_dofs_per_vertebra: a number that the determines how many dofs are going to be used between each pair of cervical vetebrae. bones: a list of strings with all the names of the bones. side_sign: a dictionary with two axis representing the signs of translations. bone_size: dictionary containing the scale of the geometry. parent: parent object on which we should start attaching new components. Returns: A list of cervical joints. """ # Cervical Spine def_cervical = model.default.find('default', 'cervical') def_cervical_extend = model.default.find('default', 'cervical_extend') def_cervical_bend = model.default.find('default', 'cervical_bend') def_cervical_twist = model.default.find('default', 'cervical_twist') cervical_defaults = { 'extend': def_cervical_extend, 'bend': def_cervical_bend, 'twist': def_cervical_twist, } cervical_bones = ['C_' + str(i) for i in range(7, 0, -1)] parent_pos = parent.pos cervical_bodies = [] cervical_geoms = [] radius = 0.07 for i, bone in enumerate(cervical_bones): bone_pos = bone_position[bone] rel_pos = bone_pos - parent_pos child = parent.add('body', name=bone, pos=rel_pos) cervical_bodies.append(child) dclass = 'bone' if i > 3 else 'light_bone' geom = child.add('geom', name=bone, mesh=bone, pos=-bone_pos, dclass=dclass) child.add( 'geom', name=bone + '_collision', type='sphere', size=[radius], dclass='nonself_collision_primitive', ) radius -= 0.006 cervical_geoms.append(geom) parent = child parent_pos = bone_pos # Reload physics = mjcf.Physics.from_mjcf_model(model) # Cervical (neck) spine joints: cervical_axis = collections.OrderedDict() cervical_axis['extend'] = np.array((0.0, 1.0, 0.0)) cervical_axis['bend'] = np.array((0.0, 0.0, 1.0)) cervical_axis['twist'] = np.array((1.0, 0.0, 0)) num_dofs = 0 cervical_joints = [] cervical_joint_names = [] torso = model.find('body', 'torso') parent = torso.find('geom', 'T_1') for i, vertebra in enumerate(cervical_bodies): while num_dofs < (i + 1) * cervical_dofs_per_vertebra: dof = num_dofs % 3 dof_name = list(cervical_axis.keys())[dof] cervical_joint_names.append(vertebra.name + '_' + dof_name) rel_pos = physics.bind(vertebra).xpos - physics.bind(parent).xpos twist_dir = rel_pos / np.linalg.norm(rel_pos) bend_dir = np.cross(twist_dir, cervical_axis['extend']) cervical_axis['bend'] = bend_dir cervical_axis['twist'] = twist_dir joint_frame = np.vstack((twist_dir, cervical_axis['extend'], bend_dir)) joint_pos = ( def_cervical.joint.pos * physics.bind(vertebra.find('geom', vertebra.name)).size.mean() ) joint = vertebra.add( 'joint', name=cervical_joint_names[-1], dclass='cervical_' + dof_name, axis=cervical_axis[dof_name], pos=joint_pos.dot(joint_frame), ) cervical_joints.append(joint) num_dofs += 1 parent = vertebra # Lumbar spine joints: lumbar_axis = collections.OrderedDict() lumbar_axis['extend'] = np.array((0.0, 1.0, 0.0)) lumbar_axis['bend'] = np.array((0.0, 0.0, 1.0)) lumbar_axis['twist'] = np.array((1.0, 0.0, 0)) # Scale joint defaults relative to 3 cervical_dofs_per_vertebra for dof in lumbar_axis.keys(): axis_scale = 7.0 / [dof in joint for joint in cervical_joint_names].count( True ) cervical_defaults[dof].joint.range *= axis_scale # Reload physics = mjcf.Physics.from_mjcf_model(model) # Skull c_1 = cervical_bodies[-1] upper_teeth = [m for m in bones if 'Top' in m] skull_bones = upper_teeth + ['Skull', 'Ethmoid', 'Vomer', 'eye_L', 'eye_R'] skull = c_1.add( 'body', name='skull', pos=bone_position['Skull'] - physics.bind(c_1).xpos ) skull_geoms = [] for bone in skull_bones: geom = skull.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Skull'], dclass='light_bone', ) if 'eye' in bone: geom.rgba = [1, 1, 1, 1] geom.dclass = 'visible_bone' skull_geoms.append(geom) if bone in upper_teeth: geom.dclass = 'visible_bone' for side in ['_L', '_R']: pos = np.array((0.023, -0.027, 0.01)) * side_sign[side] skull.add( 'geom', name='iris' + side, type='ellipsoid', dclass='visible_bone', rgba=(0.45, 0.45, 0.225, 0.4), size=(0.003, 0.007, 0.007), pos=pos, euler=[0, 0, -20 * (1.0 if side == '_R' else -1.0)], ) pos = np.array((0.0215, -0.0275, 0.01)) * side_sign[side] skull.add( 'geom', name='pupil' + side, type='sphere', dclass='visible_bone', rgba=(0, 0, 0, 1), size=(0.003, 0, 0), pos=pos, ) # collision geoms skull.add( 'geom', name='skull0' + '_collision', type='ellipsoid', dclass='collision_primitive', size=(0.06, 0.06, 0.04), pos=(-0.02, 0, 0.01), euler=[0, 10, 0], ) skull.add( 'geom', name='skull1' + '_collision', type='capsule', dclass='collision_primitive', size=(0.015, 0.04, 0.015), pos=(0.06, 0, -0.01), euler=[0, 110, 0], ) skull.add( 'geom', name='skull2' + '_collision', type='box', dclass='collision_primitive', size=(0.03, 0.028, 0.008), pos=(0.02, 0, -0.03), ) skull.add( 'geom', name='skull3' + '_collision', type='box', dclass='collision_primitive', size=(0.02, 0.018, 0.006), pos=(0.07, 0, -0.03), ) skull.add( 'geom', name='skull4' + '_collision', type='box', dclass='collision_primitive', size=(0.005, 0.015, 0.004), pos=(0.095, 0, -0.03), ) skull.add( 'joint', name='atlas', dclass='atlas', pos=np.array((-0.5, 0, 0)) * bone_size['Skull'], ) skull.add( 'site', name='head', size=(0.01, 0.01, 0.01), type='box', dclass='sensor' ) skull.add( 'site', name='upper_bite', size=(0.005,), dclass='sensor', pos=(0.065, 0, -0.07), ) # Jaw lower_teeth = [m for m in bones if 'Bottom' in m] jaw_bones = lower_teeth + ['Mandible'] jaw = skull.add( 'body', name='jaw', pos=bone_position['Mandible'] - bone_position['Skull'] ) jaw_geoms = [] for bone in jaw_bones: geom = jaw.add( 'geom', name=bone, mesh=bone, pos=-bone_position['Mandible'], dclass='light_bone', ) jaw_geoms.append(geom) if bone in lower_teeth: geom.dclass = 'visible_bone' # Jaw collision geoms: jaw_col_pos = [ (-0.03, 0, 0.01), (0, 0, -0.012), (0.03, 0, -0.028), (0.052, 0, -0.035), ] jaw_col_size = [ (0.03, 0.028, 0.008), (0.02, 0.022, 0.005), (0.02, 0.018, 0.005), (0.015, 0.013, 0.003), ] jaw_col_angle = [55, 30, 25, 15] for i in range(4): jaw.add( 'geom', name='jaw' + str(i) + '_collision', type='box', dclass='collision_primitive', size=jaw_col_size[i], pos=jaw_col_pos[i], euler=[0, jaw_col_angle[i], 0], ) jaw.add( 'joint', name='mandible', dclass='mandible', axis=[0, 1, 0], pos=np.array((-0.043, 0, 0.05)), ) jaw.add( 'site', name='lower_bite', size=(0.005,), dclass='sensor', pos=(0.063, 0, 0.005), ) print('Make collision ellipsoids for teeth.') visible_bones = upper_teeth + lower_teeth for bone in visible_bones: bone_geom = torso.find('geom', bone) bone_geom.type = 'ellipsoid' physics = mjcf.Physics.from_mjcf_model(model) for bone in visible_bones: bone_geom = torso.find('geom', bone) pos = physics.bind(bone_geom).pos quat = physics.bind(bone_geom).quat size = physics.bind(bone_geom).size bone_geom.parent.add( 'geom', name=bone + '_collision', dclass='tooth_primitive', pos=pos, size=size * 1.2, quat=quat, type='ellipsoid', ) bone_geom.type = None return cervical_joints
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/build_neck.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make skin for the dog model.""" import struct from dm_control import mjcf from dm_control.mujoco.wrapper.mjbindings import enums import numpy as np from scipy import spatial def create(model, skin_msh): """Create and add skin in the dog model. Args: model: model in which we want to add the skin. skin_msh: a binary mesh format of the skin. """ print('Making Skin.') # Add skin mesh: skinmesh = model.worldbody.add( 'geom', name='skinmesh', mesh='skin_msh', type='mesh', contype=0, conaffinity=0, rgba=[1, 0.5, 0.5, 0.5], group=1, euler=(0, 0, 90), ) physics = mjcf.Physics.from_mjcf_model(model) # Get skinmesh vertices in global coordinates vertadr = physics.named.model.mesh_vertadr['skin_msh'] vertnum = physics.named.model.mesh_vertnum['skin_msh'] skin_vertices = physics.model.mesh_vert[vertadr : vertadr + vertnum, :] skin_vertices = skin_vertices.dot( physics.named.data.geom_xmat['skinmesh'].reshape(3, 3).T ) skin_vertices += physics.named.data.geom_xpos['skinmesh'] skin_normals = physics.model.mesh_normal[vertadr : vertadr + vertnum, :] skin_normals = skin_normals.dot( physics.named.data.geom_xmat['skinmesh'].reshape(3, 3).T ) skin_normals += physics.named.data.geom_xpos['skinmesh'] # Get skinmesh faces faceadr = physics.named.model.mesh_faceadr['skin_msh'] facenum = physics.named.model.mesh_facenum['skin_msh'] skin_faces = physics.model.mesh_face[faceadr : faceadr + facenum, :] # Make skin skin = model.asset.add( 'skin', name='skin', vertex=skin_vertices.ravel(), face=skin_faces.ravel() ) # Functions for capsule vertices numslices = 10 numstacks = 10 numquads = 8 def hemisphere(radius): positions = [] for az in np.linspace(0, 2 * np.pi, numslices, False): for el in np.linspace(0, np.pi, numstacks, False): pos = np.asarray( [np.cos(el) * np.cos(az), np.cos(el) * np.sin(az), np.sin(el)] ) positions.append(pos) return radius * np.asarray(positions) def cylinder(radius, height): positions = [] for az in np.linspace(0, 2 * np.pi, numslices, False): for el in np.linspace(-1, 1, numstacks): pos = np.asarray( [radius * np.cos(az), radius * np.sin(az), height * el] ) positions.append(pos) return np.asarray(positions) def capsule(radius, height): hp = hemisphere(radius) cy = cylinder(radius, height) offset = np.array((0, 0, height)) return np.unique(np.vstack((cy, hp + offset, -hp - offset)), axis=0) def ellipsoid(size): hp = hemisphere(1) sphere = np.unique(np.vstack((hp, -hp)), axis=0) return sphere * size def box(sx, sy, sz): positions = [] for x in np.linspace(-sx, sx, numquads + 1): for y in np.linspace(-sy, sy, numquads + 1): for z in np.linspace(-sz, sz, numquads + 1): if abs(x) == sx or abs(y) == sy or abs(z) == sz: pos = np.asarray([x, y, z]) positions.append(pos) return np.unique(np.asarray(positions), axis=0) # Find smallest distance between # each skin vertex and vertices of all meshes in body i distance = np.zeros((skin_vertices.shape[0], physics.model.nbody)) for i in range(1, physics.model.nbody): geom_id = np.argwhere(physics.model.geom_bodyid == i).ravel() mesh_id = physics.model.geom_dataid[geom_id] body_verts = [] for k, gid in enumerate(geom_id): skip = False if physics.model.geom_type[gid] == enums.mjtGeom.mjGEOM_MESH: vertadr = physics.model.mesh_vertadr[mesh_id[k]] vertnum = physics.model.mesh_vertnum[mesh_id[k]] vertices = physics.model.mesh_vert[vertadr : vertadr + vertnum, :] elif physics.model.geom_type[gid] == enums.mjtGeom.mjGEOM_CAPSULE: radius = physics.model.geom_size[gid, 0] height = physics.model.geom_size[gid, 1] vertices = capsule(radius, height) elif physics.model.geom_type[gid] == enums.mjtGeom.mjGEOM_ELLIPSOID: vertices = ellipsoid(physics.model.geom_size[gid]) elif physics.model.geom_type[gid] == enums.mjtGeom.mjGEOM_BOX: vertices = box(*physics.model.geom_size[gid]) else: skip = True if not skip: vertices = vertices.dot(physics.data.geom_xmat[gid].reshape(3, 3).T) vertices += physics.data.geom_xpos[gid] body_verts.append(vertices) body_verts = np.vstack((body_verts)) # hull = spatial.ConvexHull(body_verts) tree = spatial.cKDTree(body_verts) distance[:, i], _ = tree.query(skin_vertices) # non-KDTree implementation of the above 2 lines: # distance[:, i] = np.amin( # spatial.distance.cdist(skin_vertices, body_verts, 'euclidean'), # axis=1) # Calculate bone weights from distances sigma = 0.015 weights = np.exp(-distance[:, 1:] / sigma) threshold = 0.01 weights /= np.atleast_2d(np.sum(weights, axis=1)).T weights[weights < threshold] = 0 weights /= np.atleast_2d(np.sum(weights, axis=1)).T for i in range(1, physics.model.nbody): vertweight = weights[weights[:, i - 1] >= threshold, i - 1] vertid = np.argwhere(weights[:, i - 1] >= threshold).ravel() if vertid.any(): skin.add( 'bone', body=physics.model.id2name(i, 'body'), bindquat=[1, 0, 0, 0], bindpos=physics.data.xpos[i, :], vertid=vertid, vertweight=vertweight, ) # Remove skinmesh skinmesh.remove() # Convert skin into *.skn file according to # https://mujoco.readthedocs.io/en/latest/XMLreference.html#asset-skin f = open('dog_skin.skn', 'w+b') nvert = skin.vertex.size // 3 f.write( struct.pack( '4i', nvert, nvert, skin.face.size // 3, physics.model.nbody - 1 ) ) f.write(struct.pack(str(skin.vertex.size) + 'f', *skin.vertex)) assert physics.model.mesh_texcoord.shape[0] == physics.bind(skin_msh).vertnum f.write( struct.pack(str(2 * nvert) + 'f', *physics.model.mesh_texcoord.flatten()) ) f.write(struct.pack(str(skin.face.size) + 'i', *skin.face)) for bone in skin.bone: name_length = len(bone.body) assert name_length <= 40 f.write( struct.pack(str(name_length) + 'c', *[s.encode() for s in bone.body]) ) f.write((40 - name_length) * b'\x00') f.write(struct.pack('3f', *bone.bindpos)) f.write(struct.pack('4f', *bone.bindquat)) f.write(struct.pack('i', bone.vertid.size)) f.write(struct.pack(str(bone.vertid.size) + 'i', *bone.vertid)) f.write(struct.pack(str(bone.vertid.size) + 'f', *bone.vertweight)) f.close() # Remove XML-based skin, add binary skin. skin.remove()
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/create_skin.py
# Copyright 2023 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Make torque actuators for the dog model.""" import collections def add_motors(physics, model, lumbar_joints, cervical_joints, caudal_joints): """Add torque motors in model. Args: physics: an instance of physics for the most updated model. model: model in which we want to add motors. lumbar_joints: a list of joints objects. cervical_joints: a list of joints objects. caudal_joints: a list of joints objects. Returns: A list of actuated joints. """ # Fixed Tendons: spinal_joints = collections.OrderedDict() spinal_joints['lumbar_'] = lumbar_joints spinal_joints['cervical_'] = cervical_joints spinal_joints['caudal_'] = caudal_joints tendons = [] for region in spinal_joints.keys(): for direction in ['extend', 'bend', 'twist']: joints = [ joint for joint in spinal_joints[region] if direction in joint.name ] if joints: tendon = model.tendon.add( 'fixed', name=region + direction, dclass=joints[0].dclass ) tendons.append(tendon) joint_inertia = physics.bind(joints).M0 coefs = joint_inertia**0.25 coefs /= coefs.sum() coefs *= len(joints) for i, joint in enumerate(joints): tendon.add('joint', joint=joint, coef=coefs[i]) # Actuators: all_spinal_joints = [] for region in spinal_joints.values(): all_spinal_joints.extend(region) root_joint = model.find('joint', 'root') actuated_joints = [ joint for joint in model.find_all('joint') if joint not in all_spinal_joints and joint is not root_joint ] for tendon in tendons: gain = 0.0 for joint in tendon.joint: # joint.joint.user = physics.bind(joint.joint).damping def_joint = model.default.find('default', joint.joint.dclass) j_gain = def_joint.general.gainprm or def_joint.parent.general.gainprm gain += j_gain[0] * joint.coef gain /= len(tendon.joint) model.actuator.add( 'general', tendon=tendon, name=tendon.name, dclass=tendon.dclass ) for joint in actuated_joints: model.actuator.add( 'general', joint=joint, name=joint.name, dclass=joint.dclass ) return actuated_joints
dm_control-main
dm_control/locomotion/walkers/assets/dog_v2/add_torque_actuators.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Initializers for the locomotion walkers.""" import abc import numpy as np class WalkerInitializer(metaclass=abc.ABCMeta): """The abstract base class for a walker initializer.""" @abc.abstractmethod def initialize_pose(self, physics, walker, random_state): raise NotImplementedError class UprightInitializer(WalkerInitializer): """An initializer that uses the walker-declared upright pose.""" def initialize_pose(self, physics, walker, random_state): all_joints_binding = physics.bind(walker.mjcf_model.find_all('joint')) qpos, xpos, xquat = walker.upright_pose if qpos is None: walker.configure_joints(physics, all_joints_binding.qpos0) else: walker.configure_joints(physics, qpos) walker.set_pose(physics, position=xpos, quaternion=xquat) walker.set_velocity( physics, velocity=np.zeros(3), angular_velocity=np.zeros(3)) class RandomlySampledInitializer(WalkerInitializer): """An initializer that random selects between many initializers.""" def __init__(self, initializers): self._initializers = initializers self.num_initializers = len(initializers) def initialize_pose(self, physics, walker, random_state): random_initalizer_idx = np.random.randint(0, self.num_initializers) self._initializers[random_initalizer_idx].initialize_pose( physics, walker, random_state) class NoOpInitializer(WalkerInitializer): """An initializer that does nothing.""" def initialize_pose(self, physics, walker, random_state): pass
dm_control-main
dm_control/locomotion/walkers/initializers/__init__.py
# Copyright 2021 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Initializers for walkers that use motion capture data.""" from dm_control.locomotion.mocap import cmu_mocap_data from dm_control.locomotion.mocap import loader from dm_control.locomotion.walkers import initializers class CMUMocapInitializer(initializers.UprightInitializer): """Initializer that uses data from a CMU mocap dataset. Only suitable if walker matches the motion capture data. """ def __init__(self, mocap_key='CMU_077_02', version='2019'): """Load the trajectory.""" ref_path = cmu_mocap_data.get_path_for_cmu(version) self._loader = loader.HDF5TrajectoryLoader(ref_path) self._trajectory = self._loader.get_trajectory(mocap_key) def initialize_pose(self, physics, walker, random_state): super(CMUMocapInitializer, self).initialize_pose( physics, walker, random_state) random_time = (self._trajectory.start_time + self._trajectory.dt * random_state.randint( self._trajectory.num_steps)) (walker_timestep,) = self._trajectory.get_timestep_data( random_time).walkers physics.bind(walker.mocap_joints).qpos = walker_timestep.joints physics.bind(walker.mocap_joints).qvel = ( walker_timestep.joints_velocity) walker.set_velocity(physics, velocity=walker_timestep.velocity, angular_velocity=walker_timestep.angular_velocity)
dm_control-main
dm_control/locomotion/walkers/initializers/mocap.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Produces reference environments for rodent tasks.""" import functools from dm_control import composer from dm_control.composer.variation import distributions from dm_control.locomotion.arenas import bowl from dm_control.locomotion.arenas import corridors as corr_arenas from dm_control.locomotion.arenas import floors from dm_control.locomotion.arenas import labmaze_textures from dm_control.locomotion.arenas import mazes from dm_control.locomotion.props import target_sphere from dm_control.locomotion.tasks import corridors as corr_tasks from dm_control.locomotion.tasks import escape from dm_control.locomotion.tasks import random_goal_maze from dm_control.locomotion.tasks import reach from dm_control.locomotion.walkers import rodent _CONTROL_TIMESTEP = .02 _PHYSICS_TIMESTEP = 0.001 def rodent_escape_bowl(random_state=None): """Requires a rodent to climb out of a bowl-shaped terrain.""" # Build a position-controlled rodent walker. walker = rodent.Rat( observable_options={'egocentric_camera': dict(enabled=True)}) # Build a bowl-shaped arena. arena = bowl.Bowl( size=(20., 20.), aesthetic='outdoor_natural') # Build a task that rewards the agent for being far from the origin. task = escape.Escape( walker=walker, arena=arena, physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP) return composer.Environment(time_limit=20, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def rodent_run_gaps(random_state=None): """Requires a rodent to run down a corridor with gaps.""" # Build a position-controlled rodent walker. walker = rodent.Rat( observable_options={'egocentric_camera': dict(enabled=True)}) # Build a corridor-shaped arena with gaps, where the sizes of the gaps and # platforms are uniformly randomized. arena = corr_arenas.GapsCorridor( platform_length=distributions.Uniform(.4, .8), gap_length=distributions.Uniform(.05, .2), corridor_width=2, corridor_length=40, aesthetic='outdoor_natural') # Build a task that rewards the agent for running down the corridor at a # specific velocity. task = corr_tasks.RunThroughCorridor( walker=walker, arena=arena, walker_spawn_position=(5, 0, 0), walker_spawn_rotation=0, target_velocity=1.0, contact_termination=False, terminate_at_height=-0.3, physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def rodent_maze_forage(random_state=None): """Requires a rodent to find all items in a maze.""" # Build a position-controlled rodent walker. walker = rodent.Rat( observable_options={'egocentric_camera': dict(enabled=True)}) # Build a maze with rooms and targets. wall_textures = labmaze_textures.WallTextures(style='style_01') arena = mazes.RandomMazeWithTargets( x_cells=11, y_cells=11, xy_scale=.5, z_height=.3, max_rooms=4, room_min_size=4, room_max_size=5, spawns_per_room=1, targets_per_room=3, wall_textures=wall_textures, aesthetic='outdoor_natural') # Build a task that rewards the agent for obtaining targets. task = random_goal_maze.ManyGoalsMaze( walker=walker, maze_arena=arena, target_builder=functools.partial( target_sphere.TargetSphere, radius=0.05, height_above_ground=.125, rgb1=(0, 0, 0.4), rgb2=(0, 0, 0.7)), target_reward_scale=50., contact_termination=False, physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def rodent_two_touch(random_state=None): """Requires a rodent to tap an orb, wait an interval, and tap it again.""" # Build a position-controlled rodent walker. walker = rodent.Rat( observable_options={'egocentric_camera': dict(enabled=True)}) # Build an open floor arena arena = floors.Floor( size=(10., 10.), aesthetic='outdoor_natural') # Build a task that rewards the walker for touching/reaching orbs with a # specific time interval between touches task = reach.TwoTouch( walker=walker, arena=arena, target_builders=[ functools.partial(target_sphere.TargetSphereTwoTouch, radius=0.025), ], randomize_spawn_rotation=True, target_type_rewards=[25.], shuffle_target_builders=False, target_area=(1.5, 1.5), physics_timestep=_PHYSICS_TIMESTEP, control_timestep=_CONTROL_TIMESTEP, ) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True)
dm_control-main
dm_control/locomotion/examples/basic_rodent_2020.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `dm_control.locomotion.examples`.""" from absl.testing import absltest from absl.testing import parameterized from dm_control.locomotion.examples import basic_cmu_2019 from dm_control.locomotion.examples import basic_rodent_2020 import numpy as np _NUM_EPISODES = 5 _NUM_STEPS_PER_EPISODE = 10 class ExampleEnvironmentsTest(parameterized.TestCase): """Tests run on all the tasks registered.""" def _validate_observation(self, observation, observation_spec): self.assertEqual(list(observation.keys()), list(observation_spec.keys())) for name, array_spec in observation_spec.items(): array_spec.validate(observation[name]) def _validate_reward_range(self, reward): self.assertIsInstance(reward, float) self.assertBetween(reward, 0, 1) def _validate_discount(self, discount): self.assertIsInstance(discount, float) self.assertBetween(discount, 0, 1) @parameterized.named_parameters( ('cmu_humanoid_run_walls', basic_cmu_2019.cmu_humanoid_run_walls), ('cmu_humanoid_run_gaps', basic_cmu_2019.cmu_humanoid_run_gaps), ('cmu_humanoid_go_to_target', basic_cmu_2019.cmu_humanoid_go_to_target), ('cmu_humanoid_maze_forage', basic_cmu_2019.cmu_humanoid_maze_forage), ('cmu_humanoid_heterogeneous_forage', basic_cmu_2019.cmu_humanoid_heterogeneous_forage), ('rodent_escape_bowl', basic_rodent_2020.rodent_escape_bowl), ('rodent_run_gaps', basic_rodent_2020.rodent_run_gaps), ('rodent_maze_forage', basic_rodent_2020.rodent_maze_forage), ('rodent_two_touch', basic_rodent_2020.rodent_two_touch), ) def test_env_runs(self, env_constructor): """Tests that the environment runs and is coherent with its specs.""" random_state = np.random.RandomState(99) env = env_constructor(random_state=random_state) observation_spec = env.observation_spec() action_spec = env.action_spec() self.assertTrue(np.all(np.isfinite(action_spec.minimum))) self.assertTrue(np.all(np.isfinite(action_spec.maximum))) # Run a partial episode, check observations, rewards, discount. for _ in range(_NUM_EPISODES): time_step = env.reset() for _ in range(_NUM_STEPS_PER_EPISODE): self._validate_observation(time_step.observation, observation_spec) if time_step.first(): self.assertIsNone(time_step.reward) self.assertIsNone(time_step.discount) else: self._validate_reward_range(time_step.reward) self._validate_discount(time_step.discount) action = random_state.uniform(action_spec.minimum, action_spec.maximum) env.step(action) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/locomotion/examples/examples_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Walkers for Locomotion tasks.""" from dm_control.locomotion.walkers.cmu_humanoid import CMUHumanoid from dm_control.locomotion.walkers.cmu_humanoid import CMUHumanoidPositionControlled from dm_control.locomotion.walkers.cmu_humanoid import CMUHumanoidPositionControlledV2020
dm_control-main
dm_control/locomotion/examples/__init__.py
# Copyright 2020 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Produces reference environments for CMU humanoid tracking task.""" from dm_control import composer from dm_control.locomotion import arenas from dm_control.locomotion.mocap import cmu_mocap_data from dm_control.locomotion.tasks.reference_pose import tracking from dm_control.locomotion.walkers import cmu_humanoid def cmu_humanoid_tracking(random_state=None): """Requires a CMU humanoid to run down a corridor obstructed by walls.""" # Use a position-controlled CMU humanoid walker. walker_type = cmu_humanoid.CMUHumanoidPositionControlledV2020 # Build an empty arena. arena = arenas.Floor() # Build a task that rewards the agent for tracking motion capture reference # data. task = tracking.MultiClipMocapTracking( walker=walker_type, arena=arena, ref_path=cmu_mocap_data.get_path_for_cmu(version='2020'), dataset='walk_tiny', ref_steps=(1, 2, 3, 4, 5), min_steps=10, reward_type='comic', ) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True)
dm_control-main
dm_control/locomotion/examples/cmu_2020_tracking.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Produces reference environments for CMU humanoid locomotion tasks.""" import functools from dm_control import composer from dm_control.composer.variation import distributions from dm_control.locomotion.arenas import corridors as corr_arenas from dm_control.locomotion.arenas import floors from dm_control.locomotion.arenas import labmaze_textures from dm_control.locomotion.arenas import mazes from dm_control.locomotion.props import target_sphere from dm_control.locomotion.tasks import corridors as corr_tasks from dm_control.locomotion.tasks import go_to_target from dm_control.locomotion.tasks import random_goal_maze from dm_control.locomotion.walkers import cmu_humanoid from labmaze import fixed_maze def cmu_humanoid_run_walls(random_state=None): """Requires a CMU humanoid to run down a corridor obstructed by walls.""" # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled( observable_options={'egocentric_camera': dict(enabled=True)}) # Build a corridor-shaped arena that is obstructed by walls. arena = corr_arenas.WallsCorridor( wall_gap=4., wall_width=distributions.Uniform(1, 7), wall_height=3.0, corridor_width=10, corridor_length=100, include_initial_padding=False) # Build a task that rewards the agent for running down the corridor at a # specific velocity. task = corr_tasks.RunThroughCorridor( walker=walker, arena=arena, walker_spawn_position=(0.5, 0, 0), target_velocity=3.0, physics_timestep=0.005, control_timestep=0.03) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def cmu_humanoid_run_gaps(random_state=None): """Requires a CMU humanoid to run down a corridor with gaps.""" # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled( observable_options={'egocentric_camera': dict(enabled=True)}) # Build a corridor-shaped arena with gaps, where the sizes of the gaps and # platforms are uniformly randomized. arena = corr_arenas.GapsCorridor( platform_length=distributions.Uniform(.3, 2.5), gap_length=distributions.Uniform(.5, 1.25), corridor_width=10, corridor_length=100) # Build a task that rewards the agent for running down the corridor at a # specific velocity. task = corr_tasks.RunThroughCorridor( walker=walker, arena=arena, walker_spawn_position=(0.5, 0, 0), target_velocity=3.0, physics_timestep=0.005, control_timestep=0.03) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def cmu_humanoid_go_to_target(random_state=None): """Requires a CMU humanoid to go to a target.""" # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled() # Build a standard floor arena. arena = floors.Floor() # Build a task that rewards the agent for going to a target. task = go_to_target.GoToTarget( walker=walker, arena=arena, physics_timestep=0.005, control_timestep=0.03) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def cmu_humanoid_maze_forage(random_state=None): """Requires a CMU humanoid to find all items in a maze.""" # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled( observable_options={'egocentric_camera': dict(enabled=True)}) # Build a maze with rooms and targets. skybox_texture = labmaze_textures.SkyBox(style='sky_03') wall_textures = labmaze_textures.WallTextures(style='style_01') floor_textures = labmaze_textures.FloorTextures(style='style_01') arena = mazes.RandomMazeWithTargets( x_cells=11, y_cells=11, xy_scale=3, max_rooms=4, room_min_size=4, room_max_size=5, spawns_per_room=1, targets_per_room=3, skybox_texture=skybox_texture, wall_textures=wall_textures, floor_textures=floor_textures, ) # Build a task that rewards the agent for obtaining targets. task = random_goal_maze.ManyGoalsMaze( walker=walker, maze_arena=arena, target_builder=functools.partial( target_sphere.TargetSphere, radius=0.4, rgb1=(0, 0, 0.4), rgb2=(0, 0, 0.7)), target_reward_scale=50., physics_timestep=0.005, control_timestep=0.03, ) return composer.Environment(time_limit=30, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True) def cmu_humanoid_heterogeneous_forage(random_state=None): """Requires a CMU humanoid to find all items of a particular type in a maze.""" level = ('*******\n' '* *\n' '* P *\n' '* *\n' '* G *\n' '* *\n' '*******\n') # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled( observable_options={'egocentric_camera': dict(enabled=True)}) skybox_texture = labmaze_textures.SkyBox(style='sky_03') wall_textures = labmaze_textures.WallTextures(style='style_01') floor_textures = labmaze_textures.FloorTextures(style='style_01') maze = fixed_maze.FixedMazeWithRandomGoals( entity_layer=level, variations_layer=None, num_spawns=1, num_objects=6, ) arena = mazes.MazeWithTargets( maze=maze, xy_scale=3.0, z_height=2.0, skybox_texture=skybox_texture, wall_textures=wall_textures, floor_textures=floor_textures, ) task = random_goal_maze.ManyHeterogeneousGoalsMaze( walker=walker, maze_arena=arena, target_builders=[ functools.partial( target_sphere.TargetSphere, radius=0.4, rgb1=(0, 0.4, 0), rgb2=(0, 0.7, 0)), functools.partial( target_sphere.TargetSphere, radius=0.4, rgb1=(0.4, 0, 0), rgb2=(0.7, 0, 0)), ], randomize_spawn_rotation=False, target_type_rewards=[30., -10.], target_type_proportions=[1, 1], shuffle_target_builders=True, aliveness_reward=0.01, control_timestep=.03, ) return composer.Environment( time_limit=25, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True)
dm_control-main
dm_control/locomotion/examples/basic_cmu_2019.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Simple script to launch viewer with an example environment.""" from absl import app from dm_control import viewer from dm_control.locomotion.examples import basic_cmu_2019 def main(unused_argv): viewer.launch(environment_loader=basic_cmu_2019.cmu_humanoid_run_gaps) if __name__ == '__main__': app.run(main)
dm_control-main
dm_control/locomotion/examples/explore.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Abstract base class for a Composer task.""" import abc import collections import copy from dm_control import mujoco from dm_env import specs def _check_timesteps_divisible(control_timestep, physics_timestep): num_steps = control_timestep / physics_timestep rounded_num_steps = int(round(num_steps)) if abs(num_steps - rounded_num_steps) > 1e-6: raise ValueError( 'Control timestep should be an integer multiple of physics timestep' ': got {!r} and {!r}'.format(control_timestep, physics_timestep)) return rounded_num_steps class Task(metaclass=abc.ABCMeta): """Abstract base class for a Composer task.""" @abc.abstractproperty def root_entity(self): """A `base.Entity` instance for this task.""" raise NotImplementedError def iter_entities(self): return self.root_entity.iter_entities() @property def observables(self): """An OrderedDict of `control.Observable` instances for this task. Task subclasses should generally NOT override this property. This property is automatically computed by combining the observables dict provided by each `Entity` present in this task, and any additional observables returned via the `task_observables` property. To provide an observable to an agent, the task code should either set `enabled` property of an `Entity`-bound observable to `True`, or override the `task_observables` property to provide additional observables not bound to an `Entity`. Returns: An `collections.OrderedDict` mapping strings to instances of `control.Observable`. """ # Make a shallow copy of the OrderedDict, not the Observables themselves. observables = copy.copy(self.task_observables) for entity in self.root_entity.iter_entities(): observables.update(entity.observables.as_dict()) return observables @property def task_observables(self): """An OrderedDict of task-specific `control.Observable` instances. A task should override this property if it wants to provide additional observables to the agent that are not already provided by any `Entity` that forms part of the task's model. For example, this may be used to provide observations that is derived from relative poses between two entities. Returns: An `collections.OrderedDict` mapping strings to instances of `control.Observable`. """ return collections.OrderedDict() def after_compile(self, physics, random_state): """A callback which is executed after the Mujoco Physics is recompiled. Args: physics: An instance of `control.Physics`. random_state: An instance of `np.random.RandomState`. """ pass def _check_root_entity(self, callee_name): try: _ = self.root_entity except Exception as effect: cause = RuntimeError( f'call to `{callee_name}` made before `root_entity` is available') raise effect from cause @property def control_timestep(self): """Returns the agent's control timestep for this task (in seconds).""" self._check_root_entity('control_timestep') if hasattr(self, '_control_timestep'): return self._control_timestep else: return self.physics_timestep @control_timestep.setter def control_timestep(self, new_value): """Changes the agent's control timestep for this task. Args: new_value: the new control timestep (in seconds). Raises: ValueError: if `new_value` is set and is not divisible by `physics_timestep`. """ self._check_root_entity('control_timestep') _check_timesteps_divisible(new_value, self.physics_timestep) self._control_timestep = new_value @property def physics_timestep(self): """Returns the physics timestep for this task (in seconds).""" self._check_root_entity('physics_timestep') if self.root_entity.mjcf_model.option.timestep is None: return 0.002 # MuJoCo's default. else: return self.root_entity.mjcf_model.option.timestep @physics_timestep.setter def physics_timestep(self, new_value): """Changes the physics simulation timestep for this task. Args: new_value: the new simulation timestep (in seconds). Raises: ValueError: if `control_timestep` is set and is not divisible by `new_value`. """ self._check_root_entity('physics_timestep') if hasattr(self, '_control_timestep'): _check_timesteps_divisible(self._control_timestep, new_value) self.root_entity.mjcf_model.option.timestep = new_value def set_timesteps(self, control_timestep, physics_timestep): """Changes the agent's control timestep and physics simulation timestep. This is equivalent to modifying `control_timestep` and `physics_timestep` simultaneously. The divisibility check is performed between the two new values. Args: control_timestep: the new agent's control timestep (in seconds). physics_timestep: the new physics simulation timestep (in seconds). Raises: ValueError: if `control_timestep` is not divisible by `physics_timestep`. """ self._check_root_entity('set_timesteps') _check_timesteps_divisible(control_timestep, physics_timestep) self.root_entity.mjcf_model.option.timestep = physics_timestep self._control_timestep = control_timestep @property def physics_steps_per_control_step(self): """Returns number of physics steps per agent's control step.""" return _check_timesteps_divisible( self.control_timestep, self.physics_timestep) def action_spec(self, physics): """Returns a `BoundedArray` spec matching the `Physics` actuators. BoundedArray.name should contain a tab-separated list of actuator names. When overloading this method, non-MuJoCo actuators should be added to the top of the list when possible, as a matter of convention. Args: physics: used to query actuator names in the model. """ names = [physics.model.id2name(i, 'actuator') or str(i) for i in range(physics.model.nu)] action_spec = mujoco.action_spec(physics) return specs.BoundedArray(shape=action_spec.shape, dtype=action_spec.dtype, minimum=action_spec.minimum, maximum=action_spec.maximum, name='\t'.join(names)) def get_reward_spec(self): """Optional method to define non-scalar rewards for a `Task`.""" return None def get_discount_spec(self): """Optional method to define non-scalar discounts for a `Task`.""" return None def initialize_episode_mjcf(self, random_state): """Modifies the MJCF model of this task before the next episode begins. The Environment calls this method and recompiles the physics if necessary before calling `initialize_episode`. Args: random_state: An instance of `np.random.RandomState`. """ pass def initialize_episode(self, physics, random_state): """Modifies the physics state before the next episode begins. The Environment calls this method after `initialize_episode_mjcf`, and also after the physics has been recompiled if necessary. Args: physics: An instance of `control.Physics`. random_state: An instance of `np.random.RandomState`. """ pass def before_step(self, physics, action, random_state): """A callback which is executed before an agent control step. The default implementation sets the control signal for the actuators in `physics` to be equal to `action`. Subclasses that override this method should ensure that the overriding method also sets the control signal before returning, either by calling `super().before_step`, or by setting the control signal explicitly (e.g. in order to create a non-trivial mapping between `action` and the control signal). Args: physics: An instance of `control.Physics`. action: A NumPy array corresponding to agent actions. random_state: An instance of `np.random.RandomState` (unused). """ del random_state # Unused. physics.set_control(action) def before_substep(self, physics, action, random_state): """A callback which is executed before a simulation step. Actuation can be set, or overridden, in this callback. Args: physics: An instance of `control.Physics`. action: A NumPy array corresponding to agent actions. random_state: An instance of `np.random.RandomState`. """ pass def after_substep(self, physics, random_state): """A callback which is executed after a simulation step. Args: physics: An instance of `control.Physics`. random_state: An instance of `np.random.RandomState`. """ pass def after_step(self, physics, random_state): """A callback which is executed after an agent control step. Args: physics: An instance of `control.Physics`. random_state: An instance of `np.random.RandomState`. """ pass @abc.abstractmethod def get_reward(self, physics): """Calculates the reward signal given the physics state. Args: physics: A Physics object. Returns: A float """ raise NotImplementedError def should_terminate_episode(self, physics): # pylint: disable=unused-argument """Determines whether the episode should terminate given the physics state. Args: physics: A Physics object Returns: A boolean """ return False def get_discount(self, physics): # pylint: disable=unused-argument """Calculates the reward discount factor given the physics state. Args: physics: A Physics object Returns: A float """ return 1.0 class NullTask(Task): """A class that wraps a single `Entity` into a `Task` with no reward.""" def __init__(self, root_entity): self._root_entity = root_entity @property def root_entity(self): return self._root_entity def get_reward(self, physics): return 0.0
dm_control-main
dm_control/composer/task.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for Entity and Task hooks in an Environment.""" from absl.testing import absltest from dm_control import composer from dm_control.composer import hooks_test_utils import numpy as np class EnvironmentHooksTest(hooks_test_utils.HooksTestMixin, absltest.TestCase): def testEnvironmentHooksScheduling(self): env = composer.Environment(self.task) for hook_name in composer.HOOK_NAMES: env.add_extra_hook(hook_name, getattr(self.extra_hooks, hook_name)) for _ in range(self.num_episodes): with self.track_episode(): env.reset() for _ in range(self.steps_per_episode): env.step([0.1, 0.2, 0.3, 0.4]) np.testing.assert_array_equal(env.physics.data.ctrl, [0.1, 0.2, 0.3, 0.4]) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/environment_hooks_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Decorators for Entity methods returning elements and observables.""" import abc import threading class cached_property(property): # pylint: disable=invalid-name """A property that is evaluated only once per object instance.""" def __init__(self, func, doc=None): super().__init__(fget=func, doc=doc) self.lock = threading.RLock() def __get__(self, obj, cls): if obj is None: return self name = self.fget.__name__ obj_dict = obj.__dict__ try: # Try returning a precomputed value without locking first. # Profiling shows that the lock takes up a non-trivial amount of time. return obj_dict[name] except KeyError: # The value hasn't been computed, now we have to lock. with self.lock: try: # Check again whether another thread has already computed the value. return obj_dict[name] except KeyError: # Otherwise call the function, cache the result, and return it return obj_dict.setdefault(name, self.fget(obj)) # A decorator for base.Observables methods returning an observable. This # decorator should be used by abstract base classes to indicate sub-classes need # to implement a corresponding @observavble annotated method. abstract_observable = abc.abstractproperty # pylint: disable=invalid-name class observable(cached_property): # pylint: disable=invalid-name """A decorator for base.Observables methods returning an observable. The body of the decorated function is evaluated at Entity construction time and the observable is cached. """ pass
dm_control-main
dm_control/composer/define.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module defining constant values for Composer.""" SENSOR_SITES_GROUP = 4
dm_control-main
dm_control/composer/constants.py
# Copyright 2018-2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module containing abstract base classes for Composer environments.""" from dm_control.composer.arena import Arena from dm_control.composer.constants import * # pylint: disable=wildcard-import from dm_control.composer.define import cached_property from dm_control.composer.define import observable from dm_control.composer.entity import Entity from dm_control.composer.entity import FreePropObservableMixin from dm_control.composer.entity import ModelWrapperEntity from dm_control.composer.entity import Observables from dm_control.composer.environment import Environment from dm_control.composer.environment import EpisodeInitializationError from dm_control.composer.environment import HOOK_NAMES from dm_control.composer.environment import ObservationPadding from dm_control.composer.initializer import Initializer from dm_control.composer.robot import Robot from dm_control.composer.task import NullTask from dm_control.composer.task import Task
dm_control-main
dm_control/composer/__init__.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for composer.Entity.""" import itertools from absl.testing import absltest from absl.testing import parameterized from dm_control import mjcf from dm_control.composer import arena from dm_control.composer import define from dm_control.composer import entity from dm_control.composer.observation.observable import base as observable import numpy as np _NO_ROTATION = (1, 0, 0, 0) # Tests support for non-arrays and non-floats. _NINETY_DEGREES_ABOUT_X = np.array( [np.cos(np.pi / 4), np.sin(np.pi / 4), 0., 0.]) _NINETY_DEGREES_ABOUT_Y = np.array( [np.cos(np.pi / 4), 0., np.sin(np.pi / 4), 0.]) _NINETY_DEGREES_ABOUT_Z = np.array( [np.cos(np.pi / 4), 0., 0., np.sin(np.pi / 4)]) _FORTYFIVE_DEGREES_ABOUT_X = np.array( [np.cos(np.pi / 8), np.sin(np.pi / 8), 0., 0.]) _TEST_ROTATIONS = [ # Triplets of original rotation, new rotation and final rotation. (None, _NO_ROTATION, _NO_ROTATION), (_NO_ROTATION, _NINETY_DEGREES_ABOUT_Z, _NINETY_DEGREES_ABOUT_Z), (_FORTYFIVE_DEGREES_ABOUT_X, _NINETY_DEGREES_ABOUT_Y, np.array([0.65328, 0.2706, 0.65328, -0.2706])), ] def _param_product(**param_lists): keys, values = zip(*param_lists.items()) for combination in itertools.product(*values): yield dict(zip(keys, combination)) class TestEntity(entity.Entity): """Simple test entity that does nothing but declare some observables.""" def _build(self, name='test_entity'): self._mjcf_root = mjcf.element.RootElement(model=name) self._mjcf_root.worldbody.add('geom', type='sphere', size=(0.1,)) def _build_observables(self): return TestEntityObservables(self) @property def mjcf_model(self): return self._mjcf_root class TestEntityObservables(entity.Observables): """Trivial observables for the test entity.""" @define.observable def observable0(self): return observable.Generic(lambda phys: 0.0) @define.observable def observable1(self): return observable.Generic(lambda phys: 1.0) class EntityTest(parameterized.TestCase): def setUp(self): super().setUp() self.entity = TestEntity() def testNumObservables(self): """Tests that the observables dict has the right number of entries.""" self.assertLen(self.entity.observables.as_dict(), 2) def testObservableNames(self): """Tests that the observables dict keys correspond to the observable names. """ obs = self.entity.observables.as_dict() self.assertIn('observable0', obs) self.assertIn('observable1', obs) subentity = TestEntity(name='subentity') self.entity.attach(subentity) self.assertIn('subentity/observable0', subentity.observables.as_dict()) self.assertEqual(subentity.observables.dict_keys.observable0, 'subentity/observable0') self.assertIn('observable0', dir(subentity.observables.dict_keys)) self.assertIn('subentity/observable1', subentity.observables.as_dict()) self.assertEqual(subentity.observables.dict_keys.observable1, 'subentity/observable1') self.assertIn('observable1', dir(subentity.observables.dict_keys)) def testEnableDisableObservables(self): """Test the enabling and disable functionality for observables.""" all_obs = self.entity.observables.as_dict() self.entity.observables.enable_all() for obs in all_obs.values(): self.assertTrue(obs.enabled) self.entity.observables.disable_all() for obs in all_obs.values(): self.assertFalse(obs.enabled) self.entity.observables.observable0.enabled = True self.assertTrue(all_obs['observable0'].enabled) def testObservableDefaultOptions(self): corruptor = lambda x: x options = { 'update_interval': 2, 'buffer_size': 10, 'delay': 1, 'aggregator': 'max', 'corruptor': corruptor, 'enabled': True } self.entity.observables.set_options(options) for obs in self.entity.observables.as_dict().values(): self.assertEqual(obs.update_interval, 2) self.assertEqual(obs.delay, 1) self.assertEqual(obs.buffer_size, 10) self.assertEqual(obs.aggregator, observable.AGGREGATORS['max']) self.assertEqual(obs.corruptor, corruptor) self.assertTrue(obs.enabled) def testObservablePartialDefaultOptions(self): options = {'update_interval': 2, 'delay': 1} self.entity.observables.set_options(options) for obs in self.entity.observables.as_dict().values(): self.assertEqual(obs.update_interval, 2) self.assertEqual(obs.delay, 1) self.assertIsNone(obs.buffer_size) self.assertIsNone(obs.aggregator) self.assertIsNone(obs.corruptor) def testObservableOptionsInvalidName(self): options = {'asdf': None} with self.assertRaisesRegex(KeyError, 'No observable with name \'asdf\''): self.entity.observables.set_options(options) def testObservableInvalidOptions(self): options = {'observable0': {'asdf': 2}} with self.assertRaisesRegex(AttributeError, 'Cannot add attribute asdf in configure.'): self.entity.observables.set_options(options) def testObservableOptions(self): options = { 'observable0': { 'update_interval': 2, 'delay': 3 }, 'observable1': { 'update_interval': 4, 'delay': 5 } } self.entity.observables.set_options(options) observables = self.entity.observables.as_dict() self.assertEqual(observables['observable0'].update_interval, 2) self.assertEqual(observables['observable0'].delay, 3) self.assertIsNone(observables['observable0'].buffer_size) self.assertIsNone(observables['observable0'].aggregator) self.assertIsNone(observables['observable0'].corruptor) self.assertFalse(observables['observable0'].enabled) self.assertEqual(observables['observable1'].update_interval, 4) self.assertEqual(observables['observable1'].delay, 5) self.assertIsNone(observables['observable1'].buffer_size) self.assertIsNone(observables['observable1'].aggregator) self.assertIsNone(observables['observable1'].corruptor) self.assertFalse(observables['observable1'].enabled) def testObservableOptionsEntityConstructor(self): options = { 'observable0': { 'update_interval': 2, 'delay': 3 }, 'observable1': { 'update_interval': 4, 'delay': 5 } } ent = TestEntity(observable_options=options) observables = ent.observables.as_dict() self.assertEqual(observables['observable0'].update_interval, 2) self.assertEqual(observables['observable0'].delay, 3) self.assertIsNone(observables['observable0'].buffer_size) self.assertIsNone(observables['observable0'].aggregator) self.assertIsNone(observables['observable0'].corruptor) self.assertFalse(observables['observable0'].enabled) self.assertEqual(observables['observable1'].update_interval, 4) self.assertEqual(observables['observable1'].delay, 5) self.assertIsNone(observables['observable1'].buffer_size) self.assertIsNone(observables['observable1'].aggregator) self.assertIsNone(observables['observable1'].corruptor) self.assertFalse(observables['observable1'].enabled) def testObservablePartialOptions(self): options = {'observable0': {'update_interval': 2, 'delay': 3}} self.entity.observables.set_options(options) observables = self.entity.observables.as_dict() self.assertEqual(observables['observable0'].update_interval, 2) self.assertEqual(observables['observable0'].delay, 3) self.assertIsNone(observables['observable0'].buffer_size) self.assertIsNone(observables['observable0'].aggregator) self.assertIsNone(observables['observable0'].corruptor) self.assertFalse(observables['observable0'].enabled) self.assertEqual(observables['observable1'].update_interval, 1) self.assertIsNone(observables['observable1'].delay) self.assertIsNone(observables['observable1'].buffer_size) self.assertIsNone(observables['observable1'].aggregator) self.assertIsNone(observables['observable1'].corruptor) self.assertFalse(observables['observable1'].enabled) def testAttach(self): entities = [TestEntity() for _ in range(4)] entities[0].attach(entities[1]) entities[1].attach(entities[2]) entities[0].attach(entities[3]) self.assertIsNone(entities[0].parent) self.assertIs(entities[1].parent, entities[0]) self.assertIs(entities[2].parent, entities[1]) self.assertIs(entities[3].parent, entities[0]) self.assertIsNone(entities[0].mjcf_model.parent_model) self.assertIs(entities[1].mjcf_model.parent_model, entities[0].mjcf_model) self.assertIs(entities[2].mjcf_model.parent_model, entities[1].mjcf_model) self.assertIs(entities[3].mjcf_model.parent_model, entities[0].mjcf_model) self.assertEqual(list(entities[0].iter_entities()), entities) def testDetach(self): entities = [TestEntity() for _ in range(4)] entities[0].attach(entities[1]) entities[1].attach(entities[2]) entities[0].attach(entities[3]) entities[1].detach() with self.assertRaisesRegex(RuntimeError, 'not attached'): entities[1].detach() self.assertIsNone(entities[0].parent) self.assertIsNone(entities[1].parent) self.assertIs(entities[2].parent, entities[1]) self.assertIs(entities[3].parent, entities[0]) self.assertIsNone(entities[0].mjcf_model.parent_model) self.assertIsNone(entities[1].mjcf_model.parent_model) self.assertIs(entities[2].mjcf_model.parent_model, entities[1].mjcf_model) self.assertIs(entities[3].mjcf_model.parent_model, entities[0].mjcf_model) self.assertEqual(list(entities[0].iter_entities()), [entities[0], entities[3]]) def testIterEntitiesExcludeSelf(self): entities = [TestEntity() for _ in range(4)] entities[0].attach(entities[1]) entities[1].attach(entities[2]) entities[0].attach(entities[3]) self.assertEqual( list(entities[0].iter_entities(exclude_self=True)), entities[1:]) def testGlobalVectorToLocalFrame(self): parent = TestEntity() parent.mjcf_model.worldbody.add( 'site', xyaxes=[0, 1, 0, -1, 0, 0]).attach(self.entity.mjcf_model) physics = mjcf.Physics.from_mjcf_model(parent.mjcf_model) # 3D vectors np.testing.assert_allclose( self.entity.global_vector_to_local_frame(physics, [0, 1, 0]), [1, 0, 0], atol=1e-10) np.testing.assert_allclose( self.entity.global_vector_to_local_frame(physics, [-1, 0, 0]), [0, 1, 0], atol=1e-10) np.testing.assert_allclose( self.entity.global_vector_to_local_frame(physics, [0, 0, 1]), [0, 0, 1], atol=1e-10) # 2D vectors; z-component is ignored np.testing.assert_allclose( self.entity.global_vector_to_local_frame(physics, [0, 1]), [1, 0], atol=1e-10) np.testing.assert_allclose( self.entity.global_vector_to_local_frame(physics, [-1, 0]), [0, 1], atol=1e-10) def testGlobalMatrixToLocalFrame(self): parent = TestEntity() parent.mjcf_model.worldbody.add( 'site', xyaxes=[0, 1, 0, -1, 0, 0]).attach(self.entity.mjcf_model) physics = mjcf.Physics.from_mjcf_model(parent.mjcf_model) rotation_atob = np.array([[0, 1, 0], [0, 0, -1], [-1, 0, 0]]) ego_rotation_atob = np.array([[0, 0, -1], [0, -1, 0], [-1, 0, 0]]) np.testing.assert_allclose( self.entity.global_xmat_to_local_frame(physics, rotation_atob), ego_rotation_atob, atol=1e-10) flat_rotation_atob = np.reshape(rotation_atob, -1) flat_rotation_ego_atob = np.reshape(ego_rotation_atob, -1) np.testing.assert_allclose( self.entity.global_xmat_to_local_frame( physics, flat_rotation_atob), flat_rotation_ego_atob, atol=1e-10) @parameterized.parameters(*_param_product( position=[None, [1., 0., -1.]], quaternion=[None, _FORTYFIVE_DEGREES_ABOUT_X, _NINETY_DEGREES_ABOUT_Z], freejoint=[False, True], )) def testSetPose(self, position, quaternion, freejoint): # Setup entity. test_arena = arena.Arena() subentity = TestEntity(name='subentity') frame = test_arena.attach(subentity) if freejoint: frame.add('freejoint') physics = mjcf.Physics.from_mjcf_model(test_arena.mjcf_model) if quaternion is None: ground_truth_quat = _NO_ROTATION else: ground_truth_quat = quaternion if position is None: ground_truth_pos = np.zeros(shape=(3,)) else: ground_truth_pos = position subentity.set_pose(physics, position=position, quaternion=quaternion) np.testing.assert_allclose(physics.bind(frame).xpos, ground_truth_pos) np.testing.assert_allclose(physics.bind(frame).xquat, ground_truth_quat) @parameterized.parameters(*_param_product( original_position=[[-2, -1, -1.], [1., 0., -1.]], position=[None, [1., 0., -1.]], original_quaternion=_TEST_ROTATIONS[0], quaternion=_TEST_ROTATIONS[1], expected_quaternion=_TEST_ROTATIONS[2], freejoint=[False, True], )) def testShiftPose(self, original_position, position, original_quaternion, quaternion, expected_quaternion, freejoint): # Setup entity. test_arena = arena.Arena() subentity = TestEntity(name='subentity') frame = test_arena.attach(subentity) if freejoint: frame.add('freejoint') physics = mjcf.Physics.from_mjcf_model(test_arena.mjcf_model) # Set the original position subentity.set_pose( physics, position=original_position, quaternion=original_quaternion) if position is None: ground_truth_pos = original_position else: ground_truth_pos = original_position + np.array(position) subentity.shift_pose(physics, position=position, quaternion=quaternion) np.testing.assert_array_equal(physics.bind(frame).xpos, ground_truth_pos) updated_quat = physics.bind(frame).xquat np.testing.assert_array_almost_equal(updated_quat, expected_quaternion, 1e-4) @parameterized.parameters(False, True) def testShiftPoseWithVelocity(self, rotate_velocity): # Setup entity. test_arena = arena.Arena() subentity = TestEntity(name='subentity') frame = test_arena.attach(subentity) frame.add('freejoint') physics = mjcf.Physics.from_mjcf_model(test_arena.mjcf_model) # Set the original position subentity.set_pose(physics, position=[0., 0., 0.]) # Set velocity in y dim. subentity.set_velocity(physics, [0., 1., 0.]) # Rotate the entity around the z axis. subentity.shift_pose( physics, quaternion=[0., 0., 0., 1.], rotate_velocity=rotate_velocity) physics.forward() updated_position, _ = subentity.get_pose(physics) if rotate_velocity: # Should not have moved in the y dim. np.testing.assert_array_almost_equal(updated_position[1], 0.) else: # Should not have moved in the x dim. np.testing.assert_array_almost_equal(updated_position[0], 0.) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/entity_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module defining the abstract initializer.""" import abc class Initializer(metaclass=abc.ABCMeta): """The abstract base class for an initializer.""" @abc.abstractmethod def __call__(self, physics, random_state): raise NotImplementedError
dm_control-main
dm_control/composer/initializer.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for testing environment hooks.""" import collections import contextlib import inspect from dm_control import composer from dm_control import mjcf def add_bodies_and_actuators(mjcf_model, num_actuators): if num_actuators % 2: raise ValueError('num_actuators is not a multiple of 2') for _ in range(num_actuators // 2): body = mjcf_model.worldbody.add('body') body.add('inertial', pos=[0, 0, 0], mass=1, diaginertia=[1, 1, 1]) joint_x = body.add('joint', axis=[1, 0, 0]) mjcf_model.actuator.add('position', joint=joint_x) joint_y = body.add('joint', axis=[0, 1, 0]) mjcf_model.actuator.add('position', joint=joint_y) class HooksTracker: """Helper class for tracking call order of callbacks.""" def __init__(self, test_case, physics_timestep, control_timestep, *args, **kwargs): super().__init__(*args, **kwargs) self.tracked = False self._test_case = test_case self._call_count = collections.defaultdict(lambda: 0) self._physics_timestep = physics_timestep self._physics_steps_per_control_step = ( round(int(control_timestep / physics_timestep))) mro = inspect.getmro(type(self)) self._has_super = mro[mro.index(HooksTracker) + 1] != object def assertEqual(self, actual, expected, msg=''): msg = '{}: {}: {!r} != {!r}'.format(type(self), msg, actual, expected) self._test_case.assertEqual(actual, expected, msg) def assertHooksNotCalled(self, *hook_names): for hook_name in hook_names: self.assertEqual( self._call_count[hook_name], 0, 'assertHooksNotCalled: hook_name = {!r}'.format(hook_name)) def assertHooksCalledOnce(self, *hook_names): for hook_name in hook_names: self.assertEqual( self._call_count[hook_name], 1, 'assertHooksCalledOnce: hook_name = {!r}'.format(hook_name)) def assertCompleteEpisode(self, control_steps): self.assertHooksCalledOnce('initialize_episode_mjcf', 'after_compile', 'initialize_episode') physics_steps = control_steps * self._physics_steps_per_control_step self.assertEqual(self._call_count['before_step'], control_steps) self.assertEqual(self._call_count['before_substep'], physics_steps) self.assertEqual(self._call_count['after_substep'], physics_steps) self.assertEqual(self._call_count['after_step'], control_steps) def assertPhysicsStepCountEqual(self, physics, expected_count): actual_count = int(round(physics.time() / self._physics_timestep)) self.assertEqual(actual_count, expected_count) def reset_call_counts(self): self._call_count = collections.defaultdict(lambda: 0) def initialize_episode_mjcf(self, random_state): """Implements `initialize_episode_mjcf` Composer callback.""" if self._has_super: super().initialize_episode_mjcf(random_state) if not self.tracked: return self.assertHooksNotCalled('after_compile', 'initialize_episode', 'before_step', 'before_substep', 'after_substep', 'after_step') self._call_count['initialize_episode_mjcf'] += 1 def after_compile(self, physics, random_state): """Implements `after_compile` Composer callback.""" if self._has_super: super().after_compile(physics, random_state) if not self.tracked: return self.assertHooksCalledOnce('initialize_episode_mjcf') self.assertHooksNotCalled('initialize_episode', 'before_step', 'before_substep', 'after_substep', 'after_step') # Number of physics steps is always consistent with `before_substep`. self.assertPhysicsStepCountEqual(physics, self._call_count['before_substep']) self._call_count['after_compile'] += 1 def initialize_episode(self, physics, random_state): """Implements `initialize_episode` Composer callback.""" if self._has_super: super().initialize_episode(physics, random_state) if not self.tracked: return self.assertHooksCalledOnce('initialize_episode_mjcf', 'after_compile') self.assertHooksNotCalled('before_step', 'before_substep', 'after_substep', 'after_step') # Number of physics steps is always consistent with `before_substep`. self.assertPhysicsStepCountEqual(physics, self._call_count['before_substep']) self._call_count['initialize_episode'] += 1 def before_step(self, physics, *args): """Implements `before_step` Composer callback.""" if self._has_super: super().before_step(physics, *args) if not self.tracked: return self.assertHooksCalledOnce('initialize_episode_mjcf', 'after_compile', 'initialize_episode') # `before_step` is only called in between complete control steps. self.assertEqual( self._call_count['after_step'], self._call_count['before_step']) # Complete control steps imply complete physics steps. self.assertEqual( self._call_count['after_substep'], self._call_count['before_substep']) # Number of physics steps is always consistent with `before_substep`. self.assertPhysicsStepCountEqual(physics, self._call_count['before_substep']) self._call_count['before_step'] += 1 def before_substep(self, physics, *args): """Implements `before_substep` Composer callback.""" if self._has_super: super().before_substep(physics, *args) if not self.tracked: return self.assertHooksCalledOnce('initialize_episode_mjcf', 'after_compile', 'initialize_episode') # We are inside a partial control step, so `after_step` should lag behind. self.assertEqual( self._call_count['after_step'], self._call_count['before_step'] - 1) # `before_substep` is only called in between complete physics steps. self.assertEqual( self._call_count['after_substep'], self._call_count['before_substep']) # Number of physics steps is always consistent with `before_substep`. self.assertPhysicsStepCountEqual( physics, self._call_count['before_substep']) self._call_count['before_substep'] += 1 def after_substep(self, physics, random_state): """Implements `after_substep` Composer callback.""" if self._has_super: super().after_substep(physics, random_state) if not self.tracked: return self.assertHooksCalledOnce('initialize_episode_mjcf', 'after_compile', 'initialize_episode') # We are inside a partial control step, so `after_step` should lag behind. self.assertEqual( self._call_count['after_step'], self._call_count['before_step'] - 1) # We are inside a partial physics step, so `after_substep` should be behind. self.assertEqual(self._call_count['after_substep'], self._call_count['before_substep'] - 1) # Number of physics steps is always consistent with `before_substep`. self.assertPhysicsStepCountEqual( physics, self._call_count['before_substep']) self._call_count['after_substep'] += 1 def after_step(self, physics, random_state): """Implements `after_step` Composer callback.""" if self._has_super: super().after_step(physics, random_state) if not self.tracked: return self.assertHooksCalledOnce('initialize_episode_mjcf', 'after_compile', 'initialize_episode') # We are inside a partial control step, so `after_step` should lag behind. self.assertEqual( self._call_count['after_step'], self._call_count['before_step'] - 1) # `after_step` is only called in between complete physics steps. self.assertEqual( self._call_count['after_substep'], self._call_count['before_substep']) # Number of physics steps is always consistent with `before_substep`. self.assertPhysicsStepCountEqual( physics, self._call_count['before_substep']) # Check that the number of physics steps is consistent with control steps. self.assertEqual( self._call_count['before_substep'], self._call_count['before_step'] * self._physics_steps_per_control_step) self._call_count['after_step'] += 1 class TrackedEntity(HooksTracker, composer.Entity): """A `composer.Entity` that tracks call order of callbacks.""" def _build(self, name): self._mjcf_root = mjcf.RootElement(model=name) @property def mjcf_model(self): return self._mjcf_root @property def name(self): return self._mjcf_root.model class TrackedTask(HooksTracker, composer.NullTask): """A `composer.Task` that tracks call order of callbacks.""" def __init__(self, physics_timestep, control_timestep, *args, **kwargs): super().__init__( physics_timestep=physics_timestep, control_timestep=control_timestep, *args, **kwargs) self.set_timesteps( physics_timestep=physics_timestep, control_timestep=control_timestep) add_bodies_and_actuators(self.root_entity.mjcf_model, num_actuators=4) class HooksTestMixin: """A mixin for an `absltest.TestCase` to track call order of callbacks.""" def setUp(self): """Sets up the test case.""" super().setUp() self.num_episodes = 5 self.steps_per_episode = 100 self.control_timestep = 0.05 self.physics_timestep = 0.002 self.extra_hooks = HooksTracker(physics_timestep=self.physics_timestep, control_timestep=self.control_timestep, test_case=self) self.entities = [] for i in range(9): self.entities.append(TrackedEntity(name='entity_{}'.format(i), physics_timestep=self.physics_timestep, control_timestep=self.control_timestep, test_case=self)) ######################################## # Make the following entity hierarchy # # 0 # # 1 2 3 # # 4 5 6 7 # # 8 # ######################################## self.entities[4].attach(self.entities[8]) self.entities[1].attach(self.entities[4]) self.entities[1].attach(self.entities[5]) self.entities[0].attach(self.entities[1]) self.entities[2].attach(self.entities[6]) self.entities[2].attach(self.entities[7]) self.entities[0].attach(self.entities[2]) self.entities[0].attach(self.entities[3]) self.task = TrackedTask(root_entity=self.entities[0], physics_timestep=self.physics_timestep, control_timestep=self.control_timestep, test_case=self) @contextlib.contextmanager def track_episode(self): tracked_objects = [self.task, self.extra_hooks] + self.entities for obj in tracked_objects: obj.reset_call_counts() obj.tracked = True yield for obj in tracked_objects: obj.assertCompleteEpisode(self.steps_per_episode) obj.tracked = False
dm_control-main
dm_control/composer/hooks_test_utils.py
# Copyright 2018-2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """RL environment classes for Composer tasks.""" import enum import warnings import weakref from absl import logging from dm_control import mjcf from dm_control.composer import observation from dm_control.rl import control import dm_env import numpy as np warnings.simplefilter('always', DeprecationWarning) _STEPS_LOGGING_INTERVAL = 10000 HOOK_NAMES = ('initialize_episode_mjcf', 'after_compile', 'initialize_episode', 'before_step', 'before_substep', 'after_substep', 'after_step') _empty_function = lambda: None def _empty_function_with_docstring(): """Some docstring.""" _EMPTY_CODE = _empty_function.__code__.co_code _EMPTY_WITH_DOCSTRING_CODE = _empty_function_with_docstring.__code__.co_code def _callable_is_trivial(f): return (f.__code__.co_code == _EMPTY_CODE or f.__code__.co_code == _EMPTY_WITH_DOCSTRING_CODE) class ObservationPadding(enum.Enum): INITIAL_VALUE = -1 ZERO = 0 class EpisodeInitializationError(RuntimeError): """Raised by a `composer.Task` when it fails to initialize an episode.""" class _Hook: __slots__ = ('entity_hooks', 'extra_hooks') def __init__(self): self.entity_hooks = [] self.extra_hooks = [] class _EnvironmentHooks: """Helper object that scans and memoizes various hooks in a task. This object exist to ensure that we do not incur a substantial overhead in calling empty entity hooks in more complicated tasks. """ __slots__ = (('_task', '_episode_step_count') + tuple('_' + hook_name for hook_name in HOOK_NAMES)) def __init__(self, task): self._task = task self._episode_step_count = 0 for hook_name in HOOK_NAMES: slot_name = '_' + hook_name setattr(self, slot_name, _Hook()) self.refresh_entity_hooks() def refresh_entity_hooks(self): """Scans and memoizes all non-trivial entity hooks.""" for hook_name in HOOK_NAMES: hooks = [] for entity in self._task.root_entity.iter_entities(): entity_hook = getattr(entity, hook_name) # Ignore any hook that is a no-op to avoid function call overhead. if not _callable_is_trivial(entity_hook): hooks.append(entity_hook) getattr(self, '_' + hook_name).entity_hooks = hooks def add_extra_hook(self, hook_name, hook_callable): if hook_name not in HOOK_NAMES: raise ValueError('{!r} is not a valid hook name'.format(hook_name)) if not callable(hook_callable): raise ValueError('{!r} is not a callable'.format(hook_callable)) getattr(self, '_' + hook_name).extra_hooks.append(hook_callable) def initialize_episode_mjcf(self, random_state): self._task.initialize_episode_mjcf(random_state) for entity_hook in self._initialize_episode_mjcf.entity_hooks: entity_hook(random_state) for extra_hook in self._initialize_episode_mjcf.extra_hooks: extra_hook(random_state) def after_compile(self, physics, random_state): self._task.after_compile(physics, random_state) for entity_hook in self._after_compile.entity_hooks: entity_hook(physics, random_state) for extra_hook in self._after_compile.extra_hooks: extra_hook(physics, random_state) def initialize_episode(self, physics, random_state): self._episode_step_count = 0 self._task.initialize_episode(physics, random_state) for entity_hook in self._initialize_episode.entity_hooks: entity_hook(physics, random_state) for extra_hook in self._initialize_episode.extra_hooks: extra_hook(physics, random_state) def before_step(self, physics, action, random_state): self._episode_step_count += 1 if self._episode_step_count % _STEPS_LOGGING_INTERVAL == 0: logging.info('The current episode has been running for %d steps.', self._episode_step_count) self._task.before_step(physics, action, random_state) for entity_hook in self._before_step.entity_hooks: entity_hook(physics, random_state) for extra_hook in self._before_step.extra_hooks: extra_hook(physics, action, random_state) def before_substep(self, physics, action, random_state): self._task.before_substep(physics, action, random_state) for entity_hook in self._before_substep.entity_hooks: entity_hook(physics, random_state) for extra_hooks in self._before_substep.extra_hooks: extra_hooks(physics, action, random_state) def after_substep(self, physics, random_state): self._task.after_substep(physics, random_state) for entity_hook in self._after_substep.entity_hooks: entity_hook(physics, random_state) for extra_hook in self._after_substep.extra_hooks: extra_hook(physics, random_state) def after_step(self, physics, random_state): self._task.after_step(physics, random_state) for entity_hook in self._after_step.entity_hooks: entity_hook(physics, random_state) for extra_hook in self._after_step.extra_hooks: extra_hook(physics, random_state) class _CommonEnvironment: """Common components for RL environments.""" def __init__(self, task, time_limit=float('inf'), random_state=None, n_sub_steps=None, raise_exception_on_physics_error=True, strip_singleton_obs_buffer_dim=False, delayed_observation_padding=ObservationPadding.ZERO, legacy_step: bool = True): """Initializes an instance of `_CommonEnvironment`. Args: task: Instance of `composer.base.Task`. time_limit: (optional) A float, the time limit in seconds beyond which an episode is forced to terminate. random_state: Optional, either an int seed or an `np.random.RandomState` object. If None (default), the random number generator will self-seed from a platform-dependent source of entropy. n_sub_steps: (DEPRECATED) An integer, number of physics steps to take per agent control step. New code should instead override the `control_substep` property of the task. raise_exception_on_physics_error: (optional) A boolean, indicating whether `PhysicsError` should be raised as an exception. If `False`, physics errors will result in the current episode being terminated with a warning logged, and a new episode started. strip_singleton_obs_buffer_dim: (optional) A boolean, if `True`, the array shape of observations with `buffer_size == 1` will not have a leading buffer dimension. delayed_observation_padding: (optional) An `ObservationPadding` enum value specifying the padding behavior of the initial buffers for delayed observables. If `ZERO` then the buffer is initially filled with zeroes. If `INITIAL_VALUE` then the buffer is initially filled with the first observation values. legacy_step: If True, steps the state with up-to-date position and velocity dependent fields. See Page 6 of https://arxiv.org/abs/2006.12983 for more information. """ if not isinstance(delayed_observation_padding, ObservationPadding): raise ValueError( f'`delayed_observation_padding` should be an `ObservationPadding` ' f'enum value: got {delayed_observation_padding}') self._task = task if not isinstance(random_state, np.random.RandomState): self._random_state = np.random.RandomState(random_state) else: self._random_state = random_state self._hooks = _EnvironmentHooks(self._task) self._time_limit = time_limit self._raise_exception_on_physics_error = raise_exception_on_physics_error self._strip_singleton_obs_buffer_dim = strip_singleton_obs_buffer_dim self._delayed_observation_padding = delayed_observation_padding self._legacy_step = legacy_step if n_sub_steps is not None: warnings.simplefilter('once', DeprecationWarning) warnings.warn('The `n_sub_steps` argument is deprecated. Please override ' 'the `control_timestep` property of the task instead.', DeprecationWarning) self._overridden_n_sub_steps = n_sub_steps self._recompile_physics_and_update_observables() def add_extra_hook(self, hook_name, hook_callable): self._hooks.add_extra_hook(hook_name, hook_callable) def _recompile_physics_and_update_observables(self): """Sets up the environment for latest MJCF model from the task.""" self._physics_proxy = None self._recompile_physics() if isinstance(self._physics, weakref.ProxyType): self._physics_proxy = self._physics else: self._physics_proxy = weakref.proxy(self._physics) if self._overridden_n_sub_steps is not None: self._n_sub_steps = self._overridden_n_sub_steps else: self._n_sub_steps = self._task.physics_steps_per_control_step self._hooks.refresh_entity_hooks() self._hooks.after_compile(self._physics_proxy, self._random_state) self._observation_updater = self._make_observation_updater() self._observation_updater.reset(self._physics_proxy, self._random_state) def _recompile_physics(self): """Creates a new Physics using the latest MJCF model from the task.""" if getattr(self, '_physics', None): self._physics.free() self._physics = mjcf.Physics.from_mjcf_model( self._task.root_entity.mjcf_model) self._physics.legacy_step = self._legacy_step def _make_observation_updater(self): pad_with_initial_value = ( self._delayed_observation_padding == ObservationPadding.INITIAL_VALUE) return observation.Updater( self._task.observables, self._task.physics_steps_per_control_step, self._strip_singleton_obs_buffer_dim, pad_with_initial_value) @property def physics(self): """Returns a `weakref.ProxyType` pointing to the current `mjcf.Physics`. Note that the underlying `mjcf.Physics` will be destroyed whenever the MJCF model is recompiled. It is therefore unsafe for external objects to hold a reference to `environment.physics`. Attempting to access attributes of a dead `Physics` instance will result in a `ReferenceError`. """ return self._physics_proxy @property def task(self): return self._task @property def random_state(self): return self._random_state def control_timestep(self): """Returns the interval between agent actions in seconds.""" if self._overridden_n_sub_steps is not None: return self.physics.timestep() * self._overridden_n_sub_steps else: return self.task.control_timestep class Environment(_CommonEnvironment, dm_env.Environment): """Reinforcement learning environment for Composer tasks.""" def __init__(self, task, time_limit=float('inf'), random_state=None, n_sub_steps=None, raise_exception_on_physics_error=True, strip_singleton_obs_buffer_dim=False, max_reset_attempts=1, delayed_observation_padding=ObservationPadding.ZERO, legacy_step: bool = True): """Initializes an instance of `Environment`. Args: task: Instance of `composer.base.Task`. time_limit: (optional) A float, the time limit in seconds beyond which an episode is forced to terminate. random_state: (optional) an int seed or `np.random.RandomState` instance. n_sub_steps: (DEPRECATED) An integer, number of physics steps to take per agent control step. New code should instead override the `control_substep` property of the task. raise_exception_on_physics_error: (optional) A boolean, indicating whether `PhysicsError` should be raised as an exception. If `False`, physics errors will result in the current episode being terminated with a warning logged, and a new episode started. strip_singleton_obs_buffer_dim: (optional) A boolean, if `True`, the array shape of observations with `buffer_size == 1` will not have a leading buffer dimension. max_reset_attempts: (optional) Maximum number of times to try resetting the environment. If an `EpisodeInitializationError` is raised during this process, an environment reset is reattempted up to this number of times. If this count is exceeded then the most recent exception will be allowed to propagate. Defaults to 1, i.e. no failure is allowed. delayed_observation_padding: (optional) An `ObservationPadding` enum value specifying the padding behavior of the initial buffers for delayed observables. If `ZERO` then the buffer is initially filled with zeroes. If `INITIAL_VALUE` then the buffer is initially filled with the first observation values. legacy_step: If True, steps the state with up-to-date position and velocity dependent fields. """ super().__init__( task=task, time_limit=time_limit, random_state=random_state, n_sub_steps=n_sub_steps, raise_exception_on_physics_error=raise_exception_on_physics_error, strip_singleton_obs_buffer_dim=strip_singleton_obs_buffer_dim, delayed_observation_padding=delayed_observation_padding, legacy_step=legacy_step) self._max_reset_attempts = max_reset_attempts self._reset_next_step = True def reset(self): failed_attempts = 0 while True: try: return self._reset_attempt() except EpisodeInitializationError as e: failed_attempts += 1 if failed_attempts < self._max_reset_attempts: logging.error('Error during episode reset: %s', repr(e)) else: raise def _reset_attempt(self): self._hooks.initialize_episode_mjcf(self._random_state) self._recompile_physics_and_update_observables() with self._physics.reset_context(): self._hooks.initialize_episode(self._physics_proxy, self._random_state) self._observation_updater.reset(self._physics_proxy, self._random_state) self._reset_next_step = False return dm_env.TimeStep( step_type=dm_env.StepType.FIRST, reward=None, discount=None, observation=self._observation_updater.get_observation()) # TODO(b/129061424): Remove this method. def step_spec(self): """DEPRECATED: please use `reward_spec` and `discount_spec` instead.""" warnings.warn('`step_spec` is deprecated, please use `reward_spec` and ' '`discount_spec` instead.', DeprecationWarning) if (self._task.get_reward_spec() is None or self._task.get_discount_spec() is None): raise NotImplementedError return dm_env.TimeStep( step_type=None, reward=self._task.get_reward_spec(), discount=self._task.get_discount_spec(), observation=self._observation_updater.observation_spec(), ) def step(self, action): """Updates the environment using the action and returns a `TimeStep`.""" if self._reset_next_step: self._reset_next_step = False return self.reset() self._hooks.before_step(self._physics_proxy, action, self._random_state) self._observation_updater.prepare_for_next_control_step() try: for i in range(self._n_sub_steps): self._substep(action) # The final observation update must happen after all the hooks in # `self._hooks.after_step` is called. Otherwise, if any of these hooks # modify the physics state then we might capture an observation that is # inconsistent with the final physics state. if i < self._n_sub_steps - 1: self._observation_updater.update() physics_is_divergent = False except control.PhysicsError as e: if not self._raise_exception_on_physics_error: logging.warning(e) physics_is_divergent = True else: raise self._hooks.after_step(self._physics_proxy, self._random_state) self._observation_updater.update() if not physics_is_divergent: reward = self._task.get_reward(self._physics_proxy) discount = self._task.get_discount(self._physics_proxy) terminating = ( self._task.should_terminate_episode(self._physics_proxy) or self._physics.time() >= self._time_limit ) else: reward = 0.0 discount = 0.0 terminating = True obs = self._observation_updater.get_observation() if not terminating: return dm_env.TimeStep(dm_env.StepType.MID, reward, discount, obs) else: self._reset_next_step = True return dm_env.TimeStep(dm_env.StepType.LAST, reward, discount, obs) def _substep(self, action): self._hooks.before_substep( self._physics_proxy, action, self._random_state) self._physics.step() self._hooks.after_substep(self._physics_proxy, self._random_state) def action_spec(self): """Returns the action specification for this environment.""" return self._task.action_spec(self._physics_proxy) def reward_spec(self): """Describes the reward returned by this environment. This will be the output of `self.task.reward_spec()` if it is not None, otherwise it will be the default spec returned by `dm_env.Environment.reward_spec()`. Returns: A `specs.Array` instance, or a nested dict, list or tuple of `specs.Array`s. """ task_reward_spec = self._task.get_reward_spec() if task_reward_spec is not None: return task_reward_spec else: return super().reward_spec() def discount_spec(self): """Describes the discount returned by this environment. This will be the output of `self.task.discount_spec()` if it is not None, otherwise it will be the default spec returned by `dm_env.Environment.discount_spec()`. Returns: A `specs.Array` instance, or a nested dict, list or tuple of `specs.Array`s. """ task_discount_spec = self._task.get_discount_spec() if task_discount_spec is not None: return task_discount_spec else: return super().discount_spec() def observation_spec(self): """Returns the observation specification for this environment. Returns: An `OrderedDict` mapping observation name to `specs.Array` containing observation shape and dtype. """ return self._observation_updater.observation_spec()
dm_control-main
dm_control/composer/environment.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module defining the abstract entity class.""" import abc import collections import os import weakref from absl import logging from dm_control import mjcf from dm_control.composer import define from dm_control.mujoco.wrapper import mjbindings import numpy as np _OPTION_KEYS = set(['update_interval', 'buffer_size', 'delay', 'aggregator', 'corruptor', 'enabled']) _NO_ATTACHMENT_FRAME = 'No attachment frame found.' # The component order differs from that used by the open-source `tf` package. def _multiply_quaternions(quat1, quat2): result = np.empty_like(quat1) mjbindings.mjlib.mju_mulQuat(result, quat1, quat2) return result def _rotate_vector(vec, quat): """Rotates a vector by the given quaternion.""" result = np.empty_like(vec) mjbindings.mjlib.mju_rotVecQuat(result, vec, quat) return result class _ObservableKeys: """Helper object that implements the `observables.dict_keys` functionality.""" def __init__(self, entity, observables): self._entity = entity self._observables = observables def __getattr__(self, name): try: model_identifier = self._entity.mjcf_model.full_identifier except AttributeError as exc: raise ValueError( 'cannot retrieve the full identifier of mjcf_model') from exc return os.path.join(model_identifier, name) def __dir__(self): out = set(self._observables.keys()) out.update(dir(super())) return list(out) class Observables: """Base-class for Entity observables. Subclasses should declare getter methods annotated with @define.observable decorator and returning an observable object. """ def __init__(self, entity): self._entity = weakref.proxy(entity) self._observables = collections.OrderedDict() self._keys_helper = _ObservableKeys(self._entity, self._observables) # Ensure consistent ordering. for attr_name in sorted(dir(type(self))): type_attr = getattr(type(self), attr_name) if isinstance(type_attr, define.observable): self._observables[attr_name] = getattr(self, attr_name) @property def dict_keys(self): return self._keys_helper def as_dict(self, fully_qualified=True): """Returns an OrderedDict of observables belonging to this Entity. The returned observables will include any added using the _add_observable method, as well as any generated by a method decorated with the @define.observable annotation. Args: fully_qualified: (bool) Whether the dict keys should be prefixed with the parent entity's full model identifier. """ if fully_qualified: # We need to make sure that this property doesn't raise an AttributeError, # otherwise __getattr__ is executed and we get a very funky error. try: model_identifier = self._entity.mjcf_model.full_identifier except AttributeError as exc: raise ValueError( 'Cannot retrieve the full identifier of mjcf_model.') from exc return collections.OrderedDict( [(os.path.join(model_identifier, name), observable) for name, observable in self._observables.items()]) else: # Return a copy to prevent dict being edited. return self._observables.copy() def get_observable(self, name, name_fully_qualified=False): """Returns the observable with the given name. Args: name: (str) The identifier of the observable. name_fully_qualified: (bool) Whether the provided name is prefixed by the model's full identifier. """ if name_fully_qualified: try: model_identifier = self._entity.mjcf_model.full_identifier except AttributeError as exc: raise ValueError( 'Cannot retrieve the full identifier of mjcf_model.') from exc return self._observables[name.replace(model_identifier, '')] else: return self._observables[name] def set_options(self, options): """Configure Observables with an options dict. Args: options: A dict of dicts of configuration options keyed on observable names, or a dict of configuration options, which will propagate those options to all observables. """ if options is None: options = {} elif options.keys() and set(options.keys()).issubset(_OPTION_KEYS): options = dict([(key, options) for key in self._observables.keys()]) for obs_key, obs_options in options.items(): try: obs = self._observables[obs_key] except KeyError as exc: raise KeyError('No observable with name {!r}'.format(obs_key)) from exc obs.configure(**obs_options) def enable_all(self): """Enable all observables of this entity.""" for obs in self._observables.values(): obs.enabled = True def disable_all(self): """Disable all observables of this entity.""" for obs in self._observables.values(): obs.enabled = False def add_observable(self, name, observable, enabled=True): self._observables[name] = observable self._observables[name].enabled = enabled class FreePropObservableMixin(metaclass=abc.ABCMeta): """Enforce observables of a free-moving object.""" @property @abc.abstractmethod def position(self): pass @property @abc.abstractmethod def orientation(self): pass @property @abc.abstractmethod def linear_velocity(self): pass @property @abc.abstractmethod def angular_velocity(self): pass class Entity(metaclass=abc.ABCMeta): """The abstract base class for an entity in a Composer environment.""" def __init__(self, *args, **kwargs): """Entity constructor. Subclasses should not override this method, instead implement a _build method. Args: *args: Arguments passed through to the _build method. **kwargs: Keyword arguments. Passed through to the _build method, apart from the following. `observable_options`: A dictionary of Observable configuration options. """ self._post_init_hooks = [] self._parent = None self._attached = [] try: observable_options = kwargs.pop('observable_options') except KeyError: observable_options = None self._build(*args, **kwargs) self._observables = self._build_observables() self._observables.set_options(observable_options) @abc.abstractmethod def _build(self, *args, **kwargs): """Entity initialization method to be overridden by subclasses.""" raise NotImplementedError def _build_observables(self): """Entity observables initialization method. Returns: An object subclassing the Observables class. """ return Observables(self) def iter_entities(self, exclude_self=False): """An iterator that recursively iterates through all attached entities. Args: exclude_self: (optional) Whether to exclude this `Entity` itself from the iterator. Yields: If `exclude_self` is `False`, the first value yielded is this Entity itself. The following Entities are then yielded recursively in a depth-first fashion, following the order in which the Entities are attached. """ if not exclude_self: yield self for attached_entity in self._attached: for attached_entity_of_attached_entity in attached_entity.iter_entities(): yield attached_entity_of_attached_entity @property def observables(self): """The observables defined by this entity.""" return self._observables def initialize_episode_mjcf(self, random_state): """Callback executed when the MJCF model is modified between episodes.""" pass def after_compile(self, physics, random_state): """Callback executed after the Mujoco Physics is recompiled.""" pass def initialize_episode(self, physics, random_state): """Callback executed during episode initialization.""" pass def before_step(self, physics, random_state): """Callback executed before an agent control step.""" pass def before_substep(self, physics, random_state): """Callback executed before a simulation step.""" pass def after_substep(self, physics, random_state): """A callback which is executed after a simulation step.""" pass def after_step(self, physics, random_state): """Callback executed after an agent control step.""" pass @property @abc.abstractmethod def mjcf_model(self): raise NotImplementedError def attach(self, entity, attach_site=None): """Attaches an `Entity` without any additional degrees of freedom. Args: entity: The `Entity` to attach. attach_site: (optional) The site to which to attach the entity's model. If not set, defaults to self.attachment_site. Returns: The frame of the attached model. """ if attach_site is None: attach_site = self.attachment_site frame = attach_site.attach(entity.mjcf_model) self._attached.append(entity) entity._parent = weakref.ref(self) # pylint: disable=protected-access return frame def detach(self): """Detaches this entity if it has previously been attached.""" if self._parent is not None: parent = self._parent() # pylint: disable=not-callable if parent: # Weakref might dereference to None during garbage collection. self.mjcf_model.detach() parent._attached.remove(self) # pylint: disable=protected-access self._parent = None else: raise RuntimeError('Cannot detach an entity that is not attached.') @property def parent(self): """Returns the `Entity` to which this entity is attached, or `None`.""" return self._parent() if self._parent else None # pylint: disable=not-callable @property def attachment_site(self): return self.mjcf_model @property def root_body(self): if self.parent: return mjcf.get_attachment_frame(self.mjcf_model) else: return self.mjcf_model.worldbody def global_vector_to_local_frame(self, physics, vec_in_world_frame): """Linearly transforms a world-frame vector into entity's local frame. Note that this function does not perform an affine transformation of the vector. In other words, the input vector is assumed to be specified with respect to the same origin as this entity's local frame. This function can also be applied to matrices whose innermost dimensions are either 2 or 3. In this case, a matrix with the same leading dimensions is returned where the innermost vectors are replaced by their values computed in the local frame. Args: physics: An `mjcf.Physics` instance. vec_in_world_frame: A NumPy array with last dimension of shape (2,) or (3,) that represents a vector quantity in the world frame. Returns: The same quantity as `vec_in_world_frame` but reexpressed in this entity's local frame. The returned np.array has the same shape as np.asarray(vec_in_world_frame). Raises: ValueError: if `vec_in_world_frame` does not have shape ending with (2,) or (3,). """ vec_in_world_frame = np.asarray(vec_in_world_frame) xmat = np.reshape(physics.bind(self.root_body).xmat, (3, 3)) # The ordering of the np.dot is such that the transformation holds for any # matrix whose final dimensions are (2,) or (3,). if vec_in_world_frame.shape[-1] == 2: return np.dot(vec_in_world_frame, xmat[:2, :2]) elif vec_in_world_frame.shape[-1] == 3: return np.dot(vec_in_world_frame, xmat) else: raise ValueError('`vec_in_world_frame` should have shape with final ' 'dimension 2 or 3: got {}'.format( vec_in_world_frame.shape)) def global_xmat_to_local_frame(self, physics, xmat): """Transforms another entity's `xmat` into this entity's local frame. This function takes another entity's (E) xmat, which is an SO(3) matrix from E's frame to the world frame, and turns it to a matrix that transforms from E's frame into this entity's local frame. Args: physics: An `mjcf.Physics` instance. xmat: A NumPy array of shape (3, 3) or (9,) that represents another entity's xmat. Returns: The `xmat` reexpressed in this entity's local frame. The returned np.array has the same shape as np.asarray(xmat). Raises: ValueError: if `xmat` does not have shape (3, 3) or (9,). """ xmat = np.asarray(xmat) input_shape = xmat.shape if xmat.shape == (9,): xmat = np.reshape(xmat, (3, 3)) self_xmat = np.reshape(physics.bind(self.root_body).xmat, (3, 3)) if xmat.shape == (3, 3): return np.reshape(np.dot(self_xmat.T, xmat), input_shape) else: raise ValueError('`xmat` should have shape (3, 3) or (9,): got {}'.format( xmat.shape)) def get_pose(self, physics): """Get the position and orientation of this entity relative to its parent. Note that the semantics differ slightly depending on whether or not the entity has a free joint: * If it has a free joint the position and orientation are always given in global coordinates. * If the entity is fixed or attached with a different joint type then the position and orientation are given relative to the parent frame. For entities that are either attached directly to the worldbody, or to other entities that are positioned at the global origin (e.g. the arena) the global and relative poses are equivalent. Args: physics: An instance of `mjcf.Physics`. Returns: A 2-tuple where the first entry is a (3,) numpy array representing the position and the second is a (4,) numpy array representing orientation as a quaternion. Raises: RuntimeError: If the entity is not attached. """ root_joint = mjcf.get_frame_freejoint(self.mjcf_model) if root_joint: position = physics.bind(root_joint).qpos[:3] quaternion = physics.bind(root_joint).qpos[3:] else: attachment_frame = mjcf.get_attachment_frame(self.mjcf_model) if attachment_frame is None: raise RuntimeError(_NO_ATTACHMENT_FRAME) position = physics.bind(attachment_frame).pos quaternion = physics.bind(attachment_frame).quat return position, quaternion def set_pose(self, physics, position=None, quaternion=None): """Sets position and/or orientation of this entity relative to its parent. If the entity is attached with a free joint, this method will set the respective DoFs of the joint. If the entity is either fixed or attached with a different joint type, this method will update the position and/or quaternion of the attachment frame. Note that the semantics differ slightly between the two cases: the DoFs of a free body are specified in global coordinates, whereas the position of a non-free body is specified in relative coordinates with respect to the parent frame. However, for entities that are either attached directly to the worldbody, or to other entities that are positioned at the global origin (e.g. the arena), there is no difference between the two cases. Args: physics: An instance of `mjcf.Physics`. position: (optional) A NumPy array of size 3. quaternion: (optional) A NumPy array of size 4. Raises: RuntimeError: If the entity is not attached. """ root_joint = mjcf.get_frame_freejoint(self.mjcf_model) if root_joint: if position is not None: physics.bind(root_joint).qpos[:3] = position if quaternion is not None: physics.bind(root_joint).qpos[3:] = quaternion else: attachment_frame = mjcf.get_attachment_frame(self.mjcf_model) if attachment_frame is None: raise RuntimeError(_NO_ATTACHMENT_FRAME) if position is not None: physics.bind(attachment_frame).pos = position if quaternion is not None: normalised_quaternion = quaternion / np.linalg.norm(quaternion) physics.bind(attachment_frame).quat = normalised_quaternion def shift_pose(self, physics, position=None, quaternion=None, rotate_velocity=False): """Shifts the position and/or orientation from its current configuration. This is a convenience function that performs the same operation as `set_pose`, but where the specified `position` is added to the current position, and the specified `quaternion` is premultiplied to the current quaternion. Args: physics: An instance of `mjcf.Physics`. position: (optional) A NumPy array of size 3. quaternion: (optional) A NumPy array of size 4. rotate_velocity: (optional) A bool, whether to shift the current linear velocity along with the pose. This will rotate the current linear velocity, which is expressed relative to the world frame. The angular velocity, which is expressed relative to the local frame is left unchanged. Raises: RuntimeError: If the entity is not attached. """ current_position, current_quaternion = self.get_pose(physics) new_position, new_quaternion = None, None if position is not None: new_position = current_position + position if quaternion is not None: quaternion = np.array(quaternion, dtype=np.float64, copy=False) new_quaternion = _multiply_quaternions(quaternion, current_quaternion) root_joint = mjcf.get_frame_freejoint(self.mjcf_model) if root_joint and rotate_velocity: # Rotate the linear velocity. The angular velocity (qvel[3:]) # is left unchanged, as it is expressed in the local frame. # When rotatating the body frame the angular velocity already # tracks the rotation but the linear velocity does not. velocity = physics.bind(root_joint).qvel[:3] rotated_velocity = _rotate_vector(velocity, quaternion) self.set_velocity(physics, rotated_velocity) self.set_pose(physics, new_position, new_quaternion) def get_velocity(self, physics): """Gets the linear and angular velocity of this free entity. Args: physics: An instance of `mjcf.Physics`. Returns: A 2-tuple where the first entry is a (3,) numpy array representing the linear velocity and the second is a (3,) numpy array representing the angular velocity. """ root_joint = mjcf.get_frame_freejoint(self.mjcf_model) if root_joint: velocity = physics.bind(root_joint).qvel[:3] angular_velocity = physics.bind(root_joint).qvel[3:] return velocity, angular_velocity else: raise ValueError('get_velocity cannot be used on a non-free entity') def set_velocity(self, physics, velocity=None, angular_velocity=None): """Sets the linear velocity and/or angular velocity of this free entity. If the entity is attached with a free joint, this method will set the respective DoFs of the joint. Otherwise a warning is logged. Args: physics: An instance of `mjcf.Physics`. velocity: (optional) A NumPy array of size 3 specifying the linear velocity. angular_velocity: (optional) A NumPy array of size 3 specifying the angular velocity """ root_joint = mjcf.get_frame_freejoint(self.mjcf_model) if root_joint: if velocity is not None: physics.bind(root_joint).qvel[:3] = velocity if angular_velocity is not None: physics.bind(root_joint).qvel[3:] = angular_velocity else: logging.warning('Cannot set velocity on Entity with no free joint.') def configure_joints(self, physics, position): """Configures this entity's internal joints. The default implementation of this method simply sets the `qpos` of all joints in this entity to the values specified in the `position` argument. Entity subclasses with actuated joints may override this method to achieve a stable reconfiguration of joint positions, for example the control signal of position actuators may be changed to match the new joint positions. Args: physics: An instance of `mjcf.Physics`. position: The desired position of this entity's joints. """ joints = self.mjcf_model.find_all('joint', exclude_attachments=True) physics.bind(joints).qpos = position class ModelWrapperEntity(Entity): """An entity class that wraps an MJCF model without any additional logic.""" def _build(self, mjcf_model): self._mjcf_model = mjcf_model @property def mjcf_model(self): return self._mjcf_model
dm_control-main
dm_control/composer/entity.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for dm_control.composer.environment.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable import dm_env import mock import numpy as np class DummyTask(composer.NullTask): def __init__(self): null_entity = composer.ModelWrapperEntity(mjcf.RootElement()) super().__init__(null_entity) @property def task_observables(self): time = observable.Generic(lambda physics: physics.time()) time.enabled = True return {'time': time} class DummyTaskWithResetFailures(DummyTask): def __init__(self, num_reset_failures): super().__init__() self.num_reset_failures = num_reset_failures self.reset_counter = 0 def initialize_episode_mjcf(self, random_state): self.reset_counter += 1 def initialize_episode(self, physics, random_state): if self.reset_counter <= self.num_reset_failures: raise composer.EpisodeInitializationError() class EnvironmentTest(parameterized.TestCase): def test_failed_resets(self): total_reset_failures = 5 env_reset_attempts = 2 task = DummyTaskWithResetFailures(num_reset_failures=total_reset_failures) env = composer.Environment(task, max_reset_attempts=env_reset_attempts) for _ in range(total_reset_failures // env_reset_attempts): with self.assertRaises(composer.EpisodeInitializationError): env.reset() env.reset() # should not raise an exception self.assertEqual(task.reset_counter, total_reset_failures + 1) @parameterized.parameters( dict(name='reward_spec', defined_in_task=True), dict(name='reward_spec', defined_in_task=False), dict(name='discount_spec', defined_in_task=True), dict(name='discount_spec', defined_in_task=False)) def test_get_spec(self, name, defined_in_task): task = DummyTask() env = composer.Environment(task) with mock.patch.object(task, 'get_' + name) as mock_task_get_spec: if defined_in_task: expected_spec = mock.Mock() mock_task_get_spec.return_value = expected_spec else: expected_spec = getattr(dm_env.Environment, name)(env) mock_task_get_spec.return_value = None spec = getattr(env, name)() mock_task_get_spec.assert_called_once_with() self.assertSameStructure(spec, expected_spec) def test_can_provide_observation(self): task = DummyTask() env = composer.Environment(task) obs = env.reset().observation self.assertLen(obs, 1) np.testing.assert_array_equal(obs['time'], env.physics.time()) for _ in range(20): obs = env.step([]).observation self.assertLen(obs, 1) np.testing.assert_array_equal(obs['time'], env.physics.time()) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/environment_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module defining the abstract robot class.""" import abc from dm_control.composer import entity import numpy as np DOWN_QUATERNION = np.array([0., 0.70710678118, 0.70710678118, 0.]) class Robot(entity.Entity, metaclass=abc.ABCMeta): """The abstract base class for robots.""" @property @abc.abstractmethod def actuators(self): """Returns the actuator elements of the robot.""" raise NotImplementedError
dm_control-main
dm_control/composer/robot.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The base empty arena that defines global settings for Composer.""" import os from dm_control import mjcf from dm_control.composer import entity as entity_module _ARENA_XML_PATH = os.path.join(os.path.dirname(__file__), 'arena.xml') class Arena(entity_module.Entity): """The base empty arena that defines global settings for Composer.""" def __init__(self, *args, **kwargs): self._mjcf_root = None # Declare that _mjcf_root exists to allay pytype. super().__init__(*args, **kwargs) # _build uses *args and **kwargs rather than named arguments, to get # around a signature-mismatch error from pytype in derived classes. def _build(self, *args, **kwargs) -> None: """Initializes this arena. The function takes two arguments through args, kwargs: name: A string, the name of this arena. If `None`, use the model name defined in the MJCF file. xml_path: An optional path to an XML file that will override the default composer arena MJCF. Args: *args: See above. **kwargs: See above. """ if args: name = args[0] else: name = kwargs.get('name', None) if len(args) > 1: xml_path = args[1] else: xml_path = kwargs.get('xml_path', None) self._mjcf_root = mjcf.from_path(xml_path or _ARENA_XML_PATH) if name: self._mjcf_root.model = name def add_free_entity(self, entity): """Includes an entity in the arena as a free-moving body.""" frame = self.attach(entity) frame.add('freejoint') return frame @property def mjcf_model(self): return self._mjcf_root
dm_control-main
dm_control/composer/arena.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for base variation operations.""" import operator from absl.testing import absltest from absl.testing import parameterized from dm_control.composer import variation from dm_control.composer.variation import deterministic import numpy as np class VariationTest(parameterized.TestCase): def setUp(self): super().setUp() self.value_1 = 3 self.variation_1 = deterministic.Constant(self.value_1) self.value_2 = 5 self.variation_2 = deterministic.Constant(self.value_2) @parameterized.parameters(['neg']) def test_unary_operator(self, name): func = getattr(operator, name) self.assertEqual( variation.evaluate(func(self.variation_1)), func(self.value_1)) @parameterized.parameters(['add', 'sub', 'mul', 'truediv', 'floordiv', 'pow']) def test_binary_operator(self, name): func = getattr(operator, name) self.assertEqual( variation.evaluate(func(self.value_1, self.variation_2)), func(self.value_1, self.value_2)) self.assertEqual( variation.evaluate(func(self.variation_1, self.value_2)), func(self.value_1, self.value_2)) self.assertEqual( variation.evaluate(func(self.variation_1, self.variation_2)), func(self.value_1, self.value_2)) def test_getitem(self): value = deterministic.Constant(np.array([4, 5, 6, 7, 8])) np.testing.assert_array_equal( variation.evaluate(value[[3, 1]]), [7, 5]) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/variation/variation_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for distributions.""" from absl.testing import absltest from absl.testing import parameterized from dm_control.composer.variation import distributions import numpy as np RANDOM_SEED = 123 NUM_ITERATIONS = 100 def _make_random_state(): return np.random.RandomState(RANDOM_SEED) class DistributionsTest(parameterized.TestCase): def setUp(self): super().setUp() self._variation_random_state = _make_random_state() self._np_random_state = _make_random_state() def testUniform(self): lower, upper = [2, 3, 4], [5, 6, 7] variation = distributions.Uniform(low=lower, high=upper) for _ in range(NUM_ITERATIONS): np.testing.assert_array_equal( variation(random_state=self._variation_random_state), self._np_random_state.uniform(lower, upper)) def testUniformChoice(self): choices = ['apple', 'banana', 'cherry'] variation = distributions.UniformChoice(choices) for _ in range(NUM_ITERATIONS): self.assertEqual( variation(random_state=self._variation_random_state), self._np_random_state.choice(choices)) def testUniformPointOnSphere(self): variation = distributions.UniformPointOnSphere() samples = [] for _ in range(NUM_ITERATIONS): sample = variation(random_state=self._variation_random_state) self.assertEqual(sample.size, 3) np.testing.assert_approx_equal(np.linalg.norm(sample), 1.0) samples.append(sample) # Make sure that none of the samples are the same. self.assertLen( set(np.reshape(np.asarray(samples), -1)), 3 * NUM_ITERATIONS) def testNormal(self): loc, scale = 1, 2 variation = distributions.Normal(loc=loc, scale=scale) for _ in range(NUM_ITERATIONS): self.assertEqual( variation(random_state=self._variation_random_state), self._np_random_state.normal(loc, scale)) def testExponential(self): scale = 3 variation = distributions.Exponential(scale=scale) for _ in range(NUM_ITERATIONS): self.assertEqual( variation(random_state=self._variation_random_state), self._np_random_state.exponential(scale)) def testPoisson(self): lam = 4 variation = distributions.Poisson(lam=lam) for _ in range(NUM_ITERATIONS): self.assertEqual( variation(random_state=self._variation_random_state), self._np_random_state.poisson(lam)) @parameterized.parameters(0, 10) def testBiasedRandomWalk(self, timescale): stdev = 1. variation = distributions.BiasedRandomWalk(stdev=stdev, timescale=timescale) sequence = [variation(random_state=self._variation_random_state) for _ in range(int(max(timescale, 1)*NUM_ITERATIONS*1000))] self.assertAlmostEqual(np.mean(sequence), 0., delta=0.01) self.assertAlmostEqual(np.std(sequence), stdev, delta=0.01) @parameterized.parameters( dict(arg_name='stdev', template=distributions._NEGATIVE_STDEV), dict(arg_name='timescale', template=distributions._NEGATIVE_TIMESCALE)) def testBiasedRandomWalkExceptions(self, arg_name, template): bad_value = -1. with self.assertRaisesWithLiteralMatch( ValueError, template.format(bad_value)): _ = distributions.BiasedRandomWalk(**{arg_name: bad_value}) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/variation/distributions_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Deterministic variations.""" from dm_control.composer.variation import base from dm_control.composer.variation.variation_values import evaluate class Constant(base.Variation): """Wraps a constant value into a Variation object. This class is provided mainly for use in tests, to check that variations are invoked correctly without having to introduce randomness in test cases. """ def __init__(self, value): self._value = value def __call__(self, initial_value=None, current_value=None, random_state=None): return self._value class Sequence(base.Variation): """Variation representing a fixed sequence of values.""" def __init__(self, values): self._values = values self._iterator = iter(self._values) def __call__(self, initial_value=None, current_value=None, random_state=None): try: return evaluate(next(self._iterator), initial_value=initial_value, current_value=current_value, random_state=random_state) except StopIteration: self._iterator = iter(self._values) return evaluate(next(self._iterator), initial_value=initial_value, current_value=current_value, random_state=random_state) class Identity(base.Variation): def __call__(self, initial_value=None, current_value=None, random_state=None): return current_value
dm_control-main
dm_control/composer/variation/deterministic.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A module that helps manage model variation in Composer environments.""" import collections import copy from dm_control.composer.variation.base import Variation from dm_control.composer.variation.variation_values import evaluate class _VariationInfo: __slots__ = ['initial_value', 'variation'] def __init__(self, initial_value=None, variation=None): self.initial_value = initial_value self.variation = variation class MJCFVariator: """Helper object for applying variations to MJCF attributes. An instance of this class remembers the original value of each MJCF attribute the first time a variation is applied. The original value is then passed as an argument to each variation callable. """ def __init__(self): self._variations = collections.defaultdict(dict) def bind_attributes(self, element, **kwargs): """Binds variations to attributes of an MJCF element. Args: element: An `mjcf.Element` object. **kwargs: Keyword arguments mapping attribute names to the corresponding variations. A variation is either a fixed value or a callable that optionally takes the original value of an attribute and returns a new value. """ for attribute_name, variation in kwargs.items(): if variation is None and attribute_name in self._variations[element]: del self._variations[element][attribute_name] else: initial_value = copy.copy(getattr(element, attribute_name)) self._variations[element][attribute_name] = ( _VariationInfo(initial_value, variation)) def apply_variations(self, random_state): """Applies variations in-place to the specified MJCF element. Args: random_state: A `numpy.random.RandomState` instance. """ for element, attribute_variations in self._variations.items(): new_values = {} for attribute_name, variation_info in attribute_variations.items(): current_value = getattr(element, attribute_name) if variation_info.initial_value is None: variation_info.initial_value = copy.copy(current_value) new_values[attribute_name] = evaluate( variation_info.variation, variation_info.initial_value, current_value, random_state) element.set_attributes(**new_values) def clear(self): """Clears all bound attribute variations.""" self._variations.clear() def reset_initial_values(self): for variations in self._variations.values(): for variation_info in variations.values(): variation_info.initial_value = None class PhysicsVariator: """Helper object for applying variations to MjModel and MjData. An instance of this class remembers the original value of each attribute the first time a variation is applied. The original value is then passed as an argument to each variation callable. """ def __init__(self): self._variations = collections.defaultdict(dict) def bind_attributes(self, element, **kwargs): """Binds variations to attributes of an MJCF element. Args: element: An `mjcf.Element` object. **kwargs: Keyword arguments mapping attribute names to the corresponding variations. A variation is either a fixed value or a callable that optionally takes the original value of an attribute and returns a new value. """ for attribute_name, variation in kwargs.items(): if variation is None and attribute_name in self._variations[element]: del self._variations[element][attribute_name] else: self._variations[element][attribute_name] = ( _VariationInfo(None, variation)) def apply_variations(self, physics, random_state): for element, variations in self._variations.items(): binding = physics.bind(element) for attribute_name, variation_info in variations.items(): current_value = getattr(binding, attribute_name) if variation_info.initial_value is None: variation_info.initial_value = copy.copy(current_value) setattr(binding, attribute_name, evaluate( variation_info.variation, variation_info.initial_value, current_value, random_state)) def clear(self): """Clears all bound attribute variations.""" self._variations.clear() def reset_initial_values(self): for variations in self._variations.values(): for variation_info in variations.values(): variation_info.initial_value = None
dm_control-main
dm_control/composer/variation/__init__.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Variations in 3D rotations.""" from dm_control.composer.variation import base from dm_control.composer.variation import variation_values import numpy as np IDENTITY_QUATERNION = np.array([1., 0., 0., 0.]) class UniformQuaternion(base.Variation): """Uniformly distributed unit quaternions.""" def __call__(self, initial_value=None, current_value=None, random_state=None): random_state = random_state or np.random u1, u2, u3 = random_state.uniform([0.] * 3, [1., 2. * np.pi, 2. * np.pi]) return np.array([np.sqrt(1. - u1) * np.sin(u2), np.sqrt(1. - u1) * np.cos(u2), np.sqrt(u1) * np.sin(u3), np.sqrt(u1) * np.cos(u3)]) class QuaternionFromAxisAngle(base.Variation): """Quaternion variation specified in terms of variations in axis and angle.""" def __init__(self, axis, angle): self._axis = axis self._angle = angle def __call__(self, initial_value=None, current_value=None, random_state=None): random_state = random_state or np.random axis = variation_values.evaluate( self._axis, initial_value, current_value, random_state) angle = variation_values.evaluate( self._angle, initial_value, current_value, random_state) sine, cosine = np.sin(angle / 2), np.cos(angle / 2) return np.array([cosine, axis[0] * sine, axis[1] * sine, axis[2] * sine]) class QuaternionPreMultiply(base.Variation): """A variation that pre-multiplies an existing quaternion value. This variation takes a quaternion value generated by another variation and pre-multiplies it to an existing value. In cumulative mode, the new quaternion is pre-multiplied to the current value being varied. In non-cumulative mode, the new quaternion is pre-multiplied to a fixed initial value. """ def __init__(self, quat, cumulative=False): self._quat = quat self._cumulative = cumulative def __call__(self, initial_value=None, current_value=None, random_state=None): random_state = random_state or np.random q1 = variation_values.evaluate(self._quat, initial_value, current_value, random_state) q2 = current_value if self._cumulative else initial_value return np.array([ q1[0]*q2[0] - q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3], q1[0]*q2[1] + q1[1]*q2[0] + q1[2]*q2[3] - q1[3]*q2[2], q1[0]*q2[2] - q1[1]*q2[3] + q1[2]*q2[0] + q1[3]*q2[1], q1[0]*q2[3] + q1[1]*q2[2] - q1[2]*q2[1] + q1[3]*q2[0]])
dm_control-main
dm_control/composer/variation/rotations.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Standard statistical distributions that conform to the Variation API.""" import abc import functools from dm_control.composer.variation import base from dm_control.composer.variation.variation_values import evaluate import numpy as np class Distribution(base.Variation, metaclass=abc.ABCMeta): """Base Distribution class for sampling a parametrized distribution. Subclasses need to implement `_callable`, which needs to return a callable based on the random_state passed as arg. This callable then gets called using the arguments passed to the constructor, after being evaluated. This allows the distribution parameters themselves to be instances of `base.Variation`. By default samples are drawn in the shape of `initial_value`, unless the optional `single_sample` constructor arg is set to `True`, in which case only a single sample is drawn. """ __slots__ = ('_single_sample', '_args', '_kwargs') def __init__(self, *args, **kwargs): self._single_sample = kwargs.pop('single_sample', False) self._args = args self._kwargs = kwargs def __call__(self, initial_value=None, current_value=None, random_state=None): local_random_state = random_state or np.random size = ( None if self._single_sample or initial_value is None # pylint: disable=g-long-ternary else np.shape(initial_value)) local_args = evaluate( self._args, initial_value=initial_value, current_value=current_value, random_state=random_state) local_kwargs = evaluate( self._kwargs, initial_value=initial_value, current_value=current_value, random_state=random_state) return self._callable(local_random_state)( *local_args, size=size, **local_kwargs) def __getattr__(self, name): if name.startswith('__'): raise AttributeError # Stops infinite recursion during deepcopy. elif name in self._kwargs: return self._kwargs[name] else: raise AttributeError('{!r} object has no attribute {!r}'.format( type(self).__name__, name)) @abc.abstractmethod def _callable(self, random_state): raise NotImplementedError class Uniform(Distribution): __slots__ = () def __init__(self, low=0.0, high=1.0, single_sample=False): super().__init__(low=low, high=high, single_sample=single_sample) def _callable(self, random_state): return random_state.uniform class UniformInteger(Distribution): __slots__ = () def __init__(self, low, high=None, single_sample=False): super().__init__(low, high=high, single_sample=single_sample) def _callable(self, random_state): return random_state.randint class UniformChoice(Distribution): __slots__ = () def __init__(self, choices, single_sample=False): super().__init__(choices, single_sample=single_sample) def _callable(self, random_state): return random_state.choice class UniformPointOnSphere(base.Variation): """Samples a point on the unit sphere, i.e. a 3D vector with norm 1.""" __slots__ = () def __init__(self, single_sample=False): self._single_sample = single_sample def __call__(self, initial_value=None, current_value=None, random_state=None): random_state = random_state or np.random size = ( 3 if self._single_sample or initial_value is None # pylint: disable=g-long-ternary else np.append(np.shape(initial_value), 3)) axis = random_state.normal(size=size) axis /= np.linalg.norm(axis, axis=-1, keepdims=True) return axis class Normal(Distribution): __slots__ = () def __init__(self, loc=0.0, scale=1.0, single_sample=False): super().__init__(loc=loc, scale=scale, single_sample=single_sample) def _callable(self, random_state): return random_state.normal class LogNormal(Distribution): __slots__ = () def __init__(self, mean=0.0, sigma=1.0, single_sample=False): super().__init__(mean=mean, sigma=sigma, single_sample=single_sample) def _callable(self, random_state): return random_state.lognormal class Exponential(Distribution): __slots__ = () def __init__(self, scale=1.0, single_sample=False): super().__init__(scale=scale, single_sample=single_sample) def _callable(self, random_state): return random_state.exponential class Poisson(Distribution): __slots__ = () def __init__(self, lam=1.0, single_sample=False): super().__init__(lam=lam, single_sample=single_sample) def _callable(self, random_state): return random_state.poisson class Bernoulli(Distribution): __slots__ = () def __init__(self, prob=0.5, single_sample=False): super().__init__(prob, single_sample=single_sample) def _callable(self, random_state): return functools.partial(random_state.binomial, 1) _NEGATIVE_STDEV = '`stdev` must be >= 0, got {}.' _NEGATIVE_TIMESCALE = '`timescale` must be >= 0, got {}.' class BiasedRandomWalk(base.Variation): """A Class for generating noise from a zero-mean Ornstein-Uhlenbeck process. Let `retain = np.exp(-1. / timescale)` and `scale = stdev * sqrt(1 - (retain * retain))` Then the discete-time first-order filtered diffusion process `x_next = retain * x + N(0, scale))` has standard deviation `stdev` and characteristic timescale `timescale`. """ __slots__ = ('_scale', '_value') def __init__(self, stdev=0.1, timescale=10.): """Initializes a `BiasedRandomWalk`. Args: stdev: Float. Standard deviation of the output sequence. timescale: Integer. Number of timesteps characteristic of the random walk. After `timescale` steps the correlation is reduced by exp(-1). Larger or equal to 0, where a value of 0 is an uncorrelated normal distribution. Raises: ValueError: if either `stdev` or `timescale` is negative. """ if stdev < 0: raise ValueError(_NEGATIVE_STDEV.format(stdev)) if timescale < 0: raise ValueError(_NEGATIVE_TIMESCALE.format(timescale)) elif timescale == 0: self._retain = 0. else: self._retain = np.exp(-1. / timescale) self._scale = stdev * np.sqrt(1 - (self._retain * self._retain)) self._value = 0.0 def __call__(self, initial_value=None, current_value=None, random_state=None): random_state = random_state or np.random self._value = ( self._retain * self._value + random_state.normal(loc=0.0, scale=self._scale)) return self._value
dm_control-main
dm_control/composer/variation/distributions.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for noises.""" from absl.testing import absltest from absl.testing import parameterized from dm_control.composer.variation import deterministic from dm_control.composer.variation import noises NUM_ITERATIONS = 100 class NoisesTest(parameterized.TestCase): @parameterized.parameters(False, True) def testAdditive(self, use_constant_variation_object): amount = 2 if use_constant_variation_object: variation = noises.Additive(deterministic.Constant(amount)) else: variation = noises.Additive(amount) initial_value = 0 current_value = initial_value for _ in range(NUM_ITERATIONS): current_value = variation( initial_value=initial_value, current_value=current_value) self.assertEqual(current_value, initial_value + amount) @parameterized.parameters(False, True) def testAdditiveCumulative(self, use_constant_variation_object): amount = 3 if use_constant_variation_object: variation = noises.Additive( deterministic.Constant(amount), cumulative=True) else: variation = noises.Additive(amount, cumulative=True) initial_value = 1 current_value = initial_value for i in range(NUM_ITERATIONS): current_value = variation( initial_value=initial_value, current_value=current_value) self.assertEqual(current_value, initial_value + amount * (i + 1)) @parameterized.parameters(False, True) def testMultiplicative(self, use_constant_variation_object): amount = 23 if use_constant_variation_object: variation = noises.Multiplicative(deterministic.Constant(amount)) else: variation = noises.Multiplicative(amount) initial_value = 3 current_value = initial_value for _ in range(NUM_ITERATIONS): current_value = variation( initial_value=initial_value, current_value=current_value) self.assertEqual(current_value, initial_value * amount) @parameterized.parameters(False, True) def testMultiplicativeCumulative(self, use_constant_variation_object): amount = 2 if use_constant_variation_object: variation = noises.Multiplicative( deterministic.Constant(amount), cumulative=True) else: variation = noises.Multiplicative(amount, cumulative=True) initial_value = 3 current_value = initial_value for i in range(NUM_ITERATIONS): current_value = variation( initial_value=initial_value, current_value=current_value) self.assertEqual(current_value, initial_value * amount ** (i + 1)) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/variation/noises_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for handling nested structures of callables or constants.""" import tree def evaluate(structure, *args, **kwargs): """Evaluates a arbitrarily nested structure of callables or constant values. Args: structure: An arbitrarily nested structure of callables or constant values. By "structures", we mean lists, tuples, namedtuples, or dicts. *args: Positional arguments passed to each callable in `structure`. **kwargs: Keyword arguments passed to each callable in `structure. Returns: The same nested structure, with each callable replaced by the value returned by calling it. """ return tree.map_structure( lambda x: x(*args, **kwargs) if callable(x) else x, structure)
dm_control-main
dm_control/composer/variation/variation_values.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Math operations on variation objects.""" import abc from dm_control.composer.variation import base from dm_control.composer.variation.variation_values import evaluate import numpy as np class MathOp(base.Variation): """Base MathOp class for applying math operations on variation objects. Subclasses need to implement `_op`, which takes in a single value and applies the desired math operation. This operation gets applied to the result of the evaluated base variation object passed at construction. Structured variation objects are automatically traversed. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def __call__(self, initial_value=None, current_value=None, random_state=None): local_args = evaluate( self._args, initial_value=initial_value, current_value=current_value, random_state=random_state) local_kwargs = evaluate( self._kwargs, initial_value=initial_value, current_value=current_value, random_state=random_state) return self._callable(*local_args, **local_kwargs) @property @abc.abstractmethod def _callable(self): pass class Log(MathOp): @property def _callable(self): return np.log class Max(MathOp): @property def _callable(self): return np.max class Min(MathOp): @property def _callable(self): return np.min class Norm(MathOp): @property def _callable(self): return np.linalg.norm
dm_control-main
dm_control/composer/variation/math.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Base class for variations and binary operations on variations.""" import abc import operator from dm_control.composer.variation import variation_values import numpy as np class Variation(metaclass=abc.ABCMeta): """Abstract base class for variations.""" @abc.abstractmethod def __call__(self, initial_value, current_value, random_state): """Generates a value for this variation. Args: initial_value: The original value of the attribute being varied. Absolute variations may ignore this argument. current_value: The current value of the attribute being varied. Absolute variations may ignore this argument. random_state: A `numpy.RandomState` used to generate the value. Deterministic variations may ignore this argument. Returns: The next value for this variation. """ def __add__(self, other): return _BinaryOperation(operator.add, self, other) def __radd__(self, other): return _BinaryOperation(operator.add, other, self) def __sub__(self, other): return _BinaryOperation(operator.sub, self, other) def __rsub__(self, other): return _BinaryOperation(operator.sub, other, self) def __mul__(self, other): return _BinaryOperation(operator.mul, self, other) def __rmul__(self, other): return _BinaryOperation(operator.mul, other, self) def __truediv__(self, other): return _BinaryOperation(operator.truediv, self, other) def __rtruediv__(self, other): return _BinaryOperation(operator.truediv, other, self) def __floordiv__(self, other): return _BinaryOperation(operator.floordiv, self, other) def __rfloordiv__(self, other): return _BinaryOperation(operator.floordiv, other, self) def __pow__(self, other): return _BinaryOperation(operator.pow, self, other) def __rpow__(self, other): return _BinaryOperation(operator.pow, other, self) def __getitem__(self, index): return _GetItemOperation(self, index) def __neg__(self): return _UnaryOperation(operator.neg, self) class _UnaryOperation(Variation): """Represents the result of applying a unary operator to a Variation.""" def __init__(self, op, variation): self._op = op self._variation = variation def __call__(self, initial_value=None, current_value=None, random_state=None): value = variation_values.evaluate( self._variation, initial_value, current_value, random_state) return self._op(value) class _BinaryOperation(Variation): """Represents the result of applying a binary operator to two Variations.""" def __init__(self, op, first, second): self._first = first self._second = second self._op = op def __call__(self, initial_value=None, current_value=None, random_state=None): first_value = variation_values.evaluate( self._first, initial_value, current_value, random_state) second_value = variation_values.evaluate( self._second, initial_value, current_value, random_state) return self._op(first_value, second_value) class _GetItemOperation(Variation): def __init__(self, variation, index): self._variation = variation self._index = index def __call__(self, initial_value=None, current_value=None, random_state=None): value = variation_values.evaluate( self._variation, initial_value, current_value, random_state) return np.asarray(value)[self._index]
dm_control-main
dm_control/composer/variation/base.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Meta-variations that modify original values by a specified variation.""" from dm_control.composer.variation import base from dm_control.composer.variation import variation_values class Additive(base.Variation): """A variation that adds to an existing value. This variation takes a value generated by another variation and adds it to an existing value. In cumulative mode, the generated value is added to the current value being varied. In non-cumulative mode, the generated value is added to a fixed initial value. """ def __init__(self, variation, cumulative=False): self._variation = variation self._cumulative = cumulative def __call__(self, initial_value=None, current_value=None, random_state=None): base_value = current_value if self._cumulative else initial_value return base_value + ( variation_values.evaluate(self._variation, initial_value, current_value, random_state)) class Multiplicative(base.Variation): """A variation that multiplies to an existing value. This variation takes a value generated by another variation and multiplies it to an existing value. In cumulative mode, the generated value is multiplied to the current value being varied. In non-cumulative mode, the generated value is multiplied to a fixed initial value. """ def __init__(self, variation, cumulative=False): self._variation = variation self._cumulative = cumulative def __call__(self, initial_value=None, current_value=None, random_state=None): base_value = current_value if self._cumulative else initial_value return base_value * ( variation_values.evaluate(self._variation, initial_value, current_value, random_state))
dm_control-main
dm_control/composer/variation/noises.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Variations in colors. Classes in this module allow users to specify a variations for each channel in a variety of color spaces. The generated values are always RGBA arrays. """ import colorsys from dm_control.composer.variation import base from dm_control.composer.variation import variation_values import numpy as np class RgbVariation(base.Variation): """Represents a variation in the RGB color space. This class allows users to specify independent variations in the R, G, B, and alpha channels of a color, and generates the corresponding array of RGBA values. """ def __init__(self, r, g, b, alpha=1.0): self._r, self._g, self._b = r, g, b self._alpha = alpha def __call__(self, initial_value=None, current_value=None, random_state=None): return np.asarray( variation_values.evaluate([self._r, self._g, self._b, self._alpha], initial_value, current_value, random_state)) class HsvVariation(base.Variation): """Represents a variation in the HSV color space. This class allows users to specify independent variations in the H, S, V, and alpha channels of a color, and generates the corresponding array of RGBA values. """ def __init__(self, h, s, v, alpha=1.0): self._h, self._s, self._v = h, s, v self._alpha = alpha def __call__(self, initial_value=None, current_value=None, random_state=None): h, s, v, alpha = variation_values.evaluate( (self._h, self._s, self._v, self._alpha), initial_value, current_value, random_state) return np.asarray(list(colorsys.hsv_to_rgb(h, s, v)) + [alpha]) class GrayVariation(HsvVariation): """Represents a variation in gray level. This class allows users to specify independent variations in the gray level and alpha channels of a color, and generates the corresponding array of RGBA values. """ def __init__(self, gray_level, alpha=1.0): super().__init__(h=0.0, s=0.0, v=gray_level, alpha=alpha)
dm_control-main
dm_control/composer/variation/colors.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Multi-rate observation and buffering framework for Composer environments.""" from dm_control.composer.observation import observable from dm_control.composer.observation.obs_buffer import Buffer from dm_control.composer.observation.updater import DEFAULT_BUFFER_SIZE from dm_control.composer.observation.updater import DEFAULT_DELAY from dm_control.composer.observation.updater import DEFAULT_UPDATE_INTERVAL from dm_control.composer.observation.updater import Updater
dm_control-main
dm_control/composer/observation/__init__.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for observation.obs_buffer.""" from absl.testing import absltest from absl.testing import parameterized from dm_control.composer.observation import obs_buffer import numpy as np def _generate_constant_schedule(update_timestep, delay, control_timestep, n_observed_steps): first = update_timestep last = control_timestep * n_observed_steps + 1 return [(i, delay) for i in range(first, last, update_timestep)] class BufferTest(parameterized.TestCase): def testOutOfOrderArrival(self): buf = obs_buffer.Buffer(buffer_size=3, shape=(), dtype=float) buf.insert(timestamp=0, delay=4, value=1) buf.insert(timestamp=1, delay=2, value=2) buf.insert(timestamp=2, delay=3, value=3) np.testing.assert_array_equal(buf.read(current_time=2), [0., 0., 0.]) np.testing.assert_array_equal(buf.read(current_time=3), [0., 0., 2.]) np.testing.assert_array_equal(buf.read(current_time=4), [0., 2., 1.]) np.testing.assert_array_equal(buf.read(current_time=5), [2., 1., 3.]) np.testing.assert_array_equal(buf.read(current_time=6), [2., 1., 3.]) @parameterized.parameters(((3, 3),), ((),)) def testStripSingletonDimension(self, shape): buf = obs_buffer.Buffer( buffer_size=1, shape=shape, dtype=float, strip_singleton_buffer_dim=True) expected_value = np.full(shape, 42, dtype=float) buf.insert(timestamp=0, delay=0, value=expected_value) np.testing.assert_array_equal(buf.read(current_time=1), expected_value) def testPlanToSingleUndelayedObservation(self): buf = obs_buffer.Buffer(buffer_size=1, shape=(), dtype=float) control_timestep = 20 observation_schedule = _generate_constant_schedule( update_timestep=1, delay=0, control_timestep=control_timestep, n_observed_steps=1) buf.drop_unobserved_upcoming_items( observation_schedule, read_interval=control_timestep) self.assertEqual(observation_schedule, [(20, 0)]) def testPlanTwoStepsAhead(self): buf = obs_buffer.Buffer(buffer_size=1, shape=(), dtype=float) control_timestep = 5 observation_schedule = _generate_constant_schedule( update_timestep=2, delay=3, control_timestep=control_timestep, n_observed_steps=2) buf.drop_unobserved_upcoming_items( observation_schedule, read_interval=control_timestep) self.assertEqual(observation_schedule, [(2, 3), (6, 3), (10, 3)]) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/observation/obs_buffer_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """An object that creates and updates buffers for enabled observables.""" import collections import functools from absl import logging from dm_control.composer import variation from dm_control.composer.observation import obs_buffer from dm_env import specs import numpy as np DEFAULT_BUFFER_SIZE = 1 DEFAULT_UPDATE_INTERVAL = 1 DEFAULT_DELAY = 0 class _EnabledObservable: """Encapsulates an enabled observable, its buffer, and its update schedule.""" __slots__ = ('observable', 'observation_callable', 'update_interval', 'delay', 'buffer_size', 'buffer', 'update_schedule') def __init__(self, observable, physics, random_state, strip_singleton_buffer_dim, pad_with_initial_value): self.observable = observable self.observation_callable = ( observable.observation_callable(physics, random_state)) self._bind_attribute_from_observable('update_interval', DEFAULT_UPDATE_INTERVAL, random_state) self._bind_attribute_from_observable('delay', DEFAULT_DELAY, random_state) self._bind_attribute_from_observable('buffer_size', DEFAULT_BUFFER_SIZE, random_state) obs_spec = self.observable.array_spec if obs_spec is None: # We take an observation to determine the shape and dtype of the array. # This occurs outside of an episode and doesn't affect environment # behavior. At this point the physics state is not guaranteed to be valid, # so we might get a `PhysicsError` if the observation callable calls # `physics.forward`. We suppress such errors since they do not matter as # far as the shape and dtype of the observation are concerned. with physics.suppress_physics_errors(): obs_array = self.observation_callable() obs_array = np.asarray(obs_array) obs_spec = specs.Array(shape=obs_array.shape, dtype=obs_array.dtype) self.buffer = obs_buffer.Buffer( buffer_size=self.buffer_size, shape=obs_spec.shape, dtype=obs_spec.dtype, pad_with_initial_value=pad_with_initial_value, strip_singleton_buffer_dim=strip_singleton_buffer_dim) self.update_schedule = collections.deque() def _bind_attribute_from_observable(self, attr, default_value, random_state): obs_attr = getattr(self.observable, attr) if obs_attr: if isinstance(obs_attr, variation.Variation): setattr(self, attr, functools.partial(obs_attr, random_state=random_state)) else: setattr(self, attr, obs_attr) else: setattr(self, attr, default_value) def _call_if_callable(arg): if callable(arg): return arg() else: return arg def _validate_structure(structure): """Validates the structure of the given observables collection. The collection must either be a dict, or a (list or tuple) of dicts. Args: structure: A candidate collection of observables. Returns: A boolean that is `True` if `structure` is either a list or a tuple, or `False` otherwise. Raises: ValueError: If `structure` is neither a dict nor a (list or tuple) of dicts. """ is_nested = isinstance(structure, (list, tuple)) if is_nested: is_valid = all(isinstance(obj, dict) for obj in structure) else: is_valid = isinstance(structure, dict) if not is_valid: raise ValueError( '`observables` should be a dict, or a (list or tuple) of dicts' ': got {}'.format(structure)) return is_nested class Updater: """Creates and updates buffers for enabled observables.""" def __init__(self, observables, physics_steps_per_control_step=1, strip_singleton_buffer_dim=False, pad_with_initial_value=False): self._physics_steps_per_control_step = physics_steps_per_control_step self._strip_singleton_buffer_dim = strip_singleton_buffer_dim self._pad_with_initial_value = pad_with_initial_value self._step_counter = 0 self._observables = observables self._is_nested = _validate_structure(observables) self._enabled_structure = None self._enabled_list = None def reset(self, physics, random_state): """Resets this updater's state.""" def make_buffers_dict(observables): """Makes observable states in a dict.""" # Use `type(observables)` so that our output structure respects the # original dict subclass (e.g. OrderedDict). out_dict = type(observables)() for key, value in observables.items(): if value.enabled: out_dict[key] = _EnabledObservable(value, physics, random_state, self._strip_singleton_buffer_dim, self._pad_with_initial_value) return out_dict if self._is_nested: self._enabled_structure = type(self._observables)( make_buffers_dict(obs_dict) for obs_dict in self._observables) self._enabled_list = [] for enabled_dict in self._enabled_structure: self._enabled_list.extend(enabled_dict.values()) else: self._enabled_structure = make_buffers_dict(self._observables) self._enabled_list = self._enabled_structure.values() self._step_counter = 0 for enabled in self._enabled_list: first_delay = _call_if_callable(enabled.delay) enabled.buffer.insert( 0, first_delay, enabled.observation_callable()) def observation_spec(self): """The observation specification for this environment. Returns a dict mapping the names of enabled observations to their corresponding `Array` or `BoundedArray` specs. If an obs has a BoundedArray spec, but uses an aggregator that does not preserve those bounds (such as `sum`), it will be mapped to an (unbounded) `Array` spec. If using a bounds-preserving custom aggregator `my_agg`, give it an attribute `my_agg.preserves_bounds = True` to indicate to this method that it is bounds-preserving. The returned specification is only valid as of the previous call to `reset`. In particular, it is an error to call this function before the first call to `reset`. Returns: A dict mapping observation name to `Array` or `BoundedArray` spec containing the observation shape and dtype, and possibly bounds. Raises: RuntimeError: If this method is called before `reset` has been called. """ if self._enabled_structure is None: raise RuntimeError('`reset` must be called before `observation_spec`.') def make_observation_spec_dict(enabled_dict): """Makes a dict of enabled observation specs from of observables.""" out_dict = type(enabled_dict)() for name, enabled in enabled_dict.items(): if (enabled.observable.aggregator is None and enabled.observable.array_spec is not None): # If possible, keep the original array spec, just updating the name # and modifying the dimension for buffering. Doing this allows for # custom spec types to be exposed by the environment where possible. out_dict[name] = enabled.observable.array_spec.replace( name=name, shape=enabled.buffer.shape ) continue if isinstance(enabled.observable.array_spec, specs.BoundedArray): bounds = (enabled.observable.array_spec.minimum, enabled.observable.array_spec.maximum) else: bounds = None if enabled.observable.aggregator: aggregator = enabled.observable.aggregator aggregated = aggregator(np.zeros(enabled.buffer.shape, dtype=enabled.buffer.dtype)) shape = aggregated.shape dtype = aggregated.dtype # Ditch bounds if the aggregator isn't known to be bounds-preserving. if bounds: if not hasattr(aggregator, 'preserves_bounds'): logging.warning('Ignoring the bounds of this observable\'s spec, ' 'as its aggregator method has no boolean ' '`preserves_bounds` attrubute.') bounds = None elif not aggregator.preserves_bounds: bounds = None else: shape = enabled.buffer.shape dtype = enabled.buffer.dtype if bounds: spec = specs.BoundedArray(minimum=bounds[0], maximum=bounds[1], shape=shape, dtype=dtype, name=name) else: spec = specs.Array(shape=shape, dtype=dtype, name=name) out_dict[name] = spec return out_dict if self._is_nested: enabled_specs = type(self._enabled_structure)( make_observation_spec_dict(enabled_dict) for enabled_dict in self._enabled_structure) else: enabled_specs = make_observation_spec_dict(self._enabled_structure) return enabled_specs def prepare_for_next_control_step(self): """Simulates the next control step and optimizes the update schedule.""" if self._enabled_structure is None: raise RuntimeError('`reset` must be called before `before_step`.') for enabled in self._enabled_list: if (enabled.update_interval == DEFAULT_UPDATE_INTERVAL and enabled.delay == DEFAULT_DELAY and enabled.buffer_size < self._physics_steps_per_control_step): for i in reversed(range(enabled.buffer_size)): next_step = ( self._step_counter + self._physics_steps_per_control_step - i) next_delay = DEFAULT_DELAY enabled.update_schedule.append((next_step, next_delay)) else: if enabled.update_schedule: last_scheduled_step = enabled.update_schedule[-1][0] else: last_scheduled_step = self._step_counter max_step = self._step_counter + 2 * self._physics_steps_per_control_step while last_scheduled_step < max_step: next_update_interval = _call_if_callable(enabled.update_interval) next_step = last_scheduled_step + next_update_interval next_delay = _call_if_callable(enabled.delay) enabled.update_schedule.append((next_step, next_delay)) last_scheduled_step = next_step # Optimize the schedule by planning ahead and dropping unseen entries. enabled.buffer.drop_unobserved_upcoming_items( enabled.update_schedule, self._physics_steps_per_control_step) def update(self): if self._enabled_structure is None: raise RuntimeError('`reset` must be called before `after_substep`.') self._step_counter += 1 for enabled in self._enabled_list: if (enabled.update_schedule and enabled.update_schedule[0][0] == self._step_counter): timestamp, delay = enabled.update_schedule.popleft() enabled.buffer.insert( timestamp, delay, enabled.observation_callable()) def get_observation(self): """Gets the current observation. The returned observation is only valid as of the previous call to `reset`. In particular, it is an error to call this function before the first call to `reset`. Returns: A dict, or list of dicts, or tuple of dicts, of observation values. The returned structure corresponds to the structure of the `observables` that was given at initialization time. Raises: RuntimeError: If this method is called before `reset` has been called. """ if self._enabled_structure is None: raise RuntimeError('`reset` must be called before `observation`.') def aggregate_dict(enabled_dict): out_dict = type(enabled_dict)() for name, enabled in enabled_dict.items(): if enabled.observable.aggregator: aggregated = enabled.observable.aggregator( enabled.buffer.read(self._step_counter)) else: aggregated = enabled.buffer.read(self._step_counter) out_dict[name] = aggregated return out_dict if self._is_nested: return type(self._enabled_structure)( aggregate_dict(enabled_dict) for enabled_dict in self._enabled_structure) else: return aggregate_dict(self._enabled_structure)
dm_control-main
dm_control/composer/observation/updater.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for observation.observation_updater.""" import collections import itertools import math from absl.testing import absltest from absl.testing import parameterized from dm_control.composer.observation import fake_physics from dm_control.composer.observation import observable from dm_control.composer.observation import updater from dm_env import specs import numpy as np class DeterministicSequence: def __init__(self, sequence): self._iter = itertools.cycle(sequence) def __call__(self, random_state=None): del random_state # unused return next(self._iter) class BoundedGeneric(observable.Generic): def __init__(self, raw_observation_callable, minimum, maximum, **kwargs): super().__init__( raw_observation_callable=raw_observation_callable, **kwargs) self._bounds = (minimum, maximum) @property def array_spec(self): datum = np.array(self(None, None)) return specs.BoundedArray(shape=datum.shape, dtype=datum.dtype, minimum=self._bounds[0], maximum=self._bounds[1]) class MyArraySpec(specs.Array): pass class GenericObservableWithMyArraySpec(observable.Generic): @property def array_spec(self): datum = np.array(self(None, None)) return MyArraySpec(shape=datum.shape, dtype=datum.dtype) class UpdaterTest(parameterized.TestCase): @parameterized.parameters(list, tuple) def testNestedSpecsAndValues(self, list_or_tuple): observables = list_or_tuple(( {'one': observable.Generic(lambda _: 1.), 'two': observable.Generic(lambda _: [2, 2]), }, collections.OrderedDict([ ('three', observable.Generic(lambda _: np.full((2, 2), 3))), ('four', observable.Generic(lambda _: [4.])), ('five', observable.Generic(lambda _: 5)), ('six', BoundedGeneric(lambda _: [2, 2], 1, 4)), ('seven', BoundedGeneric(lambda _: 2, 1, 4, aggregator='sum')), ]) )) observables[0]['two'].enabled = True observables[1]['three'].enabled = True observables[1]['five'].enabled = True observables[1]['six'].enabled = True observables[1]['seven'].enabled = True observation_updater = updater.Updater(observables) observation_updater.reset(physics=fake_physics.FakePhysics(), random_state=None) def make_spec(obs): array = np.array(obs.observation_callable(None, None)()) shape = array.shape if obs.aggregator else (1,) + array.shape if (isinstance(obs, BoundedGeneric) and obs.aggregator is not observable.base.AGGREGATORS['sum']): return specs.BoundedArray(shape=shape, dtype=array.dtype, minimum=obs.array_spec.minimum, maximum=obs.array_spec.maximum) else: return specs.Array(shape=shape, dtype=array.dtype) expected_specs = list_or_tuple(( {'two': make_spec(observables[0]['two'])}, collections.OrderedDict([ ('three', make_spec(observables[1]['three'])), ('five', make_spec(observables[1]['five'])), ('six', make_spec(observables[1]['six'])), ('seven', make_spec(observables[1]['seven'])), ]) )) actual_specs = observation_updater.observation_spec() self.assertIs(type(actual_specs), type(expected_specs)) for actual_dict, expected_dict in zip(actual_specs, expected_specs): self.assertIs(type(actual_dict), type(expected_dict)) self.assertEqual(actual_dict, expected_dict) def make_value(obs): value = obs(physics=None, random_state=None) if obs.aggregator: return value else: value = np.array(value) value = value[np.newaxis, ...] return value expected_values = list_or_tuple(( {'two': make_value(observables[0]['two'])}, collections.OrderedDict([ ('three', make_value(observables[1]['three'])), ('five', make_value(observables[1]['five'])), ('six', make_value(observables[1]['six'])), ('seven', make_value(observables[1]['seven'])), ]) )) actual_values = observation_updater.get_observation() self.assertIs(type(actual_values), type(expected_values)) for actual_dict, expected_dict in zip(actual_values, expected_values): self.assertIs(type(actual_dict), type(expected_dict)) self.assertLen(actual_dict, len(expected_dict)) for actual, expected in zip(actual_dict.items(), expected_dict.items()): actual_name, actual_value = actual expected_name, expected_value = expected self.assertEqual(actual_name, expected_name) np.testing.assert_array_equal(actual_value, expected_value) def assertCorrectSpec( self, spec, expected_shape, expected_dtype, expected_name): self.assertEqual(spec.shape, expected_shape) self.assertEqual(spec.dtype, expected_dtype) self.assertEqual(spec.name, expected_name) def testObservationSpecInference(self): physics = fake_physics.FakePhysics() physics.observables['repeated'].buffer_size = 5 physics.observables['matrix'].buffer_size = 4 physics.observables['sqrt'] = observable.Generic( fake_physics.FakePhysics.sqrt, buffer_size=3) for obs in physics.observables.values(): obs.enabled = True observation_updater = updater.Updater(physics.observables) observation_updater.reset(physics=physics, random_state=None) spec = observation_updater.observation_spec() self.assertCorrectSpec(spec['repeated'], (5, 2), int, 'repeated') self.assertCorrectSpec(spec['matrix'], (4, 2, 3), int, 'matrix') self.assertCorrectSpec(spec['sqrt'], (3,), float, 'sqrt') def testCustomSpecTypePassedThrough(self): physics = fake_physics.FakePhysics() physics.observables['two_twos'] = GenericObservableWithMyArraySpec( lambda _: [2.0, 2.0], buffer_size=3 ) physics.observables['two_twos'].enabled = True observation_updater = updater.Updater(physics.observables) observation_updater.reset(physics=physics, random_state=None) spec = observation_updater.observation_spec() self.assertIsInstance(spec['two_twos'], MyArraySpec) self.assertEqual(spec['two_twos'].shape, (3, 2)) self.assertEqual(spec['two_twos'].dtype, float) self.assertEqual(spec['two_twos'].name, 'two_twos') @parameterized.parameters(True, False) def testObservation(self, pad_with_initial_value): physics = fake_physics.FakePhysics() physics.observables['repeated'].buffer_size = 5 physics.observables['matrix'].delay = 1 physics.observables['sqrt_plus_one'] = observable.Generic( fake_physics.FakePhysics.sqrt_plus_one, update_interval=7, buffer_size=3, delay=2) for obs in physics.observables.values(): obs.enabled = True with physics.reset_context(): pass physics_steps_per_control_step = 5 observation_updater = updater.Updater( physics.observables, physics_steps_per_control_step, pad_with_initial_value=pad_with_initial_value) observation_updater.reset(physics=physics, random_state=None) for control_step in range(0, 200): observation_updater.prepare_for_next_control_step() for _ in range(physics_steps_per_control_step): physics.step() observation_updater.update() step_counter = (control_step + 1) * physics_steps_per_control_step observation = observation_updater.get_observation() def assert_correct_buffer(obs_name, expected_callable, observation=observation, step_counter=step_counter): update_interval = (physics.observables[obs_name].update_interval or updater.DEFAULT_UPDATE_INTERVAL) buffer_size = (physics.observables[obs_name].buffer_size or updater.DEFAULT_BUFFER_SIZE) delay = (physics.observables[obs_name].delay or updater.DEFAULT_DELAY) # The final item in the buffer is the current time, less the delay, # rounded _down_ to the nearest multiple of the update interval. end = update_interval * int( math.floor((step_counter - delay) / update_interval)) # Figure out the first item in the buffer by working backwards from # the final item in multiples of the update interval. start = end - (buffer_size - 1) * update_interval # Clamp both the start and end step number below by zero. buffer_range = range(max(0, start), max(0, end + 1), update_interval) # Arrays with expected shapes, filled with expected default values. expected_value_spec = observation_updater.observation_spec()[obs_name] if pad_with_initial_value: expected_values = np.full(shape=expected_value_spec.shape, fill_value=expected_callable(0), dtype=expected_value_spec.dtype) else: expected_values = np.zeros(shape=expected_value_spec.shape, dtype=expected_value_spec.dtype) # The arrays are filled from right to left, such that the most recent # entry is the rightmost one, and any padding is on the left. for index, timestamp in enumerate(reversed(buffer_range)): expected_values[-(index+1)] = expected_callable(timestamp) np.testing.assert_array_equal(observation[obs_name], expected_values) assert_correct_buffer('twice', lambda x: 2*x) assert_correct_buffer('matrix', lambda x: [[x]*3]*2) assert_correct_buffer('repeated', lambda x: [x, x]) assert_correct_buffer('sqrt_plus_one', lambda x: np.sqrt(x) + 1) def testVariableRatesAndDelays(self): physics = fake_physics.FakePhysics() physics.observables['time'] = observable.Generic( lambda physics: physics.time(), buffer_size=3, # observations produced on step numbers 20*N + [0, 3, 5, 8, 11, 15, 16] update_interval=DeterministicSequence([3, 2, 3, 3, 4, 1, 4]), # observations arrive on step numbers 20*N + [3, 8, 7, 12, 11, 17, 20] delay=DeterministicSequence([3, 5, 2, 5, 1, 2, 4])) physics.observables['time'].enabled = True physics_steps_per_control_step = 10 observation_updater = updater.Updater( physics.observables, physics_steps_per_control_step) observation_updater.reset(physics=physics, random_state=None) # Run through a few cycles of the variation sequences to make sure that # cross-control-boundary behaviour is correct. for i in range(5): observation_updater.prepare_for_next_control_step() for _ in range(physics_steps_per_control_step): physics.step() observation_updater.update() np.testing.assert_array_equal( observation_updater.get_observation()['time'], 20*i + np.array([0, 5, 3])) observation_updater.prepare_for_next_control_step() for _ in range(physics_steps_per_control_step): physics.step() observation_updater.update() # Note that #11 is dropped since it arrives after #8, # whose large delay caused it to cross the control step boundary at #10. np.testing.assert_array_equal( observation_updater.get_observation()['time'], 20*i + np.array([8, 15, 16])) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/observation/updater_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """"An object that manages the buffering and delaying of observation.""" import collections import numpy as np class InFlightObservation: """Represents a delayed observation that may not have arrived yet. Attributes: arrival: The time at which this observation will be delivered. timestamp: The time at which this observation was made. delay: The amount of delay between the time at which this observation was made and the time at which it is delivered. value: The value of this observation. """ __slots__ = ('arrival', 'timestamp', 'delay', 'value') def __init__(self, timestamp, delay, value): self.arrival = timestamp + delay self.timestamp = timestamp self.delay = delay self.value = value def __lt__(self, other): # This is implemented to facilitate sorting. return self.arrival < other.arrival class Buffer: """An object that manages the buffering and delaying of observation.""" def __init__(self, buffer_size, shape, dtype, pad_with_initial_value=False, strip_singleton_buffer_dim=False): """Initializes this observation buffer. Args: buffer_size: The size of the buffer returned by `read`. Note that this does *not* affect size of the internal buffer held by this object, which always grow as large as is necessary in the presence of large delays. shape: The shape of a single observation held by this buffer, which can either be a single integer or an iterable of integers. The shape of the buffer returned by `read` will then be `(buffer_size, shape[0], ..., shape[n])`, unless `buffer_size == 1` and `strip_singleton_buffer_dim == True`. dtype: The NumPy dtype of observation entries. pad_with_initial_value: (optional) A boolean. If `True` then the buffer returned by `read` is padded with the first observation value when there are fewer observation entries than `buffer_size`. If `False` then the buffer returned by `read` is padded with zeroes. strip_singleton_buffer_dim: (optional) A boolean, if `True` and `buffer_size == 1` then the leading dimension will not be added to the shape of the array returned by `read`. """ self._buffer_size = buffer_size try: shape = tuple(shape) except TypeError: if isinstance(shape, int): shape = (shape,) else: raise self._has_buffer_dim = not (strip_singleton_buffer_dim and buffer_size == 1) if self._has_buffer_dim: self._buffered_shape = (buffer_size,) + shape else: self._buffered_shape = shape self._dtype = dtype # The "arrived" deque contains entries that are due to be delivered now. # This deque should never grow beyond buffer_size. self._arrived_deque = collections.deque(maxlen=buffer_size) if not pad_with_initial_value: for _ in range(buffer_size): self._arrived_deque.append( InFlightObservation(-np.inf, 0, np.full(shape, 0, dtype))) # The "pending" deque contains entries that are stored for future delivery. # This deque can grow arbitrarily large in presence of long delays. self._pending_deque = collections.deque() def _update_arrived_deque(self, timestamp): while self._pending_deque and self._pending_deque[0].arrival <= timestamp: self._arrived_deque.append(self._pending_deque.popleft()) @property def shape(self): return self._buffered_shape @property def dtype(self): return self._dtype def insert(self, timestamp, delay, value): """Inserts a new observation to the buffer. This function implicitly updates the internal "clock" of this buffer to the timestamp of the new observation, and the internal buffer is trimmed accordingly, i.e. at most `buffer_size` items whose delayed arrival time preceeds `timestamp` are kept. Args: timestamp: The time at which this observation was made. delay: The amount of delay between the time at which this observation was made and the time at which it is delivered. value: The value of this observation. Raises: ValueError: if `delay` is negative. """ # If using `pad_with_initial_value`, the `arrived_deque` would be empty. # We can now pad it with the initial value now. if not self._arrived_deque: for _ in range(self._buffer_size): self._arrived_deque.append(InFlightObservation(-np.inf, 0, value)) self._update_arrived_deque(timestamp) new_obs = InFlightObservation(timestamp, delay, np.array(value)) arrival = new_obs.arrival if delay == 0: # No delay, so the new observation is due for immediate delivery. # Add it to the arrived deque. self._arrived_deque.append(new_obs) elif delay > 0: if not self._pending_deque or arrival > self._pending_deque[-1].arrival: # New observation's arrival time is monotonic. # Technically, we can handle this in the general code branch below, # but since this is assumed to be the "typical" case, the special # handling here saves us from repeatedly allocating and deallocating # an empty temporary deque. self._pending_deque.append(new_obs) else: # General, out-of-order observation. arriving_after_new_obs = collections.deque() while self._pending_deque and arrival < self._pending_deque[-1].arrival: arriving_after_new_obs.appendleft(self._pending_deque.pop()) self._pending_deque.append(new_obs) for existing_obs in arriving_after_new_obs: self._pending_deque.append(existing_obs) else: raise ValueError('`delay` should not be negative: ' 'got {!r}'.format(delay)) def read(self, current_time): """Reads the content of the buffer at the given timestamp.""" self._update_arrived_deque(current_time) if self._has_buffer_dim: out = np.empty(self._buffered_shape, dtype=self._dtype) for i, obs in enumerate(self._arrived_deque): out[i] = obs.value else: out = self._arrived_deque[0].value.copy() return out def drop_unobserved_upcoming_items(self, observation_schedule, read_interval): """Plans an optimal observation schedule for an upcoming control period. This function determines which of the proposed upcoming observations will never in fact be delivered and removes them from the observation schedule. We assume that observations will only be queried at times that are integer multiples of `read_interval`. If more observations are generated during the upcoming control step than the `buffer_size` of this `Buffer` then of those new observations will never be required. This function takes into account the delayed arrival time and existing buffered items in the planning process. Args: observation_schedule: An list of `(timestamp, delay)` tuples, where `timestamp` is the time at which the observation value will be produced, and `delay` is the amount of time the observation will be delayed by. This list will be modified in place. read_interval: The time interval between successive calls to `read`. We assume that observations will only be queried at times that are integer multiples of `read_interval`. """ # Private deques to simulate what the deques will look like in the future, # according to the proposed upcoming observation schedule. future_arrived_deque = collections.deque() future_pending_deque = collections.deque() # Take existing buffered observations into account when planning the # upcoming schedule. def get_next_existing_timestamp(): for obs in reversed(self._pending_deque): yield InFlightObservation(obs.timestamp, obs.delay, None) while True: yield InFlightObservation(-np.inf, 0, None) existing_timestamp_iter = get_next_existing_timestamp() existing_timestamp = next(existing_timestamp_iter) # Build the simulated state of the pending deque at the end of the proposed # schedule. sorted_schedule = sorted([InFlightObservation(time[0], time[1], None) for time in observation_schedule]) for new_timestamp in reversed(sorted_schedule): # We don't need to worry about any existing item that are delivered before # the first new item, since those are purged independently of our # proposed new observations. while existing_timestamp.arrival > new_timestamp.arrival: future_pending_deque.appendleft(existing_timestamp) existing_timestamp = next(existing_timestamp_iter) future_pending_deque.appendleft(new_timestamp) # Find the next timestep at which `read` is called. first_proposed_timestamp = min(t for t, _ in observation_schedule) next_read_time = read_interval * int(np.ceil( first_proposed_timestamp // read_interval)) # Build the simulated state of the arrived deque at each subsequent # control steps. while future_pending_deque: # Keep track of observations that are delivered for the first time # during this control timestep. newly_arrived = collections.deque() while (future_pending_deque and future_pending_deque[0].arrival <= next_read_time): # `fake_observation` is an `InFlightObservation` without `value`. fake_observation = future_pending_deque.popleft() future_arrived_deque.append(fake_observation) newly_arrived.append(fake_observation) while len(future_arrived_deque) > self._buffer_size: stale = future_arrived_deque.popleft() # Newly-arrived items that become immediately stale are never actually # delivered. if newly_arrived and stale == newly_arrived[0]: newly_arrived.popleft() # `stale` might either be one of the existing pending observations or # from the proposed schedule. if stale.timestamp >= first_proposed_timestamp: observation_schedule.remove((stale.timestamp, stale.delay)) next_read_time += read_interval
dm_control-main
dm_control/composer/observation/obs_buffer.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A fake Physics class for unit testing observation framework.""" import contextlib from dm_control.composer.observation import observable from dm_control.rl import control import numpy as np class FakePhysics(control.Physics): """A fake Physics class for unit testing observation framework.""" def __init__(self): self._step_counter = 0 self._observables = { 'twice': observable.Generic(FakePhysics.twice), 'repeated': observable.Generic(FakePhysics.repeated, update_interval=5), 'matrix': observable.Generic(FakePhysics.matrix, update_interval=3) } def step(self, sub_steps=1): self._step_counter += 1 @property def observables(self): return self._observables def twice(self): return 2*self._step_counter def repeated(self): return [self._step_counter, self._step_counter] def sqrt(self): return np.sqrt(self._step_counter) def sqrt_plus_one(self): return np.sqrt(self._step_counter) + 1 def matrix(self): return [[self._step_counter] * 3] * 2 def time(self): return self._step_counter def timestep(self): return 1.0 def set_control(self, ctrl): pass def reset(self): self._step_counter = 0 def after_reset(self): pass @contextlib.contextmanager def suppress_physics_errors(self): yield
dm_control-main
dm_control/composer/observation/fake_physics.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for observable classes.""" from absl.testing import absltest from dm_control import mujoco from dm_control.composer.observation import fake_physics from dm_control.composer.observation.observable import base import numpy as np _MJCF = """ <mujoco> <worldbody> <light pos="0 0 1"/> <body name="body" pos="0 0 0"> <joint name="my_hinge" type="hinge" pos="-.1 -.2 -.3" axis="1 -1 0"/> <geom name="my_box" type="box" size=".1 .2 .3" rgba="0 0 1 1"/> <geom name="small_sphere" type="sphere" size=".12" pos=".1 .2 .3"/> </body> <camera name="world" mode="targetbody" target="body" pos="1 1 1" /> </worldbody> </mujoco> """ class _FakeBaseObservable(base.Observable): def _callable(self, physics): pass class ObservableTest(absltest.TestCase): def testBaseProperties(self): fake_observable = _FakeBaseObservable(update_interval=42, buffer_size=5, delay=10, aggregator=None, corruptor=None) self.assertEqual(fake_observable.update_interval, 42) self.assertEqual(fake_observable.buffer_size, 5) self.assertEqual(fake_observable.delay, 10) fake_observable.update_interval = 48 self.assertEqual(fake_observable.update_interval, 48) fake_observable.buffer_size = 7 self.assertEqual(fake_observable.buffer_size, 7) fake_observable.delay = 13 self.assertEqual(fake_observable.delay, 13) enabled = not fake_observable.enabled fake_observable.enabled = not fake_observable.enabled self.assertEqual(fake_observable.enabled, enabled) def testGeneric(self): physics = fake_physics.FakePhysics() repeated_observable = base.Generic( fake_physics.FakePhysics.repeated, update_interval=42) repeated_observation = repeated_observable.observation_callable(physics)() self.assertEqual(repeated_observable.update_interval, 42) np.testing.assert_array_equal(repeated_observation, [0, 0]) def testMujocoFeature(self): physics = mujoco.Physics.from_xml_string(_MJCF) hinge_observable = base.MujocoFeature( kind='qpos', feature_name='my_hinge') hinge_observation = hinge_observable.observation_callable(physics)() np.testing.assert_array_equal( hinge_observation, physics.named.data.qpos['my_hinge']) box_observable = base.MujocoFeature( kind='geom_xpos', feature_name='small_sphere', update_interval=5) box_observation = box_observable.observation_callable(physics)() self.assertEqual(box_observable.update_interval, 5) np.testing.assert_array_equal( box_observation, physics.named.data.geom_xpos['small_sphere']) observable_from_callable = base.MujocoFeature( kind='geom_xpos', feature_name=lambda: ['my_box', 'small_sphere']) observation_from_callable = ( observable_from_callable.observation_callable(physics)()) np.testing.assert_array_equal( observation_from_callable, physics.named.data.geom_xpos[['my_box', 'small_sphere']]) def testMujocoCamera(self): physics = mujoco.Physics.from_xml_string(_MJCF) camera_observable = base.MujocoCamera( camera_name='world', height=480, width=640, update_interval=7) self.assertEqual(camera_observable.update_interval, 7) camera_observation = camera_observable.observation_callable(physics)() np.testing.assert_array_equal( camera_observation, physics.render(480, 640, 'world')) self.assertEqual(camera_observation.shape, camera_observable.array_spec.shape) self.assertEqual(camera_observation.dtype, camera_observable.array_spec.dtype) camera_observable.height = 300 camera_observable.width = 400 camera_observation = camera_observable.observation_callable(physics)() self.assertEqual(camera_observable.height, 300) self.assertEqual(camera_observable.width, 400) np.testing.assert_array_equal( camera_observation, physics.render(300, 400, 'world')) self.assertEqual(camera_observation.shape, camera_observable.array_spec.shape) self.assertEqual(camera_observation.dtype, camera_observable.array_spec.dtype) def testCorruptor(self): physics = fake_physics.FakePhysics() def add_twelve(old_value, random_state): del random_state # Unused. return [x + 12 for x in old_value] repeated_observable = base.Generic( fake_physics.FakePhysics.repeated, corruptor=add_twelve) corrupted = repeated_observable.observation_callable( physics=physics, random_state=None)() np.testing.assert_array_equal(corrupted, [12, 12]) def testInvalidAggregatorName(self): name = 'invalid_name' with self.assertRaisesRegex(KeyError, 'Unrecognized aggregator name'): _ = _FakeBaseObservable(update_interval=3, buffer_size=2, delay=1, aggregator=name, corruptor=None) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/observation/observable/base_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module for observables in the Composer library.""" from dm_control.composer.observation.observable.base import Generic from dm_control.composer.observation.observable.base import MujocoCamera from dm_control.composer.observation.observable.base import MujocoFeature from dm_control.composer.observation.observable.base import Observable from dm_control.composer.observation.observable.mjcf import MJCFCamera from dm_control.composer.observation.observable.mjcf import MJCFFeature
dm_control-main
dm_control/composer/observation/observable/__init__.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for mjcf observables.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import mjcf from dm_control.composer.observation.observable import mjcf as mjcf_observable from dm_env import specs import numpy as np _MJCF = """ <mujoco> <worldbody> <light pos="0 0 1"/> <body name="body" pos="0 0 0"> <joint name="my_hinge" type="hinge" pos="-.1 -.2 -.3" axis="1 -1 0"/> <geom name="my_box" type="box" size=".1 .2 .3" rgba="0 0 1 1"/> <geom name="small_sphere" type="sphere" size=".12" pos=".1 .2 .3"/> </body> <camera name="world" mode="targetbody" target="body" pos="1 1 1" /> </worldbody> </mujoco> """ class ObservableTest(parameterized.TestCase): def testMJCFFeature(self): mjcf_root = mjcf.from_xml_string(_MJCF) physics = mjcf.Physics.from_mjcf_model(mjcf_root) my_hinge = mjcf_root.find('joint', 'my_hinge') hinge_observable = mjcf_observable.MJCFFeature( kind='qpos', mjcf_element=my_hinge) hinge_observation = hinge_observable.observation_callable(physics)() np.testing.assert_array_equal( hinge_observation, physics.named.data.qpos[my_hinge.full_identifier]) small_sphere = mjcf_root.find('geom', 'small_sphere') sphere_observable = mjcf_observable.MJCFFeature( kind='xpos', mjcf_element=small_sphere, update_interval=5) sphere_observation = sphere_observable.observation_callable(physics)() self.assertEqual(sphere_observable.update_interval, 5) np.testing.assert_array_equal( sphere_observation, physics.named.data.geom_xpos[ small_sphere.full_identifier]) my_box = mjcf_root.find('geom', 'my_box') list_observable = mjcf_observable.MJCFFeature( kind='xpos', mjcf_element=[my_box, small_sphere]) list_observation = ( list_observable.observation_callable(physics)()) np.testing.assert_array_equal( list_observation, physics.named.data.geom_xpos[[my_box.full_identifier, small_sphere.full_identifier]]) with self.assertRaisesRegex(ValueError, 'expected an `mjcf.Element`'): mjcf_observable.MJCFFeature('qpos', 'my_hinge') with self.assertRaisesRegex(ValueError, 'expected an `mjcf.Element`'): mjcf_observable.MJCFFeature('geom_xpos', [my_box, 'small_sphere']) def testMJCFFeatureIndex(self): mjcf_root = mjcf.from_xml_string(_MJCF) physics = mjcf.Physics.from_mjcf_model(mjcf_root) small_sphere = mjcf_root.find('geom', 'small_sphere') sphere_xmat = np.array( physics.named.data.geom_xmat[small_sphere.full_identifier]) observable_xrow = mjcf_observable.MJCFFeature( 'xmat', small_sphere, index=[1, 3, 5, 7]) np.testing.assert_array_equal( observable_xrow.observation_callable(physics)(), sphere_xmat[[1, 3, 5, 7]]) observable_yyzz = mjcf_observable.MJCFFeature('xmat', small_sphere)[2:6] np.testing.assert_array_equal( observable_yyzz.observation_callable(physics)(), sphere_xmat[2:6]) def testMJCFCamera(self): mjcf_root = mjcf.from_xml_string(_MJCF) physics = mjcf.Physics.from_mjcf_model(mjcf_root) camera = mjcf_root.find('camera', 'world') camera_observable = mjcf_observable.MJCFCamera( mjcf_element=camera, height=480, width=640, update_interval=7) self.assertEqual(camera_observable.update_interval, 7) camera_observation = camera_observable.observation_callable(physics)() np.testing.assert_array_equal( camera_observation, physics.render(480, 640, 'world')) self.assertEqual(camera_observation.shape, camera_observable.array_spec.shape) self.assertEqual(camera_observation.dtype, camera_observable.array_spec.dtype) camera_observable.height = 300 camera_observable.width = 400 camera_observation = camera_observable.observation_callable(physics)() self.assertEqual(camera_observable.height, 300) self.assertEqual(camera_observable.width, 400) np.testing.assert_array_equal( camera_observation, physics.render(300, 400, 'world')) self.assertEqual(camera_observation.shape, camera_observable.array_spec.shape) self.assertEqual(camera_observation.dtype, camera_observable.array_spec.dtype) with self.assertRaisesRegex(ValueError, 'expected an `mjcf.Element`'): mjcf_observable.MJCFCamera('world') with self.assertRaisesRegex(ValueError, 'expected an `mjcf.Element`'): mjcf_observable.MJCFCamera([camera]) with self.assertRaisesRegex(ValueError, 'expected a <camera>'): mjcf_observable.MJCFCamera(mjcf_root.find('body', 'body')) @parameterized.parameters( dict(camera_type='rgb', channels=3, dtype=np.uint8, minimum=0, maximum=255), dict(camera_type='depth', channels=1, dtype=np.float32, minimum=0., maximum=np.inf), dict(camera_type='segmentation', channels=2, dtype=np.int32, minimum=-1, maximum=np.iinfo(np.int32).max), ) def testMJCFCameraSpecs(self, camera_type, channels, dtype, minimum, maximum): width = 640 height = 480 shape = (height, width, channels) expected_spec = specs.BoundedArray( shape=shape, dtype=dtype, minimum=minimum, maximum=maximum) mjcf_root = mjcf.from_xml_string(_MJCF) camera = mjcf_root.find('camera', 'world') observable_kwargs = {} if camera_type == 'rgb' else {camera_type: True} camera_observable = mjcf_observable.MJCFCamera( mjcf_element=camera, height=height, width=width, update_interval=7, **observable_kwargs) self.assertEqual(camera_observable.array_spec, expected_spec) def testMJCFSegCamera(self): mjcf_root = mjcf.from_xml_string(_MJCF) physics = mjcf.Physics.from_mjcf_model(mjcf_root) camera = mjcf_root.find('camera', 'world') camera_observable = mjcf_observable.MJCFCamera( mjcf_element=camera, height=480, width=640, update_interval=7, segmentation=True) self.assertEqual(camera_observable.update_interval, 7) camera_observation = camera_observable.observation_callable(physics)() np.testing.assert_array_equal( camera_observation, physics.render(480, 640, 'world', segmentation=True)) camera_observable.array_spec.validate(camera_observation) def testErrorIfSegmentationAndDepthBothEnabled(self): camera = mjcf.from_xml_string(_MJCF).find('camera', 'world') with self.assertRaisesWithLiteralMatch( ValueError, mjcf_observable._BOTH_SEGMENTATION_AND_DEPTH_ENABLED): mjcf_observable.MJCFCamera(mjcf_element=camera, segmentation=True, depth=True) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/observation/observable/mjcf_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Classes representing observables.""" import abc import functools from dm_env import specs import numpy as np def _make_aggregator(np_reducer_func, bounds_preserving): result = functools.partial(np_reducer_func, axis=0) setattr(result, 'bounds_reserving', bounds_preserving) return result AGGREGATORS = { 'min': _make_aggregator(np.min, True), 'max': _make_aggregator(np.max, True), 'mean': _make_aggregator(np.mean, True), 'median': _make_aggregator(np.median, True), 'sum': _make_aggregator(np.sum, False), } def _get_aggregator(name_or_callable): """Returns aggregator from predefined set by name, else returns callable.""" if name_or_callable is None: return None elif not callable(name_or_callable): try: return AGGREGATORS[name_or_callable] except KeyError: raise KeyError('Unrecognized aggregator name: {!r}. Valid names: {}.' .format(name_or_callable, AGGREGATORS.keys())) else: return name_or_callable class Observable(metaclass=abc.ABCMeta): """Abstract base class for an observable.""" def __init__(self, update_interval, buffer_size, delay, aggregator, corruptor): self._update_interval = update_interval self._buffer_size = buffer_size self._delay = delay self._aggregator = _get_aggregator(aggregator) self._corruptor = corruptor self._enabled = False @property def update_interval(self): return self._update_interval @update_interval.setter def update_interval(self, value): self._update_interval = value @property def buffer_size(self): return self._buffer_size @buffer_size.setter def buffer_size(self, value): self._buffer_size = value @property def delay(self): return self._delay @delay.setter def delay(self, value): self._delay = value @property def aggregator(self): return self._aggregator @aggregator.setter def aggregator(self, value): self._aggregator = _get_aggregator(value) @property def corruptor(self): return self._corruptor @corruptor.setter def corruptor(self, value): self._corruptor = value @property def enabled(self): return self._enabled @enabled.setter def enabled(self, value): self._enabled = value @property def array_spec(self): """The `ArraySpec` which describes observation arrays from this observable. If this property is `None`, then the specification should be inferred by actually retrieving an observation from this observable. """ return None @abc.abstractmethod def _callable(self, physics): pass def observation_callable(self, physics, random_state=None): """A callable which returns a (potentially corrupted) observation.""" raw_callable = self._callable(physics) if self._corruptor: def _corrupted(): return self._corruptor(raw_callable(), random_state=random_state) return _corrupted else: return raw_callable def __call__(self, physics, random_state=None): """Convenience function to just call an observable.""" return self.observation_callable(physics, random_state)() def configure(self, **kwargs): """Sets multiple attributes of this observable. Args: **kwargs: The keyword argument names correspond to the attributes being modified. Raises: AttributeError: If kwargs contained an attribute not in the observable. """ for key, value in kwargs.items(): if not hasattr(self, key): raise AttributeError('Cannot add attribute %s in configure.' % key) self.__setattr__(key, value) class Generic(Observable): """A generic observable defined via a callable.""" def __init__(self, raw_observation_callable, update_interval=1, buffer_size=None, delay=None, aggregator=None, corruptor=None): """Initializes this observable. Args: raw_observation_callable: A callable which accepts a single argument of type `control.base.Physics` and returns the observation value. update_interval: (optional) An integer, number of simulation steps between successive updates to the value of this observable. buffer_size: (optional) The maximum size of the returned buffer. This option is only relevant when used in conjunction with an `observation.Updater`. If None, `observation.DEFAULT_BUFFER_SIZE` will be used. delay: (optional) Number of additional simulation steps that must be taken before an observation is returned. This option is only relevant when used in conjunction with an`observation.Updater`. If None, `observation.DEFAULT_DELAY` will be used. aggregator: (optional) Name of an item in `AGGREGATORS` or a callable that performs a reduction operation over the first dimension of the buffered observation before it is returned. A value of `None` means that no aggregation will be performed and the whole buffer will be returned. corruptor: (optional) A callable which takes a single observation as an argument, modifies it, and returns it. An example use case for this is to add random noise to the observation. When used in a `BufferedWrapper`, the corruptor is applied to the observation before it is added to the buffer. In particular, this means that the aggregator operates on corrupted observations. """ self._raw_callable = raw_observation_callable super().__init__(update_interval, buffer_size, delay, aggregator, corruptor) def _callable(self, physics): return lambda: self._raw_callable(physics) class MujocoFeature(Observable): """An observable corresponding to a named MuJoCo feature.""" def __init__(self, kind, feature_name, update_interval=1, buffer_size=None, delay=None, aggregator=None, corruptor=None): """Initializes this observable. Args: kind: A string corresponding to a field name in MuJoCo's mjData struct. feature_name: A string, or list of strings, or a callable returning either, corresponding to the name(s) of an entity in the MuJoCo XML model. update_interval: (optional) An integer, number of simulation steps between successive updates to the value of this observable. buffer_size: (optional) The maximum size of the returned buffer. This option is only relevant when used in conjunction with an `observation.Updater`. If None, `observation.DEFAULT_BUFFER_SIZE` will be used. delay: (optional) Number of additional simulation steps that must be taken before an observation is returned. This option is only relevant when used in conjunction with an`observation.Updater`. If None, `observation.DEFAULT_DELAY` will be used. aggregator: (optional) Name of an item in `AGGREGATORS` or a callable that performs a reduction operation over the first dimension of the buffered observation before it is returned. A value of `None` means that no aggregation will be performed and the whole buffer will be returned. corruptor: (optional) A callable which takes a single observation as an argument, modifies it, and returns it. An example use case for this is to add random noise to the observation. When used in a `BufferedWrapper`, the corruptor is applied to the observation before it is added to the buffer. In particular, this means that the aggregator operates on corrupted observations. """ self._kind = kind self._feature_name = feature_name super().__init__(update_interval, buffer_size, delay, aggregator, corruptor) def _callable(self, physics): named_indexer_for_kind = physics.named.data.__getattribute__(self._kind) if callable(self._feature_name): return lambda: named_indexer_for_kind[self._feature_name()] else: return lambda: named_indexer_for_kind[self._feature_name] class MujocoCamera(Observable): """An observable corresponding to a MuJoCo camera.""" def __init__(self, camera_name, height=240, width=320, update_interval=1, buffer_size=None, delay=None, aggregator=None, corruptor=None, depth=False): """Initializes this observable. Args: camera_name: A string corresponding to the name of a camera in the MuJoCo XML model. height: (optional) An integer, the height of the rendered image. width: (optional) An integer, the width of the rendered image. update_interval: (optional) An integer, number of simulation steps between successive updates to the value of this observable. buffer_size: (optional) The maximum size of the returned buffer. This option is only relevant when used in conjunction with an `observation.Updater`. If None, `observation.DEFAULT_BUFFER_SIZE` will be used. delay: (optional) Number of additional simulation steps that must be taken before an observation is returned. This option is only relevant when used in conjunction with an`observation.Updater`. If None, `observation.DEFAULT_DELAY` will be used. aggregator: (optional) Name of an item in `AGGREGATORS` or a callable that performs a reduction operation over the first dimension of the buffered observation before it is returned. A value of `None` means that no aggregation will be performed and the whole buffer will be returned. corruptor: (optional) A callable which takes a single observation as an argument, modifies it, and returns it. An example use case for this is to add random noise to the observation. When used in a `BufferedWrapper`, the corruptor is applied to the observation before it is added to the buffer. In particular, this means that the aggregator operates on corrupted observations. depth: (optional) A boolean. If `True`, renders a depth image (1-channel) instead of RGB (3-channel). """ self._camera_name = camera_name self._height = height self._width = width self._n_channels = 1 if depth else 3 self._dtype = np.float32 if depth else np.uint8 self._depth = depth super().__init__(update_interval, buffer_size, delay, aggregator, corruptor) @property def height(self): return self._height @height.setter def height(self, value): self._height = value @property def width(self): return self._width @width.setter def width(self, value): self._width = value @property def array_spec(self): return specs.Array( shape=(self._height, self._width, self._n_channels), dtype=self._dtype) def _callable(self, physics): return lambda: physics.render( # pylint: disable=g-long-lambda self._height, self._width, self._camera_name, depth=self._depth)
dm_control-main
dm_control/composer/observation/observable/base.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Observables that are defined in terms of MJCF elements.""" import collections from dm_control import mjcf from dm_control.composer.observation.observable import base from dm_env import specs import numpy as np _BOTH_SEGMENTATION_AND_DEPTH_ENABLED = ( '`segmentation` and `depth` cannot both be `True`.') def _check_mjcf_element(obj): if not isinstance(obj, mjcf.Element): raise ValueError( 'expected an `mjcf.Element`, got type {}: {}'.format(type(obj), obj)) def _check_mjcf_element_iterable(obj_iterable): if not isinstance(obj_iterable, collections.abc.Iterable): obj_iterable = (obj_iterable,) for obj in obj_iterable: _check_mjcf_element(obj) class MJCFFeature(base.Observable): """An observable corresponding to an element in an MJCF model.""" def __init__(self, kind, mjcf_element, update_interval=1, buffer_size=None, delay=None, aggregator=None, corruptor=None, index=None): """Initializes this observable. Args: kind: The name of an attribute of a bound `mjcf.Physics` instance. See the docstring for `mjcf.Physics.bind()` for examples showing this syntax. mjcf_element: An `mjcf.Element`, or iterable of `mjcf.Element`. update_interval: (optional) An integer, number of simulation steps between successive updates to the value of this observable. buffer_size: (optional) The maximum size of the returned buffer. This option is only relevant when used in conjunction with an `observation.Updater`. If None, `observation.DEFAULT_BUFFER_SIZE` will be used. delay: (optional) Number of additional simulation steps that must be taken before an observation is returned. This option is only relevant when used in conjunction with an`observation.Updater`. If None, `observation.DEFAULT_DELAY` will be used. aggregator: (optional) Name of an item in `AGGREGATORS` or a callable that performs a reduction operation over the first dimension of the buffered observation before it is returned. A value of `None` means that no aggregation will be performed and the whole buffer will be returned. corruptor: (optional) A callable which takes a single observation as an argument, modifies it, and returns it. An example use case for this is to add random noise to the observation. When used in a `BufferedWrapper`, the corruptor is applied to the observation before it is added to the buffer. In particular, this means that the aggregator operates on corrupted observations. index: (optional) An index that is to be applied to an array attribute to pick out a slice or particular items. As a syntactic sugar, `MJCFFeature` also implements `__getitem__` that returns a copy of the same observable with an index applied. Raises: ValueError: if `mjcf_element` is not an `mjcf.Element`. """ _check_mjcf_element_iterable(mjcf_element) self._kind = kind self._mjcf_element = mjcf_element self._index = index super().__init__(update_interval, buffer_size, delay, aggregator, corruptor) def _callable(self, physics): binding = physics.bind(self._mjcf_element) if self._index is not None: return lambda: getattr(binding, self._kind)[self._index] else: return lambda: getattr(binding, self._kind) def __getitem__(self, key): if self._index is not None: raise NotImplementedError( 'slicing an already-sliced MJCFFeature observable is not supported') return MJCFFeature(self._kind, self._mjcf_element, self._update_interval, self._buffer_size, self._delay, self._aggregator, self._corruptor, key) class MJCFCamera(base.Observable): """An observable corresponding to a camera in an MJCF model.""" def __init__(self, mjcf_element, height=240, width=320, update_interval=1, buffer_size=None, delay=None, aggregator=None, corruptor=None, depth=False, segmentation=False, scene_option=None, render_flag_overrides=None): """Initializes this observable. Args: mjcf_element: A <camera> `mjcf.Element`. height: (optional) An integer, the height of the rendered image. width: (optional) An integer, the width of the rendered image. update_interval: (optional) An integer, number of simulation steps between successive updates to the value of this observable. buffer_size: (optional) The maximum size of the returned buffer. This option is only relevant when used in conjunction with an `observation.Updater`. If None, `observation.DEFAULT_BUFFER_SIZE` will be used. delay: (optional) Number of additional simulation steps that must be taken before an observation is returned. This option is only relevant when used in conjunction with an`observation.Updater`. If None, `observation.DEFAULT_DELAY` will be used. aggregator: (optional) Name of an item in `AGGREGATORS` or a callable that performs a reduction operation over the first dimension of the buffered observation before it is returned. A value of `None` means that no aggregation will be performed and the whole buffer will be returned. corruptor: (optional) A callable which takes a single observation as an argument, modifies it, and returns it. An example use case for this is to add random noise to the observation. When used in a `BufferedWrapper`, the corruptor is applied to the observation before it is added to the buffer. In particular, this means that the aggregator operates on corrupted observations. depth: (optional) A boolean. If `True`, renders a depth image (1-channel) instead of RGB (3-channel). segmentation: (optional) A boolean. If `True`, renders a segmentation mask (2-channel, int32) labeling the objects in the scene with their (mjModel ID, mjtObj enum object type) pair. Background pixels are set to (-1, -1). scene_option: An optional `wrapper.MjvOption` instance that can be used to render the scene with custom visualization options. If None then the default options will be used. render_flag_overrides: Optional mapping specifying rendering flags to override. The keys can be either lowercase strings or `mjtRndFlag` enum values, and the values are the overridden flag values, e.g. `{'wireframe': True}` or `{mujoco.mjtRndFlag.mjRND_WIREFRAME: True}`. See `mujoco.mjtRndFlag` for the set of valid flags. Must be None if either `depth` or `segmentation` is True. Raises: ValueError: if `mjcf_element` is not a <camera> element. ValueError: if segmentation and depth flags are both set to True. """ _check_mjcf_element(mjcf_element) if mjcf_element.tag != 'camera': raise ValueError( 'expected a <camera> element: got {}'.format(mjcf_element)) self._mjcf_element = mjcf_element self._height = height self._width = width if segmentation and depth: raise ValueError(_BOTH_SEGMENTATION_AND_DEPTH_ENABLED) if segmentation: self._dtype = np.int32 self._n_channels = 2 elif depth: self._dtype = np.float32 self._n_channels = 1 else: self._dtype = np.uint8 self._n_channels = 3 self._depth = depth self._segmentation = segmentation self._scene_option = scene_option self._render_flag_overrides = render_flag_overrides super().__init__(update_interval, buffer_size, delay, aggregator, corruptor) @property def height(self): return self._height @height.setter def height(self, value): self._height = value @property def width(self): return self._width @width.setter def width(self, value): self._width = value @property def depth(self): return self._depth @depth.setter def depth(self, value): self._depth = value @property def segmentation(self): return self._segmentation @segmentation.setter def segmentation(self, value): self._segmentation = value @property def scene_option(self): return self._scene_option @scene_option.setter def scene_option(self, value): self._scene_option = value @property def render_flag_overrides(self): return self._render_flag_overrides @render_flag_overrides.setter def render_flag_overrides(self, value): self._render_flag_overrides = value @property def array_spec(self): if self._depth: # Note that these are loose bounds - the exact bounds are given by: # extent*(znear, zfar), however the values of these parameters are unknown # since we don't have access to the compiled model within this method. minimum = 0.0 maximum = np.inf elif self._segmentation: # -1 denotes background pixels. See dm_control.mujoco.Camera.render for # further details. minimum = -1 maximum = np.iinfo(self._dtype).max else: minimum = np.iinfo(self._dtype).min maximum = np.iinfo(self._dtype).max return specs.BoundedArray( minimum=minimum, maximum=maximum, shape=(self._height, self._width, self._n_channels), dtype=self._dtype) def _callable(self, physics): def get_observation(): pixels = physics.render( height=self._height, width=self._width, camera_id=self._mjcf_element.full_identifier, depth=self._depth, segmentation=self._segmentation, scene_option=self._scene_option, render_flag_overrides=self._render_flag_overrides) return np.atleast_3d(pixels) return get_observation
dm_control-main
dm_control/composer/observation/observable/mjcf.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for prop_initializer.""" from absl.testing import absltest from absl.testing import parameterized from dm_control import composer from dm_control import mjcf from dm_control.composer.initializers import prop_initializer from dm_control.composer.variation import distributions from dm_control.entities import props import numpy as np class _SequentialChoice(distributions.Distribution): """Helper class to return samples in order for deterministic testing.""" __slots__ = () def __init__(self, choices, single_sample=False): super().__init__(choices, single_sample=single_sample) self._idx = 0 def _callable(self, random_state): def next_item(*args, **kwargs): del args, kwargs # Unused. result = self._args[0][self._idx] self._idx = (self._idx + 1) % len(self._args[0]) return result return next_item def _make_spheres(num_spheres, radius, nconmax): spheres = [] arena = composer.Arena() arena.mjcf_model.worldbody.add('geom', type='plane', size=[1, 1, 0.1], pos=[0., 0., -2 * radius], name='ground') for i in range(num_spheres): sphere = props.Primitive( geom_type='sphere', size=[radius], name='sphere_{}'.format(i)) arena.add_free_entity(sphere) spheres.append(sphere) arena.mjcf_model.size.nconmax = nconmax physics = mjcf.Physics.from_mjcf_model(arena.mjcf_model) return physics, spheres class PropPlacerTest(parameterized.TestCase): """Tests for PropPlacer.""" def assertNoContactsInvolvingEntities(self, physics, entities): all_colliding_geoms = set() for contact in physics.data.contact: all_colliding_geoms.add(contact.geom1) all_colliding_geoms.add(contact.geom2) for entity in entities: entity_geoms = physics.bind(entity.mjcf_model.find_all('geom')).element_id colliding_entity_geoms = all_colliding_geoms.intersection(entity_geoms) if colliding_entity_geoms: names = ', '.join( physics.model.id2name(i, 'geom') for i in colliding_entity_geoms) self.fail('Entity {} has colliding geoms: {}' .format(entity.mjcf_model.model, names)) def assertPositionsWithinBounds(self, physics, entities, lower, upper): for entity in entities: position, _ = entity.get_pose(physics) if np.any(position < lower) or np.any(position > upper): self.fail('Entity {} is out of bounds: position={}, bounds={}' .format(entity.mjcf_model.model, position, (lower, upper))) def test_sample_non_colliding_positions(self): halfwidth = 0.05 radius = halfwidth / 4. offset = np.array([0, 0, halfwidth + radius*1.1]) lower = -np.full(3, halfwidth) + offset upper = np.full(3, halfwidth) + offset position_variation = distributions.Uniform(lower, upper) physics, spheres = _make_spheres(num_spheres=8, radius=radius, nconmax=1000) prop_placer = prop_initializer.PropPlacer( props=spheres, position=position_variation, ignore_collisions=False, settle_physics=False) prop_placer(physics, random_state=np.random.RandomState(0)) self.assertNoContactsInvolvingEntities(physics, spheres) self.assertPositionsWithinBounds(physics, spheres, lower, upper) def test_rejection_sampling_failure(self): max_attempts_per_prop = 2 fixed_position = (0, 0, 0.1) # Guaranteed to always have collisions. physics, spheres = _make_spheres(num_spheres=2, radius=0.01, nconmax=1000) prop_placer = prop_initializer.PropPlacer( props=spheres, position=fixed_position, ignore_collisions=False, max_attempts_per_prop=max_attempts_per_prop) expected_message = prop_initializer._REJECTION_SAMPLING_FAILED.format( model_name=spheres[1].mjcf_model.model, # Props are placed in order. max_attempts=max_attempts_per_prop) with self.assertRaisesWithLiteralMatch(RuntimeError, expected_message): prop_placer(physics, random_state=np.random.RandomState(0)) def test_ignore_contacts_with_entities(self): physics, spheres = _make_spheres(num_spheres=2, radius=0.01, nconmax=1000) # Target position of both spheres (non-colliding). fixed_positions = [(0, 0, 0.1), (0, 0.1, 0.1)] # Placer that initializes both spheres to (0, 0, 0.1), ignoring contacts. prop_placer_init = prop_initializer.PropPlacer( props=spheres, position=fixed_positions[0], ignore_collisions=True, max_attempts_per_prop=1) # Sequence of placers that will move the spheres to their target positions. prop_placer_seq = [] for prop, target_position in zip(spheres, fixed_positions): placer = prop_initializer.PropPlacer( props=[prop], position=target_position, ignore_collisions=False, max_attempts_per_prop=1) prop_placer_seq.append(placer) # We expect the first placer in the sequence to fail without # `ignore_contacts_with_entities` because the second sphere is already at # the same location. prop_placer_init(physics, random_state=np.random.RandomState(0)) expected_message = prop_initializer._REJECTION_SAMPLING_FAILED.format( model_name=spheres[0].mjcf_model.model, max_attempts=1) with self.assertRaisesWithLiteralMatch(RuntimeError, expected_message): prop_placer_seq[0](physics, random_state=np.random.RandomState(0)) # Placing the first sphere should succeed if we ignore contacts involving # the second sphere. prop_placer_init(physics, random_state=np.random.RandomState(0)) prop_placer_seq[0](physics, random_state=np.random.RandomState(0), ignore_contacts_with_entities=[spheres[1]]) # Now place the second sphere with all collisions active. prop_placer_seq[1](physics, random_state=np.random.RandomState(0), ignore_contacts_with_entities=None) self.assertNoContactsInvolvingEntities(physics, spheres) @parameterized.parameters([False, True]) def test_settle_physics(self, settle_physics): radius = 0.1 physics, spheres = _make_spheres(num_spheres=2, radius=radius, nconmax=1) # Only place the first sphere. prop_placer = prop_initializer.PropPlacer( props=spheres[:1], position=np.array([2.01 * radius, 0., 0.]), settle_physics=settle_physics) prop_placer(physics, random_state=np.random.RandomState(0)) first_position, first_quaternion = spheres[0].get_pose(physics) del first_quaternion # Unused. # If we allowed the physics to settle then the first sphere should be # resting on the ground, otherwise it should be at the target height. expected_first_z_pos = -radius if settle_physics else 0. self.assertAlmostEqual(first_position[2], expected_first_z_pos, places=3) second_position, second_quaternion = spheres[1].get_pose(physics) del second_quaternion # Unused. # The sphere that we were not placing should not have moved. self.assertEqual(second_position[2], 0.) @parameterized.parameters([0, 1, 2, 3]) def test_settle_physics_multiple_attempts(self, max_settle_physics_attempts): # Tests the multiple-reset mechanism for `settle_physics`. # Rather than testing the mechanic itself, which is tested above, we instead # test that the mechanism correctly makes several attempts when it fails # to settle. We force it to fail by making the settling time short, and # test that the position is repeatedly called using a deterministic # sequential pose distribution. radius = 0.1 physics, spheres = _make_spheres(num_spheres=1, radius=radius, nconmax=1) # Generate sequence of positions that will be sampled in order. positions = [ np.array([2.01 * radius, 1., 0.]), np.array([2.01 * radius, 2., 0.]), np.array([2.01 * radius, 3., 0.]), ] positions_dist = _SequentialChoice(positions) def build_placer(): return prop_initializer.PropPlacer( props=spheres[:1], position=positions_dist, settle_physics=True, max_settle_physics_time=1e-6, # To ensure that settling FAILS. max_settle_physics_attempts=max_settle_physics_attempts) if max_settle_physics_attempts == 0: with self.assertRaises(ValueError): build_placer() else: prop_placer = build_placer() prop_placer(physics, random_state=np.random.RandomState(0)) first_position, first_quaternion = spheres[0].get_pose(physics) del first_quaternion # Unused. # If we allowed the physics to settle then the first sphere should be # resting on the ground, otherwise it should be at the target height. expected_first_y_pos = max_settle_physics_attempts self.assertAlmostEqual(first_position[1], expected_first_y_pos, places=3) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/initializers/prop_initializer_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """An initializer that places props at various poses.""" from absl import logging from dm_control import composer from dm_control import mjcf from dm_control.composer import variation from dm_control.composer.initializers import utils from dm_control.composer.variation import rotations from dm_control.rl import control import numpy as np # Absolute velocity threshold for a prop joint to be considered settled. _SETTLE_QVEL_TOL = 1e-3 # Absolute acceleration threshold for a prop joint to be considered settled. _SETTLE_QACC_TOL = 1e-2 _REJECTION_SAMPLING_FAILED = '\n'.join([ 'Failed to find a non-colliding pose for prop {model_name!r} within ' # pylint: disable=implicit-str-concat '{max_attempts} attempts.', 'You may be able to avoid this error by:', '1. Sampling from a broader distribution over positions and/or quaternions', '2. Increasing `max_attempts_per_prop`', '3. Disabling collision detection by setting `ignore_collisions=False`']) _SETTLING_PHYSICS_FAILED = '\n'.join([ 'Failed to settle physics after {max_attempts} attempts of ' # pylint: disable=implicit-str-concat '{max_time} seconds.', 'Last residual velocity={max_qvel} and acceleration={max_qacc}.', 'This suggests your dynamics are unstable. Consider:', '\t1. Increasing `max_settle_physics_attempts`', '\t2. Increasing `max_settle_physics_time`', '\t3. Tuning your contact parameters or initial pose distributions.']) class PropPlacer(composer.Initializer): """An initializer that places props at various positions and orientations.""" def __init__(self, props, position, quaternion=rotations.IDENTITY_QUATERNION, ignore_collisions=False, max_qvel_tol=_SETTLE_QVEL_TOL, max_qacc_tol=_SETTLE_QACC_TOL, max_attempts_per_prop=20, settle_physics=False, min_settle_physics_time=0., max_settle_physics_time=2., max_settle_physics_attempts=1, raise_exception_on_settle_failure=False): """Initializes this PropPlacer. Args: props: A sequence of `composer.Entity` instances representing props. position: A single fixed Cartesian position, or a `composer.Variation` object that generates Cartesian positions. If a fixed sequence of positions for multiple props is desired, use `variation.deterministic.Sequence`. quaternion: (optional) A single fixed unit quaternion, or a `Variation` object that generates unit quaternions. If a fixed sequence of quaternions for multiple props is desired, use `variation.deterministic.Sequence`. ignore_collisions: (optional) If True, ignore collisions between props, i.e. do not run rejection sampling. max_qvel_tol: Maximum post-initialization joint velocity for props. If `settle_physics=True`, the simulation will be run until all prop joint velocities are less than this threshold. max_qacc_tol: Maximum post-initialization joint acceleration for props. If `settle_physics=True`, the simulation will be run until all prop joint velocities are less than this threshold. max_attempts_per_prop: The maximum number of rejection sampling attempts per prop. If a non-colliding pose cannot be found before this limit is reached, a `RuntimeError` will be raised. settle_physics: (optional) If True, the physics simulation will be advanced for a few steps to allow the prop positions to settle. min_settle_physics_time: (optional) When `settle_physics` is True, lower bound on time (in seconds) the physics simulation is advanced. max_settle_physics_time: (optional) When `settle_physics` is True, upper bound on time (in seconds) the physics simulation is advanced. max_settle_physics_attempts: (optional) When `settle_physics` is True, the number of attempts at sampling overall scene pose and settling. raise_exception_on_settle_failure: If True, raises an exception if settling physics is unsuccessful. """ super().__init__() self._props = props self._prop_joints = [] for prop in props: freejoint = mjcf.get_frame_freejoint(prop.mjcf_model) if freejoint is not None: self._prop_joints.append(freejoint) self._prop_joints.extend(prop.mjcf_model.find_all('joint')) self._position = position self._quaternion = quaternion self._ignore_collisions = ignore_collisions self._max_attempts_per_prop = max_attempts_per_prop self._settle_physics = settle_physics self._max_qvel_tol = max_qvel_tol self._max_qacc_tol = max_qacc_tol self._min_settle_physics_time = min_settle_physics_time self._max_settle_physics_time = max_settle_physics_time self._max_settle_physics_attempts = max_settle_physics_attempts self._raise_exception_on_settle_failure = raise_exception_on_settle_failure if max_settle_physics_attempts < 1: raise ValueError('max_settle_physics_attempts should be greater than ' 'zero to have any effect, but is ' f'{max_settle_physics_attempts}') def _has_collisions_with_prop(self, physics, prop): prop_geom_ids = physics.bind(prop.mjcf_model.find_all('geom')).element_id contacts = physics.data.contact for contact in contacts: # Ignore contacts with positive distances (i.e. not actually touching). if contact.dist <= 0 and (contact.geom1 in prop_geom_ids or contact.geom2 in prop_geom_ids): return True def _disable_and_cache_contact_parameters(self, physics, props): cached_contact_params = {} for prop in props: geoms = prop.mjcf_model.find_all('geom') param_list = [] for geom in geoms: bound_geom = physics.bind(geom) param_list.append((bound_geom.contype, bound_geom.conaffinity)) bound_geom.contype = 0 bound_geom.conaffinity = 0 cached_contact_params[prop] = param_list return cached_contact_params def _restore_contact_parameters(self, physics, prop, cached_contact_params): geoms = prop.mjcf_model.find_all('geom') param_list = cached_contact_params[prop] for i, geom in enumerate(geoms): contype, conaffinity = param_list[i] bound_geom = physics.bind(geom) bound_geom.contype = contype bound_geom.conaffinity = conaffinity def __call__(self, physics, random_state, ignore_contacts_with_entities=None): """Sets initial prop poses. Args: physics: An `mjcf.Physics` instance. random_state: a `np.random.RandomState` instance. ignore_contacts_with_entities: a list of `composer.Entity` instances to ignore when detecting collisions. This can be used to ignore props that are not being placed by this initializer, but are known to be colliding in the current state of the simulation (for example if they are going to be placed by a different initializer that will be called subsequently). Raises: RuntimeError: If `ignore_collisions == False` and a non-colliding prop pose could not be found within `max_attempts_per_prop`. """ if ignore_contacts_with_entities is None: ignore_contacts_with_entities = [] # Temporarily disable contacts for all geoms that belong to props which # haven't yet been placed in order to free up space in the contact buffer. cached_contact_params = self._disable_and_cache_contact_parameters( physics, self._props + ignore_contacts_with_entities) try: physics.forward() except control.PhysicsError as cause: effect = control.PhysicsError( 'Despite disabling contact for all props in this initializer, ' '`physics.forward()` resulted in a `PhysicsError`') raise effect from cause def place_props(): for prop in self._props: # Restore the original contact parameters for all geoms in the prop # we're about to place, so that we can detect if the new pose results in # collisions. self._restore_contact_parameters(physics, prop, cached_contact_params) success = False initial_position, initial_quaternion = prop.get_pose(physics) next_position, next_quaternion = initial_position, initial_quaternion for _ in range(self._max_attempts_per_prop): next_position = variation.evaluate(self._position, initial_value=initial_position, current_value=next_position, random_state=random_state) next_quaternion = variation.evaluate(self._quaternion, initial_value=initial_quaternion, current_value=next_quaternion, random_state=random_state) prop.set_pose(physics, next_position, next_quaternion) try: # If this pose results in collisions then there's a chance we'll # encounter a PhysicsError error here due to a full contact buffer, # in which case reject this pose and sample another. physics.forward() except control.PhysicsError: continue if (self._ignore_collisions or not self._has_collisions_with_prop(physics, prop)): success = True break if not success: raise RuntimeError(_REJECTION_SAMPLING_FAILED.format( model_name=prop.mjcf_model.model, max_attempts=self._max_attempts_per_prop)) for prop in ignore_contacts_with_entities: self._restore_contact_parameters(physics, prop, cached_contact_params) # Place the props and settle the physics. If settling was requested and it # it fails, re-place the props. def place_and_settle(): for _ in range(self._max_settle_physics_attempts): place_props() # Step physics and check prop states. original_time = physics.data.time props_isolator = utils.JointStaticIsolator(physics, self._prop_joints) prop_joints_mj = physics.bind(self._prop_joints) while physics.data.time - original_time < self._max_settle_physics_time: with props_isolator: physics.step() max_qvel = np.max(np.abs(prop_joints_mj.qvel)) max_qacc = np.max(np.abs(prop_joints_mj.qacc)) if (max_qvel < self._max_qvel_tol) and ( max_qacc < self._max_qacc_tol) and ( physics.data.time - original_time ) > self._min_settle_physics_time: return True physics.data.time = original_time if self._raise_exception_on_settle_failure: raise RuntimeError( _SETTLING_PHYSICS_FAILED.format( max_attempts=self._max_settle_physics_attempts, max_time=self._max_settle_physics_time, max_qvel=max_qvel, max_qacc=max_qacc, )) else: log_str = _SETTLING_PHYSICS_FAILED.format( max_attempts='%s', max_time='%s', max_qvel='%s', max_qacc='%s', ) logging.warning(log_str, self._max_settle_physics_attempts, self._max_settle_physics_time, max_qvel, max_qacc) return False if self._settle_physics: place_and_settle() else: place_props()
dm_control-main
dm_control/composer/initializers/prop_initializer.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """An initializer that sets the pose of a hand's tool center point.""" from dm_control import composer from dm_control import mjcf from dm_control.composer import variation from dm_control.entities.manipulators import base _REJECTION_SAMPLING_FAILED = ( 'Failed to find a valid initial configuration for the robot after ' '{max_rejection_samples} TCP poses sampled and up to {max_ik_attempts} ' 'initial joint configurations per pose.') class ToolCenterPointInitializer(composer.Initializer): """An initializer that sets the position of a hand's tool center point. This initializer calls the RobotArm's internal method to try and set the hand's TCP to a randomized Cartesian position within the specified bound. By default the initializer performs rejection sampling in order to avoid poses that result in "relevant collisions", which are defined as: * Collisions between links of the robot arm * Collisions between the arm and the hand * Collisions between either the arm or hand and an external body without a free joint """ def __init__(self, hand, arm, position, quaternion=base.DOWN_QUATERNION, ignore_collisions=False, max_ik_attempts=10, max_rejection_samples=10): """Initializes this ToolCenterPointInitializer. Args: hand: Either a `base.RobotHand` instance or None, in which case `arm.wrist_site` is used as the TCP site in place of `hand.tool_center_point`. arm: A `base.RobotArm` instance. position: A single fixed Cartesian position, or a `Variation` object that generates Cartesian positions. If a fixed sequence of positions for multiple props is desired, use `variation.deterministic.Sequence`. quaternion: (optional) A single fixed unit quaternion, or a `composer.Variation` object that generates unit quaternions. If a fixed sequence of quaternions for ultiple props is desired, use `variation.deterministic.Sequence`. ignore_collisions: (optional) If True all collisions are ignored, i.e. rejection sampling is disabled. max_ik_attempts: (optional) Maximum number of attempts for the inverse kinematics solver to find a solution satisfying `target_pos` and `target_quat`. These are attempts per rejection sample. If more than one attempt is performed, the joint configuration will be randomized before the second trial. To avoid randomizing joint positions, set this parameter to 1. max_rejection_samples (optional): Maximum number of TCP target poses to sample while attempting to find a non-colliding configuration. For each sampled pose, up to `max_ik_attempts` may be performed in order to find an IK solution satisfying this pose. """ super().__init__() self._arm = arm self._hand = hand self._position = position self._quaternion = quaternion self._ignore_collisions = ignore_collisions self._max_ik_attempts = max_ik_attempts self._max_rejection_samples = max_rejection_samples def _has_relevant_collisions(self, physics): mjcf_root = self._arm.mjcf_model.root_model all_geoms = mjcf_root.find_all('geom') free_body_geoms = set() for body in mjcf_root.worldbody.get_children('body'): if mjcf.get_freejoint(body): free_body_geoms.update(body.find_all('geom')) arm_model = self._arm.mjcf_model hand_model = None if self._hand is not None: hand_model = self._hand.mjcf_model def is_robot(geom): return geom.root is arm_model or geom.root is hand_model def is_external_body_without_freejoint(geom): return not (is_robot(geom) or geom in free_body_geoms) for contact in physics.data.contact: geom_1 = all_geoms[contact.geom1] geom_2 = all_geoms[contact.geom2] if contact.dist > 0: # Ignore "contacts" with positive distance (i.e. not actually touching). continue if ( # Include arm-arm and arm-hand self-collisions (but not hand-hand). (geom_1.root is arm_model and geom_2.root is arm_model) or (geom_1.root is arm_model and geom_2.root is hand_model) or (geom_1.root is hand_model and geom_2.root is arm_model) or # Include collisions between the arm or hand and an external body # provided that the external body does not have a freejoint. (is_robot(geom_1) and is_external_body_without_freejoint(geom_2)) or (is_external_body_without_freejoint(geom_1) and is_robot(geom_2))): return True return False def __call__(self, physics, random_state): """Sets initial tool center point pose via inverse kinematics. Args: physics: An `mjcf.Physics` instance. random_state: An `np.random.RandomState` instance. Raises: RuntimeError: If a collision-free pose could not be found within `max_ik_attempts`. """ if self._hand is not None: target_site = self._hand.tool_center_point else: target_site = self._arm.wrist_site initial_qpos = physics.bind(self._arm.joints).qpos.copy() for _ in range(self._max_rejection_samples): target_pos = variation.evaluate(self._position, random_state=random_state) target_quat = variation.evaluate(self._quaternion, random_state=random_state) success = self._arm.set_site_to_xpos( physics=physics, random_state=random_state, site=target_site, target_pos=target_pos, target_quat=target_quat, max_ik_attempts=self._max_ik_attempts) if success: physics.forward() # Recalculate contacts. if (self._ignore_collisions or not self._has_relevant_collisions(physics)): return # If IK failed to find a solution for this target pose, or if the solution # resulted in contacts, then reset the arm joints to their original # positions and try again with a new target. physics.bind(self._arm.joints).qpos = initial_qpos raise RuntimeError(_REJECTION_SAMPLING_FAILED.format( max_rejection_samples=self._max_rejection_samples, max_ik_attempts=self._max_ik_attempts))
dm_control-main
dm_control/composer/initializers/tcp_initializer.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tools for initializing the states of Composer environments.""" from dm_control.composer.initializers.prop_initializer import PropPlacer from dm_control.composer.initializers.tcp_initializer import ToolCenterPointInitializer
dm_control-main
dm_control/composer/initializers/__init__.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for tcp_initializer.""" import functools from absl.testing import absltest from absl.testing import parameterized from dm_control import composer from dm_control import mjcf from dm_control.composer.initializers import tcp_initializer from dm_control.entities import props from dm_control.entities.manipulators import kinova from dm_control.mujoco.wrapper import mjbindings import numpy as np mjlib = mjbindings.mjlib class TcpInitializerTest(parameterized.TestCase): def make_model(self, with_hand=True): arm = kinova.JacoArm() arena = composer.Arena() arena.attach(arm) if with_hand: hand = kinova.JacoHand() arm.attach(hand) else: hand = None return arena, arm, hand def assertTargetPoseAchieved(self, frame_binding, target_pos, target_quat): np.testing.assert_array_almost_equal(target_pos, frame_binding.xpos) target_xmat = np.empty(9, np.double) mjlib.mju_quat2Mat(target_xmat, target_quat / np.linalg.norm(target_quat)) np.testing.assert_array_almost_equal(target_xmat, frame_binding.xmat) def assertEntitiesInContact(self, physics, first, second): first_geom_ids = physics.bind( first.mjcf_model.find_all('geom')).element_id second_geom_ids = physics.bind( second.mjcf_model.find_all('geom')).element_id contact = physics.data.contact first_to_second = (np.in1d(contact.geom1, first_geom_ids) & np.in1d(contact.geom2, second_geom_ids)) second_to_first = (np.in1d(contact.geom1, second_geom_ids) & np.in1d(contact.geom2, first_geom_ids)) touching = contact.dist <= 0 valid_contact = touching & (first_to_second | second_to_first) self.assertTrue(np.any(valid_contact), msg='Entities are not in contact.') @parameterized.parameters([ dict(target_pos=np.array([0.1, 0.2, 0.3]), target_quat=np.array([0., 1., 1., 0.]), with_hand=True), dict(target_pos=np.array([0., -0.1, 0.5]), target_quat=np.array([1., 1., 0., 0.]), with_hand=False), ]) def test_initialize_to_fixed_pose(self, target_pos, target_quat, with_hand): arena, arm, hand = self.make_model(with_hand=with_hand) initializer = tcp_initializer.ToolCenterPointInitializer( hand=hand, arm=arm, position=target_pos, quaternion=target_quat) physics = mjcf.Physics.from_mjcf_model(arena.mjcf_model) initializer(physics=physics, random_state=np.random.RandomState(0)) site = hand.tool_center_point if with_hand else arm.wrist_site self.assertTargetPoseAchieved(physics.bind(site), target_pos, target_quat) def test_exception_if_hand_colliding_with_fixed_body(self): arena, arm, hand = self.make_model() target_pos = np.array([0.1, 0.2, 0.3]) target_quat = np.array([0., 1., 1., 0.]) max_rejection_samples = 10 max_ik_attempts = 5 # Place a fixed obstacle at the target location so that the TCP can't reach # the target without colliding with it. obstacle = props.Primitive(geom_type='sphere', size=[0.3]) attachment_frame = arena.attach(obstacle) attachment_frame.pos = target_pos physics = mjcf.Physics.from_mjcf_model(arena.mjcf_model) make_initializer = functools.partial( tcp_initializer.ToolCenterPointInitializer, hand=hand, arm=arm, position=target_pos, quaternion=target_quat, max_ik_attempts=max_ik_attempts, max_rejection_samples=max_rejection_samples) initializer = make_initializer() with self.assertRaisesWithLiteralMatch( RuntimeError, tcp_initializer._REJECTION_SAMPLING_FAILED.format( max_rejection_samples=max_rejection_samples, max_ik_attempts=max_ik_attempts)): initializer(physics=physics, random_state=np.random.RandomState(0)) # The initializer should succeed if we ignore collisions. initializer_ignore_collisions = make_initializer(ignore_collisions=True) initializer_ignore_collisions(physics=physics, random_state=np.random.RandomState(0)) self.assertTargetPoseAchieved( physics.bind(hand.tool_center_point), target_pos, target_quat) # Confirm that the obstacle and the hand are in contact. self.assertEntitiesInContact(physics, hand, obstacle) @parameterized.named_parameters([ dict(testcase_name='between_arm_and_arm', with_hand=False), dict(testcase_name='between_arm_and_hand', with_hand=True), ]) def test_exception_if_self_collision(self, with_hand): arena, arm, hand = self.make_model(with_hand=with_hand) # This pose places the wrist or hand partially inside the base of the arm. target_pos = np.array([0., 0.1, 0.1]) target_quat = np.array([-1., 1., 0., 0.]) max_rejection_samples = 10 max_ik_attempts = 5 physics = mjcf.Physics.from_mjcf_model(arena.mjcf_model) make_initializer = functools.partial( tcp_initializer.ToolCenterPointInitializer, hand=hand, arm=arm, position=target_pos, quaternion=target_quat, max_ik_attempts=max_ik_attempts, max_rejection_samples=max_rejection_samples) initializer = make_initializer() with self.assertRaisesWithLiteralMatch( RuntimeError, tcp_initializer._REJECTION_SAMPLING_FAILED.format( max_rejection_samples=max_rejection_samples, max_ik_attempts=max_ik_attempts)): initializer(physics=physics, random_state=np.random.RandomState(0)) # The initializer should succeed if we ignore collisions. initializer_ignore_collisions = make_initializer(ignore_collisions=True) initializer_ignore_collisions(physics=physics, random_state=np.random.RandomState(0)) site = hand.tool_center_point if with_hand else arm.wrist_site self.assertTargetPoseAchieved( physics.bind(site), target_pos, target_quat) # Confirm that there is self-collision. self.assertEntitiesInContact(physics, arm, hand if with_hand else arm) def test_ignore_robot_collision_with_free_body(self): arena, arm, hand = self.make_model() target_pos = np.array([0.1, 0.2, 0.3]) target_quat = np.array([0., 1., 1., 0.]) # The obstacle is still placed at the target location, but this time it has # a freejoint and is held in place by a weld constraint. obstacle = props.Primitive(geom_type='sphere', size=[0.3], pos=target_pos) attachment_frame = arena.add_free_entity(obstacle) attachment_frame.pos = target_pos arena.mjcf_model.equality.add( 'weld', body1=attachment_frame, relpose=np.hstack([target_pos, [1., 0., 0., 0.]])) physics = mjcf.Physics.from_mjcf_model(arena.mjcf_model) initializer = tcp_initializer.ToolCenterPointInitializer( hand=hand, arm=arm, position=target_pos, quaternion=target_quat) # Check that the initializer succeeds. initializer(physics=physics, random_state=np.random.RandomState(0)) self.assertTargetPoseAchieved( physics.bind(hand.tool_center_point), target_pos, target_quat) # Confirm that the obstacle and the hand are in contact. self.assertEntitiesInContact(physics, hand, obstacle) def test_ignore_collision_not_involving_robot(self): arena, arm, hand = self.make_model() target_pos = np.array([0.1, 0.2, 0.3]) target_quat = np.array([0., 1., 1., 0.]) # Add two boxes that are always in contact with each other, but never with # the arm or hand (since they are not within reach). side_length = 0.1 x_offset = 10. bottom_box = props.Primitive( geom_type='box', size=[side_length]*3, pos=[x_offset, 0, 0]) top_box = props.Primitive( geom_type='box', size=[side_length]*3, pos=[x_offset, 0, 2*side_length]) arena.attach(bottom_box) arena.add_free_entity(top_box) initializer = tcp_initializer.ToolCenterPointInitializer( hand=hand, arm=arm, position=target_pos, quaternion=target_quat) physics = mjcf.Physics.from_mjcf_model(arena.mjcf_model) # Confirm that there are actually contacts between the two boxes. self.assertEntitiesInContact(physics, bottom_box, top_box) # Check that the initializer still succeeds. initializer(physics=physics, random_state=np.random.RandomState(0)) self.assertTargetPoseAchieved( physics.bind(hand.tool_center_point), target_pos, target_quat) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/composer/initializers/tcp_initializer_test.py
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities that are helpful for implementing initializers.""" import collections def _get_root_model(mjcf_elements): root_model = mjcf_elements[0].root.root_model for element in mjcf_elements: if element.root.root_model != root_model: raise ValueError('entities do not all belong to the same root model') return root_model class JointStaticIsolator: """Helper class that isolates a collection of MuJoCo joints from others. An instance of this class is a context manager that caches the positions and velocities of all non-isolated joints *upon construction*, and resets them to their original state when the context exits. """ def __init__(self, physics, joints): """Initializes the joint isolator. Args: physics: An instance of `mjcf.Physics`. joints: An iterable of `mjcf.Element` representing joints that may be modified inside the context managed by this isolator. """ if not isinstance(joints, collections.abc.Iterable): joints = [joints] root_model = _get_root_model(joints) other_joints = [joint for joint in root_model.find_all('joint') if joint not in joints] if other_joints: self._other_joints_mj = physics.bind(other_joints) self._initial_qpos = self._other_joints_mj.qpos.copy() self._initial_qvel = self._other_joints_mj.qvel.copy() else: self._other_joints_mj = None def __enter__(self): pass def __exit__(self, exc_type, exc_value, traceback): del exc_type, exc_value, traceback # unused if self._other_joints_mj: self._other_joints_mj.qpos = self._initial_qpos self._other_joints_mj.qvel = self._initial_qvel
dm_control-main
dm_control/composer/initializers/utils.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for index.""" import collections from absl.testing import absltest from absl.testing import parameterized from dm_control.mujoco import index from dm_control.mujoco import wrapper from dm_control.mujoco.testing import assets from dm_control.mujoco.wrapper.mjbindings import sizes import mujoco import numpy as np MODEL = assets.get_contents('cartpole.xml') MODEL_NO_NAMES = assets.get_contents('cartpole_no_names.xml') MODEL_3RD_ORDER_ACTUATORS = assets.get_contents( 'model_with_third_order_actuators.xml') FIELD_REPR = { 'act': ('FieldIndexer(act):\n' '(empty)'), 'qM': ('FieldIndexer(qM):\n' '0 [ 0 ]\n' '1 [ 1 ]\n' '2 [ 2 ]'), 'sensordata': ('FieldIndexer(sensordata):\n' '0 accelerometer [ 0 ]\n' '1 accelerometer [ 1 ]\n' '2 accelerometer [ 2 ]\n' '3 collision [ 3 ]'), 'xpos': ('FieldIndexer(xpos):\n' ' x y z \n' '0 world [ 0 1 2 ]\n' '1 cart [ 3 4 5 ]\n' '2 pole [ 6 7 8 ]\n' '3 mocap1 [ 9 10 11 ]\n' '4 mocap2 [ 12 13 14 ]'), } class MujocoIndexTest(parameterized.TestCase): def setUp(self): super().setUp() self._model = wrapper.MjModel.from_xml_string(MODEL) self._data = wrapper.MjData(self._model) mujoco.mj_forward(self._model.ptr, self._data.ptr) self._size_to_axis_indexer = index.make_axis_indexers(self._model) self._model_indexers = index.struct_indexer(self._model, 'mjmodel', self._size_to_axis_indexer) self._data_indexers = index.struct_indexer(self._data, 'mjdata', self._size_to_axis_indexer) def assertIndexExpressionEqual(self, expected, actual): try: if isinstance(expected, tuple): self.assertLen(actual, len(expected)) for expected_item, actual_item in zip(expected, actual): self.assertIndexExpressionEqual(expected_item, actual_item) elif isinstance(expected, (list, np.ndarray)): np.testing.assert_array_equal(expected, actual) else: self.assertEqual(expected, actual) except AssertionError: self.fail('Indexing expressions are not equal.\n' 'expected: {!r}\nactual: {!r}'.format(expected, actual)) @parameterized.parameters( # (field name, named index key, expected integer index key) ('actuator_gear', 'slide', 0), ('geom_rgba', ('mocap_sphere', 'g'), (6, 1)), ('dof_armature', 'slider', slice(0, 1, None)), ('dof_armature', ['slider', 'hinge'], [0, 1]), ('numeric_data', 'three_numbers', slice(1, 4, None)), ('numeric_data', ['three_numbers', 'control_timestep'], [1, 2, 3, 0])) def testModelNamedIndexing(self, field_name, key, numeric_key): indexer = getattr(self._model_indexers, field_name) field = getattr(self._model, field_name) converted_key = indexer._convert_key(key) # Explicit check that the converted key matches the numeric key. converted_key = indexer._convert_key(key) self.assertIndexExpressionEqual(numeric_key, converted_key) # This writes unique values to the underlying buffer to prevent false # negatives. field.flat[:] = np.arange(field.size) # Check that the result of named indexing matches the result of numeric # indexing. np.testing.assert_array_equal(field[numeric_key], indexer[key]) @parameterized.parameters( # (field name, named index key, expected integer index key) ('xpos', 'pole', 2), ('xpos', ['pole', 'cart'], [2, 1]), ('sensordata', 'accelerometer', slice(0, 3, None)), ('sensordata', 'collision', slice(3, 4, None)), ('sensordata', ['accelerometer', 'collision'], [0, 1, 2, 3]), # Slices. ('xpos', (slice(None), 0), (slice(None), 0)), # Custom fixed-size columns. ('xpos', ('pole', 'y'), (2, 1)), ('xmat', ('cart', ['yy', 'zz']), (1, [4, 8])), # Custom indexers for mocap bodies. ('mocap_quat', 'mocap1', 0), ('mocap_pos', (['mocap2', 'mocap1'], 'z'), ([1, 0], 2)), # Two-dimensional named indexing. ('xpos', (['pole', 'cart'], ['x', 'z']), ([2, 1], [0, 2])), ('xpos', ([['pole'], ['cart']], ['x', 'z']), ([[2], [1]], [0, 2]))) def testDataNamedIndexing(self, field_name, key, numeric_key): indexer = getattr(self._data_indexers, field_name) field = getattr(self._data, field_name) # Explicit check that the converted key matches the numeric key. converted_key = indexer._convert_key(key) self.assertIndexExpressionEqual(numeric_key, converted_key) # This writes unique values to the underlying buffer to prevent false # negatives. field.flat[:] = np.arange(field.size) # Check that the result of named indexing matches the result of numeric # indexing. np.testing.assert_array_equal(field[numeric_key], indexer[key]) @parameterized.parameters( # (field name, named index key, expected integer index key) ('act', 'cylinder', 0), ('act_dot', 'general', 1), ('act', ['general', 'cylinder', 'general'], [1, 0, 1])) def testIndexThirdOrderActuators(self, field_name, key, numeric_key): model = wrapper.MjModel.from_xml_string(MODEL_3RD_ORDER_ACTUATORS) data = wrapper.MjData(model) size_to_axis_indexer = index.make_axis_indexers(model) data_indexers = index.struct_indexer(data, 'mjdata', size_to_axis_indexer) indexer = getattr(data_indexers, field_name) field = getattr(data, field_name) # Explicit check that the converted key matches the numeric key. converted_key = indexer._convert_key(key) self.assertIndexExpressionEqual(numeric_key, converted_key) # This writes unique values to the underlying buffer to prevent false # negatives. field.flat[:] = np.arange(field.size) # Check that the result of named indexing matches the result of numeric # indexing. np.testing.assert_array_equal(field[numeric_key], indexer[key]) @parameterized.parameters( # (field name, named index key) ('xpos', 'pole'), ('xpos', ['pole', 'cart']), ('xpos', (['pole', 'cart'], 'y')), ('xpos', (['pole', 'cart'], ['x', 'z'])), ('qpos', 'slider'), ('qvel', ['slider', 'hinge']),) def testDataAssignment(self, field_name, key): indexer = getattr(self._data_indexers, field_name) field = getattr(self._data, field_name) # The result of the indexing expression is either an array or a scalar. index_result = indexer[key] try: # Write a sequence of unique values to prevent false negatives. new_values = np.arange(index_result.size).reshape(index_result.shape) except AttributeError: new_values = 99 indexer[key] = new_values # Check that the new value(s) can be read back from the underlying buffer. converted_key = indexer._convert_key(key) np.testing.assert_array_equal(new_values, field[converted_key]) @parameterized.parameters( # (field name, first index key, second index key) ('sensordata', 'accelerometer', 0), ('sensordata', 'accelerometer', [0, 2]), ('sensordata', 'accelerometer', slice(None)),) def testChainedAssignment(self, field_name, first_key, second_key): indexer = getattr(self._data_indexers, field_name) field = getattr(self._data, field_name) # The result of the indexing expression is either an array or a scalar. index_result = indexer[first_key][second_key] try: # Write a sequence of unique values to prevent false negatives. new_values = np.arange(index_result.size).reshape(index_result.shape) except AttributeError: new_values = 99 indexer[first_key][second_key] = new_values # Check that the new value(s) can be read back from the underlying buffer. converted_key = indexer._convert_key(first_key) np.testing.assert_array_equal(new_values, field[converted_key][second_key]) def testNamedColumnFieldNames(self): all_fields = set() for struct in sizes.array_sizes.values(): all_fields.update(struct.keys()) named_col_fields = set() for field_set in index._COLUMN_ID_TO_FIELDS.values(): named_col_fields.update(field_set) # Check that all of the "named column" fields specified in index are # also found in mjbindings.sizes. self.assertContainsSubset(named_col_fields, all_fields) @parameterized.parameters('xpos', 'xmat') # field name def testTooManyIndices(self, field_name): indexer = getattr(self._data_indexers, field_name) with self.assertRaisesRegex(IndexError, 'Index tuple'): _ = indexer[:, :, :, 'too', 'many', 'elements'] @parameterized.parameters( # bad item, exception regexp (Ellipsis, 'Ellipsis'), (None, 'None'), (np.newaxis, 'None'), (b'', 'Empty string'), (u'', 'Empty string')) def testBadIndexItems(self, bad_index_item, exception_regexp): indexer = getattr(self._data_indexers, 'xpos') expressions = [ bad_index_item, (0, bad_index_item), [bad_index_item], [[bad_index_item]], (0, [bad_index_item]), (0, [[bad_index_item]]), np.array([bad_index_item]), (0, np.array([bad_index_item])), (0, np.array([[bad_index_item]])) ] for expression in expressions: with self.assertRaisesRegex(IndexError, exception_regexp): _ = indexer[expression] @parameterized.parameters('act', 'qM', 'sensordata', 'xpos') # field name def testFieldIndexerRepr(self, field_name): indexer = getattr(self._data_indexers, field_name) field = getattr(self._data, field_name) # Write a sequence of unique values to prevent false negatives. field.flat[:] = np.arange(field.size) # Check that the string representation is as expected. self.assertEqual(FIELD_REPR[field_name], repr(indexer)) @parameterized.parameters(MODEL, MODEL_NO_NAMES) def testBuildIndexersForEdgeCases(self, xml_string): model = wrapper.MjModel.from_xml_string(xml_string) data = wrapper.MjData(model) size_to_axis_indexer = index.make_axis_indexers(model) index.struct_indexer(model, 'mjmodel', size_to_axis_indexer) index.struct_indexer(data, 'mjdata', size_to_axis_indexer) # pylint: disable=undefined-variable @parameterized.named_parameters([ (name, name) for name in dir(np.ndarray) if not name.startswith('_') # Exclude 'private' attributes and name not in ('ctypes', 'flat') # Can't compare via identity/equality ]) # pylint: enable=undefined-variable def testFieldIndexerDelegatesNDArrayAttributes(self, name): field = self._data.xpos field_indexer = self._data_indexers.xpos actual = getattr(field_indexer, name) expected = getattr(field, name) if isinstance(expected, np.ndarray): np.testing.assert_array_equal(actual, expected) else: self.assertEqual(actual, expected) # FieldIndexer attributes should be read-only with self.assertRaisesRegex(AttributeError, name): setattr(field_indexer, name, expected) def testFieldIndexerDir(self): expected_subset = dir(self._data.xpos) actual_set = dir(self._data_indexers.xpos) self.assertContainsSubset(expected_subset, actual_set) def _iter_indexers(model, data): mujoco.mj_forward(model.ptr, data.ptr) size_to_axis_indexer = index.make_axis_indexers(model) all_fields = collections.OrderedDict() for struct, struct_name in ((model, 'mjmodel'), (data, 'mjdata')): indexer = index.struct_indexer(struct, struct_name, size_to_axis_indexer) for field_name, field_indexer in indexer._asdict().items(): if field_name not in all_fields: all_fields[field_name] = field_indexer for field_name, field_indexer in all_fields.items(): yield field_name, field_indexer class AllFieldsTest(parameterized.TestCase): """Generic tests covering each FieldIndexer in model and data.""" # NB: the class must hold references to the model and data instances or they # may be garbage-collected before any indexing is attempted. model = wrapper.MjModel.from_xml_string(MODEL) data = wrapper.MjData(model) # Iterates over ('field_name', FieldIndexer) pairs @parameterized.named_parameters(_iter_indexers(model, data)) def testReadWrite_(self, field): # Read the contents of the FieldIndexer as a numpy array. old_contents = field[:] # Write unique values to the FieldIndexer and read them back again. # Don't write to non-float fields since these might contain pointers. if np.issubdtype(old_contents.dtype, np.floating): new_contents = np.arange(old_contents.size, dtype=old_contents.dtype) new_contents.shape = old_contents.shape field[:] = new_contents np.testing.assert_array_equal(new_contents, field[:]) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/index_test.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests to check whether methods of `mujoco.Physics` are threadsafe.""" import platform from absl.testing import absltest from dm_control import _render from dm_control.mujoco import engine from dm_control.mujoco.testing import assets from dm_control.mujoco.testing import decorators MODEL = assets.get_contents('cartpole.xml') NUM_STEPS = 10 # Context creation with GLFW is not threadsafe. if _render.BACKEND == 'glfw': # On Linux we are able to create a GLFW window in a single thread that is not # the main thread. # On Mac we are only allowed to create windows on the main thread, so we # disable the `run_threaded` wrapper entirely. NUM_THREADS = None if platform.system() == 'Darwin' else 1 else: NUM_THREADS = 4 class ThreadSafetyTest(absltest.TestCase): @decorators.run_threaded(num_threads=NUM_THREADS) def test_load_physics_from_string(self): engine.Physics.from_xml_string(MODEL) @decorators.run_threaded(num_threads=NUM_THREADS) def test_load_and_reload_physics_from_string(self): physics = engine.Physics.from_xml_string(MODEL) physics.reload_from_xml_string(MODEL) @decorators.run_threaded(num_threads=NUM_THREADS) def test_load_and_step_physics(self): physics = engine.Physics.from_xml_string(MODEL) for _ in range(NUM_STEPS): physics.step() @decorators.run_threaded(num_threads=NUM_THREADS) def test_load_and_step_multiple_physics_parallel(self): physics1 = engine.Physics.from_xml_string(MODEL) physics2 = engine.Physics.from_xml_string(MODEL) for _ in range(NUM_STEPS): physics1.step() physics2.step() @decorators.run_threaded(num_threads=NUM_THREADS) def test_load_and_step_multiple_physics_sequential(self): physics1 = engine.Physics.from_xml_string(MODEL) for _ in range(NUM_STEPS): physics1.step() del physics1 physics2 = engine.Physics.from_xml_string(MODEL) for _ in range(NUM_STEPS): physics2.step() @decorators.run_threaded(num_threads=NUM_THREADS, calls_per_thread=5) def test_load_physics_and_render(self): physics = engine.Physics.from_xml_string(MODEL) # Check that frames aren't repeated - make the cartpole move. physics.set_control([1.0]) unique_frames = set() for _ in range(NUM_STEPS): physics.step() frame = physics.render(width=320, height=240, camera_id=0) unique_frames.add(frame.tobytes()) self.assertLen(unique_frames, NUM_STEPS) @decorators.run_threaded(num_threads=NUM_THREADS, calls_per_thread=5) def test_render_multiple_physics_instances_per_thread_parallel(self): physics1 = engine.Physics.from_xml_string(MODEL) physics2 = engine.Physics.from_xml_string(MODEL) for _ in range(NUM_STEPS): physics1.step() physics1.render(width=320, height=240, camera_id=0) physics2.step() physics2.render(width=320, height=240, camera_id=0) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/thread_safety_test.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Mujoco functions to support named indexing. The Mujoco name structure works as follows: In mjxmacro.h, each "X" entry denotes a type (a), a field name (b) and a list of dimension size metadata (c) which may contain both numbers and names, for example X(int, name_bodyadr, nbody, 1) // or X(mjtNum, body_pos, nbody, 3) a b c -----> The second declaration states that the field `body_pos` has type `mjtNum` and dimension sizes `(nbody, 3)`, i.e. the first axis is indexed by body number. These and other named dimensions are sized based on the loaded model. This information is parsed and stored in `mjbindings.sizes`. In mjmodel.h, the struct mjModel contains an array of element name addresses for each size name. int* name_bodyadr; // body name pointers (nbody x 1) By iterating over each of these element name address arrays, we first obtain a mapping from size names to a list of element names. {'nbody': ['cart', 'pole'], 'njnt': ['free', 'ball', 'hinge'], ...} In addition to the element names that are derived from the mjModel struct at runtime, we also assign hard-coded names to certain dimensions where there is an established naming convention (e.g. 'x', 'y', 'z' for dimensions that correspond to Cartesian positions). For some dimensions, a single element name maps to multiple indices within the underlying field. For example, a single joint name corresponds to a variable number of indices within `qpos` that depends on the number of degrees of freedom associated with that joint type. These are referred to as "ragged" dimensions. In such cases we determine the size of each named element by examining the address arrays (e.g. `jnt_qposadr`), and construct a mapping from size name to element sizes: {'nq': [7, 3, 1], 'nv': [6, 3, 1], ...} Given these two dictionaries, we then create an `Axis` instance for each size name. These objects have a `convert_key_item` method that handles the conversion from indexing expressions containing element names to valid numpy indices. Different implementations of `Axis` are used to handle "ragged" and "non-ragged" dimensions. {'nbody': RegularNamedAxis(names=['cart', 'pole']), 'nq': RaggedNamedAxis(names=['free', 'ball', 'hinge'], sizes=[7, 4, 1])} We construct this dictionary once using `make_axis_indexers`. Finally, for each field we construct a `FieldIndexer` class. A `FieldIndexer` instance encapsulates a field together with a list of `Axis` instances (one per dimension), and implements the named indexing logic by calling their respective `convert_key_item` methods. Summary of terminology: * _size name_ or _size_ A dimension size name, e.g. `nbody` or `ngeom`. * _element name_ or _name_ A named element in a Mujoco model, e.g. 'cart' or 'pole'. * _element index_ or _index_ The index of an element name, for a specific size name. """ import abc import collections import weakref from dm_control.mujoco.wrapper import util from dm_control.mujoco.wrapper.mjbindings import sizes import numpy as np # Mapping from {size_name: address_field_name} for ragged dimensions. _RAGGED_ADDRS = { 'nq': 'jnt_qposadr', 'nv': 'jnt_dofadr', 'na': 'actuator_actadr', 'nsensordata': 'sensor_adr', 'nnumericdata': 'numeric_adr', } # Names of columns. _COLUMN_NAMES = { 'xyz': ['x', 'y', 'z'], 'quat': ['qw', 'qx', 'qy', 'qz'], 'mat': ['xx', 'xy', 'xz', 'yx', 'yy', 'yz', 'zx', 'zy', 'zz'], 'rgba': ['r', 'g', 'b', 'a'], } # Mapping from keys of _COLUMN_NAMES to sets of field names whose columns are # addressable using those names. _COLUMN_ID_TO_FIELDS = { 'xyz': set([ 'body_pos', 'body_ipos', 'body_inertia', 'jnt_pos', 'jnt_axis', 'geom_size', 'geom_pos', 'site_size', 'site_pos', 'cam_pos', 'cam_poscom0', 'cam_pos0', 'light_pos', 'light_dir', 'light_poscom0', 'light_pos0', 'light_dir0', 'mesh_vert', 'mesh_normal', 'mocap_pos', 'xpos', 'xipos', 'xanchor', 'xaxis', 'geom_xpos', 'site_xpos', 'cam_xpos', 'light_xpos', 'light_xdir', 'subtree_com', 'wrap_xpos', 'subtree_linvel', 'subtree_angmom', ]), 'quat': set([ 'body_quat', 'body_iquat', 'geom_quat', 'site_quat', 'cam_quat', 'mocap_quat', 'xquat', ]), 'mat': set([ 'cam_mat0', 'xmat', 'ximat', 'geom_xmat', 'site_xmat', 'cam_xmat', ]), 'rgba': set([ 'geom_rgba', 'site_rgba', 'skin_rgba', 'mat_rgba', 'tendon_rgba', ]) } def _get_size_name_to_element_names(model): """Returns a dict that maps size names to element names. Args: model: An instance of `mjbindings.mjModelWrapper`. Returns: A `dict` mapping from a size name (e.g. `'nbody'`) to a list of element names. """ names = model.names size_name_to_element_names = {} for field_name in dir(model.ptr): if not _is_name_pointer(field_name): continue # Get addresses of element names in `model.names` array, e.g. # field name: `name_nbodyadr` and name_addresses: `[86, 92, 101]`, and skip # when there are no elements for this type in the model. name_addresses = getattr(model, field_name).ravel() if not name_addresses.size: continue # Get the element names. element_names = [] for start_index in name_addresses: end_index = names.find(b'\0', start_index) name = names[start_index:end_index] element_names.append(str(name, 'utf-8')) # String identifier for the size of the first dimension, e.g. 'nbody'. size_name = _get_size_name(field_name) size_name_to_element_names[size_name] = element_names # Add custom element names for certain columns. for size_name, element_names in _COLUMN_NAMES.items(): size_name_to_element_names[size_name] = element_names # "Ragged" axes inherit their element names from other "non-ragged" axes. # For example, the element names for "nv" axis come from "njnt". for size_name, address_field_name in _RAGGED_ADDRS.items(): donor = 'n' + address_field_name.split('_')[0] if donor == 'nactuator': donor = 'nu' if donor in size_name_to_element_names: size_name_to_element_names[size_name] = size_name_to_element_names[donor] # Mocap bodies are a special subset of bodies. mocap_body_names = [None] * model.nmocap for body_id, body_name in enumerate(size_name_to_element_names['nbody']): body_mocapid = model.body_mocapid[body_id] if body_mocapid != -1: mocap_body_names[body_mocapid] = body_name assert None not in mocap_body_names size_name_to_element_names['nmocap'] = mocap_body_names return size_name_to_element_names def _get_size_name_to_element_sizes(model): """Returns a dict that maps size names to element sizes for ragged axes. Args: model: An instance of `mjbindings.mjModelWrapper`. Returns: A `dict` mapping from a size name (e.g. `'nv'`) to a numpy array of element sizes. Size names corresponding to non-ragged axes are omitted. """ size_name_to_element_sizes = {} for size_name, address_field_name in _RAGGED_ADDRS.items(): addresses = getattr(model, address_field_name).ravel() if size_name == 'na': element_sizes = np.where(addresses == -1, 0, 1) else: total_length = getattr(model, size_name) element_sizes = np.diff(np.r_[addresses, total_length]) size_name_to_element_sizes[size_name] = element_sizes return size_name_to_element_sizes def make_axis_indexers(model): """Returns a dict that maps size names to `Axis` indexers. Args: model: An instance of `mjbindings.MjModelWrapper`. Returns: A `dict` mapping from a size name (e.g. `'nbody'`) to an `Axis` instance. """ size_name_to_element_names = _get_size_name_to_element_names(model) size_name_to_element_sizes = _get_size_name_to_element_sizes(model) # Unrecognized size names are treated as unnamed axes. axis_indexers = collections.defaultdict(UnnamedAxis) for size_name in size_name_to_element_names: element_names = size_name_to_element_names[size_name] if size_name in _RAGGED_ADDRS: element_sizes = size_name_to_element_sizes[size_name] singleton = (size_name == 'na') indexer = RaggedNamedAxis(element_names, element_sizes, singleton=singleton) else: indexer = RegularNamedAxis(element_names) axis_indexers[size_name] = indexer return axis_indexers def _is_name_pointer(field_name): """Returns True for name pointer field names such as `name_bodyadr`.""" # Denotes name pointer fields in mjModel. prefix, suffix = 'name_', 'adr' return field_name.startswith(prefix) and field_name.endswith(suffix) def _get_size_name(field_name, struct_name='mjmodel'): # Look up size name in metadata. return sizes.array_sizes[struct_name][field_name][0] def _validate_key_item(key_item): if isinstance(key_item, (list, np.ndarray)): for sub in key_item: _validate_key_item(sub) # Recurse into nested arrays and lists. elif key_item is Ellipsis: raise IndexError('Ellipsis indexing not supported.') elif key_item is None: raise IndexError('None indexing not supported.') elif key_item in (b'', u''): raise IndexError('Empty strings are not allowed.') class Axis(metaclass=abc.ABCMeta): """Handles the conversion of named indexing expressions into numpy indices.""" @abc.abstractmethod def convert_key_item(self, key_item): """Converts a (possibly named) indexing expression to a numpy index.""" class UnnamedAxis(Axis): """An object representing an axis where the elements are not named.""" def convert_key_item(self, key_item): """Validate the indexing expression and return it unmodified.""" _validate_key_item(key_item) return key_item class RegularNamedAxis(Axis): """Represents an axis where each named element has a fixed size of 1.""" def __init__(self, names): """Initializes a new `RegularNamedAxis` instance. Args: names: A list or array of element names. """ self._names = names self._names_to_offsets = {name: offset for offset, name in enumerate(names) if name} def convert_key_item(self, key_item): """Converts a named indexing expression to a numpy-friendly index.""" _validate_key_item(key_item) if isinstance(key_item, str): key_item = self._names_to_offsets[util.to_native_string(key_item)] elif isinstance(key_item, (list, np.ndarray)): # Cast lists to numpy arrays. key_item = np.array(key_item, copy=False) original_shape = key_item.shape # We assume that either all or none of the items in the array are strings # representing names. If there is a mix, we will let NumPy throw an error # when trying to index with the returned item. if isinstance(key_item.flat[0], str): key_item = np.array([self._names_to_offsets[util.to_native_string(k)] for k in key_item.flat]) # Ensure the output shape is the same as that of the input. key_item.shape = original_shape return key_item @property def names(self): """Returns a list of element names.""" return self._names class RaggedNamedAxis(Axis): """Represents an axis where the named elements may vary in size.""" def __init__(self, element_names, element_sizes, singleton=False): """Initializes a new `RaggedNamedAxis` instance. Args: element_names: A list or array containing the element names. element_sizes: A list or array containing the size of each element. singleton: Whether to reduce singleton slices to scalars. """ names_to_slices = {} names_to_indices = {} offset = 0 for name, size in zip(element_names, element_sizes): # Don't add unnamed elements to the dicts. if name: if size == 1 and singleton: names_to_slices[name] = offset else: names_to_slices[name] = slice(offset, offset + size) names_to_indices[name] = range(offset, offset + size) offset += size self._names = element_names self._sizes = element_sizes self._names_to_slices = names_to_slices self._names_to_indices = names_to_indices def convert_key_item(self, key_item): """Converts a named indexing expression to a numpy-friendly index.""" _validate_key_item(key_item) if isinstance(key_item, str): key_item = self._names_to_slices[util.to_native_string(key_item)] elif isinstance(key_item, (list, np.ndarray)): # We assume that either all or none of the items in the sequence are # strings representing names. If there is a mix, we will let NumPy throw # an error when trying to index with the returned key. if isinstance(key_item[0], str): new_key = [] for k in key_item: idx = self._names_to_indices[util.to_native_string(k)] if isinstance(idx, int): new_key.append(idx) else: new_key.extend(idx) key_item = new_key return key_item @property def names(self): """Returns a list of element names.""" return self._names Axes = collections.namedtuple('Axes', ['row', 'col']) Axes.__new__.__defaults__ = (None,) # Default value for optional 'col' field class FieldIndexer: """An array-like object providing named access to a field in a MuJoCo struct. FieldIndexers expose the same attributes and methods as an `np.ndarray`. They may be indexed with strings or lists of strings corresponding to element names. They also support standard numpy indexing expressions, with the exception of indices containing `Ellipsis` or `None`. """ __slots__ = ('_field_name', '_field', '_axes') def __init__(self, parent_struct, field_name, axis_indexers): """Initializes a new `FieldIndexer`. Args: parent_struct: Wrapped ctypes structure, as generated by `mjbindings`. field_name: String containing field name in `parent_struct`. axis_indexers: A list of `Axis` instances, one per dimension. """ self._field_name = field_name self._field = weakref.proxy(getattr(parent_struct, field_name)) self._axes = Axes(*axis_indexers) def __dir__(self): # Enables IPython tab completion return sorted(set(dir(type(self)) + dir(self._field))) def __getattr__(self, name): return getattr(self._field, name) def _convert_key(self, key): """Convert a (possibly named) indexing expression to a valid numpy index.""" return_tuple = isinstance(key, tuple) if not return_tuple: key = (key,) if len(key) > self._field.ndim: raise IndexError('Index tuple has {} elements, but array has only {} ' 'dimensions.'.format(len(key), self._field.ndim)) new_key = tuple(axis.convert_key_item(key_item) for axis, key_item in zip(self._axes, key)) if not return_tuple: new_key = new_key[0] return new_key def __getitem__(self, key): """Converts the key to a numeric index and returns the indexed array. Args: key: Indexing expression. Raises: IndexError: If an indexing tuple has too many elements, or if it contains `Ellipsis`, `None`, or an empty string. Returns: The indexed array. """ return self._field[self._convert_key(key)] def __setitem__(self, key, value): """Converts the key and assigns to the indexed array. Args: key: Indexing expression. value: Value to assign. Raises: IndexError: If an indexing tuple has too many elements, or if it contains `Ellipsis`, `None`, or an empty string. """ self._field[self._convert_key(key)] = value @property def axes(self): """A namedtuple containing the row and column indexers for this field.""" return self._axes def __repr__(self): """Returns a pretty string representation of the `FieldIndexer`.""" def get_name_arr_and_len(dim_idx): """Returns a string array of element names and the max name length.""" axis = self._axes[dim_idx] size = self._field.shape[dim_idx] try: name_len = max(len(name) for name in axis.names) name_arr = np.zeros(size, dtype='S{}'.format(name_len)) for name in axis.names: if name: # Use the `Axis` object to convert the name into a numpy index, then # use this index to write into name_arr. name_arr[axis.convert_key_item(name)] = name except AttributeError: name_arr = np.zeros(size, dtype='S0') # An array of zero-length strings name_len = 0 return name_arr, name_len row_name_arr, row_name_len = get_name_arr_and_len(0) if self._field.ndim > 1: col_name_arr, col_name_len = get_name_arr_and_len(1) else: col_name_arr, col_name_len = np.zeros(1, dtype='S0'), 0 idx_len = int(np.log10(max(self._field.shape[0], 1))) + 1 cls_template = '{class_name:}({field_name:}):' col_template = '{padding:}{col_names:}' row_template = '{idx:{idx_len:}} {row_name:>{row_name_len:}} {row_vals:}' lines = [] # Write the class name and field name. lines.append(cls_template.format(class_name=self.__class__.__name__, field_name=self._field_name)) # Write a header line containing the column names (if there are any). if col_name_len: col_width = max(col_name_len, 9) + 1 extra_indent = 4 padding = ' ' * (idx_len + row_name_len + extra_indent) col_names = ''.join( '{name:<{width:}}' .format(name=util.to_native_string(name), width=col_width) for name in col_name_arr) lines.append(col_template.format(padding=padding, col_names=col_names)) # Write the row names (if there are any) and the formatted array values. if not self._field.shape[0]: lines.append('(empty)') else: for idx, row in enumerate(self._field): row_vals = np.array2string( np.atleast_1d(row), suppress_small=True, formatter={'float_kind': '{: < 9.3g}'.format}) lines.append(row_template.format( idx=idx, idx_len=idx_len, row_name=util.to_native_string(row_name_arr[idx]), row_name_len=row_name_len, row_vals=row_vals)) return '\n'.join(lines) def struct_indexer(struct, struct_name, size_to_axis_indexer): """Returns an object with a `FieldIndexer` attribute for each dynamic field. Usage example ```python named_data = struct_indexer(mjdata, 'mjdata', size_to_axis_indexer) fingertip_xpos = named_data.xpos['fingertip'] elbow_qvel = named_data.qvel['elbow'] ``` Args: struct: Wrapped ctypes structure as generated by `mjbindings`. struct_name: String containing corresponding Mujoco name of struct. size_to_axis_indexer: dict that maps size names to `Axis` instances. Returns: An object with a field for every dynamically sized array field, mapping to a `FieldIndexer`. The returned object is immutable and has an `_asdict` method. Raises: ValueError: If `struct_name` is not recognized. """ struct_name = struct_name.lower() if struct_name not in sizes.array_sizes: raise ValueError('Unrecognized struct name ' + struct_name) array_sizes = sizes.array_sizes[struct_name] # Used to create the namedtuple. field_names = [] field_indexers = {} for field_name in array_sizes: # Skip over structured arrays and fields that have sizes but aren't numpy # arrays, such as text fields and contacts (b/34805932). attr = getattr(struct, field_name) if not isinstance(attr, np.ndarray) or attr.dtype.fields: continue size_names = sizes.array_sizes[struct_name][field_name] # Here we override the size name in order to enable named column indexing # for certain fields, e.g. 3 becomes "xyz" for field name "xpos". for new_col_size, field_set in _COLUMN_ID_TO_FIELDS.items(): if field_name in field_set: size_names = (size_names[0], new_col_size) break axis_indexers = [] for size_name in size_names: axis_indexers.append(size_to_axis_indexer[size_name]) field_indexers[field_name] = FieldIndexer( parent_struct=struct, field_name=field_name, axis_indexers=axis_indexers) field_names.append(field_name) return make_struct_indexer(field_indexers) def make_struct_indexer(field_indexers): """Returns an immutable container exposing named indexers as attributes.""" class StructIndexer: __slots__ = () def _asdict(self): return field_indexers.copy() for name, indexer in field_indexers.items(): setattr(StructIndexer, name, indexer) return StructIndexer()
dm_control-main
dm_control/mujoco/index.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `engine`.""" import copy import pickle from absl.testing import absltest from absl.testing import parameterized from dm_control.mujoco import engine from dm_control.mujoco import wrapper from dm_control.mujoco.testing import assets from dm_control.mujoco.wrapper.mjbindings import enums from dm_control.rl import control import mock import mujoco import numpy as np MODEL_PATH = assets.get_path('cartpole.xml') MODEL_WITH_ASSETS = assets.get_contents('model_with_assets.xml') ASSETS = { 'texture.png': assets.get_contents('deepmind.png'), 'mesh.stl': assets.get_contents('cube.stl'), 'included.xml': assets.get_contents('sphere.xml') } class MujocoEngineTest(parameterized.TestCase): def setUp(self): super().setUp() self._physics = engine.Physics.from_xml_path(MODEL_PATH) def _assert_attributes_equal(self, actual_obj, expected_obj, attr_to_compare): for name in attr_to_compare: actual_value = getattr(actual_obj, name) expected_value = getattr(expected_obj, name) try: if isinstance(expected_value, np.ndarray): np.testing.assert_array_equal(actual_value, expected_value) else: self.assertEqual(actual_value, expected_value) except AssertionError as e: raise AssertionError( f"Attribute '{name}' differs from expected value.") from e @parameterized.parameters(0, 'cart', u'cart') def testCameraIndexing(self, camera_id): height, width = 480, 640 _ = engine.Camera( self._physics, height, width, camera_id=camera_id) def testDepthRender(self): plane_and_box = """ <mujoco> <worldbody> <geom type="plane" pos="0 0 0" size="2 2 .1"/> <geom type="box" size=".1 .1 .1" pos="0 0 .1"/> <camera name="top" pos="0 0 3"/> </worldbody> </mujoco> """ physics = engine.Physics.from_xml_string(plane_and_box) pixels = physics.render(height=200, width=200, camera_id='top', depth=True) # Nearest pixels should be 2.8m away np.testing.assert_approx_equal(pixels.min(), 2.8, 3) # Furthest pixels should be 3m away (depth is orthographic) np.testing.assert_approx_equal(pixels.max(), 3.0, 3) @parameterized.parameters([True, False]) def testSegmentationRender(self, enable_geom_frame_rendering): box_four_corners = """ <mujoco> <visual> <scale framelength="2"/> </visual> <worldbody> <geom name="box0" type="box" size=".2 .2 .2" pos="-1 1 .1"/> <geom name="box1" type="box" size=".2 .2 .2" pos="1 1 .1"/> <site name="box2" type="box" size=".2 .2 .2" pos="1 -1 .1"/> <site name="box3" type="box" size=".2 .2 .2" pos="-1 -1 .1"/> <camera name="top" pos="0 0 3"/> </worldbody> </mujoco> """ physics = engine.Physics.from_xml_string(box_four_corners) obj_type_geom = enums.mjtObj.mjOBJ_GEOM # Geom object type obj_type_site = enums.mjtObj.mjOBJ_SITE # Site object type obj_type_decor = enums.mjtObj.mjOBJ_UNKNOWN # Decor object type scene_options = wrapper.MjvOption() if enable_geom_frame_rendering: scene_options.frame = mujoco.mjtFrame.mjFRAME_GEOM pixels = physics.render(height=200, width=200, camera_id='top', segmentation=True, scene_option=scene_options) # The pixel indices below were chosen so that toggling the frame decors do # not affect the segmentation results. with self.subTest('Center pixels should have background label'): np.testing.assert_equal(pixels[95:105, 95:105, 0], -1) np.testing.assert_equal(pixels[95:105, 95:105, 1], -1) with self.subTest('Geoms have correct object type'): np.testing.assert_equal(pixels[15:25, 0:10, 1], obj_type_geom) np.testing.assert_equal(pixels[15:25, 190:200, 1], obj_type_geom) with self.subTest('Sites have correct object type'): np.testing.assert_equal(pixels[190:200, 190:200, 1], obj_type_site) np.testing.assert_equal(pixels[190:200, 0:10, 1], obj_type_site) with self.subTest('Geoms have correct object IDs'): np.testing.assert_equal(pixels[15:25, 0:10, 0], physics.model.name2id('box0', obj_type_geom)) np.testing.assert_equal(pixels[15:25, 190:200, 0], physics.model.name2id('box1', obj_type_geom)) with self.subTest('Sites have correct object IDs'): np.testing.assert_equal(pixels[190:200, 190:200, 0], physics.model.name2id('box2', obj_type_site)) np.testing.assert_equal(pixels[190:200, 0:10, 0], physics.model.name2id('box3', obj_type_site)) with self.subTest('Decor elements present if and only if geom frames are ' 'enabled'): contains_decor = np.any(pixels[:, :, 1] == obj_type_decor) self.assertEqual(contains_decor, enable_geom_frame_rendering) def testSceneCallback(self): empty_world = """ <mujoco> <worldbody> <camera name="cam" pos="0 0 3"/> </worldbody> </mujoco> """ def callback(_, scn: mujoco.MjvScene): # Add a red box to the scene scn.ngeom += 1 mujoco.mjv_initGeom( scn.geoms[scn.ngeom - 1], mujoco.mjtGeom.mjGEOM_BOX.value, size=np.array([0.2, 0.2, 0.2]), pos=np.zeros(3), mat=np.eye(3).flatten(), rgba=np.array([1, 0, 0, 1], dtype=np.float32)) physics = engine.Physics.from_xml_string(empty_world) # Without the callback, render should return a black image. empty_image = physics.render( height=8, width=8, camera_id='cam', scene_callback=None) np.testing.assert_array_equal( np.zeros((8, 8, 3), dtype=np.uint8), empty_image) # With the callback, there should be a red box. pixels = physics.render( height=8, width=8, camera_id='cam', scene_callback=callback) # Are there any pixels where red component is bigger than green and blue? any_red_pixels = np.any(pixels[:, :, 0] > np.max(pixels[:, :, 1:3], axis=2)) self.assertTrue(any_red_pixels, 'Expecting some red pixels.') def testTextOverlay(self): height, width = 480, 640 overlay = engine.TextOverlay(title='Title', body='Body', style='big', position='bottom right') no_overlay = self._physics.render(height, width, camera_id=0) with_overlay = self._physics.render(height, width, camera_id=0, overlays=[overlay]) self.assertFalse(np.all(no_overlay == with_overlay), msg='Images are identical with and without text overlay.') def testSceneOption(self): height, width = 480, 640 scene_option = wrapper.MjvOption() # Render geoms as semi-transparent. scene_option.flags[enums.mjtVisFlag.mjVIS_TRANSPARENT] = 1 no_scene_option = self._physics.render(height, width, camera_id=0) with_scene_option = self._physics.render(height, width, camera_id=0, scene_option=scene_option) self.assertFalse(np.all(no_scene_option == with_scene_option), msg='Images are identical with and without scene option.') def testRenderFlags(self): height, width = 480, 640 cam = engine.Camera(self._physics, height, width, camera_id=0) cam.scene.flags[enums.mjtRndFlag.mjRND_WIREFRAME] = 1 # Enable wireframe enabled = cam.render().copy() cam.scene.flags[enums.mjtRndFlag.mjRND_WIREFRAME] = 0 # Disable wireframe disabled = cam.render().copy() self.assertFalse( np.all(disabled == enabled), msg='Images are identical regardless of whether wireframe is enabled.') @parameterized.parameters(((0.5, 0.5), (1, 3)), # pole ((0.5, 0.1), (0, 0)), # ground ((0.9, 0.9), (None, None)), # sky ) def testCameraSelection(self, coordinates, expected_selection): height, width = 480, 640 camera = engine.Camera(self._physics, height, width, camera_id=0) # Test for b/63380170: Enabling visualization of body frames adds # "non-model" geoms to the scene. This means that the indices of geoms # within `camera._scene.geoms` don't match the rows of `model.geom_bodyid`. camera.option.frame = enums.mjtFrame.mjFRAME_BODY selected = camera.select(coordinates) self.assertEqual(expected_selection, selected[:2]) @parameterized.parameters( dict(camera_id='cam0', height=200, width=300), dict(camera_id=1, height=300, width=200), dict(camera_id=-1, height=400, width=400), ) def testCameraMatrix(self, camera_id, height, width): """Tests the camera_matrix() method. Creates a model with two cameras and two small geoms. We render the scene with one of the cameras and check that the geom locations, projected into pixel space, are correct, using segmenation rendering. xyz2pixels() shows how the transformation is used. For a description of the camera matrix see https://en.wikipedia.org/wiki/Camera_matrix. Args: camera_id: One of the two cameras. Can be either integer or String. height: The height of the image (pixels). width: The width of the image (pixels). """ def xyz2pixels(x, y, z, camera_matrix): """Transforms from world coordinates to pixel coordinates.""" xs, ys, s = camera_matrix.dot(np.array([x, y, z, 1.0])) return xs/s, ys/s two_geoms_and_two_cameras = """ <mujoco> <visual> <global fovy="55"/> </visual> <worldbody> <light name="top" pos="0 0 1"/> <geom name="red" pos=".2 0 0" size=".005" rgba="1 0 0 1"/> <geom name="green" pos=".2 .2 .1" size=".005" rgba="0 1 0 1"/> <camera name="cam0" pos="1 .5 1" zaxis="1 .5 1" fovy="20"/> <camera name="cam1" pos=".1 .1 1" xyaxes="1 1 0 -1 0 0"/> </worldbody> </mujoco> """ physics = engine.Physics.from_xml_string(two_geoms_and_two_cameras) camera = engine.Camera(physics, width=width, height=height, camera_id=camera_id) camera_matrix = camera.matrix # Get camera matrix. pixels = camera.render(segmentation=True) # Render a segmentation frame. for geom_id in [0, 1]: # Compute the location of the geom in pixel space using the camera matrix. x, y = xyz2pixels(*physics.data.geom_xpos[geom_id], camera_matrix) row = int(round(y)) column = int(round(x)) # Compare segmentation values of nearest pixel to corresponding geom. [obj_id, obj_type] = pixels[row, column, :] self.assertEqual(obj_type, enums.mjtObj.mjOBJ_GEOM) self.assertEqual(obj_id, geom_id) def testMovableCameraSetGetPose(self): height, width = 240, 320 camera = engine.MovableCamera(self._physics, height, width) image = camera.render().copy() pose = camera.get_pose() lookat_offset = np.array([0.01, 0.02, -0.03]) # Would normally pass the new values directly to camera.set_pose instead of # using the namedtuple _replace method, but this makes the asserts at the # end of the test a little cleaner. new_pose = pose._replace(distance=pose.distance * 1.5, lookat=pose.lookat + lookat_offset, azimuth=pose.azimuth + -15, elevation=pose.elevation - 10) camera.set_pose(*new_pose) self.assertEqual(new_pose.distance, camera.get_pose().distance) self.assertEqual(new_pose.azimuth, camera.get_pose().azimuth) self.assertEqual(new_pose.elevation, camera.get_pose().elevation) np.testing.assert_allclose(new_pose.lookat, camera.get_pose().lookat) self.assertFalse(np.all(image == camera.render())) def testRenderExceptions(self): max_width = self._physics.model.vis.global_.offwidth max_height = self._physics.model.vis.global_.offheight max_camid = self._physics.model.ncam - 1 with self.assertRaisesRegex(ValueError, 'width'): self._physics.render(max_height, max_width + 1, camera_id=max_camid) with self.assertRaisesRegex(ValueError, 'height'): self._physics.render(max_height + 1, max_width, camera_id=max_camid) with self.assertRaisesRegex(ValueError, 'camera_id'): self._physics.render(max_height, max_width, camera_id=max_camid + 1) with self.assertRaisesRegex(ValueError, 'camera_id'): self._physics.render(max_height, max_width, camera_id=-2) def testPhysicsRenderMethod(self): height, width = 240, 320 image = self._physics.render(height=height, width=width) self.assertEqual(image.shape, (height, width, 3)) depth = self._physics.render(height=height, width=width, depth=True) self.assertEqual(depth.shape, (height, width)) segmentation = self._physics.render(height=height, width=width, segmentation=True) self.assertEqual(segmentation.shape, (height, width, 2)) def testExceptionIfBothDepthAndSegmentation(self): with self.assertRaisesWithLiteralMatch( ValueError, engine._BOTH_SEGMENTATION_AND_DEPTH_ENABLED): self._physics.render(depth=True, segmentation=True) def testRenderFlagOverridesAreNotPersistent(self): camera = engine.Camera(self._physics) first_rgb = camera.render().copy() camera.render(segmentation=True) second_rgb = camera.render().copy() np.testing.assert_array_equal(first_rgb, second_rgb) def testCustomRenderFlags(self): default = self._physics.render() wireframe_string_key = self._physics.render( render_flag_overrides=dict(wireframe=True)) self.assertFalse((default == wireframe_string_key).all()) wireframe_enum_key = self._physics.render( render_flag_overrides={enums.mjtRndFlag.mjRND_WIREFRAME: True}) np.testing.assert_array_equal(wireframe_string_key, wireframe_enum_key) @parameterized.parameters(dict(depth=True), dict(segmentation=True)) def testExceptionIfRenderFlagOverridesAndDepthOrSegmentation(self, **kwargs): with self.assertRaisesWithLiteralMatch( ValueError, engine._RENDER_FLAG_OVERRIDES_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION): self._physics.render(render_flag_overrides=dict(wireframe=True), **kwargs) def testExceptionIfOverlaysAndDepthOrSegmentation(self): overlay = engine.TextOverlay() with self.assertRaisesWithLiteralMatch( ValueError, engine._OVERLAYS_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION): self._physics.render(depth=True, overlays=[overlay]) with self.assertRaisesWithLiteralMatch( ValueError, engine._OVERLAYS_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION): self._physics.render(segmentation=True, overlays=[overlay]) def testNamedViews(self): self.assertEqual((1,), self._physics.control().shape) self.assertEqual((2,), self._physics.position().shape) self.assertEqual((2,), self._physics.velocity().shape) self.assertEqual((0,), self._physics.activation().shape) self.assertEqual((4,), self._physics.state().shape) self.assertEqual(0., self._physics.time()) self.assertEqual(0.01, self._physics.timestep()) def testSetGetPhysicsState(self): physics_state = self._physics.get_state() # qpos, qvel, act self.assertLen(self._physics._physics_state_items(), 3) self._physics.set_state(physics_state) new_physics_state = np.random.random_sample(physics_state.shape) self._physics.set_state(new_physics_state) np.testing.assert_allclose(new_physics_state, self._physics.get_state()) def testSetGetPhysicsStateWithPlugin(self): # Model copied from mujoco/test/plugin/elasticity/elasticity_test.cc model_with_cable_plugin = """ <mujoco> <option gravity="0 0 0"/> <extension> <plugin plugin="mujoco.elasticity.cable"/> </extension> <worldbody> <geom type="plane" size="0 0 1" quat="1 0 0 0"/> <site name="reference" pos="0 0 0"/> <composite type="cable" curve="s" count="41 1 1" size="1" offset="0 0 1" initial="none"> <plugin plugin="mujoco.elasticity.cable"> <config key="twist" value="1e6"/> <config key="bend" value="1e9"/> </plugin> <joint kind="main" damping="2"/> <geom type="capsule" size=".005" density="1"/> </composite> </worldbody> <contact> <exclude body1="B_first" body2="B_last"/> </contact> <sensor> <framepos objtype="site" objname="S_last"/> </sensor> <actuator> <motor site="S_last" gear="0 0 0 0 1 0" ctrllimited="true" ctrlrange="0 4"/> </actuator> </mujoco> """ physics = engine.Physics.from_xml_string(model_with_cable_plugin) physics_state = physics.get_state() # qpos, qvel, act, plugin_state self.assertLen(physics._physics_state_items(), 4) physics.set_state(physics_state) new_physics_state = np.random.random_sample(physics_state.shape) physics.set_state(new_physics_state) np.testing.assert_allclose(new_physics_state, physics.get_state()) def testSetInvalidPhysicsState(self): badly_shaped_state = np.repeat(self._physics.get_state(), repeats=2) with self.assertRaises(ValueError): self._physics.set_state(badly_shaped_state) def testNamedIndexing(self): self.assertEqual((3,), self._physics.named.data.xpos['cart'].shape) self.assertEqual((2, 3), self._physics.named.data.xpos[['cart', 'pole']].shape) def testReload(self): self._physics.reload_from_xml_path(MODEL_PATH) def testReset(self): self._physics.reset() self.assertEqual(self._physics.data.qpos[1], 0) keyframe_id = 0 self._physics.reset(keyframe_id=keyframe_id) self.assertEqual(self._physics.data.qpos[1], self._physics.model.key_qpos[keyframe_id, 1]) out_of_range = [-1, 3] max_valid = self._physics.model.nkey - 1 for actual in out_of_range: with self.assertRaisesWithLiteralMatch( ValueError, engine._KEYFRAME_ID_OUT_OF_RANGE.format( max_valid=max_valid, actual=actual)): self._physics.reset(keyframe_id=actual) def testLoadAndReloadFromStringWithAssets(self): physics = engine.Physics.from_xml_string( MODEL_WITH_ASSETS, assets=ASSETS) physics.reload_from_xml_string(MODEL_WITH_ASSETS, assets=ASSETS) @parameterized.parameters(*enums.mjtWarning._fields[:-1]) def testDivergenceException(self, warning_name): warning_enum = getattr(enums.mjtWarning, warning_name) with self.assertRaisesWithLiteralMatch( control.PhysicsError, engine._INVALID_PHYSICS_STATE.format(warning_names=warning_name)): with self._physics.check_invalid_state(): self._physics.data.warning[warning_enum].number = 1 # Existing warnings should not raise an exception. with self._physics.check_invalid_state(): pass self._physics.reset() with self._physics.check_invalid_state(): pass @parameterized.parameters(float('inf'), float('nan'), 1e15) def testBadQpos(self, bad_value): with self._physics.reset_context(): self._physics.data.qpos[0] = bad_value with self.assertRaises(control.PhysicsError): with self._physics.check_invalid_state(): mujoco.mj_checkPos(self._physics.model.ptr, self._physics.data.ptr) self._physics.reset() with self._physics.check_invalid_state(): mujoco.mj_checkPos(self._physics.model.ptr, self._physics.data.ptr) def testNanControl(self): with self._physics.reset_context(): pass # Apply the controls. with self.assertRaisesWithLiteralMatch( control.PhysicsError, engine._INVALID_PHYSICS_STATE.format(warning_names='mjWARN_BADCTRL')): with self._physics.check_invalid_state(): self._physics.data.ctrl[0] = float('nan') self._physics.step() def testSuppressPhysicsError(self): bad_value = float('nan') message = engine._INVALID_PHYSICS_STATE.format( warning_names='mjWARN_BADCTRL') def assert_physics_error(): self._physics.data.ctrl[0] = bad_value with self.assertRaisesWithLiteralMatch(control.PhysicsError, message): self._physics.forward() def assert_warning(): self._physics.data.ctrl[0] = bad_value with mock.patch.object(engine.logging, 'warn') as mock_warn: self._physics.forward() mock_warn.assert_called_once_with(message) assert_physics_error() with self._physics.suppress_physics_errors(): assert_warning() with self._physics.suppress_physics_errors(): assert_warning() assert_warning() assert_physics_error() @parameterized.named_parameters( ('_copy', lambda x: x.copy()), ('_deepcopy', copy.deepcopy), ('_pickle_and_unpickle', lambda x: pickle.loads(pickle.dumps(x))), ) def testCopyOrPicklePhysics(self, func): for _ in range(10): self._physics.step() physics2 = func(self._physics) self.assertNotEqual(physics2.model.ptr, self._physics.model.ptr) self.assertNotEqual(physics2.data.ptr, self._physics.data.ptr) model_attr_to_compare = ('nnames', 'njmax', 'body_pos', 'geom_quat') self._assert_attributes_equal( physics2.model, self._physics.model, model_attr_to_compare) data_attr_to_compare = ('time', 'energy', 'qpos', 'xpos') self._assert_attributes_equal( physics2.data, self._physics.data, data_attr_to_compare) for _ in range(10): self._physics.step() physics2.step() self._assert_attributes_equal( physics2.model, self._physics.model, model_attr_to_compare) self._assert_attributes_equal( physics2.data, self._physics.data, data_attr_to_compare) @parameterized.named_parameters( ('_copy', lambda x: x.copy()), ('_pickle_and_unpickle', lambda x: pickle.loads(pickle.dumps(x))), ) def testSuppressErrorsAfterCopyOrPicklePhysics(self, func): # Regression test for a problem that used to exist where # suppress_physics_errors couldn't be used on Physics objects that were # unpickled. physics2 = func(self._physics) with physics2.suppress_physics_errors(): pass def testCopyDataOnly(self): physics2 = self._physics.copy(share_model=True) self.assertEqual(physics2.model.ptr, self._physics.model.ptr) self.assertNotEqual(physics2.data.ptr, self._physics.data.ptr) def testForwardDynamicsUpdatedAfterReset(self): gravity = -9.81 self._physics.model.opt.gravity[2] = gravity with self._physics.reset_context(): pass self.assertAlmostEqual( self._physics.named.data.sensordata['accelerometer'][2], -gravity) def testActuationNotAppliedInAfterReset(self): self._physics.data.ctrl[0] = 1. self._physics.after_reset() # Calls `forward()` with actuation disabled. self.assertEqual(self._physics.data.actuator_force[0], 0.) self._physics.forward() # Call `forward` directly with actuation enabled. self.assertEqual(self._physics.data.actuator_force[0], 1.) def testActionSpec(self): xml = """ <mujoco> <worldbody> <body> <geom type="sphere" size="0.1"/> <joint type="hinge" name="hinge"/> </body> </worldbody> <actuator> <motor joint="hinge" ctrllimited="false"/> <motor joint="hinge" ctrllimited="true" ctrlrange="-1 2"/> </actuator> </mujoco> """ physics = engine.Physics.from_xml_string(xml) spec = engine.action_spec(physics) self.assertEqual(float, spec.dtype) np.testing.assert_array_equal(spec.minimum, [-mujoco.mjMAXVAL, -1.0]) np.testing.assert_array_equal(spec.maximum, [mujoco.mjMAXVAL, 2.0]) def testNstep(self): # Make initial state. with self._physics.reset_context(): self._physics.data.qvel[0] = 1 self._physics.data.qvel[1] = 1 initial_state = self._physics.get_state() # step() 4 times. for _ in range(4): self._physics.step() for_loop_state = self._physics.get_state() # Reset state, call step(4). with self._physics.reset_context(): self._physics.set_state(initial_state) self._physics.step(4) nstep_state = self._physics.get_state() np.testing.assert_array_equal(for_loop_state, nstep_state) # Repeat test with with RK4 integrator: self._physics.model.opt.integrator = enums.mjtIntegrator.mjINT_RK4 # step() 4 times. with self._physics.reset_context(): self._physics.set_state(initial_state) for _ in range(4): self._physics.step() for_loop_state_rk4 = self._physics.get_state() # Reset state, call step(4). with self._physics.reset_context(): self._physics.set_state(initial_state) self._physics.step(4) nstep_state_rk4 = self._physics.get_state() np.testing.assert_array_equal(for_loop_state_rk4, nstep_state_rk4) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/engine_test.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Mujoco implementations of base classes.""" from dm_control.mujoco.engine import action_spec from dm_control.mujoco.engine import Camera from dm_control.mujoco.engine import MovableCamera from dm_control.mujoco.engine import Physics from dm_control.mujoco.engine import TextOverlay from mujoco import *
dm_control-main
dm_control/mujoco/__init__.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Mujoco `Physics` implementation and helper classes. The `Physics` class provides the main Python interface to MuJoCo. MuJoCo models are defined using the MJCF XML format. The `Physics` class can load a model from a path to an XML file, an XML string, or from a serialized MJB binary format. See the named constructors for each of these cases. Each `Physics` instance defines a simulated world. To step forward the simulation, use the `step` method. To set a control or actuation signal, use the `set_control` method, which will apply the provided signal to the actuators in subsequent calls to `step`. Use the `Camera` class to create RGB or depth images. A `Camera` can render its viewport to an array using the `render` method, and can query for objects visible at specific positions using the `select` method. The `Physics` class also provides a `render` method that returns a pixel array directly. """ import collections import contextlib import threading from typing import Callable, NamedTuple, Optional, Union from absl import logging from dm_control import _render from dm_control.mujoco import index from dm_control.mujoco import wrapper from dm_control.mujoco.wrapper import util from dm_control.rl import control as _control from dm_env import specs import mujoco import numpy as np _FONT_STYLES = { 'normal': mujoco.mjtFont.mjFONT_NORMAL, 'shadow': mujoco.mjtFont.mjFONT_SHADOW, 'big': mujoco.mjtFont.mjFONT_BIG, } _GRID_POSITIONS = { 'top left': mujoco.mjtGridPos.mjGRID_TOPLEFT, 'top right': mujoco.mjtGridPos.mjGRID_TOPRIGHT, 'bottom left': mujoco.mjtGridPos.mjGRID_BOTTOMLEFT, 'bottom right': mujoco.mjtGridPos.mjGRID_BOTTOMRIGHT, } Contexts = collections.namedtuple('Contexts', ['gl', 'mujoco']) Selected = collections.namedtuple( 'Selected', ['body', 'geom', 'skin', 'world_position']) NamedIndexStructs = collections.namedtuple( 'NamedIndexStructs', ['model', 'data']) Pose = collections.namedtuple( 'Pose', ['lookat', 'distance', 'azimuth', 'elevation']) _BOTH_SEGMENTATION_AND_DEPTH_ENABLED = ( '`segmentation` and `depth` cannot both be `True`.') _INVALID_PHYSICS_STATE = ( 'Physics state is invalid. Warning(s) raised: {warning_names}') _OVERLAYS_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION = ( 'Overlays are not supported with depth or segmentation rendering.') _RENDER_FLAG_OVERRIDES_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION = ( '`render_flag_overrides` are not supported for depth or segmentation ' 'rendering.') _KEYFRAME_ID_OUT_OF_RANGE = ( '`keyframe_id` must be between 0 and {max_valid} inclusive, got: {actual}.') class Physics(_control.Physics): """Encapsulates a MuJoCo model. A MuJoCo model is typically defined by an MJCF XML file [0] ```python physics = Physics.from_xml_path('/path/to/model.xml') with physics.reset_context(): physics.named.data.qpos['hinge'] = np.random.rand() # Apply controls and advance the simulation state. physics.set_control(np.random.random_sample(size=N_ACTUATORS)) physics.step() # Render a camera defined in the XML file to a NumPy array. rgb = physics.render(height=240, width=320, id=0) ``` [0] http://www.mujoco.org/book/modeling.html """ _contexts = None def __new__(cls, *args, **kwargs): # TODO(b/174603485): Re-enable once lint stops spuriously firing here. obj = super(Physics, cls).__new__(cls) # pylint: disable=no-value-for-parameter # The lock is created in `__new__` rather than `__init__` because there are # a number of existing subclasses that override `__init__` without calling # the `__init__` method of the superclass. obj._contexts_lock = threading.Lock() # pylint: disable=protected-access return obj def __init__(self, data): """Initializes a new `Physics` instance. Args: data: Instance of `wrapper.MjData`. """ self._warnings_cause_exception = True self._reload_from_data(data) @contextlib.contextmanager def suppress_physics_errors(self): """Physics warnings will be logged rather than raise exceptions.""" prev_state = self._warnings_cause_exception self._warnings_cause_exception = False try: yield finally: self._warnings_cause_exception = prev_state def enable_profiling(self): """Enables Mujoco timing profiling.""" wrapper.enable_timer(True) def set_control(self, control): """Sets the control signal for the actuators. Args: control: NumPy array or array-like actuation values. """ np.copyto(self.data.ctrl, control) def _step_with_up_to_date_position_velocity(self, nstep: int = 1) -> None: """Physics step with up-to-date position and velocity dependent fields.""" # In the case of Euler integration we assume mj_step1 has already been # called for this state, finish the step with mj_step2 and then update all # position and velocity related fields with mj_step1. This ensures that # (most of) mjData is in sync with qpos and qvel. In the case of non-Euler # integrators (e.g. RK4) an additional mj_step1 must be called after the # last mj_step to ensure mjData syncing. if self.model.opt.integrator != mujoco.mjtIntegrator.mjINT_RK4.value: mujoco.mj_step2(self.model.ptr, self.data.ptr) if nstep > 1: mujoco.mj_step(self.model.ptr, self.data.ptr, nstep-1) else: mujoco.mj_step(self.model.ptr, self.data.ptr, nstep) mujoco.mj_step1(self.model.ptr, self.data.ptr) def step(self, nstep: int = 1) -> None: """Advances the physics state by `nstep`s. Args: nstep: Optional integer, number of steps to take. The actuation can be updated by calling the `set_control` function first. """ with self.check_invalid_state(): if self.legacy_step: self._step_with_up_to_date_position_velocity(nstep) else: mujoco.mj_step(self.model.ptr, self.data.ptr, nstep) def render( self, height=240, width=320, camera_id=-1, overlays=(), depth=False, segmentation=False, scene_option=None, render_flag_overrides=None, scene_callback: Optional[Callable[['Physics', mujoco.MjvScene], None]] = None, ): """Returns a camera view as a NumPy array of pixel values. Args: height: Viewport height (number of pixels). Optional, defaults to 240. width: Viewport width (number of pixels). Optional, defaults to 320. camera_id: Optional camera name or index. Defaults to -1, the free camera, which is always defined. A nonnegative integer or string corresponds to a fixed camera, which must be defined in the model XML. If `camera_id` is a string then the camera must also be named. overlays: An optional sequence of `TextOverlay` instances to draw. Only supported if `depth` is False. depth: If `True`, this method returns a NumPy float array of depth values (in meters). Defaults to `False`, which results in an RGB image. segmentation: If `True`, this method returns a 2-channel NumPy int32 array of label values where the pixels of each object are labeled with the pair (mjModel ID, mjtObj enum object type). Background pixels are labeled (-1, -1). Defaults to `False`, which returns an RGB image. scene_option: An optional `wrapper.MjvOption` instance that can be used to render the scene with custom visualization options. If None then the default options will be used. render_flag_overrides: Optional mapping specifying rendering flags to override. The keys can be either lowercase strings or `mjtRndFlag` enum values, and the values are the overridden flag values, e.g. `{'wireframe': True}` or `{mujoco.mjtRndFlag.mjRND_WIREFRAME: True}`. See `mujoco.mjtRndFlag` for the set of valid flags. Must be None if either `depth` or `segmentation` is True. scene_callback: Called after the scene has been created and before it is rendered. Can be used to add more geoms to the scene. Returns: The rendered RGB, depth or segmentation image. """ camera = Camera( physics=self, height=height, width=width, camera_id=camera_id, scene_callback=scene_callback) image = camera.render( overlays=overlays, depth=depth, segmentation=segmentation, scene_option=scene_option, render_flag_overrides=render_flag_overrides) camera._scene.free() # pylint: disable=protected-access return image def get_state(self): """Returns the physics state. Returns: NumPy array containing full physics simulation state. """ return np.concatenate(self._physics_state_items()) def set_state(self, physics_state): """Sets the physics state. Args: physics_state: NumPy array containing the full physics simulation state. Raises: ValueError: If `physics_state` has invalid size. """ state_items = self._physics_state_items() expected_shape = (sum(item.size for item in state_items),) if expected_shape != physics_state.shape: raise ValueError('Input physics state has shape {}. Expected {}.'.format( physics_state.shape, expected_shape)) start = 0 for state_item in state_items: size = state_item.size np.copyto(state_item, physics_state[start:start + size]) start += size def copy(self, share_model=False): """Creates a copy of this `Physics` instance. Args: share_model: If True, the copy and the original will share a common MjModel instance. By default, both model and data will both be copied. Returns: A `Physics` instance. """ new_data = self.data._make_copy(share_model=share_model) # pylint: disable=protected-access cls = self.__class__ new_obj = cls.__new__(cls) # pylint: disable=protected-access new_obj._warnings_cause_exception = True new_obj._reload_from_data(new_data) # pylint: enable=protected-access return new_obj def reset(self, keyframe_id=None): """Resets internal variables of the simulation, possibly to a keyframe. Args: keyframe_id: Optional integer specifying the index of a keyframe defined in the model XML to which the simulation state should be initialized. Must be between 0 and `self.model.nkey - 1` (inclusive). Raises: ValueError: If `keyframe_id` is out of range. """ if keyframe_id is None: mujoco.mj_resetData(self.model.ptr, self.data.ptr) else: if not 0 <= keyframe_id < self.model.nkey: raise ValueError(_KEYFRAME_ID_OUT_OF_RANGE.format( max_valid=self.model.nkey-1, actual=keyframe_id)) mujoco.mj_resetDataKeyframe(self.model.ptr, self.data.ptr, keyframe_id) # Disable actuation since we don't yet have meaningful control inputs. with self.model.disable('actuation'): self.forward() def after_reset(self): """Runs after resetting internal variables of the physics simulation.""" # Disable actuation since we don't yet have meaningful control inputs. with self.model.disable('actuation'): self.forward() def forward(self): """Recomputes the forward dynamics without advancing the simulation.""" # Note: `mj_forward` differs from `mj_step1` in that it also recomputes # quantities that depend on acceleration (and therefore on the state of the # controls). For example `mj_forward` updates accelerometer and gyro # readings, whereas `mj_step1` does not. # http://www.mujoco.org/book/programming.html#siForward with self.check_invalid_state(): mujoco.mj_forward(self.model.ptr, self.data.ptr) @contextlib.contextmanager def check_invalid_state(self): """Checks whether the physics state is invalid at exit. Yields: None Raises: PhysicsError: if the simulation state is invalid at exit, unless this context is nested inside a `suppress_physics_errors` context, in which case a warning will be logged instead. """ np.copyto(self._warnings_before, self._warnings) yield np.greater(self._warnings, self._warnings_before, out=self._new_warnings) if any(self._new_warnings): warning_names = np.compress(self._new_warnings, list(mujoco.mjtWarning.__members__)) message = _INVALID_PHYSICS_STATE.format( warning_names=', '.join(warning_names)) if self._warnings_cause_exception: raise _control.PhysicsError(message) else: logging.warn(message) def __getstate__(self): return self.data # All state is assumed to reside within `self.data`. def __setstate__(self, data): # Note: `_contexts_lock` is normally created in `__new__`, but `__new__` is # not invoked during unpickling. self._contexts_lock = threading.Lock() self._warnings_cause_exception = True self._reload_from_data(data) def _reload_from_model(self, model): """Initializes a new or existing `Physics` from a `wrapper.MjModel`. Creates a new `wrapper.MjData` instance, then delegates to `_reload_from_data`. Args: model: Instance of `wrapper.MjModel`. """ data = wrapper.MjData(model) self._reload_from_data(data) def _reload_from_data(self, data): """Initializes a new or existing `Physics` instance from a `wrapper.MjData`. Assigns all attributes, sets up named indexing, and creates rendering contexts if rendering is enabled. The default constructor as well as the other `reload_from` methods should delegate to this method. Args: data: Instance of `wrapper.MjData`. """ if not isinstance(data, wrapper.MjData): raise TypeError(f'Expected wrapper.MjData. Got: {type(data)}.') self._data = data # Performance optimization: pre-allocate numpy arrays used when checking for # MuJoCo warnings on each step. self._warnings = self.data.warning.number self._warnings_before = np.empty_like(self._warnings) self._new_warnings = np.empty(dtype=bool, shape=(len(self._warnings),)) # Forcibly free any previous GL context in order to avoid problems with GL # implementations that do not support multiple contexts on a given device. with self._contexts_lock: if self._contexts: self._free_rendering_contexts() # Call kinematics update to enable rendering. try: self.after_reset() except _control.PhysicsError as e: logging.warning(e) # Set up named indexing. axis_indexers = index.make_axis_indexers(self.model) self._named = NamedIndexStructs( model=index.struct_indexer(self.model, 'mjmodel', axis_indexers), data=index.struct_indexer(self.data, 'mjdata', axis_indexers),) def free(self): """Frees the native MuJoCo data structures held by this `Physics` instance. This is an advanced feature for use when manual memory management is necessary. This `Physics` object MUST NOT be used after this function has been called. """ with self._contexts_lock: if self._contexts: self._free_rendering_contexts() del self._data @classmethod def from_model(cls, model): """A named constructor from a `wrapper.MjModel` instance.""" data = wrapper.MjData(model) return cls(data) @classmethod def from_xml_string(cls, xml_string, assets=None): """A named constructor from a string containing an MJCF XML file. Args: xml_string: XML string containing an MJCF model description. assets: Optional dict containing external assets referenced by the model (such as additional XML files, textures, meshes etc.), in the form of `{filename: contents_string}` pairs. The keys should correspond to the filenames specified in the model XML. Returns: A new `Physics` instance. """ model = wrapper.MjModel.from_xml_string(xml_string, assets=assets) return cls.from_model(model) @classmethod def from_byte_string(cls, byte_string): """A named constructor from a model binary as a byte string.""" model = wrapper.MjModel.from_byte_string(byte_string) return cls.from_model(model) @classmethod def from_xml_path(cls, file_path): """A named constructor from a path to an MJCF XML file. Args: file_path: String containing path to model definition file. Returns: A new `Physics` instance. """ model = wrapper.MjModel.from_xml_path(file_path) return cls.from_model(model) @classmethod def from_binary_path(cls, file_path): """A named constructor from a path to an MJB model binary file. Args: file_path: String containing path to model definition file. Returns: A new `Physics` instance. """ model = wrapper.MjModel.from_binary_path(file_path) return cls.from_model(model) def reload_from_xml_string(self, xml_string, assets=None): """Reloads the `Physics` instance from a string containing an MJCF XML file. After calling this method, the state of the `Physics` instance is the same as a new `Physics` instance created with the `from_xml_string` named constructor. Args: xml_string: XML string containing an MJCF model description. assets: Optional dict containing external assets referenced by the model (such as additional XML files, textures, meshes etc.), in the form of `{filename: contents_string}` pairs. The keys should correspond to the filenames specified in the model XML. """ new_model = wrapper.MjModel.from_xml_string(xml_string, assets=assets) self._reload_from_model(new_model) def reload_from_xml_path(self, file_path): """Reloads the `Physics` instance from a path to an MJCF XML file. After calling this method, the state of the `Physics` instance is the same as a new `Physics` instance created with the `from_xml_path` named constructor. Args: file_path: String containing path to model definition file. """ self._reload_from_model(wrapper.MjModel.from_xml_path(file_path)) @property def named(self): return self._named def _make_rendering_contexts(self): """Creates the OpenGL and MuJoCo rendering contexts.""" # Get the offscreen framebuffer size, as specified in the model XML. max_width = self.model.vis.global_.offwidth max_height = self.model.vis.global_.offheight # Create the OpenGL context. render_context = _render.Renderer( max_width=max_width, max_height=max_height) # Create the MuJoCo context. mujoco_context = wrapper.MjrContext(self.model, render_context) self._contexts = Contexts(gl=render_context, mujoco=mujoco_context) def _free_rendering_contexts(self): """Frees existing OpenGL and MuJoCo rendering contexts.""" self._contexts.mujoco.free() self._contexts.gl.free() self._contexts = None @property def contexts(self): """Returns a `Contexts` namedtuple, used in `Camera`s and rendering code.""" with self._contexts_lock: if not self._contexts: self._make_rendering_contexts() return self._contexts @property def model(self): return self._data.model @property def data(self): return self._data def _physics_state_items(self): """Returns list of arrays making up internal physics simulation state. The physics state consists of the state variables, their derivatives and actuation activations. If the model contains plugins, then the state will also contain any plugin state. Returns: List of NumPy arrays containing full physics simulation state. """ if self.model.nplugin > 0: return [ self.data.qpos, self.data.qvel, self.data.act, self.data.plugin_state, ] else: return [self.data.qpos, self.data.qvel, self.data.act] # Named views of simulation data. def control(self): """Returns a copy of the control signals for the actuators.""" return self.data.ctrl.copy() def activation(self): """Returns a copy of the internal states of actuators. For details, please refer to http://www.mujoco.org/book/computation.html#geActuation Returns: Activations in a numpy array. """ return self.data.act.copy() def state(self): """Returns the full physics state. Alias for `get_physics_state`.""" return np.concatenate(self._physics_state_items()) def position(self): """Returns a copy of the generalized positions (system configuration).""" return self.data.qpos.copy() def velocity(self): """Returns a copy of the generalized velocities.""" return self.data.qvel.copy() def timestep(self): """Returns the simulation timestep.""" return self.model.opt.timestep def time(self): """Returns episode time in seconds.""" return self.data.time class CameraMatrices(NamedTuple): """Component matrices used to construct the camera matrix. The matrix product over these components yields the camera matrix. Attributes: image: (3, 3) image matrix. focal: (3, 4) focal matrix. rotation: (4, 4) rotation matrix. translation: (4, 4) translation matrix. """ image: np.ndarray focal: np.ndarray rotation: np.ndarray translation: np.ndarray class Camera: """Mujoco scene camera. Holds rendering properties such as the width and height of the viewport. The camera position and rotation is defined by the Mujoco camera corresponding to the `camera_id`. Multiple `Camera` instances may exist for a single `camera_id`, for example to render the same view at different resolutions. """ def __init__( self, physics: Physics, height: int = 240, width: int = 320, camera_id: Union[int, str] = -1, max_geom: Optional[int] = None, scene_callback: Optional[Callable[[Physics, mujoco.MjvScene], None]] = None, ): """Initializes a new `Camera`. Args: physics: Instance of `Physics`. height: Optional image height. Defaults to 240. width: Optional image width. Defaults to 320. camera_id: Optional camera name or index. Defaults to -1, the free camera, which is always defined. A nonnegative integer or string corresponds to a fixed camera, which must be defined in the model XML. If `camera_id` is a string then the camera must also be named. max_geom: Optional integer specifying the maximum number of geoms that can be rendered in the same scene. If None this will be chosen automatically based on the estimated maximum number of renderable geoms in the model. scene_callback: Called after the scene has been created and before it is rendered. Can be used to add more geoms to the scene. Raises: ValueError: If `camera_id` is outside the valid range, or if `width` or `height` exceed the dimensions of MuJoCo's offscreen framebuffer. """ buffer_width = physics.model.vis.global_.offwidth buffer_height = physics.model.vis.global_.offheight if width > buffer_width: raise ValueError('Image width {} > framebuffer width {}. Either reduce ' 'the image width or specify a larger offscreen ' 'framebuffer in the model XML using the clause\n' '<visual>\n' ' <global offwidth="my_width"/>\n' '</visual>'.format(width, buffer_width)) if height > buffer_height: raise ValueError('Image height {} > framebuffer height {}. Either reduce ' 'the image height or specify a larger offscreen ' 'framebuffer in the model XML using the clause\n' '<visual>\n' ' <global offheight="my_height"/>\n' '</visual>'.format(height, buffer_height)) if isinstance(camera_id, str): camera_id = physics.model.name2id(camera_id, 'camera') if camera_id < -1: raise ValueError('camera_id cannot be smaller than -1.') if camera_id >= physics.model.ncam: raise ValueError('model has {} fixed cameras. camera_id={} is invalid.'. format(physics.model.ncam, camera_id)) self._width = width self._height = height self._physics = physics self._scene_callback = scene_callback # Variables corresponding to structs needed by Mujoco's rendering functions. self._scene = wrapper.MjvScene(model=physics.model, max_geom=max_geom) self._scene_option = wrapper.MjvOption() self._perturb = wrapper.MjvPerturb() self._perturb.active = 0 self._perturb.select = 0 self._rect = mujoco.MjrRect(0, 0, self._width, self._height) self._render_camera = wrapper.MjvCamera() self._render_camera.fixedcamid = camera_id if camera_id == -1: self._render_camera.type = mujoco.mjtCamera.mjCAMERA_FREE mujoco.mjv_defaultFreeCamera(physics.model._model, self._render_camera) else: # As defined in the Mujoco documentation, mjCAMERA_FIXED refers to a # camera explicitly defined in the model. self._render_camera.type = mujoco.mjtCamera.mjCAMERA_FIXED # Internal buffers. self._rgb_buffer = np.empty((self._height, self._width, 3), dtype=np.uint8) self._depth_buffer = np.empty((self._height, self._width), dtype=np.float32) if self._physics.contexts.mujoco is not None: with self._physics.contexts.gl.make_current() as ctx: ctx.call(mujoco.mjr_setBuffer, mujoco.mjtFramebuffer.mjFB_OFFSCREEN, self._physics.contexts.mujoco.ptr) @property def width(self): """Returns the image width (number of pixels).""" return self._width @property def height(self): """Returns the image height (number of pixels).""" return self._height @property def option(self): """Returns the camera's visualization options.""" return self._scene_option @property def scene(self): """Returns the `mujoco.MjvScene` instance used by the camera.""" return self._scene def matrices(self) -> CameraMatrices: """Computes the component matrices used to compute the camera matrix. Returns: An instance of `CameraMatrices` containing the image, focal, rotation, and translation matrices of the camera. """ camera_id = self._render_camera.fixedcamid if camera_id == -1: # If the camera is a 'free' camera, we get its position and orientation # from the scene data structure. It is a stereo camera, so we average over # the left and right channels. Note: we call `self.update()` in order to # ensure that the contents of `scene.camera` are correct. self.update() pos = np.mean([camera.pos for camera in self.scene.camera], axis=0) z = -np.mean([camera.forward for camera in self.scene.camera], axis=0) y = np.mean([camera.up for camera in self.scene.camera], axis=0) rot = np.vstack((np.cross(y, z), y, z)) fov = self._physics.model.vis.global_.fovy else: pos = self._physics.data.cam_xpos[camera_id] rot = self._physics.data.cam_xmat[camera_id].reshape(3, 3).T fov = self._physics.model.cam_fovy[camera_id] # Translation matrix (4x4). translation = np.eye(4) translation[0:3, 3] = -pos # Rotation matrix (4x4). rotation = np.eye(4) rotation[0:3, 0:3] = rot # Focal transformation matrix (3x4). focal_scaling = (1./np.tan(np.deg2rad(fov)/2)) * self.height / 2.0 focal = np.diag([-focal_scaling, focal_scaling, 1.0, 0])[0:3, :] # Image matrix (3x3). image = np.eye(3) image[0, 2] = (self.width - 1) / 2.0 image[1, 2] = (self.height - 1) / 2.0 return CameraMatrices( image=image, focal=focal, rotation=rotation, translation=translation) @property def matrix(self): """Returns the 3x4 camera matrix. For a description of the camera matrix see, e.g., https://en.wikipedia.org/wiki/Camera_matrix. For a usage example, see the associated test. """ image, focal, rotation, translation = self.matrices() return image @ focal @ rotation @ translation def update(self, scene_option=None): """Updates geometry used for rendering. Args: scene_option: A custom `wrapper.MjvOption` instance to use to render the scene instead of the default. If None, will use the default. """ scene_option = scene_option or self._scene_option mujoco.mjv_updateScene(self._physics.model.ptr, self._physics.data.ptr, scene_option.ptr, self._perturb.ptr, self._render_camera.ptr, mujoco.mjtCatBit.mjCAT_ALL, self._scene.ptr) def _render_on_gl_thread(self, depth, overlays): """Performs only those rendering calls that require an OpenGL context.""" # Render the scene. mujoco.mjr_render(self._rect, self._scene.ptr, self._physics.contexts.mujoco.ptr) if not depth: # If rendering RGB, draw any text overlays on top of the image. for overlay in overlays: overlay.draw(self._physics.contexts.mujoco.ptr, self._rect) # Read the contents of either the RGB or depth buffer. mujoco.mjr_readPixels(self._rgb_buffer if not depth else None, self._depth_buffer if depth else None, self._rect, self._physics.contexts.mujoco.ptr) def render( self, overlays=(), depth=False, segmentation=False, scene_option=None, render_flag_overrides=None, ): """Renders the camera view as a numpy array of pixel values. Args: overlays: An optional sequence of `TextOverlay` instances to draw. Only supported if `depth` and `segmentation` are both False. depth: An optional boolean. If True, makes the camera return depth measurements. Cannot be enabled if `segmentation` is True. segmentation: An optional boolean. If True, make the camera return a pixel-wise segmentation of the scene. Cannot be enabled if `depth` is True. scene_option: A custom `wrapper.MjvOption` instance to use to render the scene instead of the default. If None, will use the default. render_flag_overrides: Optional mapping containing rendering flags to override. The keys can be either lowercase strings or `mjtRndFlag` enum values, and the values are the overridden flag values, e.g. `{'wireframe': True}` or `{mujoco.mjtRndFlag.mjRND_WIREFRAME: True}`. See `mujoco.mjtRndFlag` for the set of valid flags. Must be empty if either `depth` or `segmentation` is True. Returns: The rendered scene. * If `depth` and `segmentation` are both False (default), this is a (height, width, 3) uint8 numpy array containing RGB values. * If `depth` is True, this is a (height, width) float32 numpy array containing depth values (in meters). * If `segmentation` is True, this is a (height, width, 2) int32 numpy array where the first channel contains the integer ID of the object at each pixel, and the second channel contains the corresponding object type (a value in the `mjtObj` enum). Background pixels are labeled (-1, -1). Raises: ValueError: If either `overlays` or `render_flag_overrides` is requested when `depth` or `segmentation` rendering is enabled. ValueError: If both depth and segmentation flags are set together. """ if overlays and (depth or segmentation): raise ValueError(_OVERLAYS_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION) if render_flag_overrides and (depth or segmentation): raise ValueError( _RENDER_FLAG_OVERRIDES_NOT_SUPPORTED_FOR_DEPTH_OR_SEGMENTATION) if depth and segmentation: raise ValueError(_BOTH_SEGMENTATION_AND_DEPTH_ENABLED) if render_flag_overrides is None: render_flag_overrides = {} # Update scene geometry. self.update(scene_option=scene_option) if self._scene_callback: self._scene_callback(self._physics, self._scene) # Enable flags to compute segmentation labels if segmentation: render_flag_overrides.update({ mujoco.mjtRndFlag.mjRND_SEGMENT: True, mujoco.mjtRndFlag.mjRND_IDCOLOR: True, }) # Render scene and text overlays, read contents of RGB or depth buffer. with self.scene.override_flags(render_flag_overrides): with self._physics.contexts.gl.make_current() as ctx: ctx.call(self._render_on_gl_thread, depth=depth, overlays=overlays) if depth: # Get the distances to the near and far clipping planes. extent = self._physics.model.stat.extent near = self._physics.model.vis.map.znear * extent far = self._physics.model.vis.map.zfar * extent # Convert from [0 1] to depth in meters, see links below: # http://stackoverflow.com/a/6657284/1461210 # https://www.khronos.org/opengl/wiki/Depth_Buffer_Precision image = near / (1 - self._depth_buffer * (1 - near / far)) elif segmentation: # Convert 3-channel uint8 to 1-channel uint32. image3 = self._rgb_buffer.astype(np.uint32) segimage = (image3[:, :, 0] + image3[:, :, 1] * (2**8) + image3[:, :, 2] * (2**16)) # Remap segid to 2-channel (object ID, object type) pair. # Seg ID 0 is background -- will be remapped to (-1, -1). segid2output = np.full((self._scene.ngeom + 1, 2), fill_value=-1, dtype=np.int32) # Seg id cannot be > ngeom + 1. visible_geoms = [g for g in self._scene.geoms if g.segid != -1] visible_segids = np.array([g.segid + 1 for g in visible_geoms], np.int32) visible_objid = np.array([g.objid for g in visible_geoms], np.int32) visible_objtype = np.array([g.objtype for g in visible_geoms], np.int32) segid2output[visible_segids, 0] = visible_objid segid2output[visible_segids, 1] = visible_objtype image = segid2output[segimage] else: image = self._rgb_buffer # The first row in the buffer is the bottom row of pixels in the image. return np.flipud(image) def select(self, cursor_position): """Returns bodies and geoms visible at given coordinates in the frame. Args: cursor_position: A `tuple` containing x and y coordinates, normalized to between 0 and 1, and where (0, 0) is bottom-left. Returns: A `Selected` namedtuple. Fields are None if nothing is selected. """ self.update() aspect_ratio = self._width / self._height cursor_x, cursor_y = cursor_position pos = np.empty(3, np.double) geom_id_arr = np.intc([-1]) skin_id_arr = np.intc([-1]) body_id = mujoco.mjv_select(self._physics.model.ptr, self._physics.data.ptr, self._scene_option.ptr, aspect_ratio, cursor_x, cursor_y, self._scene.ptr, pos, geom_id_arr, skin_id_arr) [geom_id] = geom_id_arr [skin_id] = skin_id_arr # Validate IDs if body_id != -1: assert 0 <= body_id < self._physics.model.nbody else: body_id = None if geom_id != -1: assert 0 <= geom_id < self._physics.model.ngeom else: geom_id = None if skin_id != -1: assert 0 <= skin_id < self._physics.model.nskin else: skin_id = None if all(id_ is None for id_ in (body_id, geom_id, skin_id)): pos = None return Selected( body=body_id, geom=geom_id, skin=skin_id, world_position=pos) class MovableCamera(Camera): """Subclass of `Camera` that can be moved by changing its pose. A `MovableCamera` always corresponds to a MuJoCo free camera with id -1. """ def __init__( self, physics: Physics, height: int = 240, width: int = 320, max_geom: Optional[int] = None, scene_callback: Optional[Callable[[Physics, mujoco.MjvScene], None]] = None, ): """Initializes a new `MovableCamera`. Args: physics: Instance of `Physics`. height: Optional image height. Defaults to 240. width: Optional image width. Defaults to 320. max_geom: Optional integer specifying the maximum number of geoms that can be rendered in the same scene. If None this will be chosen automatically based on the estimated maximum number of renderable geoms in the model. scene_callback: Called after the scene has been created and before it is rendered. Can be used to add more geoms to the scene. """ super().__init__(physics=physics, height=height, width=width, camera_id=-1, max_geom=max_geom, scene_callback=scene_callback) def get_pose(self): """Returns the pose of the camera. Returns: A `Pose` named tuple with fields: lookat: NumPy array specifying lookat point. distance: Float specifying distance to `lookat`. azimuth: Azimuth in degrees. elevation: Elevation in degrees. """ return Pose(self._render_camera.lookat, self._render_camera.distance, self._render_camera.azimuth, self._render_camera.elevation) def set_pose(self, lookat, distance, azimuth, elevation): """Sets the pose of the camera. Args: lookat: NumPy array or list specifying lookat point. distance: Float specifying distance to `lookat`. azimuth: Azimuth in degrees. elevation: Elevation in degrees. """ np.copyto(self._render_camera.lookat, lookat) self._render_camera.distance = distance self._render_camera.azimuth = azimuth self._render_camera.elevation = elevation class TextOverlay: """A text overlay that can be drawn on top of a camera view.""" __slots__ = ('title', 'body', 'style', 'position') def __init__(self, title='', body='', style='normal', position='top left'): """Initializes a new TextOverlay instance. Args: title: Title text. body: Body text. style: The font style. Can be either "normal", "shadow", or "big". position: The grid position of the overlay. Can be either "top left", "top right", "bottom left", or "bottom right". """ self.title = title self.body = body self.style = _FONT_STYLES[style] self.position = _GRID_POSITIONS[position] def draw(self, context, rect): """Draws the overlay. Args: context: A `mujoco.MjrContext` pointer. rect: A `mujoco.MjrRect`. """ mujoco.mjr_overlay(self.style, self.position, rect, util.to_binary_string(self.title), util.to_binary_string(self.body), context) def action_spec(physics): """Returns a `BoundedArraySpec` matching the `physics` actuators.""" num_actions = physics.model.nu is_limited = physics.model.actuator_ctrllimited.ravel().astype(bool) control_range = physics.model.actuator_ctrlrange minima = np.full(num_actions, fill_value=-mujoco.mjMAXVAL, dtype=float) maxima = np.full(num_actions, fill_value=mujoco.mjMAXVAL, dtype=float) minima[is_limited], maxima[is_limited] = control_range[is_limited].T return specs.BoundedArray( shape=(num_actions,), dtype=float, minimum=minima, maximum=maxima)
dm_control-main
dm_control/mujoco/engine.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utility functions.""" from dm_control.mujoco.wrapper.mjbindings import mjlib import numpy as np def euler2quat(ax, ay, az): """Converts euler angles to a quaternion. Note: rotation order is zyx Args: ax: Roll angle (deg) ay: Pitch angle (deg). az: Yaw angle (deg). Returns: A numpy array representing the rotation as a quaternion. """ r1 = az r2 = ay r3 = ax c1 = np.cos(np.deg2rad(r1 / 2)) s1 = np.sin(np.deg2rad(r1 / 2)) c2 = np.cos(np.deg2rad(r2 / 2)) s2 = np.sin(np.deg2rad(r2 / 2)) c3 = np.cos(np.deg2rad(r3 / 2)) s3 = np.sin(np.deg2rad(r3 / 2)) q0 = c1 * c2 * c3 + s1 * s2 * s3 q1 = c1 * c2 * s3 - s1 * s2 * c3 q2 = c1 * s2 * c3 + s1 * c2 * s3 q3 = s1 * c2 * c3 - c1 * s2 * s3 return np.array([q0, q1, q2, q3]) def mj_quatprod(q, r): quaternion = np.zeros(4) mjlib.mju_mulQuat(quaternion, np.ascontiguousarray(q), np.ascontiguousarray(r)) return quaternion def mj_quat2vel(q, dt): vel = np.zeros(3) mjlib.mju_quat2Vel(vel, np.ascontiguousarray(q), dt) return vel def mj_quatneg(q): quaternion = np.zeros(4) mjlib.mju_negQuat(quaternion, np.ascontiguousarray(q)) return quaternion def mj_quatdiff(source, target): return mj_quatprod(mj_quatneg(source), np.ascontiguousarray(target))
dm_control-main
dm_control/mujoco/math.py
# Copyright 2017-2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Integration tests for rendering.""" import os import platform from absl.testing import absltest from absl.testing import parameterized from dm_control import _render from dm_control import mujoco from dm_control.mujoco.testing import decorators from dm_control.mujoco.testing import image_utils DEBUG_IMAGE_DIR = os.environ.get('TEST_UNDECLARED_OUTPUTS_DIR', absltest.get_default_test_tmpdir()) # Context creation with GLFW is not threadsafe. if _render.BACKEND == 'glfw': # On Linux we are able to create a GLFW window in a single thread that is not # the main thread. # On Mac we are only allowed to create windows on the main thread, so we # disable the `run_threaded` wrapper entirely. NUM_THREADS = None if platform.system() == 'Darwin' else 1 else: NUM_THREADS = 4 CALLS_PER_THREAD = 1 class RenderTest(parameterized.TestCase): @parameterized.named_parameters(image_utils.SEQUENCES.items()) @image_utils.save_images_on_failure(output_dir=DEBUG_IMAGE_DIR) @decorators.run_threaded(num_threads=NUM_THREADS, calls_per_thread=CALLS_PER_THREAD) def test_render(self, sequence): for expected, actual in zip(sequence.iter_load(), sequence.iter_render()): image_utils.assert_images_close(expected, actual) @decorators.run_threaded(num_threads=NUM_THREADS, calls_per_thread=CALLS_PER_THREAD) @image_utils.save_images_on_failure(output_dir=DEBUG_IMAGE_DIR) def test_render_multiple_physics_per_thread(self): cartpole = image_utils.cartpole humanoid = image_utils.humanoid cartpole_frames = [] humanoid_frames = [] for cartpole_frame, humanoid_frame in zip(cartpole.iter_render(), humanoid.iter_render()): cartpole_frames.append(cartpole_frame) humanoid_frames.append(humanoid_frame) for expected, actual in zip(cartpole.iter_load(), cartpole_frames): image_utils.assert_images_close(expected, actual) for expected, actual in zip(humanoid.iter_load(), humanoid_frames): image_utils.assert_images_close(expected, actual) @decorators.run_threaded(num_threads=NUM_THREADS, calls_per_thread=1) def test_repeatedly_create_and_destroy_rendering_contexts(self): # Tests for errors that may occur due to per-thread GL resource leakage. physics = mujoco.Physics.from_xml_string('<mujoco/>') for _ in range(500): physics._make_rendering_contexts() physics._free_rendering_contexts() if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/render_test.py
# Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for index.""" import math from absl.testing import absltest from absl.testing import parameterized from dm_control.mujoco import math as mjmath import numpy as np class MathTest(parameterized.TestCase): def testQuatProd(self): np.testing.assert_allclose( mjmath.mj_quatprod([0., 1., 0., 0.], [0., 0., 1., 0.]), [0., 0., 0., 1.]) np.testing.assert_allclose( mjmath.mj_quatprod([0., 0., 1., 0.], [0., 0., 0., 1.]), [0., 1., 0., 0.]) np.testing.assert_allclose( mjmath.mj_quatprod([0., 0., 0., 1.], [0., 1., 0., 0.]), [0., 0., 1., 0.]) def testQuat2Vel(self): np.testing.assert_allclose( mjmath.mj_quat2vel([0., 1., 0., 0.], 0.1), [math.pi / 0.1, 0., 0.]) def testQuatNeg(self): np.testing.assert_allclose( mjmath.mj_quatneg([math.sqrt(0.5), math.sqrt(0.5), 0., 0.]), [math.sqrt(0.5), -math.sqrt(0.5), 0., 0.]) def testQuatDiff(self): np.testing.assert_allclose( mjmath.mj_quatdiff([0., 1., 0., 0.], [0., 0., 1., 0.]), [0., 0., 0., -1.]) def testEuler2Quat(self): np.testing.assert_allclose( mjmath.euler2quat(0., 0., 0.), [1., 0., 0., 0.]) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/math_test.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for mjbindings.""" from absl.testing import absltest from absl.testing import parameterized from dm_control.mujoco.wrapper.mjbindings import constants from dm_control.mujoco.wrapper.mjbindings import sizes class MjbindingsTest(parameterized.TestCase): @parameterized.parameters( ('mjdata', 'xpos', ('nbody', 3)), ('mjmodel', 'geom_type', ('ngeom',)), # Fields with identifiers in mjxmacro that are resolved at compile-time. ('mjmodel', 'actuator_dynprm', ('nu', constants.mjNDYN)), # Fields with multiple named indices. ('mjmodel', 'key_qpos', ('nkey', 'nq')), ) def testIndexDict(self, struct_name, field_name, expected_metadata): self.assertEqual(expected_metadata, sizes.array_sizes[struct_name][field_name]) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/wrapper/mjbindings_test.py
# Copyright 2017-2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Various helper functions and classes.""" import functools import sys import mujoco import numpy as np # Environment variable that can be used to override the default path to the # MuJoCo shared library. ENV_MJLIB_PATH = "MJLIB_PATH" DEFAULT_ENCODING = sys.getdefaultencoding() def to_binary_string(s): """Convert text string to binary.""" if isinstance(s, bytes): return s return s.encode(DEFAULT_ENCODING) def to_native_string(s): """Convert a text or binary string to the native string format.""" if isinstance(s, bytes): return s.decode(DEFAULT_ENCODING) else: return s def get_mjlib(): return mujoco @functools.wraps(np.ctypeslib.ndpointer) def ndptr(*args, **kwargs): """Wraps `np.ctypeslib.ndpointer` to allow passing None for NULL pointers.""" base = np.ctypeslib.ndpointer(*args, **kwargs) def from_param(_, obj): if obj is None: return obj else: return base.from_param(obj) return type(base.__name__, (base,), {"from_param": classmethod(from_param)})
dm_control-main
dm_control/mujoco/wrapper/util.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Python bindings and wrapper classes for MuJoCo.""" from dm_control.mujoco.wrapper import mjbindings from dm_control.mujoco.wrapper.core import callback_context from dm_control.mujoco.wrapper.core import enable_timer from dm_control.mujoco.wrapper.core import Error from dm_control.mujoco.wrapper.core import get_schema from dm_control.mujoco.wrapper.core import MjData from dm_control.mujoco.wrapper.core import MjModel from dm_control.mujoco.wrapper.core import MjrContext from dm_control.mujoco.wrapper.core import MjvCamera from dm_control.mujoco.wrapper.core import MjvFigure from dm_control.mujoco.wrapper.core import MjvOption from dm_control.mujoco.wrapper.core import MjvPerturb from dm_control.mujoco.wrapper.core import MjvScene from dm_control.mujoco.wrapper.core import save_last_parsed_model_to_xml from dm_control.mujoco.wrapper.core import set_callback
dm_control-main
dm_control/mujoco/wrapper/__init__.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Main user-facing classes and utility functions for loading MuJoCo models.""" import contextlib import copy import ctypes import weakref from absl import logging from dm_control.mujoco.wrapper import util # Some clients explicitly import core.mjlib. from dm_control.mujoco.wrapper.mjbindings import mjlib # pylint: disable=unused-import import mujoco import numpy as np # Unused internal import: resources. _FAKE_BINARY_FILENAME = "model.mjb" _CONTACT_ID_OUT_OF_RANGE = ( "`contact_id` must be between 0 and {max_valid} (inclusive), got: {actual}." ) class Error(Exception): """Base class for MuJoCo exceptions.""" pass if mujoco.mjVERSION_HEADER != mujoco.mj_version(): raise Error("MuJoCo library version ({0}) does not match header version " "({1})".format(mujoco.mjVERSION_HEADER, mujoco.mj_version())) # This is used to keep track of the `MJMODEL` pointer that was most recently # loaded by `_get_model_ptr_from_xml`. Only this model can be saved to XML. _LAST_PARSED_MODEL_PTR = None _NOT_LAST_PARSED_ERROR = ( "Only the model that was most recently loaded from an XML file or string " "can be saved to an XML file.") import time # NB: Python functions that are called from C are defined at module-level to # ensure they won't be garbage-collected before they are called. @ctypes.CFUNCTYPE(None, ctypes.c_char_p) def _warning_callback(message): logging.warning(util.to_native_string(message)) @ctypes.CFUNCTYPE(None, ctypes.c_char_p) def _error_callback(message): logging.fatal(util.to_native_string(message)) # Override MuJoCo's callbacks for handling warnings mujoco.set_mju_user_warning(_warning_callback) def enable_timer(enabled=True): if enabled: set_callback("mjcb_time", time.time) else: set_callback("mjcb_time", None) def _str2type(type_str): type_id = mujoco.mju_str2Type(util.to_binary_string(type_str)) if not type_id: raise Error("{!r} is not a valid object type name.".format(type_str)) return type_id def _type2str(type_id): type_str_ptr = mujoco.mju_type2Str(type_id) if not type_str_ptr: raise Error("{!r} is not a valid object type ID.".format(type_id)) return type_str_ptr def set_callback(name, new_callback=None): """Sets a user-defined callback function to modify MuJoCo's behavior. Callback functions should have the following signature: func(const_mjmodel_ptr, mjdata_ptr) -> None Args: name: Name of the callback to set. Must be a field in `functions.function_pointers`. new_callback: The new callback. This can be one of the following: * A Python callable * A C function exposed by a `ctypes.CDLL` object * An integer specifying the address of a callback function * None, in which case any existing callback of that name is removed """ getattr(mujoco, "set_" + name)(new_callback) @contextlib.contextmanager def callback_context(name, new_callback=None): """Context manager that temporarily overrides a MuJoCo callback function. On exit, the callback will be restored to its original value (None if the callback was not already overridden when the context was entered). Args: name: Name of the callback to set. Must be a field in `mjbindings.function_pointers`. new_callback: The new callback. This can be one of the following: * A Python callable * A C function exposed by a `ctypes.CDLL` object * An integer specifying the address of a callback function * None, in which case any existing callback of that name is removed Yields: None """ old_callback = getattr(mujoco, "get_" + name)() set_callback(name, new_callback) try: yield finally: # Ensure that the callback is reset on exit, even if an exception is raised. set_callback(name, old_callback) def get_schema(): """Returns a string containing the schema used by the MuJoCo XML parser.""" buf = ctypes.create_string_buffer(100000) mujoco.mj_printSchema(None, buf, len(buf), 0, 0) return buf.value def _get_model_ptr_from_xml(xml_path=None, xml_string=None, assets=None): """Parses a model XML file, compiles it, and returns a pointer to an mjModel. Args: xml_path: None or a path to a model XML file in MJCF or URDF format. xml_string: None or an XML string containing an MJCF or URDF model description. assets: None or a dict containing external assets referenced by the model (such as additional XML files, textures, meshes etc.), in the form of `{filename: contents_string}` pairs. The keys should correspond to the filenames specified in the model XML. Ignored if `xml_string` is None. One of `xml_path` or `xml_string` must be specified. Returns: A `ctypes.POINTER` to a new `mjbindings.types.MJMODEL` instance. Raises: TypeError: If both or neither of `xml_path` and `xml_string` are specified. Error: If the model is not created successfully. """ if xml_path is None and xml_string is None: raise TypeError( "At least one of `xml_path` or `xml_string` must be specified.") elif xml_path is not None and xml_string is not None: raise TypeError( "Only one of `xml_path` or `xml_string` may be specified.") if xml_string is not None: ptr = mujoco.MjModel.from_xml_string(xml_string, assets or {}) else: ptr = mujoco.MjModel.from_xml_path(xml_path, assets or {}) global _LAST_PARSED_MODEL_PTR _LAST_PARSED_MODEL_PTR = ptr return ptr def save_last_parsed_model_to_xml(xml_path, check_model=None): """Writes a description of the most recently loaded model to an MJCF XML file. Args: xml_path: Path to the output XML file. check_model: Optional `MjModel` instance. If specified, this model will be checked to see if it is the most recently parsed one, and a ValueError will be raised otherwise. Raises: Error: If MuJoCo encounters an error while writing the XML file. ValueError: If `check_model` was passed, and this model is not the most recently parsed one. """ if check_model and check_model.ptr is not _LAST_PARSED_MODEL_PTR: raise ValueError(_NOT_LAST_PARSED_ERROR) mujoco.mj_saveLastXML(xml_path, _LAST_PARSED_MODEL_PTR) def _get_model_ptr_from_binary(binary_path=None, byte_string=None): """Returns a pointer to an mjModel from the contents of a MuJoCo model binary. Args: binary_path: Path to an MJB file (as produced by MjModel.save_binary). byte_string: String of bytes (as returned by MjModel.to_bytes). One of `binary_path` or `byte_string` must be specified. Returns: A `ctypes.POINTER` to a new `mjbindings.types.MJMODEL` instance. Raises: TypeError: If both or neither of `byte_string` and `binary_path` are specified. """ if binary_path is None and byte_string is None: raise TypeError( "At least one of `byte_string` or `binary_path` must be specified.") elif binary_path is not None and byte_string is not None: raise TypeError( "Only one of `byte_string` or `binary_path` may be specified.") if byte_string is not None: assets = {_FAKE_BINARY_FILENAME: byte_string} return mujoco.MjModel.from_binary_path(_FAKE_BINARY_FILENAME, assets) return mujoco.MjModel.from_binary_path(binary_path, {}) class _MjModelMeta(type): """Metaclass which allows MjModel below to delegate to mujoco.MjModel.""" def __new__(cls, name, bases, dct): for attr in dir(mujoco.MjModel): if not attr.startswith("_"): if attr not in dct: # pylint: disable=protected-access fget = lambda self, attr=attr: getattr(self._model, attr) fset = ( lambda self, value, attr=attr: setattr(self._model, attr, value)) # pylint: enable=protected-access dct[attr] = property(fget, fset) return super().__new__(cls, name, bases, dct) class MjModel(metaclass=_MjModelMeta): """Wrapper class for a MuJoCo 'mjModel' instance. MjModel encapsulates features of the model that are expected to remain constant. It also contains simulation and visualization options which may be changed occasionally, although this is done explicitly by the user. """ _HAS_DYNAMIC_ATTRIBUTES = True def __init__(self, model_ptr): """Creates a new MjModel instance from a mujoco.MjModel.""" self._model = model_ptr @property def ptr(self): """The lower level MjModel instance.""" return self._model def __getstate__(self): return self._model def __setstate__(self, state): self._model = state def __copy__(self): new_model_ptr = copy.copy(self._model) return self.__class__(new_model_ptr) @classmethod def from_xml_string(cls, xml_string, assets=None): """Creates an `MjModel` instance from a model description XML string. Args: xml_string: String containing an MJCF or URDF model description. assets: Optional dict containing external assets referenced by the model (such as additional XML files, textures, meshes etc.), in the form of `{filename: contents_string}` pairs. The keys should correspond to the filenames specified in the model XML. Returns: An `MjModel` instance. """ model_ptr = _get_model_ptr_from_xml(xml_string=xml_string, assets=assets) return cls(model_ptr) @classmethod def from_byte_string(cls, byte_string): """Creates an MjModel instance from a model binary as a string of bytes.""" model_ptr = _get_model_ptr_from_binary(byte_string=byte_string) return cls(model_ptr) @classmethod def from_xml_path(cls, xml_path): """Creates an MjModel instance from a path to a model XML file.""" model_ptr = _get_model_ptr_from_xml(xml_path=xml_path) return cls(model_ptr) @classmethod def from_binary_path(cls, binary_path): """Creates an MjModel instance from a path to a compiled model binary.""" model_ptr = _get_model_ptr_from_binary(binary_path=binary_path) return cls(model_ptr) def save_binary(self, binary_path): """Saves the MjModel instance to a binary file.""" mujoco.mj_saveModel(self.ptr, binary_path, None) def to_bytes(self): """Serialize the model to a string of bytes.""" bufsize = mujoco.mj_sizeModel(self.ptr) buf = np.zeros(shape=(bufsize,), dtype=np.uint8) mujoco.mj_saveModel(self.ptr, None, buf) return buf.tobytes() def copy(self): """Returns a copy of this MjModel instance.""" return self.__copy__() def free(self): """Frees the native resources held by this MjModel. This is an advanced feature for use when manual memory management is necessary. This MjModel object MUST NOT be used after this function has been called. """ del self._ptr def name2id(self, name, object_type): """Returns the integer ID of a specified MuJoCo object. Args: name: String specifying the name of the object to query. object_type: The type of the object. Can be either a lowercase string (e.g. 'body', 'geom') or an `mjtObj` enum value. Returns: An integer object ID. Raises: Error: If `object_type` is not a valid MuJoCo object type, or if no object with the corresponding name and type was found. """ if isinstance(object_type, str): object_type = _str2type(object_type) obj_id = mujoco.mj_name2id(self.ptr, object_type, name) if obj_id == -1: raise Error("Object of type {!r} with name {!r} does not exist.".format( _type2str(object_type), name)) return obj_id def id2name(self, object_id, object_type): """Returns the name associated with a MuJoCo object ID, if there is one. Args: object_id: Integer ID. object_type: The type of the object. Can be either a lowercase string (e.g. 'body', 'geom') or an `mjtObj` enum value. Returns: A string containing the object name, or an empty string if the object ID either doesn't exist or has no name. Raises: Error: If `object_type` is not a valid MuJoCo object type. """ if isinstance(object_type, str): object_type = _str2type(object_type) return mujoco.mj_id2name(self.ptr, object_type, object_id) or "" @contextlib.contextmanager def disable(self, *flags): """Context manager for temporarily disabling MuJoCo flags. Args: *flags: Positional arguments specifying flags to disable. Can be either lowercase strings (e.g. 'gravity', 'contact') or `mjtDisableBit` enum values. Yields: None Raises: ValueError: If any item in `flags` is neither a valid name nor a value from `mujoco.mjtDisableBit`. """ old_bitmask = self.opt.disableflags new_bitmask = old_bitmask for flag in flags: if isinstance(flag, str): try: field_name = "mjDSBL_" + flag.upper() flag = getattr(mujoco.mjtDisableBit, field_name) except AttributeError: valid_names = [ field_name.split("_")[1].lower() for field_name in list(mujoco.mjtDisableBit.__members__)[:-1] ] raise ValueError("'{}' is not a valid flag name. Valid names: {}" .format(flag, ", ".join(valid_names))) from None elif isinstance(flag, int): flag = mujoco.mjtDisableBit(flag) new_bitmask |= flag.value self.opt.disableflags = new_bitmask try: yield finally: self.opt.disableflags = old_bitmask @property def name(self): """Returns the name of the model.""" # The model's name is the first null terminated string in _model.names return str(self._model.names[:self._model.names.find(b"\0")], "ascii") class _MjDataMeta(type): """Metaclass which allows MjData below to delegate to mujoco.MjData.""" def __new__(cls, name, bases, dct): for attr in dir(mujoco.MjData): if not attr.startswith("_"): if attr not in dct: # pylint: disable=protected-access fget = lambda self, attr=attr: getattr(self._data, attr) fset = lambda self, value, attr=attr: setattr(self._data, attr, value) # pylint: enable=protected-access dct[attr] = property(fget, fset) return super().__new__(cls, name, bases, dct) class MjData(metaclass=_MjDataMeta): """Wrapper class for a MuJoCo 'mjData' instance. MjData contains all of the dynamic variables and intermediate results produced by the simulation. These are expected to change on each simulation timestep. """ _HAS_DYNAMIC_ATTRIBUTES = True def __init__(self, model): """Construct a new MjData instance. Args: model: An MjModel instance. """ self._model = model self._data = mujoco.MjData(model._model) def __getstate__(self): return (self._model, self._data) def __setstate__(self, state): self._model, self._data = state def __copy__(self): # This makes a shallow copy that shares the same parent MjModel instance. return self._make_copy(share_model=True) def _make_copy(self, share_model): # TODO(nimrod): Avoid allocating a new MjData just to replace it. new_obj = self.__class__( self._model if share_model else copy.copy(self._model)) super(self.__class__, new_obj).__setattr__("_data", copy.copy(self._data)) return new_obj def copy(self): """Returns a copy of this MjData instance with the same parent MjModel.""" return self.__copy__() def object_velocity(self, object_id, object_type, local_frame=False): """Returns the 6D velocity (linear, angular) of a MuJoCo object. Args: object_id: Object identifier. Can be either integer ID or String name. object_type: The type of the object. Can be either a lowercase string (e.g. 'body', 'geom') or an `mjtObj` enum value. local_frame: Boolean specifiying whether the velocity is given in the global (worldbody), or local (object) frame. Returns: 2x3 array with stacked (linear_velocity, angular_velocity) Raises: Error: If `object_type` is not a valid MuJoCo object type, or if no object with the corresponding name and type was found. """ if not isinstance(object_type, int): object_type = _str2type(object_type) velocity = np.empty(6, dtype=np.float64) if not isinstance(object_id, int): object_id = self.model.name2id(object_id, object_type) mujoco.mj_objectVelocity(self._model.ptr, self._data, object_type, object_id, velocity, local_frame) # MuJoCo returns velocities in (angular, linear) order, which we flip here. return velocity.reshape(2, 3)[::-1] def contact_force(self, contact_id): """Returns the wrench of a contact as a 2 x 3 array of (forces, torques). Args: contact_id: Integer, the index of the contact within the contact buffer (`self.contact`). Returns: 2x3 array with stacked (force, torque). Note that the order of dimensions is (normal, tangent, tangent), in the contact's frame. Raises: ValueError: If `contact_id` is negative or bigger than ncon-1. """ if not 0 <= contact_id < self.ncon: raise ValueError(_CONTACT_ID_OUT_OF_RANGE .format(max_valid=self.ncon-1, actual=contact_id)) # Run the portion of `mj_step2` that are needed for correct contact forces. mujoco.mj_fwdActuation(self._model.ptr, self._data) mujoco.mj_fwdAcceleration(self._model.ptr, self._data) mujoco.mj_fwdConstraint(self._model.ptr, self._data) wrench = np.empty(6, dtype=np.float64) mujoco.mj_contactForce(self._model.ptr, self._data, contact_id, wrench) return wrench.reshape(2, 3) @property def ptr(self): """The lower level MjData instance.""" return self._data @property def model(self): """The parent MjModel for this MjData instance.""" return self._model @property def contact(self): """Variable-length recarray containing all current contacts.""" return self._data.contact[:self.ncon] # Docstrings for these subclasses are inherited from their parent class. class MjvCamera(mujoco.MjvCamera): # pylint: disable=missing-docstring # Provide this alias for the "type" property for backwards compatibility. @property def type_(self): return self.type @type_.setter def type_(self, t): self.type = t @property def ptr(self): return self class MjvOption(mujoco.MjvOption): # pylint: disable=missing-docstring def __init__(self): super().__init__() self.flags[mujoco.mjtVisFlag.mjVIS_RANGEFINDER] = False # Provided for backwards compatibility @property def ptr(self): return self class MjrContext: """Wrapper for mujoco.MjrContext.""" def __init__(self, model, gl_context, font_scale=mujoco.mjtFontScale.mjFONTSCALE_150): """Initializes this MjrContext instance. Args: model: An `MjModel` instance. gl_context: A `render.ContextBase` instance. font_scale: Integer controlling the font size for text. Must be a value in `mujoco.mjtFontScale`. Raises: ValueError: If `font_scale` is invalid. """ if not isinstance(font_scale, mujoco.mjtFontScale): font_scale = mujoco.mjtFontScale(font_scale) self._gl_context = gl_context with gl_context.make_current() as ctx: ptr = ctx.call(mujoco.MjrContext, model.ptr, font_scale) ctx.call(mujoco.mjr_setBuffer, mujoco.mjtFramebuffer.mjFB_OFFSCREEN, ptr) gl_context.keep_alive(ptr) gl_context.increment_refcount() self._ptr = weakref.ref(ptr) @property def ptr(self): return self._ptr() def free(self): """Frees the native resources held by this MjrContext. This is an advanced feature for use when manual memory management is necessary. This MjrContext object MUST NOT be used after this function has been called. """ if self._gl_context and not self._gl_context.terminated: ptr = self.ptr if ptr: self._gl_context.dont_keep_alive(ptr) with self._gl_context.make_current() as ctx: ctx.call(ptr.free) if self._gl_context: self._gl_context.decrement_refcount() self._gl_context.free() self._gl_context = None def __del__(self): self.free() # A mapping from human-readable short names to mjtRndFlag enum values, i.e. # {'shadow': mjtRndFlag.mjRND_SHADOW, 'fog': mjtRndFlag.mjRND_FOG, ...} _NAME_TO_RENDER_FLAG_ENUM_VALUE = { name[len("mjRND_"):].lower(): getattr(mujoco.mjtRndFlag, name).value for name in mujoco.mjtRndFlag.__members__ if name != "mjRND_NUMRNDFLAG" } def _estimate_max_renderable_geoms(model): """Estimates the maximum number of renderable geoms for a given model.""" # Only one type of object frame can be rendered at once. max_nframes = max( [model.nbody, model.ngeom, model.nsite, model.ncam, model.nlight]) # This is probably an underestimate, but it is unlikely that all possible # rendering options will be enabled simultaneously, or that all renderable # geoms will be present within the viewing frustum at the same time. return ( 3 * max_nframes + # 1 geom per axis for each frame. 4 * model.ngeom + # geom itself + contacts + 2 * split contact forces. 3 * model.nbody + # COM + inertia box + perturbation force. model.nsite + model.ntendon + model.njnt + model.nu + model.nskin + model.ncam + model.nlight) class MjvScene(mujoco.MjvScene): # pylint: disable=missing-docstring def __init__(self, model=None, max_geom=None): """Initializes a new `MjvScene` instance. Args: model: (optional) An `MjModel` instance. max_geom: (optional) An integer specifying the maximum number of geoms that can be represented in the scene. If None, this will be chosen automatically based on `model`. """ if model is None: super().__init__() else: if max_geom is None: if model is None: max_renderable_geoms = 0 else: max_renderable_geoms = _estimate_max_renderable_geoms(model) max_geom = max(1000, max_renderable_geoms) super().__init__(model.ptr, max_geom) @property def ptr(self): return self @contextlib.contextmanager def override_flags(self, overrides): """Context manager for temporarily overriding rendering flags. Args: overrides: A mapping specifying rendering flags to override. The keys can be either lowercase strings or `mjtRndFlag` enum values, and the values are the overridden flag values, e.g. `{'wireframe': True}` or `{mujoco.mjtRndFlag.mjRND_WIREFRAME: True}`. See `mujoco.mjtRndFlag` for the set of valid flags. Yields: None """ if not overrides: yield else: original_flags = self.flags.copy() for key, value in overrides.items(): index = _NAME_TO_RENDER_FLAG_ENUM_VALUE.get(key, key) self.flags[index] = value try: yield finally: np.copyto(self.flags, original_flags) def free(self): """Frees the native resources held by this MjvScene. This is an advanced feature for use when manual memory management is necessary. This MjvScene object MUST NOT be used after this function has been called. """ pass @property def geoms(self): """Variable-length recarray containing all geoms currently in the buffer.""" return super().geoms[:super().ngeom] class MjvPerturb(mujoco.MjvPerturb): # pylint: disable=missing-docstring @property def ptr(self): return self class MjvFigure(mujoco.MjvFigure): # pylint: disable=missing-docstring @property def ptr(self): return self @property def range_(self): return self.range @range_.setter def range_(self, value): self.range = value
dm_control-main
dm_control/mujoco/wrapper/core.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for core.py.""" import gc import os import pickle from absl.testing import absltest from absl.testing import parameterized from dm_control import _render from dm_control.mujoco.testing import assets from dm_control.mujoco.wrapper import core import mujoco import numpy as np HUMANOID_XML_PATH = assets.get_path("humanoid.xml") MODEL_WITH_ASSETS = assets.get_contents("model_with_assets.xml") ASSETS = { "texture.png": assets.get_contents("deepmind.png"), "mesh.stl": assets.get_contents("cube.stl"), "included.xml": assets.get_contents("sphere.xml") } SCALAR_TYPES = (int, float) ARRAY_TYPES = (np.ndarray,) OUT_DIR = absltest.get_default_test_tmpdir() if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) # Ensure that the output directory exists. class CoreTest(parameterized.TestCase): def setUp(self): super().setUp() self.model = core.MjModel.from_xml_path(HUMANOID_XML_PATH) self.data = core.MjData(self.model) def _assert_attributes_equal(self, actual_obj, expected_obj, attr_to_compare): for name in attr_to_compare: actual_value = getattr(actual_obj, name) expected_value = getattr(expected_obj, name) try: if isinstance(expected_value, np.ndarray): np.testing.assert_array_equal(actual_value, expected_value) else: self.assertEqual(actual_value, expected_value) except AssertionError as e: self.fail("Attribute '{}' differs from expected value: {}" .format(name, str(e))) def testLoadXML(self): with open(HUMANOID_XML_PATH, "r") as f: xml_string = f.read() model = core.MjModel.from_xml_string(xml_string) core.MjData(model) with self.assertRaises(TypeError): core.MjModel() with self.assertRaises(ValueError): core.MjModel.from_xml_path("/path/to/nonexistent/model/file.xml") xml_with_warning = """ <mujoco> <size njmax='2'/> <worldbody> <body pos='0 0 0'> <geom type='box' size='.1 .1 .1'/> </body> <body pos='0 0 0'> <joint type='slide' axis='1 0 0'/> <geom type='box' size='.1 .1 .1'/> </body> </worldbody> </mujoco>""" # This model should compile successfully, but raise a warning on the first # simulation step. model = core.MjModel.from_xml_string(xml_with_warning) data = core.MjData(model) mujoco.mj_step(model.ptr, data.ptr) def testLoadXMLWithAssetsFromString(self): core.MjModel.from_xml_string(MODEL_WITH_ASSETS, assets=ASSETS) with self.assertRaises(ValueError): # Should fail to load without the assets core.MjModel.from_xml_string(MODEL_WITH_ASSETS) def testSaveLastParsedModelToXML(self): save_xml_path = os.path.join(OUT_DIR, "tmp_humanoid.xml") not_last_parsed = core.MjModel.from_xml_path(HUMANOID_XML_PATH) last_parsed = core.MjModel.from_xml_path(HUMANOID_XML_PATH) # Modify the model before saving it in order to confirm that the changes are # written to the XML. last_parsed.geom_pos.flat[:] = np.arange(last_parsed.geom_pos.size) core.save_last_parsed_model_to_xml(save_xml_path, check_model=last_parsed) loaded = core.MjModel.from_xml_path(save_xml_path) self._assert_attributes_equal(last_parsed, loaded, ["geom_pos"]) core.MjData(loaded) # Test that `check_model` results in a ValueError if it is not the most # recently parsed model. with self.assertRaisesWithLiteralMatch( ValueError, core._NOT_LAST_PARSED_ERROR): core.save_last_parsed_model_to_xml(save_xml_path, check_model=not_last_parsed) def testBinaryIO(self): bin_path = os.path.join(OUT_DIR, "tmp_humanoid.mjb") self.model.save_binary(bin_path) core.MjModel.from_binary_path(bin_path) byte_string = self.model.to_bytes() core.MjModel.from_byte_string(byte_string) def testDimensions(self): self.assertEqual(self.data.qpos.shape[0], self.model.nq) self.assertEqual(self.data.qvel.shape[0], self.model.nv) self.assertEqual(self.model.body_pos.shape, (self.model.nbody, 3)) def testStep(self): t0 = self.data.time mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertEqual(self.data.time, t0 + self.model.opt.timestep) self.assertTrue(np.all(np.isfinite(self.data.qpos[:]))) self.assertTrue(np.all(np.isfinite(self.data.qvel[:]))) def testMultipleData(self): data2 = core.MjData(self.model) self.assertNotEqual(self.data.ptr, data2.ptr) t0 = self.data.time mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertEqual(self.data.time, t0 + self.model.opt.timestep) self.assertEqual(data2.time, 0) def testMultipleModel(self): model2 = core.MjModel.from_xml_path(HUMANOID_XML_PATH) self.assertNotEqual(self.model.ptr, model2.ptr) self.model.opt.timestep += 0.001 self.assertEqual(self.model.opt.timestep, model2.opt.timestep + 0.001) def testModelName(self): self.assertEqual(self.model.name, "humanoid") @parameterized.named_parameters( ("_copy", lambda x: x.copy()), ("_pickle_unpickle", lambda x: pickle.loads(pickle.dumps(x))),) def testCopyOrPickleModel(self, func): timestep = 0.12345 self.model.opt.timestep = timestep body_pos = self.model.body_pos + 1 self.model.body_pos[:] = body_pos model2 = func(self.model) self.assertNotEqual(model2.ptr, self.model.ptr) self.assertEqual(model2.opt.timestep, timestep) np.testing.assert_array_equal(model2.body_pos, body_pos) @parameterized.named_parameters( ("_copy", lambda x: x.copy()), ("_pickle_unpickle", lambda x: pickle.loads(pickle.dumps(x))),) def testCopyOrPickleData(self, func): for _ in range(10): mujoco.mj_step(self.model.ptr, self.data.ptr) data2 = func(self.data) attr_to_compare = ("time", "energy", "qpos", "xpos") self.assertNotEqual(data2.ptr, self.data.ptr) self._assert_attributes_equal(data2, self.data, attr_to_compare) for _ in range(10): mujoco.mj_step(self.model.ptr, self.data.ptr) mujoco.mj_step(data2.model.ptr, data2.ptr) self._assert_attributes_equal(data2, self.data, attr_to_compare) @parameterized.named_parameters( ("_copy", lambda x: x.copy()), ("_pickle_unpickle", lambda x: pickle.loads(pickle.dumps(x))),) def testCopyOrPickleStructs(self, func): for _ in range(10): mujoco.mj_step(self.model.ptr, self.data.ptr) data2 = func(self.data) self.assertNotEqual(data2.ptr, self.data.ptr) attr_to_compare = ("warning", "timer", "solver") self._assert_attributes_equal(self.data, data2, attr_to_compare) for _ in range(10): mujoco.mj_step(self.model.ptr, self.data.ptr) mujoco.mj_step(data2.model.ptr, data2.ptr) self._assert_attributes_equal(self.data, data2, attr_to_compare) @parameterized.parameters( ("right_foot", "body", 6), ("right_foot", mujoco.mjtObj.mjOBJ_BODY, 6), ("left_knee", "joint", 11), ("left_knee", mujoco.mjtObj.mjOBJ_JOINT, 11), ) def testNamesIds(self, name, object_type, object_id): output_id = self.model.name2id(name, object_type) self.assertEqual(object_id, output_id) output_name = self.model.id2name(object_id, object_type) self.assertEqual(name, output_name) def testNamesIdsExceptions(self): with self.assertRaisesRegex(core.Error, "does not exist"): self.model.name2id("nonexistent_body_name", "body") with self.assertRaisesRegex(core.Error, "is not a valid object type"): self.model.name2id("right_foot", "nonexistent_type_name") def testNamelessObject(self): # The model in humanoid.xml contains a single nameless camera. name = self.model.id2name(0, "camera") self.assertEqual("", name) def testSingleCallbackContext(self): callback_was_called = [False] def callback(unused_model, unused_data): callback_was_called[0] = True mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertFalse(callback_was_called[0]) class DummyError(RuntimeError): pass try: with core.callback_context("mjcb_passive", callback): # Stepping invokes the `mjcb_passive` callback. mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertTrue(callback_was_called[0]) # Exceptions should not prevent `mjcb_passive` from being reset. raise DummyError("Simulated exception.") except DummyError: pass # `mjcb_passive` should have been reset to None. callback_was_called[0] = False mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertFalse(callback_was_called[0]) def testNestedCallbackContexts(self): last_called = [None] outer_called = "outer called" inner_called = "inner called" def outer(unused_model, unused_data): last_called[0] = outer_called def inner(unused_model, unused_data): last_called[0] = inner_called with core.callback_context("mjcb_passive", outer): # This should execute `outer` a few times. mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertEqual(last_called[0], outer_called) with core.callback_context("mjcb_passive", inner): # This should execute `inner` a few times. mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertEqual(last_called[0], inner_called) # When we exit the inner context, the `mjcb_passive` callback should be # reset to `outer`. mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertEqual(last_called[0], outer_called) # When we exit the outer context, the `mjcb_passive` callback should be # reset to None, and stepping should not affect `last_called`. last_called[0] = None mujoco.mj_step(self.model.ptr, self.data.ptr) self.assertIsNone(last_called[0]) def testDisableFlags(self): xml_string = """ <mujoco> <option gravity="0 0 -9.81"/> <worldbody> <geom name="floor" type="plane" pos="0 0 0" size="10 10 0.1"/> <body name="cube" pos="0 0 0.1"> <geom type="box" size="0.1 0.1 0.1" mass="1"/> <site name="cube_site" type="box" size="0.1 0.1 0.1"/> <joint type="slide"/> </body> </worldbody> <sensor> <touch name="touch_sensor" site="cube_site"/> </sensor> </mujoco> """ model = core.MjModel.from_xml_string(xml_string) data = core.MjData(model) for _ in range(100): # Let the simulation settle for a while. mujoco.mj_step(model.ptr, data.ptr) # With gravity and contact enabled, the cube should be stationary and the # touch sensor should give a reading of ~9.81 N. self.assertAlmostEqual(data.qvel[0], 0, places=4) self.assertAlmostEqual(data.sensordata[0], 9.81, places=2) # If we disable both contacts and gravity then the cube should remain # stationary and the touch sensor should read zero. with model.disable("contact", "gravity"): mujoco.mj_step(model.ptr, data.ptr) self.assertAlmostEqual(data.qvel[0], 0, places=4) self.assertEqual(data.sensordata[0], 0) # If we disable contacts but not gravity then the cube should fall through # the floor. with model.disable(mujoco.mjtDisableBit.mjDSBL_CONTACT): for _ in range(10): mujoco.mj_step(model.ptr, data.ptr) self.assertLess(data.qvel[0], -0.1) def testDisableFlagsExceptions(self): with self.assertRaises(ValueError): with self.model.disable("invalid_flag_name"): pass with self.assertRaises(ValueError): with self.model.disable(-99): pass @parameterized.parameters( # The tip is .5 meters from the cart so we expect its horizontal velocity # to be 1m/s + .5m*1rad/s = 1.5m/s. dict( qpos=[0., 0.], # Pole pointing upwards. qvel=[1., 1.], expected_linvel=[1.5, 0., 0.], expected_angvel=[0., 1., 0.], ), # For the same velocities but with the pole pointing down, we expect the # velocities to cancel, making the global tip velocity now equal to # 1m/s - 0.5m*1rad/s = 0.5m/s. dict( qpos=[0., np.pi], # Pole pointing downwards. qvel=[1., 1.], expected_linvel=[0.5, 0., 0.], expected_angvel=[0., 1., 0.], ), # In the site's local frame, which is now flipped w.r.t the world, the # velocity is in the negative x direction. dict( qpos=[0., np.pi], # Pole pointing downwards. qvel=[1., 1.], expected_linvel=[-0.5, 0., 0.], expected_angvel=[0., 1., 0.], local=True, ), ) def testObjectVelocity( self, qpos, qvel, expected_linvel, expected_angvel, local=False): cartpole = """ <mujoco> <worldbody> <body name='cart'> <joint type='slide' axis='1 0 0'/> <geom name='cart' type='box' size='0.2 0.2 0.2'/> <body name='pole'> <joint name='hinge' type='hinge' axis='0 1 0'/> <geom name='mass' pos='0 0 .5' size='0.04'/> </body> </body> </worldbody> </mujoco> """ model = core.MjModel.from_xml_string(cartpole) data = core.MjData(model) data.qpos[:] = qpos data.qvel[:] = qvel mujoco.mj_step1(model.ptr, data.ptr) linvel, angvel = data.object_velocity("mass", "geom", local_frame=local) np.testing.assert_array_almost_equal(linvel, expected_linvel) np.testing.assert_array_almost_equal(angvel, expected_angvel) def testContactForce(self): box_on_floor = """ <mujoco> <worldbody> <geom name='floor' type='plane' size='1 1 1'/> <body name='box' pos='0 0 .1'> <freejoint/> <geom name='box' type='box' size='.1 .1 .1'/> </body> </worldbody> </mujoco> """ model = core.MjModel.from_xml_string(box_on_floor) data = core.MjData(model) # Settle for 500 timesteps (1 second): for _ in range(500): mujoco.mj_step(model.ptr, data.ptr) normal_force = 0. for contact_id in range(data.ncon): force = data.contact_force(contact_id) normal_force += force[0, 0] box_id = 1 box_weight = -model.opt.gravity[2]*model.body_mass[box_id] self.assertAlmostEqual(normal_force, box_weight) # Test raising of out-of-range errors: bad_ids = [-1, data.ncon] for bad_id in bad_ids: with self.assertRaisesWithLiteralMatch( ValueError, core._CONTACT_ID_OUT_OF_RANGE.format( max_valid=data.ncon - 1, actual=bad_id)): data.contact_force(bad_id) @parameterized.parameters( dict( condim=3, # Only sliding friction. expected_torques=[False, False, False], # No torques. ), dict( condim=4, # Sliding and torsional friction. expected_torques=[True, False, False], # Only torsional torque. ), dict( condim=6, # Sliding, torsional and rolling. expected_torques=[True, True, True], # All torques are nonzero. ), ) def testContactTorque(self, condim, expected_torques): ball_on_floor = """ <mujoco> <worldbody> <geom name='floor' type='plane' size='1 1 1'/> <body name='ball' pos='0 0 .1'> <freejoint/> <geom name='ball' size='.1' friction='1 .1 .1'/> </body> </worldbody> </mujoco> """ model = core.MjModel.from_xml_string(ball_on_floor) data = core.MjData(model) model.geom_condim[:] = condim data.qvel[3:] = np.array((1., 1., 1.)) # Settle for 10 timesteps (20 milliseconds): for _ in range(10): mujoco.mj_step(model.ptr, data.ptr) contact_id = 0 # This model has only one contact. _, torque = data.contact_force(contact_id) nonzero_torques = torque != 0 np.testing.assert_array_equal(nonzero_torques, np.array((expected_torques))) def testFreeMjrContext(self): for _ in range(5): renderer = _render.Renderer(640, 480) mjr_context = core.MjrContext(self.model, renderer) # Explicit freeing should not break any automatic GC triggered later. del mjr_context renderer.free() del renderer gc.collect() def testSceneGeomsAttribute(self): scene = core.MjvScene(model=self.model) self.assertEqual(scene.ngeom, 0) self.assertEmpty(scene.geoms) geom_types = ( mujoco.mjtObj.mjOBJ_BODY, mujoco.mjtObj.mjOBJ_GEOM, mujoco.mjtObj.mjOBJ_SITE, ) for geom_type in geom_types: scene.ngeom += 1 scene.geoms[scene.ngeom - 1].objtype = geom_type self.assertLen(scene.geoms, len(geom_types)) self.assertEqual(tuple(g.objtype for g in scene.geoms), geom_types) def testInvalidFontScale(self): invalid_font_scale = 99 with self.assertRaises(ValueError): core.MjrContext(model=self.model, gl_context=None, # Don't need a context for this test. font_scale=invalid_font_scale) def _get_attributes_test_params(): model = core.MjModel.from_xml_path(HUMANOID_XML_PATH) data = core.MjData(model) # Get the names of the non-private attributes of model and data through # introspection. These are passed as parameters to each of the test methods # in AttributesTest. array_args = [] scalar_args = [] skipped_args = [] for parent_name, parent_obj in zip(("model", "data"), (model._model, data._data)): for attr_name in dir(parent_obj): if not attr_name.startswith("_"): # Skip 'private' attributes args = (parent_name, attr_name) attr = getattr(parent_obj, attr_name) if isinstance(attr, ARRAY_TYPES): array_args.append(args) elif isinstance(attr, SCALAR_TYPES): scalar_args.append(args) elif callable(attr): # Methods etc. should be covered specifically in CoreTest. continue else: skipped_args.append(args) return array_args, scalar_args, skipped_args _array_args, _scalar_args, _skipped_args = _get_attributes_test_params() class AttributesTest(parameterized.TestCase): """Generic tests covering attributes of MjModel and MjData.""" # Iterates over ('parent_name', 'attr_name') tuples @parameterized.parameters(*_array_args) def testReadWriteArray(self, parent_name, attr_name): attr = getattr(getattr(self, parent_name), attr_name) if not isinstance(attr, ARRAY_TYPES): raise TypeError("{}.{} has incorrect type {!r} - must be one of {!r}." .format(parent_name, attr_name, type(attr), ARRAY_TYPES)) # Check that we can read the contents of the array _ = attr[:] # Write unique values into the array and read them back. self._write_unique_values(attr_name, attr) self._take_steps() # Take a few steps, check that we don't get segfaults. def _write_unique_values(self, attr_name, target_array): # If the target array is structured, recursively write unique values into # each subfield. if target_array.dtype.fields is not None: for field_name in target_array.dtype.fields: self._write_unique_values(attr_name, target_array[field_name]) # Don't write to integer arrays since these might contain pointers. Also # don't write directly into the stack. elif (attr_name != "stack" and not np.issubdtype(target_array.dtype, np.integer)): new_contents = np.arange(target_array.size, dtype=target_array.dtype) new_contents.shape = target_array.shape target_array[:] = new_contents np.testing.assert_array_equal(new_contents, target_array[:]) @parameterized.parameters(*_scalar_args) def testReadWriteScalar(self, parent_name, attr_name): parent_obj = getattr(self, parent_name) # Check that we can read the value. attr = getattr(parent_obj, attr_name) if not isinstance(attr, SCALAR_TYPES): raise TypeError("{}.{} has incorrect type {!r} - must be one of {!r}." .format(parent_name, attr_name, type(attr), SCALAR_TYPES)) # Don't write to integers since these might be pointers. if not isinstance(attr, int): # Set the value of this attribute, check that we can read it back. new_value = type(attr)(99) setattr(parent_obj, attr_name, new_value) self.assertEqual(new_value, getattr(parent_obj, attr_name)) self._take_steps() # Take a few steps, check that we don't get segfaults. @parameterized.parameters(*_skipped_args) @absltest.unittest.skip("No tests defined for attributes of this type.") def testSkipped(self, *unused_args): # This is a do-nothing test that indicates where we currently lack coverage. pass def setUp(self): super().setUp() self.model = core.MjModel.from_xml_path(HUMANOID_XML_PATH) self.data = core.MjData(self.model) def _take_steps(self, n=5): for _ in range(n): mujoco.mj_step(self.model.ptr, self.data.ptr) if __name__ == "__main__": absltest.main()
dm_control-main
dm_control/mujoco/wrapper/core_test.py
# Copyright 2022 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Aliases for the mujoco library, provided for backwards compatibility. New code should import mujoco directly, instead of accessing these constants or mjlib through this module. """ import mujoco mjlib = mujoco mjDISABLESTRING = mujoco.mjDISABLESTRING mjENABLESTRING = mujoco.mjENABLESTRING mjTIMERSTRING = mujoco.mjTIMERSTRING mjLABELSTRING = mujoco.mjLABELSTRING mjFRAMESTRING = mujoco.mjFRAMESTRING mjVISSTRING = mujoco.mjVISSTRING mjRNDSTRING = mujoco.mjRNDSTRING
dm_control-main
dm_control/mujoco/wrapper/mjbindings/functions.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Import core names of MuJoCo ctypes bindings.""" from absl import logging from dm_control.mujoco.wrapper.mjbindings import constants from dm_control.mujoco.wrapper.mjbindings import enums from dm_control.mujoco.wrapper.mjbindings import sizes # Internal analytics import. # pylint: disable=g-import-not-at-top try: from dm_control.mujoco.wrapper.mjbindings import functions from dm_control.mujoco.wrapper.mjbindings.functions import mjlib logging.info('MuJoCo library version is: %s', mjlib.mj_versionString()) # Internal analytics. except (IOError, OSError): logging.warning('mjbindings failed to import mjlib and other functions. ' 'libmujoco.so may not be accessible.')
dm_control-main
dm_control/mujoco/wrapper/mjbindings/__init__.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for image_utils.""" import os from absl.testing import absltest from absl.testing import parameterized from dm_control.mujoco.testing import image_utils import mock import numpy as np from PIL import Image SEED = 0 class ImageUtilsTest(parameterized.TestCase): @parameterized.parameters( dict(frame_index1=0, frame_index2=0, expected_rms=0.0), dict(frame_index1=0, frame_index2=1, expected_rms=23.214), dict(frame_index1=0, frame_index2=9, expected_rms=55.738)) def test_compute_rms(self, frame_index1, frame_index2, expected_rms): # Force loading of the software rendering reference images regardless of the # actual GL backend, since these should match the expected RMS values. with mock.patch.object(image_utils, 'BACKEND_STRING', new='software'): frames = list(image_utils.humanoid.iter_load()) camera_idx = 0 num_cameras = image_utils.humanoid.num_cameras image1 = frames[camera_idx + frame_index1 * num_cameras] image2 = frames[camera_idx + frame_index2 * num_cameras] rms = image_utils.compute_rms(image1, image2) self.assertAlmostEqual(rms, expected_rms, places=3) def test_assert_images_close(self): random_state = np.random.RandomState(SEED) image1 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8) image2 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8) image_utils.assert_images_close(image1, image1, tolerance=0) with self.assertRaisesRegex( # pylint: disable=g-error-prone-assert-raises image_utils.ImagesNotCloseError, 'RMS error exceeds tolerance'): image_utils.assert_images_close(image1, image2) def test_save_images_on_failure(self): random_state = np.random.RandomState(SEED) image1 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8) image2 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8) diff = (0.5 * (image2.astype(np.int16) - image1 + 255)).astype(np.uint8) message = 'exception message' output_dir = absltest.get_default_test_tmpdir() @image_utils.save_images_on_failure(output_dir=output_dir) def func(): raise image_utils.ImagesNotCloseError(message, image1, image2) with self.assertRaisesRegex(image_utils.ImagesNotCloseError, '{}.*'.format(message)): func() def validate_saved_file(name, expected_contents): path = os.path.join(output_dir, '{}-{}.png'.format('func', name)) self.assertTrue(os.path.isfile(path)) image = Image.open(path) actual_contents = np.array(image) np.testing.assert_array_equal(expected_contents, actual_contents) validate_saved_file('expected', image1) validate_saved_file('actual', image2) validate_saved_file('difference', diff) if __name__ == '__main__': absltest.main()
dm_control-main
dm_control/mujoco/testing/image_utils_test.py
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for testing rendering.""" import collections import functools import io import os import sys from dm_control import _render from dm_control import mujoco from dm_control.mujoco.testing import assets import numpy as np from PIL import Image BACKEND_STRING = 'hardware' if _render.USING_GPU else 'software' class ImagesNotCloseError(AssertionError): """Exception raised when two images are not sufficiently close.""" def __init__(self, message, expected, actual): super().__init__(message) self.expected = expected self.actual = actual _CameraSpec = collections.namedtuple( '_CameraSpec', ['height', 'width', 'camera_id', 'render_flag_overrides']) _SUBDIR_TEMPLATE = ( '{name}_seed_{seed}_camera_{camera_id}_{width}x{height}_{backend_string}' '{render_flag_overrides_string}' ) def _get_subdir(name, seed, backend_string, camera_spec): if camera_spec.render_flag_overrides: overrides = ('{}_{}'.format(k, v) for k, v in sorted(camera_spec.render_flag_overrides.items())) render_flag_overrides_string = '_' + '_'.join(overrides) else: render_flag_overrides_string = '' return _SUBDIR_TEMPLATE.format( name=name, seed=seed, camera_id=camera_spec.camera_id, width=camera_spec.width, height=camera_spec.height, backend_string=backend_string, render_flag_overrides_string=render_flag_overrides_string, ) class _FrameSequence: """A sequence of pre-rendered frames used in integration tests.""" _ASSETS_DIR = 'assets' _FRAMES_DIR = 'frames' _FILENAME_TEMPLATE = 'frame_{frame_num:03}.png' def __init__(self, name, xml_string, camera_specs, num_frames=20, steps_per_frame=10, seed=0): """Initializes a new `_FrameSequence`. Args: name: A string containing the name to be used for the sequence. xml_string: An MJCF XML string containing the model to be rendered. camera_specs: A list of `_CameraSpec` instances specifying the cameras to render on each frame. num_frames: The number of frames to render. steps_per_frame: The interval between frames, in simulation steps. seed: Integer or None, used to initialize the random number generator for generating actions. """ self._name = name self._xml_string = xml_string self._camera_specs = camera_specs self._num_frames = num_frames self._steps_per_frame = steps_per_frame self._seed = seed @property def num_cameras(self): return len(self._camera_specs) def iter_render(self): """Returns an iterator that yields newly rendered frames as numpy arrays.""" random_state = np.random.RandomState(self._seed) physics = mujoco.Physics.from_xml_string(self._xml_string) action_spec = mujoco.action_spec(physics) for _ in range(self._num_frames): for _ in range(self._steps_per_frame): actions = random_state.uniform(action_spec.minimum, action_spec.maximum) physics.set_control(actions) physics.step() for camera_spec in self._camera_specs: yield physics.render(**camera_spec._asdict()) def iter_load(self): """Returns an iterator that yields saved frames as numpy arrays.""" for directory, filename in self._iter_paths(): path = os.path.join(directory, filename) yield _load_pixels(path) def save(self): """Saves a new set of golden output frames to disk.""" for pixels, (relative_to_assets, filename) in zip(self.iter_render(), self._iter_paths()): full_directory_path = os.path.join(self._ASSETS_DIR, relative_to_assets) if not os.path.exists(full_directory_path): os.makedirs(full_directory_path) path = os.path.join(full_directory_path, filename) _save_pixels(pixels, path) def _iter_paths(self): """Returns an iterator over paths to the reference images.""" for frame_num in range(self._num_frames): filename = self._FILENAME_TEMPLATE.format(frame_num=frame_num) for camera_spec in self._camera_specs: subdir_name = _get_subdir( name=self._name, seed=self._seed, backend_string=BACKEND_STRING, camera_spec=camera_spec) directory = os.path.join(self._FRAMES_DIR, subdir_name) yield directory, filename cartpole = _FrameSequence( name='cartpole', xml_string=assets.get_contents('cartpole.xml'), camera_specs=( _CameraSpec( width=320, height=240, camera_id=0, render_flag_overrides={}), ), steps_per_frame=5) humanoid = _FrameSequence( name='humanoid', xml_string=assets.get_contents('humanoid.xml'), camera_specs=( _CameraSpec( width=240, height=320, camera_id=0, render_flag_overrides={}), _CameraSpec( width=240, height=320, camera_id=0, render_flag_overrides={ 'shadow': False, 'reflection': False, }), _CameraSpec( width=64, height=64, camera_id='head_track', render_flag_overrides={}), )) SEQUENCES = { 'cartpole': cartpole, 'humanoid': humanoid, } def _save_pixels(pixels, path): image = Image.fromarray(pixels) image.save(path) def _load_pixels(path): image_bytes = assets.get_contents(path) image = Image.open(io.BytesIO(image_bytes)) return np.array(image) def compute_rms(image1, image2): """Computes the RMS difference between two images.""" abs_diff = np.abs(image1.astype(np.int16) - image2) values, counts = np.unique(abs_diff, return_counts=True) sum_of_squares = np.sum(counts * values.astype(np.int64) ** 2) return np.sqrt(float(sum_of_squares) / abs_diff.size) def assert_images_close(expected, actual, tolerance=10.): """Tests whether two images are almost equal. Args: expected: A numpy array, the expected image. actual: A numpy array, the actual image. tolerance: A float specifying the maximum allowable RMS error between the expected and actual images. Raises: ImagesNotCloseError: If the images are not sufficiently close. """ rms = compute_rms(expected, actual) if rms > tolerance: message = 'RMS error exceeds tolerance ({} > {})'.format(rms, tolerance) raise ImagesNotCloseError(message, expected=expected, actual=actual) def save_images_on_failure(output_dir): """Decorator that saves debugging images if `ImagesNotCloseError` is raised. Args: output_dir: Path to the directory where the output images will be saved. Returns: A decorator function. """ def decorator(test_method): """Decorator, saves debugging images if `ImagesNotCloseError` is raised.""" method_name = test_method.__name__ @functools.wraps(test_method) def decorated_method(*args, **kwargs): """Call test method, save images if `ImagesNotCloseError` is raised.""" try: test_method(*args, **kwargs) except ImagesNotCloseError as e: _, _, tb = sys.exc_info() if not os.path.exists(output_dir): os.makedirs(output_dir) difference = e.actual.astype(np.double) - e.expected difference = (0.5 * (difference + 255)).astype(np.uint8) base_name = os.path.join(output_dir, method_name) _save_pixels(e.expected, base_name + '-expected.png') _save_pixels(e.actual, base_name + '-actual.png') _save_pixels(difference, base_name + '-difference.png') msg = ('{}. Debugging images saved to ' '{}-{{expected,actual,difference}}.png.'.format(e, base_name)) new_e = ImagesNotCloseError(msg, expected=e.expected, actual=e.actual) # Reraise the exception with the original traceback. raise new_e.with_traceback(tb) return decorated_method return decorator
dm_control-main
dm_control/mujoco/testing/image_utils.py