python_code
stringlengths
0
258k
## @package normalization # Module caffe2.python.helpers.normalization from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import scope from caffe2.python.modeling.parameter_info import ParameterTags from caffe2.proto import caffe2_pb2 from caffe2.python.modeling import initializers def lrn(model, blob_in, blob_out, order="NCHW", use_cudnn=False, **kwargs): """LRN""" dev = kwargs['device_option'] if 'device_option' in kwargs \ else scope.CurrentDeviceScope() is_cpu = dev is None or dev.device_type == caffe2_pb2.CPU if use_cudnn and (not is_cpu): kwargs['engine'] = 'CUDNN' blobs_out = blob_out else: blobs_out = [blob_out, "_" + blob_out + "_scale"] lrn = model.net.LRN( blob_in, blobs_out, order=order, **kwargs ) if use_cudnn and (not is_cpu): return lrn else: return lrn[0] def softmax(model, blob_in, blob_out=None, use_cudnn=False, **kwargs): """Softmax.""" if use_cudnn: kwargs['engine'] = 'CUDNN' if blob_out is not None: return model.net.Softmax(blob_in, blob_out, **kwargs) else: return model.net.Softmax(blob_in, **kwargs) def instance_norm(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs): blob_out = blob_out or model.net.NextName() # Input: input, scale, bias # Output: output, saved_mean, saved_inv_std # scale: initialize with ones # bias: initialize with zeros def init_blob(value, suffix): return model.param_init_net.ConstantFill( [], blob_out + "_" + suffix, shape=[dim_in], value=value) scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b") model.AddParameter(scale, ParameterTags.WEIGHT) model.AddParameter(bias, ParameterTags.BIAS) blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"] if 'is_test' in kwargs and kwargs['is_test']: blob_outputs = model.net.InstanceNorm( [blob_in, scale, bias], [blob_out], order=order, **kwargs) return blob_outputs else: blob_outputs = model.net.InstanceNorm( [blob_in, scale, bias], blob_outs, order=order, **kwargs) # Return the output return blob_outputs[0] def spatial_bn(model, blob_in, blob_out, dim_in, init_scale=1., init_bias=0., ScaleInitializer=None, BiasInitializer=None, RunningMeanInitializer=None, RunningVarianceInitializer=None, order="NCHW", **kwargs): blob_out = blob_out or model.net.NextName() # Input: input, scale, bias, est_mean, est_inv_var # Output: output, running_mean, running_inv_var, saved_mean, # saved_inv_var # scale: initialize with init_scale (default 1.) # bias: initialize with init_bias (default 0.) # est mean: zero # est var: ones if model.init_params: scale_init = ("ConstantFill", {'value': init_scale}) bias_init = ("ConstantFill", {'value': init_bias}) rm_init = ("ConstantFill", {'value': 0.0}) riv_init = ("ConstantFill", {'value': 1.0}) ScaleInitializer = initializers.update_initializer( ScaleInitializer, scale_init, ("ConstantFill", {}) ) BiasInitializer = initializers.update_initializer( BiasInitializer, bias_init, ("ConstantFill", {}) ) RunningMeanInitializer = initializers.update_initializer( RunningMeanInitializer, rm_init, ("ConstantFill", {}) ) RunningVarianceInitializer = initializers.update_initializer( RunningVarianceInitializer, riv_init, ("ConstantFill", {}) ) else: ScaleInitializer = initializers.ExternalInitializer() BiasInitializer = initializers.ExternalInitializer() RunningMeanInitializer = initializers.ExternalInitializer() RunningVarianceInitializer = initializers.ExternalInitializer() scale = model.create_param( param_name=blob_out + '_s', shape=[dim_in], initializer=ScaleInitializer, tags=ParameterTags.WEIGHT ) bias = model.create_param( param_name=blob_out + '_b', shape=[dim_in], initializer=BiasInitializer, tags=ParameterTags.BIAS ) running_mean = model.create_param( param_name=blob_out + '_rm', shape=[dim_in], initializer=RunningMeanInitializer, tags=ParameterTags.COMPUTED_PARAM ) running_inv_var = model.create_param( param_name=blob_out + '_riv', shape=[dim_in], initializer=RunningVarianceInitializer, tags=ParameterTags.COMPUTED_PARAM ) blob_outs = [blob_out, running_mean, running_inv_var, blob_out + "_sm", blob_out + "_siv"] if 'is_test' in kwargs and kwargs['is_test']: blob_outputs = model.net.SpatialBN( [blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out], order=order, **kwargs) return blob_outputs else: blob_outputs = model.net.SpatialBN( [blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs, order=order, **kwargs) # Return the output return blob_outputs[0] def layer_norm( model, blob_in, blob_out, dim_in, axis=1, epsilon=1e-4, initial_scale=1.0, initial_bias=0.0, ): ''' Layer normalizes the input, cf. https://arxiv.org/pdf/1607.06450.pdf. Args: blob_in: The input blob to layer normalize. blob_out: The layer normalized output blob. dim_in: The dimension of the scale and bias. For example, if blob_in is a 2D design matrix and axis is 1, this would be the number of columns. axis: (optional) The axis to normalize. Typically the feature axis. Defaults to 1. epsilon: (optional) A small value used for numerical stability in calculation. Defaults to 1e-4. initial_scale: (optional) The initial value for the learned scale parameter. Defaults to 1.0 initial_bias: (optional) The initial value for the learned bias parameter of the layerwise standard deviation. Defaults to 0.0. Returns: A 3-tuple consisting of: - The layer normalized input blob. - The mean of the input blob across the given axis. - The standard deviation of the input blob acress the given axis. ''' # The LayerNorm operator only performs the layerwise z-shift, without # scaling and shifting by the learned scale and bias parameters. We have # to do that separately below. normalized, mean, stdev = model.net.LayerNorm( [blob_in], [blob_out, blob_out + "_mean", blob_out + "_stdev"], axis=axis, epsilon=epsilon, ) # The learned multiplicative scale or "gain". scale = model.create_param( param_name='{}_scale'.format(blob_out), shape=[dim_in], initializer=initializers.Initializer( 'ConstantFill', value=initial_scale, ), tags=ParameterTags.WEIGHT, ) # The learned additive bias or "shift". bias = model.create_param( param_name='{}_bias'.format(blob_out), shape=[dim_in], initializer=initializers.Initializer( 'ConstantFill', value=initial_bias, ), tags=ParameterTags.BIAS, ) scaled = model.net.Mul( [normalized, scale], ['{}_scaled'.format(blob_out)], broadcast=1, axis=axis, ) biased = model.net.Add( [scaled, bias], ['{}_biased'.format(blob_out)], broadcast=1, axis=axis, ) return biased, mean, stdev
## @package db_input # Module caffe2.python.helpers.db_input from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals def db_input(model, blobs_out, batch_size, db, db_type): dbreader_name = "dbreader_" + db dbreader = model.param_init_net.CreateDB( [], dbreader_name, db=db, db_type=db_type, ) return model.net.TensorProtosDBInput( dbreader, blobs_out, batch_size=batch_size)
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import workspace, scope from caffe2.python.model_helper import ModelHelper import numpy as np def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def tanh(x): return 2.0 * sigmoid(2.0 * x) - 1 def _prepare_rnn( t, n, dim_in, create_rnn, outputs_with_grads, forget_bias, memory_optim=False, forward_only=False, drop_states=False, T=None, two_d_initial_states=None, dim_out=None, num_states=2, **kwargs ): if dim_out is None: dim_out = [dim_in] print("Dims: ", t, n, dim_in, dim_out) model = ModelHelper(name='external') if two_d_initial_states is None: two_d_initial_states = np.random.randint(2) def generate_input_state(n, d): if two_d_initial_states: return np.random.randn(n, d).astype(np.float32) else: return np.random.randn(1, n, d).astype(np.float32) states = [] for layer_id, d in enumerate(dim_out): for i in range(num_states): state_name = "state_{}/layer_{}".format(i, layer_id) states.append(model.net.AddExternalInput(state_name)) workspace.FeedBlob( states[-1], generate_input_state(n, d).astype(np.float32)) # Due to convoluted RNN scoping logic we make sure that things # work from a namescope with scope.NameScope("test_name_scope"): input_blob, seq_lengths = model.net.AddScopedExternalInputs( 'input_blob', 'seq_lengths') outputs = create_rnn( model, input_blob, seq_lengths, states, dim_in=dim_in, dim_out=dim_out, scope="external/recurrent", outputs_with_grads=outputs_with_grads, memory_optimization=memory_optim, forget_bias=forget_bias, forward_only=forward_only, drop_states=drop_states, static_rnn_unroll_size=T, **kwargs ) workspace.RunNetOnce(model.param_init_net) workspace.FeedBlob( seq_lengths, np.random.randint(1, t + 1, size=(n,)).astype(np.int32) ) return outputs, model.net, states + [input_blob]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.proto import caffe2_pb2 from caffe2.python import workspace, core, lstm_benchmark, utils from copy import copy @utils.debug def Compare(args): results = [] num_iters = 1000 args.gpu = True with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): for batch_size in [64, 128, 256]: for seq_length in [20, 100]: for hidden_dim in [40, 100, 400, 800]: args.batch_size = batch_size args.seq_length = seq_length args.hidden_dim = hidden_dim args.data_size = batch_size * seq_length * num_iters args.iters_to_report = num_iters // 3 args.implementation = 'own' t_own = lstm_benchmark.Benchmark(args) workspace.ResetWorkspace() args.implementation = 'cudnn' t_cudnn = lstm_benchmark.Benchmark(args) workspace.ResetWorkspace() results.append((copy(args), float(t_own), float(t_cudnn))) print(args) print("t_cudnn / t_own: {}".format(t_cudnn / t_own)) for args, t_own, t_cudnn in results: print("{}: cudnn time: {}, own time: {}, ratio: {}".format( str(args), t_cudnn, t_own, t_cudnn / t_own)) ratio_sum = 0 for args, t_own, t_cudnn in results: ratio = float(t_cudnn) / t_own ratio_sum += ratio print("hidden_dim: {}, seq_lengths: {}, batch_size: {}, num_layers: {}:" " cudnn time: {}, own time: {}, ratio: {}".format( args.hidden_dim, args.seq_length, args.batch_size, args.num_layers, t_cudnn, t_own, ratio)) print("Ratio average: {}".format(ratio_sum / len(results))) if __name__ == '__main__': args = lstm_benchmark.GetArgumentParser().parse_args() workspace.GlobalInit([ 'caffe2', '--caffe2_log_level=0', '--caffe2_print_blob_sizes_at_exit=0', '--caffe2_gpu_memory_tracking=1']) Compare(args)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import uuid from caffe2.distributed.python import StoreHandlerTimeoutError from caffe2.distributed.store_ops_test_util import StoreOpsTests from caffe2.python import core, workspace, dyndep from caffe2.python.test_util import TestCase dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:redis_store_handler_ops") dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:store_ops") class TestRedisStoreHandlerOp(TestCase): def setUp(self): super(TestRedisStoreHandlerOp, self).setUp() self.uuid = str(uuid.uuid4()) + "/" def tearDown(self): super(TestRedisStoreHandlerOp, self).tearDown() def create_store_handler(self): store_handler = "store_handler" workspace.RunOperatorOnce( core.CreateOperator( "RedisStoreHandlerCreate", [], [store_handler], prefix=self.uuid, host=os.getenv("REDIS_HOST", "localhost"), port=int(os.getenv("REDIS_PORT", 6379)))) return store_handler def test_set_get(self): StoreOpsTests.test_set_get(self.create_store_handler) def test_get_timeout(self): with self.assertRaises(StoreHandlerTimeoutError): StoreOpsTests.test_get_timeout(self.create_store_handler)
## @package store_ops_test_util # Module caffe2.distributed.store_ops_test_util from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from multiprocessing import Process, Queue import numpy as np from caffe2.python import core, workspace class StoreOpsTests(object): @classmethod def _test_set_get(cls, queue, create_store_handler_fn, index, num_procs): store_handler = create_store_handler_fn() blob = "blob" value = np.full(1, 1, np.float32) # Use last process to set blob to make sure other processes # are waiting for the blob before it is set. if index == (num_procs - 1): workspace.FeedBlob(blob, value) workspace.RunOperatorOnce( core.CreateOperator( "StoreSet", [store_handler, blob], [], blob_name=blob)) output_blob = "output_blob" workspace.RunOperatorOnce( core.CreateOperator( "StoreGet", [store_handler], [output_blob], blob_name=blob)) try: np.testing.assert_array_equal(workspace.FetchBlob(output_blob), 1) except AssertionError as err: queue.put(err) workspace.ResetWorkspace() @classmethod def test_set_get(cls, create_store_handler_fn): # Queue for assertion errors on subprocesses queue = Queue() # Start N processes in the background num_procs = 4 procs = [] for index in range(num_procs): proc = Process( target=cls._test_set_get, args=(queue, create_store_handler_fn, index, num_procs, )) proc.start() procs.append(proc) # Test complete, join background processes for proc in procs: proc.join() # Raise first error we find, if any if not queue.empty(): raise queue.get() @classmethod def test_get_timeout(cls, create_store_handler_fn): store_handler = create_store_handler_fn() net = core.Net('get_missing_blob') net.StoreGet([store_handler], 1, blob_name='blob') workspace.RunNetOnce(net)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import errno import os import tempfile import shutil from caffe2.distributed.python import StoreHandlerTimeoutError from caffe2.distributed.store_ops_test_util import StoreOpsTests from caffe2.python import core, workspace, dyndep from caffe2.python.test_util import TestCase dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops") dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:store_ops") class TestFileStoreHandlerOp(TestCase): testCounter = 0 def setUp(self): super(TestFileStoreHandlerOp, self).setUp() self.tmpdir = tempfile.mkdtemp() # Use counter to tell test cases apart TestFileStoreHandlerOp.testCounter += 1 def tearDown(self): shutil.rmtree(self.tmpdir) super(TestFileStoreHandlerOp, self).tearDown() def create_store_handler(self): # Use new path for every test so they are isolated path = self.tmpdir + "/" + str(TestFileStoreHandlerOp.testCounter) # Ensure path exists (including counter) try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise store_handler = "store_handler" workspace.RunOperatorOnce( core.CreateOperator( "FileStoreHandlerCreate", [], [store_handler], path=path)) return store_handler def test_set_get(self): StoreOpsTests.test_set_get(self.create_store_handler) def test_get_timeout(self): with self.assertRaises(StoreHandlerTimeoutError): StoreOpsTests.test_get_timeout(self.create_store_handler)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import sys sizeof = {'float': 4, 'float16': 2, 'uint8_t': 1} def unroll(uf, IndexType, InType, OutType, use_weights, isa, fused): def compute(regid, InType, use_weights, isa, prefetch): code = [] if InType == "float": code.append( "vop%d = _mm256_fmadd_ps(vwgt, \ _mm256_loadu_ps(ip + (%d)), vop%d);" % (regid, regid, regid) ) elif InType == "float16": code.append( "vop%d = _mm256_fmadd_ps(vwgt, \ _mm256_cvtph_ps(_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (%d)))), \ vop%d);" % (regid, regid, regid) ) elif InType == "uint8_t": code.append( "vop%d = _mm256_fmadd_ps(vwgt, \ _mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (%d))))), \ _mm256_add_ps(vop%d, vbio));" % (regid, regid, regid) ) else: assert False if prefetch: code.append("_mm_prefetch((&ip_next_T0[%d]), _MM_HINT_T0);" % (regid)) else: code.append("// skip unnecessary prefetch of (&ip_next_T0[%d])" % (regid)) return code code = [] code.append("// unrolling " + str(uf) + " times") code.append(IndexType + " dataInd = 0;") code.append("for (" + IndexType + " rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {") code.append(OutType + " *op = &out[rangeIndex * block_size];") for i in range(0, uf): j = 8 * i code.append("__m256 vop" + str(j) + " = _mm256_setzero_ps();") # inner loop code.append("for (" + IndexType + " start = dataInd; dataInd < start + lengths[rangeIndex]; ++dataInd) {") code.append("const " + IndexType + " idx = indices[dataInd];") code.append( 'CAFFE_ENFORCE(idx >=0 && idx < data_size, "Index ", dataInd, "' ' is out of bounds: ", idx, ", range 0 to ", data_size);') if InType == "uint8_t": code.append(OutType + " wgt = 1.f;") code.append(OutType + " bio;") code.append("if (weights) {") code.append( "wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];") code.append("}") if fused: code.append( 'const float* scale_bias = reinterpret_cast<' 'const float*>(&input[idx * fused_block_size + block_size]);' ) code.append("bio = wgt * scale_bias[1];") code.append("wgt = wgt * scale_bias[0];") else: code.append("bio = wgt * scale_bias[2 * idx + 1];") code.append("wgt = wgt * scale_bias[2 * idx];") code.append("__m256 vbio = _mm256_set1_ps(bio);") else: code.append(OutType + " wgt = 1.f;") code.append("if (weights) {") code.append( "wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];") code.append("}") code.append("__m256 vwgt = _mm256_set1_ps(wgt);") code.append("const {} *ip = &input[idx * fused_block_size];".format(InType)) code.append( 'const {} next_T0 = (dataInd < index_size - prefdist_T0)' ' ? (dataInd + prefdist_T0) : dataInd;'.format(IndexType) ) code.append("const " + IndexType + " idx_pref_T0 = indices[next_T0];") code.append( "CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);") code.append( 'const {} *ip_next_T0 = &input[idx_pref_T0' ' * fused_block_size];'.format(InType) ) for i in range(0, uf): j = 8 * i cachelinesize = 64 byteoffset = sizeof[InType] * j prefetch = (byteoffset % cachelinesize) == 0 code.extend(compute(j, InType, use_weights, isa, prefetch)) code.append("}") code.append("if (normalize_by_lengths == false) {") for i in range(0, uf): j = 8 * i code.append( "_mm256_storeu_ps(&op[" + str(j) + "], vop" + str(j) + ");") code.append("} else if (lengths[rangeIndex]) {") # inv of length code.append( "__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);") for i in range(0, uf): j = 8 * i code.append( "_mm256_storeu_ps(&op[" + str(j) + "], _mm256_mul_ps(" + "vop" + str(j) + ", vlen_inv));") code.append("}") code.append("}") return code def generic(IndexType, InType, OutType, use_weights, isa, fused): def compute(InType, use_weights, isa): code = [] if InType == "float": code.append( "_mm256_storeu_ps(&op[j], \ _mm256_fmadd_ps(vwgt,_mm256_loadu_ps(&ip[j]), _mm256_loadu_ps(&op[j])) \ );" ) elif InType == "float16": code.append( "_mm256_storeu_ps(&op[j], \ _mm256_fmadd_ps(vwgt, \ _mm256_cvtph_ps(_mm_loadu_si128(reinterpret_cast<const __m128i*>(&ip[j]))), _mm256_loadu_ps(&op[j])) \ );" ) elif InType == "uint8_t": code.append( "_mm256_storeu_ps(&op[j], \ _mm256_fmadd_ps(vwgt, \ _mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(&ip[j])))), \ _mm256_add_ps(_mm256_loadu_ps(&op[j]), vbio) ) \ );" ) else: assert False code.append("_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);") return code code = [] code.append(IndexType + " dataInd = 0;") code.append("for (" + IndexType + " rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {") code.append(OutType + " *op = &out[rangeIndex * block_size];") # initialize to 0 code.append("TIndex j = 0;") code.append("for(; j + 8 <= block_size; j += 8) {") code.append("_mm256_storeu_ps(op + j, _mm256_setzero_ps());") code.append("}") code.append("for(; j < block_size; j++) {") code.append("op[j] = 0.0f;") code.append("}") # inner loop code.append("for (" + IndexType + " start = dataInd; dataInd < start + lengths[rangeIndex]; ++dataInd) {") code.append("const " + IndexType + " idx = indices[dataInd];") code.append( 'CAFFE_ENFORCE(idx >=0 && idx < data_size, "Index ", dataInd, "' + ' is out of bounds: ", idx, ", range 0 to ", data_size);') if InType == "uint8_t": code.append(OutType + " wgt = 1.f;") code.append(OutType + " bio;") code.append("if (weights) {") code.append( "wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];") code.append("}") if fused: code.append( 'const float* scale_bias = reinterpret_cast<' 'const float*>(&input[idx * fused_block_size + block_size]);' ) code.append("bio = wgt * scale_bias[1];") code.append("wgt = wgt * scale_bias[0];") else: code.append("assert (scale_bias);") code.append("bio = wgt * scale_bias[2 * idx + 1];") code.append("wgt = wgt * scale_bias[2 * idx];") code.append("__m256 vbio = _mm256_set1_ps(bio);") else: code.append(OutType + " wgt = 1.f;") code.append("if (weights) {") code.append( "wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];") code.append("}") code.append("__m256 vwgt = _mm256_set1_ps(wgt);") code.append("const {} *ip = &input[idx * fused_block_size];".format(InType)) code.append( 'const {} next_T0 = (dataInd < index_size - prefdist_T0)' ' ? (dataInd + prefdist_T0) : dataInd;'.format(IndexType) ) code.append("const " + IndexType + " idx_pref_T0 = indices[next_T0];") code.append( "CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);") code.append( "const {} *ip_next_T0 = &input[idx_pref_T0 * fused_block_size];". format(InType) ) # compute and store main loop code.append("j = 0;") code.append("for(; j + 8 <= block_size; j += 8) {") code.extend(compute(InType, use_weights, isa)) code.append("}") # leftover if InType == "float16": code.append("float16 vtmp1[8] CAFFE2_ALIGNED(64);") code.append("for(; j < block_size; j++) {") if InType == "float": code.append("op[j] += wgt * ip[j];") elif InType == "float16": code.append("vtmp1[0] = ip[j];") code.append("__m256 vtmp2 = _mm256_cvtph_ps(*((__m128i*)vtmp1));") code.append("op[j] += wgt * ((float*)(&vtmp2))[0];") elif InType == "uint8_t": code.append("op[j] += wgt * ((float)ip[j]) + bio;") else: assert False code.append("}") code.append("}") code.append("if (normalize_by_lengths && lengths[rangeIndex]) {") code.append("float len_inv = 1.0f / lengths[rangeIndex];") code.append("__m256 vlen_inv = _mm256_set1_ps(len_inv);") code.append("j = 0;") code.append("for(; j + 8 <= block_size; j += 8) {") code.append( "_mm256_storeu_ps(&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));") code.append("}") code.append("for(; j < block_size; j++) {") code.append("op[j] = len_inv * op[j];") code.append("}") code.append("}") code.append("}") return code # start main code parser = argparse.ArgumentParser() parser.add_argument('-f', '--filename', help="file name") parser.add_argument('--fused', action='store_true') opts = parser.parse_args() if opts.filename: filename = opts.filename elif opts.fused: filename = "embedding_lookup_fused_8bit_rowwise_avx2.cc" else: filename = "embedding_lookup_avx2.cc" fout = open(filename, 'w') options = [["int32_t", "float", "float"], ["int64_t", "float", "float"], ["int32_t", "float16", "float"], ["int64_t", "float16", "float"], ["int32_t", "uint8_t", "float"], ["int64_t", "uint8_t", "float"]] code = [] # includes code.append("//// --------------------------") code.append("//// ATTENTION:") code.append("//// THIS CODE IS AUTOGENERATED") code.append("//// BY {}".format(sys.argv[0])) code.append("//// DO NOT MODIFY!!!") code.append("//// --------------------------\n\n") code.append("#include <caffe2/core/types.h>") code.append("#include <caffe2/core/common.h>") code.append("#include <immintrin.h>") code.append("\n") code.append("namespace caffe2 {\n") for o in options: [IndexType, InType, OutType] = o prefix = 'Fused8BitRowwise' if opts.fused else '' code.append('template <bool IS_WEIGHT_POSITIONAL>') fn_base = '{}EmbeddingLookup_{}_{}_{}'.format( prefix, IndexType, InType, OutType ) suffix = '__avx2_fma' fn = "static void " + fn_base + suffix code.append(fn + "(") args = [] args.append("const TIndex block_size,") args.append("const TIndex output_size,") args.append("const TIndex index_size,") args.append("const TIndex data_size,") args.append("const " + InType + "* input,") args.append("const " + IndexType + "* indices,") args.append("const int* lengths,") args.append("const float* weights,") if not opts.fused: args.append("const float* scale_bias,") args.append("bool normalize_by_lengths,") args.append(OutType + "* out)") code += args code.append("{") code.append("const " + IndexType + " prefdist_T0 = 16;") # block_size is the number of elements and fused_block_size is the size of # an entire row, including scale and bias. offset = (8 // sizeof[InType]) if opts.fused else 0 code.append( "const {} fused_block_size = block_size + {};". format(IndexType, offset) ) #code.append("printf(\"calling " + fn + "\\n\");"); if not opts.fused: if InType != "uint8_t": code.append( 'CAFFE_ENFORCE(scale_bias == nullptr,' ' "scale_bias must be nullptr");' ) else: code.append( 'CAFFE_ENFORCE(scale_bias != nullptr,' ' "scale_bias must not be nullptr");' ) code.append("if (block_size == 128) {") code += unroll(16, IndexType, InType, OutType, True, "AVX2", opts.fused) code.append("} else if (block_size == 64) {") code += unroll(8, IndexType, InType, OutType, True, "AVX2", opts.fused) code.append("} else if (block_size == 32) {") code += unroll(4, IndexType, InType, OutType, True, "AVX2", opts.fused) code.append("} else if (block_size == 16) {") code += unroll(2, IndexType, InType, OutType, True, "AVX2", opts.fused) code.append("} else {") code.append("// generic code") code += generic(IndexType, InType, OutType, True, "AVX2", opts.fused) code.append("}") code.append("}") for is_weight_positional in ['false', 'true']: code.append( "void " + fn_base + "_" + is_weight_positional + suffix + "(") code += args code.append("{") code.append(fn_base + suffix + "<" + is_weight_positional + ">(") code.append("block_size,") code.append("output_size,") code.append("index_size,") code.append("data_size,") code.append("input,") code.append("indices,") code.append("lengths,") code.append("weights,") if not opts.fused: code.append("scale_bias,") code.append("normalize_by_lengths,") code.append("out);") code.append("}") code.append("\n") code.append("} // namespace caffe2") for c in code: #print(c, file = fout) fout.write(c + "\n") fout.close() print("Created " + filename)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from scipy.sparse import coo_matrix from hypothesis import given import hypothesis.strategies as st from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestFunHash(hu.HypothesisTestCase): @given(n_out=st.integers(min_value=5, max_value=20), n_in=st.integers(min_value=10, max_value=20), n_data=st.integers(min_value=2, max_value=8), n_weight=st.integers(min_value=8, max_value=15), n_alpha=st.integers(min_value=3, max_value=8), sparsity=st.floats(min_value=0.1, max_value=1.0), **hu.gcs) def test_funhash(self, n_out, n_in, n_data, n_weight, n_alpha, sparsity, gc, dc): A = np.random.rand(n_data, n_in) A[A > sparsity] = 0 A_coo = coo_matrix(A) val, key, seg = A_coo.data, A_coo.col, A_coo.row weight = np.random.rand(n_weight).astype(np.float32) alpha = np.random.rand(n_alpha).astype(np.float32) val = val.astype(np.float32) key = key.astype(np.int64) seg = seg.astype(np.int32) op = core.CreateOperator( 'SparseFunHash', ['val', 'key', 'seg', 'weight', 'alpha'], ['out'], num_outputs=n_out) # Gradient check wrt weight self.assertGradientChecks( gc, op, [val, key, seg, weight, alpha], 3, [0]) # Gradient check wrt alpha self.assertGradientChecks( gc, op, [val, key, seg, weight, alpha], 4, [0]) op2 = core.CreateOperator( 'SparseFunHash', ['val', 'key', 'seg', 'weight'], ['out'], num_outputs=n_out) # Gradient check wrt weight self.assertGradientChecks( gc, op2, [val, key, seg, weight], 3, [0])
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from hypothesis import given import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu class TestTTPad(hu.HypothesisTestCase): @given(K=st.integers(min_value=2, max_value=10), M=st.integers(min_value=10, max_value=20), N=st.integers(min_value=10, max_value=20), **hu.gcs) def test_tt_pad(self, K, M, N, gc, dc): op = core.CreateOperator( 'TTPad', ['A'], ['A', 'dim0'], scale=(K)) A = np.random.rand(M, N).astype(np.float32) workspace.FeedBlob('A', A) workspace.RunOperatorOnce(op) def tt_pad_ref(A_): M_ = A_.shape[0] if M_ % K == 0: new_dim0 = M_ else: new_dim0 = (M_ // K + 1) * K return (np.vstack((A_, np.zeros((new_dim0 - M_, A_.shape[1])))), np.array([A.shape[0]])) # Check against numpy reference self.assertReferenceChecks(gc, op, [A], tt_pad_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [A], [0]) # Gradient check wrt A self.assertGradientChecks(gc, op, [A], 0, [0])
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from scipy.sparse import coo_matrix from hypothesis import given import hypothesis.strategies as st from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestFunHash(hu.HypothesisTestCase): @given(n_out=st.integers(min_value=5, max_value=20), n_in=st.integers(min_value=10, max_value=20), n_data=st.integers(min_value=2, max_value=8), n_weight=st.integers(min_value=8, max_value=15), n_alpha=st.integers(min_value=3, max_value=8), sparsity=st.floats(min_value=0.1, max_value=1.0), **hu.gcs) def test_funhash(self, n_out, n_in, n_data, n_weight, n_alpha, sparsity, gc, dc): A = np.random.rand(n_data, n_in) A[A > sparsity] = 0 A_coo = coo_matrix(A) val, key, seg = A_coo.data, A_coo.col, A_coo.row weight = np.random.rand(n_weight).astype(np.float32) alpha = np.random.rand(n_alpha).astype(np.float32) val = val.astype(np.float32) key = key.astype(np.int64) seg = seg.astype(np.int32) op = core.CreateOperator( 'FunHash', ['val', 'key', 'seg', 'weight', 'alpha'], ['out'], num_outputs=n_out) # Check over multiple devices self.assertDeviceChecks( dc, op, [val, key, seg, weight, alpha], [0]) # Gradient check wrt weight self.assertGradientChecks( gc, op, [val, key, seg, weight, alpha], 3, [0]) # Gradient check wrt alpha self.assertGradientChecks( gc, op, [val, key, seg, weight, alpha], 4, [0]) op2 = core.CreateOperator( 'FunHash', ['val', 'key', 'seg', 'weight'], ['out'], num_outputs=n_out) # Check over multiple devices self.assertDeviceChecks( dc, op2, [val, key, seg, weight], [0]) # Gradient check wrt weight self.assertGradientChecks( gc, op2, [val, key, seg, weight], 3, [0])
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from scipy.sparse import coo_matrix from caffe2.python import core, workspace from caffe2.python.test_util import TestCase def test_reshape(old_shape, new_shape, stride_only=False): blob_in0 = 'col' blob_out0 = 'col_out' blob_in1 = 'row' blob_out1 = 'row_out' old_shape_for_op = (-1, old_shape[1]) if stride_only else old_shape op = core.CreateOperator('SparseMatrixReshape', [blob_in0, blob_in1], [blob_out0, blob_out1], old_shape=old_shape_for_op, new_shape=new_shape) A = np.random.random_sample(old_shape) A[np.random.random_sample(old_shape) > .5] = 0 A_coo = coo_matrix(A) old_row, old_col = A_coo.row, A_coo.col workspace.FeedBlob(blob_in0, old_col.astype(np.int64)) workspace.FeedBlob(blob_in1, old_row.astype(np.int32)) workspace.RunOperatorOnce(op) A_new_coo = coo_matrix(A.reshape(new_shape)) new_row, new_col = A_new_coo.row, A_new_coo.col col_out = workspace.FetchBlob(blob_out0) row_out = workspace.FetchBlob(blob_out1) np.testing.assert_array_equal(col_out, new_col) np.testing.assert_array_equal(row_out, new_row) class TestSparseMatrixReshapeOp(TestCase): def test_basic_reshape(self): test_reshape(old_shape=(3, 4), new_shape=(4, 3)) def test_missing_dim(self): test_reshape(old_shape=(2, 8), new_shape=(-1, 4)) def test_stride_only(self): test_reshape(old_shape=(2, 8), new_shape=(-1, 4), stride_only=True) def test_sparse_reshape_mm(self): M, N, K = 300, 400, 500 A = np.random.rand(M, K).astype(np.float32) A_sparse = A * (np.random.rand(*A.shape) > .5) A_sparse = A_sparse.reshape((K, M)) A_coo = coo_matrix(A_sparse) idx0, idx1, a = A_coo.row, A_coo.col, A_coo.data B = np.random.rand(K, N).astype(np.float32) workspace.FeedBlob('col', idx1.astype(np.int64)) workspace.FeedBlob('row', idx0.astype(np.int32)) workspace.FeedBlob('B', B) workspace.FeedBlob('a', a) reshape_op = core.CreateOperator( 'SparseMatrixReshape', ['col', 'row'], ['new_col', 'new_row'], old_shape=(K, M), new_shape=(M, K)) mm_op = core.CreateOperator( 'SparseUnsortedSegmentWeightedSum', ['B', 'a', 'new_col', 'new_row'], ['Y']) workspace.RunOperatorOnce(reshape_op) workspace.RunOperatorOnce(mm_op) Y = workspace.FetchBlob('Y') np.testing.assert_allclose(A_sparse.reshape(M, K).dot(B), Y, rtol=1e-4)
## @package convnet_benchmarks # Module caffe2.experiments.python.convnet_benchmarks from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals """ Benchmark for common convnets. (NOTE: Numbers below prior with missing parameter=update step, TODO to update) Speed on Titan X, with 10 warmup steps and 10 main steps and with different versions of cudnn, are as follows (time reported below is per-batch time, forward / forward+backward): CuDNN V3 CuDNN v4 AlexNet 32.5 / 108.0 27.4 / 90.1 OverFeat 113.0 / 342.3 91.7 / 276.5 Inception 134.5 / 485.8 125.7 / 450.6 VGG (batch 64) 200.8 / 650.0 164.1 / 551.7 Speed on Inception with varied batch sizes and CuDNN v4 is as follows: Batch Size Speed per batch Speed per image 16 22.8 / 72.7 1.43 / 4.54 32 38.0 / 127.5 1.19 / 3.98 64 67.2 / 233.6 1.05 / 3.65 128 125.7 / 450.6 0.98 / 3.52 Speed on Tesla M40, which 10 warmup steps and 10 main steps and with cudnn v4, is as follows: AlexNet 68.4 / 218.1 OverFeat 210.5 / 630.3 Inception 300.2 / 1122.2 VGG (batch 64) 405.8 / 1327.7 (Note that these numbers involve a "full" backprop, i.e. the gradient with respect to the input image is also computed.) To get the numbers, simply run: for MODEL in AlexNet OverFeat Inception; do PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \ --batch_size 128 --model $MODEL --forward_only True done for MODEL in AlexNet OverFeat Inception; do PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \ --batch_size 128 --model $MODEL done PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \ --batch_size 64 --model VGGA --forward_only True PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \ --batch_size 64 --model VGGA for BS in 16 32 64 128; do PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \ --batch_size $BS --model Inception --forward_only True PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \ --batch_size $BS --model Inception done Note that VGG needs to be run at batch 64 due to memory limit on the backward pass. """ import argparse import time from caffe2.python import cnn, workspace, core import caffe2.python.SparseTransformer as SparseTransformer def MLP(order): model = cnn.CNNModelHelper() d = 256 depth = 20 width = 3 for i in range(depth): for j in range(width): current = "fc_{}_{}".format(i, j) if i > 0 else "data" next_ = "fc_{}_{}".format(i + 1, j) model.FC( current, next_, dim_in=d, dim_out=d, weight_init=model.XavierInit, bias_init=model.XavierInit) model.Sum(["fc_{}_{}".format(depth, j) for j in range(width)], ["sum"]) model.FC("sum", "last", dim_in=d, dim_out=1000, weight_init=model.XavierInit, bias_init=model.XavierInit) xent = model.LabelCrossEntropy(["last", "label"], "xent") model.AveragedLoss(xent, "loss") return model, d def AlexNet(order): model = cnn.CNNModelHelper(order, name="alexnet", use_cudnn=True, cudnn_exhaustive_search=True) conv1 = model.Conv( "data", "conv1", 3, 64, 11, ('XavierFill', {}), ('ConstantFill', {}), stride=4, pad=2 ) relu1 = model.Relu(conv1, "conv1") pool1 = model.MaxPool(relu1, "pool1", kernel=3, stride=2) conv2 = model.Conv( pool1, "conv2", 64, 192, 5, ('XavierFill', {}), ('ConstantFill', {}), pad=2 ) relu2 = model.Relu(conv2, "conv2") pool2 = model.MaxPool(relu2, "pool2", kernel=3, stride=2) conv3 = model.Conv( pool2, "conv3", 192, 384, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu3 = model.Relu(conv3, "conv3") conv4 = model.Conv( relu3, "conv4", 384, 256, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu4 = model.Relu(conv4, "conv4") conv5 = model.Conv( relu4, "conv5", 256, 256, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu5 = model.Relu(conv5, "conv5") pool5 = model.MaxPool(relu5, "pool5", kernel=3, stride=2) fc6 = model.FC( pool5, "fc6", 256 * 6 * 6, 4096, ('XavierFill', {}), ('ConstantFill', {}) ) relu6 = model.Relu(fc6, "fc6") fc7 = model.FC( relu6, "fc7", 4096, 4096, ('XavierFill', {}), ('ConstantFill', {}) ) relu7 = model.Relu(fc7, "fc7") fc8 = model.FC( relu7, "fc8", 4096, 1000, ('XavierFill', {}), ('ConstantFill', {}) ) pred = model.Softmax(fc8, "pred") xent = model.LabelCrossEntropy([pred, "label"], "xent") model.AveragedLoss(xent, "loss") return model, 224 def OverFeat(order): model = cnn.CNNModelHelper(order, name="overfeat", use_cudnn=True, cudnn_exhaustive_search=True) conv1 = model.Conv( "data", "conv1", 3, 96, 11, ('XavierFill', {}), ('ConstantFill', {}), stride=4 ) relu1 = model.Relu(conv1, "conv1") pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2) conv2 = model.Conv( pool1, "conv2", 96, 256, 5, ('XavierFill', {}), ('ConstantFill', {}) ) relu2 = model.Relu(conv2, "conv2") pool2 = model.MaxPool(relu2, "pool2", kernel=2, stride=2) conv3 = model.Conv( pool2, "conv3", 256, 512, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu3 = model.Relu(conv3, "conv3") conv4 = model.Conv( relu3, "conv4", 512, 1024, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu4 = model.Relu(conv4, "conv4") conv5 = model.Conv( relu4, "conv5", 1024, 1024, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu5 = model.Relu(conv5, "conv5") pool5 = model.MaxPool(relu5, "pool5", kernel=2, stride=2) fc6 = model.FC( pool5, "fc6", 1024 * 6 * 6, 3072, ('XavierFill', {}), ('ConstantFill', {}) ) relu6 = model.Relu(fc6, "fc6") fc7 = model.FC( relu6, "fc7", 3072, 4096, ('XavierFill', {}), ('ConstantFill', {}) ) relu7 = model.Relu(fc7, "fc7") fc8 = model.FC( relu7, "fc8", 4096, 1000, ('XavierFill', {}), ('ConstantFill', {}) ) pred = model.Softmax(fc8, "pred") xent = model.LabelCrossEntropy([pred, "label"], "xent") model.AveragedLoss(xent, "loss") return model, 231 def VGGA(order): model = cnn.CNNModelHelper(order, name='vgg-a', use_cudnn=True, cudnn_exhaustive_search=True) conv1 = model.Conv( "data", "conv1", 3, 64, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu1 = model.Relu(conv1, "conv1") pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2) conv2 = model.Conv( pool1, "conv2", 64, 128, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu2 = model.Relu(conv2, "conv2") pool2 = model.MaxPool(relu2, "pool2", kernel=2, stride=2) conv3 = model.Conv( pool2, "conv3", 128, 256, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu3 = model.Relu(conv3, "conv3") conv4 = model.Conv( relu3, "conv4", 256, 256, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu4 = model.Relu(conv4, "conv4") pool4 = model.MaxPool(relu4, "pool4", kernel=2, stride=2) conv5 = model.Conv( pool4, "conv5", 256, 512, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu5 = model.Relu(conv5, "conv5") conv6 = model.Conv( relu5, "conv6", 512, 512, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu6 = model.Relu(conv6, "conv6") pool6 = model.MaxPool(relu6, "pool6", kernel=2, stride=2) conv7 = model.Conv( pool6, "conv7", 512, 512, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu7 = model.Relu(conv7, "conv7") conv8 = model.Conv( relu7, "conv8", 512, 512, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu8 = model.Relu(conv8, "conv8") pool8 = model.MaxPool(relu8, "pool8", kernel=2, stride=2) fcix = model.FC( pool8, "fcix", 512 * 7 * 7, 4096, ('XavierFill', {}), ('ConstantFill', {}) ) reluix = model.Relu(fcix, "fcix") fcx = model.FC( reluix, "fcx", 4096, 4096, ('XavierFill', {}), ('ConstantFill', {}) ) relux = model.Relu(fcx, "fcx") fcxi = model.FC( relux, "fcxi", 4096, 1000, ('XavierFill', {}), ('ConstantFill', {}) ) pred = model.Softmax(fcxi, "pred") xent = model.LabelCrossEntropy([pred, "label"], "xent") model.AveragedLoss(xent, "loss") return model, 231 def net_DAG_Builder(model): print("====================================================") print(" Start Building DAG ") print("====================================================") net_root = SparseTransformer.netbuilder(model) return net_root def _InceptionModule( model, input_blob, input_depth, output_name, conv1_depth, conv3_depths, conv5_depths, pool_depth ): # path 1: 1x1 conv conv1 = model.Conv( input_blob, output_name + ":conv1", input_depth, conv1_depth, 1, ('XavierFill', {}), ('ConstantFill', {}) ) conv1 = model.Relu(conv1, conv1) # path 2: 1x1 conv + 3x3 conv conv3_reduce = model.Conv( input_blob, output_name + ":conv3_reduce", input_depth, conv3_depths[0], 1, ('XavierFill', {}), ('ConstantFill', {}) ) conv3_reduce = model.Relu(conv3_reduce, conv3_reduce) conv3 = model.Conv( conv3_reduce, output_name + ":conv3", conv3_depths[0], conv3_depths[1], 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) conv3 = model.Relu(conv3, conv3) # path 3: 1x1 conv + 5x5 conv conv5_reduce = model.Conv( input_blob, output_name + ":conv5_reduce", input_depth, conv5_depths[0], 1, ('XavierFill', {}), ('ConstantFill', {}) ) conv5_reduce = model.Relu(conv5_reduce, conv5_reduce) conv5 = model.Conv( conv5_reduce, output_name + ":conv5", conv5_depths[0], conv5_depths[1], 5, ('XavierFill', {}), ('ConstantFill', {}), pad=2 ) conv5 = model.Relu(conv5, conv5) # path 4: pool + 1x1 conv pool = model.MaxPool( input_blob, output_name + ":pool", kernel=3, stride=1, pad=1 ) pool_proj = model.Conv( pool, output_name + ":pool_proj", input_depth, pool_depth, 1, ('XavierFill', {}), ('ConstantFill', {}) ) pool_proj = model.Relu(pool_proj, pool_proj) output = model.Concat([conv1, conv3, conv5, pool_proj], output_name) return output def Inception(order): model = cnn.CNNModelHelper(order, name="inception", use_cudnn=True, cudnn_exhaustive_search=True) conv1 = model.Conv( "data", "conv1", 3, 64, 7, ('XavierFill', {}), ('ConstantFill', {}), stride=2, pad=3 ) relu1 = model.Relu(conv1, "conv1") pool1 = model.MaxPool(relu1, "pool1", kernel=3, stride=2, pad=1) conv2a = model.Conv( pool1, "conv2a", 64, 64, 1, ('XavierFill', {}), ('ConstantFill', {}) ) conv2a = model.Relu(conv2a, conv2a) conv2 = model.Conv( conv2a, "conv2", 64, 192, 3, ('XavierFill', {}), ('ConstantFill', {}), pad=1 ) relu2 = model.Relu(conv2, "conv2") pool2 = model.MaxPool(relu2, "pool2", kernel=3, stride=2, pad=1) # Inception modules inc3 = _InceptionModule( model, pool2, 192, "inc3", 64, [96, 128], [16, 32], 32 ) inc4 = _InceptionModule( model, inc3, 256, "inc4", 128, [128, 192], [32, 96], 64 ) pool5 = model.MaxPool(inc4, "pool5", kernel=3, stride=2, pad=1) inc5 = _InceptionModule( model, pool5, 480, "inc5", 192, [96, 208], [16, 48], 64 ) inc6 = _InceptionModule( model, inc5, 512, "inc6", 160, [112, 224], [24, 64], 64 ) inc7 = _InceptionModule( model, inc6, 512, "inc7", 128, [128, 256], [24, 64], 64 ) inc8 = _InceptionModule( model, inc7, 512, "inc8", 112, [144, 288], [32, 64], 64 ) inc9 = _InceptionModule( model, inc8, 528, "inc9", 256, [160, 320], [32, 128], 128 ) pool9 = model.MaxPool(inc9, "pool9", kernel=3, stride=2, pad=1) inc10 = _InceptionModule( model, pool9, 832, "inc10", 256, [160, 320], [32, 128], 128 ) inc11 = _InceptionModule( model, inc10, 832, "inc11", 384, [192, 384], [48, 128], 128 ) pool11 = model.AveragePool(inc11, "pool11", kernel=7, stride=1) fc = model.FC( pool11, "fc", 1024, 1000, ('XavierFill', {}), ('ConstantFill', {}) ) # It seems that Soumith's benchmark does not have softmax on top # for Inception. We will add it anyway so we can have a proper # backward pass. pred = model.Softmax(fc, "pred") xent = model.LabelCrossEntropy([pred, "label"], "xent") model.AveragedLoss(xent, "loss") return model, 224 def AddInput(model, batch_size, db, db_type): """Adds the data input part.""" data_uint8, label = model.TensorProtosDBInput( [], ["data_uint8", "label"], batch_size=batch_size, db=db, db_type=db_type ) data = model.Cast(data_uint8, "data_nhwc", to=core.DataType.FLOAT) data = model.NHWC2NCHW(data, "data") data = model.Scale(data, data, scale=float(1. / 256)) data = model.StopGradient(data, data) return data, label def AddParameterUpdate(model): """ Simple plain SGD update -- not tuned to actually train the models """ ITER = model.Iter("iter") LR = model.LearningRate( ITER, "LR", base_lr=-1e-8, policy="step", stepsize=10000, gamma=0.999) ONE = model.param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0) for param in model.params: param_grad = model.param_to_grad[param] model.WeightedSum([param, ONE, param_grad, LR], param) def Benchmark(model_gen, arg): model, input_size = model_gen(arg.order) model.Proto().type = arg.net_type model.Proto().num_workers = arg.num_workers # In order to be able to run everything without feeding more stuff, let's # add the data and label blobs to the parameter initialization net as well. if arg.order == "NCHW": input_shape = [arg.batch_size, 3, input_size, input_size] else: input_shape = [arg.batch_size, input_size, input_size, 3] if arg.model == "MLP": input_shape = [arg.batch_size, input_size] model.param_init_net.GaussianFill( [], "data", shape=input_shape, mean=0.0, std=1.0 ) model.param_init_net.UniformIntFill( [], "label", shape=[arg.batch_size, ], min=0, max=999 ) if arg.forward_only: print('{}: running forward only.'.format(arg.model)) else: print('{}: running forward-backward.'.format(arg.model)) model.AddGradientOperators(["loss"]) AddParameterUpdate(model) if arg.order == 'NHWC': print( '==WARNING==\n' 'NHWC order with CuDNN may not be supported yet, so I might\n' 'exit suddenly.' ) if not arg.cpu: model.param_init_net.RunAllOnGPU() model.net.RunAllOnGPU() if arg.dump_model: # Writes out the pbtxt for benchmarks on e.g. Android with open( "{0}_init_batch_{1}.pbtxt".format(arg.model, arg.batch_size), "w" ) as fid: fid.write(str(model.param_init_net.Proto())) with open("{0}.pbtxt".format(arg.model, arg.batch_size), "w") as fid: fid.write(str(model.net.Proto())) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) for i in range(arg.warmup_iterations): workspace.RunNet(model.net.Proto().name) plan = core.Plan("plan") plan.AddStep(core.ExecutionStep("run", model.net, arg.iterations)) start = time.time() workspace.RunPlan(plan) print('Spent: {}'.format((time.time() - start) / arg.iterations)) if arg.layer_wise_benchmark: print('Layer-wise benchmark.') workspace.BenchmarkNet(model.net.Proto().name, 1, arg.iterations, True) def GetArgumentParser(): parser = argparse.ArgumentParser(description="Caffe2 benchmark.") parser.add_argument( "--batch_size", type=int, default=128, help="The batch size." ) parser.add_argument("--model", type=str, help="The model to benchmark.") parser.add_argument( "--order", type=str, default="NCHW", help="The order to evaluate." ) parser.add_argument( "--cudnn_ws", type=int, default=-1, help="The cudnn workspace size." ) parser.add_argument( "--iterations", type=int, default=10, help="Number of iterations to run the network." ) parser.add_argument( "--warmup_iterations", type=int, default=10, help="Number of warm-up iterations before benchmarking." ) parser.add_argument( "--forward_only", action='store_true', help="If set, only run the forward pass." ) parser.add_argument( "--layer_wise_benchmark", action='store_true', help="If True, run the layer-wise benchmark as well." ) parser.add_argument( "--cpu", action='store_true', help="If True, run testing on CPU instead of GPU." ) parser.add_argument( "--dump_model", action='store_true', help="If True, dump the model prototxts to disk." ) parser.add_argument("--net_type", type=str, default="dag") parser.add_argument("--num_workers", type=int, default=2) return parser if __name__ == '__main__': args = GetArgumentParser().parse_args() if ( not args.batch_size or not args.model or not args.order or not args.cudnn_ws ): GetArgumentParser().print_help() workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) model_map = { 'AlexNet': AlexNet, 'OverFeat': OverFeat, 'VGGA': VGGA, 'Inception': Inception, 'MLP': MLP, } Benchmark(model_map[args.model], args)
## @package device_reduce_sum_bench # Module caffe2.experiments.python.device_reduce_sum_bench from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import itertools import logging import os from six import add_metaclass import numpy as np from caffe2.python import workspace, core from caffe2.python.hypothesis_test_util import runOpBenchmark, gpu_do logging.basicConfig() logger = logging.getLogger(os.path.basename(__file__)) logger.setLevel(logging.INFO) ALL_BENCHMARKS = {} class BenchmarkMeta(type): def __new__(metacls, name, bases, class_dict): cls = type.__new__(metacls, name, bases, class_dict) if name != 'Benchmark': ALL_BENCHMARKS[name] = cls return cls @add_metaclass(BenchmarkMeta) class Benchmark(object): def __init__(self): self.results = [] def display(self): print('Results ({}):'.format(type(self).__name__)) print('input size ms/iter') print('------------------------------ -----------') for size, ms in self.results: print('{!s:<30} {:.4f}'.format(size, ms)) class SumElements(Benchmark): def run(self): op = core.CreateOperator( "SumElements", ["X"], ["y"] ) for n in itertools.imap(pow, itertools.cycle([10]), range(10)): X = np.random.rand(n).astype(np.float32) logger.info('Running benchmark for n = {}'.format(n)) ret = runOpBenchmark(gpu_do, op, inputs=[X]) self.results.append((n, ret[1])) class SumSqrElements(Benchmark): def run(self): op = core.CreateOperator( "SumSqrElements", ["X"], ["y"] ) for n in itertools.imap(pow, itertools.cycle([10]), range(10)): X = np.random.rand(n).astype(np.float32) logger.info('Running benchmark for n = {}'.format(n)) ret = runOpBenchmark(gpu_do, op, inputs=[X]) self.results.append((n, ret[1])) class SoftMaxWithLoss(Benchmark): def run(self): op = core.CreateOperator( "SoftmaxWithLoss", ["X", "label"], ["probs", "avgloss"], ) for n in itertools.imap(pow, itertools.cycle([10]), range(8)): for D in itertools.imap(pow, itertools.cycle([10]), range(3)): X = np.random.rand(n, D).astype(np.float32) label = (np.random.rand(n) * D).astype(np.int32) logger.info('Running benchmark for n = {}, D= {}'.format(n, D)) ret = runOpBenchmark(gpu_do, op, inputs=[X, label]) self.results.append(((n, D), ret[1])) def parse_args(): parser = argparse.ArgumentParser(os.path.basename(__file__)) parser.add_argument('-b', '--benchmarks', nargs='+', default=ALL_BENCHMARKS.keys(), help='benchmarks to run (default: %(default)s))') return parser.parse_args() def main(): args = parse_args() benchmarks = [ALL_BENCHMARKS[name]() for name in args.benchmarks] for bench in benchmarks: bench.run() for bench in benchmarks: bench.display() if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=2']) main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from hypothesis import given import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu class TestTTContraction(hu.HypothesisTestCase): @given(D=st.integers(min_value=5, max_value=20), K=st.integers(min_value=5, max_value=20), M=st.integers(min_value=5, max_value=20), N=st.integers(min_value=5, max_value=20), **hu.gcs) def test_tt_contraction(self, D, K, M, N, gc, dc): A = np.random.rand(K, M).astype(np.float32) B = np.random.rand(D, K, N).astype(np.float32) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) op = core.CreateOperator( 'TTContraction', ['A', 'B'], ['C'], K=K, M=M, N=N) workspace.RunOperatorOnce(op) def tt_contraction_ref(A_, B_): return ((A_[:, :, np.newaxis] * B_[:, :, np.newaxis, :]) .sum(axis=1).flatten()), # Check against numpy reference self.assertReferenceChecks(gc, op, [A, B], tt_contraction_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [A, B], [0]) # Gradient check wrt A self.assertGradientChecks(gc, op, [A, B], 0, [0]) # Gradient check wrt B self.assertGradientChecks(gc, op, [A, B], 1, [0])
## @package SparseTransformer # Module caffe2.experiments.python.SparseTransformer from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import workspace import scipy.sparse class NetDefNode(): def __init__(self, name, optype, p=None, op=None): self.name = name self.optype = optype self.ops = {} self.prev = {} self.insertInput(p) self.visited = False self.op = op def insertInput(self, p): """ Insert input of this op also maintain the output of previous op p: a node or a list of node """ if isinstance(p, list): for i in p: self.prev[i.name] = i i.ops[self.name] = self elif isinstance(p, NetDefNode): self.prev[p.name] = p p.ops[self.name] = self def deleteInput(self, p): if isinstance(p, NetDefNode): del self.prev[p.name] del p.ops[self.name] def maskNallocate(weight_name): """ Combine mask and weights create wcsr, iw, jw, return their names """ w = workspace.FetchBlob(weight_name) w_csr = scipy.sparse.csr_matrix(w) wcsr = w_csr.data iw = w_csr.indptr jw = w_csr.indices workspace.FeedBlob(weight_name + "wcsr", wcsr) workspace.FeedBlob(weight_name + "iw", iw) workspace.FeedBlob(weight_name + "jw", jw) return weight_name + "wcsr", weight_name + "iw", weight_name + "jw" def transFCRelu(cur, id2node, name2id, ops, model): """ Add trans before and after this FC_Prune->(Relu)->FC_Prune chain. """ # 1. add trans before the start of this chain # assuming that cur is a FC_Prune, and it has only one input pre = cur.prev.itervalues().next() # Create a node /op and insert it. # TODO(wyiming): check whether it is correct here current_blob = model.Transpose(cur.op.input[0], cur.op.input[0] + "_trans") # print model.net.Proto() trans_op = model.net.Proto().op[-1] trans_node = NetDefNode(trans_op.output[0], "Transpose", pre, trans_op) trans_node.visited = True pre_new = trans_node # 2. use while loop to visit the chain while True: # breakup with the parent cur.deleteInput(pre) if not (cur.optype == "FC_Prune" or cur.optype == "Relu"): print("Reaching the end of the chain") break if len(cur.ops) > 1: print("A FC/Relu giving more than 1 useful outputs") if cur.optype == "FC_Prune": op = cur.op wcsr, iw, jw = maskNallocate(op.input[1]) bias_name = op.input[3] # TODO(wyiming): create a new Op here current_blob = model.FC_Sparse(current_blob, cur.op.output[0] + "_Sparse", wcsr, iw, jw, bias_name) sps_op = model.net.Proto().op[-1] sps_node = NetDefNode(cur.op.output[0] + "_Sparse", "FC_Sparse", pre_new, sps_op) sps_node.visited = True pre_new = sps_node if cur.optype == "Relu": op = cur.op current_blob = model.Relu(current_blob, current_blob) rel_op = model.net.Proto().op[-1] rel_node = NetDefNode(str(current_blob), "Relu", pre_new, rel_op) rel_node.visited = True pre_new = rel_node cur.visited = True pre = cur flag = False for _, temp in cur.ops.iteritems(): if temp.optype == "Relu" or temp.optype == "FC_Prune": flag = True cur = temp if not flag: # assume that there is only 1 output that is not PrintOP cur = cur.ops.itervalues().next() cur.deleteInput(pre) print("No FC/RElu children") print(cur.op.type) break # 3. add trans after this chain like 1. current_blob = model.Transpose(current_blob, pre.op.output[0]) trans_op = model.net.Proto().op[-1] trans_node = NetDefNode(str(current_blob), "Transpose", pre_new, trans_op) trans_node.visited = True cur.insertInput(trans_node) print(cur.prev) print(trans_node.ops) def Prune2Sparse(cur, id2node, name2id, ops, model): # Assume that FC and Relu takes in only 1 input; # If not raise warning if not cur.visited and cur.optype == "FC_Prune": transFCRelu(cur, id2node, name2id, ops, model) cur.visited = True for name, n in cur.ops.iteritems(): Prune2Sparse(n, id2node, name2id, ops, model) def net2list(net_root): """ Use topological order(BFS) to print the op of a net in a list """ bfs_queue = [] op_list = [] cur = net_root for _, n in cur.ops.iteritems(): bfs_queue.append(n) while bfs_queue: node = bfs_queue[0] bfs_queue = bfs_queue[1:] op_list.append(node.op) for _, n in node.ops.iteritems(): bfs_queue.append(n) return op_list def netbuilder(model): print("Welcome to model checker") proto = model.net.Proto() net_name2id = {} net_id2node = {} net_root = NetDefNode("net_root", "root", None) for op_id, op in enumerate(proto.op): if op.type == "Print": continue op_name = '%s/%s (op#%d)' % (op.name, op.type, op_id) \ if op.name else '%s (op#%d)' % (op.type, op_id) # print(op_name) op_node = NetDefNode(op_name, op.type, op=op) net_id2node[op_id] = op_node if_has_layer_input = False for input_name in op.input: if input_name not in net_name2id: # assume that un_occured name are non_layers # TODO: write a non-layer checker and log it continue op_node.insertInput(net_id2node[net_name2id[input_name]]) if_has_layer_input = True if not if_has_layer_input: op_node.insertInput(net_root) for output_name in op.output: net_name2id[output_name] = op_id return net_root, net_name2id, net_id2node
## @package net_construct_bench # Module caffe2.experiments.python.net_construct_bench from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import logging import time from caffe2.python import workspace, data_parallel_model from caffe2.python import cnn import caffe2.python.models.resnet as resnet ''' Simple benchmark that creates a data-parallel resnet-50 model and measurs the time. ''' logging.basicConfig() log = logging.getLogger("net_construct_bench") log.setLevel(logging.DEBUG) def AddMomentumParameterUpdate(train_model, LR): ''' Add the momentum-SGD update. ''' params = train_model.GetParams() assert(len(params) > 0) ONE = train_model.param_init_net.ConstantFill( [], "ONE", shape=[1], value=1.0, ) NEGONE = train_model.param_init_net.ConstantFill( [], 'NEGONE', shape=[1], value=-1.0, ) for param in params: param_grad = train_model.param_to_grad[param] param_momentum = train_model.param_init_net.ConstantFill( [param], param + '_momentum', value=0.0 ) # Update param_grad and param_momentum in place train_model.net.MomentumSGD( [param_grad, param_momentum, LR], [param_grad, param_momentum], momentum=0.9, nesterov=1 ) # Update parameters by applying the moment-adjusted gradient train_model.WeightedSum( [param, ONE, param_grad, NEGONE], param ) def Create(args): gpus = list(range(args.num_gpus)) log.info("Running on gpus: {}".format(gpus)) # Create CNNModeLhelper object train_model = cnn.CNNModelHelper( order="NCHW", name="resnet50", use_cudnn=True, cudnn_exhaustive_search=False ) # Model building functions def create_resnet50_model_ops(model, loss_scale): [softmax, loss] = resnet.create_resnet50( model, "data", num_input_channels=3, num_labels=1000, label="label", ) model.Accuracy([softmax, "label"], "accuracy") return [loss] # SGD def add_parameter_update_ops(model): model.AddWeightDecay(1e-4) ITER = model.Iter("ITER") stepsz = int(30) LR = model.net.LearningRate( [ITER], "LR", base_lr=0.1, policy="step", stepsize=stepsz, gamma=0.1, ) AddMomentumParameterUpdate(model, LR) def add_image_input(model): pass start_time = time.time() # Create parallelized model data_parallel_model.Parallelize_GPU( train_model, input_builder_fun=add_image_input, forward_pass_builder_fun=create_resnet50_model_ops, param_update_builder_fun=add_parameter_update_ops, devices=gpus, ) ct = time.time() - start_time train_model.net._CheckLookupTables() log.info("Model create for {} gpus took: {} secs".format(len(gpus), ct)) def main(): # TODO: use argv parser = argparse.ArgumentParser( description="Caffe2: Benchmark for net construction" ) parser.add_argument("--num_gpus", type=int, default=1, help="Number of GPUs.") args = parser.parse_args() Create(args) if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=2']) import cProfile cProfile.run('main()', sort="cumulative")
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import hypothesis.strategies as st from hypothesis import given, assume, settings import numpy as np import time import os from caffe2.python import core, dyndep import caffe2.python.hypothesis_test_util as hu dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nnpack:nnpack_ops") np.random.seed(1) def benchmark(ws, net, warmups=5, iters=100): for _ in range(warmups): ws.run(net) plan = core.Plan("plan") plan.AddStep(core.ExecutionStep("test-step", net, iters)) before = time.time() ws.run(plan) after = time.time() print("Timing network, time taken per-iteration: {:.6f}ms".format(( after - before) / float(iters) * 1000.0)) return after - before def has_avx2(): import subprocess try: subprocess.check_output(["grep", "avx2", "/proc/cpuinfo"]) return True except subprocess.CalledProcessError: # grep exits with rc 1 on no matches return False @unittest.skipIf(not has_avx2(), "NNPACK requires AVX2") class NNPackOpsTest(hu.HypothesisTestCase): @given(stride=st.integers(1, 3), pad=st.integers(0, 2), kernel=st.integers(3, 5), size=st.integers(5, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 5), groups=st.integers(1, 2)) def test_convolution_correctness(self, stride, pad, kernel, size, input_channels, output_channels, batch_size, groups): assume(input_channels % groups == 0) assume(output_channels % groups == 0) assume(output_channels == input_channels / groups) assume(stride <= kernel) if stride != 1: assume(batch_size == 1) X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 w = np.random.rand( output_channels, input_channels, kernel, kernel).astype(np.float32)\ - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 order = "NCHW" outputs = {} for engine in ["", "NNPACK"]: op = core.CreateOperator( "Conv", ["X", "w", "b"], ["Y"], stride=stride, kernel=kernel, pad=pad, order=order, kts="TUPLE", engine=engine, group=groups, ) self.ws.create_blob("X").feed(X) self.ws.create_blob("w").feed(w) self.ws.create_blob("b").feed(b) self.ws.run(op) outputs[engine] = self.ws.blobs["Y"].fetch() np.testing.assert_allclose( outputs[""], outputs["NNPACK"], atol=1e-4, rtol=1e-4) @given(size=st.sampled_from([6, 8]), input_channels=st.integers(1, 8), batch_size=st.integers(1, 5)) def test_max_pool_correctness(self, size, input_channels, batch_size): X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 order = "NCHW" outputs = {} # only 2 * 2 stride and 2 * 2 pool is supported in NNPack now stride = 2 kernel = 2 # The pooling strategy of NNPack is different from caffe2 pooling pad = 0 for engine in ["", "NNPACK"]: op = core.CreateOperator( "MaxPool", ["X"], ["Y"], stride=stride, kernel=kernel, pad=pad, order=order, engine=engine, ) self.ws.create_blob("X").feed(X) self.ws.run(op) outputs[engine] = self.ws.blobs["Y"].fetch() np.testing.assert_allclose( outputs[""], outputs["NNPACK"], atol=1e-4, rtol=1e-4) @given(size=st.sampled_from([6, 8]), input_channels=st.integers(1, 8), batch_size=st.integers(1, 5)) def test_relu_correctness(self, size, input_channels, batch_size): X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 outputs = {} for engine in ["", "NNPACK"]: op = core.CreateOperator( "Relu", ["X"], ["Y"], engine=engine, ) self.ws.create_blob("X").feed(X) self.ws.run(op) outputs[engine] = self.ws.blobs["Y"].fetch() np.testing.assert_allclose( outputs[""], outputs["NNPACK"], atol=1e-4, rtol=1e-4) @given(size=st.sampled_from([6, 8]), input_channels=st.integers(1, 8), batch_size=st.integers(1, 5), alpha=st.floats(0, 1)) def test_leaky_relu_correctness(self, size, input_channels, batch_size, alpha): X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 outputs = {} for engine in ["", "NNPACK"]: op = core.CreateOperator( "LeakyRelu", ["X"], ["Y"], alpha=alpha, engine=engine, ) self.ws.create_blob("X").feed(X) self.ws.run(op) outputs[engine] = self.ws.blobs["Y"].fetch() np.testing.assert_allclose( outputs[""], outputs["NNPACK"], atol=1e-4, rtol=1e-4) @settings(timeout=3600) @unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark") @given(stride=st.integers(1, 1), pad=st.integers(0, 2), kernel=st.sampled_from([3, 5, 7]), size=st.integers(30, 90), input_channels=st.sampled_from([3, 64, 256]), output_channels=st.sampled_from([32, 96, 256]), batch_size=st.sampled_from([32, 64, 96, 128])) def test_timings(self, stride, pad, kernel, size, input_channels, output_channels, batch_size): assume(stride <= kernel) X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 w = np.random.rand(output_channels, input_channels, kernel, kernel).astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 order = "NCHW" times = {} for engine in ["", "NNPACK"]: net = core.Net(engine + "_test") net.Conv( ["X", "W", "b"], "Y", order=order, kernel=kernel, stride=stride, pad=pad, kts="TUPLE", engine=engine, ) self.ws.create_blob("X").feed(X) self.ws.create_blob("W").feed(w) self.ws.create_blob("b").feed(b) self.ws.run(net) times[engine] = benchmark(self.ws, net) print("Speedup for NNPACK: {:.2f}".format( times[""] / times["NNPACK"])) @settings(timeout=3600) @unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark") @given(size=st.integers(30, 90), input_channels=st.sampled_from([3, 64, 256]), batch_size=st.sampled_from([32, 64, 96, 128])) def test_relu_timings(self, size, input_channels, batch_size): X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 times = {} for engine in ["", "NNPACK"]: net = core.Net(engine + "_test") net.Relu( ["X"], ["Y"], engine=engine, ) self.ws.create_blob("X").feed(X) self.ws.run(net) times[engine] = benchmark(self.ws, net) print("Speedup for NNPACK: {:.2f}".format( times[""] / times["NNPACK"]))
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace, dyndep, test_util dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/warpctc:ctc_ops') workspace.GlobalInit(["python"]) def softmax(w): maxes = np.amax(w, axis=-1, keepdims=True) e = np.exp(w - maxes) dist = e / np.sum(e, axis=-1, keepdims=True) return dist class CTCOpsTest(test_util.TestCase): def verify_cost(self, device_option, is_test): alphabet_size = 5 N = 1 T = 2 inputs = np.asarray( [ [[0.1, 0.6, 0.1, 0.1, 0.1]], [[0.1, 0.1, 0.6, 0.1, 0.1]], ] ).reshape(T, N, alphabet_size).astype(np.float32) labels = np.asarray([1, 2]).astype(np.int32).reshape(T) label_lengths = np.asarray([2]).astype(np.int32).reshape(N) input_lengths = np.asarray([T]).astype(np.int32) net = core.Net("test-net") output_blobs = ["costs", "workspace"] if is_test \ else ["inputs_grad_to_be_copied", "costs", "workspace"] net.CTC(["inputs", "labels", "label_lengths", "input_lengths"], output_blobs, is_test=is_test, device_option=device_option) if not is_test: net.AddGradientOperators(["costs"]) self.ws.create_blob("inputs").feed(inputs, device_option=device_option) self.ws.create_blob("labels").feed(labels) self.ws.create_blob("label_lengths").feed(label_lengths) self.ws.create_blob("input_lengths").feed(input_lengths) self.ws.run(net) probs = softmax(inputs) expected = probs[0, 0, 1] * probs[1, 0, 2] self.assertEqual(self.ws.blobs["costs"].fetch().shape, (N,)) self.assertEqual(self.ws.blobs["costs"].fetch().dtype, np.float32) cost = self.ws.blobs["costs"].fetch()[0] print(cost) self.assertAlmostEqual(np.exp(-cost), expected) if not is_test: # Make sure inputs_grad was added by AddGradientOperators and # it is equal to the inputs_grad_to_be_copied blob returned by CTCop assert np.array_equal( self.ws.blobs["inputs_grad"].fetch(), self.ws.blobs["inputs_grad_to_be_copied"].fetch() ) def test_ctc_cost_cpu(self): self.verify_cost( caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CPU), is_test=False) def test_ctc_cost_gpu(self): self.verify_cost( caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CUDA, cuda_gpu_id=0), is_test=False) def test_ctc_forward_only_cpu(self): self.verify_cost( caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CPU), is_test=True) def test_ctc_forward_only_gpu(self): self.verify_cost( caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CUDA, cuda_gpu_id=0), is_test=True)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import hypothesis.strategies as st from hypothesis import given, assume import numpy as np import time import os from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace, muji, dyndep import caffe2.python.hypothesis_test_util as hu np.random.seed(1) dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/nccl:nccl_ops') def gpu_device(i): device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.CUDA device_option.cuda_gpu_id = i return device_option def benchmark(ws, net, warmups=5, iters=100): for _ in range(warmups): ws.run(net) plan = core.Plan("plan") plan.AddStep(core.ExecutionStep("test-step", net, iters)) before = time.time() ws.run(plan) after = time.time() print("Timing network, time taken per-iteration: {:.6f}ms".format(( after - before) / float(iters) * 1000.0)) return after - before @unittest.skipIf(not workspace.has_gpu_support, "NCCL only on GPU") class NCCLOpsTest(hu.HypothesisTestCase): @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000), in_place=st.booleans()) def test_nccl_allreduce(self, n, m, in_place): xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] prefix = "" if in_place else "o" outputs = [str("{}x_{}".format(prefix, i)) for i in range(n)] op = core.CreateOperator("NCCLAllreduce", inputs, outputs) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def allreduce(*args): assert len(args) == n output = np.sum(args, axis=0) return [output for _ in range(n)] outputs = self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], allreduce, input_device_options) for output in outputs: np.testing.assert_array_equal(outputs[0], output) self.assertEqual(outputs[0].tobytes(), output.tobytes()) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000), root=st.integers(min_value=0, max_value=workspace.NumCudaDevices() - 1)) def test_nccl_broadcast(self, n, m, root): assume(root < n) xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] op = core.CreateOperator("NCCLBroadcast", inputs, inputs, root=root) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def broadcast(*args): assert len(args) == n return [args[root] for _ in range(n)] self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], broadcast, input_device_options) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000), # NCCL Reduce seems to deadlock for non-zero roots. root=st.integers(min_value=0, max_value=0), in_place=st.booleans()) def test_nccl_reduce(self, n, m, root, in_place): assume(in_place is False or root == 0) xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] op = core.CreateOperator( "NCCLReduce", inputs, inputs[root] if in_place else b"o", root=root) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def reduce(*args): assert len(args) == n return [np.sum(args, axis=0)] self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], reduce, input_device_options) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000)) def test_nccl_allgather(self, n, m): xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] outputs = [str("o_{}".format(i)) for i in range(n)] op = core.CreateOperator("NCCLAllGather", inputs, outputs) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def allgather(*args): assert len(args) == n return [np.stack(args, axis=0) for _ in range(n)] outputs = self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], allgather, input_device_options) for output in outputs: np.testing.assert_array_equal(outputs[0], output) self.assertEqual(outputs[0].tobytes(), output.tobytes()) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000)) def test_nccl_reduce_scatter(self, n, m): xs = [np.random.randn(n, m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] outputs = [str("o_{}".format(i)) for i in range(n)] op = core.CreateOperator("NCCLReduceScatter", inputs, outputs) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def reduce_scatter(*args): assert len(args) == n reduced = sum(args) assert len(reduced.shape) > 1 ref = [reduced[i, :] for i in range(n)] return ref self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], reduce_scatter, input_device_options) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=100000, max_value=100000), iters=st.integers(min_value=1, max_value=100), net_type=st.sampled_from(["dag", "async_dag", "simple"])) def _test_nccl_sync(self, n, m, iters, net_type): inputs = [str("x_{}".format(i)) for i in range(n)] extra_inputs = [str("xe_{}".format(i)) for i in range(n)] net = core.Net("asdf") net.Proto().type = net_type net.Proto().num_workers = n for i in range(n): net.ConstantFill([], inputs[i], shape=[m], value=0.0, device_option=gpu_device(i)) net.ConstantFill([], extra_inputs[i], shape=[m], value=1.0, device_option=gpu_device(i)) for _ in range(iters): net.Sum([inputs[i], extra_inputs[i]], [inputs[i]], device_option=gpu_device(i)) net.NCCLReduce(inputs, [inputs[0]], device_option=gpu_device(0)) self.ws.run(net) np.testing.assert_array_equal( self.ws.blobs[inputs[0]].fetch(), np.full(shape=(m,), fill_value=iters * n, dtype=np.float32)) @unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark") def test_timings(self): for n in range(2, workspace.NumCudaDevices()): for in_place in [False, True]: xs = [np.random.randn(1e7).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] prefix = "" if in_place else "o" outputs = [str("{}x_{}".format(prefix, i)) for i in range(n)] net = core.Net("test") net.NCCLAllreduce(inputs, outputs) net.RunAllOnGPU() for i in range(n): self.ws.create_blob(inputs[i]).feed(xs[i], gpu_device(i)) self.ws.run(net) net_time = benchmark(self.ws, net) vanilla = core.Net("vanilla") muji.Allreduce(vanilla, inputs) vanilla_time = benchmark(self.ws, vanilla) print("Speedup for NCCL: {:.2f}".format( vanilla_time / net_time))
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import cPickle as pickle from collections import OrderedDict from caffe2.proto import caffe2_pb2 from caffe2.python import workspace, core, scope import logging logging.basicConfig() log = logging.getLogger("AnyExpOnTerm") log.setLevel(logging.DEBUG) def initialize_params_from_file( model, weights_file, num_xpus, opts, broadcast_computed_param=False, reset_epoch=False): start_epoch, lr, best_metric = initialize_master_xpu_model_params( model, weights_file, opts, reset_epoch) broadcast_parameters(opts, model, num_xpus, broadcast_computed_param) return start_epoch, lr, best_metric def initialize_master_xpu_model_params(model, weights_file, opts, reset_epoch): log.info("Initializing model params from file: {}".format(weights_file)) with open(weights_file, 'r') as fopen: blobs = pickle.load(fopen) if 'blobs' in blobs: blobs = blobs['blobs'] start_epoch = 0 best_metric = float('-inf') if 'epoch' in blobs: log.info('epoch {} is found in model file'.format(blobs['epoch'])) if not reset_epoch: start_epoch = blobs['epoch'] else: log.info('Reset epoch') else: log.info('no epoch is found in model file') lr = opts['model_param']['base_learning_rate'] if 'lr' in blobs: lr = blobs['lr'] if 'best_metric' in blobs and not reset_epoch: best_metric = blobs['best_metric'] if model is not None: log.info('initialize model parameters using weights file: {}'.format( weights_file )) ws_blobs = workspace.Blobs() unscoped_blob_names = OrderedDict() for blob in model.GetAllParams(): unscoped_blob_names[unscope_name(str(blob))] = True root_xpu_id = opts['distributed']['first_xpu_id'] device = opts['distributed']['device'] caffe2_pb2_DEVICE =\ caffe2_pb2.CUDA if opts['distributed']['device'] == 'gpu'\ else caffe2_pb2.CPU with core.NameScope('{}_{}'.format(device, root_xpu_id)): with core.DeviceScope(core.DeviceOption(caffe2_pb2_DEVICE, 0)): for unscoped_blob_name in unscoped_blob_names.keys(): scoped_blob_name = scoped_name(unscoped_blob_name) if unscoped_blob_name not in blobs: log.info('{:s} not found'.format(unscoped_blob_name)) continue log.info( '{:s} loaded from weights file into: {:s}'.format( unscoped_blob_name, scoped_blob_name ) ) if scoped_blob_name in ws_blobs: ws_blob = workspace.FetchBlob(scoped_blob_name) if not ws_blob.shape == blobs[unscoped_blob_name].shape: log.info( ('Workspace blob {} with shape {} does ' 'not match weights file shape {}').format( unscoped_blob_name, ws_blob.shape, blobs[unscoped_blob_name].shape) ) else: workspace.FeedBlob( scoped_blob_name, blobs[unscoped_blob_name].astype( np.float32, copy=False)) else: log.info('Skip initializing model parameters from file: {}'.format( weights_file )) log.info('Complete initialize_master_xpu_model_params') return start_epoch, lr, best_metric def broadcast_parameters(opts, model, num_xpus, broadcast_computed_param=False): if num_xpus == 1: log.info("only 1 device. Skip parameter broadcast") return all_params = [model.GetParams()] if broadcast_computed_param: all_params.append(model.GetComputedParams()) caffe2_pb2_DEVICE =\ caffe2_pb2.CUDA if opts['distributed']['device'] == 'gpu'\ else caffe2_pb2.CPU for params in all_params: assert len(params) % num_xpus == 0, \ "Current model dosen't match device number when loading checkpoint" params_per_xpu = int(len(params) / num_xpus) for idx in range(params_per_xpu): blobs = [param for param in params[idx::params_per_xpu]] data = workspace.FetchBlob(blobs[0]) log.info('Broadcasting {} to'.format(str(blobs[0]))) for i, p in enumerate(blobs[1:]): log.info(' |-> {}'.format(str(p))) with core.DeviceScope(core.DeviceOption(caffe2_pb2_DEVICE, i+1)): workspace.FeedBlob(p, data) log.info("Complete parameter broadcast") def save_model_params(is_checkpoint, model, checkpoint_path, epoch, opts, best_metric): # best_metric=float('-inf') try: save_model_params_blob( model, checkpoint_path, epoch, opts, best_metric ) except Exception as e: log.warning('Exception from save_model_params {}'.format(str(e))) return checkpoint_path def save_model_params_blob(model, params_file, epoch, opts, best_metric): # best_metric=float('-inf') log.info("Saving model params...") root_xpu_id = opts['distributed']['first_xpu_id'] device = opts['distributed']['device'] save_params = [str(param) for param in model.GetParams('{}_{}'.format(device, root_xpu_id))] save_computed_params = [str(param) for param in model.GetComputedParams('{}_{}' .format(device, root_xpu_id))] save_blobs = {} save_blobs['epoch'] = epoch save_blobs['best_metric'] = best_metric save_blobs['lr'] = \ workspace.FetchBlob('{}_{}/lr'.format(device, root_xpu_id)) for param in save_params + save_computed_params: scoped_blob_name = str(param) unscoped_blob_name = unscope_name(scoped_blob_name) if unscoped_blob_name not in save_blobs: save_blobs[unscoped_blob_name] = workspace.FetchBlob( scoped_blob_name) log.debug( '{:s} -> {:s}'.format(scoped_blob_name, unscoped_blob_name)) log.info('to weights file {}'.format(params_file)) try: with open(params_file, 'w') as fwrite: pickle.dump(dict(blobs=save_blobs), fwrite, pickle.HIGHEST_PROTOCOL) except IOError as e: log.error('I/O error({0}): {1}'.format(e.errno, e.strerror)) def unscope_name(blob_name): return blob_name[blob_name.rfind(scope._NAMESCOPE_SEPARATOR) + 1:] def scoped_name(blob_name): return scope.CurrentNameScope() + blob_name
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from abc import abstractmethod class Meter(object): @abstractmethod def __init__(self, **kwargs): pass @abstractmethod def Reset(self): pass @abstractmethod def Add(self): pass @abstractmethod def Compute(self): pass
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import caffe2.contrib.playground.meter as Meter from caffe2.python import workspace import numpy as np class ComputeTopKAccuracy(Meter.Meter): # Python default arguments are evaluated once when the function is # defined, not each time the function is called # This means that if you use a mutable default argument and mutate it, # you will and have mutated that object for # all future calls to the function as well. # def __init__(self, blob_name=['softmax', 'label'], opts=None, topk=1): def __init__(self, blob_name=None, opts=None, topk=1): if blob_name is None: blob_name = ['softmax', 'label'] self.blob_name = blob_name self.opts = opts self.topk = topk self.iter = 0 self.value = 0 def Reset(self): self.iter = 0 self.value = 0 def Add(self): for idx in range(self.opts['distributed']['first_xpu_id'], self.opts['distributed']['first_xpu_id'] + self.opts['distributed']['num_xpus']): prefix = '{}_{}/'.format(self.opts['distributed']['device'], idx) softmax = workspace.FetchBlob(prefix + self.blob_name[0]) labels = workspace.FetchBlob(prefix + self.blob_name[1]) output = np.squeeze(softmax) target = np.squeeze(labels) if len(output.shape) == 1: output = output.reshape((1, output.shape[0])) else: assert len(output.shape) == 2, \ 'wrong output size (1D or 2D expected)' assert len(target.shape) == 1, 'wrong target size (1D expected)' assert output.shape[0] == target.shape[0], \ 'target and output do not match' N = output.shape[0] pred = np.argsort(-output, axis=1)[:, :self.topk] correct = pred.astype(target.dtype) == np.repeat( target.reshape((N, 1)), [self.topk], axis=1) self.value += np.sum(correct[:, :self.topk]) self.iter += N def Compute(self): result = self.value / self.iter self.Reset() return result
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from abc import abstractmethod from caffe2.python import workspace from caffe2.python import timeout_guard from caffe2.python import data_parallel_model from . import checkpoint as checkpoint from . import ModuleRegister as ModuleRegister from . import module_map as module_map # instantiate logger outside of distributed operators may trigger error # logger need to be created in each idividual operator instead. import os import inspect import time import logging logging.basicConfig() log = logging.getLogger("AnyExp") log.setLevel(logging.DEBUG) def initOpts(opts): workspace.GlobalInit( ['caffe2', '--caffe2_log_level=2', '--caffe2_gpu_memory_tracking=0']) assert (opts['distributed']['num_gpus'] > 0 or opts['distributed']['num_cpus'] > 0),\ "Need to specify num_gpus or num_cpus to decide which device to use." trainWithCPU = (opts['distributed']['num_gpus'] == 0) num_xpus = opts['distributed']['num_cpus'] if \ trainWithCPU else opts['distributed']['num_gpus'] first_xpu = opts['distributed']['first_cpu_id'] if \ trainWithCPU else opts['distributed']['first_gpu_id'] opts['distributed']['device'] = 'cpu' if trainWithCPU else 'gpu' opts['model_param']['combine_spatial_bn'] =\ trainWithCPU and opts['model_param']['combine_spatial_bn'] opts['distributed']['num_xpus'] = num_xpus opts['distributed']['first_xpu_id'] = first_xpu opts['temp_var'] = {} opts['temp_var']['metrics_output'] = {} return opts def initDefaultModuleMap(): registerModuleMap(module_map) def registerModuleMap(module_map): ModuleRegister.registerModuleMap(module_map) def aquireDatasets(opts): myAquireDataModule = ModuleRegister.getModule(opts['input']['input_name_py']) return myAquireDataModule.get_input_dataset(opts) def createTrainerClass(opts): return ModuleRegister.constructTrainerClass(AnyExpTrainer, opts) def runShardedTrainLoop(opts, myTrainFun): start_epoch = 0 pretrained_model = opts['model_param']['pretrained_model'] if pretrained_model != '' and os.path.exists(pretrained_model): # Only want to get start_epoch. start_epoch, prev_checkpointed_lr, best_metric = \ checkpoint.initialize_params_from_file( model=None, weights_file=pretrained_model, num_xpus=1, opts=opts, broadcast_computed_param=True, reset_epoch=opts['model_param']['reset_epoch'], ) log.info('start epoch: {}'.format(start_epoch)) pretrained_model = None if pretrained_model == '' else pretrained_model ret = None pretrained_model = "" shard_results = [] for epoch in range(start_epoch, opts['epoch_iter']['num_epochs'], opts['epoch_iter']['num_epochs_per_flow_schedule']): # must support checkpoint or the multiple schedule will always # start from initial state checkpoint_model = None if epoch == start_epoch else ret['model'] pretrained_model = None if epoch > start_epoch else pretrained_model shard_results = [] # with LexicalContext('epoch{}_gang'.format(epoch),gang_schedule=False): for shard_id in range(opts['distributed']['num_shards']): opts['temp_var']['shard_id'] = shard_id opts['temp_var']['pretrained_model'] = pretrained_model opts['temp_var']['checkpoint_model'] = checkpoint_model opts['temp_var']['epoch'] = epoch opts['temp_var']['start_epoch'] = start_epoch shard_ret = myTrainFun(opts) shard_results.append(shard_ret) ret = None # always only take shard_0 return for shard_ret in shard_results: if shard_ret is not None: ret = shard_ret opts['temp_var']['metrics_output'] = ret['metrics'] break log.info('ret is: {}'.format(str(ret))) return ret def trainFun(): def simpleTrainFun(opts): trainerClass = createTrainerClass(opts) trainer = trainerClass(opts) return trainer.buildModelAndTrain(opts) return simpleTrainFun def initialize_params_from_file(*args, **kwargs): return checkpoint.initialize_params_from_file(*args, **kwargs) class AnyExpTrainer(object): def __init__(self, opts): import logging logging.basicConfig() log = logging.getLogger("AnyExp") log.setLevel(logging.DEBUG) self.log = log self.opts = opts self.train_dataset = None self.test_dataset = None self.train_df = None self.test_df = None self.metrics = {} self.plotsIngredients = [] self.record_epochs = [] self.samples_per_sec = [] self.secs_per_train = [] self.metrics_output = opts['temp_var']['metrics_output'] first_xpu = opts['distributed']['first_xpu_id'] num_xpus = opts['distributed']['num_xpus'] self.xpus = range(first_xpu, first_xpu + num_xpus) self.total_batch_size = \ self.opts['epoch_iter']['batch_per_device'] * \ self.opts['distributed']['num_xpus'] * \ self.opts['distributed']['num_shards'] self.epoch_iterations = \ self.opts['epoch_iter']['num_train_sample_per_epoch'] // \ self.total_batch_size if len(opts['input']['datasets']) > 0: self.train_df = opts['input']['datasets'][0] if len(opts['input']['datasets']) == 2: self.test_df = opts['input']['datasets'][1] # at this point, the intance of this class becomes many instances # running on different machines. Most of their attributes are same, # but the shard_ids are different. self.shard_id = opts['temp_var']['shard_id'] self.start_epoch = opts['temp_var']['start_epoch'] self.epoch = opts['temp_var']['epoch'] self.epochs_to_run = opts['epoch_iter']['num_epochs_per_flow_schedule'] log.info('opts: {}'.format(str(opts))) @abstractmethod def get_input_dataset(self, opts): pass @abstractmethod def get_model_input_fun(self): pass @abstractmethod def init_model(self): pass def init_metrics(self): metrics = self.opts['output']['metrics'] for metric in metrics: meterClass = self.getMeterClass(metric['meter_py']) # log.info('metric.meter_kargs {}'.format(metric.meter_kargs)) # log.info('type meter_kargs {}'.format(type(metric.meter_kargs))) meterInstance = meterClass(opts=self.opts, **metric['meter_kargs']) self.add_metric(metric['name'], meterInstance, metric['is_train']) def getMeterClass(self, meterName): return ModuleRegister.getClassFromModule(meterName, meterName) def add_metric(self, name, calculator, is_train): metrics = self.metrics metrics[name] = {} metrics[name]['calculator'] = calculator metrics[name]['is_train'] = is_train metrics[name]['output'] = [] def extendMetricsOutput(self): metrics_output = self.metrics_output if not metrics_output: metrics_output['epochs'] = self.record_epochs metrics_output['samples_per_sec'] = self.samples_per_sec metrics_output['secs_per_train'] = self.secs_per_train for metric, value in self.metrics.items(): metrics_output[metric] = value['output'] else: metrics_output['epochs'].extend(self.record_epochs) metrics_output['samples_per_sec'].extend(self.samples_per_sec) metrics_output['secs_per_train'].extend(self.secs_per_train) for metric, value in self.metrics.items(): metrics_output[metric].extend(value['output']) @abstractmethod def init_plots(self): pass def add_plot(self, x, x_title, ys, y_title): plotsIngredients = self.plotsIngredients aPlotIngredients = {} aPlotIngredients['x'] = x aPlotIngredients['x_title'] = x_title aPlotIngredients['ys'] = ys aPlotIngredients['y_title'] = y_title plotsIngredients.append(aPlotIngredients) @abstractmethod def init_logs(self): pass def list_of_epochs(self): iter_end_point = min(self.opts['epoch_iter']['num_epochs'], self.epoch + self.opts['epoch_iter']['num_epochs_per_flow_schedule']) return range(self.epoch, iter_end_point) def list_of_epoch_iters(self): return range(0, self.epoch_iterations) @abstractmethod def fun_per_epoch_b4RunNet(self, epoch): pass @abstractmethod def fun_per_epoch_aftRunNet(self, epoch): pass def checkpoint(self, epoch): self.model_path = checkpoint.save_model_params( True, self.train_model, self.gen_checkpoint_path(True, epoch + 1), epoch + 1, self.opts, float('-inf')) def gen_checkpoint_path(self, is_checkpoint, epoch): if (is_checkpoint): filename = "model_checkpoint_epoch{}.pkl".format(epoch) else: filename = "model_final.pkl" return self.opts['output']['checkpoint_folder'] + filename # @abstractmethod # def gen_checkpoint_path(self, is_checkpoint, epoch): # pass @abstractmethod def fun_per_iter_b4RunNet(self, epoch, epoch_iter): pass @abstractmethod def fun_per_iter_aftRunNetB4Test(self, epoch, epoch_iter): pass @abstractmethod def fun_per_iter_aftRunNetAftTest(self, epoch, epoch_iter): pass @abstractmethod def fun_conclude_operator(self, opts): pass def createMetricsPlotsModelsOutputs(self): self.extendMetricsOutput() self.model_output = self.model_path @abstractmethod def assembleAllOutputs(self): pass @abstractmethod def gen_input_builder_fun(self, model, dataset, is_train): pass @abstractmethod def gen_forward_pass_builder_fun(self, model, dataset, is_train): pass @abstractmethod def gen_param_update_builder_fun(self, model, dataset, is_train): pass @abstractmethod def gen_optimizer_fun(self, model, dataset, is_train): pass @abstractmethod def gen_rendezvous_ctx(self, model, dataset, is_train): pass # @abstractmethod def planning_output(self): self.init_metrics() self.init_plots() self.init_logs() def prep_data_parallel_models(self): self.prep_a_data_parallel_model(self.train_model, self.train_dataset, True) self.prep_a_data_parallel_model(self.test_model, self.test_dataset, False) def prep_a_data_parallel_model(self, model, dataset, is_train): if model is None: pass log.info('in prep_a_data_parallel_model') param_update = \ self.gen_param_update_builder_fun(model, dataset, is_train) \ if self.gen_param_update_builder_fun is not None else None log.info('in prep_a_data_parallel_model param_update done ') optimizer = \ self.gen_optimizer_fun(model, dataset, is_train) \ if self.gen_optimizer_fun is not None else None log.info('in prep_a_data_parallel_model optimizer done ') max_ops = self.opts['model_param']['max_concurrent_distributed_ops'] data_parallel_model.Parallelize( model, input_builder_fun=self.gen_input_builder_fun(model, dataset, is_train), forward_pass_builder_fun=self.gen_forward_pass_builder_fun( model, dataset, is_train), param_update_builder_fun=param_update, optimizer_builder_fun=optimizer, devices=self.xpus, rendezvous=self.gen_rendezvous_ctx(model, dataset, is_train), broadcast_computed_params=False, optimize_gradient_memory=self.opts['model_param']['memonger'], use_nccl=self.opts['model_param']['cuda_nccl'], max_concurrent_distributed_ops=max_ops, cpu_device=(self.opts['distributed']['device'] == 'cpu'), # "shared model" will only keep model parameters for cpu_0 or gpu_0 # will cause issue when initialize each gpu_0, gpu_1, gpu_2 ... # shared_model=(self.opts['distributed']['device'] == 'cpu'), combine_spatial_bn=self.opts['model_param']['combine_spatial_bn'], ) log.info('in prep_a_data_parallel_model Parallelize done ') # log.info("Current blobs in workspace: {}".format(workspace.Blobs())) workspace.RunNetOnce(model.param_init_net) log.info('in prep_a_data_parallel_model RunNetOnce done ') workspace.CreateNet(model.net) log.info('in prep_a_data_parallel_model CreateNet done ') def loadCheckpoint(self): opts = self.opts previous_checkpoint = opts['temp_var']['checkpoint_model'] pretrained_model = opts['temp_var']['pretrained_model'] num_xpus = opts['distributed']['num_xpus'] if (previous_checkpoint is not None): if os.path.exists(previous_checkpoint): log.info('Load previous checkpoint:{}'.format( previous_checkpoint )) start_epoch, prev_checkpointed_lr, _best_metric = \ checkpoint.initialize_params_from_file( model=self.train_model, weights_file=previous_checkpoint, num_xpus=num_xpus, opts=opts, broadcast_computed_param=True, reset_epoch=False, ) elif pretrained_model is not None and os.path.exists(pretrained_model): log.info("Load pretrained model: {}".format(pretrained_model)) start_epoch, prev_checkpointed_lr, best_metric = \ checkpoint.initialize_params_from_file( model=self.train_model, weights_file=pretrained_model, num_xpus=num_xpus, opts=opts, broadcast_computed_param=True, reset_epoch=opts['model_param']['reset_epoch'], ) data_parallel_model.FinalizeAfterCheckpoint(self.train_model) def buildModelAndTrain(self, opts): log.info('in buildModelAndTrain, trainer_input: {}'.format(str(opts))) log.info("check type self: {}".format(type(self))) log.info("check self dir: {}".format(dir(self))) log.info("check self get_input_dataset methods: {}". format(inspect.getsource(self.get_input_dataset))) log.info("check self gen_input_builder_fun method: {}". format(inspect.getsource(self.gen_input_builder_fun))) log.info("check self gen_forward_pass_builder_fun method: {}". format(inspect.getsource(self.gen_forward_pass_builder_fun))) if self.gen_param_update_builder_fun is not None: log.info("check self gen_param_update_builder_fun method: {}". format(inspect.getsource(self.gen_param_update_builder_fun))) else: log.info("check self gen_optimizer_fun method: {}". format(inspect.getsource(self.gen_optimizer_fun))) log.info("check self assembleAllOutputs method: {}". format(inspect.getsource(self.assembleAllOutputs))) self.get_model_input_fun() self.init_model() self.planning_output() self.prep_data_parallel_models() self.loadCheckpoint() for epoch in self.list_of_epochs(): log.info("start training epoch {}".format(epoch)) self.fun_per_epoch_b4RunNet(epoch) for epoch_iter in self.list_of_epoch_iters(): self.iter_start_time = time.time() self.fun_per_iter_b4RunNet(epoch, epoch_iter) self.run_training_net() self.fun_per_iter_aftRunNetB4Test(epoch, epoch_iter) self.iter_end_time = time.time() if (epoch_iter % opts['epoch_iter']['num_train_iteration_per_test'] == 0): secs_per_train = (self.iter_end_time - self.iter_start_time) self.secs_per_train.append(secs_per_train) sample_trained = self.total_batch_size samples_per_sec = sample_trained / secs_per_train self.samples_per_sec.append(samples_per_sec) self.fract_epoch = (epoch + float(epoch_iter) / self.epoch_iterations) self.record_epochs.append(self.fract_epoch) for key in self.metrics: metric = self.metrics[key] if not metric['is_train']: continue metric['calculator'].Add() metric['output'].append(metric['calculator'].Compute()) self.test_loop_start_time = time.time() for _test_iter in range(0, opts['epoch_iter']['num_test_iter']): timeout = 2000.0 with timeout_guard.CompleteInTimeOrDie(timeout): workspace.RunNet(self.test_model.net.Proto().name) for key in self.metrics: metric = self.metrics[key] if metric['is_train']: continue metric['calculator'].Add() self.test_loop_end_time = time.time() self.sec_per_test_loop = \ self.test_loop_end_time - self.test_loop_start_time for metric in self.metrics.values(): if metric['is_train']: continue metric['output'].append(metric['calculator'].Compute()) logStr = 'epoch:{}/{} iter:{}/{} secs_per_train:{} '.format( self.fract_epoch, self.opts['epoch_iter']['num_epochs'], epoch_iter, self.epoch_iterations, secs_per_train) logStr += 'samples_per_sec:{} loop {} tests takes {} sec'.format( samples_per_sec, opts['epoch_iter']['num_test_iter'], self.sec_per_test_loop) for metric, value in self.metrics.items(): logStr += ' {}:{} '.format(metric, value['output'][-1]) log.info('Iter Stats: {}'.format(logStr)) self.fun_per_iter_aftRunNetAftTest(epoch, epoch_iter) self.checkpoint(epoch) self.fun_per_epoch_aftRunNet(epoch) self.fun_conclude_operator() self.createMetricsPlotsModelsOutputs() return self.assembleAllOutputs()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # Input import caffe2.contrib.playground.resnetdemo.\ gfs_IN1k as gfs_IN1k # noqa # model import caffe2.contrib.playground.resnetdemo.\ IN1k_resnet as IN1k_resnet # noqa # FORWARD_PASS import caffe2.contrib.playground.resnetdemo.\ caffe2_resnet50_default_forward as caffe2_resnet50_default_forward # noqa import caffe2.contrib.playground.resnetdemo.\ explicit_resnet_forward as explicit_resnet_forward # noqa # PARAMETER_UPDATE import caffe2.contrib.playground.resnetdemo.\ caffe2_resnet50_default_param_update as caffe2_resnet50_default_param_update # noqa import caffe2.contrib.playground.resnetdemo.\ explicit_resnet_param_update as explicit_resnet_param_update # noqa # RENDEZVOUS import caffe2.contrib.playground.resnetdemo.\ rendezvous_filestore as rendezvous_filestore # noqa # OUTPUT import caffe2.contrib.playground.\ output_generator as output_generator # noqa # METERS # for meters, use the class name as your module name in this map import caffe2.contrib.playground.\ compute_loss as ComputeLoss # noqa import caffe2.contrib.playground.\ compute_topk_accuracy as ComputeTopKAccuracy # noqa
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import timeout_guard def fun_conclude_operator(self): # Ensure the program exists. This is to "fix" some unknown problems # causing the job sometimes get stuck. timeout_guard.EuthanizeIfNecessary(600.0) def assembleAllOutputs(self): output = {} output['train_model'] = self.train_model output['test_model'] = self.test_model output['model'] = self.model_output output['metrics'] = self.metrics_output return output
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import json import caffe2.contrib.playground.AnyExp as AnyExp import logging logging.basicConfig() log = logging.getLogger("AnyExpOnTerm") log.setLevel(logging.DEBUG) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Any Experiment training.') parser.add_argument("--parameters-json", type=json.loads, help='model options in json format', dest="params") args = parser.parse_args() opts = args.params['opts'] opts = AnyExp.initOpts(opts) log.info('opts is: {}'.format(str(opts))) AnyExp.initDefaultModuleMap() opts['input']['datasets'] = AnyExp.aquireDatasets(opts) # defined this way so that AnyExp.trainFun(opts) can be replaced with # some other custermized training function. ret = AnyExp.runShardedTrainLoop(opts, AnyExp.trainFun()) log.info('ret is: {}'.format(str(ret)))
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import inspect import logging logging.basicConfig() log = logging.getLogger("ModuleRegister") log.setLevel(logging.DEBUG) MODULE_MAPS = [] def registerModuleMap(module_map): MODULE_MAPS.append(module_map) log.info("ModuleRegister get modules from ModuleMap content: {}". format(inspect.getsource(module_map))) def constructTrainerClass(myTrainerClass, opts): log.info("ModuleRegister, myTrainerClass name is {}". format(myTrainerClass.__name__)) log.info("ModuleRegister, myTrainerClass type is {}". format(type(myTrainerClass))) log.info("ModuleRegister, myTrainerClass dir is {}". format(dir(myTrainerClass))) myInitializeModelModule = getModule(opts['model']['model_name_py']) log.info("ModuleRegister, myInitializeModelModule dir is {}". format(dir(myInitializeModelModule))) myTrainerClass.init_model = myInitializeModelModule.init_model myTrainerClass.run_training_net = myInitializeModelModule.run_training_net myTrainerClass.fun_per_iter_b4RunNet = \ myInitializeModelModule.fun_per_iter_b4RunNet myTrainerClass.fun_per_epoch_b4RunNet = \ myInitializeModelModule.fun_per_epoch_b4RunNet myInputModule = getModule(opts['input']['input_name_py']) log.info("ModuleRegister, myInputModule {} dir is {}". format(opts['input']['input_name_py'], myInputModule.__name__)) # Override input methods of the myTrainerClass class myTrainerClass.get_input_dataset = myInputModule.get_input_dataset myTrainerClass.get_model_input_fun = myInputModule.get_model_input_fun myTrainerClass.gen_input_builder_fun = myInputModule.gen_input_builder_fun # myForwardPassModule = GetForwardPassModule(opts) myForwardPassModule = getModule(opts['model']['forward_pass_py']) myTrainerClass.gen_forward_pass_builder_fun = \ myForwardPassModule.gen_forward_pass_builder_fun myParamUpdateModule = getModule(opts['model']['parameter_update_py']) myTrainerClass.gen_param_update_builder_fun =\ myParamUpdateModule.gen_param_update_builder_fun \ if myParamUpdateModule is not None else None myOptimizerModule = getModule(opts['model']['optimizer_py']) myTrainerClass.gen_optimizer_fun = \ myOptimizerModule.gen_optimizer_fun \ if myOptimizerModule is not None else None myRendezvousModule = getModule(opts['model']['rendezvous_py']) myTrainerClass.gen_rendezvous_ctx = \ myRendezvousModule.gen_rendezvous_ctx \ if myRendezvousModule is not None else None # override output module myOutputModule = getModule(opts['output']['gen_output_py']) log.info("ModuleRegister, myOutputModule is {}". format(myOutputModule.__name__)) myTrainerClass.fun_conclude_operator = myOutputModule.fun_conclude_operator myTrainerClass.assembleAllOutputs = myOutputModule.assembleAllOutputs return myTrainerClass def getModule(moduleName): log.info("MODULE_MAPS content {}".format(str(MODULE_MAPS))) myModule = None for ModuleMap in MODULE_MAPS: log.info("iterate through MODULE_MAPS content {}". format(str(ModuleMap))) for name, obj in inspect.getmembers(ModuleMap): log.info("iterate through MODULE_MAPS a name {}".format(str(name))) if name == moduleName: log.info("AnyExp get module {} with source:{}". format(moduleName, inspect.getsource(obj))) myModule = obj return myModule return None def getClassFromModule(moduleName, className): myClass = None for ModuleMap in MODULE_MAPS: for name, obj in inspect.getmembers(ModuleMap): if name == moduleName: log.info("ModuleRegistry from module {} get class {} of source:{}". format(moduleName, className, inspect.getsource(obj))) myClass = getattr(obj, className) return myClass return None
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import caffe2.contrib.playground.meter as Meter from caffe2.python import workspace class ComputeLoss(Meter.Meter): def __init__(self, opts=None, blob_name=''): self.blob_name = blob_name self.opts = opts self.iter = 0 self.value = 0 def Reset(self): self.iter = 0 self.value = 0 def Add(self): """Average values of a blob on each gpu""" value = 0 for idx in range(self.opts['distributed']['first_xpu_id'], self.opts['distributed']['first_xpu_id'] + self.opts['distributed']['num_xpus']): value += workspace.FetchBlob('{}_{}/{}'. format(self.opts['distributed']['device'], idx, self.blob_name)) self.value += value self.iter += 1 def Compute(self): result = self.opts['distributed']['num_shards'] * self.value / self.iter self.Reset() return result
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals def gen_param_update_builder_fun(self, model, dataset, is_train): if not is_train: return None else: def add_parameter_update_ops(model): model.AddWeightDecay(1e-4) ITER = model.Iter("ITER") stepsz = int(30 * self.opts['epoch_iter']['num_train_sample_per_epoch'] / self.total_batch_size) LR = model.net.LearningRate( [ITER], "lr", base_lr=self.opts['model_param']['base_learning_rate'], policy="step", stepsize=stepsz, gamma=0.1, ) params = model.GetParams() assert(len(params) > 0) for param in params: param_grad = model.param_to_grad[param] param_momentum = model.param_init_net.ConstantFill( [param], param + '_momentum', value=0.0 ) # Update param_grad and param_momentum in place model.net.MomentumSGDUpdate( [param_grad, param_momentum, LR, param], [param_grad, param_momentum, param], momentum=0.9, nesterov=1 ) return add_parameter_update_ops
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging logging.basicConfig() log = logging.getLogger("AnyExp") log.setLevel(logging.DEBUG) # For more depths, add the block config here BLOCK_CONFIG = { 18: (2, 2, 2, 2), 34: (3, 4, 6, 3), 50: (3, 4, 6, 3), 101: (3, 4, 23, 3), 152: (3, 8, 36, 3), 200: (3, 32, 36, 3), 264: (3, 64, 36, 3), 284: (3, 32, 64, 3), } def gen_forward_pass_builder_fun(self, model, dataset, is_train): split = 'train' if is_train else 'test' opts = self.opts def model_creator(model, loss_scale): model, softmax, loss = resnet_imagenet_create_model( model=model, data='data', labels='label', split=split, opts=opts, dataset=dataset, ) return [loss] return model_creator def resnet_imagenet_create_model(model, data, labels, split, opts, dataset): model_helper = ResNetModelHelper(model, split, opts) opts_depth = opts['model_param']['num_layer'] log.info(' | ResNet-{} Imagenet'.format(opts_depth)) assert opts_depth in BLOCK_CONFIG.keys(), \ 'Block config is not defined for specified model depth. Please check.' (n1, n2, n3, n4) = BLOCK_CONFIG[opts_depth] num_features = 2048 residual_block = model_helper.bottleneck_block if opts_depth in [18, 34]: num_features = 512 residual_block = model_helper.basic_block num_classes = 1000 conv_blob = model.Conv( data, 'conv1', 3, 64, 7, stride=2, pad=3, weight_init=('MSRAFill', {}), bias_init=('ConstantFill', {'value': 0.}), no_bias=0 ) test_mode = False if split in ['test', 'val']: test_mode = True bn_blob = model.SpatialBN( conv_blob, 'res_conv1_bn', 64, # does not appear to affect test_loss performance # epsilon=1e-3, epsilon=opts['model_param']['bn_epsilon'], # momentum=0.1, momentum=opts['model_param']['bn_momentum'], is_test=test_mode, ) relu_blob = model.Relu(bn_blob, bn_blob) max_pool = model.MaxPool(relu_blob, 'pool1', kernel=3, stride=2, pad=1) # TODO: This can be further optimized by passing dim_in, dim_out = features, # dim_out = features * 4 if opts_depth in [50, 101, 152, 200, 264, 284]: blob_in, dim_in = model_helper.residual_layer( residual_block, max_pool, 64, 256, stride=1, num_blocks=n1, prefix='res2', dim_inner=64 ) blob_in, dim_in = model_helper.residual_layer( residual_block, blob_in, dim_in, 512, stride=2, num_blocks=n2, prefix='res3', dim_inner=128 ) blob_in, dim_in = model_helper.residual_layer( residual_block, blob_in, dim_in, 1024, stride=2, num_blocks=n3, prefix='res4', dim_inner=256 ) blob_in, dim_in = model_helper.residual_layer( residual_block, blob_in, dim_in, 2048, stride=2, num_blocks=n4, prefix='res5', dim_inner=512 ) elif opts_depth in [18, 34]: blob_in, dim_in = model_helper.residual_layer( residual_block, max_pool, 64, 64, stride=1, num_blocks=n1, prefix='res2', ) blob_in, dim_in = model_helper.residual_layer( residual_block, blob_in, dim_in, 128, stride=2, num_blocks=n2, prefix='res3', ) blob_in, dim_in = model_helper.residual_layer( residual_block, blob_in, dim_in, 256, stride=2, num_blocks=n3, prefix='res4', ) blob_in, dim_in = model_helper.residual_layer( residual_block, blob_in, dim_in, 512, stride=2, num_blocks=n4, prefix='res5', ) pool_blob = model.AveragePool(blob_in, 'pool5', kernel=7, stride=1) loss_scale = 1. / opts['distributed']['num_xpus'] / \ opts['distributed']['num_shards'] loss = None fc_blob = model.FC( pool_blob, 'pred', num_features, num_classes, # does not appear to affect test_loss performance # weight_init=('GaussianFill', {'std': opts.fc_init_std}), # bias_init=('ConstantFill', {'value': 0.}) weight_init=None, bias_init=None) softmax, loss = model.SoftmaxWithLoss( [fc_blob, labels], ['softmax', 'loss'], scale=loss_scale) model.Accuracy(['softmax', labels], 'accuracy') return model, softmax, loss class ResNetModelHelper(): def __init__(self, model, split, opts): self.model = model self.split = split self.opts = opts # shortcut type B def add_shortcut(self, blob_in, dim_in, dim_out, stride, prefix): if dim_in == dim_out: return blob_in conv_blob = self.model.Conv( blob_in, prefix, dim_in, dim_out, kernel=1, stride=stride, weight_init=("MSRAFill", {}), bias_init=('ConstantFill', {'value': 0.}), no_bias=1 ) test_mode = False if self.split in ['test', 'val']: test_mode = True bn_blob = self.model.SpatialBN( conv_blob, prefix + "_bn", dim_out, # epsilon=1e-3, # momentum=0.1, epsilon=self.opts['model_param']['bn_epsilon'], momentum=self.opts['model_param']['bn_momentum'], is_test=test_mode, ) return bn_blob def conv_bn( self, blob_in, dim_in, dim_out, kernel, stride, prefix, group=1, pad=1, ): conv_blob = self.model.Conv( blob_in, prefix, dim_in, dim_out, kernel, stride=stride, pad=pad, group=group, weight_init=("MSRAFill", {}), bias_init=('ConstantFill', {'value': 0.}), no_bias=1 ) test_mode = False if self.split in ['test', 'val']: test_mode = True bn_blob = self.model.SpatialBN( conv_blob, prefix + "_bn", dim_out, epsilon=self.opts['model_param']['bn_epsilon'], momentum=self.opts['model_param']['bn_momentum'], is_test=test_mode, ) return bn_blob def conv_bn_relu( self, blob_in, dim_in, dim_out, kernel, stride, prefix, pad=1, group=1, ): bn_blob = self.conv_bn( blob_in, dim_in, dim_out, kernel, stride, prefix, group=group, pad=pad ) return self.model.Relu(bn_blob, bn_blob) # 3(a)this block uses multi-way group conv implementation that splits blobs def multiway_bottleneck_block( self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group ): blob_out = self.conv_bn_relu( blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0, ) conv_blob = self.model.GroupConv_Deprecated( blob_out, prefix + "_branch2b", dim_inner, dim_inner, kernel=3, stride=stride, pad=1, group=group, weight_init=("MSRAFill", {}), bias_init=('ConstantFill', {'value': 0.}), no_bias=1 ) test_mode = False if self.split in ['test', 'val']: test_mode = True bn_blob = self.model.SpatialBN( conv_blob, prefix + "_branch2b_bn", dim_out, epsilon=self.opts['model_param']['bn_epsilon'], momentum=self.opts['model_param']['bn_momentum'], is_test=test_mode, ) relu_blob = self.model.Relu(bn_blob, bn_blob) bn_blob = self.conv_bn( relu_blob, dim_inner, dim_out, 1, 1, prefix + "_branch2c", pad=0 ) if self.opts['model_param']['custom_bn_init']: self.model.param_init_net.ConstantFill( [bn_blob + '_s'], bn_blob + '_s', value=self.opts['model_param']['bn_init_gamma']) sc_blob = self.add_shortcut( blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1" ) sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum") return self.model.Relu(sum_blob, sum_blob) # 3(c) this block uses cudnn group conv op def group_bottleneck_block( self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group ): blob_out = self.conv_bn_relu( blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0, ) blob_out = self.conv_bn_relu( blob_out, dim_inner, dim_inner, 3, stride, prefix + "_branch2b", group=group ) bn_blob = self.conv_bn( blob_out, dim_inner, dim_out, 1, 1, prefix + "_branch2c", pad=0 ) if self.opts['model_param']['custom_bn_init']: self.model.param_init_net.ConstantFill( [bn_blob + '_s'], bn_blob + '_s', value=self.opts['model_param']['bn_init_gamma']) sc_blob = self.add_shortcut( blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1" ) sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum") return self.model.Relu(sum_blob, sum_blob) # bottleneck residual layer for 50, 101, 152 layer networks def bottleneck_block( self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group=None ): blob_out = self.conv_bn_relu( blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0, ) blob_out = self.conv_bn_relu( blob_out, dim_inner, dim_inner, 3, stride, prefix + "_branch2b", ) bn_blob = self.conv_bn( blob_out, dim_inner, dim_out, 1, 1, prefix + "_branch2c", pad=0 ) if self.opts['model_param']['custom_bn_init']: self.model.param_init_net.ConstantFill( [bn_blob + '_s'], bn_blob + '_s', value=self.opts['model_param']['bn_init_gamma']) sc_blob = self.add_shortcut( blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1" ) sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum") return self.model.Relu(sum_blob, sum_blob) # basic layer for the 18 and 34 layer networks and the CIFAR data netwrorks def basic_block( self, blob_in, dim_in, dim_out, stride, prefix, dim_inner=None, group=None, ): blob_out = self.conv_bn_relu( blob_in, dim_in, dim_out, 3, stride, prefix + "_branch2a" ) bn_blob = self.conv_bn( blob_out, dim_out, dim_out, 3, 1, prefix + "_branch2b", pad=1 ) sc_blob = self.add_shortcut( blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1" ) sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum") return self.model.Relu(sum_blob, sum_blob) def residual_layer( self, block_fn, blob_in, dim_in, dim_out, stride, num_blocks, prefix, dim_inner=None, group=None ): # prefix is something like: res2, res3, etc. # each res layer has num_blocks stacked for idx in range(num_blocks): block_prefix = "{}_{}".format(prefix, idx) block_stride = 2 if (idx == 0 and stride == 2) else 1 blob_in = block_fn( blob_in, dim_in, dim_out, block_stride, block_prefix, dim_inner, group ) dim_in = dim_out return blob_in, dim_in
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.python import workspace, cnn, core from caffe2.python import timeout_guard from caffe2.proto import caffe2_pb2 def init_model(self): train_model = cnn.CNNModelHelper( order="NCHW", name="resnet", use_cudnn=True, cudnn_exhaustive_search=False ) self.train_model = train_model test_model = cnn.CNNModelHelper( order="NCHW", name="resnet_test", use_cudnn=False, cudnn_exhaustive_search=False, init_params=False, ) self.test_model = test_model self.log.info("Model creation completed") def fun_per_epoch_b4RunNet(self, epoch): pass def fun_per_iter_b4RunNet(self, epoch, epoch_iter): learning_rate = 0.05 for idx in range(self.opts['distributed']['first_xpu_id'], self.opts['distributed']['first_xpu_id'] + self.opts['distributed']['num_xpus']): caffe2_pb2_device = caffe2_pb2.CUDA if \ self.opts['distributed']['device'] == 'gpu' else \ caffe2_pb2.CPU with core.DeviceScope(core.DeviceOption(caffe2_pb2_device, idx)): workspace.FeedBlob( '{}_{}/lr'.format(self.opts['distributed']['device'], idx), np.array(learning_rate, dtype=np.float32) ) def run_training_net(self): timeout = 2000.0 with timeout_guard.CompleteInTimeOrDie(timeout): workspace.RunNet(self.train_model.net.Proto().name)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import caffe2.python.models.resnet as resnet def gen_forward_pass_builder_fun(self, model, dataset, is_train): def create_resnet50_model_ops(model, loss_scale): [softmax, loss] = resnet.create_resnet50( model, "data", num_input_channels=3, num_labels=1000, label="label", ) model.Accuracy([softmax, "label"], "accuracy") my_loss_scale = 1. / self.opts['distributed']['num_xpus'] / \ self.opts['distributed']['num_shards'] loss = model.Scale(loss, scale=my_loss_scale) return [loss] return create_resnet50_model_ops
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # # example1 using gfs as input source. def gen_input_builder_fun(self, model, dataset, is_train): if is_train: input_path = self.opts['input']['train_input_path'] else: input_path = self.opts['input']['test_input_path'] reader = model.CreateDB("reader", db=input_path, db_type='lmdb', shard_id=self.shard_id, num_shards=self.opts['distributed']['num_shards'],) def AddImageInput(model, reader, batch_size, img_size): ''' Image input operator that loads data from reader and applies certain transformations to the images. ''' data, label = model.ImageInput( reader, ["data", "label"], batch_size=batch_size, use_caffe_datum=True, mean=128., std=128., scale=256, crop=img_size, mirror=1, is_test=True ) data = model.StopGradient(data, data) def add_image_input(model): AddImageInput( model, reader, batch_size=self.opts['epoch_iter']['batch_per_device'], img_size=self.opts['input']['imsize'], ) return add_image_input def get_input_dataset(opts): return [] def get_model_input_fun(self): pass
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, workspace from caffe2.python import dyndep dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:file_store_handler_ops') # rendezvous should NOT be unique for each operator. It should have # the same run_id on different operators. say we have two shards, # both shards created rendezvous of run_id "aaa_bbb_epoch_09", and this # rendezvous will wait for two shards to join because max_shards is specified # to be 2. If each shard created an rendezvous with different run_id, # each of them are waiting for different rendezvous to join, they will # never wait for each other and therefore timeout eventually. def gen_rendezvous_ctx(self, model, dataset, is_train): if self.opts['distributed']['num_shards'] < 2: return None # have issue when try to set this up on more shards workspace.RunOperatorOnce( core.CreateOperator( "FileStoreHandlerCreate", [], ["store_handler"], path="/tmp", prefix="epoch.{}".format(self.epoch), ) ) rendezvous = dict( kv_handler="store_handler", shard_id=self.shard_id, num_shards=self.opts['distributed']['num_shards'], engine="GLOO", # transport=args.distributed_transport, transport="tcp", # interface=interfaces[0], interface=[], exit_nets=None) if is_train else None return rendezvous
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import workspace, core from caffe2.proto import caffe2_pb2 def gen_param_update_builder_fun(self, model, dataset, is_train): if not is_train: return None else: # from sherlok for idx in range(self.opts['distributed']['first_xpu_id'], self.opts['distributed']['first_xpu_id'] + self.opts['distributed']['num_xpus']): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, idx)): workspace.CreateBlob('{}_{}/lr'. format(self.opts['distributed']['device'], idx)) def add_parameter_update_ops(model): model.Iter("ITER") weight_decay = model.param_init_net.ConstantFill( [], 'weight_decay', shape=[1], value=self.opts['model_param']['weight_decay'] ) weight_decay_bn = model.param_init_net.ConstantFill( [], 'weight_decay_bn', shape=[1], value=self.opts['model_param']['weight_decay_bn'] ) one = model.param_init_net.ConstantFill( [], "ONE", shape=[1], value=1.0 ) ''' Add the momentum-SGD update. ''' params = model.GetParams() assert(len(params) > 0) for param in params: param_grad = model.param_to_grad[param] param_momentum = model.param_init_net.ConstantFill( [param], param + '_momentum', value=0.0 ) if '_bn' in str(param): model.WeightedSum( [param_grad, one, param, weight_decay_bn], param_grad ) else: model.WeightedSum( [param_grad, one, param, weight_decay], param_grad ) # Update param_grad and param_momentum in place model.net.MomentumSGDUpdate( [param_grad, param_momentum, 'lr', param], [param_grad, param_momentum, param], momentum=0.9, nesterov=1 ) return add_parameter_update_ops
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from hypothesis import given import hypothesis.strategies as st from multiprocessing import Process, Queue import numpy as np import os import pickle import tempfile import shutil from caffe2.python import core, workspace, dyndep import caffe2.python.hypothesis_test_util as hu from gloo.python import IoError dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops") dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:redis_store_handler_ops") dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:store_ops") dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops") dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops_gpu") op_engine = 'GLOO' class TemporaryDirectory: def __enter__(self): self.tmpdir = tempfile.mkdtemp() return self.tmpdir def __exit__(self, type, value, traceback): shutil.rmtree(self.tmpdir) class TestCase(hu.HypothesisTestCase): test_counter = 0 sync_counter = 0 def run_test_locally(self, fn, device_option=None, **kwargs): # Queue for assertion errors on subprocesses queue = Queue() # Capture any exception thrown by the subprocess def run_fn(*args, **kwargs): try: with core.DeviceScope(device_option): fn(*args, **kwargs) workspace.ResetWorkspace() queue.put(True) except Exception as ex: queue.put(ex) # Start N processes in the background procs = [] for i in range(kwargs['comm_size']): kwargs['comm_rank'] = i proc = Process( target=run_fn, kwargs=kwargs) proc.start() procs.append(proc) # Test complete, join background processes while len(procs) > 0: proc = procs.pop(0) while proc.is_alive(): proc.join(10) # Raise exception if we find any. Otherwise each worker # should put a True into the queue # Note that the following is executed ALSO after # the last process was joined, so if ANY exception # was raised, it will be re-raised here. self.assertFalse(queue.empty(), "Job failed without a result") o = queue.get() if isinstance(o, Exception): raise o else: self.assertTrue(o) def run_test_distributed(self, fn, device_option=None, **kwargs): comm_rank = os.getenv('COMM_RANK') self.assertIsNotNone(comm_rank) comm_size = os.getenv('COMM_SIZE') self.assertIsNotNone(comm_size) kwargs['comm_rank'] = int(comm_rank) kwargs['comm_size'] = int(comm_size) with core.DeviceScope(device_option): fn(**kwargs) workspace.ResetWorkspace() def create_common_world(self, comm_rank, comm_size, tmpdir=None, existing_cw=None): store_handler = "store_handler" # If REDIS_HOST is set, use RedisStoreHandler for rendezvous. if existing_cw is None: redis_host = os.getenv("REDIS_HOST") redis_port = int(os.getenv("REDIS_PORT", 6379)) if redis_host is not None: workspace.RunOperatorOnce( core.CreateOperator( "RedisStoreHandlerCreate", [], [store_handler], prefix=str(TestCase.test_counter) + "/", host=redis_host, port=redis_port)) else: workspace.RunOperatorOnce( core.CreateOperator( "FileStoreHandlerCreate", [], [store_handler], path=tmpdir)) common_world = "common_world" else: common_world = str(existing_cw) + ".forked" inputs = [store_handler] if existing_cw is not None: inputs.append(existing_cw) workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", inputs, [common_world], size=comm_size, rank=comm_rank, sync=True, engine=op_engine)) return (store_handler, common_world) def synchronize(self, store_handler, value, comm_rank=None): TestCase.sync_counter += 1 blob = "sync_{}".format(TestCase.sync_counter) if comm_rank == 0: workspace.FeedBlob(blob, pickle.dumps(value)) workspace.RunOperatorOnce( core.CreateOperator( "StoreSet", [store_handler, blob], [])) else: workspace.RunOperatorOnce( core.CreateOperator( "StoreGet", [store_handler], [blob])) return pickle.loads(workspace.FetchBlob(blob)) def _test_broadcast(self, comm_rank=None, comm_size=None, blob_size=None, num_blobs=None, tmpdir=None, use_float16=False, ): store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir) blob_size = self.synchronize( store_handler, blob_size, comm_rank=comm_rank) num_blobs = self.synchronize( store_handler, num_blobs, comm_rank=comm_rank) for i in range(comm_size): blobs = [] for j in range(num_blobs): blob = "blob_{}".format(j) offset = (comm_rank * num_blobs) + j value = np.full(blob_size, offset, np.float16 if use_float16 else np.float32) workspace.FeedBlob(blob, value) blobs.append(blob) net = core.Net("broadcast") net.Broadcast( [common_world] + blobs, blobs, root=i, engine=op_engine) workspace.CreateNet(net) workspace.RunNet(net.Name()) for j in range(num_blobs): np.testing.assert_array_equal( workspace.FetchBlob(blobs[j]), i * num_blobs) # Run the net a few more times to check the operator # works not just the first time it's called for _tmp in range(4): workspace.RunNet(net.Name()) @given(comm_size=st.integers(min_value=2, max_value=8), blob_size=st.integers(min_value=1e3, max_value=1e6), num_blobs=st.integers(min_value=1, max_value=4), device_option=st.sampled_from([hu.cpu_do]), use_float16=st.booleans()) def test_broadcast(self, comm_size, blob_size, num_blobs, device_option, use_float16): TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_broadcast, blob_size=blob_size, num_blobs=num_blobs, use_float16=use_float16, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_broadcast, comm_size=comm_size, blob_size=blob_size, num_blobs=num_blobs, device_option=device_option, tmpdir=tmpdir, use_float16=use_float16) def _test_allreduce(self, comm_rank=None, comm_size=None, blob_size=None, num_blobs=None, tmpdir=None, use_float16=False ): store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir) blob_size = self.synchronize( store_handler, blob_size, comm_rank=comm_rank) num_blobs = self.synchronize( store_handler, num_blobs, comm_rank=comm_rank) blobs = [] for i in range(num_blobs): blob = "blob_{}".format(i) value = np.full(blob_size, (comm_rank * num_blobs) + i, np.float16 if use_float16 else np.float32) workspace.FeedBlob(blob, value) blobs.append(blob) net = core.Net("allreduce") net.Allreduce( [common_world] + blobs, blobs, engine=op_engine) workspace.CreateNet(net) workspace.RunNet(net.Name()) for i in range(num_blobs): np.testing.assert_array_equal( workspace.FetchBlob(blobs[i]), (num_blobs * comm_size) * (num_blobs * comm_size - 1) / 2) # Run the net a few more times to check the operator # works not just the first time it's called for _tmp in range(4): workspace.RunNet(net.Name()) def _test_allreduce_multicw(self, comm_rank=None, comm_size=None, tmpdir=None ): _store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir) _, common_world2 = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir, existing_cw=common_world) blob_size = 1e4 num_blobs = 4 for cw in [common_world, common_world2]: blobs = [] for i in range(num_blobs): blob = "blob_{}".format(i) value = np.full(blob_size, (comm_rank * num_blobs) + i, np.float32) workspace.FeedBlob(blob, value) blobs.append(blob) net = core.Net("allreduce_multicw") net.Allreduce( [cw] + blobs, blobs, engine=op_engine) workspace.RunNetOnce(net) for i in range(num_blobs): np.testing.assert_array_equal( workspace.FetchBlob(blobs[i]), (num_blobs * comm_size) * (num_blobs * comm_size - 1) / 2) @given(comm_size=st.integers(min_value=2, max_value=8), blob_size=st.integers(min_value=1e3, max_value=1e6), num_blobs=st.integers(min_value=1, max_value=4), device_option=st.sampled_from([hu.cpu_do]), use_float16=st.booleans()) def test_allreduce(self, comm_size, blob_size, num_blobs, device_option, use_float16): TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_allreduce, blob_size=blob_size, num_blobs=num_blobs, use_float16=use_float16, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_allreduce, comm_size=comm_size, blob_size=blob_size, num_blobs=num_blobs, device_option=device_option, tmpdir=tmpdir, use_float16=use_float16) def _test_reduce_scatter(self, comm_rank=None, comm_size=None, blob_size=None, num_blobs=None, tmpdir=None, use_float16=False ): store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir) blob_size = self.synchronize( store_handler, blob_size, comm_rank=comm_rank) num_blobs = self.synchronize( store_handler, num_blobs, comm_rank=comm_rank) blobs = [] for i in range(num_blobs): blob = "blob_{}".format(i) value = np.full(blob_size, (comm_rank * num_blobs) + i, np.float16 if use_float16 else np.float32) workspace.FeedBlob(blob, value) blobs.append(blob) # Specify distribution among ranks i.e. number of elements # scattered/distributed to each process. recv_counts = np.zeros(comm_size, dtype=np.int32) remaining = blob_size chunk_size = (blob_size + comm_size - 1) / comm_size for i in range(comm_size): recv_counts[i] = min(chunk_size, remaining) remaining = remaining - chunk_size if remaining > chunk_size else 0 recv_counts_blob = "recvCounts" workspace.FeedBlob(recv_counts_blob, recv_counts) blobs.append(recv_counts_blob) net = core.Net("reduce_scatter") net.ReduceScatter( [common_world] + blobs, blobs, engine=op_engine) workspace.CreateNet(net) workspace.RunNet(net.Name()) for i in range(num_blobs): np.testing.assert_array_equal( np.resize(workspace.FetchBlob(blobs[i]), recv_counts[comm_rank]), (num_blobs * comm_size) * (num_blobs * comm_size - 1) / 2) # Run the net a few more times to check the operator # works not just the first time it's called for _tmp in range(4): workspace.RunNet(net.Name()) @given(comm_size=st.integers(min_value=2, max_value=8), blob_size=st.integers(min_value=1e3, max_value=1e6), num_blobs=st.integers(min_value=1, max_value=4), device_option=st.sampled_from([hu.cpu_do]), use_float16=st.booleans()) def test_reduce_scatter(self, comm_size, blob_size, num_blobs, device_option, use_float16): TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_reduce_scatter, blob_size=blob_size, num_blobs=num_blobs, use_float16=use_float16, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_reduce_scatter, comm_size=comm_size, blob_size=blob_size, num_blobs=num_blobs, device_option=device_option, tmpdir=tmpdir, use_float16=use_float16) def _test_allgather(self, comm_rank=None, comm_size=None, blob_size=None, num_blobs=None, tmpdir=None, use_float16=False ): store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir) blob_size = self.synchronize( store_handler, blob_size, comm_rank=comm_rank) num_blobs = self.synchronize( store_handler, num_blobs, comm_rank=comm_rank) blobs = [] for i in range(num_blobs): blob = "blob_{}".format(i) value = np.full(blob_size, (comm_rank * num_blobs) + i, np.float16 if use_float16 else np.float32) workspace.FeedBlob(blob, value) blobs.append(blob) net = core.Net("allgather") net.Allgather( [common_world] + blobs, ["Gathered"], engine=op_engine) workspace.CreateNet(net) workspace.RunNet(net.Name()) # create expected output expected_output = np.array([]) for i in range(comm_size): for j in range(num_blobs): value = np.full(blob_size, (i * num_blobs) + j, np.float16 if use_float16 else np.float32) expected_output = np.concatenate((expected_output, value)) np.testing.assert_array_equal( workspace.FetchBlob("Gathered"), expected_output) # Run the net a few more times to check the operator # works not just the first time it's called for _tmp in range(4): workspace.RunNet(net.Name()) @given(comm_size=st.integers(min_value=2, max_value=8), blob_size=st.integers(min_value=1e3, max_value=1e6), num_blobs=st.integers(min_value=1, max_value=4), device_option=st.sampled_from([hu.cpu_do]), use_float16=st.booleans()) def test_allgather(self, comm_size, blob_size, num_blobs, device_option, use_float16): TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_allgather, blob_size=blob_size, num_blobs=num_blobs, use_float16=use_float16, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_allgather, comm_size=comm_size, blob_size=blob_size, num_blobs=num_blobs, device_option=device_option, tmpdir=tmpdir, use_float16=use_float16) @given(device_option=st.sampled_from([hu.cpu_do])) def test_forked_cw(self, device_option): TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_allreduce_multicw, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_allreduce_multicw, comm_size=8, device_option=device_option, tmpdir=tmpdir) def _test_barrier( self, comm_rank=None, comm_size=None, tmpdir=None, ): store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir ) net = core.Net("barrier") net.Barrier( [common_world], [], engine=op_engine) workspace.CreateNet(net) workspace.RunNet(net.Name()) # Run the net a few more times to check the operator # works not just the first time it's called for _tmp in range(4): workspace.RunNet(net.Name()) @given(comm_size=st.integers(min_value=2, max_value=8), device_option=st.sampled_from([hu.cpu_do])) def test_barrier(self, comm_size, device_option): TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_barrier, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_barrier, comm_size=comm_size, device_option=device_option, tmpdir=tmpdir) def _test_close_connection( self, comm_rank=None, comm_size=None, tmpdir=None, ): ''' One node calls close connection, others wait it on barrier. Test will check that all will exit eventually. ''' # Caffe's for closers only: # https://www.youtube.com/watch?v=QMFwFgG9NE8 closer = comm_rank == comm_size // 2, store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir ) net = core.Net("barrier_or_close") if not closer: net.Barrier( [common_world], [], engine=op_engine) else: net.DestroyCommonWorld( [common_world], [common_world], engine=op_engine) # Sleep a bit to ensure others start the barrier import time time.sleep(0.1) workspace.CreateNet(net) workspace.RunNet(net.Name()) @given(comm_size=st.integers(min_value=2, max_value=8), device_option=st.sampled_from([hu.cpu_do])) def test_close_connection(self, comm_size, device_option): import time start_time = time.time() TestCase.test_counter += 1 if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_close_connection, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_close_connection, comm_size=comm_size, device_option=device_option, tmpdir=tmpdir) # Check that test finishes quickly because connections get closed self.assertLess(time.time() - start_time, 2.0) def _test_io_error( self, comm_rank=None, comm_size=None, tmpdir=None, ): ''' Only one node will participate in allreduce, resulting in an IoError ''' store_handler, common_world = self.create_common_world( comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir) if comm_rank == 0: blob_size = 1000 num_blobs = 1 blobs = [] for i in range(num_blobs): blob = "blob_{}".format(i) value = np.full( blob_size, (comm_rank * num_blobs) + i, np.float32 ) workspace.FeedBlob(blob, value) blobs.append(blob) net = core.Net("allreduce") net.Allreduce( [common_world] + blobs, blobs, engine=op_engine) workspace.CreateNet(net) workspace.RunNet(net.Name()) @given(comm_size=st.integers(min_value=2, max_value=8), device_option=st.sampled_from([hu.cpu_do])) def test_io_error(self, comm_size, device_option): TestCase.test_counter += 1 with self.assertRaises(IoError): if os.getenv('COMM_RANK') is not None: self.run_test_distributed( self._test_io_error, device_option=device_option) else: with TemporaryDirectory() as tmpdir: self.run_test_locally( self._test_io_error, comm_size=comm_size, device_option=device_option, tmpdir=tmpdir) if __name__ == "__main__": import unittest unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, dyndep import caffe2.python.hypothesis_test_util as hu from hypothesis import given import hypothesis.strategies as st import numpy as np import os import unittest try: from libfb.py import parutil except ImportError as e: # If libfb not found, skip all tests in this file raise unittest.SkipTest(str(e)) core.GlobalInit(["python", "--caffe2_log_level=0"]) dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/torch:torch_ops') RUNTIME = parutil.get_runtime_path() if 'LUA_PATH' not in os.environ: os.environ['LUA_PATH'] = ";".join([ os.path.join(RUNTIME, '_lua', '?.lua'), os.path.join(RUNTIME, '_lua', '?', 'init.lua'), ]) os.environ['LUA_CPATH'] = os.path.join(RUNTIME, '_lua', '?.so') class TorchOpTest(hu.HypothesisTestCase): @given(n=st.integers(min_value=1, max_value=10), i=st.integers(min_value=1, max_value=10), h=st.integers(min_value=2, max_value=10)) def test_feed(self, n, i, h): op = core.CreateOperator( "Torch", ["x", "W", "b"], ["y"], init=b"nn.Linear({i}, {h})".format(h=h, i=i), num_inputs=1, num_params=2, num_outputs=1 ) x = np.random.randn(n, i).astype(np.float32) W = np.random.randn(h, i).astype(np.float32) b = np.random.randn(h).astype(np.float32) self.ws.create_blob("x").feed(x) self.ws.create_blob("W").feed(W) self.ws.create_blob("b").feed(b) self.ws.run(op) y = self.ws.blobs["y"].fetch() print("y", y) y = y.reshape((n, h)) np.testing.assert_allclose(y, np.dot(x, W.T) + b, atol=1e-4, rtol=1e-4) @given(n=st.integers(min_value=1, max_value=10), i=st.integers(min_value=1, max_value=10), h=st.integers(min_value=2, max_value=10), **hu.gcs) def test_gradient(self, n, i, h, gc, dc): op = core.CreateOperator( "Torch", ["x", "W", "b"], ["y"], init=b"nn.Linear({i}, {h})".format(h=h, i=i), num_inputs=1, num_params=2, num_outputs=1 ) x = np.random.randn(n, i).astype(np.float32) W = np.random.randn(h, i).astype(np.float32) b = np.random.randn(h).astype(np.float32) inputs = [x, W, b] self.assertDeviceChecks(dc, op, inputs, [0]) for i, _ in enumerate(inputs): self.assertGradientChecks(gc, op, inputs, i, [0]) @given(n=st.integers(min_value=1, max_value=10), i=st.integers(min_value=1, max_value=10), h=st.integers(min_value=2, max_value=10), iters=st.integers(min_value=1, max_value=100)) def test_iterated(self, n, i, h, iters): x = np.random.randn(n, i).astype(np.float32) W = np.random.randn(h, i).astype(np.float32) b = np.random.randn(h).astype(np.float32) self.ws.create_blob("x").feed(x) self.ws.create_blob("W").feed(W) self.ws.create_blob("b").feed(b) net = core.Net("op") net.Torch( ["x", "W", "b"], ["y"], init=b"nn.Linear({i}, {h})".format(h=h, i=i), num_inputs=1, num_params=2, num_outputs=1 ) print(net.Proto()) net_ = self.ws.create_net(net) for i in range(iters): if i % 1000 == 0: print(i) net_.run() y = self.ws.blobs["y"].fetch() y = y.reshape((n, h)) np.testing.assert_allclose(y, np.dot(x, W.T) + b, atol=1e-4, rtol=1e-4) def test_leakage_torch(self): n = 1 i = 100 h = 1000 iters = 2000 x = np.random.randn(n, i).astype(np.float32) W = np.random.randn(h, i).astype(np.float32) b = np.random.randn(h).astype(np.float32) self.ws.create_blob("x").feed(x) self.ws.create_blob("W").feed(W) self.ws.create_blob("b").feed(b) net = core.Net("op") net.Torch( ["x", "W", "b"], ["y"], init=b"nn.Linear({i}, {h})".format(h=h, i=i), num_inputs=1, num_params=2, num_outputs=1 ) net_ = self.ws.create_net(net) for i in range(iters): if i % 1000 == 0: print(i) net_.run() y = self.ws.blobs["y"].fetch() y = y.reshape((n, h)) np.testing.assert_allclose(y, np.dot(x, W.T) + b, atol=1e-4, rtol=1e-4)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, dyndep import caffe2.python.hypothesis_test_util as hu from hypothesis import given import hypothesis.strategies as st import numpy as np dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/torch:th_ops') try: dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/torch:th_ops_gpu') HAS_GPU = True except Exception as e: print("Exception loading Torch GPU library: ", e) # GPU import can fail, as Torch is not using cuda-lazy HAS_GPU = False pass class THOpsTest(hu.HypothesisTestCase): @given(X=hu.tensor(), alpha=st.floats(min_value=0.1, max_value=2.0), in_place=st.booleans(), **(hu.gcs if HAS_GPU else hu.gcs_cpu_only)) def test_elu(self, X, alpha, in_place, gc, dc): op = core.CreateOperator( "ELU", ["X"], ["X" if in_place else "Y"], engine="THNN", alpha=alpha) self.assertDeviceChecks(dc, op, [X], [0]) def elu(X): Y = np.copy(X) Y[Y <= 0] = (np.exp(Y[Y <= 0]) - 1) * alpha return (Y,) self.assertReferenceChecks(gc, op, [X], elu) # Avoid the nonlinearity at 0 for gradient checker. X[X == 0] += 0.2 X[np.abs(X) < 0.2] += np.sign(X[np.abs(X) < 0.2]) assert len(X[np.abs(X) < 0.2]) == 0 self.assertGradientChecks(gc, op, [X], 0, [0])
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from hypothesis import given from caffe2.python import core, workspace from caffe2.proto import caffe2_pb2 import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np def feed_inputs(inputs): for name, value in inputs.items(): workspace.FeedBlob(name, value) def assert_proto_equals(proto, expected): proto_lines = proto.strip().split('\n') expected_lines = expected.strip().split('\n') assert len(proto_lines) == len(expected_lines), \ '{} != {}'.format(proto, expected) for left, right in zip(proto_lines, expected_lines): assert left.strip() == right.strip(), \ '{} != {}'.format(proto, expected) class TestCaffe2Script(hu.HypothesisTestCase): test_program = """ def foo(a,b,X,W) -> (c): t = a + b*b c = FC(X,W,t) def testIf(c0,c1,t,f) -> (r): if c0 < c1: r = t else: r = f r = Add(r,3f,broadcast=1) def testWhile(r) -> (r): m = 0 while m < 4: # Plus operator automatically broadcasts, and we cannot # do in-place B and C arguments when we broadcast, so use # an explicit Add op. r = Add(r, r) m = m + 1 """ @given(firstdim=st.integers(min_value=1, max_value=4096), seconddim=st.integers(min_value=1, max_value=4096), seed=st.integers(min_value=0, max_value=65536), **hu.gcs) def test_foo(self, firstdim, seconddim, seed, gc, dc): np.random.seed(int(seed)) inputs = {} a = inputs['a'] = np.random.rand(seconddim).astype(np.float32) b = inputs['b'] = np.random.rand(seconddim).astype(np.float32) X = inputs['X'] = np.random.rand(firstdim, firstdim).astype(np.float32) W = inputs['W'] = np.random.rand(seconddim, firstdim).astype(np.float32) feed_inputs(inputs) CU = core.C.CompilationUnit() CU.define(self.test_program) CU.create_net('foo').run() ref_t = a + b * b ref_c = np.matmul(X, W.transpose()) + ref_t actual_c = workspace.FetchBlob('c') np.testing.assert_allclose(actual_c, ref_c, rtol=1e-05) def test_trinary(self): CU = core.C.CompilationUnit() CU.define(""" def foo(c) -> (d): d = 1 + (2 if c else 4) """) workspace.FeedBlob('c', np.ones((1), dtype=bool)) net = CU.create_net('foo') net.run() assert(3 == workspace.FetchBlob('d')) workspace.FeedBlob('c', np.zeros((1), dtype=bool)) net.run() assert(5 == workspace.FetchBlob('d')) def test_bool_literal(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (a,b): a = True b = False """) net = CU.create_net('foo') net.run() assert(workspace.FetchBlob('a')) assert(not workspace.FetchBlob('b')) def test_bool_operators(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (a, b, c, d, e): a = True and False b = True or False c = not b d = not False or True e = not (1 if a else 0) == (1 if b else 0) """) net = CU.create_net('foo') net.run() assert(not workspace.FetchBlob('a')) assert(workspace.FetchBlob('b')) assert(not workspace.FetchBlob('c')) assert(workspace.FetchBlob('d')) assert(workspace.FetchBlob('e')) def expect_fail(self, fn, msg): try: fn() except RuntimeError as r: if msg not in str(r): raise RuntimeError( "Failed wrong: expected string '{}' ".format(msg) + "in error message but found\n{}".format(str(r))) def test_fails(self): def fail_inputs(): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (): Print(1,4) """) self.expect_fail(fail_inputs, "expects 1 inputs but found 2") def fail_undef(): CU = core.C.CompilationUnit() CU.define(""" def foo(a) -> (b): a = what() """) self.expect_fail(fail_undef, "attempting to call unknown operation") def fail_schema(): CU = core.C.CompilationUnit() CU.define(""" def foo(a) -> (b): a = FC(a,a,a) """) self.expect_fail(fail_schema, "failed schema checking") def test_print(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (): a = 1 Print(a) Print(a+1) _ = 4 Print(_) # verify in print this isn't _ but some temorary Print(1) Print(1.f) Print(3.0) """) net = CU.create_net('foo') net.run() def test_method(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (a): a = (3+1).Add(4).Add(1) """) net = CU.create_net('foo') net.run() assert(9 == workspace.FetchBlob('a')) def test_plus_eq(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (a): a = 4 a += 1 """) net = CU.create_net('foo') net.run() assert(5 == workspace.FetchBlob('a')) def test_cast(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (a): a = int(4.5f) """) net = CU.create_net('foo') net.run() assert(4 == workspace.FetchBlob('a')) def test_global(self): CU = core.C.CompilationUnit() CU.define(""" def foo() -> (a): global m m.a = 4 m.b = 5 a = m.a + m.b """) net = CU.create_net('foo') net.run() assert(9 == workspace.FetchBlob('a')) def test_module_as_arg_ret(self): CU = core.C.CompilationUnit() CU.define(""" def bar(a,c) -> (b): b = Module() temp = a.second b.first = temp b.second = a.first + c def foo() -> (a,b): x = Module() x.first = 1 x.second = 2 x.y = bar(x,4) a = x.y.first b = x.y.second """) net = CU.create_net('foo') net.run() assert(2 == workspace.FetchBlob('a')) assert(5 == workspace.FetchBlob('b')) def test_call_extern(self): CU = core.C.CompilationUnit() net = caffe2_pb2.NetDef() net.op.extend([ core.CreateOperator( 'Mul', ['i', 'i'], ['o'], ) ]) net.external_input.append('i') net.external_output.append('o') CU.extern("myActualExtern", net) CU.define(""" def myExtern(x) -> (y): t = x if t > 1: y = t * t else: y = 5 def foo() -> (b): a = 4 a += 1 b = 2 + myExtern(a) + myExtern(a, rename=False) + myActualExtern(a) """) net = CU.create_net('foo') net.run() assert(77 == workspace.FetchBlob('b')) @given(seed=st.integers(min_value=0, max_value=65536), **hu.gcs) def test_if(self, seed, gc, dc): np.random.seed(int(seed)) inputs = {} c0 = inputs['c0'] = np.random.rand(1).astype(np.float32) c1 = inputs['c1'] = np.random.rand(1).astype(np.float32) t = inputs['t'] = np.random.rand(3, 3).astype(np.float32) f = inputs['f'] = np.random.rand(3, 3).astype(np.float32) feed_inputs(inputs) CU = core.C.CompilationUnit() CU.define(self.test_program) CU.create_net('testIf').run() if c0 < c1: ref_r = t + 3 else: ref_r = f + 3 actual_r = workspace.FetchBlob('r') np.testing.assert_allclose(actual_r, ref_r) @given(seed=st.integers(min_value=0, max_value=65536), **hu.gcs) def test_while(self, seed, gc, dc): np.random.seed(int(seed)) inputs = {} r = inputs['r'] = np.ones([3, 3]).astype(np.float32) feed_inputs(inputs) CU = core.C.CompilationUnit() CU.define(self.test_program) CU.create_net('testWhile').run() m = 0 while m < 4: r = r + r m = m + 1 actual_r = workspace.FetchBlob('r') np.testing.assert_allclose(actual_r, r) @given(seed=st.integers(min_value=0, max_value=65536), **hu.gcs) def test_gather(self, seed, gc, dc): CU = core.C.CompilationUnit() CU.define(""" def easy(tensor, indices) -> (output): output = tensor[indices] def hard(tensor, i, j, k) -> (output): output = tensor[i][j][k] """) # First check that the generated proto is as expected. This tests that # we desugar the gather syntax correctly and emit the right code. proto = CU.get_proto('easy') assert_proto_equals(proto, """ name: "easy" op { input: "tensor" input: "indices" output: "output" type: "Gather" }""") proto = CU.get_proto('hard') assert_proto_equals(proto, """ name: "hard" op { input: "tensor" input: "i" output: "$t1" type: "Gather" } op { input: "$t1" input: "j" output: "$t0" type: "Gather" } op { input: "$t0" input: "k" output: "output" type: "Gather" }""") # Now just test that the effect of the generated code is as expected. np.random.seed(int(seed)) tensor = np.random.rand(5, 4, 3).astype(np.float32) indices = np.random.randint(len(tensor), size=(5, 5)) feed_inputs(dict(tensor=tensor, indices=indices)) net = CU.create_net('easy') net.run() output = workspace.FetchBlob('output') expected_output = [tensor[sample] for sample in indices] np.testing.assert_allclose(output, expected_output) @given(seed=st.integers(min_value=0, max_value=65536), **hu.gcs) def test_slice(self, seed, gc, dc): CU = core.C.CompilationUnit() CU.define(""" def slice_from_tensor(tensor, start, end) -> (output): output = tensor[start:end] def slice_from_vector(vector, start, end) -> (a, b, c, d): a = vector[start:end] b = vector[start:] c = vector[:end] d = vector[:] """) # slice_from_tensor proto = CU.get_proto('slice_from_tensor') assert_proto_equals(proto, """ name: "slice_from_tensor" op { input: "tensor" input: "start" input: "end" output: "output" type: "Slice" }""") np.random.seed(int(seed)) tensor = np.random.rand(5, 4, 3).astype(np.float32) start = np.array([0, 1, 0], dtype=np.int32) end = np.array([-1, 2, -1], dtype=np.int32) feed_inputs(dict(tensor=tensor, start=start, end=end)) net = CU.create_net('slice_from_tensor') net.run() output = workspace.FetchBlob('output') np.testing.assert_allclose(output, tensor[:, 1:2]) # slice_from_vector proto = CU.get_proto('slice_from_vector') assert_proto_equals(proto, """ name: "slice_from_vector" op { input: "vector" input: "start" input: "end" output: "a" type: "Slice" } op { output: "$t0" type: "ConstantFill" arg { name: "dtype" i: 2 } arg { name: "value" i: -1 } arg { name: "shape" ints: 1 } } op { input: "vector" input: "start" input: "$t0" output: "b" type: "Slice" } op { output: "$t1" type: "ConstantFill" arg { name: "dtype" i: 2 } arg { name: "value" i: 0 } arg { name: "shape" ints: 1 } } op { input: "vector" input: "$t1" input: "end" output: "c" type: "Slice" } op { output: "$t2" type: "ConstantFill" arg { name: "dtype" i: 2 } arg { name: "value" i: 0 } arg { name: "shape" ints: 1 } } op { output: "$t3" type: "ConstantFill" arg { name: "dtype" i: 2 } arg { name: "value" i: -1 } arg { name: "shape" ints: 1 } } op { input: "vector" input: "$t2" input: "$t3" output: "d" type: "Slice" }""") vector = np.random.rand(10).astype(np.float32) start = np.array([2], dtype=np.int32) end = np.array([6], dtype=np.int32) feed_inputs(dict(vector=vector, start=start, end=end)) net = CU.create_net('slice_from_vector') net.run() output = workspace.FetchBlob('a') np.testing.assert_allclose(output, vector[2:6]) output = workspace.FetchBlob('b') np.testing.assert_allclose(output, vector[2:]) output = workspace.FetchBlob('c') np.testing.assert_allclose(output, vector[:6]) output = workspace.FetchBlob('d') np.testing.assert_allclose(output, vector)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, workspace import glob import json import numpy as np example_files = glob.glob('example_*.c2s') for ex in example_files: print('Running example file', ex) with open(ex, 'r') as f: inits = json.loads(f.readline()) net_name = f.readline().strip() outputs = json.loads(f.readline()) CU = core.C.CompilationUnit() CU.define(f.read()) # Initialize workspace with required inputs for name, shape, dt in inits: workspace.FeedBlob(name, np.random.rand(*shape).astype(np.dtype(dt))) net = CU.create_net(net_name) net.run() print('Success! Interesting outputs:') for output in outputs: print(output, workspace.FetchBlob(output))
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import core, dyndep, workspace dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/prof:cuda_profile_ops") class CudaProfileOpsTest(unittest.TestCase): @unittest.skipIf(workspace.NumCudaDevices() < 1, "Need at least 1 GPU") def test_run(self): net = core.Net("net") net.CudaProfileInitialize([], [], output="/tmp/cuda_profile_test") net.CudaProfileStart([], []) with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): net.ConstantFill([], ["out"], shape=[1, 3, 244, 244]) net.CudaProfileStop([], []) workspace.CreateNet(net) workspace.RunNet(net)
## @package htrace_to_chrome # Module caffe2.contrib.prof.htrace_to_chrome from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import json import re import sys display_levels = ["network", "worker", "operator", "kernel"] def stop_display(limit, curr): return display_levels.index(limit) <= display_levels.index(curr) def build_trace_dict(f, start_time, end_time): """Creates a python dictionary that has trace ids as keys and the corresponding trace objects as values. Input: python file object that points to a file with traces, written by htrace-c's local file span receiver. The exact format shouldn't concern you if you're using htrace-c correctly. https://github.com/apache/incubator-htrace/blob/master/htrace-c. Returns: a tuple (trace_dic, root_list), where trace_dic is a dictionary containing all traces parsed from the input file object, and root_list is a list of traces from trace_dic which have no parents. Each value in trace_dic is in the form of another dictionary with the folowing keys: "begin" : timestamp of trace start time, microseconds "end" : timestamp of trace end time, microseconds "desc" : description of trace "parent" : trace id of parent trace "children": dictionary of child traces, in the same format as trace_dic """ trace_dic = {} root_list = [] for line in f: h = json.loads(line) if h["e"] < start_time or h["b"] > end_time: continue entry = {"begin": h["b"], "end": h["e"], "desc": h["d"]} if "p" not in h or len(h["p"]) == 0: root_list.append(entry) else: entry["parent"] = h["p"][0] trace_dic[h["a"]] = entry for k, v in trace_dic.items(): if "parent" not in v: continue parent = trace_dic[v["parent"]] if "children" not in parent: parent["children"] = {} parent["children"][k] = v return trace_dic, root_list def generate_chrome_trace(root_list, display): """Takes trace objects created by build_trace_dict() and generates a list of python dictionaries that can be written to a file in json format, which in turn can be given to Chrome tracing (chrome://tracing). Input: refer to root_list in build_trace_dict()'s return value. Output: list of dictionaries that can be directly written to a json file by json.dumps(). The dictionary format follows the JSON array format of Chrome tracing. Complete events ("ph": "X") are used to express most traces; such events will appear as horizontal blocks with lengths equal to the trace duration. Instant events ("ph": "i") are used for traces with many occurrencs which may make the trace graph unreadable; such events are shown as thin lines. """ ct = [] for root_idx, root in enumerate(root_list): # network-level spans ct.append({ "name": root["desc"], "ph": "X", "ts": root["begin"], "dur": root["end"] - root["begin"], "pid": root_idx, "tid": root_idx, "args": { "Start timestamp": root["begin"], "End timestamp": root["end"] } }) for _, v in root["children"].items(): # run-scopes and worker-scopes c = { "name": v["desc"], "ph": "X", "ts": v["begin"], "dur": v["end"] - v["begin"], "pid": root_idx, "args": { "Start timestamp": v["begin"], "End timestamp": v["end"] } } if "run-scope" in v["desc"]: c["tid"] = root_idx ct.append(c) else: if stop_display(display, "network"): continue m = re.search("(?<=worker-scope-)\d+", v["desc"]) wid = m.group(0) c["tid"] = wid ct.append(c) if stop_display(display, "worker") or "children" not in v: continue for k_op, v_op in v["children"].items(): # operator scopes ct.append({ "name": v_op["desc"], "ph": "X", "ts": v_op["begin"], "dur": v_op["end"] - v_op["begin"], "pid": root_idx, "tid": wid, "args": { "Start timestamp": v_op["begin"], "End timestamp": v_op["end"] } }) if stop_display(display, "operator") or "children" not in v_op: continue for idx, (k_gpu_op, v_gpu_op) in \ enumerate(sorted(v_op["children"].items(), key=lambda e: e[1]["begin"])): # kernel scopes if idx == 0: ct.append({ "name": v_op["desc"] + "-GPU", "ph": "X", "ts": v_gpu_op["begin"], "dur": v_gpu_op["end"] - v_gpu_op["begin"], "pid": root_idx, "tid": wid, "args": { "desc": "NEW OPERATOR", "Start timestamp": v_gpu_op["begin"], "End timestamp": v_gpu_op["end"] } }) ct.append({ "name": v_op["desc"] + "-GPU", "ph": "i", "ts": v_gpu_op["begin"], "pid": root_idx, "tid": wid, "args": { "desc": v_gpu_op["desc"] } }) return ct def get_argument_parser(): parser = argparse.ArgumentParser( description="Format conversion from HTrace to Chrome tracing.") parser.add_argument("htrace_log", type=str, help="input htrace span log file") parser.add_argument("--display", type=str, choices=display_levels, default="operator", help="deepest level of spans to display (default: operator)") parser.add_argument("--start_time", type=int, default=-1, help="do not display spans occuring before this timestamp") parser.add_argument("--end_time", type=int, default=sys.maxsize, help="do not display spans occuring after this timestamp") return parser def main(): args = get_argument_parser().parse_args() with open(args.htrace_log, "r") as f: trace_dic, root_list = build_trace_dict(f, args.start_time, args.end_time) ct = generate_chrome_trace(root_list, args.display) print("Writing chrome json file to %s.json" % args.htrace_log) print("Now import %s.json in chrome://tracing" % args.htrace_log) with open(args.htrace_log + ".json", "w") as f: f.write(json.dumps(ct)) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import bytes import copy import logging import os import six from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import tensorflow as tf from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import graph_pb2 def _make_unique_name(seen, name, min_version=0): assert name is not None i = min_version x = '%s_%d' % (name, i) if i else name while x in seen: i += 1 x = '%s_%d' % (name, i) seen.add(x) return x def _convert_to_ssa(shapes, track_blob_names, ops): """ Convert an operator graph to SSA (i.e. out-of-place). I.e. blobs will be renamed so that each blob is produced only once. """ ir = core.IR(ops) seen = set() versioned = {} shapes2 = {} track_blob_names2 = {} def ssa_name(name, versions): assert name in versions version = versions[name] if (name, version) in versioned: return versioned[(name, version)] # Always setting name2 = `{name}_{version}` would work, but we also try # to avoid a trailing `_0`, so we have to be careful not to introduce # name collisions, such as (foo_1, 0) = foo_1 = (foo, 1). # Note: operator names (if any) will be handled later. name2 = _make_unique_name(seen, name, min_version=version) versioned[(name, version)] = name2 # Transfer shape. if name in shapes: shapes2[name2] = shapes[name] if track_blob_names and name in track_blob_names: track_blob_names2[name2] = track_blob_names[name] return name2 for (op, ssa) in zip(ops, ir.ssa): assert op is ssa.op inputs = list(op.input) outputs = list(op.output) del op.input[:] del op.output[:] op.input.extend(ssa_name(name, ssa.in_versions) for name in inputs) op.output.extend(ssa_name(name, ssa.out_versions) for name in outputs) shapes.clear() shapes.update(shapes2) if track_blob_names: track_blob_names.clear() track_blob_names.update(track_blob_names2) def _get_blob_names(ops): names = set() for op in ops: names.update(op.input) names.update(op.output) return {name: name for name in names} def _remap_keys(m, f): m2 = {f(key): value for key, value in six.iteritems(m)} m.clear() m.update(m2) def _rename_all(shapes, track_blob_names, ops, f): seen = set() renamed = {} def g(name): """ Collision-free version of f. """ if name is None: return None if name in renamed: return renamed[name] name2 = _make_unique_name(seen, f(name)) renamed[name] = name2 return name2 for op in ops: inputs = list(op.input) outputs = list(op.output) del op.input[:] del op.output[:] op.input.extend(g(name) for name in inputs) op.output.extend(g(name) for name in outputs) _remap_keys(shapes, g) if track_blob_names: _remap_keys(track_blob_names, g) # Rename all operator names (if any) independently so that the # unique-fication happens only once in _fill_missing_operator_names(). seen.clear() renamed.clear() for op in ops: op.name = g(op.name) def _add_gradient_scope(shapes, track_blob_names, ops): """ For all operators or blobs with name containing "_grad", add a "GRADIENTS/" scope. Note: breaks graph execution since the blob -> gradient mapping is hardcoded. """ def f(name): if '_grad' in name: return 'GRADIENTS/{}'.format(name) else: return name _rename_all(shapes, track_blob_names, ops, f) def _replace_colons(shapes, track_blob_names, ops, repl): """ `:i` has a special meaning in Tensorflow. """ def f(name): return name.replace(':', repl) _rename_all(shapes, track_blob_names, ops, f) def _fill_missing_operator_names(ops): ''' Give missing operators a name. We expect C2 operators to be generally unnamed. This gives them a scope (inferred from their outputs) and a name after their type. Duplicates will be postfixed by an index. ''' seen = set() for op in ops: # Make sure operator names don't collide with blobs. seen.update(op.input) seen.update(op.output) for op in ops: if op.name: name = op.name elif op.output or op.input: l = [os.path.dirname(name) for name in op.output or op.input] scope = os.path.commonprefix(l) name = os.path.join(scope, op.type) else: name = op.type assert(name) op.name = _make_unique_name(seen, name) def _tf_device(device_option): if not device_option.HasField("device_type"): return "" if device_option.device_type == caffe2_pb2.CPU: return "/cpu:*" if device_option.device_type == caffe2_pb2.CUDA: return "/gpu:{}".format(device_option.cuda_gpu_id) raise Exception("Unhandled device", device_option) def _add_tf_shape(m, ints): sh = tensor_shape_pb2.TensorShapeProto() for i in ints: dim = tensor_shape_pb2.TensorShapeProto.Dim() dim.size = i sh.dim.extend([dim]) m['_output_shapes'].list.shape.extend([sh]) def _set_tf_attr(m, arg): k = arg.name if k == 'shape' and arg.ints: _add_tf_shape(m, arg.ints) return if arg.HasField("f"): m[k].f = arg.f return if arg.HasField("i"): m[k].i = arg.i return if arg.HasField("s"): m[k].s = ( arg.s if isinstance(arg.s, bytes) else str(arg.s).encode('utf-8') ) return if arg.floats: m[k].list.f.extend(arg.floats) return if arg.ints: m[k].list.i.extend(arg.ints) return if arg.strings: m[k].list.s.extend( s if isinstance(s, bytes) else str(s).encode('utf-8') for s in arg.strings ) return # The value is an empty list. m[k].list.s.extend([]) def _operator_to_node(shapes, op): assert op.name, op # Check for existance of __version__ for backwards compatibility n = tf.NodeDef() if hasattr(tf, '__version__') else graph_pb2.NodeDef() n.name = op.name n.input.extend(op.input) n.op = op.type n.device = _tf_device(op.device_option) if shapes: # Add shapes in order. for output in op.output: if output not in shapes: break _add_tf_shape(n.attr, shapes[output]) for arg in op.arg: _set_tf_attr(n.attr, arg) return n def _blob_to_node(producing_ops, shapes, name): assert name # Check for existance of __version__ for backwards compatibility n = tf.NodeDef() if hasattr(tf, '__version__') else graph_pb2.NodeDef() n.name = name inputs = producing_ops.get(name, []) if inputs: n.op = 'Blob' else: n.op = 'Placeholder' n.input.extend('%s:%d' % (op.name, i) for op, i in inputs) if inputs: device = inputs[0][0].device_option if (all(input[0].device_option == device for input in inputs)): n.device = _tf_device(device) if shapes and name in shapes: _add_tf_shape(n.attr, shapes[name]) return n def _operators_to_graph_def( shapes, ops, replace_colons='$', with_ssa=True, with_gradient_scope=True, track_blob_names=None, # pass an empty array to track blob names ): if track_blob_names is not None: track_blob_names.clear() track_blob_names.update(_get_blob_names(ops)) if replace_colons: _replace_colons(shapes, track_blob_names, ops, replace_colons) if with_ssa: _convert_to_ssa(shapes, track_blob_names, ops) if with_gradient_scope: _add_gradient_scope(shapes, track_blob_names, ops) _fill_missing_operator_names(ops) # Check for existance of __version__ for backwards compatibility g = tf.GraphDef() if hasattr(tf, '__version__') else graph_pb2.GraphDef() producing_ops = {} blobs = set() for op in ops: g.node.extend([_operator_to_node(shapes, op)]) for input_blob in op.input: blobs.add(input_blob) for i, output_blob in enumerate(op.output): blobs.add(output_blob) producing_ops.setdefault(output_blob, []).append((op, i)) for blob in blobs: g.node.extend([_blob_to_node(producing_ops, shapes, blob)]) return g def _propagate_device_option(net): if not net.HasField("device_option"): return for op in net.op: if not op.HasField("device_option"): op.device_option.CopyFrom(net.device_option) def _try_get_shapes(nets): try: # Note: this will inspect the workspace for better or worse. shapes, _ = workspace.InferShapesAndTypes(nets) return shapes except Exception as e: logging.warning('Failed to compute shapes: %s', e) return {} def nets_to_graph_def(nets, shapes=None, **kwargs): if shapes is None: shapes = _try_get_shapes(nets) nets = [copy.deepcopy(net.Proto()) for net in nets] shapes = copy.deepcopy(shapes) for net in nets: _propagate_device_option(net) return _operators_to_graph_def( shapes, [op for net in nets for op in net.op], **kwargs ) def cnn_to_graph_def(cnn, **kwargs): return nets_to_graph_def([cnn.param_init_net, cnn.net], **kwargs) def ops_to_graph_def(ops, shapes=None, **kwargs): ops = copy.deepcopy(ops) shapes = copy.deepcopy(shapes or {}) return _operators_to_graph_def(shapes, ops, **kwargs)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import click.testing import numpy as np import os import tempfile import unittest from caffe2.python import brew, core, model_helper import caffe2.contrib.tensorboard.tensorboard as tb import caffe2.contrib.tensorboard.tensorboard_exporter as tb_exporter import tensorflow as tf class TensorboardTest(unittest.TestCase): def test_events(self): runner = click.testing.CliRunner() c2_dir = tempfile.mkdtemp() np.random.seed(1701) n_iters = 2 blobs = ["w", "b"] data = np.random.randn(len(blobs), n_iters, 10) for i, blob in enumerate(blobs): with open(os.path.join(c2_dir, blob), "w") as f: for row in data[i]: stats = [row.min(), row.max(), row.mean(), row.std()] f.write(" ".join(str(s) for s in stats) + "\n") # Test error handling path with open(os.path.join(c2_dir, "not-a-summary"), "w") as f: f.write("not-a-summary") tf_dir = tempfile.mkdtemp() result = runner.invoke( tb.cli, ["tensorboard-events", "--c2-dir", c2_dir, "--tf-dir", tf_dir]) self.assertEqual(result.exit_code, 0) entries = list(os.walk(tf_dir)) self.assertEqual(len(entries), 1) ((d, _, (fname,)),) = entries self.assertEqual(tf_dir, d) events = list(tf.train.summary_iterator(os.path.join(tf_dir, fname))) self.assertEqual(len(events), n_iters + 1) events = events[1:] self.maxDiff = None self.assertEqual(len(events), 2) def test_tensorboard_graphs(self): model = model_helper.ModelHelper(name="overfeat") data, label = brew.image_input( model, ["db"], ["data", "label"], is_test=0 ) with core.NameScope("conv1"): conv1 = brew.conv(model, data, "conv1", 3, 96, 11, stride=4) relu1 = brew.relu(model, conv1, conv1) pool1 = brew.max_pool(model, relu1, "pool1", kernel=2, stride=2) with core.NameScope("classifier"): fc = brew.fc(model, pool1, "fc", 4096, 1000) pred = brew.softmax(model, fc, "pred") xent = model.LabelCrossEntropy([pred, label], "xent") loss = model.AveragedLoss(xent, "loss") model.AddGradientOperators([loss], skip=1) c2_dir = tempfile.mkdtemp() tf_dir = tempfile.mkdtemp() with open(os.path.join(c2_dir, "init"), "w") as f: f.write(str(model.param_init_net.Proto())) with open(os.path.join(c2_dir, "net"), "w") as f: f.write(str(model.net.Proto())) runner = click.testing.CliRunner() result = runner.invoke( tb.cli, ["tensorboard-graphs", "--c2-netdef", os.path.join(c2_dir, "init"), "--c2-netdef", os.path.join(c2_dir, "net"), "--tf-dir", tf_dir]) self.assertEqual(result.exit_code, 0) entries = list(os.walk(tf_dir)) self.assertEqual(len(entries), 1) ((d, _, (fname,)),) = entries self.assertEqual(tf_dir, d) events = list(tf.train.summary_iterator(os.path.join(tf_dir, fname))) self.assertEqual(len(events), 3) events = events[1:] nets = [model.param_init_net, model.net] for i, (event, net) in enumerate(zip(events, nets), start=1): self.assertEqual(event.step, i) self.assertEqual(event.wall_time, i) self.assertEqual( event.graph_def, tb_exporter.nets_to_graph_def([net]).SerializeToString()) if __name__ == "__main__": unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import click import collections import logging import numpy as np import os from caffe2.proto import caffe2_pb2 from caffe2.python import core import caffe2.contrib.tensorboard.tensorboard_exporter as tb_exporter import tensorflow as tf class Config(object): HEIGHT = 600 ASPECT_RATIO = 1.6 CODE_TEMPLATE = """ <script> function load() {{ document.getElementById("{id}").pbtxt = {data}; }} </script> <link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load() > <div style="height:{height}px"> <tf-graph-basic id="{id}"></tf-graph-basic> </div> """ IFRAME_TEMPLATE = """ <iframe seamless style="width:{width}px;height:{height}px;border:0" srcdoc="{code}"> </iframe> """ def _show_graph(graph_def): import IPython.display code = CODE_TEMPLATE.format( data=repr(str(graph_def)), id='graph' + str(np.random.rand()), height=Config.HEIGHT) iframe = IFRAME_TEMPLATE.format( code=code.replace('"', '&quot;'), width=Config.HEIGHT * Config.ASPECT_RATIO, height=Config.HEIGHT + 20) IPython.display.display(IPython.display.HTML(iframe)) def visualize_cnn(cnn, **kwargs): g = tb_exporter.cnn_to_graph_def(cnn, **kwargs) _show_graph(g) def visualize_net(nets, **kwargs): g = tb_exporter.nets_to_graph_def(nets, **kwargs) _show_graph(g) def visualize_ops(ops, **kwargs): g = tb_exporter.ops_to_graph_def(ops, **kwargs) _show_graph(g) @click.group() def cli(): pass def write_events(tf_dir, events): # tf.summary.FileWriter exists in the current Tensorflow release # tf.train.SummaryWriter is the way in older versions if hasattr(tf.summary, 'FileWriter'): writer = tf.summary.FileWriter(logdir=tf_dir, max_queue=len(events)) else: writer = tf.train.SummaryWriter(logdir=tf_dir, max_queue=len(events)) for event in events: writer.add_event(event) writer.flush() writer.close() def graph_def_to_event(step, graph_def): return tf.Event( wall_time=step, step=step, graph_def=graph_def.SerializeToString()) @cli.command("tensorboard-graphs") @click.option("--c2-netdef", type=click.Path(exists=True, dir_okay=False), multiple=True) @click.option("--tf-dir", type=click.Path(exists=True)) def tensorboard_graphs(c2_netdef, tf_dir): log = logging.getLogger(__name__) log.setLevel(logging.INFO) def parse_net_def(path): import google.protobuf.text_format net_def = caffe2_pb2.NetDef() with open(path) as f: google.protobuf.text_format.Merge(f.read(), net_def) return core.Net(net_def) graph_defs = [tb_exporter.nets_to_graph_def([parse_net_def(path)]) for path in c2_netdef] events = [graph_def_to_event(i, graph_def) for (i, graph_def) in enumerate(graph_defs, start=1)] write_events(tf_dir, events) log.info("Wrote %s graphs to logdir %s", len(events), tf_dir) @cli.command("tensorboard-events") @click.option("--c2-dir", type=click.Path(exists=True, file_okay=False), help="Root directory of the Caffe2 run") @click.option("--tf-dir", type=click.Path(writable=True), help="Output path to the logdir used by TensorBoard") def tensorboard_events(c2_dir, tf_dir): np.random.seed(1701) log = logging.getLogger(__name__) log.setLevel(logging.INFO) S = collections.namedtuple('S', ['min', 'max', 'mean', 'std']) def parse_summary(filename): try: with open(filename) as f: rows = [(float(el) for el in line.split()) for line in f] return [S(*r) for r in rows] except Exception as e: log.exception(e) return None def get_named_summaries(root): summaries = [ (fname, parse_summary(os.path.join(dirname, fname))) for dirname, _, fnames in os.walk(root) for fname in fnames ] return [(n, s) for (n, s) in summaries if s] def inferred_histo(summary, samples=1000): np.random.seed(hash( summary.std + summary.mean + summary.min + summary.max)) samples = np.random.randn(samples) * summary.std + summary.mean samples = np.clip(samples, a_min=summary.min, a_max=summary.max) (hist, edges) = np.histogram(samples) upper_edges = edges[1:] r = tf.HistogramProto( min=summary.min, max=summary.max, num=len(samples), sum=samples.sum(), sum_squares=(samples * samples).sum()) r.bucket_limit.extend(upper_edges) r.bucket.extend(hist) return r def named_summaries_to_events(named_summaries): names = [n for (n, _) in named_summaries] summaries = [s for (_, s) in named_summaries] summaries = list(zip(*summaries)) def event(step, values): s = tf.Summary() scalar = [ tf.Summary.Value( tag="{}/{}".format(name, field), simple_value=v) for name, value in zip(names, values) for field, v in value._asdict().items()] hist = [ tf.Summary.Value( tag="{}/inferred_normal_hist".format(name), histo=inferred_histo(value)) for name, value in zip(names, values) ] s.value.extend(scalar + hist) return tf.Event(wall_time=int(step), step=step, summary=s) return [event(step, values) for step, values in enumerate(summaries, start=1)] named_summaries = get_named_summaries(c2_dir) events = named_summaries_to_events(named_summaries) write_events(tf_dir, events) log.info("Wrote %s events to logdir %s", len(events), tf_dir) if __name__ == "__main__": cli()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from caffe2.proto import caffe2_pb2 import caffe2.python.cnn as cnn import caffe2.python.core as core import caffe2.contrib.tensorboard.tensorboard_exporter as tb EXPECTED = """ node { name: "conv1/XavierFill" op: "XavierFill" device: "/gpu:0" attr { key: "_output_shapes" value { list { shape { dim { size: 96 } dim { size: 3 } dim { size: 11 } dim { size: 11 } } } } } } node { name: "conv1/ConstantFill" op: "ConstantFill" device: "/gpu:0" attr { key: "_output_shapes" value { list { shape { dim { size: 96 } } } } } } node { name: "classifier/XavierFill" op: "XavierFill" device: "/gpu:0" attr { key: "_output_shapes" value { list { shape { dim { size: 1000 } dim { size: 4096 } } } } } } node { name: "classifier/ConstantFill" op: "ConstantFill" device: "/gpu:0" attr { key: "_output_shapes" value { list { shape { dim { size: 1000 } } } } } } node { name: "ImageInput" op: "ImageInput" input: "db" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "is_test" value { i: 0 } } attr { key: "use_cudnn" value { i: 1 } } } node { name: "NHWC2NCHW" op: "NHWC2NCHW" input: "data_nhwc" device: "/gpu:0" } node { name: "conv1/Conv" op: "Conv" input: "data" input: "conv1/conv1_w" input: "conv1/conv1_b" device: "/gpu:0" attr { key: "exhaustive_search" value { i: 0 } } attr { key: "kernel" value { i: 11 } } attr { key: "order" value { s: "NCHW" } } attr { key: "stride" value { i: 4 } } } node { name: "conv1/Relu" op: "Relu" input: "conv1/conv1" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "order" value { s: "NCHW" } } } node { name: "conv1/MaxPool" op: "MaxPool" input: "conv1/conv1_1" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "kernel" value { i: 2 } } attr { key: "order" value { s: "NCHW" } } attr { key: "stride" value { i: 2 } } } node { name: "classifier/FC" op: "FC" input: "conv1/pool1" input: "classifier/fc_w" input: "classifier/fc_b" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "order" value { s: "NCHW" } } attr { key: "use_cudnn" value { i: 1 } } } node { name: "classifier/Softmax" op: "Softmax" input: "classifier/fc" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "order" value { s: "NCHW" } } } node { name: "classifier/LabelCrossEntropy" op: "LabelCrossEntropy" input: "classifier/pred" input: "label" device: "/gpu:0" } node { name: "classifier/AveragedLoss" op: "AveragedLoss" input: "classifier/xent" device: "/gpu:0" } node { name: "GRADIENTS/classifier/ConstantFill" op: "ConstantFill" input: "classifier/loss" device: "/gpu:0" attr { key: "value" value { f: 1.0 } } } node { name: "GRADIENTS/classifier/AveragedLossGradient" op: "AveragedLossGradient" input: "classifier/xent" input: "GRADIENTS/classifier/loss_autogen_grad" device: "/gpu:0" } node { name: "GRADIENTS/classifier/LabelCrossEntropyGradient" op: "LabelCrossEntropyGradient" input: "classifier/pred" input: "label" input: "GRADIENTS/classifier/xent_grad" device: "/gpu:0" } node { name: "GRADIENTS/classifier/SoftmaxGradient" op: "SoftmaxGradient" input: "classifier/pred" input: "GRADIENTS/classifier/pred_grad" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "order" value { s: "NCHW" } } } node { name: "GRADIENTS/c/FCGradient" op: "FCGradient" input: "conv1/pool1" input: "classifier/fc_w" input: "GRADIENTS/classifier/fc_grad" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "order" value { s: "NCHW" } } attr { key: "use_cudnn" value { i: 1 } } } node { name: "GRADIENTS/conv1/MaxPoolGradient" op: "MaxPoolGradient" input: "conv1/conv1_1" input: "conv1/pool1" input: "GRADIENTS/conv1/pool1_grad" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "kernel" value { i: 2 } } attr { key: "order" value { s: "NCHW" } } attr { key: "stride" value { i: 2 } } } node { name: "GRADIENTS/conv1/ReluGradient" op: "ReluGradient" input: "conv1/conv1_1" input: "GRADIENTS/conv1/conv1_grad" device: "/gpu:0" attr { key: "cudnn_exhaustive_search" value { i: 0 } } attr { key: "order" value { s: "NCHW" } } } node { name: "GRADIENTS/ConvGradient" op: "ConvGradient" input: "data" input: "conv1/conv1_w" input: "GRADIENTS/conv1/conv1_grad_1" device: "/gpu:0" attr { key: "exhaustive_search" value { i: 0 } } attr { key: "kernel" value { i: 11 } } attr { key: "order" value { s: "NCHW" } } attr { key: "stride" value { i: 4 } } } node { name: "GRADIENTS/NCHW2NHWC" op: "NCHW2NHWC" input: "GRADIENTS/data_grad" device: "/gpu:0" } node { name: "conv1/conv1_w" op: "Blob" input: "conv1/XavierFill:0" device: "/gpu:0" } node { name: "classifier/fc" op: "Blob" input: "classifier/FC:0" device: "/gpu:0" } node { name: "data_nhwc" op: "Blob" input: "ImageInput:0" device: "/gpu:0" } node { name: "GRADIENTS/conv1/conv1_b_grad" op: "Blob" input: "GRADIENTS/ConvGradient:1" device: "/gpu:0" } node { name: "GRADIENTS/classifier/pred_grad" op: "Blob" input: "GRADIENTS/classifier/LabelCrossEntropyGradient:0" device: "/gpu:0" } node { name: "GRADIENTS/classifier/fc_grad" op: "Blob" input: "GRADIENTS/classifier/SoftmaxGradient:0" device: "/gpu:0" } node { name: "conv1/conv1_b" op: "Blob" input: "conv1/ConstantFill:0" device: "/gpu:0" } node { name: "GRADIENTS/classifier/fc_b_grad" op: "Blob" input: "GRADIENTS/c/FCGradient:1" device: "/gpu:0" } node { name: "GRADIENTS/classifier/fc_w_grad" op: "Blob" input: "GRADIENTS/c/FCGradient:0" device: "/gpu:0" } node { name: "label" op: "Blob" input: "ImageInput:1" device: "/gpu:0" } node { name: "GRADIENTS/data_grad" op: "Blob" input: "GRADIENTS/ConvGradient:2" device: "/gpu:0" } node { name: "classifier/loss" op: "Blob" input: "classifier/AveragedLoss:0" device: "/gpu:0" } node { name: "conv1/conv1" op: "Blob" input: "conv1/Conv:0" device: "/gpu:0" } node { name: "GRADIENTS/conv1/conv1_grad" op: "Blob" input: "GRADIENTS/conv1/MaxPoolGradient:0" device: "/gpu:0" } node { name: "classifier/xent" op: "Blob" input: "classifier/LabelCrossEntropy:0" device: "/gpu:0" } node { name: "GRADIENTS/classifier/loss_autogen_grad" op: "Blob" input: "GRADIENTS/classifier/ConstantFill:0" device: "/gpu:0" } node { name: "classifier/fc_w" op: "Blob" input: "classifier/XavierFill:0" device: "/gpu:0" } node { name: "conv1/conv1_1" op: "Blob" input: "conv1/Relu:0" device: "/gpu:0" } node { name: "db" op: "Placeholder" } node { name: "classifier/pred" op: "Blob" input: "classifier/Softmax:0" device: "/gpu:0" } node { name: "classifier/fc_b" op: "Blob" input: "classifier/ConstantFill:0" device: "/gpu:0" } node { name: "GRADIENTS/classifier/xent_grad" op: "Blob" input: "GRADIENTS/classifier/AveragedLossGradient:0" device: "/gpu:0" } node { name: "data" op: "Blob" input: "NHWC2NCHW:0" device: "/gpu:0" } node { name: "GRADIENTS/conv1/conv1_w_grad" op: "Blob" input: "GRADIENTS/ConvGradient:0" device: "/gpu:0" } node { name: "GRADIENTS/conv1/conv1_grad_1" op: "Blob" input: "GRADIENTS/conv1/ReluGradient:0" device: "/gpu:0" } node { name: "GRADIENTS/data_nhwc_grad" op: "Blob" input: "GRADIENTS/NCHW2NHWC:0" device: "/gpu:0" } node { name: "GRADIENTS/conv1/pool1_grad" op: "Blob" input: "GRADIENTS/c/FCGradient:2" device: "/gpu:0" } node { name: "conv1/pool1" op: "Blob" input: "conv1/MaxPool:0" device: "/gpu:0" } """ class TensorboardExporterTest(unittest.TestCase): def test_that_operators_gets_non_colliding_names(self): op = caffe2_pb2.OperatorDef() op.type = 'foo' op.input.extend(['foo']) tb._fill_missing_operator_names([op]) self.assertEqual(op.input[0], 'foo') self.assertEqual(op.name, 'foo_1') def test_that_replacing_colons_gives_non_colliding_names(self): # .. and update shapes op = caffe2_pb2.OperatorDef() op.name = 'foo:0' op.input.extend(['foo:0', 'foo$0']) shapes = {'foo:0': [1]} track_blob_names = tb._get_blob_names([op]) tb._replace_colons(shapes, track_blob_names, [op], '$') self.assertEqual(op.input[0], 'foo$0') self.assertEqual(op.input[1], 'foo$0_1') # Collision but blobs and op names are handled later by # _fill_missing_operator_names. self.assertEqual(op.name, 'foo$0') self.assertEqual(len(shapes), 1) self.assertEqual(shapes['foo$0'], [1]) self.assertEqual(len(track_blob_names), 2) self.assertEqual(track_blob_names['foo$0'], 'foo:0') self.assertEqual(track_blob_names['foo$0_1'], 'foo$0') def test_that_adding_gradient_scope_does_no_fancy_renaming(self): # because it cannot create collisions op = caffe2_pb2.OperatorDef() op.name = 'foo_grad' op.input.extend(['foo_grad', 'foo_grad_1']) shapes = {'foo_grad': [1]} track_blob_names = tb._get_blob_names([op]) tb._add_gradient_scope(shapes, track_blob_names, [op]) self.assertEqual(op.input[0], 'GRADIENTS/foo_grad') self.assertEqual(op.input[1], 'GRADIENTS/foo_grad_1') self.assertEqual(op.name, 'GRADIENTS/foo_grad') self.assertEqual(len(shapes), 1) self.assertEqual(shapes['GRADIENTS/foo_grad'], [1]) self.assertEqual(len(track_blob_names), 2) self.assertEqual( track_blob_names['GRADIENTS/foo_grad'], 'foo_grad') self.assertEqual( track_blob_names['GRADIENTS/foo_grad_1'], 'foo_grad_1') def test_that_auto_ssa_gives_non_colliding_names(self): op1 = caffe2_pb2.OperatorDef() op1.output.extend(['foo']) op2 = caffe2_pb2.OperatorDef() op2.input.extend(['foo']) op2.output.extend(['foo']) op2.output.extend(['foo_1']) shapes = {'foo': [1], 'foo_1': [2]} track_blob_names = tb._get_blob_names([op1, op2]) tb._convert_to_ssa(shapes, track_blob_names, [op1, op2]) self.assertEqual(op1.output[0], 'foo') self.assertEqual(op2.input[0], 'foo') self.assertEqual(op2.output[0], 'foo_1') # Unfortunate name but we do not parse original `_` for now. self.assertEqual(op2.output[1], 'foo_1_1') self.assertEqual(len(shapes), 3) self.assertEqual(shapes['foo'], [1]) self.assertEqual(shapes['foo_1'], [1]) self.assertEqual(shapes['foo_1_1'], [2]) self.assertEqual(len(track_blob_names), 3) self.assertEqual(track_blob_names['foo'], 'foo') self.assertEqual(track_blob_names['foo_1'], 'foo') self.assertEqual(track_blob_names['foo_1_1'], 'foo_1') def test_simple_cnnmodel(self): model = cnn.CNNModelHelper("NCHW", name="overfeat") data, label = model.ImageInput(["db"], ["data", "label"], is_test=0) with core.NameScope("conv1"): conv1 = model.Conv(data, "conv1", 3, 96, 11, stride=4) relu1 = model.Relu(conv1, conv1) pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2) with core.NameScope("classifier"): fc = model.FC(pool1, "fc", 4096, 1000) pred = model.Softmax(fc, "pred") xent = model.LabelCrossEntropy([pred, label], "xent") loss = model.AveragedLoss(xent, "loss") model.net.RunAllOnGPU() model.param_init_net.RunAllOnGPU() model.AddGradientOperators([loss], skip=1) track_blob_names = {} graph = tb.cnn_to_graph_def( model, track_blob_names=track_blob_names, shapes={}, ) self.assertEqual( track_blob_names['GRADIENTS/conv1/conv1_b_grad'], 'conv1/conv1_b_grad', ) self.maxDiff = None # We can't guarantee the order in which they appear, so we sort # both before we compare them sep = "node {" expected = "\n".join(sorted( sep + "\n " + part.strip() for part in EXPECTED.strip().split(sep) if part.strip() )) actual = "\n".join(sorted( sep + "\n " + part.strip() for part in str(graph).strip().split(sep) if part.strip() )) self.assertMultiLineEqual(actual, expected) if __name__ == "__main__": unittest.main()
#!/bin/env python # Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import sys import yaml import argparse import os from copy import deepcopy parser = argparse.ArgumentParser() parser.add_argument("--template_dir", default=".", help="where template.h is") parser.add_argument("--yaml_dir", default="aten/src/ATen/ATen", help="where ATen yaml files are") parser.add_argument("--output_prefix", default="", help="") parser.add_argument( "--install_dir", default=".", help="where to put generated file") parser.add_argument("--third_party_root", default="", help="caffe2 third_party") args, _ = parser.parse_known_args() if args.third_party_root: sys.path.append(os.path.join(args.third_party_root, "aten/src/ATen")) from code_template import CodeTemplate as CT else: from src.ATen.code_template import CodeTemplate as CT OP_TEMPLATE = CT.from_file( os.path.join(args.template_dir, 'aten_op_template.h')) try: # use faster C loader if available from yaml import CLoader as Loader except ImportError: from yaml import Loader def write(filename, s): with open(filename, "w") as f: f.write(s) def read(filename): with open(filename, "r") as f: return f.read() def value_has_tensors(v): # Sparse shouldn't appear in public API, seems to be temporary bug return "Tensor" in v['dynamic_type'] and "Sparse" not in v['dynamic_type'] def value_is_tensor_type(v): return value_has_tensors(v) and v['dynamic_type'] != 'TensorList' # for each aten type, how do we handle a return value of that type? RETURN_MAP = { 'Tensor': 'assignTo(Output(${offset}),${output});', 'Scalar': 'assignTo(Output(${offset}),*inferred_type, ${output});', 'bool': 'assignToValue<int64_t>(Output(${offset}),${output});', 'int64_t': 'assignToValue<int64_t>(Output(${offset}),${output});', 'std::vector<Tensor>': 'assignListStartingAt(${offset}, ${output});', } # for each non-Tensor aten argument, how to we read it from caffe2's # attribute list. Most of these call runtime functions defined in the # template class. ARGUMENT_MAP = { 'Scalar': 'at::Scalar ${arg} = readScalarAttribute("${arg}");', 'bool': 'bool ${arg} = readAttribute<int64_t>("${arg}");', 'int': 'int ${arg} = readAttribute<int64_t>("${arg}");', 'double': 'double ${arg} = readAttribute<float>("${arg}");', 'int64_t': 'int64_t ${arg} = readAttribute<int64_t>("${arg}");', 'IntList': 'auto ${arg} = readIntList("${arg}");', 'std::array<bool, 2>': 'auto ${arg} = readBoolMask<2>("${arg}");', 'std::array<bool, 3>': 'auto ${arg} = readBoolMask<3>("${arg}");', } def expand(o): num_defaults = sum(1 if 'default' in arg else 0 for arg in o['arguments']) results = [o] for i in range(0, num_defaults): # last num_default values should be default assert('default' in o['arguments'][-(i + 1)]) v = deepcopy(o) v['arguments'] = v['arguments'][:-(i + 1)] results.append(v) return results # filter the list of declarations removing things we cannot support def supports(o): # skip all in-place operators for now since aten cannot Resize # caffe2 memory inside an operator if o['inplace']: return False # _out variants also work in-place on arguments taken as destinations # we also cannot handle these because aten cannot resize caffe2 Tensors if "_out" in o['name']: return False # skip return types we cannot handle for ret in o['returns']: if not value_has_tensors(ret) and ret['type'] not in RETURN_MAP: print("Skipping {} Because of Ret: {} ({})".format( o['name'], ret['type'], ret['dynamic_type'])) return False # skip arguments we cannot handle for arg in o['arguments']: if not value_has_tensors(arg) and arg['type'] not in ARGUMENT_MAP: print("Skipping {} Because of Arg: {} ({}) ".format( o['name'], arg['type'], arg['dynamic_type'])) return False return True # template for each potential operator. # each operator has an integer 'key' associated with it, and # a lambda that defines the operator # non-tensor attributes are created in ${initialization} # and then saved as arguments to the lambda # Inputs/Outputs are read inside the lambda OPTION_TEMPLATE = CT("""\ case ${key}: { // ${name} ${initialization} run_op = [=] { ${statements} auto the_result = ${invocation}; ${assignments} return true; }; } break; """) def get_output(o, i): if len(o['returns']) == 1: return 'the_result' else: return 'std::get<{}>(the_result)'.format(i) def attribute_names(o): return sorted([a['name'] for a in o['arguments'] if not value_has_tensors(a)]) def required_attribute_names(o): return sorted([a['name'] for a in o['arguments'] if not value_has_tensors(a) and 'default' not in a]) def self_as_first_argument(arguments): return ([a for a in arguments if a['name'] == 'self'] + [a for a in arguments if a['name'] != 'self']) def get_num_inputs(o): args = 0 for a in o['arguments']: if a['type'] == 'TensorList': return '*' elif value_has_tensors(a): args += 1 return str(args) if __name__ == '__main__': decls = yaml.load(read(os.path.join(args.yaml_dir, 'Declarations.yaml')), Loader=Loader) filtered = [expanded for o in decls for expanded in expand(o) if supports(expanded)] top_env = { 'mappings': [], 'implementations': [], } seen = set() key = 0 for o in filtered: # [DESCRIPTORS] # each option is associated with a descriptor string that is used # to figure out which version of an op is being used: # The format is: # opname-num_inputs-attribute_1-attribute2 # Example: # lerp-2-weight # the operator lerp takes 2 arguments and has the attribute weight attr_names = attribute_names(o) num_inputs = get_num_inputs(o) descriptor = '-'.join([o['name']] + attr_names + [num_inputs]) if descriptor in seen: continue seen.add(descriptor) # map from descriptor string to the integer key in the switch statements # that initializes the operators top_env['mappings'].append('{{ "{}", {} }},'.format(descriptor, key)) env = { 'name': o['name'], 'statements': [], 'arguments': [], 'assignments': [], 'initialization': [], 'key': str(key), } defined_inferred_type = False if 'Tensor' in o['method_of']: # make sure 'self' is the first argument. currently Declarations.yaml # does not always do this. Instead it keeps the argument list the same order # as the Type method. o['arguments'] = self_as_first_argument(o['arguments']) elif 'namespace' not in o['method_of']: # methods on type like 'ones' or 'zeros' always take a # string attribute that is translated into the at::Type object # e.g. "Float" is at::kFloat assert('Type' in o['method_of']) defined_inferred_type = True env['initialization'].append( 'auto inferred_type = readTypeAttribute("type");') i = 0 for arg in o['arguments']: env['arguments'].append(arg['name']) if arg['type'] == 'TensorList': env['statements'].append( 'auto {} = loadInputsAtOffset({});'.format(arg['name'], i)) elif value_is_tensor_type(arg): assert(i != '*') # tensor list is not last argument # load tensor inputs from Caffe2 env['statements'].append( "auto {} = loadInput({});".format(arg['name'], i)) i += 1 if arg['dynamic_type'] == 'Tensor' and not defined_inferred_type: # first tensor input is used to define the output type. defined_inferred_type = True env['statements'].append( 'auto inferred_type = &({}.type());'.format( arg['name'])) else: init = CT(ARGUMENT_MAP[arg['type']]).substitute(env, arg=arg['name']) env['initialization'].append(init) for i, r in enumerate(o['returns']): t = RETURN_MAP[r['type'] if not value_is_tensor_type(r) else 'Tensor'] assignment = CT(t).substitute(env, offset=i, output=get_output(o, i)) env['assignments'].append(assignment) if 'Tensor' in o['method_of']: env['invocation'] = "self.{}({})".format( o['name'], ', '.join(env['arguments'][1:])) elif 'namespace' in o['method_of']: env['invocation'] = CT("at::${name}(${arguments})").substitute(env) else: assert('Type' in o['method_of']) env['invocation'] = CT( 'inferred_type->${name}(${arguments})').substitute(env) top_env['implementations'].append(OPTION_TEMPLATE.substitute(env)) key += 1 write(os.path.join(args.install_dir, args.output_prefix + "aten_op.h"), OP_TEMPLATE.substitute(top_env))
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, dyndep from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/aten:aten_op') class TestATen(hu.HypothesisTestCase): @given(inputs=hu.tensors(n=2), **hu.gcs) def test_add(self, inputs, gc, dc): op = core.CreateOperator( "ATen", ["X", "Y"], ["Z"], operator="add") def ref(X, Y): return [X + Y] self.assertReferenceChecks(gc, op, inputs, ref) @given(inputs=hu.tensors(n=1), **hu.gcs) def test_pow(self, inputs, gc, dc): op = core.CreateOperator( "ATen", ["S"], ["Z"], operator="pow", exponent=2.0) def ref(X): return [np.square(X)] self.assertReferenceChecks(gc, op, inputs, ref) @given(x=st.integers(min_value=2, max_value=8), **hu.gcs) def test_sort(self, x, gc, dc): inputs = [np.random.permutation(x)] op = core.CreateOperator( "ATen", ["S"], ["Z", "I"], operator="sort") def ref(X): return [np.sort(X), np.argsort(X)] self.assertReferenceChecks(gc, op, inputs, ref) @given(inputs=hu.tensors(n=1), **hu.gcs) def test_sum(self, inputs, gc, dc): op = core.CreateOperator( "ATen", ["S"], ["Z"], operator="sum") def ref(X): return [np.sum(X)] self.assertReferenceChecks(gc, op, inputs, ref) @given(**hu.gcs) def test_ones(self, gc, dc): op = core.CreateOperator( "ATen", [], ["Z"], operator="ones", type="float", size={2, 4}) def ref(): return [np.ones([2, 4])] self.assertReferenceChecks(gc, op, [], ref) if __name__ == "__main__": import unittest unittest.main()
import numpy as np from torch import nn from torch.autograd import Variable, Function import torch.onnx import onnx import caffe2.python.onnx.backend class MyFunction(Function): @staticmethod def forward(ctx, x, y): return x*x + y @staticmethod def symbolic(graph, x, y): x2 = graph.at("mul", x, x) r = graph.at("add", x2, y) # x, y, x2, and r are 'Node' objects # print(r) or print(graph) will print out a textual representation for debugging. # this representation will be converted to ONNX protobufs on export. return r class MyModule(nn.Module): def forward(self, x, y): # you can combine your ATen ops with standard onnx ones x = nn.ReLU()(x) return MyFunction.apply(x, y) torch.onnx.export(MyModule(), (Variable(torch.ones(3,4)), Variable(torch.ones(3,4))), "output.onnx", verbose=True) # prints the graph for debugging: # graph(%1 : Float(3, 4) # %2 : Float(3, 4)) { # %3 : Float(3, 4) = Relu(%1), uses = [%4.i0, %4.i1]; # %4 : UNKNOWN_TYPE = ATen[operator=mul](%3, %3), uses = [%5.i0]; # %5 : Float(3, 4) = ATen[operator=add](%4, %2), uses = [%0.i0]; # return (%5); # } graph = onnx.load("output.onnx") a = np.random.randn(3, 4).astype(np.float32) b = np.random.randn(3, 4).astype(np.float32) prepared_backend = caffe2.python.onnx.backend.prepare(graph) W = {graph.graph.input[0].name: a, graph.graph.input[1].name: b} c2_out = prepared_backend.run(W)[0] x = np.maximum(a, 0) r = x*x + b np.testing.assert_array_almost_equal(r, c2_out)
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as n import numpy.random as nr import random as r from python_util.util import * from python_util.data import * from python_util.options import * from python_util.gpumodel import * import sys import math as m import layer as lay from convdata import ImageDataProvider, CIFARDataProvider, DummyConvNetLogRegDataProvider from os import linesep as NL import copy as cp import os class Driver(object): def __init__(self, convnet): self.convnet = convnet def on_start_batch(self, batch_data, train): pass def on_finish_batch(self): pass class GradCheckDriver(Driver): def on_start_batch(self, batch_data, train): data = batch_data[2] self.convnet.libmodel.checkGradients(data) class TrainingDriver(Driver): def on_start_batch(self, batch_data, train): data = batch_data[2] self.convnet.libmodel.startBatch(data, self.convnet.get_progress(), not train) class MultiviewTestDriver(TrainingDriver): def on_start_batch(self, batch_data, train): self.write_output = False if train: TrainingDriver.on_start_batch(self, batch_data, train) else: data = batch_data[2] num_views = self.convnet.test_data_provider.num_views if self.convnet.test_out != "" and self.convnet.logreg_name != "": self.write_output = True self.test_file_name = os.path.join(self.convnet.test_out, 'test_preds_%d' % batch_data[1]) self.probs = n.zeros((data[0].shape[1]/num_views, self.convnet.test_data_provider.get_num_classes()), dtype=n.single) self.convnet.libmodel.startMultiviewTest(data, num_views, self.probs, self.convnet.logreg_name) else: self.convnet.libmodel.startMultiviewTest(data, num_views) def on_finish_batch(self): if self.write_output: if not os.path.exists(self.convnet.test_out): os.makedirs(self.convnet.test_out) pickle(self.test_file_name, {'data': self.probs, 'note': 'generated from %s' % self.convnet.save_file}) class FeatureWriterDriver(Driver): def __init__(self, convnet): Driver.__init__(self, convnet) self.last_batch = convnet.test_batch_range[-1] def on_start_batch(self, batch_data, train): if train: raise ModelStateException("FeatureWriter must be used in conjunction with --test-only=1. It writes test data features.") self.batchnum, self.data = batch_data[1], batch_data[2] if not os.path.exists(self.convnet.feature_path): os.makedirs(self.convnet.feature_path) self.num_ftrs = self.convnet.layers[self.convnet.write_features]['outputs'] self.ftrs = n.zeros((self.data[0].shape[1], self.num_ftrs), dtype=n.single) self.convnet.libmodel.startFeatureWriter(self.data, [self.ftrs], [self.convnet.write_features]) def on_finish_batch(self): path_out = os.path.join(self.convnet.feature_path, 'data_batch_%d' % self.batchnum) pickle(path_out, {'data': self.ftrs, 'labels': self.data[1]}) print "Wrote feature file %s" % path_out if self.batchnum == self.last_batch: pickle(os.path.join(self.convnet.feature_path, 'batches.meta'), {'source_model':self.convnet.load_file, 'num_vis':self.num_ftrs, 'batch_size': self.convnet.test_data_provider.batch_meta['batch_size']}) class ConvNet(IGPUModel): def __init__(self, op, load_dic, dp_params={}): filename_options = [] for v in ('color_noise', 'multiview_test', 'inner_size', 'scalar_mean', 'minibatch_size'): dp_params[v] = op.get_value(v) IGPUModel.__init__(self, "ConvNet", op, load_dic, filename_options, dp_params=dp_params) def import_model(self): lib_name = "cudaconvnet._ConvNet" print "=========================" print "Importing %s C++ module" % lib_name self.libmodel = __import__(lib_name,fromlist=['_ConvNet']) def init_model_lib(self): self.libmodel.initModel(self.layers, self.device_ids, self.minibatch_size, self.conserve_mem) def init_model_state(self): ms = self.model_state layers = ms['layers'] if self.loaded_from_checkpoint else {} ms['layers'] = lay.LayerParser.parse_layers(os.path.join(self.layer_path, self.layer_def), os.path.join(self.layer_path, self.layer_params), self, layers=layers) self.do_decouple_conv() self.do_unshare_weights() self.op.set_value('conv_to_local', [], parse=False) self.op.set_value('unshare_weights', [], parse=False) self.set_driver() def do_decouple_conv(self): # Convert convolutional layers to local if len(self.op.get_value('conv_to_local')) > 0: for lname in self.op.get_value('conv_to_local'): if self.model_state['layers'][lname]['type'] == 'conv': lay.LocalLayerParser.conv_to_local(self.model_state['layers'], lname) def do_unshare_weights(self): # Decouple weight matrices if len(self.op.get_value('unshare_weights')) > 0: for name_str in self.op.get_value('unshare_weights'): if name_str: name = lay.WeightLayerParser.get_layer_name(name_str) if name is not None: name, idx = name[0], name[1] if name not in self.model_state['layers']: raise ModelStateException("Layer '%s' does not exist; unable to unshare" % name) layer = self.model_state['layers'][name] lay.WeightLayerParser.unshare_weights(layer, self.model_state['layers'], matrix_idx=idx) else: raise ModelStateException("Invalid layer name '%s'; unable to unshare." % name_str) def set_driver(self): if self.op.get_value('check_grads'): self.driver = GradCheckDriver(self) elif self.op.get_value('multiview_test'): self.driver = MultiviewTestDriver(self) elif self.op.get_value('write_features'): self.driver = FeatureWriterDriver(self) else: self.driver = TrainingDriver(self) def fill_excused_options(self): if self.op.get_value('check_grads'): self.op.set_value('save_path', '') self.op.set_value('train_batch_range', '0') self.op.set_value('test_batch_range', '0') self.op.set_value('data_path', '') # Make sure the data provider returned data in proper format def parse_batch_data(self, batch_data, train=True): if max(d.dtype != n.single for d in batch_data[2]): raise DataProviderException("All matrices returned by data provider must consist of single-precision floats.") return batch_data def start_batch(self, batch_data, train=True): self.driver.on_start_batch(batch_data, train) def finish_batch(self): ret = IGPUModel.finish_batch(self) self.driver.on_finish_batch() return ret def print_iteration(self): print "%d.%d (%.2f%%)..." % (self.epoch, self.batchnum, 100 * self.get_progress()), def print_train_time(self, compute_time_py): print "(%.3f sec)" % (compute_time_py) def print_costs(self, cost_outputs): costs, num_cases = cost_outputs[0], cost_outputs[1] children = set() for errname in costs: if sum(errname in self.layers[z]['children'] for z in costs) == 0: # print self.layers[errname]['children'] for child in set(self.layers[errname]['children']) & set(costs.keys()): costs[errname] = [v + u for v, u in zip(costs[errname], costs[child])] children.add(child) filtered_costs = eval(self.layers[errname]['outputFilter'])(costs[errname], num_cases) print "%s: " % errname, if 'outputFilterFormatter' not in self.layers[errname]: print ", ".join("%.6f" % v for v in filtered_costs), else: print eval(self.layers[errname]['outputFilterFormatter'])(self,filtered_costs), if m.isnan(filtered_costs[0]) or m.isinf(filtered_costs[0]): print "<- error nan or inf!" sys.exit(1) for c in children: del costs[c] def print_train_results(self): self.print_costs(self.train_outputs[-1]) def print_test_status(self): pass def print_test_results(self): print NL + "======================Test output======================" self.print_costs(self.test_outputs[-1]) if not self.test_only: print NL + "----------------------Averages-------------------------" self.print_costs(self.aggregate_test_outputs(self.test_outputs[-len(self.test_batch_range):])) print NL + "-------------------------------------------------------", for name,val in sorted(self.layers.items(), key=lambda x: x[1]['id']): # This is kind of hacky but will do for now. l = self.layers[name] if 'weights' in l: wscales = [(l['name'], i, n.mean(n.abs(w)), n.mean(n.abs(wi))) for i,(w,wi) in enumerate(zip(l['weights'],l['weightsInc']))] print "" print NL.join("Layer '%s' weights[%d]: %e [%e] [%e]" % (s[0], s[1], s[2], s[3], s[3]/s[2] if s[2] > 0 else 0) for s in wscales), print "%sLayer '%s' biases: %e [%e]" % (NL, l['name'], n.mean(n.abs(l['biases'])), n.mean(n.abs(l['biasesInc']))), print "" def conditional_save(self): self.save_state() def aggregate_test_outputs(self, test_outputs): test_outputs = cp.deepcopy(test_outputs) num_cases = sum(t[1] for t in test_outputs) for i in xrange(1 ,len(test_outputs)): for k,v in test_outputs[i][0].items(): for j in xrange(len(v)): test_outputs[0][0][k][j] += test_outputs[i][0][k][j] return (test_outputs[0][0], num_cases) @classmethod def get_options_parser(cls): op = IGPUModel.get_options_parser() op.add_option("mini", "minibatch_size", IntegerOptionParser, "Minibatch size", default=128) op.add_option("layer-def", "layer_def", StringOptionParser, "Layer definition file", set_once=False) op.add_option("layer-params", "layer_params", StringOptionParser, "Layer parameter file") op.add_option("layer-path", "layer_path", StringOptionParser, "Layer file path prefix", default="") op.add_option("check-grads", "check_grads", BooleanOptionParser, "Check gradients and quit?", default=0, excuses=['data_path','save_path', 'save_file_override', 'train_batch_range','test_batch_range']) op.add_option("multiview-test", "multiview_test", BooleanOptionParser, "Cropped DP: test on multiple patches?", default=0) op.add_option("inner-size", "inner_size", IntegerOptionParser, "Cropped DP: crop size (0 = don't crop)", default=0, set_once=True) op.add_option("conv-to-local", "conv_to_local", ListOptionParser(StringOptionParser), "Convert given conv layers to unshared local", default=[]) op.add_option("unshare-weights", "unshare_weights", ListOptionParser(StringOptionParser), "Unshare weight matrices in given layers", default=[]) op.add_option("conserve-mem", "conserve_mem", BooleanOptionParser, "Conserve GPU memory (slower)?", default=0) op.add_option("color-noise", "color_noise", FloatOptionParser, "Add PCA noise to color channels with given scale", default=0.0) op.add_option("test-out", "test_out", StringOptionParser, "Output test case predictions to given path", default="", requires=['logreg_name', 'multiview_test']) op.add_option("logreg-name", "logreg_name", StringOptionParser, "Logreg cost layer name (for --test-out)", default="") op.add_option("scalar-mean", "scalar_mean", FloatOptionParser, "Subtract this scalar from image (-1 = don't)", default=-1) op.add_option("write-features", "write_features", StringOptionParser, "Write test data features from given layer", default="", requires=['feature-path']) op.add_option("feature-path", "feature_path", StringOptionParser, "Write test data features to this path (to be used with --write-features)", default="") op.delete_option('max_test_err') op.options["testing_freq"].default = 57 op.options["num_epochs"].default = 50000 op.options['dp_type'].default = None DataProvider.register_data_provider('dummy-lr-n', 'Dummy ConvNet logistic regression', DummyConvNetLogRegDataProvider) DataProvider.register_data_provider('image', 'JPEG-encoded image data provider', ImageDataProvider) DataProvider.register_data_provider('cifar', 'CIFAR-10 data provider', CIFARDataProvider) return op if __name__ == "__main__": # nr.seed(6) op = ConvNet.get_options_parser() op, load_dic = IGPUModel.parse_options(op) model = ConvNet(op, load_dic) model.start()
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from python_util.gpumodel import * import numpy as n import numpy.random as nr def get_src(filename): src = IGPUModel.load_checkpoint(filename) return src['model_state']['layers'] # Initialize weight matrix by copying weight matrix of given layer def makew(name, idx, shape, params): src = get_src(params[0]) return src[name]['weights'][idx] # Initialize bias vector by copying bias vector of given layer def makeb(name, shape, params): src = get_src(params[0]) return src[name]['biases'] def concat(shape, src, src_layers, src_func): mat = n.empty(shape, dtype=n.single, order='F') start = 0 for s in src_layers: m = src_func(src[s]) mat[:,start:start+m.shape[1]] = m start += m.shape[1] return mat # Initialize weight matrix by concatenating weight matrices of given layers def makewcat(name, idx, shape, params): src, src_layers = get_src(params[0]), params[1:] return concat(shape, src, src_layers, lambda x: x['weights'][idx]) # Initialize bias vector by concatenating bias vectors of given layers def makebcat(name, shape, params): src, src_layers = get_src(params[0]), params[1:] return concat(shape, src, src_layers, lambda x: x['biases']) # Initialize bias vector from tuple input def makeb_vec(name, shape, params): return n.array([n.single(x) for x in params], dtype=n.single).reshape((1, len(params)))
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from tarfile import TarFile, TarInfo from matplotlib import pylab as pl import numpy as n import getopt as opt from python_util.util import * from math import sqrt, ceil, floor from python_util.gpumodel import IGPUModel import random as r import numpy.random as nr from convnet import ConvNet from python_util.options import * from PIL import Image from time import sleep class ShowNetError(Exception): pass class ShowConvNet(ConvNet): def __init__(self, op, load_dic): ConvNet.__init__(self, op, load_dic) def init_data_providers(self): self.need_gpu = self.op.get_value('show_preds') class Dummy: def advance_batch(self): pass if self.need_gpu: ConvNet.init_data_providers(self) else: self.train_data_provider = self.test_data_provider = Dummy() def import_model(self): if self.need_gpu: ConvNet.import_model(self) def init_model_state(self): if self.op.get_value('show_preds'): self.softmax_name = self.op.get_value('show_preds') def init_model_lib(self): if self.need_gpu: ConvNet.init_model_lib(self) def plot_cost(self): if self.show_cost not in self.train_outputs[0][0]: raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost) # print self.test_outputs train_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.train_outputs] test_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.test_outputs] if self.smooth_test_errors: test_errors = [sum(test_errors[max(0,i-len(self.test_batch_range)):i])/(i-max(0,i-len(self.test_batch_range))) for i in xrange(1,len(test_errors)+1)] numbatches = len(self.train_batch_range) test_errors = n.row_stack(test_errors) test_errors = n.tile(test_errors, (1, self.testing_freq)) test_errors = list(test_errors.flatten()) test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors)) test_errors = test_errors[:len(train_errors)] numepochs = len(train_errors) / float(numbatches) pl.figure(1) x = range(0, len(train_errors)) pl.plot(x, train_errors, 'k-', label='Training set') pl.plot(x, test_errors, 'r-', label='Test set') pl.legend() ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches) epoch_label_gran = int(ceil(numepochs / 20.)) epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) if numepochs >= 10 else epoch_label_gran ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs)) pl.xticks(ticklocs, ticklabels) pl.xlabel('Epoch') # pl.ylabel(self.show_cost) pl.title('%s[%d]' % (self.show_cost, self.cost_idx)) # print "plotted cost" def make_filter_fig(self, filters, filter_start, fignum, _title, num_filters, combine_chans, FILTERS_PER_ROW=16): MAX_ROWS = 24 MAX_FILTERS = FILTERS_PER_ROW * MAX_ROWS num_colors = filters.shape[0] f_per_row = int(ceil(FILTERS_PER_ROW / float(1 if combine_chans else num_colors))) filter_end = min(filter_start+MAX_FILTERS, num_filters) filter_rows = int(ceil(float(filter_end - filter_start) / f_per_row)) filter_pixels = filters.shape[1] filter_size = int(sqrt(filters.shape[1])) fig = pl.figure(fignum) fig.text(.5, .95, '%s %dx%d filters %d-%d' % (_title, filter_size, filter_size, filter_start, filter_end-1), horizontalalignment='center') num_filters = filter_end - filter_start if not combine_chans: bigpic = n.zeros((filter_size * filter_rows + filter_rows + 1, filter_size*num_colors * f_per_row + f_per_row + 1), dtype=n.single) else: bigpic = n.zeros((3, filter_size * filter_rows + filter_rows + 1, filter_size * f_per_row + f_per_row + 1), dtype=n.single) for m in xrange(filter_start,filter_end ): filter = filters[:,:,m] y, x = (m - filter_start) / f_per_row, (m - filter_start) % f_per_row if not combine_chans: for c in xrange(num_colors): filter_pic = filter[c,:].reshape((filter_size,filter_size)) bigpic[1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size*num_colors) * x + filter_size*c:1 + (1 + filter_size*num_colors) * x + filter_size*(c+1)] = filter_pic else: filter_pic = filter.reshape((3, filter_size,filter_size)) bigpic[:, 1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size) * x:1 + (1 + filter_size) * x + filter_size] = filter_pic pl.xticks([]) pl.yticks([]) if not combine_chans: pl.imshow(bigpic, cmap=pl.cm.gray, interpolation='nearest') else: bigpic = bigpic.swapaxes(0,2).swapaxes(0,1) pl.imshow(bigpic, interpolation='nearest') def plot_filters(self): FILTERS_PER_ROW = 16 filter_start = 0 # First filter to show if self.show_filters not in self.layers: raise ShowNetError("Layer with name '%s' not defined by given convnet." % self.show_filters) layer = self.layers[self.show_filters] filters = layer['weights'][self.input_idx] # filters = filters - filters.min() # filters = filters / filters.max() if layer['type'] == 'fc': # Fully-connected layer num_filters = layer['outputs'] channels = self.channels filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) elif layer['type'] in ('conv', 'local'): # Conv layer num_filters = layer['filters'] channels = layer['filterChannels'][self.input_idx] if layer['type'] == 'local': filters = filters.reshape((layer['modules'], channels, layer['filterPixels'][self.input_idx], num_filters)) filters = filters[:, :, :, self.local_plane] # first map for now (modules, channels, pixels) filters = filters.swapaxes(0,2).swapaxes(0,1) num_filters = layer['modules'] # filters = filters.swapaxes(0,1).reshape(channels * layer['filterPixels'][self.input_idx], num_filters * layer['modules']) # num_filters *= layer['modules'] FILTERS_PER_ROW = layer['modulesX'] else: filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) # Convert YUV filters to RGB if self.yuv_to_rgb and channels == 3: R = filters[0,:,:] + 1.28033 * filters[2,:,:] G = filters[0,:,:] + -0.21482 * filters[1,:,:] + -0.38059 * filters[2,:,:] B = filters[0,:,:] + 2.12798 * filters[1,:,:] filters[0,:,:], filters[1,:,:], filters[2,:,:] = R, G, B combine_chans = not self.no_rgb and channels == 3 # Make sure you don't modify the backing array itself here -- so no -= or /= if self.norm_filters: #print filters.shape filters = filters - n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).mean(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1)) filters = filters / n.sqrt(n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).var(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1))) #filters = filters - n.tile(filters.min(axis=0).min(axis=0), (3, filters.shape[1], 1)) #filters = filters / n.tile(filters.max(axis=0).max(axis=0), (3, filters.shape[1], 1)) #else: filters = filters - filters.min() filters = filters / filters.max() self.make_filter_fig(filters, filter_start, 2, 'Layer %s' % self.show_filters, num_filters, combine_chans, FILTERS_PER_ROW=FILTERS_PER_ROW) def plot_predictions(self): epoch, batch, data = self.get_next_batch(train=False) # get a test batch num_classes = self.test_data_provider.get_num_classes() NUM_ROWS = 2 NUM_COLS = 4 NUM_IMGS = NUM_ROWS * NUM_COLS if not self.save_preds else data[0].shape[1] NUM_TOP_CLASSES = min(num_classes, 5) # show this many top labels NUM_OUTPUTS = self.model_state['layers'][self.softmax_name]['outputs'] PRED_IDX = 1 label_names = [lab.split(',')[0] for lab in self.test_data_provider.batch_meta['label_names']] if self.only_errors: preds = n.zeros((data[0].shape[1], NUM_OUTPUTS), dtype=n.single) else: preds = n.zeros((NUM_IMGS, NUM_OUTPUTS), dtype=n.single) #rand_idx = nr.permutation(n.r_[n.arange(1), n.where(data[1] == 552)[1], n.where(data[1] == 795)[1], n.where(data[1] == 449)[1], n.where(data[1] == 274)[1]])[:NUM_IMGS] rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS) if NUM_IMGS < data[0].shape[1]: data = [n.require(d[:,rand_idx], requirements='C') for d in data] # data += [preds] # Run the model print [d.shape for d in data], preds.shape self.libmodel.startFeatureWriter(data, [preds], [self.softmax_name]) IGPUModel.finish_batch(self) print preds data[0] = self.test_data_provider.get_plottable_data(data[0]) if self.save_preds: if not gfile.Exists(self.save_preds): gfile.MakeDirs(self.save_preds) preds_thresh = preds > 0.5 # Binarize predictions data[0] = data[0] * 255.0 data[0][data[0]<0] = 0 data[0][data[0]>255] = 255 data[0] = n.require(data[0], dtype=n.uint8) dir_name = '%s_predictions_batch_%d' % (os.path.basename(self.save_file), batch) tar_name = os.path.join(self.save_preds, '%s.tar' % dir_name) tfo = gfile.GFile(tar_name, "w") tf = TarFile(fileobj=tfo, mode='w') for img_idx in xrange(NUM_IMGS): img = data[0][img_idx,:,:,:] imsave = Image.fromarray(img) prefix = "CORRECT" if data[1][0,img_idx] == preds_thresh[img_idx,PRED_IDX] else "FALSE_POS" if preds_thresh[img_idx,PRED_IDX] == 1 else "FALSE_NEG" file_name = "%s_%.2f_%d_%05d_%d.png" % (prefix, preds[img_idx,PRED_IDX], batch, img_idx, data[1][0,img_idx]) # gf = gfile.GFile(file_name, "w") file_string = StringIO() imsave.save(file_string, "PNG") tarinf = TarInfo(os.path.join(dir_name, file_name)) tarinf.size = file_string.tell() file_string.seek(0) tf.addfile(tarinf, file_string) tf.close() tfo.close() # gf.close() print "Wrote %d prediction PNGs to %s" % (preds.shape[0], tar_name) else: fig = pl.figure(3, figsize=(12,9)) fig.text(.4, .95, '%s test samples' % ('Mistaken' if self.only_errors else 'Random')) if self.only_errors: # what the net got wrong if NUM_OUTPUTS > 1: err_idx = [i for i,p in enumerate(preds.argmax(axis=1)) if p not in n.where(data[2][:,i] > 0)[0]] else: err_idx = n.where(data[1][0,:] != preds[:,0].T)[0] print err_idx err_idx = r.sample(err_idx, min(len(err_idx), NUM_IMGS)) data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:] import matplotlib.gridspec as gridspec import matplotlib.colors as colors cconv = colors.ColorConverter() gs = gridspec.GridSpec(NUM_ROWS*2, NUM_COLS, width_ratios=[1]*NUM_COLS, height_ratios=[2,1]*NUM_ROWS ) #print data[1] for row in xrange(NUM_ROWS): for col in xrange(NUM_COLS): img_idx = row * NUM_COLS + col if data[0].shape[0] <= img_idx: break pl.subplot(gs[(row * 2) * NUM_COLS + col]) #pl.subplot(NUM_ROWS*2, NUM_COLS, row * 2 * NUM_COLS + col + 1) pl.xticks([]) pl.yticks([]) img = data[0][img_idx,:,:,:] pl.imshow(img, interpolation='lanczos') show_title = data[1].shape[0] == 1 true_label = [int(data[1][0,img_idx])] if show_title else n.where(data[1][:,img_idx]==1)[0] #print true_label #print preds[img_idx,:].shape #print preds[img_idx,:].max() true_label_names = [label_names[i] for i in true_label] img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:] #print img_labels axes = pl.subplot(gs[(row * 2 + 1) * NUM_COLS + col]) height = 0.5 ylocs = n.array(range(NUM_TOP_CLASSES))*height pl.barh(ylocs, [l[0] for l in img_labels], height=height, \ color=['#ffaaaa' if l[1] in true_label_names else '#aaaaff' for l in img_labels]) #pl.title(", ".join(true_labels)) if show_title: pl.title(", ".join(true_label_names), fontsize=15, fontweight='bold') else: print true_label_names pl.yticks(ylocs + height/2, [l[1] for l in img_labels], x=1, backgroundcolor=cconv.to_rgba('0.65', alpha=0.5), weight='bold') for line in enumerate(axes.get_yticklines()): line[1].set_visible(False) #pl.xticks([width], ['']) #pl.yticks([]) pl.xticks([]) pl.ylim(0, ylocs[-1] + height) pl.xlim(0, 1) def start(self): self.op.print_values() # print self.show_cost if self.show_cost: self.plot_cost() if self.show_filters: self.plot_filters() if self.show_preds: self.plot_predictions() if pl: pl.show() sys.exit(0) @classmethod def get_options_parser(cls): op = ConvNet.get_options_parser() for option in list(op.options): if option not in ('gpu', 'load_file', 'inner_size', 'train_batch_range', 'test_batch_range', 'multiview_test', 'data_path', 'pca_noise', 'scalar_mean'): op.delete_option(option) op.add_option("show-cost", "show_cost", StringOptionParser, "Show specified objective function", default="") op.add_option("show-filters", "show_filters", StringOptionParser, "Show learned filters in specified layer", default="") op.add_option("norm-filters", "norm_filters", BooleanOptionParser, "Individually normalize filters shown with --show-filters", default=0) op.add_option("input-idx", "input_idx", IntegerOptionParser, "Input index for layer given to --show-filters", default=0) op.add_option("cost-idx", "cost_idx", IntegerOptionParser, "Cost function return value index for --show-cost", default=0) op.add_option("no-rgb", "no_rgb", BooleanOptionParser, "Don't combine filter channels into RGB in layer given to --show-filters", default=False) op.add_option("yuv-to-rgb", "yuv_to_rgb", BooleanOptionParser, "Convert RGB filters to YUV in layer given to --show-filters", default=False) op.add_option("channels", "channels", IntegerOptionParser, "Number of channels in layer given to --show-filters (fully-connected layers only)", default=0) op.add_option("show-preds", "show_preds", StringOptionParser, "Show predictions made by given softmax on test set", default="") op.add_option("save-preds", "save_preds", StringOptionParser, "Save predictions to given path instead of showing them", default="") op.add_option("only-errors", "only_errors", BooleanOptionParser, "Show only mistaken predictions (to be used with --show-preds)", default=False, requires=['show_preds']) op.add_option("local-plane", "local_plane", IntegerOptionParser, "Local plane to show", default=0) op.add_option("smooth-test-errors", "smooth_test_errors", BooleanOptionParser, "Use running average for test error plot?", default=1) op.options['load_file'].default = None return op if __name__ == "__main__": #nr.seed(6) try: op = ShowConvNet.get_options_parser() op, load_dic = IGPUModel.parse_options(op) model = ShowConvNet(op, load_dic) model.start() except (UnpickleError, ShowNetError, opt.GetoptError), e: print "----------------" print "Error:" print e
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import exp import sys import ConfigParser as cfg import os import numpy as n import numpy.random as nr from math import ceil, floor from collections import OrderedDict from os import linesep as NL from python_util.options import OptionsParser import re class LayerParsingError(Exception): pass # A neuron that doesn't take parameters class NeuronParser: def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): self.type = type self.func_str = func_str self.uses_acts = uses_acts self.uses_inputs = uses_inputs def parse(self, type): if type == self.type: return {'type': self.type, 'params': {}, 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} return None # A neuron that takes parameters class ParamNeuronParser(NeuronParser): neuron_regex = re.compile(r'^\s*(\w+)\s*\[\s*(\w+(\s*,\w+)*)\s*\]\s*$') def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): NeuronParser.__init__(self, type, func_str, uses_acts, uses_inputs) m = self.neuron_regex.match(type) self.base_type = m.group(1) self.param_names = m.group(2).split(',') assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(r'^%s\s*\[([\d,\.\s\-]*)\]\s*$' % self.base_type, type) if m: try: param_vals = [float(v.strip()) for v in m.group(1).split(',')] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals)), 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} except TypeError: pass return None class AbsTanhNeuronParser(ParamNeuronParser): def __init__(self): ParamNeuronParser.__init__(self, 'abstanh[a,b]', 'f(x) = a * |tanh(b * x)|') def parse(self, type): dic = ParamNeuronParser.parse(self, type) # Make b positive, since abs(tanh(bx)) = abs(tanh(-bx)) and the C++ code # assumes b is positive. if dic: dic['params']['b'] = abs(dic['params']['b']) return dic class ParamParser: lrs_regex = re.compile(r'^\s*(\w+)\s*(?:\[\s*(\w+(\s*;\w+)*)\s*\])?\s*$') param_converters = {'i': int, 'f': float} def __init__(self, type): m = self.lrs_regex.match(type) self.base_type = m.group(1) param_names_with_type = m.group(2).split(';') if m.group(2) is not None else [] self.param_names = [p[1:] for p in param_names_with_type] self.param_types = [self.param_converters[p[0]] for p in param_names_with_type] self.param_regex_inner = ";".join([('\s*%s\s*=\s*[^;,\s=]+\s*' % p) for p in self.param_names]) self.regex_str = ('^%s\s*(?:\[(%s)\])?\s*$') % (self.base_type, self.param_regex_inner) assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(self.regex_str, type, flags=re.IGNORECASE) if m: try: param_vals = [ptype(v.split('=')[1].strip()) for ptype,v in zip(self.param_types, m.group(1).split(';'))] if m.group(1) is not None else [] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals))} except TypeError: pass return None # Subclass that throws more convnet-specific exceptions than the default class MyConfigParser(cfg.SafeConfigParser): def safe_get(self, section, option, f=cfg.SafeConfigParser.get, typestr=None, default=None): try: return f(self, section, option) except cfg.NoOptionError, e: if default is not None: return default raise LayerParsingError("Layer '%s': required parameter '%s' missing" % (section, option)) except ValueError, e: if typestr is None: raise e raise LayerParsingError("Layer '%s': parameter '%s' must be %s" % (section, option, typestr)) def safe_get_list(self, section, option, f=str, typestr='strings', default=None): v = self.safe_get(section, option, default=default) if type(v) == list: return v try: return [f(x.strip()) for x in v.split(',')] except: raise LayerParsingError("Layer '%s': parameter '%s' must be ','-delimited list of %s" % (section, option, typestr)) def safe_get_int(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getint, typestr='int', default=default) def safe_get_float(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getfloat, typestr='float', default=default) def safe_get_bool(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getboolean, typestr='bool', default=default) def safe_get_float_list(self, section, option, default=None): return self.safe_get_list(section, option, float, typestr='floats', default=default) def safe_get_int_list(self, section, option, default=None): return self.safe_get_list(section, option, int, typestr='ints', default=default) def safe_get_bool_list(self, section, option, default=None): return self.safe_get_list(section, option, lambda x: x.lower() in ('true', '1'), typestr='bools', default=default) # A class that implements part of the interface of MyConfigParser class FakeConfigParser(object): def __init__(self, dic): self.dic = dic def safe_get(self, section, option, default=None): if option in self.dic: return self.dic[option] return default def safe_get_int(self, section, option, default=None): return int(self.safe_get(section, option, default)) def safe_get_int_list(self, section, option, default=None): return list(self.safe_get(section, option, default)) class LayerParser: def __init__(self): self.dic = {} self.set_defaults() # Post-processing step -- this is called after all layers have been initialized def optimize(self, layers): self.dic['actsTarget'] = -1 self.dic['actsGradTarget'] = -1 if len(set(len(l['gpu']) for l in layers.values() if 'inputs' in l and self.dic['name'] in l['inputs'])) > 1: # print set(len(l['gpu']) for l in layers.values()) raise LayerParsingError("Layer '%s': all next layers must have equal number of replicas." % (self.dic['name'])) def parse_params(self, vals, parsers, param_name, human_name, num_params=1): dic, name = self.dic, self.dic['name'] # print vals if len(vals) != num_params and len(vals) != 1: raise LayerParsingError("Layer '%s': expected list of length %d for %s but got list of length %d."% (name, num_params, param_name, len(vals))) parsed = [] # print vals for v in vals: for p in parsers: parsedv = p.parse(v) if parsedv: parsed += [parsedv] break if len(parsed) == 1 and num_params > 1: parsed = parsed * num_params if len(parsed) == num_params: return parsed # print parsed, vals raise LayerParsingError("Layer '%s': unable to parse %s %s=%s." % (name, human_name, param_name, ",".join(vals))) # Add parameters from layer parameter file def add_params(self, mcp): pass # self.dic['conserveMem'] = mcp.convnet.op.get_value('conserve_mem') if mcp.convnet is not None else 0 def init(self, dic): self.dic = dic return self def set_defaults(self): self.dic['outputs'] = 0 self.dic['parser'] = self self.dic['requiresParams'] = False # Does this layer use its own activity matrix # for some purpose other than computing its output? # Usually, this will only be true for layers that require their # own activity matrix for gradient computations. For example, layers # with logistic units must compute the gradient y * (1 - y), where y is # the activity matrix. # # Layers that do not not use their own activity matrix should advertise # this, since this will enable memory-saving matrix re-use optimizations. # # The default value of this property is True, for safety purposes. # If a layer advertises that it does not use its own activity matrix when # in fact it does, bad things will happen. self.dic['usesActs'] = True # Does this layer use the activity matrices of its input layers # for some purpose other than computing its output? # # Again true by default for safety self.dic['usesInputs'] = True # Force this layer to use its own activity gradient matrix, # instead of borrowing one from one of its inputs. # # This should be true for layers where the mapping from output # gradient to input gradient is non-elementwise. self.dic['forceOwnActs'] = True # Does this layer need the gradient at all? # Should only be true for layers with parameters (weights). self.dic['gradConsumer'] = False # The gpu indices on which this layer runs self.dic['gpu'] = [-1] def parse(self, name, mcp, prev_layers, model=None): self.prev_layers = prev_layers self.dic['name'] = name self.dic['type'] = mcp.safe_get(name, 'type') self.dic['id'] = len(prev_layers) return self.dic def verify_float_range(self, v, param_name, _min, _max): self.verify_num_range(v, param_name, _min, _max, strconv=lambda x: '%.3f' % x) def verify_num_range(self, v, param_name, _min, _max, strconv=lambda x:'%d' % x): if type(v) == list: for i,vv in enumerate(v): self._verify_num_range(vv, param_name, _min, _max, i, strconv=strconv) else: self._verify_num_range(v, param_name, _min, _max, strconv=strconv) def _verify_num_range(self, v, param_name, _min, _max, input=-1, strconv=lambda x:'%d' % x): layer_name = self.dic['name'] if input < 0 else '%s[%d]' % (self.dic['name'], input) if _min is not None and _max is not None and (v < _min or v > _max): raise LayerParsingError("Layer '%s': parameter '%s' must be in the range %s-%s" % (layer_name, param_name, strconv(_min), strconv(_max))) elif _min is not None and v < _min: raise LayerParsingError("Layer '%s': parameter '%s' must be greater than or equal to %s" % (layer_name, param_name, strconv(_min))) elif _max is not None and v > _max: raise LayerParsingError("Layer '%s': parameter '%s' must be smaller than or equal to %s" % (layer_name, param_name, strconv(_max))) def verify_divisible(self, value, div, value_name, div_name=None, input_idx=0): layer_name = self.dic['name'] if len(self.dic['inputs']) == 0 else '%s[%d]' % (self.dic['name'], input_idx) if value % div != 0: raise LayerParsingError("Layer '%s': parameter '%s' must be divisible by %s" % (layer_name, value_name, str(div) if div_name is None else "'%s'" % div_name)) def verify_str_in(self, value, param_name, lst, input_idx=-1): lname = self.dic['name'] if input_idx == -1 else ('%s[%d]' % (self.dic['name'], input_idx)) if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (lname, param_name, ", ".join("'%s'" % s for s in lst))) def verify_int_in(self, value, param_name, lst): if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_all_ints_in(self, values, param_name, lst): if len([v for v in values if v not in lst]) > 0: raise LayerParsingError("Layer '%s': all parameters to '%s' must be among %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_input_dims(self, dims): for i,d in enumerate(dims): if d is not None and self.dic['numInputs'][i] != d: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of input %d must be %d" % (self.dic['name'], i, d)) # This looks for neuron=x arguments in various layers, and creates # separate layer definitions for them. @staticmethod def detach_neuron_layers(layers): for name,l in layers.items(): if l['type'] != 'neuron' and 'neuron' in l and l['neuron']: NeuronLayerParser().detach_neuron_layer(name, layers) @staticmethod def parse_layers(layer_cfg_path, param_cfg_path, model, layers={}): try: if not os.path.exists(layer_cfg_path): raise LayerParsingError("Layer definition file '%s' does not exist" % layer_cfg_path) if not os.path.exists(param_cfg_path): raise LayerParsingError("Layer parameter file '%s' does not exist" % param_cfg_path) if len(layers) == 0: mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(layer_cfg_path)) for name in mcp.sections(): if not mcp.has_option(name, 'type'): raise LayerParsingError("Layer '%s': no type given" % name) ltype = mcp.safe_get(name, 'type') if ltype not in layer_parsers: raise LayerParsingError("Layer '%s': Unknown layer type: '%s'" % (name, ltype)) layers[name] = layer_parsers[ltype]().parse(name, mcp, layers, model) LayerParser.detach_neuron_layers(layers) for l in layers.values(): l['parser'].optimize(layers) del l['parser'] for name,l in layers.items(): if not l['type'].startswith('cost.'): found = max(name in l2['inputs'] for l2 in layers.values() if 'inputs' in l2) if not found: raise LayerParsingError("Layer '%s' of type '%s' is unused" % (name, l['type'])) mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(param_cfg_path)) # mcp.convnet = model for name,l in layers.items(): if not mcp.has_section(name) and l['requiresParams']: raise LayerParsingError("Layer '%s' of type '%s' requires extra parameters, but none given in file '%s'." % (name, l['type'], param_cfg_path)) lp = layer_parsers[l['type']]().init(l) lp.add_params(mcp) except LayerParsingError, e: print e sys.exit(1) return layers @staticmethod def register_layer_parser(ltype, cls): if ltype in layer_parsers: raise LayerParsingError("Layer type '%s' already registered" % ltype) layer_parsers[ltype] = cls # Any layer that takes an input (i.e. non-data layer) class LayerWithInputParser(LayerParser): def __init__(self, num_inputs=-1): LayerParser.__init__(self) self.num_inputs = num_inputs def verify_num_params(self, params, auto_expand=True): for param in params: if len(self.dic[param]) != len(self.dic['inputs']): if auto_expand and len(self.dic[param]) == 1: self.dic[param] *= len(self.dic['inputs']) else: raise LayerParsingError("Layer '%s': %s list length does not match number of inputs" % (self.dic['name'], param)) # layers: dictionary: name -> layer def optimize(self, layers): LayerParser.optimize(self, layers) dic = self.dic # Check if I have an input that no one else uses. #print "Layer %s optimizing" % dic['name'] if not dic['forceOwnActs']: for i, inp in enumerate(dic['inputLayers']): if inp['outputs'] == dic['outputs'] and sum(('inputs' in ll) and (inp['name'] in ll['inputs']) for ll in layers.itervalues()) == 1: # I can share my activity matrix with this layer # if it does not use its activity matrix, and I # do not need to remember my inputs. # TODO: a dropout layer should always be able to overwrite # its input. Make it so. # print "Layer %s(uses inputs=%d), input %s(uses acts = %d)" % (dic['name'], dic['usesInputs'], inp['name'], inp['usesActs']) if not inp['usesActs'] and not dic['usesInputs']: dic['actsTarget'] = i print "Layer %s using acts from layer %s" % (dic['name'], inp['name']) # print "Layer '%s' sharing activity matrix with layer '%s'" % (dic['name'], l['name']) # I can share my gradient matrix with this layer if we're on the same GPU. # This is different from the logic for actsTarget because this guy doesn't # have an actsGrad matrix on my GPU if our GPUs are different, so there's # nothing to share. if dic['gpu'] == inp['gpu']: dic['actsGradTarget'] = i # print "Layer '%s' sharing activity gradient matrix with layer '%s'" % (dic['name'], l['name']) def parse(self, name, mcp, prev_layers, model=None): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['inputs'] = [inp.strip() for inp in mcp.safe_get(name, 'inputs').split(',')] for inp in dic['inputs']: if inp not in prev_layers: raise LayerParsingError("Layer '%s': input layer '%s' not defined" % (name, inp)) dic['inputLayers'] = [prev_layers[inp] for inp in dic['inputs']] dic['gpu'] = mcp.safe_get_int_list(name, 'gpu', default=dic['inputLayers'][0]['gpu']) dic['gpus'] = ", ".join('%s' % d for d in dic['gpu']) dic['numReplicas'] = len(dic['gpu']) if len(set(dic['gpu'])) != len(dic['gpu']): raise LayerParsingError("Layer '%s': all replicas must run on different GPUs." % (name)) for inp in dic['inputs']: # Data layers do not explicitly define how many replicas they have. # The number of replicas for a data layer is given by the number of replicas # in the next layer(s). So we set that here. inpl = prev_layers[inp] if inpl['type'] == 'data': inpl['numReplicas'] = dic['numReplicas'] if inpl['numReplicas'] % dic['numReplicas'] != 0: raise LayerParsingError("Layer '%s': number of replicas (%d) must divide number of replicas in all input layers (input %s has %d replicas)." % (name, dic['numReplicas'], inpl['name'], inpl['numReplicas'])) if len(set(inp['numReplicas'] for inp in dic['inputLayers'])) != 1: raise LayerParsingError("Layer '%s': all input layers must have equal numbers of replicas." % (name)) # Need to also assert that all *next* layers have equal number of replicas but this is hard so it's done in Layer.optimize for inp in dic['inputLayers']: if inp['outputs'] == 0: raise LayerParsingError("Layer '%s': input layer '%s' does not produce any output" % (name, inp['name'])) dic['numInputs'] = [inp['outputs'] for inp in dic['inputLayers']] # Layers can declare a neuron activation function to apply to their output, as a shortcut # to avoid declaring a separate neuron layer above themselves. dic['neuron'] = mcp.safe_get(name, 'neuron', default="") if self.num_inputs > 0 and len(dic['numInputs']) != self.num_inputs: raise LayerParsingError("Layer '%s': number of inputs must be %d" % (name, self.num_inputs)) if model: self.verify_all_ints_in(dic['gpu'], 'gpu', range(len(model.op.get_value('gpu')))) return dic def verify_img_size(self): dic = self.dic if dic['numInputs'][0] % dic['imgPixels'] != 0 or dic['imgSize'] * dic['imgSize'] != dic['imgPixels']: raise LayerParsingError("Layer '%s': has %-d dimensional input, not interpretable as %d-channel images" % (dic['name'], dic['numInputs'][0], dic['channels'])) @staticmethod def grad_consumers_below(dic): if dic['gradConsumer']: return True if 'inputLayers' in dic: return any(LayerWithInputParser.grad_consumers_below(l) for l in dic['inputLayers']) def verify_no_grads(self): if LayerWithInputParser.grad_consumers_below(self.dic): raise LayerParsingError("Layer '%s': layers of type '%s' cannot propagate gradient and must not be placed over layers with parameters." % (self.dic['name'], self.dic['type'])) class NailbedLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['stride'] = mcp.safe_get_int(name, 'stride') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputsX'] = (dic['imgSize'] + dic['stride'] - 1) / dic['stride'] dic['start'] = (dic['imgSize'] - dic['stride'] * (dic['outputsX'] - 1)) / 2 dic['outputs'] = dic['channels'] * dic['outputsX']**2 self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_img_size() print "Initialized bed-of-nails layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class GaussianBlurLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') dic['filterSize'] = mcp.safe_get_int(name, 'filterSize') dic['stdev'] = mcp.safe_get_float(name, 'stdev') self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_int_in(dic['filterSize'], 'filterSize', [3, 5, 7, 9]) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['filter'] = n.array([exp(-(dic['filterSize']/2 - i)**2 / float(2 * dic['stdev']**2)) for i in xrange(dic['filterSize'])], dtype=n.float32).reshape(1, dic['filterSize']) dic['filter'] /= dic['filter'].sum() self.verify_img_size() if dic['filterSize'] > dic['imgSize']: raise LayerParsingError("Later '%s': filter size (%d) must be smaller than image size (%d)." % (dic['name'], dic['filterSize'], dic['imgSize'])) print "Initialized Gaussian blur layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class HorizontalReflectionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, 3) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) self.verify_img_size() print "Initialized horizontal reflection layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class ResizeLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['scale'] = mcp.safe_get_float(name, 'scale') dic['tgtSize'] = int(floor(dic['imgSize'] / dic['scale'])) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_num_range(dic['channels'], 'channels', 1, None) # Really not recommended to use this for such severe scalings self.verify_float_range(dic['scale'], 'scale', 0.5, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized resize layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class RandomScaleLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['maxScale'] = mcp.safe_get_float(name, 'maxScale') dic['tgtSize'] = mcp.safe_get_int(name, 'tgtSize') min_size = int(floor(dic['imgSize'] / dic['maxScale'])) max_size = dic['imgSize'] #int(floor(dic['imgSize'] * dic['maxScale'])) if dic['tgtSize'] < min_size: raise LayerParsingError("Layer '%s': target size must be greater than minimum image size after rescaling (%d)" % (name, min_size)) if dic['tgtSize'] > max_size: raise LayerParsingError("Layer '%s': target size must be smaller than maximum image size after rescaling (%d)" % (name, max_size)) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_float_range(dic['maxScale'], 'maxScale', 1, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized random scale layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class CropLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) dic['startX'] = mcp.safe_get_int(name, 'startX') dic['startY'] = mcp.safe_get_int(name, 'startY', default=dic['startX']) dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['channels'] * (dic['sizeX']**2) self.verify_num_range(dic['startX'], 'startX', 0, dic['imgSize']-1) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['startY'], 'startY', 0, dic['imgSize']-1) self.verify_img_size() self.verify_no_grads() if dic['startX'] + dic['sizeX'] > dic['imgSize']: raise LayerParsingError("Layer '%s': startX (%d) + sizeX (%d) > imgSize (%d)" % (name, dic['startX'], dic['sizeX'], dic['imgSize'])) print "Initialized cropping layer '%s', producing %dx%d %d-channel output" % (name, dic['sizeX'], dic['sizeX'], dic['channels']) return dic class ColorTransformLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False # Computed values dic['imgPixels'] = dic['numInputs'][0] / 3 dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['channels'] = 3 dic['outputs'] = dic['numInputs'][0] self.verify_img_size() self.verify_no_grads() return dic class RGBToYUVLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) print "Initialized RGB --> YUV layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class RGBToLABLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) dic['center'] = mcp.safe_get_bool(name, 'center', default=False) print "Initialized RGB --> LAB layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class NeuronLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) @staticmethod def get_unused_layer_name(layers, wish): if wish not in layers: return wish for i in xrange(1, 100): name = '%s.%d' % (wish, i) if name not in layers: return name raise LayerParsingError("This is insane.") def parse_neuron(self, neuron_str): for n in neuron_parsers: p = n.parse(neuron_str) if p: # Successfully parsed neuron, return it self.dic['neuron'] = p self.dic['usesActs'] = self.dic['neuron']['usesActs'] self.dic['usesInputs'] = self.dic['neuron']['usesInputs'] return # Could not parse neuron # Print available neuron types colnames = ['Neuron type', 'Function'] m = max(len(colnames[0]), OptionsParser._longest_value(neuron_parsers, key=lambda x:x.type)) + 2 ntypes = [OptionsParser._bold(colnames[0].ljust(m))] + [n.type.ljust(m) for n in neuron_parsers] fnames = [OptionsParser._bold(colnames[1])] + [n.func_str for n in neuron_parsers] usage_lines = NL.join(ntype + fname for ntype,fname in zip(ntypes, fnames)) raise LayerParsingError("Layer '%s': unable to parse neuron type '%s'. Valid neuron types: %sWhere neurons have parameters, they must be floats." % (self.dic['name'], neuron_str, NL + usage_lines + NL)) def detach_neuron_layer(self, src_name, layers): dic = self.dic # self.set_defaults() dic['name'] = NeuronLayerParser.get_unused_layer_name(layers, '%s_neuron' % src_name) dic['type'] = 'neuron' dic['inputs'] = src_name dic['neuron'] = layers[src_name]['neuron'] dic['gpu'] = layers[src_name]['gpu'] # Yes it's not entirely correct to pass all of layers as prev_layers, but it's harmless dic = self.parse(dic['name'], FakeConfigParser(dic), layers) dic['src_layer'] = src_name # Link upper layers to this new one for l in layers.values(): if 'inputs' in l: l['inputs'] = [inp if inp != src_name else dic['name'] for inp in l['inputs']] l['inputLayers'] = [inp if inp['name'] != src_name else dic for inp in l['inputLayers']] layers[dic['name']] = dic def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] self.parse_neuron(dic['neuron']) dic['forceOwnActs'] = False print "Initialized neuron layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseSumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeffs'] = mcp.safe_get_float_list(name, 'coeffs', default=[1.0] * len(dic['inputs'])) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['requiresParams'] = True print "Initialized elementwise sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseMaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(dic['inputs']) < 2: raise LayerParsingError("Layer '%s': elementwise max layer must have at least 2 inputs, got %d." % (name, len(dic['inputs']))) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] print "Initialized elementwise max layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['stride'] = mcp.safe_get_int(name, 'stride', default=1) self.verify_divisible(dic['numInputs'][0], dic['stride'], 'input dimensionality', 'stride') dic['outputs'] = dic['numInputs'][0] / dic['stride'] print "Initialized sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class DropoutLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['enable'] = mcp.safe_get_bool(name, 'enable', default=True) dic['keep'] = mcp.safe_get_float(name, 'keep', default=0.5) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['outputs'] = dic['numInputs'][0] print "Initialized %s layer '%s' on GPUs %s, producing %d outputs" % (dic['type'], name, dic['gpus'], dic['outputs']) return dic class Dropout2LayerParser(DropoutLayerParser): def __init__(self): DropoutLayerParser.__init__(self) class WeightLayerParser(LayerWithInputParser): LAYER_PAT = re.compile(r'^\s*([^\s\[]+)(?:\[(\d+)\])?\s*$') # matches things like layername[5], etc def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) @staticmethod def get_layer_name(name_str): m = WeightLayerParser.LAYER_PAT.match(name_str) if not m: return None return m.group(1), m.group(2) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['momW'] = mcp.safe_get_float_list(name, 'momW') dic['momB'] = mcp.safe_get_float(name, 'momB') dic['superEps'] = mcp.safe_get_float(name, 'superEps', default=0.0) dic['superMom'] = mcp.safe_get_float(name, 'superMom', default=0.0) dic['wc'] = mcp.safe_get_float_list(name, 'wc', default=[0.0] * len(dic['inputs'])) dic['wball'] = mcp.safe_get_float_list(name, 'wball', default=[0.0] * len(dic['inputs'])) self.verify_num_params(['momW', 'wc', 'wball']) # dic['wballNormed'] = [wball * nweights for wball,nweights in zip(dic['wball'], dic['weightsPerFilter'])] dic['wballNormed'] = dic['wball'] # Convert from old-style 0.001,0.02 hyperparam specification to new-stye # const[base=0.001],const[base=0.02] and so forth def convert_scalars_to_schedules(scalars): parts = scalars.split(',') for i,p in enumerate(parts): p = p.strip() if re.match('(?:\d*\.)?\d+$', p): parts[i] = 'const[base=%s]' % p return parts dic['epsW'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsW')), lrs_parsers, 'epsW', 'learning rate schedule', num_params=len(dic['inputs'])) dic['epsB'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsB')), lrs_parsers, 'epsB', 'learning rate schedule', num_params=1)[0] dic['updatePeriod'] = mcp.safe_get_int(name, 'updatePeriod', default=0) # 0 means update as often as possible # TODO: assert that updatePeriod is a multiple of active pass period, which is unknown here. # the assert has to go in some post-processing step.. dic['gradConsumer'] = dic['epsB']['params']['base'] > 0 or any(w['params']['base'] > 0 for w in dic['epsW']) @staticmethod def unshare_weights(layer, layers, matrix_idx=None): def unshare(layer, layers, indices): for i in indices: if layer['weightSourceLayers'][i] >= 0: src_matrix_idx = layer['weightSourceMatrixIndices'][i] layer['weightSourceLayers'][i] = "" layer['weightSourceMatrixIndices'][i] = -1 layer['weights'][i] = layer['weights'][i].copy() layer['weightsInc'][i] = n.zeros_like(layer['weights'][i]) print "Unshared weight matrix %s[%d] from %s[%d]." % (layer['name'], i, layer['weightSourceLayers'][i], src_matrix_idx) else: print "Weight matrix %s[%d] already unshared." % (layer['name'], i) if 'weightSourceLayers' in layer: unshare(layer, layers, range(len(layer['inputs'])) if matrix_idx is None else [matrix_idx]) # Load weight/biases initialization module def call_init_func(self, param_name, shapes, input_idx=-1): dic = self.dic func_pat = re.compile('^([^\.]+)\.([^\(\)]+)\s*(?:\(([^,]+(?:,[^,]+)*)\))?$') m = func_pat.match(dic[param_name]) if not m: raise LayerParsingError("Layer '%s': '%s' parameter must have format 'moduleName.functionName(param1,param2,...)'; got: %s." % (dic['name'], param_name, dic['initWFunc'])) module, func = m.group(1), m.group(2) params = m.group(3).split(',') if m.group(3) is not None else [] try: mod = __import__(module) return getattr(mod, func)(dic['name'], input_idx, shapes, params=params) if input_idx >= 0 else getattr(mod, func)(dic['name'], shapes, params=params) except (ImportError, AttributeError, TypeError), e: raise LayerParsingError("Layer '%s': %s." % (dic['name'], e)) def make_weights(self, initW, rows, cols, order='C'): dic = self.dic dic['weights'], dic['weightsInc'] = [], [] if dic['initWFunc']: # Initialize weights from user-supplied python function # Initialization function is supplied in the format # module.func for i in xrange(len(dic['inputs'])): dic['weights'] += [self.call_init_func('initWFunc', (rows[i], cols[i]), input_idx=i)] if type(dic['weights'][i]) != n.ndarray: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], i, dic['initWFunc'], type(dic['weights'][i]))) if dic['weights'][i].dtype != n.float32: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must weight matrices consisting of single-precision floats. Got: %s." % (dic['name'], i, dic['initWFunc'], dic['weights'][i].dtype)) if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s[%d]': weight matrix returned by weight initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], i, dic['initWFunc'], (rows[i], cols[i]), dic['weights'][i].shape)) # Convert to desired order dic['weights'][i] = n.require(dic['weights'][i], requirements=order) dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] print "Layer '%s[%d]' initialized weight matrices from function %s" % (dic['name'], i, dic['initWFunc']) else: for i in xrange(len(dic['inputs'])): if dic['weightSourceLayers'][i] != '': # Shared weight matrix src_layer = self.prev_layers[dic['weightSourceLayers'][i]] if dic['weightSourceLayers'][i] != dic['name'] else dic dic['weights'] += [src_layer['weights'][dic['weightSourceMatrixIndices'][i]]] dic['weightsInc'] += [src_layer['weightsInc'][dic['weightSourceMatrixIndices'][i]]] if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s': weight sharing source matrix '%s' has shape %dx%d; should be %dx%d." % (dic['name'], dic['weightSource'][i], dic['weights'][i].shape[0], dic['weights'][i].shape[1], rows[i], cols[i])) print "Layer '%s' initialized weight matrix %d from %s" % (dic['name'], i, dic['weightSource'][i]) else: dic['weights'] += [n.array(initW[i] * nr.randn(rows[i], cols[i]), dtype=n.single, order=order)] dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] def make_biases(self, rows, cols, order='C'): dic = self.dic if dic['initBFunc']: dic['biases'] = self.call_init_func('initBFunc', (rows, cols)) if type(dic['biases']) != n.ndarray: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], dic['initBFunc'], type(dic['biases']))) if dic['biases'].dtype != n.float32: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object consisting of single-precision floats. Got: %s." % (dic['name'], dic['initBFunc'], dic['biases'].dtype)) if dic['biases'].shape != (rows, cols): raise LayerParsingError("Layer '%s': bias vector returned by bias initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], dic['initBFunc'], (rows, cols), dic['biases'].shape)) dic['biases'] = n.require(dic['biases'], requirements=order) print "Layer '%s' initialized bias vector from function %s" % (dic['name'], dic['initBFunc']) else: dic['biases'] = dic['initB'] * n.ones((rows, cols), order=order, dtype=n.single) dic['biasesInc'] = n.zeros_like(dic['biases']) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['gradConsumer'] = True dic['usesActs'] = False dic['initW'] = mcp.safe_get_float_list(name, 'initW', default=0.01) dic['initB'] = mcp.safe_get_float(name, 'initB', default=0) dic['initWFunc'] = mcp.safe_get(name, 'initWFunc', default="") dic['initBFunc'] = mcp.safe_get(name, 'initBFunc', default="") # Find shared weight matrices dic['weightSource'] = mcp.safe_get_list(name, 'weightSource', default=[''] * len(dic['inputs'])) self.verify_num_params(['initW']) self.verify_num_params(['weightSource'], auto_expand=False) dic['weightSourceLayers'] = [] dic['weightSourceMatrixIndices'] = [] for i, src_name in enumerate(dic['weightSource']): src_layer_matrix_idx = -1 src_layer_name = '' if src_name != '': src_layer_match = WeightLayerParser.get_layer_name(src_name) if src_layer_match is None: raise LayerParsingError("Layer '%s': unable to parse weight sharing source '%s'. Format is layer[idx] or just layer, in which case idx=0 is used." % (name, src_name)) src_layer_name = src_layer_match[0] src_layer_matrix_idx = int(src_layer_match[1]) if src_layer_match[1] is not None else 0 if src_layer_name not in prev_layers and src_layer_name != name: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' does not exist." % (name, src_layer_name)) # src_layer_idx = prev_names.index(src_layer_name) if src_layer_name != name else len(prev_names) src_layer = prev_layers[src_layer_name] if src_layer_name != name else dic if src_layer['gpu'] != dic['gpu']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' runs on GPUs %s, while '%s' runs on GPUs %s." % (name, src_layer_name, src_layer['gpu'], name, dic['gpu'])) if src_layer['type'] != dic['type']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' is of type '%s'; should be '%s'." % (name, src_layer_name, src_layer['type'], dic['type'])) if src_layer_name != name and len(src_layer['weights']) <= src_layer_matrix_idx: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' has %d weight matrices, but '%s[%d]' requested." % (name, src_layer_name, len(src_layer['weights']), src_name, src_layer_matrix_idx)) if src_layer_name == name and src_layer_matrix_idx >= i: raise LayerParsingError("Layer '%s': weight sharing source '%s[%d]' not defined yet." % (name, name, src_layer_matrix_idx)) dic['weightSourceLayers'] += [src_layer_name] dic['weightSourceMatrixIndices'] += [src_layer_matrix_idx] return dic class FCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = mcp.safe_get_int(name, 'outputs') dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['outputs'], 'outputs', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') print "Initialized fully-connected layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SplitFCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['parts'] = mcp.safe_get_int(name, 'parts') dic['outputs'] = mcp.safe_get_int(name, 'outputs') * dic['parts'] dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['parts'], 'parts', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']/dic['parts']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') for i in xrange(len(dic['numInputs'])): self.verify_divisible(dic['numInputs'][i], dic['parts'], 'numInputs', 'parts', input_idx=i) print "Initialized split fully-connected layer '%s' on GPUs %s, producing %d outputs in %d parts" % (name, dic['gpus'], dic['outputs'], dic['parts']) return dic class LocalLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) # Convert convolutional layer to unshared, locally-connected layer @staticmethod def conv_to_local(layers, lname): layer = layers[lname] if layer['type'] == 'conv': layer['type'] = 'local' for inp,inpname in enumerate(layer['inputs']): src_layer_name = layer['weightSourceLayers'][inp] if src_layer_name != '': src_layer = layers[src_layer_name] src_matrix_idx = layer['weightSourceMatrixIndices'][inp] LocalLayerParser.conv_to_local(layers, src_layer_name) for w in ('weights', 'weightsInc'): layer[w][inp] = src_layer[w][src_matrix_idx] else: layer['weights'][inp] = n.require(n.reshape(n.tile(n.reshape(layer['weights'][inp], (1, n.prod(layer['weights'][inp].shape))), (layer['modules'], 1)), (layer['modules'] * layer['filterChannels'][inp] * layer['filterPixels'][inp], layer['filters'])), requirements='C') layer['weightsInc'][inp] = n.zeros_like(layer['weights'][inp]) if layer['sharedBiases']: layer['biases'] = n.require(n.repeat(layer['biases'], layer['modules'], axis=0), requirements='C') layer['biasesInc'] = n.zeros_like(layer['biases']) print "Converted layer '%s' from convolutional to unshared, locally-connected" % layer['name'] # Also call this function on any layers sharing my weights for l in layers: if 'weightSourceLayers' in l and lname in l['weightSourceLayers']: LocalLayerParser.conv_to_local(layers, l) return layer def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesActs'] = False # Supplied values dic['channels'] = mcp.safe_get_int_list(name, 'channels') dic['padding'] = mcp.safe_get_int_list(name, 'padding', default=[0]*len(dic['inputs'])) dic['stride'] = mcp.safe_get_int_list(name, 'stride', default=[1]*len(dic['inputs'])) dic['filterSize'] = mcp.safe_get_int_list(name, 'filterSize') dic['filters'] = mcp.safe_get_int_list(name, 'filters') dic['groups'] = mcp.safe_get_int_list(name, 'groups', default=[1]*len(dic['inputs'])) dic['initW'] = mcp.safe_get_float_list(name, 'initW') dic['initCFunc'] = mcp.safe_get(name, 'initCFunc', default='') dic['modulesX'] = mcp.safe_get_int(name, 'modulesX', default=0) self.verify_num_params(['channels', 'padding', 'stride', 'filterSize', \ 'filters', 'groups', 'initW']) self.verify_num_range(dic['stride'], 'stride', 1, None) self.verify_num_range(dic['filterSize'],'filterSize', 1, None) self.verify_num_range(dic['padding'], 'padding', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['groups'], 'groups', 1, None) self.verify_num_range(dic['modulesX'], 'modulesX', 0, None) for i in xrange(len(dic['filters'])): self.verify_divisible(dic['filters'][i], 16, 'filters', input_idx=i) # Computed values dic['imgPixels'] = [numInputs/channels for numInputs,channels in zip(dic['numInputs'], dic['channels'])] dic['imgSize'] = [int(n.sqrt(imgPixels)) for imgPixels in dic['imgPixels']] self.verify_num_range(dic['imgSize'], 'imgSize', 1, None) dic['filters'] = [filters*groups for filters,groups in zip(dic['filters'], dic['groups'])] dic['filterPixels'] = [filterSize**2 for filterSize in dic['filterSize']] if dic['modulesX'] <= 0: dic['modulesX'] = [1 + int(ceil((2*padding + imgSize - filterSize) / float(stride))) for padding,imgSize,filterSize,stride in zip(dic['padding'], dic['imgSize'], dic['filterSize'], dic['stride'])] else: dic['modulesX'] = [dic['modulesX']] * len(dic['inputs']) dic['filterChannels'] = [channels/groups for channels,groups in zip(dic['channels'], dic['groups'])] if len(set(dic['modulesX'])) != 1 or len(set(dic['filters'])) != 1: raise LayerParsingError("Layer '%s': all inputs must produce equally-dimensioned output. Dimensions are: %s." % (name, ", ".join("%dx%dx%d" % (filters, modulesX, modulesX) for filters,modulesX in zip(dic['filters'], dic['modulesX'])))) dic['modulesX'] = dic['modulesX'][0] dic['modules'] = dic['modulesX']**2 dic['filters'] = dic['filters'][0] dic['outputs'] = dic['modules'] * dic['filters'] # dic['filterConns'] = [[]] * len(dic['inputs']) for i in xrange(len(dic['inputs'])): if dic['numInputs'][i] % dic['imgPixels'][i] != 0 or dic['imgSize'][i] * dic['imgSize'][i] != dic['imgPixels'][i]: raise LayerParsingError("Layer '%s[%d]': has %-d dimensional input, not interpretable as square %d-channel images" % (name, i, dic['numInputs'][i], dic['channels'][i])) if dic['channels'][i] > 3 and dic['channels'][i] % 4 != 0: raise LayerParsingError("Layer '%s[%d]': number of channels must be smaller than 4 or divisible by 4" % (name, i)) # if dic['filterSize'][i] > totalPadding[i] + dic['imgSize'][i]: # raise LayerParsingError("Layer '%s[%d]': filter size (%d) greater than image size + padding (%d)" % (name, i, dic['filterSize'][i], dic['padding'][i] + dic['imgSize'][i])) if -dic['padding'][i] + dic['stride'][i] * (dic['modulesX'] - 1) + dic['filterSize'][i] < dic['imgSize'][i]: raise LayerParsingError("Layer '%s[%d]': %dx%d output map with padding=%d, stride=%d does not cover entire input image." % (name, i, dic['modulesX'], dic['outputsX'], dic['padding'][i], dic['stride'][i])) if dic['groups'][i] > 1: self.verify_divisible(dic['channels'][i], 4*dic['groups'][i], 'channels', '4 * groups', input_idx=i) self.verify_divisible(dic['channels'][i], dic['groups'][i], 'channels', 'groups', input_idx=i) self.verify_divisible(dic['filters'], 16*dic['groups'][i], 'filters * groups', input_idx=i) dic['padding'][i] = -dic['padding'][i] # dic['overSample'] = [groups*filterChannels/channels for groups,filterChannels,channels in zip(dic['groups'], dic['filterChannels'], dic['channels'])] dic['weightsPerFilter'] = [fc * (fz**2) for fc, fz in zip(dic['filterChannels'], dic['filterSize'])] return dic class ConvLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def add_params(self, mcp): LocalLayerParser.add_params(self, mcp) self.dic['wcNormMax'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMax', default=[0.0] * len(self.dic['inputs'])) self.dic['wcNormMin'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMin', default=[0.0] * len(self.dic['inputs'])) self.verify_num_params(['wcNormMax', 'wcNormMin']) for min,max in zip(self.dic['wcNormMin'], self.dic['wcNormMax']): if min > max: raise LayerParsingError("Layer '%s': wcNormMin must be <= wcNormMax." % (self.dic['name'])) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) dic['sumWidth'] = mcp.safe_get_int(name, 'sumWidth') dic['sharedBiases'] = mcp.safe_get_bool(name, 'sharedBiases', default=True) num_biases = dic['filters'] if dic['sharedBiases'] else dic['modules']*dic['filters'] eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] self.make_weights(dic['initW'], eltmult(dic['filterPixels'], dic['filterChannels']), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(num_biases, 1, order='C') print "Initialized convolutional layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class LocalUnsharedLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] scmult = lambda x, lst: [x * l for l in lst] self.make_weights(dic['initW'], scmult(dic['modules'], eltmult(dic['filterPixels'], dic['filterChannels'])), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(dic['modules'] * dic['filters'], 1, order='C') print "Initialized locally-connected layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class DataLayerParser(LayerParser): def __init__(self): LayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['dataIdx'] = mcp.safe_get_int(name, 'dataIdx') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['end'] = mcp.safe_get_int(name, 'end', default=model.train_data_provider.get_data_dims(idx=dic['dataIdx'])) dic['outputs'] = dic['end'] - dic['start'] # dic['usesActs'] = False print "Initialized data layer '%s', producing %d outputs" % (name, dic['outputs']) return dic class SoftmaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['inputLayers'][0]['outputs'] print "Initialized softmax layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class ConcatentionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized concatenation layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PassThroughLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) # Note: this doesn't verify all the necessary constraints. Layer construction may still fail in C++ code. # For example, it does not verify that every layer only has one pass-through parent. Obviously having # two such parents is incoherent. def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) # if len(dic['inputLayers']) == 1: # raise LayerParsingError("Layer %s: pass-through layer must have more than one input." % dic['name']) if len(dic['gpu']) != len(dic['inputLayers'][0]['gpu']): raise LayerParsingError("Layer '%s': number of replicas in pass-through layer must be equivalent to number of replicas in input layers." % dic['name']) for inp in dic['inputLayers']: conflicting_layers = [l for l in prev_layers.values() if l['type'] == 'pass' and inp['name'] in l['inputs'] and len(set(dic['gpu']).intersection(set(l['gpu']))) > 0] if len(conflicting_layers) > 0: raise LayerParsingError("Layer '%s' conflicts with layer '%s'. Both pass-through layers take layer '%s' as input and operate on an overlapping set of GPUs." % (dic['name'], conflicting_layers[0]['name'], inp['name'])) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) # dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized pass-through layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputsX'] = mcp.safe_get_int(name, 'outputsX', default=0) dic['pool'] = mcp.safe_get(name, 'pool') # Avg pooler does not use its acts or inputs dic['usesActs'] = dic['pool'] != 'avg' dic['usesInputs'] = dic['pool'] != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) if dic['pool'] == 'avg': dic['sum'] = mcp.safe_get_bool(name, 'sum', default=False) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['stride'], 'stride', 1, dic['sizeX']) self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) if LayerWithInputParser.grad_consumers_below(dic): self.verify_divisible(dic['channels'], 16, 'channels') self.verify_str_in(dic['pool'], 'pool', ['max', 'maxabs', 'avg']) self.verify_img_size() if dic['outputsX'] <= 0: dic['outputsX'] = int(ceil((dic['imgSize'] - dic['start'] - dic['sizeX']) / float(dic['stride']))) + 1; dic['outputs'] = dic['outputsX']**2 * dic['channels'] print "Initialized %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class CrossMapPoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputChannels'] = mcp.safe_get_int(name, 'outputs', default=0) dic['pool'] = mcp.safe_get(name, 'pool') dic['requiresParams'] = False # Avg pooler does not use its acts or inputs dic['usesActs'] = 'pool' != 'avg' dic['usesInputs'] = 'pool' != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['outputChannels'] * dic['imgPixels'] self.verify_num_range(dic['size'], 'size', 1, dic['channels']) self.verify_num_range(dic['stride'], 'stride', 1, dic['size']) self.verify_num_range(dic['outputChannels'], 'outputChannels', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['start'], 'start', None, 0) self.verify_str_in(dic['pool'], 'pool', ['max']) self.verify_img_size() covered_chans = dic['start'] + (dic['outputChannels'] - 1) * dic['stride'] + dic['size'] if covered_chans < dic['channels']: raise LayerParsingError("Layer '%s': cross-map pooling with start=%d, stride=%d, size=%d, outputs=%d covers only %d of %d input channels." % \ (name, dic['start'], dic['stride'], dic['size'], dic['outputChannels'], covered_chans, dic['channels'])) print "Initialized cross-map %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['outputChannels']) return dic class NormLayerParser(LayerWithInputParser): RESPONSE_NORM = 'response' CONTRAST_NORM = 'contrast' CROSSMAP_RESPONSE_NORM = 'cross-map response' def __init__(self, norm_type): LayerWithInputParser.__init__(self, num_inputs=1) self.norm_type = norm_type def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['scale'] = mcp.safe_get_float(name, 'scale') dic['scale'] /= dic['size'] if self.norm_type == self.CROSSMAP_RESPONSE_NORM else dic['size']**2 dic['pow'] = mcp.safe_get_float(name, 'pow') dic['minDiv'] = mcp.safe_get_float(name, 'minDiv', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['blocked'] = mcp.safe_get_bool(name, 'blocked', default=False) dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) # Contrast normalization layer does not use its inputs dic['usesInputs'] = self.norm_type != self.CONTRAST_NORM self.verify_num_range(dic['channels'], 'channels', 1, None) if self.norm_type == self.CROSSMAP_RESPONSE_NORM: self.verify_num_range(dic['size'], 'size', 2, dic['channels']) if dic['channels'] % 16 != 0: raise LayerParsingError("Layer '%s': number of channels must be divisible by 16 when using crossMap" % name) else: self.verify_num_range(dic['size'], 'size', 1, dic['imgSize']) if self.norm_type != self.CROSSMAP_RESPONSE_NORM and dic['channels'] > 3 and dic['channels'] % 4 != 0: raise LayerParsingError("Layer '%s': number of channels must be smaller than 4 or divisible by 4" % name) self.verify_img_size() dic['outputs'] = dic['imgPixels'] * dic['channels'] print "Initialized %s-normalization layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (self.norm_type, name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['channels']) return dic class CostParser(LayerWithInputParser): def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True # Stored as string because python can't pickle lambda functions dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs]' dic['children'] = mcp.safe_get_list(name, 'children', default=[]) # Aggregated costs only produce outputs which are additive. for c in dic['children']: if c not in prev_layers: raise LayerParsingError("Layer '%s': child cost layer '%s' not defined" % (name, c)) if prev_layers[c]['type'] != dic['type']: raise LayerParsingError("Layer '%s': child cost layer '%s' must have same type as parent" % (name, c)) prev_layers[c]['aggregated'] = 1 dic['aggregated'] = dic['children'] != [] del dic['neuron'] return dic def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeff'] = mcp.safe_get_float(name, 'coeff') dic['gradConsumer'] = dic['coeff'] > 0 class CrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': Second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': Softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class LogregCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['topk'] = mcp.safe_get_int(name, 'topk', default=1) if dic['topk'] > dic['numInputs'][1]: raise LayerParsingError("Layer '%s': parameter 'topk'must not have value greater than the number of classess." % (name)) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True if dic['numInputs'][0] != 1: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of first input must be 1" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized logistic regression cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class BinomialCrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) self.dic['posWeight'] = mcp.safe_get_float(self.dic['name'], 'posWeight', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != dic['numInputs'][1]: raise LayerParsingError("Layer '%s': both inputs must produce the same number of outputs" % (name)) if 'neuron' not in dic['inputLayers'][1] or dic['inputLayers'][1]['neuron'] != 'logistic': print "WARNING: Layer '%s': input '%s' is not logistic, results may not be what you intend." % (dic['name'], dic['inputs'][1]) if dic['type'] == 'cost.bce': print "Initialized binomial cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) dic['computeSoftmaxErrorRate'] = True return dic class DetectionCrossEntCostParser(BinomialCrossEntCostParser): def __init__(self): BinomialCrossEntCostParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = BinomialCrossEntCostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) dic['computeSoftmaxErrorRate'] = False dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs[:2]] + [(class_cost[2] / class_cost[j] if class_cost[j] > 0 else n.inf) for class_cost in [costs[2:][i*3:(i+1)*3] for i in range(len(costs[2:])/3)] for j in range(2)]' dic['outputFilterFormatter'] = 'lambda self,costs: "(crossent) %.6f, (err) %.6f, " % (costs[0], costs[1]) + ", ".join("(%s) %.6f, %.6f" % (self.train_data_provider.batch_meta["label_names"][i/2-1],costs[i],costs[i+1]) for i in xrange(2, len(costs), 2))' print "Initialized detection cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class SumOfSquaresCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) print "Initialized sum-of-squares cost '%s' on GPUs %s" % (name, dic['gpus']) return dic # All the layer parsers layer_parsers = {'data' : lambda : DataLayerParser(), 'fc': lambda : FCLayerParser(), 'sfc': lambda : SplitFCLayerParser(), 'conv': lambda : ConvLayerParser(), 'local': lambda : LocalUnsharedLayerParser(), 'softmax': lambda : SoftmaxLayerParser(), 'eltsum': lambda : EltwiseSumLayerParser(), 'eltmax': lambda : EltwiseMaxLayerParser(), 'sum': lambda : SumLayerParser(), 'neuron': lambda : NeuronLayerParser(), 'pool': lambda : PoolLayerParser(), 'cmpool': lambda : CrossMapPoolLayerParser(), 'rnorm': lambda : NormLayerParser(NormLayerParser.RESPONSE_NORM), 'cnorm': lambda : NormLayerParser(NormLayerParser.CONTRAST_NORM), 'cmrnorm': lambda : NormLayerParser(NormLayerParser.CROSSMAP_RESPONSE_NORM), 'nailbed': lambda : NailbedLayerParser(), 'blur': lambda : GaussianBlurLayerParser(), 'href': lambda : HorizontalReflectionLayerParser(), 'resize': lambda : ResizeLayerParser(), 'rgb2yuv': lambda : RGBToYUVLayerParser(), 'rgb2lab': lambda : RGBToLABLayerParser(), 'rscale': lambda : RandomScaleLayerParser(), 'crop': lambda : CropLayerParser(), 'concat': lambda : ConcatentionLayerParser(), 'pass': lambda : PassThroughLayerParser(), 'dropout': lambda : DropoutLayerParser(), 'dropout2': lambda : Dropout2LayerParser(), 'cost.logreg': lambda : LogregCostParser(), 'cost.crossent': lambda : CrossEntCostParser(), 'cost.bce': lambda : BinomialCrossEntCostParser(), 'cost.dce': lambda : DetectionCrossEntCostParser(), 'cost.sum2': lambda : SumOfSquaresCostParser()} # All the neuron parsers # This isn't a name --> parser mapping as the layer parsers above because neurons don't have fixed names. # A user may write tanh[0.5,0.25], etc. neuron_parsers = sorted([NeuronParser('ident', 'f(x) = x', uses_acts=False, uses_inputs=False), NeuronParser('logistic', 'f(x) = 1 / (1 + e^-x)', uses_acts=True, uses_inputs=False), NeuronParser('abs', 'f(x) = |x|', uses_acts=False, uses_inputs=True), NeuronParser('relu', 'f(x) = max(0, x)', uses_acts=True, uses_inputs=False), NeuronParser('nrelu', 'f(x) = max(0, x) + noise', uses_acts=True, uses_inputs=False), NeuronParser('softrelu', 'f(x) = log(1 + e^x)', uses_acts=True, uses_inputs=False), NeuronParser('square', 'f(x) = x^2', uses_acts=False, uses_inputs=True), NeuronParser('sqrt', 'f(x) = sqrt(x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('log[a]', 'f(x) = log(a + x)', uses_acts=False, uses_inputs=True), ParamNeuronParser('tanh[a,b]', 'f(x) = a * tanh(b * x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('brelu[a]', 'f(x) = min(a, max(0, x))', uses_acts=True, uses_inputs=False), ParamNeuronParser('linear[a,b]', 'f(x) = a * x + b', uses_acts=True, uses_inputs=False), ParamNeuronParser('drelu[a]', 'f(x) = x - a * tanh(x / a)', uses_acts=False, uses_inputs=True)], key=lambda x:x.type) # Learning rate schedules lrs_parsers = sorted([ParamParser('const[fbase]'), ParamParser('linear[fbase;ftgtFactor]'), ParamParser('exp[fbase;ftgtFactor]'), ParamParser('dexp[fbase;ftgtFactor;inumSteps]')])
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from python_util.data import * import numpy.random as nr import numpy as n import random as r from time import time from threading import Thread from math import sqrt import sys #from matplotlib import pylab as pl from PIL import Image from StringIO import StringIO from time import time import itertools as it class JPEGBatchLoaderThread(Thread): def __init__(self, dp, batch_num, label_offset, list_out): Thread.__init__(self) self.list_out = list_out self.label_offset = label_offset self.dp = dp self.batch_num = batch_num @staticmethod def load_jpeg_batch(rawdics, dp, label_offset): if type(rawdics) != list: rawdics = [rawdics] nc_total = sum(len(r['data']) for r in rawdics) jpeg_strs = list(it.chain.from_iterable(rd['data'] for rd in rawdics)) labels = list(it.chain.from_iterable(rd['labels'] for rd in rawdics)) img_mat = n.empty((nc_total * dp.data_mult, dp.inner_pixels * dp.num_colors), dtype=n.float32) lab_mat = n.zeros((nc_total, dp.get_num_classes()), dtype=n.float32) dp.convnet.libmodel.decodeJpeg(jpeg_strs, img_mat, dp.img_size, dp.inner_size, dp.test, dp.multiview) lab_vec = n.tile(n.asarray([(l[nr.randint(len(l))] if len(l) > 0 else -1) + label_offset for l in labels], dtype=n.single).reshape((nc_total, 1)), (dp.data_mult,1)) for c in xrange(nc_total): lab_mat[c, [z + label_offset for z in labels[c]]] = 1 lab_mat = n.tile(lab_mat, (dp.data_mult, 1)) return {'data': img_mat[:nc_total * dp.data_mult,:], 'labvec': lab_vec[:nc_total * dp.data_mult,:], 'labmat': lab_mat[:nc_total * dp.data_mult,:]} def run(self): rawdics = self.dp.get_batch(self.batch_num) p = JPEGBatchLoaderThread.load_jpeg_batch(rawdics, self.dp, self.label_offset) self.list_out.append(p) class ColorNoiseMakerThread(Thread): def __init__(self, pca_stdevs, pca_vecs, num_noise, list_out): Thread.__init__(self) self.pca_stdevs, self.pca_vecs = pca_stdevs, pca_vecs self.num_noise = num_noise self.list_out = list_out def run(self): noise = n.dot(nr.randn(self.num_noise, 3).astype(n.single) * self.pca_stdevs.T, self.pca_vecs.T) self.list_out.append(noise) class ImageDataProvider(LabeledDataProvider): def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False): LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.data_mean = self.batch_meta['data_mean'].astype(n.single) self.color_eig = self.batch_meta['color_pca'][1].astype(n.single) self.color_stdevs = n.c_[self.batch_meta['color_pca'][0].astype(n.single)] self.color_noise_coeff = dp_params['color_noise'] self.num_colors = 3 self.img_size = int(sqrt(self.batch_meta['num_vis'] / self.num_colors)) self.mini = dp_params['minibatch_size'] self.inner_size = dp_params['inner_size'] if dp_params['inner_size'] > 0 else self.img_size self.inner_pixels = self.inner_size **2 self.border_size = (self.img_size - self.inner_size) / 2 self.multiview = dp_params['multiview_test'] and test self.num_views = 5*2 self.data_mult = self.num_views if self.multiview else 1 self.batch_size = self.batch_meta['batch_size'] self.label_offset = 0 if 'label_offset' not in self.batch_meta else self.batch_meta['label_offset'] self.scalar_mean = dp_params['scalar_mean'] # Maintain pointers to previously-returned data matrices so they don't get garbage collected. self.data = [None, None] # These are pointers to previously-returned data matrices self.loader_thread, self.color_noise_thread = None, None self.convnet = dp_params['convnet'] self.num_noise = self.batch_size self.batches_generated, self.loaders_started = 0, 0 self.data_mean_crop = self.data_mean.reshape((self.num_colors,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((1,3*self.inner_size**2)) if self.scalar_mean >= 0: self.data_mean_crop = self.scalar_mean def showimg(self, img): from matplotlib import pylab as pl pixels = img.shape[0] / 3 size = int(sqrt(pixels)) img = img.reshape((3,size,size)).swapaxes(0,2).swapaxes(0,1) pl.imshow(img, interpolation='nearest') pl.show() def get_data_dims(self, idx=0): if idx == 0: return self.inner_size**2 * 3 if idx == 2: return self.get_num_classes() return 1 def start_loader(self, batch_idx): self.load_data = [] self.loader_thread = JPEGBatchLoaderThread(self, self.batch_range[batch_idx], self.label_offset, self.load_data) self.loader_thread.start() def start_color_noise_maker(self): color_noise_list = [] self.color_noise_thread = ColorNoiseMakerThread(self.color_stdevs, self.color_eig, self.num_noise, color_noise_list) self.color_noise_thread.start() return color_noise_list def set_labels(self, datadic): pass def get_data_from_loader(self): if self.loader_thread is None: self.start_loader(self.batch_idx) self.loader_thread.join() self.data[self.d_idx] = self.load_data[0] self.start_loader(self.get_next_batch_idx()) else: # Set the argument to join to 0 to re-enable batch reuse self.loader_thread.join() if not self.loader_thread.is_alive(): self.data[self.d_idx] = self.load_data[0] self.start_loader(self.get_next_batch_idx()) #else: # print "Re-using batch" self.advance_batch() def add_color_noise(self): # At this point the data already has 0 mean. # So I'm going to add noise to it, but I'm also going to scale down # the original data. This is so that the overall scale of the training # data doesn't become too different from the test data. s = self.data[self.d_idx]['data'].shape cropped_size = self.get_data_dims(0) / 3 ncases = s[0] if self.color_noise_thread is None: self.color_noise_list = self.start_color_noise_maker() self.color_noise_thread.join() self.color_noise = self.color_noise_list[0] self.color_noise_list = self.start_color_noise_maker() else: self.color_noise_thread.join(0) if not self.color_noise_thread.is_alive(): self.color_noise = self.color_noise_list[0] self.color_noise_list = self.start_color_noise_maker() self.data[self.d_idx]['data'] = self.data[self.d_idx]['data'].reshape((ncases*3, cropped_size)) self.color_noise = self.color_noise[:ncases,:].reshape((3*ncases, 1)) self.data[self.d_idx]['data'] += self.color_noise * self.color_noise_coeff self.data[self.d_idx]['data'] = self.data[self.d_idx]['data'].reshape((ncases, 3* cropped_size)) self.data[self.d_idx]['data'] *= 1.0 / (1.0 + self.color_noise_coeff) # <--- NOTE: This is the slow line, 0.25sec. Down from 0.75sec when I used division. def get_next_batch(self): self.d_idx = self.batches_generated % 2 epoch, batchnum = self.curr_epoch, self.curr_batchnum self.get_data_from_loader() # Subtract mean self.data[self.d_idx]['data'] -= self.data_mean_crop if self.color_noise_coeff > 0 and not self.test: self.add_color_noise() self.batches_generated += 1 return epoch, batchnum, [self.data[self.d_idx]['data'].T, self.data[self.d_idx]['labvec'].T, self.data[self.d_idx]['labmat'].T] # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data, add_mean=True): mean = self.data_mean_crop.reshape((data.shape[0],1)) if data.flags.f_contiguous or self.scalar_mean else self.data_mean_crop.reshape((data.shape[0],1)) return n.require((data + (mean if add_mean else 0)).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) class CIFARDataProvider(LabeledDataProvider): def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False): LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) self.img_size = 32 self.num_colors = 3 self.inner_size = dp_params['inner_size'] if dp_params['inner_size'] > 0 else self.batch_meta['img_size'] self.border_size = (self.img_size - self.inner_size) / 2 self.multiview = dp_params['multiview_test'] and test self.num_views = 9 self.scalar_mean = dp_params['scalar_mean'] self.data_mult = self.num_views if self.multiview else 1 self.data_dic = [] for i in batch_range: self.data_dic += [unpickle(self.get_data_file_name(i))] self.data_dic[-1]["labels"] = n.require(self.data_dic[-1]['labels'], dtype=n.single) self.data_dic[-1]["labels"] = n.require(n.tile(self.data_dic[-1]["labels"].reshape((1, n.prod(self.data_dic[-1]["labels"].shape))), (1, self.data_mult)), requirements='C') self.data_dic[-1]['data'] = n.require(self.data_dic[-1]['data'] - self.scalar_mean, dtype=n.single, requirements='C') self.cropped_data = [n.zeros((self.get_data_dims(), self.data_dic[0]['data'].shape[1]*self.data_mult), dtype=n.single) for x in xrange(2)] self.batches_generated = 0 self.data_mean = self.batch_meta['data_mean'].reshape((self.num_colors,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((self.get_data_dims(), 1)) def get_next_batch(self): epoch, batchnum = self.curr_epoch, self.curr_batchnum self.advance_batch() bidx = batchnum - self.batch_range[0] cropped = self.cropped_data[self.batches_generated % 2] self.__trim_borders(self.data_dic[bidx]['data'], cropped) cropped -= self.data_mean self.batches_generated += 1 return epoch, batchnum, [cropped, self.data_dic[bidx]['labels']] def get_data_dims(self, idx=0): return self.inner_size**2 * self.num_colors if idx == 0 else 1 # Takes as input an array returned by get_next_batch # Returns a (numCases, imgSize, imgSize, 3) array which can be # fed to pylab for plotting. # This is used by shownet.py to plot test case predictions. def get_plottable_data(self, data): return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) def __trim_borders(self, x, target): y = x.reshape(self.num_colors, self.img_size, self.img_size, x.shape[1]) if self.test: # don't need to loop over cases if self.multiview: start_positions = [(0,0), (0, self.border_size), (0, self.border_size*2), (self.border_size, 0), (self.border_size, self.border_size), (self.border_size, self.border_size*2), (self.border_size*2, 0), (self.border_size*2, self.border_size), (self.border_size*2, self.border_size*2)] end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions] for i in xrange(self.num_views): target[:,i * x.shape[1]:(i+1)* x.shape[1]] = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:].reshape((self.get_data_dims(),x.shape[1])) else: pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1])) else: for c in xrange(x.shape[1]): # loop over cases startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1) endY, endX = startY + self.inner_size, startX + self.inner_size pic = y[:,startY:endY,startX:endX, c] if nr.randint(2) == 0: # also flip the image with 50% probability pic = pic[:,:,::-1] target[:,c] = pic.reshape((self.get_data_dims(),)) class DummyConvNetLogRegDataProvider(LabeledDummyDataProvider): def __init__(self, data_dim): LabeledDummyDataProvider.__init__(self, data_dim) self.img_size = int(sqrt(data_dim/3)) def get_next_batch(self): epoch, batchnum, dic = LabeledDummyDataProvider.get_next_batch(self) dic = {'data': dic[0], 'labels': dic[1]} print dic['data'].shape, dic['labels'].shape return epoch, batchnum, [dic['data'], dic['labels']] # Returns the dimensionality of the two data matrices returned by get_next_batch def get_data_dims(self, idx=0): return self.batch_meta['num_vis'] if idx == 0 else 1
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from getopt import getopt import os import re #import types TERM_BOLD_START = "\033[1m" TERM_BOLD_END = "\033[0m" class Option: def __init__(self, letter, name, desc, parser, set_once, default, excuses, requires, save): assert not name is None self.letter = letter self.name = name self.desc = desc self.parser = parser self.set_once = set_once self.default = default self.excuses = excuses self.requires = requires self.save = save self.value = None self.value_given = False self.prefixed_letter = min(2, len(letter)) * '-' + letter def set_value(self, value, parse=True): try: self.value = self.parser.parse(value) if parse else value self.value_given = True # print self.name, self.value except OptionException, e: raise OptionException("Unable to parse option %s (%s): %s" % (self.prefixed_letter, self.desc, e)) def set_default(self): if not self.default is None: self.value = self.default def eval_expr_default(self, env): try: if isinstance(self.default, OptionExpression) and not self.value_given: self.value = self.default.evaluate(env) if not self.parser.is_type(self.value): raise OptionException("expression result %s is not of right type (%s)" % (self.value, self.parser.get_type_str())) except Exception, e: raise OptionException("Unable to set default value for option %s (%s): %s" % (self.prefixed_letter, self.desc, e)) def get_str_value(self, get_default_str=False): val = self.value if get_default_str: val = self.default if val is None: return "" if isinstance(val, OptionExpression): return val.expr return self.parser.to_string(val) class OptionsParser: """An option parsing class. All options without default values are mandatory, unless a excuses option (usually a load file) is given. Does not support options without arguments.""" SORT_LETTER = 1 SORT_DESC = 2 SORT_EXPR_LAST = 3 EXCUSE_ALL = "all" def __init__(self): self.options = {} def add_option(self, letter, name, parser, desc, set_once=False, default=None, excuses=[], requires=[], save=True): """ The letter parameter is the actual parameter that the user will have to supply on the command line. The name parameter is some name to be given to this option and must be a valid python variable name. An explanation of the "default" parameter: The default value, if specified, should have the same type as the option. You can also specify an expression as the default value. In this case, the default value of the parameter will be the output of the expression. The expression may assume all other option names as local variables. For example, you can define the hidden bias learning rate to be 10 times the weight learning rate by setting this default: default=OptionExpression("eps_w * 10") (assuming an option named eps_w exists). However, it is up to you to make sure you do not make any circular expression definitions. Note that the order in which the options are parsed is arbitrary. In particular, expression default values that depend on other expression default values will often raise errors (depending on the order in which they happen to be parsed). Therefore it is best not to make the default value of one variable depend on the value of another if the other variable's default value is itself an expression. An explanation of the "excuses" parameter: All options are mandatory, but certain options can exclude other options from being mandatory. For example, if the excuses parameter for option "load_file" is ["num_hid", "num_vis"], then the options num_hid and num_vis are not mandatory as long as load_file is specified. Use the special flag EXCUSE_ALL to allow an option to make all other options optional. """ assert name not in self.options self.options[name] = Option(letter, name, desc, parser, set_once, default, excuses, requires, save) def set_value(self, name, value, parse=True): self.options[name].set_value(value, parse=parse) def get_value(self, name): return self.options[name].value def delete_option(self, name): if name in self.options: del self.options[name] def parse(self, eval_expr_defaults=False): """Parses the options in sys.argv based on the options added to this parser. The default behavior is to leave any expression default options as OptionExpression objects. Set eval_expr_defaults=True to circumvent this.""" short_opt_str = ''.join(["%s:" % self.options[name].letter for name in self.options if len(self.options[name].letter) == 1]) long_opts = ["%s=" % self.options[name].letter for name in self.options if len(self.options[name].letter) > 1] (go, ga) = getopt(sys.argv[1:], short_opt_str, longopts=long_opts) dic = dict(go) for o in self.get_options_list(sort_order=self.SORT_EXPR_LAST): if o.prefixed_letter in dic: o.set_value(dic[o.prefixed_letter]) else: # check if excused or has default excused = max([o2.prefixed_letter in dic for o2 in self.options.values() if o2.excuses == self.EXCUSE_ALL or o.name in o2.excuses]) if not excused and o.default is None: raise OptionMissingException("Option %s (%s) not supplied" % (o.prefixed_letter, o.desc)) o.set_default() # check requirements if o.prefixed_letter in dic: for o2 in self.get_options_list(sort_order=self.SORT_LETTER): if o2.name in o.requires and o2.prefixed_letter not in dic: raise OptionMissingException("Option %s (%s) requires option %s (%s)" % (o.prefixed_letter, o.desc, o2.prefixed_letter, o2.desc)) if eval_expr_defaults: self.eval_expr_defaults() return self.options def merge_from(self, op2): """Merges the options in op2 into this instance, but does not overwrite this instances's SET options with op2's default values.""" for name, o in self.options.iteritems(): if name in op2.options and ((op2.options[name].value_given and op2.options[name].value != self.options[name].value) or not op2.options[name].save): if op2.options[name].set_once: raise OptionException("Option %s (%s) cannot be changed" % (op2.options[name].prefixed_letter, op2.options[name].desc)) self.options[name] = op2.options[name] for name in op2.options: if name not in self.options: self.options[name] = op2.options[name] def eval_expr_defaults(self): env = dict([(name, o.value) for name, o in self.options.iteritems()]) for o in self.options.values(): o.eval_expr_default(env) def all_values_given(self): return max([o.value_given for o in self.options.values() if o.default is not None]) def get_options_list(self, sort_order=SORT_LETTER): """ Returns the list of Option objects in this OptionParser, sorted as specified""" cmp = lambda x, y: (x.desc < y.desc and -1 or 1) if sort_order == self.SORT_LETTER: cmp = lambda x, y: (x.letter < y.letter and -1 or 1) elif sort_order == self.SORT_EXPR_LAST: cmp = lambda x, y: (type(x.default) == OptionExpression and 1 or -1) return sorted(self.options.values(), cmp=cmp) def print_usage(self, print_constraints=False): print "%s usage:" % os.path.basename(sys.argv[0]) opslist = self.get_options_list() usage_strings = [] num_def = 0 for o in opslist: excs = ' ' if o.default is None: excs = ', '.join(sorted([o2.prefixed_letter for o2 in self.options.values() if o2.excuses == self.EXCUSE_ALL or o.name in o2.excuses])) reqs = ', '.join(sorted([o2.prefixed_letter for o2 in self.options.values() if o2.name in o.requires])) usg = (OptionsParser._bold(o.prefixed_letter) + " <%s>" % o.parser.get_type_str(), o.desc, ("[%s]" % o.get_str_value(get_default_str=True)) if not o.default is None else None, excs, reqs) if o.default is None: usage_strings += [usg] else: usage_strings.insert(num_def, usg) num_def += 1 col_widths = [self._longest_value(usage_strings, key=lambda x:x[i]) for i in range(len(usage_strings[0]) - 1)] col_names = [" Option", "Description", "Default"] if print_constraints: col_names += ["Excused by", "Requires"] for i, s in enumerate(col_names): print self._bold(s.ljust(col_widths[i])), print "" for l, d, de, ex, req in usage_strings: if de is None: de = ' ' print (" %s -" % l.ljust(col_widths[0])), d.ljust(col_widths[1]), de.ljust(col_widths[2]), else: print (" [%s] -" % l.ljust(col_widths[0])), d.ljust(col_widths[1]), de.ljust(col_widths[2]), if print_constraints: print ex.ljust(col_widths[3]), req else: print "" def print_values(self): longest_desc = self._longest_value(self.options.values(), key=lambda x:x.desc) longest_def_value = self._longest_value([v for v in self.options.values() if not v.value_given and not v.default is None], key=lambda x:x.get_str_value()) for o in self.get_options_list(sort_order=self.SORT_DESC): print "%s: %s %s" % (o.desc.ljust(longest_desc), o.get_str_value().ljust(longest_def_value), (not o.value_given and not o.default is None) and "[DEFAULT]" or "") @staticmethod def _longest_value(values, key=lambda x:x): mylen = lambda x: 0 if x is None else len(x) return mylen(key(max(values, key=lambda x:mylen(key(x))))) @staticmethod def _bold(str): return TERM_BOLD_START + str + TERM_BOLD_END class OptionException(Exception): pass class OptionMissingException(OptionException): pass class OptionParser: @staticmethod def parse(value): return str(value) @staticmethod def to_string(value): return str(value) @staticmethod def get_type_str(): pass class IntegerOptionParser(OptionParser): @staticmethod def parse(value): try: return int(value) except: raise OptionException("argument is not an integer") @staticmethod def get_type_str(): return "int" @staticmethod def is_type(value): return type(value) == int class BooleanOptionParser(OptionParser): @staticmethod def parse(value): try: v = int(value) if not v in (0,1): raise OptionException return v except: raise OptionException("argument is not a boolean") @staticmethod def get_type_str(): return "0/1" @staticmethod def is_type(value): return type(value) == int and value in (0, 1) class StringOptionParser(OptionParser): @staticmethod def get_type_str(): return "string" @staticmethod def is_type(value): return type(value) == str class FloatOptionParser(OptionParser): @staticmethod def parse(value): try: return float(value) except: raise OptionException("argument is not a float") @staticmethod def to_string(value): return "%.6g" % value @staticmethod def get_type_str(): return "float" @staticmethod def is_type(value): return type(value) == float class RangeOptionParser(OptionParser): @staticmethod def parse(value): m = re.match("^(\d+)\-(\d+)$", value) try: if m: return range(int(m.group(1)), int(m.group(2)) + 1) return [int(value)] except: raise OptionException("argument is neither an integer nor a range") @staticmethod def to_string(value): return "%d-%d" % (value[0], value[-1]) @staticmethod def get_type_str(): return "int[-int]" @staticmethod def is_type(value): return type(value) == list class ListOptionParser(OptionParser): """ A parser that parses a delimited list of items. If the "parsers" argument is a list of parsers, then the list of items must have the form and length specified by that list. Example: ListOptionParser([FloatOptionParser, IntegerOptionParser]) would parse "0.5,3" but not "0.5,3,0.6" or "0.5" or "3,0.5". If the "parsers" argument is another parser, then the list of items may be of arbitrary length, but each item must be parseable by the given parser. Example: ListOptionParser(FloatOptionParser) would parse "0.5" and "0.5,0.3" and "0.5,0.3,0.6", etc. """ def __init__(self, parsers, sepchar=','): self.parsers = parsers self.sepchar = sepchar def parse(self, value): values = value.split(self.sepchar) if type(self.parsers) == list and len(values) != len(self.parsers): raise OptionException("requires %d arguments, given %d" % (len(self.parsers), len(values))) try: if type(self.parsers) == list: return [p.parse(v) for p, v in zip(self.parsers, values)] return [self.parsers.parse(v) for v in values] except: raise OptionException("argument is not of the form %s" % self.get_type_str()) def to_string(self, value): if type(self.parsers) == list: return self.sepchar.join([p.to_string(v) for p, v in zip(self.parsers, value)]) return self.sepchar.join([self.parsers.to_string(v) for v in value]) def get_type_str(self): if type(self.parsers) == list: return self.sepchar.join([p.get_type_str() for p in self.parsers]) return "%s%s..." % (self.parsers.get_type_str(), self.sepchar) @staticmethod def is_type(value): return type(value) == list class OptionExpression: """ This allows you to specify option values in terms of other option values. Example: op.add_option("eps-w", "eps_w", ListOptionParser(FloatOptionParser), "Weight learning rates for each layer") op.add_option("eps-b", "eps_b", ListOptionParser(FloatOptionParser), "Bias learning rates for each layer", default=OptionExpression("[o * 10 for o in eps_w]")) This says: the default bias learning rate for each layer is 10 times the weight learning rate for that layer. """ def __init__(self, expr): self.expr = expr def evaluate(self, options): locals().update(options) try: return eval(self.expr) except Exception, e: raise OptionException("expression '%s': unable to parse: %s" % (self.expr, e))
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import cPickle import os from cStringIO import StringIO class UnpickleError(Exception): pass GPU_LOCK_NO_SCRIPT = -2 GPU_LOCK_NO_LOCK = -1 def pickle(filename, data): fo = filename if type(filename) == str: fo = open(filename, "w") cPickle.dump(data, fo, protocol=cPickle.HIGHEST_PROTOCOL) fo.close() def unpickle(filename): if not os.path.exists(filename): raise UnpickleError("Path '%s' does not exist." % filename) fo = open(filename, 'r') z = StringIO() file_size = os.fstat(fo.fileno()).st_size # Read 1GB at a time to avoid overflow while fo.tell() < file_size: z.write(fo.read(1 << 30)) fo.close() dict = cPickle.loads(z.getvalue()) z.close() return dict def is_intel_machine(): VENDOR_ID_REGEX = re.compile('^vendor_id\s+: (\S+)') f = open('/proc/cpuinfo') for line in f: m = VENDOR_ID_REGEX.match(line) if m: f.close() return m.group(1) == 'GenuineIntel' f.close() return False # Returns the CPUs associated with a given GPU def get_cpus_for_gpu(gpu): #proc = subprocess.Popen(['nvidia-smi', '-q', '-i', str(gpu)], stdout=subprocess.PIPE) #lines = proc.communicate()[0] #lines = subprocess.check_output(['nvidia-smi', '-q', '-i', str(gpu)]).split(os.linesep) with open('/proc/driver/nvidia/gpus/%d/information' % gpu) as f: for line in f: if line.startswith('Bus Location'): bus_id = line.split(':', 1)[1].strip() bus_id = bus_id[:7] + ':' + bus_id[8:] ff = open('/sys/module/nvidia/drivers/pci:nvidia/%s/local_cpulist' % bus_id) cpus_str = ff.readline() ff.close() cpus = [cpu for s in cpus_str.split(',') for cpu in range(int(s.split('-')[0]),int(s.split('-')[1])+1)] return cpus return [-1] def get_cpu(): if is_intel_machine(): return 'intel' return 'amd' def is_windows_machine(): return os.name == 'nt' def tryint(s): try: return int(s) except: return s def alphanum_key(s): return [tryint(c) for c in re.split('([0-9]+)', s)]
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as n from numpy.random import randn, rand, random_integers import os from threading import Thread from util import * BATCH_META_FILE = "batches.meta" class DataLoaderThread(Thread): def __init__(self, path, tgt): Thread.__init__(self) self.path = path self.tgt = tgt def run(self): self.tgt += [unpickle(self.path)] class DataProvider: BATCH_REGEX = re.compile('^data_batch_(\d+)(\.\d+)?$') def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params={}, test=False): if batch_range == None: batch_range = DataProvider.get_batch_nums(data_dir) if init_batchnum is None or init_batchnum not in batch_range: init_batchnum = batch_range[0] self.data_dir = data_dir self.batch_range = batch_range self.curr_epoch = init_epoch self.curr_batchnum = init_batchnum self.dp_params = dp_params self.batch_meta = self.get_batch_meta(data_dir) self.data_dic = None self.test = test self.batch_idx = batch_range.index(init_batchnum) def get_next_batch(self): if self.data_dic is None or len(self.batch_range) > 1: self.data_dic = self.get_batch(self.curr_batchnum) epoch, batchnum = self.curr_epoch, self.curr_batchnum self.advance_batch() return epoch, batchnum, self.data_dic def get_batch(self, batch_num): fname = self.get_data_file_name(batch_num) if os.path.isdir(fname): # batch in sub-batches sub_batches = sorted(os.listdir(fname), key=alphanum_key) #print sub_batches num_sub_batches = len(sub_batches) tgts = [[] for i in xrange(num_sub_batches)] threads = [DataLoaderThread(os.path.join(fname, s), tgt) for (s, tgt) in zip(sub_batches, tgts)] for thread in threads: thread.start() for thread in threads: thread.join() return [t[0] for t in tgts] return unpickle(self.get_data_file_name(batch_num)) def get_data_dims(self,idx=0): return self.batch_meta['num_vis'] if idx == 0 else 1 def advance_batch(self): self.batch_idx = self.get_next_batch_idx() self.curr_batchnum = self.batch_range[self.batch_idx] if self.batch_idx == 0: # we wrapped self.curr_epoch += 1 def get_next_batch_idx(self): return (self.batch_idx + 1) % len(self.batch_range) def get_next_batch_num(self): return self.batch_range[self.get_next_batch_idx()] # get filename of current batch def get_data_file_name(self, batchnum=None): if batchnum is None: batchnum = self.curr_batchnum return os.path.join(self.data_dir, 'data_batch_%d' % batchnum) @classmethod def get_instance(cls, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, type="default", dp_params={}, test=False): # why the fuck can't i reference DataProvider in the original definition? #cls.dp_classes['default'] = DataProvider type = type or DataProvider.get_batch_meta(data_dir)['dp_type'] # allow data to decide data provider if type.startswith("dummy-"): name = "-".join(type.split('-')[:-1]) + "-n" if name not in dp_types: raise DataProviderException("No such data provider: %s" % type) _class = dp_classes[name] dims = int(type.split('-')[-1]) return _class(dims) elif type in dp_types: _class = dp_classes[type] return _class(data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) raise DataProviderException("No such data provider: %s" % type) @classmethod def register_data_provider(cls, name, desc, _class): if name in dp_types: raise DataProviderException("Data provider %s already registered" % name) dp_types[name] = desc dp_classes[name] = _class @staticmethod def get_batch_meta(data_dir): return unpickle(os.path.join(data_dir, BATCH_META_FILE)) @staticmethod def get_batch_filenames(srcdir): return sorted([f for f in os.listdir(srcdir) if DataProvider.BATCH_REGEX.match(f)], key=alphanum_key) @staticmethod def get_batch_nums(srcdir): names = DataProvider.get_batch_filenames(srcdir) return sorted(list(set(int(DataProvider.BATCH_REGEX.match(n).group(1)) for n in names))) @staticmethod def get_num_batches(srcdir): return len(DataProvider.get_batch_nums(srcdir)) class DummyDataProvider(DataProvider): def __init__(self, data_dim): #self.data_dim = data_dim self.batch_range = [1] self.batch_meta = {'num_vis': data_dim, 'data_in_rows':True} self.curr_epoch = 1 self.curr_batchnum = 1 self.batch_idx = 0 def get_next_batch(self): epoch, batchnum = self.curr_epoch, self.curr_batchnum self.advance_batch() data = rand(512, self.get_data_dims()).astype(n.single) return self.curr_epoch, self.curr_batchnum, {'data':data} class LabeledDataProvider(DataProvider): def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params={}, test=False): DataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) def get_num_classes(self): return len(self.batch_meta['label_names']) class LabeledDummyDataProvider(DummyDataProvider): def __init__(self, data_dim, num_classes=10, num_cases=7): #self.data_dim = data_dim self.batch_range = [1] self.batch_meta = {'num_vis': data_dim, 'label_names': [str(x) for x in range(num_classes)], 'data_in_rows':True} self.num_cases = num_cases self.num_classes = num_classes self.curr_epoch = 1 self.curr_batchnum = 1 self.batch_idx=0 self.data = None def get_num_classes(self): return self.num_classes def get_next_batch(self): epoch, batchnum = self.curr_epoch, self.curr_batchnum self.advance_batch() if self.data is None: data = rand(self.num_cases, self.get_data_dims()).astype(n.single) # <--changed to rand labels = n.require(n.c_[random_integers(0,self.num_classes-1,self.num_cases)], requirements='C', dtype=n.single) self.data, self.labels = data, labels else: data, labels = self.data, self.labels # print data.shape, labels.shape return self.curr_epoch, self.curr_batchnum, [data.T, labels.T ] dp_types = {"dummy-n": "Dummy data provider for n-dimensional data", "dummy-labeled-n": "Labeled dummy data provider for n-dimensional data"} dp_classes = {"dummy-n": DummyDataProvider, "dummy-labeled-n": LabeledDummyDataProvider} class DataProviderException(Exception): pass
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as n import os from time import time, asctime, localtime, strftime from util import * from data import * from options import * from math import ceil, floor, sqrt from data import DataProvider, dp_types import sys import shutil import platform from os import linesep as NL from threading import Thread import tempfile as tf class ModelStateException(Exception): pass class CheckpointWriter(Thread): def __init__(self, path, dic): Thread.__init__(self) self.path = path self.dic = dic def run(self): save_dir = os.path.dirname(self.path) save_file = os.path.basename(self.path) # Write checkpoint to temporary filename tmpfile = tf.NamedTemporaryFile(dir=os.path.dirname(save_dir), delete=False) pickle(tmpfile, self.dic) # Also closes tf # Move it to final filename os.rename(tmpfile.name, self.path) # Delete old checkpoints for f in os.listdir(save_dir): if f != save_file: os.remove(os.path.join(save_dir, f)) # GPU Model interface class IGPUModel: def __init__(self, model_name, op, load_dic, filename_options=[], dp_params={}): # these are input parameters self.model_name = model_name self.op = op self.options = op.options self.load_dic = load_dic self.filename_options = filename_options self.dp_params = dp_params self.device_ids = self.op.get_value('gpu') self.fill_excused_options() self.checkpoint_writer = None #assert self.op.all_values_given() for o in op.get_options_list(): setattr(self, o.name, o.value) self.loaded_from_checkpoint = load_dic is not None # these are things that the model must remember but they're not input parameters if self.loaded_from_checkpoint: self.model_state = load_dic["model_state"] self.save_file = self.options["save_file_override"].value if self.options["save_file_override"].value_given else self.options['load_file'].value if not os.path.isdir(self.save_file) and os.path.exists(self.save_file): self.save_file = os.path.dirname(self.save_file) # print self.options["save_file_override"].value, self.save_file else: self.model_state = {} self.save_file = self.options["save_file_override"].value if self.options["save_file_override"].value_given else os.path.join(self.options['save_path'].value, model_name + "_" + '_'.join(['%s_%s' % (char, self.options[opt].get_str_value()) for opt, char in filename_options]) + '_' + strftime('%Y-%m-%d_%H.%M.%S')) self.model_state["train_outputs"] = [] self.model_state["test_outputs"] = [] self.model_state["epoch"] = 1 self.model_state["batchnum"] = self.train_batch_range[0] # print self.save_file self.init_data_providers() if load_dic: self.train_data_provider.advance_batch() # model state often requries knowledge of data provider, so it's initialized after try: self.init_model_state() except ModelStateException, e: print e sys.exit(1) for var, val in self.model_state.iteritems(): setattr(self, var, val) self.import_model() self.init_model_lib() def import_model(self): print "=========================" print "Importing %s C++ module" % ('_' + self.model_name) self.libmodel = __import__('_' + self.model_name) def fill_excused_options(self): pass def init_data_providers(self): self.dp_params['convnet'] = self try: self.test_data_provider = DataProvider.get_instance(self.data_path, self.test_batch_range, type=self.dp_type, dp_params=self.dp_params, test=True) self.train_data_provider = DataProvider.get_instance(self.data_path, self.train_batch_range, self.model_state["epoch"], self.model_state["batchnum"], type=self.dp_type, dp_params=self.dp_params, test=False) except DataProviderException, e: print "Unable to create data provider: %s" % e self.print_data_providers() sys.exit() def init_model_state(self): pass def init_model_lib(self): pass def start(self): if self.test_only: self.test_outputs += [self.get_test_error()] self.print_test_results() else: self.train() self.cleanup() if self.force_save: self.save_state().join() sys.exit(0) def train(self): print "=========================" print "Training %s" % self.model_name self.op.print_values() print "=========================" self.print_model_state() print "Running on CUDA device(s) %s" % ", ".join("%d" % d for d in self.device_ids) print "Current time: %s" % asctime(localtime()) print "Saving checkpoints to %s" % self.save_file print "=========================" next_data = self.get_next_batch() while self.epoch <= self.num_epochs: data = next_data self.epoch, self.batchnum = data[0], data[1] self.print_iteration() sys.stdout.flush() compute_time_py = time() self.start_batch(data) # load the next batch while the current one is computing next_data = self.get_next_batch() batch_output = self.finish_batch() self.train_outputs += [batch_output] self.print_train_results() if self.get_num_batches_done() % self.testing_freq == 0: self.sync_with_host() self.test_outputs += [self.get_test_error()] self.print_test_results() self.print_test_status() self.conditional_save() self.print_elapsed_time(time() - compute_time_py) def cleanup(self): if self.checkpoint_writer is not None: self.checkpoint_writer.join() self.checkpoint_writer = None def print_model_state(self): pass def get_num_batches_done(self): return len(self.train_batch_range) * (self.epoch - 1) + self.batchnum - self.train_batch_range[0] + 1 def get_next_batch(self, train=True): dp = self.train_data_provider if not train: dp = self.test_data_provider return self.parse_batch_data(dp.get_next_batch(), train=train) def parse_batch_data(self, batch_data, train=True): return batch_data[0], batch_data[1], batch_data[2]['data'] def start_batch(self, batch_data, train=True): self.libmodel.startBatch(batch_data[2], not train) def finish_batch(self): return self.libmodel.finishBatch() def print_iteration(self): print "\t%d.%d..." % (self.epoch, self.batchnum), def print_elapsed_time(self, compute_time_py): print "(%.3f sec)" % (compute_time_py) def print_train_results(self): batch_error = self.train_outputs[-1][0] if not (batch_error > 0 and batch_error < 2e20): print "Crazy train error: %.6f" % batch_error self.cleanup() print "Train error: %.6f " % (batch_error), def print_test_results(self): batch_error = self.test_outputs[-1][0] print "%s\t\tTest error: %.6f" % (NL, batch_error), def print_test_status(self): status = (len(self.test_outputs) == 1 or self.test_outputs[-1][0] < self.test_outputs[-2][0]) and "ok" or "WORSE" print status, def sync_with_host(self): if self.checkpoint_writer is not None: self.checkpoint_writer.join() self.checkpoint_writer = None self.libmodel.syncWithHost() def conditional_save(self): batch_error = self.test_outputs[-1][0] if batch_error > 0 and batch_error < self.max_test_err: self.save_state() else: print "\tTest error > %g, not saving." % self.max_test_err, def aggregate_test_outputs(self, test_outputs): test_error = tuple([sum(t[r] for t in test_outputs) / (1 if self.test_one else len(self.test_batch_range)) for r in range(len(test_outputs[-1]))]) return test_error def get_test_error(self): next_data = self.get_next_batch(train=False) test_outputs = [] while True: data = next_data start_time_test = time() self.start_batch(data, train=False) load_next = (not self.test_one or self.test_only) and data[1] < self.test_batch_range[-1] if load_next: # load next batch next_data = self.get_next_batch(train=False) test_outputs += [self.finish_batch()] if self.test_only: # Print the individual batch results for safety print "batch %d: %s" % (data[1], str(test_outputs[-1])), self.print_elapsed_time(time() - start_time_test) if not load_next: break sys.stdout.flush() return self.aggregate_test_outputs(test_outputs) def set_var(self, var_name, var_val): setattr(self, var_name, var_val) self.model_state[var_name] = var_val return var_val def get_var(self, var_name): return self.model_state[var_name] def has_var(self, var_name): return var_name in self.model_state def save_state(self): for att in self.model_state: if hasattr(self, att): self.model_state[att] = getattr(self, att) dic = {"model_state": self.model_state, "op": self.op} checkpoint_file = "%d.%d" % (self.epoch, self.batchnum) checkpoint_file_full_path = os.path.join(self.save_file, checkpoint_file) if not os.path.exists(self.save_file): os.makedirs(self.save_file) assert self.checkpoint_writer is None self.checkpoint_writer = CheckpointWriter(checkpoint_file_full_path, dic) self.checkpoint_writer.start() print "-------------------------------------------------------" print "Saved checkpoint to %s" % self.save_file print "=======================================================", return self.checkpoint_writer def get_progress(self): num_batches_total = self.num_epochs * len(self.train_batch_range) return min(1.0, max(0.0, float(self.get_num_batches_done()-1) / num_batches_total)) @staticmethod def load_checkpoint(load_dir): if os.path.isdir(load_dir): return unpickle(os.path.join(load_dir, sorted(os.listdir(load_dir), key=alphanum_key)[-1])) return unpickle(load_dir) @staticmethod def get_options_parser(): op = OptionsParser() op.add_option("load-file", "load_file", StringOptionParser, "Load file", default="", excuses=OptionsParser.EXCUSE_ALL) op.add_option("save-path", "save_path", StringOptionParser, "Save path", excuses=['save_file_override']) op.add_option("save-file", "save_file_override", StringOptionParser, "Save file override", excuses=['save_path']) op.add_option("train-range", "train_batch_range", RangeOptionParser, "Data batch range: training") op.add_option("test-range", "test_batch_range", RangeOptionParser, "Data batch range: testing") op.add_option("data-provider", "dp_type", StringOptionParser, "Data provider", default="default") op.add_option("test-freq", "testing_freq", IntegerOptionParser, "Testing frequency", default=25) op.add_option("epochs", "num_epochs", IntegerOptionParser, "Number of epochs", default=500) op.add_option("data-path", "data_path", StringOptionParser, "Data path") op.add_option("max-test-err", "max_test_err", FloatOptionParser, "Maximum test error for saving") op.add_option("test-only", "test_only", BooleanOptionParser, "Test and quit?", default=0) op.add_option("test-one", "test_one", BooleanOptionParser, "Test on one batch at a time?", default=1) op.add_option("force-save", "force_save", BooleanOptionParser, "Force save before quitting", default=0) op.add_option("gpu", "gpu", ListOptionParser(IntegerOptionParser), "GPU override") return op @staticmethod def print_data_providers(): print "Available data providers:" for dp, desc in dp_types.iteritems(): print " %s: %s" % (dp, desc) @staticmethod def parse_options(op): try: load_dic = None options = op.parse() load_location = None # print options['load_file'].value_given, options['save_file_override'].value_given # print options['save_file_override'].value if options['load_file'].value_given: load_location = options['load_file'].value elif options['save_file_override'].value_given and os.path.exists(options['save_file_override'].value): load_location = options['save_file_override'].value if load_location is not None: load_dic = IGPUModel.load_checkpoint(load_location) old_op = load_dic["op"] old_op.merge_from(op) op = old_op op.eval_expr_defaults() return op, load_dic except OptionMissingException, e: print e op.print_usage() except OptionException, e: print e except UnpickleError, e: print "Error loading checkpoint:" print e sys.exit()
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################# # This script makes batches suitable for training from raw ILSVRC 2012 tar files. import tarfile from StringIO import StringIO from random import shuffle import sys from time import time from pyext._MakeDataPyExt import resizeJPEG import itertools import os import cPickle import scipy.io import math import argparse as argp # Set this to True to crop images to square. In this case each image will be # resized such that its shortest edge is OUTPUT_IMAGE_SIZE pixels, and then the # center OUTPUT_IMAGE_SIZE x OUTPUT_IMAGE_SIZE patch will be extracted. # # Set this to False to preserve image borders. In this case each image will be # resized such that its shortest edge is OUTPUT_IMAGE_SIZE pixels. This was # demonstrated to be superior by Andrew Howard in his very nice paper: # http://arxiv.org/abs/1312.5402 CROP_TO_SQUARE = True OUTPUT_IMAGE_SIZE = 256 # Number of threads to use for JPEG decompression and image resizing. NUM_WORKER_THREADS = 8 # Don't worry about these. OUTPUT_BATCH_SIZE = 3072 OUTPUT_SUB_BATCH_SIZE = 1024 def pickle(filename, data): with open(filename, "w") as fo: cPickle.dump(data, fo, protocol=cPickle.HIGHEST_PROTOCOL) def unpickle(filename): fo = open(filename, 'r') contents = cPickle.load(fo) fo.close() return contents def partition_list(l, partition_size): divup = lambda a,b: (a + b - 1) / b return [l[i*partition_size:(i+1)*partition_size] for i in xrange(divup(len(l),partition_size))] def open_tar(path, name): if not os.path.exists(path): print "ILSVRC 2012 %s not found at %s. Make sure to set ILSVRC_SRC_DIR correctly at the top of this file (%s)." % (name, path, sys.argv[0]) sys.exit(1) return tarfile.open(path) def makedir(path): if not os.path.exists(path): os.makedirs(path) def parse_devkit_meta(ILSVRC_DEVKIT_TAR): tf = open_tar(ILSVRC_DEVKIT_TAR, 'devkit tar') fmeta = tf.extractfile(tf.getmember('ILSVRC2012_devkit_t12/data/meta.mat')) meta_mat = scipy.io.loadmat(StringIO(fmeta.read())) labels_dic = dict((m[0][1][0], m[0][0][0][0]-1) for m in meta_mat['synsets'] if m[0][0][0][0] >= 1 and m[0][0][0][0] <= 1000) label_names_dic = dict((m[0][1][0], m[0][2][0]) for m in meta_mat['synsets'] if m[0][0][0][0] >= 1 and m[0][0][0][0] <= 1000) label_names = [tup[1] for tup in sorted([(v,label_names_dic[k]) for k,v in labels_dic.items()], key=lambda x:x[0])] fval_ground_truth = tf.extractfile(tf.getmember('ILSVRC2012_devkit_t12/data/ILSVRC2012_validation_ground_truth.txt')) validation_ground_truth = [[int(line.strip()) - 1] for line in fval_ground_truth.readlines()] tf.close() return labels_dic, label_names, validation_ground_truth def write_batches(target_dir, name, start_batch_num, labels, jpeg_files): jpeg_files = partition_list(jpeg_files, OUTPUT_BATCH_SIZE) labels = partition_list(labels, OUTPUT_BATCH_SIZE) makedir(target_dir) print "Writing %s batches..." % name for i,(labels_batch, jpeg_file_batch) in enumerate(zip(labels, jpeg_files)): t = time() jpeg_strings = list(itertools.chain.from_iterable(resizeJPEG([jpeg.read() for jpeg in jpeg_file_batch], OUTPUT_IMAGE_SIZE, NUM_WORKER_THREADS, CROP_TO_SQUARE))) batch_path = os.path.join(target_dir, 'data_batch_%d' % (start_batch_num + i)) makedir(batch_path) for j in xrange(0, len(labels_batch), OUTPUT_SUB_BATCH_SIZE): pickle(os.path.join(batch_path, 'data_batch_%d.%d' % (start_batch_num + i, j/OUTPUT_SUB_BATCH_SIZE)), {'data': jpeg_strings[j:j+OUTPUT_SUB_BATCH_SIZE], 'labels': labels_batch[j:j+OUTPUT_SUB_BATCH_SIZE]}) print "Wrote %s (%s batch %d of %d) (%.2f sec)" % (batch_path, name, i+1, len(jpeg_files), time() - t) return i + 1 if __name__ == "__main__": parser = argp.ArgumentParser() parser.add_argument('--src-dir', help='Directory containing ILSVRC2012_img_train.tar, ILSVRC2012_img_val.tar, and ILSVRC2012_devkit_t12.tar.gz', required=True) parser.add_argument('--tgt-dir', help='Directory to output ILSVRC 2012 batches suitable for cuda-convnet to train on.', required=True) args = parser.parse_args() print "CROP_TO_SQUARE: %s" % CROP_TO_SQUARE print "OUTPUT_IMAGE_SIZE: %s" % OUTPUT_IMAGE_SIZE print "NUM_WORKER_THREADS: %s" % NUM_WORKER_THREADS ILSVRC_TRAIN_TAR = os.path.join(args.src_dir, 'ILSVRC2012_img_train.tar') ILSVRC_VALIDATION_TAR = os.path.join(args.src_dir, 'ILSVRC2012_img_val.tar') ILSVRC_DEVKIT_TAR = os.path.join(args.src_dir, 'ILSVRC2012_devkit_t12.tar.gz') assert OUTPUT_BATCH_SIZE % OUTPUT_SUB_BATCH_SIZE == 0 labels_dic, label_names, validation_labels = parse_devkit_meta(ILSVRC_DEVKIT_TAR) with open_tar(ILSVRC_TRAIN_TAR, 'training tar') as tf: synsets = tf.getmembers() synset_tars = [tarfile.open(fileobj=tf.extractfile(s)) for s in synsets] print "Loaded synset tars." print "Building training set image list (this can take 10-20 minutes)..." sys.stdout.flush() train_jpeg_files = [] for i,st in enumerate(synset_tars): if i % 100 == 0: print "%d%% ..." % int(round(100.0 * float(i) / len(synset_tars))), sys.stdout.flush() train_jpeg_files += [st.extractfile(m) for m in st.getmembers()] st.close() shuffle(train_jpeg_files) train_labels = [[labels_dic[jpeg.name[:9]]] for jpeg in train_jpeg_files] print "done" # Write training batches i = write_batches(args.tgt_dir, 'training', 0, train_labels, train_jpeg_files) # Write validation batches val_batch_start = int(math.ceil((i / 1000.0))) * 1000 with open_tar(ILSVRC_VALIDATION_TAR, 'validation tar') as tf: validation_jpeg_files = sorted([tf.extractfile(m) for m in tf.getmembers()], key=lambda x:x.name) write_batches(args.tgt_dir, 'validation', val_batch_start, validation_labels, validation_jpeg_files) # Write meta file meta = unpickle('input_meta') meta_file = os.path.join(args.tgt_dir, 'batches.meta') meta.update({'batch_size': OUTPUT_BATCH_SIZE, 'num_vis': OUTPUT_IMAGE_SIZE**2 * 3, 'label_names': label_names}) pickle(meta_file, meta) print "Wrote %s" % meta_file print "All done! ILSVRC 2012 batches are in %s" % args.tgt_dir
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
## @package process # Module doxygen.process # Script to insert preamble for doxygen and regen API docs import glob, os, shutil # Module caffe2...caffe2.python.control_test def insert(originalfile,first_line,description): with open(originalfile,'r') as f: f1 = f.readline() if(f1.find(first_line)<0): docs = first_line + description + f1 with open('newfile.txt','w') as f2: f2.write(docs) f2.write(f.read()) os.rename('newfile.txt',originalfile) else: print('already inserted') # move up from /caffe2_root/doxygen os.chdir("..") os.system("git checkout caffe2/contrib/.") os.system("git checkout caffe2/distributed/.") os.system("git checkout caffe2/experiments/.") os.system("git checkout caffe2/python/.") for root, dirs, files in os.walk("."): for file in files: if (file.endswith(".py") and not file.endswith("_test.py") and not file.endswith("__.py")): filepath = os.path.join(root, file) print("filepath: " + filepath) directory = os.path.dirname(filepath)[2:] directory = directory.replace("/",".") print "directory: " + directory name = os.path.splitext(file)[0] first_line = "## @package " + name description = "\n# Module " + directory + "." + name + "\n" print first_line,description insert(filepath,first_line,description) if os.path.exists("doxygen/doxygen-python"): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree("doxygen/doxygen-python") else: os.makedirs("doxygen/doxygen-python") if os.path.exists("doxygen/doxygen-c"): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree("doxygen/doxygen-c") else: os.makedirs("doxygen/doxygen-c") os.system("doxygen .Doxyfile-python") os.system("doxygen .Doxyfile-c")
## @package diagnose_protobuf # Module scripts.diagnose_protobuf """Diagnoses the current protobuf situation. Protocol buffer needs to be properly installed for Caffe2 to work, and sometimes it is rather tricky. Specifically, we will need to have a consistent version between C++ and python simultaneously. This is a convenience script for one to quickly check if this is so on one's local machine. Usage: [set your environmental variables like PATH and PYTHONPATH] python scripts/diagnose_protobuf.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import re from subprocess import Popen, PIPE # Get python protobuf version. try: import google.protobuf python_version = google.protobuf.__version__ python_protobuf_installed = True except ImportError: print("DEBUG: cannot find python protobuf install.") python_protobuf_installed = False if os.name == 'nt': protoc_name = 'protoc.exe' else: protoc_name = 'protoc' try: p = Popen([protoc_name, '--version'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() except: print('DEBUG: did not find protoc binary.') print('DEBUG: out: ' + out) print('DEBUG: err: ' + err) native_protobuf_installed = False else: if p.returncode: print('DEBUG: protoc returned a non-zero return code.') print('DEBUG: out: ' + out) print('DEBUG: err: ' + err) native_protobuf_installed = False else: tmp = re.search('\d\.\d\.\d', out) if tmp: native_version = tmp.group(0) native_protobuf_installed = True else: print('DEBUG: cannot parse protoc version string.') print('DEBUG: out: ' + out) native_protobuf_installed = False PYTHON_PROTOBUF_NOT_INSTALLED = """ You have not installed python protobuf. Protobuf is needed to run caffe2. You can install protobuf via pip or conda (if you are using anaconda python). """ NATIVE_PROTOBUF_NOT_INSTALLED = """ You have not installed the protoc binary. Protoc is needed to compile Caffe2 protobuf source files. Depending on the platform you are on, you can install protobuf via: (1) Mac: using homebrew and do brew install protobuf. (2) Linux: use apt and do apt-get install libprotobuf-dev (3) Windows: install from source, or from the releases here: https://github.com/google/protobuf/releases/ """ VERSION_MISMATCH = """ Your python protobuf is of version {py_ver} but your native protoc version is of version {native_ver}. This will cause the installation to produce incompatible protobuf files. This is bad in general - consider installing the same version. """.format(py_ver=python_version, native_ver=native_version) # Now, give actual recommendations if not python_protobuf_installed: print(PYTHON_PROTOBUF_NOT_INSTALLED) if not native_protobuf_installed: print(NATIVE_PROTOBUF_NOT_INSTALLED) if python_protobuf_installed and native_protobuf_installed: if python_version != native_version: print(VERSION_MISMATCH) else: print('All looks good.')
## @package get_python_cmake_flags # Module scripts.get_python_cmake_flags ############################################################################## # Use this script to find your preferred python installation. ############################################################################## # # You can use the following to build with your preferred version of python # if your installation is not being properly detected by CMake. # # mkdir -p build && cd build # cmake $(python ../scripts/get_python_libs.py) .. # make # from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from distutils import sysconfig import os import sys import platform # Flags to print to stdout flags = '' inc = sysconfig.get_python_inc() lib = sysconfig.get_config_var("LIBDIR") # macOS specific if sys.platform == "darwin": lib = os.path.dirname(lib) + '/Python' if os.path.isfile(lib): flags += '-DPYTHON_LIBRARY={lib} '.format(lib=lib) if os.path.isfile(inc + '/Python.h'): flags += '-DPYTHON_INCLUDE_DIR={inc} '.format(inc=inc) print(flags, end='')
#!/usr/bin/env python from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CppExtension setup( name="torchaudio", version="0.1", description="An audio package for PyTorch", url="https://github.com/pytorch/audio", author="Soumith Chintala, David Pollack, Sean Naren, Peter Goldsborough", author_email="[email protected]", install_requires=["torch>=0.4"], setup_requires=["torch>=0.4"], # Exclude the build files. packages=find_packages(exclude=["build"]), ext_modules=[ CppExtension( '_torch_sox', ['torchaudio/torch_sox.cpp'], libraries=['sox']), ], cmdclass={'build_ext': BuildExtension})
import unittest import torch import torchaudio import math import os class Test_LoadSave(unittest.TestCase): test_dirpath = os.path.dirname(os.path.realpath(__file__)) test_filepath = os.path.join(test_dirpath, "assets", "steam-train-whistle-daniel_simon.mp3") def test_load(self): # check normal loading x, sr = torchaudio.load(self.test_filepath) self.assertEqual(sr, 44100) self.assertEqual(x.size(), (278756, 2)) self.assertGreater(x.sum(), 0) # check normalizing x, sr = torchaudio.load(self.test_filepath, normalization=True) self.assertTrue(x.min() >= -1.0) self.assertTrue(x.max() <= 1.0) # check raising errors with self.assertRaises(OSError): torchaudio.load("file-does-not-exist.mp3") with self.assertRaises(OSError): tdir = os.path.join( os.path.dirname(self.test_dirpath), "torchaudio") torchaudio.load(tdir) def test_save(self): # load signal x, sr = torchaudio.load(self.test_filepath) # check save new_filepath = os.path.join(self.test_dirpath, "test.wav") torchaudio.save(new_filepath, x, sr) self.assertTrue(os.path.isfile(new_filepath)) os.unlink(new_filepath) # check automatic normalization x /= 1 << 31 torchaudio.save(new_filepath, x, sr) self.assertTrue(os.path.isfile(new_filepath)) os.unlink(new_filepath) # test save 1d tensor x = x[:, 0] # get mono signal x.squeeze_() # remove channel dim torchaudio.save(new_filepath, x, sr) self.assertTrue(os.path.isfile(new_filepath)) os.unlink(new_filepath) # don't allow invalid sizes as inputs with self.assertRaises(ValueError): x.unsqueeze_(0) # N x L not L x N torchaudio.save(new_filepath, x, sr) with self.assertRaises(ValueError): x.squeeze_() x.unsqueeze_(1) x.unsqueeze_(0) # 1 x L x 1 torchaudio.save(new_filepath, x, sr) # automatically convert sr from floating point to int x.squeeze_(0) torchaudio.save(new_filepath, x, float(sr)) self.assertTrue(os.path.isfile(new_filepath)) os.unlink(new_filepath) # don't allow uneven integers with self.assertRaises(TypeError): torchaudio.save(new_filepath, x, float(sr) + 0.5) self.assertTrue(os.path.isfile(new_filepath)) os.unlink(new_filepath) # don't save to folders that don't exist with self.assertRaises(OSError): new_filepath = os.path.join(self.test_dirpath, "no-path", "test.wav") torchaudio.save(new_filepath, x, sr) # save created file sinewave_filepath = os.path.join(self.test_dirpath, "assets", "sinewave.wav") sr = 16000 freq = 440 volume = 0.3 y = (torch.cos( 2 * math.pi * torch.arange(0, 4 * sr) * freq / sr)).float() y.unsqueeze_(1) # y is between -1 and 1, so must scale y = (y * volume * 2**31).long() torchaudio.save(sinewave_filepath, y, sr) self.assertTrue(os.path.isfile(sinewave_filepath)) def test_load_and_save_is_identity(self): input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav') tensor, sample_rate = torchaudio.load(input_path) output_path = os.path.join(self.test_dirpath, 'test.wav') torchaudio.save(output_path, tensor, sample_rate) tensor2, sample_rate2 = torchaudio.load(output_path) self.assertTrue(tensor.allclose(tensor2)) self.assertEqual(sample_rate, sample_rate2) os.unlink(output_path) if __name__ == '__main__': unittest.main()
from __future__ import print_function import torch import torchaudio import torchaudio.transforms as transforms import numpy as np import unittest class Tester(unittest.TestCase): sr = 16000 freq = 440 volume = .3 sig = (torch.cos(2 * np.pi * torch.arange(0, 4 * sr) * freq / sr)).float() # sig = (torch.cos((1+torch.arange(0, 4 * sr) * 2) / sr * 2 * np.pi * torch.arange(0, 4 * sr) * freq / sr)).float() sig.unsqueeze_(1) sig = (sig * volume * 2**31).long() def test_scale(self): audio_orig = self.sig.clone() result = transforms.Scale()(audio_orig) self.assertTrue(result.min() >= -1. and result.max() <= 1., print("min: {}, max: {}".format(result.min(), result.max()))) maxminmax = np.abs( [audio_orig.min(), audio_orig.max()]).max().astype(np.float) result = transforms.Scale(factor=maxminmax)(audio_orig) self.assertTrue((result.min() == -1. or result.max() == 1.) and result.min() >= -1. and result.max() <= 1., print("min: {}, max: {}".format(result.min(), result.max()))) repr_test = transforms.Scale() repr_test.__repr__() def test_pad_trim(self): audio_orig = self.sig.clone() length_orig = audio_orig.size(0) length_new = int(length_orig * 1.2) result = transforms.PadTrim(max_len=length_new)(audio_orig) self.assertTrue(result.size(0) == length_new, print("old size: {}, new size: {}".format(audio_orig.size(0), result.size(0)))) audio_orig = self.sig.clone() length_orig = audio_orig.size(0) length_new = int(length_orig * 0.8) result = transforms.PadTrim(max_len=length_new)(audio_orig) self.assertTrue(result.size(0) == length_new, print("old size: {}, new size: {}".format(audio_orig.size(0), result.size(0)))) repr_test = transforms.PadTrim(max_len=length_new) repr_test.__repr__() def test_downmix_mono(self): audio_L = self.sig.clone() audio_R = self.sig.clone() R_idx = int(audio_R.size(0) * 0.1) audio_R = torch.cat((audio_R[R_idx:], audio_R[:R_idx])) audio_Stereo = torch.cat((audio_L, audio_R), dim=1) self.assertTrue(audio_Stereo.size(1) == 2) result = transforms.DownmixMono()(audio_Stereo) self.assertTrue(result.size(1) == 1) repr_test = transforms.DownmixMono() repr_test.__repr__() def test_lc2cl(self): audio = self.sig.clone() result = transforms.LC2CL()(audio) self.assertTrue(result.size()[::-1] == audio.size()) repr_test = transforms.LC2CL() repr_test.__repr__() def test_mel(self): audio = self.sig.clone() audio = transforms.Scale()(audio) self.assertTrue(audio.dim() == 2) result = transforms.MEL()(audio) self.assertTrue(result.dim() == 3) result = transforms.BLC2CBL()(result) self.assertTrue(result.dim() == 3) repr_test = transforms.MEL() repr_test.__repr__() repr_test = transforms.BLC2CBL() repr_test.__repr__() def test_compose(self): audio_orig = self.sig.clone() length_orig = audio_orig.size(0) length_new = int(length_orig * 1.2) maxminmax = np.abs( [audio_orig.min(), audio_orig.max()]).max().astype(np.float) tset = (transforms.Scale(factor=maxminmax), transforms.PadTrim(max_len=length_new)) result = transforms.Compose(tset)(audio_orig) self.assertTrue(np.abs([result.min(), result.max()]).max() == 1.) self.assertTrue(result.size(0) == length_new) repr_test = transforms.Compose(tset) repr_test.__repr__() def test_mu_law_companding(self): sig = self.sig.clone() quantization_channels = 256 sig = self.sig.numpy() sig = sig / np.abs(sig).max() self.assertTrue(sig.min() >= -1. and sig.max() <= 1.) sig_mu = transforms.MuLawEncoding(quantization_channels)(sig) self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels) sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu) self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.) sig = self.sig.clone() sig = sig / torch.abs(sig).max() self.assertTrue(sig.min() >= -1. and sig.max() <= 1.) sig_mu = transforms.MuLawEncoding(quantization_channels)(sig) self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels) sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu) self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.) repr_test = transforms.MuLawEncoding(quantization_channels) repr_test.__repr__() repr_test = transforms.MuLawExpanding(quantization_channels) repr_test.__repr__() def test_mel2(self): audio_orig = self.sig.clone() # (16000, 1) audio_scaled = transforms.Scale()(audio_orig) # (16000, 1) audio_scaled = transforms.LC2CL()(audio_scaled) # (1, 16000) spectrogram_torch = transforms.MEL2()(audio_scaled) # (1, 319, 40) self.assertTrue(spectrogram_torch.dim() == 3) self.assertTrue(spectrogram_torch.max() <= 0.) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # PyTorch documentation build configuration file, created by # sphinx-quickstart on Fri Dec 23 13:31:47 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import torch import torchaudio import sphinx_rtd_theme # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinxcontrib.googleanalytics', ] napoleon_use_ivar = True googleanalytics_id = 'UA-90545585-1' googleanalytics_enabled = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Torchaudio' copyright = '2017, Torch Contributors' author = 'Torch Contributors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # TODO: change to [:2] at v1.0 version = 'master ' # The full version, including alpha/beta/rc tags. # TODO: verify this works as expected release = 'master' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'collapse_navigation': False, 'display_version': True, 'logo_only': True, } html_logo = '_static/img/pytorch-logo-dark.svg' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # html_style_path = 'css/pytorch_theme.css' html_context = { 'css_files': [ 'https://fonts.googleapis.com/css?family=Lato', '_static/css/pytorch_theme.css' ], } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'PyTorchdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pytorch.tex', 'torchaudio Documentation', 'Torch Contributors', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'torchaudio', 'torchaudio Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'torchaudio', 'torchaudio Documentation', author, 'torchaudio', 'One line description of project.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('https://docs.python.org/', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), } # -- A patch that prevents Sphinx from cross-referencing ivar tags ------- # See http://stackoverflow.com/a/41184353/3343043 from docutils import nodes from sphinx.util.docfields import TypedField from sphinx import addnodes def patched_make_field(self, types, domain, items, **kw): # `kw` catches `env=None` needed for newer sphinx while maintaining # backwards compatibility when passed along further down! # type: (List, unicode, Tuple) -> nodes.field def handle_item(fieldarg, content): par = nodes.paragraph() par += addnodes.literal_strong('', fieldarg) # Patch: this line added # par.extend(self.make_xrefs(self.rolename, domain, fieldarg, # addnodes.literal_strong)) if fieldarg in types: par += nodes.Text(' (') # NOTE: using .pop() here to prevent a single type node to be # inserted twice into the doctree, which leads to # inconsistencies later when references are resolved fieldtype = types.pop(fieldarg) if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text): typename = u''.join(n.astext() for n in fieldtype) typename = typename.replace('int', 'python:int') typename = typename.replace('long', 'python:long') typename = typename.replace('float', 'python:float') typename = typename.replace('type', 'python:type') par.extend(self.make_xrefs(self.typerolename, domain, typename, addnodes.literal_emphasis, **kw)) else: par += fieldtype par += nodes.Text(')') par += nodes.Text(' -- ') par += content return par fieldname = nodes.field_name('', self.label) if len(items) == 1 and self.can_collapse: fieldarg, content = items[0] bodynode = handle_item(fieldarg, content) else: bodynode = self.list_type() for fieldarg, content in items: bodynode += nodes.list_item('', handle_item(fieldarg, content)) fieldbody = nodes.field_body('', bodynode) return nodes.field('', fieldname, fieldbody) TypedField.make_field = patched_make_field
from __future__ import division, print_function import torch from torch.autograd import Variable import numpy as np try: import librosa except ImportError: librosa = None def _check_is_variable(tensor): if isinstance(tensor, torch.Tensor): is_variable = False tensor = Variable(tensor, requires_grad=False) elif isinstance(tensor, Variable): is_variable = True else: raise TypeError("tensor should be a Variable or Tensor, but is {}".format(type(tensor))) return tensor, is_variable def _tlog10(x): """Pytorch Log10 """ return torch.log(x) / torch.log(x.new([10])) class Compose(object): """Composes several transforms together. Args: transforms (list of ``Transform`` objects): list of transforms to compose. Example: >>> transforms.Compose([ >>> transforms.Scale(), >>> transforms.PadTrim(max_len=16000), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, audio): for t in self.transforms: audio = t(audio) return audio def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Scale(object): """Scale audio tensor from a 16-bit integer (represented as a FloatTensor) to a floating point number between -1.0 and 1.0. Note the 16-bit number is called the "bit depth" or "precision", not to be confused with "bit rate". Args: factor (int): maximum value of input tensor. default: 16-bit depth """ def __init__(self, factor=2**31): self.factor = factor def __call__(self, tensor): """ Args: tensor (Tensor): Tensor of audio of size (Samples x Channels) Returns: Tensor: Scaled by the scale factor. (default between -1.0 and 1.0) """ if isinstance(tensor, (torch.LongTensor, torch.IntTensor)): tensor = tensor.float() return tensor / self.factor def __repr__(self): return self.__class__.__name__ + '()' class PadTrim(object): """Pad/Trim a 1d-Tensor (Signal or Labels) Args: tensor (Tensor): Tensor of audio of size (Samples x Channels) max_len (int): Length to which the tensor will be padded """ def __init__(self, max_len, fill_value=0): self.max_len = max_len self.fill_value = fill_value def __call__(self, tensor): """ Returns: Tensor: (max_len x Channels) """ if self.max_len > tensor.size(0): pad = torch.ones((self.max_len - tensor.size(0), tensor.size(1))) * self.fill_value pad = pad.type_as(tensor) tensor = torch.cat((tensor, pad), dim=0) elif self.max_len < tensor.size(0): tensor = tensor[:self.max_len, :] return tensor def __repr__(self): return self.__class__.__name__ + '(max_len={0})'.format(self.max_len) class DownmixMono(object): """Downmix any stereo signals to mono Inputs: tensor (Tensor): Tensor of audio of size (Samples x Channels) Returns: tensor (Tensor) (Samples x 1): """ def __init__(self): pass def __call__(self, tensor): if isinstance(tensor, (torch.LongTensor, torch.IntTensor)): tensor = tensor.float() if tensor.size(1) > 1: tensor = torch.mean(tensor.float(), 1, True) return tensor def __repr__(self): return self.__class__.__name__ + '()' class LC2CL(object): """Permute a 2d tensor from samples (Length) x Channels to Channels x samples (Length) """ def __call__(self, tensor): """ Args: tensor (Tensor): Tensor of audio signal with shape (LxC) Returns: tensor (Tensor): Tensor of audio signal with shape (CxL) """ return tensor.transpose(0, 1).contiguous() def __repr__(self): return self.__class__.__name__ + '()' class SPECTROGRAM(object): """Create a spectrogram from a raw audio signal Args: sr (int): sample rate of audio signal ws (int): window size, often called the fft size as well hop (int, optional): length of hop between STFT windows. default: ws // 2 n_fft (int, optional): number of fft bins. default: ws // 2 + 1 pad (int): two sided padding of signal window (torch windowing function): default: torch.hann_window wkwargs (dict, optional): arguments for window function """ def __init__(self, sr=16000, ws=400, hop=None, n_fft=None, pad=0, window=torch.hann_window, wkwargs=None): if isinstance(window, Variable): self.window = window else: self.window = window(ws) if wkwargs is None else window(ws, **wkwargs) self.window = Variable(self.window, volatile=True) self.sr = sr self.ws = ws self.hop = hop if hop is not None else ws // 2 self.n_fft = n_fft # number of fft bins self.pad = pad self.wkwargs = wkwargs def __call__(self, sig): """ Args: sig (Tensor or Variable): Tensor of audio of size (c, n) Returns: spec_f (Tensor or Variable): channels x hops x n_fft (c, l, f), where channels is unchanged, hops is the number of hops, and n_fft is the number of fourier bins, which should be the window size divided by 2 plus 1. """ sig, is_variable = _check_is_variable(sig) assert sig.dim() == 2 spec_f = torch.stft(sig, self.ws, self.hop, self.n_fft, True, True, self.window, self.pad) # (c, l, n_fft, 2) spec_f /= self.window.pow(2).sum().sqrt() spec_f = spec_f.pow(2).sum(-1) # get power of "complex" tensor (c, l, n_fft) return spec_f if is_variable else spec_f.data class F2M(object): """This turns a normal STFT into a MEL Frequency STFT, using a conversion matrix. This uses triangular filter banks. Args: n_mels (int): number of MEL bins sr (int): sample rate of audio signal f_max (float, optional): maximum frequency. default: sr // 2 f_min (float): minimum frequency. default: 0 """ def __init__(self, n_mels=40, sr=16000, f_max=None, f_min=0.): self.n_mels = n_mels self.sr = sr self.f_max = f_max if f_max is not None else sr // 2 self.f_min = f_min def __call__(self, spec_f): spec_f, is_variable = _check_is_variable(spec_f) n_fft = spec_f.size(2) m_min = 0. if self.f_min == 0 else 2595 * np.log10(1. + (self.f_min / 700)) m_max = 2595 * np.log10(1. + (self.f_max / 700)) m_pts = torch.linspace(m_min, m_max, self.n_mels + 2) f_pts = (700 * (10**(m_pts / 2595) - 1)) bins = torch.floor(((n_fft - 1) * 2) * f_pts / self.sr).long() fb = torch.zeros(n_fft, self.n_mels) for m in range(1, self.n_mels + 1): f_m_minus = bins[m - 1].item() f_m = bins[m].item() f_m_plus = bins[m + 1].item() if f_m_minus != f_m: fb[f_m_minus:f_m, m - 1] = (torch.arange(f_m_minus, f_m) - f_m_minus) / (f_m - f_m_minus) if f_m != f_m_plus: fb[f_m:f_m_plus, m - 1] = (f_m_plus - torch.arange(f_m, f_m_plus)) / (f_m_plus - f_m) fb = Variable(fb) spec_m = torch.matmul(spec_f, fb) # (c, l, n_fft) dot (n_fft, n_mels) -> (c, l, n_mels) return spec_m if is_variable else spec_m.data class SPEC2DB(object): """Turns a spectrogram from the power/amplitude scale to the decibel scale. Args: stype (str): scale of input spectrogram ("power" or "magnitude"). The power being the elementwise square of the magnitude. default: "power" top_db (float, optional): minimum negative cut-off in decibels. A reasonable number is -80. """ def __init__(self, stype="power", top_db=None): self.stype = stype self.top_db = -top_db if top_db > 0 else top_db self.multiplier = 10. if stype == "power" else 20. def __call__(self, spec): spec, is_variable = _check_is_variable(spec) spec_db = self.multiplier * _tlog10(spec / spec.max()) # power -> dB if self.top_db is not None: spec_db = torch.max(spec_db, spec_db.new([self.top_db])) return spec_db if is_variable else spec_db.data class MEL2(object): """Create MEL Spectrograms from a raw audio signal using the stft function in PyTorch. Hopefully this solves the speed issue of using librosa. Sources: * https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe * https://timsainb.github.io/spectrograms-mfccs-and-inversion-in-python.html * http://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html Args: sr (int): sample rate of audio signal ws (int): window size, often called the fft size as well hop (int, optional): length of hop between STFT windows. default: ws // 2 n_fft (int, optional): number of fft bins. default: ws // 2 + 1 pad (int): two sided padding of signal n_mels (int): number of MEL bins window (torch windowing function): default: torch.hann_window wkwargs (dict, optional): arguments for window function Example: >>> sig, sr = torchaudio.load("test.wav", normalization=True) >>> sig = transforms.LC2CL()(sig) # (n, c) -> (c, n) >>> spec_mel = transforms.MEL2(sr)(sig) # (c, l, m) """ def __init__(self, sr=16000, ws=400, hop=None, n_fft=None, pad=0, n_mels=40, window=torch.hann_window, wkwargs=None): self.window = window(ws) if wkwargs is None else window(ws, **wkwargs) self.window = Variable(self.window, requires_grad=False) self.sr = sr self.ws = ws self.hop = hop if hop is not None else ws // 2 self.n_fft = n_fft # number of fourier bins (ws // 2 + 1 by default) self.pad = pad self.n_mels = n_mels # number of mel frequency bins self.wkwargs = wkwargs self.top_db = -80. self.f_max = None self.f_min = 0. def __call__(self, sig): """ Args: sig (Tensor): Tensor of audio of size (channels [c], samples [n]) Returns: spec_mel_db (Tensor): channels x hops x n_mels (c, l, m), where channels is unchanged, hops is the number of hops, and n_mels is the number of mel bins. """ sig, is_variable = _check_is_variable(sig) transforms = Compose([ SPECTROGRAM(self.sr, self.ws, self.hop, self.n_fft, self.pad, self.window), F2M(self.n_mels, self.sr, self.f_max, self.f_min), SPEC2DB("power", self.top_db), ]) spec_mel_db = transforms(sig) return spec_mel_db if is_variable else spec_mel_db.data class MEL(object): """Create MEL Spectrograms from a raw audio signal. Relatively pretty slow. Usage (see librosa.feature.melspectrogram docs): MEL(sr=16000, n_fft=1600, hop_length=800, n_mels=64) """ def __init__(self, **kwargs): self.kwargs = kwargs def __call__(self, tensor): """ Args: tensor (Tensor): Tensor of audio of size (samples [n] x channels [c]) Returns: tensor (Tensor): n_mels x hops x channels (BxLxC), where n_mels is the number of mel bins, hops is the number of hops, and channels is unchanged. """ if librosa is None: print("librosa not installed, cannot create spectrograms") return tensor L = [] for i in range(tensor.size(1)): nparr = tensor[:, i].numpy() # (samples, ) sgram = librosa.feature.melspectrogram( nparr, **self.kwargs) # (n_mels, hops) L.append(sgram) L = np.stack(L, 2) # (n_mels, hops, channels) tensor = torch.from_numpy(L).type_as(tensor) return tensor def __repr__(self): return self.__class__.__name__ + '()' class BLC2CBL(object): """Permute a 3d tensor from Bands x samples (Length) x Channels to Channels x Bands x samples (Length) """ def __call__(self, tensor): """ Args: tensor (Tensor): Tensor of spectrogram with shape (BxLxC) Returns: tensor (Tensor): Tensor of spectrogram with shape (CxBxL) """ return tensor.permute(2, 0, 1).contiguous() def __repr__(self): return self.__class__.__name__ + '()' class MuLawEncoding(object): """Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1 Args: quantization_channels (int): Number of channels. default: 256 """ def __init__(self, quantization_channels=256): self.qc = quantization_channels def __call__(self, x): """ Args: x (FloatTensor/LongTensor or ndarray) Returns: x_mu (LongTensor or ndarray) """ mu = self.qc - 1. if isinstance(x, np.ndarray): x_mu = np.sign(x) * np.log1p(mu * np.abs(x)) / np.log1p(mu) x_mu = ((x_mu + 1) / 2 * mu + 0.5).astype(int) elif isinstance(x, (torch.Tensor, torch.LongTensor)): if isinstance(x, torch.LongTensor): x = x.float() mu = torch.FloatTensor([mu]) x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu) x_mu = ((x_mu + 1) / 2 * mu + 0.5).long() return x_mu def __repr__(self): return self.__class__.__name__ + '()' class MuLawExpanding(object): """Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: quantization_channels (int): Number of channels. default: 256 """ def __init__(self, quantization_channels=256): self.qc = quantization_channels def __call__(self, x_mu): """ Args: x_mu (FloatTensor/LongTensor or ndarray) Returns: x (FloatTensor or ndarray) """ mu = self.qc - 1. if isinstance(x_mu, np.ndarray): x = ((x_mu) / mu) * 2 - 1. x = np.sign(x) * (np.exp(np.abs(x) * np.log1p(mu)) - 1.) / mu elif isinstance(x_mu, (torch.Tensor, torch.LongTensor)): if isinstance(x_mu, torch.LongTensor): x_mu = x_mu.float() mu = torch.FloatTensor([mu]) x = ((x_mu) / mu) * 2 - 1. x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.) / mu return x def __repr__(self): return self.__class__.__name__ + '()'
import os.path import torch import _torch_sox from torchaudio import transforms from torchaudio import datasets def get_tensor_type_name(tensor): return tensor.type().replace('torch.', '').replace('Tensor', '') def check_input(src): if not torch.is_tensor(src): raise TypeError('Expected a tensor, got %s' % type(src)) if src.is_cuda: raise TypeError('Expected a CPU based tensor, got %s' % type(src)) def load(filepath, out=None, normalization=None): """Loads an audio file from disk into a Tensor Args: filepath (string): path to audio file out (Tensor, optional): an output Tensor to use instead of creating one normalization (bool or number, optional): If boolean `True`, then output is divided by `1 << 31` (assumes 16-bit depth audio, and normalizes to `[0, 1]`. If `number`, then output is divided by that number Returns: tuple(Tensor, int) - Tensor: output Tensor of size `[L x C]` where L is the number of audio frames, C is the number of channels - int: the sample-rate of the audio (as listed in the metadata of the file) Example:: >>> data, sample_rate = torchaudio.load('foo.mp3') >>> print(data.size()) torch.Size([278756, 2]) >>> print(sample_rate) 44100 """ # check if valid file if not os.path.isfile(filepath): raise OSError("{} not found or is a directory".format(filepath)) # initialize output tensor if out is not None: check_input(out) else: out = torch.FloatTensor() sample_rate = _torch_sox.read_audio_file(filepath, out) # normalize if needed if isinstance(normalization, bool) and normalization: out /= 1 << 31 # assuming 16-bit depth elif isinstance(normalization, (float, int)): out /= normalization # normalize with custom value return out, sample_rate def save(filepath, src, sample_rate): """Saves a Tensor with audio signal to disk as a standard format like mp3, wav, etc. Args: filepath (string): path to audio file src (Tensor): an input 2D Tensor of shape `[L x C]` where L is the number of audio frames, C is the number of channels sample_rate (int): the sample-rate of the audio to be saved Example:: >>> data, sample_rate = torchaudio.load('foo.mp3') >>> torchaudio.save('foo.wav', data, sample_rate) """ # check if save directory exists abs_dirpath = os.path.dirname(os.path.abspath(filepath)) if not os.path.isdir(abs_dirpath): raise OSError("Directory does not exist: {}".format(abs_dirpath)) # Check/Fix shape of source data if len(src.size()) == 1: # 1d tensors as assumed to be mono signals src.unsqueeze_(1) elif len(src.size()) > 2 or src.size(1) > 2: raise ValueError( "Expected format (L x N), N = 1 or 2, but found {}".format(src.size())) # check if sample_rate is an integer if not isinstance(sample_rate, int): if int(sample_rate) == sample_rate: sample_rate = int(sample_rate) else: raise TypeError('Sample rate should be a integer') # programs such as librosa normalize the signal, unnormalize if detected if src.min() >= -1.0 and src.max() <= 1.0: src = src * (1 << 31) # assuming 16-bit depth src = src.long() # save data to file extension = os.path.splitext(filepath)[1] check_input(src) _torch_sox.write_audio_file(filepath, src, extension[1:], sample_rate)
from .yesno import YESNO from .vctk import VCTK __all__ = ('YESNO', 'VCTK')
from __future__ import print_function import torch.utils.data as data import os import os.path import shutil import errno import torch import torchaudio class YESNO(data.Dataset): """`YesNo Hebrew <http://www.openslr.org/1/>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.Scale`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. dev_mode(bool, optional): if true, clean up is not performed on downloaded files. Useful to keep raw audio and transcriptions. """ raw_folder = 'yesno/raw' processed_folder = 'yesno/processed' url = 'http://www.openslr.org/resources/1/waves_yesno.tar.gz' dset_path = 'waves_yesno' processed_file = 'yesno.pt' def __init__(self, root, transform=None, target_transform=None, download=False, dev_mode=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.dev_mode = dev_mode self.data = [] self.labels = [] self.num_samples = 0 self.max_len = 0 if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') self.data, self.labels = torch.load(os.path.join( self.root, self.processed_folder, self.processed_file)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ audio, target = self.data[index], self.labels[index] if self.transform is not None: audio = self.transform(audio) if self.target_transform is not None: target = self.target_transform(target) return audio, target def __len__(self): return len(self.data) def _check_exists(self): return os.path.exists(os.path.join(self.root, self.processed_folder, self.processed_file)) def download(self): """Download the yesno data if it doesn't exist in processed_folder already.""" from six.moves import urllib import tarfile if self._check_exists(): return raw_abs_dir = os.path.join(self.root, self.raw_folder) processed_abs_dir = os.path.join(self.root, self.processed_folder) dset_abs_path = os.path.join( self.root, self.raw_folder, self.dset_path) # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise url = self.url print('Downloading ' + url) filename = url.rpartition('/')[2] file_path = os.path.join(self.root, self.raw_folder, filename) if not os.path.isfile(file_path): urllib.request.urlretrieve(url, file_path) else: print("Tar file already downloaded") if not os.path.exists(dset_abs_path): with tarfile.open(file_path) as zip_f: zip_f.extractall(raw_abs_dir) else: print("Tar file already extracted") if not self.dev_mode: os.unlink(file_path) # process and save as torch files print('Processing...') shutil.copyfile( os.path.join(dset_abs_path, "README"), os.path.join(processed_abs_dir, "YESNO_README") ) audios = [x for x in os.listdir(dset_abs_path) if ".wav" in x] print("Found {} audio files".format(len(audios))) tensors = [] labels = [] lengths = [] for i, f in enumerate(audios): full_path = os.path.join(dset_abs_path, f) sig, sr = torchaudio.load(full_path) tensors.append(sig) lengths.append(sig.size(0)) labels.append(os.path.basename(f).split(".", 1)[0].split("_")) # sort sigs/labels: longest -> shortest tensors, labels = zip(*[(b, c) for (a, b, c) in sorted( zip(lengths, tensors, labels), key=lambda x: x[0], reverse=True)]) self.max_len = tensors[0].size(0) torch.save( (tensors, labels), os.path.join( self.root, self.processed_folder, self.processed_file ) ) if not self.dev_mode: shutil.rmtree(raw_abs_dir, ignore_errors=True) print('Done!')
from __future__ import print_function import torch.utils.data as data import os import os.path import shutil import errno import torch import torchaudio AUDIO_EXTENSIONS = [ '.wav', '.mp3', '.flac', '.sph', '.ogg', '.opus', '.WAV', '.MP3', '.FLAC', '.SPH', '.OGG', '.OPUS', ] def is_audio_file(filename): return any(filename.endswith(extension) for extension in AUDIO_EXTENSIONS) def make_manifest(dir): audios = [] dir = os.path.expanduser(dir) for target in sorted(os.listdir(dir)): d = os.path.join(dir, target) if not os.path.isdir(d): continue for root, _, fnames in sorted(os.walk(d)): for fname in fnames: if is_audio_file(fname): path = os.path.join(root, fname) item = path audios.append(item) return audios def read_audio(fp, downsample=True): sig, sr = torchaudio.load(fp) if downsample: # 48khz -> 16 khz if sig.size(0) % 3 == 0: sig = sig[::3].contiguous() else: sig = sig[:-(sig.size(0) % 3):3].contiguous() return sig, sr def load_txts(dir): """Create a dictionary with all the text of the audio transcriptions.""" utterences = dict() txts = [] dir = os.path.expanduser(dir) for target in sorted(os.listdir(dir)): d = os.path.join(dir, target) if not os.path.isdir(d): continue for root, _, fnames in sorted(os.walk(d)): for fname in fnames: if fname.endswith(".txt"): with open(os.path.join(root, fname), "r") as f: fname_no_ext = os.path.basename( fname).rsplit(".", 1)[0] utterences[fname_no_ext] = f.readline() return utterences class VCTK(data.Dataset): """`VCTK <http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html>`_ Dataset. `alternate url <http://datashare.is.ed.ac.uk/handle/10283/2651>` Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.Scale`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. dev_mode(bool, optional): if true, clean up is not performed on downloaded files. Useful to keep raw audio and transcriptions. """ raw_folder = 'vctk/raw' processed_folder = 'vctk/processed' url = 'http://homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz' dset_path = 'VCTK-Corpus' def __init__(self, root, downsample=True, transform=None, target_transform=None, download=False, dev_mode=False): self.root = os.path.expanduser(root) self.downsample = downsample self.transform = transform self.target_transform = target_transform self.dev_mode = dev_mode self.data = [] self.labels = [] self.chunk_size = 1000 self.num_samples = 0 self.max_len = 0 self.cached_pt = 0 if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') self._read_info() self.data, self.labels = torch.load(os.path.join( self.root, self.processed_folder, "vctk_{:04d}.pt".format(self.cached_pt))) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if self.cached_pt != index // self.chunk_size: self.cached_pt = int(index // self.chunk_size) self.data, self.labels = torch.load(os.path.join( self.root, self.processed_folder, "vctk_{:04d}.pt".format(self.cached_pt))) index = index % self.chunk_size audio, target = self.data[index], self.labels[index] if self.transform is not None: audio = self.transform(audio) if self.target_transform is not None: target = self.target_transform(target) return audio, target def __len__(self): return self.num_samples def _check_exists(self): return os.path.exists(os.path.join(self.root, self.processed_folder, "vctk_info.txt")) def _write_info(self, num_items): info_path = os.path.join( self.root, self.processed_folder, "vctk_info.txt") with open(info_path, "w") as f: f.write("num_samples,{}\n".format(num_items)) f.write("max_len,{}\n".format(self.max_len)) def _read_info(self): info_path = os.path.join( self.root, self.processed_folder, "vctk_info.txt") with open(info_path, "r") as f: self.num_samples = int(f.readline().split(",")[1]) self.max_len = int(f.readline().split(",")[1]) def download(self): """Download the VCTK data if it doesn't exist in processed_folder already.""" from six.moves import urllib import tarfile if self._check_exists(): return raw_abs_dir = os.path.join(self.root, self.raw_folder) processed_abs_dir = os.path.join(self.root, self.processed_folder) dset_abs_path = os.path.join( self.root, self.raw_folder, self.dset_path) # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise url = self.url print('Downloading ' + url) filename = url.rpartition('/')[2] file_path = os.path.join(self.root, self.raw_folder, filename) if not os.path.isfile(file_path): urllib.request.urlretrieve(url, file_path) if not os.path.exists(dset_abs_path): with tarfile.open(file_path) as zip_f: zip_f.extractall(raw_abs_dir) else: print("Using existing raw folder") if not self.dev_mode: os.unlink(file_path) # process and save as torch files print('Processing...') shutil.copyfile( os.path.join(dset_abs_path, "COPYING"), os.path.join(processed_abs_dir, "VCTK_COPYING") ) audios = make_manifest(dset_abs_path) utterences = load_txts(dset_abs_path) self.max_len = 0 print("Found {} audio files and {} utterences".format( len(audios), len(utterences))) for n in range(len(audios) // self.chunk_size + 1): tensors = [] labels = [] lengths = [] st_idx = n * self.chunk_size end_idx = st_idx + self.chunk_size for i, f in enumerate(audios[st_idx:end_idx]): txt_dir = os.path.dirname(f).replace("wav48", "txt") if os.path.exists(txt_dir): f_rel_no_ext = os.path.basename(f).rsplit(".", 1)[0] sig = read_audio(f, downsample=self.downsample)[0] tensors.append(sig) lengths.append(sig.size(0)) labels.append(utterences[f_rel_no_ext]) self.max_len = sig.size(0) if sig.size( 0) > self.max_len else self.max_len # sort sigs/labels: longest -> shortest tensors, labels = zip(*[(b, c) for (a, b, c) in sorted( zip(lengths, tensors, labels), key=lambda x: x[0], reverse=True)]) data = (tensors, labels) torch.save( data, os.path.join( self.root, self.processed_folder, "vctk_{:04d}.pt".format(n) ) ) self._write_info((n * self.chunk_size) + i + 1) if not self.dev_mode: shutil.rmtree(raw_abs_dir, ignore_errors=True) print('Done!')
#! /usr/bin/env python # MEGA TEST # # usage: mega-test.py <config> # # This runs several tests in parallel and shows progress bars for each, based on a config file. # # <config> is a file containing a list of commands to run along with the expected number of lines # they will output (to stdout and stderr combined), which is how the progress bar is calculated. # The format of the file is simply one test per line, with the line containing the test name, # the number of output lines expected, and the test command. Example: # # mytest 1523 ./my-test --foo bar # another 862 ./another-test --baz # # Each command is interpreted by `sh -euc`, therefore it is acceptable to use environment # variables and other shell syntax. # # After all tests complete, the config file will be rewritten to update the line counts to the # actual number of lines seen for all passing tests (failing tests are not updated). import sys import re import os from errno import EAGAIN from fcntl import fcntl, F_GETFL, F_SETFL from select import poll, POLLIN, POLLHUP from subprocess import Popen, PIPE, STDOUT CONFIG_LINE = re.compile("^([^ ]+) +([0-9]+) +(.*)$") if len(sys.argv) != 2: sys.stderr.write("Wrong number of arguments.\n"); sys.exit(1) if not os.access("/tmp/test-output", os.F_OK): os.mkdir("/tmp/test-output") config = open(sys.argv[1], 'r') tests = [] class Test: def __init__(self, name, command, lines): self.name = name self.command = command self.lines = lines self.count = 0 self.done = False def start(self, poller): self.proc = Popen(["sh", "-euc", test.command], stdin=dev_null, stdout=PIPE, stderr=STDOUT) fd = self.proc.stdout.fileno() flags = fcntl(fd, F_GETFL) fcntl(fd, F_SETFL, flags | os.O_NONBLOCK) poller.register(self.proc.stdout, POLLIN) self.log = open("/tmp/test-output/" + self.name + ".log", "w") def update(self): try: while True: text = self.proc.stdout.read() if text == "": self.proc.wait() self.done = True self.log.close() return True self.count += text.count("\n") self.log.write(text) except IOError as e: if e.errno == EAGAIN: return False raise def print_bar(self): percent = self.count * 100 / self.lines status = "(%3d%%)" % percent color_on = "" color_off = "" if self.done: if self.proc.returncode == 0: color_on = "\033[0;32m" status = "PASS" else: color_on = "\033[0;31m" status = "FAIL: /tmp/test-output/%s.log" % self.name color_off = "\033[0m" print "%s%-16s |%-25s| %6d/%6d %s%s " % ( color_on, self.name, '=' * min(percent / 4, 25), self.count, self.lines, status, color_off) def passed(self): return self.proc.returncode == 0 for line in config: if len(line) > 0 and not line.startswith("#"): match = CONFIG_LINE.match(line) if not match: sys.stderr.write("Invalid config syntax: %s\n" % line); sys.exit(1) test = Test(match.group(1), match.group(3), int(match.group(2))) tests.append(test) config.close() dev_null = open("/dev/null", "rw") poller = poll() fd_map = {} for test in tests: test.start(poller) fd_map[test.proc.stdout.fileno()] = test active_count = len(tests) def print_bars(): for test in tests: test.print_bar() print_bars() while active_count > 0: for (fd, event) in poller.poll(): if fd_map[fd].update(): active_count -= 1 poller.unregister(fd) sys.stdout.write("\033[%dA\r" % len(tests)) print_bars() new_config = open(sys.argv[1], "w") for test in tests: if test.passed(): new_config.write("%-16s %6d %s\n" % (test.name, test.count, test.command)) else: new_config.write("%-16s %6d %s\n" % (test.name, test.lines, test.command)) for test in tests: if not test.passed(): sys.exit(1) sys.exit(0)
#! /usr/bin/env python from pygments.lexer import RegexLexer from pygments.token import * class CapnpLexer(RegexLexer): name = "Cap'n Proto lexer" aliases = ['capnp'] filenames = ['*.capnp'] tokens = { 'root': [ (r'#.*?$', Comment.Single), (r'@[0-9a-zA-Z]*', Name.Decorator), (r'=', Literal, 'expression'), (r':', Name.Class, 'type'), (r'\$', Name.Attribute, 'annotation'), (r'(struct|enum|interface|union|import|using|const|annotation|extends|in|of|on|as|with|from|fixed|bulk|realtime)\b', Token.Keyword), (r'[a-zA-Z0-9_.]+', Token.Name), (r'[^#@=:$a-zA-Z0-9_]+', Text), ], 'type': [ (r'[^][=;,(){}$]+', Name.Class), (r'[[(]', Name.Class, 'parentype'), (r'', Name.Class, '#pop') ], 'parentype': [ (r'[^][;()]+', Name.Class), (r'[[(]', Name.Class, '#push'), (r'[])]', Name.Class, '#pop'), (r'', Name.Class, '#pop') ], 'expression': [ (r'[^][;,(){}$]+', Literal), (r'[[(]', Literal, 'parenexp'), (r'', Literal, '#pop') ], 'parenexp': [ (r'[^][;()]+', Literal), (r'[[(]', Literal, '#push'), (r'[])]', Literal, '#pop'), (r'', Literal, '#pop') ], 'annotation': [ (r'[^][;,(){}=:]+', Name.Attribute), (r'[[(]', Name.Attribute, 'annexp'), (r'', Name.Attribute, '#pop') ], 'annexp': [ (r'[^][;()]+', Name.Attribute), (r'[[(]', Name.Attribute, '#push'), (r'[])]', Name.Attribute, '#pop'), (r'', Name.Attribute, '#pop') ], } if __name__ == "__main__": from setuptools import setup, find_packages setup(name = "CapnpPygmentsLexer", version = "0.1", packages = find_packages(), py_modules = [ 'capnp_lexer' ], entry_points = {'pygments.lexers': 'capnp = capnp_lexer:CapnpLexer'})
# Frequent English words, frequencies per billion words # obtained from http://en.wiktionary.org/ frequencies = { "the" : 56271872, "of" : 33950064, "and" : 29944184, "to" : 25956096, "in" : 17420636, "i" : 11764797, "that" : 11073318, "was" : 10078245, "his" : 8799755, "he" : 8397205, "it" : 8058110, "with" : 7725512, "is" : 7557477, "for" : 7097981, "as" : 7037543, "had" : 6139336, "you" : 6048903, "not" : 5741803, "be" : 5662527, "her" : 5202501, "on" : 5113263, "at" : 5091841, "by" : 5061050, "which" : 4580906, "have" : 4346500, "or" : 4228287, "from" : 4108111, "this" : 4015425, "him" : 3971997, "but" : 3894211, "all" : 3703342, "she" : 3415846, "they" : 3340398, "were" : 3323884, "my" : 3277699, "are" : 3224178, "me" : 3027134, "one" : 2832569, "their" : 2820265, "so" : 2802481, "an" : 2641417, "said" : 2637136, "them" : 2509917, "we" : 2491655, "who" : 2472663, "would" : 2400858, "been" : 2357654, "will" : 2320022, "no" : 2241145, "when" : 1980046, "there" : 1961200, "if" : 1951102, "more" : 1899787, "out" : 1875351, "up" : 1792712, "into" : 1703963, "do" : 1680164, "any" : 1665366, "your" : 1658553, "what" : 1605908, "has" : 1602329, "man" : 1573117, "could" : 1571110, "other" : 1533530, "than" : 1508779, "our" : 1498473, "some" : 1476767, "very" : 1462382, "time" : 1449681, "upon" : 1424595, "about" : 1414687, "may" : 1400642, "its" : 1373270, "only" : 1318367, "now" : 1317723, "like" : 1280625, "little" : 1273589, "then" : 1255636, "can" : 1210074, "should" : 1192154, "made" : 1188501, "did" : 1185720, "us" : 1171742, "such" : 1136757, "a" : 1135294, "great" : 1120163, "before" : 1117089, "must" : 1108116, "two" : 1093366, "these" : 1090510, "see" : 1084286, "know" : 1075612, "over" : 1056659, "much" : 1021822, "down" : 989808, "after" : 978575, "first" : 978196, "mr|mr" : 974419, "good" : 966602, "men" : 923053, "own" : 922130, "never" : 899673, "most" : 889691, "old" : 887917, "shall" : 883846, "day" : 882331, "where" : 881975, "those" : 878621, "came" : 873144, "come" : 873007, "himself" : 863478, "way" : 860027, "work" : 829823, "life" : 825485, "without" : 819684, "go" : 816536, "make" : 807600, "well" : 799596, "through" : 792925, "being" : 792220, "long" : 791686, "say" : 788124, "might" : 787455, "how" : 770603, "am" : 761957, "too" : 758856, "even" : 750750, "def" : 748992, "again" : 745230, "many" : 744168, "back" : 740270, "here" : 729829, "think" : 715780, "every" : 704444, "people" : 701741, "went" : 690186, "same" : 689376, "last" : 680833, "thought" : 674623, "away" : 673810, "under" : 671168, "take" : 656486, "found" : 654512, "hand" : 648227, "eyes" : 647788, "still" : 640067, "place" : 621773, "while" : 613918, "just" : 610168, "also" : 608042, "young" : 591821, "yet" : 588615, "though" : 570877, "against" : 569459, "things" : 567559, "get" : 564674, "ever" : 559207, "give" : 554003, "god" : 552668, "years" : 547420, "off" : 545832, "face" : 544251, "nothing" : 541692, "right" : 536737, "once" : 534154, "another" : 533985, "left" : 531797, "part" : 526137, "saw" : 520922, "house" : 517564, "world" : 517557, "head" : 512481, "three" : 502146, "took" : 501669, "new" : 498040, "love" : 496496, "always" : 495834, "mrs" : 495443, "put" : 495189, "night" : 484878, "each" : 484599, "king" : 479849, "between" : 479034, "tell" : 475277, "mind" : 470313, "heart" : 467157, "few" : 466338, "because" : 465587, "thing" : 461472, "whom" : 458312, "far" : 456267, "seemed" : 447884, "looked" : 447491, "called" : 445602, "whole" : 435059, "de" : 433393, "set" : 432637, "both" : 432491, "got" : 432016, "find" : 431120, "done" : 430389, "heard" : 429972, "look" : 428871, "name" : 427021, "days" : 426104, "told" : 424696, "let" : 424320, "lord" : 422407, "country" : 420788, "asked" : 420044, "going" : 419315, "seen" : 418862, "better" : 416463, "p" : 415673, "having" : 415355, "home" : 413499, "knew" : 413101, "side" : 405810, "something" : 398727, "moment" : 390988, "father" : 387790, "among" : 387549, "course" : 385303, "hands" : 385081, "woman" : 384156, "enough" : 382266, "words" : 380328, "mother" : 373898, "soon" : 373813, "full" : 371831, "end" : 369761, "gave" : 369036, "room" : 366719, "almost" : 366630, "small" : 359970, "thou" : 355857, "cannot" : 355656, "water" : 355467, "want" : 354212, "however" : 352828, "light" : 351253, "quite" : 350537, "brought" : 349925, "nor" : 349691, "word" : 349685, "whose" : 344377, "given" : 344141, "door" : 342388, "best" : 337544, "turned" : 337367, "taken" : 335210, "does" : 334332, "use" : 333883, "morning" : 330567, "myself" : 328630, "gutenberg" : 328324, "felt" : 326524, "until" : 326391, "since" : 326386, "power" : 326243, "themselves" : 325793, "used" : 325791, "rather" : 325719, "began" : 325327, "present" : 324509, "voice" : 322870, "others" : 322643, "white" : 322465, "works" : 318937, "less" : 316490, "money" : 315642, "next" : 313167, "poor" : 311818, "death" : 309653, "stood" : 308025, "form" : 307506, "within" : 307223, "together" : 304955, "till" : 304735, "thy" : 304489, "large" : 304240, "matter" : 301283, "kind" : 298191, "often" : 296798, "certain" : 296795, "herself" : 295916, "year" : 295745, "friend" : 295078, "half" : 293866, "order" : 293593, "round" : 291647, "true" : 291427, "anything" : 289997, "keep" : 289304, "sent" : 287876, "wife" : 286847, "means" : 284431, "believe" : 281965, "passed" : 279864, "feet" : 279821, "near" : 278870, "public" : 278365, "state" : 277682, "son" : 277227, "hundred" : 275990, "children" : 275607, "thus" : 275221, "hope" : 273746, "alone" : 272173, "above" : 271641, "case" : 271588, "dear" : 270503, "thee" : 269414, "says" : 268542, "person" : 267878, "high" : 266672, "read" : 265947, "city" : 265138, "already" : 264662, "received" : 264606, "fact" : 263613, "gone" : 263585, "girl" : 262689, "known" : 262571, "hear" : 260746, "times" : 260596, "least" : 259916, "perhaps" : 257964, "sure" : 255885, "indeed" : 255789, "english" : 255212, "open" : 254373, "body" : 252812, "itself" : 251252, "along" : 251163, "land" : 249677, "return" : 249533, "leave" : 249063, "air" : 247480, "nature" : 246792, "answered" : 246251, "either" : 244426, "law" : 244138, "help" : 243712, "lay" : 242753, "point" : 242269, "child" : 242201, "letter" : 242178, "four" : 242099, "wish" : 241091, "fire" : 240652, "cried" : 240280, "2" : 240009, "women" : 239735, "speak" : 239025, "number" : 238734, "therefore" : 238281, "hour" : 237964, "friends" : 237481, "held" : 235474, "free" : 235012, "war" : 234544, "during" : 233771, "several" : 233197, "business" : 233158, "whether" : 230819, "er" : 230485, "manner" : 230401, "second" : 230300, "reason" : 229940, "replied" : 229913, "united" : 226953, "call" : 226661, "general" : 226391, "why" : 226216, "behind" : 226205, "became" : 224811, "john" : 224569, "become" : 224326, "dead" : 224049, "earth" : 222546, "boy" : 222315, "lost" : 222264, "forth" : 220598, "thousand" : 218623, "looking" : 218510, "i'll" : 218372, "family" : 218118, "soul" : 217840, "feel" : 216356, "coming" : 215147, "england" : 214339, "spirit" : 213257, "question" : 213124, "care" : 213072, "truth" : 212548, "ground" : 212369, "really" : 211722, "rest" : 211668, "mean" : 211299, "different" : 211043, "making" : 210031, "possible" : 209099, "fell" : 208344, "towards" : 208199, "human" : 206740, "kept" : 206329, "short" : 206216, "town" : 205687, "following" : 205653, "need" : 204955, "cause" : 204686, "met" : 203956, "evening" : 203331, "returned" : 202041, "five" : 201451, "strong" : 200224, "able" : 200145, "french" : 199969, "live" : 199658, "lady" : 199560, "subject" : 198566, "sn" : 198498, "answer" : 198187, "sea" : 198128, "fear" : 196739, "understand" : 196729, "hard" : 196458, "terms" : 196252, "doubt" : 195905, "around" : 195594, "ask" : 194903, "arms" : 194298, "turn" : 192763, "sense" : 192719, "seems" : 192229, "black" : 191272, "bring" : 191148, "followed" : 190649, "beautiful" : 190563, "close" : 188915, "dark" : 188316, "hold" : 186609, "character" : 186256, "sort" : 186136, "sight" : 185862, "ten" : 184612, "show" : 184074, "party" : 184068, "fine" : 183059, "ye" : 182978, "ready" : 181866, "story" : 180998, "common" : 180061, "book" : 179739, "electronic" : 179347, "talk" : 178877, "account" : 178452, "mark" : 178084, "interest" : 178001, "written" : 177232, "can't" : 176728, "bed" : 176635, "necessary" : 176467, "age" : 176320, "else" : 175980, "force" : 175520, "idea" : 174236, "longer" : 173897, "art" : 173544, "spoke" : 172990, "across" : 172901, "brother" : 172692, "early" : 172467, "ought" : 171690, "sometimes" : 171309, "line" : 170962, "saying" : 170695, "table" : 170143, "appeared" : 169913, "river" : 169470, "continued" : 169086, "eye" : 168723, "ety" : 168713, "sun" : 168545, "information" : 168408, "later" : 167805, "everything" : 166395, "reached" : 165752, "suddenly" : 164850, "past" : 164703, "hours" : 164326, "strange" : 164147, "deep" : 163819, "change" : 163514, "miles" : 163341, "feeling" : 163269, "act" : 162869, "meet" : 162687, "paid" : 162605, "further" : 162327, "purpose" : 162154, "happy" : 162105, "added" : 161953, "seem" : 161549, "taking" : 160626, "blood" : 160547, "rose" : 159794, "south" : 158664, "beyond" : 158344, "cold" : 158204, "neither" : 158200, "forward" : 157578, "view" : 157416, "i've" : 157210, "position" : 156851, "sound" : 156616, "none" : 155743, "entered" : 155480, "clear" : 155472, "road" : 154977, "late" : 154840, "stand" : 154582, "suppose" : 154536, "la" : 154457, "daughter" : 154261, "real" : 154046, "nearly" : 154001, "mine" : 153940, "laws" : 153830, "knowledge" : 153829, "comes" : 153299, "toward" : 152972, "bad" : 152889, "cut" : 152625, "copy" : 151661, "husband" : 151651, "six" : 151612, "france" : 151108, "living" : 151043, "peace" : 150281, "didn't" : 149696, "low" : 149690, "north" : 149601, "remember" : 149323, "effect" : 148795, "natural" : 148744, "pretty" : 148124, "fall" : 147435, "fair" : 147401, "service" : 146483, "below" : 146062, "except" : 145998, "american" : 145980, "hair" : 145817, "london" : 145606, "laid" : 145490, "pass" : 145440, "led" : 145393, "copyright" : 145244, "doing" : 145131, "army" : 144925, "run" : 144688, "horse" : 144022, "future" : 143658, "opened" : 143625, "pleasure" : 142952, "history" : 141958, "west" : 141745, "pay" : 141597, "red" : 141588, "an'" : 141517, "4" : 141402, "hath" : 141246, "note" : 140679, "although" : 140667, "wanted" : 140608, "gold" : 139711, "makes" : 139167, "desire" : 138288, "play" : 138228, "master" : 137871, "office" : 136616, "tried" : 136507, "front" : 136296, "big" : 136265, "dr" : 135902, "lived" : 135512, "certainly" : 135386, "wind" : 134689, "receive" : 134351, "attention" : 134257, "government" : 134075, "unto" : 134048, "church" : 133975, "strength" : 133771, "length" : 133663, "company" : 133159, "placed" : 133084, "paper" : 133030, "letters" : 132785, "probably" : 132560, "glad" : 132368, "important" : 132288, "especially" : 132096, "greater" : 132045, "yourself" : 131617, "fellow" : 131509, "bear" : 131397, "opinion" : 130867, "window" : 130590, "ran" : 130394, "faith" : 130376, "ago" : 130255, "agreement" : 130079, "charge" : 129644, "beauty" : 129586, "lips" : 129473, "remained" : 129411, "arm" : 129325, "latter" : 129276, "duty" : 129116, "send" : 129075, "distance" : 129046, "silence" : 128067, "foot" : 128053, "wild" : 127758, "object" : 127468, "die" : 127167, "save" : 126799, "gentleman" : 126761, "trees" : 126469, "green" : 126431, "trouble" : 125885, "smile" : 125830, "books" : 125827, "wrong" : 125401, "various" : 125006, "sleep" : 124634, "persons" : 123820, "blockquote" : 123703, "happened" : 123421, "particular" : 123182, "drew" : 122264, "minutes" : 122201, "hardly" : 121603, "walked" : 121276, "chief" : 121207, "chance" : 120739, "according" : 120733, "beginning" : 120733, "action" : 120590, "deal" : 120186, "loved" : 120145, "visit" : 119807, "thinking" : 119753, "follow" : 119666, "standing" : 119506, "knows" : 119114, "try" : 118860, "presence" : 118852, "heavy" : 118834, "sweet" : 118754, "plain" : 118641, "donations" : 118443, "immediately" : 118250, "wrote" : 118114, "mouth" : 117921, "rich" : 117386, "thoughts" : 117251, "months" : 116955, "u" : 116586, "won't" : 116568, "afraid" : 116467, "paris" : 116402, "single" : 115905, "joy" : 115788, "enemy" : 115195, "broken" : 115006, "unless" : 114054, "states" : 113807, "ship" : 113611, "condition" : 113578, "carry" : 113357, "exclaimed" : 113352, "including" : 113104, "filled" : 112921, "seeing" : 112889, "influence" : 112447, "write" : 112285, "boys" : 112125, "appear" : 112044, "outside" : 111849, "secret" : 111678, "parts" : 111194, "please" : 111114, "appearance" : 110932, "evil" : 110898, "march" : 110834, "george" : 110754, "whatever" : 110549, "slowly" : 110500, "tears" : 110314, "horses" : 110296, "places" : 110250, "caught" : 110061, "stay" : 109894, "instead" : 109837, "struck" : 109662, "blue" : 109449, "york" : 109354, "impossible" : 109330, "period" : 109160, "sister" : 108983, "battle" : 108781, "school" : 108701, "mary" : 108633, "raised" : 108580, "occasion" : 108544, "married" : 108419, "man's" : 108346, "former" : 108299, "food" : 108140, "youth" : 108097, "learned" : 108072, "merely" : 108034, "reach" : 107787, "system" : 107496, "twenty" : 107475, "dinner" : 107414, "quiet" : 107167, "easily" : 107012, "moved" : 106996, "afterwards" : 106992, "giving" : 106981, "walk" : 106858, "stopped" : 106661, "laughed" : 106591, "language" : 106445, "expression" : 106415, "week" : 106184, "hall" : 106108, "danger" : 105775, "property" : 105765, "wonder" : 105588, "usual" : 105412, "figure" : 105403, "born" : 104938, "court" : 104606, "generally" : 104448, "grew" : 104326, "showed" : 104205, "getting" : 103981, "ancient" : 103755, "respect" : 103497, "third" : 103468, "worth" : 103346, "simple" : 102885, "tree" : 102872, "leaving" : 102830, "remain" : 102801, "society" : 102355, "fight" : 102206, "wall" : 102124, "result" : 102039, "heaven" : 101875, "william" : 101780, "started" : 101771, "command" : 101717, "tone" : 101569, "regard" : 101139, "expected" : 101117, "mere" : 101061, "month" : 101037, "beside" : 100710, "silent" : 100695, "perfect" : 100522, "experience" : 100504, "street" : 100499, "writing" : 100292, "goes" : 100235, "circumstances" : 100166, "entirely" : 99803.2, "fresh" : 99654.4, "duke" : 99561.9, "covered" : 99439.2, "bound" : 99304.7, "east" : 99220.9, "wood" : 99157.6, "stone" : 99073.7, "quickly" : 98994.6, "notice" : 98872.0, "bright" : 98773.9, "christ" : 98758.1, "boat" : 98756.5, "noble" : 98714.6, "meant" : 98705.1, "somewhat" : 98651.3, "sudden" : 98497.8, "value" : 98232.8, "c." : 97991.5, "direction" : 97628.3, "chair" : 97567.4, "due" : 97353.0, "support" : 97334.0, "tom" : 97093.5, "date" : 96908.4, "waiting" : 96834.8, "christian" : 96735.9, "village" : 96681.3, "lives" : 96547.6, "reading" : 96465.4, "agree" : 96413.9, "lines" : 96198.0, "considered" : 96182.9, "field" : 96170.3, "observed" : 96110.1, "scarcely" : 95979.6, "wished" : 95538.2, "wait" : 95523.9, "greatest" : 95398.1, "permission" : 95391.0, "success" : 95371.2, "piece" : 95303.2, "british" : 95149.7, "ex" : 95127.6, "charles" : 95049.2, "formed" : 94978.0, "speaking" : 94833.3, "trying" : 94706.7, "conversation" : 94578.5, "proper" : 94480.4, "hill" : 94379.1, "music" : 94284.2, "opportunity" : 94123.6, "that's" : 93912.4, "german" : 93866.5, "afternoon" : 93839.6, "cry" : 93675.0, "cost" : 93470.1, "allowed" : 93398.1, "girls" : 93384.7, "considerable" : 93235.2, "c" : 92990.7, "broke" : 92800.8, "honour" : 92446.4, "seven" : 92292.1, "private" : 92260.5, "sit" : 92217.0, "news" : 92204.3, "top" : 91995.5, "scene" : 91985.2, "discovered" : 91968.6, "marriage" : 91937.7, "step" : 91592.0, "garden" : 91392.6, "race" : 91305.6, "begin" : 91207.5, "per" : 91115.7, "individual" : 90923.5, "sitting" : 90632.3, "learn" : 90513.7, "political" : 90412.4, "difficult" : 90385.5, "bit" : 90352.3, "speech" : 90319.0, "henry" : 90034.2, "lie" : 89756.5, "cast" : 89723.3, "eat" : 89650.5, "authority" : 89562.7, "etc." : 89480.4, "floor" : 89151.3, "ill" : 89125.2, "ways" : 88381.5, "officers" : 88207.5, "offered" : 88164.0, "original" : 88133.9, "happiness" : 88005.0, "flowers" : 87879.2, "produced" : 87876.0, "summer" : 87793.7, "provide" : 87573.0, "study" : 87538.2, "religion" : 87445.6, "picture" : 87340.4, "walls" : 87300.1, "personal" : 87235.2, "america" : 87195.6, "watch" : 87073.8, "pleased" : 86744.7, "leaves" : 86702.0, "declared" : 86560.4, "hot" : 86478.9, "understood" : 86271.6, "effort" : 86256.6, "prepared" : 86240.7, "escape" : 86157.7, "attempt" : 86132.4, "supposed" : 86122.1, "killed" : 86020.0, "fast" : 86008.1, "author" : 85992.3, "indian" : 85940.9, "brown" : 85875.2, "determined" : 85873.7, "pain" : 85833.3, "spring" : 85777.9, "takes" : 85761.3, "drawn" : 85701.2, "soldiers" : 85694.1, "houses" : 85488.4, "beneath" : 85453.6, "talking" : 85391.1, "turning" : 85325.4, "century" : 85256.6, "steps" : 84796.1, "intended" : 84789.0, "soft" : 84783.5, "straight" : 84750.2, "matters" : 84637.1, "likely" : 84636.3, "corner" : 84584.1, "trademark" : 84518.4, "justice" : 84500.2, "simply" : 84365.0, "produce" : 84323.0, "trust" : 84298.5, "appears" : 84153.7, "rome" : 84141.1, "laugh" : 84072.2, "forget" : 84004.2, "europe" : 83940.9, "passage" : 83908.5, "eight" : 83853.9, "closed" : 83814.3, "ourselves" : 83716.2, "gives" : 83639.5, "dress" : 83486.0, "passing" : 83482.1, "terrible" : 83421.9, "required" : 83248.7, "medium" : 83151.4, "efforts" : 83147.4, "sake" : 83124.5, "breath" : 83075.4, "wise" : 83039.0, "ladies" : 82918.0, "possession" : 82883.2, "pleasant" : 82839.7, "perfectly" : 82830.9, "o'" : 82761.3, "memory" : 82725.7, "usually" : 82644.2, "grave" : 82623.7, "fixed" : 82566.7, "modern" : 82562.0, "spot" : 82338.9, "troops" : 82223.4, "rise" : 82126.8, "break" : 82118.1, "fifty" : 82035.1, "island" : 81974.9, "meeting" : 81962.3, "camp" : 81899.8, "nation" : 81890.3, "existence" : 81804.1, "reply" : 81671.1, "i'd" : 81624.5, "copies" : 81479.7, "sky" : 81457.5, "touch" : 81396.6, "equal" : 81392.7, "fortune" : 81232.1, "v." : 81207.5, "shore" : 81109.4, "domain" : 81056.4, "named" : 80756.6, "situation" : 80651.4, "looks" : 80463.1, "promise" : 80426.7, "orders" : 80294.6, "degree" : 80293.8, "middle" : 80239.2, "winter" : 80239.2, "plan" : 80069.9, "spent" : 80046.2, "allow" : 79876.1, "pale" : 79860.2, "conduct" : 79819.9, "running" : 79752.6, "religious" : 79751.1, "surprise" : 79635.6, "minute" : 79605.5, "roman" : 79482.1, "cases" : 79432.2, "shot" : 79425.1, "lead" : 79418.8, "move" : 79376.1, "names" : 79366.6, "stop" : 79301.7, "higher" : 79280.3, "et" : 79225.0, "father's" : 79201.2, "threw" : 79179.1, "worse" : 79163.2, "built" : 79110.2, "spoken" : 79085.7, "glass" : 79053.3, "board" : 78858.7, "vain" : 78809.6, "affairs" : 78788.3, "instance" : 78564.4, "safe" : 78317.5, "loss" : 78305.7, "doctor" : 78281.9, "offer" : 78246.3, "class" : 78173.5, "complete" : 78039.8, "access" : 77716.3, "lower" : 77368.2, "wouldn't" : 77327.0, "repeated" : 77300.1, "forms" : 77286.7, "darkness" : 77261.4, "military" : 77249.5, "warm" : 77220.2, "drink" : 77183.8, "passion" : 77028.0, "ones" : 76976.6, "physical" : 76974.2, "example" : 76922.8, "ears" : 76672.0, "questions" : 76596.8, "start" : 76592.9, "lying" : 76560.4, "smiled" : 76547.8, "keeping" : 76541.4, "spite" : 76495.5, "shown" : 76402.2, "directly" : 76333.4, "james" : 76067.5, "hart" : 76059.6, "serious" : 75990.8, "hat" : 75918.0, "dog" : 75874.5, "silver" : 75859.5, "sufficient" : 75856.3, "main" : 75850.0, "mentioned" : 75813.6, "servant" : 75473.4, "pride" : 75429.9, "crowd" : 75422.0, "train" : 75404.6, "wonderful" : 75347.6, "moral" : 75253.5, "instant" : 75209.9, "associated" : 75153.0, "path" : 75150.6, "greek" : 75128.5, "meaning" : 74981.3, "fit" : 74906.9, "ordered" : 74834.2, "lot" : 74745.6, "he's" : 74505.0, "proved" : 74438.6, "obliged" : 74413.3, "enter" : 74391.9, "rule" : 74378.5, "sword" : 74342.9, "attack" : 74293.0, "seat" : 74266.1, "game" : 74220.2, "health" : 74210.7, "paragraph" : 74195.7, "statement" : 74053.3, "social" : 74035.9, "refund" : 73914.1, "sorry" : 73906.2, "courage" : 73882.4, "members" : 73833.4, "grace" : 73826.3, "official" : 73755.1, "dream" : 73726.6, "worthy" : 73622.1, "rock" : 73581.8, "jack" : 73527.2, "provided" : 73443.3, "special" : 73437.8, "shook" : 73338.9, "request" : 73327.8, "mighty" : 73313.6, "glance" : 73302.5, "heads" : 73281.2, "movement" : 73266.9, "fee" : 73232.9, "share" : 73182.3, "expect" : 73178.3, "couldn't" : 73076.3, "dollars" : 72925.9, "spread" : 72890.3, "opposite" : 72815.2, "glory" : 72644.3, "twelve" : 72570.7, "space" : 72550.2, "engaged" : 72545.4, "peter" : 72509.0, "wine" : 72450.5, "ordinary" : 72404.6, "mountains" : 72333.4, "taste" : 72268.5, "iron" : 72252.7, "isn't" : 72166.5, "distribute" : 72160.9, "trade" : 72098.4, "consider" : 72033.5, "greatly" : 71894.3, "accepted" : 71888.0, "forced" : 71884.8, "advantage" : 71878.5, "ideas" : 71849.2, "decided" : 71766.1, "using" : 71751.9, "officer" : 71744.0, "rate" : 71688.6, "clothes" : 71654.6, "sign" : 71582.6, "feelings" : 71558.9, "native" : 71399.1, "promised" : 71195.7, "judge" : 71190.2, "difference" : 71072.3, "working" : 71042.3, "anxious" : 71040.7, "marry" : 70948.9, "captain" : 70861.9, "finished" : 70763.8, "extent" : 70649.8, "watched" : 70643.5, "curious" : 70641.1, "foreign" : 70609.5, "besides" : 70524.9, "method" : 70513.0, "excellent" : 70452.9, "confidence" : 70414.1, "marked" : 70264.6, "'em" : 70256.7, "jesus" : 70228.2, "exactly" : 70213.1, "importance" : 70066.8, "finally" : 70018.5, "bill" : 69973.4, "vast" : 69861.1, "prove" : 69854.0, "fancy" : 69771.7, "quick" : 69761.4, "yes" : 69731.3, "sought" : 69666.5, "prevent" : 69664.1, "neck" : 69634.8, "hearts" : 69628.5, "liberty" : 69603.2, "interesting" : 69601.6, "sides" : 69594.5, "legal" : 69532.8, "gentlemen" : 69507.5, "dry" : 69442.6, "serve" : 69414.9, "aside" : 69368.2, "pure" : 69287.5, "concerning" : 69279.6, "forgotten" : 69212.4, "lose" : 69115.8, "powers" : 69073.1, "possessed" : 68995.6, "thrown" : 68931.5, "evidence" : 68904.6, "distant" : 68882.5, "michael" : 68874.5, "progress" : 68830.2, "similar" : 68603.2, "narrow" : 68505.9, "altogether" : 68471.9, "building" : 68394.3, "page" : 68234.5, "particularly" : 68193.4, "knowing" : 68050.2, "weeks" : 67942.6, "settled" : 67880.1, "holding" : 67815.2, "mountain" : 67762.2, "search" : 67660.2, "sad" : 67596.1, "sin" : 67589.7, "lies" : 67551.0, "proud" : 67492.4, "pieces" : 67423.6, "clearly" : 67318.4, "price" : 67277.2, "ships" : 67259.0, "thirty" : 67229.0, "sick" : 67152.2, "honest" : 67088.2, "shut" : 67063.6, "talked" : 66998.0, "bank" : 66981.4, "fate" : 66946.5, "dropped" : 66940.2, "judgment" : 66827.9, "conditions" : 66803.4, "king's" : 66590.5, "accept" : 66498.8, "hills" : 66475.8, "removed" : 66429.1, "forest" : 66263.0, "measure" : 66262.2, "species" : 66220.3, "seek" : 66141.2, "highest" : 66066.0, "otherwise" : 66054.9, "stream" : 66003.5, "honor" : 65994.0, "carefully" : 65960.0, "obtained" : 65884.1, "ear" : 65819.2, "bread" : 65708.4, "bottom" : 65645.1, "additional" : 65640.4, "presented" : 65615.9, "aid" : 65581.1, "fingers" : 65564.4, "q" : 65556.5, "remembered" : 65554.2, "choose" : 65396.7, "agreed" : 65284.4, "animal" : 65255.1, "events" : 65118.2, "there's" : 65017.8, "fully" : 64982.2, "delight" : 64971.9, "rights" : 64836.6, "amount" : 64720.3, "obtain" : 64706.1, "tax" : 64658.6, "servants" : 64642.0, "sons" : 64592.9, "cross" : 64403.8, "shoulders" : 64397.5, "thick" : 64364.3, "points" : 64311.3, "stranger" : 64270.9, "woods" : 64227.4, "facts" : 64155.4, "dare" : 64055.0, "grow" : 64005.1, "creature" : 63988.5, "hung" : 63988.5, "rain" : 63905.4, "false" : 63861.1, "tall" : 63854.8, "gate" : 63851.6, "nations" : 63793.9, "created" : 63774.9, "refused" : 63774.9, "quietly" : 63767.8, "surface" : 63717.1, "freely" : 63711.6, "holy" : 63709.2, "streets" : 63695.0, "blow" : 63577.9, "july" : 63558.1, "regarded" : 63536.0, "fashion" : 63526.5, "report" : 63492.5, "coast" : 63479.8, "daily" : 63422.8, "file" : 63420.5, "shoulder" : 63340.6, "surprised" : 63312.9, "faces" : 63252.7, "succeeded" : 63179.2, "birds" : 63162.6, "distribution" : 63155.4, "royal" : 63124.6, "song" : 63090.6, "wealth" : 63067.6, "comfort" : 63064.5, "failed" : 63013.0, "freedom" : 62979.8, "peculiar" : 62951.3, "anyone" : 62941.8, "advance" : 62895.1, "gentle" : 62856.4, "surely" : 62831.1, "animals" : 62815.2, "waited" : 62808.1, "secure" : 62770.9, "desired" : 62740.1, "grass" : 62726.6, "touched" : 62649.9, "occupied" : 62645.1, "draw" : 62587.4, "stage" : 62536.0, "portion" : 62479.8, "expressed" : 62460.0, "opening" : 62316.0, "june" : 62288.3, "spirits" : 62147.5, "fish" : 62138.0, "tongue" : 62119.8, "capital" : 62114.3, "angry" : 61966.4, "growing" : 61954.5, "served" : 61954.5, "carriage" : 61920.5, "weather" : 61892.8, "breast" : 61786.0, "presently" : 61503.5, "snow" : 61384.9, "david" : 61377.8, "papers" : 61338.2, "necessity" : 61325.5, "practice" : 61313.7, "claim" : 61248.0, "hast" : 61220.3, "education" : 61160.2, "sharp" : 61096.9, "prince" : 60998.8, "permitted" : 60987.7, "group" : 60983.0, "enemies" : 60982.2, "robert" : 60967.2, "played" : 60926.0, "throughout" : 60896.7, "pity" : 60858.0, "expense" : 60836.6, "yours" : 60770.2, "million" : 60752.8, "add" : 60647.5, "pray" : 60553.4, "taught" : 60553.4, "explained" : 60525.7, "tired" : 60525.7, "leading" : 60475.9, "kill" : 60435.5, "shadow" : 60402.3, "companion" : 60384.9, "weight" : 60339.8, "mass" : 60298.6, "established" : 60226.7, "suffered" : 60210.0, "gray" : 60200.5, "brave" : 60085.0, "thin" : 60068.4, "satisfied" : 60044.7, "check" : 60002.0, "virtue" : 59979.0, "golden" : 59969.5, "numerous" : 59925.2, "frequently" : 59873.8, "famous" : 59843.0, "telling" : 59831.9, "powerful" : 59634.9, "alive" : 59632.5, "waters" : 59569.2, "national" : 59565.3, "weak" : 59510.7, "divine" : 59479.8, "material" : 59413.4, "principal" : 59406.2, "gathered" : 59324.8, "suggested" : 59261.5, "frank" : 59180.8, "valley" : 59172.1, "guess" : 59171.3, "finding" : 59160.2, "yellow" : 59051.8, "heat" : 58979.8, "remains" : 58941.1, "bent" : 58939.5, "seized" : 58899.1, "guard" : 58892.8, "equally" : 58840.6, "naturally" : 58811.3, "box" : 58805.8, "remarkable" : 58805.8, "gods" : 58789.2, "moon" : 58760.7, "slight" : 58710.8, "style" : 58699.8, "pointed" : 58669.7, "saved" : 58632.5, "windows" : 58556.6, "crossed" : 58551.8, "louis" : 58498.8, "pounds" : 58458.5, "ain't" : 58451.3, "evidently" : 58378.6, "principle" : 58369.9, "immediate" : 58268.6, "willing" : 58218.0, "consequence" : 58195.8, "richard" : 58188.7, "principles" : 58148.3, "characters" : 58140.4, "paul" : 58106.4, "season" : 58088.2, "remarked" : 58020.2, "science" : 57960.1, "tender" : 57959.3, "worked" : 57946.6, "grown" : 57772.6, "whispered" : 57721.1, "interested" : 57714.8, "quarter" : 57661.0, "midst" : 57518.6, "liked" : 57509.9, "advanced" : 57495.7, "apparently" : 57471.1, "bore" : 57458.5, "pwh" : 57456.9, "active" : 57449.0, "noticed" : 57389.6, "aware" : 57388.9, "thomas" : 57341.4, "uncle" : 57326.4, "list" : 57295.5, "dangerous" : 57292.3, "august" : 57283.6, "calm" : 57251.2, "genius" : 57225.1, "sacred" : 57211.6, "kingdom" : 57199.0, "entire" : 57187.9, "popular" : 57115.1, "unknown" : 57040.8, "nice" : 57038.4, "habit" : 57035.2, "spanish" : 56981.4, "familiar" : 56835.1, "reader" : 56832.7, "published" : 56807.4, "direct" : 56755.2, "handsome" : 56748.8, "you'll" : 56740.1, "joined" : 56737.0, "actually" : 56699.0, "kings" : 56630.2, "sd" : 56603.3, "posted" : 56561.3, "approach" : 56555.8, "washington" : 56527.3, "hearing" : 56509.9, "needed" : 56455.3, "increased" : 56113.5, "walking" : 56094.6, "twice" : 55893.6, "throw" : 55850.1, "intellectual" : 55849.3, "appointed" : 55847.7, "wisdom" : 55827.2, "ceased" : 55810.5, "truly" : 55776.5, "numbers" : 55771.8, "demanded" : 55718.0, "priest" : 55667.3, "wounded" : 55666.6, "sorrow" : 55657.1, "drive" : 55626.2, "fault" : 55610.4, "listened" : 55604.1, "palace" : 55599.3, "affair" : 55588.2, "contact" : 55576.4, "distinguished" : 55568.5, "station" : 55551.0, "beat" : 55452.9, "distributed" : 55431.6, "e" : 55405.5, "listen" : 55400.7, "italy" : 55327.9, "fool" : 55324.0, "becomes" : 55307.4, "watching" : 55264.7, "hurt" : 55227.5, "wants" : 55209.3, "express" : 55193.5, "occurred" : 55186.3, "favour" : 55161.8, "height" : 55161.8, "size" : 55123.0, "edge" : 55074.8, "subjects" : 55021.8, "task" : 54999.6, "follows" : 54945.8, "interests" : 54938.7, "nine" : 54922.9, "sympathy" : 54921.3, "burst" : 54920.5, "putting" : 54835.9, "dressed" : 54816.9, "lifted" : 54796.3, "hopes" : 54772.6, "suffer" : 54764.7, "noise" : 54731.4, "smiling" : 54720.4, "rode" : 54627.8, "tells" : 54559.0, "minds" : 54524.9, "farther" : 54471.1, "literature" : 54426.1, "vessel" : 54407.9, "affection" : 54381.0, "suffering" : 54363.6, "proceeded" : 54343.8, "flesh" : 54333.5, "advice" : 54172.9, "grand" : 54172.9, "carrying" : 54168.9, "legs" : 54149.2, "spain" : 54147.6, "post" : 54054.2, "collection" : 54031.3, "empty" : 54020.2, "rank" : 54009.9, "storm" : 54009.1, "god's" : 53975.9, "imagine" : 53930.8, "wore" : 53915.0, "duties" : 53904.7, "admitted" : 53846.2, "countries" : 53834.3, "pocket" : 53783.7, "arrival" : 53776.5, "imagination" : 53768.6, "driven" : 53753.6, "loud" : 53742.5, "sentence" : 53699.0, "lovely" : 53673.7, "extraordinary" : 53589.0, "november" : 53551.8, "december" : 53541.6, "happen" : 53527.3, "absence" : 53502.8, "breakfast" : 53488.6, "population" : 53423.7, "thank" : 53413.4, "rules" : 53386.5, "inhabitants" : 53168.1, "series" : 53157.9, "laughing" : 53113.6, "address" : 53096.2, "relief" : 53061.3, "bird" : 52958.5, "owner" : 52920.5, "impression" : 52901.5, "satisfaction" : 52896.8, "coat" : 52869.9, "prepare" : 52846.2, "relations" : 52841.4, "shape" : 52710.9, "birth" : 52703.0, "rapidly" : 52677.6, "smoke" : 52676.9, "january" : 52657.1, "mother's" : 52657.1, "machine" : 52618.3, "content" : 52615.1, "consideration" : 52606.4, "accompanied" : 52581.1, "regular" : 52519.4, "moving" : 52512.3, "stands" : 52512.3, "wholly" : 52482.2, "teeth" : 52449.0, "busy" : 52407.1, "treated" : 52378.6, "burning" : 52322.4, "shame" : 52312.9, "quality" : 52292.4, "bay" : 52212.5, "discover" : 52201.4, "inside" : 52123.1, "brain" : 52105.7, "soil" : 52100.9, "completely" : 52050.3, "message" : 52049.5, "ring" : 52000.4, "resolved" : 51981.4, "calling" : 51950.6, "phrase" : 51940.3, "acts" : 51907.1, "mention" : 51888.9, "square" : 51832.7, "pair" : 51818.5, "won" : 51798.7, "title" : 51777.3, "understanding" : 51713.3, "sunday" : 51687.9, "fruit" : 51674.5, "mad" : 51668.9, "forces" : 51593.8, "included" : 51591.4, "tea" : 51547.1, "rocks" : 51540.0, "nearer" : 51456.1, "slaves" : 51427.7, "falling" : 51396.0, "absolutely" : 51394.4, "slow" : 51380.2, "bearing" : 51315.3, "mercy" : 51306.6, "larger" : 51297.9, "explain" : 51285.2, "contain" : 51210.9, "grief" : 51205.3, "soldier" : 51200.6, "wasn't" : 51135.7, "countenance" : 51077.2, "previous" : 51055.8, "explanation" : 51050.3, "welcome" : 51009.1, "proposed" : 51006.8, "prayer" : 50987.8, "stars" : 50977.5, "germany" : 50905.5, "belief" : 50725.9, "informed" : 50691.1, "moments" : 50676.1, "poetry" : 50673.7, "constant" : 50650.8, "buy" : 50619.9, "final" : 50604.9, "faithful" : 50587.5, "ride" : 50551.9, "policy" : 50464.8, "supper" : 50460.9, "drawing" : 50447.4, "excitement" : 50435.6, "dying" : 50335.1, "demand" : 50257.6, "fighting" : 50245.7, "fields" : 50201.4, "drove" : 50184.8, "upper" : 50168.2, "sum" : 50041.6, "philip" : 49999.7, "motion" : 49955.4, "assistance" : 49929.2, "forty" : 49903.1, "april" : 49899.2, "stones" : 49887.3, "edward" : 49840.6, "fees" : 49820.1, "kindly" : 49809.8, "dignity" : 49803.5, "catch" : 49718.8, "october" : 49715.6, "seated" : 49654.7, "knees" : 49642.1, "amongst" : 49628.6, "current" : 49580.4, "sending" : 49578.8, "parties" : 49574.0, "objects" : 49571.7, "gained" : 49550.3, "bitter" : 49544.8, "possibly" : 49520.2, "slave" : 49489.4, "separate" : 49480.7, "loose" : 49427.7, "text" : 49423.7, "receiving" : 49391.3, "worst" : 49369.1, "sold" : 49339.1, "don" : 49305.0, "credit" : 49262.3, "chosen" : 49225.9, "hoped" : 49174.5, "printed" : 49171.3, "terror" : 49161.1, "features" : 49124.7, "fond" : 49101.7, "control" : 49074.0, "capable" : 49070.1, "fifteen" : 49002.8, "doesn't" : 48968.0, "firm" : 48962.5, "superior" : 48948.2, "cruel" : 48839.1, "spiritual" : 48809.8, "harry" : 48809.0, "splendid" : 48752.0, "proof" : 48702.2, "pressed" : 48635.7, "sooner" : 48619.1, "join" : 48614.4, "process" : 48561.4, "crime" : 48528.9, "dust" : 48502.8, "instantly" : 48494.9, "lands" : 48475.9, "relation" : 48472.8, "doors" : 48413.4, "concerned" : 48411.1, "deeply" : 48404.7, "practical" : 48402.4, "colour" : 48371.5, "sing" : 48331.2, "destroy" : 48261.5, "anger" : 48238.6, "distributing" : 48223.6, "results" : 48202.2, "increase" : 48197.5, "reasons" : 48062.2, "nose" : 48059.8, "friendly" : 48021.0, "entrance" : 47983.8, "rooms" : 47962.5, "admit" : 47956.2, "supply" : 47924.5, "clean" : 47921.3, "useful" : 47849.4, "yesterday" : 47824.0, "delicate" : 47818.5, "fail" : 47778.1, "continue" : 47737.8, "remove" : 47699.0, "addressed" : 47673.7, "choice" : 47671.3, "huge" : 47619.9, "needs" : 47619.1, "wear" : 47608.8, "blind" : 47599.4, "unable" : 47589.1, "cover" : 47574.0, "double" : 47550.3, "victory" : 47530.5, "dozen" : 47519.4, "constantly" : 47490.2, "level" : 47487.8, "india" : 47392.1, "release" : 47389.7, "rough" : 47332.7, "ended" : 47325.6, "shows" : 47324.0, "fly" : 47316.9, "praise" : 47267.9, "devil" : 47254.4, "ahead" : 47194.3, "smith" : 47190.3, "connected" : 47128.6, "degrees" : 47110.4, "gain" : 47094.6, "addition" : 47084.3, "committed" : 47063.0, "chamber" : 47055.8, "notes" : 47051.9, "italian" : 47021.8, "gradually" : 46902.4, "acquaintance" : 46877.8, "bought" : 46854.1, "souls" : 46847.0, "mission" : 46837.5, "sacrifice" : 46810.6, "cities" : 46797.1, "mistake" : 46768.7, "exercise" : 46752.0, "conscience" : 46747.3, "based" : 46717.2, "car" : 46691.1, "buried" : 46646.8, "theory" : 46621.5, "commanded" : 46561.4, "nobody" : 46560.6, "minister" : 46464.9, "closely" : 46446.7, "energy" : 46407.9, "dick" : 46399.2, "bare" : 46386.5, "fought" : 46382.6, "partly" : 46369.9, "mistress" : 46298.7, "hate" : 46287.7, "arose" : 46271.0, "playing" : 46253.6, "color" : 46252.1, "lake" : 46240.2, "safety" : 46193.5, "provisions" : 46145.2, "description" : 46112.0, "asleep" : 46108.9, "centre" : 46093.8, "faint" : 46085.1, "thinks" : 46053.5, "parents" : 46044.8, "escaped" : 46024.2, "careful" : 45995.7, "enjoy" : 45987.8, "drop" : 45918.2, "brilliant" : 45799.5, "brief" : 45788.4, "bringing" : 45758.4, "worship" : 45744.1, "goods" : 45735.4, "tale" : 45733.1, "skin" : 45696.7, "roof" : 45695.9, "grey" : 45689.6, "highly" : 45680.1, "crown" : 45638.1, "castle" : 45581.2, "excited" : 45567.7, "throne" : 45558.2, "stated" : 45524.2, "despair" : 45463.3, "ease" : 45457.8, "attached" : 45447.5, "total" : 45438.8, "kindness" : 45424.5, "mile" : 45375.5, "citizens" : 45309.8, "circle" : 45281.3, "dull" : 45281.3, "extreme" : 45269.5, "clouds" : 45264.7, "figures" : 45251.3, "intention" : 45248.1, "prison" : 45241.0, "term" : 45215.7, "assured" : 45181.6, "hidden" : 45123.9, "thoroughly" : 45123.1, "cup" : 45107.3, "member" : 45100.2, "civil" : 44958.5, "apply" : 44943.5, "labor" : 44925.3, "everywhere" : 44877.1, "intelligence" : 44856.5, "strike" : 44825.6, "fairly" : 44822.5, "comply" : 44817.7, "fellows" : 44813.0, "haven't" : 44742.6, "event" : 44675.3, "gently" : 44659.5, "connection" : 44629.4, "protection" : 44625.5, "conscious" : 44568.5, "edition" : 44551.1, "directed" : 44487.0, "pulled" : 44473.6, "flight" : 44454.6, "evident" : 44453.8, "surrounded" : 44441.1, "wishes" : 44411.9, "yards" : 44411.9, "voices" : 44401.6, "weary" : 44397.6, "couple" : 44368.4, "variety" : 44354.1, "whilst" : 44316.1, "volume" : 44293.2, "details" : 44279.0, "older" : 44260.0, "requirements" : 44256.0, "custom" : 44253.6, "apart" : 44248.1, "bow" : 44208.5, "awful" : 44175.3, "everybody" : 44135.8, "labour" : 44127.9, "asking" : 44097.8, "lover" : 44066.9, "showing" : 44052.7, "introduced" : 44021.8, "suit" : 43998.9, "becoming" : 43985.4, "composed" : 43982.3, "plans" : 43978.3, "rendered" : 43966.5, "pictures" : 43960.1, "lest" : 43949.8, "volunteers" : 43949.8, "singing" : 43942.7, "eager" : 43919.0, "precious" : 43892.9, "paused" : 43885.0, "require" : 43847.0, "meat" : 43838.3, "whenever" : 43837.5, "milk" : 43784.5, "dogs" : 43682.4, "successful" : 43611.2, "plants" : 43609.7, "vision" : 43605.7, "rare" : 43603.3, "granted" : 43561.4, "raise" : 43533.7, "egypt" : 43529.8, "manners" : 43503.6, "cousin" : 43494.9, "you've" : 43454.6, "development" : 43431.7, "arthur" : 43405.5, "obs" : 43402.4, "cool" : 43305.1, "trial" : 43233.9, "learning" : 43177.7, "approached" : 43176.9, "bridge" : 43143.7, "abroad" : 43081.2, "devoted" : 43071.7, "paying" : 43055.9, "literary" : 43044.0, "writer" : 42938.0, "fn" : 42935.6, "israel" : 42903.2, "disappeared" : 42899.2, "interrupted" : 42888.9, "stock" : 42862.8, "readers" : 42829.6, "dreadful" : 42801.9, "female" : 42767.9, "protect" : 42699.1, "accustomed" : 42696.7, "virginia" : 42695.1, "type" : 42657.9, "recognized" : 42656.3, "salt" : 42649.2, "destroyed" : 42641.3, "signs" : 42635.0, "innocent" : 42613.6, "temper" : 42601.8, "plenty" : 42597.0, "pope" : 42596.2, "avoid" : 42559.0, "hurried" : 42480.7, "represented" : 42461.7, "favor" : 42434.8, "mental" : 42347.0, "attitude" : 42329.6, "returning" : 42271.9, "admiration" : 42255.2, "brothers" : 42245.0, "anxiety" : 42233.9, "queen" : 42223.6, "teach" : 42216.5, "count" : 42207.8, "curiosity" : 42203.8, "solemn" : 42188.8, "causes" : 42152.4, "vessels" : 42102.5, "compelled" : 42082.0, "dance" : 42075.7, "hotel" : 42072.5, "wicked" : 42017.9, "fled" : 41992.6, "kissed" : 41987.0, "guns" : 41921.4, "fill" : 41911.9, "visible" : 41884.2, "younger" : 41825.7, "guide" : 41750.5, "earnest" : 41745.7, "actual" : 41729.1, "companions" : 41728.3, "prisoner" : 41725.2, "miserable" : 41704.6, "lad" : 41692.0, "harm" : 41617.6, "views" : 41499.7, "irish" : 41490.2, "utterly" : 41479.9, "ends" : 41431.7, "shop" : 41349.4, "stairs" : 41339.1, "pardon" : 41335.1, "gay" : 41319.3, "beg" : 41312.2, "seldom" : 41303.5, "kinds" : 41287.7, "record" : 41281.4, "fat" : 41278.2, "sand" : 41232.3, "violent" : 41203.8, "branches" : 41195.1, "inquired" : 41185.6, "iv" : 41152.4, "september" : 41145.3, "worn" : 41117.6, "ireland" : 41105.7, "flat" : 41104.1, "departure" : 41101.0, "delivered" : 41099.4, "gift" : 41080.4, "ruin" : 41073.3, "skill" : 41029.8, "cattle" : 40983.1, "equipment" : 40935.6, "temple" : 40926.1, "calls" : 40860.5, "earlier" : 40843.1, "license" : 40827.2, "visited" : 40818.5, "en" : 40812.2, "consent" : 40810.6, "sufficiently" : 40787.7, "natives" : 40772.7, "wound" : 40752.1, "laughter" : 40713.3, "contained" : 40691.2, "perceived" : 40691.2, "scattered" : 40669.8, "whence" : 40661.1, "rushed" : 40657.9, "chiefly" : 40639.0, "bold" : 40614.4, "anywhere" : 40597.0, "witness" : 40545.6, "foolish" : 40523.4, "helped" : 40487.8, "kitchen" : 40483.9, "sell" : 40483.9, "anybody" : 40479.1, "self" : 40477.6, "extremely" : 40476.0, "treatment" : 40449.1, "throat" : 40414.3, "dreams" : 40383.4, "patient" : 40380.2, "speed" : 40372.3, "growth" : 40351.0, "quantity" : 40347.8, "latin" : 40314.6, "immense" : 40278.2, "conclusion" : 40262.4, "computer" : 40222.0, "affected" : 40214.1, "severe" : 40200.7, "excuse" : 40180.9, "triumph" : 40169.8, "origin" : 40165.1, "joseph" : 40161.1, "slept" : 40160.3, "eternal" : 40157.1, "thine" : 40157.1, "audience" : 40127.9, "pages" : 40117.6, "sounds" : 40089.1, "swift" : 40080.4, "limited" : 40060.6, "wings" : 40014.0, "stepped" : 39957.0, "services" : 39933.3, "library" : 39915.9, "remaining" : 39911.9, "containing" : 39908.7, "base" : 39900.8, "confusion" : 39871.6, "win" : 39858.9, "maid" : 39847.8, "charming" : 39846.2, "editions" : 39843.1, "attended" : 39842.3, "softly" : 39831.2, "reality" : 39813.0, "performed" : 39808.3, "glorious" : 39774.2, "likewise" : 39757.6, "site" : 39722.8, "sail" : 39713.3, "frightened" : 39697.5, "acquainted" : 39660.3, "unhappy" : 39660.3, "feared" : 39591.5, "article" : 39586.7, "prisoners" : 39576.5, "store" : 39566.2, "adopted" : 39561.4, "shalt" : 39534.5, "remark" : 39519.5, "cook" : 39479.1, "thousands" : 39463.3, "pause" : 39426.1, "inclined" : 39411.1, "convinced" : 39401.6, "band" : 39397.7, "valuable" : 39324.1, "hence" : 39316.2, "desert" : 39278.2, "effects" : 39257.6, "kiss" : 39251.3, "plant" : 39201.5, "ice" : 39198.3, "ball" : 39180.9, "stick" : 39108.1, "absolute" : 39093.1, "readily" : 39085.2, "behold" : 39051.1, "fierce" : 39048.0, "argument" : 38991.0, "observe" : 38990.2, "blessed" : 38967.3, "bosom" : 38956.2, "rage" : 38949.1, "striking" : 38941.2, "discovery" : 38883.4, "creatures" : 38875.5, "shouted" : 38859.7, "guilty" : 38836.7, "related" : 38810.6, "setting" : 38686.4, "forgot" : 38668.2, "punishment" : 38650.8, "gun" : 38632.6, "slightly" : 38629.5, "articles" : 38575.7, "police" : 38557.5, "mysterious" : 38550.4, "extended" : 38536.1, "confess" : 38535.3, "shade" : 38527.4, "murder" : 38525.0, "emotion" : 38510.0, "destruction" : 38505.3, "wondered" : 38474.4, "increasing" : 38463.3, "hide" : 38423.8, "expedition" : 38402.4, "horror" : 38361.3, "local" : 38355.7, "expenses" : 38353.4, "ignorant" : 38321.7, "doctrine" : 38303.5, "generous" : 38301.1, "range" : 38284.5, "host" : 38240.2, "wet" : 38201.5, "cloud" : 38187.2, "mystery" : 38185.6, "ed" : 38165.9, "waste" : 38164.3, "changes" : 38156.4, "possess" : 38151.6, "consciousness" : 38142.1, "february" : 38131.1, "trembling" : 38110.5, "disease" : 38039.3, "formerly" : 38037.7, "spend" : 38033.7, "production" : 38021.1, "source" : 38004.5, "mankind" : 37996.6, "universal" : 37991.8, "deck" : 37965.7, "sees" : 37923.0, "habits" : 37913.5, "estate" : 37878.7, "aunt" : 37832.8, "reign" : 37816.2, "humble" : 37795.6, "compliance" : 37787.7, "delay" : 37771.1, "shining" : 37764.0, "reported" : 37740.2, "hers" : 37736.3, "unfortunate" : 37731.5, "midnight" : 37703.8, "listening" : 37700.7, "flower" : 37688.8, "hero" : 37673.8, "accomplished" : 37666.7, "doth" : 37665.1, "classes" : 37658.7, "thanks" : 37642.1, "banks" : 37623.1, "philosophy" : 37611.3, "belong" : 37593.9, "finger" : 37580.4, "comfortable" : 37542.5, "market" : 37529.0, "cap" : 37514.8, "waves" : 37462.5, "woman's" : 37437.2, "glanced" : 37392.9, "troubled" : 37376.3, "difficulties" : 37338.3, "picked" : 37330.4, "european" : 37324.9, "purposes" : 37314.6, "somewhere" : 37273.5, "delighted" : 37264.0, "pushed" : 37259.2, "press" : 37241.8, "household" : 37219.7, "fleet" : 37214.9, "baby" : 37208.6, "region" : 37161.9, "lately" : 37158.7, "uttered" : 37142.1, "exact" : 37133.4, "image" : 37131.9, "ages" : 37127.1, "murmured" : 37113.7, "melancholy" : 37112.9, "suspicion" : 37107.3, "bowed" : 37089.9, "refuse" : 37051.9, "elizabeth" : 37040.9, "staff" : 37036.1, "liability" : 37032.2, "we'll" : 37019.5, "enjoyed" : 36985.5, "stretched" : 36973.6, "gaze" : 36916.7, "belonged" : 36888.2, "ashamed" : 36880.3, "reward" : 36873.2, "meal" : 36778.2, "blame" : 36775.0, "nodded" : 36767.1, "status" : 36747.4, "opinions" : 36725.2, "indicate" : 36699.1, "poem" : 36654.0, "savage" : 36642.9, "arise" : 36635.0, "voyage" : 36628.7, "misery" : 36563.8, "guests" : 36562.2, "painted" : 36515.6, "attend" : 36513.2, "afford" : 36482.3, "donate" : 36471.3, "job" : 36450.7, "proceed" : 36439.6, "loves" : 36414.3, "forehead" : 36382.6, "regret" : 36381.9, "plainly" : 36355.7, "risk" : 36336.8, "ad" : 36312.2, "lighted" : 36312.2, "angel" : 36288.5, "rapid" : 36285.3, "distinct" : 36267.9, "doubtless" : 36256.1, "properly" : 36256.1, "wit" : 36238.7, "fame" : 36237.9, "singular" : 36221.3, "error" : 36182.5, "utmost" : 36158.0, "methods" : 36155.6, "reputation" : 36155.6, "appeal" : 36123.2, "she's" : 36120.8, "w" : 36088.3, "strongly" : 36080.4, "margaret" : 36006.9, "lack" : 35996.6, "breaking" : 35977.6, "dawn" : 35959.4, "violence" : 35957.8, "fatal" : 35917.5, "render" : 35896.1, "career" : 35881.1, "design" : 35854.2, "displayed" : 35848.6, "gets" : 35843.1, "commercial" : 35830.4, "forgive" : 35809.9, "lights" : 35807.5, "agreeable" : 35805.1, "suggestion" : 35777.4, "utter" : 35777.4, "sheep" : 35725.2, "resolution" : 35703.9, "spare" : 35671.4, "patience" : 35631.9, "domestic" : 35618.4, "concluded" : 35542.5, "'tis" : 35536.9, "farm" : 35520.3, "reference" : 35509.2, "chinese" : 35506.1, "exist" : 35494.2, "corn" : 35491.8, "approaching" : 35449.1, "alike" : 35448.3, "mounted" : 35384.2, "jane" : 35352.6, "issue" : 35310.7, "key" : 35281.4, "providing" : 35281.4, "majority" : 35276.6, "measures" : 35270.3, "towns" : 35240.2, "flame" : 35233.1, "boston" : 35180.9, "dared" : 35177.7, "ignorance" : 35152.4, "reduced" : 35122.4, "occasionally" : 35100.2, "y" : 35094.7, "weakness" : 35090.7, "furnished" : 35089.1, "china" : 35058.3, "priests" : 35025.1, "flying" : 34986.3, "cloth" : 34966.5, "gazed" : 34953.9, "profit" : 34932.5, "fourth" : 34923.8, "bell" : 34920.6, "hitherto" : 34911.1, "benefit" : 34854.2, "movements" : 34847.1, "eagerly" : 34842.3, "acted" : 34841.5, "urged" : 34841.5, "ascii" : 34791.7, "disposed" : 34790.9, "electronically" : 34761.6, "atmosphere" : 34748.2, "chapter" : 34699.9, "begged" : 34626.3, "helen" : 34619.2, "hole" : 34616.8, "invited" : 34593.1, "borne" : 34548.8, "departed" : 34546.4, "catholic" : 34522.7, "files" : 34514.0, "reasonable" : 34512.4, "sugar" : 34501.3, "replacement" : 34483.9, "sigh" : 34454.7, "humanity" : 34419.1, "thrust" : 34395.3, "frame" : 34362.9, "opposition" : 34350.2, "disk" : 34347.1, "haste" : 34328.9, "lonely" : 34328.1, "artist" : 34290.1, "knight" : 34282.2, "quarters" : 34277.4, "charm" : 34223.6, "substance" : 34163.5, "rolled" : 34154.0, "email" : 34145.3, "flung" : 34144.5, "celebrated" : 34143.7, "division" : 34136.6, "slavery" : 34114.5, "verse" : 34107.3, "decision" : 34067.8, "probable" : 34063.8, "painful" : 34042.5, "governor" : 34023.5, "forever" : 33999.7, "turns" : 33988.7, "branch" : 33961.0, "ocean" : 33958.6, "rear" : 33947.5, "leader" : 33937.2, "delightful" : 33915.1, "stared" : 33876.3, "boats" : 33808.3, "keen" : 33788.5, "disposition" : 33779.8, "senses" : 33722.1, "occasions" : 33700.7, "readable" : 33692.8, "beloved" : 33687.3, "inches" : 33684.1, "bones" : 33679.3, "enthusiasm" : 33648.5, "materials" : 33589.9, "luck" : 33588.4, "derived" : 33575.7, "managed" : 33479.2, "community" : 33464.9, "apparent" : 33464.2, "preserved" : 33454.7, "magnificent" : 33434.9, "hurry" : 33396.1, "scheme" : 33393.7, "oil" : 33392.2, "thence" : 33382.7, "reaching" : 33374.8, "dim" : 33362.1, "wretched" : 33290.1, "hanging" : 33275.9, "pipe" : 33218.1, "useless" : 33215.7, "nevertheless" : 33203.1, "print" : 33203.1, "smooth" : 33167.5, "solid" : 33148.5, "pursued" : 33135.0, "necessarily" : 33108.1, "build" : 33084.4, "attempted" : 33080.5, "centuries" : 33059.9, "eggs" : 33059.9, "equivalent" : 33033.8, "hastily" : 33032.2, "burned" : 33008.5, "you'd" : 33008.5, "recent" : 33000.5, "oh" : 32957.0, "travel" : 32951.5, "cries" : 32925.4, "noon" : 32919.9, "crying" : 32901.7, "generations" : 32858.9, "located" : 32835.2, "cabin" : 32809.1, "announcement" : 32782.2, "britain" : 32752.9, "compared" : 32731.6, "handed" : 32720.5, "cease" : 32714.2, "smaller" : 32668.3, "circumstance" : 32666.7, "tent" : 32665.1, "frequent" : 32616.8, "alarm" : 32602.6, "nervous" : 32602.6, "beast" : 32586.8, "what's" : 32580.5, "aloud" : 32565.4, "independent" : 32519.5, "gates" : 32509.3, "distinction" : 32502.9, "essential" : 32487.9, "observation" : 32472.9, "stronger" : 32455.5, "recovered" : 32450.7, "belonging" : 32404.8, "loving" : 32402.4, "masters" : 32388.2, "writers" : 32341.5, "cf." : 32326.5, "permanent" : 32324.9, "mortal" : 32284.6, "stern" : 32284.6, "gratitude" : 32278.2, "preserve" : 32248.2, "burden" : 32242.6, "aspect" : 32240.3, "millions" : 32199.1, "merry" : 32182.5, "knife" : 32177.8, "dread" : 32133.5, "clever" : 32114.5, "applicable" : 32052.0, "district" : 32050.4, "shadows" : 32038.5, "jim" : 32031.4, "silk" : 32029.8, "failure" : 32022.7, "links" : 32009.3, "cent" : 31995.0, "sentiment" : 31990.3, "amid" : 31980.0, "profits" : 31968.9, "agent" : 31949.1, "finds" : 31934.9, "russia" : 31928.6, "bade" : 31920.6, "russian" : 31857.4, "desperate" : 31847.9, "union" : 31834.4, "imagined" : 31804.4, "contempt" : 31802.0, "raising" : 31786.2, "lords" : 31775.1, "hell" : 31770.3, "separated" : 31752.1, "grant" : 31743.4, "seriously" : 31736.3, "tribes" : 31726.8, "hit" : 31725.2, "enormous" : 31700.7, "defective" : 31696.0, "conviction" : 31688.8, "secured" : 31688.8, "mixed" : 31679.4, "insisted" : 31661.2, "wooden" : 31632.7, "prefer" : 31621.6, "prayers" : 31606.6, "fever" : 31586.8, "selected" : 31568.6, "daughters" : 31553.6, "treat" : 31550.4, "warning" : 31522.7, "flew" : 31518.0, "speaks" : 31489.5, "developed" : 31472.9, "impulse" : 31472.9, "slipped" : 31472.1, "ours" : 31465.0, "johnson" : 31408.8, "mistaken" : 31390.6, "damages" : 31382.7, "ambition" : 31356.6, "resumed" : 31351.8, "christmas" : 31347.9, "yield" : 31347.1, "ideal" : 31343.1, "schools" : 31335.2, "confirmed" : 31324.1, "descended" : 31322.5, "rush" : 31290.9, "falls" : 31268.0, "deny" : 31254.5, "calculated" : 31233.2, "correct" : 31211.8, "perform" : 31210.2, "hadn't" : 31207.0, "somehow" : 31184.9, "accordingly" : 31181.7, "stayed" : 31165.9, "acquired" : 31144.5, "counsel" : 31135.1, "distress" : 31131.9, "sins" : 31105.0, "notion" : 31102.6, "discussion" : 31093.9, "constitution" : 31085.2, "anne" : 31055.9, "hundreds" : 31006.1, "instrument" : 31001.3, "firmly" : 30976.0, "actions" : 30971.3, "steady" : 30965.7, "remarks" : 30933.3, "empire" : 30925.4, "elements" : 30909.6, "idle" : 30891.4, "pen" : 30885.8, "entering" : 30872.4, "online" : 30872.4, "africa" : 30843.1, "permit" : 30835.2, "th'" : 30812.3, "tide" : 30803.6, "vol" : 30800.4, "leaned" : 30798.8, "college" : 30750.6, "maintain" : 30737.9, "sovereign" : 30706.3, "tail" : 30699.9, "generation" : 30695.2, "crowded" : 30692.8, "fears" : 30679.4, "nights" : 30650.9, "limitation" : 30643.8, "tied" : 30625.6, "horrible" : 30622.4, "cat" : 30600.2, "displaying" : 30545.7, "port" : 30537.7, "male" : 30525.9, "experienced" : 30487.9, "opposed" : 30485.5, "treaty" : 30483.2, "contents" : 30481.6, "rested" : 30450.7, "mode" : 30448.3, "poured" : 30431.7, "les" : 30400.1, "occur" : 30399.3, "seeking" : 30389.0, "practically" : 30323.3, "abandoned" : 30312.3, "reports" : 30295.7, "eleven" : 30294.1, "sank" : 30292.5, "begins" : 30288.5, "founded" : 30249.0, "brings" : 30244.2, "trace" : 30238.7, "instinct" : 30233.9, "collected" : 30227.6, "scotland" : 30202.3, "characteristic" : 30186.5, "chose" : 30184.1, "cheerful" : 30177.0, "tribe" : 30165.9, "costs" : 30125.6, "threatened" : 30120.8, "arrangement" : 30110.5, "western" : 30106.6, "sang" : 30102.6, "beings" : 30093.1, "sam" : 30027.5, "pressure" : 30019.6, "politics" : 30010.8, "sorts" : 29999.8, "shelter" : 29992.7, "rude" : 29987.1, "scientific" : 29984.0, "revealed" : 29965.0, "winds" : 29930.9, "riding" : 29915.1, "scenes" : 29905.6, "shake" : 29900.9, "industry" : 29891.4, "claims" : 29884.3, "pp." : 29884.3, "merit" : 29862.9, "profession" : 29855.0, "lamp" : 29830.5, "interview" : 29817.0, "territory" : 29813.1, "sleeping" : 29806.7, "sex" : 29802.8, "coffee" : 29791.7, "devotion" : 29791.7, "thereof" : 29758.5, "creation" : 29755.3, "trail" : 29747.4, "romans" : 29746.6, "supported" : 29741.9, "requires" : 29704.7, "fathers" : 29703.9, "prospect" : 29680.9, "obey" : 29679.4, "alexander" : 29667.5, "shone" : 29662.0, "operation" : 29642.2, "northern" : 29598.7, "nurse" : 29567.8, "profound" : 29544.1, "hungry" : 29534.6, "scott" : 29470.5, "sisters" : 29453.1, "assure" : 29451.5, "exceedingly" : 29445.2, "match" : 29445.2, "wrath" : 29406.4, "continually" : 29405.6, "rest." : 29404.0, "gifts" : 29381.1, "folly" : 29369.2, "chain" : 29362.9, "uniform" : 29359.0, "debt" : 29346.3, "teaching" : 29345.5, "venture" : 29333.6, "execution" : 29331.3, "shoes" : 29324.1, "mood" : 29319.4, "crew" : 29317.0, "perceive" : 29302.0, "accounts" : 29288.5, "eating" : 29284.6, "multitude" : 29272.7, "declare" : 29260.1, "yard" : 29253.7, "o'er" : 29218.1, "astonishment" : 29188.1, "version" : 29178.6, "vague" : 29158.0, "odd" : 29121.6, "grateful" : 29103.4, "nearest" : 29094.7, "infinite" : 29093.9, "elsewhere" : 29086.0, "copying" : 29053.6, "apartment" : 29045.7, "activity" : 29037.0, "wives" : 29022.7, "parted" : 29014.0, "security" : 29002.2, "cared" : 28977.6, "sensible" : 28974.5, "owing" : 28972.1, "martin" : 28942.0, "saturday" : 28923.8, "cottage" : 28919.1, "jews" : 28880.3, "leaning" : 28852.6, "capacity" : 28840.8, "joe" : 28833.6, "settle" : 28821.0, "referred" : 28805.2, "francis" : 28802.8, "holder" : 28802.0, "involved" : 28795.7, "sunshine" : 28794.1, "dutch" : 28790.1, "council" : 28741.1, "princes" : 28733.2, "ate" : 28730.0, "examination" : 28722.1, "steel" : 28720.5, "strangers" : 28717.3, "beheld" : 28689.7, "test" : 28684.1, "noted" : 28678.6, "slightest" : 28678.6, "widow" : 28660.4, "charity" : 28623.2, "realized" : 28608.2, "element" : 28584.4, "shed" : 28565.4, "errors" : 28560.7, "communication" : 28547.2, "reflection" : 28544.9, "attacked" : 28530.6, "organization" : 28527.5, "maintained" : 28505.3, "restored" : 28491.1, "folks" : 28478.4, "concealed" : 28468.1, "accordance" : 28450.7, "heavens" : 28450.7, "star" : 28433.3, "examined" : 28407.2, "deeds" : 28369.2, "wordforms" : 28357.4, "somebody" : 28352.6, "incident" : 28345.5, "oath" : 28324.1, "guest" : 28321.0, "bar" : 28297.3, "row" : 28295.7, "poverty" : 28267.2, "bottle" : 28240.3, "prevented" : 28237.9, "bless" : 28226.8, "stir" : 28214.2, "intense" : 28207.1, "completed" : 28162.0, "quarrel" : 28149.3, "touching" : 28146.9, "inner" : 28146.1, "available" : 28136.7, "fix" : 28136.7, "resistance" : 28131.9, "unusual" : 28120.8, "deed" : 28114.5, "derive" : 28109.8, "hollow" : 28106.6, "suspected" : 28105.8, "contains" : 28103.4, "sighed" : 28101.8, "province" : 28082.9, "deserted" : 28082.1, "establishment" : 28072.6, "vote" : 28063.9, "muttered" : 28043.3, "thither" : 28028.3, "oxford" : 28020.4, "cavalry" : 28018.8, "lofty" : 28017.2, "endure" : 27969.7, "succeed" : 27952.3, "leg" : 27931.0, "bid" : 27910.4, "alice" : 27885.9, "hated" : 27883.5, "civilization" : 27878.7, "u.s." : 27877.2, "acting" : 27874.0, "landed" : 27866.9, "christians" : 27862.1, "passions" : 27855.0, "interior" : 27851.1, "scarce" : 27839.2, "lightly" : 27830.5, "disturbed" : 27825.7, "rev" : 27821.8, "supreme" : 27819.4, "hang" : 27813.9, "notwithstanding" : 27812.3, "shock" : 27777.5, "exception" : 27775.9, "offering" : 27766.4, "display" : 27765.6, "strain" : 27765.6, "drank" : 27750.6, "confined" : 27737.9, "o" : 27727.6, "exhausted" : 27713.4, "poets" : 27693.6, "sounded" : 27690.5, "aim" : 27679.4, "critical" : 27665.9, "jerusalem" : 27662.0, "directions" : 27660.4, "negro" : 27637.4, "fearful" : 27624.0, "standard" : 27611.3, "studied" : 27586.0, "bag" : 27579.7, "n" : 27563.9, "buildings" : 27546.5, "consequences" : 27544.1, "commenced" : 27534.6, "deeper" : 27506.1, "repeat" : 27504.5, "driving" : 27495.8, "beasts" : 27484.8, "track" : 27484.0, "rid" : 27457.1, "holds" : 27452.3, "residence" : 27445.2, "steadily" : 27404.1, "intimate" : 27403.3, "drinking" : 27385.1, "swear" : 27380.3, "treasure" : 27351.1, "fun" : 27345.5, "throwing" : 27340.0, "apt" : 27321.0, "enterprise" : 27321.0, "queer" : 27302.0, "seed" : 27296.5, "tower" : 27285.4, "runs" : 27276.7, "defend" : 27261.7, "favourite" : 27258.5, "desires" : 27249.0, "heavily" : 27238.7, "assembled" : 27230.0, "existed" : 27221.3, "depends" : 27216.6, "poems" : 27210.2, "hesitated" : 27208.7, "stuff" : 27203.9, "section" : 27202.3, "settlement" : 27201.5, "staring" : 27199.2, "sole" : 27191.2, "roads" : 27188.9, "plate" : 27174.6, "mexico" : 27162.8, "overcome" : 27160.4, "pains" : 27159.6, "performing" : 27141.4, "dwell" : 27132.7, "grounds" : 27110.5, "taxes" : 27100.3, "marble" : 27081.3, "recently" : 27076.5, "tones" : 27064.7, "ability" : 27037.8, "awake" : 27037.8, "walter" : 27037.8, "wave" : 27034.6, "shaking" : 27018.0, "folk" : 26996.6, "possibility" : 26961.0, "butter" : 26960.2, "fury" : 26960.2, "marched" : 26915.9, "moses" : 26908.8, "writes" : 26901.7, "issued" : 26897.7, "sailed" : 26858.2, "instructions" : 26838.4, "hatred" : 26834.4, "pursuit" : 26832.9, "pull" : 26815.5, "furniture" : 26789.3, "additions" : 26788.6, "hid" : 26783.0, "rope" : 26781.4, "vi" : 26770.4, "adventure" : 26767.2, "royalty" : 26757.7, "vanished" : 26753.7, "arts" : 26748.2, "elder" : 26727.6, "signal" : 26715.8, "wanting" : 26696.0, "supplied" : 26694.4, "feast" : 26689.7, "safely" : 26650.1, "burn" : 26627.2, "describe" : 26605.8, "references" : 26602.6, "lesson" : 26592.4, "annual" : 26582.9, "card" : 26574.2, "passes" : 26556.0, "application" : 26542.5, "intelligent" : 26535.4, "county" : 26518.8, "beaten" : 26513.2, "presents" : 26511.7, "format" : 26507.7, "flow" : 26504.5, "sixty" : 26488.7, "scale" : 26480.8, "damage" : 26479.2, "marks" : 26478.4, "obtaining" : 26468.9, "moreover" : 26447.6, "commerce" : 26403.3, "startled" : 26381.1, "southern" : 26375.6, "consequently" : 26362.1, "outer" : 26352.6, "belongs" : 26350.3, "ben" : 26346.3, "wrought" : 26343.9, "average" : 26342.4, "naked" : 26341.6, "conducted" : 26318.6, "rivers" : 26306.8, "songs" : 26299.6, "obvious" : 26283.8, "foundation" : 26269.6, "concern" : 26239.5, "ceremony" : 26230.0, "magic" : 26210.2, "campaign" : 26203.9, "hunting" : 26202.3, "carolina" : 26199.2, "liberal" : 26184.1, "whisper" : 26184.1, "largely" : 26177.0, "commonly" : 26158.8, "torn" : 26151.7, "exists" : 26145.4, "contributions" : 26143.0, "hunt" : 26139.8, "teacher" : 26128.8, "christianity" : 26112.9, "lawyer" : 26093.2, "operations" : 26091.6, "detail" : 26089.2, "shortly" : 26070.2, "caesar" : 26043.3, "wondering" : 26040.9, "leaders" : 26037.0, "blessing" : 26023.5, "princess" : 26022.7, "he'd" : 26014.8, "altar" : 26013.2, "tenderness" : 26013.2, "tiny" : 25980.0, "web" : 25971.3, "cardinal" : 25968.9, "sharply" : 25962.6, "regiment" : 25926.2, "chest" : 25915.1, "distinctly" : 25914.4, "purple" : 25912.0, "creating" : 25910.4, "gather" : 25905.7, "depth" : 25902.5, "indignation" : 25876.4, "performance" : 25870.8, "election" : 25863.7, "prosperity" : 25843.9, "gloomy" : 25825.7, "conception" : 25822.6, "clerk" : 25785.4, "decide" : 25779.1, "drunk" : 25774.3, "victim" : 25770.4, "reflected" : 25768.8, "pour" : 25765.6, "preceding" : 25764.0, "individuals" : 25759.3, "gazing" : 25737.9, "absurd" : 25718.9, "lift" : 25715.0, "gesture" : 25714.2, "armies" : 25710.2, "limbs" : 25667.5, "manage" : 25667.5, "brethren" : 25642.2, "hugh" : 25616.1, "plays" : 25582.1, "hastened" : 25580.5, "dragged" : 25533.0, "motive" : 25512.5, "whatsoever" : 25421.5, "pointing" : 25416.7, "verses" : 25411.2, "pronounced" : 25410.4, "exchange" : 25408.0, "definite" : 25393.8, "emperor" : 25366.9, "tendency" : 25363.7, "remote" : 25339.2, "finish" : 25337.6, "flag" : 25313.9, "boots" : 25307.6, "enabled" : 25290.1, "administration" : 25289.4, "denied" : 25283.8, "churches" : 25279.1, "rarely" : 25251.4, "earnestly" : 25212.6, "considering" : 25210.2, "previously" : 25203.9, "ugly" : 25169.9, "bears" : 25165.9, "signed" : 25156.4, "genuine" : 25153.3, "harmless" : 25150.1, "mingled" : 25120.1, "obedience" : 25107.4, "walks" : 25103.4, "training" : 25071.0, "badly" : 25045.7, "feed" : 25028.3, "central" : 25010.1, "contrast" : 25009.3, "relieved" : 24995.8, "romance" : 24988.7, "mississippi" : 24987.9, "structure" : 24976.1, "payment" : 24963.4, "pace" : 24960.2, "passages" : 24957.9, "succession" : 24955.5, "persuaded" : 24952.3, "sources" : 24952.3, "inquiry" : 24950.0, "inspired" : 24932.6, "angels" : 24925.4, "roll" : 24922.3, "wilt" : 24907.2, "inch" : 24887.5, "troubles" : 24878.8, "perfection" : 24870.1, "lee" : 24850.3, "wherever" : 24845.5, "owe" : 24817.8, "handle" : 24805.2, "advantages" : 24802.8, "trip" : 24790.2, "shoot" : 24775.9, "fortunate" : 24755.3, "newspaper" : 24752.2, "employment" : 24726.1, "fitted" : 24721.3, "refuge" : 24717.4, "misfortune" : 24711.0, "providence" : 24702.3, "owns" : 24692.8, "cutting" : 24671.5, "beard" : 24658.8, "stirred" : 24654.1, "tear" : 24653.3, "dan" : 24639.8, "resist" : 24634.3, "bob" : 24620.1, "depths" : 24612.9, "maiden" : 24599.5, "determine" : 24596.3, "commission" : 24594.0, "merchant" : 24578.9, "whereas" : 24576.5, "crossing" : 24575.0, "independence" : 24561.5, "lively" : 24553.6, "breeze" : 24552.0, "provinces" : 24533.8, "jean" : 24520.4, "virtues" : 24516.4, "conceived" : 24510.1, "relative" : 24507.7, "solitary" : 24481.6, "smell" : 24476.1, "wandering" : 24466.6, "thereby" : 24465.0, "eighteen" : 24454.7, "locked" : 24438.1, "provision" : 24386.7, "courts" : 24372.4, "eaten" : 24366.9, "historical" : 24366.9, "regarding" : 24365.3, "florence" : 24349.5, "preferred" : 24349.5, "pick" : 24343.2, "ruined" : 24340.0, "wherein" : 24337.6, "vanity" : 24324.2, "condemned" : 24297.3, "deliver" : 24296.5, "unexpected" : 24270.4, "desk" : 24263.3, "gross" : 24261.7, "lane" : 24259.3, "happens" : 24249.0, "represent" : 24244.3, "billy" : 24241.9, "root" : 24241.9, "holland" : 24220.5, "mud" : 24215.0, "respectable" : 24197.6, "cleared" : 24196.8, "feels" : 24189.7, "fruits" : 24181.8, "testimony" : 24178.6, "milton" : 24177.8, "existing" : 24176.2, "bride" : 24170.7, "rang" : 24165.2, "ranks" : 24146.2, "responsibility" : 24110.6, "beating" : 24105.8, "disappointed" : 24102.7, "suitable" : 24099.5, "depend" : 24080.5, "judges" : 24065.5, "giant" : 24050.4, "grasp" : 24039.4, "arrive" : 24036.2, "simplicity" : 24033.8, "autumn" : 24030.7, "absent" : 24029.9, "legally" : 24015.6, "veil" : 24014.0, "gloom" : 23980.8, "doubtful" : 23956.3, "suspect" : 23953.1, "weapons" : 23950.8, "limits" : 23919.9, "determination" : 23918.3, "feeble" : 23902.5, "prophet" : 23900.1, "shak" : 23892.2, "gathering" : 23868.5, "basis" : 23866.1, "examine" : 23826.5, "corrupt" : 23785.4, "payments" : 23779.9, "returns" : 23775.1, "laying" : 23756.9, "prize" : 23749.0, "instances" : 23733.2, "greeks" : 23730.8, "d" : 23730.0, "they're" : 23719.0, "theatre" : 23711.0, "purchase" : 23704.7, "comparison" : 23702.3, "composition" : 23694.4, "rival" : 23688.9, "someone" : 23680.2, "realize" : 23669.1, "defeat" : 23665.2, "demands" : 23635.9, "foe" : 23628.8, "shared" : 23620.1, "consists" : 23616.9, "studies" : 23614.5, "balance" : 23609.8, "intercourse" : 23609.0, "id" : 23605.0, "forming" : 23571.0, "slender" : 23570.2, "coach" : 23561.5, "criminal" : 23556.8, "knocked" : 23553.6, "silly" : 23553.6, "humour" : 23550.4, "masses" : 23542.5, "indifferent" : 23541.0, "recall" : 23534.6, "occupation" : 23529.1, "discourse" : 23524.3, "keeps" : 23523.5, "regions" : 23516.4, "intervals" : 23510.9, "assist" : 23508.5, "novel" : 23506.1, "intellect" : 23493.5, "leads" : 23492.7, "hither" : 23489.5, "tales" : 23483.2, "sale" : 23476.9, "revenge" : 23465.8, "lucy" : 23459.5, "yonder" : 23446.8, "resources" : 23435.7, "jealous" : 23421.5, "we're" : 23376.4, "wheel" : 23376.4, "invitation" : 23368.5, "narrative" : 23365.3, "risen" : 23364.5, "burnt" : 23335.3, "sentiments" : 23335.3, "inferior" : 23327.3, "amusement" : 23320.2, "marie" : 23309.9, "flash" : 23304.4, "recognize" : 23302.8, "swiftly" : 23299.7, "portrait" : 23294.9, "create" : 23259.3, "summoned" : 23245.9, "suggest" : 23241.1, "induced" : 23229.2, "conflict" : 23227.7, "fed" : 23220.5, "curse" : 23215.8, "disappointment" : 23215.8, "helpless" : 23213.4, "preparing" : 23208.7, "construction" : 23205.5, "lincoln" : 23183.4, "zeal" : 23168.3, "responsible" : 23160.4, "indicated" : 23152.5, "groups" : 23150.1, "positive" : 23135.1, "germans" : 23128.8, "attracted" : 23124.0, "vengeance" : 23121.6, "fort" : 23113.7, "club" : 23099.5, "cure" : 23094.0, "stout" : 23094.0, "missed" : 23090.0, "gracious" : 23082.1, "include" : 23071.0, "flood" : 23042.5, "satisfy" : 23040.2, "agony" : 23033.0, "respects" : 23020.4, "ventured" : 23020.4, "implied" : 23018.8, "maria" : 23010.1, "stupid" : 22992.7, "seas" : 22991.9, "spaniards" : 22987.9, "grain" : 22985.6, "enjoyment" : 22982.4, "wearing" : 22981.6, "indifference" : 22936.5, "conceal" : 22933.4, "horizon" : 22922.3, "pleasures" : 22903.3, "therein" : 22901.7, "precisely" : 22900.1, "canada" : 22872.4, "day's" : 22868.5, "assume" : 22844.8, "registered" : 22844.8, "estimate" : 22841.6, "steep" : 22823.4, "route" : 22808.4, "gardens" : 22789.4, "visitor" : 22780.7, "closer" : 22770.4, "harmony" : 22753.0, "non" : 22749.0, "thunder" : 22749.0, "wire" : 22741.1, "graceful" : 22736.4, "crept" : 22735.6, "greece" : 22734.0, "childhood" : 22726.9, "knee" : 22696.0, "saddle" : 22691.3, "supplies" : 22683.4, "weeping" : 22673.1, "mostly" : 22658.0, "paragraphs" : 22647.8, "unconscious" : 22647.0, "mutual" : 22639.8, "scorn" : 22638.3, "grows" : 22628.0, "external" : 22592.4, "agents" : 22586.8, "software" : 22586.1, "institutions" : 22584.5, "losing" : 22575.0, "universe" : 22574.2, "clock" : 22548.9, "attempts" : 22547.3, "instruction" : 22538.6, "injury" : 22525.9, "roots" : 22522.8, "receipt" : 22519.6, "jumped" : 22518.8, "dearest" : 22502.2, "sore" : 22499.8, "earliest" : 22496.7, "finest" : 22488.0, "enable" : 22482.4, "discipline" : 22480.8, "motives" : 22465.8, "fastened" : 22454.7, "introduction" : 22446.0, "converted" : 22419.9, "wilderness" : 22419.1, "confused" : 22416.0, "fancied" : 22410.4, "offices" : 22410.4, "slip" : 22402.5, "revolution" : 22396.2, "wedding" : 22374.8, "girl's" : 22366.1, "farmer" : 22364.5, "silently" : 22363.7, "fires" : 22362.2, "wept" : 22355.0, "behalf" : 22346.3, "reckon" : 22346.3, "responded" : 22333.7, "uncertain" : 22328.9, "neglected" : 22328.1, "stroke" : 22326.6, "exquisite" : 22305.2, "engagement" : 22298.9, "dirty" : 22289.4, "rolling" : 22286.2, "platform" : 22282.3, "messenger" : 22272.0, "privilege" : 22260.9, "admirable" : 22255.4, "offers" : 22252.2, "mischief" : 22247.4, "physician" : 22245.1, "imposed" : 22228.5, "organized" : 22222.1, "covering" : 22208.7, "student" : 22207.1, "daring" : 22198.4, "cave" : 22174.7, "wars" : 22170.7, "convey" : 22166.7, "he'll" : 22163.6, "sincere" : 22162.0, "tradition" : 22160.4, "gravely" : 22153.3, "combined" : 22149.3, "gallant" : 22122.4, "sensation" : 22120.9, "travelling" : 22120.1, "charges" : 22089.2, "submit" : 22087.6, "tragedy" : 22082.1, "specific" : 22075.0, "commander" : 22064.7, "inn" : 22059.2, "stiff" : 22057.6, "accompany" : 22056.8, "score" : 22052.0, "virgin" : 22052.0, "farewell" : 22033.0, "paradise" : 22014.9, "villages" : 22012.5, "hunger" : 21975.3, "trembled" : 21947.6, "favorite" : 21929.4, "criticism" : 21925.5, "proprietary" : 21921.5, "customs" : 21915.2, "cotton" : 21910.4, "ruth" : 21907.3, "hospital" : 21895.4, "restrictions" : 21881.2, "outward" : 21868.5, "impressed" : 21857.4, "blows" : 21851.1, "plains" : 21847.1, "flashed" : 21836.8, "rent" : 21836.8, "prey" : 21827.4, "owed" : 21813.1, "longing" : 21804.4, "musical" : 21803.6, "satisfactory" : 21803.6, "ridiculous" : 21802.8, "sheet" : 21798.1, "disgrace" : 21776.7, "colored" : 21769.6, "shouldn't" : 21767.2, "originally" : 21762.5, "samuel" : 21760.1, "wages" : 21755.4, "papa" : 21749.8, "gas" : 21748.2, "inevitable" : 21741.1, "extensive" : 21735.6, "leisure" : 21729.3, "deadly" : 21718.2, "chin" : 21717.4, "claimed" : 21713.4, "glow" : 21707.1, "husband's" : 21703.9, "emotions" : 21695.2, "adam" : 21681.8, "jealousy" : 21661.2, "leaf" : 21659.6, "publication" : 21649.3, "englishman" : 21647.8, "allah" : 21647.0, "jones" : 21635.1, "hostile" : 21631.9, "wandered" : 21621.7, "railway" : 21615.3, "translation" : 21607.4, "procession" : 21575.8, "betrayed" : 21573.4, "pound" : 21572.6, "admired" : 21561.5, "elected" : 21552.0, "pierre" : 21522.8, "sunk" : 21519.6, "ruins" : 21516.4, "eastern" : 21515.6, "roses" : 21511.7, "citizen" : 21498.2, "reminded" : 21497.4, "deceived" : 21495.9, "tables" : 21432.6, "beach" : 21431.8, "starting" : 21427.8, "funeral" : 21414.4, "arrested" : 21412.0, "flour" : 21409.6, "feature" : 21404.1, "correspondence" : 21403.3, "consisted" : 21398.6, "counted" : 21397.8, "reserve" : 21391.4, "proceedings" : 21381.2, "roar" : 21378.8, "romantic" : 21377.2, "twenty-five" : 21374.8, "hut" : 21374.0, "strangely" : 21361.4, "absorbed" : 21357.4, "propose" : 21352.7, "seats" : 21348.7, "bark" : 21347.1, "reception" : 21339.2, "pleasing" : 21334.5, "attained" : 21329.7, "wake" : 21326.6, "research" : 21323.4, "prayed" : 21309.2, "monarch" : 21306.8, "clothing" : 21300.5, "dollar" : 21293.3, "illness" : 21291.8, "calmly" : 21282.3, "obeyed" : 21275.9, "heartily" : 21268.8, "pressing" : 21264.9, "daylight" : 21264.1, "warriors" : 21243.5, "jest" : 21238.7, "abruptly" : 21222.1, "washed" : 21200.8, "comment" : 21197.6, "metal" : 21196.0, "preparations" : 21193.7, "nerves" : 21177.8, "solution" : 21177.8, "pretended" : 21173.1, "sixteen" : 21166.0, "assembly" : 21155.7, "tobacco" : 21154.1, "entity" : 21142.2, "dwelling" : 21136.7, "depart" : 21135.9, "swung" : 21134.3, "bitterly" : 21130.4, "alteration" : 21128.0, "colony" : 21126.4, "disclaimers" : 21124.8, "wing" : 21122.5, "peaceful" : 21120.9, "lion" : 21119.3, "opportunities" : 21097.9, "alarmed" : 21090.8, "furnish" : 21090.0, "resting" : 21086.9, "accused" : 21084.5, "culture" : 21083.7, "writings" : 21073.4, "dwelt" : 21071.0, "conquered" : 21067.1, "trick" : 21052.8, "trusted" : 21049.7, "column" : 21046.5, "financial" : 21028.3, "cunning" : 21027.5, "preparation" : 21022.0, "drama" : 21014.9, "joke" : 21010.1, "entertained" : 21003.0, "mist" : 20999.0, "hypertext" : 20994.3, "shell" : 20981.6, "medicine" : 20972.9, "proofread" : 20964.2, "nest" : 20950.0, "reverence" : 20947.6, "situated" : 20945.2, "yielded" : 20942.9, "conceive" : 20938.9, "appointment" : 20934.2, "lessons" : 20897.8, "fetch" : 20895.4, "tomb" : 20895.4, "candle" : 20894.6, "offence" : 20882.7, "coarse" : 20870.1, "heap" : 20866.1, "mixture" : 20863.8, "homes" : 20847.9, "model" : 20843.2, "men's" : 20819.4, "defect" : 20818.7, "destined" : 20814.7, "occasional" : 20813.1, "fourteen" : 20803.6, "hint" : 20802.0, "knights" : 20795.7, "solicit" : 20783.8, "dreamed" : 20774.4, "objection" : 20756.2, "craft" : 20753.8, "acid" : 20752.2, "namely" : 20747.5, "asia" : 20744.3, "neglect" : 20734.8, "data" : 20722.9, "weapon" : 20717.4, "confessed" : 20715.0, "arrangements" : 20709.5, "repose" : 20701.6, "complying" : 20700.0, "copied" : 20700.0, "pink" : 20698.4, "user" : 20696.0, "heels" : 20695.2, "grandfather" : 20692.1, "other's" : 20690.5, "income" : 20679.4, "i.e." : 20661.2, "regards" : 20650.1, "streams" : 20649.4, "vigorous" : 20633.5, "accepting" : 20628.8, "bishop" : 20628.8, "lightning" : 20622.5, "authors" : 20613.8, "flames" : 20613.8, "observations" : 20602.7, "compressed" : 20599.5, "sport" : 20588.4, "powder" : 20587.6, "beds" : 20576.6, "orange" : 20573.4, "painting" : 20559.2, "shout" : 20548.9, "austria" : 20499.0, "bath" : 20495.9, "careless" : 20495.1, "chap" : 20493.5, "derivative" : 20492.7, "roused" : 20491.1, "primitive" : 20488.8, "doorway" : 20487.2, "climbed" : 20484.8, "volumes" : 20479.3, "vulgar" : 20448.4, "arguments" : 20441.3, "1st" : 20440.5, "sunset" : 20435.0, "convenient" : 20431.0, "mail" : 20423.9, "recalled" : 20419.1, "wrapped" : 20419.1, "abode" : 20409.6, "planted" : 20405.7, "paint" : 20381.2, "surrender" : 20362.2, "establish" : 20357.4, "mild" : 20353.5, "promptly" : 20342.4, "appearing" : 20328.2, "department" : 20315.5, "parish" : 20302.8, "stephen" : 20288.6, "nay" : 20246.7, "lit" : 20243.5, "handkerchief" : 20229.3, "basket" : 20219.8, "easier" : 20216.6, "deserve" : 20213.4, "quit" : 20213.4, "assurance" : 20212.6, "mirror" : 20210.3, "plot" : 20208.7, "yer" : 20196.8, "upward" : 20192.9, "sadly" : 20191.3, "secretary" : 20190.5, "adding" : 20187.3, "modest" : 20185.7, "dish" : 20176.3, "cares" : 20161.2, "straw" : 20158.9, "net" : 20152.5, "advised" : 20146.2, "heavenly" : 20124.0, "largest" : 20119.3, "proceeding" : 20107.4, "impatient" : 20085.3, "wounds" : 20076.6, "warmth" : 20071.8, "certainty" : 20053.6, "restless" : 20048.1, "meantime" : 20043.3, "rays" : 20040.2, "salvation" : 20031.5, "lovers" : 20030.7, "experiment" : 20024.4, "shores" : 20017.2, "today" : 20016.4, "tremendous" : 20006.2, "afforded" : 20004.6, "moonlight" : 20002.2, "intend" : 19999.0, "california" : 19991.1, "cultivated" : 19976.9, "flushed" : 19971.4, "shakespeare" : 19966.6, "newspapers" : 19953.2, "rocky" : 19916.8, "pious" : 19900.9, "wont" : 19900.9, "steam" : 19892.2, "improvement" : 19883.5, "garments" : 19878.8, "ned" : 19874.8, "treasury" : 19873.3, "merchants" : 19868.5, "perpetual" : 19866.9, "trained" : 19866.9, "products" : 19866.1, "affectionate" : 19858.2, "dispute" : 19854.3, "visitors" : 19847.9, "poison" : 19814.7, "proposition" : 19793.3, "maybe" : 19771.2, "rifle" : 19769.6, "warned" : 19767.2, "parting" : 19751.4, "shield" : 19736.4, "erected" : 19722.9, "employ" : 19722.1, "prevailed" : 19721.4, "talent" : 19714.2, "rises" : 19713.4, "climate" : 19693.7, "chairs" : 19690.5, "searched" : 19689.7, "unlike" : 19687.3, "recover" : 19681.0, "mate" : 19655.7, "arrange" : 19648.6, "fortunes" : 19647.0, "puzzled" : 19639.1, "committee" : 19637.5, "aged" : 19628.8, "ohio" : 19605.1, "ashes" : 19593.2, "ghost" : 19563.9, "b" : 19549.7, "promises" : 19547.3, "bushes" : 19541.0, "effective" : 19525.9, "distinguish" : 19508.5, "manifest" : 19496.7, "comparatively" : 19486.4, "esteem" : 19478.5, "blew" : 19452.4, "revelation" : 19451.6, "wash" : 19425.5, "recognition" : 19417.6, "confession" : 19405.7, "clay" : 19398.6, "nonsense" : 19375.6, "trunk" : 19374.8, "management" : 19371.7, "undoubtedly" : 19371.7, "dried" : 19369.3, "dorothy" : 19360.6, "chiefs" : 19347.1, "coal" : 19337.7, "stolen" : 19337.7, "earthly" : 19335.3, "restore" : 19332.1, "indirectly" : 19327.4, "lasted" : 19324.2, "selfish" : 19316.3, "renewed" : 19313.9, "canoe" : 19310.8, "protest" : 19307.6, "vice" : 19294.1, "races" : 19291.0, "deemed" : 19279.1, "temporary" : 19278.3, "pile" : 19276.7, "frederick" : 19263.3, "chapel" : 19251.4, "moderate" : 19245.9, "spell" : 19236.4, "massachusetts" : 19235.6, "upright" : 19228.5, "quoted" : 19226.9, "area" : 19226.1, "bone" : 19221.4, "solitude" : 19215.8, "instruments" : 19215.0, "formal" : 19211.9, "students" : 19209.5, "greatness" : 19206.3, "struggling" : 19192.1, "monday" : 19175.5, "reproach" : 19173.1, "altered" : 19167.6, "grim" : 19161.2, "leaped" : 19157.3, "venice" : 19153.3, "federal" : 19149.4, "questioned" : 19147.0, "editor" : 19143.0, "desirable" : 19141.5, "acknowledge" : 19137.5, "motionless" : 19137.5, "remedy" : 19135.9, "bestowed" : 19130.4, "pursue" : 19121.7, "representative" : 19117.7, "pole" : 19116.9, "gladly" : 19111.4, "linen" : 19109.8, "vital" : 19099.5, "sink" : 19096.4, "pacific" : 19093.2, "hopeless" : 19090.0, "dangers" : 19087.7, "gratefully" : 19087.7, "president" : 19068.7, "travelled" : 19061.5, "ward" : 19060.8, "nephew" : 19041.8, "ms" : 19038.6, "cheer" : 19029.9, "bloody" : 19023.6, "siege" : 19020.4, "commands" : 19005.4, "justified" : 19003.8, "atlantic" : 18995.1, "stomach" : 18991.9, "improved" : 18971.4, "admire" : 18965.0, "openly" : 18962.7, "sailors" : 18961.1, "abide" : 18940.5, "advancing" : 18937.3, "forests" : 18927.1, "records" : 18920.7, "polly" : 18909.6, "recorded" : 18908.9, "modification" : 18904.9, "dramatic" : 18897.8, "statements" : 18891.5, "upstairs" : 18873.3, "varied" : 18858.2, "letting" : 18857.4, "wilson" : 18857.4, "comrades" : 18855.9, "sets" : 18848.7, "descent" : 18847.9, "whither" : 18847.9, "envy" : 18837.7, "load" : 18836.9, "pretend" : 18834.5, "folded" : 18829.0, "brass" : 18824.2, "internal" : 18823.4, "furious" : 18820.3, "curtain" : 18816.3, "healthy" : 18814.7, "obscure" : 18810.0, "summit" : 18806.0, "alas" : 18755.4, "fifth" : 18753.0, "center" : 18747.5, "faced" : 18734.8, "cheap" : 18723.7, "saints" : 18722.9, "colonel" : 18721.4, "egyptian" : 18719.0, "contest" : 18707.9, "owned" : 18702.4, "adventures" : 18700.8, "exclusion" : 18688.1, "seize" : 18670.7, "chances" : 18669.9, "springs" : 18661.2, "alter" : 18660.4, "landing" : 18659.7, "fence" : 18652.5, "leagues" : 18642.2, "glimpse" : 18634.3, "statue" : 18632.0, "contract" : 18625.6, "luxury" : 18614.6, "artillery" : 18598.7, "doubts" : 18597.2, "saving" : 18594.8, "fro" : 18586.9, "string" : 18586.1, "combination" : 18582.9, "awakened" : 18575.8, "faded" : 18573.4, "arrest" : 18570.3, "protected" : 18568.7, "temperature" : 18567.1, "strict" : 18564.7, "contented" : 18563.9, "professional" : 18563.9, "intent" : 18559.2, "brother's" : 18548.9, "injured" : 18548.9, "neighborhood" : 18546.5, "andrew" : 18543.4, "abundance" : 18541.0, "smoking" : 18541.0, "yourselves" : 18529.9, "medical" : 18527.5, "garrison" : 18525.9, "likes" : 18508.5, "corps" : 18503.8, "heroic" : 18497.5, "inform" : 18494.3, "wife's" : 18488.8, "retained" : 18477.7, "agitation" : 18469.0, "nobles" : 18462.7, "prominent" : 18457.1, "institution" : 18454.0, "judged" : 18441.3, "embrace" : 18431.0, "wheels" : 18427.8, "closing" : 18397.8, "damaged" : 18391.5, "pack" : 18390.7, "affections" : 18389.1, "eldest" : 18389.1, "anguish" : 18382.8, "surrounding" : 18381.2, "obviously" : 18376.4, "strictly" : 18366.1, "capture" : 18344.0, "drops" : 18339.2, "inquire" : 18336.1, "ample" : 18328.2, "remainder" : 18325.8, "justly" : 18324.2, "recollection" : 18324.2, "deer" : 18321.0, "answers" : 18317.9, "bedroom" : 18311.6, "purely" : 18310.0, "bush" : 18306.8, "plunged" : 18299.7, "thyself" : 18296.5, "joint" : 18291.8, "refer" : 18275.9, "expecting" : 18274.4, "madam" : 18271.2, "railroad" : 18264.9, "spake" : 18253.8, "respecting" : 18252.2, "jan" : 18250.6, "columns" : 18248.3, "weep" : 18242.7, "identify" : 18232.4, "discharge" : 18215.8, "bench" : 18207.1, "ralph" : 18196.0, "heir" : 18192.9, "oak" : 18186.6, "rescue" : 18177.1, "limit" : 18168.4, "unpleasant" : 18163.6, "anxiously" : 18159.7, "innocence" : 18153.3, "awoke" : 18151.7, "expectation" : 18145.4, "incomplete" : 18143.8, "program" : 18109.8, "reserved" : 18096.4, "secretly" : 18083.7, "we've" : 18079.7, "invention" : 18079.0, "faults" : 18075.8, "disagreeable" : 18074.2, "piano" : 18074.2, "defeated" : 18073.4, "charms" : 18072.6, "purse" : 18067.9, "persuade" : 18066.3, "deprived" : 18063.1, "electric" : 18058.4, "endless" : 18058.4, "interval" : 18054.4, "chase" : 18052.8, "heroes" : 18052.1, "invisible" : 18048.9, "well-known" : 18044.9, "occupy" : 18038.6, "jacob" : 18036.2, "gown" : 18026.0, "cruelty" : 18021.2, "lock" : 18018.0, "lowest" : 18007.8, "hesitation" : 18003.8, "withdrew" : 18003.8, "proposal" : 18001.4, "destiny" : 17999.1, "recognised" : 17998.3, "commons" : 17995.1, "foul" : 17994.3, "loaded" : 17991.9, "amidst" : 17989.6, "titles" : 17984.8, "ancestors" : 17984.0, "types" : 17972.2, "commanding" : 17959.5, "madness" : 17954.7, "happily" : 17954.0, "assigned" : 17951.6, "declined" : 17932.6, "temptation" : 17932.6, "lady's" : 17929.4, "subsequent" : 17917.6, "jewels" : 17912.8, "breathed" : 17910.4, "willingly" : 17906.5, "youthful" : 17906.5, "bells" : 17904.1, "spectacle" : 17903.3, "uneasy" : 17897.8, "shine" : 17896.2, "formidable" : 17893.0, "stately" : 17892.2, "machinery" : 17886.7, "fragments" : 17875.6, "rushing" : 17859.0, "attractive" : 17857.4, "product" : 17857.4, "economic" : 17854.3, "sickness" : 17847.9, "uses" : 17822.6, "dashed" : 17819.5, "engine" : 17817.1, "ashore" : 17813.9, "dates" : 17805.2, "theirs" : 17793.4, "adv" : 17783.1, "clasped" : 17773.6, "international" : 17772.8, "leather" : 17768.8, "spared" : 17758.5, "crushed" : 17753.0, "interfere" : 17748.3, "subtle" : 17745.9, "waved" : 17743.5, "slope" : 17739.6, "floating" : 17737.2, "worry" : 17730.1, "effected" : 17725.3, "passengers" : 17723.7, "violently" : 17715.8, "donation" : 17715.0, "steamer" : 17714.2, "witnesses" : 17712.7, "specified" : 17710.3, "learnt" : 17698.4, "stores" : 17677.9, "designed" : 17666.8, "guessed" : 17654.9, "roger" : 17654.9, "timber" : 17654.1, "talents" : 17639.9, "heed" : 17636.7, "jackson" : 17631.2, "murdered" : 17629.6, "vivid" : 17628.0, "woe" : 17614.6, "calculate" : 17612.2, "killing" : 17608.2, "laura" : 17605.9, "savages" : 17603.5, "wasted" : 17600.3, "trifle" : 17584.5, "funny" : 17576.6, "pockets" : 17560.0, "philosopher" : 17552.9, "insult" : 17544.2, "den" : 17543.4, "representation" : 17541.0, "incapable" : 17538.6, "eloquence" : 17537.0, "dine" : 17526.7, "temples" : 17526.0, "ann" : 17521.2, "sensitive" : 17519.6, "robin" : 17518.8, "appetite" : 17507.0, "wishing" : 17501.4, "picturesque" : 17495.9, "douglas" : 17494.3, "courtesy" : 17472.2, "flowing" : 17467.4, "remembrance" : 17465.8, "lawyers" : 17464.2, "sphere" : 17464.2, "murmur" : 17463.5, "elegant" : 17460.3, "honourable" : 17453.2, "stopping" : 17452.4, "guilt" : 17440.5, "welfare" : 17437.3, "avoided" : 17429.4, "fishing" : 17423.9, "perish" : 17420.7, "sober" : 17416.0, "steal" : 17415.2, "delicious" : 17401.0, "infant" : 17393.8, "lip" : 17393.0, "norman" : 17392.3, "offended" : 17392.3, "dost" : 17373.3, "memories" : 17358.2, "wheat" : 17354.3, "japanese" : 17343.2, "humor" : 17342.4, "exhibited" : 17329.0, "encounter" : 17321.8, "footsteps" : 17314.7, "marquis" : 17308.4, "smiles" : 17302.1, "amiable" : 17294.9, "twilight" : 17290.2, "arrows" : 17287.8, "consisting" : 17287.0, "park" : 17285.4, "retire" : 17280.7, "economy" : 17278.3, "sufferings" : 17276.7, "secrets" : 17276.0, "na" : 17275.2, "halted" : 17268.0, "govern" : 17262.5, "favourable" : 17260.9, "colors" : 17248.3, "translated" : 17245.9, "stretch" : 17245.1, "formation" : 17240.4, "immortal" : 17234.8, "gallery" : 17233.2, "parallel" : 17233.2, "lean" : 17230.1, "tempted" : 17229.3, "frontier" : 17228.5, "continent" : 17226.1, "knock" : 17221.4, "impatience" : 17210.3, "unity" : 17210.3, "dealing" : 17192.9, "prohibition" : 17169.9, "decent" : 17166.8, "fiery" : 17163.6, "images" : 17163.6, "tie" : 17162.8, "punished" : 17161.2, "submitted" : 17161.2, "julia" : 17140.7, "albert" : 17127.2, "rejoined" : 17126.4, "speedily" : 17125.6, "consented" : 17122.5, "major" : 17113.8, "preliminary" : 17113.8, "cell" : 17112.2, "void" : 17112.2, "placing" : 17111.4, "prudence" : 17103.5, "egg" : 17096.4, "amazement" : 17090.0, "border" : 17086.9, "artificial" : 17080.5, "hereafter" : 17075.8, "fanny" : 17065.5, "crimes" : 17063.1, "breathe" : 17060.0, "exempt" : 17056.8, "anchor" : 17037.8, "chicago" : 17037.8, "sits" : 17036.2, "purchased" : 17032.3, "eminent" : 17031.5, "neighbors" : 17029.1, "glowing" : 17016.5, "sunlight" : 17008.6, "examples" : 17006.2, "exercised" : 17005.4, "wealthy" : 17003.8, "seeming" : 16999.1, "bonaparte" : 16995.1, "shouting" : 16994.3, "thanked" : 16992.7, "illustrious" : 16985.6, "curiously" : 16984.8, "inspiration" : 16984.0, "seeds" : 16983.2, "naval" : 16971.4, "foes" : 16954.8, "everyone" : 16950.8, "longed" : 16944.5, "abundant" : 16940.5, "doubted" : 16936.6, "painter" : 16933.4, "greeted" : 16931.0, "erect" : 16929.4, "glasses" : 16926.3, "meanwhile" : 16926.3, "shooting" : 16918.4, "athens" : 16914.4, "wagon" : 16913.6, "lend" : 16903.3, "lent" : 16901.7, "crisis" : 16892.3, "undertake" : 16885.9, "particulars" : 16872.5, "eh" : 16870.9, "veins" : 16869.3, "polite" : 16864.6, "anna" : 16863.0, "experiences" : 16859.0, "seal" : 16858.2, "header" : 16850.3, "clergy" : 16848.7, "mount" : 16843.2, "array" : 16834.5, "corners" : 16834.5, "magazine" : 16833.7, "loudly" : 16832.1, "bitterness" : 16825.8, "texas" : 16816.3, "guardian" : 16813.1, "searching" : 16811.6, "rejected" : 16802.1, "harsh" : 16801.3, "includes" : 16800.5, "boldly" : 16791.8, "maurice" : 16791.8, "kate" : 16790.2, "lunch" : 16786.2, "pine" : 16785.5, "shells" : 16783.9, "seconds" : 16783.1, "despite" : 16779.1, "hoping" : 16776.7, "injustice" : 16768.0, "expressions" : 16766.5, "flies" : 16766.5, "push" : 16757.0, "tight" : 16756.2, "problems" : 16753.0, "landscape" : 16749.1, "sue" : 16742.7, "protested" : 16739.6, "scarlet" : 16734.8, "abandon" : 16734.0, "artistic" : 16721.4, "mainly" : 16720.6, "measured" : 16688.9, "loyal" : 16683.4, "boiling" : 16681.8, "desirous" : 16644.6, "suited" : 16644.6, "alliance" : 16641.5, "advise" : 16635.1, "waist" : 16634.3, "sinking" : 16631.2, "apprehension" : 16616.1, "stable" : 16611.4, "gregory" : 16607.4, "maximum" : 16592.4, "commit" : 16590.0, "hideous" : 16575.0, "hamilton" : 16571.1, "sweetness" : 16566.3, "dismissed" : 16563.9, "tore" : 16560.8, "affect" : 16558.4, "shaken" : 16556.0, "evils" : 16552.1, "unworthy" : 16547.3, "significance" : 16544.9, "modified" : 16531.5, "miracle" : 16529.9, "lieu" : 16522.0, "peasant" : 16519.6, "considerably" : 16501.4, "observing" : 16495.9, "conveyed" : 16494.3, "resemblance" : 16475.3, "extend" : 16473.0, "riches" : 16471.4, "personally" : 16466.6, "morality" : 16455.5, "rebellion" : 16450.8, "thread" : 16435.8, "dumb" : 16431.8, "inclination" : 16427.9, "forbidden" : 16427.1, "copper" : 16426.3, "differences" : 16418.4, "sailor" : 16411.2, "requested" : 16408.1, "alfred" : 16401.8, "response" : 16401.8, "promoting" : 16398.6, "imperial" : 16392.3, "blank" : 16390.7, "purity" : 16382.8, "victor" : 16382.8, "bending" : 16376.4, "solemnly" : 16363.0, "twenty-four" : 16363.0, "minor" : 16356.7, "del" : 16353.5, "crimson" : 16348.7, "republic" : 16343.2, "teachers" : 16332.9, "ma'am" : 16329.8, "danced" : 16326.6, "bargain" : 16325.8, "dealt" : 16321.8, "fatigue" : 16319.5, "telephone" : 16317.9, "cents" : 16317.1, "whip" : 16310.8, "adams" : 16303.7, "dislike" : 16280.7, "witnessed" : 16265.7, "infantry" : 16260.9, "acres" : 16254.6, "checked" : 16253.8, "countrymen" : 16252.2, "enemy's" : 16249.9, "companies" : 16249.1, "normal" : 16248.3, "shirt" : 16247.5, "addresses" : 16243.5, "introduce" : 16242.7, "sofa" : 16237.2, "mothers" : 16235.6, "sweep" : 16222.2, "conversion" : 16219.8, "sketch" : 16215.0, "african" : 16205.6, "deserved" : 16204.0, "answering" : 16200.0, "virtuous" : 16198.4, "persian" : 16176.3, "anyway" : 16169.9, "thief" : 16152.5, "driver" : 16147.8, "retain" : 16145.4, "constructed" : 16144.6, "daniel" : 16143.8, "ut" : 16132.8, "philadelphia" : 16130.4, "conspicuous" : 16129.6, "channel" : 16126.4, "nobility" : 16124.1, "edith" : 16114.6, "berlin" : 16113.8, "editing" : 16105.9, "cambridge" : 16103.5, "declaration" : 16094.8, "guards" : 16094.8, "personality" : 16088.5, "smallest" : 16080.6, "excess" : 16077.4, "separation" : 16075.8, "disgust" : 16071.8, "ha" : 16062.4, "accomplish" : 16054.4, "speeches" : 16054.4, "herbert" : 16053.7, "convent" : 16048.1, "rightly" : 16044.2, "suspended" : 16042.6, "reform" : 16035.5, "mob" : 16028.3, "thirst" : 16027.5, "unnecessary" : 16021.2, "treasures" : 16018.8, "asks" : 16018.1, "viewed" : 16016.5, "designs" : 16004.6, "gleam" : 16000.6, "threatening" : 15999.1, "palm" : 15994.3, "missouri" : 15992.7, "filling" : 15984.0, "quoth" : 15980.9, "fur" : 15978.5, "fortnight" : 15973.0, "holes" : 15972.2, "addressing" : 15970.6, "frightful" : 15954.8, "encourage" : 15954.0, "speaker" : 15945.3, "tribute" : 15944.5, "procure" : 15935.8, "frankly" : 15931.0, "recommended" : 15913.6, "relieve" : 15912.0, "intentions" : 15910.5, "unjust" : 15909.7, "legislation" : 15904.1, "project" : 15894.6, "threshold" : 15894.6, "merits" : 15893.8, "morrow" : 15885.1, "traces" : 15885.1, "induce" : 15883.6, "spear" : 15882.0, "inward" : 15873.3, "pupils" : 15863.8, "corresponding" : 15859.0, "fairy" : 15854.3, "conclude" : 15850.3, "clung" : 15846.4, "neat" : 15845.6, "lucky" : 15834.5, "lap" : 15823.4, "session" : 15822.6, "torture" : 15818.7, "damp" : 15814.7, "ridge" : 15802.1, "spoil" : 15785.5, "liable" : 15784.7, "swords" : 15780.7, "hearty" : 15778.3, "bc" : 15774.4, "abraham" : 15769.6, "thoughtful" : 15768.8, "traveller" : 15764.9, "chains" : 15760.9, "favorable" : 15760.1, "tin" : 15755.4, "imp." : 15748.3, "strongest" : 15748.3, "horace" : 15745.1, "dependent" : 15738.0, "couch" : 15736.4, "bills" : 15732.5, "warrant" : 15731.7, "complaint" : 15722.2, "endeavour" : 15721.4, "sails" : 15716.6, "dined" : 15705.6, "convention" : 15701.6, "guarded" : 15696.1, "angle" : 15694.5, "widely" : 15692.1, "illinois" : 15677.9, "charlotte" : 15677.1, "endeavoured" : 15677.1, "ardent" : 15674.7, "cow" : 15670.0, "mill" : 15668.4, "victims" : 15667.6, "prejudice" : 15666.0, "foremost" : 15665.2, "map" : 15665.2, "probability" : 15656.5, "porch" : 15645.4, "lieutenant" : 15641.5, "surprising" : 15633.6, "fountain" : 15632.0, "sustained" : 15630.4, "appropriate" : 15626.4, "ford" : 15620.9, "clara" : 15616.2, "assisted" : 15615.4, "lewis" : 15615.4, "rejoice" : 15609.8, "extending" : 15608.2, "marvellous" : 15601.1, "clothed" : 15597.2, "jew" : 15579.8, "collar" : 15568.7, "bands" : 15567.9, "confident" : 15563.1, "hasty" : 15560.0, "nigh" : 15557.6, "organ" : 15557.6, "prose" : 15545.0, "privileges" : 15533.1, "selection" : 15523.6, "inquiries" : 15522.8, "codes" : 15510.1, "replace" : 15496.7, "saint" : 15492.7, "districts" : 15491.9, "deliberately" : 15481.7, "awe" : 15474.5, "beforehand" : 15470.6, "strife" : 15470.6, "released" : 15468.2, "compare" : 15466.6, "beer" : 15465.0, "retorted" : 15461.9, "relate" : 15459.5, "cheerfully" : 15448.4, "pistol" : 15448.4, "presume" : 15447.6, "velvet" : 15446.1, "wretch" : 15446.1, "susan" : 15438.2, "pennsylvania" : 15432.6, "stirring" : 15430.2, "righteousness" : 15429.4, "missing" : 15428.7, "fain" : 15427.1, "facing" : 15425.5, "fashionable" : 15425.5, "producing" : 15420.7, "peoples" : 15416.8, "positively" : 15408.9, "reasoning" : 15402.5, "gravity" : 15401.8, "disturb" : 15393.1, "sermon" : 15389.1, "exchanged" : 15385.1, "partner" : 15379.6, "brains" : 15374.1, "lowered" : 15372.5, "association" : 15365.4, "estates" : 15352.7, "abuse" : 15338.5, "flock" : 15329.8, "niece" : 15329.8, "languages" : 15325.0, "asserted" : 15321.1, "bodily" : 15318.7, "notions" : 15315.5, "oliver" : 15313.2, "faculty" : 15304.4, "cannon" : 15302.1, "thirteen" : 15290.2, "sailing" : 15289.4, "rings" : 15285.5, "smart" : 15284.7, "possessions" : 15280.7, "disciples" : 15272.0, "petty" : 15271.2, "widest" : 15253.0, "divisions" : 15252.2, "prudent" : 15248.3, "caution" : 15246.7, "justify" : 15239.6, "awhile" : 15236.4, "boxes" : 15233.2, "manuscript" : 15228.5, "cigar" : 15225.3, "warrior" : 15223.0, "impressions" : 15221.4, "aught" : 15217.4, "lifting" : 15217.4, "inaccurate" : 15212.7, "tidings" : 15207.9, "friday" : 15206.3, "liquid" : 15202.4, "staying" : 15202.4, "concept" : 15191.3, "creek" : 15186.6, "lo" : 15173.1, "brush" : 15172.3, "download" : 15171.5, "specially" : 15168.4, "cream" : 15166.8, "meetings" : 15162.0, "jump" : 15159.7, "unwilling" : 15158.9, "adapted" : 15157.3, "practised" : 15157.3, "combat" : 15151.8, "subdued" : 15151.8, "jewish" : 15144.6, "innumerable" : 15141.5, "blowing" : 15139.9, "extra" : 15138.3, "civilized" : 15130.4, "invented" : 15123.3, "japan" : 15120.9, "pitch" : 15109.8, "cliff" : 15107.5, "crowned" : 15092.4, "portions" : 15090.8, "awkward" : 15086.9, "horrid" : 15085.3, "pulling" : 15067.1, "appreciate" : 15065.5, "communicated" : 15060.8, "kentucky" : 15056.8, "jury" : 15050.5, "encountered" : 15046.5, "attacks" : 15041.8, "monster" : 15031.5, "simon" : 15022.0, "maintaining" : 15021.2, "sites" : 15019.6, "frozen" : 15015.7, "invariably" : 15010.9, "dies" : 15009.4, "survive" : 15007.8, "literally" : 15005.4, "consolation" : 14994.3, "m" : 14994.3, "phenomena" : 14994.3, "pot" : 14993.5, "ellen" : 14984.0, "briefly" : 14979.3, "rice" : 14975.3, "planned" : 14974.5, "barbara" : 14966.6, "respected" : 14958.7, "sublime" : 14954.0, "dropping" : 14948.4, "guy" : 14945.3, "behaviour" : 14940.5, "desolate" : 14938.9, "penny" : 14935.0, "adopt" : 14934.2, "replaced" : 14933.4, "revenue" : 14923.1, "formats" : 14918.4, "hired" : 14912.8, "regularly" : 14904.9, "infringement" : 14893.8, "curtains" : 14892.3, "eagerness" : 14883.6, "helping" : 14882.8, "investigation" : 14882.8, "constitutional" : 14878.8, "insist" : 14878.8, "occurs" : 14875.7, "fools" : 14871.7, "inheritance" : 14870.9, "latest" : 14868.5, "leap" : 14866.2, "games" : 14846.4, "apple" : 14840.1, "visiting" : 14840.1, "travellers" : 14836.1, "experiments" : 14830.6, "hasn't" : 14830.6, "pupil" : 14830.6, "enjoying" : 14829.0, "totally" : 14821.9, "twisted" : 14821.9, "discuss" : 14813.9, "firing" : 14802.9, "background" : 14801.3, "subscribe" : 14795.0, "tenderly" : 14786.3, "transcribe" : 14783.1, "descend" : 14779.9, "differ" : 14772.0, "majesty's" : 14763.3, "avail" : 14758.6, "disaster" : 14756.2, "bet" : 14753.8, "periodic" : 14750.7, "bull" : 14749.1, "entertainment" : 14748.3, "computers" : 14743.5, "cursed" : 14738.0, "raw" : 14734.0, "fulfilled" : 14732.5, "georgia" : 14728.5, "virus" : 14726.9, "log" : 14726.1, "skies" : 14707.9, "scotch" : 14706.4, "embraced" : 14705.6, "hospitality" : 14703.2, "faintly" : 14701.6, "solomon" : 14690.5, "robbed" : 14689.7, "cart" : 14688.9, "influences" : 14686.6, "ascended" : 14682.6, "incidents" : 14682.6, "childish" : 14674.7, "robe" : 14668.4, "aboard" : 14658.1, "resembling" : 14657.3, "reflect" : 14652.6, "dominion" : 14649.4, "dreary" : 14644.6, "serving" : 14639.1, "complexion" : 14636.7, "engage" : 14624.1, "tents" : 14620.9, "herd" : 14619.3, "attain" : 14618.5, "collect" : 14617.0, "disclaims" : 14617.0, "pan" : 14614.6, "relatives" : 14613.8, "borrowed" : 14610.6, "convert" : 14601.9, "outline" : 14598.8, "blown" : 14594.8, "comprehend" : 14578.2, "peasants" : 14575.8, "opera" : 14571.9, "assault" : 14568.7, "deceive" : 14566.3, "doctrines" : 14560.0, "representatives" : 14555.2, "dedicated" : 14553.7, "struggled" : 14548.1, "officials" : 14545.8, "hiding" : 14540.2, "paths" : 14537.8, "backs" : 14533.9, "prominently" : 14518.1, "prices" : 14517.3, "procured" : 14517.3, "mourning" : 14510.1, "compliment" : 14505.4, "heights" : 14503.0, "approval" : 14502.2, "gasped" : 14495.1, "breadth" : 14492.0, "withdraw" : 14488.8, "tune" : 14473.8, "compassion" : 14470.6, "polished" : 14468.2, "latitude" : 14463.5, "dishes" : 14461.1, "parent" : 14461.1, "contrived" : 14459.5, "delicacy" : 14459.5, "projected" : 14456.4, "akin" : 14454.0, "f" : 14452.4, "betray" : 14448.4, "traced" : 14446.9, "resentment" : 14432.6, "indemnify" : 14431.8, "pseud" : 14428.7, "sacrifices" : 14418.4, "disguise" : 14416.0, "transcription" : 14410.5, "document" : 14408.1, "neighbour" : 14405.7, "squire" : 14402.6, "punish" : 14393.9, "bars" : 14391.5, "glittering" : 14390.7, "tossed" : 14388.3, "block" : 14383.6, "lots" : 14375.7, "worldly" : 14370.1, "muscles" : 14367.0, "elbow" : 14365.4, "obligation" : 14359.8, "trifling" : 14359.8, "decline" : 14357.5, "attachment" : 14356.7, "ambitious" : 14355.9, "filename" : 14351.1, "artists" : 14341.6, "bloom" : 14341.6, "holiday" : 14340.8, "brute" : 14335.3, "repair" : 14329.8, "fist" : 14325.8, "recollect" : 14324.2, "eagle" : 14313.9, "honorable" : 14313.9, "significant" : 14309.2, "barren" : 14302.9, "functions" : 14296.5, "guided" : 14289.4, "dense" : 14283.9, "fiction" : 14277.6, "viz." : 14273.6, "adds" : 14270.4, "rows" : 14270.4, "recommend" : 14264.1, "suspicious" : 14261.7, "resulting" : 14257.8, "seventy" : 14257.0, "shillings" : 14253.8, "educational" : 14252.2, "duly" : 14247.5, "governed" : 14246.7, "scripture" : 14237.2, "upwards" : 14235.6, "sworn" : 14234.0, "nicholas" : 14226.9, "horn" : 14226.1, "brook" : 14225.3, "fund" : 14222.2, "vienna" : 14213.5, "lodge" : 14209.5, "infinitely" : 14207.9, "clergyman" : 14207.1, "marshal" : 14206.4, "ruled" : 14205.6, "fiercely" : 14200.0, "portuguese" : 14200.0, "costume" : 14192.9, "pit" : 14192.1, "disorder" : 14188.2, "sheer" : 14184.2, "exalted" : 14179.5, "fare" : 14175.5, "applause" : 14173.9, "chaucer" : 14166.8, "remind" : 14161.3, "binary" : 14155.7, "packed" : 14141.5, "pillow" : 14140.7, "jersey" : 14139.1, "abbey" : 14136.7, "nowhere" : 14135.2, "anyhow" : 14125.7, "agitated" : 14122.5, "marching" : 14122.5, "catching" : 14121.7, "el" : 14119.3, "grasped" : 14117.7, "arrow" : 14115.4, "tend" : 14113.8, "carved" : 14109.8, "fitting" : 14108.3, "bonds" : 14105.9, "instructed" : 14105.9, "elaborate" : 14101.1, "corpse" : 14095.6, "bewildered" : 14088.5, "essence" : 14071.9, "positions" : 14071.9, "emily" : 14067.1, "edited" : 14063.9, "continues" : 14062.4, "harold" : 14056.8, "elevation" : 14055.2, "realm" : 14041.8, "debts" : 14032.3, "glancing" : 14027.6, "shops" : 14013.3, "complained" : 14008.6, "loyalty" : 14001.4, "coin" : 13996.7, "clad" : 13992.0, "staircase" : 13988.8, "documents" : 13976.9, "interpreted" : 13969.8, "4th" : 13969.0, "extremity" : 13966.6, "accord" : 13965.1, "sally" : 13963.5, "lace" : 13960.3, "tremble" : 13957.9, "exile" : 13955.6, "gospel" : 13947.7, "mechanical" : 13947.7, "successfully" : 13943.7, "scholar" : 13932.6, "wonders" : 13923.9, "arab" : 13920.0, "temperament" : 13920.0, "expressing" : 13918.4, "fred" : 13917.6, "trap" : 13917.6, "spots" : 13914.4, "awaiting" : 13910.5, "potatoes" : 13909.7, "likeness" : 13902.6, "harbour" : 13898.6, "proofs" : 13885.2, "jolly" : 13883.6, "contributed" : 13879.6, "wits" : 13876.5, "generosity" : 13869.3, "ruler" : 13866.2, "lawrence" : 13858.3, "cake" : 13856.7, "lamps" : 13855.9, "crazy" : 13852.7, "sincerity" : 13852.7, "entertain" : 13851.1, "madame" : 13849.6, "sir" : 13849.6, "faculties" : 13845.6, "hesitate" : 13840.1, "deepest" : 13836.9, "seventeen" : 13830.6, "lordship" : 13817.9, "greeting" : 13808.4, "feminine" : 13805.2, "monstrous" : 13802.9, "tongues" : 13799.7, "barely" : 13795.8, "3d" : 13785.5, "mansion" : 13784.7, "facility" : 13783.9, "praised" : 13779.1, "warranties" : 13776.0, "sarah" : 13775.2, "happier" : 13772.8, "indicating" : 13772.0, "rob" : 13764.1, "gigantic" : 13763.3, "honey" : 13760.9, "ladder" : 13757.8, "ending" : 13754.6, "wales" : 13754.6, "swallowed" : 13751.5, "sunny" : 13747.5, "knelt" : 13743.5, "tyranny" : 13742.7, "decree" : 13739.6, "stake" : 13738.0, "divide" : 13734.0, "dreaming" : 13734.0, "proclaimed" : 13732.5, "dignified" : 13730.9, "tread" : 13729.3, "mines" : 13724.6, "viewing" : 13723.8, "defense" : 13723.0, "oldest" : 13720.6, "incredible" : 13718.2, "bidding" : 13711.9, "brick" : 13711.9, "arch" : 13707.1, "everlasting" : 13703.2, "elect" : 13700.0, "sprung" : 13696.9, "harder" : 13688.2, "winding" : 13686.6, "deductible" : 13684.2, "magistrate" : 13681.8, "respective" : 13679.5, "liquor" : 13676.3, "imitation" : 13670.0, "shy" : 13670.0, "perished" : 13669.2, "prime" : 13666.0, "studying" : 13662.8, "eighty" : 13661.3, "hebrew" : 13658.1, "unfortunately" : 13656.5, "licensed" : 13654.9, "fog" : 13651.0, "coloured" : 13648.6, "bits" : 13647.0, "consult" : 13642.3, "moves" : 13642.3, "r" : 13642.3, "warn" : 13639.9, "taylor" : 13638.3, "vile" : 13616.2, "depended" : 13612.2, "phil" : 13609.8, "legend" : 13609.0, "locations" : 13604.3, "shallow" : 13602.7, "doom" : 13601.1, "dreaded" : 13595.6, "encouragement" : 13592.4, "impatiently" : 13575.8, "scent" : 13567.9, "varieties" : 13567.1, "irregular" : 13555.2, "battles" : 13554.5, "compass" : 13543.4, "neighbouring" : 13538.6, "bliss" : 13536.3, "harvest" : 13533.9, "promotion" : 13533.1, "stove" : 13519.6, "faithfully" : 13518.9, "anthony" : 13517.3, "excellence" : 13515.7, "transfer" : 13515.7, "awaited" : 13511.7, "heathen" : 13510.9, "poetic" : 13510.9, "consulted" : 13509.4, "illustrated" : 13507.0, "gilbert" : 13501.5, "br" : 13497.5, "fundamental" : 13496.7, "bundle" : 13492.0, "rebel" : 13481.7, "cultivation" : 13478.5, "joys" : 13478.5, "rigid" : 13476.9, "tragic" : 13468.2, "review" : 13462.7, "representing" : 13459.5, "flowed" : 13455.6, "brows" : 13454.0, "whereupon" : 13451.6, "terribly" : 13438.2, "melted" : 13435.8, "venerable" : 13435.8, "towers" : 13434.2, "cooking" : 13432.6, "mustn't" : 13422.3, "suspicions" : 13420.8, "old-fashioned" : 13419.2, "oppressed" : 13418.4, "australia" : 13413.6, "friend's" : 13412.1, "revolt" : 13411.3, "swell" : 13407.3, "improve" : 13405.7, "williams" : 13405.7, "describes" : 13403.4, "goddess" : 13401.8, "wreck" : 13393.1, "tennessee" : 13392.3, "convince" : 13384.4, "sentences" : 13377.2, "bowl" : 13376.5, "radiant" : 13367.8, "prussia" : 13364.6, "westward" : 13357.5, "indignant" : 13355.9, "refined" : 13345.6, "unseen" : 13344.8, "illustration" : 13340.9, "pertaining" : 13333.7, "swamp" : 13330.6, "austrian" : 13329.0, "saxon" : 13325.0, "congregation" : 13323.4, "nerve" : 13321.1, "undertaking" : 13321.1, "disclaimer" : 13317.1, "characteristics" : 13302.9, "stare" : 13291.8, "specimens" : 13291.0, "ascertain" : 13288.6, "pledge" : 13287.1, "earn" : 13286.3, "warfare" : 13285.5, "supposing" : 13279.9, "subsequently" : 13279.1, "attending" : 13278.4, "angrily" : 13273.6, "select" : 13268.9, "animated" : 13267.3, "industrial" : 13267.3, "hurriedly" : 13259.4, "manhood" : 13257.0, "quantities" : 13246.7, "interpretation" : 13245.9, "dressing" : 13242.0, "rejoiced" : 13241.2, "edinburgh" : 13238.8, "catherine" : 13236.4, "challenge" : 13236.4, "produces" : 13236.4, "forbid" : 13235.6, "gang" : 13234.8, "boiled" : 13233.3, "shouts" : 13231.7, "so-called" : 13229.3, "theme" : 13229.3, "thankful" : 13227.7, "admission" : 13226.9, "enters" : 13218.2, "elevated" : 13217.4, "frenchman" : 13208.7, "pool" : 13204.8, "terrified" : 13203.2, "lads" : 13202.4, "persisted" : 13189.7, "conference" : 13185.0, "equality" : 13183.4, "genus" : 13180.3, "didst" : 13176.3, "newly" : 13172.3, "generals" : 13171.5, "surroundings" : 13162.1, "sorrows" : 13158.9, "occasioned" : 13154.1, "invasion" : 13151.0, "workmen" : 13147.0, "monks" : 13145.4, "sends" : 13145.4, "turkish" : 13144.7, "discretion" : 13141.5, "pattern" : 13139.9, "reveal" : 13139.1, "endured" : 13128.8, "resolve" : 13128.0, "columbia" : 13121.7, "preach" : 13120.9, "exceeding" : 13119.3, "ringing" : 13117.0, "triumphant" : 13117.0, "defiance" : 13113.8, "errand" : 13105.1, "woke" : 13104.3, "grandmother" : 13103.5, "weighed" : 13095.6, "wool" : 13092.4, "orleans" : 13080.6, "communicate" : 13078.2, "strikes" : 13075.8, "promising" : 13066.3, "scenery" : 13066.3, "righteous" : 13065.5, "essentially" : 13064.0, "oppose" : 13060.8, "joyous" : 13053.7, "specimen" : 13052.9, "doctors" : 13049.7, "eloquent" : 13045.0, "manager" : 13045.0, "organs" : 13043.4, "sticks" : 13042.6, "drag" : 13041.0, "haunted" : 13041.0, "chorus" : 13040.2, "rational" : 13025.2, "crop" : 13023.6, "processing" : 13023.6, "accurate" : 13018.9, "wolf" : 13010.9, "adorned" : 13009.4, "sheets" : 13007.8, "resort" : 13006.2, "refusal" : 13002.2, "bond" : 12999.1, "vicinity" : 12992.8, "preacher" : 12990.4, "sympathetic" : 12988.0, "casting" : 12987.2, "opens" : 12982.5, "prophets" : 12980.1, "horns" : 12978.5, "warmly" : 12976.1, "salary" : 12970.6, "continuous" : 12965.9, "satan" : 12962.7, "continual" : 12959.5, "defended" : 12959.5, "breaks" : 12958.7, "workers" : 12957.9, "lantern" : 12957.2, "balls" : 12955.6, "rod" : 12955.6, "blaze" : 12952.4, "examining" : 12951.6, "naples" : 12951.6, "peculiarly" : 12950.0, "vegetables" : 12950.0, "ingenious" : 12948.4, "excite" : 12942.1, "howard" : 12937.4, "horseback" : 12935.8, "re-use" : 12923.1, "louisiana" : 12921.6, "farmers" : 12920.0, "wildly" : 12919.2, "mouths" : 12916.8, "carpet" : 12912.8, "sadness" : 12910.5, "customary" : 12904.1, "circles" : 12903.4, "aren't" : 12895.4, "wonderfully" : 12891.5, "max" : 12889.9, "juan" : 12885.9, "successor" : 12871.7, "allied" : 12869.3, "ceiling" : 12863.8, "confirmation" : 12855.9, "glances" : 12855.1, "diamonds" : 12851.1, "goal" : 12848.0, "representations" : 12845.6, "cash" : 12840.1, "vacant" : 12837.7, "antiquity" : 12829.8, "despise" : 12826.6, "lawn" : 12817.9, "they'll" : 12817.9, "appealed" : 12814.0, "turkey" : 12811.6, "texts" : 12809.2, "neighbor" : 12805.3, "spreading" : 12802.9, "discharged" : 12792.6, "phrases" : 12791.8, "ultimate" : 12785.5, "tastes" : 12781.5, "submission" : 12779.1, "entry" : 12775.2, "rachel" : 12769.7, "blush" : 12760.2, "monument" : 12757.8, "hardy" : 12756.2, "thorough" : 12755.4, "ein" : 12753.8, "ecclesiastical" : 12751.5, "fertile" : 12745.1, "exciting" : 12744.3, "captive" : 12738.8, "severity" : 12736.4, "considerations" : 12735.6, "shew" : 12734.8, "faster" : 12730.9, "louise" : 12726.1, "grandeur" : 12723.0, "winning" : 12716.6, "solely" : 12713.5, "globe" : 12709.5, "malice" : 12708.7, "echoed" : 12706.4, "lodging" : 12692.9, "conservative" : 12692.1, "throng" : 12691.3, "prosperous" : 12688.2, "whistle" : 12685.0, "floated" : 12671.6, "transferred" : 12667.6, "declaring" : 12662.1, "reckoned" : 12655.7, "cheese" : 12654.9, "bite" : 12653.4, "thoughtfully" : 12652.6, "breach" : 12643.1, "enthusiastic" : 12642.3, "cars" : 12638.3, "downstairs" : 12638.3, "allowing" : 12631.2, "invite" : 12629.6, "adjoining" : 12620.1, "dusk" : 12618.5, "cathedral" : 12617.0, "truths" : 12616.2, "plague" : 12612.2, "sandy" : 12609.8, "boil" : 12606.7, "caroline" : 12603.5, "beautifully" : 12600.4, "inhabited" : 12600.4, "tomorrow" : 12600.4, "exclamation" : 12599.6, "finishing" : 12590.9, "shocked" : 12589.3, "escort" : 12588.5, "forgetting" : 12584.5, "hanged" : 12582.9, "hats" : 12576.6, "mirth" : 12576.6, "uncomfortable" : 12574.2, "connecticut" : 12571.1, "bows" : 12568.7, "pierced" : 12562.4, "harbor" : 12561.6, "tricks" : 12560.0, "rubbed" : 12559.2, "apparatus" : 12556.0, "mysteries" : 12541.0, "honesty" : 12537.9, "negroes" : 12535.5, "concerns" : 12529.9, "wander" : 12529.9, "assert" : 12528.4, "ceremonies" : 12528.4, "sacrificed" : 12520.4, "utterance" : 12518.1, "dismay" : 12513.3, "fright" : 12510.2, "rail" : 12509.4, "reflections" : 12508.6, "crops" : 12501.5, "pushing" : 12498.3, "proves" : 12496.7, "jimmy" : 12495.1, "pathetic" : 12493.5, "imperfect" : 12487.2, "haughty" : 12481.7, "navy" : 12481.7, "fortress" : 12478.5, "hurrying" : 12476.9, "x" : 12474.6, "blessings" : 12471.4, "attempting" : 12466.6, "insects" : 12465.9, "selling" : 12456.4, "appreciation" : 12455.6, "suppressed" : 12446.1, "acquire" : 12444.5, "offensive" : 12443.7, "ripe" : 12435.0, "dresses" : 12432.6, "reigned" : 12427.9, "coldly" : 12417.6, "candles" : 12412.1, "km" : 12409.7, "sixth" : 12398.6, "blazing" : 12397.8, "youngest" : 12395.4, "mask" : 12394.7, "florida" : 12393.9, "lecture" : 12393.9, "parlor" : 12393.9, "decidedly" : 12392.3, "whereby" : 12390.7, "gordon" : 12386.0, "reverend" : 12386.0, "successive" : 12385.2, "perception" : 12383.6, "buffalo" : 12381.2, "sire" : 12378.8, "quitted" : 12375.7, "keys" : 12374.9, "develop" : 12373.3, "function" : 12358.3, "morals" : 12356.7, "damned" : 12355.1, "vexed" : 12345.6, "2d" : 12344.8, "pouring" : 12340.9, "bullet" : 12333.7, "excessive" : 12332.9, "bind" : 12325.8, "identical" : 12325.0, "cliffs" : 12317.9, "tools" : 12312.4, "byron" : 12309.2, "mexican" : 12308.4, "piety" : 12308.4, "superstition" : 12304.5, "git" : 12302.9, "substantial" : 12302.9, "bulk" : 12293.4, "prevail" : 12293.4, "wiser" : 12291.8, "preaching" : 12284.7, "prolonged" : 12284.7, "annoyed" : 12276.0, "westminster" : 12275.2, "splendour" : 12273.6, "remembering" : 12272.0, "richmond" : 12259.4, "upset" : 12251.5, "cab" : 12250.7, "bunch" : 12244.3, "pencil" : 12243.5, "subjected" : 12243.5, "vegetable" : 12241.2, "exhibit" : 12238.8, "emerged" : 12237.2, "cooked" : 12235.6, "hay" : 12233.3, "kansas" : 12233.3, "gale" : 12226.9, "preached" : 12226.9, "arnold" : 12219.0, "trousers" : 12217.4, "debate" : 12213.5, "dated" : 12204.0, "tumult" : 12204.0, "corruption" : 12202.4, "summons" : 12201.6, "comrade" : 12193.7, "eternity" : 12193.7, "hears" : 12193.7, "lingered" : 12188.2, "propriety" : 12187.4, "stillness" : 12185.8, "partial" : 12182.6, "welcomed" : 12182.6, "cabinet" : 12178.7, "proceeds" : 12177.9, "vow" : 12176.3, "quaint" : 12174.7, "soup" : 12173.9, "beef" : 12170.8, "rests" : 12165.2, "slay" : 12164.4, "surgeon" : 12163.6, "irresistible" : 12158.9, "sealed" : 12149.4, "repeating" : 12146.2, "needn't" : 12144.7, "allowance" : 12143.1, "undertaken" : 12136.7, "treachery" : 12135.2, "posts" : 12131.2, "borders" : 12128.8, "attendant" : 12127.3, "unite" : 12123.3, "murderer" : 12120.9, "owners" : 12116.2, "nm" : 12115.4, "sweeping" : 12114.6, "unconsciously" : 12108.3, "blade" : 12101.9, "saviour" : 12099.6, "theories" : 12099.6, "graham" : 12098.8, "behaved" : 12096.4, "pleaded" : 12095.6, "spy" : 12094.8, "possesses" : 12094.0, "lawful" : 12091.7, "tommy" : 12091.7, "seasons" : 12090.1, "withdrawn" : 12090.1, "reckless" : 12086.9, "factory" : 12086.1, "shades" : 12083.7, "gossip" : 12080.6, "seventh" : 12079.0, "attendance" : 12075.0, "robes" : 12071.9, "journal" : 12065.5, "systems" : 12063.2, "dryden" : 12060.0, "maine" : 12059.2, "token" : 12054.5, "intimacy" : 12049.7, "abstract" : 12048.9, "machines" : 12048.1, "bestow" : 12037.1, "chanced" : 12036.3, "locks" : 12027.6, "honestly" : 12026.0, "legitimate" : 12026.0, "accent" : 12023.6, "symptoms" : 12017.3, "votes" : 12011.7, "ragged" : 12010.2, "thursday" : 12009.4, "manifested" : 12008.6, "fidelity" : 12006.2, "swinging" : 12000.7, "descending" : 11999.9, "sincerely" : 11999.9, "bred" : 11995.9, "whereof" : 11995.9, "indies" : 11994.3, "novels" : 11990.4, "league" : 11988.8, "failing" : 11984.1, "succeeding" : 11981.7, "santa" : 11979.3, "approve" : 11976.9, "cautiously" : 11976.1, "miller" : 11974.6, "afflicted" : 11972.2, "lodgings" : 11972.2, "petition" : 11965.1, "traffic" : 11963.5, "sparkling" : 11957.2, "limb" : 11955.6, "architecture" : 11951.6, "disposal" : 11936.6, "carriages" : 11929.5, "crack" : 11929.5, "kindred" : 11927.1, "naught" : 11927.1, "ornament" : 11921.6, "slew" : 11916.8, "steward" : 11911.3, "fantastic" : 11905.7, "evolution" : 11901.0, "patiently" : 11901.0, "reverse" : 11896.2, "survey" : 11890.7, "dug" : 11889.1, "amuse" : 11881.2, "stretching" : 11879.6, "isaac" : 11874.1, "forthwith" : 11873.3, "contemporary" : 11869.3, "foliage" : 11867.8, "receives" : 11865.4, "scandal" : 11861.4, "donors" : 11858.3, "deliberate" : 11855.9, "influenced" : 11855.1, "intolerable" : 11851.1, "hearth" : 11849.6, "symbol" : 11847.2, "governments" : 11844.8, "repaired" : 11844.8, "pleasantly" : 11837.7, "homage" : 11836.1, "victorious" : 11835.3, "columbus" : 11831.4, "recovery" : 11830.6, "defined" : 11829.8, "attendants" : 11828.2, "modesty" : 11824.2, "diana" : 11821.1, "washing" : 11817.9, "pavement" : 11815.5, "unnatural" : 11814.8, "decisive" : 11811.6, "wisely" : 11806.1, "precise" : 11799.7, "negative" : 11798.9, "occurrence" : 11798.1, "snatched" : 11796.6, "shaft" : 11795.0, "linked" : 11793.4, "festival" : 11792.6, "exclusively" : 11788.6, "jove" : 11788.6, "wickedness" : 11785.5, "visions" : 11782.3, "maggie" : 11779.9, "rosy" : 11777.6, "carelessly" : 11776.0, "stem" : 11775.2, "corporation" : 11772.0, "dec" : 11771.2, "feeding" : 11771.2, "allen" : 11767.3, "cows" : 11762.5, "schemes" : 11754.6, "preference" : 11753.8, "urge" : 11753.8, "husbands" : 11752.3, "labours" : 11751.5, "shrill" : 11750.7, "exercises" : 11746.7, "sovereignty" : 11745.1, "reduce" : 11740.4, "distressed" : 11731.7, "clearing" : 11730.1, "removal" : 11727.7, "dean" : 11725.4, "scottish" : 11722.2, "assertion" : 11719.8, "accessible" : 11718.2, "comedy" : 11718.2, "flush" : 11718.2, "code" : 11715.9, "philosophers" : 11713.5, "adequate" : 11711.1, "vaguely" : 11711.1, "treason" : 11709.5, "hunter" : 11702.4, "chambers" : 11697.7, "split" : 11695.3, "yielding" : 11692.9, "newsletter" : 11691.3, "snake" : 11689.0, "pub" : 11685.8, "historian" : 11681.8, "ass" : 11678.7, "intensity" : 11678.7, "democracy" : 11669.2, "battery" : 11668.4, "draws" : 11666.8, "netherlands" : 11666.8, "creed" : 11666.0, "liking" : 11666.0, "luke" : 11655.7, "tyrant" : 11654.2, "strove" : 11647.8, "attraction" : 11647.0, "slaughter" : 11647.0, "dismal" : 11639.1, "deposited" : 11636.0, "assent" : 11632.8, "cups" : 11632.8, "concert" : 11628.8, "downward" : 11620.1, "canal" : 11616.2, "evenings" : 11612.2, "wax" : 11612.2, "detective" : 11609.1, "fancies" : 11604.3, "spoiled" : 11604.3, "revolver" : 11599.6, "murray" : 11598.0, "earned" : 11586.1, "analysis" : 11582.2, "finer" : 11579.0, "paces" : 11575.8, "roaring" : 11573.5, "prompt" : 11570.3, "paperwork" : 11568.7, "wherefore" : 11567.9, "emphasis" : 11560.8, "sharing" : 11551.3, "delayed" : 11550.5, "inherited" : 11549.7, "bronze" : 11545.0, "waking" : 11542.6, "garment" : 11541.8, "redistributing" : 11541.8, "wholesome" : 11537.9, "remorse" : 11537.1, "plato" : 11535.5, "morris" : 11533.1, "stooped" : 11527.6, "dew" : 11524.4, "monk" : 11522.8, "thrill" : 11522.0, "hue" : 11515.7, "exclusive" : 11507.8, "funds" : 11507.8, "porter" : 11503.0, "uncommon" : 11502.3, "dash" : 11496.7, "strained" : 11494.3, "confounded" : 11492.8, "swim" : 11492.8, "strip" : 11488.0, "middle-aged" : 11483.3, "ultimately" : 11481.7, "team" : 11477.7, "missionary" : 11476.9, "esteemed" : 11461.9, "tracks" : 11446.9, "envelope" : 11444.5, "whoever" : 11443.7, "expensive" : 11442.9, "headquarters" : 11442.1, "cherished" : 11440.5, "brandy" : 11429.5, "startling" : 11427.1, "homer" : 11426.3, "talks" : 11425.5, "acute" : 11422.4, "cigarette" : 11417.6, "motor" : 11417.6, "embarrassed" : 11413.6, "janet" : 11407.3, "volunteer" : 11402.6, "offspring" : 11401.8, "network" : 11397.8, "reaches" : 11397.8, "indispensable" : 11397.0, "plane" : 11393.9, "reaction" : 11392.3, "regiments" : 11385.2, "g" : 11383.6, "sums" : 11380.4, "partially" : 11379.6, "prejudices" : 11375.7, "proudly" : 11370.1, "baggage" : 11364.6, "terrace" : 11360.6, "deaf" : 11358.3, "allusion" : 11357.5, "grip" : 11357.5, "juice" : 11354.3, "isabel" : 11346.4, "resigned" : 11346.4, "humility" : 11343.2, "benjamin" : 11330.6, "blast" : 11330.6, "ministry" : 11329.8, "sexual" : 11329.8, "nile" : 11329.0, "diameter" : 11327.4, "troop" : 11325.8, "onward" : 11316.3, "crowds" : 11313.2, "marrying" : 11309.2, "tightly" : 11309.2, "sullen" : 11302.1, "brutal" : 11301.3, "axe" : 11300.5, "holmes" : 11293.4, "penalty" : 11292.6, "tops" : 11290.2, "diamond" : 11283.1, "boards" : 11274.4, "corridor" : 11274.4, "endowed" : 11266.5, "strengthened" : 11266.5, "cells" : 11248.3, "proportions" : 11246.7, "alternate" : 11242.8, "echo" : 11242.0, "restraint" : 11241.2, "trials" : 11240.4, "reads" : 11239.6, "identity" : 11238.8, "headed" : 11238.0, "softened" : 11237.2, "quivering" : 11231.7, "stages" : 11230.1, "sway" : 11225.4, "poetical" : 11224.6, "objected" : 11222.2, "screen" : 11220.6, "professed" : 11216.7, "dirt" : 11215.9, "ascertained" : 11215.1, "era" : 11213.5, "wider" : 11208.0, "ambassador" : 11205.6, "constituted" : 11205.6, "breed" : 11204.0, "interference" : 11204.0, "eyebrows" : 11197.7, "shapes" : 11197.7, "afar" : 11192.9, "consist" : 11183.4, "acceptance" : 11180.3, "displays" : 11176.3, "flashing" : 11176.3, "hunted" : 11173.1, "beauties" : 11172.4, "lazy" : 11172.4, "shrewd" : 11170.0, "extravagant" : 11169.2, "momentary" : 11169.2, "cordial" : 11166.8, "engineer" : 11166.0, "rapidity" : 11166.0, "nov" : 11163.6, "halt" : 11158.9, "alternative" : 11158.1, "devils" : 11156.5, "stamp" : 11154.9, "compact" : 11152.6, "whites" : 11147.0, "breathless" : 11146.2, "encoding" : 11146.2, "drift" : 11145.5, "disappear" : 11141.5, "roared" : 11138.3, "revived" : 11136.8, "counter" : 11134.4, "venus" : 11128.8, "imaginary" : 11128.0, "diminished" : 11127.3, "honoured" : 11123.3, "5th" : 11111.4, "despatched" : 11111.4, "objections" : 11111.4, "ray" : 11110.6, "climbing" : 11105.1, "attract" : 11103.5, "astonishing" : 11099.6, "competition" : 11097.2, "suggestions" : 11096.4, "ink" : 11082.2, "oft" : 11076.6, "crystal" : 11074.3, "shower" : 11074.3, "diseases" : 11067.1, "ferdinand" : 11065.5, "obedient" : 11062.4, "draught" : 11061.6, "wondrous" : 11057.6, "await" : 11049.7, "armour" : 11048.9, "massive" : 11048.1, "bottles" : 11047.4, "kin" : 11045.8, "cellar" : 11045.0, "falsehood" : 11041.8, "pillars" : 11041.0, "edgar" : 11038.7, "philosophical" : 11033.1, "martha" : 11031.5, "worlds" : 11022.0, "memorable" : 11015.7, "jacques" : 11011.0, "detected" : 11007.8, "stealing" : 11006.2, "noisy" : 11004.6, "henceforth" : 10996.7, "cicero" : 10995.1, "laden" : 10992.0, "frost" : 10986.4, "device" : 10984.9, "glare" : 10984.9, "touches" : 10984.1, "senate" : 10981.7, "lasting" : 10979.3, "communion" : 10976.9, "transport" : 10976.2, "constantinople" : 10975.4, "coffin" : 10973.8, "eventually" : 10973.0, "johnny" : 10973.0, "enclosed" : 10970.6, "forgiveness" : 10970.6, "awfully" : 10966.7, "clinging" : 10947.7, "darkened" : 10946.9, "contemplation" : 10944.5, "termed" : 10944.5, "manufacture" : 10942.1, "swallow" : 10935.0, "commonplace" : 10931.1, "nancy" : 10929.5, "resembled" : 10927.9, "she'd" : 10927.1, "labors" : 10922.4, "contracted" : 10921.6, "inscription" : 10921.6, "comfortably" : 10905.7, "indulge" : 10901.0, "indulgence" : 10898.6, "bravely" : 10892.3, "kneeling" : 10890.7, "yea" : 10888.3, "keenly" : 10886.8, "exhibition" : 10884.4, "agricultural" : 10881.2, "enlightened" : 10879.6, "quest" : 10878.1, "compliments" : 10874.9, "crest" : 10868.6, "extension" : 10865.4, "uneasiness" : 10856.7, "constitute" : 10851.2, "inflicted" : 10850.4, "lakes" : 10848.0, "swing" : 10845.6, "meadow" : 10836.1, "noblest" : 10836.1, "downloading" : 10834.5, "complex" : 10826.6, "controversy" : 10824.3, "freed" : 10819.5, "resignation" : 10819.5, "tempest" : 10818.7, "guidance" : 10817.9, "prospects" : 10816.3, "humbly" : 10811.6, "lined" : 10809.2, "serene" : 10804.5, "shrugged" : 10797.4, "honours" : 10796.6, "roughly" : 10796.6, "checks" : 10795.0, "remarkably" : 10789.4, "dainty" : 10784.7, "overhead" : 10783.1, "commencement" : 10778.4, "singularly" : 10776.8, "brightness" : 10761.0, "oppression" : 10760.2, "repeatedly" : 10759.4, "conspiracy" : 10755.4, "restrain" : 10751.5, "splendor" : 10742.8, "preservation" : 10740.4, "pub" : 10739.6, "pepper" : 10738.0, "basin" : 10736.4, "creeping" : 10735.6, "matthew" : 10730.9, "publicly" : 10729.3, "percy" : 10725.4, "continuing" : 10723.8, "grove" : 10721.4, "calamity" : 10719.8, "pony" : 10715.1, "vigour" : 10715.1, "melody" : 10711.1, "profitable" : 10711.1, "descendants" : 10710.3, "hire" : 10704.8, "speculation" : 10704.0, "discoveries" : 10699.3, "accepts" : 10698.5, "drunken" : 10698.5, "candidate" : 10696.9, "principally" : 10694.5, "worried" : 10692.1, "obstinate" : 10689.0, "hasten" : 10686.6, "foreigners" : 10682.6, "elderly" : 10681.1, "overwhelmed" : 10681.1, "instincts" : 10677.9, "telegraph" : 10670.8, "russell" : 10662.9, "university" : 10661.3, "ghastly" : 10660.5, "patron" : 10659.7, "varying" : 10658.1, "barbarous" : 10655.7, "celestial" : 10655.7, "t'" : 10654.2, "patriotism" : 10653.4, "modify" : 10649.4, "earnestness" : 10647.0, "exertion" : 10646.2, "fox" : 10645.5, "refusing" : 10643.1, "horsemen" : 10639.1, "inspection" : 10634.4, "stations" : 10633.6, "grieved" : 10632.0, "louder" : 10632.0, "bursting" : 10625.7, "regretted" : 10620.9, "mournful" : 10615.4, "pursuing" : 10612.2, "traitor" : 10609.1, "associations" : 10601.9, "cautious" : 10598.0, "foundations" : 10598.0, "stamped" : 10598.0, "prior" : 10597.2, "undertook" : 10594.0, "telegram" : 10592.5, "beggar" : 10591.7, "chimney" : 10590.9, "complicated" : 10586.9, "davis" : 10586.1, "striving" : 10586.1, "magistrates" : 10584.5, "converse" : 10582.2, "graces" : 10581.4, "wiped" : 10575.8, "oars" : 10572.7, "apology" : 10571.1, "scared" : 10571.1, "imprisonment" : 10569.5, "eastward" : 10567.9, "substitute" : 10565.6, "yahweh" : 10560.8, "handful" : 10557.6, "usage" : 10556.1, "lodged" : 10551.3, "of." : 10551.3, "villain" : 10551.3, "banished" : 10541.8, "restoration" : 10541.0, "serpent" : 10538.7, "hedge" : 10534.7, "k" : 10534.7, "jurisdiction" : 10532.3, "captains" : 10530.7, "settlers" : 10530.7, "gaining" : 10530.0, "valiant" : 10530.0, "primary" : 10525.2, "storms" : 10525.2, "beam" : 10522.8, "victoria" : 10522.8, "tour" : 10512.5, "prophecy" : 10510.2, "spectacles" : 10510.2, "obsolete" : 10507.0, "buying" : 10502.3, "shepherd" : 10500.7, "wells" : 10500.7, "harriet" : 10496.7, "exaggerated" : 10495.1, "heated" : 10494.4, "penetrated" : 10493.6, "travels" : 10492.0, "earl" : 10489.6, "hereditary" : 10488.8, "ali" : 10488.0, "supernatural" : 10486.4, "competent" : 10482.5, "piled" : 10481.7, "hostess" : 10480.1, "agriculture" : 10478.5, "boughs" : 10476.2, "urgent" : 10476.2, "gratified" : 10475.4, "suffice" : 10474.6, "ports" : 10473.0, "drifted" : 10470.6, "accuracy" : 10465.9, "deceased" : 10465.9, "circular" : 10463.5, "securing" : 10458.7, "possibilities" : 10455.6, "rhine" : 10454.8, "alert" : 10451.6, "neighboring" : 10442.9, "democratic" : 10440.6, "quebec" : 10440.6, "bud" : 10439.8, "accounted" : 10431.9, "aided" : 10427.1, "augustus" : 10425.5, "blanket" : 10425.5, "hail" : 10423.9, "pretence" : 10422.4, "beams" : 10417.6, "andy" : 10416.8, "pig" : 10416.0, "shaped" : 10408.1, "oven" : 10407.3, "rounded" : 10406.5, "ivory" : 10400.2, "northward" : 10395.5, "isolated" : 10390.7, "policeman" : 10382.0, "aug" : 10381.2, "conventional" : 10380.4, "babylon" : 10378.1, "dusty" : 10378.1, "bishops" : 10374.1, "complaints" : 10372.5, "stripped" : 10370.1, "plead" : 10367.8, "hinder" : 10365.4, "8vo" : 10363.0, "cord" : 10355.1, "flows" : 10351.9, "personage" : 10351.9, "classical" : 10351.2, "alongside" : 10349.6, "wrongs" : 10348.0, "extract" : 10345.6, "rewarded" : 10343.2, "lungs" : 10334.5, "lighter" : 10332.2, "kisses" : 10331.4, "serves" : 10329.8, "pint" : 10324.3, "forgiven" : 10322.7, "sternly" : 10321.1, "proclamation" : 10320.3, "realised" : 10320.3, "pipes" : 10316.3, "arising" : 10314.0, "pitched" : 10314.0, "tube" : 10310.8, "observer" : 10308.4, "smote" : 10308.4, "avenue" : 10302.9, "elephant" : 10298.9, "burke" : 10297.4, "footing" : 10295.8, "statesman" : 10295.8, "rebels" : 10292.6, "nails" : 10291.0, "wears" : 10290.2, "doomed" : 10289.4, "edges" : 10283.9, "esther" : 10278.4, "indiana" : 10276.0, "affecting" : 10274.4, "stormy" : 10274.4, "bee" : 10268.9, "bury" : 10267.3, "efficient" : 10266.5, "mix" : 10266.5, "supporting" : 10266.5, "actor" : 10261.8, "disturbance" : 10261.0, "sweat" : 10260.2, "executive" : 10258.6, "seemingly" : 10258.6, "tenth" : 10252.3, "blossoms" : 10250.7, "ethel" : 10247.5, "folds" : 10245.1, "painfully" : 10245.1, "polish" : 10245.1, "shudder" : 10240.4, "oe." : 10235.6, "roofs" : 10229.3, "comparative" : 10222.2, "begging" : 10216.7, "imposing" : 10216.7, "notable" : 10213.5, "invested" : 10209.5, "imprisoned" : 10208.0, "mute" : 10199.3, "amy" : 10196.9, "cage" : 10195.3, "esq" : 10195.3, "pg" : 10192.1, "cured" : 10190.6, "cargo" : 10187.4, "prof." : 10185.8, "negotiations" : 10181.9, "assented" : 10180.3, "jail" : 10180.3, "skilful" : 10180.3, "ideals" : 10178.7, "conferred" : 10177.1, "resulted" : 10171.6, "illusion" : 10169.2, "torment" : 10167.6, "troublesome" : 10162.1, "crowns" : 10158.9, "feb" : 10155.7, "repentance" : 10152.6, "blankets" : 10151.0, "proprietor" : 10144.7, "uncertainty" : 10144.7, "concentrated" : 10143.9, "mediterranean" : 10143.9, "covers" : 10141.5, "scream" : 10140.7, "compromise" : 10137.5, "respectful" : 10137.5, "chariot" : 10136.8, "ammunition" : 10136.0, "bonnet" : 10135.2, "secondary" : 10132.8, "persia" : 10126.5, "persecution" : 10122.5, "lesser" : 10120.1, "assistant" : 10119.4, "saluted" : 10116.2, "fits" : 10112.2, "indulged" : 10111.4, "springing" : 10109.1, "cane" : 10106.7, "fold" : 10106.7, "boundary" : 10105.1, "valued" : 10101.9, "she'll" : 10099.6, "rugged" : 10098.8, "aloft" : 10098.0, "thieves" : 10093.2, "parlour" : 10091.7, "indebted" : 10090.1, "tons" : 10088.5, "processes" : 10085.3, "dave" : 10078.2, "moore" : 10076.6, "argue" : 10074.3, "dearly" : 10056.1, "logic" : 10054.5, "panic" : 10047.4, "restrained" : 10045.8, "lb" : 10043.4, "vainly" : 10043.4, "weariness" : 10041.0, "enlarged" : 10036.3, "franklin" : 10035.5, "tasted" : 10033.9, "rural" : 10030.0, "torrent" : 10030.0, "resolute" : 10026.8, "refrain" : 10024.4, "kissing" : 10021.3, "gorgeous" : 10015.7, "meets" : 10015.7, "circulation" : 10014.9, "passionately" : 10009.4, "inasmuch" : 10005.4, "unexpectedly" : 10004.6, "stress" : 10002.3, "consumption" : 9999.94, "groan" : 9995.98, "suits" : 9994.40, "sustain" : 9993.61, "hosts" : 9987.28, "crash" : 9985.70, "resemble" : 9984.11, "epoch" : 9979.37, "quote" : 9975.41, "lacking" : 9971.46, "nominally" : 9971.46, "choked" : 9970.66, "aristocracy" : 9969.87, "granite" : 9969.08, "gradual" : 9967.50, "delights" : 9964.33, "hurled" : 9964.33, "joyful" : 9961.96, "sack" : 9960.38, "slumber" : 9958.01, "detached" : 9956.42, "snapped" : 9956.42, "shadowy" : 9954.05, "accompanying" : 9950.09, "annoyance" : 9948.51, "crush" : 9947.72, "needle" : 9941.39, "repent" : 9934.27, "phenomenon" : 9927.94, "execute" : 9926.36, "canst" : 9920.82, "smoked" : 9914.49, "greet" : 9911.33, "monarchy" : 9908.16, "behave" : 9905.00, "richly" : 9905.00, "controlled" : 9904.21, "strive" : 9902.63, "endeavor" : 9901.84, "barrier" : 9897.88, "canadian" : 9897.88, "curve" : 9890.76, "politeness" : 9889.18, "flora" : 9883.64, "rely" : 9875.73, "flank" : 9872.56, "convenience" : 9870.98, "courteous" : 9866.23, "logs" : 9866.23, "lamb" : 9863.86, "effectually" : 9859.11, "robinson" : 9856.74, "logical" : 9855.16, "shan't" : 9855.16, "dimly" : 9853.58, "withered" : 9851.99, "diet" : 9851.20, "praises" : 9851.20, "fulfil" : 9849.62, "mantle" : 9848.83, "ne'er" : 9848.83, "discussing" : 9843.29, "chicken" : 9838.54, "judicial" : 9838.54, "consistent" : 9836.17, "ridicule" : 9835.38, "as." : 9834.59, "reins" : 9834.59, "barrel" : 9833.01, "distrust" : 9832.22, "trunks" : 9829.84, "verily" : 9829.05, "hunters" : 9827.47, "feather" : 9825.10, "desperately" : 9820.35, "goodly" : 9817.18, "habitual" : 9815.60, "voluntary" : 9815.60, "luncheon" : 9812.44, "eighteenth" : 9808.48, "exertions" : 9807.69, "expert" : 9806.90, "coolly" : 9806.11, "mistakes" : 9804.53, "tedious" : 9802.94, "contemplated" : 9796.61, "clark" : 9795.82, "jacket" : 9795.82, "gleaming" : 9792.66, "shrank" : 9787.91, "swimming" : 9787.12, "kent" : 9785.54, "perplexed" : 9782.37, "impressive" : 9780.79, "universally" : 9780.00, "displeasure" : 9776.84, "maids" : 9772.09, "rates" : 9772.09, "underneath" : 9771.30, "expedient" : 9767.34, "emma" : 9758.64, "impress" : 9755.48, "bees" : 9751.52, "bounded" : 9751.52, "worshipped" : 9750.73, "resisted" : 9749.94, "provincial" : 9749.15, "popularity" : 9748.36, "baker" : 9747.56, "shattered" : 9747.56, "merciful" : 9745.98, "olive" : 9745.19, "tramp" : 9742.82, "compensation" : 9740.44, "ernest" : 9736.49, "martial" : 9736.49, "genial" : 9735.70, "syria" : 9735.70, "conjecture" : 9734.91, "van" : 9734.91, "waiter" : 9734.11, "detained" : 9730.95, "items" : 9728.58, "promote" : 9727.79, "delaware" : 9726.99, "covenant" : 9725.41, "nought" : 9722.25, "interposed" : 9721.46, "seizing" : 9721.46, "sinner" : 9719.08, "vigor" : 9715.92, "devote" : 9715.13, "decorated" : 9705.63, "sentimental" : 9700.10, "yoke" : 9700.10, "properties" : 9698.51, "warlike" : 9696.93, "perilous" : 9694.56, "threats" : 9687.44, "kindled" : 9684.27, "lays" : 9684.27, "hostility" : 9682.69, "dragging" : 9679.53, "mare" : 9677.94, "regulations" : 9676.36, "obstacle" : 9674.78, "sage" : 9673.20, "destitute" : 9672.41, "pays" : 9671.62, "sleepy" : 9669.24, "dublin" : 9662.91, "jonathan" : 9661.33, "posterity" : 9661.33, "they'd" : 9661.33, "nod" : 9658.96, "mason" : 9655.00, "patriotic" : 9653.42, "plantation" : 9650.25, "pitiful" : 9649.46, "foster" : 9648.67, "requisite" : 9647.88, "expose" : 9647.09, "oxen" : 9647.09, "patch" : 9647.09, "anderson" : 9644.72, "stuart" : 9643.13, "interruption" : 9641.55, "lance" : 9641.55, "payable" : 9639.18, "definition" : 9637.60, "birthday" : 9636.81, "thumb" : 9636.81, "wolves" : 9635.22, "hammer" : 9632.06, "overwhelming" : 9631.27, "intensely" : 9628.10, "revolutionary" : 9627.31, "fragrant" : 9626.52, "bleeding" : 9625.73, "sheltered" : 9625.73, "circuit" : 9624.15, "dominions" : 9623.36, "sales" : 9616.24, "energetic" : 9615.44, "insignificant" : 9612.28, "repetition" : 9610.70, "we'd" : 9602.00, "amazing" : 9595.67, "trains" : 9591.71, "skirts" : 9590.13, "tip" : 9589.34, "trivial" : 9589.34, "kick" : 9588.55, "tended" : 9586.17, "rejoicing" : 9581.43, "dig" : 9579.05, "pet" : 9575.89, "skull" : 9575.89, "lectures" : 9574.31, "ness" : 9573.51, "threat" : 9571.93, "legislature" : 9570.35, "plunder" : 9567.98, "removing" : 9567.98, "jungle" : 9567.19, "ghosts" : 9566.39, "numbered" : 9562.44, "famine" : 9559.27, "palaces" : 9552.94, "sorrowful" : 9547.41, "improvements" : 9543.45, "coleridge" : 9542.66, "fuller" : 9540.29, "asp" : 9533.96, "blocks" : 9531.58, "darted" : 9526.05, "shrine" : 9524.46, "heel" : 9522.88, "typical" : 9518.93, "throws" : 9516.55, "fortunately" : 9514.97, "recognise" : 9512.60, "fuel" : 9511.01, "6th" : 9507.85, "tranquil" : 9507.06, "frown" : 9501.52, "destination" : 9498.36, "plunge" : 9494.40, "moor" : 9488.86, "pin" : 9485.70, "mars" : 9484.91, "associate" : 9484.12, "here's" : 9480.95, "owen" : 9480.95, "10th" : 9480.16, "arabic" : 9478.58, "vicious" : 9478.58, "framed" : 9477.79, "banquet" : 9477.00, "expressive" : 9474.62, "instinctively" : 9461.96, "lighting" : 9461.96, "scanning" : 9461.96, "subordinate" : 9461.17, "jaws" : 9458.80, "patent" : 9458.80, "courtyard" : 9452.47, "gulf" : 9449.31, "destroying" : 9446.93, "detailed" : 9439.81, "regulating" : 9430.32, "closet" : 9429.53, "compel" : 9427.15, "inland" : 9426.36, "excepting" : 9423.20, "pretext" : 9417.66, "legislative" : 9414.50, "stationed" : 9413.71, "rash" : 9408.17, "margin" : 9401.05, "champion" : 9400.26, "settling" : 9400.26, "billion" : 9396.30, "shorter" : 9393.93, "betwixt" : 9393.14, "admiring" : 9392.34, "morgan" : 9390.76, "nick" : 9390.76, "chemical" : 9389.97, "chapters" : 9389.18, "worthless" : 9386.02, "aristocratic" : 9382.85, "nan" : 9382.06, "especial" : 9378.10, "hon" : 9378.10, "attentive" : 9376.52, "maintenance" : 9374.15, "charlie" : 9372.57, "explanatory" : 9371.78, "differently" : 9367.82, "furiously" : 9367.82, "pulse" : 9367.03, "scanty" : 9367.03, "flee" : 9364.65, "admiral" : 9363.86, "clause" : 9360.70, "resume" : 9359.12, "compound" : 9358.33, "pilot" : 9353.58, "growled" : 9351.21, "charmed" : 9344.09, "imitate" : 9341.71, "happening" : 9339.34, "knot" : 9335.38, "rags" : 9329.85, "mock" : 9320.35, "majestic" : 9316.40, "messages" : 9314.02, "prussian" : 9312.44, "suspense" : 9312.44, "clare" : 9310.07, "relationship" : 9309.28, "skirt" : 9308.48, "agency" : 9303.74, "arisen" : 9302.95, "grin" : 9301.36, "unusually" : 9300.57, "michigan" : 9298.99, "hoarse" : 9296.62, "mills" : 9286.33, "intently" : 9283.17, "dining" : 9281.59, "demonstration" : 9280.79, "depression" : 9277.63, "lain" : 9276.84, "expectations" : 9272.88, "joining" : 9272.09, "weekly" : 9268.14, "trenches" : 9267.35, "technical" : 9262.60, "vehicle" : 9262.60, "aimed" : 9253.10, "borrow" : 9253.10, "flattering" : 9249.15, "portugal" : 9248.36, "prodigious" : 9246.78, "scope" : 9245.98, "vegetation" : 9245.98, "switzerland" : 9243.61, "arkansas" : 9242.82, "swelling" : 9242.82, "fortified" : 9241.24, "favoured" : 9238.07, "salute" : 9238.07, "topic" : 9237.28, "blushed" : 9233.33, "superb" : 9231.74, "strengthen" : 9230.16, "confidential" : 9228.58, "crow" : 9227.79, "shawl" : 9226.21, "sunrise" : 9226.21, "sings" : 9224.62, "coats" : 9220.67, "sturdy" : 9219.88, "dissolved" : 9218.30, "lifetime" : 9218.30, "dispersed" : 9217.50, "sergeant" : 9216.71, "contribute" : 9215.92, "strode" : 9215.13, "brigade" : 9214.34, "verdict" : 9211.97, "they've" : 9203.26, "honors" : 9198.52, "panting" : 9188.23, "females" : 9187.44, "richest" : 9187.44, "attribute" : 9186.65, "brighter" : 9184.28, "hook" : 9183.49, "discontent" : 9173.20, "orderly" : 9172.41, "airs" : 9165.29, "tiger" : 9165.29, "messengers" : 9163.71, "penetrate" : 9157.38, "sabbath" : 9157.38, "identification" : 9156.59, "holiness" : 9155.80, "crooked" : 9154.21, "housekeeper" : 9144.72, "productions" : 9142.35, "prescribed" : 9139.18, "rector" : 9139.18, "spark" : 9135.23, "sleeve" : 9132.06, "honored" : 9127.31, "tame" : 9124.94, "highway" : 9124.15, "alabama" : 9123.36, "edmund" : 9118.61, "militia" : 9113.87, "nobleman" : 9113.87, "energies" : 9112.28, "spacious" : 9109.12, "tearing" : 9102.00, "affliction" : 9099.62, "photograph" : 9094.88, "ally" : 9090.92, "hampshire" : 9088.55, "ascent" : 9086.18, "ditch" : 9084.59, "fishes" : 9083.80, "jupiter" : 9080.64, "rubbing" : 9071.94, "tract" : 9069.56, "standards" : 9064.81, "afore" : 9064.02, "ribbon" : 9063.23, "cecilia" : 9058.49, "oregon" : 9057.69, "integrity" : 9054.53, "plus" : 9051.37, "transparent" : 9048.20, "farms" : 9043.45, "pulpit" : 9036.33, "ropes" : 9034.75, "nineteen" : 9033.96, "rescued" : 9032.38, "counting" : 9030.80, "perfume" : 9030.80, "socrates" : 9030.80, "hounds" : 9028.42, "solicited" : 9028.42, "bother" : 9022.88, "fascinating" : 9016.56, "qualified" : 9016.56, "desolation" : 9015.76, "essay" : 9014.97, "rains" : 9014.97, "renew" : 9014.18, "odious" : 9011.81, "assuredly" : 9011.02, "suggests" : 9005.48, "rider" : 8996.78, "loneliness" : 8992.82, "pond" : 8992.03, "activities" : 8982.54, "dazzling" : 8981.75, "leaping" : 8981.75, "squadron" : 8980.16, "bowing" : 8977.79, "novelty" : 8977.79, "wrist" : 8971.46, "keeper" : 8968.30, "homeward" : 8966.71, "alexandria" : 8965.92, "finely" : 8962.76, "li" : 8960.39, "efficiency" : 8958.80, "marvel" : 8956.43, "tranquillity" : 8954.85, "agnes" : 8951.68, "charities" : 8951.68, "spenser" : 8950.10, "condemn" : 8946.14, "elephants" : 8945.35, "elders" : 8942.98, "julian" : 8942.98, "tries" : 8942.98, "2nd" : 8939.82, "sweetly" : 8939.02, "endurance" : 8937.44, "bags" : 8936.65, "reared" : 8932.70, "jaw" : 8931.90, "unique" : 8931.90, "navigation" : 8931.11, "inevitably" : 8928.74, "admirably" : 8927.16, "sect" : 8927.16, "drum" : 8923.20, "poles" : 8921.62, "verge" : 8918.46, "piercing" : 8912.13, "sanction" : 8911.33, "russians" : 8904.21, "forlorn" : 8901.84, "approbation" : 8899.47, "organic" : 8895.51, "stanley" : 8895.51, "allegiance" : 8891.56, "bin" : 8891.56, "expressly" : 8879.69, "ingenuity" : 8877.32, "dispose" : 8873.36, "stained" : 8873.36, "theology" : 8870.20, "withal" : 8870.20, "duration" : 8868.61, "fundraising" : 8851.21, "adj." : 8846.46, "collecting" : 8846.46, "weigh" : 8841.71, "sweetest" : 8840.13, "float" : 8839.34, "consul" : 8837.76, "monastery" : 8837.76, "raging" : 8836.18, "publish" : 8833.80, "knocking" : 8832.22, "precaution" : 8832.22, "privately" : 8832.22, "aaron" : 8828.27, "endeavored" : 8827.47, "insight" : 8827.47, "definitely" : 8825.89, "stature" : 8825.10, "troy" : 8825.10, "miriam" : 8824.31, "judah" : 8823.52, "oblige" : 8822.73, "urging" : 8816.40, "shift" : 8810.86, "mould" : 8808.49, "courses" : 8807.70, "countless" : 8806.11, "associates" : 8798.20, "hymn" : 8797.41, "rapture" : 8797.41, "tonight" : 8797.41, "trumpet" : 8795.83, "parker" : 8791.87, "entrusted" : 8787.92, "firmness" : 8787.92, "comic" : 8780.80, "breeding" : 8780.01, "ken" : 8775.26, "questioning" : 8772.89, "factor" : 8772.10, "monuments" : 8767.35, "loveliness" : 8766.56, "handled" : 8761.02, "communities" : 8754.69, "saloon" : 8754.69, "stumbled" : 8749.15, "witch" : 8748.36, "confronted" : 8747.57, "traveling" : 8747.57, "seamen" : 8745.99, "backed" : 8744.41, "profoundly" : 8742.03, "gladness" : 8738.87, "pomp" : 8737.29, "mess" : 8735.70, "practise" : 8734.12, "sanctuary" : 8734.12, "superstitious" : 8734.12, "casual" : 8732.54, "iowa" : 8732.54, "analyzed" : 8725.42, "historic" : 8724.63, "bored" : 8723.84, "shrink" : 8723.84, "judging" : 8723.04, "treating" : 8717.51, "expenditure" : 8716.72, "encouraging" : 8715.13, "diplomatic" : 8714.34, "forcing" : 8713.55, "studio" : 8712.76, "exposure" : 8710.39, "crude" : 8705.64, "compilation" : 8704.85, "vermont" : 8692.98, "eve" : 8689.82, "ascend" : 8689.03, "unbroken" : 8689.03, "apollo" : 8688.23, "countess" : 8682.70, "binding" : 8680.32, "exceed" : 8677.95, "frail" : 8677.16, "hans" : 8676.37, "champagne" : 8671.62, "shuddered" : 8671.62, "carter" : 8670.83, "mule" : 8667.67, "inserted" : 8666.87, "parson" : 8666.08, "rascal" : 8664.50, "inspire" : 8660.55, "banner" : 8657.38, "divorce" : 8655.01, "treacherous" : 8655.01, "nineteenth" : 8651.84, "invalid" : 8650.26, "weaker" : 8650.26, "organizations" : 8648.68, "bolt" : 8646.30, "ticket" : 8643.14, "backwards" : 8642.35, "captivity" : 8642.35, "lame" : 8640.77, "provoked" : 8639.18, "vein" : 8636.02, "lists" : 8625.74, "gallop" : 8624.94, "communications" : 8622.57, "dagger" : 8619.41, "passive" : 8618.62, "shoe" : 8618.62, "thrice" : 8613.08, "corrected" : 8611.49, "mystic" : 8605.17, "infancy" : 8602.00, "foam" : 8600.42, "keith" : 8600.42, "tavern" : 8599.63, "fraud" : 8597.25, "7th" : 8596.46, "cradle" : 8594.09, "rifles" : 8589.34, "vigorously" : 8589.34, "censure" : 8587.76, "gentleness" : 8587.76, "jr" : 8587.76, "sobbing" : 8586.18, "monotonous" : 8579.85, "explosion" : 8578.27, "catastrophe" : 8570.36, "respectfully" : 8567.98, "wearied" : 8565.61, "cats" : 8564.82, "blamed" : 8563.24, "needful" : 8562.44, "fireplace" : 8561.65, "gravel" : 8560.86, "affords" : 8560.07, "discovering" : 8560.07, "jar" : 8560.07, "selfishness" : 8557.70, "tolerably" : 8553.74, "clerks" : 8551.37, "ark" : 8549.00, "moist" : 8549.00, "wid" : 8544.25, "sauce" : 8543.46, "prompted" : 8534.75, "exceptions" : 8532.38, "bullets" : 8527.63, "writ" : 8527.63, "bruce" : 8526.84, "insolent" : 8523.68, "moisture" : 8523.68, "thompson" : 8522.89, "furnace" : 8519.72, "healing" : 8519.72, "fewer" : 8517.35, "deem" : 8515.77, "apron" : 8513.39, "humiliation" : 8513.39, "punctuation" : 8512.60, "rolls" : 8511.81, "doe" : 8509.44, "rotten" : 8507.86, "richer" : 8505.48, "swiss" : 8505.48, "behavior" : 8503.90, "nowadays" : 8501.53, "pamphlet" : 8499.15, "loan" : 8497.57, "beads" : 8494.41, "divers" : 8493.62, "unreasonable" : 8492.03, "realise" : 8490.45, "lust" : 8484.12, "ah" : 8480.17, "annually" : 8479.38, "detach" : 8478.58, "gaily" : 8477.00, "shares" : 8477.00, "gifted" : 8473.05, "planet" : 8473.05, "feverish" : 8466.72, "resurrection" : 8466.72, "saul" : 8464.34, "consecrated" : 8461.97, "enforced" : 8460.39, "vincent" : 8453.27, "shelf" : 8451.69, "fan" : 8450.89, "fluid" : 8449.31, "brightly" : 8448.52, "damsel" : 8448.52, "gabriel" : 8447.73, "kid" : 8446.94, "frantic" : 8441.40, "neatly" : 8441.40, "anon" : 8435.86, "ascribed" : 8435.07, "insane" : 8435.07, "tropical" : 8434.28, "8th" : 8431.12, "milan" : 8429.53, "hardened" : 8427.95, "overthrow" : 8427.16, "phase" : 8427.16, "achievement" : 8424.79, "immortality" : 8424.79, "obscurity" : 8421.62, "assumption" : 8420.04, "discern" : 8412.92, "hopeful" : 8412.13, "humorous" : 8410.55, "composure" : 8408.17, "turf" : 8408.17, "poland" : 8407.38, "dame" : 8406.59, "missionaries" : 8406.59, "orator" : 8405.01, "perpetually" : 8405.01, "arbitrary" : 8403.43, "ecstasy" : 8397.89, "retirement" : 8397.10, "pronounce" : 8393.14, "authorized" : 8387.60, "familiarity" : 8387.60, "nl" : 8386.02, "hastings" : 8384.44, "clubs" : 8383.65, "reconciled" : 8383.65, "grievous" : 8382.86, "mercury" : 8381.27, "elegance" : 8379.69, "chivalry" : 8378.90, "luminous" : 8377.32, "beseech" : 8375.74, "benevolent" : 8374.95, "confided" : 8374.95, "dances" : 8374.15, "perplexity" : 8370.20, "escaping" : 8369.41, "terrific" : 8369.41, "companionship" : 8365.45, "commence" : 8364.66, "daisy" : 8364.66, "parliament" : 8361.50, "9th" : 8353.58, "creep" : 8352.79, "pleading" : 8347.26, "disdain" : 8345.67, "pm" : 8345.67, "sympathies" : 8341.72, "guides" : 8340.93, "emergency" : 8338.55, "parcel" : 8337.76, "suicide" : 8337.76, "replies" : 8336.18, "drawer" : 8335.39, "contribution" : 8334.60, "supposition" : 8331.43, "vii" : 8329.85, "weren't" : 8325.90, "link" : 8325.10, "homely" : 8321.94, "pluck" : 8321.94, "ruling" : 8317.19, "patrick" : 8316.40, "statesmen" : 8311.65, "hannah" : 8310.86, "printing" : 8310.86, "joshua" : 8309.28, "synonymous" : 8307.70, "sinister" : 8306.91, "advocate" : 8306.12, "destructive" : 8304.53, "environment" : 8304.53, "blossom" : 8302.16, "bridle" : 8296.62, "yon" : 8295.83, "waistcoat" : 8291.88, "extends" : 8291.09, "confirm" : 8289.50, "listing" : 8287.13, "solemnity" : 8287.13, "projects" : 8284.76, "reporter" : 8284.76, "deprive" : 8283.17, "detachment" : 8280.80, "infernal" : 8270.52, "traversed" : 8269.72, "moss" : 8266.56, "skilled" : 8264.98, "announce" : 8263.40, "hateful" : 8260.23, "fugitive" : 8257.07, "gothic" : 8257.07, "coolness" : 8256.28, "insurrection" : 8254.69, "cum" : 8252.32, "med" : 8251.53, "coachman" : 8249.16, "expend" : 8249.16, "stepping" : 8248.36, "julius" : 8242.83, "resign" : 8237.29, "despatch" : 8233.33, "excluded" : 8233.33, "reject" : 8233.33, "tough" : 8230.17, "plea" : 8228.59, "roy" : 8227.79, "fragment" : 8227.00, "lacked" : 8227.00, "wordsworth" : 8224.63, "balcony" : 8223.84, "darker" : 8222.26, "mac" : 8222.26, "nevada" : 8222.26, "christopher" : 8219.88, "fork" : 8219.88, "flatter" : 8219.09, "iniquity" : 8212.76, "meditation" : 8212.76, "disastrous" : 8211.18, "stain" : 8209.60, "patches" : 8208.02, "hints" : 8203.27, "ordained" : 8198.52, "drinks" : 8197.73, "whipped" : 8197.73, "burial" : 8196.15, "matt" : 8196.15, "employee" : 8193.78, "employer" : 8192.19, "hypothesis" : 8192.19, "steed" : 8191.40, "width" : 8189.82, "sweden" : 8187.45, "transaction" : 8184.28, "victories" : 8182.70, "devout" : 8181.91, "outrage" : 8181.91, "vary" : 8179.54, "attorney" : 8176.37, "rouse" : 8175.58, "doubled" : 8170.04, "sidney" : 8168.46, "schooner" : 8166.88, "flaming" : 8165.29, "offend" : 8161.34, "sheriff" : 8161.34, "encamped" : 8160.55, "magnificence" : 8158.17, "vent" : 8145.52, "politely" : 8144.73, "vines" : 8144.73, "flags" : 8142.35, "italians" : 8138.40, "necessities" : 8136.81, "austin" : 8135.23, "nobler" : 8132.07, "accusation" : 8117.04, "impulses" : 8113.08, "packet" : 8112.29, "shabby" : 8111.50, "irritated" : 8108.33, "dakota" : 8107.54, "industrious" : 8105.17, "classic" : 8103.59, "ranch" : 8102.80, "ascending" : 8097.26, "cruelly" : 8096.47, "happiest" : 8095.68, "antonio" : 8094.88, "accuse" : 8092.51, "insulted" : 8089.35, "bridges" : 8086.97, "players" : 8086.97, "sixteenth" : 8084.60, "solicitation" : 8083.81, "embarked" : 8075.11, "idol" : 8071.94, "odds" : 8071.94, "aims" : 8067.99, "illuminated" : 8067.99, "enchanted" : 8064.82, "adversary" : 8060.87, "pie" : 8060.87, "reflecting" : 8059.28, "pension" : 8057.70, "luxurious" : 8056.12, "pigs" : 8055.33, "choir" : 8053.74, "tumbled" : 8052.16, "conqueror" : 8051.37, "irritation" : 8049.00, "verb" : 8049.00, "monkey" : 8046.62, "acceptable" : 8045.04, "dynasty" : 8045.04, "accurately" : 8043.46, "divinity" : 8042.67, "signature" : 8042.67, "heretofore" : 8041.88, "hazard" : 8041.09, "dora" : 8040.30, "sq." : 8039.50, "stead" : 8037.92, "attire" : 8037.13, "fling" : 8036.34, "marine" : 8034.76, "occupations" : 8031.59, "soothing" : 8031.59, "devised" : 8030.80, "singer" : 8028.43, "spaces" : 8027.64, "emerson" : 8026.06, "disguised" : 8023.68, "antique" : 8022.10, "orthodox" : 8019.73, "poisoned" : 8016.56, "dove" : 8015.77, "gratification" : 8014.98, "sydney" : 8011.81, "electricity" : 8008.65, "alien" : 8002.32, "sorely" : 8002.32, "cracked" : 7994.41, "supremacy" : 7994.41, "summon" : 7991.25, "depressed" : 7989.66, "sexes" : 7988.87, "offerings" : 7988.08, "pledged" : 7988.08, "irony" : 7987.29, "recourse" : 7982.54, "tortured" : 7982.54, "thickly" : 7978.59, "correspondent" : 7976.21, "sounding" : 7975.42, "64" : 7973.84, "sombre" : 7969.88, "brushed" : 7968.30, "reasonably" : 7957.23, "12th" : 7956.44, "duel" : 7956.44, "reluctantly" : 7956.44, "implies" : 7955.64, "cable" : 7954.85, "ridden" : 7949.32, "acre" : 7948.52, "grieve" : 7945.36, "inquiring" : 7944.57, "colonists" : 7942.19, "addison" : 7938.24, "republican" : 7938.24, "illustrate" : 7937.45, "tim" : 7937.45, "liverpool" : 7936.66, "gilded" : 7935.87, "clumsy" : 7935.07, "satin" : 7931.12, "displeased" : 7927.95, "odor" : 7927.16, "clearer" : 7926.37, "prairie" : 7921.63, "hudson" : 7919.25, "feudal" : 7916.09, "flint" : 7908.97, "easter" : 7908.18, "freshness" : 7908.18, "nursery" : 7906.59, "explanations" : 7905.01, "adoption" : 7902.64, "reluctance" : 7902.64, "crosses" : 7898.68, "blushing" : 7897.89, "imported" : 7897.89, "notorious" : 7895.52, "equipped" : 7893.94, "sinful" : 7890.77, "starving" : 7890.77, "eugene" : 7886.02, "bedside" : 7884.44, "sovereigns" : 7883.65, "abrupt" : 7882.86, "excused" : 7879.70, "injure" : 7877.32, "incessant" : 7876.53, "correctly" : 7874.95, "drooping" : 7872.58, "adored" : 7871.78, "embroidered" : 7871.78, "pasture" : 7871.78, "pillar" : 7870.20, "import" : 7867.83, "founder" : 7862.29, "torch" : 7862.29, "vault" : 7862.29, "worm" : 7862.29, "ay" : 7859.92, "bravery" : 7859.13, "confinement" : 7853.59, "trusting" : 7846.47, "butler" : 7844.89, "rattle" : 7844.89, "transported" : 7844.89, "estimation" : 7844.09, "edit" : 7840.93, "gotten" : 7839.35, "cuts" : 7838.56, "headlong" : 7836.97, "outfit" : 7836.18, "insolence" : 7829.85, "secrecy" : 7829.85, "thereupon" : 7820.36, "unlucky" : 7817.20, "eighth" : 7816.40, "valour" : 7815.61, "grammar" : 7814.03, "relaxed" : 7812.45, "mentions" : 7804.54, "adjacent" : 7802.96, "knives" : 7802.16, "attacking" : 7801.37, "exceptional" : 7801.37, "recollections" : 7800.58, "deposit" : 7794.25, "establishing" : 7794.25, "muddy" : 7794.25, "arches" : 7793.46, "aspects" : 7790.30, "senior" : 7788.71, "fragrance" : 7785.55, "colonial" : 7784.76, "penetrating" : 7783.18, "refinement" : 7779.22, "te" : 7776.85, "yacht" : 7776.85, "intelligible" : 7776.06, "stray" : 7772.89, "forcibly" : 7771.31, "jenny" : 7771.31, "superficial" : 7771.31, "tends" : 7767.35, "identified" : 7766.56, "wan" : 7766.56, "choosing" : 7764.19, "frighten" : 7762.61, "grotesque" : 7762.61, "reprinted" : 7761.82, "tutor" : 7761.82, "contributing" : 7761.03, "welsh" : 7757.07, "gaiety" : 7756.28, "besieged" : 7753.90, "robbery" : 7753.11, "transmitted" : 7753.11, "swam" : 7749.95, "consequential" : 7746.78, "slid" : 7743.62, "stony" : 7742.83, "donald" : 7741.25, "gratify" : 7741.25, "heavier" : 7741.25, "confidently" : 7740.46, "mabel" : 7739.66, "demon" : 7734.92, "treatise" : 7734.92, "mechanically" : 7732.54, "batteries" : 7728.59, "trading" : 7728.59, "cock" : 7727.80, "pilgrimage" : 7727.80, "extinct" : 7726.22, "idleness" : 7725.42, "sicily" : 7724.63, "merrily" : 7723.84, "excursion" : 7721.47, "handling" : 7719.89, "utah" : 7719.89, "eminence" : 7718.30, "lump" : 7714.35, "boyhood" : 7713.56, "montana" : 7713.56, "superfluous" : 7713.56, "wee" : 7711.97, "dome" : 7709.60, "shivering" : 7708.81, "accidental" : 7708.02, "thickness" : 7708.02, "darwin" : 7706.44, "continuance" : 7704.06, "fixing" : 7703.27, "harris" : 7703.27, "rustic" : 7703.27, "cheered" : 7697.73, "vernon" : 7696.94, "premises" : 7694.57, "delivery" : 7687.45, "nodding" : 7687.45, "snowy" : 7681.91, "curved" : 7680.33, "productive" : 7679.54, "discouraged" : 7677.96, "variations" : 7677.16, "shilling" : 7674.79, "swollen" : 7674.79, "miraculous" : 7673.21, "stubborn" : 7673.21, "belgium" : 7669.25, "drives" : 7668.46, "jerome" : 7667.67, "orchard" : 7666.88, "persuasion" : 7666.88, "invaded" : 7666.09, "alps" : 7661.34, "ungrateful" : 7658.97, "insensible" : 7658.18, "muscle" : 7655.80, "madrid" : 7655.01, "flanders" : 7654.22, "cultivate" : 7652.64, "involuntarily" : 7652.64, "speedy" : 7651.06, "variation" : 7649.48, "marian" : 7648.68, "harp" : 7647.89, "peaks" : 7643.94, "daybreak" : 7642.35, "magnitude" : 7642.35, "precautions" : 7640.77, "rub" : 7640.77, "requiring" : 7638.40, "coral" : 7636.03, "grapes" : 7634.44, "fairest" : 7628.91, "locality" : 7628.91, "opponent" : 7622.58, "bondage" : 7621.79, "beans" : 7620.99, "cowardly" : 7619.41, "grandson" : 7614.67, "leo" : 7612.29, "gertrude" : 7605.17, "nail" : 7605.17, "protecting" : 7604.38, "hospitable" : 7603.59, "proving" : 7603.59, "benevolence" : 7594.89, "brussels" : 7594.89, "civilisation" : 7594.89, "mounting" : 7591.72, "desiring" : 7590.93, "rushes" : 7588.56, "precision" : 7587.77, "watchful" : 7586.18, "harness" : 7584.60, "perchance" : 7584.60, "forbade" : 7579.06, "channels" : 7577.48, "indication" : 7576.69, "zealous" : 7576.69, "tact" : 7574.32, "seventeenth" : 7567.99, "theodore" : 7565.61, "stating" : 7564.82, "toast" : 7564.03, "dreadfully" : 7562.45, "judith" : 7561.66, "asterisk" : 7560.08, "virgil" : 7559.29, "edifice" : 7556.12, "swelled" : 7556.12, "accomplishment" : 7555.33, "sundry" : 7550.58, "reckoning" : 7548.21, "mouse" : 7544.25, "prostrate" : 7544.25, "helm" : 7541.09, "slim" : 7541.09, "whistling" : 7537.93, "syllable" : 7537.13, "handwriting" : 7536.34, "commissioners" : 7535.55, "lime" : 7535.55, "spur" : 7534.76, "unfit" : 7532.39, "gen." : 7531.60, "relish" : 7529.22, "reduction" : 7526.06, "sown" : 7526.06, "venetian" : 7525.27, "cordially" : 7521.31, "hush" : 7520.52, "breasts" : 7515.77, "slipping" : 7514.98, "pat" : 7513.40, "arabian" : 7512.61, "dialogue" : 7511.82, "forwards" : 7511.82, "entreat" : 7511.03, "fascination" : 7510.24, "belly" : 7509.44, "neutral" : 7509.44, "grasping" : 7507.86, "diligence" : 7505.49, "disgusted" : 7504.70, "retiring" : 7503.12, "strokes" : 7500.74, "sob" : 7497.58, "vine" : 7496.00, "compose" : 7495.20, "valentine" : 7492.04, "harvey" : 7489.67, "icy" : 7488.08, "inconvenience" : 7488.08, "v" : 7483.34, "pots" : 7482.55, "dimensions" : 7480.96, "abused" : 7479.38, "armor" : 7478.59, "detect" : 7478.59, "contradiction" : 7473.84, "banker" : 7468.31, "infamous" : 7463.56, "powerless" : 7461.19, "passenger" : 7458.81, "crust" : 7456.44, "historians" : 7455.65, "disclaim" : 7453.27, "norway" : 7451.69, "peculiarities" : 7450.90, "sting" : 7450.90, "simultaneously" : 7445.36, "watches" : 7445.36, "cong." : 7444.57, "episode" : 7443.78, "achieve" : 7439.82, "populace" : 7439.03, "sherman" : 7439.03, "incense" : 7438.24, "rebecca" : 7436.66, "jordan" : 7435.08, "persistent" : 7435.08, "wisconsin" : 7435.08, "ho" : 7428.75, "ta" : 7428.75, "fruitful" : 7427.17, "scoundrel" : 7427.17, "coasts" : 7424.00, "starve" : 7419.26, "denmark" : 7415.30, "scots" : 7415.30, "consultation" : 7414.51, "habitation" : 7410.55, "goat" : 7406.60, "howling" : 7406.60, "tailor" : 7406.60, "flourish" : 7401.85, "trifles" : 7394.73, "dashing" : 7393.94, "disappearance" : 7393.15, "sour" : 7393.15, "practicable" : 7390.77, "shameful" : 7389.19, "inviting" : 7386.03, "criminals" : 7383.65, "leisurely" : 7383.65, "accumulated" : 7382.07, "audible" : 7380.49, "topics" : 7380.49, "expends" : 7378.91, "radiance" : 7377.32, "underline" : 7375.74, "parade" : 7374.95, "spoils" : 7374.95, "helmet" : 7365.46, "consternation" : 7364.67, "expenditures" : 7364.67, "impose" : 7363.88, "originator" : 7363.08, "pa" : 7362.29, "unequal" : 7362.29, "wooded" : 7356.76, "enduring" : 7352.01, "ox" : 7349.64, "valet" : 7349.64, "proclaim" : 7348.05, "carl" : 7346.47, "impossibility" : 7346.47, "lydia" : 7344.10, "territories" : 7342.51, "deference" : 7340.93, "ravine" : 7340.93, "geoffrey" : 7339.35, "blanche" : 7336.98, "accommodation" : 7333.02, "boyish" : 7331.44, "spray" : 7329.07, "theological" : 7328.27, "anonymous" : 7327.48, "injurious" : 7326.69, "formally" : 7324.32, "sports" : 7324.32, "ab" : 7322.74, "scales" : 7322.74, "wyoming" : 7321.95, "discontinue" : 7321.15, "calf" : 7319.57, "manual" : 7318.78, "disturbing" : 7317.99, "potent" : 7317.20, "anticipation" : 7316.41, "melt" : 7314.83, "tilde" : 7314.83, "thames" : 7314.03, "grade" : 7312.45, "mischievous" : 7310.87, "pang" : 7310.87, "pathos" : 7308.50, "alternately" : 7306.12, "brisk" : 7305.33, "stool" : 7304.54, "justification" : 7299.79, "foreigner" : 7298.21, "endeavouring" : 7297.42, "satire" : 7297.42, "al" : 7295.84, "delete" : 7294.26, "masculine" : 7293.46, "spies" : 7291.88, "umbrella" : 7284.76, "transportation" : 7283.18, "yell" : 7281.60, "remnant" : 7280.81, "boot" : 7279.22, "ignored" : 7276.06, "thrilling" : 7276.06, "ale" : 7270.52, "mineral" : 7265.77, "goose" : 7263.40, "nebraska" : 7261.82, "truce" : 7261.82, "lastly" : 7260.24, "airy" : 7254.70, "sketches" : 7254.70, "groves" : 7253.91, "col." : 7253.12, "11th" : 7250.74, "comprehension" : 7250.74, "cling" : 7247.58, "duck" : 7247.58, "abyss" : 7246.79, "alaska" : 7246.79, "baffled" : 7246.79, "planning" : 7246.00, "abominable" : 7235.71, "aversion" : 7235.71, "drawings" : 7234.13, "customers" : 7233.34, "weird" : 7230.96, "stewart" : 7230.17, "traveled" : 7230.17, "alan" : 7228.59, "incessantly" : 7226.22, "flattery" : 7223.84, "director" : 7221.47, "improbable" : 7221.47, "moderation" : 7219.89, "awakening" : 7219.10, "males" : 7219.10, "pairs" : 7218.31, "temporal" : 7217.52, "con" : 7215.93, "nicely" : 7215.93, "lapse" : 7212.77, "vitality" : 7211.98, "soap" : 7208.02, "patriot" : 7207.23, "malicious" : 7206.44, "eyed" : 7205.65, "pirates" : 7205.65, "enforce" : 7203.28, "doll" : 7199.32, "briskly" : 7195.36, "sez" : 7191.41, "skeleton" : 7189.83, "comprehensive" : 7188.24, "buttons" : 7187.45, "crushing" : 7186.66, "personages" : 7185.08, "threaten" : 7184.29, "nuts" : 7182.71, "undone" : 7181.12, "wright" : 7181.12, "frankness" : 7179.54, "hides" : 7177.96, "progressive" : 7170.05, "rogers" : 7170.05, "villa" : 7163.72, "aristotle" : 7160.55, "resource" : 7160.55, "irs" : 7155.81, "confine" : 7154.22, "sewing" : 7154.22, "co" : 7148.69, "congratulate" : 7144.73, "walt" : 7141.57, "reconcile" : 7139.19, "insurance" : 7138.40, "terminated" : 7137.61, "dusky" : 7134.45, "appoint" : 7133.66, "pearl" : 7132.86, "thrilled" : 7131.28, "gains" : 7127.33, "interrupt" : 7122.58, "extravagance" : 7121.79, "jokes" : 7121.79, "suppress" : 7121.79, "quod" : 7121.00, "signify" : 7120.21, "layer" : 7117.04, "clue" : 7116.25, "kettle" : 7115.46, "contemplate" : 7113.09, "aforesaid" : 7111.50, "tooth" : 7109.13, "sensibility" : 7106.76, "boldness" : 7105.97, "mature" : 7105.17, "cuba" : 7098.05, "tolerable" : 7096.47, "rabbit" : 7095.68, "befallen" : 7092.52, "needless" : 7092.52, "yankee" : 7091.73, "awaken" : 7083.02, "clasp" : 7083.02, "lets" : 7080.65, "blinded" : 7079.07, "conductor" : 7078.28, "dependence" : 7077.48, "guarantee" : 7076.69, "affectionately" : 7073.53, "player" : 7072.74, "wires" : 7072.74, "thicket" : 7066.41, "walker" : 7062.45, "outstretched" : 7061.66, "procedure" : 7061.66, "wheeled" : 7060.87, "aye" : 7059.29, "oneself" : 7056.12, "recommendation" : 7055.33, "projecting" : 7054.54, "shriek" : 7052.96, "futile" : 7052.17, "cheerfulness" : 7051.38, "deity" : 7051.38, "fifteenth" : 7045.84, "gap" : 7045.05, "muscular" : 7045.05, "dripping" : 7044.26, "insect" : 7041.88, "values" : 7039.51, "brooding" : 7038.72, "restaurant" : 7037.14, "baptism" : 7036.35, "imaginative" : 7036.35, "rhyme" : 7033.18, "exhaustion" : 7031.60, "intrigue" : 7031.60, "senseless" : 7031.60, "hercules" : 7030.81, "yearly" : 7030.81, "baron" : 7028.43, "occupying" : 7026.85, "imply" : 7022.90, "absurdity" : 7020.52, "launched" : 7020.52, "resolutely" : 7015.78, "vowed" : 7014.99, "attach" : 7011.82, "characterized" : 7010.24, "fellowship" : 7010.24, "posture" : 7006.28, "caps" : 7005.49, "leon" : 7004.70, "demanding" : 7003.12, "owl" : 7002.33, "beset" : 7001.54, "ensuring" : 7001.54, "suite" : 6997.58, "tennyson" : 6996.79, "thereto" : 6996.00, "heaped" : 6992.04, "jewel" : 6992.04, "regained" : 6991.25, "voluntarily" : 6984.92, "longitude" : 6977.01, "permanently" : 6976.22, "jumping" : 6974.64, "babe" : 6973.85, "secondly" : 6973.06, "violin" : 6971.47, "rogue" : 6969.10, "rainy" : 6968.31, "reconciliation" : 6968.31, "emotional" : 6967.52, "radical" : 6962.77, "accursed" : 6958.81, "tendencies" : 6958.02, "concrete" : 6957.23, "resident" : 6956.44, "lustre" : 6954.86, "hull" : 6954.07, "ominous" : 6953.28, "overboard" : 6952.49, "uproar" : 6951.69, "cavern" : 6950.90, "combine" : 6950.11, "respectively" : 6950.11, "menace" : 6946.95, "pilgrims" : 6945.37, "jeff" : 6942.99, "peak" : 6942.20, "currency" : 6941.41, "silken" : 6941.41, "violet" : 6939.83, "khan" : 6937.45, "mastery" : 6937.45, "objective" : 6929.54, "plucked" : 6927.17, "litter" : 6926.38, "memorial" : 6925.59, "bids" : 6923.21, "fondly" : 6923.21, "clapped" : 6920.84, "tariff" : 6917.68, "beneficial" : 6916.88, "unsolicited" : 6916.88, "reluctant" : 6914.51, "separately" : 6906.60, "patronage" : 6905.81, "revenues" : 6904.23, "dragon" : 6903.44, "zeus" : 6901.85, "mike" : 6899.48, "ranges" : 6897.90, "vexation" : 6897.11, "indicates" : 6896.32, "overheard" : 6895.52, "tray" : 6894.73, "raymond" : 6891.57, "thereafter" : 6890.78, "exporting" : 6889.99, "mound" : 6889.99, "taxation" : 6886.82, "frenzy" : 6884.45, "horizontal" : 6881.28, "thirsty" : 6880.49, "disputed" : 6879.70, "charter" : 6876.54, "redistribution" : 6876.54, "boasted" : 6875.75, "item" : 6875.75, "moscow" : 6873.37, "termination" : 6872.58, "eminently" : 6871.79, "suggestive" : 6871.00, "linger" : 6869.42, "shady" : 6868.63, "calculation" : 6867.04, "expansion" : 6864.67, "mast" : 6859.92, "confer" : 6859.13, "sophia" : 6859.13, "commanders" : 6853.59, "pitied" : 6852.01, "twist" : 6852.01, "traditional" : 6851.22, "involve" : 6850.43, "interfered" : 6848.06, "achilles" : 6846.47, "wanton" : 6846.47, "repay" : 6845.68, "brother-in-law" : 6844.89, "routine" : 6844.89, "son-in-law" : 6842.52, "gaul" : 6841.73, "groom" : 6840.14, "solve" : 6840.14, "grassy" : 6836.98, "tempt" : 6836.19, "unsuccessful" : 6836.19, "witty" : 6836.19, "politician" : 6834.61, "yearning" : 6834.61, "lid" : 6833.02, "noticing" : 6833.02, "courtiers" : 6831.44, "cheering" : 6829.86, "bounty" : 6828.28, "consequent" : 6826.70, "renown" : 6824.32, "regulation" : 6823.53, "fowl" : 6820.37, "mayor" : 6818.78, "wrinkled" : 6817.99, "defy" : 6817.20, "threads" : 6817.20, "violation" : 6817.20, "junction" : 6816.41, "boss" : 6814.83, "particles" : 6814.04, "glories" : 6810.87, "signifies" : 6810.08, "constrained" : 6806.92, "paternal" : 6806.92, "piles" : 6805.33, "hardware" : 6804.54, "engaging" : 6803.75, "e.g." : 6802.17, "peer" : 6802.17, "counties" : 6801.38, "mocking" : 6801.38, "ch." : 6799.01, "avoiding" : 6798.21, "rebuke" : 6796.63, "abolished" : 6793.47, "cheers" : 6792.68, "idiot" : 6791.09, "3rd" : 6790.30, "morbid" : 6790.30, "wrung" : 6787.93, "e-mail" : 6787.14, "outcome" : 6782.39, "gilt" : 6774.48, "coldness" : 6768.94, "applying" : 6768.15, "strand" : 6761.82, "renowned" : 6760.24, "fishermen" : 6757.08, "creative" : 6755.49, "circus" : 6753.12, "moustache" : 6753.12, "proverb" : 6750.75, "lowering" : 6746.79, "biggest" : 6746.00, "sly" : 6742.83, "nursing" : 6741.25, "boon" : 6739.67, "weighing" : 6738.09, "oklahoma" : 6735.71, "brink" : 6734.13, "degraded" : 6734.13, "avenge" : 6731.76, "hum" : 6730.97, "minority" : 6730.97, "spaniard" : 6730.97, "ridges" : 6729.39, "perils" : 6727.80, "larry" : 6725.43, "merchandise" : 6723.06, "aloof" : 6721.47, "despairing" : 6720.68, "acquisition" : 6719.10, "asylum" : 6718.31, "chickens" : 6718.31, "placid" : 6718.31, "affirm" : 6715.94, "trod" : 6715.94, "gardener" : 6711.98, "schedule" : 6711.19, "calmness" : 6710.40, "protector" : 6710.40, "concealment" : 6707.23, "trench" : 6704.86, "fore" : 6699.32, "accession" : 6689.83, "h" : 6688.25, "dey" : 6685.87, "connexion" : 6685.08, "cairo" : 6684.29, "mend" : 6681.92, "considers" : 6677.17, "twenty-one" : 6677.17, "municipal" : 6675.59, "achievements" : 6674.80, "cherish" : 6674.80, "deserving" : 6674.80, "exert" : 6672.42, "riot" : 6672.42, "veteran" : 6672.42, "advancement" : 6670.05, "inventor" : 6666.89, "meek" : 6666.09, "cameron" : 6662.93, "hopelessly" : 6661.35, "judicious" : 6661.35, "tending" : 6658.18, "testify" : 6657.39, "governess" : 6656.60, "orchestra" : 6655.81, "garb" : 6655.02, "condemnation" : 6653.44, "foregoing" : 6652.65, "bacon" : 6649.48, "maternal" : 6648.69, "wasting" : 6648.69, "australian" : 6645.53, "strata" : 6645.53, "hushed" : 6644.73, "maryland" : 6644.73, "sculpture" : 6644.73, "miniature" : 6640.78, "corrections" : 6639.99, "tangled" : 6638.41, "completion" : 6631.28, "regulated" : 6631.28, "athenian" : 6629.70, "flavor" : 6628.12, "brand" : 6627.33, "intimately" : 6625.75, "unlimited" : 6625.75, "dipped" : 6622.58, "luggage" : 6621.79, "inconsistent" : 6621.00, "forsaken" : 6619.42, "feebly" : 6618.63, "woven" : 6617.84, "lloyd" : 6617.04, "rubbish" : 6617.04, "tool" : 6617.04, "spirited" : 6615.46, "christendom" : 6614.67, "chaos" : 6610.72, "twinkling" : 6610.72, "muffled" : 6609.13, "accents" : 6607.55, "accidentally" : 6603.60, "degradation" : 6599.64, "emancipation" : 6598.06, "prosecution" : 6596.48, "cleveland" : 6595.68, "outbreak" : 6594.89, "defending" : 6593.31, "dwarf" : 6592.52, "abundantly" : 6590.15, "turner" : 6590.15, "disadvantage" : 6586.19, "abolition" : 6585.40, "disregard" : 6585.40, "deliberation" : 6584.61, "filthy" : 6583.82, "ak" : 6579.07, "notifies" : 6577.49, "dealings" : 6576.70, "demonstrated" : 6576.70, "paced" : 6575.91, "tense" : 6575.91, "drums" : 6573.53, "interpreter" : 6573.53, "vanish" : 6572.74, "astray" : 6571.16, "hen" : 6569.58, "workman" : 6569.58, "asunder" : 6566.41, "baked" : 6566.41, "baltimore" : 6566.41, "bustle" : 6565.62, "winged" : 6565.62, "mentioning" : 6564.04, "pastoral" : 6564.04, "fabric" : 6563.25, "trim" : 6563.25, "musician" : 6558.50, "twenty-two" : 6558.50, "patty" : 6556.92, "mentally" : 6553.75, "wrecked" : 6553.75, "discreet" : 6552.96, "godfrey" : 6552.96, "apostle" : 6552.17, "ledge" : 6549.80, "roast" : 6549.80, "accessed" : 6547.42, "preface" : 6546.63, "convincing" : 6542.68, "quiver" : 6537.93, "stocks" : 6537.93, "mourn" : 6534.77, "commented" : 6533.98, "redistribute" : 6532.39, "precipice" : 6528.44, "outdated" : 6527.65, "juliet" : 6526.86, "dialect" : 6526.06, "elementary" : 6525.27, "freight" : 6525.27, "cowardice" : 6522.90, "wipe" : 6522.90, "deserts" : 6519.74, "shelves" : 6517.36, "denial" : 6514.20, "1b" : 6504.70, "traits" : 6503.91, "denounced" : 6503.12, "eric" : 6503.12, "underground" : 6499.17, "phantom" : 6498.37, "whirling" : 6498.37, "pecuniary" : 6494.42, "dire" : 6493.63, "hostilities" : 6493.63, "gait" : 6492.84, "it'll" : 6492.05, "vividly" : 6490.46, "instruct" : 6488.88, "dickens" : 6486.51, "puritan" : 6486.51, "clutched" : 6484.93, "acknowledgment" : 6484.13, "conjunction" : 6481.76, "oppressive" : 6480.97, "intermediate" : 6480.18, "formula" : 6478.60, "hungary" : 6477.01, "sneer" : 6469.10, "ore" : 6468.31, "plentiful" : 6468.31, "plump" : 6467.52, "combinations" : 6464.36, "purest" : 6463.56, "cheat" : 6462.77, "doubly" : 6462.77, "inadequate" : 6461.19, "leslie" : 6459.61, "blest" : 6458.82, "forbear" : 6457.24, "haunt" : 6454.07, "treaties" : 6454.07, "fearless" : 6453.28, "constable" : 6452.49, "enveloped" : 6450.91, "enmity" : 6449.32, "watson" : 6447.74, "bridegroom" : 6446.16, "curate" : 6445.37, "developing" : 6445.37, "frock" : 6442.99, "mining" : 6439.83, "audacity" : 6436.67, "improper" : 6434.29, "motto" : 6432.71, "parisian" : 6431.92, "faction" : 6424.80, "architect" : 6422.43, "melting" : 6421.63, "delicately" : 6420.05, "register" : 6419.26, "heroine" : 6416.89, "indefinite" : 6412.14, "console" : 6408.19, "defensive" : 6408.19, "perceptible" : 6406.60, "fruitless" : 6405.81, "ransom" : 6401.06, "surplus" : 6398.69, "solicitude" : 6396.32, "effectual" : 6393.15, "shiver" : 6387.62, "gal" : 6386.82, "wed" : 6386.03, "contemptuous" : 6385.24, "plough" : 6382.87, "snakes" : 6381.29, "felicity" : 6380.50, "reef" : 6380.50, "outset" : 6379.70, "constitutes" : 6378.91, "lament" : 6378.91, "tissue" : 6378.12, "draft" : 6377.33, "impelled" : 6376.54, "epic" : 6374.96, "fisherman" : 6369.42, "hawaii" : 6368.63, "obstinacy" : 6367.84, "ulysses" : 6367.84, "lemon" : 6367.05, "voltaire" : 6365.46, "hound" : 6364.67, "measuring" : 6361.51, "conscientious" : 6358.34, "robber" : 6355.97, "toy" : 6355.97, "impart" : 6355.18, "statute" : 6353.60, "barry" : 6352.81, "girdle" : 6352.01, "basil" : 6348.06, "rebellious" : 6348.06, "stair" : 6346.48, "biting" : 6344.89, "consulting" : 6344.89, "perseverance" : 6344.89, "manila" : 6340.94, "massacre" : 6339.36, "cough" : 6338.57, "blazed" : 6337.77, "claude" : 6337.77, "transition" : 6337.77, "button" : 6334.61, "headache" : 6332.24, "tenant" : 6331.44, "burns" : 6330.65, "harmonious" : 6329.86, "dreamy" : 6325.91, "burgundy" : 6324.32, "collections" : 6321.95, "unkind" : 6321.16, "inscribed" : 6319.58, "cushions" : 6318.79, "programme" : 6317.20, "din" : 6316.41, "laborious" : 6316.41, "manufacturing" : 6315.62, "markets" : 6312.46, "zone" : 6308.50, "humane" : 6306.92, "ac" : 6306.13, "fertility" : 6305.34, "languid" : 6305.34, "ninth" : 6304.55, "curses" : 6303.76, "introducing" : 6302.96, "alcohol" : 6300.59, "impending" : 6299.01, "declining" : 6297.43, "advantageous" : 6295.05, "heal" : 6294.26, "millennium" : 6294.26, "karl" : 6293.47, "ft." : 6291.10, "staid" : 6289.51, "planting" : 6287.93, "theatrical" : 6287.93, "spectator" : 6286.35, "winchester" : 6283.19, "greedy" : 6281.60, "commonwealth" : 6280.81, "suffrage" : 6280.81, "tremulous" : 6280.81, "commodities" : 6280.02, "stuffed" : 6280.02, "admitting" : 6275.27, "aching" : 6273.69, "ninety" : 6273.69, "discomfort" : 6272.90, "imperative" : 6272.90, "montreal" : 6272.11, "bobby" : 6271.32, "bachelor" : 6269.74, "geographical" : 6268.95, "longest" : 6268.95, "courageous" : 6266.57, "carpenter" : 6259.45, "sundays" : 6254.70, "concluding" : 6253.12, "danish" : 6252.33, "steer" : 6251.54, "influential" : 6249.96, "surround" : 6249.96, "random" : 6249.17, "ounce" : 6248.38, "afresh" : 6246.79, "dictated" : 6239.67, "ruddy" : 6239.67, "rusty" : 6239.67, "drown" : 6238.88, "irving" : 6238.09, "slide" : 6238.09, "sow" : 6237.30, "appalling" : 6236.51, "profess" : 6234.93, "sickly" : 6234.14, "rides" : 6233.34, "spoon" : 6233.34, "imminent" : 6232.55, "dominant" : 6230.97, "leadership" : 6224.64, "pinch" : 6223.06, "wearily" : 6223.06, "ducks" : 6222.27, "diary" : 6219.10, "duchess" : 6218.31, "regain" : 6218.31, "rum" : 6217.52, "churchyard" : 6214.36, "fondness" : 6214.36, "apprehend" : 6212.77, "ordinarily" : 6211.19, "quicker" : 6211.19, "thereon" : 6211.19, "ni" : 6209.61, "balloon" : 6208.03, "individuality" : 6208.03, "securely" : 6208.03, "connecting" : 6207.24, "celebrate" : 6206.45, "bluff" : 6205.65, "dawned" : 6205.65, "amiss" : 6204.86, "chalk" : 6203.28, "sticking" : 6201.70, "fuss" : 6200.91, "dazed" : 6199.33, "deputy" : 6199.33, "forsake" : 6197.74, "automobile" : 6196.95, "discussions" : 6195.37, "harrison" : 6195.37, "refreshment" : 6195.37, "amendment" : 6194.58, "appealing" : 6189.04, "eden" : 6189.04, "vertical" : 6188.25, "insufficient" : 6184.29, "manchester" : 6182.71, "hem" : 6179.55, "gorge" : 6177.96, "baptized" : 6175.59, "damn" : 6174.01, "silvery" : 6173.22, "pastor" : 6171.64, "inherent" : 6170.05, "preventing" : 6169.26, "inference" : 6168.47, "advertisement" : 6167.68, "mutton" : 6167.68, "packing" : 6167.68, "enclosure" : 6165.31, "theft" : 6164.52, "publisher" : 6162.93, "spontaneous" : 6161.35, "otto" : 6158.98, "rats" : 6158.98, "apparition" : 6158.19, "refreshing" : 6158.19, "irene" : 6156.60, "sweetheart" : 6156.60, "renounce" : 6155.02, "lifeless" : 6154.23, "adore" : 6153.44, "vinegar" : 6149.48, "normandy" : 6147.11, "uncovered" : 6147.11, "utility" : 6146.32, "orphan" : 6144.74, "symbols" : 6143.15, "gracefully" : 6142.36, "mightily" : 6142.36, "peculiarity" : 6142.36, "ash" : 6141.57, "floods" : 6139.20, "partake" : 6138.41, "contemptible" : 6137.62, "deities" : 6135.24, "profane" : 6134.45, "foreseen" : 6133.66, "ti" : 6132.87, "conceit" : 6132.08, "commend" : 6129.71, "twelfth" : 6129.71, "bristol" : 6127.33, "manifestation" : 6126.54, "revive" : 6126.54, "prone" : 6123.38, "connect" : 6121.79, "princely" : 6117.84, "overtake" : 6117.05, "improving" : 6115.47, "downwards" : 6112.30, "ferocious" : 6111.51, "intervention" : 6110.72, "subsistence" : 6109.14, "susceptible" : 6109.14, "tunnel" : 6109.14, "disciple" : 6108.35, "revival" : 6107.55, "twins" : 6106.76, "ivy" : 6105.97, "puzzle" : 6103.60, "citadel" : 6100.43, "temporarily" : 6100.43, "despotism" : 6099.64, "internet" : 6099.64, "mechanism" : 6098.85, "stoop" : 6098.85, "directors" : 6097.27, "mathematics" : 6095.69, "raft" : 6095.69, "fade" : 6094.90, "soothe" : 6093.31, "pork" : 6092.52, "substituted" : 6092.52, "physically" : 6091.73, "brilliancy" : 6086.98, "dot" : 6086.98, "loaf" : 6086.19, "expanse" : 6079.86, "shocking" : 6079.07, "rudely" : 6075.12, "isle" : 6074.33, "balanced" : 6072.74, "extracted" : 6071.95, "fable" : 6071.95, "matches" : 6071.95, "index" : 6068.00, "gerard" : 6066.41, "cigars" : 6065.62, "liver" : 6063.25, "transmit" : 6063.25, "dispatch" : 6061.67, "onto" : 6056.13, "veranda" : 6056.13, "dip" : 6054.55, "inexplicable" : 6052.97, "liar" : 6052.17, "diminish" : 6049.80, "dungeon" : 6045.85, "unit" : 6043.47, "pagan" : 6042.68, "phillips" : 6040.31, "brig" : 6039.52, "monopoly" : 6039.52, "rim" : 6039.52, "sordid" : 6031.60, "complaining" : 6030.81, "temperate" : 6030.81, "chat" : 6030.02, "gambling" : 6030.02, "maps" : 6028.44, "amber" : 6025.28, "trot" : 6025.28, "howl" : 6021.32, "shipping" : 6021.32, "ton" : 6021.32, "magazines" : 6020.53, "bricks" : 6017.36, "submarine" : 6016.57, "roberts" : 6015.78, "cumberland" : 6012.62, "cecil" : 6007.87, "semblance" : 6007.08, "palestine" : 6006.29, "perpendicular" : 6005.50, "regardless" : 6005.50, "fervent" : 6004.71, "sane" : 6004.71, "wreath" : 6003.92, "animation" : 6001.54, "earthquake" : 5999.96, "sloping" : 5998.38, "smoothly" : 5998.38, "tension" : 5998.38, "intrigues" : 5996.00, "fearfully" : 5995.21, "macaulay" : 5994.42, "laboratory" : 5992.05, "cork" : 5991.26, "comments" : 5986.51, "whale" : 5986.51, "wedded" : 5985.72, "whiteness" : 5984.93, "convicted" : 5984.14, "deception" : 5982.55, "paved" : 5982.55, "scruple" : 5982.55, "paintings" : 5981.76, "therewith" : 5981.76, "religions" : 5980.97, "governing" : 5978.60, "colleagues" : 5977.81, "shrinking" : 5977.02, "tickets" : 5975.43, "prophetic" : 5974.64, "undergo" : 5974.64, "hare" : 5973.06, "haze" : 5972.27, "poisonous" : 5971.48, "omit" : 5969.90, "beware" : 5969.11, "sagacity" : 5965.94, "concession" : 5965.15, "worker" : 5965.15, "ted" : 5962.78, "incline" : 5961.99, "caste" : 5960.40, "leapt" : 5960.40, "dissatisfied" : 5955.66, "hardest" : 5954.07, "self-control" : 5954.07, "toilet" : 5953.28, "buddha" : 5951.70, "offense" : 5951.70, "woodland" : 5951.70, "gentry" : 5950.91, "starvation" : 5947.74, "grudge" : 5946.95, "penance" : 5946.16, "tips" : 5946.16, "rooted" : 5944.58, "outburst" : 5943.00, "fortitude" : 5939.83, "turk" : 5939.04, "devour" : 5937.46, "malignant" : 5935.88, "accorded" : 5932.71, "brandon" : 5931.92, "anticipate" : 5931.13, "speechless" : 5931.13, "inquisition" : 5929.55, "eccentric" : 5927.97, "anecdote" : 5927.18, "annals" : 5927.18, "scrutiny" : 5924.01, "burroughs" : 5920.85, "rhythm" : 5918.47, "discord" : 5917.68, "marius" : 5912.93, "diversion" : 5908.98, "archie" : 5905.02, "rat" : 5905.02, "knit" : 5902.65, "correspond" : 5901.07, "detain" : 5901.07, "dis" : 5901.07, "esp" : 5901.07, "interpret" : 5900.28, "vehement" : 5898.69, "soda" : 5897.90, "naughty" : 5894.74, "salon" : 5893.16, "operate" : 5890.78, "idly" : 5889.99, "imperious" : 5889.20, "peru" : 5889.20, "candid" : 5888.41, "whig" : 5888.41, "blooming" : 5886.83, "wharf" : 5886.04, "disgraceful" : 5883.66, "stunned" : 5883.66, "redemption" : 5881.29, "drain" : 5878.12, "wage" : 5878.12, "cooper" : 5874.96, "embassy" : 5874.96, "unfinished" : 5874.17, "nasty" : 5872.59, "impetuous" : 5871.00, "cemetery" : 5868.63, "oblivion" : 5868.63, "prohibited" : 5867.05, "breeches" : 5866.26, "abound" : 5864.68, "christine" : 5860.72, "frivolous" : 5855.97, "hugo" : 5855.18, "essays" : 5854.39, "plaster" : 5852.81, "tap" : 5850.44, "chairman" : 5848.06, "dismiss" : 5848.06, "katherine" : 5848.06, "provoke" : 5848.06, "reside" : 5844.11, "deficient" : 5842.52, "decoration" : 5840.94, "heroism" : 5840.15, "toe" : 5840.15, "wade" : 5839.36, "apparel" : 5836.19, "hazel" : 5836.19, "inability" : 5836.19, "farthest" : 5833.82, "invent" : 5831.45, "knave" : 5831.45, "twain" : 5829.07, "carelessness" : 5826.70, "affectation" : 5822.75, "connections" : 5821.16, "climax" : 5820.37, "avowed" : 5816.42, "industries" : 5816.42, "brood" : 5813.25, "tempting" : 5812.46, "define" : 5804.55, "antwerp" : 5803.76, "forefathers" : 5803.76, "stretches" : 5802.18, "gratifying" : 5801.38, "plight" : 5800.59, "restricted" : 5800.59, "cupboard" : 5799.01, "ludicrous" : 5798.22, "alms" : 5797.43, "colossal" : 5795.06, "stupidity" : 5791.10, "monotony" : 5790.31, "stimulus" : 5790.31, "vigilance" : 5788.73, "digest" : 5784.77, "vale" : 5784.77, "overcoat" : 5783.19, "colorado" : 5782.40, "wink" : 5780.82, "nous" : 5775.28, "rack" : 5775.28, "incomprehensible" : 5773.70, "antagonist" : 5772.90, "methinks" : 5767.37, "barley" : 5764.20, "plateau" : 5758.66, "superintendent" : 5754.71, "indescribable" : 5744.42, "expanded" : 5743.63, "presentation" : 5742.84, "archbishop" : 5742.05, "devise" : 5740.47, "rubber" : 5738.89, "adieu" : 5738.09, "exclude" : 5737.30, "carts" : 5736.51, "lone" : 5734.93, "whisky" : 5734.14, "abuses" : 5732.56, "inflict" : 5730.97, "nightfall" : 5730.97, "counts" : 5730.18, "chocolate" : 5728.60, "privileged" : 5728.60, "hermit" : 5727.81, "exultation" : 5727.02, "overtook" : 5727.02, "coincidence" : 5726.23, "scratch" : 5726.23, "screw" : 5723.85, "caravan" : 5723.06, "divert" : 5719.90, "eliza" : 5719.90, "comparing" : 5717.52, "hood" : 5716.73, "explore" : 5715.15, "glove" : 5715.15, "chaste" : 5713.57, "whirl" : 5713.57, "adventurous" : 5707.24, "skipper" : 5703.28, "tiresome" : 5702.49, "implements" : 5701.70, "recompense" : 5701.70, "plank" : 5700.91, "insure" : 5696.96, "laboured" : 5696.16, "exaggeration" : 5691.42, "mi" : 5689.83, "shepherds" : 5689.04, "lilies" : 5688.25, "ballad" : 5685.88, "befall" : 5683.51, "cylinder" : 5682.71, "teddy" : 5676.39, "summary" : 5671.64, "daresay" : 5669.27, "photographs" : 5669.27, "colleges" : 5664.52, "dissolution" : 5664.52, "geneva" : 5662.94, "marches" : 5662.15, "instituted" : 5655.02, "seals" : 5655.02, "vehemence" : 5654.23, "chaplain" : 5653.44, "knots" : 5653.44, "wail" : 5650.28, "kneel" : 5647.11, "unlikely" : 5644.74, "deceit" : 5643.95, "challenged" : 5640.78, "geography" : 5639.20, "herald" : 5637.62, "lowly" : 5636.83, "peep" : 5636.83, "swarm" : 5636.04, "clarke" : 5633.66, "joyfully" : 5633.66, "engraved" : 5632.08, "ll" : 5632.08, "bowels" : 5631.29, "purposely" : 5629.71, "blindness" : 5628.92, "systematic" : 5626.54, "virtually" : 5624.96, "conformity" : 5621.80, "remedies" : 5617.84, "maxim" : 5617.05, "indexes" : 5613.89, "marshall" : 5613.89, "baking" : 5613.09, "invincible" : 5612.30, "impertinent" : 5611.51, "bust" : 5609.93, "visage" : 5609.93, "intuition" : 5609.14, "mingle" : 5609.14, "bathing" : 5607.56, "arched" : 5606.77, "investment" : 5605.97, "tabernacle" : 5604.39, "86" : 5601.23, "client" : 5601.23, "ghostly" : 5601.23, "furs" : 5600.44, "catalogue" : 5598.85, "dock" : 5598.06, "tenor" : 5598.06, "arouse" : 5597.27, "verbal" : 5592.53, "excessively" : 5590.94, "brazil" : 5588.57, "strenuous" : 5587.78, "irishman" : 5585.41, "recess" : 5582.24, "unclean" : 5581.45, "psalms" : 5580.66, "analogy" : 5579.08, "chemistry" : 5579.08, "peninsula" : 5579.08, "infer" : 5578.28, "maritime" : 5577.49, "secular" : 5576.70, "hawk" : 5574.33, "rein" : 5573.54, "averted" : 5572.75, "bake" : 5572.75, "constantine" : 5571.96, "oracle" : 5571.96, "alley" : 5568.00, "softness" : 5568.00, "pierce" : 5565.63, "spinning" : 5564.84, "snatch" : 5563.25, "manufactured" : 5561.67, "launch" : 5560.88, "psychology" : 5560.88, "worms" : 5560.88, "regulate" : 5560.09, "farming" : 5557.72, "fasten" : 5556.92, "actress" : 5553.76, "etiquette" : 5551.39, "theater" : 5551.39, "thanksgiving" : 5550.60, "valor" : 5549.01, "untouched" : 5548.22, "tactics" : 5547.43, "drug" : 5546.64, "adverse" : 5545.06, "gaunt" : 5544.27, "conducting" : 5542.68, "veritable" : 5541.10, "overtaken" : 5539.52, "distorted" : 5538.73, "rosa" : 5538.73, "nina" : 5537.94, "quart" : 5537.94, "caprice" : 5536.35, "candy" : 5531.61, "obliging" : 5525.28, "planets" : 5525.28, "soothed" : 5524.49, "sic" : 5523.70, "opium" : 5520.53, "pavilion" : 5520.53, "strait" : 5518.16, "sanguine" : 5516.58, "cords" : 5512.62, "odour" : 5512.62, "trout" : 5510.25, "paste" : 5509.46, "regularity" : 5504.71, "metallic" : 5497.59, "scrap" : 5496.80, "convict" : 5495.22, "instructive" : 5494.42, "investigate" : 5492.05, "celtic" : 5490.47, "package" : 5488.10, "pirate" : 5486.51, "fiend" : 5484.93, "moan" : 5484.93, "revealing" : 5484.93, "trades" : 5483.35, "rounds" : 5481.77, "accomplishments" : 5479.39, "crawl" : 5477.81, "aft" : 5476.23, "prevalent" : 5473.86, "role" : 5473.86, "dose" : 5471.48, "evans" : 5471.48, "hypocrisy" : 5470.69, "l" : 5469.90, "salmon" : 5468.32, "snap" : 5468.32, "alma" : 5465.94, "magical" : 5464.36, "tire" : 5463.57, "hetty" : 5462.78, "impenetrable" : 5462.78, "geese" : 5461.99, "madly" : 5460.41, "manifold" : 5460.41, "noticeable" : 5460.41, "pudding" : 5460.41, "volcanic" : 5459.61, "locke" : 5458.82, "magnetic" : 5458.82, "deals" : 5458.03, "core" : 5456.45, "decency" : 5455.66, "observance" : 5455.66, "durst" : 5448.54, "scratched" : 5448.54, "predecessor" : 5446.96, "diplomacy" : 5446.17, "wert" : 5446.17, "impartial" : 5444.58, "disinterested" : 5440.63, "wig" : 5440.63, "pump" : 5439.05, "swedish" : 5437.46, "norfolk" : 5436.67, "reigns" : 5433.51, "similarly" : 5432.72, "reap" : 5431.13, "dam" : 5430.34, "facilities" : 5430.34, "slippery" : 5430.34, "transformation" : 5427.97, "oxygen" : 5427.18, "suburbs" : 5427.18, "dares" : 5426.39, "ornamental" : 5425.60, "pondered" : 5424.80, "fringe" : 5423.22, "raiment" : 5421.64, "henrietta" : 5420.85, "wellington" : 5420.85, "foreman" : 5419.27, "feat" : 5418.48, "thirteenth" : 5418.48, "sultan" : 5416.89, "certificate" : 5416.10, "rue" : 5415.31, "heresy" : 5413.73, "arabia" : 5410.56, "medal" : 5409.77, "location" : 5405.03, "ether" : 5404.24, "ruby" : 5401.86, "heading" : 5396.32, "subdue" : 5394.74, "adorn" : 5391.58, "ancestor" : 5391.58, "warmer" : 5391.58, "cluster" : 5389.99, "quotation" : 5389.99, "fullest" : 5389.20, "exposition" : 5388.41, "custody" : 5386.04, "thermometer" : 5386.04, "plausible" : 5383.67, "toss" : 5381.29, "desperation" : 5378.92, "rhetoric" : 5378.92, "scornful" : 5378.13, "bailey" : 5376.55, "rung" : 5376.55, "civility" : 5375.75, "dingy" : 5375.75, "scaffold" : 5374.96, "concentration" : 5374.17, "avarice" : 5373.38, "scrape" : 5373.38, "pools" : 5371.80, "oar" : 5370.22, "flutter" : 5369.43, "martyr" : 5369.43, "handy" : 5368.63, "montague" : 5368.63, "bait" : 5367.84, "login" : 5367.84, "commotion" : 5367.05, "congenial" : 5367.05, "drawers" : 5365.47, "telescope" : 5365.47, "deposits" : 5363.10, "edwards" : 5361.51, "craving" : 5360.72, "bureau" : 5359.14, "oscar" : 5358.35, "speculative" : 5358.35, "huddled" : 5356.77, "diverse" : 5355.18, "slice" : 5354.39, "renaissance" : 5352.81, "angelo" : 5348.86, "meg" : 5347.27, "murderous" : 5347.27, "serenity" : 5347.27, "perspiration" : 5346.48, "coventry" : 5344.90, "impudent" : 5344.11, "ardor" : 5343.32, "necklace" : 5342.53, "alight" : 5341.74, "stimulated" : 5339.36, "clifford" : 5337.78, "steadfast" : 5333.82, "genoa" : 5332.24, "anglo-saxon" : 5330.66, "courier" : 5328.29, "inflamed" : 5328.29, "xi" : 5328.29, "drill" : 5325.91, "spelling" : 5323.54, "respond" : 5322.75, "seriousness" : 5321.17, "fourteenth" : 5319.58, "womb" : 5319.58, "literal" : 5317.21, "singers" : 5317.21, "usefulness" : 5315.63, "cloudy" : 5314.84, "mortality" : 5314.84, "profusion" : 5314.84, "fleeting" : 5314.05, "twentieth" : 5314.05, "maturity" : 5313.25, "surf" : 5310.88, "weed" : 5307.72, "phases" : 5306.13, "overcame" : 5304.55, "womanhood" : 5304.55, "envious" : 5302.97, "tapped" : 5302.18, "latent" : 5300.60, "whiskey" : 5298.22, "relatively" : 5292.69, "forbidding" : 5290.31, "cleopatra" : 5288.73, "willow" : 5288.73, "mathematical" : 5286.36, "sojourn" : 5283.19, "booty" : 5282.40, "camel" : 5280.03, "implore" : 5280.03, "amateur" : 5279.24, "morally" : 5276.07, "qualifications" : 5273.70, "gasp" : 5271.32, "101" : 5270.53, "gliding" : 5268.95, "tested" : 5263.41, "racing" : 5261.83, "brightest" : 5261.04, "joel" : 5260.25, "extremes" : 5257.88, "damascus" : 5257.08, "labored" : 5256.29, "peggy" : 5255.50, "exit" : 5252.34, "originality" : 5251.55, "humming" : 5248.38, "isolation" : 5247.59, "sometime" : 5246.80, "glee" : 5246.01, "adult" : 5245.22, "solace" : 5244.43, "biography" : 5242.84, "ff." : 5241.26, "hardship" : 5241.26, "lied" : 5241.26, "donkey" : 5239.68, "trader" : 5238.89, "rumour" : 5234.93, "amply" : 5231.77, "confide" : 5231.77, "favors" : 5231.77, "perspective" : 5227.81, "belgian" : 5226.23, "withstand" : 5225.44, "robust" : 5224.65, "pro" : 5223.07, "val" : 5222.27, "eats" : 5221.48, "snare" : 5220.69, "monthly" : 5219.90, "wines" : 5215.95, "ignore" : 5215.15, "envoy" : 5214.36, "flown" : 5214.36, "reverie" : 5213.57, "jehovah" : 5207.24, "contrive" : 5206.45, "chatter" : 5205.66, "judas" : 5205.66, "nourishment" : 5204.87, "reforms" : 5203.29, "clatter" : 5201.70, "adrian" : 5198.54, "allude" : 5197.75, "corrupted" : 5197.75, "thorn" : 5196.17, "junior" : 5193.79, "tony" : 5187.46, "calcutta" : 5185.88, "re" : 5185.88, "holt" : 5185.09, "psychological" : 5182.72, "constancy" : 5181.14, "misunderstood" : 5180.34, "signals" : 5177.97, "drying" : 5175.60, "harshly" : 5174.81, "distressing" : 5170.85, "novelist" : 5170.85, "cyril" : 5169.27, "editors" : 5168.48, "intricate" : 5167.69, "limestone" : 5166.10, "forty-five" : 5165.31, "collision" : 5164.52, "pebbles" : 5163.73, "willie" : 5163.73, "knitting" : 5162.94, "ordeal" : 5160.57, "foresee" : 5158.98, "peas" : 5157.40, "repast" : 5156.61, "supplying" : 5152.65, "clan" : 5151.86, "abject" : 5150.28, "dart" : 5149.49, "berth" : 5148.70, "bridal" : 5148.70, "indirect" : 5148.70, "unnoticed" : 5148.70, "tint" : 5147.91, "insults" : 5145.53, "precedent" : 5143.95, "twisting" : 5142.37, "bully" : 5139.21, "vacation" : 5138.41, "'ll" : 5133.67, "canon" : 5132.88, "aisle" : 5131.29, "click" : 5131.29, "inspiring" : 5131.29, "oval" : 5130.50, "impracticable" : 5128.92, "delirium" : 5127.34, "cedar" : 5126.55, "contradict" : 5125.76, "ingratitude" : 5125.76, "soften" : 5125.76, "bewilderment" : 5124.96, "servitude" : 5123.38, "comely" : 5122.59, "stump" : 5121.80, "redeem" : 5121.01, "spun" : 5118.64, "elastic" : 5117.84, "poultry" : 5115.47, "horseman" : 5114.68, "dictionary" : 5112.31, "prettiest" : 5112.31, "adoration" : 5109.93, "icel." : 5109.14, "wager" : 5109.14, "involving" : 5107.56, "pathway" : 5104.40, "essex" : 5102.81, "wistful" : 5102.81, "advent" : 5102.02, "gear" : 5102.02, "celebration" : 5100.44, "conceivable" : 5100.44, "drowning" : 5100.44, "faintest" : 5097.28, "acquiring" : 5094.90, "befell" : 5092.53, "good-looking" : 5092.53, "wares" : 5092.53, "rendezvous" : 5091.74, "snug" : 5091.74, "watery" : 5091.74, "accompaniment" : 5090.95, "chaps" : 5090.95, "crawling" : 5088.57, "lumber" : 5087.78, "publishing" : 5087.78, "customer" : 5086.99, "mediaeval" : 5084.62, "prints" : 5079.87, "lavish" : 5078.29, "md" : 5074.33, "genesis" : 5069.59, "rug" : 5068.79, "analogous" : 5066.42, "eleventh" : 5066.42, "noah" : 5066.42, "galley" : 5062.47, "partition" : 5062.47, "blunder" : 5061.67, "glasgow" : 5061.67, "fanciful" : 5060.09, "ham" : 5057.72, "rainbow" : 5056.14, "sentinel" : 5055.34, "hereby" : 5053.76, "outlook" : 5053.76, "smitten" : 5051.39, "unmarried" : 5050.60, "mice" : 5049.81, "installed" : 5049.02, "vivacity" : 5049.02, "marking" : 5048.22, "aesthetic" : 5045.85, "consume" : 5045.85, "resent" : 5044.27, "pose" : 5041.90, "contentment" : 5040.31, "sterling" : 5039.52, "veneration" : 5038.73, "p.m." : 5037.15, "barking" : 5034.78, "bower" : 5034.78, "organism" : 5034.78, "unintelligible" : 5032.40, "emphatic" : 5031.61, "occurring" : 5030.03, "factors" : 5029.24, "guise" : 5027.66, "editorial" : 5026.07, "impudence" : 5025.28, "midday" : 5022.91, "corporal" : 5022.12, "sg" : 5022.12, "aright" : 5018.95, "nigger" : 5015.79, "lily" : 5012.62, "noun" : 5007.09, "scout" : 5007.09, "spit" : 5007.09, "cursing" : 5006.29, "friedrich" : 5005.50, "manifestly" : 5004.71, "marco" : 5004.71, "battalion" : 5000.76, "heritage" : 5000.76, "brotherhood" : 4999.17, "nun" : 4999.17, "wad" : 4997.59, "folding" : 4995.22, "discerned" : 4994.43, "powerfully" : 4994.43, "mitchell" : 4990.47, "helpful" : 4989.68, "persist" : 4989.68, "ellis" : 4985.73, "frigate" : 4984.93, "spotted" : 4984.93, "atoms" : 4983.35, "curves" : 4983.35, "outlet" : 4981.77, "erroneous" : 4979.40, "violated" : 4979.40, "withheld" : 4978.60, "fairies" : 4975.44, "inherit" : 4975.44, "sledge" : 4975.44, "taller" : 4973.07, "supervision" : 4972.28, "butt" : 4971.48, "handsomely" : 4971.48, "tank" : 4965.16, "velocity" : 4965.16, "arctic" : 4963.57, "colleague" : 4963.57, "pins" : 4962.78, "butcher" : 4961.99, "drowsy" : 4961.99, "butterfly" : 4960.41, "chart" : 4957.24, "twin" : 4957.24, "sunken" : 4954.08, "exasperated" : 4950.12, "narrowly" : 4950.12, "collins" : 4948.54, "insulting" : 4946.96, "deficiency" : 4945.38, "operating" : 4943.79, "overthrown" : 4942.21, "gallows" : 4941.42, "diligent" : 4940.63, "hindu" : 4940.63, "blunt" : 4939.84, "omen" : 4939.05, "bleak" : 4938.26, "vehemently" : 4938.26, "wretchedness" : 4935.88, "e'er" : 4935.09, "ensure" : 4931.93, "denotes" : 4931.14, "sentenced" : 4927.97, "unfair" : 4927.18, "encampment" : 4923.23, "possessor" : 4923.23, "absorbing" : 4921.64, "descendant" : 4920.85, "sub" : 4918.48, "drugs" : 4917.69, "engineers" : 4917.69, "independently" : 4915.31, "bucket" : 4914.52, "clerical" : 4914.52, "ache" : 4911.36, "glitter" : 4911.36, "ordinance" : 4906.61, "bamboo" : 4905.82, "amsterdam" : 4905.03, "vocation" : 4899.49, "admirer" : 4898.70, "limp" : 4897.91, "pallid" : 4897.91, "mildly" : 4893.16, "organisation" : 4891.58, "timothy" : 4891.58, "dealer" : 4890.79, "yorkshire" : 4890.79, "auspicious" : 4886.83, "deuce" : 4882.88, "emblem" : 4882.88, "gibson" : 4882.88, "primarily" : 4882.88, "reducing" : 4881.30, "ritual" : 4877.34, "decorations" : 4876.55, "thigh" : 4875.76, "groaning" : 4874.18, "scant" : 4871.80, "fiscal" : 4871.01, "mien" : 4871.01, "charging" : 4867.85, "cor" : 4867.85, "railing" : 4867.85, "peers" : 4866.26, "inferred" : 4865.47, "sanctity" : 4865.47, "accumulation" : 4863.89, "cynical" : 4861.52, "inspector" : 4861.52, "wardrobe" : 4859.14, "jesuit" : 4854.40, "texture" : 4853.61, "adjustment" : 4852.02, "epistle" : 4851.23, "adventurer" : 4850.44, "priesthood" : 4850.44, "seaman" : 4849.65, "turbulent" : 4849.65, "chant" : 4844.90, "marsh" : 4844.90, "palmer" : 4844.90, "unaware" : 4844.11, "vase" : 4843.32, "ty" : 4839.37, "initial" : 4837.78, "baths" : 4836.20, "weighty" : 4836.20, "minimum" : 4835.41, "correction" : 4829.87, "morsel" : 4829.08, "overlook" : 4828.29, "meagre" : 4827.50, "unanimous" : 4826.71, "magician" : 4824.33, "mystical" : 4824.33, "twenty-three" : 4823.54, "inhabit" : 4822.75, "shaggy" : 4822.75, "unaccountable" : 4822.75, "nightmare" : 4818.80, "carbon" : 4818.00, "coil" : 4818.00, "lawless" : 4818.00, "stairway" : 4818.00, "willingness" : 4818.00, "sarcasm" : 4815.63, "crisp" : 4810.88, "jerk" : 4810.09, "tout" : 4808.51, "vocabulary" : 4808.51, "stroll" : 4806.14, "poorly" : 4805.35, "composing" : 4804.56, "parliamentary" : 4804.56, "controlling" : 4803.76, "fitness" : 4803.76, "thoughtless" : 4802.97, "soames" : 4802.18, "temperance" : 4802.18, "illumination" : 4801.39, "translations" : 4800.60, "martyrdom" : 4799.02, "mellow" : 4798.23, "nationality" : 4795.06, "jam" : 4794.27, "austere" : 4792.69, "shoots" : 4791.11, "casually" : 4789.52, "pensive" : 4788.73, "flavour" : 4787.15, "nets" : 4786.36, "dice" : 4784.78, "satisfactorily" : 4783.99, "shrunk" : 4783.19, "administer" : 4781.61, "ante" : 4781.61, "swine" : 4781.61, "baptist" : 4780.03, "listener" : 4778.45, "unimportant" : 4778.45, "genera" : 4776.87, "contrivance" : 4776.07, "deplorable" : 4776.07, "museum" : 4776.07, "benefactor" : 4773.70, "tints" : 4772.12, "alphabet" : 4770.54, "rout" : 4768.16, "scatter" : 4767.37, "boer" : 4766.58, "ftp" : 4766.58, "steve" : 4766.58, "extant" : 4765.79, "bohemia" : 4765.00, "misunderstanding" : 4765.00, "universities" : 4765.00, "dexterity" : 4762.63, "rag" : 4759.46, "inseparable" : 4758.67, "punch" : 4757.09, "brazen" : 4756.30, "economical" : 4756.30, "pernicious" : 4756.30, "craig" : 4755.50, "mythology" : 4755.50, "drained" : 4754.71, "bolted" : 4753.92, "abel" : 4753.13, "stride" : 4751.55, "circumference" : 4749.18, "meddle" : 4749.18, "axis" : 4747.59, "gum" : 4746.80, "las" : 4746.01, "kinder" : 4744.43, "closes" : 4742.06, "ferocity" : 4742.06, "giddy" : 4740.47, "secluded" : 4740.47, "resisting" : 4737.31, "satisfying" : 4735.73, "reliable" : 4734.94, "disgusting" : 4733.35, "thirty-six" : 4733.35, "ethical" : 4730.98, "raleigh" : 4729.40, "crouching" : 4728.61, "lash" : 4728.61, "recital" : 4727.02, "buddhist" : 4726.23, "collapse" : 4723.86, "unsatisfactory" : 4721.49, "lore" : 4718.32, "varies" : 4718.32, "mainland" : 4715.95, "scot" : 4715.95, "repute" : 4715.16, "cushion" : 4714.37, "confound" : 4712.78, "scrub" : 4712.78, "myth" : 4710.41, "flights" : 4709.62, "oats" : 4708.04, "layers" : 4707.25, "ownership" : 4707.25, "cape" : 4706.45, "glimmer" : 4704.87, "scare" : 4704.87, "waked" : 4704.87, "bengal" : 4703.29, "scrupulous" : 4703.29, "equals" : 4700.92, "redress" : 4700.13, "brake" : 4698.54, "nut" : 4698.54, "stability" : 4698.54, "crafty" : 4697.75, "kirk" : 4697.75, "bough" : 4696.17, "momentous" : 4696.17, "albeit" : 4695.38, "enlarge" : 4694.59, "hardness" : 4694.59, "civilised" : 4693.80, "dotted" : 4692.21, "defiant" : 4691.42, "timidity" : 4691.42, "solar" : 4687.47, "heartless" : 4683.51, "thomson" : 4681.93, "mat" : 4681.14, "shun" : 4681.14, "raid" : 4679.56, "disclose" : 4678.76, "suppression" : 4674.02, "puff" : 4673.23, "juncture" : 4670.85, "beak" : 4670.06, "unjustly" : 4668.48, "foresaw" : 4664.52, "rot" : 4662.15, "aggressive" : 4661.36, "predicted" : 4661.36, "quaker" : 4661.36, "grate" : 4659.78, "lease" : 4657.40, "ponderous" : 4656.61, "maketh" : 4655.82, "repaid" : 4655.82, "charcoal" : 4652.66, "chilly" : 4652.66, "arrogance" : 4651.87, "friction" : 4651.87, "participation" : 4651.87, "pier" : 4649.49, "stale" : 4648.70, "intoxicated" : 4644.75, "commissioned" : 4643.16, "ratio" : 4643.16, "121" : 4640.79, "comb" : 4640.00, "masterpiece" : 4640.00, "wholesale" : 4640.00, "embraces" : 4639.21, "trodden" : 4639.21, "ephraim" : 4638.42, "shaw" : 4634.46, "translate" : 4631.30, "mortar" : 4630.51, "recreation" : 4629.71, "rite" : 4628.13, "truthful" : 4628.13, "cavalier" : 4627.34, "caress" : 4626.55, "si" : 4624.97, "curling" : 4624.18, "rivalry" : 4623.39, "whim" : 4623.39, "abreast" : 4621.01, "thebes" : 4620.22, "faust" : 4619.43, "peg" : 4619.43, "wilhelm" : 4619.43, "pestilence" : 4618.64, "ceremonial" : 4617.85, "receiver" : 4617.06, "sample" : 4617.06, "distinctive" : 4615.47, "consummate" : 4614.68, "matron" : 4610.73, "claiming" : 4609.94, "plural" : 4608.35, "initiative" : 4607.56, "inexhaustible" : 4606.77, "a.m." : 4605.98, "spider" : 4603.61, "reed" : 4602.82, "streak" : 4602.82, "blocked" : 4601.23, "titus" : 4601.23, "smashed" : 4598.07, "populous" : 4597.28, "baronet" : 4596.49, "commodore" : 4596.49, "jelly" : 4596.49, "advocates" : 4594.11, "dinah" : 4592.53, "salutation" : 4589.37, "mutiny" : 4586.99, "chronicles" : 4586.20, "comforting" : 4585.41, "serviceable" : 4584.62, "parchment" : 4583.04, "playful" : 4583.04, "potato" : 4583.04, "transient" : 4579.87, "administrative" : 4579.08, "anarchy" : 4579.08, "barber" : 4579.08, "revision" : 4579.08, "operated" : 4578.29, "farce" : 4577.50, "germ" : 4576.71, "profile" : 4576.71, "provides" : 4576.71, "noting" : 4575.13, "disordered" : 4573.54, "menacing" : 4573.54, "heightened" : 4571.17, "finance" : 4570.38, "averse" : 4569.59, "azure" : 4568.80, "bathe" : 4568.80, "campaigns" : 4564.84, "lessen" : 4562.47, "slate" : 4562.47, "acquaint" : 4561.68, "gin" : 4559.30, "humiliating" : 4559.30, "cleft" : 4556.93, "conveyance" : 4556.93, "chivalrous" : 4554.56, "capricious" : 4553.77, "tribune" : 4553.77, "pilgrim" : 4552.97, "entreaty" : 4551.39, "womanly" : 4550.60, "paltry" : 4549.81, "sporting" : 4549.81, "maker" : 4549.02, "digestion" : 4545.85, "bart" : 4544.27, "infamy" : 4541.90, "lambs" : 4541.90, "gaping" : 4540.32, "periodical" : 4540.32, "standpoint" : 4540.32, "amorous" : 4539.53, "tub" : 4539.53, "luxuriant" : 4538.73, "basic" : 4536.36, "mutually" : 4535.57, "chris" : 4533.99, "greed" : 4532.40, "premature" : 4532.40, "extinction" : 4531.61, "boiler" : 4530.03, "intimation" : 4529.24, "scandalous" : 4527.66, "separating" : 4526.87, "oratory" : 4525.28, "banish" : 4524.49, "electrical" : 4524.49, "herb" : 4523.70, "multiply" : 4523.70, "prosper" : 4522.91, "friar" : 4522.12, "nightly" : 4520.54, "ole" : 4519.75, "monkeys" : 4518.16, "interminable" : 4516.58, "enjoys" : 4515.79, "similarity" : 4515.00, "riddle" : 4514.21, "cleaning" : 4512.63, "subscription" : 4511.84, "copious" : 4510.25, "exclaim" : 4509.46, "forged" : 4509.46, "voting" : 4509.46, "scourge" : 4508.67, "darkly" : 4507.09, "privacy" : 4506.30, "arena" : 4503.92, "bearded" : 4502.34, "vera" : 4499.97, "alacrity" : 4494.43, "sensual" : 4493.64, "spin" : 4493.64, "neutrality" : 4492.85, "flannel" : 4492.06, "fasting" : 4491.27, "trailer" : 4491.27, "avert" : 4489.68, "trustworthy" : 4489.68, "jamaica" : 4488.10, "unchanged" : 4485.73, "traveler" : 4484.15, "unfamiliar" : 4483.35, "puffed" : 4482.56, "mirrors" : 4480.98, "phoebe" : 4480.19, "father-in-law" : 4478.61, "conform" : 4477.03, "particle" : 4476.23, "railways" : 4476.23, "stupendous" : 4476.23, "paddle" : 4474.65, "innate" : 4473.86, "reformation" : 4473.07, "volley" : 4471.49, "statistics" : 4470.70, "agrees" : 4469.11, "simpler" : 4469.11, "padre" : 4468.32, "congratulations" : 4467.53, "lids" : 4466.74, "muse" : 4466.74, "inhabitant" : 4465.95, "ishmael" : 4465.16, "rustle" : 4465.16, "clump" : 4464.37, "calendar" : 4463.58, "flute" : 4463.58, "inaccessible" : 4461.99, "yore" : 4461.20, "jay" : 4459.62, "repulsive" : 4459.62, "fray" : 4458.04, "po" : 4456.46, "nomination" : 4454.08, "conclusive" : 4453.29, "peaceable" : 4453.29, "beth" : 4452.50, "inconceivable" : 4452.50, "e'en" : 4450.92, "emerald" : 4450.13, "lava" : 4450.13, "trillion" : 4448.54, "uppermost" : 4448.54, "arduous" : 4447.75, "lyric" : 4446.96, "downright" : 4446.17, "reproduction" : 4444.59, "foresight" : 4443.01, "consistency" : 4442.22, "ape" : 4441.42, "senators" : 4439.05, "pallor" : 4437.47, "span" : 4436.68, "salad" : 4431.93, "snuff" : 4431.93, "drooped" : 4431.14, "greetings" : 4431.14, "chestnut" : 4427.98, "inquisitive" : 4427.98, "vicar" : 4427.98, "noel" : 4426.39, "attic" : 4425.60, "savings" : 4425.60, "affirmative" : 4424.02, "ills" : 4422.44, "applications" : 4421.65, "t" : 4421.65, "dye" : 4420.06, "gloucester" : 4420.06, "nominal" : 4417.69, "demonstrate" : 4414.53, "dispense" : 4414.53, "dissatisfaction" : 4414.53, "merciless" : 4414.53, "trusty" : 4414.53, "coloring" : 4412.15, "perusal" : 4412.15, "plaintive" : 4412.15, "discarded" : 4410.57, "precarious" : 4408.20, "infection" : 4406.61, "ruinous" : 4405.03, "bolts" : 4404.24, "arithmetic" : 4402.66, "considerate" : 4402.66, "lark" : 4401.87, "ethics" : 4401.08, "conventions" : 4400.29, "stumbling" : 4400.29, "pitcher" : 4399.49, "slips" : 4399.49, "seine" : 4398.70, "officially" : 4396.33, "danube" : 4395.54, "annoy" : 4393.96, "glide" : 4392.37, "impunity" : 4390.79, "amends" : 4390.00, "sol" : 4389.21, "conveying" : 4386.05, "abandonment" : 4385.25, "mane" : 4384.46, "tinge" : 4384.46, "brim" : 4382.09, "forenoon" : 4380.51, "seventy-five" : 4380.51, "sparkle" : 4380.51, "syllables" : 4380.51, "shrug" : 4377.34, "enchantment" : 4375.76, "franz" : 4375.76, "trait" : 4375.76, "bribe" : 4374.97, "composer" : 4373.39, "preparatory" : 4373.39, "audacious" : 4372.60, "outskirts" : 4372.60, "soiled" : 4372.60, "fiddle" : 4371.01, "football" : 4370.22, "isaiah" : 4370.22, "partnership" : 4370.22, "continuation" : 4368.64, "pioneer" : 4368.64, "vest" : 4367.85, "bass" : 4367.06, "derby" : 4367.06, "quarry" : 4367.06, "rigging" : 4367.06, "dizzy" : 4366.27, "abnormal" : 4365.48, "omission" : 4364.68, "idolatry" : 4363.89, "sequence" : 4363.89, "squeeze" : 4362.31, "cabbage" : 4360.73, "canopy" : 4360.73, "athletic" : 4359.94, "shirley" : 4359.94, "drunkenness" : 4359.15, "intrusion" : 4358.36, "'cause" : 4355.98, "assign" : 4355.19, "tackle" : 4354.40, "dreamt" : 4353.61, "sceptre" : 4352.82, "exacting" : 4352.03, "parched" : 4349.65, "eddy" : 4347.28, "percentage" : 4346.49, "twinkle" : 4342.53, "curb" : 4340.95, "sandstone" : 4340.16, "invaluable" : 4337.79, "fathom" : 4336.20, "preferable" : 4336.20, "adelaide" : 4334.62, "advertising" : 4332.25, "scraps" : 4330.67, "lever" : 4329.08, "muster" : 4328.29, "cavity" : 4324.34, "barbarian" : 4322.75, "sleepless" : 4322.75, "fried" : 4320.38, "abstraction" : 4319.59, "forefinger" : 4319.59, "spade" : 4319.59, "erection" : 4318.80, "scorned" : 4318.80, "pail" : 4317.22, "withdrawal" : 4317.22, "senator" : 4315.63, "mortgage" : 4314.84, "ancestral" : 4311.68, "succour" : 4310.89, "ma" : 4309.31, "forbearance" : 4308.51, "repress" : 4308.51, "spouse" : 4305.35, "valid" : 4304.56, "witchcraft" : 4303.77, "workmanship" : 4302.98, "legacy" : 4300.60, "proximity" : 4300.60, "bombay" : 4299.81, "paula" : 4299.81, "incorporated" : 4298.23, "muzzle" : 4297.44, "reuben" : 4296.65, "clusters" : 4293.48, "valve" : 4291.11, "compelling" : 4290.32, "dissipated" : 4289.53, "flickering" : 4287.15, "guinea" : 4286.36, "sup" : 4286.36, "tarry" : 4286.36, "derision" : 4285.57, "vehicles" : 4283.20, "accommodate" : 4282.41, "glossy" : 4282.41, "iris" : 4278.45, "relic" : 4277.66, "ant" : 4276.08, "heath" : 4269.75, "bug" : 4266.58, "vocal" : 4265.00, "downfall" : 4262.63, "construct" : 4261.05, "undue" : 4261.05, "vapor" : 4261.05, "bat" : 4259.46, "whimsical" : 4259.46, "contradictory" : 4255.51, "unlocked" : 4255.51, "foretold" : 4250.76, "automatic" : 4249.97, "explicit" : 4249.18, "indolent" : 4248.39, "mates" : 4247.60, "artful" : 4243.64, "downcast" : 4242.85, "well-being" : 4241.27, "winston" : 4241.27, "ordinances" : 4240.48, "catharine" : 4239.69, "effectively" : 4239.69, "missions" : 4239.69, "stalk" : 4239.69, "indistinct" : 4238.89, "pregnant" : 4236.52, "reddish" : 4236.52, "coveted" : 4235.73, "fret" : 4234.94, "peeping" : 4234.15, "buck" : 4233.36, "sumptuous" : 4232.56, "indefinitely" : 4231.77, "reliance" : 4230.98, "panama" : 4230.19, "cocked" : 4229.40, "dad" : 4226.24, "everyday" : 4224.65, "intoxication" : 4221.49, "aghast" : 4219.12, "subterranean" : 4218.32, "turmoil" : 4218.32, "forfeit" : 4215.16, "chasm" : 4214.37, "inspect" : 4212.79, "perverse" : 4212.79, "precipitate" : 4212.79, "dover" : 4212.00, "ambush" : 4210.41, "evermore" : 4210.41, "mass." : 4210.41, "blot" : 4209.62, "nook" : 4209.62, "verdure" : 4209.62, "parapet" : 4208.83, "jake" : 4208.04, "cessation" : 4207.25, "ankle" : 4206.46, "classification" : 4206.46, "fervently" : 4206.46, "oddly" : 4205.67, "haul" : 4204.08, "saxony" : 4203.29, "embarrassing" : 4202.50, "hairy" : 4200.92, "northwest" : 4200.92, "disabled" : 4199.34, "laurel" : 4199.34, "preston" : 4198.55, "arrogant" : 4196.96, "hurts" : 4196.96, "demonstrations" : 4195.38, "splash" : 4195.38, "curl" : 4194.59, "livelihood" : 4193.80, "wary" : 4193.80, "scattering" : 4193.01, "brace" : 4192.22, "converts" : 4190.63, "detestable" : 4190.63, "143" : 4189.05, "abandoning" : 4189.05, "somerset" : 4189.05, "weakly" : 4189.05, "clothe" : 4188.26, "gem" : 4187.47, "tremor" : 4185.89, "surveying" : 4184.31, "variable" : 4183.51, "anniversary" : 4175.60, "thirty-two" : 4174.81, "wrap" : 4174.02, "curly" : 4171.65, "diversity" : 4170.86, "prestige" : 4170.86, "desertion" : 4170.07, "freezing" : 4170.07, "heedless" : 4170.07, "sentry" : 4170.07, "believer" : 4169.27, "ram" : 4169.27, "rowing" : 4169.27, "negligence" : 4168.48, "self-" : 4168.48, "sulphur" : 4167.69, "discrimination" : 4166.90, "cooling" : 4162.95, "millionaire" : 4162.95, "flowering" : 4161.36, "meridian" : 4161.36, "wins" : 4161.36, "awed" : 4159.78, "beastly" : 4159.78, "nuisance" : 4158.99, "abstain" : 4158.20, "continental" : 4158.20, "stanza" : 4157.41, "target" : 4156.62, "unwonted" : 4156.62, "whit" : 4155.82, "jason" : 4153.45, "stall" : 4152.66, "sham" : 4151.87, "dictate" : 4151.08, "empress" : 4151.08, "gout" : 4151.08, "jobs" : 4151.08, "manure" : 4151.08, "nigel" : 4151.08, "sidewalk" : 4150.29, "sate" : 4148.70, "grievance" : 4147.91, "axes" : 4147.12, "bony" : 4146.33, "invest" : 4146.33, "birmingham" : 4143.96, "ebb" : 4143.96, "rabble" : 4140.79, "restlessness" : 4140.00, "cruise" : 4137.63, "rally" : 4136.84, "rumor" : 4135.26, "hysterical" : 4132.88, "girlish" : 4130.51, "actively" : 4129.72, "shortest" : 4129.72, "marseilles" : 4128.93, "cheque" : 4128.14, "disregarded" : 4127.34, "retort" : 4127.34, "rocking" : 4127.34, "emerge" : 4125.76, "perch" : 4124.18, "flask" : 4123.39, "ka" : 4123.39, "countryman" : 4121.81, "lonesome" : 4121.81, "manned" : 4121.01, "unarmed" : 4121.01, "wast" : 4121.01, "frog" : 4119.43, "twenty-eight" : 4119.43, "unscrupulous" : 4119.43, "yarn" : 4119.43, "victuals" : 4118.64, "outrageous" : 4117.85, "appropriation" : 4114.69, "foolishness" : 4114.69, "quickness" : 4114.69, "adversity" : 4113.89, "parma" : 4112.31, "diseased" : 4111.52, "iliad" : 4109.94, "salutary" : 4109.94, "smelt" : 4108.36, "territorial" : 4108.36, "hurricane" : 4107.57, "irons" : 4106.77, "canyon" : 4105.98, "jeremiah" : 4105.98, "brooklyn" : 4105.19, "indulging" : 4105.19, "vapour" : 4104.40, "disobedience" : 4103.61, "atrocious" : 4102.82, "leaps" : 4102.03, "tapestry" : 4099.65, "provocation" : 4098.86, "twenty-six" : 4098.86, "impotent" : 4098.07, "smite" : 4093.33, "acquitted" : 4090.95, "os" : 4090.16, "tumultuous" : 4090.16, "barge" : 4089.37, "palpable" : 4087.79, "apprentice" : 4087.00, "lances" : 4086.21, "compartment" : 4085.41, "godly" : 4085.41, "sarcastic" : 4085.41, "therefrom" : 4085.41, "specifically" : 4084.62, "uniformity" : 4083.83, "emerging" : 4083.04, "atonement" : 4082.25, "whereabouts" : 4082.25, "davy" : 4081.46, "framework" : 4081.46, "sponge" : 4081.46, "mountainous" : 4080.67, "annoying" : 4079.08, "cot" : 4079.08, "squirrel" : 4079.08, "wand" : 4076.71, "grind" : 4075.92, "bang" : 4075.13, "unreal" : 4075.13, "blacksmith" : 4074.34, "injunction" : 4072.76, "scarcity" : 4071.96, "withhold" : 4071.96, "outright" : 4070.38, "bavaria" : 4069.59, "cement" : 4068.80, "growl" : 4067.22, "aggregate" : 4066.43, "fraction" : 4066.43, "exaltation" : 4064.05, "inexorable" : 4063.26, "jug" : 4063.26, "purer" : 4063.26, "sap" : 4063.26, "illegal" : 4062.47, "sister-in-law" : 4061.68, "presses" : 4060.89, "stealthily" : 4060.89, "dissolve" : 4060.10, "volcano" : 4059.31, "hungarian" : 4057.72, "equilibrium" : 4056.93, "obstinately" : 4056.14, "sullenly" : 4056.14, "assassination" : 4055.35, "commissions" : 4054.56, "respectability" : 4052.98, "bases" : 4051.40, "maxwell" : 4050.60, "resounded" : 4050.60, "closest" : 4049.81, "embroidery" : 4049.02, "gunpowder" : 4049.02, "reproof" : 4049.02, "yale" : 4045.07, "combining" : 4043.48, "weaving" : 4041.90, "earnings" : 4041.11, "hamburg" : 4039.53, "indoors" : 4039.53, "manufacturers" : 4039.53, "pitiless" : 4039.53, "scarf" : 4039.53, "picnic" : 4037.95, "misled" : 4035.57, "pompous" : 4035.57, "brian" : 4034.78, "respite" : 4033.99, "exploit" : 4033.20, "tracing" : 4033.20, "geological" : 4031.62, "passport" : 4031.62, "confines" : 4030.83, "dishonour" : 4029.24, "executioner" : 4029.24, "township" : 4029.24, "vacancy" : 4029.24, "acquiescence" : 4026.87, "cornwall" : 4026.87, "crumbling" : 4026.08, "three-quarters" : 4025.29, "exploration" : 4022.91, "needy" : 4021.33, "stationary" : 4021.33, "disconcerted" : 4020.54, "wanderer" : 4019.75, "beaver" : 4018.17, "lookout" : 4015.79, "onion" : 4015.79, "depicted" : 4015.00, "boisterous" : 4014.21, "couples" : 4013.42, "speakers" : 4013.42, "woollen" : 4012.63, "lightness" : 4011.05, "bitten" : 4007.88, "aux" : 4007.09, "toleration" : 4005.51, "lucia" : 4004.72, "scar" : 4004.72, "bohemian" : 4002.34, "vested" : 4002.34, "affinity" : 4001.55, "carlo" : 4001.55, "sous" : 4001.55, "penitent" : 4000.76, "simpson" : 4000.76, "abiding" : 3997.60, "ca" : 3996.02, "immoral" : 3996.02, "dishonest" : 3995.22, "yawning" : 3994.43, "mustache" : 3992.85, "supplement" : 3992.85, "whirlwind" : 3992.85, "clash" : 3991.27, "terence" : 3990.48, "lamentable" : 3989.69, "bennett" : 3988.90, "farthing" : 3987.31, "speck" : 3987.31, "biscuit" : 3986.52, "appellation" : 3985.73, "gdp" : 3984.94, "reserves" : 3983.36, "uncouth" : 3982.57, "birch" : 3980.98, "armchair" : 3980.19, "judy" : 3980.19, "greasy" : 3978.61, "leaden" : 3978.61, "dough" : 3977.03, "lining" : 3976.24, "cleverness" : 3971.49, "ascetic" : 3969.91, "clutch" : 3969.12, "krishna" : 3969.12, "embark" : 3968.33, "quotations" : 3968.33, "friendliness" : 3967.53, "liberally" : 3967.53, "trance" : 3965.16, "untrue" : 3965.16, "rejection" : 3964.37, "grating" : 3962.79, "hanover" : 3961.21, "inexperienced" : 3961.21, "mon" : 3960.41, "wintry" : 3960.41, "stalwart" : 3958.83, "meats" : 3958.04, "stamping" : 3956.46, "variance" : 3956.46, "apiece" : 3954.88, "firmament" : 3954.88, "absorption" : 3953.29, "apprehensive" : 3953.29, "terminate" : 3953.29, "wilful" : 3952.50, "conveniently" : 3951.71, "cleanliness" : 3950.92, "collective" : 3950.92, "angela" : 3950.13, "filth" : 3950.13, "philippines" : 3950.13, "timely" : 3950.13, "herein" : 3948.55, "ignoble" : 3948.55, "canton" : 3946.17, "lamentations" : 3944.59, "moslem" : 3944.59, "ware" : 3943.80, "adjective" : 3943.01, "glen" : 3943.01, "invade" : 3943.01, "livid" : 3943.01, "buggy" : 3941.43, "prolong" : 3940.64, "weaken" : 3937.47, "folio" : 3935.10, "dismissal" : 3934.31, "quay" : 3934.31, "enchanting" : 3933.52, "heave" : 3931.93, "purified" : 3931.14, "syrian" : 3931.14, "significantly" : 3929.56, "experimental" : 3927.98, "film" : 3926.40, "repressed" : 3926.40, "cooperation" : 3924.81, "sequel" : 3924.02, "wench" : 3924.02, "calves" : 3923.23 } def get_frequency(word): "Return the word frequency, or 0 if not found" return frequencies.get(word, 0.0)
#!/usr/bin/env python import sys import re import frequency max_occurrences = 1000 filter_re = sys.argv[1:] if len(sys.argv) > 1 else ['.*'] files = [ # "macros.tex", "front.tex", "preface.tex", "introduction.tex", "preliminaries.tex", "basics.tex", "logic.tex", "equivalences.tex", "induction.tex", "hits.tex", "hlevels.tex", "homotopy.tex", "categories.tex", "setmath.tex", "reals.tex", "formal.tex" ] words = {} macros = set({}) antimacros = set({}) antifiles = ['symbols.tex', 'macros.tex', 'opt-letter.tex', 'opt-ustrade.tex', 'opt-color.tex', 'hott-ustrade.tex', 'hott-letter.tex', 'hott-online.tex'] def matchtospaces(m): return ' ' * len(m.group(0)) for fn in files: with open(fn, "r") as f: text = f.read() # Remove environment names #text = re.sub(r'\\(begin|end){[^}]+}', ' ', text) # Remove all labels and refs #text = re.sub(r'(\\(label|cref|autoref|eqref|ref){[^}]+})', ' ', text) # Remove hyphenation hints #text = re.sub(r'\\-', '', text) # Remove quotes #text = re.sub(r"['`]", ' ', text) # Replace --- with space text = re.sub(r'---', ' ', text) # Replace punctuations with space #text = re.sub(r'[,.;:?!]', ' ', text) # Replace newlines with spaces #text = re.sub(r'\n', ' ', text) # Find macros for m in re.findall(r"\\[a-zA-Z]+\b", text): if fn in antifiles: antimacros.add(m) else: macros.add(m) # Delete macros #text = re.sub(r'\\[a-zA-Z]+\b', ' ', text) # Delete cross-references, labels, citations, urls, math terms, urls, environments, index entries text = re.sub(r'\\(autoref|cref|cite|label|ref|eqref|mathsf|href|url|begin|end|index|indexdef|indexfoot|indexsee){[0-9a-zA-Z-_:,!@$* \\]*}', matchtospaces, text) # Find words, try to include things like "$(n-2)$-connected" for m in re.finditer(r"(?<=(.{20}))[^\\]\b(\$[^$]*\$-)?([a-zA-Z]([a-zA-Z-']|\\-)*[a-zA-Z-])\b(?=(.{20}))", text, re.DOTALL): key = str(m.group(3)).lower() key = re.sub(r'\\-', '', key) # remove hyphenation hints pos = m.start(3) excerpt = str(m.group(1) + m.group(0) + m.group(5)) excerpt = re.sub(r'\n', ' ', excerpt) # replace newlines with spaces if key in words: words[key].append((excerpt, fn, pos)) else: words[key] = [(excerpt, fn, pos)] # Macros which appear somewhere but are not in the symbols index, macros.tex, # or configuration files. macros -= antimacros # Uncomment to see the macros. #for macro in sorted(macros - antimacros): # print (macro) def sortkey(word): return (frequency.get_frequency(word), word) def filter_word(w, fs): for r in fs: if re.search(r, w, flags = re.IGNORECASE): return True return False for key in sorted(words.keys(), key = sortkey): if filter_word(key, filter_re): freq = frequency.get_frequency(key) if freq > 1100000: continue print("\n\n======== %s [%d]\n\n" % (key, freq)) for (excerpt, fn, pos) in words[key][:max_occurrences]: print (" ...%s... [%s @ %d]" % (excerpt, fn, pos)) if len(words[key]) > max_occurrences: print ("\n [[%d omitted occurrences]]" % (len(words[key]) - max_occurrences))
#!/usr/bin/env python # This script generates symbol images from which the # torus picture is then assembled. import subprocess import os import os.path symbols = [ r"$$\sum$$", r"$$\prod$$", r"$$\lambda$$", r"$$\times$$", r"$$\simeq$$" ] ncols = 1 colors = [("gray", str(float(i)/ncols)) for i in range(0, ncols+1)] ## Generate LaTeX template = r""" \documentclass{article} \usepackage{palatino} \usepackage{amsmath,amssymb,amsfonts} \usepackage{xcolor} \pagestyle{empty} \begin{document} %s \end{document}""" tex = "" for (i, s) in enumerate(symbols): for (j, (m,c)) in enumerate(colors): tex = tex + (r"\definecolor{mycolor}{%s}{%s}\textcolor{mycolor}{%s}\newpage" % (m, c, s)) + "\n" # Write LaTeX to file with open("temp.tex", "w") as f: f.write(template % tex) # Process LaTeX and generate png files subprocess.call(["latex", "temp.tex"]) subprocess.call(["dvipng", "-D", "1200", "-o", "preimg/image_%02d.png", "-T", "tight", "temp.dvi"]) # Convert png files to jpg filelist = [f for f in os.listdir('preimg') if f.endswith(".png")] for f in filelist: fin = os.path.join("preimg", f) fout = os.path.join("srcimg", os.path.splitext(f)[0] + ".jpg") subprocess.call(["convert", "-bordercolor", "white", "-border", "20x20", "-quality", "100", fin, fout]) # Remove auxiliary files for f in filelist: os.remove(os.path.join("preimg", f)) for f in [f for f in os.listdir('.') if f.startswith("temp.")]: os.remove(f)
#!/usr/bin/python try: from setuptools import setup, find_packages except ImportError: from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages setup( name='BlueChips', version='1.0.0', description='BlueChips - finances for people with shared expenses', long_description=open('README.rst').read(), author='Residents of Blue Sun Corporate Headquarters', author_email='[email protected]', url='http://github.com/ebroder/bluechips', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Framework :: Pylons', 'License :: OSI Approved :: GNU General Public License (GPL)', 'Natural Language :: English', 'Topic :: Home Automation', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Application', 'Topic :: Office/Business :: Financial :: Accounting', ], install_requires=["Pylons>=0.9.6", "WebHelpers==0.6.4", "SQLAlchemy>=0.5", "AuthKit>=0.4.0", "FormEncode>=1.2.1", "mailer>=0.5"], setup_requires=["PasteScript==dev,>=1.6.3dev-r7326"], packages=find_packages(exclude=['ez_setup']), include_package_data=True, test_suite='nose.collector', zip_safe=False, paster_plugins=['PasteScript', 'Pylons'], entry_points=""" [paste.app_factory] main = bluechips.config.middleware:make_app [paste.app_install] main = pylons.util:PylonsInstaller """, )
#!python """Bootstrap setuptools installation If you want to use setuptools in your package's setup.py, just include this file in the same directory with it, and add this to the top of your setup.py:: from ez_setup import use_setuptools use_setuptools() If you want to require a specific version of setuptools, set a download mirror, or use an alternate download directory, you can do so by supplying the appropriate options to ``use_setuptools()``. This file can also be run as a script to install or upgrade setuptools. """ import sys DEFAULT_VERSION = "0.6c8" DEFAULT_URL = "http://pypi.python.org/packages/%s/s/setuptools/" % sys.version[:3] md5_data = { 'setuptools-0.6b1-py2.3.egg': '8822caf901250d848b996b7f25c6e6ca', 'setuptools-0.6b1-py2.4.egg': 'b79a8a403e4502fbb85ee3f1941735cb', 'setuptools-0.6b2-py2.3.egg': '5657759d8a6d8fc44070a9d07272d99b', 'setuptools-0.6b2-py2.4.egg': '4996a8d169d2be661fa32a6e52e4f82a', 'setuptools-0.6b3-py2.3.egg': 'bb31c0fc7399a63579975cad9f5a0618', 'setuptools-0.6b3-py2.4.egg': '38a8c6b3d6ecd22247f179f7da669fac', 'setuptools-0.6b4-py2.3.egg': '62045a24ed4e1ebc77fe039aa4e6f7e5', 'setuptools-0.6b4-py2.4.egg': '4cb2a185d228dacffb2d17f103b3b1c4', 'setuptools-0.6c1-py2.3.egg': 'b3f2b5539d65cb7f74ad79127f1a908c', 'setuptools-0.6c1-py2.4.egg': 'b45adeda0667d2d2ffe14009364f2a4b', 'setuptools-0.6c2-py2.3.egg': 'f0064bf6aa2b7d0f3ba0b43f20817c27', 'setuptools-0.6c2-py2.4.egg': '616192eec35f47e8ea16cd6a122b7277', 'setuptools-0.6c3-py2.3.egg': 'f181fa125dfe85a259c9cd6f1d7b78fa', 'setuptools-0.6c3-py2.4.egg': 'e0ed74682c998bfb73bf803a50e7b71e', 'setuptools-0.6c3-py2.5.egg': 'abef16fdd61955514841c7c6bd98965e', 'setuptools-0.6c4-py2.3.egg': 'b0b9131acab32022bfac7f44c5d7971f', 'setuptools-0.6c4-py2.4.egg': '2a1f9656d4fbf3c97bf946c0a124e6e2', 'setuptools-0.6c4-py2.5.egg': '8f5a052e32cdb9c72bcf4b5526f28afc', 'setuptools-0.6c5-py2.3.egg': 'ee9fd80965da04f2f3e6b3576e9d8167', 'setuptools-0.6c5-py2.4.egg': 'afe2adf1c01701ee841761f5bcd8aa64', 'setuptools-0.6c5-py2.5.egg': 'a8d3f61494ccaa8714dfed37bccd3d5d', 'setuptools-0.6c6-py2.3.egg': '35686b78116a668847237b69d549ec20', 'setuptools-0.6c6-py2.4.egg': '3c56af57be3225019260a644430065ab', 'setuptools-0.6c6-py2.5.egg': 'b2f8a7520709a5b34f80946de5f02f53', 'setuptools-0.6c7-py2.3.egg': '209fdf9adc3a615e5115b725658e13e2', 'setuptools-0.6c7-py2.4.egg': '5a8f954807d46a0fb67cf1f26c55a82e', 'setuptools-0.6c7-py2.5.egg': '45d2ad28f9750e7434111fde831e8372', 'setuptools-0.6c8-py2.3.egg': '50759d29b349db8cfd807ba8303f1902', 'setuptools-0.6c8-py2.4.egg': 'cba38d74f7d483c06e9daa6070cce6de', 'setuptools-0.6c8-py2.5.egg': '1721747ee329dc150590a58b3e1ac95b', } import sys, os def _validate_md5(egg_name, data): if egg_name in md5_data: from md5 import md5 digest = md5(data).hexdigest() if digest != md5_data[egg_name]: print >>sys.stderr, ( "md5 validation of %s failed! (Possible download problem?)" % egg_name ) sys.exit(2) return data def use_setuptools( version=DEFAULT_VERSION, download_base=DEFAULT_URL, to_dir=os.curdir, download_delay=15 ): """Automatically find/download setuptools and make it available on sys.path `version` should be a valid setuptools version number that is available as an egg for download under the `download_base` URL (which should end with a '/'). `to_dir` is the directory where setuptools will be downloaded, if it is not already available. If `download_delay` is specified, it should be the number of seconds that will be paused before initiating a download, should one be required. If an older version of setuptools is installed, this routine will print a message to ``sys.stderr`` and raise SystemExit in an attempt to abort the calling script. """ was_imported = 'pkg_resources' in sys.modules or 'setuptools' in sys.modules def do_download(): egg = download_setuptools(version, download_base, to_dir, download_delay) sys.path.insert(0, egg) import setuptools; setuptools.bootstrap_install_from = egg try: import pkg_resources except ImportError: return do_download() try: pkg_resources.require("setuptools>="+version); return except pkg_resources.VersionConflict, e: if was_imported: print >>sys.stderr, ( "The required version of setuptools (>=%s) is not available, and\n" "can't be installed while this script is running. Please install\n" " a more recent version first, using 'easy_install -U setuptools'." "\n\n(Currently using %r)" ) % (version, e.args[0]) sys.exit(2) else: del pkg_resources, sys.modules['pkg_resources'] # reload ok return do_download() except pkg_resources.DistributionNotFound: return do_download() def download_setuptools( version=DEFAULT_VERSION, download_base=DEFAULT_URL, to_dir=os.curdir, delay = 15 ): """Download setuptools from a specified location and return its filename `version` should be a valid setuptools version number that is available as an egg for download under the `download_base` URL (which should end with a '/'). `to_dir` is the directory where the egg will be downloaded. `delay` is the number of seconds to pause before an actual download attempt. """ import urllib2, shutil egg_name = "setuptools-%s-py%s.egg" % (version,sys.version[:3]) url = download_base + egg_name saveto = os.path.join(to_dir, egg_name) src = dst = None if not os.path.exists(saveto): # Avoid repeated downloads try: from distutils import log if delay: log.warn(""" --------------------------------------------------------------------------- This script requires setuptools version %s to run (even to display help). I will attempt to download it for you (from %s), but you may need to enable firewall access for this script first. I will start the download in %d seconds. (Note: if this machine does not have network access, please obtain the file %s and place it in this directory before rerunning this script.) ---------------------------------------------------------------------------""", version, download_base, delay, url ); from time import sleep; sleep(delay) log.warn("Downloading %s", url) src = urllib2.urlopen(url) # Read/write all in one block, so we don't create a corrupt file # if the download is interrupted. data = _validate_md5(egg_name, src.read()) dst = open(saveto,"wb"); dst.write(data) finally: if src: src.close() if dst: dst.close() return os.path.realpath(saveto) def main(argv, version=DEFAULT_VERSION): """Install or upgrade setuptools and EasyInstall""" try: import setuptools except ImportError: egg = None try: egg = download_setuptools(version, delay=0) sys.path.insert(0,egg) from setuptools.command.easy_install import main return main(list(argv)+[egg]) # we're done here finally: if egg and os.path.exists(egg): os.unlink(egg) else: if setuptools.__version__ == '0.0.1': print >>sys.stderr, ( "You have an obsolete version of setuptools installed. Please\n" "remove it from your system entirely before rerunning this script." ) sys.exit(2) req = "setuptools>="+version import pkg_resources try: pkg_resources.require(req) except pkg_resources.VersionConflict: try: from setuptools.command.easy_install import main except ImportError: from easy_install import main main(list(argv)+[download_setuptools(delay=0)]) sys.exit(0) # try to force an exit else: if argv: from setuptools.command.easy_install import main main(argv) else: print "Setuptools version",version,"or greater has been installed." print '(Run "ez_setup.py -U setuptools" to reinstall or upgrade.)' def update_md5(filenames): """Update our built-in md5 registry""" import re from md5 import md5 for name in filenames: base = os.path.basename(name) f = open(name,'rb') md5_data[base] = md5(f.read()).hexdigest() f.close() data = [" %r: %r,\n" % it for it in md5_data.items()] data.sort() repl = "".join(data) import inspect srcfile = inspect.getsourcefile(sys.modules[__name__]) f = open(srcfile, 'rb'); src = f.read(); f.close() match = re.search("\nmd5_data = {\n([^}]+)}", src) if not match: print >>sys.stderr, "Internal error!" sys.exit(2) src = src[:match.start(1)] + repl + src[match.end(1):] f = open(srcfile,'w') f.write(src) f.close() if __name__=='__main__': if len(sys.argv)>2 and sys.argv[1]=='--md5update': update_md5(sys.argv[2:]) else: main(sys.argv[1:])
"""Setup the BlueChips application""" import logging from bluechips.config.environment import load_environment log = logging.getLogger(__name__) def setup_app(command, conf, vars): """Place any commands to setup bluechips here""" load_environment(conf.global_conf, conf.local_conf) # Load the models from bluechips.model import meta meta.metadata.bind = meta.engine # Create the tables if they aren't there already meta.metadata.create_all(checkfirst=True)
"""Routes configuration The more specific and detailed routes should be defined first so they may take precedent over the more generic routes. For more information refer to the routes manual at http://routes.groovie.org/docs/ """ from pylons import config from routes import Mapper def make_map(): """Create, configure and return the routes Mapper""" map = Mapper(directory=config['pylons.paths']['controllers'], always_scan=config['debug']) map.minimization = False # The ErrorController route (handles 404/500 error pages); it should # likely stay at the top, ensuring it can always be resolved map.connect('error/:action/:id', controller='error') # CUSTOM ROUTES HERE map.connect('/', controller='status', action='index') map.connect('/:controller', action='index') map.connect('/:controller/:action') map.connect('/:controller/:action/:id') return map
"""Pylons environment configuration""" import os from mako.lookup import TemplateLookup from pylons import config from sqlalchemy import engine_from_config from mailer import Mailer import bluechips.lib.app_globals as app_globals import bluechips.lib.helpers from bluechips.config.routing import make_map from bluechips.model import init_model def load_environment(global_conf, app_conf): """Configure the Pylons environment via the ``pylons.config`` object """ # Pylons paths root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) paths = dict(root=root, controllers=os.path.join(root, 'controllers'), static_files=os.path.join(root, 'public'), templates=[os.path.join(root, 'templates')]) # Initialize config with the basic options config.init_app(global_conf, app_conf, package='bluechips', paths=paths) config['routes.map'] = make_map() config['pylons.app_globals'] = app_globals.Globals() config['pylons.h'] = bluechips.lib.helpers # Create the Mako TemplateLookup, with the default auto-escaping config['pylons.app_globals'].mako_lookup = TemplateLookup( directories=paths['templates'], module_directory=os.path.join(app_conf['cache_dir'], 'templates'), input_encoding='utf-8', output_encoding='utf-8', imports=['from webhelpers.html import escape'], default_filters=['escape']) # Setup SQLAlchemy database engine engine = engine_from_config(config, 'sqlalchemy.') init_model(engine) # CONFIGURATION OPTIONS HERE (note: all config options will override # any Pylons config options) config['pylons.app_globals'].mailer = Mailer(config.get('mailer.host', '127.0.0.1'))
"""Pylons middleware initialization""" from beaker.middleware import CacheMiddleware, SessionMiddleware from paste.cascade import Cascade from paste.registry import RegistryManager from paste.urlparser import StaticURLParser from paste.auth.basic import AuthBasicHandler from paste.deploy.converters import asbool from pylons import config from pylons.middleware import ErrorHandler, StatusCodeRedirect from pylons.wsgiapp import PylonsApp from routes.middleware import RoutesMiddleware import authkit.authorize from bluechips.config.environment import load_environment from bluechips.lib.permissions import (BlueChipUser, DummyAuthenticate, authenticate) def make_app(global_conf, full_stack=True, **app_conf): """Create a Pylons WSGI application and return it ``global_conf`` The inherited configuration for this application. Normally from the [DEFAULT] section of the Paste ini file. ``full_stack`` Whether or not this application provides a full WSGI stack (by default, meaning it handles its own exceptions and errors). Disable full_stack when this application is "managed" by another WSGI middleware. ``app_conf`` The application's local configuration. Normally specified in the [app:<name>] section of the Paste ini file (where <name> defaults to main). """ # Configure the Pylons environment load_environment(global_conf, app_conf) # The Pylons WSGI app app = PylonsApp() # CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares) app = authkit.authorize.middleware(app, BlueChipUser()) # Routing/Session/Cache Middleware app = RoutesMiddleware(app, config['routes.map']) app = SessionMiddleware(app, config) app = CacheMiddleware(app, config) if asbool(full_stack): # Handle Python exceptions app = ErrorHandler(app, global_conf, **config['pylons.errorware']) # Display error documents for 401, 403, 404 status codes (and # 500 when debug is disabled) status_codes = [400, 401, 403, 404] if not asbool(config.get('debug')): status_codes.append(500) app = StatusCodeRedirect(app, status_codes) # Establish the Registry for this application app = RegistryManager(app) # Static files (If running in production, and Apache or another web # server is handling this static content, remove the following 3 lines) static_app = StaticURLParser(config['pylons.paths']['static_files']) app = Cascade([static_app, app]) app = AuthBasicHandler(app, 'BlueChips', authenticate) app = DummyAuthenticate(app, app_conf) return app
"""Pylons application test package This package assumes the Pylons environment is already loaded, such as when this script is imported from the `nosetests --with-pylons=test.ini` command. This module initializes the application via ``websetup`` (`paster setup-app`) and provides the base testing objects. """ from unittest import TestCase from paste.deploy import loadapp from paste.fixture import TestApp from paste.script.appinstall import SetupCommand from pylons import config from routes import url_for import bluechips.model from bluechips.model import meta from bluechips.model.types import Currency import random __all__ = ['url_for', 'TestController', 'createUsers', 'createExpenditures', 'deleteUsers', 'deleteExpenditures'] sample_users = [u'Alice', u'Bob', u'Charlie', u'Dave', u'Eve'] def setUpPackage(): # Invoke websetup with the current config file SetupCommand('setup-app').run([config['__file__']]) u1 = bluechips.model.User(u'root', u'Charlie Root', True) u1.email = u'[email protected]' u1.password = u'charliepass' u2 = bluechips.model.User(u'ben', u'Ben Bitdiddle', True) u3 = bluechips.model.User(u'gotta', u'Gotta Lisp', True) u4 = bluechips.model.User(u'rich', u'Rich Scheme', True) for u in (u1, u2, u3, u4): meta.Session.add(u) meta.Session.commit() def tearDownPackage(): meta.metadata.drop_all() class TestController(TestCase): def __init__(self, *args, **kwargs): wsgiapp = loadapp('config:%s' % config['__file__']) self.app = TestApp(wsgiapp) TestCase.__init__(self, *args, **kwargs) def createUsers(n=None): if n is None: n = random.randint(2, 5) for i in xrange(n): u = bluechips.model.User(sample_users[i].lower(), resident=True) meta.Session.add(u) meta.Session.commit() def createExpenditures(n=None): if n is None: n = random.randint(5, 20) users = meta.Session.query(bluechips.model.User).all() for i in xrange(n): e = bluechips.model.Expenditure(random.choice(users), Currency(random.randint(1000, 100000))) meta.Session.add(e) e.even_split() meta.Session.commit() def deleteUsers(): map(meta.Session.delete, meta.Session.query(bluechips.model.User)) def deleteExpenditures(): map(meta.Session.delete, meta.Session.query(bluechips.model.Expenditure))
from unittest import TestCase from bluechips import model from bluechips.model.types import Currency class TestSplit(TestCase): def setUp(self): self.u = model.User('chaz', u'Charles Root', False) self.e = model.Expenditure(self.u, Currency('12.34'), u'A test expenditure') self.sp = model.Split(self.e, self.u, Currency('5.55')) def test_constructor(self): assert self.sp.expenditure == self.e assert self.sp.user == self.u assert self.sp.share == Currency('5.55') def test_repr(self): assert (repr(self.sp) == '<Split: expense: %s user: %s share: %s>' % (self.sp.expenditure, self.sp.user, self.sp.share))
from unittest import TestCase from bluechips import model class TestUser(TestCase): def setUp(self): self.u = model.User('chaz', u'Charles Root', False) def test_constructor(self): assert self.u.username == 'chaz' assert self.u.name == u'Charles Root' assert self.u.resident == False def test_repr(self): assert repr(self.u) == '<User: chaz>' def test_str(self): assert str(self.u) == 'Charles Root'
from unittest import TestCase from bluechips.model import types class TestCurrency(TestCase): def setUp(self): self.c = types.Currency('12.34') def test_currency_float(self): assert float(self.c) == 1234. def test_currency_int(self): val = int(self.c) assert val == 1234 assert type(val) == int def test_currency_long(self): val = long(self.c) assert val == 1234 assert type(val) == long