python_code
stringlengths
0
258k
import torch import typing from contextlib import nullcontext from torchbenchmark.util.model import BenchmarkModel from torch_geometric.nn import GAT, GCN, GraphSAGE import torch.nn.functional as F from tqdm import tqdm from pathlib import Path from torch_geometric.loader import NeighborLoader from torchbenchmark.util.framework.gnn.config import parse_tb_args from typing import List from torch import Tensor models_dict = { 'gat': GAT, 'gcn': GCN, 'sage': GraphSAGE, } class GNNModel(BenchmarkModel): # To recognize this is a GNN model GNN_MODEL = True # These two variables should be defined by subclasses DEFAULT_TRAIN_BSIZE = None DEFAULT_EVAL_BSIZE = None # Default eval precision on CUDA device is fp16 DEFAULT_EVAL_CUDA_PRECISION = "fp16" def __init__(self, model_name, test, device, jit=False, batch_size = None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.tb_args, self.extra_args = parse_tb_args(self.extra_args) root = str(Path(__file__).parent.parent.parent.parent) sparse = True if self.tb_args.graph_type == "sparse" else False if sparse: data = torch.load(f'{root}/data/.data/Reddit_minimal/sub_reddit_sparse.pt') else: data = torch.load(f'{root}/data/.data/Reddit_minimal/sub_reddit.pt') print(data) mask = None sampler = None kwargs = { 'batch_size': self.batch_size, 'shuffle': False, 'num_workers': 0, } self.subgraph_loader = NeighborLoader( data, num_neighbors=[-1], # layer-wise inference input_nodes=mask, sampler=sampler, **kwargs, ) Model = models_dict.get(model_name, None) num_layers = 1 hidden_channels = 64 input_channels = data.num_features out_channels = 41 # num_classes if model_name == "gat": num_heads = 2 self.model = Model(input_channels, hidden_channels, num_layers, out_channels, heads=num_heads) else: self.model = Model(input_channels, hidden_channels, num_layers, out_channels) self.model = self.model.to(device) tmp_example_inputs = [] tmp_example_outputs = [] self.num_batch = 0 for batch in self.subgraph_loader: self.num_batch += 1 if hasattr(batch, 'adj_t'): edge_index = batch.adj_t.to(device) else: edge_index = batch.edge_index.to(device) tmp_example_inputs.append({"x": batch.x.to(device), "edge_index": edge_index}) tmp_example_outputs.append(batch.y.to(device)) self.example_inputs = tmp_example_inputs self.example_outputs = tmp_example_outputs if test == "train": self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001) self.model.train() elif test == "eval": self.model.eval() self.amp_context = nullcontext def get_module(self): return self.model, self.example_inputs[0] def train(self): for batch_id in range(self.num_batch): self.optimizer.zero_grad() out = self.model(**self.example_inputs[batch_id]) loss = F.cross_entropy(out, self.example_outputs[batch_id]) loss.backward() self.optimizer.step() def eval(self) -> typing.Tuple[torch.Tensor]: with self.amp_context(): xs: List[Tensor] = [] result = self.subgraph_loader.data.x.cpu() for batch_id in range(self.num_batch): x = self.model(**self.example_inputs[batch_id]) xs.append(x.cpu()) result = torch.cat(xs, dim=0) return (result, )
""" Hacked from https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/train.py ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ from contextlib import suppress import torch from torch import nn from torch.nn.parallel import DistributedDataParallel as NativeDDP from timm.models import create_model from timm.layers import convert_splitbn_model from timm.optim import create_optimizer_v2, optimizer_kwargs from timm.scheduler import create_scheduler from timm.utils import NativeScaler from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, LabelSmoothingCrossEntropy from timm.data import create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset from .loader import create_fake_imagenet_dataset def timm_instantiate_eval(args): # create eval model eval_model = create_model( args.model_name, pretrained=args.pretrained, num_classes=args.num_classes, in_chans=3, global_pool=args.gp, scriptable=args.torchscript) data_config = resolve_data_config(vars(args), model=eval_model, use_test_size=True, verbose=True) eval_model = eval_model.to(args.device) # enable channels last layout if set if args.channels_last: eval_model = eval_model.to(memory_format=torch.channels_last) if args.num_gpu > 1: eval_model = torch.nn.DataParallel(eval_model, device_ids=list(range(args.num_gpu))) crop_pct = data_config['crop_pct'] # create dataset dataset_eval = create_fake_imagenet_dataset(size=args.eval_num_batch*args.eval_batch_size) loader_eval = create_loader( dataset_eval, input_size=data_config['input_size'], batch_size=args.eval_batch_size, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=crop_pct, pin_memory=args.pin_mem, tf_preprocessing=args.tf_preprocessing, persistent_workers=False, ) return eval_model, loader_eval def timm_instantiate_train(args): # create train model model = create_model( args.model_name, pretrained=args.pretrained, num_classes=args.num_classes, drop_rate=args.drop, drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_tf=args.bn_tf, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, scriptable=args.torchscript, checkpoint_path=args.initial_checkpoint) data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0) # setup augmentation batch splits for contrastive loss or split bn num_aug_splits = 0 if args.aug_splits > 0: assert args.aug_splits > 1, 'A split of 1 makes no sense' num_aug_splits = args.aug_splits # enable split bn (separate bn stats per batch-portion) if args.split_bn: assert num_aug_splits > 1 or args.resplit model = convert_splitbn_model(model, max(num_aug_splits, 2)) model = model.to(args.device) # enable channels last layout if set if args.channels_last: model = model.to(memory_format=torch.channels_last) # setup synchronized BatchNorm for distributed training if args.distributed and args.sync_bn: assert not args.split_bn model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) if args.local_rank == 0: print( 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using ' 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') # setup optimizer optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args)) # setup automatic mixed-precision (AMP) loss scaling and op casting amp_autocast = suppress # do nothing loss_scaler = None if args.use_amp == 'native': amp_autocast = torch.cuda.amp.autocast loss_scaler = NativeScaler() # setup distributed training if args.distributed: model = NativeDDP(model, device_ids=[args.local_rank], broadcast_buffers=not args.no_ddp_bb) # NOTE: EMA model does not need to be wrapped by DDP # setup learning rate schedule and starting epoch lr_scheduler, _ = create_scheduler(args, optimizer) # create fake imagenet dataset fake_dataset = create_fake_imagenet_dataset(size=args.batch_size * args.train_num_batch) dataset_train = fake_dataset dataset_eval = fake_dataset # setup mixup / cutmix collate_fn = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_args = dict( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.num_classes) if args.prefetcher: assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup) collate_fn = FastCollateMixup(**mixup_args) else: mixup_fn = Mixup(**mixup_args) # wrap dataset in AugMix helper if num_aug_splits > 1: dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) # create data loaders w/ augmentation pipeline train_interpolation = args.train_interpolation if args.no_aug or not train_interpolation: train_interpolation = data_config['interpolation'] loader_train = create_loader( dataset_train, input_size=data_config['input_size'], batch_size=args.batch_size, is_training=True, use_prefetcher=args.prefetcher, no_aug=args.no_aug, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, re_split=args.resplit, scale=args.scale, ratio=args.ratio, hflip=args.hflip, vflip=args.vflip, color_jitter=args.color_jitter, auto_augment=args.aa, # Not supported by timm 0.4.12 # num_aug_repeats=args.aug_repeats, num_aug_splits=num_aug_splits, interpolation=train_interpolation, mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, collate_fn=collate_fn, pin_memory=args.pin_mem, use_multi_epochs_loader=args.use_multi_epochs_loader, # Not supported by timm 0.4.12 # worker_seeding=args.worker_seeding, persistent_workers=False, ) loader_validate = create_loader( dataset_eval, input_size=data_config['input_size'], batch_size=args.validation_batch_size or args.batch_size, is_training=False, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, crop_pct=data_config['crop_pct'], pin_memory=args.pin_mem, persistent_workers=False, ) # setup loss function if args.jsd_loss: assert num_aug_splits > 1 # JSD only valid with aug splits set train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing) elif mixup_active: # NOTE: the latest timm package (0.4.12) doesn't support BinaryCrossEntropy # smoothing is handled with mixup target transform which outputs sparse, soft targets # if args.bce_loss: # train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh) # else: train_loss_fn = SoftTargetCrossEntropy() elif args.smoothing: # if args.bce_loss: # train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh) # else: train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: train_loss_fn = nn.CrossEntropyLoss() train_loss_fn = train_loss_fn.to(args.device) validate_loss_fn = nn.CrossEntropyLoss().to(args.device) # return all the inputs needed by train and eval loop return model, loader_train, loader_validate, optimizer, \ train_loss_fn, lr_scheduler, amp_autocast, \ loss_scaler, mixup_fn, validate_loss_fn
""" Hacked from https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/train.py ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ from torchvision.datasets.fakedata import FakeData def create_fake_imagenet_dataset(size): fakedata = FakeData(size=size) return fakedata
""" Hacked from https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/train.py ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import torch from collections import OrderedDict from contextlib import suppress from timm.utils import reduce_tensor, dispatch_clip_grad, accuracy from timm.utils import AverageMeter from timm.models.helpers import model_parameters def train_one_epoch( epoch, model, loader, optimizer, loss_fn, args, lr_scheduler=None, saver=None, output_dir=None, amp_autocast=suppress, loss_scaler=None, model_ema=None, mixup_fn=None): if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: if args.prefetcher and loader.mixup_enabled: loader.mixup_enabled = False elif mixup_fn is not None: mixup_fn.mixup_enabled = False second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order # batch_time_m = AverageMeter() # data_time_m = AverageMeter() losses_m = AverageMeter() model.train() # end = time.time() last_idx = len(loader) - 1 num_updates = epoch * len(loader) for batch_idx, (input, target) in zip(range(args.train_num_batch), loader): last_batch = batch_idx == last_idx # data_time_m.update(time.time() - end) if not args.prefetcher and args.device == "cuda": input, target = input.cuda(), target.cuda() if mixup_fn is not None: input, target = mixup_fn(input, target) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input) loss = loss_fn(output, target) if not args.distributed: losses_m.update(loss.item(), input.size(0)) optimizer.zero_grad() if loss_scaler is not None: loss_scaler( loss, optimizer, clip_grad=args.clip_grad, clip_mode=args.clip_mode, parameters=model_parameters(model, exclude_head='agc' in args.clip_mode), create_graph=second_order) else: loss.backward(create_graph=second_order) if args.clip_grad is not None: dispatch_clip_grad( model_parameters(model, exclude_head='agc' in args.clip_mode), value=args.clip_grad, mode=args.clip_mode) optimizer.step() # if model_ema is not None: # model_ema.update(model) if args.device == "cuda": torch.cuda.synchronize() num_updates += 1 # batch_time_m.update(time.time() - end) if last_batch or batch_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) losses_m.update(reduced_loss.item(), input.size(0)) # if args.local_rank == 0: # _logger.info( # 'Train: {} [{:>4d}/{} ({:>3.0f}%)] ' # 'Loss: {loss.val:#.4g} ({loss.avg:#.3g}) ' # 'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s ' # '({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' # 'LR: {lr:.3e} ' # 'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format( # epoch, # batch_idx, len(loader), # 100. * batch_idx / last_idx, # loss=losses_m, # batch_time=batch_time_m, # rate=input.size(0) * args.world_size / batch_time_m.val, # rate_avg=input.size(0) * args.world_size / batch_time_m.avg, # lr=lr, # data_time=data_time_m)) # if args.save_images and output_dir: # torchvision.utils.save_image( # input, # os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), # padding=0, # normalize=True) # if saver is not None and args.recovery_interval and ( # last_batch or (batch_idx + 1) % args.recovery_interval == 0): # saver.save_recovery(epoch, batch_idx=batch_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) # end = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() # return OrderedDict([('loss', losses_m.avg)]) def validate(model, loader, loss_fn, args, amp_autocast=suppress, log_suffix=''): batch_time_m = AverageMeter() losses_m = AverageMeter() top1_m = AverageMeter() top5_m = AverageMeter() model.eval() # end = time.time() last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx if not args.prefetcher and args.device == "cuda": input = input.cuda() target = target.cuda() if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input) if isinstance(output, (tuple, list)): output = output[0] # augmentation reduction reduce_factor = args.tta if reduce_factor > 1: output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) target = target[0:target.size(0):reduce_factor] loss = loss_fn(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) acc1 = reduce_tensor(acc1, args.world_size) acc5 = reduce_tensor(acc5, args.world_size) else: reduced_loss = loss.data if args.device == "cuda": torch.cuda.synchronize() losses_m.update(reduced_loss.item(), input.size(0)) top1_m.update(acc1.item(), output.size(0)) top5_m.update(acc5.item(), output.size(0)) # batch_time_m.update(time.time() - end) # end = time.time() # if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0): # log_name = 'Test' + log_suffix # _logger.info( # '{0}: [{1:>4d}/{2}] ' # 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' # 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' # 'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) ' # 'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format( # log_name, batch_idx, last_idx, batch_time=batch_time_m, # loss=losses_m, top1=top1_m, top5=top5_m)) metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)]) return metrics
""" Hacked from https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/train.py ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import os import yaml import torch import argparse def setup_args_distributed(args): args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 args.world_size = 1 args.rank = 0 # global rank if args.distributed: args.device = 'cuda:%d' % args.local_rank torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() args.rank = torch.distributed.get_rank() assert args.rank >= 0 return args def get_args(config_string="", config_file=None): def _parse_args(): # Do we have a config file to parse? if config_file: with open(config_file, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args = parser.parse_args(config_string) # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # Dataset parameters # parser.add_argument('data_dir', metavar='DIR', # help='path to dataset') parser.add_argument('--dataset', '-d', metavar='NAME', default='', help='dataset type (default: ImageFolder/ImageTar if empty)') parser.add_argument('--train-split', metavar='NAME', default='train', help='dataset train split (default: train)') parser.add_argument('--val-split', metavar='NAME', default='validation', help='dataset validation split (default: validation)') parser.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') # Model parameters parser.add_argument('--model', default='resnet50', type=str, metavar='MODEL', help='Name of model to train (default: "resnet50"') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') parser.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') parser.add_argument('--num-classes', type=int, default=None, metavar='N', help='number of label classes (Model default if None)') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--img-size', type=int, default=None, metavar='N', help='Image patch size (default: None => model default)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--batch-size', type=int, default=128, metavar='N', help='input batch size for training (default: 128)') parser.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N', help='validation batch size override (default: None)') # Optimizer parameters parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd"') parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=2e-5, help='weight decay (default: 2e-5)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "step"') parser.add_argument('--lr', type=float, default=0.05, metavar='LR', help='learning rate (default: 0.05)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') parser.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT', help='amount to decay each learning rate cycle (default: 0.5)') parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit, cycles enabled if > 1') parser.add_argument('--lr-k-decay', type=float, default=1.0, help='learning rate k-decay for cosine/poly (default: 1.0)') parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR', help='warmup learning rate (default: 0.0001)') parser.add_argument('--min-lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 300)') parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N', help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).') parser.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--decay-epochs', type=float, default=100, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation & regularization parameters parser.add_argument('--no-aug', action='store_true', default=False, help='Disable all training augmentation, override other train aug args') parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', help='Random resize scale (default: 0.08 1.0)') parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO', help='Random resize aspect ratio (default: 0.75 1.33)') parser.add_argument('--hflip', type=float, default=0.5, help='Horizontal flip training aug probability') parser.add_argument('--vflip', type=float, default=0., help='Vertical flip training aug probability') parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default=None, metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'), parser.add_argument('--aug-repeats', type=int, default=0, help='Number of augmentation repetitions (distributed training only) (default: 0)') parser.add_argument('--aug-splits', type=int, default=0, help='Number of augmentation splits (default: 0, valid: 0 or >=2)') parser.add_argument('--jsd-loss', action='store_true', default=False, help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') parser.add_argument('--bce-loss', action='store_true', default=False, help='Enable BCE loss w/ Mixup/CutMix use.') parser.add_argument('--bce-target-thresh', type=float, default=None, help='Threshold for binarizing softened BCE targets (default: None, disabled)') parser.add_argument('--reprob', type=float, default=0., metavar='PCT', help='Random erase prob (default: 0.)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') parser.add_argument('--mixup', type=float, default=0.0, help='mixup alpha, mixup enabled if > 0. (default: 0.)') parser.add_argument('--cutmix', type=float, default=0.0, help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', help='Turn off mixup after this epoch, disabled if 0 (default: 0)') parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') # Batch norm parameters (only works with gen_efficientnet based models currently) parser.add_argument('--bn-tf', action='store_true', default=False, help='Use Tensorflow BatchNorm defaults for models that support it (default: False)') parser.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') parser.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') parser.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') parser.add_argument('--dist-bn', type=str, default='reduce', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') parser.add_argument('--split-bn', action='store_true', help='Enable separate BN layers per augmentation split.') # Model Exponential Moving Average parser.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') parser.add_argument('--model-ema-decay', type=float, default=0.9998, help='decay factor for model weights moving average (default: 0.9998)') # Misc parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--worker-seeding', type=str, default='all', help='worker seed mode (default: all)') parser.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N', help='number of checkpoints to keep (default: 10)') parser.add_argument('-j', '--workers', type=int, default=0, metavar='N', help='how many training processes to use (default: 0)') parser.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--apex-amp', action='store_true', default=False, help='Use NVIDIA Apex AMP mixed precision') parser.add_argument('--native-amp', action='store_true', default=False, help='Use Native Torch AMP mixed precision') parser.add_argument('--no-ddp-bb', action='store_true', default=False, help='Force broadcast buffers for native DDP to off.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') parser.add_argument('--experiment', default='', type=str, metavar='NAME', help='name of train experiment, name of sub-folder for output') parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', help='Best metric (default: "top1"') parser.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') parser.add_argument("--local_rank", default=0, type=int) parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False, help='use the multi-epochs-loader to save time at the beginning of every epoch') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') parser.add_argument('--log-wandb', action='store_true', default=False, help='log training and validation metrics to wandb') # Inference args parser.add_argument('--eval-batch-size', type=int, default=256, metavar='N', help='input batch size for inference (default: 256)') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--tf-preprocessing', action='store_true', default=False, help='Use Tensorflow preprocessing pipeline (require CPU TF installed') args, _args_text = _parse_args() return args
import torch.nn as nn import dataclasses from timm.optim import create_optimizer @dataclasses.dataclass class OptimizerOption: lr: float opt: str weight_decay: float momentum: float class TimmConfig: def __init__(self, model, device): self.model = model self.device = device # Configurations self.num_classes = self.model.num_classes self.loss = nn.CrossEntropyLoss().to(self.device) self.target_shape = tuple() self.input_size = self.model.default_cfg["input_size"] # Default optimizer configurations borrowed from: # https://github.com/rwightman/pytorch-image-models/blob/779107b693010934ac87c8cecbeb65796e218488/timm/optim/optim_factory.py#L78 opt_args = OptimizerOption(lr=1e-4, opt="sgd", weight_decay = 0.0001, momentum = 0.9) self.optimizer = create_optimizer(opt_args, self.model)
from contextlib import suppress import torch import typing import timm from torchbenchmark.util.model import BenchmarkModel from .timm_config import TimmConfig from typing import Generator, Tuple, Optional class TimmModel(BenchmarkModel): # To recognize this is a timm model TIMM_MODEL = True # These two variables should be defined by subclasses DEFAULT_TRAIN_BSIZE = None DEFAULT_EVAL_BSIZE = None # Default eval precision on CUDA device is fp16 DEFAULT_EVAL_CUDA_PRECISION = "fp16" def __init__(self, model_name, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True self.model = timm.create_model(model_name, pretrained=False, scriptable=True) self.cfg = TimmConfig(model = self.model, device = device) self.example_inputs = self._gen_input(self.batch_size) self.model.to( device=self.device ) if test == "train": self.model.train() elif test == "eval": self.model.eval() self.amp_context = suppress def gen_inputs(self, num_batches:int=1) -> Tuple[Generator, Optional[int]]: def _gen_inputs(): while True: result = [] for _i in range(num_batches): result.append((self._gen_input(self.batch_size), )) if self.dargs.precision == "fp16": result = list(map(lambda x: (x[0].half(), ), result)) yield result return (_gen_inputs(), None) def _gen_input(self, batch_size): return torch.randn((batch_size,) + self.cfg.input_size, device=self.device) def _gen_target(self, batch_size): return torch.empty( (batch_size,) + self.cfg.target_shape, device=self.device, dtype=torch.long).random_(self.cfg.num_classes) def _step_train(self): self.cfg.optimizer.zero_grad() with self.amp_context(): output = self.model(self.example_inputs) if isinstance(output, tuple): output = output[0] target = self._gen_target(output.shape[0]) self.cfg.loss(output, target).backward() self.cfg.optimizer.step() def _step_eval(self): output = self.model(self.example_inputs) return output def get_optimizer(self): return self.cfg.optimizer def set_optimizer(self, optimizer) -> None: self.cfg.optimizer = optimizer def enable_fp16_half(self): self.model = self.model.half() self.example_inputs = self.example_inputs.half() def enable_channels_last(self): self.model = self.model.to(memory_format=torch.channels_last) self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) def get_module(self): return self.model, (self.example_inputs,) def train(self): self._step_train() def eval(self) -> typing.Tuple[torch.Tensor]: with torch.no_grad(): with self.amp_context(): out = self._step_eval() return (out, )
from datasets import load_dataset def prep_dataset(hf_args): # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if hf_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(hf_args.dataset_name, hf_args.dataset_config_name) else: data_files = {} if hf_args.train_file is not None: data_files["train"] = hf_args.train_file if hf_args.validation_file is not None: data_files["validation"] = hf_args.validation_file extension = hf_args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. return raw_datasets def preprocess_dataset(hf_args, raw_datasets, tokenizer, prefix, accelerator): # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names # Get the language codes for input/target. source_lang = hf_args.source_lang.split("_")[0] target_lang = hf_args.target_lang.split("_")[0] padding = "max_length" if hf_args.pad_to_max_length else False # Temporarily set max_target_length for training. max_target_length = hf_args.max_target_length padding = "max_length" if hf_args.pad_to_max_length else False def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=hf_args.max_source_length, padding=padding, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and hf_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs with accelerator.main_process_first(): processed_datasets = raw_datasets.map( preprocess_function, batched=True, num_proc=hf_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not hf_args.overwrite_cache, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] return train_dataset, eval_dataset
""" Hacked from https://github.com/huggingface/transformers/blob/main/examples/pytorch/translation/run_translation_no_trainer.py It runs HuggingFace transformer models translation on WMT16 """ import argparse from transformers import SchedulerType task_to_keys = { # hf args to include for different tasks # english to romanian "wmt-en-ro": [ "--dataset_name", "wmt16", "--dataset_config_name", "ro-en", "--source_lang", "en", "--target_lang", "ro", ], # english to german "wmt-en-de": [ "--dataset_name", "stas/wmt14-en-de-pre-processed", "--source_lang", "en", "--target_lang", "de", ], } def parse_torchbench_args(extra_args): parser = argparse.ArgumentParser() parser.add_argument("--task_name", default="wmt-en-ro", choices=task_to_keys.keys(), help="Name of task to run") # validate in train by default parser.add_argument("--validate_in_train", action="store_false", help="Validate result in train") # use fp16 mixed precision by default parser.add_argument("--fp16", default="amp", choices=["amp", "no"], help="Enable mixed precision") parser.add_argument( "--distributed", default="none", choices=["ddp", "fsdp", "deepspeed", "none"], help="distributed training paradigm, by default using DDP" ) tb_args = parser.parse_args(extra_args) return tb_args def parse_args(in_args): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--predict_with_generate", type=bool, default=True, help="", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--num_beams", type=int, default=None, help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--max_source_length", type=int, default=1024, help=( "The maximum total input sequence length after " "tokenization.Sequences longer than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--max_target_length", type=int, default=128, help=( "The maximum total sequence length for target text after " "tokenization. Sequences longer than this will be truncated, sequences shorter will be padded." "during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--val_max_target_length", type=int, default=None, help=( "The maximum total sequence length for validation " "target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be " "padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` " "param of ``model.generate``, which is used during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--pad_to_max_length", type=bool, default=False, help=( "Whether to pad all samples to model maximum sentence " "length. If False, will pad the samples dynamically when batching to the maximum length in the batch. More" "efficient on GPU but very bad for TPU." ), ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--ignore_pad_token_for_loss", type=bool, default=True, help="Whether to ignore the tokens corresponding to padded labels in the loss computation or not.", ) parser.add_argument("--source_lang", type=str, default=None, help="Source language id for translation.") parser.add_argument("--target_lang", type=str, default=None, help="Target language id for translation.") parser.add_argument( "--source_prefix", type=str, default=None, help="A prefix to add before every source text (useful for T5 models).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", type=bool, default=None, help="Overwrite the cached training and evaluation sets" ) # seems to be unused, commenting out # parser.add_argument( # "--max_length", # type=int, # default=128, # help=( # "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," # " sequences shorter will be padded if `--pad_to_max_lengh` is passed." # ), # ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", # choices=MODEL_TYPES, # unused, commented out for simplicity ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args(in_args) # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args
from datasets import load_dataset from transformers import PretrainedConfig from .args import task_to_keys def preprocess_dataset(hf_args, config, model, tokenizer, raw_datasets, num_labels, label_list, is_regression, accelerator): # Preprocessing the raw_datasets if hf_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[hf_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and hf_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: # logger.warning( # "Your model seems to have been trained with labels, but they don't match the dataset: ", # f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." # "\nIgnoring the model labels as a result.", # ) pass elif hf_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if label_to_id is not None: model.config.label2id = label_to_id model.config.id2label = {id: label for label, id in config.label2id.items()} elif hf_args.task_name is not None and not is_regression: model.config.label2id = {l: i for i, l in enumerate(label_list)} model.config.id2label = {id: label for label, id in config.label2id.items()} padding = "max_length" if hf_args.pad_to_max_length else False def preprocess_function(examples): # Tokenize the texts texts = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*texts, padding=padding, max_length=hf_args.max_length, truncation=True) if "label" in examples: if label_to_id is not None: # Map labels to IDs (not necessary for GLUE tasks) result["labels"] = [label_to_id[l] for l in examples["label"]] else: # In all cases, rename the column to labels because the model will expect that. result["labels"] = examples["label"] return result with accelerator.main_process_first(): processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names, ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation_matched" if hf_args.task_name == "mnli" else "validation"] if hf_args.task_name == "mnli": mnli_eval_dataset = raw_datasets["validation_mismatched"] else: mnli_eval_dataset = None return train_dataset, eval_dataset, mnli_eval_dataset def prep_dataset(hf_args): # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if hf_args.task_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset("glue", hf_args.task_name) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": hf_args.train_file, "validation": hf_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if hf_args.do_predict: if hf_args.test_file is not None: train_extension = hf_args.train_file.split(".")[-1] test_extension = hf_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = hf_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") # for key in data_files.keys(): # logger.info(f"load a local file for {key}: {data_files[key]}") if hf_args.train_file.endswith(".csv"): # Loading a dataset from local csv files raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=hf_args.cache_dir) else: # Loading a dataset from local json files raw_datasets = load_dataset("json", data_files=data_files, cache_dir=hf_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. return raw_datasets def prep_labels(hf_args, raw_datasets): # Labels if hf_args.task_name is not None: is_regression = hf_args.task_name == "stsb" if not is_regression: label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = raw_datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) return num_labels, label_list, is_regression
""" Hacked from https://github.com/huggingface/transformers/blob/6fc38adff272ea3148e05888edf67eeb00170453/examples/pytorch/text-classification/run_glue.py It runs HuggingFace transformer models on the GLUE benchmark """ import argparse from transformers import SchedulerType task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } def parse_torchbench_args(extra_args): parser = argparse.ArgumentParser() parser.add_argument("--task_name", default="cola", choices=task_to_keys.keys(), help="Name of task to run") # validate in train by default parser.add_argument("--validate_in_train", action="store_false", help="Validate result in train") # use fp16 mixed precision by default parser.add_argument("--fp16", default="amp", choices=["amp", "no"], help="Enable mixed precision") parser.add_argument( "--distributed", default="none", choices=["ddp", "fsdp", "deepspeed", "none"], help="distributed training paradigm, by default using DDP" ) tb_args = parser.parse_args(extra_args) return tb_args def parse_args(in_args): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--task_name", type=str, default=None, help="The name of the glue task to train on.", choices=list(task_to_keys.keys()), ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_lengh` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") args = parser.parse_args(in_args) # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." return args
import argparse def parse_tb_args(args): parser = argparse.ArgumentParser() # default resolution: 800x1333 parser.add_argument("--resize", choices=["default", "448x608"], default="default", help="Resize the image to specified size") args, unknown_args = parser.parse_known_args(args) return args, unknown_args
import os import shutil import sys import subprocess from pathlib import Path from urllib import request CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) # Load pre-trained weights # copied from https://github.com/facebookresearch/detectron2/blob/5934a1452801e669bbf9479ae222ce1a8a51f52e/MODEL_ZOO.md MODEL_WEIGHTS_MAP = { "detectron2_fasterrcnn_r_50_c4": "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl", "detectron2_fasterrcnn_r_50_dc5": "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl", "detectron2_fasterrcnn_r_50_fpn": "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl", "detectron2_fasterrcnn_r_101_c4": "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl", "detectron2_fasterrcnn_r_101_dc5": "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl", "detectron2_fasterrcnn_r_101_fpn": "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl", "detectron2_maskrcnn_r_50_c4": "https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl", "detectron2_maskrcnn_r_50_fpn": "https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl", "detectron2_maskrcnn_r_101_c4": "https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl", "detectron2_maskrcnn_r_101_fpn": "https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl", "detectron2_maskrcnn": "https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl", "detectron2_fcos_r_50_fpn": None, } def check_data_dir(): coco2017_data_dir = os.path.join(CURRENT_DIR.parent.parent.parent, "data", ".data", "coco2017-minimal") assert os.path.exists(coco2017_data_dir), "Couldn't find coco2017 minimal data dir, please run install.py again." def install_model_weights(model_name, model_dir): assert model_name in MODEL_WEIGHTS_MAP, f"Model {model_name} is not in MODEL_WEIGHTS_MAP. Cannot download the model weights file." model_full_path = Path(os.path.join(model_dir, ".data", f"{model_name}.pkl")) if model_name in MODEL_WEIGHTS_MAP and MODEL_WEIGHTS_MAP[model_name]: # download the file if not exists # TODO: verify the model file integrity if os.path.exists(model_full_path): return model_full_path.parent.mkdir(parents=True, exist_ok=True) request.urlretrieve(MODEL_WEIGHTS_MAP[model_name], model_full_path) def pip_install_requirements(): requirements_file = os.path.join(CURRENT_DIR, "requirements.txt") subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', requirements_file]) # This is to workaround https://github.com/facebookresearch/detectron2/issues/3934 def remove_tools_directory(): try: import tools import detectron2 d2_dir_path = Path(detectron2.__file__).parent assumed_tools_path = d2_dir_path.parent.joinpath("tools") if tools.__file__ and assumed_tools_path.exists(): shutil.rmtree(str(assumed_tools_path)) except ImportError: # if the "tools" package doesn't exist, do nothing pass def install_detectron2(model_name, model_dir): check_data_dir() install_model_weights(model_name, model_dir) pip_install_requirements() remove_tools_directory()
from torchbenchmark.util.framework.detectron2.config import parse_tb_args from torchbenchmark.util.model import BenchmarkModel import itertools import os from pathlib import Path import torch # setup environment variable CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent.parent, "data", ".data", "coco2017-minimal") assert os.path.exists(DATA_DIR), "Couldn't find coco2017 minimal data dir, please run install.py again." if not 'DETECTRON2_DATASETS' in os.environ: os.environ['DETECTRON2_DATASETS'] = DATA_DIR from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY from detectron2.engine import default_argument_parser from detectron2.solver import build_optimizer from detectron2.config import LazyConfig, get_cfg, instantiate from detectron2 import model_zoo from detectron2.modeling import build_model from detectron2.utils.events import EventStorage from torch.utils._pytree import tree_map from detectron2.checkpoint import DetectionCheckpointer import detectron2.data.transforms as T from detectron2.config import LazyCall as L from detectron2.data import build_detection_test_loader, build_detection_train_loader from typing import Tuple def setup(args): if args.config_file.endswith(".yaml"): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.SOLVER.BASE_LR = 0.001 # Avoid NaNs. Not useful in this script anyway. # set images per batch to 1 cfg.SOLVER.IMS_PER_BATCH = 1 cfg.MODEL.WEIGHTS = args.model_file if args.resize == "448x608": cfg.MODEL.RPN.POST_NMS_TOPK_TEST = 300 cfg.INPUT.MIN_SIZE_TEST = 448 cfg.INPUT.MAX_SIZE_TEST = 608 cfg.merge_from_list(args.opts) cfg.freeze() else: cfg = LazyConfig.load(args.config_file) cfg = LazyConfig.apply_overrides(cfg, args.opts) if args.fcos_use_bn: cfg.model.head.norm = "BN" return cfg def prefetch(dataloader, device, precision="fp32"): r = [] dtype = torch.float16 if precision == "fp16" else torch.float32 for batch in dataloader: r.append(tree_map(lambda x: x.to(device, dtype=dtype) if isinstance(x, torch.Tensor) else x, batch)) return r def get_abs_path(config): import detectron2 detectron2_root = os.path.abspath(os.path.dirname(detectron2.__file__)) return os.path.join(detectron2_root, "model_zoo", "configs", config) class Detectron2Model(BenchmarkModel): # To recognize this is a detectron2 model DETECTRON2_MODEL = True # Default eval precision on CUDA device is fp16 DEFAULT_EVAL_CUDA_PRECISION = "fp16" # Default batch sizes DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 # Skip correctness check, because the output tensor can't be verified using # cosine similarity or torch.close() SKIP_CORRECTNESS_CHECK = True def __init__(self, variant, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.tb_args, self.extra_args = parse_tb_args(self.extra_args) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False # load model file assert hasattr(self, "model_file"), f"Detectron2 models must specify its model_file." if self.model_file: assert (os.path.exists(self.model_file)), f"Detectron2 model file specified {self.model_file} doesn't exist." parser = default_argument_parser() args = parser.parse_args(["--config-file", get_abs_path(variant)]) # setup pre-trained model weights args.model_file = self.model_file args.resize = self.tb_args.resize if hasattr(self, "FCOS_USE_BN") and self.FCOS_USE_BN: args.fcos_use_bn = True cfg = setup(args) if hasattr(cfg, "MODEL") and cfg.MODEL.DEVICE != self.device: cfg.defrost() cfg.MODEL.DEVICE = self.device cfg.freeze() if args.config_file.endswith(".yaml"): self.model = build_model(cfg).to(self.device) else: self.model = instantiate(cfg.model).to(self.device) # setup model and return the dataloader if self.test == "train": if hasattr(self, "FCOS_USE_BN") and self.FCOS_USE_BN: raise NotImplementedError("FCOS train is not supported by upstream detectron2. " \ "See GH Issue: https://github.com/facebookresearch/detectron2/issues/4369.") self.optimizer = build_optimizer(cfg, self.model) loader = self.setup_train() elif self.test == "eval": loader = self.setup_eval(cfg, args) self.example_inputs = prefetch(itertools.islice(loader, 100), self.device) # torchbench: only run 1 batch self.NUM_BATCHES = 1 def setup_train(self): if hasattr(self, "FCOS_USE_BN") and self.FCOS_USE_BN: raise NotImplementedError("FCOS train is not supported by upstream detectron2. " \ "See GH Issue: https://github.com/facebookresearch/detectron2/issues/4369.") checkpointer = DetectionCheckpointer(self.model, optimizer=self.optimizer) checkpointer.load(self.model_file) self.model.train() # Always use coco.py to initialize train data # setup train dataset data_cfg = model_zoo.get_config("common/data/coco.py").dataloader data_cfg.train.dataset.names = "coco_2017_val_100" data_cfg.train.total_batch_size = self.batch_size if self.tb_args.resize == "448x608": data_cfg.train.mapper.augmentations = [L(T.ResizeShortestEdge)(short_edge_length=448, max_size=608)] loader = instantiate(data_cfg.train) return loader def setup_eval(self, cfg, args): # load model from pretrained checkpoint DetectionCheckpointer(self.model).load(self.model_file) self.model.eval() if args.config_file.endswith(".yaml"): cfg.defrost() cfg.DATASETS.TEST = ("coco_2017_val_100", ) loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0], batch_size=self.batch_size) else: data_cfg = model_zoo.get_config("common/data/coco.py").dataloader data_cfg.test.dataset.names = "coco_2017_val_100" data_cfg.test.batch_size = self.batch_size if self.tb_args.resize == "448x608": data_cfg.test.mapper.augmentations = [L(T.ResizeShortestEdge)(short_edge_length=448, max_size=608)] loader = instantiate(data_cfg.test) return loader def get_module(self): return self.model, (self.example_inputs[0], ) def get_optimizer(self): return self.optimizer def set_optimizer(self, optimizer) -> None: self.optimizer = optimizer self.setup_train() def enable_fp16_half(self): assert self.dargs.precision == "fp16", f"Expected precision fp16, get {self.dargs.precision}" self.model = self.model.half() self.example_inputs = prefetch(self.example_inputs, self.device, self.dargs.precision) def train(self): with EventStorage(): for batch_id in range(self.NUM_BATCHES): loss_dict = self.model(self.example_inputs[batch_id]) if isinstance(loss_dict, torch.Tensor): losses = loss_dict loss_dict = {"total_loss": loss_dict} else: losses = sum(loss_dict.values()) self.optimizer.zero_grad() losses.backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: with torch.no_grad(): for batch_id in range(self.NUM_BATCHES): out = self.model(self.example_inputs[batch_id]) # retrieve output tensors outputs = [] for item in out: fields = list(map(lambda x: list(x.get_fields().values()), item.values())) for boxes in fields: tensor_box = list(filter(lambda x: isinstance(x, torch.Tensor), boxes)) outputs.extend(tensor_box) return tuple(outputs)
""" Patch the transformer source code to enable optimizations. """ import os import subprocess import sys from .model_factory import class_models from transformers import AutoConfig, ReformerConfig, BigBirdConfig, BertConfig PATCH_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "patches") def cache_model(name: str): import transformers model_config = eval(class_models[name][2]) model_ctor = getattr(transformers, class_models[name][3]) model_ctor.from_config(model_config) def patch_transformers(): import transformers transformers_dir = os.path.dirname(transformers.__file__) if not os.path.exists(PATCH_DIR): return for patch_file in os.listdir(PATCH_DIR): patch_file_fullpatch = os.path.join(PATCH_DIR, patch_file) if not patch_file_fullpatch.endswith(".patch"): continue try: subprocess.check_output(["patch", "-p1", "--forward", "-i", patch_file_fullpatch, "-r", "/tmp/rej"], cwd=transformers_dir) except subprocess.SubprocessError as e: output_str = str(e.output) if "previously applied" in output_str: return else: print(str(output_str)) sys.exit(1)
import argparse import torch from torchbenchmark.util.model import BenchmarkModel from typing import List, Dict, Tuple def add_bool_arg(parser: argparse.ArgumentParser, name: str, default_value: bool=True): group = parser.add_mutually_exclusive_group(required=False) group.add_argument('--' + name, dest=name, action='store_true') group.add_argument('--no-' + name, dest=name, action='store_false') parser.set_defaults(**{name: default_value}) def parse_args(model: BenchmarkModel, extra_args: List[str]) -> argparse.Namespace: parser = argparse.ArgumentParser() # by default, enable half precision for inference add_bool_arg(parser, "eval_fp16", default_value=True) args = parser.parse_args(extra_args) args.device = model.device args.jit = model.jit # disable fp16 when device is CPU if args.device == "cpu": args.eval_fp16 = False return args def apply_args(model: BenchmarkModel, args: argparse.Namespace): # apply eval_fp16 if args.eval_fp16: model.model, model.example_inputs = enable_eval_fp16(model.model, model.example_inputs) def enable_eval_fp16(model: torch.nn.Module, example_input: Dict[str, torch.tensor]) -> Tuple[torch.nn.Module, Dict[str, torch.tensor]]: return model.half(), {'input_ids': example_input['input_ids'].half()}
import math import random import os import torch from contextlib import nullcontext from torch import optim from torchbenchmark.util.model import BenchmarkModel import transformers from transformers import AutoConfig, ReformerConfig, BertConfig from typing import Tuple class_models = { # 'name': (train_max_length, eval_max_length, config, model) 'hf_GPT2': (512, 1024, 'AutoConfig.from_pretrained("gpt2")', 'AutoModelForCausalLM'), 'hf_GPT2_large': (512, 1024, 'AutoConfig.from_pretrained("gpt2-large")', 'AutoModelForCausalLM'), 'hf_T5': (1024, 2048, 'AutoConfig.from_pretrained("t5-small")', 'AutoModelForSeq2SeqLM'), 'hf_T5_base': (1024, 2048, 'AutoConfig.from_pretrained("t5-base")', 'AutoModelForSeq2SeqLM'), 'hf_T5_large': (512, 512, 'AutoConfig.from_pretrained("t5-large")', 'AutoModelForSeq2SeqLM'), 'hf_Bart': (512, 512, 'AutoConfig.from_pretrained("facebook/bart-base")', 'AutoModelForSeq2SeqLM'), 'hf_Reformer': (4096, 4096, 'ReformerConfig()', 'AutoModelForMaskedLM'), 'hf_BigBird': (1024, 4096, 'BigBirdConfig(attention_type="block_sparse",)', 'AutoModelForMaskedLM'), 'hf_Albert': (512, 512, 'AutoConfig.from_pretrained("albert-base-v2")', 'AutoModelForMaskedLM'), 'hf_DistilBert': (512, 512, 'AutoConfig.from_pretrained("distilbert-base-uncased")', 'AutoModelForMaskedLM'), 'hf_Longformer': (1024, 4096, 'AutoConfig.from_pretrained("allenai/longformer-base-4096")', 'AutoModelForMaskedLM'), 'hf_Bert': (512, 512, 'BertConfig()', 'AutoModelForMaskedLM'), # see https://huggingface.co/bert-large-cased 'hf_Bert_large': (512, 512, 'BertConfig(hidden_size=1024, num_hidden_layers=24, num_attention_heads=16)', 'AutoModelForMaskedLM'), } cpu_input_slice = { 'hf_BigBird': 5, 'hf_Longformer': 8, 'hf_T5': 4, 'hf_GPT2': 4, 'hf_Reformer': 2, } class ArgsToKwargsWrapper(torch.nn.Module): def __init__(self, model): super(ArgsToKwargsWrapper, self).__init__() self.model = model def forward(self, input_ids, decoder_input_ids): return self.model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) class HuggingFaceModel(BenchmarkModel): HF_MODEL = True # Default eval precision on CUDA device is fp16(half mode) DEFAULT_EVAL_CUDA_PRECISION = "fp16" def __init__(self, name, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.name = name if test == "train": self.max_length = class_models[name][0] elif test == "eval": self.max_length = class_models[name][1] # workaround the bigbird config import if name == "hf_BigBird": from transformers import BigBirdConfig config = eval(class_models[name][2]) if class_models[name][2] == "ReformerConfig()" and not config.num_buckets: # silence "config.num_buckets is not set. Setting config.num_buckets to 128" config.num_buckets = 128 class_ctor = getattr(transformers, class_models[name][3]) self.model = class_ctor.from_config(config).to(device) self.optimizer = optim.Adam( self.model.parameters(), lr=0.001, # TODO resolve https://github.com/pytorch/torchdynamo/issues/1083 capturable=bool(int(os.getenv("ADAM_CAPTURABLE", 0) ))) # populate these on-demand to avoid wasting memory when not used self.vocab_size = config.vocab_size self.dynamic_example_inputs = None if test == "train": input_ids = torch.randint(0, config.vocab_size, (self.batch_size, self.max_length)).to(device) decoder_ids = torch.randint(0, config.vocab_size, (self.batch_size, self.max_length)).to(device) self.example_inputs = {'input_ids': input_ids, 'labels': decoder_ids} self.model.train() elif test == "eval": # Cut the length of sentence when running on CPU, to reduce test time if self.device == "cpu" and self.name in cpu_input_slice: self.max_length = int(self.max_length / cpu_input_slice[self.name]) eval_context = torch.randint(0, config.vocab_size, (self.batch_size, self.max_length)).to(device) self.example_inputs = {'input_ids': eval_context, } if class_models[name][3] == 'AutoModelForSeq2SeqLM': self.example_inputs['decoder_input_ids'] = eval_context self.model.eval() self.amp_context = nullcontext def get_module(self, wrap_model=True): if class_models[self.name][3] == 'AutoModelForSeq2SeqLM': k = 'labels' if self.test == 'train' else 'decoder_input_ids' if not wrap_model: return self.model, ( self.example_inputs['input_ids'], self.example_inputs[k]) return ArgsToKwargsWrapper(self.model), ( self.example_inputs['input_ids'], self.example_inputs[k]) return self.model, (self.example_inputs["input_ids"], ) def get_dynamic_shapes_module(self): if self.dynamic_example_inputs is None: nbuckets = 8 nsamples = 32 n = int(math.log2(self.max_length)) buckets = [2**n for n in range(n - nbuckets, n)] self.dynamic_example_inputs = [ { 'input_ids': torch.randint(0, self.vocab_size, (self.batch_size, bucket_len)).to(self.device), 'labels': torch.randint(0, self.vocab_size, (self.batch_size, bucket_len)).to(self.device)} for bucket_len in random.choices(buckets, k=nsamples) ] if class_models[self.name][3] == 'AutoModelForSeq2SeqLM': raise NotImplementedError("Not yet supported") # TODO(whc) why is labels not passed through? return self.model, [(i['input_ids'],) for i in self.dynamic_example_inputs] def enable_fp16_half(self): self.model = self.model.half() def train(self): with self.amp_context(): outputs = self.model(**self.example_inputs) loss = outputs.loss loss.backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: with torch.no_grad(): with self.amp_context(): out = self.model(**self.example_inputs) # logits: prediction scores of language modeling head # https://github.com/huggingface/transformers/blob/v4.16.2/src/transformers/modeling_outputs.py#L455 # transformations such as fx2trt will cast the original output type to dict if isinstance(out, tuple): return out elif hasattr(out, 'logits'): return (out.logits, ) else: return (out["logits"], )
import argparse import importlib import os import submitit import sys import torch import uuid from pathlib import Path from typing import List def parse_args(args: List[str]=None): parser = argparse.ArgumentParser(description='Submitit for PyTorch Distributed Benchmark', add_help=False) parser.add_argument( "--ngpus", default=2, type=int, help="Number of gpus to request on each node" ) parser.add_argument( "--nodes", default=1, type=int, help="Number of nodes to request" ) parser.add_argument( "--timeout", default=1440, type=int, help="Duration of the job" ) parser.add_argument( "--profiler", default=False, type=bool, help="Measure with PyTorch Profiler. Disabled by default, as it crashes on AWS" ) parser.add_argument( "--partition", default="train", type=str, help="The Slurm partition to submit to" ) parser.add_argument( "--cluster", default=None, help="Which slurm cluster to target. Use 'local' to run jobs locally, 'debug' to run jobs in process" ) parser.add_argument( "--job_dir", default=os.getcwd(), type=str, help="A shared folder across all worker processes" ) parser.add_argument( "--model", type=str, default="torchbenchmark.e2e_models.hf_bert.Model", help="specify the model to experiment with, by default uses e2e_models.hf_bert" ) parser.add_argument( "--trainer", type=str, default="torchbenchmark.util.distributed.trainer.Trainer", help="trainer loop class, can be customized for specific behavior", ) parser.add_argument( "--distributed", type=str, choices=["ddp", "ddp_no_static_graph", "fsdp", "deepspeed", "none"], default="ddp", help="distributed training paradigm, by default using DDP", ) parser.add_argument( "--exclude", type=str, default="", help="comma-separated list of nodes to exclude from the slurm allocation", ) try: if args: return parser.parse_known_args(args) else: return parser.parse_known_args() except: parser.print_help() sys.exit(0) def get_init_file(args): # Init file must not exist, but it's parent dir must exist. os.makedirs(args.job_dir, exist_ok=True) init_file = Path(args.job_dir) / f"{uuid.uuid4().hex}_init" print(init_file) if init_file.exists(): os.remove(str(init_file)) return init_file class TrainerWrapper(object): def __init__(self, args, model_args=None): self.args = args self.model_args = model_args self.args.output_dir = args.job_dir def __call__(self): self._setup_gpu_args() pos = self.args.model.rfind(".") module = importlib.import_module(self.args.model[:pos]) model_class = getattr(module, self.args.model[(pos+1):]) pos = self.args.trainer.rfind(".") module = importlib.import_module(self.args.trainer[:pos]) trainer_class = getattr(module, self.args.trainer[(pos+1):]) return trainer_class(self.args, model_class, model_args=self.model_args).measure() def checkpoint(self): self.args.dist_url = get_init_file(self.args).as_uri() checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth") if os.path.exists(checkpoint_file): self.args.resume = checkpoint_file print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): job_env = submitit.JobEnvironment() self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id))) self.args.gpu = job_env.local_rank self.args.rank = job_env.global_rank self.args.world_size = job_env.num_tasks print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") os.environ["LOCAL_RANK"] = str(job_env.local_rank) os.environ["RANK"] = str(job_env.global_rank) os.environ["WORLD_SIZE"] = str(job_env.num_tasks) def main(): args, model_args, = parse_args() # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, cluster=args.cluster, slurm_max_num_timeout=3000) executor.update_parameters( gpus_per_node=args.ngpus, # one task per GPU tasks_per_node=args.ngpus, cpus_per_task=10, nodes=args.nodes, timeout_min=args.timeout, # Below are cluster dependent parameters slurm_partition=args.partition, slurm_signal_delay_s=120, slurm_exclude=args.exclude, ) executor.update_parameters(name="distbench", slurm_array_parallelism=1, timeout_min=1000) args.dist_url = get_init_file(args).as_uri() args.output_dir = args.job_dir job = executor.submit(TrainerWrapper(args, model_args)) # print ID of the Slurm job print(job.job_id) # waits for completion and returns output print(job.results()) if __name__=="__main__": main()
from datetime import datetime import os from pathlib import Path from statistics import stdev import torch from torch.cuda import Event from torch.profiler import profile, ProfilerActivity, tensorboard_trace_handler from torchbenchmark.util.e2emodel import E2EBenchmarkModel, nested import torch.distributed as dist class Trainer(): DEFAULT_MEASURE_ITERATIONS = 10 def __init__(self, args, model_class, mode="SPMD", model_args=None): self.args = args self.model_args = model_args self.model_class = model_class self.mode = mode self.local_rank = int(os.getenv("LOCAL_RANK", -1)) self.setup() extra_args = [ "--distributed", self.args.distributed, ] extra_args.extend(self.model_args) # create model instance after Trainer setup, so that # visible devices won't be revised in model constructor self.e2e_benchmark: E2EBenchmarkModel = model_class("train", batch_size=None, extra_args=extra_args) expected_attrs = ["model", "optimizer", "train_dataloader", "accelerator", "run_contexts"] assert all(attr in dir(self.e2e_benchmark) for attr in expected_attrs), ( "Missing attributes in the input E2EBenchmarkModel implementation: " f"{[attr for attr in expected_attrs if attr not in dir(self.e2e_benchmark)]}" ) self.rank = dist.get_rank() def setup(self): if self.mode == "SPMD": # set the visible devices so that each SPMD process only sees one # CUDA device # N.B.: this has to be done before using any CUDA API from torch # N.B.: Remove the following block as HF Accelerator by default puts # the model to the device corresponding to LOCAL_RANK. It's better # to use CUDA_VISIBLE_DEVICES and cuda:0 if HF Accelerator can avoid # using local_rank as the device id. """ os.environ["CUDA_VISIBLE_DEVICES"] = f"{local_rank}" assert torch.cuda.device_count() == 1, ( "SPMD Trainer expects 1 visible device per process, but saw " f"{torch.cuda.device_count()} devices." ) """ torch.cuda.set_device(self.local_rank) world_size = int(os.getenv("WORLD_SIZE", -1)) rank = int(os.getenv("RANK", -1)) assert self.local_rank != -1 and world_size != -1 and rank != -1, ( "Failed to retrieve SPMD configurations from environment " f"variables. local_rank={self.local_rank}, world_size={world_size}, " f"rank={rank}." ) # TODO: hardcode NCCL for now, make this configurable if necessary dist.init_process_group("nccl", init_method=self.args.dist_url, rank=rank, world_size=world_size) else: raise ValueError(f"Unrecognized distributed training mode {self.mode}") def measure(self): niters = self.DEFAULT_MEASURE_ITERATIONS # TODO: using dummy data for now to rule out dataloader delays batch = self.e2e_benchmark.next_batch() ###################################### # 1. warming up CUDACachingAllocator # ###################################### for _ in range(self.DEFAULT_MEASURE_ITERATIONS): with nested(*self.e2e_benchmark.run_contexts): loss = self.e2e_benchmark.run_forward(batch) self.e2e_benchmark.run_backward(loss) self.e2e_benchmark.run_optimizer_step() # wait for all pending CUDA ops to finish torch.cuda.synchronize(device=self.local_rank) now = datetime.now() name = f"{type(self).__name__}_{now.strftime('%Y_%m_%d_%H_%M_%S')}" ################################################################## # 2. measure raw delays and memory to rule out profiler overhead # ################################################################## events_pre_fwd = [Event(enable_timing=True) for _ in range(niters)] events_pre_bwd = [Event(enable_timing=True) for _ in range(niters)] events_pre_opt = [Event(enable_timing=True) for _ in range(niters)] events_post_opt = [Event(enable_timing=True) for _ in range(niters)] with nested(*self.e2e_benchmark.run_contexts): for i in range(niters): events_pre_fwd[i].record() loss = self.e2e_benchmark.run_forward(batch) events_pre_bwd[i].record() self.e2e_benchmark.run_backward(loss) events_pre_opt[i].record() self.e2e_benchmark.run_optimizer_step() events_post_opt[i].record() # wait for all pending CUDA ops to finish torch.cuda.synchronize(device=self.local_rank) delays_fwd = [pre.elapsed_time(post) for pre, post in zip(events_pre_fwd, events_pre_bwd)] delays_bwd = [pre.elapsed_time(post) for pre, post in zip(events_pre_bwd, events_pre_opt)] delays_opt = [pre.elapsed_time(post) for pre, post in zip(events_pre_opt, events_post_opt)] mean_fwd = float(sum(delays_fwd)) / len(delays_fwd) stdev_fwd = stdev(delays_fwd) mean_bwd = float(sum(delays_bwd)) / len(delays_bwd) stdev_bwd = stdev(delays_bwd) mean_opt = float(sum(delays_opt)) / len(delays_opt) stdev_opt = stdev(delays_opt) iter_time = events_pre_fwd[0].elapsed_time(events_post_opt[-1]) / niters # write results delay_dir = f"{self.args.job_dir}/delay" Path(delay_dir).mkdir(parents=True, exist_ok=True) fout = open(f"{delay_dir}/{name}.log", "w") fout.write( f"{mean_fwd:.2f}, {stdev_fwd:.2f}, " f"{mean_bwd:.2f}, {stdev_bwd:.2f}, " f"{mean_opt:.2f}, {stdev_opt:.2f}\n" ) fout.close() if self.args.profiler: # N.B.: disable PyTorch Profiler by default due to # https://github.com/pytorch/pytorch/issues/75369 ################################################ # 3. meausre complete metrics through profiler # ################################################ with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, # Causes seg fault in export_chrome_trace with_stack=True, # Causes seg fault with EFA with_flops=True, # Causes seg fault in export_chrome_trace on_trace_ready=tensorboard_trace_handler( f"{self.args.job_dir}/tb/{name}", self.rank, use_gzip=True, ) ): for i in range(niters): loss = self.e2e_benchmark.run_forward(batch) self.e2e_benchmark.run_backward(loss) self.e2e_benchmark.run_optimizer_step() # wait for all pending CUDA ops to finish torch.cuda.synchronize(device=self.local_rank) # wait for all peers to finish dist.barrier(device_ids=[self.local_rank]) return { "iter" : iter_time, "fwd_mean" : mean_fwd, "fwd_stdev" : stdev_fwd, "bwd_mean" : mean_bwd, "bwd_stdev" : stdev_bwd, "opt_mean" : mean_opt, "opt_stdev" : stdev_opt, } def teardown(self): if self.mode == "SPMD": dist.destroy_process_group()
from datetime import datetime import os from pathlib import Path from statistics import stdev from typing import Optional import numpy as np import torch from torch.cuda import Event from torch.profiler import profile, ProfilerActivity, schedule, tensorboard_trace_handler from torchbenchmark.util.env_check import same from torchbenchmark.util.model import BenchmarkModel import torch.distributed as dist class Trainer(): DEFAULT_MEASURE_ITERATIONS = 10 PROFILE_ITERATIONS = 2 def __init__(self, args, model_class, mode="SPMD", model_args=None): self.args = args self.model_args = model_args self.model_class = model_class self.mode = mode self.local_rank = int(os.getenv("LOCAL_RANK", -1)) self.global_rank = int(os.getenv("RANK", -1)) self.setup() # specify the name of the distributed trainer extra_args = [ "--distributed", self.args.distributed, ] extra_args.extend(model_args) batch_size = getattr(args, "batch_size", None) # create model instance after Trainer setup, so that # visible devices won't be revised in model constructor self.benchmark: BenchmarkModel = model_class(test="train", device="cuda", batch_size=batch_size, extra_args=extra_args) # options: "reference" or "test" self.check_correctness_distributed : Optional[str] = getattr(args, "check_correctness_distributed", None) self.reference_data_path : Optional[str] = getattr(args, "reference_data_path", None) # reduce iterations to speed up the tests if self.check_correctness_distributed: self.DEFAULT_MEASURE_ITERATIONS = 2 self.rank = dist.get_rank() def setup(self): if self.mode == "SPMD": # set the visible devices so that each SPMD process only sees one # CUDA device # N.B.: this has to be done before using any CUDA API from torch # N.B.: Remove the following block as HF Accelerator by default puts # the model to the device corresponding to LOCAL_RANK. It's better # to use CUDA_VISIBLE_DEVICES and cuda:0 if HF Accelerator can avoid # using local_rank as the device id. """ os.environ["CUDA_VISIBLE_DEVICES"] = f"{local_rank}" assert torch.cuda.device_count() == 1, ( "SPMD Trainer expects 1 visible device per process, but saw " f"{torch.cuda.device_count()} devices." ) """ torch.cuda.set_device(self.local_rank) world_size = int(os.getenv("WORLD_SIZE", -1)) rank = int(os.getenv("RANK", -1)) assert self.local_rank != -1 and world_size != -1 and rank != -1, ( "Failed to retrieve SPMD configurations from environment " f"variables. local_rank={self.local_rank}, world_size={world_size}, " f"rank={rank}." ) # TODO: hardcode NCCL for now, make this configurable if necessary dist.init_process_group("nccl", init_method=self.args.dist_url, rank=rank, world_size=world_size) else: raise ValueError(f"Unrecognized distributed training mode {self.mode}") def measure(self): niters = self.DEFAULT_MEASURE_ITERATIONS correctness = None if self.check_correctness_distributed is not None: self.benchmark.invoke() if self.global_rank == 0: grad_params = {} for name, param in self.benchmark.model.named_parameters(): if param.requires_grad: if param.grad is not None: grad_params[name + ".grad"] = param.grad.cpu() else: grad_params[name + ".grad"] = None if self.check_correctness_distributed == "reference": with open(self.reference_data_path, "wb") as f: torch.save(grad_params, f) elif self.check_correctness_distributed == "test": with open(self.reference_data_path, "rb") as f: ref_params = torch.load(f) def do_correctness_check(): correctness = True for ref_name, ref_param in ref_params.items(): if ref_name not in grad_params: correctness = False print(f"correctness failure: {ref_name} in reference params but not in test params") test_param = grad_params[ref_name] atol = rtol = 1e-4 if not same(test_param, ref_param, cos_similarity=False, atol=atol*40, rtol=rtol*40): correctness=False print(f"correctness failure: Test model differs from reference model in parameter: {ref_name}") for test_name, test_param in grad_params.items(): if test_name not in ref_params: correctness = False print(f"correctness failure: {test_name} in reference params but not in ref params") return correctness correctness = do_correctness_check() ###################################### # 1. warming up CUDACachingAllocator # ###################################### for _ in range(self.DEFAULT_MEASURE_ITERATIONS): self.benchmark.invoke() torch.cuda.reset_peak_memory_stats() self.benchmark.invoke() # wait for all pending CUDA ops to finish torch.cuda.synchronize(device=self.local_rank) max_memory = torch.cuda.max_memory_allocated(device=self.local_rank) now = datetime.now() name = f"{type(self).__name__}_{now.strftime('%Y_%m_%d_%H_%M_%S')}" ################################################################## # 2. measure raw delays and memory to rule out profiler overhead # ################################################################## events_pre_train = [Event(enable_timing=True) for _ in range(niters)] events_post_train = [Event(enable_timing=True) for _ in range(niters)] for i in range(niters): events_pre_train[i].record() self.benchmark.invoke() events_post_train[i].record() # wait for all pending CUDA ops to finish torch.cuda.synchronize(device=self.local_rank) latency_train = [pre.elapsed_time(post) for pre, post in zip(events_pre_train, events_post_train)] median_latency = np.median(latency_train) stdev_latency = stdev(latency_train) if self.args.profiler: # N.B.: disable PyTorch Profiler by default due to # https://github.com/pytorch/pytorch/issues/75369 ################################################ # 3. meausre complete metrics through profiler # ################################################ wait_runs = 2 warmup_runs = 2 with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, # Causes seg fault in export_chrome_trace with_stack=True, # Causes seg fault with EFA with_flops=True, # Causes seg fault in export_chrome_trace on_trace_ready=tensorboard_trace_handler( f"{self.args.job_dir}/tb/{name}", self.rank, use_gzip=True, ), schedule=schedule(wait=wait_runs, warmup=warmup_runs, active=self.PROFILE_ITERATIONS), ) as profiler: for i in range(self.PROFILE_ITERATIONS + warmup_runs + wait_runs): self.benchmark.invoke() profiler.step() # wait for all pending CUDA ops to finish torch.cuda.synchronize(device=self.local_rank) # wait for all peers to finish dist.barrier(device_ids=[self.local_rank]) return { "latency_median" : median_latency, "latency_stdev" : stdev_latency, "max_memory" : max_memory, **({"correctness": correctness} if correctness is not None else {}), } def teardown(self): if self.mode == "SPMD": dist.destroy_process_group()
from io import UnsupportedOperation import os import torch from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed.fsdp import FullyShardedDataParallel as FSDP def apply_trainer(model, trainer): local_rank = int(os.getenv("LOCAL_RANK", -1)) if trainer == "ddp" or trainer == "ddp_no_static_graph": static_graph = (trainer == "ddp") ddp_model = DDP( model, device_ids=[local_rank], # If buffer broadcast is necessary, specific optimizations might be # necessary to optimize performance. Disable it by default. broadcast_buffers=False, # Set gradient as bucket view to avoid unnecessary copies gradient_as_bucket_view=True, # TODO: tune bucket_cap_mb static_graph=static_graph, ) return ddp_model elif trainer == "fsdp": fsdp_model = FSDP( model, device_id = torch.cuda.current_device() ) return fsdp_model raise UnsupportedOperation(f"Only DDP, FSDP are currently supported, but tried to use {trainer}")
import torch import argparse from torchbenchmark.util.backends import create_backend from typing import List def parse_torchscript_args(args: List[str]) -> argparse.Namespace: parser = argparse.ArgumentParser() # enable ofi by default parser.add_argument("--no-ofi", action='store_true', help="disable optimize_for_inference") parser.add_argument("--fuser", type=str, default="", choices=["fuser0", "fuser1", "fuser2", "fuser3"], help="enable fuser") args, unknown_args = parser.parse_known_args(args) return args, unknown_args @create_backend def torchscript(model: 'torchbenchmark.util.model.BenchmarkModel', backend_args: List[str]): model.jit = True backend_args, extra_args = parse_torchscript_args(backend_args) if model.device == "cpu" and backend_args.fuser == "fuser2": raise NotImplementedError(f"{backend_args.fuser} only works with GPU.") if model.test != "eval" and backend_args.fuser == "fuser3": raise NotImplementedError(f"{backend_args.fuser} only works with eval mode.") if backend_args.fuser: model.add_context(lambda: torch.jit.fuser(backend_args.fuser)) def _torchscript(): # customized jit callback function if hasattr(model, 'jit_callback'): if backend_args.no_ofi: raise NotImplementedError("Customized jit callback doesn't support options.") model.jit_callback() return module, example_inputs = model.get_module() if hasattr(torch.jit, '_script_pdt'): module = torch.jit._script_pdt(module, example_inputs=[example_inputs, ]) else: module = torch.jit.script(module, example_inputs=[example_inputs, ]) if model.test == "eval" and not backend_args.no_ofi: if backend_args.fuser != "fuser3": module = torch.jit.optimize_for_inference(module) else: module = torch.jit.freeze(module) model.set_module(module) return _torchscript, extra_args
import os import argparse import torch from torchbenchmark.util.backends import create_backend from typing import List, Tuple try: from fx2ait.acc_tracer import acc_tracer from fx2ait.ait_module import AITModule from fx2ait.fx2ait import AITInterpreter except: # if fx2ait is not available, skip it. pass def parse_ait_args(args: List[str]) -> Tuple[argparse.Namespace, List[str]]: parser = argparse.ArgumentParser() parser.add_argument("--use_cuda_graph", action='store_true', help="enable CUDA Graph") args, unknown_args = parser.parse_known_args(args) return args, unknown_args @create_backend def fx2ait(model: 'torchbenchmark.util.model.BenchmarkModel', backend_args: List[str]): AIT_WORK_PATH = os.path.join("/tmp", ".torchbench", "ait") assert model.dargs.precision == "fp16", f"AITemplate only support float16 precision, but get {model.dargs.precision}" OSS_AITModel = False try: # Load Non-OSS torch.ops.load_library("//deeplearning/ait:AITModel") except Exception: torch.ops.load_library("build/libait_model.so") OSS_AITModel = True ait_options, extra_args = parse_ait_args(backend_args) def _ait(): mod, inputs = model.get_module() traced = acc_tracer.trace(mod, inputs) interp = AITInterpreter(traced, inputs, AIT_WORK_PATH, "logs") interp_result = interp.run() ctor = torch.classes.ait.AITModel if OSS_AITModel else torch.classes.fb.AITModel ait_mod = AITModule( ctor( interp_result.engine.lib_path, interp_result.input_names, interp_result.output_names, torch.float16, torch.float16, 1, # num_runtimes ), interp_result, ) ait_mod.engine.use_cuda_graph = ait_options.use_cuda_graph return _ait, extra_args
""" Support TorchDynamo(https://github.com/facebookresearch/torchdynamo) backends """ import argparse import contextlib import distutils.util from typing import List import torch import torch._dynamo as torchdynamo from torchbenchmark.util.model import is_staged_train_test def parse_torchdynamo_args(model: 'torchbenchmark.util.model.BenchmarkModel', dynamo_args: List[str]) -> argparse.Namespace: parser = argparse.ArgumentParser() available_backends = torchdynamo.list_backends(exclude_tags=None) parser.add_argument( "--torchdynamo", choices=available_backends, help="Specify torchdynamo backends" ) parser.add_argument( "--tritonmm", type=str, help="torchinductor.config.triton.mm configuration" ) parser.add_argument( "--dynamic_shapes", action='store_true', help="dynamic shape and symbolic tracing", ) parser.add_argument( "--pt2_debug_log", action='store_true', help="enable debug log for PT2 (dynamo, inductor, AOTAutograd)", ) parser.add_argument( "--full_graph", action='store_true', help="capture full graph and no python", ) parser.add_argument( "--optimize_dynamo_ddp", action='store_true', help="enable extra optimizations for DDP + dynamo" ) parser.add_argument( "--torchinductor_cudagraph", type=distutils.util.strtobool, default="true", ) parser.add_argument( "--torchinductor_fallback_random", type=distutils.util.strtobool, default="false", ) parser.add_argument( "--dynamo_disable_optimizer_step", type=distutils.util.strtobool, default="false", ) args, extra_args = parser.parse_known_args(dynamo_args) return args, extra_args def apply_torchdynamo_args(model: 'torchbenchmark.util.model.BenchmarkModel', args: argparse.Namespace, precision: str): if args.torchdynamo == "fx2trt" and precision == "fp16": dynamo_optimizer = torchdynamo.optimize(torchdynamo.optimizations.backends.fx2trt_compiler_fp16) else: dynamo_kwargs = {} if args.dynamic_shapes: dynamo_kwargs["dynamic"] = True if args.full_graph: dynamo_kwargs["nopython"] = True dynamo_optimizer = torchdynamo.optimize(args.torchdynamo, **dynamo_kwargs) if args.pt2_debug_log: import logging torch._logging.set_logs(dynamo=logging.DEBUG, inductor=logging.DEBUG, aot=logging.DEBUG) if args.torchdynamo == "inductor": import torch._inductor as torchinductor torchinductor.config.triton.cudagraphs = bool(args.torchinductor_cudagraph) # Setup torchinductor.config.triton.mm if args.tritonmm == "triton": torchinductor.config.triton.mm = "triton" # currently can't pass correctness with use_bmm = True # torchinductor.config.triton.use_bmm = True # used for correctness checks, to avoid triton rand() behaving differently from torch rand(). torchinductor.config.fallback_random = bool(args.torchinductor_fallback_random) if bool(args.dynamo_disable_optimizer_step): found_optimizer_step = False try: model.cfg.optimizer.step = torch._dynamo.disable(model.cfg.optimizer.step) found_optimizer_step = True except AttributeError: pass try: model.optimizer.step = torch._dynamo.disable(model.optimizer.step) found_optimizer_step = True except AttributeError: pass if not found_optimizer_step: warnings.warn("--dynamo_disable_optimizer_step is set to True, but the optimizer could not be found on this model") if model.test == "train": if is_staged_train_test(model): model.forward = dynamo_optimizer(model.forward) else: model.train = dynamo_optimizer(model.train) else: model.eval = dynamo_optimizer(model.eval) if args.optimize_dynamo_ddp: @contextlib.contextmanager def optimize_ddp_ctx(val: bool): old_value = torchdynamo.config.optimize_ddp try: torchdynamo.config.optimize_ddp = val yield finally: torchdynamo.config.optimize_ddp = old_value model.add_context(lambda: optimize_ddp_ctx(True)) torchdynamo.reset()
""" Utils for managing backends """ import functools BACKENDS = dict() def create_backend(fn): @functools.wraps(fn) def inner(model: 'torchbenchmark.util.model.BenchmarkModel', **kwargs): if model is None: return None try: return fn(model, **kwargs) except KeyboardInterrupt: raise except Exception as e: print(f"{fn.__name__} error: {e}") raise BACKENDS[fn.__name__] = inner return inner def list_backends(): """ Return valid strings that can be passed to: @torchdynamo.optimize(<backend>) def foo(...): .... """ return sorted(BACKENDS.keys()) # register the backends from .jit import torchscript from .ait import fx2ait from .trt import fx2trt, torch_trt from .cudagraph import cudagraph __all__ = [list_backends, create_backend ]
import torch from torchbenchmark.util.backends import create_backend from typing import List WARMUP_ITER = 3 @create_backend def cudagraph(model: 'torchbenchmark.util.model.BenchmarkModel', backend_args: List[str]): cudagraph_func_name = f"cudagraph_{model.test}" assert hasattr(model, cudagraph_func_name), f"CUDA Graph only works on models implement {cudagraph_func_name}()" if model.test == "train": assert hasattr(model, "SKIP_ZERO_GRAD"), f"The model must support skipping zero grad in its train test." def _cudagraph(): # CUDAGraph can't be copied/pickled, disable copying in correctness checking model.DEEPCOPY = False model.SKIP_ZERO_GRAD = True # warmup s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): for _ in range(WARMUP_ITER): if model.test == "train": model.opt.zero_grad(set_to_none=True) model.invoke() torch.cuda.current_stream().wait_stream(s) # capture cuda_graph = torch.cuda.CUDAGraph() if model.test == "train": model.opt.zero_grad(set_to_none=True) with torch.cuda.graph(cuda_graph): model.invoke() model.g = cuda_graph if model.test == "train": model.train = getattr(model, cudagraph_func_name) elif model.test == "eval": model.eval = getattr(model, cudagraph_func_name) else: assert False, f"Expected model test train or eval, get {model.test}" return _cudagraph, backend_args
# By default, FlopCountAnalysis count one fused-mult-add (FMA) as one flop. # However, in our context, we count 1 FMA as 2 flops instead of 1. # https://github.com/facebookresearch/fvcore/blob/7a0ef0c0839fa0f5e24d2ef7f5d48712f36e7cd7/fvcore/nn/flop_count.py def enable_fvcore_flops(model: 'torchbenchmark.util.model.BenchmarkModel', flops_fma=2.0): assert hasattr(model, 'TORCHVISION_MODEL') and model.TORCHVISION_MODEL, "fvcore flops is only available on torchvision models!" assert model.test == "eval", "fvcore flops is only available on inference tests, as it doesn't measure backward pass." from fvcore.nn import FlopCountAnalysis model.flops = FlopCountAnalysis(model.model, tuple(model.example_inputs)).total() model.flops = model.flops / model.batch_size * flops_fma
from typing import List import torch from torchbenchmark.util.backends import create_backend from torchbenchmark.util.env_check import is_hf_model @create_backend def fx2trt(model: 'torchbenchmark.util.model.BenchmarkModel', backend_args: List[str]): FP16 = True if model.dargs.precision == "fp16" else False HF_MODEL = True if is_hf_model(model) else False assert model.device == "cuda" and model.test == "eval", f"fx2trt only works on CUDA inference tests." def _fx2trt(): from torch_tensorrt.fx import compile from torch_tensorrt.fx.utils import LowerPrecision module, example_inputs = model.get_module() precision = LowerPrecision.FP16 if FP16 else LowerPrecision.FP32 if HF_MODEL: from transformers.utils.fx import symbolic_trace as hf_symbolic_trace traced_model = hf_symbolic_trace( module, batch_size = model.batch_size, sequence_lenghth = model.max_length ) trt_model = compile( traced_model, example_inputs, max_batch_size=model.batch_size, lower_precision=precision, explicit_batch_dimension=True, max_workspace_size=20 << 30, ) else: trt_model = compile(module=module, input=example_inputs, max_batch_size=model.batch_size, lower_precision=precision) model.set_module(trt_model) return _fx2trt, backend_args @create_backend def torch_trt(model: 'torchbenchmark.util.model.BenchmarkModel', backend_args: List[str]): FP16 = True if model.dargs.precision == "fp16" else False assert model.device == "cuda" and model.test == "eval", f"fx2trt only works on CUDA inference tests." def _torch_trt(): import torch_tensorrt module, example_inputs = model.get_module() if FP16: torchtrt_dtype = torch_tensorrt.dtype.half torch_dtype = torch.half else: torchtrt_dtype = torch_tensorrt.dtype.float torch_dtype = torch.float32 trt_input = [torch_tensorrt.Input(shape=example_inputs[0].shape, dtype=torch_dtype)] trt_module = torch_tensorrt.compile(module, inputs=trt_input, enabled_precisions=torchtrt_dtype) model.set_module(trt_module) return _torch_trt, backend_args
""" Utilities to measure metrics of a model. """ import torch import time import dataclasses from torchbenchmark.util.model import BenchmarkModel from torchbenchmark import ModelTask from typing import List, Union, Tuple, Optional WARMUP_ROUNDS = 10 BENCHMARK_ITERS = 15 MEMPROF_ITER = 2 NANOSECONDS_PER_MILLISECONDS = 1_000_000.0 @dataclasses.dataclass class TorchBenchModelMetrics: latencies: List[float] cpu_peak_mem: Optional[float] gpu_peak_mem: Optional[float] def get_latencies(func, device: str, nwarmup=WARMUP_ROUNDS, num_iter=BENCHMARK_ITERS) -> List[float]: "Run one step of the model, and return the latency in milliseconds." # Warm-up `nwarmup` rounds for _i in range(nwarmup): func() result_summary = [] for _i in range(num_iter): if device == "cuda": torch.cuda.synchronize() # Collect time_ns() instead of time() which does not provide better precision than 1 # second according to https://docs.python.org/3/library/time.html#time.time. t0 = time.time_ns() func() torch.cuda.synchronize() # Wait for the events to be recorded! t1 = time.time_ns() else: t0 = time.time_ns() func() t1 = time.time_ns() result_summary.append((t1 - t0) / NANOSECONDS_PER_MILLISECONDS) return result_summary def get_peak_memory(func, device: str, num_iter=MEMPROF_ITER, export_metrics_file='', metrics_needed=[], metrics_gpu_backend='dcgm', cpu_monitored_pid=None) -> Tuple[Optional[float], Optional[str], Optional[float]]: "Run one step of the model, and return the peak memory in MB." from components.model_analyzer.TorchBenchAnalyzer import ModelAnalyzer new_metrics_needed = [_ for _ in metrics_needed if _ in ['cpu_peak_mem', 'gpu_peak_mem']] if not new_metrics_needed: raise ValueError(f"Expected metrics_needed to be non-empty, get: {metrics_needed}") mem_model_analyzer = ModelAnalyzer(export_metrics_file, new_metrics_needed, metrics_gpu_backend, cpu_monitored_pid) continue_num_iter = BENCHMARK_ITERS - num_iter def work_func(): if device == "cuda": torch.cuda.synchronize() func() torch.cuda.synchronize() else: func() t0 = time.time_ns() work_func() t1 = time.time_ns() # if total execution time is less than 15ms, we run the model for BENCHMARK_ITERS times # to get more accurate peak memory if (t1 - t0) < 15 * NANOSECONDS_PER_MILLISECONDS: num_iter = BENCHMARK_ITERS else: num_iter = MEMPROF_ITER mem_model_analyzer.start_monitor() for _i in range(num_iter): work_func() mem_model_analyzer.stop_monitor() mem_model_analyzer.aggregate() device_id = None gpu_peak_mem = None cpu_peak_mem = None if 'gpu_peak_mem' in metrics_needed: device_id, gpu_peak_mem = mem_model_analyzer.calculate_gpu_peak_mem() if 'cpu_peak_mem' in metrics_needed: cpu_peak_mem = mem_model_analyzer.calculate_cpu_peak_mem() if export_metrics_file: mem_model_analyzer.update_export_name("_peak_memory") mem_model_analyzer.export_all_records_to_csv() return cpu_peak_mem, device_id, gpu_peak_mem def get_model_test_metrics(model: Union[BenchmarkModel, ModelTask], metrics= [], export_metrics_file= False, metrics_gpu_backend='nvml') -> TorchBenchModelMetrics: latencies = None cpu_peak_mem = None gpu_peak_mem = None if not (isinstance(model, BenchmarkModel) or isinstance(model, ModelTask)): raise ValueError(f"Expected BenchmarkModel or ModelTask, get type: {type(model)}") device = model.device if isinstance(model, BenchmarkModel) else model.get_model_attribute("device") if 'latencies' in metrics: latencies = get_latencies(model.invoke, device) if 'cpu_peak_mem' in metrics or 'gpu_peak_mem' in metrics: cpu_peak_mem, _device_id, gpu_peak_mem = get_peak_memory(model.invoke, device, export_metrics_file=export_metrics_file, metrics_needed=metrics, metrics_gpu_backend=metrics_gpu_backend, cpu_monitored_pid=model.worker.proc_pid()) return TorchBenchModelMetrics(latencies, cpu_peak_mem, gpu_peak_mem)
""" Utilities to instantiate TorchBench models in the same process or child process. Functions in this file don't handle exceptions. They expect callers handle all exceptions. """ import os import importlib import dataclasses from typing import Optional, List, Dict from torchbenchmark.util.model import BenchmarkModel from torchbenchmark import _list_model_paths, ModelTask WORKER_TIMEOUT = 600 # seconds BS_FIELD_NAME = "batch_size" @dataclasses.dataclass class TorchBenchModelConfig: name: str device: str test: str batch_size: Optional[int] jit: bool extra_args: List[str] extra_env: Optional[Dict[str, str]] = None def _set_extra_env(extra_env): if not extra_env: return for env_key in extra_env: os.environ[env_key] = extra_env[env_key] def inject_model_invoke(model_task: ModelTask, inject_function): model_task.replace_invoke(inject_function.__module__, inject_function.__name__) def load_model_isolated(config: TorchBenchModelConfig, timeout: float=WORKER_TIMEOUT) -> ModelTask: """ Load and return the model in a subprocess. """ task = ModelTask(config.name, timeout=timeout, extra_env=config.extra_env) if not task.model_details.exists: raise ValueError(f"Failed to import model task: {config.name}. Please run the model manually to make sure it succeeds, or report a bug.") task.make_model_instance(test=config.test, device=config.device, jit=config.jit, batch_size=config.batch_size, extra_args=config.extra_args) task_batch_size = task.get_model_attribute(BS_FIELD_NAME) # check batch size if config.batch_size and (not config.batch_size == task_batch_size): raise ValueError(f"User specify batch size {config.batch_size}," + f"but model {task.name} runs with batch size {task_batch_size}. Please report a bug.") return task def load_model(config: TorchBenchModelConfig) -> BenchmarkModel: """Load and return a model instance in the same process. """ package = "torchbenchmark" module = importlib.import_module(f'.models.{config.name}', package=package) Model = getattr(module, 'Model', None) if not Model: raise ValueError(f"Error: {module} does not define attribute Model.") model_instance = Model(test=config.test, device=config.device, batch_size=config.batch_size, jit=config.jit, extra_args=config.extra_args) # check name if not model_instance.name == config.name: raise ValueError(f"Required model {config.name}, loaded {model_instance.name}.") # check batch size if config.batch_size and (not config.batch_size == model_instance.batch_size): raise ValueError(f"User specify batch size {config.batch_size}," + f"but model {model_instance.name} runs with batch size {model_instance.batch_size}. Please report a bug.") _set_extra_env(config.extra_env) return model_instance def list_devices() -> List[str]: """Return a list of available devices.""" devices = ["cpu"] import torch if torch.cuda.is_available(): devices.append("cuda") return devices def list_tests() -> List[str]: """Return a list of available tests.""" return ["train", "eval"] def list_models() -> List[str]: """Return a list of names of all TorchBench models""" model_paths = _list_model_paths() model_names = list(map(lambda x: os.path.basename(x), model_paths)) return model_names
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 2 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(name="hf_BigBird", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import dataclasses @dataclasses.dataclass class DRQConfig: env = "cartpole_swingup" # IMPORTANT: if action_repeat is used the effective number of env steps needs to be # multiplied by action_repeat in the result graphs. # This is a common practice for a fair comparison. # See the 2nd paragraph in Appendix C of SLAC: https://arxiv.org/pdf/1907.00953.pdf # See Dreamer TF2's implementation: https://github.com/danijar/dreamer/blob/02f0210f5991c7710826ca7881f19c64a012290c/dreamer.py#L340 action_repeat = 4 # train num_train_steps = 1 num_train_iters = 1 # num_seed_steps can't be zero # and steps in train must be bigger than num_seed_steps num_seed_steps = 1 replay_buffer_capacity = 100000 seed = 1 # eval eval_frequency = 5000 # observation image_size = 84 image_pad = 4 frame_stack = 3 # global params lr = 1e-3 # IMPORTANT: please use a batch size of 512 to reproduce the results in the paper. Hovewer, with a smaller batch size it still works well. batch_size = 128 # Agent configurations discount = 0.99 init_temperature = 0.1 actor_update_frequency = 2 critic_tau = 0.01 critic_target_update_frequency = 2 # Actor configurations hidden_dim = 1024 hidden_depth = 2 log_std_bounds = [-10, 2] # Encoder configurations feature_dim = 50 # obs data, relative to __file__ obs_path = "obs.pkl"
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import copy import math from . import utils class Encoder(nn.Module): """Convolutional encoder for image-based observations.""" def __init__(self, obs_shape, feature_dim): super().__init__() assert len(obs_shape) == 3 self.num_layers = 4 self.num_filters = 32 self.output_dim = 35 self.output_logits = False self.feature_dim = feature_dim self.convs = nn.ModuleList([ nn.Conv2d(obs_shape[0], self.num_filters, 3, stride=2), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1) ]) self.head = nn.Sequential( nn.Linear(self.num_filters * 35 * 35, self.feature_dim), nn.LayerNorm(self.feature_dim)) self.outputs = dict() def forward_conv(self, obs): obs = obs / 255. self.outputs['obs'] = obs conv = torch.relu(self.convs[0](obs)) self.outputs['conv1'] = conv for i in range(1, self.num_layers): conv = torch.relu(self.convs[i](conv)) self.outputs['conv%s' % (i + 1)] = conv # Changed view to reshape here to support channels last input # TODO: upstream this change to https://github.com/denisyarats/drq/blob/master/drq.py#L48 h = conv.reshape(conv.size(0), -1) return h def forward(self, obs, detach=False): h = self.forward_conv(obs) if detach: h = h.detach() out = self.head(h) if not self.output_logits: out = torch.tanh(out) self.outputs['out'] = out return out def copy_conv_weights_from(self, source): """Tie convolutional layers""" for i in range(self.num_layers): utils.tie_weights(src=source.convs[i], trg=self.convs[i]) def log(self, logger, step): pass class Actor(nn.Module): """torch.distributions implementation of an diagonal Gaussian policy.""" def __init__(self, encoder_cfg, action_shape, hidden_dim, hidden_depth, log_std_bounds): super().__init__() self.encoder = Encoder(*encoder_cfg) self.log_std_bounds = log_std_bounds self.trunk = utils.mlp(self.encoder.feature_dim, hidden_dim, 2 * action_shape[0], hidden_depth) self.outputs = dict() self.apply(utils.weight_init) def forward(self, obs, detach_encoder=False): obs = self.encoder(obs, detach=detach_encoder) mu, log_std = self.trunk(obs).chunk(2, dim=-1) # constrain log_std inside [log_std_min, log_std_max] log_std = torch.tanh(log_std) log_std_min, log_std_max = self.log_std_bounds log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) std = log_std.exp() self.outputs['mu'] = mu self.outputs['std'] = std dist = utils.SquashedNormal(mu, std) return dist def log(self, logger, step): pass class Critic(nn.Module): """Critic network, employes double Q-learning.""" def __init__(self, encoder_cfg, action_shape, hidden_dim, hidden_depth): super().__init__() self.encoder = Encoder(*encoder_cfg) self.Q1 = utils.mlp(self.encoder.feature_dim + action_shape[0], hidden_dim, 1, hidden_depth) self.Q2 = utils.mlp(self.encoder.feature_dim + action_shape[0], hidden_dim, 1, hidden_depth) self.outputs = dict() self.apply(utils.weight_init) def forward(self, obs, action, detach_encoder=False): assert obs.size(0) == action.size(0) obs = self.encoder(obs, detach=detach_encoder) obs_action = torch.cat([obs, action], dim=-1) q1 = self.Q1(obs_action) q2 = self.Q2(obs_action) self.outputs['q1'] = q1 self.outputs['q2'] = q2 return q1, q2 def log(self, logger, step): pass class DRQAgent(object): """Data regularized Q: actor-critic method for learning from pixels.""" def __init__(self, cfg, device, obs_shape, action_shape, action_range): self.action_range = action_range self.device = torch.device(device) self.discount = cfg.discount self.critic_tau = cfg.critic_tau self.actor_update_frequency = cfg.actor_update_frequency self.critic_target_update_frequency = cfg.critic_target_update_frequency self.batch_size = cfg.batch_size encoder_cfg = (obs_shape, cfg.feature_dim) self.actor = Actor(encoder_cfg=encoder_cfg, action_shape=action_shape, hidden_dim=cfg.hidden_dim, hidden_depth=cfg.hidden_depth, log_std_bounds=cfg.log_std_bounds).to(self.device) self.critic = Critic(encoder_cfg=encoder_cfg, action_shape=action_shape, hidden_dim=cfg.hidden_dim, hidden_depth=cfg.hidden_depth).to(self.device) self.critic_target = Critic(encoder_cfg=encoder_cfg, action_shape=action_shape, hidden_dim=cfg.hidden_dim, hidden_depth=cfg.hidden_depth).to(self.device) self.critic_target.load_state_dict(self.critic.state_dict()) # tie conv layers between actor and critic self.actor.encoder.copy_conv_weights_from(self.critic.encoder) self.log_alpha = torch.tensor(np.log(cfg.init_temperature)).to(device) self.log_alpha.requires_grad = True # set target entropy to -|A| self.target_entropy = -action_shape[0] # optimizers self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=cfg.lr) self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=cfg.lr) self.train() self.critic_target.train() def train(self, training=True): self.training = training self.actor.train(training) self.critic.train(training) @property def alpha(self): return self.log_alpha.exp() def act(self, obs, sample=False): obs = torch.FloatTensor(obs).to(self.device) obs = obs.unsqueeze(0) dist = self.actor(obs) action = dist.sample() if sample else dist.mean action = action.clamp(*self.action_range) assert action.ndim == 2 and action.shape[0] == 1 return utils.to_np(action[0]) def update_critic(self, obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step): with torch.no_grad(): dist = self.actor(next_obs) next_action = dist.rsample() log_prob = dist.log_prob(next_action).sum(-1, keepdim=True) target_Q1, target_Q2 = self.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) - self.alpha.detach() * log_prob target_Q = reward + (not_done * self.discount * target_V) dist_aug = self.actor(next_obs_aug) next_action_aug = dist_aug.rsample() log_prob_aug = dist_aug.log_prob(next_action_aug).sum(-1, keepdim=True) target_Q1, target_Q2 = self.critic_target(next_obs_aug, next_action_aug) target_V = torch.min( target_Q1, target_Q2) - self.alpha.detach() * log_prob_aug target_Q_aug = reward + (not_done * self.discount * target_V) target_Q = (target_Q + target_Q_aug) / 2 # get current Q estimates current_Q1, current_Q2 = self.critic(obs, action) critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss( current_Q2, target_Q) Q1_aug, Q2_aug = self.critic(obs_aug, action) critic_loss += F.mse_loss(Q1_aug, target_Q) + F.mse_loss( Q2_aug, target_Q) # logger.log('train_critic/loss', critic_loss, step) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() self.critic.log(logger, step) def update_actor_and_alpha(self, obs, logger, step): # detach conv filters, so we don't update them with the actor loss dist = self.actor(obs, detach_encoder=True) action = dist.rsample() log_prob = dist.log_prob(action).sum(-1, keepdim=True) # detach conv filters, so we don't update them with the actor loss actor_Q1, actor_Q2 = self.critic(obs, action, detach_encoder=True) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (self.alpha.detach() * log_prob - actor_Q).mean() # optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() self.actor.log(logger, step) self.log_alpha_optimizer.zero_grad() alpha_loss = (self.alpha * (-log_prob - self.target_entropy).detach()).mean() alpha_loss.backward() self.log_alpha_optimizer.step() def update(self, replay_buffer, logger, step): obs, action, reward, next_obs, not_done, obs_aug, next_obs_aug = replay_buffer.sample( self.batch_size) self.update_critic(obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step) if step % self.actor_update_frequency == 0: self.update_actor_and_alpha(obs, logger, step) if step % self.critic_target_update_frequency == 0: utils.soft_update_params(self.critic, self.critic_target, self.critic_tau)
import copy import math import pickle as pkl import numpy as np import torch import os import sys import torch.nn as nn from typing import Tuple import torch.nn.functional as F from gym import spaces from ...util.model import BenchmarkModel from torchbenchmark.tasks import REINFORCEMENT_LEARNING from .utils import FrameStack, set_seed_everywhere, eval_mode from .drq import DRQAgent from .config import DRQConfig from .replay_buffer import ReplayBuffer class MockEnv: def __init__(self, obs): self._norm_action_space = spaces.Box( low=-1.0, high=1.0, shape=[1], dtype=np.float32) self._observation_space = spaces.Box( low=0, high=255, shape=[9, 84, 84], dtype=np.uint8 ) self.obs = obs self._max_episode_steps = 250 self.metadata = {'render.modes': []} self.reward_range = (-float('inf'), float('inf')) def step(self, action): reward = 0.0 done = False info_state = [0.016243, 3.1355, -0.0052817, -0.01073] info = dict() info["internal_state"] = info_state info["discount"] = 1.0 return (self.obs, reward, done, info) def seed(self, seed=None): self._norm_action_space.seed(seed) self._observation_space.seed(seed) def reset(self): return self.obs @property def observation_space(self): return self._observation_space @property def action_space(self): return self._norm_action_space def make_env(cfg): if cfg.env == 'ball_in_cup_catch': domain_name = 'ball_in_cup' task_name = 'catch' elif cfg.env == 'point_mass_easy': domain_name = 'point_mass' task_name = 'easy' else: domain_name = cfg.env.split('_')[0] task_name = '_'.join(cfg.env.split('_')[1:]) # per dreamer: https://github.com/danijar/dreamer/blob/02f0210f5991c7710826ca7881f19c64a012290c/wrappers.py#L26 camera_id = 2 if domain_name == 'quadruped' else 0 current_dir = os.path.dirname(os.path.realpath(__file__)) mockobs = pkl.load(open(os.path.join(current_dir, cfg.obs_path), "rb")) low = np.amin(mockobs) high = np.amax(mockobs) mockobs = np.random.randint(low=11, high=228, size=mockobs.shape, dtype=np.uint8) env = MockEnv(mockobs) env = FrameStack(env, k=cfg.frame_stack) env.seed(cfg.seed) assert env.action_space.low.min() >= -1 assert env.action_space.high.max() <= 1 return env class Model(BenchmarkModel): task = REINFORCEMENT_LEARNING.OTHER_RL # Batch size is not adjustable in this model DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False CANNOT_SET_CUSTOM_OPTIMIZER = True # this model will cause infinite loop if deep-copied DEEPCOPY = False def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.cfg = DRQConfig() set_seed_everywhere(self.cfg.seed) self.env = make_env(self.cfg) obs_shape = self.env.observation_space.shape action_shape = self.env.action_space.shape action_range = [ float(self.env.action_space.low.min()), float(self.env.action_space.high.max()) ] self.agent = DRQAgent(self.cfg, self.device, obs_shape, action_shape, action_range) self.replay_buffer = ReplayBuffer(self.env.observation_space.shape, self.env.action_space.shape, self.cfg.replay_buffer_capacity, self.cfg.image_pad, self.device) self.step = 0 def get_module(self): obs = self.env.reset() obs = torch.FloatTensor(obs).to(self.device) obs = obs.unsqueeze(0) return self.agent.actor, (obs, ) def set_module(self, new_model): self.agent.actor = new_model def train(self): episode, episode_reward, episode_step, done = 0, 0, 1, True if True: obs = self.env.reset() done = False episode_reward = 0 episode_step = 0 episode += 1 if self.step < self.cfg.num_seed_steps: action = self.env.action_space.sample() else: with eval_mode(self.agent): action = self.agent.act(obs, sample=True) # run training update if self.step >= self.cfg.num_seed_steps: for _ in range(self.cfg.num_train_iters): self.agent.update(self.replay_buffer, None, self.step) next_obs, reward, done, info = self.env.step(action) # allow infinite bootstrap done = float(done) done_no_max = 0 if episode_step + 1 == self.env._max_episode_steps else done episode_reward += reward self.replay_buffer.add(obs, action, reward, next_obs, done, done_no_max) obs = next_obs episode_step += 1 self.step += 1 def eval(self) -> Tuple[torch.Tensor]: average_episode_reward = 0 steps = 0 if True: obs = self.env.reset() episode_reward = 0 episode_step = 0 with eval_mode(self.agent): action = self.agent.act(obs, sample=False) obs, reward, done, info = self.env.step(action) episode_reward += reward episode_step += 1 average_episode_reward += episode_reward steps += 1 average_episode_reward /= float(steps) return (torch.Tensor(action), )
import math import os import random from collections import deque import numpy as np import scipy.linalg as sp_la import gym import torch import torch.nn as nn import torch.nn.functional as F from skimage.util.shape import view_as_windows from torch import distributions as pyd class eval_mode(object): def __init__(self, *models): self.models = models def __enter__(self): self.prev_states = [] for model in self.models: self.prev_states.append(model.training) model.train(False) def __exit__(self, *args): for model, state in zip(self.models, self.prev_states): model.train(state) return False def soft_update_params(net, target_net, tau): for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def set_seed_everywhere(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def make_dir(*path_parts): dir_path = os.path.join(*path_parts) try: os.mkdir(dir_path) except OSError: pass return dir_path def tie_weights(src, trg): assert type(src) == type(trg) trg.weight = src.weight trg.bias = src.bias def weight_init(m): """Custom weight init for Conv2D and Linear layers.""" if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): gain = nn.init.calculate_gain('relu') nn.init.orthogonal_(m.weight.data, gain) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) def mlp(input_dim, hidden_dim, output_dim, hidden_depth, output_mod=None): if hidden_depth == 0: mods = [nn.Linear(input_dim, output_dim)] else: mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)] for i in range(hidden_depth - 1): mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)] mods.append(nn.Linear(hidden_dim, output_dim)) if output_mod is not None: mods.append(output_mod) trunk = nn.Sequential(*mods) return trunk def to_np(t): if t is None: return None elif t.nelement() == 0: return np.array([]) else: return t.cpu().detach().numpy() class FrameStack(gym.Wrapper): def __init__(self, env, k): gym.Wrapper.__init__(self, env) self._k = k self._frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = gym.spaces.Box( low=0, high=1, shape=((shp[0] * k,) + shp[1:]), dtype=env.observation_space.dtype) self._max_episode_steps = env._max_episode_steps def reset(self): obs = self.env.reset() for _ in range(self._k): self._frames.append(obs) return self._get_obs() def step(self, action): obs, reward, done, info = self.env.step(action) self._frames.append(obs) return self._get_obs(), reward, done, info def _get_obs(self): assert len(self._frames) == self._k return np.concatenate(list(self._frames), axis=0) class TanhTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __init__(self, cache_size=1): super().__init__(cache_size=cache_size) @staticmethod def atanh(x): return 0.5 * (x.log1p() - (-x).log1p()) def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x): return x.tanh() def _inverse(self, y): # We do not clamp to the boundary here as it may degrade the performance of certain algorithms. # one should use `cache_size=1` instead return self.atanh(y) def log_abs_det_jacobian(self, x, y): # We use a formula that is more numerically stable, see details in the following link # https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7 return 2. * (math.log(2.) - x - F.softplus(-2. * x)) class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): def __init__(self, loc, scale): self.loc = loc self.scale = scale self.base_dist = pyd.Normal(loc, scale) transforms = [TanhTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.loc for tr in self.transforms: mu = tr(mu) return mu
import numpy as np import kornia import torch import torch.nn as nn import torch.nn.functional as F class ReplayBuffer(object): """Buffer to store environment transitions.""" def __init__(self, obs_shape, action_shape, capacity, image_pad, device): self.capacity = capacity self.device = device self.aug_trans = nn.Sequential( nn.ReplicationPad2d(image_pad), kornia.augmentation.RandomCrop((obs_shape[-1], obs_shape[-1]))) self.obses = np.empty((capacity, *obs_shape), dtype=np.uint8) self.next_obses = np.empty((capacity, *obs_shape), dtype=np.uint8) self.actions = np.empty((capacity, *action_shape), dtype=np.float32) self.rewards = np.empty((capacity, 1), dtype=np.float32) self.not_dones = np.empty((capacity, 1), dtype=np.float32) self.not_dones_no_max = np.empty((capacity, 1), dtype=np.float32) self.idx = 0 self.full = False def __len__(self): return self.capacity if self.full else self.idx def add(self, obs, action, reward, next_obs, done, done_no_max): np.copyto(self.obses[self.idx], obs) np.copyto(self.actions[self.idx], action) np.copyto(self.rewards[self.idx], reward) np.copyto(self.next_obses[self.idx], next_obs) np.copyto(self.not_dones[self.idx], not done) np.copyto(self.not_dones_no_max[self.idx], not done_no_max) self.idx = (self.idx + 1) % self.capacity self.full = self.full or self.idx == 0 def sample(self, batch_size): x = self.capacity if self.full else self.idx idxs = np.random.randint(0, self.capacity if self.full else self.idx, size=batch_size) obses = self.obses[idxs] next_obses = self.next_obses[idxs] obses_aug = obses.copy() next_obses_aug = next_obses.copy() obses = torch.as_tensor(obses, device=self.device).float() next_obses = torch.as_tensor(next_obses, device=self.device).float() obses_aug = torch.as_tensor(obses_aug, device=self.device).float() next_obses_aug = torch.as_tensor(next_obses_aug, device=self.device).float() actions = torch.as_tensor(self.actions[idxs], device=self.device) rewards = torch.as_tensor(self.rewards[idxs], device=self.device) not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs], device=self.device) obses = self.aug_trans(obses) next_obses = self.aug_trans(next_obses) obses_aug = self.aug_trans(obses_aug) next_obses_aug = self.aug_trans(next_obses_aug) return obses, actions, rewards, next_obses, not_dones_no_max, obses_aug, next_obses_aug
import os import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='regnety_120', device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(model_name="resnet50", test=test, device=device, jit=jit, batch_size=batch_size, weights=models.ResNet50_Weights.IMAGENET1K_V1, extra_args=extra_args)
# Generated by gen_torchvision_benchmark.py import torch import torch.optim as optim import torchvision.models as models from torch.quantization import quantize_fx from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from typing import Tuple class Model(BenchmarkModel): task = COMPUTER_VISION.CLASSIFICATION # Train batch size: 32 # Source: https://openreview.net/pdf?id=B1Yy1BxCZ DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): if test == "eval" and device != "cpu": raise NotImplementedError("The eval test only supports CPU.") if jit and test == "train": raise NotImplementedError("torchscript operations should only be applied after quantization operations") super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.model = models.resnet50().to(self.device) self.example_inputs = (torch.randn((self.batch_size, 3, 224, 224)).to(self.device),) self.prep_qat_train() if self.test == "eval": self.prep_qat_eval() self.optimizer = None def prep_qat_train(self): qconfig_dict = {"": torch.quantization.get_default_qat_qconfig('fbgemm')} self.model.train() self.model = quantize_fx.prepare_qat_fx(self.model, qconfig_dict, self.example_inputs) def get_module(self): return self.model, self.example_inputs def prep_qat_eval(self): self.model = quantize_fx.convert_fx(self.model) self.model.eval() def train(self): if self.get_optimizer() is None: self.set_optimizer(optim.Adam(self.model.parameters())) loss = torch.nn.CrossEntropyLoss() self.optimizer.zero_grad() pred = self.model(*self.example_inputs) y = torch.empty(pred.shape[0], dtype=torch.long, device=self.device).random_(pred.shape[1]) loss(pred, y).backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: model = self.model example_inputs = self.example_inputs example_inputs = example_inputs[0][0].unsqueeze(0) out = model(example_inputs) return (out, )
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.DETECTION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(variant="COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
""" https://github.com/phlippe/uvadlc_notebooks_benchmarking/blob/main/PyTorch/Tutorial5_Inception_ResNet_DenseNet.py """ from types import SimpleNamespace from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.model import BenchmarkModel import torch.nn as nn import torch import torch.optim as optim import torch.utils.data as data class ResNetBlock(nn.Module): def __init__(self, c_in, act_fn, subsample=False, c_out=-1): """ Inputs: c_in - Number of input features act_fn - Activation class constructor (e.g. nn.ReLU) subsample - If True, we want to apply a stride inside the block and reduce the output shape by 2 in height and width c_out - Number of output features. Note that this is only relevant if subsample is True, as otherwise, c_out = c_in """ super().__init__() if not subsample: c_out = c_in # Network representing F self.net = nn.Sequential( # No bias needed as the Batch Norm handles it nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, stride=1 if not subsample else 2, bias=False), nn.BatchNorm2d(c_out), act_fn(), nn.Conv2d(c_out, c_out, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(c_out) ) # 1x1 convolution with stride 2 means we take the upper left value, and transform it to new output size self.downsample = nn.Conv2d( c_in, c_out, kernel_size=1, stride=2) if subsample else None self.act_fn = act_fn() def forward(self, x): z = self.net(x) if self.downsample is not None: x = self.downsample(x) out = z + x out = self.act_fn(out) return out class ResNetModel(nn.Module): def __init__(self, num_classes=10, num_blocks=[3, 3, 3], c_hidden=[16, 32, 64], act_fn_name="relu", **kwargs): """ Inputs: num_classes - Number of classification outputs (10 for CIFAR10) num_blocks - List with the number of ResNet blocks to use. The first block of each group uses downsampling, except the first. c_hidden - List with the hidden dimensionalities in the different blocks. Usually multiplied by 2 the deeper we go. act_fn_name - Name of the activation function to use, looked up in "act_fn_by_name" block_name - Name of the ResNet block, looked up in "resnet_blocks_by_name" """ super().__init__() act_fn_by_name = { "tanh": nn.Tanh, "relu": nn.ReLU, "leakyrelu": nn.LeakyReLU, "gelu": nn.GELU } self.hparams = SimpleNamespace(num_classes=num_classes, c_hidden=c_hidden, num_blocks=num_blocks, act_fn_name=act_fn_name, act_fn=act_fn_by_name[act_fn_name], block_class=ResNetBlock) self._create_network() self._init_params() def _create_network(self): c_hidden = self.hparams.c_hidden self.input_net = nn.Sequential( nn.Conv2d(3, c_hidden[0], kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(c_hidden[0]), self.hparams.act_fn() ) # Creating the ResNet blocks blocks = [] for block_idx, block_count in enumerate(self.hparams.num_blocks): for bc in range(block_count): # Subsample the first block of each group, except the very first one. subsample = (bc == 0 and block_idx > 0) blocks.append( self.hparams.block_class(c_in=c_hidden[block_idx if not subsample else (block_idx - 1)], act_fn=self.hparams.act_fn, subsample=subsample, c_out=c_hidden[block_idx]) ) self.blocks = nn.Sequential(*blocks) # Mapping to classification output self.output_net = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(c_hidden[-1], self.hparams.num_classes) ) def _init_params(self): # Based on our discussion in Tutorial 4, we should initialize the convolutions according to the activation function # Fan-out focuses on the gradient distribution, and is commonly used in ResNets for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity=self.hparams.act_fn_name) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.input_net(x) x = self.blocks(x) x = self.output_net(x) return x class Model(BenchmarkModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 128 DEFAULT_EVAL_BSIZE = 128 def __init__(self, test, device, jit=False, batch_size=DEFAULT_TRAIN_BSIZE, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.model = ResNetModel() self.model.to(device) self.example_inputs = ( torch.randn((self.batch_size, 3, 32, 32), device=self.device), ) self.example_target = torch.randint(0, 10, (self.batch_size,), device=self.device) dataset = data.TensorDataset(self.example_inputs[0], self.example_target) self.optimizer = optim.SGD(self.model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4) self.criterion = nn.CrossEntropyLoss() (self.images, ) = self.example_inputs def get_module(self): return self.model, self.example_inputs def train(self): self.model.train() targets = self.example_target output = self.model(self.images) loss = self.criterion(output, targets) loss.backward() self.optimizer.step() self.optimizer.zero_grad() def eval(self): self.model.eval() with torch.no_grad(): out=self.model(self.images) return (out,)
import torch import os import itertools import random import itertools from pathlib import Path from typing import Tuple from detectron2.checkpoint import DetectionCheckpointer # TorchBench imports from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) # setup environment variable CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent, "data", ".data", "coco2017-minimal") assert os.path.exists(DATA_DIR), "Couldn't find coco2017 minimal data dir, please run install.py again." if not 'DETECTRON2_DATASETS' in os.environ: os.environ['DETECTRON2_DATASETS'] = DATA_DIR from detectron2.config import instantiate from detectron2 import model_zoo from detectron2.utils.events import EventStorage from torch.utils._pytree import tree_map torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False def prefetch(dataloader, device, precision="fp32"): r = [] dtype = torch.float16 if precision == "fp16" else torch.float32 for batch in dataloader: r.append(tree_map(lambda x: x.to(device, dtype=dtype) if isinstance(x, torch.Tensor) else x, batch)) return r class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 # Skip correctness check, because the output tensor can't be verified using # cosine similarity or torch.close() SKIP_CORRECTNESS_CHECK = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) model_cfg = model_zoo.get_config("common/models/mask_rcnn_fpn.py").model data_cfg = model_zoo.get_config("common/data/coco.py").dataloader if test == "train": # use a mini dataset data_cfg.train.dataset.names = "coco_2017_val_100" data_cfg.train.total_batch_size = self.batch_size self.model = instantiate(model_cfg).to(self.device) train_loader = instantiate(data_cfg.train) self.example_inputs = prefetch(itertools.islice(train_loader, 100), self.device) self.optimizer = torch.optim.SGD(self.model.parameters(), 0.) elif test == "eval": data_cfg.test.dataset.names = "coco_2017_val_100" data_cfg.test.batch_size = self.batch_size self.model = instantiate(model_cfg).to(self.device) # load model from checkpoint DetectionCheckpointer(self.model).load(self.model_file) self.model.eval() test_loader = instantiate(data_cfg.test) self.example_inputs = prefetch(itertools.islice(test_loader, 100), self.device) self.NUM_BATCHES = len(self.example_inputs) def get_module(self): return self.model, (self.example_inputs[0], ) def train(self): self.model.train() with EventStorage(): for idx in range(self.NUM_BATCHES): losses = self.model(self.example_inputs[idx]) loss = sum(losses.values()) loss.backward() self.optimizer.step() self.optimizer.zero_grad() def eval(self) -> Tuple[torch.Tensor]: self.model.eval() with torch.no_grad(): for idx in range(self.NUM_BATCHES): out = self.model(self.example_inputs[idx]) # retrieve output tensors outputs = [] for item in out: fields = list(map(lambda x: list(x.get_fields().values()), item.values())) for boxes in fields: tensor_box = list(filter(lambda x: isinstance(x, torch.Tensor), boxes)) outputs.extend(tensor_box) return tuple(outputs)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
"""General-purpose training script for image-to-image translation. This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). It first creates model, dataset, and visualizer given the option. It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. The script supports continue/resume training. Use '--continue_train' to resume your previous training. Example: Train a CycleGAN model: python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Train a pix2pix model: python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/train_options.py for more training options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import time from .options.train_options import TrainOptions from .data import create_dataset from .models import create_model import torch from torch.utils._pytree import tree_map from .util.visualizer import Visualizer def prefetch_device(example_inputs, device): if isinstance(example_inputs, torch.Tensor): return example_inputs.to(device=device) elif isinstance(example_inputs, (tuple, list, dict)): return tree_map(lambda x: prefetch_device(x, device), example_inputs) elif isinstance(example_inputs, (str, int, float)): return example_inputs assert False, f"Unsupported data type: {type(example_inputs)}" def prepare_training_loop(args): new_dataset = [] opt = TrainOptions().parse(args) # get training options dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options # prefetch the dataset to the device for data in dataset: new_dataset.append(prefetch_device(data, opt.tb_device)) dataset = new_dataset dataset_size = len(dataset) # get the number of images in the dataset. model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers visualizer = Visualizer(opt) # create a visualizer that display/save images and plots def training_loop(niteration): total_iters = 0 # the total number of training iterations if niteration is None: niteration = opt.n_epochs + opt.n_epochs_decay + 1 for epoch in range(opt.epoch_count, niteration): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq> epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.compute_visuals() visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) if opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' model.save_networks(save_suffix) # only run 1 batch in torchbench break iter_data_time = time.time() # only run 1 iter in torchbench break model.update_learning_rate() # update learning rates at the end of every epoch. return training_loop
#!/usr/bin/env python import torch import os from pathlib import Path torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from typing import Tuple from torchbenchmark import DATA_PATH from .train_cyclegan import prepare_training_loop from .test_cyclegan import get_model def _create_data_dir(suffix): data_dir = Path(__file__).parent.joinpath(".data", suffix) data_dir.mkdir(parents=True, exist_ok=True) return data_dir class Model(BenchmarkModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False # TODO: Customizing the optimizer is nontrivial, perhaps a next step. CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) checkpoints_dir = _create_data_dir("checkpoints") results_dir = _create_data_dir("results") checkpoints_arg = f"--checkpoints_dir {checkpoints_dir}" results_arg = f"--results_dir {results_dir}" data_root = os.path.join(DATA_PATH, "pytorch_CycleGAN_and_pix2pix_inputs") device_arg = "" if self.device == "cpu": device_arg = "--gpu_ids -1" elif self.device == "cuda": device_arg = "--gpu_ids 0" if self.test == "train": train_args = f"--tb_device {self.device} --dataroot {data_root}/datasets/horse2zebra --name horse2zebra --model cycle_gan --display_id 0 --n_epochs 3 " + \ f"--n_epochs_decay 3 {device_arg} {checkpoints_arg}" self.training_loop = prepare_training_loop(train_args.split(' ')) args = f"--dataroot {data_root}/datasets/horse2zebra/testA --name horse2zebra_pretrained --model test " + \ f"--no_dropout {device_arg} {checkpoints_arg} {results_arg}" self.model, self.input = get_model(args, self.device) def get_module(self): return self.model, self.input def set_train(self): # another model instance is used for training # and the train mode is on by default pass def train(self): # the training process is not patched to use scripted models # training_loop has its own count logic inside. It actually runs 7 epochs # (with each 'epoch' being limited to a small set of data) # it would be more in symmetry with the rest of torchbenchmark if it ran just one step # rather than 7 epochs, but changing it now would potentially cause # discontinuity with existing/historical measurement self.training_loop(None) def eval(self) -> Tuple[torch.Tensor]: model, example_inputs = self.get_module() out = model(*example_inputs) return (out, )
"""General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for '--num_test' images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir <directory_path_to_save_result>' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from .options.test_options import TestOptions from .data import create_dataset from .models import create_model from .util.visualizer import save_images from .util import html import torch from pathlib import Path def get_model(args, device): opt = TestOptions().parse(args.split(' ')) opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. model = create_model(opt) # create a model given opt.model and other options if len(opt.gpu_ids) > 0: # When opt.gpu_ids > 0, netG is converted to torch.nn.DataParallel model = model.netG.module else: model = model.netG root = str(Path(__file__).parent) data = torch.load(f'{root}/example_input.pt') input = data['A'].to(device) return model, (input,) if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options # model.setup(opt) # regular setup: load and print networks; create schedulers # create a website web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory if opt.load_iter > 0: # load_iter is 0 by default web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) print('creating web directory', web_dir) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader torch.save(data, 'example_input.pt') model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) webpage.save() # save the HTML
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from .base_options import BaseOptions class TestOptions(BaseOptions): """This class includes test options. It also includes shared options defined in BaseOptions. """ def initialize(self, parser): parser = BaseOptions.initialize(self, parser) # define shared options parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') # Dropout and Batchnorm has different behavioir during training and test. parser.add_argument('--eval', action='store_true', help='use eval mode during test time.') parser.add_argument('--num_test', type=int, default=50, help='how many test images to run') # rewrite devalue values parser.set_defaults(model='test') # To avoid cropping, the load_size should be the same as crop_size parser.set_defaults(load_size=parser.get_default('crop_size')) self.isTrain = False return parser
from .base_options import BaseOptions class TrainOptions(BaseOptions): """This class includes training options. It also includes shared options defined in BaseOptions. """ def initialize(self, parser): parser = BaseOptions.initialize(self, parser) # add torchbench options parser.add_argument('--tb_device', type=str, required=True, help="TorchBench device") # visdom and HTML visualization parameters parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen') parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.') parser.add_argument('--display_id', type=int, default=1, help='window id of the web display') parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display') parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")') parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html') parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') # network saving and loading parameters parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs') parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration') parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...') parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') # training parameters parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate') parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero') parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.') parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]') parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations') self.isTrain = True return parser
"""This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
import argparse import os from ..util import util import torch from ..models import get_option_setter from ..data import get_option_setter as get_option_setter_data class BaseOptions(): """This class defines options used during both training and test time. It also implements several helper functions such as parsing, printing, and saving the options. It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class. """ def __init__(self): """Reset the class; indicates the class hasn't been initailized""" self.initialized = False def initialize(self, parser): """Define the common options that are used in both training and test.""" # basic parameters parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)') parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') # model parameters parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]') parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale') parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale') parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer') parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer') parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator') parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]') parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers') parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]') parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]') parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') # dataset parameters parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]') parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA') parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') parser.add_argument('--num_threads', default=0, type=int, help='# threads for loading data') parser.add_argument('--batch_size', type=int, default=1, help='input batch size') parser.add_argument('--load_size', type=int, default=286, help='scale images to this size') parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size') parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]') parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML') # additional parameters parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]') parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') self.initialized = True return parser def gather_options(self, args=None): """Initialize our parser with basic options(only once). Add additional model-specific and dataset-specific options. These options are defined in the <modify_commandline_options> function in model and dataset classes. """ if not self.initialized: # check if it has been initialized parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = self.initialize(parser) # get the basic options opt, _ = parser.parse_known_args(args) # modify model-related parser options model_name = opt.model model_option_setter = get_option_setter(model_name) parser = model_option_setter(parser, self.isTrain) opt, _ = parser.parse_known_args(args) # parse again with new defaults # modify dataset-related parser options dataset_name = opt.dataset_mode dataset_option_setter = get_option_setter_data(dataset_name) parser = dataset_option_setter(parser, self.isTrain) # save and return the parser self.parser = parser return parser.parse_args(args) def print_options(self, opt): """Print and save options It will print both current options and default values(if different). It will save options into a text file / [checkpoints_dir] / opt.txt """ message = '' message += '----------------- Options ---------------\n' for k, v in sorted(vars(opt).items()): comment = '' default = self.parser.get_default(k) if v != default: comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' print(message) # save to the disk expr_dir = os.path.join(opt.checkpoints_dir, opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) with open(file_name, 'wt') as opt_file: opt_file.write(message) opt_file.write('\n') def parse(self, args=None): """Parse our options, create checkpoints directory suffix, and set up gpu device.""" opt = self.gather_options(args) opt.isTrain = self.isTrain # train or test # process opt.suffix if opt.suffix: suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' opt.name = opt.name + suffix # set gpu ids str_ids = opt.gpu_ids.split(',') opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: opt.gpu_ids.append(id) if len(opt.gpu_ids) > 0: torch.cuda.set_device(opt.gpu_ids[0]) self.opt = opt return self.opt
import random import torch class ImagePool(): """This class implements an image buffer that stores previously generated images. This buffer enables us to update discriminators using a history of generated images rather than the ones produced by the latest generators. """ def __init__(self, pool_size): """Initialize the ImagePool class Parameters: pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created """ self.pool_size = pool_size if self.pool_size > 0: # create an empty pool self.num_imgs = 0 self.images = [] def query(self, images): """Return an image from the pool. Parameters: images: the latest generated images from the generator Returns images from the buffer. By 50/100, the buffer will return input images. By 50/100, the buffer will return images previously stored in the buffer, and insert the current images to the buffer. """ if self.pool_size == 0: # if the buffer size is 0, do nothing return images return_images = [] for image in images: image = torch.unsqueeze(image.data, 0) if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer self.num_imgs = self.num_imgs + 1 self.images.append(image) return_images.append(image) else: p = random.uniform(0, 1) if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer random_id = random.randint(0, self.pool_size - 1) # randint is inclusive tmp = self.images[random_id].clone() self.images[random_id] = image return_images.append(tmp) else: # by another 50% chance, the buffer will return the current image return_images.append(image) return_images = torch.cat(return_images, 0) # collect all the images and return return return_images
"""This module contains simple helper functions """ from __future__ import print_function import torch import numpy as np from PIL import Image import os def tensor2im(input_image, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path, aspect_ratio=1.0): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) h, w, _ = image_numpy.shape if aspect_ratio > 1.0: image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) if aspect_ratio < 1.0: image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path)
import dominate from dominate.tags import meta, h3, table, tr, td, p, a, img, br import os class HTML: """This HTML class allows us to save images and write texts into a single HTML file. It consists of functions such as <add_header> (add a text header to the HTML file), <add_images> (add a row of images to the HTML file), and <save> (save the HTML to the disk). It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API. """ def __init__(self, web_dir, title, refresh=0): """Initialize the HTML classes Parameters: web_dir (str) -- a directory that stores the webpage. HTML file will be created at <web_dir>/index.html; images will be saved at <web_dir/images/ title (str) -- the webpage name refresh (int) -- how often the website refresh itself; if 0; no refreshing """ self.title = title self.web_dir = web_dir self.img_dir = os.path.join(self.web_dir, 'images') if not os.path.exists(self.web_dir): os.makedirs(self.web_dir) if not os.path.exists(self.img_dir): os.makedirs(self.img_dir) self.doc = dominate.document(title=title) if refresh > 0: with self.doc.head: meta(http_equiv="refresh", content=str(refresh)) def get_image_dir(self): """Return the directory that stores images""" return self.img_dir def add_header(self, text): """Insert a header to the HTML file Parameters: text (str) -- the header text """ with self.doc: h3(text) def add_images(self, ims, txts, links, width=400): """add images to the HTML file Parameters: ims (str list) -- a list of image paths txts (str list) -- a list of image names shown on the website links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page """ self.t = table(border=1, style="table-layout: fixed;") # Insert a table self.doc.add(self.t) with self.t: with tr(): for im, txt, link in zip(ims, txts, links): with td(style="word-wrap: break-word;", halign="center", valign="top"): with p(): with a(href=os.path.join('images', link)): img(style="width:%dpx" % width, src=os.path.join('images', im)) br() p(txt) def save(self): """save the current content to the HMTL file""" html_file = '%s/index.html' % self.web_dir f = open(html_file, 'wt') f.write(self.doc.render()) f.close() if __name__ == '__main__': # we show an example usage here. html = HTML('web/', 'test_html') html.add_header('hello world') ims, txts, links = [], [], [] for n in range(4): ims.append('image_%d.png' % n) txts.append('text_%d' % n) links.append('image_%d.png' % n) html.add_images(ims, txts, links) html.save()
"""This package includes a miscellaneous collection of useful helper functions."""
from __future__ import print_function import os import tarfile import requests from warnings import warn from zipfile import ZipFile from bs4 import BeautifulSoup from os.path import abspath, isdir, join, basename class GetData(object): """A Python script for downloading CycleGAN or pix2pix datasets. Parameters: technique (str) -- One of: 'cyclegan' or 'pix2pix'. verbose (bool) -- If True, print additional information. Examples: >>> from util.get_data import GetData >>> gd = GetData(technique='cyclegan') >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed. Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh' and 'scripts/download_cyclegan_model.sh'. """ def __init__(self, technique='cyclegan', verbose=True): url_dict = { 'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/', 'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets' } self.url = url_dict.get(technique.lower()) self._verbose = verbose def _print(self, text): if self._verbose: print(text) @staticmethod def _get_options(r): soup = BeautifulSoup(r.text, 'lxml') options = [h.text for h in soup.find_all('a', href=True) if h.text.endswith(('.zip', 'tar.gz'))] return options def _present_options(self): r = requests.get(self.url) options = self._get_options(r) print('Options:\n') for i, o in enumerate(options): print("{0}: {1}".format(i, o)) choice = input("\nPlease enter the number of the " "dataset above you wish to download:") return options[int(choice)] def _download_data(self, dataset_url, save_path): if not isdir(save_path): os.makedirs(save_path) base = basename(dataset_url) temp_save_path = join(save_path, base) with open(temp_save_path, "wb") as f: r = requests.get(dataset_url) f.write(r.content) if base.endswith('.tar.gz'): obj = tarfile.open(temp_save_path) elif base.endswith('.zip'): obj = ZipFile(temp_save_path, 'r') else: raise ValueError("Unknown File Type: {0}.".format(base)) self._print("Unpacking Data...") obj.extractall(save_path) obj.close() os.remove(temp_save_path) def get(self, save_path, dataset=None): """ Download a dataset. Parameters: save_path (str) -- A directory to save the data to. dataset (str) -- (optional). A specific dataset to download. Note: this must include the file extension. If None, options will be presented for you to choose from. Returns: save_path_full (str) -- the absolute path to the downloaded data. """ if dataset is None: selected_dataset = self._present_options() else: selected_dataset = dataset save_path_full = join(save_path, selected_dataset.split('.')[0]) if isdir(save_path_full): warn("\n'{0}' already exists. Voiding Download.".format( save_path_full)) else: self._print('Downloading Data...') url = "{0}/{1}".format(self.url, selected_dataset) self._download_data(url, save_path=save_path) return abspath(save_path_full)
import numpy as np import os import sys import ntpath import time from . import util, html from subprocess import Popen, PIPE if sys.version_info[0] == 2: VisdomExceptionBase = Exception else: VisdomExceptionBase = ConnectionError def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): """Save images to the disk. Parameters: webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs image_path (str) -- the string is used to create image paths aspect_ratio (float) -- the aspect ratio of saved images width (int) -- the images will be resized to width x width This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. """ image_dir = webpage.get_image_dir() short_path = ntpath.basename(image_path[0]) name = os.path.splitext(short_path)[0] webpage.add_header(name) ims, txts, links = [], [], [] for label, im_data in visuals.items(): im = util.tensor2im(im_data) image_name = '%s_%s.png' % (name, label) save_path = os.path.join(image_dir, image_name) util.save_image(im, save_path, aspect_ratio=aspect_ratio) ims.append(image_name) txts.append(label) links.append(image_name) webpage.add_images(ims, txts, links, width=width) class Visualizer(): """This class includes several functions that can display/save images and print/save logging information. It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. """ def __init__(self, opt): """Initialize the Visualizer class Parameters: opt -- stores all the experiment flags; needs to be a subclass of BaseOptions Step 1: Cache the training/test options Step 2: connect to a visdom server Step 3: create an HTML object for saveing HTML filters Step 4: create a logging file to store training losses """ self.opt = opt # cache the option self.display_id = opt.display_id self.use_html = opt.isTrain and not opt.no_html self.win_size = opt.display_winsize self.name = opt.name self.port = opt.display_port self.saved = False if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server> import visdom self.ncols = opt.display_ncols self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) if not self.vis.check_connection(): self.create_visdom_connections() if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/ self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') self.img_dir = os.path.join(self.web_dir, 'images') util.mkdirs([self.web_dir, self.img_dir]) # create a logging file to store training losses self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write('================ Training Loss (%s) ================\n' % now) def reset(self): """Reset the self.saved status""" self.saved = False def create_visdom_connections(self): """If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port print('\n\nCould not connect to Visdom server. \n Trying to start a server....') print('Command: %s' % cmd) Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) def display_current_results(self, visuals, epoch, save_result): """Display current results on visdom; save current results to an HTML file. Parameters: visuals (OrderedDict) - - dictionary of images to display or save epoch (int) - - the current epoch save_result (bool) - - if save the current results to an HTML file """ if self.display_id > 0: # show images in the browser using visdom ncols = self.ncols if ncols > 0: # show all the images in one visdom panel ncols = min(ncols, len(visuals)) h, w = next(iter(visuals.values())).shape[:2] table_css = """<style> table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center} table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black} </style>""" % (w, h) # create a table css # create a table of images. title = self.name label_html = '' label_html_row = '' images = [] idx = 0 for label, image in visuals.items(): image_numpy = util.tensor2im(image) label_html_row += '<td>%s</td>' % label images.append(image_numpy.transpose([2, 0, 1])) idx += 1 if idx % ncols == 0: label_html += '<tr>%s</tr>' % label_html_row label_html_row = '' white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 while idx % ncols != 0: images.append(white_image) label_html_row += '<td></td>' idx += 1 if label_html_row != '': label_html += '<tr>%s</tr>' % label_html_row try: self.vis.images(images, nrow=ncols, win=self.display_id + 1, padding=2, opts=dict(title=title + ' images')) label_html = '<table>%s</table>' % label_html self.vis.text(table_css + label_html, win=self.display_id + 2, opts=dict(title=title + ' labels')) except VisdomExceptionBase: self.create_visdom_connections() else: # show each image in a separate visdom panel; idx = 1 try: for label, image in visuals.items(): image_numpy = util.tensor2im(image) self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), win=self.display_id + idx) idx += 1 except VisdomExceptionBase: self.create_visdom_connections() if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. self.saved = True # save images to the disk for label, image in visuals.items(): image_numpy = util.tensor2im(image) img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) util.save_image(image_numpy, img_path) # update website webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1) for n in range(epoch, 0, -1): webpage.add_header('epoch [%d]' % n) ims, txts, links = [], [], [] for label, image_numpy in visuals.items(): image_numpy = util.tensor2im(image) img_path = 'epoch%.3d_%s.png' % (n, label) ims.append(img_path) txts.append(label) links.append(img_path) webpage.add_images(ims, txts, links, width=self.win_size) webpage.save() def plot_current_losses(self, epoch, counter_ratio, losses): """display the current losses on visdom display: dictionary of error labels and values Parameters: epoch (int) -- current epoch counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 losses (OrderedDict) -- training losses stored in the format of (name, float) pairs """ if not hasattr(self, 'plot_data'): self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} self.plot_data['X'].append(epoch + counter_ratio) self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) try: self.vis.line( X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), Y=np.array(self.plot_data['Y']), opts={ 'title': self.name + ' loss over time', 'legend': self.plot_data['legend'], 'xlabel': 'epoch', 'ylabel': 'loss'}, win=self.display_id) except VisdomExceptionBase: self.create_visdom_connections() # losses: same format as |losses| of plot_current_losses def print_current_losses(self, epoch, iters, losses, t_comp, t_data): """print current losses on console; also save the losses to the disk Parameters: epoch (int) -- current epoch iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) losses (OrderedDict) -- training losses stored in the format of (name, float) pairs t_comp (float) -- computational time per data point (normalized by batch_size) t_data (float) -- data loading time per data point (normalized by batch_size) """ message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) for k, v in losses.items(): message += '%s: %.3f ' % (k, v) print(message) # print the message with open(self.log_name, "a") as log_file: log_file.write('%s\n' % message) # save the message
from .base_model import BaseModel from . import networks class TestModel(BaseModel): """ This TesteModel can be used to generate CycleGAN results for only one direction. This model will automatically set '--dataset_mode single', which only loads the images from one collection. See the test instruction for more details. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. The model can only be used during test time. It requires '--dataset_mode single'. You need to specify the network using the option '--model_suffix'. """ assert not is_train, 'TestModel cannot be used during training time' parser.set_defaults(dataset_mode='single') parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ assert(not opt.isTrain) BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = [] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> self.visual_names = ['real', 'fake'] # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> self.model_names = ['G' + opt.model_suffix] # only generator is needed. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) # assigns the model to self.netG_[suffix] so that it can be loaded # please see <BaseModel.load_networks> setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. We need to use 'single_dataset' dataset mode. It only load images from one domain. """ self.real = input['A'].to(self.device) self.image_paths = input['A_paths'] def forward(self): """Run forward pass.""" self.fake = self.netG(self.real) # G(real) def optimize_parameters(self): """No optimization for test model.""" pass
"""Model class template This module provides a template for users to implement custom models. You can specify '--model template' to use this model. The class name should be consistent with both the filename and its model option. The filename should be <model>_dataset.py The class name should be <Model>Dataset.py It implements a simple image-to-image translation baseline based on regression loss. Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss: min_<netG> ||netG(data_A) - data_B||_1 You need to implement the following functions: <modify_commandline_options>: Add model-specific options and rewrite default values for existing options. <__init__>: Initialize this model class. <set_input>: Unpack input data and perform data pre-processing. <forward>: Run forward pass. This will be called by both <optimize_parameters> and <test>. <optimize_parameters>: Update network weights; it will be called in every training iteration. """ import torch from .base_model import BaseModel from . import networks class TemplateModel(BaseModel): @staticmethod def modify_commandline_options(parser, is_train=True): """Add new model-specific options and rewrite default values for existing options. Parameters: parser -- the option parser is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset. if is_train: parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model. return parser def __init__(self, opt): """Initialize this model class. Parameters: opt -- training/test options A few things can be done here. - (required) call the initialization function of BaseModel - define loss function, visualization images, model names, and optimizers """ BaseModel.__init__(self, opt) # call the initialization method of BaseModel # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. self.loss_names = ['loss_G'] # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images. self.visual_names = ['data_A', 'data_B', 'output'] # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks. # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them. self.model_names = ['G'] # define networks; you can use opt.isTrain to specify different behaviors for training and test. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids) if self.isTrain: # only defined during training time # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss. # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device) self.criterionLoss = torch.nn.L1Loss() # define and initialize optimizers. You can define one optimizer for each network. # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers = [self.optimizer] # Our program will automatically call <model.setup> to define schedulers, load networks, and print networks def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. """ AtoB = self.opt.direction == 'AtoB' # use <direction> to swap data_A and data_B self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths def forward(self): """Run forward pass. This will be called by both functions <optimize_parameters> and <test>.""" self.output = self.netG(self.data_A) # generate output image given the input data_A def backward(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" # caculate the intermediate results if necessary; here self.output has been computed during function <forward> # calculate loss given the input and intermediate results self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G def optimize_parameters(self): """Update network weights; it will be called in every training iteration.""" self.forward() # first call forward to calculate intermediate results self.optimizer.zero_grad() # clear network G's existing gradients self.backward() # calculate gradients for network G self.optimizer.step() # update gradients for network G
import torch import itertools from ..util.image_pool import ImagePool from .base_model import BaseModel from . import networks class CycleGANModel(BaseModel): """ This class implements the CycleGAN model, for learning image-to-image translation without paired data. The model training requires '--dataset_mode unaligned' dataset. By default, it uses a '--netG resnet_9blocks' ResNet generator, a '--netD basic' discriminator (PatchGAN introduced by pix2pix), and a least-square GANs objective ('--gan_mode lsgan'). CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses. A (source domain), B (target domain). Generators: G_A: A -> B; G_B: B -> A. Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A. Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper) Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper) Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper) Dropout is not used in the original CycleGAN paper. """ parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout if is_train: parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1') return parser def __init__(self, opt): """Initialize the CycleGAN class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> visual_names_A = ['real_A', 'fake_B', 'rec_A'] visual_names_B = ['real_B', 'fake_A', 'rec_B'] if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B) visual_names_A.append('idt_B') visual_names_B.append('idt_A') self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>. if self.isTrain: self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] else: # during test time, only load Gs self.model_names = ['G_A', 'G_B'] # define networks (both Generators and discriminators) # The naming is different from those used in the paper. # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X) self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define discriminators self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels assert(opt.input_nc == opt.output_nc) self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss. self.criterionCycle = torch.nn.L1Loss() self.criterionIdt = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap domain A and domain B. """ AtoB = self.opt.direction == 'AtoB' self.real_A = input['A' if AtoB else 'B'].to(self.device) self.real_B = input['B' if AtoB else 'A'].to(self.device) self.image_paths = input['A_paths' if AtoB else 'B_paths'] def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" self.fake_B = self.netG_A(self.real_A) # G_A(A) self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A)) self.fake_A = self.netG_B(self.real_B) # G_B(B) self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B)) def backward_D_basic(self, netD, real, fake): """Calculate GAN loss for the discriminator Parameters: netD (network) -- the discriminator D real (tensor array) -- real images fake (tensor array) -- images generated by a generator Return the discriminator loss. We also call loss_D.backward() to calculate the gradients. """ # Real pred_real = netD(real) loss_D_real = self.criterionGAN(pred_real, True) # Fake pred_fake = netD(fake.detach()) loss_D_fake = self.criterionGAN(pred_fake, False) # Combined loss and calculate gradients loss_D = (loss_D_real + loss_D_fake) * 0.5 loss_D.backward() return loss_D def backward_D_A(self): """Calculate GAN loss for discriminator D_A""" fake_B = self.fake_B_pool.query(self.fake_B) self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) def backward_D_B(self): """Calculate GAN loss for discriminator D_B""" fake_A = self.fake_A_pool.query(self.fake_A) self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) def backward_G(self): """Calculate the loss for generators G_A and G_B""" lambda_idt = self.opt.lambda_identity lambda_A = self.opt.lambda_A lambda_B = self.opt.lambda_B # Identity loss if lambda_idt > 0: # G_A should be identity if real_B is fed: ||G_A(B) - B|| self.idt_A = self.netG_A(self.real_B) self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt # G_B should be identity if real_A is fed: ||G_B(A) - A|| self.idt_B = self.netG_B(self.real_A) self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt else: self.loss_idt_A = 0 self.loss_idt_B = 0 # GAN loss D_A(G_A(A)) self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True) # GAN loss D_B(G_B(B)) self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True) # Forward cycle loss || G_B(G_A(A)) - A|| self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A # Backward cycle loss || G_A(G_B(B)) - B|| self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B # combined loss and calculate gradients self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B self.loss_G.backward() def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" # forward self.forward() # compute fake images and reconstruction images. # G_A and G_B self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero self.backward_G() # calculate gradients for G_A and G_B self.optimizer_G.step() # update G_A and G_B's weights # D_A and D_B self.set_requires_grad([self.netD_A, self.netD_B], True) self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero self.backward_D_A() # calculate gradients for D_A self.backward_D_B() # calculate graidents for D_B self.optimizer_D.step() # update D_A and D_B's weights
import torch from .base_model import BaseModel from . import networks class Pix2PixModel(BaseModel): """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data. The model training requires '--dataset_mode aligned' dataset. By default, it uses a '--netG unet256' U-Net generator, a '--netD basic' discriminator (PatchGAN), and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper). pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For pix2pix, we do not use image buffer The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1 By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets. """ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/) parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned') if is_train: parser.set_defaults(pool_size=0, gan_mode='vanilla') parser.add_argument('--lambda_L1', type=float, default=100.0, help='weight for L1 loss') return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> self.visual_names = ['real_A', 'fake_B', 'real_B'] # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> if self.isTrain: self.model_names = ['G', 'D'] else: # during test time, only load G self.model_names = ['G'] # define networks (both generator and discriminator) self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) self.criterionL1 = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap images in domain A and domain B. """ AtoB = self.opt.direction == 'AtoB' self.real_A = input['A' if AtoB else 'B'].to(self.device) self.real_B = input['B' if AtoB else 'A'].to(self.device) self.image_paths = input['A_paths' if AtoB else 'B_paths'] def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" self.fake_B = self.netG(self.real_A) # G(A) def backward_D(self): """Calculate GAN loss for the discriminator""" # Fake; stop backprop to the generator by detaching fake_B fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator pred_fake = self.netD(fake_AB.detach()) self.loss_D_fake = self.criterionGAN(pred_fake, False) # Real real_AB = torch.cat((self.real_A, self.real_B), 1) pred_real = self.netD(real_AB) self.loss_D_real = self.criterionGAN(pred_real, True) # combine loss and calculate gradients self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 self.loss_D.backward() def backward_G(self): """Calculate GAN and L1 loss for the generator""" # First, G(A) should fake the discriminator fake_AB = torch.cat((self.real_A, self.fake_B), 1) pred_fake = self.netD(fake_AB) self.loss_G_GAN = self.criterionGAN(pred_fake, True) # Second, G(A) = B self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1 # combine loss and calculate gradients self.loss_G = self.loss_G_GAN + self.loss_G_L1 self.loss_G.backward() def optimize_parameters(self): self.forward() # compute fake images: G(A) # update D self.set_requires_grad(self.netD, True) # enable backprop for D self.optimizer_D.zero_grad() # set D's gradients to zero self.backward_D() # calculate gradients for D self.optimizer_D.step() # update D's weights # update G self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G self.optimizer_G.zero_grad() # set G's gradients to zero self.backward_G() # calculate graidents for G self.optimizer_G.step() # udpate G's weights
"""This package contains modules related to objective functions, optimizations, and network architectures. To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel. You need to implement the following five functions: -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). -- <set_input>: unpack data from dataset and apply preprocessing. -- <forward>: produce intermediate results. -- <optimize_parameters>: calculate loss, gradients, and update network weights. -- <modify_commandline_options>: (optionally) add model-specific options and set default options. In the function <__init__>, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage. Now you can use the model class by specifying flag '--model dummy'. See our template model class 'template_model.py' for more details. """ import importlib from .base_model import BaseModel def find_model_using_name(model_name): """Import the module "models/[model_name]_model.py". In the file, the class called DatasetNameModel() will be instantiated. It has to be a subclass of BaseModel, and it is case-insensitive. """ model_filename = f'{__package__}.{model_name}_model' modellib = importlib.import_module(model_filename) model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model def get_option_setter(model_name): """Return the static method <modify_commandline_options> of the model class.""" model_class = find_model_using_name(model_name) return model_class.modify_commandline_options def create_model(opt): """Create a model given the option. This function warps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from models import create_model >>> model = create_model(opt) """ model = find_model_using_name(opt.model) instance = model(opt) return instance
from .pix2pix_model import Pix2PixModel import torch from skimage import color # used for lab2rgb import numpy as np class ColorizationModel(Pix2PixModel): """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images). The model training requires '-dataset_model colorization' dataset. It trains a pix2pix model, mapping from L channel to ab channels in Lab color space. By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. By default, we use 'colorization' dataset for this model. See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper) """ Pix2PixModel.modify_commandline_options(parser, is_train) parser.set_defaults(dataset_mode='colorization') return parser def __init__(self, opt): """Initialize the class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions For visualization, we set 'visual_names' as 'real_A' (input real image), 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image) We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'. we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'. """ # reuse the pix2pix model Pix2PixModel.__init__(self, opt) # specify the images to be visualized. self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb'] def lab2rgb(self, L, AB): """Convert an Lab tensor image to a RGB numpy output Parameters: L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array) AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array) Returns: rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array) """ AB2 = AB * 110.0 L2 = (L + 1.0) * 50.0 Lab = torch.cat([L2, AB2], dim=1) Lab = Lab[0].data.cpu().float().numpy() Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0)) rgb = color.lab2rgb(Lab) * 255 return rgb def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B) self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B)
import os import torch from collections import OrderedDict from abc import ABC, abstractmethod from . import networks class BaseModel(ABC): """This class is an abstract base class (ABC) for models. To create a subclass, you need to implement the following five functions: -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). -- <set_input>: unpack data from dataset and apply preprocessing. -- <forward>: produce intermediate results. -- <optimize_parameters>: calculate losses, gradients, and update network weights. -- <modify_commandline_options>: (optionally) add model-specific options and set default options. """ def __init__(self, opt): """Initialize the BaseModel class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions When creating your custom class, you need to implement your own initialization. In this function, you should first call <BaseModel.__init__(self, opt)> Then, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. """ self.opt = opt self.gpu_ids = opt.gpu_ids self.isTrain = opt.isTrain self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark. torch.backends.cudnn.benchmark = True self.loss_names = [] self.model_names = [] self.visual_names = [] self.optimizers = [] self.image_paths = [] self.metric = 0 # used for learning rate policy 'plateau' @staticmethod def modify_commandline_options(parser, is_train): """Add new model-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): includes the data itself and its metadata information. """ pass @abstractmethod def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" pass @abstractmethod def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" pass def setup(self, opt): """Load and print networks; create schedulers Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ if self.isTrain: self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.isTrain or opt.continue_train: load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch self.load_networks(load_suffix) def eval(self): """Make models eval mode during test time""" for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) net.eval() def test(self): """Forward function used in test time. This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop It also calls <compute_visuals> to produce additional visualization results """ with torch.no_grad(): self.forward() self.compute_visuals() def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" pass def get_image_paths(self): """ Return image paths that are used to load current data""" return self.image_paths def update_learning_rate(self): """Update learning rates for all the networks; called at the end of every epoch""" for scheduler in self.schedulers: if self.opt.lr_policy == 'plateau': scheduler.step(self.metric) else: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] def get_current_visuals(self): """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): visual_ret[name] = getattr(self, name) return visual_ret def get_current_losses(self): """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number return errors_ret def save_networks(self, epoch): """Save all the networks to the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): save_filename = '%s_net_%s.pth' % (epoch, name) save_path = os.path.join(self.save_dir, save_filename) net = getattr(self, 'net' + name) if len(self.gpu_ids) > 0 and torch.cuda.is_available(): torch.save(net.module.cpu().state_dict(), save_path) net.cuda(self.gpu_ids[0]) else: torch.save(net.cpu().state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, net): """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" modules = dict(net.named_modules()) for key in list(state_dict.keys()): path, field = key.rsplit('.', 1) if modules[path].__class__.__name__.startswith('InstanceNorm'): if field in ['running_mean', 'running_var']: if getattr(modules[path], field) is None: state_dict.pop(key) if field == 'num_batches_tracked': state_dict.pop(key) def load_networks(self, epoch): """Load all the networks from the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): load_filename = '%s_net_%s.pth' % (epoch, name) load_path = os.path.join(self.save_dir, load_filename) net = getattr(self, 'net' + name) if isinstance(net, torch.nn.DataParallel): net = net.module # if you are using PyTorch newer than 0.4 (e.g., built from # GitHub source), you can remove str() on self.device state_dict = torch.load(load_path, map_location=str(self.device)) if hasattr(state_dict, '_metadata'): del state_dict._metadata # patch InstanceNorm checkpoints prior to 0.4 self.__patch_instance_norm_state_dict(state_dict, net) net.load_state_dict(state_dict) def print_networks(self, verbose): """Print the total number of parameters in the network and (if verbose) network architecture Parameters: verbose (bool) -- if verbose: print the network architecture """ print('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) print('-----------------------------------------------') def set_requires_grad(self, nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad
import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler ############################################################################### # Helper Functions ############################################################################### class Identity(nn.Module): def forward(self, x): return x def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif netG == 'unet_128': net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'unet_256': net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you can specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input)
# Simple script to make sure basic usage # such as training, testing, saving and loading # runs without errors. import os def run(command): print(command) exit_status = os.system(command) if exit_status > 0: exit(1) if __name__ == '__main__': # download mini datasets if not os.path.exists('./datasets/mini'): run('bash ./datasets/download_cyclegan_dataset.sh mini') if not os.path.exists('./datasets/mini_pix2pix'): run('bash ./datasets/download_cyclegan_dataset.sh mini_pix2pix') # pretrained cyclegan model if not os.path.exists('./checkpoints/horse2zebra_pretrained/latest_net_G.pth'): run('bash ./scripts/download_cyclegan_model.sh horse2zebra') run('python test.py --model test --dataroot ./datasets/mini --name horse2zebra_pretrained --no_dropout --num_test 1 --no_dropout') # pretrained pix2pix model if not os.path.exists('./checkpoints/facades_label2photo_pretrained/latest_net_G.pth'): run('bash ./scripts/download_pix2pix_model.sh facades_label2photo') if not os.path.exists('./datasets/facades'): run('bash ./datasets/download_pix2pix_dataset.sh facades') run('python test.py --dataroot ./datasets/facades/ --direction BtoA --model pix2pix --name facades_label2photo_pretrained --num_test 1') # cyclegan train/test run('python train.py --model cycle_gan --name temp_cyclegan --dataroot ./datasets/mini --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 10 --print_freq 1 --display_id -1') run('python test.py --model test --name temp_cyclegan --dataroot ./datasets/mini --num_test 1 --model_suffix "_A" --no_dropout') # pix2pix train/test run('python train.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --n_epochs 1 --n_epochs_decay 5 --save_latest_freq 10 --display_id -1') run('python test.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --num_test 1') # template train/test run('python train.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 10 --display_id -1') run('python test.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --num_test 1') # colorization train/test (optional) if not os.path.exists('./datasets/mini_colorization'): run('bash ./datasets/download_cyclegan_dataset.sh mini_colorization') run('python train.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 5 --display_id -1') run('python test.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --num_test 1')
# The following code is modified from https://github.com/shelhamer/clockwork-fcn import sys import os import glob import numpy as np from PIL import Image class cityscapes: def __init__(self, data_path): # data_path something like /data2/cityscapes self.dir = data_path self.classes = ['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'] self.mean = np.array((72.78044, 83.21195, 73.45286), dtype=np.float32) # import cityscapes label helper and set up label mappings sys.path.insert(0, '{}/scripts/helpers/'.format(self.dir)) labels = __import__('labels') self.id2trainId = {label.id: label.trainId for label in labels.labels} # dictionary mapping from raw IDs to train IDs self.trainId2color = {label.trainId: label.color for label in labels.labels} # dictionary mapping train IDs to colors as 3-tuples def get_dset(self, split): ''' List images as (city, id) for the specified split TODO(shelhamer) generate splits from cityscapes itself, instead of relying on these separately made text files. ''' if split == 'train': dataset = open('{}/ImageSets/segFine/train.txt'.format(self.dir)).read().splitlines() else: dataset = open('{}/ImageSets/segFine/val.txt'.format(self.dir)).read().splitlines() return [(item.split('/')[0], item.split('/')[1]) for item in dataset] def load_image(self, split, city, idx): im = Image.open('{}/leftImg8bit_sequence/{}/{}/{}_leftImg8bit.png'.format(self.dir, split, city, idx)) return im def assign_trainIds(self, label): """ Map the given label IDs to the train IDs appropriate for training Use the label mapping provided in labels.py from the cityscapes scripts """ label = np.array(label, dtype=np.float32) if sys.version_info[0] < 3: for k, v in self.id2trainId.iteritems(): label[label == k] = v else: for k, v in self.id2trainId.items(): label[label == k] = v return label def load_label(self, split, city, idx): """ Load label image as 1 x height x width integer array of label indices. The leading singleton dimension is required by the loss. """ label = Image.open('{}/gtFine/{}/{}/{}_gtFine_labelIds.png'.format(self.dir, split, city, idx)) label = self.assign_trainIds(label) # get proper labels for eval label = np.array(label, dtype=np.uint8) label = label[np.newaxis, ...] return label def preprocess(self, im): """ Preprocess loaded image (by load_image) for Caffe: - cast to float - switch channels RGB -> BGR - subtract mean - transpose to channel x height x width order """ in_ = np.array(im, dtype=np.float32) in_ = in_[:, :, ::-1] in_ -= self.mean in_ = in_.transpose((2, 0, 1)) return in_ def palette(self, label): ''' Map trainIds to colors as specified in labels.py ''' if label.ndim == 3: label = label[0] color = np.empty((label.shape[0], label.shape[1], 3)) if sys.version_info[0] < 3: for k, v in self.trainId2color.iteritems(): color[label == k, :] = v else: for k, v in self.trainId2color.items(): color[label == k, :] = v return color def make_boundaries(label, thickness=None): """ Input is an image label, output is a numpy array mask encoding the boundaries of the objects Extract pixels at the true boundary by dilation - erosion of label. Don't just pick the void label as it is not exclusive to the boundaries. """ assert(thickness is not None) import skimage.morphology as skm void = 255 mask = np.logical_and(label > 0, label != void)[0] selem = skm.disk(thickness) boundaries = np.logical_xor(skm.dilation(mask, selem), skm.erosion(mask, selem)) return boundaries def list_label_frames(self, split): """ Select labeled frames from a split for evaluation collected as (city, shot, idx) tuples """ def file2idx(f): """Helper to convert file path into frame ID""" city, shot, frame = (os.path.basename(f).split('_')[:3]) return "_".join([city, shot, frame]) frames = [] cities = [os.path.basename(f) for f in glob.glob('{}/gtFine/{}/*'.format(self.dir, split))] for c in cities: files = sorted(glob.glob('{}/gtFine/{}/{}/*labelIds.png'.format(self.dir, split, c))) frames.extend([file2idx(f) for f in files]) return frames def collect_frame_sequence(self, split, idx, length): """ Collect sequence of frames preceding (and including) a labeled frame as a list of Images. Note: 19 preceding frames are provided for each labeled frame. """ SEQ_LEN = length city, shot, frame = idx.split('_') frame = int(frame) frame_seq = [] for i in range(frame - SEQ_LEN, frame + 1): frame_path = '{0}/leftImg8bit_sequence/val/{1}/{1}_{2}_{3:0>6d}_leftImg8bit.png'.format( self.dir, city, shot, i) frame_seq.append(Image.open(frame_path)) return frame_seq
# The following code is modified from https://github.com/shelhamer/clockwork-fcn import numpy as np def get_out_scoremap(net): return net.blobs['score'].data[0].argmax(axis=0).astype(np.uint8) def feed_net(net, in_): """ Load prepared input into net. """ net.blobs['data'].reshape(1, *in_.shape) net.blobs['data'].data[...] = in_ def segrun(net, in_): feed_net(net, in_) net.forward() return get_out_scoremap(net) def fast_hist(a, b, n): k = np.where((a >= 0) & (a < n))[0] bc = np.bincount(n * a[k].astype(int) + b[k], minlength=n**2) if len(bc) != n**2: # ignore this example if dimension mismatch return 0 return bc.reshape(n, n) def get_scores(hist): # Mean pixel accuracy acc = np.diag(hist).sum() / (hist.sum() + 1e-12) # Per class accuracy cl_acc = np.diag(hist) / (hist.sum(1) + 1e-12) # Per class IoU iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist) + 1e-12) return acc, np.nanmean(cl_acc), np.nanmean(iu), cl_acc, iu
import os import caffe import argparse import numpy as np import scipy.misc from PIL import Image from util import segrun, fast_hist, get_scores from cityscapes import cityscapes parser = argparse.ArgumentParser() parser.add_argument("--cityscapes_dir", type=str, required=True, help="Path to the original cityscapes dataset") parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated") parser.add_argument("--output_dir", type=str, required=True, help="Where to save the evaluation results") parser.add_argument("--caffemodel_dir", type=str, default='./scripts/eval_cityscapes/caffemodel/', help="Where the FCN-8s caffemodel stored") parser.add_argument("--gpu_id", type=int, default=0, help="Which gpu id to use") parser.add_argument("--split", type=str, default='val', help="Data split to be evaluated") parser.add_argument("--save_output_images", type=int, default=0, help="Whether to save the FCN output images") args = parser.parse_args() def main(): if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) if args.save_output_images > 0: output_image_dir = args.output_dir + 'image_outputs/' if not os.path.isdir(output_image_dir): os.makedirs(output_image_dir) CS = cityscapes(args.cityscapes_dir) n_cl = len(CS.classes) label_frames = CS.list_label_frames(args.split) caffe.set_device(args.gpu_id) caffe.set_mode_gpu() net = caffe.Net(args.caffemodel_dir + '/deploy.prototxt', args.caffemodel_dir + 'fcn-8s-cityscapes.caffemodel', caffe.TEST) hist_perframe = np.zeros((n_cl, n_cl)) for i, idx in enumerate(label_frames): if i % 10 == 0: print('Evaluating: %d/%d' % (i, len(label_frames))) city = idx.split('_')[0] # idx is city_shot_frame label = CS.load_label(args.split, city, idx) im_file = args.result_dir + '/' + idx + '_leftImg8bit.png' im = np.array(Image.open(im_file)) im = scipy.misc.imresize(im, (label.shape[1], label.shape[2])) out = segrun(net, CS.preprocess(im)) hist_perframe += fast_hist(label.flatten(), out.flatten(), n_cl) if args.save_output_images > 0: label_im = CS.palette(label) pred_im = CS.palette(out) scipy.misc.imsave(output_image_dir + '/' + str(i) + '_pred.jpg', pred_im) scipy.misc.imsave(output_image_dir + '/' + str(i) + '_gt.jpg', label_im) scipy.misc.imsave(output_image_dir + '/' + str(i) + '_input.jpg', im) mean_pixel_acc, mean_class_acc, mean_class_iou, per_class_acc, per_class_iou = get_scores(hist_perframe) with open(args.output_dir + '/evaluation_results.txt', 'w') as f: f.write('Mean pixel accuracy: %f\n' % mean_pixel_acc) f.write('Mean class accuracy: %f\n' % mean_class_acc) f.write('Mean class IoU: %f\n' % mean_class_iou) f.write('************ Per class numbers below ************\n') for i, cl in enumerate(CS.classes): while len(cl) < 15: cl = cl + ' ' f.write('%s: acc = %f, iou = %f\n' % (cl, per_class_acc[i], per_class_iou[i])) main()
# HED batch processing script; modified from https://github.com/s9xie/hed/blob/master/examples/hed/HED-tutorial.ipynb # Step 1: download the hed repo: https://github.com/s9xie/hed # Step 2: download the models and protoxt, and put them under {caffe_root}/examples/hed/ # Step 3: put this script under {caffe_root}/examples/hed/ # Step 4: run the following script: # python batch_hed.py --images_dir=/data/to/path/photos/ --hed_mat_dir=/data/to/path/hed_mat_files/ # The code sometimes crashes after computation is done. Error looks like "Check failed: ... driver shutting down". You can just kill the job. # For large images, it will produce gpu memory issue. Therefore, you better resize the images before running this script. # Step 5: run the MATLAB post-processing script "PostprocessHED.m" import caffe import numpy as np from PIL import Image import os import argparse import sys import scipy.io as sio def parse_args(): parser = argparse.ArgumentParser(description='batch proccesing: photos->edges') parser.add_argument('--caffe_root', dest='caffe_root', help='caffe root', default='../../', type=str) parser.add_argument('--caffemodel', dest='caffemodel', help='caffemodel', default='./hed_pretrained_bsds.caffemodel', type=str) parser.add_argument('--prototxt', dest='prototxt', help='caffe prototxt file', default='./deploy.prototxt', type=str) parser.add_argument('--images_dir', dest='images_dir', help='directory to store input photos', type=str) parser.add_argument('--hed_mat_dir', dest='hed_mat_dir', help='directory to store output hed edges in mat file', type=str) parser.add_argument('--border', dest='border', help='padding border', type=int, default=128) parser.add_argument('--gpu_id', dest='gpu_id', help='gpu id', type=int, default=1) args = parser.parse_args() return args args = parse_args() for arg in vars(args): print('[%s] =' % arg, getattr(args, arg)) # Make sure that caffe is on the python path: caffe_root = args.caffe_root # this file is expected to be in {caffe_root}/examples/hed/ sys.path.insert(0, caffe_root + 'python') if not os.path.exists(args.hed_mat_dir): print('create output directory %s' % args.hed_mat_dir) os.makedirs(args.hed_mat_dir) imgList = os.listdir(args.images_dir) nImgs = len(imgList) print('#images = %d' % nImgs) caffe.set_mode_gpu() caffe.set_device(args.gpu_id) # load net net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) # pad border border = args.border for i in range(nImgs): if i % 500 == 0: print('processing image %d/%d' % (i, nImgs)) im = Image.open(os.path.join(args.images_dir, imgList[i])) in_ = np.array(im, dtype=np.float32) in_ = np.pad(in_, ((border, border), (border, border), (0, 0)), 'reflect') in_ = in_[:, :, 0:3] in_ = in_[:, :, ::-1] in_ -= np.array((104.00698793, 116.66876762, 122.67891434)) in_ = in_.transpose((2, 0, 1)) # remove the following two lines if testing with cpu # shape for input (data blob is N x C x H x W), set data net.blobs['data'].reshape(1, *in_.shape) net.blobs['data'].data[...] = in_ # run net and take argmax for prediction net.forward() fuse = net.blobs['sigmoid-fuse'].data[0][0, :, :] # get rid of the border fuse = fuse[(border+35):(-border+35), (border+35):(-border+35)] # save hed file to the disk name, ext = os.path.splitext(imgList[i]) sio.savemat(os.path.join(args.hed_mat_dir, name + '.mat'), {'edge_predict': fuse})
import os.path from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset from skimage import color # require skimage from PIL import Image import numpy as np import torchvision.transforms as transforms class ColorizationDataset(BaseDataset): """This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space. This dataset is required by pix2pix-based colorization model ('--model colorization') """ @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. By default, the number of channels for input image is 1 (L) and the number of channels for output image is 2 (ab). The direction is from A to B """ parser.set_defaults(input_nc=1, output_nc=2, direction='AtoB') return parser def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir = os.path.join(opt.dataroot, opt.phase) self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size)) assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB') self.transform = get_transform(self.opt, convert=False) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) - - the L channel of an image B (tensor) - - the ab channels of the same image A_paths (str) - - image paths B_paths (str) - - image paths (same as A_paths) """ path = self.AB_paths[index] im = Image.open(path).convert('RGB') im = self.transform(im) im = np.array(im) lab = color.rgb2lab(im).astype(np.float32) lab_t = transforms.ToTensor()(lab) A = lab_t[[0], ...] / 50.0 - 1.0 B = lab_t[[1, 2], ...] / 110.0 return {'A': A, 'B': B, 'A_paths': path, 'B_paths': path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.AB_paths)
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets. To create a subclass, you need to implement the following four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. """ def __init__(self, opt): """Initialize the class; save the options in the class Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ self.opt = opt self.root = opt.dataroot @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def __len__(self): """Return the total number of images in the dataset.""" return 0 @abstractmethod def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns: a dictionary of data with their names. It ususally contains the data itself and its metadata information. """ pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) flip = random.random() > 0.5 return {'crop_pos': (x, y), 'flip': flip} def get_transform(opt, params=None, grayscale=False, method=transforms.InterpolationMode.BICUBIC, convert=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if 'resize' in opt.preprocess: osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, method)) elif 'scale_width' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method))) if 'crop' in opt.preprocess: if params is None: transform_list.append(transforms.RandomCrop(opt.crop_size)) else: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) if not opt.no_flip: if params is None: transform_list.append(transforms.RandomHorizontalFlip()) elif params['flip']: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) if convert: transform_list += [transforms.ToTensor()] if grayscale: transform_list += [transforms.Normalize((0.5,), (0.5,))] else: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.Resampling.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if h == oh and w == ow: return img __print_size_warning(ow, oh, w, h) return img.resize((w, h), method) def __scale_width(img, target_size, crop_size, method=Image.Resampling.BICUBIC): ow, oh = img.size if ow == target_size and oh >= crop_size: return img w = target_size h = int(max(target_size * oh / ow, crop_size)) return img.resize((w, h), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size if (ow > tw or oh > th): return img.crop((x1, y1, x1 + tw, y1 + th)) return img def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img def __print_size_warning(ow, oh, w, h): """Print warning information about image size(only print once)""" if not hasattr(__print_size_warning, 'has_printed'): print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h)) __print_size_warning.has_printed = True
"""Dataset class template This module provides a template for users to implement custom datasets. You can specify '--dataset_mode template' to use this dataset. The class name should be consistent with both the filename and its dataset_mode option. The filename should be <dataset_mode>_dataset.py The class name should be <Dataset_mode>Dataset.py You need to implement the following functions: -- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options. -- <__init__>: Initialize this dataset class. -- <__getitem__>: Return a data point and its metadata information. -- <__len__>: Return the number of images. """ from data.base_dataset import BaseDataset, get_transform # from data.image_folder import make_dataset # from PIL import Image class TemplateDataset(BaseDataset): """A template dataset class for you to implement custom datasets.""" @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option') parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values return parser def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions A few things can be done here. - save the options (have been done in BaseDataset) - get image paths and meta information of the dataset. - define the image transformation. """ # save the option and dataset root BaseDataset.__init__(self, opt) # get the image paths of your dataset; self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root # define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function self.transform = get_transform(opt) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index -- a random integer for data indexing Returns: a dictionary of data with their names. It usually contains the data itself and its metadata information. Step 1: get a random image path: e.g., path = self.image_paths[index] Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB'). Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image) Step 4: return a data point as a dictionary. """ path = 'temp' # needs to be a string data_A = None # needs to be a tensor data_B = None # needs to be a tensor return {'data_A': data_A, 'data_B': data_B, 'path': path} def __len__(self): """Return the total number of images.""" return len(self.image_paths)
"""This package includes all the modules related to data loading and preprocessing To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. You need to implement four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point from data loader. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. Now you can use the dataset class by specifying flag '--dataset_mode dummy'. See our template dataset class 'template_dataset.py' for more details. """ import importlib import torch.utils.data from .base_dataset import BaseDataset def find_dataset_using_name(dataset_name): """Import the module "data/[dataset_name]_dataset.py". In the file, the class called DatasetNameDataset() will be instantiated. It has to be a subclass of BaseDataset, and it is case-insensitive. """ dataset_filename = f'{__package__}.{dataset_name}_dataset' datasetlib = importlib.import_module(dataset_filename) dataset = None target_dataset_name = dataset_name.replace('_', '') + 'dataset' for name, cls in datasetlib.__dict__.items(): if name.lower() == target_dataset_name.lower() \ and issubclass(cls, BaseDataset): dataset = cls if dataset is None: raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) return dataset def get_option_setter(dataset_name): """Return the static method <modify_commandline_options> of the dataset class.""" dataset_class = find_dataset_using_name(dataset_name) return dataset_class.modify_commandline_options def create_dataset(opt): """Create a dataset given the option. This function wraps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from data import create_dataset >>> dataset = create_dataset(opt) """ data_loader = CustomDatasetDataLoader(opt) dataset = data_loader.load_data() return dataset class CustomDatasetDataLoader(): """Wrapper class of Dataset class that performs multi-threaded data loading""" def __init__(self, opt): """Initialize this class Step 1: create a dataset instance given the name [dataset_mode] Step 2: create a multi-threaded data loader. """ self.opt = opt dataset_class = find_dataset_using_name(opt.dataset_mode) self.dataset = dataset_class(opt) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batch_size, shuffle=not opt.serial_batches, num_workers=int(opt.num_threads) ) def load_data(self): return self def __len__(self): """Return the number of data in the dataset""" return min(len(self.dataset), self.opt.max_dataset_size) def __iter__(self): """Return a batch of data""" for i, data in enumerate(self.dataloader): if i * self.opt.batch_size >= self.opt.max_dataset_size: break yield data
"""A modified image folder class We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) so that this class can load images from both current directory and its subdirectories. """ import torch.utils.data as data from PIL import Image import os import os.path IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif', '.TIF', '.tiff', '.TIFF', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def make_dataset(dir, max_dataset_size=float("inf")): images = [] assert os.path.isdir(dir), '%s is not a valid directory' % dir for root, _, fnames in sorted(os.walk(dir)): for fname in fnames: if is_image_file(fname): path = os.path.join(root, fname) images.append(path) return images[:min(max_dataset_size, len(images))] def default_loader(path): return Image.open(path).convert('RGB') class ImageFolder(data.Dataset): def __init__(self, root, transform=None, return_paths=False, loader=default_loader): imgs = make_dataset(root) if len(imgs) == 0: raise(RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.root = root self.imgs = imgs self.transform = transform self.return_paths = return_paths self.loader = loader def __getitem__(self, index): path = self.imgs[index] img = self.loader(path) if self.transform is not None: img = self.transform(img) if self.return_paths: return img, path else: return img def __len__(self): return len(self.imgs)
from .base_dataset import BaseDataset, get_transform from .image_folder import make_dataset from PIL import Image class SingleDataset(BaseDataset): """This dataset class can load a set of images specified by the path --dataroot /path/to/data. It can be used for generating CycleGAN results only for one side with the model option '-model test'. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.transform = get_transform(opt, grayscale=(input_nc == 1)) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A and A_paths A(tensor) - - an image in one domain A_paths(str) - - the path of the image """ A_path = self.A_paths[index] A_img = Image.open(A_path).convert('RGB') A = self.transform(A_img) return {'A': A, 'A_paths': A_path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.A_paths)
import os.path from data.base_dataset import BaseDataset, get_params, get_transform from data.image_folder import make_dataset from PIL import Image class AlignedDataset(BaseDataset): """A dataset class for paired image dataset. It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}. During test time, you need to prepare a directory '/path/to/data/test'. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) - - an image in the input domain B (tensor) - - its corresponding image in the target domain A_paths (str) - - image paths B_paths (str) - - image paths (same as A_paths) """ # read a image given a random integer index AB_path = self.AB_paths[index] AB = Image.open(AB_path).convert('RGB') # split AB image into A and B w, h = AB.size w2 = int(w / 2) A = AB.crop((0, 0, w2, h)) B = AB.crop((w2, 0, w, h)) # apply the same transform to both A and B transform_params = get_params(self.opt, A.size) A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1)) B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1)) A = A_transform(A) B = B_transform(B) return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.AB_paths)
import os.path from .base_dataset import BaseDataset, get_transform from .image_folder import make_dataset from PIL import Image import random class UnalignedDataset(BaseDataset): """ This dataset class can load unaligned/unpaired datasets. It requires two directories to host training images from domain A '/path/to/data/trainA' and from domain B '/path/to/data/trainB' respectively. You can train the model with the dataset flag '--dataroot /path/to/data'. Similarly, you need to prepare two directories: '/path/to/data/testA' and '/path/to/data/testB' during test time. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB' self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B btoA = self.opt.direction == 'BtoA' input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1)) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index (int) -- a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) -- an image in the input domain B (tensor) -- its corresponding image in the target domain A_paths (str) -- image paths B_paths (str) -- image paths """ A_path = self.A_paths[index % self.A_size] # make sure index is within then range if self.opt.serial_batches: # make sure index is within then range index_B = index % self.B_size else: # randomize the index for domain B to avoid fixed pairs. index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B] A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') # apply image transformation A = self.transform_A(A_img) B = self.transform_B(B_img) return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): """Return the total number of images in the dataset. As we have two datasets with potentially different number of images, we take a maximum of """ return max(self.A_size, self.B_size)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='vit_small_patch16_224', device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING # Original train batch size per device: 8 # Source: https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_t5_mlm_flax.py#L83 DEFAULT_TRAIN_BSIZE = 8 # Original eval batch size per device: 8 # Downscale to 1 to fit in Nvidia T4 of the infra DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(name="hf_T5_base", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.CLASSIFICATION # Original train batch size 128, hardware Nvidia rtx 3090 # Source: https://gist.github.com/rwightman/bb59f9e245162cee0e38bd66bd8cd77f#file-bench_by_train-csv-L147 # Eval batch size 256, hardware Nvidia rtx 3090 # Source: https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/results/model_benchmark_amp_nchw_rtx3090.csv # Downscale to 128 to fit T4 DEFAULT_TRAIN_BSIZE = 128 DEFAULT_EVAL_BSIZE = 128 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='dm_nfnet_f0', device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from functorch import make_functional_with_buffers, vmap, grad import functools from pathlib import Path from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER def loss_for_task(net, n_inner_iter, x_spt, y_spt, x_qry, y_qry): params, buffers, fnet = net querysz = x_qry.size(0) def compute_loss(new_params, buffers, x, y): logits = fnet(new_params, buffers, x) loss = F.cross_entropy(logits, y) return loss new_params = params for _ in range(n_inner_iter): grads = grad(compute_loss)(new_params, buffers, x_spt, y_spt) new_params = [p - g * 1e-1 for p, g, in zip(new_params, grads)] # The final set of adapted parameters will induce some # final loss and accuracy on the query dataset. # These will be used to update the model's meta-parameters. qry_logits = fnet(new_params, buffers, x_qry) qry_loss = F.cross_entropy(qry_logits, y_qry) qry_acc = (qry_logits.argmax( dim=1) == y_qry).sum() / querysz return qry_loss, qry_acc class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False # TODO: There _should_ be a way to plug in an optim here, but this # can be a next step. For now, the optim is not customizable. CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) n_way = 5 inplace_relu = True net = nn.Sequential( nn.Conv2d(1, 64, 3), nn.BatchNorm2d(64, affine=True, track_running_stats=False), nn.ReLU(inplace=inplace_relu), nn.MaxPool2d(2, 2), nn.Conv2d(64, 64, 3), nn.BatchNorm2d(64, affine=True, track_running_stats=False), nn.ReLU(inplace=inplace_relu), nn.MaxPool2d(2, 2), nn.Conv2d(64, 64, 3), nn.BatchNorm2d(64, affine=True, track_running_stats=False), nn.ReLU(inplace=inplace_relu), nn.MaxPool2d(2, 2), nn.Flatten(), nn.Linear(64, n_way)).to(device) self.model = net root = str(Path(__file__).parent.parent) self.meta_inputs = torch.load(f'{root}/maml_omniglot/batch.pt') self.meta_inputs = tuple([torch.from_numpy(i).to(self.device) for i in self.meta_inputs]) self.example_inputs = (self.meta_inputs[0][0],) def get_module(self): return self.model, self.example_inputs def train(self): model = self.model model.train() fnet, params, buffers = make_functional_with_buffers(self.model) net = (params, buffers, fnet) meta_opt = optim.Adam(params, lr=1e-3) # Sample a batch of support and query images and labels. x_spt, y_spt, x_qry, y_qry = self.meta_inputs task_num, setsz, c_, h, w = x_spt.size() n_inner_iter = 5 meta_opt.zero_grad() # In parallel, trains one model per task. There is a support (x, y) # for each task and a query (x, y) for each task. compute_loss_for_task = functools.partial(loss_for_task, net, n_inner_iter) qry_losses, qry_accs = vmap(compute_loss_for_task)(x_spt, y_spt, x_qry, y_qry) # Compute the maml loss by summing together the returned losses. qry_losses.sum().backward() meta_opt.step() def eval(self) -> Tuple[torch.Tensor]: model, (example_input,) = self.get_module() model.eval() with torch.no_grad(): out = model(example_input) return (out, )
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
import torch from dalle2_pytorch import DALLE2, Unet, Decoder, DiffusionPriorNetwork, DiffusionPrior, OpenAIClipAdapter torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION class Model(BenchmarkModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, jit=False, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) if self.device == "cpu": raise NotImplementedError("DALL-E 2 Not Supported on CPU") self.clip = OpenAIClipAdapter().to(self.device) self.sample_text = self.example_input = torch.randint(0, 49408, (self.batch_size, 256)).to(self.device) self.sample_images = torch.randn(self.batch_size, 3, 256, 256).to(self.device) prior_network = DiffusionPriorNetwork( dim = 512, depth = 6, dim_head = 64, heads = 8 ).to(self.device) diffusion_prior = DiffusionPrior( net = prior_network, clip = self.clip, timesteps = 1, cond_drop_prob = 0.2 ).to(self.device) unet1 = Unet( dim = 128, image_embed_dim = 512, cond_dim = 128, channels = 3, dim_mults=(1, 2, 4, 8), text_embed_dim = 512, cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings (ex. first unet in cascade) ).to(self.device) unet2 = Unet( dim = 16, image_embed_dim = 512, cond_dim = 128, channels = 3, dim_mults = (1, 2, 4, 8, 16) ).to(self.device) decoder = Decoder( unet = (unet1, unet2), image_sizes = (128, 256), clip = self.clip, timesteps = 1, sample_timesteps = (1, 1), image_cond_drop_prob = 0.1, text_cond_drop_prob = 0.5 ).to(self.device) self.model = DALLE2(prior=diffusion_prior, decoder=decoder).to(self.device) if test == "train": self.model.prior.train() self.model.decoder.train() elif test == "eval": self.model.prior.eval() self.model.decoder.eval() def get_module(self): return self.model, (self.example_input,) def set_module(self, new_model): self.model = new_model def eval(self): model, inputs = self.get_module() with torch.no_grad(): images = model(*inputs) return (images,) def train(self): # openai pretrained clip - defaults to ViT-B/32 clip = self.clip # prior networks (with transformer) diffusion_prior = self.model.prior loss = diffusion_prior(self.sample_text, self.sample_images) loss.backward() # decoder (with unet) decoder = self.model.decoder loss = decoder(self.sample_images, self.sample_text, unet_number=1) loss.backward() loss = decoder(self.sample_images, self.sample_text, unet_number=2) loss.backward()
import os import patch import subprocess import sys def patch_dalle2(): import dalle2_pytorch current_dir = os.path.dirname(os.path.abspath(__file__)) dalle2_dir = os.path.dirname(dalle2_pytorch.__file__) dalle2_patch = patch.fromfile(os.path.join(current_dir, "dalle2_pytorch.patch")) if not dalle2_patch.apply(strip=1, root=dalle2_dir): print("Failed to patch dalle2_pytorch/dalle2_pytorch.py. Exit.") exit(1) def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) # DALLE2_pytorch requires embedding-reader # https://github.com/lucidrains/DALLE2-pytorch/blob/00e07b7d61e21447d55e6d06d5c928cf8b67601d/setup.py#L34 # embedding-reader requires an old version of pandas and pyarrow # https://github.com/rom1504/embedding-reader/blob/a4fd55830a502685600ed8ef07947cd1cb92b083/requirements.txt#L5 # So we need to reinstall a newer version of pandas and pyarrow, to be compatible with other models subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-U', 'pandas', 'pyarrow']) if __name__ == '__main__': pip_install_requirements() patch_dalle2()
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(model_name="mobilenet_v3_large", test=test, device=device, jit=jit, batch_size=batch_size, weights=models.MobileNet_V3_Large_Weights.IMAGENET1K_V1, extra_args=extra_args)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 8 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(name="hf_Albert", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)