python_code
stringlengths
0
258k
import glob import math import os import random import shutil import subprocess import time from copy import copy from pathlib import Path from sys import platform import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torchvision from tqdm import tqdm from . import torch_utils # , google_utils # Set printoptions torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 matplotlib.rc('font', **{'size': 11}) # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch_utils.init_seeds(seed=seed) def check_git_status(): if platform in ['linux', 'darwin']: # Suggest 'git pull' if repo is out of date s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') if 'Your branch is behind' in s: print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') def check_file(file): assert os.path.isfile(file) return file def load_classes(path): # Loads *.names file at 'path' with open(path, 'r') as f: names = f.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurences per class # Prepend gridpoint count (for uCE trianing) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class mAPs n = len(labels) class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)]) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = max(img1_shape) / max(img0_shape) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898 s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95) ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) for ci, c in enumerate(unique_classes): i = pred_cls == c n_gt = (target_cls == c).sum() # Number of ground truth objects n_p = i.sum() # Number of predicted objects if n_p == 0 or n_gt == 0: continue else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_gt + 1e-16) # recall curve r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j] = compute_ap(recall[:, j], precision[:, j]) # Plot # fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # ax.plot(recall, precision) # ax.set_xlabel('Recall') # ax.set_ylabel('Precision') # ax.set_xlim(0, 1.01) # ax.set_ylim(0, 1.01) # fig.tight_layout() # fig.savefig('PR_curve.png', dpi=300) # Compute F1 score (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + 1e-16) return p, r, ap, f1, unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)])) mpre = np.concatenate(([0.], precision, [0.])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 union = (w1 * h1 + 1e-16) + w2 * h2 - inter iou = inter / union # iou if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + 1e-16 # convex area return iou - (c_area - union) / c_area # GIoU if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # convex diagonal squared c2 = cw ** 2 + ch ** 2 + 1e-16 # centerpoint distance squared rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (1 - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU return iou def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.t()) area2 = box_area(box2.t()) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) def wh_iou(wh1, wh2): # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N,1,2] wh2 = wh2[None] # [1,M,2] inter = torch.min(wh1, wh2).prod(2) # [N,M] return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps def compute_loss(p, targets, model): # predictions, targets, model ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor lcls, lbox, lobj = ft([0]), ft([0]), ft([0]) tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets h = model.hyp # hyperparameters red = 'mean' # Loss reduction (sum or mean) # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red) BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red) # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 cp, cn = smooth_BCE(eps=0.0) # focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) # per output nt = 0 # targets for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0]) # target obj nb = b.shape[0] # number of targets if nb: nt += nb # cumulative targets ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # GIoU pxy = ps[:, :2].sigmoid() pwh = ps[:, 2:4].exp().clamp(max=1E3) * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou(prediction, target) lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss # Obj tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio # Class if model.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:], cn) # targets t[range(nb), tcls[i]] = cp lcls += BCEcls(ps[:, 5:], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] lobj += BCEobj(pi[..., 4], tobj) # obj loss lbox *= h['giou'] lobj *= h['obj'] lcls *= h['cls'] if red == 'sum': bs = tobj.shape[0] # batch size g = 3.0 # loss gain lobj *= g / bs if nt: lcls *= g / nt / model.nc lbox *= g / nt loss = lbox + lobj + lcls return loss, torch.cat((lbox, lobj, lcls, loss)).detach() def build_targets(p, targets, model): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) nt = targets.shape[0] tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(6, device=targets.device) # normalized to gridspace gain off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float() # overlap offsets style = None multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for i, j in enumerate(model.yolo_layers): anchors = model.module.module_list[j].anchor_vec if multi_gpu else model.module_list[j].anchor_vec gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain na = anchors.shape[0] # number of anchors at = torch.arange(na, device=targets.device).view(na, 1).repeat(1, nt) # anchor tensor, same as .repeat_interleave(nt) # Match targets to anchors a, t, offsets = [], targets * gain, 0 if nt: # r = t[None, :, 4:6] / anchors[:, None] # wh ratio # j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2)) a, t = at[j], t.repeat(na, 1, 1)[j] # filter # overlaps gxy = t[:, 2:4] # grid xy z = torch.zeros_like(gxy) if style == 'rect2': g = 0.2 # offset j, k = ((gxy % 1. < g) & (gxy > 1.)).T a, t = torch.cat((a, a[j], a[k]), 0), torch.cat((t, t[j], t[k]), 0) offsets = torch.cat((z, z[j] + off[0], z[k] + off[1]), 0) * g elif style == 'rect4': g = 0.5 # offset j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0) offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append indices.append((b, a, gj, gi)) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class if c.shape[0]: # if any targets assert c.max() < model.nc, 'Model accepts %g classes labeled from 0-%g, however you labelled a class %g. ' \ 'See https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data' % ( model.nc, model.nc - 1, c.max()) return tcls, tbox, indices, anch def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=True, classes=None, agnostic=False): """ Performs Non-Maximum Suppression on inference results Returns detections with shape: nx6 (x1, y1, x2, y2, conf, cls) """ # Settings merge = True # merge for best mAP min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height time_limit = 10.0 # seconds to quit after t = time.time() nc = prediction[0].shape[1] - 5 # number of classes multi_label &= nc > 1 # multiple labels per box output = [None] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints x = x[x[:, 4] > conf_thres] # confidence x = x[((x[:, 2:4] > min_wh) & (x[:, 2:4] < max_wh)).all(1)] # width-height # If none remain process next image if not x.shape[0]: continue # Compute conf x[..., 5:] *= x[..., 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero().t() x = torch.cat((box[i], x[i, j + 5].unsqueeze(1), j.float().unsqueeze(1)), 1) else: # best class only conf, j = x[:, 5:].max(1) x = torch.cat((box, conf.unsqueeze(1), j.float().unsqueeze(1)), 1)[conf > conf_thres] # Filter by class if classes: x = x[(j.view(-1, 1) == torch.tensor(classes, device=j.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5] * 0 if agnostic else x[:, 5] # classes boxes, scores = x[:, :4].clone() + c.view(-1, 1) * max_wh, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes # i = i[iou.sum(1) > 1] # require redundancy except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 print(x, i, x.shape, i.shape) pass output[xi] = x[i] if (time.time() - t) > time_limit: break # time limit exceeded return output def get_yolo_layers(model): bool_vec = [x['type'] == 'yolo' for x in model.module_defs] return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3 def print_model_biases(model): # prints the bias neurons preceding each yolo layer print('\nModel Bias Summary: %8s%18s%18s%18s' % ('layer', 'regression', 'objectness', 'classification')) try: multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for l in model.yolo_layers: # print pretrained biases if multi_gpu: na = model.module.module_list[l].na # number of anchors b = model.module.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 else: na = model.module_list[l].na b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 print(' ' * 20 + '%8g %18s%18s%18s' % (l, '%5.2f+/-%-5.2f' % (b[:, :4].mean(), b[:, :4].std()), '%5.2f+/-%-5.2f' % (b[:, 4].mean(), b[:, 4].std()), '%5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std()))) except: pass def strip_optimizer(f='weights/best.pt'): # from utils.utils import *; strip_optimizer() # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None print('Optimizer stripped from %s' % f) torch.save(x, f) def create_backbone(f='weights/best.pt'): # from utils.utils import *; create_backbone() # create a backbone from a *.pt file x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None x['training_results'] = None x['epoch'] = -1 for p in x['model'].parameters(): p.requires_grad = True s = 'weights/backbone.pt' print('%s saved as %s' % (f, s)) torch.save(x, s) def coco_class_count(path='../coco/labels/train2014/'): # Histogram of occurrences per class nc = 80 # number classes x = np.zeros(nc, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) print(i, len(files)) def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people() # Find images with only people files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) if all(labels[:, 0] == 0): print(labels.shape[0], file) def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random() # crops images into random squares up to scale fraction # WARNING: overwrites images! for file in tqdm(sorted(glob.glob('%s/*.*' % path))): img = cv2.imread(file) # BGR if img is not None: h, w = img.shape[:2] # create random mask a = 30 # minimum size (pixels) mask_h = random.randint(a, int(max(a, h * scale))) # mask height mask_w = mask_h # mask width # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels() if os.path.exists('new/'): shutil.rmtree('new/') # delete output folder os.makedirs('new/') # make new output folder os.makedirs('new/labels/') os.makedirs('new/images/') for file in tqdm(sorted(glob.glob('%s/*.*' % path))): with open(file, 'r') as f: labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) i = labels[:, 0] == label_class if any(i): img_file = file.replace('labels', 'images').replace('txt', 'jpg') labels[:, 0] = 0 # reset class to 0 with open('new/images.txt', 'a') as f: # add image to dataset list f.write(img_file + '\n') with open('new/labels/' + Path(file).name, 'a') as f: # write label for l in labels[i]: f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images def kmean_anchors(path='./data/coco64.txt', n=9, img_size=(640, 640), thr=0.20, gen=1000): # Creates kmeans anchors for use in *.cfg files: from utils.utils import *; _ = kmean_anchors() # n: number of anchors # img_size: (min, max) image size used for multi-scale training (can be same values) # thr: IoU threshold hyperparameter used for training (0.0 - 1.0) # gen: generations to evolve anchors using genetic algorithm from utils.datasets import LoadImagesAndLabels def print_results(k): k = k[np.argsort(k.prod(1))] # sort small to large iou = wh_iou(wh, torch.Tensor(k)) max_iou = iou.max(1)[0] bpr, aat = (max_iou > thr).float().mean(), (iou > thr).float().mean() * n # best possible recall, anch > thr print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat)) print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' % (n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='') for i, x in enumerate(k): print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg return k def fitness(k): # mutation fitness iou = wh_iou(wh, torch.Tensor(k)) # iou max_iou = iou.max(1)[0] return (max_iou * (max_iou > thr).float()).mean() # product # Get label wh wh = [] dataset = LoadImagesAndLabels(path, augment=True, rect=True) nr = 1 if img_size[0] == img_size[1] else 10 # number augmentation repetitions for s, l in zip(dataset.shapes, dataset.labels): wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh wh = np.concatenate(wh, 0).repeat(nr, axis=0) # augment 10x wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1)) # normalized to pixels (multi-scale) wh = wh[(wh > 2.0).all(1)] # remove below threshold boxes (< 2 pixels wh) # Kmeans calculation from scipy.cluster.vq import kmeans print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k *= s wh = torch.Tensor(wh) k = print_results(k) # # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.tight_layout() # fig.savefig('wh.png', dpi=200) # Evolve npr = np.random f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma for _ in tqdm(range(gen), desc='Evolving anchors'): v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = fitness(kg) if fg > f: f, k = fg, kg.copy() print_results(k) k = print_results(k) return k def print_mutation(hyp, results, bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.4g' * len(results) % results # results (P, R, mAP, F1, test_loss) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness if bucket: os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt def apply_classifier(x, model, img, im0): # applies a second stage classifier to yolo outputs im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('test%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def fitness(x): # Returns fitness (for use with results.txt or evolve.txt) w = [0.0, 0.01, 0.99, 0.00] # weights for [P, R, mAP, F1]@0.5 or [P, R, [email protected], [email protected]:0.95] return (x[:, :4] * w).sum(1) def output_to_target(output, width, height): """ Convert a YOLO model output to target format [batch_id, class_id, x, y, w, h, conf] """ if isinstance(output, torch.Tensor): output = output.cpu().numpy() targets = [] for i, o in enumerate(output): if o is not None: for pred in o: box = pred[:4] w = (box[2] - box[0]) / width h = (box[3] - box[1]) / height x = box[0] / width + w / 2 y = box[1] / height + h / 2 conf = pred[4] cls = int(pred[5]) targets.append([i, cls, x, y, w, h, conf]) return np.array(targets) # Plotting functions --------------------------------------------------------------------------------------------------- def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def plot_wh_methods(): # from utils.utils import *; plot_wh_methods() # Compares the two methods for width-height anchor multiplication # https://github.com/ultralytics/yolov3/issues/168 x = np.arange(-4.0, 4.0, .1) ya = np.exp(x) yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 fig = plt.figure(figsize=(6, 3), dpi=150) plt.plot(x, ya, '.-', label='yolo method') plt.plot(x, yb ** 2, '.-', label='^2 power method') plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method') plt.xlim(left=-4, right=4) plt.ylim(bottom=0, top=6) plt.xlabel('input') plt.ylabel('output') plt.legend() fig.tight_layout() fig.savefig('comparison.png', dpi=200) def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): tl = 3 # line thickness tf = max(tl - 1, 1) # font thickness if os.path.isfile(fname): # do not overwrite return None if isinstance(images, torch.Tensor): images = images.cpu().numpy() if isinstance(targets, torch.Tensor): targets = targets.cpu().numpy() # un-normalise if np.max(images[0]) <= 1: images *= 255 bs, _, h, w = images.shape # batch size, _, height, width bs = min(bs, max_subplots) # limit plot images ns = np.ceil(bs ** 0.5) # number of subplots (square) # Check if we should resize scale_factor = max_size / max(h, w) if scale_factor < 1: h = math.ceil(scale_factor * h) w = math.ceil(scale_factor * w) # Empty array for output mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # Fix class - colour map prop_cycle = plt.rcParams['axes.prop_cycle'] # https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']] for i, img in enumerate(images): if i == max_subplots: # if last batch has fewer images than we expect break block_x = int(w * (i // ns)) block_y = int(h * (i % ns)) img = img.transpose(1, 2, 0) if scale_factor < 1: img = cv2.resize(img, (w, h)) mosaic[block_y:block_y + h, block_x:block_x + w, :] = img if len(targets) > 0: image_targets = targets[targets[:, 0] == i] boxes = xywh2xyxy(image_targets[:, 2:6]).T classes = image_targets[:, 1].astype('int') gt = image_targets.shape[1] == 6 # ground truth if no conf column conf = None if gt else image_targets[:, 6] # check for confidence presence (gt vs pred) boxes[[0, 2]] *= w boxes[[0, 2]] += block_x boxes[[1, 3]] *= h boxes[[1, 3]] += block_y for j, box in enumerate(boxes.T): cls = int(classes[j]) color = color_lut[cls % len(color_lut)] cls = names[cls] if names else cls if gt or conf[j] > 0.3: # 0.3 conf thresh label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j]) plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) # Draw image filename labels if paths is not None: label = os.path.basename(paths[i])[:40] # trim to 40 char t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, lineType=cv2.LINE_AA) # Image border cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) if fname is not None: mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA) cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) return mosaic def plot_lr_scheduler(optimizer, scheduler, epochs=300): # Plot LR simulating training for full epochs optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals y = [] for _ in range(epochs): scheduler.step() y.append(optimizer.param_groups[0]['lr']) plt.plot(y, '.-', label='LR') plt.xlabel('epoch') plt.ylabel('LR') plt.tight_layout() plt.savefig('LR.png', dpi=200) def plot_test_txt(): # from utils.utils import *; plot_test() # Plot test.txt histograms x = np.loadtxt('test.txt', dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect('equal') plt.savefig('hist2d.png', dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) plt.savefig('hist1d.png', dpi=200) def plot_targets_txt(): # from utils.utils import *; plot_targets_txt() # Plot targets.txt histograms x = np.loadtxt('targets.txt', dtype=np.float32).T s = ['x targets', 'y targets', 'width targets', 'height targets'] fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) ax = ax.ravel() for i in range(4): ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) ax[i].legend() ax[i].set_title(s[i]) plt.savefig('targets.jpg', dpi=200) def plot_labels(labels): # plot dataset labels c, b = labels[:, 0], labels[:, 1:].transpose() # classees, boxes def hist2d(x, y, n=100): xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) return hist[xidx, yidx] fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) ax = ax.ravel() ax[0].hist(c, bins=int(c.max() + 1)) ax[0].set_xlabel('classes') ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet') ax[1].set_xlabel('x') ax[1].set_ylabel('y') ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet') ax[2].set_xlabel('width') ax[2].set_ylabel('height') plt.savefig('labels.png', dpi=200) def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp) # Plot hyperparameter evolution results in evolve.txt x = np.loadtxt('evolve.txt', ndmin=2) f = fitness(x) # weights = (f - f.min()) ** 2 # for weighted results fig = plt.figure(figsize=(12, 10), tight_layout=True) matplotlib.rc('font', **{'size': 8}) for i, (k, v) in enumerate(hyp.items()): y = x[:, i + 7] # mu = (y * weights).sum() / weights.sum() # best weighted result mu = y[f.argmax()] # best single result plt.subplot(4, 5, i + 1) plt.plot(mu, f.max(), 'o', markersize=10) plt.plot(y, f, '.') plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters print('%15s: %.3g' % (k, mu)) plt.savefig('evolve.png', dpi=200) def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay() # Plot training results files 'results*.txt', overlaying train and val losses s = ['train', 'train', 'train', 'Precision', '[email protected]', 'val', 'val', 'val', 'Recall', 'F1'] # legends t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) ax = ax.ravel() for i in range(5): for j in [i, i + 5]: y = results[j, x] if i in [0, 1, 2]: y[y == 0] = np.nan # dont show zero loss values ax[i].plot(x, y, marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend() ax[i].set_ylabel(f) if i == 0 else None # add filename fig.savefig(f.replace('.txt', '.png'), dpi=200) def plot_results(start=0, stop=0, bucket='', id=()): # from utils.utils import *; plot_results() # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov3#training fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) ax = ax.ravel() s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', 'val GIoU', 'val Objectness', 'val Classification', '[email protected]', 'F1'] if bucket: os.system('rm -rf storage.googleapis.com') files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] else: files = glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt') for f in sorted(files): try: results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): y = results[i, x] if i in [0, 1, 2, 5, 6, 7]: y[y == 0] = np.nan # dont show zero loss values # y /= y[0] # normalize ax[i].plot(x, y, marker='.', label=Path(f).stem, linewidth=2, markersize=8) ax[i].set_title(s[i]) # if i in [5, 6, 7]: # share train and val loss y axes # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) except: print('Warning: Plotting error for %s, skipping file' % f) ax[1].legend() # fig.savefig('results.png', dpi=200)
# This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries # pip install --upgrade google-cloud-storage import os import time # from google.cloud import storage def gdrive_download(id='1HaXkef9z6y5l4vUnCYgdmEAj61c6bfWO', name='coco.zip'): # https://gist.github.com/tanaikech/f0f2d122e05bf5f971611258c22c110f # Downloads a file from Google Drive, accepting presented query # from utils.google_utils import *; gdrive_download() t = time.time() print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='') os.remove(name) if os.path.exists(name) else None # remove existing os.remove('cookie') if os.path.exists('cookie') else None # Attempt file download os.system("curl -c ./cookie -s -L \"https://drive.google.com/uc?export=download&id=%s\" > /dev/null" % id) if os.path.exists('cookie'): # large file s = "curl -Lb ./cookie \"https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=%s\" -o %s" % ( id, name) else: # small file s = "curl -s -L -o %s 'https://drive.google.com/uc?export=download&id=%s'" % (name, id) r = os.system(s) # execute, capture return values os.remove('cookie') if os.path.exists('cookie') else None # Error check if r != 0: os.remove(name) if os.path.exists(name) else None # remove partial print('Download error ') # raise Exception('Download error') return r # Unzip if archive if name.endswith('.zip'): print('unzipping... ', end='') os.system('unzip -q %s' % name) # unzip os.remove(name) # remove zip to free space print('Done (%.1fs)' % (time.time() - t)) return r def upload_blob(bucket_name, source_file_name, destination_blob_name): # Uploads a file to a bucket # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python storage_client = storage.Client() bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(destination_blob_name) blob.upload_from_filename(source_file_name) print('File {} uploaded to {}.'.format( source_file_name, destination_blob_name)) def download_blob(bucket_name, source_blob_name, destination_file_name): # Uploads a blob from a bucket storage_client = storage.Client() bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(source_blob_name) blob.download_to_filename(destination_file_name) print('Blob {} downloaded to {}.'.format( source_blob_name, destination_file_name))
import math import torch from torch.optim.optimizer import Optimizer class AdaBound(Optimizer): """Implements AdaBound algorithm. It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): Adam learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) final_lr (float, optional): final (SGD) learning rate (default: 0.1) gamma (float, optional): convergence speed of the bound functions (default: 1e-3) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm .. Adaptive Gradient Methods with Dynamic Bound of Learning Rate: https://openreview.net/forum?id=Bkg3g2R9FX """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3, eps=1e-8, weight_decay=0, amsbound=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= final_lr: raise ValueError("Invalid final learning rate: {}".format(final_lr)) if not 0.0 <= gamma < 1.0: raise ValueError("Invalid gamma parameter: {}".format(gamma)) defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, weight_decay=weight_decay, amsbound=amsbound) super(AdaBound, self).__init__(params, defaults) self.base_lrs = list(map(lambda group: group['lr'], self.param_groups)) def __setstate__(self, state): super(AdaBound, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsbound', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, please consider SparseAdam instead') amsbound = group['amsbound'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if amsbound: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsbound: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsbound: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 # Applies bounds on actual learning rate # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay final_lr = group['final_lr'] * group['lr'] / base_lr lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1)) upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step'])) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg) p.data.add_(-step_size) return loss class AdaBoundW(Optimizer): """Implements AdaBound algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101) It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): Adam learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) final_lr (float, optional): final (SGD) learning rate (default: 0.1) gamma (float, optional): convergence speed of the bound functions (default: 1e-3) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm .. Adaptive Gradient Methods with Dynamic Bound of Learning Rate: https://openreview.net/forum?id=Bkg3g2R9FX """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3, eps=1e-8, weight_decay=0, amsbound=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= final_lr: raise ValueError("Invalid final learning rate: {}".format(final_lr)) if not 0.0 <= gamma < 1.0: raise ValueError("Invalid gamma parameter: {}".format(gamma)) defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, weight_decay=weight_decay, amsbound=amsbound) super(AdaBoundW, self).__init__(params, defaults) self.base_lrs = list(map(lambda group: group['lr'], self.param_groups)) def __setstate__(self, state): super(AdaBoundW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsbound', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, please consider SparseAdam instead') amsbound = group['amsbound'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if amsbound: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsbound: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsbound: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 # Applies bounds on actual learning rate # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay final_lr = group['final_lr'] * group['lr'] / base_lr lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1)) upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step'])) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg) if group['weight_decay'] != 0: decayed_weights = torch.mul(p.data, group['weight_decay']) p.data.add_(-step_size) p.data.sub_(decayed_weights) else: p.data.add_(-step_size) return loss
import os import numpy as np def parse_model_cfg(path): # Parse the yolo *.cfg file and return module definitions path may be 'cfg/yolov3.cfg', 'yolov3.cfg', or 'yolov3' if not path.endswith('.cfg'): # add .cfg suffix if omitted path += '.cfg' if not os.path.exists(path) and os.path.exists('cfg' + os.sep + path): # add cfg/ prefix if omitted path = 'cfg' + os.sep + path with open(path, 'r') as f: lines = f.read().split('\n') lines = [x for x in lines if x and not x.startswith('#')] lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces mdefs = [] # module definitions for line in lines: if line.startswith('['): # This marks the start of a new block mdefs.append({}) mdefs[-1]['type'] = line[1:-1].rstrip() if mdefs[-1]['type'] == 'convolutional': mdefs[-1]['batch_normalize'] = 0 # pre-populate with zeros (may be overwritten later) else: key, val = line.split("=") key = key.rstrip() if key == 'anchors': # return nparray mdefs[-1][key] = np.array([float(x) for x in val.split(',')]).reshape((-1, 2)) # np anchors elif (key in ['from', 'layers', 'mask']) or (key == 'size' and ',' in val): # return array mdefs[-1][key] = [int(x) for x in val.split(',')] else: val = val.strip() if val.isnumeric(): # return int or float mdefs[-1][key] = int(val) if (int(val) - float(val)) == 0 else float(val) else: mdefs[-1][key] = val # return string # Check all fields are supported supported = ['type', 'batch_normalize', 'filters', 'size', 'stride', 'pad', 'activation', 'layers', 'groups', 'from', 'mask', 'anchors', 'classes', 'num', 'jitter', 'ignore_thresh', 'truth_thresh', 'random', 'stride_x', 'stride_y', 'weights_type', 'weights_normalization', 'scale_x_y', 'beta_nms', 'nms_kind', 'iou_loss', 'iou_normalizer', 'cls_normalizer', 'iou_thresh'] f = [] # fields for x in mdefs[1:]: [f.append(k) for k in x if k not in f] u = [x for x in f if x not in supported] # unsupported fields assert not any(u), "Unsupported fields %s in %s. See https://github.com/ultralytics/yolov3/issues/631" % (u, path) return mdefs def parse_data_cfg(path): # Parses the data configuration file if not os.path.exists(path) and os.path.exists('data' + os.sep + path): # add data/ prefix if omitted path = 'data' + os.sep + path with open(path, 'r') as f: lines = f.readlines() options = dict() for line in lines: line = line.strip() if line == '' or line.startswith('#'): continue key, val = line.split('=') options[key.strip()] = val.strip() return options
import torch.nn.functional as F from .utils import * def make_divisible(v, divisor): # Function ensures all layers have a channel number that is divisible by 8 # https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py return math.ceil(v / divisor) * divisor class Flatten(nn.Module): # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions def forward(self, x): return x.view(x.size(0), -1) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class FeatureConcat(nn.Module): def __init__(self, layers): super(FeatureConcat, self).__init__() self.layers = layers # layer indices self.multiple = len(layers) > 1 # multiple layers flag def forward(self, x, outputs): return torch.cat([outputs[i] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]] class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers, weight=False): super(WeightedFeatureFusion, self).__init__() self.layers = layers # layer indices self.weight = weight # apply weights boolean self.n = len(layers) + 1 # number of layers if weight: self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True) # layer weights def forward(self, x, outputs): # Weights if self.weight: w = torch.sigmoid(self.w) * (2 / self.n) # sigmoid weights (0-1) x = x * w[0] # Fusion nx = x.shape[1] # input channels for i in range(self.n - 1): a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[self.layers[i]] # feature to add na = a.shape[1] # feature channels # Adjust channels if nx == na: # same shape x = x + a elif nx > na: # slice input x[:, :na] = x[:, :na] + a # or a = nn.ZeroPad2d((0, 0, 0, 0, 0, dc))(a); x = x + a else: # slice feature x = x + a[:, :nx] return x class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595 def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'): super(MixConv2d, self).__init__() groups = len(k) if method == 'equal_ch': # equal channels per group i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices ch = [(i == g).sum() for g in range(groups)] else: # 'equal_params': equal parameter count per group b = [out_ch] + [0] * groups a = np.eye(groups + 1, groups, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b self.m = nn.ModuleList([nn.Conv2d(in_channels=in_ch, out_channels=ch[g], kernel_size=k[g], stride=stride, padding=k[g] // 2, # 'same' pad dilation=dilation, bias=bias) for g in range(groups)]) def forward(self, x): return torch.cat([m(x) for m in self.m], 1) # Activation functions below ------------------------------------------------------------------------------------------- class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x * torch.sigmoid(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] sx = torch.sigmoid(x) # sigmoid(ctx) return grad_output * (sx * (1 + x * (1 - sx))) class MishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] sx = torch.sigmoid(x) fx = F.softplus(x).tanh() return grad_output * (fx + x * sx * (1 - fx * fx)) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) class MemoryEfficientMish(nn.Module): def forward(self, x): return MishImplementation.apply(x) class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf def forward(self, x): return x * F.hardtanh(x + 3, 0., 6., True) / 6. class Mish(nn.Module): # https://github.com/digantamisra98/Mish def forward(self, x): return x * F.softplus(x).tanh()
import math import os import time from copy import deepcopy import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import numpy as np def print(*args): pass # do nothing def init_seeds(seed=0): torch.manual_seed(seed) np.random.seed(seed) # Reduce randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html if seed == 0: cudnn.deterministic = True cudnn.benchmark = False def select_device(device='', apex=False, batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' cpu_request = device.lower() == 'cpu' if device and not cpu_request: # if device requested other than 'cpu' os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity cuda = False if cpu_request else torch.cuda.is_available() if cuda: return torch.device(f"cuda:{torch.cuda.current_device()}") print('Using CPU') return torch.device('cpu') def time_synchronized(): torch.cuda.synchronize() if torch.cuda.is_available() else None return time.time() def initialize_weights(model): for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-4 m.momentum = 0.03 elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]: m.inplace = True def find_modules(model, mclass=nn.Conv2d): # finds layer indices matching module class 'mclass' return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] def fuse_conv_and_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = torch.nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, bias=True) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias if conv.bias is not None: b_conv = conv.bias else: b_conv = torch.zeros(conv.weight.size(0)) b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def model_info(model, verbose=False): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if verbose: print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) try: # FLOPS from thop import profile macs, _ = profile(model, inputs=(torch.zeros(1, 3, 480, 640),), verbose=False) fs = ', %.1f GFLOPS' % (macs / 1E9 * 2) except: fs = '' print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs)) def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output import pretrainedmodels # https://github.com/Cadene/pretrained-models.pytorch#torchvision model = pretrainedmodels.__dict__[name](num_classes=1000, pretrained='imagenet') # Display model properties for x in ['model.input_size', 'model.input_space', 'model.input_range', 'model.mean', 'model.std']: print(x + ' =', eval(x)) # Reshape output to n classes filters = model.last_linear.weight.shape[1] model.last_linear.bias = torch.nn.Parameter(torch.zeros(n)) model.last_linear.weight = torch.nn.Parameter(torch.zeros(n, filters)) model.last_linear.out_features = n return model def scale_img(img, ratio=1.0, same_shape=True): # img(16,3,256,416), r=ratio # scales img(bs,3,y,x) by ratio h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img gs = 64 # (pixels) grid size h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean class ModelEMA: """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA smoothing of weights to match results. Pay attention to the decay constant you are using relative to your update count per epoch. To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but disable validation of the EMA weights. Validation will have to be done manually in a separate process, or after the training stops converging. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU. """ def __init__(self, model, decay=0.9999, device=''): # make a copy of the model for accumulating moving average of weights self.ema = deepcopy(model) self.ema.eval() self.updates = 0 # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) self.device = device # perform ema on different device from model if set if device: self.ema.to(device=device) for p in self.ema.parameters(): p.requires_grad_(False) def update(self, model): self.updates += 1 d = self.decay(self.updates) with torch.no_grad(): if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel): msd, esd = model.module.state_dict(), self.ema.module.state_dict() else: msd, esd = model.state_dict(), self.ema.state_dict() for k, v in esd.items(): if v.dtype.is_floating_point: v *= d v += (1. - d) * msd[k].detach() def update_attr(self, model): # Assign attributes (which may change during training) for k in model.__dict__.keys(): if not k.startswith('_'): setattr(self.ema, k, getattr(model, k))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import os import sys import time import traceback import math import torch import torch as T from .model import SpeakerEncoder, AngleProtoLoss from torch.optim.optimizer import Optimizer torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.manual_seed(54321) class AttrDict(dict): """A custom dict which converts dict keys to class attributes""" def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class RAdam(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if eps < 0.0: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): param['buffer'] = [[None, None, None] for _ in range(10)] defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) super(RAdam, self).__init__(params, defaults) def __setstate__(self, state): # pylint: disable=useless-super-delegation super(RAdam, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) state['step'] += 1 buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state['step']) else: step_size = -1 buffered[2] = step_size # more conservative since it's an approximated value if N_sma >= 5: if group['weight_decay'] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr']) denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) p.data.copy_(p_data_fp32) elif step_size > 0: if group['weight_decay'] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr']) p_data_fp32.add_(exp_avg, alpha=-step_size * group['lr']) p.data.copy_(p_data_fp32) return loss CONFIG = { "run_name": "mueller91", "run_description": "train speaker encoder with voxceleb1, voxceleb2 and libriSpeech ", "audio":{ # Audio processing parameters "num_mels": 40, # size of the mel spec frame. "fft_size": 400, # number of stft frequency levels. Size of the linear spectogram frame. "sample_rate": 16000, # DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "win_length": 400, # stft window length in ms. "hop_length": 160, # stft window hop-lengh in ms. "frame_length_ms": None, # stft window length in ms.If None, 'win_length' is used. "frame_shift_ms": None, # stft window hop-lengh in ms. If None, 'hop_length' is used. "preemphasis": 0.98, # pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "min_level_db": -100, # normalization range "ref_level_db": 20, # reference level db, theoretically 20db is the sound of air. "power": 1.5, # value to sharpen wav signals after GL algorithm. "griffin_lim_iters": 60,# #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. # Normalization parameters "signal_norm": True, # normalize the spec values in range [0, 1] "symmetric_norm": True, # move normalization to range [-1, 1] "max_norm": 4.0, # scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": True, # clip normalized values into the range. "mel_fmin": 0.0, # minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 8000.0, # maximum freq level for mel-spec. Tune for dataset!! "do_trim_silence": True, # enable trimming of slience of audio as you load it. LJspeech (False), TWEB (False), Nancy (True) "trim_db": 60 # threshold for timming silence. Set this according to your dataset. }, "reinit_layers": [], "loss": "angleproto", # "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA) "grad_clip": 3.0, # upper limit for gradients for clipping. "epochs": 1000, # total number of epochs to train. "lr": 0.0001, # Initial learning rate. If Noam decay is active, maximum learning rate. "lr_decay": False, # if True, Noam learning rate decaying is applied through training. "warmup_steps": 4000, # Noam decay steps to increase the learning rate from 0 to "lr" "tb_model_param_stats": False, # True, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "steps_plot_stats": 10, # number of steps to plot embeddings. "num_speakers_in_batch": 64, # Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. "num_utters_per_speaker": 10, # "num_loader_workers": 8, # number of training data loader processes. Don't set it too big. 4-8 are good values. "wd": 0.000001, # Weight decay weight. "checkpoint": True, # If True, it saves checkpoints per "save_step" "save_step": 1000, # Number of training steps expected to save traning stats and checkpoints. "print_step": 20, # Number of steps to log traning on console. "output_path": "../../MozillaTTSOutput/checkpoints/voxceleb_librispeech/speaker_encoder/", # DATASET-RELATED: output path for all training outputs. "model": { "input_dim": 40, "proj_dim": 256, "lstm_dim": 768, "num_lstm_layers": 3, "use_lstm_with_projection": True }, "storage": { "sample_from_storage_p": 0.66, "storage_size": 15, # the size of the in-memory storage with respect to a single batch "additive_noise": 1e-5 # add very small gaussian noise to the data in order to increase robustness }, "datasets": [ { "name": "vctk_slim", "path": "../../../audio-datasets/en/VCTK-Corpus/", "meta_file_train": None, "meta_file_val": None }, { "name": "libri_tts", "path": "../../../audio-datasets/en/LibriTTS/train-clean-100", "meta_file_train": None, "meta_file_val": None }, { "name": "libri_tts", "path": "../../../audio-datasets/en/LibriTTS/train-clean-360", "meta_file_train": None, "meta_file_val": None }, { "name": "libri_tts", "path": "../../../audio-datasets/en/LibriTTS/train-other-500", "meta_file_train": None, "meta_file_val": None }, { "name": "voxceleb1", "path": "../../../audio-datasets/en/voxceleb1/", "meta_file_train": None, "meta_file_val": None }, { "name": "voxceleb2", "path": "../../../audio-datasets/en/voxceleb2/", "meta_file_train": None, "meta_file_val": None }, { "name": "common_voice", "path": "../../../audio-datasets/en/MozillaCommonVoice", "meta_file_train": "train.tsv", "meta_file_val": "test.tsv" } ] } class TTSModel: def __init__(self, device, batch_size): self.device = device self.use_cuda = True if self.device == 'cuda' else False self.SYNTHETIC_DATA = [] self.c = AttrDict() self.c.update(CONFIG) c = self.c self.model = SpeakerEncoder(input_dim=c.model['input_dim'], proj_dim=c.model['proj_dim'], lstm_dim=c.model['lstm_dim'], num_lstm_layers=c.model['num_lstm_layers']) self.optimizer = RAdam(self.model.parameters(), lr=c.lr) self.criterion = AngleProtoLoss() self.SYNTHETIC_DATA.append(T.rand(batch_size, 50, 40).to(device=self.device)) if self.use_cuda: self.model = self.model.cuda() self.criterion.cuda() # If scheduler in the future needs to depend on the optimizer, be sure to update # self.scheduler in set_optimizer as well! self.scheduler = None self.global_step = 0 def __del__(self): del self.SYNTHETIC_DATA[0] def train(self): niter = 1 _, global_step = self._train(self.model, self.criterion, self.optimizer, self.scheduler, None, self.global_step, self.c, niter) def eval(self): result = self.model(self.SYNTHETIC_DATA[0]) return result def get_optimizer(self): return self.optimizer def set_optimizer(self, optimizer) -> None: self.optimizer = optimizer def __call__(self, *things): return self def _train(self, model, criterion, optimizer, scheduler, ap, global_step, c, niter): # data_loader = setup_loader(ap, is_val=False, verbose=True) model.train() epoch_time = 0 best_loss = float('inf') avg_loss = 0 avg_loader_time = 0 end_time = time.time() # for _, data in enumerate(data_loader): start_time = time.time() for reps in range(niter): for _, data in enumerate(self.SYNTHETIC_DATA): # setup input data # inputs = data[0] inputs = data loader_time = time.time() - end_time global_step += 1 # setup lr # if c.lr_decay: # scheduler.step() optimizer.zero_grad() # dispatch data to GPU if self.use_cuda: inputs = inputs.cuda(non_blocking=True) # labels = labels.cuda(non_blocking=True) # forward pass model outputs = model(inputs) # print(outputs.shape) view = outputs.view(c.num_speakers_in_batch, outputs.shape[0] // c.num_speakers_in_batch, -1) # loss computation loss = criterion(view) loss.backward() # grad_norm, _ = check_update(model, c.grad_clip) optimizer.step() step_time = time.time() - start_time epoch_time += step_time # Averaged Loss and Averaged Loader Time avg_loss = 0.01 * loss.item() \ + 0.99 * avg_loss if avg_loss != 0 else loss.item() avg_loader_time = 1/c.num_loader_workers * loader_time + \ (c.num_loader_workers-1) / c.num_loader_workers * avg_loader_time if avg_loader_time != 0 else loader_time current_lr = optimizer.param_groups[0]['lr'] # save best model #best_loss = save_best_model(model, optimizer, avg_loss, best_loss, # OUT_PATH, global_step) end_time = time.time() # print(end_time - start_time) return avg_loss, global_step
from ...util.model import BenchmarkModel from torchbenchmark.tasks import SPEECH import torch from typing import Tuple from .angular_tts_main import TTSModel class Model(BenchmarkModel): task = SPEECH.SYNTHESIS # Original train batch size: 64 # Source: https://github.com/mozilla/TTS/blob/master/TTS/speaker_encoder/config.json#L38 DEFAULT_TRAIN_BSIZE = 64 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.model = TTSModel(device=self.device, batch_size=self.batch_size) self.model.model.to(self.device) if self.test == "train": self.model.model.train() elif self.test == "eval": self.model.model.eval() def get_module(self): return self.model.model, [self.model.SYNTHETIC_DATA[0], ] def set_module(self, new_model): self.model.model = new_model def train(self): # the training process is not patched to use scripted models self.model.train() def eval(self) -> Tuple[torch.Tensor]: out = self.model.eval() return (out, ) def get_optimizer(self): return self.model.get_optimizer() def set_optimizer(self, optimizer) -> None: self.model.set_optimizer(optimizer)
import torch import torch.nn.functional as F import numpy as np from torch import nn class LSTMWithProjection(nn.Module): def __init__(self, input_size, hidden_size, proj_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.proj_size = proj_size self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, proj_size, bias=False) def forward(self, x): self.lstm.flatten_parameters() o, (_, _) = self.lstm(x) return self.linear(o) class LSTMWithoutProjection(nn.Module): def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers): super().__init__() self.lstm = nn.LSTM(input_size=input_dim, hidden_size=lstm_dim, num_layers=num_lstm_layers, batch_first=True) self.linear = nn.Linear(lstm_dim, proj_dim, bias=True) self.relu = nn.ReLU() def forward(self, x): _, (hidden, _) = self.lstm(x) return self.relu(self.linear(hidden[-1])) class SpeakerEncoder(nn.Module): def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3, use_lstm_with_projection=True): super().__init__() self.use_lstm_with_projection = use_lstm_with_projection layers = [] # choise LSTM layer if use_lstm_with_projection: layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim)) for _ in range(num_lstm_layers - 1): layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim)) self.layers = nn.Sequential(*layers) else: self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers) self._init_layers() def _init_layers(self): for name, param in self.layers.named_parameters(): if "bias" in name: nn.init.constant_(param, 0.0) elif "weight" in name: nn.init.xavier_normal_(param) def forward(self, x): # TODO: implement state passing for lstms d = self.layers(x) if self.use_lstm_with_projection: d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1) else: d = torch.nn.functional.normalize(d, p=2, dim=1) return d @torch.no_grad() def inference(self, x): d = self.layers.forward(x) if self.use_lstm_with_projection: d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1) else: d = torch.nn.functional.normalize(d, p=2, dim=1) return d def compute_embedding(self, x, num_frames=160, overlap=0.5): """ Generate embeddings for a batch of utterances x: 1xTxD """ num_overlap = int(num_frames * overlap) max_len = x.shape[1] embed = None cur_iter = 0 for offset in range(0, max_len, num_frames - num_overlap): cur_iter += 1 end_offset = min(x.shape[1], offset + num_frames) frames = x[:, offset:end_offset] if embed is None: embed = self.inference(frames) else: embed += self.inference(frames) return embed / cur_iter def batch_compute_embedding(self, x, seq_lens, num_frames=160, overlap=0.5): """ Generate embeddings for a batch of utterances x: BxTxD """ num_overlap = num_frames * overlap max_len = x.shape[1] embed = None num_iters = seq_lens / (num_frames - num_overlap) cur_iter = 0 for offset in range(0, max_len, num_frames - num_overlap): cur_iter += 1 end_offset = min(x.shape[1], offset + num_frames) frames = x[:, offset:end_offset] if embed is None: embed = self.inference(frames) else: embed[cur_iter <= num_iters, :] += self.inference( frames[cur_iter <= num_iters, :, :] ) return embed / num_iters # adapted from https://github.com/cvqluu/GE2E-Loss class GE2ELoss(nn.Module): def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"): """ Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1] Accepts an input of size (N, M, D) where N is the number of speakers in the batch, M is the number of utterances per speaker, and D is the dimensionality of the embedding vector (e.g. d-vector) Args: - init_w (float): defines the initial value of w in Equation (5) of [1] - init_b (float): definies the initial value of b in Equation (5) of [1] """ super(GE2ELoss, self).__init__() # pylint: disable=E1102 self.w = nn.Parameter(torch.tensor(init_w)) # pylint: disable=E1102 self.b = nn.Parameter(torch.tensor(init_b)) self.loss_method = loss_method # print(' > Initialised Generalized End-to-End loss') assert self.loss_method in ["softmax", "contrast"] if self.loss_method == "softmax": self.embed_loss = self.embed_loss_softmax if self.loss_method == "contrast": self.embed_loss = self.embed_loss_contrast # pylint: disable=R0201 def calc_new_centroids(self, dvecs, centroids, spkr, utt): """ Calculates the new centroids excluding the reference utterance """ excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :])) excl = torch.mean(excl, 0) new_centroids = [] for i, centroid in enumerate(centroids): if i == spkr: new_centroids.append(excl) else: new_centroids.append(centroid) return torch.stack(new_centroids) def calc_cosine_sim(self, dvecs, centroids): """ Make the cosine similarity matrix with dims (N,M,N) """ cos_sim_matrix = [] for spkr_idx, speaker in enumerate(dvecs): cs_row = [] for utt_idx, utterance in enumerate(speaker): new_centroids = self.calc_new_centroids( dvecs, centroids, spkr_idx, utt_idx ) # vector based cosine similarity for speed cs_row.append( torch.clamp( torch.mm( utterance.unsqueeze(1).transpose(0, 1), new_centroids.transpose(0, 1), ) / (torch.norm(utterance) * torch.norm(new_centroids, dim=1)), 1e-6, ) ) cs_row = torch.cat(cs_row, dim=0) cos_sim_matrix.append(cs_row) return torch.stack(cos_sim_matrix) # pylint: disable=R0201 def embed_loss_softmax(self, dvecs, cos_sim_matrix): """ Calculates the loss on each embedding $L(e_{ji})$ by taking softmax """ N, M, _ = dvecs.shape L = [] for j in range(N): L_row = [] for i in range(M): L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j]) L_row = torch.stack(L_row) L.append(L_row) return torch.stack(L) # pylint: disable=R0201 def embed_loss_contrast(self, dvecs, cos_sim_matrix): """ Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid """ N, M, _ = dvecs.shape L = [] for j in range(N): L_row = [] for i in range(M): centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i]) excl_centroids_sigmoids = torch.cat( (centroids_sigmoids[:j], centroids_sigmoids[j + 1 :]) ) L_row.append( 1.0 - torch.sigmoid(cos_sim_matrix[j, i, j]) + torch.max(excl_centroids_sigmoids) ) L_row = torch.stack(L_row) L.append(L_row) return torch.stack(L) def forward(self, dvecs): """ Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats) """ centroids = torch.mean(dvecs, 1) cos_sim_matrix = self.calc_cosine_sim(dvecs, centroids) torch.clamp(self.w, 1e-6) cos_sim_matrix = self.w * cos_sim_matrix + self.b L = self.embed_loss(dvecs, cos_sim_matrix) return L.mean() # adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py class AngleProtoLoss(nn.Module): """ Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982 Accepts an input of size (N, M, D) where N is the number of speakers in the batch, M is the number of utterances per speaker, and D is the dimensionality of the embedding vector Args: - init_w (float): defines the initial value of w - init_b (float): definies the initial value of b """ def __init__(self, init_w=10.0, init_b=-5.0): super(AngleProtoLoss, self).__init__() # pylint: disable=E1102 self.w = nn.Parameter(torch.tensor(init_w)) # pylint: disable=E1102 self.b = nn.Parameter(torch.tensor(init_b)) self.criterion = torch.nn.CrossEntropyLoss() # print(' > Initialised Angular Prototypical loss') def forward(self, x): """ Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats) """ out_anchor = torch.mean(x[:, 1:, :], 1) out_positive = x[:, 0, :] num_speakers = out_anchor.size()[0] cos_sim_matrix = F.cosine_similarity(out_positive.unsqueeze(-1).expand(-1, -1, num_speakers), out_anchor.unsqueeze(-1).expand(-1, -1, num_speakers).transpose(0, 2)) torch.clamp(self.w, 1e-6) cos_sim_matrix = cos_sim_matrix * self.w + self.b label = torch.from_numpy(np.asarray(range(0, num_speakers))).to(cos_sim_matrix.device) L = self.criterion(cos_sim_matrix, label) return L
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION # Original train batch size 256 on 4-GPU system # Downscale to 64 to run on single GPU device # Source: https://arxiv.org/pdf/1409.1556.pdf DEFAULT_TRAIN_BSIZE = 64 DEFAULT_EVAL_BSIZE = 4 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(model_name="vgg16", test=test, device=device, jit=jit, batch_size=batch_size, weights=models.VGG16_Weights.IMAGENET1K_V1, extra_args=extra_args)
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.SEGMENTATION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(variant="COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 96 DEFAULT_EVAL_BSIZE = 16 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(model_name="mobilenet_v2", test=test, device=device, jit=jit, batch_size=batch_size, weights=models.MobileNet_V2_Weights.IMAGENET1K_V1, extra_args=extra_args)
import torch import sys import os from torchbenchmark import REPO_PATH from typing import Tuple # Import FAMBench model path class add_path(): def __init__(self, path): self.path = path def __enter__(self): sys.path.insert(0, self.path) def __exit__(self, exc_type, exc_value, traceback): try: sys.path.remove(self.path) except ValueError: pass XLMR_PATH = os.path.join(REPO_PATH, "submodules", "FAMBench", "benchmarks", "xlmr", "ootb") import fairseq with add_path(XLMR_PATH): from xlmr import generate_dataset from xlmr_parser import init_argparse from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import NLP import torch.nn.functional as F class Model(BenchmarkModel): task = NLP.LANGUAGE_MODELING FAMBENCH_MODEL = True # typical parameters for inference: # ./run_xlmr_ootb.sh -c "--inference-only --famconfig=fb-1dev-A --num-batches=100 --batch-size=96 " \ # "--sequence-length=64 --vocab-size=250000 --half-model --use-gpu --warmup-batches=20" # We use the same batch size for train and inference (96), ... # ... but runs only 1 batch DEFAULT_FAM_CONFIG = "fb-1dev-A" DEFAULT_NUM_BATCHES = 1 DEFAULT_TRAIN_BSIZE = 96 DEFAULT_EVAL_BSIZE = 96 DEFAULT_SEQ_LENGTH = 64 DEFAULT_VOCAB_SIZE = 250000 # by default, use fp16 half precision for training DEFAULT_EVAL_CUDA_PRECISION = "fp16" def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.xlmr = fairseq.models.roberta.XLMRModel.from_pretrained("xlmr.large") parser = init_argparse() args = parser.parse_args([f"--famconfig={self.DEFAULT_FAM_CONFIG}", f"--num-batches={self.DEFAULT_NUM_BATCHES}", f"--batch-size={self.batch_size} ", \ f"--sequence-length={self.DEFAULT_SEQ_LENGTH}", f"--vocab-size={self.DEFAULT_VOCAB_SIZE}"]) if self.device == "cuda": args.use_gpu = True if test == "train": self.learning_rate = 0.01 self.optimizer = torch.optim.SGD(self.xlmr.parameters(), lr=self.learning_rate) self.xlmr.train() args.inference_only = False elif test == "eval": self.xlmr.eval() args.inference_only = True # Generate data! y is empty if inference_only. self.x_l, self.y_true_l = generate_dataset(args.num_batches, args.batch_size, args.vocab_size, args.inference_only, uniform_seqlen=args.sequence_length, seqlen_dist=args.seqlen_dist, seq_len_dist_max=args.seqlen_dist_max) # Prefetch the model and data to device self.xlmr = self.xlmr.to(self.device) self.x_l = list(map(lambda x: x.to(self.device), self.x_l)) self.y_true_l = list(map(lambda x: x.to(self.device), self.y_true_l)) def get_module(self): return self.xlmr, self.x_l def enable_fp16_half(self): self.xmlr = self.xlmr.half() def train(self): for i, (x, y_true) in enumerate(zip(self.x_l, self.y_true_l)): y_pred = self.xlmr.extract_features(x) loss = F.cross_entropy(y_pred, y_true) loss.backward() self.optimizer.step() self.optimizer.zero_grad() def eval(self) -> Tuple[torch.Tensor]: result = None with torch.no_grad(): for i, x in enumerate(self.x_l): y_pred = self.xlmr.extract_features(x) result = y_pred return (result, )
import os import sys import torch import subprocess from torchbenchmark import REPO_PATH def update_fambench_submodule(): "Update FAMBench submodule of the benchmark repo" update_command = ["git", "submodule", "update", "--init", "--recursive", os.path.join("submodules","FAMBench")] subprocess.check_call(update_command, cwd=REPO_PATH) def pip_install_requirements(): try: subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) # pin fairseq version to 0.12.2 # ignore deps specified in requirements.txt subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--no-deps', 'fairseq==0.12.2']) except subprocess.CalledProcessError: # We ignore the ResolutionImpossible error because fairseq requires omegaconf < 2.1 # but detectron2 requires omegaconf >= 2.1 pass if __name__ == "__main__": update_fambench_submodule() pip_install_requirements()
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.SEGMENTATION model_file = None # A hack to workaround fcos model instantiate error FCOS_USE_BN = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(variant="COCO-Detection/fcos_R_50_FPN_1x.py", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(name="hf_GPT2_large", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import argparse import random import torch import numpy as np from torchbenchmark.util.env_check import set_random_seed from .bert_pytorch import parse_args from .bert_pytorch.trainer import BERTTrainer from .bert_pytorch.dataset import BERTDataset, WordVocab from .bert_pytorch.model import BERT from torch.utils.data import DataLoader import typing torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False from pathlib import Path from ...util.model import BenchmarkModel from torchbenchmark.tasks import NLP import io class CorpusGenerator(io.TextIOBase): """ Class to Generate Random Corpus in Lieu of Using Fixed File Data. Model is written to consume large fixed corpus but for purposes of benchmark its sufficient to generate nonsense corpus with similar distribution. Corpus is sentence pairs. Vocabulary words are simply numbers and sentences are each 1-4 words. Deriving from TextUIBase allows object to participate as a text file. """ def __init__(self, words, lines): self.lines_read = 0 self.lines = lines self.words = words def reset(self): self.lines_read = 0 def readable(self): return self.lines <= self.lines_read def readline(self): self.lines_read = self.lines_read + 1 if (self.lines_read > self.lines): return "" newline = "" for j in range(random.randrange(1,4)): newline += str(random.randrange(self.words)) + " " newline += "\\t " for j in range(random.randrange(1,4)): newline += str(random.randrange(self.words)) + " " newline += "\n" #print(newline) return newline class Model(BenchmarkModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 16 DEFAULT_EVAL_BSIZE = 16 def __init__(self, test, device, batch_size=None, jit=False, extra_args=[]): if device == "cpu": self.DEFAULT_EVAL_BSIZE = max(1, int(self.DEFAULT_EVAL_BSIZE / 8)) super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) debug_print = False root = str(Path(__file__).parent) args = parse_args(args=[ '--train_dataset', f'{root}/data/corpus.small', '--test_dataset', f'{root}/data/corpus.small', '--vocab_path', f'{root}/data/vocab.small', '--output_path', 'bert.model', ]) # Avoid reading sys.argv here args.with_cuda = self.device == 'cuda' args.script = self.jit args.on_memory = True # Example effect of batch size on eval time(ms) # bs cpu cuda # 1 330 15.5 # 2 660 15.5 # 4 1200 15.2 # 8 2200 20 # 16 4350 33 # 32 8000 58 # # Issue is that with small batch sizes the gpu is starved for work. # Ideally doubling work would double execution time. # parameters for work size, these were chosen to provide a profile # that matches processing of an original trained en-de corpus. args.batch_size = self.batch_size vocab_size = 20000 args.corpus_lines = 50000 # generate random corpus from parameters set_random_seed() vocab = WordVocab(CorpusGenerator(vocab_size, args.corpus_lines)) #with open(args.train_dataset, "r", encoding="utf-8") as f: # vocab = WordVocab(f) #vocab = WordVocab.load_vocab(args.vocab_path) if debug_print: print("seq_len:") print(args.seq_len) print("batch size:") print(args.batch_size) print("layers") print(args.layers) print("args hidden:") print(args.hidden) print("len vocab:") print(len(vocab)) print(type(vocab)) set_random_seed() train_dataset = BERTDataset(args.train_dataset, vocab, seq_len=args.seq_len, corpus_lines=args.corpus_lines, on_memory=args.on_memory, generator = CorpusGenerator(vocab_size, args.corpus_lines)) set_random_seed() test_dataset = BERTDataset(args.test_dataset, vocab, seq_len=args.seq_len, on_memory=args.on_memory, generator = CorpusGenerator(vocab_size, args.corpus_lines)) \ if args.test_dataset is not None else None set_random_seed() train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ if test_dataset is not None else None bert = BERT(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads) trainer = BERTTrainer(bert, len(vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, debug=args.debug) if test == "eval": bert.eval() example_batch = next(iter(train_data_loader)) self.example_inputs = example_batch['bert_input'].to(self.device)[:self.batch_size], example_batch['segment_label'].to(self.device)[:self.batch_size] self.is_next = example_batch['is_next'].to(self.device)[:self.batch_size] self.bert_label = example_batch['bert_label'].to(self.device)[:self.batch_size] self.model = trainer def get_module(self): return self.model.bert, self.example_inputs def set_module(self, new_model): self.model.bert = new_model def eval(self) -> typing.Tuple[torch.Tensor]: model = self.model # 1. forward the next_sentence_prediction and masked_lm model next_sent_output, mask_lm_output = model.model.forward(*self.example_inputs) # 2-1. NLL(negative log likelihood) loss of is_next classification result # 2-2. NLLLoss of predicting masked token word # 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure next_loss = model.criterion(next_sent_output, self.is_next) mask_loss = model.criterion(mask_lm_output.transpose(1, 2), self.bert_label) loss = next_loss + mask_loss return (next_sent_output, mask_lm_output) def train(self): trainer = self.model # 1. forward the next_sentence_prediction and masked_lm model next_sent_output, mask_lm_output = trainer.model.forward(*self.example_inputs) # 2-1. NLL(negative log likelihood) loss of is_next classification result # 2-2. NLLLoss of predicting masked token word # 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure next_loss = trainer.criterion(next_sent_output, self.is_next) mask_loss = trainer.criterion(mask_lm_output.transpose(1, 2), self.bert_label) loss = next_loss + mask_loss # 3. backward and optimization only in train trainer.optim_schedule.zero_grad() loss.backward() trainer.optim_schedule.step_and_update_lr() # self.model is a Trainer that has an inner optimizer wrapped by a scheduled optimizer. Return the inner, # since the scheduled is derived. def get_optimizer(self): return self.model.get_optimizer() # self.model is a Trainer that has an inner optimizer wrapped by a scheduled optimizer. Update both with # a new inner optimizer. def set_optimizer(self, optimizer: torch.optim.Optimizer) -> None: self.model.set_optimizer(optimizer)
import unittest from bert_pytorch import BERT class BERTVocabTestCase(unittest.TestCase): pass
from setuptools import setup, find_packages from setuptools.command.install import install import os import sys __version__ = "0.0.1a4" with open("requirements.txt") as f: require_packages = [line[:-1] if line[-1] == "\n" else line for line in f] with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() class VerifyVersionCommand(install): """Custom command to verify that the git tag matches our version""" description = 'verify that the git tag matches our version' def run(self): tag = os.getenv('CIRCLE_TAG') if tag != __version__: info = "Git tag: {0} does not match the version of this app: {1}".format( tag, __version__ ) sys.exit(info) setup( name="bert_pytorch", version=__version__, author='Junseong Kim', author_email='[email protected]', packages=find_packages(), install_requires=require_packages, url="https://github.com/codertimo/BERT-pytorch", description="Google AI 2018 BERT pytorch implementation", long_description=long_description, long_description_content_type="text/markdown", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], entry_points={ 'console_scripts': [ 'bert = bert_pytorch.__main__:train', 'bert-vocab = bert_pytorch.dataset.vocab:build', ] }, cmdclass={ 'verify': VerifyVersionCommand, } )
import subprocess import sys def setup_install(): subprocess.check_call([sys.executable, 'setup.py', 'develop']) if __name__ == '__main__': setup_install()
import argparse from .model import BERT def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument("--script", required=False, action="store_true") parser.add_argument("-d", "--debug", required=False, type=str, default=None) parser.add_argument("-c", "--train_dataset", required=True, type=str, help="train dataset for train bert") parser.add_argument("-t", "--test_dataset", type=str, default=None, help="test set for evaluate train set") parser.add_argument("-v", "--vocab_path", required=True, type=str, help="built vocab model path with bert-vocab") parser.add_argument("-o", "--output_path", required=True, type=str, help="ex)output/bert.model") parser.add_argument("-hs", "--hidden", type=int, default=768, help="hidden size of transformer model") parser.add_argument("-l", "--layers", type=int, default=12, help="number of layers") parser.add_argument("-a", "--attn_heads", type=int, default=12, help="number of attention heads") parser.add_argument("-s", "--seq_len", type=int, default=128, help="maximum sequence len") parser.add_argument("-b", "--batch_size", type=int, default=64, help="number of batch_size") parser.add_argument("-e", "--epochs", type=int, default=10, help="number of epochs") parser.add_argument("-w", "--num_workers", type=int, default=0, help="dataloader worker size") parser.add_argument("--with_cuda", type=bool, default=True, help="training with CUDA: true, or false") parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n") parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus") parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids") parser.add_argument("--on_memory", type=bool, default=True, help="Loading on memory: true or false") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of adam") parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam") parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value") parser.add_argument("--adam_beta2", type=float, default=0.999, help="adam first beta value") parsed_args = parser.parse_args(args) return parsed_args
import argparse from torch.utils.data import DataLoader from bert_pytorch import parse_args from .model import BERT from .trainer import BERTTrainer from .dataset import BERTDataset, WordVocab import random import torch import numpy as np def train(): # Make all randomness deterministic random.seed(1337) torch.manual_seed(1337) np.random.seed(1337) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False args = parse_args() print("Loading Vocab", args.vocab_path) vocab = WordVocab.load_vocab(args.vocab_path) print("Vocab Size: ", len(vocab)) print("Loading Train Dataset", args.train_dataset) train_dataset = BERTDataset(args.train_dataset, vocab, seq_len=args.seq_len, corpus_lines=args.corpus_lines, on_memory=args.on_memory) print("Loading Test Dataset", args.test_dataset) test_dataset = BERTDataset(args.test_dataset, vocab, seq_len=args.seq_len, on_memory=args.on_memory) \ if args.test_dataset is not None else None print("Creating Dataloader") train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ if test_dataset is not None else None print("Building BERT model") bert = BERT(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads) if args.script: print("Scripting BERT model") bert = torch.jit.script(bert) print("Creating BERT Trainer") trainer = BERTTrainer(bert, len(vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, debug=args.debug) print("Training Start") for epoch in range(args.epochs): trainer.train(epoch) trainer.save(epoch, args.output_path) if test_data_loader is not None: trainer.test(epoch)
import pickle from collections import Counter class TorchVocab(object): """Defines a vocabulary object that will be used to numericalize a field. Attributes: freqs: A collections.Counter object holding the frequencies of tokens in the data used to build the Vocab. stoi: A collections.defaultdict instance mapping token strings to numerical identifiers. itos: A list of token strings indexed by their numerical identifiers. """ def __init__(self, counter, max_size=None, min_freq=1, specials=['<pad>', '<oov>'], vectors=None, unk_init=None, vectors_cache=None): """Create a Vocab object from a collections.Counter. Arguments: counter: collections.Counter object holding the frequencies of each value found in the data. max_size: The maximum size of the vocabulary, or None for no maximum. Default: None. min_freq: The minimum frequency needed to include a token in the vocabulary. Values less than 1 will be set to 1. Default: 1. specials: The list of special tokens (e.g., padding or eos) that will be prepended to the vocabulary in addition to an <unk> token. Default: ['<pad>'] vectors: One of either the available pretrained vectors or custom pretrained vectors (see Vocab.load_vectors); or a list of aforementioned vectors unk_init (callback): by default, initialize out-of-vocabulary word vectors to zero vectors; can be any function that takes in a Tensor and returns a Tensor of the same size. Default: torch.Tensor.zero_ vectors_cache: directory for cached vectors. Default: '.vector_cache' """ self.freqs = counter counter = counter.copy() min_freq = max(min_freq, 1) self.itos = list(specials) # frequencies of special tokens are not counted when building vocabulary # in frequency order for tok in specials: del counter[tok] max_size = None if max_size is None else max_size + len(self.itos) # sort by frequency, then alphabetically words_and_frequencies = sorted(counter.items(), key=lambda tup: tup[0]) words_and_frequencies.sort(key=lambda tup: tup[1], reverse=True) for word, freq in words_and_frequencies: if freq < min_freq or len(self.itos) == max_size: break self.itos.append(word) # stoi is simply a reverse dict for itos self.stoi = {tok: i for i, tok in enumerate(self.itos)} self.vectors = None if vectors is not None: self.load_vectors(vectors, unk_init=unk_init, cache=vectors_cache) else: assert unk_init is None and vectors_cache is None def __eq__(self, other): if self.freqs != other.freqs: return False if self.stoi != other.stoi: return False if self.itos != other.itos: return False if self.vectors != other.vectors: return False return True def __len__(self): return len(self.itos) def vocab_rerank(self): self.stoi = {word: i for i, word in enumerate(self.itos)} def extend(self, v, sort=False): words = sorted(v.itos) if sort else v.itos for w in words: if w not in self.stoi: self.itos.append(w) self.stoi[w] = len(self.itos) - 1 class Vocab(TorchVocab): def __init__(self, counter, max_size=None, min_freq=1): self.pad_index = 0 self.unk_index = 1 self.eos_index = 2 self.sos_index = 3 self.mask_index = 4 super().__init__(counter, specials=["<pad>", "<unk>", "<eos>", "<sos>", "<mask>"], max_size=max_size, min_freq=min_freq) def to_seq(self, sentece, seq_len, with_eos=False, with_sos=False) -> list: pass def from_seq(self, seq, join=False, with_pad=False): pass @staticmethod def load_vocab(vocab_path: str) -> 'Vocab': with open(vocab_path, "rb") as f: return pickle.load(f) def save_vocab(self, vocab_path): with open(vocab_path, "wb") as f: pickle.dump(self, f) # Building Vocab with text files class WordVocab(Vocab): def __init__(self, texts, max_size=None, min_freq=1): counter = Counter() for line in texts: if isinstance(line, list): words = line else: words = line.replace("\n", "").replace("\t", "").split() for word in words: counter[word] += 1 super().__init__(counter, max_size=max_size, min_freq=min_freq) def to_seq(self, sentence, seq_len=None, with_eos=False, with_sos=False, with_len=False): if isinstance(sentence, str): sentence = sentence.split() seq = [self.stoi.get(word, self.unk_index) for word in sentence] if with_eos: seq += [self.eos_index] # this would be index 1 if with_sos: seq = [self.sos_index] + seq origin_seq_len = len(seq) if seq_len is None: pass elif len(seq) <= seq_len: seq += [self.pad_index for _ in range(seq_len - len(seq))] else: seq = seq[:seq_len] return (seq, origin_seq_len) if with_len else seq def from_seq(self, seq, join=False, with_pad=False): words = [self.itos[idx] if idx < len(self.itos) else "<%d>" % idx for idx in seq if not with_pad or idx != self.pad_index] return " ".join(words) if join else words @staticmethod def load_vocab(vocab_path: str) -> 'WordVocab': with open(vocab_path, "rb") as f: return pickle.load(f) def build(): import argparse parser = argparse.ArgumentParser() parser.add_argument("-c", "--corpus_path", required=True, type=str) parser.add_argument("-o", "--output_path", required=True, type=str) parser.add_argument("-s", "--vocab_size", type=int, default=None) parser.add_argument("-e", "--encoding", type=str, default="utf-8") parser.add_argument("-m", "--min_freq", type=int, default=1) args = parser.parse_args() with open(args.corpus_path, "r", encoding=args.encoding) as f: vocab = WordVocab(f, max_size=args.vocab_size, min_freq=args.min_freq) print("VOCAB SIZE:", len(vocab)) vocab.save_vocab(args.output_path)
from .dataset import BERTDataset from .vocab import WordVocab
from torch.utils.data import Dataset import torch import random QUIET = True class BERTDataset(Dataset): def __init__(self, corpus_path, vocab, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True, generator = None): self.vocab = vocab self.seq_len = seq_len self.on_memory = on_memory self.corpus_lines = corpus_lines self.corpus_path = corpus_path self.encoding = encoding # For use as benchmark we only accept data from generator #with open(corpus_path, "r", encoding=encoding) as f: assert generator != None with generator as f: if self.corpus_lines is None and not on_memory: for _ in f: self.corpus_lines += 1 if on_memory: self.lines = [line[:-1].split("\\t") for line in f] self.corpus_lines = len(self.lines) if not on_memory: self.file = open(corpus_path, "r", encoding=encoding) self.random_file = open(corpus_path, "r", encoding=encoding) for _ in range(random.randint(self.corpus_lines if self.corpus_lines < 1000 else 1000)): self.random_file.__next__() def __len__(self): return self.corpus_lines def __getitem__(self, item): t1, t2, is_next_label = self.random_sent(item) t1_random, t1_label = self.random_word(t1) t2_random, t2_label = self.random_word(t2) # [CLS] tag = SOS tag, [SEP] tag = EOS tag t1 = [self.vocab.sos_index] + t1_random + [self.vocab.eos_index] t2 = t2_random + [self.vocab.eos_index] t1_label = [self.vocab.pad_index] + t1_label + [self.vocab.pad_index] t2_label = t2_label + [self.vocab.pad_index] segment_label = ([1 for _ in range(len(t1))] + [2 for _ in range(len(t2))])[:self.seq_len] bert_input = (t1 + t2)[:self.seq_len] bert_label = (t1_label + t2_label)[:self.seq_len] padding = [self.vocab.pad_index for _ in range(self.seq_len - len(bert_input))] bert_input.extend(padding), bert_label.extend(padding), segment_label.extend(padding) output = {"bert_input": bert_input, "bert_label": bert_label, "segment_label": segment_label, "is_next": is_next_label} return {key: torch.tensor(value) for key, value in output.items()} def random_word(self, sentence): tokens = sentence.split() output_label = [] for i, token in enumerate(tokens): prob = random.random() if prob < 0.15: prob /= 0.15 # 80% randomly change token to mask token if prob < 0.8: tokens[i] = self.vocab.mask_index # 10% randomly change token to random token elif prob < 0.9: tokens[i] = random.randrange(len(self.vocab)) # 10% randomly change token to current token else: tokens[i] = self.vocab.stoi.get(token, self.vocab.unk_index) output_label.append(self.vocab.stoi.get(token, self.vocab.unk_index)) else: tokens[i] = self.vocab.stoi.get(token, self.vocab.unk_index) output_label.append(0) return tokens, output_label def random_sent(self, index): t1, t2 = self.get_corpus_line(index) # output_text, label(isNotNext:0, isNext:1) if random.random() > 0.5: return t1, t2, 1 else: return t1, self.get_random_line(), 0 def get_corpus_line(self, item): if self.on_memory: return self.lines[item][0], self.lines[item][1] else: line = self.file.__next__() if line is None: self.file.close() self.file = open(self.corpus_path, "r", encoding=self.encoding) line = self.file.__next__() t1, t2 = line[:-1].split("\t") return t1, t2 def get_random_line(self): if self.on_memory: return self.lines[random.randrange(len(self.lines))][1] line = self.file.__next__() if line is None: self.file.close() self.file = open(self.corpus_path, "r", encoding=self.encoding) for _ in range(random.randint(self.corpus_lines if self.corpus_lines < 1000 else 1000)): self.random_file.__next__() line = self.random_file.__next__() return line[:-1].split("\t")[1]
import torch.nn as nn from .bert import BERT class BERTLM(nn.Module): """ BERT Language Model Next Sentence Prediction Model + Masked Language Model """ def __init__(self, bert: BERT, vocab_size): """ :param bert: BERT model which should be trained :param vocab_size: total vocab size for masked_lm """ super().__init__() self.bert = bert self.next_sentence = NextSentencePrediction(self.bert.hidden) self.mask_lm = MaskedLanguageModel(self.bert.hidden, vocab_size) def forward(self, x, segment_label): x = self.bert(x, segment_label) return self.next_sentence(x), self.mask_lm(x) class NextSentencePrediction(nn.Module): """ 2-class classification model : is_next, is_not_next """ def __init__(self, hidden): """ :param hidden: BERT model output size """ super().__init__() self.linear = nn.Linear(hidden, 2) self.softmax = nn.LogSoftmax(dim=-1) def forward(self, x): return self.softmax(self.linear(x[:, 0])) class MaskedLanguageModel(nn.Module): """ predicting origin token from masked input sequence n-class classification problem, n-class = vocab_size """ def __init__(self, hidden, vocab_size): """ :param hidden: output size of BERT model :param vocab_size: total vocab size """ super().__init__() self.linear = nn.Linear(hidden, vocab_size) self.softmax = nn.LogSoftmax(dim=-1) def forward(self, x): return self.softmax(self.linear(x))
from .bert import BERT from .language_model import BERTLM
import torch import torch.nn as nn from .attention import MultiHeadedAttention from .utils import SublayerConnection, PositionwiseFeedForward from .utils.tensor2tensor import TensorToTensor class LambdaModule(torch.nn.Module): def __init__(self, att): super().__init__() self.attention = att self.mask = torch.zeros((4)) @torch.jit.export def set_mask(self, mask: torch.Tensor): self.mask = mask def forward(self, x: torch.Tensor) -> torch.Tensor: return self.attention.forward(x, x, x, mask=self.mask) class TransformerBlock(nn.Module): """ Bidirectional Encoder = Transformer (self-attention) Transformer = MultiHead_Attention + Feed_Forward with sublayer connection """ def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout): """ :param hidden: hidden size of transformer :param attn_heads: head sizes of multi-head attention :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size :param dropout: dropout rate """ super().__init__() self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden) self.lambda_module = LambdaModule(self.attention) self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout) self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout) self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout) self.dropout = nn.Dropout(p=dropout) def forward(self, x, mask): self.lambda_module.set_mask(mask) x = self.input_sublayer(x, self.lambda_module) x = self.output_sublayer(x, self.feed_forward) return self.dropout(x)
import torch import torch.nn as nn from .transformer import TransformerBlock from .embedding import BERTEmbedding class BERT(nn.Module): """ BERT model : Bidirectional Encoder Representations from Transformers. """ def __init__(self, vocab_size, hidden=768, n_layers=12, attn_heads=12, dropout=0.1): """ :param vocab_size: vocab_size of total words :param hidden: BERT model hidden size :param n_layers: numbers of Transformer blocks(layers) :param attn_heads: number of attention heads :param dropout: dropout rate """ super().__init__() self.hidden = hidden self.n_layers = n_layers self.attn_heads = attn_heads # paper noted they used 4*hidden_size for ff_network_hidden_size self.feed_forward_hidden = hidden * 4 # embedding for BERT, sum of positional, segment, token embeddings self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=hidden) # multi-layers transformer blocks, deep network self.transformer_blocks = nn.ModuleList( [TransformerBlock(hidden, attn_heads, hidden * 4, dropout) for _ in range(n_layers)]) def forward(self, x, segment_info): # attention masking for padded token # torch.ByteTensor([batch_size, 1, seq_len, seq_len) mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1) # embedding the indexed sequence to sequence of vectors x = self.embedding(x, segment_info) # running over multiple transformer blocks for transformer in self.transformer_blocks: x = transformer.forward(x, mask) return x
import torch.nn as nn import torch.nn.functional as F import torch import math from ..utils.tensor2tensor import TensorToTensor from typing import Optional class Attention(nn.Module): """ Compute 'Scaled Dot Product Attention """ def forward(self, query, key, value, dropout: TensorToTensor, mask: Optional[torch.Tensor]=None): scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(query.size(-1)) if mask is not None: if scores.dtype == torch.float16: """ -1e9 is overflow in fp16. It needs to be set a min. Theoretically, the mask for empty token needs to be set as -inf. Check https://arxiv.org/pdf/1706.03762.pdf """ min_mask = -65504.0 #torch.finfo(torch.float16).min == -65504.0. jit scripting could handle finfo else: min_mask = -1e9 scores = scores.masked_fill(mask == 0, min_mask) p_attn = F.softmax(scores, dim=-1) p_attn = dropout.forward(p_attn) return torch.matmul(p_attn, value), p_attn
from .multi_head import MultiHeadedAttention from .single import Attention
import torch import torch.nn as nn from .single import Attention from typing import Optional class DropoutWrapper(nn.Module): def __init__(self, p): super().__init__() self.dropout = nn.Dropout(p=p) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.dropout(x) class MultiHeadedAttention(nn.Module): """ Take in model size and number of heads. """ def __init__(self, h, d_model, dropout=0.1): super().__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linear_layers = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(3)]) self.output_linear = nn.Linear(d_model, d_model) self.attention = Attention() self.dropout = DropoutWrapper(p=dropout) def forward(self, query, key, value, mask: Optional[torch.Tensor]=None): batch_size = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = [l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linear_layers, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, attn = self.attention(query, key, value, self.dropout, mask=mask) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k) return self.output_linear(x)
import torch.nn as nn class TokenEmbedding(nn.Embedding): def __init__(self, vocab_size, embed_size=512): super().__init__(vocab_size, embed_size, padding_idx=0)
from .bert import BERTEmbedding
import torch.nn as nn import torch import math class PositionalEmbedding(nn.Module): def __init__(self, d_model, max_len=512): super().__init__() # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model).float() pe.require_grad = False position = torch.arange(0, max_len).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): return self.pe[:, :x.size(1)]
import torch.nn as nn class SegmentEmbedding(nn.Embedding): def __init__(self, embed_size=512): super().__init__(3, embed_size, padding_idx=0)
import torch import torch.nn as nn from .token import TokenEmbedding from .position import PositionalEmbedding from .segment import SegmentEmbedding class BERTEmbedding(nn.Module): """ BERT Embedding which is consisted with under features 1. TokenEmbedding : normal embedding matrix 2. PositionalEmbedding : adding positional information using sin, cos 2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2) sum of all these features are output of BERTEmbedding """ def __init__(self, vocab_size, embed_size, dropout=0.1): """ :param vocab_size: total vocab size :param embed_size: embedding size of token embedding :param dropout: dropout rate """ super().__init__() self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size) self.position = PositionalEmbedding(d_model=self.token.embedding_dim) self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim) self.dropout = nn.Dropout(p=dropout) self.embed_size = embed_size def forward(self, sequence, segment_label): x = self.token(sequence) + self.position(sequence) + self.segment(segment_label) return self.dropout(x)
import torch import torch.nn as nn from .layer_norm import LayerNorm from .tensor2tensor import TensorToTensor class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer: TensorToTensor): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer.forward(self.norm(x)))
import torch @torch.jit.interface class TensorToTensor(torch.nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: pass
import torch import torch.nn as nn class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) self.activation = nn.GELU() def forward(self, x): return self.w_2(self.dropout(self.activation(self.w_1(x))))
from .feed_forward import PositionwiseFeedForward from .layer_norm import LayerNorm from .sublayer import SublayerConnection
import torch.nn as nn import torch class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
'''A wrapper class for optimizer ''' import numpy as np class ScheduledOptim(): '''A simple wrapper class for learning rate scheduling''' def __init__(self, optimizer, d_model, n_warmup_steps): self._optimizer = optimizer self.n_warmup_steps = n_warmup_steps self.n_current_steps = 0 self.init_lr = np.power(d_model, -0.5) def step_and_update_lr(self): "Step with the inner optimizer" self._update_learning_rate() self._optimizer.step() def zero_grad(self): "Zero out the gradients by the inner optimizer" self._optimizer.zero_grad() def _get_lr_scale(self): return np.min([ np.power(self.n_current_steps, -0.5), np.power(self.n_warmup_steps, -1.5) * self.n_current_steps]) def _update_learning_rate(self): ''' Learning rate scheduling per step ''' self.n_current_steps += 1 lr = self.init_lr * self._get_lr_scale() for param_group in self._optimizer.param_groups: param_group['lr'] = lr
import torch import torch.nn as nn from torch.optim import Adam from torch.utils.data import DataLoader from ..model import BERTLM, BERT from .optim_schedule import ScheduledOptim class BERTTrainer: """ BERTTrainer make the pretrained BERT model with two LM training method. 1. Masked Language Model : 3.3.1 Task #1: Masked LM 2. Next Sentence prediction : 3.3.2 Task #2: Next Sentence Prediction please check the details on README.md with simple example. """ def __init__(self, bert: BERT, vocab_size: int, train_dataloader: DataLoader, test_dataloader: DataLoader = None, lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, debug: str = None): """ :param bert: BERT model which you want to train :param vocab_size: total word vocab size :param train_dataloader: train dataset data loader :param test_dataloader: test dataset data loader [can be None] :param lr: learning rate of optimizer :param betas: Adam optimizer betas :param weight_decay: Adam optimizer weight decay param :param with_cuda: traning with cuda :param log_freq: logging frequency of the batch iteration """ # Setup cuda device for BERT training, argument -c, --cuda should be true cuda_condition = torch.cuda.is_available() and with_cuda self.device = torch.device("cuda:0" if cuda_condition else "cpu") # This BERT model will be saved every epoch self.bert = bert # Initialize the BERT Language Model, with BERT model self.model = BERTLM(bert, vocab_size).to(self.device) # Distributed GPU training if CUDA can detect more than 1 GPU if with_cuda and torch.cuda.device_count() > 1: self.model = nn.DataParallel(self.model, device_ids=cuda_devices) # Setting the train and test data loader self.train_data = train_dataloader self.test_data = test_dataloader # Setting the Adam optimizer with hyper-param self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps) self.warmup_steps = warmup_steps # Using Negative Log Likelihood Loss function for predicting the masked_token self.criterion = nn.NLLLoss(ignore_index=0) self.log_freq = log_freq self.debug = debug def get_optimizer(self): return self.optim def set_optimizer(self, optimizer: torch.optim.Optimizer): self.optim = optimizer self.optim_schedule = ScheduledOptim(optimizer, self.bert.hidden, n_warmup_steps=self.warmup_steps) def train(self, epoch): self.iteration(epoch, self.train_data) def test(self, epoch): self.iteration(epoch, self.test_data, train=False) def iteration(self, epoch, data_loader, train=True): """ loop over the data_loader for training or testing if on train status, backward operation is activated and also auto save the model every peoch :param epoch: current epoch index :param data_loader: torch.utils.data.DataLoader for iteration :param train: boolean value of is train or test :return: None """ str_code = "train" if train else "test" data_iter = enumerate(data_loader) avg_loss = 0.0 total_correct = 0 total_element = 0 for i, data in data_iter: # 0. batch_data will be sent into the device(GPU or cpu) data = {key: value.to(self.device) for key, value in data.items()} # 1. forward the next_sentence_prediction and masked_lm model next_sent_output, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"]) # 2-1. NLL(negative log likelihood) loss of is_next classification result next_loss = self.criterion(next_sent_output, data["is_next"]) # 2-2. NLLLoss of predicting masked token word mask_loss = self.criterion(mask_lm_output.transpose(1, 2), data["bert_label"]) # 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure loss = next_loss + mask_loss # 3. backward and optimization only in train if train: self.optim_schedule.zero_grad() loss.backward() self.optim_schedule.step_and_update_lr() # next sentence prediction accuracy correct = next_sent_output.argmax(dim=-1).eq(data["is_next"]).sum().item() avg_loss += loss.item() total_correct += correct total_element += data["is_next"].nelement() post_fix = { "epoch": epoch, "iter": i, "avg_loss": avg_loss / (i + 1), "avg_acc": total_correct / total_element * 100, "loss": loss.item() } if i % self.log_freq == 0: data_iter.write(str(post_fix)) if self.debug and epoch == 1 and i == 0: torch.save(next_sent_output, self.debug) print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element) def save(self, epoch, file_path="output/bert_trained.model"): """ Saving the current BERT model on file_path :param epoch: current epoch number :param file_path: model output path which gonna be file_path+"ep%d" % epoch :return: final_output_path """ output_path = file_path + ".ep%d" % epoch self.bert.to(self.device) print("EP:%d Model Saved on:" % epoch, output_path) return output_path
from .pretrain import BERTTrainer
"Doctr detection model" from doctr.models import ocr_predictor import numpy as np import torch # TorchBench imports from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from typing import Tuple class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION DEFAULT_EVAL_BSIZE = 1 CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) predictor = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True).to(self.device) # Doctr detection model expects input (batch_size, 3, 1024, 1024) self.model = predictor.det_predictor.model self.example_inputs = torch.randn(self.batch_size, 3, 1024, 1024).to(self.device) if self.test == "eval": self.model.eval() def train(self): raise NotImplementedError("Train is not implemented for this model.") def get_module(self): return self.model, (self.example_inputs, ) def eval(self) -> Tuple[torch.Tensor]: with torch.inference_mode(): out = self.model(self.example_inputs, return_model_output=True) return (out["out_map"], )
import os import warnings import subprocess import sys def pip_install_requirements(): try: subprocess.check_call(["conda", "install", "-y", "expecttest", "libglib", "pango", "-c", "conda-forge"]) except: warnings.warn("The doctr_det_predictor model requires conda binary libaries to be installed. Missing conda packages might break this model.") subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
import torch import torch.optim as optim import torch.nn as nn import torchvision.models as models from functorch import make_functional_with_buffers, vmap, grad from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER def compute_norms(sample_grads): batch_size = sample_grads[0].shape[0] norms = [sample_grad.view(batch_size, -1).norm(2, dim=-1) for sample_grad in sample_grads] norms = torch.stack(norms, dim=0).norm(2, dim=0) return norms, batch_size def clip_and_accumulate_and_add_noise(model, max_per_sample_grad_norm=1.0, noise_multiplier=1.0): sample_grads = tuple(param.grad_sample for param in model.parameters()) # step 0: compute the norms sample_norms, batch_size = compute_norms(sample_grads) # step 1: compute clipping factors clip_factor = max_per_sample_grad_norm / (sample_norms + 1e-6) clip_factor = clip_factor.clamp(max=1.0) # step 2: clip grads = tuple(torch.einsum('i,i...', clip_factor, sample_grad) for sample_grad in sample_grads) # step 3: add gaussian noise stddev = max_per_sample_grad_norm * noise_multiplier noises = tuple(torch.normal(0, stddev, grad_param.shape, device=grad_param.device) for grad_param in grads) grads = tuple(noise + grad_param for noise, grad_param in zip(noises, grads)) # step 4: assign the new grads, delete the sample grads for param, param_grad in zip(model.parameters(), grads): param.grad = param_grad / batch_size del param.grad_sample class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 64 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) # Generate a resnet18, patch the BatchNorm layers to be GroupNorm self.model = models.__dict__['resnet18']( # min(32, c) is a reasonable default value, see the following: # https://github.com/pytorch/opacus/blob/6a3e9bd99dca314596bc0313bb4241eac7c9a5d0/opacus/validators/batch_norm.py#L84-L86 pretrained=False, norm_layer=(lambda c: nn.GroupNorm(min(c, 32), c)) ) self.model = self.model.to(device) # Cifar10 images are 32x32 and have 10 classes self.example_inputs = ( torch.randn((self.batch_size, 3, 32, 32), device=self.device), ) self.example_target = torch.randint(0, 10, (self.batch_size,), device=self.device) self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) self.criterion = nn.CrossEntropyLoss() def get_module(self): return self.model, self.example_inputs def train(self): model = self.model model.train() fnet, params, buffers = make_functional_with_buffers(self.model) (images, ) = self.example_inputs targets = self.example_target def compute_loss(params, buffers, image, target): image = image.unsqueeze(0) target = target.unsqueeze(0) pred = fnet(params, buffers, image) loss = self.criterion(pred, target) return loss sample_grads = vmap(grad(compute_loss), (None, None, 0, 0))(params, buffers, images, targets) for grad_sample, weight in zip(sample_grads, model.parameters()): weight.grad_sample = grad_sample.detach() clip_and_accumulate_and_add_noise(model) self.optimizer.step() self.optimizer.zero_grad() def eval(self) -> Tuple[torch.Tensor]: model = self.model (images, ) = self.example_inputs model.eval() targets = self.example_target with torch.no_grad(): out = model(images) return (out, )
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from torchvision.utils import save_image import torch import torch.nn.functional as F import numpy as np import os import time import datetime from .model import Generator from .model import Discriminator class Solver(object): """Solver for training and testing StarGAN.""" def __init__(self, celeba_loader, rafd_loader, config, should_script=False): """Initialize configurations.""" # Data loader. self.celeba_loader = celeba_loader self.rafd_loader = rafd_loader # Model configurations. self.c_dim = config.c_dim self.c2_dim = config.c2_dim self.image_size = config.image_size self.g_conv_dim = config.g_conv_dim self.d_conv_dim = config.d_conv_dim self.g_repeat_num = config.g_repeat_num self.d_repeat_num = config.d_repeat_num self.lambda_cls = config.lambda_cls self.lambda_rec = config.lambda_rec self.lambda_gp = config.lambda_gp # Training configurations. self.dataset = config.dataset self.batch_size = config.batch_size self.num_iters = config.num_iters self.num_iters_decay = config.num_iters_decay self.g_lr = config.g_lr self.d_lr = config.d_lr self.n_critic = config.n_critic self.beta1 = config.beta1 self.beta2 = config.beta2 self.resume_iters = config.resume_iters self.selected_attrs = config.selected_attrs # Test configurations. self.test_iters = config.test_iters # Miscellaneous. self.use_tensorboard = config.use_tensorboard self.device = torch.device(config.device) # Directories. self.log_dir = config.log_dir self.sample_dir = config.sample_dir self.model_save_dir = config.model_save_dir self.result_dir = config.result_dir # Step size. self.log_step = config.log_step self.sample_step = config.sample_step self.model_save_step = config.model_save_step self.lr_update_step = config.lr_update_step # Build the model and tensorboard. self.build_model(should_script) if self.use_tensorboard: self.build_tensorboard() def build_model(self, should_script): """Create a generator and a discriminator.""" if should_script: maybe_script = torch.jit.script else: maybe_script = lambda x: x if self.dataset in ['CelebA', 'RaFD']: self.G = maybe_script(Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num)) self.D = maybe_script(Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num)) elif self.dataset in ['Both']: self.G = maybe_script(Generator(self.g_conv_dim, self.c_dim+self.c2_dim+2, self.g_repeat_num)) # 2 for mask vector. self.D = maybe_script(Discriminator(self.image_size, self.d_conv_dim, self.c_dim+self.c2_dim, self.d_repeat_num)) self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2]) self.G.to(self.device) self.D.to(self.device) def print_network(self, model, name): """Print out the network information.""" num_params = 0 for p in model.parameters(): num_params += p.numel() print(model) print(name) print("The number of parameters: {}".format(num_params)) def restore_model(self, resume_iters): """Restore the trained generator and discriminator.""" print('Loading the trained models from step {}...'.format(resume_iters)) G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters)) self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage)) self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage)) def build_tensorboard(self): """Build a tensorboard logger.""" from .logger import Logger self.logger = Logger(self.log_dir) def update_lr(self, g_lr, d_lr): """Decay learning rates of the generator and discriminator.""" for param_group in self.g_optimizer.param_groups: param_group['lr'] = g_lr for param_group in self.d_optimizer.param_groups: param_group['lr'] = d_lr def reset_grad(self): """Reset the gradient buffers.""" self.g_optimizer.zero_grad() self.d_optimizer.zero_grad() def denorm(self, x): """Convert the range from [-1, 1] to [0, 1].""" out = (x + 1) / 2 return out.clamp_(0, 1) def gradient_penalty(self, y, x): """Compute gradient penalty: (L2_norm(dy/dx) - 1)**2.""" weight = torch.ones(y.size()).to(self.device) dydx = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=weight, retain_graph=True, create_graph=True, only_inputs=True)[0] dydx = dydx.view(dydx.size(0), -1) dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1)) return torch.mean((dydx_l2norm-1)**2) def label2onehot(self, labels, dim): """Convert label indices to one-hot vectors.""" batch_size = labels.size(0) out = torch.zeros(batch_size, dim) out[np.arange(batch_size), labels.long()] = 1 return out def create_labels(self, c_org, c_dim=5, dataset='CelebA', selected_attrs=None): """Generate target domain labels for debugging and testing.""" # Get hair color indices. if dataset == 'CelebA': hair_color_indices = [] for i, attr_name in enumerate(selected_attrs): if attr_name in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair']: hair_color_indices.append(i) c_trg_list = [] for i in range(c_dim): if dataset == 'CelebA': c_trg = c_org.clone() if i in hair_color_indices: # Set one hair color to 1 and the rest to 0. c_trg[:, i] = 1 for j in hair_color_indices: if j != i: c_trg[:, j] = 0 else: c_trg[:, i] = (c_trg[:, i] == 0) # Reverse attribute value. elif dataset == 'RaFD': c_trg = self.label2onehot(torch.ones(c_org.size(0))*i, c_dim) c_trg_list.append(c_trg.to(self.device)) return c_trg_list def classification_loss(self, logit, target, dataset='CelebA'): """Compute binary or softmax cross entropy loss.""" if dataset == 'CelebA': return F.binary_cross_entropy_with_logits(logit, target, size_average=False) / logit.size(0) elif dataset == 'RaFD': return F.cross_entropy(logit, target) def train(self, debug=''): """Train StarGAN within a single dataset.""" # Set data loader. if self.dataset == 'CelebA': data_loader = self.celeba_loader elif self.dataset == 'RaFD': data_loader = self.rafd_loader # Fetch fixed inputs for debugging. data_iter = iter(data_loader) x_fixed, c_org = next(data_iter) x_fixed = x_fixed.to(self.device) c_fixed_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs) # Learning rate cache for decaying. g_lr = self.g_lr d_lr = self.d_lr # Start training from scratch or resume training. start_iters = 0 if self.resume_iters: start_iters = self.resume_iters self.restore_model(self.resume_iters) # Start training. print('Start training...') start_time = time.time() for i in range(start_iters, self.num_iters): # =================================================================================== # # 1. Preprocess input data # # =================================================================================== # # Fetch real images and labels. try: x_real, label_org = next(data_iter) except: data_iter = iter(data_loader) x_real, label_org = next(data_iter) # Generate target domain labels randomly. rand_idx = torch.randperm(label_org.size(0)) label_trg = label_org[rand_idx] if self.dataset == 'CelebA': c_org = label_org.clone() c_trg = label_trg.clone() elif self.dataset == 'RaFD': c_org = self.label2onehot(label_org, self.c_dim) c_trg = self.label2onehot(label_trg, self.c_dim) x_real = x_real.to(self.device) # Input images. c_org = c_org.to(self.device) # Original domain labels. c_trg = c_trg.to(self.device) # Target domain labels. label_org = label_org.to(self.device) # Labels for computing classification loss. label_trg = label_trg.to(self.device) # Labels for computing classification loss. # =================================================================================== # # 2. Train the discriminator # # =================================================================================== # # Compute loss with real images. out_src, out_cls = self.D(x_real) d_loss_real = - torch.mean(out_src) d_loss_cls = self.classification_loss(out_cls, label_org, self.dataset) # Compute loss with fake images. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake.detach()) d_loss_fake = torch.mean(out_src) # Save the last value to reference.out if i == self.num_iters - 1 and debug: to_be_saved = d_loss_cls - d_loss_fake torch.save(to_be_saved, debug) # Compute loss for gradient penalty. alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device) x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True) out_src, _ = self.D(x_hat) d_loss_gp = self.gradient_penalty(out_src, x_hat) # Backward and optimize. d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp self.reset_grad() d_loss.backward() self.d_optimizer.step() # Logging. loss = {} loss['D/loss_real'] = d_loss_real.item() loss['D/loss_fake'] = d_loss_fake.item() loss['D/loss_cls'] = d_loss_cls.item() loss['D/loss_gp'] = d_loss_gp.item() # =================================================================================== # # 3. Train the generator # # =================================================================================== # if (i+1) % self.n_critic == 0: # Original-to-target domain. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake) g_loss_fake = - torch.mean(out_src) g_loss_cls = self.classification_loss(out_cls, label_trg, self.dataset) # Target-to-original domain. x_reconst = self.G(x_fake, c_org) g_loss_rec = torch.mean(torch.abs(x_real - x_reconst)) # Backward and optimize. g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls self.reset_grad() g_loss.backward() self.g_optimizer.step() # Logging. loss['G/loss_fake'] = g_loss_fake.item() loss['G/loss_rec'] = g_loss_rec.item() loss['G/loss_cls'] = g_loss_cls.item() # =================================================================================== # # 4. Miscellaneous # # =================================================================================== # # Print out training information. if (i+1) % self.log_step == 0: et = time.time() - start_time et = str(datetime.timedelta(seconds=et))[:-7] log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters) for tag, value in loss.items(): log += ", {}: {:.4f}".format(tag, value) print(log) if self.use_tensorboard: for tag, value in loss.items(): self.logger.scalar_summary(tag, value, i+1) # Translate fixed images for debugging. if (i+1) % self.sample_step == 0 and debug: with torch.no_grad(): x_fake_list = [x_fixed] for c_fixed in c_fixed_list: x_fake_list.append(self.G(x_fixed, c_fixed)) x_concat = torch.cat(x_fake_list, dim=3) sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(sample_path)) # Save model checkpoints. if (i+1) % self.model_save_step == 0: G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1)) torch.save(self.G.state_dict(), G_path) torch.save(self.D.state_dict(), D_path) print('Saved model checkpoints into {}...'.format(self.model_save_dir)) # Decay learning rates. if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay): g_lr -= (self.g_lr / float(self.num_iters_decay)) d_lr -= (self.d_lr / float(self.num_iters_decay)) self.update_lr(g_lr, d_lr) print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr)) def train_multi(self): """Train StarGAN with multiple datasets.""" # Data iterators. celeba_iter = iter(self.celeba_loader) rafd_iter = iter(self.rafd_loader) # Fetch fixed inputs for debugging. x_fixed, c_org = next(celeba_iter) x_fixed = x_fixed.to(self.device) c_celeba_list = self.create_labels(c_org, self.c_dim, 'CelebA', self.selected_attrs) c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD') zero_celeba = torch.zeros(x_fixed.size(0), self.c_dim).to(self.device) # Zero vector for CelebA. zero_rafd = torch.zeros(x_fixed.size(0), self.c2_dim).to(self.device) # Zero vector for RaFD. mask_celeba = self.label2onehot(torch.zeros(x_fixed.size(0)), 2).to(self.device) # Mask vector: [1, 0]. mask_rafd = self.label2onehot(torch.ones(x_fixed.size(0)), 2).to(self.device) # Mask vector: [0, 1]. # Learning rate cache for decaying. g_lr = self.g_lr d_lr = self.d_lr # Start training from scratch or resume training. start_iters = 0 if self.resume_iters: start_iters = self.resume_iters self.restore_model(self.resume_iters) # Start training. print('Start training...') start_time = time.time() for i in range(start_iters, self.num_iters): for dataset in ['CelebA', 'RaFD']: # =================================================================================== # # 1. Preprocess input data # # =================================================================================== # # Fetch real images and labels. data_iter = celeba_iter if dataset == 'CelebA' else rafd_iter try: x_real, label_org = next(data_iter) except: if dataset == 'CelebA': celeba_iter = iter(self.celeba_loader) x_real, label_org = next(celeba_iter) elif dataset == 'RaFD': rafd_iter = iter(self.rafd_loader) x_real, label_org = next(rafd_iter) # Generate target domain labels randomly. rand_idx = torch.randperm(label_org.size(0)) label_trg = label_org[rand_idx] if dataset == 'CelebA': c_org = label_org.clone() c_trg = label_trg.clone() zero = torch.zeros(x_real.size(0), self.c2_dim) mask = self.label2onehot(torch.zeros(x_real.size(0)), 2) c_org = torch.cat([c_org, zero, mask], dim=1) c_trg = torch.cat([c_trg, zero, mask], dim=1) elif dataset == 'RaFD': c_org = self.label2onehot(label_org, self.c2_dim) c_trg = self.label2onehot(label_trg, self.c2_dim) zero = torch.zeros(x_real.size(0), self.c_dim) mask = self.label2onehot(torch.ones(x_real.size(0)), 2) c_org = torch.cat([zero, c_org, mask], dim=1) c_trg = torch.cat([zero, c_trg, mask], dim=1) x_real = x_real.to(self.device) # Input images. c_org = c_org.to(self.device) # Original domain labels. c_trg = c_trg.to(self.device) # Target domain labels. label_org = label_org.to(self.device) # Labels for computing classification loss. label_trg = label_trg.to(self.device) # Labels for computing classification loss. # =================================================================================== # # 2. Train the discriminator # # =================================================================================== # # Compute loss with real images. out_src, out_cls = self.D(x_real) out_cls = out_cls[:, :self.c_dim] if dataset == 'CelebA' else out_cls[:, self.c_dim:] d_loss_real = - torch.mean(out_src) d_loss_cls = self.classification_loss(out_cls, label_org, dataset) # Compute loss with fake images. x_fake = self.G(x_real, c_trg) out_src, _ = self.D(x_fake.detach()) d_loss_fake = torch.mean(out_src) # Compute loss for gradient penalty. alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device) x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True) out_src, _ = self.D(x_hat) d_loss_gp = self.gradient_penalty(out_src, x_hat) # Backward and optimize. d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp self.reset_grad() d_loss.backward() self.d_optimizer.step() # Logging. loss = {} loss['D/loss_real'] = d_loss_real.item() loss['D/loss_fake'] = d_loss_fake.item() loss['D/loss_cls'] = d_loss_cls.item() loss['D/loss_gp'] = d_loss_gp.item() # =================================================================================== # # 3. Train the generator # # =================================================================================== # if (i+1) % self.n_critic == 0: # Original-to-target domain. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake) out_cls = out_cls[:, :self.c_dim] if dataset == 'CelebA' else out_cls[:, self.c_dim:] g_loss_fake = - torch.mean(out_src) g_loss_cls = self.classification_loss(out_cls, label_trg, dataset) # Target-to-original domain. x_reconst = self.G(x_fake, c_org) g_loss_rec = torch.mean(torch.abs(x_real - x_reconst)) # Backward and optimize. g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls self.reset_grad() g_loss.backward() self.g_optimizer.step() # Logging. loss['G/loss_fake'] = g_loss_fake.item() loss['G/loss_rec'] = g_loss_rec.item() loss['G/loss_cls'] = g_loss_cls.item() # =================================================================================== # # 4. Miscellaneous # # =================================================================================== # # Print out training info. if (i+1) % self.log_step == 0: et = time.time() - start_time et = str(datetime.timedelta(seconds=et))[:-7] log = "Elapsed [{}], Iteration [{}/{}], Dataset [{}]".format(et, i+1, self.num_iters, dataset) for tag, value in loss.items(): log += ", {}: {:.4f}".format(tag, value) print(log) if self.use_tensorboard: for tag, value in loss.items(): self.logger.scalar_summary(tag, value, i+1) # Translate fixed images for debugging. if (i+1) % self.sample_step == 0 and debug: with torch.no_grad(): x_fake_list = [x_fixed] for c_fixed in c_celeba_list: c_trg = torch.cat([c_fixed, zero_rafd, mask_celeba], dim=1) x_fake_list.append(self.G(x_fixed, c_trg)) for c_fixed in c_rafd_list: c_trg = torch.cat([zero_celeba, c_fixed, mask_rafd], dim=1) x_fake_list.append(self.G(x_fixed, c_trg)) x_concat = torch.cat(x_fake_list, dim=3) sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(sample_path)) # Save model checkpoints. if (i+1) % self.model_save_step == 0: G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1)) torch.save(self.G.state_dict(), G_path) torch.save(self.D.state_dict(), D_path) print('Saved model checkpoints into {}...'.format(self.model_save_dir)) # Decay learning rates. if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay): g_lr -= (self.g_lr / float(self.num_iters_decay)) d_lr -= (self.d_lr / float(self.num_iters_decay)) self.update_lr(g_lr, d_lr) print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr)) def get_test_inputs(self): data_loader = self.dataset == 'CelebA' and self.celeba_loader or self.rafd_loader for x_real, c_org in data_loader: x_real = x_real.to(self.device) c_trg_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs) yield x_real, c_trg_list def test(self, restore=True, debug=''): """Translate images using StarGAN trained on a single dataset.""" # Load the trained generator. if restore: self.restore_model(self.test_iters) # Set data loader. if self.dataset == 'CelebA': data_loader = self.celeba_loader elif self.dataset == 'RaFD': data_loader = self.rafd_loader with torch.no_grad(): for i, (x_real, c_org) in enumerate(data_loader): # Prepare input images and target domain labels. x_real = x_real.to(self.device) c_trg_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs) # Translate images. x_fake_list = [x_real] for c_trg in c_trg_list: x_fake_list.append(self.G(x_real, c_trg)) # Save the translated images. if debug: x_concat = torch.cat(x_fake_list, dim=3) result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(result_path)) def test_multi(self, restore=True, debug=''): """Translate images using StarGAN trained on multiple datasets.""" # Load the trained generator. if restore: self.restore_model(self.test_iters) with torch.no_grad(): for i, (x_real, c_org) in enumerate(self.celeba_loader): # Prepare input images and target domain labels. x_real = x_real.to(self.device) c_celeba_list = self.create_labels(c_org, self.c_dim, 'CelebA', self.selected_attrs) c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD') zero_celeba = torch.zeros(x_real.size(0), self.c_dim).to(self.device) # Zero vector for CelebA. zero_rafd = torch.zeros(x_real.size(0), self.c2_dim).to(self.device) # Zero vector for RaFD. mask_celeba = self.label2onehot(torch.zeros(x_real.size(0)), 2).to(self.device) # Mask vector: [1, 0]. mask_rafd = self.label2onehot(torch.ones(x_real.size(0)), 2).to(self.device) # Mask vector: [0, 1]. # Translate images. x_fake_list = [x_real] for c_celeba in c_celeba_list: c_trg = torch.cat([c_celeba, zero_rafd, mask_celeba], dim=1) x_fake_list.append(self.G(x_real, c_trg)) for c_rafd in c_rafd_list: c_trg = torch.cat([zero_celeba, c_rafd, mask_rafd], dim=1) x_fake_list.append(self.G(x_real, c_trg)) # Save the translated images. if debug: x_concat = torch.cat(x_fake_list, dim=3) result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(result_path))
from torch.utils import data from torchvision import transforms as T from torchvision.datasets import ImageFolder from PIL import Image import torch import os import random class CelebA(data.Dataset): """Dataset class for the CelebA dataset.""" def __init__(self, image_dir, attr_path, selected_attrs, transform, mode): """Initialize and preprocess the CelebA dataset.""" self.image_dir = image_dir self.attr_path = attr_path self.selected_attrs = selected_attrs self.transform = transform self.mode = mode self.train_dataset = [] self.test_dataset = [] self.attr2idx = {} self.idx2attr = {} self.preprocess() if mode == 'train': self.num_images = len(self.train_dataset) else: self.num_images = len(self.test_dataset) def preprocess(self): """Preprocess the CelebA attribute file.""" lines = [line.rstrip() for line in open(self.attr_path, 'r')] all_attr_names = lines[1].split() for i, attr_name in enumerate(all_attr_names): self.attr2idx[attr_name] = i self.idx2attr[i] = attr_name lines = lines[2:] random.seed(1234) random.shuffle(lines) for i, line in enumerate(lines): split = line.split() filename = split[0] values = split[1:] label = [] for attr_name in self.selected_attrs: idx = self.attr2idx[attr_name] label.append(values[idx] == '1') if (i+1) < 4: self.test_dataset.append([filename, label]) else: self.train_dataset.append([filename, label]) def __getitem__(self, index): """Return one image and its corresponding attribute label.""" dataset = self.train_dataset if self.mode == 'train' else self.test_dataset filename, label = dataset[index] image = Image.open(os.path.join(self.image_dir, filename)) return self.transform(image), torch.FloatTensor(label) def __len__(self): """Return the number of images.""" return self.num_images def get_loader(image_dir, attr_path, selected_attrs, crop_size=178, image_size=128, batch_size=16, dataset='CelebA', mode='train', num_workers=0): """Build and return a data loader.""" transform = [] if mode == 'train': transform.append(T.RandomHorizontalFlip()) transform.append(T.CenterCrop(crop_size)) transform.append(T.Resize(image_size)) transform.append(T.ToTensor()) transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))) transform = T.Compose(transform) if dataset == 'CelebA': dataset = CelebA(image_dir, attr_path, selected_attrs, transform, mode) elif dataset == 'RaFD': dataset = ImageFolder(image_dir, transform) data_loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=(mode=='train'), num_workers=num_workers) return data_loader
#!/usr/bin/env python import os import torch import random import numpy as np from .solver import Solver from .data_loader import get_loader from .main import parse_config, makedirs from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark import DATA_PATH torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True def _prefetch(loader, size, collate_fn): result = [] for _, item in zip(range(size), loader): result.append(collate_fn(item)) return result class Model(BenchmarkModel): task = COMPUTER_VISION.GENERATION # Original train batch size: 16 # Source: https://github.com/yunjey/stargan/blob/94dd002e93a2863d9b987a937b85925b80f7a19f/main.py#L73 # This model doesn't support customizing eval batch size and will use the same bs as train DEFAULT_TRAIN_BSIZE = 16 DEFAULT_EVAL_BSIZE = 16 ALLOW_CUSTOMIZE_BSIZE = False # TODO: Customizing the optimizer is nontrivial, perhaps a next step. CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) # init config config = parse_config() config.celeba_image_dir = os.path.join(DATA_PATH, 'pytorch_stargan_inputs/data/celeba/images') config.attr_path = os.path.join(DATA_PATH, 'pytorch_stargan_inputs/data/celeba/list_attr_celeba.txt') config.num_iters = 1 config.num_workers = 0 config.batch_size = self.batch_size config.use_tensorboard = False config.device = device config.should_script = jit config.prefetch = True makedirs(config) self.data_loader = self.get_data_loader(config) if config.prefetch: self.data_loader = _prefetch(self.data_loader, size=config.num_iters, collate_fn=lambda item: tuple([m.to(self.device) for m in item])) self.solver = Solver(celeba_loader=self.data_loader, rafd_loader=None, config=config, should_script=config.should_script) self.model = self.solver.G if self.test == "train": self.model.train() elif self.test == "eval": self.model.eval() self.example_inputs = self.generate_example_inputs() def get_data_loader(self, config): celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) return celeba_loader def generate_example_inputs(self): for x_real, c_trg_list in self.solver.get_test_inputs(): return x_real, c_trg_list[0] # batch > #images def get_module(self): return self.model, self.example_inputs def train(self): self.solver.train() def eval(self) -> Tuple[torch.Tensor]: model = self.model example_inputs = self.example_inputs out = model(*example_inputs) return (out, )
import tensorflow as tf class Logger(object): """Tensorboard logger.""" def __init__(self, log_dir): """Initialize summary writer.""" self.writer = tf.summary.create_file_writer(log_dir) def scalar_summary(self, tag, value, step): """Add scalar summary.""" with self.writer.as_default(): tf.summary.scalar(tag, value, step=step)
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class ResidualBlock(nn.Module): """Residual Block with instance normalization.""" def __init__(self, dim_in, dim_out): super(ResidualBlock, self).__init__() self.main = nn.Sequential( nn.Conv2d(dim_in, dim_out, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(dim_out, dim_out, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True)) def forward(self, x): return x + self.main(x) class Generator(nn.Module): """Generator network.""" def __init__(self, conv_dim=64, c_dim=5, repeat_num=6): super(Generator, self).__init__() layers = [] layers.append(nn.Conv2d(3+c_dim, conv_dim, kernel_size=7, stride=1, padding=3, bias=False)) layers.append(nn.InstanceNorm2d(conv_dim, affine=True, track_running_stats=True)) layers.append(nn.ReLU(inplace=True)) # Down-sampling layers. curr_dim = conv_dim for i in range(2): layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1, bias=False)) layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True, track_running_stats=True)) layers.append(nn.ReLU(inplace=True)) curr_dim = curr_dim * 2 # Bottleneck layers. for i in range(repeat_num): layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim)) # Up-sampling layers. for i in range(2): layers.append(nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=4, stride=2, padding=1, bias=False)) layers.append(nn.InstanceNorm2d(curr_dim//2, affine=True, track_running_stats=True)) layers.append(nn.ReLU(inplace=True)) curr_dim = curr_dim // 2 layers.append(nn.Conv2d(curr_dim, 3, kernel_size=7, stride=1, padding=3, bias=False)) layers.append(nn.Tanh()) self.main = nn.Sequential(*layers) def forward(self, x, c): # Replicate spatially and concatenate domain information. # Note that this type of label conditioning does not work at all if we use reflection padding in Conv2d. # This is because instance normalization ignores the shifting (or bias) effect. c = c.view(c.size(0), c.size(1), 1, 1) c = c.repeat(1, 1, x.size(2), x.size(3)) x = torch.cat([x, c], dim=1) return self.main(x) class Discriminator(nn.Module): """Discriminator network with PatchGAN.""" def __init__(self, image_size=128, conv_dim=64, c_dim=5, repeat_num=6): super(Discriminator, self).__init__() layers = [] layers.append(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1)) layers.append(nn.LeakyReLU(0.01)) curr_dim = conv_dim for i in range(1, repeat_num): layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1)) layers.append(nn.LeakyReLU(0.01)) curr_dim = curr_dim * 2 kernel_size = int(image_size / np.power(2, repeat_num)) self.main = nn.Sequential(*layers) self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=3, stride=1, padding=1, bias=False) self.conv2 = nn.Conv2d(curr_dim, c_dim, kernel_size=kernel_size, bias=False) def forward(self, x): h = self.main(x) out_src = self.conv1(h) out_cls = self.conv2(h) return out_src, out_cls.view(out_cls.size(0), out_cls.size(1))
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
import os import argparse import torch from torch.backends import cudnn from .solver import Solver from .data_loader import get_loader def str2bool(v): return v.lower() in ('true') def makedirs(config): "Create directories if not exist." if not os.path.exists(config.log_dir): os.makedirs(config.log_dir) if not os.path.exists(config.model_save_dir): os.makedirs(config.model_save_dir) if not os.path.exists(config.sample_dir): os.makedirs(config.sample_dir) if not os.path.exists(config.result_dir): os.makedirs(config.result_dir) def main(config): # For fast training. cudnn.benchmark = True makedirs(config) # Fix seed for determinism if config.deterministic is not None: torch.manual_seed(0) # Data loader. celeba_loader = None rafd_loader = None if config.dataset in ['CelebA', 'Both']: celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) if config.dataset in ['RaFD', 'Both']: rafd_loader = get_loader(config.rafd_image_dir, None, None, config.rafd_crop_size, config.image_size, config.batch_size, 'RaFD', config.mode, config.num_workers) # Solver for training and testing StarGAN. solver = Solver(celeba_loader, rafd_loader, config, should_script=config.should_script) if config.mode == 'train': if config.dataset in ['CelebA', 'RaFD']: solver.train(config.debug) elif config.dataset in ['Both']: solver.train_multi() elif config.mode == 'test': if config.dataset in ['CelebA', 'RaFD']: solver.test() elif config.dataset in ['Both']: solver.test_multi() def parse_config(args=[]): parser = argparse.ArgumentParser() # Model configuration. parser.add_argument('--c_dim', type=int, default=5, help='dimension of domain labels (1st dataset)') parser.add_argument('--c2_dim', type=int, default=8, help='dimension of domain labels (2nd dataset)') parser.add_argument('--celeba_crop_size', type=int, default=178, help='crop size for the CelebA dataset') parser.add_argument('--rafd_crop_size', type=int, default=256, help='crop size for the RaFD dataset') parser.add_argument('--image_size', type=int, default=128, help='image resolution') parser.add_argument('--g_conv_dim', type=int, default=64, help='number of conv filters in the first layer of G') parser.add_argument('--d_conv_dim', type=int, default=64, help='number of conv filters in the first layer of D') parser.add_argument('--g_repeat_num', type=int, default=6, help='number of residual blocks in G') parser.add_argument('--d_repeat_num', type=int, default=6, help='number of strided conv layers in D') parser.add_argument('--lambda_cls', type=float, default=1, help='weight for domain classification loss') parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss') parser.add_argument('--lambda_gp', type=float, default=10, help='weight for gradient penalty') # Training configuration. parser.add_argument('--dataset', type=str, default='CelebA', choices=['CelebA', 'RaFD', 'Both']) parser.add_argument('--batch_size', type=int, default=16, help='mini-batch size') parser.add_argument('--num_iters', type=int, default=200000, help='number of total iterations for training D') parser.add_argument('--num_iters_decay', type=int, default=100000, help='number of iterations for decaying lr') parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for G') parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D') parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer') parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer') parser.add_argument('--resume_iters', type=int, default=None, help='resume training from this step') parser.add_argument('--selected_attrs', '--list', nargs='+', help='selected attributes for the CelebA dataset', default=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young']) # Test configuration. parser.add_argument('--test_iters', type=int, default=200000, help='test model from this step') # Miscellaneous. parser.add_argument('--num_workers', type=int, default=1) parser.add_argument('--mode', type=str, default='train', choices=['train', 'test']) parser.add_argument('--use_tensorboard', type=str2bool, default=True) parser.add_argument('--device', type=str, default='cpu', choices=['cpu', 'cuda']) # Directories. parser.add_argument('--celeba_image_dir', type=str, default='data/celeba/images') parser.add_argument('--attr_path', type=str, default='data/celeba/list_attr_celeba.txt') parser.add_argument('--rafd_image_dir', type=str, default='data/RaFD/train') parser.add_argument('--log_dir', type=str, default='stargan/logs') parser.add_argument('--model_save_dir', type=str, default='stargan/models') parser.add_argument('--sample_dir', type=str, default='stargan/samples') parser.add_argument('--result_dir', type=str, default='stargan/results') # Step size. parser.add_argument('--log_step', type=int, default=10) parser.add_argument('--sample_step', type=int, default=1000) parser.add_argument('--model_save_step', type=int, default=10000) parser.add_argument('--lr_update_step', type=int, default=1000) # Extra arguments, not in the original stargan repo. # --debug reference.out saves a file called "reference.out" with a result tensor # from the last iteration of the model. parser.add_argument('--debug', type=str, default='') parser.add_argument('--deterministic', type=bool, default=False) parser.add_argument('--should_script', type=bool, default=False) config = parser.parse_args(args) return config if __name__ == '__main__': config = parse_config() print(config) main(config)
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.DETECTION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(variant="COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import builtins import math import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from .moco.builder import MoCo model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet50)') parser.add_argument('-j', '--workers', default=32, type=int, metavar='N', help='number of data loading workers (default: 32)') parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.03, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int, help='learning rate schedule (when to drop lr by 10x)') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum of SGD solver') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') # moco specific configs: parser.add_argument('--moco-dim', default=128, type=int, help='feature dimension (default: 128)') parser.add_argument('--moco-k', default=65536, type=int, help='queue size; number of negative keys (default: 65536)') parser.add_argument('--moco-m', default=0.999, type=float, help='moco momentum of updating key encoder (default: 0.999)') parser.add_argument('--moco-t', default=0.07, type=float, help='softmax temperature (default: 0.07)') # options for moco v2 parser.add_argument('--mlp', action='store_true', help='use mlp head') parser.add_argument('--aug-plus', action='store_true', help='use moco v2 data augmentation') parser.add_argument('--cos', action='store_true', help='use cosine lr schedule') parser.add_argument('--fake_data', action='store_true') parser.add_argument('-d', '--debug', type=str, help='File to dump output.') def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu torch.manual_seed(args.seed) cudnn.deterministic = True cudnn.benchmark = False # does not help anyway # suppress printing if not master if args.multiprocessing_distributed and args.gpu != 0: def print_pass(*args): pass builtins.print = print_pass if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model print("=> creating model '{}'".format(args.arch)) model = MoCo( models.__dict__[args.arch], args.moco_dim, args.moco_k, args.moco_m, args.moco_t, args.mlp) #print(model) if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) # comment out the following line for debugging raise NotImplementedError("Only DistributedDataParallel is supported.") else: # AllGather implementation (batch shuffle, queue update, etc.) in # this code only supports DistributedDataParallel. raise NotImplementedError("Only DistributedDataParallel is supported.") # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) #cudnn.benchmark = True if (not args.fake_data): # Data loading code traindir = os.path.join(args.data, 'train') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if args.aug_plus: # MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709 augmentation = [ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.5), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] else: # MoCo v1's aug: the same as InstDisc https://arxiv.org/abs/1805.01978 augmentation = [ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomGrayscale(p=0.2), transforms.ColorJitter(0.4, 0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] train_dataset = datasets.ImageFolder( traindir, moco.loader.TwoCropsTransform(transforms.Compose(augmentation))) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True) else: # pregenerate a few batches batches = [] for _ in range(64): batches.append(torch.randn(args.batch_size, 3, 224, 224)) # create fake dataloader def collate_fn(data): ind = data[0] return [batches[2*ind], batches[2*ind+1]], 0 train_loader = torch.utils.data.DataLoader(range(32), collate_fn = collate_fn) for epoch in range(args.start_epoch, args.epochs): if not args.fake_data: if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), }, is_best=False, filename='checkpoint_{:04d}.pth.tar'.format(epoch)) def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i, (images, _) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images[0] = images[0].cuda(args.gpu, non_blocking=True) images[1] = images[1].cuda(args.gpu, non_blocking=True) # compute output output, target = model(im_q=images[0], im_k=images[1]) loss = criterion(output, target) # acc1/acc5 are (K+1)-way contrast classifier accuracy # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images[0].size(0)) top1.update(acc1[0], images[0].size(0)) top5.update(acc5[0], images[0].size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) if (args.debug is not None): torch.save(output, args.debug) def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Decay the learning rate based on schedule""" lr = args.lr if args.cos: # cosine lr schedule lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs)) else: # stepwise lr schedule for milestone in args.schedule: lr *= 0.1 if epoch >= milestone else 1. for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from argparse import Namespace import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.models as models from typing import Tuple from .moco.builder import MoCo from .main_moco import adjust_learning_rate from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER cudnn.deterministic = False cudnn.benchmark = True class Model(BenchmarkModel): task = OTHER.OTHER_TASKS # Original train batch size: 32 # Paper and code uses batch size of 256 for 8 GPUs. # Source: https://arxiv.org/pdf/1911.05722.pdf DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) self.opt = Namespace(**{ 'arch': 'resnet50', 'epochs': 2, 'start_epoch': 0, 'lr': 0.03, 'schedule': [120, 160], 'momentum': 0.9, 'weight_decay': 1e-4, 'gpu': None, 'moco_dim': 128, 'moco_k': 32000, 'moco_m': 0.999, 'moco_t': 0.07, 'mlp': False, 'aug_plus': False, 'cos': False, 'fake_data': True, 'distributed': True, }) try: dist.init_process_group(backend='nccl', init_method='tcp://localhost:10001', world_size=1, rank=0) except RuntimeError: pass # already initialized? if device == "cpu": raise NotImplementedError("DistributedDataParallel/allgather requires cuda") self.model = MoCo( models.__dict__[self.opt.arch], self.opt.moco_dim, self.opt.moco_k, self.opt.moco_m, self.opt.moco_t, self.opt.mlp) self.model.to(self.device) self.model = torch.nn.parallel.DistributedDataParallel( self.model, device_ids=[0]) # Define loss function (criterion) and optimizer self.criterion = nn.CrossEntropyLoss().to(self.device) self.optimizer = torch.optim.SGD(self.model.parameters(), self.opt.lr, momentum=self.opt.momentum, weight_decay=self.opt.weight_decay) def collate_train_fn(data): ind = data[0] return [batches[2 * ind], batches[2 * ind + 1]], 0 batches = [] for i in range(4): batches.append(torch.randn(self.batch_size, 3, 224, 224).to(self.device)) self.example_inputs = torch.utils.data.DataLoader( range(2), collate_fn=collate_train_fn) for i, (images, _) in enumerate(self.example_inputs): images[0] = images[0].cuda(device=0, non_blocking=True) images[1] = images[1].cuda(device=0, non_blocking=True) def get_module(self): """ Recommended Returns model, example_inputs model should be torchscript model if self.jit is True. Both model and example_inputs should be on self.device properly. `model(*example_inputs)` should execute one step of model forward. """ images = [] for (i, _) in self.example_inputs: images = (i[0], i[1]) return self.model, images def get_optimizer(self): """ Returns the current optimizer """ return self.optimizer def get_optimizer(self, optimizer) -> None: """ Sets the optimizer for future training """ self.optimizer = optimizer def train(self): """ Recommended Runs training on model for one epoch. Avoid unnecessary benchmark noise by keeping any tensor creation, memcopy operations in __init__. Leave warmup to the caller (e.g. don't do it inside) """ self.model.train() n_epochs = 1 for e in range(n_epochs): adjust_learning_rate(self.optimizer, e, self.opt) for i, (images, _) in enumerate(self.example_inputs): # compute output output, target = self.model(im_q=images[0], im_k=images[1]) loss = self.criterion(output, target) # compute gradient and do SGD step self.optimizer.zero_grad() loss.backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: """ Recommended Run evaluation on model for one iteration. One iteration should be sufficient to warm up the model for the purpose of profiling. In most cases this can use the `get_module` API but in some cases libraries do not have a single Module object used for inference. In these case, you can write a custom eval function. Avoid unnecessary benchmark noise by keeping any tensor creation, memcopy operations in __init__. Leave warmup to the caller (e.g. don't do it inside) """ for i, (images, _) in enumerate(self.example_inputs): out = self.model(im_q=images[0], im_k=images[1]) return out
# only needs torch and torchvision if __name__ == '__main__': pass
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import builtins import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet50)') parser.add_argument('-j', '--workers', default=32, type=int, metavar='N', help='number of data loading workers (default: 32)') parser.add_argument('--epochs', default=100, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=30., type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--schedule', default=[60, 80], nargs='*', type=int, help='learning rate schedule (when to drop lr by a ratio)') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=0., type=float, metavar='W', help='weight decay (default: 0.)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') parser.add_argument('--pretrained', default='', type=str, help='path to moco pretrained checkpoint') best_acc1 = 0 def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu # suppress printing if not master if args.multiprocessing_distributed and args.gpu != 0: def print_pass(*args): pass builtins.print = print_pass if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() # freeze all layers but the last fc for name, param in model.named_parameters(): if name not in ['fc.weight', 'fc.bias']: param.requires_grad = False # init the fc layer model.fc.weight.data.normal_(mean=0.0, std=0.01) model.fc.bias.data.zero_() # load from pre-trained, before DistributedDataParallel constructor if args.pretrained: if os.path.isfile(args.pretrained): print("=> loading checkpoint '{}'".format(args.pretrained)) checkpoint = torch.load(args.pretrained, map_location="cpu") # rename moco pre-trained keys state_dict = checkpoint['state_dict'] for k in list(state_dict.keys()): # retain only encoder_q up to before the embedding layer if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'): # remove prefix state_dict[k[len("module.encoder_q."):]] = state_dict[k] # delete renamed or unused k del state_dict[k] args.start_epoch = 0 msg = model.load_state_dict(state_dict, strict=False) assert set(msg.missing_keys) == {"fc.weight", "fc.bias"} print("=> loaded pre-trained model '{}'".format(args.pretrained)) else: print("=> no checkpoint found at '{}'".format(args.pretrained)) if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) # optimize only the linear classifier parameters = list(filter(lambda p: p.requires_grad, model.parameters())) assert len(parameters) == 2 # fc.weight, fc.bias optimizer = torch.optim.SGD(parameters, args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion, args) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1 = validate(val_loader, model, criterion, args) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer' : optimizer.state_dict(), }, is_best) if epoch == args.start_epoch: sanity_check(model.state_dict(), args.pretrained) def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) """ Switch to eval mode: Under the protocol of linear classification on frozen features/models, it is not legitimate to change any part of the pre-trained model. BatchNorm in train mode may revise running mean/std (even if it receives no gradient), which are part of the model parameters too. """ model.eval() end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) # TODO: this should also be done with the ProgressMeter print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') def sanity_check(state_dict, pretrained_weights): """ Linear classifier should not change any weights other than the linear layer. This sanity check asserts nothing wrong happens (e.g., BN stats updated). """ print("=> loading '{}' for sanity check".format(pretrained_weights)) checkpoint = torch.load(pretrained_weights, map_location="cpu") state_dict_pre = checkpoint['state_dict'] for k in list(state_dict.keys()): # only ignore fc layer if 'fc.weight' in k or 'fc.bias' in k: continue # name in pretrained model k_pre = 'module.encoder_q.' + k[len('module.'):] \ if k.startswith('module.') else 'module.encoder_q.' + k assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \ '{} is changed in linear classifier training.'.format(k) print("=> sanity check passed.") class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Decay the learning rate based on schedule""" lr = args.lr for milestone in args.schedule: lr *= 0.1 if epoch >= milestone else 1. for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import torch.nn as nn class MoCo(nn.Module): """ Build a MoCo model with: a query encoder, a key encoder, and a queue https://arxiv.org/abs/1911.05722 """ def __init__(self, base_encoder, dim=128, K=65536, m=0.999, T=0.07, mlp=False): """ dim: feature dimension (default: 128) K: queue size; number of negative keys (default: 65536) m: moco momentum of updating key encoder (default: 0.999) T: softmax temperature (default: 0.07) """ super(MoCo, self).__init__() self.K = K self.m = m self.T = T # create the encoders # num_classes is the output fc dimension self.encoder_q = base_encoder(num_classes=dim) self.encoder_k = base_encoder(num_classes=dim) if mlp: # hack: brute-force replacement dim_mlp = self.encoder_q.fc.weight.shape[1] self.encoder_q.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_q.fc) self.encoder_k.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_k.fc) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient # create the queue self.register_buffer("queue", torch.randn(dim, K)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) @torch.no_grad() def _momentum_update_key_encoder(self): """ Momentum update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, keys): # gather keys before updating queue keys = concat_all_gather(keys) batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr:ptr + batch_size] = keys.T ptr = (ptr + batch_size) % self.K # move pointer self.queue_ptr[0] = ptr @torch.no_grad() def _batch_shuffle_ddp(self, x): """ Batch shuffle, for making use of BatchNorm. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # random shuffle index idx_shuffle = torch.randperm(batch_size_all).cuda() # broadcast to all gpus torch.distributed.broadcast(idx_shuffle, src=0) # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) # shuffled index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this], idx_unshuffle @torch.no_grad() def _batch_unshuffle_ddp(self, x, idx_unshuffle): """ Undo batch shuffle. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # restored index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this] def forward(self, im_q, im_k): """ Input: im_q: a batch of query images im_k: a batch of key images Output: logits, targets """ # compute query features q = self.encoder_q(im_q) # queries: NxC q = nn.functional.normalize(q, dim=1) # compute key features with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # update the key encoder # shuffle for making use of BN im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k) k = self.encoder_k(im_k) # keys: NxC k = nn.functional.normalize(k, dim=1) # undo shuffle k = self._batch_unshuffle_ddp(k, idx_unshuffle) # compute logits # Einstein sum is more intuitive # positive logits: Nx1 l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda() # dequeue and enqueue self._dequeue_and_enqueue(k) return logits, labels # utils @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from PIL import ImageFilter import random class TwoCropsTransform: """Take two random crops of one image as the query and key.""" def __init__(self, base_transform): self.base_transform = base_transform def __call__(self, x): q = self.base_transform(x) k = self.base_transform(x) return [q, k] class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[.1, 2.]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pickle as pkl import sys import torch if __name__ == "__main__": input = sys.argv[1] obj = torch.load(input, map_location="cpu") obj = obj["state_dict"] newmodel = {} for k, v in obj.items(): if not k.startswith("module.encoder_q."): continue old_k = k k = k.replace("module.encoder_q.", "") if "layer" not in k: k = "stem." + k for t in [1, 2, 3, 4]: k = k.replace("layer{}".format(t), "res{}".format(t + 1)) for t in [1, 2, 3]: k = k.replace("bn{}".format(t), "conv{}.norm".format(t)) k = k.replace("downsample.0", "shortcut") k = k.replace("downsample.1", "shortcut.norm") print(old_k, "->", k) newmodel[k] = v.numpy() res = {"model": newmodel, "__author__": "MOCO", "matching_heuristics": True} with open(sys.argv[2], "wb") as f: pkl.dump(res, f)
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator, PascalVOCDetectionEvaluator from detectron2.layers import get_norm from detectron2.modeling.roi_heads import ROI_HEADS_REGISTRY, Res5ROIHeads @ROI_HEADS_REGISTRY.register() class Res5ROIHeadsExtraNorm(Res5ROIHeads): """ As described in the MOCO paper, there is an extra BN layer following the res5 stage. """ def _build_res5_block(self, cfg): seq, out_channels = super()._build_res5_block(cfg) norm = cfg.MODEL.RESNETS.NORM norm = get_norm(norm, out_channels) seq.add_module("norm", norm) return seq, out_channels class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") if "coco" in dataset_name: return COCOEvaluator(dataset_name, cfg, True, output_folder) else: assert "voc" in dataset_name return PascalVOCDetectionEvaluator(dataset_name) def setup(args): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.SEGMENTATION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(variant="COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml", test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
import cv2 import torch import random import numpy as np from .baseline.Renderer.model import FCN from .baseline.DRL.evaluator import Evaluator from .baseline.utils.util import * from .baseline.DRL.ddpg import DDPG from .baseline.DRL.multi import fastenv from ...util.model import BenchmarkModel from typing import Tuple from torchbenchmark.tasks import REINFORCEMENT_LEARNING from argparse import Namespace torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True class Model(BenchmarkModel): task = REINFORCEMENT_LEARNING.OTHER_RL DEFAULT_TRAIN_BSIZE = 96 DEFAULT_EVAL_BSIZE = 96 CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, jit=False, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, jit=jit, batch_size=batch_size, extra_args=extra_args) # Train: These options are from source code. # Source: https://arxiv.org/pdf/1903.04411.pdf # Code: https://github.com/megvii-research/ICCV2019-LearningToPaint/blob/master/baseline/train.py self.args = Namespace(**{ 'validate_episodes': 5, 'validate_interval': 50, 'max_step': 40, 'discount': 0.95**5, 'episode_train_times': 10, 'noise_factor': 0.0, 'tau': 0.001, 'rmsize': 800, }) # Train: input images are from CelebFaces and resized to 128 x 128. # Create 2000 random tensors for input, but randomly sample 200,000 images. self.width = 128 self.image_examples = torch.rand(2000, 3, self.width, self.width) # LearningToPaint includes actor, critic, and discriminator models. self.Decoder = FCN() self.step = 0 self.env = fastenv(max_episode_length=self.args.max_step, env_batch=self.batch_size, images=self.image_examples, device=self.device, Decoder=self.Decoder) self.agent = DDPG(batch_size=self.batch_size, env_batch=self.batch_size, max_step=self.args.max_step, tau=self.args.tau, discount=self.args.discount, rmsize=self.args.rmsize, device=self.device, Decoder=self.Decoder) self.evaluate = Evaluator(args=self.args, env_batch=self.batch_size, writer=None) self.observation = self.env.reset() self.agent.reset(self.observation, self.args.noise_factor) if test == "train": self.agent.train() elif test == "eval": self.agent.eval() def get_module(self): action = self.agent.select_action(self.observation, noise_factor=self.args.noise_factor) self.observation, reward, done, _ = self.env.step(action) self.agent.observe(reward, self.observation, done, self.step) state, action, reward, \ next_state, terminal = self.agent.memory.sample_batch(self.batch_size, self.device) state = torch.cat((state[:, :6].float() / 255, state[:, 6:7].float() / self.args.max_step, self.agent.coord.expand(state.shape[0], 2, 128, 128)), 1) return self.agent.actor, (state, ) def set_module(self, new_model): self.agent.actor = new_model def train(self): episode = episode_steps = 0 episode_steps += 1 if self.observation is None: self.observation = self.env.reset() self.agent.reset(self.observation, self.args.noise_factor) action = self.agent.select_action(self.observation, noise_factor=self.args.noise_factor) self.observation, reward, done, _ = self.env.step(action) self.agent.observe(reward, self.observation, done, self.step) if (episode_steps >= self.args.max_step and self.args.max_step): # [optional] evaluate if episode > 0 and self.args.validate_interval > 0 and \ episode % self.args.validate_interval == 0: reward, dist = self.evaluate(self.env, self.agent.select_action) tot_Q = 0. tot_value_loss = 0. lr = (3e-4, 1e-3) for i in range(self.args.episode_train_times): Q, value_loss = self.agent.update_policy(lr) tot_Q += Q.data.cpu().numpy() tot_value_loss += value_loss.data.cpu().numpy() # reset self.observation = None episode_steps = 0 episode += 1 self.step += 1 def eval(self) -> Tuple[torch.Tensor]: reward, dist = self.evaluate(self.env, self.agent.select_action) return (torch.tensor(reward), torch.tensor(dist))
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
import sys import json import torch import numpy as np import argparse import torchvision.transforms as transforms import cv2 from DRL.ddpg import decode from utils.util import * from PIL import Image from torchvision import transforms, utils device = torch.device("cuda" if torch.cuda.is_available() else "cpu") aug = transforms.Compose( [transforms.ToPILImage(), transforms.RandomHorizontalFlip(), ]) width = 128 convas_area = width * width img_train = [] img_test = [] train_num = 0 test_num = 0 class Paint: def __init__(self, batch_size, max_step): self.batch_size = batch_size self.max_step = max_step self.action_space = (13) self.observation_space = (self.batch_size, width, width, 7) self.test = False def load_data(self): # CelebA global train_num, test_num for i in range(200000): img_id = '%06d' % (i + 1) img = cv2.imread('../data/img_align_celeba/' + img_id + '.jpg', cv2.IMREAD_UNCHANGED) img = cv2.resize(img, (width, width)) if i > 2000: train_num += 1 img_train.append(img) else: test_num += 1 img_test.append(img) def pre_data(self, id, test): if test: img = img_test[id] else: img = img_train[id] if not test: img = aug(img) img = np.asarray(img) return np.transpose(img, (2, 0, 1)) def reset(self, test=False, begin_num=False): self.test = test self.imgid = [0] * self.batch_size self.gt = torch.zeros([self.batch_size, 3, width, width], dtype=torch.uint8).to(device) for i in range(self.batch_size): if test: id = (i + begin_num) % test_num else: id = np.random.randint(train_num) self.imgid[i] = id self.gt[i] = torch.tensor(self.pre_data(id, test)) self.tot_reward = ((self.gt.float() / 255) ** 2).mean(1).mean(1).mean(1) self.stepnum = 0 self.canvas = torch.zeros([self.batch_size, 3, width, width], dtype=torch.uint8).to(device) self.lastdis = self.ini_dis = self.cal_dis() return self.observation() def observation(self): # canvas B * 3 * width * width # gt B * 3 * width * width # T B * 1 * width * width ob = [] T = torch.ones([self.batch_size, 1, width, width], dtype=torch.uint8) * self.stepnum return torch.cat((self.canvas, self.gt, T.to(device)), 1) # canvas, img, T def cal_trans(self, s, t): return (s.transpose(0, 3) * t).transpose(0, 3) def step(self, action): self.canvas = (decode(action, self.canvas.float() / 255) * 255).byte() self.stepnum += 1 ob = self.observation() done = (self.stepnum == self.max_step) reward = self.cal_reward() # np.array([0.] * self.batch_size) return ob.detach(), reward, np.array([done] * self.batch_size), None def cal_dis(self): return (((self.canvas.float() - self.gt.float()) / 255) ** 2).mean(1).mean(1).mean(1) def cal_reward(self): dis = self.cal_dis() reward = (self.lastdis - dis) / (self.ini_dis + 1e-8) self.lastdis = dis return to_numpy(reward)
import os import cv2 import torch import numpy as np import argparse import torch.nn as nn import torch.nn.functional as F from DRL.actor import * from Renderer.stroke_gen import * from Renderer.model import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") width = 128 parser = argparse.ArgumentParser(description='Learning to Paint') parser.add_argument('--max_step', default=40, type=int, help='max length for episode') parser.add_argument('--actor', default='./model/Paint-run1/actor.pkl', type=str, help='Actor model') parser.add_argument('--renderer', default='./renderer.pkl', type=str, help='renderer model') parser.add_argument('--img', default='image/test.png', type=str, help='test image') parser.add_argument('--imgid', default=0, type=int, help='set begin number for generated image') parser.add_argument('--divide', default=4, type=int, help='divide the target image to get better resolution') args = parser.parse_args() canvas_cnt = args.divide * args.divide T = torch.ones([1, 1, width, width], dtype=torch.float32).to(device) img = cv2.imread(args.img, cv2.IMREAD_COLOR) origin_shape = (img.shape[1], img.shape[0]) coord = torch.zeros([1, 2, width, width]) for i in range(width): for j in range(width): coord[0, 0, i, j] = i / (width - 1.) coord[0, 1, i, j] = j / (width - 1.) coord = coord.to(device) # Coordconv Decoder = FCN() Decoder.load_state_dict(torch.load(args.renderer)) def decode(x, canvas): # b * (10 + 3) x = x.view(-1, 10 + 3) stroke = 1 - Decoder(x[:, :10]) stroke = stroke.view(-1, width, width, 1) color_stroke = stroke * x[:, -3:].view(-1, 1, 1, 3) stroke = stroke.permute(0, 3, 1, 2) color_stroke = color_stroke.permute(0, 3, 1, 2) stroke = stroke.view(-1, 5, 1, width, width) color_stroke = color_stroke.view(-1, 5, 3, width, width) res = [] for i in range(5): canvas = canvas * (1 - stroke[:, i]) + color_stroke[:, i] res.append(canvas) return canvas, res def small2large(x): # (d * d, width, width) -> (d * width, d * width) x = x.reshape(args.divide, args.divide, width, width, -1) x = np.transpose(x, (0, 2, 1, 3, 4)) x = x.reshape(args.divide * width, args.divide * width, -1) return x def large2small(x): # (d * width, d * width) -> (d * d, width, width) x = x.reshape(args.divide, width, args.divide, width, 3) x = np.transpose(x, (0, 2, 1, 3, 4)) x = x.reshape(canvas_cnt, width, width, 3) return x def smooth(img): def smooth_pix(img, tx, ty): if tx == args.divide * width - 1 or ty == args.divide * width - 1 or tx == 0 or ty == 0: return img img[tx, ty] = (img[tx, ty] + img[tx + 1, ty] + img[tx, ty + 1] + img[tx - 1, ty] + img[tx, ty - 1] + img[tx + 1, ty - 1] + img[tx - 1, ty + 1] + img[tx - 1, ty - 1] + img[tx + 1, ty + 1]) / 9 return img for p in range(args.divide): for q in range(args.divide): x = p * width y = q * width for k in range(width): img = smooth_pix(img, x + k, y + width - 1) if q != args.divide - 1: img = smooth_pix(img, x + k, y + width) for k in range(width): img = smooth_pix(img, x + width - 1, y + k) if p != args.divide - 1: img = smooth_pix(img, x + width, y + k) return img def save_img(res, imgid, divide=False): output = res.detach().cpu().numpy() # d * d, 3, width, width output = np.transpose(output, (0, 2, 3, 1)) if divide: output = small2large(output) output = smooth(output) else: output = output[0] output = (output * 255).astype('uint8') output = cv2.resize(output, origin_shape) cv2.imwrite('output/generated' + str(imgid) + '.png', output) actor = ResNet(9, 18, 65) # action_bundle = 5, 65 = 5 * 13 actor.load_state_dict(torch.load(args.actor)) actor = actor.to(device).eval() Decoder = Decoder.to(device).eval() canvas = torch.zeros([1, 3, width, width]).to(device) patch_img = cv2.resize(img, (width * args.divide, width * args.divide)) patch_img = large2small(patch_img) patch_img = np.transpose(patch_img, (0, 3, 1, 2)) patch_img = torch.tensor(patch_img).to(device).float() / 255. img = cv2.resize(img, (width, width)) img = img.reshape(1, width, width, 3) img = np.transpose(img, (0, 3, 1, 2)) img = torch.tensor(img).to(device).float() / 255. os.system('mkdir output') with torch.no_grad(): if args.divide != 1: args.max_step = args.max_step // 2 for i in range(args.max_step): stepnum = T * i / args.max_step actions = actor(torch.cat([canvas, img, stepnum, coord], 1)) canvas, res = decode(actions, canvas) print('canvas step {}, L2Loss = {}'.format(i, ((canvas - img) ** 2).mean())) for j in range(5): save_img(res[j], args.imgid) args.imgid += 1 if args.divide != 1: canvas = canvas[0].detach().cpu().numpy() canvas = np.transpose(canvas, (1, 2, 0)) canvas = cv2.resize(canvas, (width * args.divide, width * args.divide)) canvas = large2small(canvas) canvas = np.transpose(canvas, (0, 3, 1, 2)) canvas = torch.tensor(canvas).to(device).float() coord = coord.expand(canvas_cnt, 2, width, width) T = T.expand(canvas_cnt, 1, width, width) for i in range(args.max_step): stepnum = T * i / args.max_step actions = actor(torch.cat([canvas, patch_img, stepnum, coord], 1)) canvas, res = decode(actions, canvas) print('divided canvas step {}, L2Loss = {}'.format(i, ((canvas - patch_img) ** 2).mean())) for j in range(5): save_img(res[j], args.imgid, True) args.imgid += 1
#!/usr/bin/env python3 import cv2 import random import numpy as np import argparse from DRL.evaluator import Evaluator from utils.util import * from utils.tensorboard import TensorBoard import time exp = os.path.abspath('.').split('/')[-1] writer = TensorBoard('../train_log/{}'.format(exp)) os.system('ln -sf ../train_log/{} ./log'.format(exp)) os.system('mkdir ./model') def train(agent, env, evaluate): train_times = args.train_times env_batch = args.env_batch validate_interval = args.validate_interval max_step = args.max_step debug = args.debug episode_train_times = args.episode_train_times resume = args.resume output = args.output time_stamp = time.time() step = episode = episode_steps = 0 tot_reward = 0. observation = None noise_factor = args.noise_factor while step <= train_times: step += 1 episode_steps += 1 # reset if it is the start of episode if observation is None: observation = env.reset() agent.reset(observation, noise_factor) action = agent.select_action(observation, noise_factor=noise_factor) observation, reward, done, _ = env.step(action) agent.observe(reward, observation, done, step) if (episode_steps >= max_step and max_step): if step > args.warmup: # [optional] evaluate if episode > 0 and validate_interval > 0 and episode % validate_interval == 0: reward, dist = evaluate(env, agent.select_action, debug=debug) if debug: prRed('Step_{:07d}: mean_reward:{:.3f} mean_dist:{:.3f} var_dist:{:.3f}'.format(step - 1, np.mean(reward), np.mean(dist), np.var(dist))) writer.add_scalar('validate/mean_reward', np.mean(reward), step) writer.add_scalar('validate/mean_dist', np.mean(dist), step) writer.add_scalar('validate/var_dist', np.var(dist), step) agent.save_model(output) train_time_interval = time.time() - time_stamp time_stamp = time.time() tot_Q = 0. tot_value_loss = 0. if step > args.warmup: if step < 10000 * max_step: lr = (3e-4, 1e-3) elif step < 20000 * max_step: lr = (1e-4, 3e-4) else: lr = (3e-5, 1e-4) for i in range(episode_train_times): Q, value_loss = agent.update_policy(lr) tot_Q += Q.data.cpu().numpy() tot_value_loss += value_loss.data.cpu().numpy() writer.add_scalar('train/critic_lr', lr[0], step) writer.add_scalar('train/actor_lr', lr[1], step) writer.add_scalar('train/Q', tot_Q / episode_train_times, step) writer.add_scalar('train/critic_loss', tot_value_loss / episode_train_times, step) if debug: prBlack('#{}: steps:{} interval_time:{:.2f} train_time:{:.2f}' \ .format(episode, step, train_time_interval, time.time()-time_stamp)) time_stamp = time.time() # reset observation = None episode_steps = 0 episode += 1 if __name__ == "__main__": parser = argparse.ArgumentParser(description='Learning to Paint') # hyper-parameter parser.add_argument('--warmup', default=400, type=int, help='timestep without training but only filling the replay memory') parser.add_argument('--discount', default=0.95**5, type=float, help='discount factor') parser.add_argument('--batch_size', default=96, type=int, help='minibatch size') parser.add_argument('--rmsize', default=800, type=int, help='replay memory size') parser.add_argument('--env_batch', default=96, type=int, help='concurrent environment number') parser.add_argument('--tau', default=0.001, type=float, help='moving average for target network') parser.add_argument('--max_step', default=40, type=int, help='max length for episode') parser.add_argument('--noise_factor', default=0.05, type=float, help='noise level for parameter space noise') parser.add_argument('--validate_interval', default=50, type=int, help='how many episodes to perform a validation') parser.add_argument('--validate_episodes', default=5, type=int, help='how many episode to perform during validation') parser.add_argument('--train_times', default=2000000, type=int, help='total traintimes') parser.add_argument('--episode_train_times', default=10, type=int, help='train times for each episode') parser.add_argument('--resume', default=None, type=str, help='Resuming model path for testing') parser.add_argument('--output', default='./model', type=str, help='Resuming model path for testing') parser.add_argument('--debug', dest='debug', action='store_true', help='print some info') parser.add_argument('--seed', default=1234, type=int, help='random seed') args = parser.parse_args() args.output = get_output_folder(args.output, "Paint") np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) random.seed(args.seed) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False from DRL.ddpg import DDPG from DRL.multi import fastenv fenv = fastenv(args.max_step, args.env_batch, writer) agent = DDPG(args.batch_size, args.env_batch, args.max_step, \ args.tau, args.discount, args.rmsize, \ writer, args.resume, args.output) evaluate = Evaluator(args, writer) print('observation_space', fenv.observation_space, 'action_space', fenv.action_space) train(agent, fenv, evaluate)
import cv2 import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from utils.tensorboard import TensorBoard from Renderer.model import FCN from Renderer.stroke_gen import * writer = TensorBoard("../train_log/") import torch.optim as optim criterion = nn.MSELoss() net = FCN() optimizer = optim.Adam(net.parameters(), lr=3e-6) batch_size = 64 use_cuda = torch.cuda.is_available() step = 0 def save_model(): if use_cuda: net.cpu() torch.save(net.state_dict(), "../renderer.pkl") if use_cuda: net.cuda() def load_weights(): pretrained_dict = torch.load("../renderer.pkl") model_dict = net.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) net.load_state_dict(model_dict) load_weights() while step < 500000: net.train() train_batch = [] ground_truth = [] for i in range(batch_size): f = np.random.uniform(0, 1, 10) train_batch.append(f) ground_truth.append(draw(f)) train_batch = torch.tensor(train_batch).float() ground_truth = torch.tensor(ground_truth).float() if use_cuda: net = net.cuda() train_batch = train_batch.cuda() ground_truth = ground_truth.cuda() gen = net(train_batch) optimizer.zero_grad() loss = criterion(gen, ground_truth) loss.backward() optimizer.step() print(step, loss.item()) if step < 200000: lr = 1e-4 elif step < 400000: lr = 1e-5 else: lr = 1e-6 for param_group in optimizer.param_groups: param_group["lr"] = lr writer.add_scalar("train/loss", loss.item(), step) if step % 100 == 0: net.eval() gen = net(train_batch) loss = criterion(gen, ground_truth) writer.add_scalar("val/loss", loss.item(), step) for i in range(32): G = gen[i].cpu().data.numpy() GT = ground_truth[i].cpu().data.numpy() writer.add_image("train/gen{}.png".format(i), G, step) writer.add_image("train/ground_truth{}.png".format(i), GT, step) if step % 1000 == 0: save_model() step += 1
import cv2 import numpy as np def normal(x, width): return (int)(x * (width - 1) + 0.5) def draw(f, width=128): x0, y0, x1, y1, x2, y2, z0, z2, w0, w2 = f x1 = x0 + (x2 - x0) * x1 y1 = y0 + (y2 - y0) * y1 x0 = normal(x0, width * 2) x1 = normal(x1, width * 2) x2 = normal(x2, width * 2) y0 = normal(y0, width * 2) y1 = normal(y1, width * 2) y2 = normal(y2, width * 2) z0 = (int)(1 + z0 * width // 2) z2 = (int)(1 + z2 * width // 2) canvas = np.zeros([width * 2, width * 2]).astype('float32') tmp = 1. / 100 for i in range(100): t = i * tmp x = (int)((1-t) * (1-t) * x0 + 2 * t * (1-t) * x1 + t * t * x2) y = (int)((1-t) * (1-t) * y0 + 2 * t * (1-t) * y1 + t * t * y2) z = (int)((1-t) * z0 + t * z2) w = (1-t) * w0 + t * w2 cv2.circle(canvas, (y, x), z, w, -1) return 1 - cv2.resize(canvas, dsize=(width, width))
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.weight_norm as weightNorm class FCN(nn.Module): def __init__(self): super(FCN, self).__init__() self.fc1 = (nn.Linear(10, 512)) self.fc2 = (nn.Linear(512, 1024)) self.fc3 = (nn.Linear(1024, 2048)) self.fc4 = (nn.Linear(2048, 4096)) self.conv1 = (nn.Conv2d(16, 32, 3, 1, 1)) self.conv2 = (nn.Conv2d(32, 32, 3, 1, 1)) self.conv3 = (nn.Conv2d(8, 16, 3, 1, 1)) self.conv4 = (nn.Conv2d(16, 16, 3, 1, 1)) self.conv5 = (nn.Conv2d(4, 8, 3, 1, 1)) self.conv6 = (nn.Conv2d(8, 4, 3, 1, 1)) self.pixel_shuffle = nn.PixelShuffle(2) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = x.view(-1, 16, 16, 16) x = F.relu(self.conv1(x)) x = self.pixel_shuffle(self.conv2(x)) x = F.relu(self.conv3(x)) x = self.pixel_shuffle(self.conv4(x)) x = F.relu(self.conv5(x)) x = self.pixel_shuffle(self.conv6(x)) x = torch.sigmoid(x) return 1 - x.view(-1, 128, 128)
import torch import torch.nn as nn import numpy as np from torch.optim import Adam, SGD from torch import autograd from torch.autograd import Variable import torch.nn.functional as F from torch.autograd import grad as torch_grad import torch.nn.utils.weight_norm as weightNorm from utils.util import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dim = 128 LAMBDA = 10 # Gradient penalty lambda hyperparameter class TReLU(nn.Module): def __init__(self): super(TReLU, self).__init__() self.alpha = nn.Parameter(torch.FloatTensor(1), requires_grad=True) self.alpha.data.fill_(0) def forward(self, x): x = F.relu(x - self.alpha) + self.alpha return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv0 = weightNorm(nn.Conv2d(6, 16, 5, 2, 2)) self.conv1 = weightNorm(nn.Conv2d(16, 32, 5, 2, 2)) self.conv2 = weightNorm(nn.Conv2d(32, 64, 5, 2, 2)) self.conv3 = weightNorm(nn.Conv2d(64, 128, 5, 2, 2)) self.conv4 = weightNorm(nn.Conv2d(128, 1, 1, 1, 0)) self.relu0 = TReLU() self.relu1 = TReLU() self.relu2 = TReLU() self.relu3 = TReLU() def forward(self, x): x = self.conv0(x) x = self.relu0(x) x = self.conv1(x) x = self.relu1(x) x = self.conv2(x) x = self.relu2(x) x = self.conv3(x) x = self.relu3(x) x = self.conv4(x) x = x.view(-1, 64) # Patch Q return x netD = Discriminator() target_netD = Discriminator() netD = netD.to(device) target_netD = target_netD.to(device) hard_update(target_netD, netD) optimizerD = Adam(netD.parameters(), lr=3e-4, betas=(0.5, 0.999)) def cal_gradient_penalty(netD, real_data, fake_data, batch_size): alpha = torch.rand(batch_size, 1) alpha = alpha.expand(batch_size, int(real_data.nelement()/batch_size)).contiguous() alpha = alpha.view(batch_size, 6, dim, dim) alpha = alpha.to(device) fake_data = fake_data.view(batch_size, 6, dim, dim) interpolates = Variable(alpha * real_data.data + ((1 - alpha) * fake_data.data), requires_grad=True) disc_interpolates = netD(interpolates) gradients = autograd.grad(disc_interpolates, interpolates, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True)[0] gradients = gradients.view(gradients.size(0), -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA return gradient_penalty def cal_reward(fake_data, real_data): return target_netD(torch.cat([real_data, fake_data], 1)) def save_gan(path): netD.cpu() torch.save(netD.state_dict(),'{}/wgan.pkl'.format(path)) netD.to(device) def load_gan(path): netD.load_state_dict(torch.load('{}/wgan.pkl'.format(path))) def update(fake_data, real_data): fake_data = fake_data.detach() real_data = real_data.detach() fake = torch.cat([real_data, fake_data], 1) real = torch.cat([real_data, real_data], 1) D_real = netD(real) D_fake = netD(fake) gradient_penalty = cal_gradient_penalty(netD, real, fake, real.shape[0]) optimizerD.zero_grad() D_cost = D_fake.mean() - D_real.mean() + gradient_penalty D_cost.backward() optimizerD.step() soft_update(target_netD, netD, 0.001) return D_fake.mean(), D_real.mean(), gradient_penalty
import cv2 import torch import numpy as np from env import Paint from utils.util import * from DRL.ddpg import decode device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class fastenv(): def __init__(self, max_episode_length=10, env_batch=64, \ writer=None): self.max_episode_length = max_episode_length self.env_batch = env_batch self.env = Paint(self.env_batch, self.max_episode_length) self.env.load_data() self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.writer = writer self.test = False self.log = 0 def save_image(self, log, step): for i in range(self.env_batch): if self.env.imgid[i] <= 10: canvas = cv2.cvtColor((to_numpy(self.env.canvas[i].permute(1, 2, 0))), cv2.COLOR_BGR2RGB) self.writer.add_image('{}/canvas_{}.png'.format(str(self.env.imgid[i]), str(step)), canvas, log) if step == self.max_episode_length: for i in range(self.env_batch): if self.env.imgid[i] < 50: gt = cv2.cvtColor((to_numpy(self.env.gt[i].permute(1, 2, 0))), cv2.COLOR_BGR2RGB) canvas = cv2.cvtColor((to_numpy(self.env.canvas[i].permute(1, 2, 0))), cv2.COLOR_BGR2RGB) self.writer.add_image(str(self.env.imgid[i]) + '/_target.png', gt, log) self.writer.add_image(str(self.env.imgid[i]) + '/_canvas.png', canvas, log) def step(self, action): with torch.no_grad(): ob, r, d, _ = self.env.step(torch.tensor(action).to(device)) if d[0]: if not self.test: self.dist = self.get_dist() for i in range(self.env_batch): self.writer.add_scalar('train/dist', self.dist[i], self.log) self.log += 1 return ob, r, d, _ def get_dist(self): return to_numpy((((self.env.gt.float() - self.env.canvas.float()) / 255) ** 2).mean(1).mean(1).mean(1)) def reset(self, test=False, episode=0): self.test = test ob = self.env.reset(self.test, episode * self.env_batch) return ob
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam, SGD from Renderer.model import * from DRL.rpm import rpm from DRL.actor import * from DRL.critic import * from DRL.wgan import * from utils.util import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") coord = torch.zeros([1, 2, 128, 128]) for i in range(128): for j in range(128): coord[0, 0, i, j] = i / 127. coord[0, 1, i, j] = j / 127. coord = coord.to(device) criterion = nn.MSELoss() Decoder = FCN() Decoder.load_state_dict(torch.load('../renderer.pkl')) def decode(x, canvas): # b * (10 + 3) x = x.view(-1, 10 + 3) stroke = 1 - Decoder(x[:, :10]) stroke = stroke.view(-1, 128, 128, 1) color_stroke = stroke * x[:, -3:].view(-1, 1, 1, 3) stroke = stroke.permute(0, 3, 1, 2) color_stroke = color_stroke.permute(0, 3, 1, 2) stroke = stroke.view(-1, 5, 1, 128, 128) color_stroke = color_stroke.view(-1, 5, 3, 128, 128) for i in range(5): canvas = canvas * (1 - stroke[:, i]) + color_stroke[:, i] return canvas def cal_trans(s, t): return (s.transpose(0, 3) * t).transpose(0, 3) class DDPG(object): def __init__(self, batch_size=64, env_batch=1, max_step=40, \ tau=0.001, discount=0.9, rmsize=800, \ writer=None, resume=None, output_path=None): self.max_step = max_step self.env_batch = env_batch self.batch_size = batch_size self.actor = ResNet(9, 18, 65) # target, canvas, stepnum, coordconv 3 + 3 + 1 + 2 self.actor_target = ResNet(9, 18, 65) self.critic = ResNet_wobn(9, 18, 1) self.critic_target = ResNet_wobn(9, 18, 1) self.actor_optim = Adam(self.actor.parameters(), lr=1e-2) self.critic_optim = Adam(self.critic.parameters(), lr=1e-2) if (resume != None): self.load_weights(resume) hard_update(self.actor_target, self.actor) hard_update(self.critic_target, self.critic) # Create replay buffer self.memory = rpm(rmsize * max_step) # Hyper-parameters self.tau = tau self.discount = discount # Tensorboard self.writer = writer self.log = 0 self.state = [None] * self.env_batch # Most recent state self.action = [None] * self.env_batch # Most recent action self.choose_device() def play(self, state, target=False): state = torch.cat((state[:, :6].float() / 255, state[:, 6:7].float() / self.max_step, coord.expand(state.shape[0], 2, 128, 128)), 1) if target: return self.actor_target(state) else: return self.actor(state) def update_gan(self, state): canvas = state[:, :3] gt = state[:, 3 : 6] fake, real, penal = update(canvas.float() / 255, gt.float() / 255) if self.log % 20 == 0: self.writer.add_scalar('train/gan_fake', fake, self.log) self.writer.add_scalar('train/gan_real', real, self.log) self.writer.add_scalar('train/gan_penal', penal, self.log) def evaluate(self, state, action, target=False): T = state[:, 6 : 7] gt = state[:, 3 : 6].float() / 255 canvas0 = state[:, :3].float() / 255 with torch.no_grad(): # model free canvas1 = decode(action, canvas0) gan_reward = cal_reward(canvas1, gt) - cal_reward(canvas0, gt) # (batchsize, 64) # L2_reward = ((canvas0 - gt) ** 2).mean(1).mean(1).mean(1) - ((canvas1 - gt) ** 2).mean(1).mean(1).mean(1) coord_ = coord.expand(state.shape[0], 2, 128, 128) merged_state = torch.cat([canvas0, gt, (T + 1).float() / self.max_step, coord_], 1) if target: Q = self.critic_target([merged_state, action]) return Q, gan_reward else: Q = self.critic([merged_state, action]) if self.log % 20 == 0: self.writer.add_scalar('train/expect_reward', Q.mean(), self.log) self.writer.add_scalar('train/gan_reward', gan_reward.mean(), self.log) return Q, gan_reward def update_policy(self, lr): self.log += 1 for param_group in self.critic_optim.param_groups: param_group['lr'] = lr[0] for param_group in self.actor_optim.param_groups: param_group['lr'] = lr[1] # Sample batch state, action, reward, \ next_state, terminal = self.memory.sample_batch(self.batch_size, device) self.update_gan(next_state) with torch.no_grad(): next_action = self.play(next_state, True) target_q, _ = self.evaluate(next_state, next_action, True) target_q = self.discount * ((1 - terminal.float()).view(-1, 1)) * target_q cur_q, step_reward = self.evaluate(state, action) target_q += step_reward.detach() value_loss = criterion(cur_q, target_q) self.critic.zero_grad() value_loss.backward(retain_graph=True) self.critic_optim.step() action = self.play(state) pre_q, _ = self.evaluate(state.detach(), action) policy_loss = -pre_q.mean() self.actor.zero_grad() policy_loss.backward(retain_graph=True) self.actor_optim.step() # Target update soft_update(self.actor_target, self.actor, self.tau) soft_update(self.critic_target, self.critic, self.tau) return -policy_loss, value_loss def observe(self, reward, state, done, step): s0 = torch.tensor(self.state, device='cpu') a = to_tensor(self.action, "cpu") r = to_tensor(reward, "cpu") s1 = torch.tensor(state, device='cpu') d = to_tensor(done.astype('float32'), "cpu") for i in range(self.env_batch): self.memory.append([s0[i], a[i], r[i], s1[i], d[i]]) self.state = state def noise_action(self, noise_factor, state, action): noise = np.zeros(action.shape) for i in range(self.env_batch): action[i] = action[i] + np.random.normal(0, self.noise_level[i], action.shape[1:]).astype('float32') return np.clip(action.astype('float32'), 0, 1) def select_action(self, state, return_fix=False, noise_factor=0): self.eval() with torch.no_grad(): action = self.play(state) action = to_numpy(action) if noise_factor > 0: action = self.noise_action(noise_factor, state, action) self.train() self.action = action if return_fix: return action return self.action def reset(self, obs, factor): self.state = obs self.noise_level = np.random.uniform(0, factor, self.env_batch) def load_weights(self, path): if path is None: return self.actor.load_state_dict(torch.load('{}/actor.pkl'.format(path))) self.critic.load_state_dict(torch.load('{}/critic.pkl'.format(path))) load_gan(path) def save_model(self, path): self.actor.cpu() self.critic.cpu() torch.save(self.actor.state_dict(),'{}/actor.pkl'.format(path)) torch.save(self.critic.state_dict(),'{}/critic.pkl'.format(path)) save_gan(path) self.choose_device() def eval(self): self.actor.eval() self.actor_target.eval() self.critic.eval() self.critic_target.eval() def train(self): self.actor.train() self.actor_target.train() self.critic.train() self.critic_target.train() def choose_device(self): Decoder.to(device) self.actor.to(device) self.actor_target.to(device) self.critic.to(device) self.critic_target.to(device)
# from collections import deque import numpy as np import random import torch import pickle as pickle class rpm(object): # replay memory def __init__(self, buffer_size): self.buffer_size = buffer_size self.buffer = [] self.index = 0 def append(self, obj): if self.size() > self.buffer_size: print('buffer size larger than set value, trimming...') self.buffer = self.buffer[(self.size() - self.buffer_size):] elif self.size() == self.buffer_size: self.buffer[self.index] = obj self.index += 1 self.index %= self.buffer_size else: self.buffer.append(obj) def size(self): return len(self.buffer) def sample_batch(self, batch_size, device, only_state=False): if self.size() < batch_size: batch = random.sample(self.buffer, self.size()) else: batch = random.sample(self.buffer, batch_size) if only_state: res = torch.stack(tuple(item[3] for item in batch), dim=0) return res.to(device) else: item_count = 5 res = [] for i in range(5): k = torch.stack(tuple(item[i] for item in batch), dim=0) res.append(k.to(device)) return res[0], res[1], res[2], res[3], res[4]
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.weight_norm as weightNorm from torch.autograd import Variable import sys def conv3x3(in_planes, out_planes, stride=1): return (nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)) def cfg(depth): depth_lst = [18, 34, 50, 101, 152] assert (depth in depth_lst), "Error : Resnet depth should be either 18, 34, 50, 101, 152" cf_dict = { '18': (BasicBlock, [2,2,2,2]), '34': (BasicBlock, [3,4,6,3]), '50': (Bottleneck, [3,4,6,3]), '101':(Bottleneck, [3,4,23,3]), '152':(Bottleneck, [3,8,36,3]), } return cf_dict[str(depth)] class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( (nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = (nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)) self.conv2 = (nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)) self.conv3 = (nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)) self.bn1 = nn.BatchNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( (nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)), ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, num_inputs, depth, num_outputs): super(ResNet, self).__init__() self.in_planes = 64 block, num_blocks = cfg(depth) self.conv1 = conv3x3(num_inputs, 64, 2) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=2) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.fc = nn.Linear(512, num_outputs) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = F.avg_pool2d(x, 4) x = x.view(x.size(0), -1) x = self.fc(x) x = torch.sigmoid(x) return x
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.weight_norm as weightNorm from torch.autograd import Variable import sys def conv3x3(in_planes, out_planes, stride=1): return weightNorm(nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True)) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") coord = torch.zeros([1, 2, 64, 64]) for i in range(64): for j in range(64): coord[0, 0, i, j] = i / 63. coord[0, 1, i, j] = j / 63. coord = coord.to(device) class TReLU(nn.Module): def __init__(self): super(TReLU, self).__init__() self.alpha = nn.Parameter(torch.FloatTensor(1), requires_grad=True) self.alpha.data.fill_(0) def forward(self, x): x = F.relu(x - self.alpha) + self.alpha return x def cfg(depth): depth_lst = [18, 34, 50, 101, 152] assert (depth in depth_lst), "Error : Resnet depth should be either 18, 34, 50, 101, 152" cf_dict = { '18': (BasicBlock, [2,2,2,2]), '34': (BasicBlock, [3,4,6,3]), '50': (Bottleneck, [3,4,6,3]), '101':(Bottleneck, [3,4,23,3]), '152':(Bottleneck, [3,8,36,3]), } return cf_dict[str(depth)] class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.conv2 = conv3x3(planes, planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( weightNorm(nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=True)), ) self.relu_1 = TReLU() self.relu_2 = TReLU() def forward(self, x): out = self.relu_1(self.conv1(x)) out = self.conv2(out) out += self.shortcut(x) out = self.relu_2(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = weightNorm(nn.Conv2d(in_planes, planes, kernel_size=1, bias=True)) self.conv2 = weightNorm(nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True)) self.conv3 = weightNorm(nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=True)) self.relu_1 = TReLU() self.relu_2 = TReLU() self.relu_3 = TReLU() self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( weightNorm(nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=True)), ) def forward(self, x): out = self.relu_1(self.conv1(x)) out = self.relu_2(self.conv2(out)) out = self.conv3(out) out += self.shortcut(x) out = self.relu_3(out) return out class ResNet_wobn(nn.Module): def __init__(self, num_inputs, depth, num_outputs): super(ResNet_wobn, self).__init__() self.in_planes = 64 block, num_blocks = cfg(depth) self.conv0 = conv3x3(num_inputs, 32, 2) # 64 self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=2) # 32 self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) # 16 self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=1) self.conv4 = weightNorm(nn.Conv2d(512, 1, 1, 1, 0)) self.relu_1 = TReLU() self.conv1 = weightNorm(nn.Conv2d(65 + 2, 64, 1, 1, 0)) self.conv2 = weightNorm(nn.Conv2d(64, 64, 1, 1, 0)) self.conv3 = weightNorm(nn.Conv2d(64, 32, 1, 1, 0)) self.relu_2 = TReLU() self.relu_3 = TReLU() self.relu_4 = TReLU() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def a2img(self, x): tmp = coord.expand(x.shape[0], 2, 64, 64) x = x.repeat(64, 64, 1, 1).permute(2, 3, 0, 1) x = self.relu_2(self.conv1(torch.cat([x, tmp], 1))) x = self.relu_3(self.conv2(x)) x = self.relu_4(self.conv3(x)) return x def forward(self, input): x, a = input a = self.a2img(a) x = self.relu_1(self.conv0(x)) x = torch.cat([x, a], 1) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.conv4(x) return x.view(x.size(0), 64)
import numpy as np from utils.util import * class Evaluator(object): def __init__(self, args, writer): self.validate_episodes = args.validate_episodes self.max_step = args.max_step self.env_batch = args.env_batch self.writer = writer self.log = 0 def __call__(self, env, policy, debug=False): observation = None for episode in range(self.validate_episodes): # reset at the start of episode observation = env.reset(test=True, episode=episode) episode_steps = 0 episode_reward = 0. assert observation is not None # start episode episode_reward = np.zeros(self.env_batch) while (episode_steps < self.max_step or not self.max_step): action = policy(observation) observation, reward, done, (step_num) = env.step(action) episode_reward += reward episode_steps += 1 env.save_image(self.log, episode_steps) dist = env.get_dist() self.log += 1 return episode_reward, dist
import os import torch from torch.autograd import Variable USE_CUDA = torch.cuda.is_available() def prRed(prt): print("\033[91m {}\033[00m" .format(prt)) def prGreen(prt): print("\033[92m {}\033[00m" .format(prt)) def prYellow(prt): print("\033[93m {}\033[00m" .format(prt)) def prLightPurple(prt): print("\033[94m {}\033[00m" .format(prt)) def prPurple(prt): print("\033[95m {}\033[00m" .format(prt)) def prCyan(prt): print("\033[96m {}\033[00m" .format(prt)) def prLightGray(prt): print("\033[97m {}\033[00m" .format(prt)) def prBlack(prt): print("\033[98m {}\033[00m" .format(prt)) def to_numpy(var): return var.cpu().data.numpy() if USE_CUDA else var.data.numpy() def to_tensor(ndarray, device): return torch.tensor(ndarray, dtype=torch.float, device=device) def soft_update(target, source, tau): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_( target_param.data * (1.0 - tau) + param.data * tau ) def hard_update(target, source): for m1, m2 in zip(target.modules(), source.modules()): m1._buffers = m2._buffers.copy() for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) def get_output_folder(parent_dir, env_name): """Return save folder. Assumes folders in the parent_dir have suffix -run{run number}. Finds the highest run number and sets the output folder to that number + 1. This is just convenient so that if you run the same script multiple times tensorboard can plot all of the results on the same plots with different names. Parameters ---------- parent_dir: str Path of the directory containing all experiment runs. Returns ------- parent_dir/run_dir Path to this run's save directory. """ os.makedirs(parent_dir, exist_ok=True) experiment_id = 0 for folder_name in os.listdir(parent_dir): if not os.path.isdir(os.path.join(parent_dir, folder_name)): continue try: folder_name = int(folder_name.split('-run')[-1]) if folder_name > experiment_id: experiment_id = folder_name except: pass experiment_id += 1 parent_dir = os.path.join(parent_dir, env_name) parent_dir = parent_dir + '-run{}'.format(experiment_id) os.makedirs(parent_dir, exist_ok=True) return parent_dir
import PIL import scipy.misc from io import BytesIO import tensorboardX as tb from tensorboardX.summary import Summary class TensorBoard(object): def __init__(self, model_dir): self.summary_writer = tb.FileWriter(model_dir) def add_image(self, tag, img, step): summary = Summary() bio = BytesIO() if type(img) == str: img = PIL.Image.open(img) elif type(img) == PIL.Image.Image: pass else: img = PIL.Image.fromarray(img) img.save(bio, format="png") image_summary = Summary.Image(encoded_image_string=bio.getvalue()) summary.value.add(tag=tag, image=image_summary) self.summary_writer.add_summary(summary, global_step=step) def add_scalar(self, tag, value, step): summary = Summary(value=[Summary.Value(tag=tag, simple_value=value)]) self.summary_writer.add_summary(summary, global_step=step)
import sys import json import torch import numpy as np import argparse import torchvision.transforms as transforms import cv2 from .DRL.ddpg import decode from .utils.util import * from PIL import Image # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") aug = transforms.Compose([transforms.ToPILImage(), transforms.RandomHorizontalFlip(), ]) width = 128 convas_area = width * width img_train = [] img_test = [] train_num = 0 test_num = 0 class Paint: def __init__(self, batch_size, max_step, device='cpu', Decoder=None): self.batch_size = batch_size self.max_step = max_step self.action_space = (13) self.observation_space = (self.batch_size, width, width, 7) self.test = False self.device = device self.Decoder = Decoder def load_data(self, images=None): # CelebA global train_num, test_num for i in range(200000): img_id = '%06d' % (i + 1) # TorchBench created 2000 random tensors to load here. if images is not None: img = images[i % 2000] else: img = cv2.imread('./data/img_align_celeba/' + img_id + '.jpg', cv2.IMREAD_UNCHANGED) img = cv2.resize(img, (width, width)) if i > 2000: train_num += 1 img_train.append(img) else: test_num += 1 img_test.append(img) def pre_data(self, id, test): if test: img = img_test[id] else: img = img_train[id] return img # Find out why aug and transpose turns random tensor [3, 128, 128] into [128, 3, 128] which fails. # if not test: # img = aug(img) # img = np.asarray(img) # return np.transpose(img, (2, 0, 1)) def reset(self, test=False, begin_num=False): self.test = test self.imgid = [0] * self.batch_size self.gt = torch.zeros([self.batch_size, 3, width, width], dtype=torch.uint8).to(self.device) for i in range(self.batch_size): if test: id = (i + begin_num) % test_num else: id = np.random.randint(train_num) self.imgid[i] = id # self.gt[i] = torch.tensor(self.pre_data(id, test)) self.gt[i] = self.pre_data(id, test).clone().detach().to(device=self.device) self.tot_reward = ((self.gt.float() / 255) ** 2).mean(1).mean(1).mean(1) self.stepnum = 0 self.canvas = torch.zeros([self.batch_size, 3, width, width], dtype=torch.uint8).to(self.device) self.lastdis = self.ini_dis = self.cal_dis() return self.observation() def observation(self): # canvas B * 3 * width * width # gt B * 3 * width * width # T B * 1 * width * width ob = [] T = torch.ones([self.batch_size, 1, width, width], dtype=torch.uint8) * self.stepnum return torch.cat((self.canvas, self.gt, T.to(self.device)), 1) # canvas, img, T def cal_trans(self, s, t): return (s.transpose(0, 3) * t).transpose(0, 3) def step(self, action): self.canvas = (decode(action, self.canvas.float() / 255, self.Decoder) * 255).byte() self.stepnum += 1 ob = self.observation() done = (self.stepnum == self.max_step) reward = self.cal_reward() # np.array([0.] * self.batch_size) return ob.detach(), reward, np.array([done] * self.batch_size), None def cal_dis(self): return (((self.canvas.float() - self.gt.float()) / 255) ** 2).mean(1).mean(1).mean(1) def cal_reward(self): dis = self.cal_dis() reward = (self.lastdis - dis) / (self.ini_dis + 1e-8) self.lastdis = dis return to_numpy(reward)
import os import cv2 import torch import numpy as np import argparse import torch.nn as nn import torch.nn.functional as F from DRL.actor import * from Renderer.stroke_gen import * from Renderer.model import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") width = 128 parser = argparse.ArgumentParser(description='Learning to Paint') parser.add_argument('--max_step', default=40, type=int, help='max length for episode') parser.add_argument('--actor', default='./model/Paint-run1/actor.pkl', type=str, help='Actor model') parser.add_argument('--renderer', default='./renderer.pkl', type=str, help='renderer model') parser.add_argument('--img', default='image/test.png', type=str, help='test image') parser.add_argument('--imgid', default=0, type=int, help='set begin number for generated image') parser.add_argument('--divide', default=4, type=int, help='divide the target image to get better resolution') args = parser.parse_args() canvas_cnt = args.divide * args.divide T = torch.ones([1, 1, width, width], dtype=torch.float32).to(device) img = cv2.imread(args.img, cv2.IMREAD_COLOR) origin_shape = (img.shape[1], img.shape[0]) coord = torch.zeros([1, 2, width, width]) for i in range(width): for j in range(width): coord[0, 0, i, j] = i / (width - 1.) coord[0, 1, i, j] = j / (width - 1.) coord = coord.to(device) # Coordconv Decoder = FCN() Decoder.load_state_dict(torch.load(args.renderer)) def decode(x, canvas): # b * (10 + 3) x = x.view(-1, 10 + 3) stroke = 1 - Decoder(x[:, :10]) stroke = stroke.view(-1, width, width, 1) color_stroke = stroke * x[:, -3:].view(-1, 1, 1, 3) stroke = stroke.permute(0, 3, 1, 2) color_stroke = color_stroke.permute(0, 3, 1, 2) stroke = stroke.view(-1, 5, 1, width, width) color_stroke = color_stroke.view(-1, 5, 3, width, width) res = [] for i in range(5): canvas = canvas * (1 - stroke[:, i]) + color_stroke[:, i] res.append(canvas) return canvas, res def small2large(x): # (d * d, width, width) -> (d * width, d * width) x = x.reshape(args.divide, args.divide, width, width, -1) x = np.transpose(x, (0, 2, 1, 3, 4)) x = x.reshape(args.divide * width, args.divide * width, -1) return x def large2small(x): # (d * width, d * width) -> (d * d, width, width) x = x.reshape(args.divide, width, args.divide, width, 3) x = np.transpose(x, (0, 2, 1, 3, 4)) x = x.reshape(canvas_cnt, width, width, 3) return x def smooth(img): def smooth_pix(img, tx, ty): if tx == args.divide * width - 1 or ty == args.divide * width - 1 or tx == 0 or ty == 0: return img img[tx, ty] = (img[tx, ty] + img[tx + 1, ty] + img[tx, ty + 1] + img[tx - 1, ty] + img[tx, ty - 1] + img[tx + 1, ty - 1] + img[tx - 1, ty + 1] + img[tx - 1, ty - 1] + img[tx + 1, ty + 1]) / 9 return img for p in range(args.divide): for q in range(args.divide): x = p * width y = q * width for k in range(width): img = smooth_pix(img, x + k, y + width - 1) if q != args.divide - 1: img = smooth_pix(img, x + k, y + width) for k in range(width): img = smooth_pix(img, x + width - 1, y + k) if p != args.divide - 1: img = smooth_pix(img, x + width, y + k) return img def save_img(res, imgid, divide=False): output = res.detach().cpu().numpy() # d * d, 3, width, width output = np.transpose(output, (0, 2, 3, 1)) if divide: output = small2large(output) output = smooth(output) else: output = output[0] output = (output * 255).astype('uint8') output = cv2.resize(output, origin_shape) cv2.imwrite('output/generated' + str(imgid) + '.png', output) actor = ResNet(9, 18, 65) # action_bundle = 5, 65 = 5 * 13 actor.load_state_dict(torch.load(args.actor)) actor = actor.to(device).eval() Decoder = Decoder.to(device).eval() canvas = torch.zeros([1, 3, width, width]).to(device) patch_img = cv2.resize(img, (width * args.divide, width * args.divide)) patch_img = large2small(patch_img) patch_img = np.transpose(patch_img, (0, 3, 1, 2)) patch_img = torch.tensor(patch_img).to(device).float() / 255. img = cv2.resize(img, (width, width)) img = img.reshape(1, width, width, 3) img = np.transpose(img, (0, 3, 1, 2)) img = torch.tensor(img).to(device).float() / 255. os.system('mkdir output') with torch.no_grad(): if args.divide != 1: args.max_step = args.max_step // 2 for i in range(args.max_step): stepnum = T * i / args.max_step actions = actor(torch.cat([canvas, img, stepnum, coord], 1)) canvas, res = decode(actions, canvas) print('canvas step {}, L2Loss = {}'.format(i, ((canvas - img) ** 2).mean())) for j in range(5): save_img(res[j], args.imgid) args.imgid += 1 if args.divide != 1: canvas = canvas[0].detach().cpu().numpy() canvas = np.transpose(canvas, (1, 2, 0)) canvas = cv2.resize(canvas, (width * args.divide, width * args.divide)) canvas = large2small(canvas) canvas = np.transpose(canvas, (0, 3, 1, 2)) canvas = torch.tensor(canvas).to(device).float() coord = coord.expand(canvas_cnt, 2, width, width) T = T.expand(canvas_cnt, 1, width, width) for i in range(args.max_step): stepnum = T * i / args.max_step actions = actor(torch.cat([canvas, patch_img, stepnum, coord], 1)) canvas, res = decode(actions, canvas) print('divided canvas step {}, L2Loss = {}'.format(i, ((canvas - patch_img) ** 2).mean())) for j in range(5): save_img(res[j], args.imgid, True) args.imgid += 1
#!/usr/bin/env python3 import cv2 import random import numpy as np import argparse from DRL.evaluator import Evaluator from utils.util import * from utils.tensorboard import TensorBoard import time exp = os.path.abspath('.').split('/')[-1] writer = TensorBoard('../train_log/{}'.format(exp)) os.system('ln -sf ../train_log/{} ./log'.format(exp)) os.system('mkdir ./model') def train(agent, env, evaluate): train_times = args.train_times env_batch = args.env_batch validate_interval = args.validate_interval max_step = args.max_step debug = args.debug episode_train_times = args.episode_train_times resume = args.resume output = args.output time_stamp = time.time() step = episode = episode_steps = 0 tot_reward = 0. observation = None noise_factor = args.noise_factor while step <= train_times: step += 1 episode_steps += 1 # reset if it is the start of episode if observation is None: observation = env.reset() agent.reset(observation, noise_factor) action = agent.select_action(observation, noise_factor=noise_factor) observation, reward, done, _ = env.step(action) agent.observe(reward, observation, done, step) if (episode_steps >= max_step and max_step): if step > args.warmup: # [optional] evaluate if episode > 0 and validate_interval > 0 and episode % validate_interval == 0: reward, dist = evaluate(env, agent.select_action, debug=debug) if debug: prRed('Step_{:07d}: mean_reward:{:.3f} mean_dist:{:.3f} var_dist:{:.3f}'.format(step - 1, np.mean(reward), np.mean(dist), np.var(dist))) writer.add_scalar('validate/mean_reward', np.mean(reward), step) writer.add_scalar('validate/mean_dist', np.mean(dist), step) writer.add_scalar('validate/var_dist', np.var(dist), step) agent.save_model(output) train_time_interval = time.time() - time_stamp time_stamp = time.time() tot_Q = 0. tot_value_loss = 0. if step > args.warmup: if step < 10000 * max_step: lr = (3e-4, 1e-3) elif step < 20000 * max_step: lr = (1e-4, 3e-4) else: lr = (3e-5, 1e-4) for i in range(episode_train_times): Q, value_loss = agent.update_policy(lr) tot_Q += Q.data.cpu().numpy() tot_value_loss += value_loss.data.cpu().numpy() writer.add_scalar('train/critic_lr', lr[0], step) writer.add_scalar('train/actor_lr', lr[1], step) writer.add_scalar('train/Q', tot_Q / episode_train_times, step) writer.add_scalar('train/critic_loss', tot_value_loss / episode_train_times, step) if debug: prBlack('#{}: steps:{} interval_time:{:.2f} train_time:{:.2f}' \ .format(episode, step, train_time_interval, time.time()-time_stamp)) time_stamp = time.time() # reset observation = None episode_steps = 0 episode += 1 if __name__ == "__main__": parser = argparse.ArgumentParser(description='Learning to Paint') # hyper-parameter parser.add_argument('--warmup', default=400, type=int, help='timestep without training but only filling the replay memory') parser.add_argument('--discount', default=0.95**5, type=float, help='discount factor') parser.add_argument('--batch_size', default=96, type=int, help='minibatch size') parser.add_argument('--rmsize', default=800, type=int, help='replay memory size') parser.add_argument('--env_batch', default=96, type=int, help='concurrent environment number') parser.add_argument('--tau', default=0.001, type=float, help='moving average for target network') parser.add_argument('--max_step', default=40, type=int, help='max length for episode') parser.add_argument('--noise_factor', default=0, type=float, help='noise level for parameter space noise') parser.add_argument('--validate_interval', default=50, type=int, help='how many episodes to perform a validation') parser.add_argument('--validate_episodes', default=5, type=int, help='how many episode to perform during validation') parser.add_argument('--train_times', default=2000000, type=int, help='total traintimes') parser.add_argument('--episode_train_times', default=10, type=int, help='train times for each episode') parser.add_argument('--resume', default=None, type=str, help='Resuming model path for testing') parser.add_argument('--output', default='./model', type=str, help='Resuming model path for testing') parser.add_argument('--debug', dest='debug', action='store_true', help='print some info') parser.add_argument('--seed', default=1234, type=int, help='random seed') args = parser.parse_args() args.output = get_output_folder(args.output, "Paint") np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) random.seed(args.seed) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True from DRL.ddpg import DDPG from DRL.multi import fastenv fenv = fastenv(args.max_step, args.env_batch, writer) agent = DDPG(args.batch_size, args.env_batch, args.max_step, \ args.tau, args.discount, args.rmsize, \ writer, args.resume, args.output) evaluate = Evaluator(args, writer) print('observation_space', fenv.observation_space, 'action_space', fenv.action_space) train(agent, fenv, evaluate)
import cv2 import torch import numpy as np import sys import torch.nn as nn import torch.nn.functional as F from utils.tensorboard import TensorBoard from Renderer.model import FCN from Renderer.stroke_gen import * #writer = TensorBoard("../train_log/") import torch.optim as optim import argparse parser = argparse.ArgumentParser() parser.add_argument('--debug', metavar='fn', default="", help="Dump outputs into file") parser.add_argument('--script', default=False, help="Script the model") args = parser.parse_args() torch.manual_seed(1337) np.random.seed(1337) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False criterion = nn.MSELoss() net = FCN() if args.script: net = torch.jit.script(net) optimizer = optim.Adam(net.parameters(), lr=3e-6) batch_size = 64 use_cuda = torch.cuda.is_available() step = 0 def save_model(): if use_cuda: net.cpu() torch.save(net.state_dict(), "../renderer.pkl") if use_cuda: net.cuda() def load_weights(): pretrained_dict = torch.load("../renderer.pkl") model_dict = net.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) net.load_state_dict(model_dict) #load_weights() while step < 100: net.train() train_batch = [] ground_truth = [] for i in range(batch_size): f = np.random.uniform(0, 1, 10) train_batch.append(f) ground_truth.append(draw(f)) train_batch = torch.tensor(train_batch).float() ground_truth = torch.tensor(ground_truth).float() if use_cuda: net = net.cuda() train_batch = train_batch.cuda() ground_truth = ground_truth.cuda() gen = net(train_batch) optimizer.zero_grad() loss = criterion(gen, ground_truth) loss.backward() optimizer.step() print(step, loss.item()) if step < 200000: lr = 1e-4 elif step < 400000: lr = 1e-5 else: lr = 1e-6 for param_group in optimizer.param_groups: param_group["lr"] = lr #writer.add_scalar("train/loss", loss.item(), step) if step % 100 == 0: net.eval() gen = net(train_batch) loss = criterion(gen, ground_truth) #writer.add_scalar("val/loss", loss.item(), step) for i in range(32): G = gen[i].cpu().data.numpy() GT = ground_truth[i].cpu().data.numpy() #writer.add_image("train/gen{}.png".format(i), G, step) #writer.add_image("train/ground_truth{}.png".format(i), GT, step) if step % 1000 == 0: save_model() step += 1 if args.debug: torch.save(gen, args.debug)
import cv2 import numpy as np def normal(x, width): return (int)(x * (width - 1) + 0.5) def draw(f, width=128): x0, y0, x1, y1, x2, y2, z0, z2, w0, w2 = f x1 = x0 + (x2 - x0) * x1 y1 = y0 + (y2 - y0) * y1 x0 = normal(x0, width * 2) x1 = normal(x1, width * 2) x2 = normal(x2, width * 2) y0 = normal(y0, width * 2) y1 = normal(y1, width * 2) y2 = normal(y2, width * 2) z0 = (int)(1 + z0 * width // 2) z2 = (int)(1 + z2 * width // 2) canvas = np.zeros([width * 2, width * 2]).astype('float32') tmp = 1. / 100 for i in range(100): t = i * tmp x = (int)((1-t) * (1-t) * x0 + 2 * t * (1-t) * x1 + t * t * x2) y = (int)((1-t) * (1-t) * y0 + 2 * t * (1-t) * y1 + t * t * y2) z = (int)((1-t) * z0 + t * z2) w = (1-t) * w0 + t * w2 cv2.circle(canvas, (y, x), z, w, -1) return 1 - cv2.resize(canvas, dsize=(width, width))
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.weight_norm as weightNorm class FCN(nn.Module): def __init__(self): super(FCN, self).__init__() self.fc1 = (nn.Linear(10, 512)) self.fc2 = (nn.Linear(512, 1024)) self.fc3 = (nn.Linear(1024, 2048)) self.fc4 = (nn.Linear(2048, 4096)) self.conv1 = (nn.Conv2d(16, 32, 3, 1, 1)) self.conv2 = (nn.Conv2d(32, 32, 3, 1, 1)) self.conv3 = (nn.Conv2d(8, 16, 3, 1, 1)) self.conv4 = (nn.Conv2d(16, 16, 3, 1, 1)) self.conv5 = (nn.Conv2d(4, 8, 3, 1, 1)) self.conv6 = (nn.Conv2d(8, 4, 3, 1, 1)) self.pixel_shuffle = nn.PixelShuffle(2) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = x.view(-1, 16, 16, 16) x = F.relu(self.conv1(x)) x = self.pixel_shuffle(self.conv2(x)) x = F.relu(self.conv3(x)) x = self.pixel_shuffle(self.conv4(x)) x = F.relu(self.conv5(x)) x = self.pixel_shuffle(self.conv6(x)) x = torch.sigmoid(x) return 1 - x.view(-1, 128, 128)