python_code
stringlengths
0
229k
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa F401 import re from typing import Optional try: # Internal from .embedding_common_code_generator import * except ImportError: # OSS from embedding_common_code_generator import * import re def generate_backward_embedding_cuda( template_filepath: str, optimizer: str, filename_format: str, kwargs: Dict[str, Any], ) -> None: if not kwargs.get("has_gpu_support"): return template = env.get_template(template_filepath) vbe_options = [True, False] if kwargs.get("has_vbe_support") else [False] for weighted in [True, False]: for nobag in [True, False]: for vbe in vbe_options: if (not nobag or (not weighted and not vbe)) and ( not kwargs.get("dense") or not vbe ): wdesc = f"{ 'weighted' if weighted else 'unweighted' }{ '_nobag' if nobag else '' }{ '_vbe' if vbe else '' }" filename = filename_format.format(optimizer, wdesc) write( filename, template.render( weighted=weighted, nobag=nobag, vbe=vbe, is_index_select=False, **kwargs, ), ) print(f"[Backward Split] [{optimizer}]: {filename}") def generate(**kwargs: Any) -> None: optimizer = kwargs.get("optimizer") gen_args = kwargs["args"] # # Generate GPU variants of the operators # kwargs["args"] = gen_args["cuda"] # Generate the backward splits generate_backward_embedding_cuda( "embedding_backward_split_template.cu", optimizer, "gen_embedding_backward_{}_split_{}_cuda.cu", kwargs, ) # Generate the cta_per_row kernels for the backward splits generate_backward_embedding_cuda( "embedding_backward_split_kernel_cta_template.cu", optimizer, "gen_embedding_backward_{}_split_{}_kernel_cta.cu", kwargs, ) # Generate the warp_per_row kernels for the backward splits generate_backward_embedding_cuda( "embedding_backward_split_kernel_warp_template.cu", optimizer, "gen_embedding_backward_{}_split_{}_kernel_warp.cu", kwargs, ) # Generate optimizer kernel template = env.get_template("embedding_optimizer_split_device_kernel_template.cuh") filename = f"gen_embedding_optimizer_{optimizer}_split_device_kernel.cuh" write(filename, template.render(**kwargs)) # Generate the backward splits (non-dense) # We generate only the API to preserve the backward compatibility if # has_gpu_support=True if not kwargs.get("dense"): template = env.get_template("embedding_backward_split_host_template.cpp") filename = f"gen_embedding_backward_split_{optimizer}.cpp" write(filename, template.render(**kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") if kwargs.get("has_cpu_support") or kwargs.get("has_gpu_support"): # Generates Python invoker for CUDA + CPU template = env.get_template( "split_embedding_codegen_lookup_invoker.template" ) filename = f"lookup_{optimizer}.py" write(filename, template.render(is_fbcode=args.is_fbcode, **kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") # # Generate CPU variants of the operators # kwargs["args"] = gen_args["cpu"] # Generate the backward splits if kwargs.get("has_cpu_support"): is_approx = "approx" in optimizer template = ( env.get_template("embedding_backward_split_cpu_approx_template.cpp") if is_approx else env.get_template("embedding_backward_split_cpu_template.cpp") ) filename = f"gen_embedding_backward_{optimizer}_split_cpu.cpp" write(filename, template.render(**kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") # Generate the backward splits (non-dense) if not kwargs.get("dense"): template = env.get_template("embedding_backward_split_host_cpu_template.cpp") filename = f"gen_embedding_backward_split_{optimizer}_cpu.cpp" write(filename, template.render(**kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") # Format the way to generate PackedTensorAccessors def make_pta_acc_format(pta_str_list: List[str], func_name: str) -> List[str]: new_str_list = [] for pta_str in pta_str_list: if "packed_accessor" in pta_str: match = re.search( r"([a-zA-z0-9_]*)[.]packed_accessor([3|6][2|4])<(.*)>\(\)", pta_str ) assert match is not None and len(match.groups()) == 3 tensor, acc_nbits, args = match.groups() if "acc_type" in args: match = re.search("at::acc_type<([a-zA-Z_]*), true>", args) assert match is not None and len(match.groups()) == 1 new_type = match.group(1) args = re.sub("at::acc_type<[a-zA-Z_]*, true>", new_type, args) func_name_suffix = "_ACC_TYPE" else: func_name_suffix = "" new_str_list.append( f"{func_name}{func_name_suffix}({tensor}, {args}, {acc_nbits})" ) else: new_str_list.append(pta_str) return new_str_list def replace_pta_namespace(pta_str_list: List[str]) -> List[str]: return [ pta_str.replace("at::PackedTensorAccessor", "pta::PackedTensorAccessor") for pta_str in pta_str_list ] def backward_indices() -> None: template = env.get_template("embedding_backward_split_indice_weights_template.cu") src_cu = template.render() write("gen_embedding_backward_split_indice_weights_codegen_cuda.cu", src_cu) src_cu = template.render(dense=True) write("gen_embedding_backward_dense_indice_weights_codegen_cuda.cu", src_cu) def backward_dense() -> None: generate( optimizer="dense", dense=True, args=make_args( [ (FLOAT, "unused"), ] ), split_precomputation=split_precomputation, split_weight_update=split_weight_update, split_post_update="", split_weight_update_cpu=split_weight_update_cpu, has_cpu_support=False, has_gpu_support=True, has_vbe_support=False, ) def generate_forward_embedding_cuda( template_filepath: str, filename_format: str, dense_options: List[bool], nobag_options: List[bool], vbe_options: List[bool], ) -> None: template = env.get_template(template_filepath) for dense in dense_options: for weighted in [True, False]: for nobag in nobag_options: for vbe in vbe_options: if (not nobag or (not weighted and not vbe)) and ( not dense or not vbe ): dense_desc = f"{ 'dense' if dense else 'split'}" weight_desc = f"{ 'weighted' if weighted else 'unweighted' }" nobag_desc = f"{ '_nobag' if nobag else '' }" vbe_desc = f"{ '_vbe' if vbe else '' }" desc = ( f"{ dense_desc }_{ weight_desc }{ nobag_desc }{ vbe_desc }" ) filename = filename_format.format(desc) write( filename, template.render( dense=dense, weighted=weighted, nobag=nobag, vbe=vbe, is_index_select=False, ), ) print(f"[Forward Split]: {filename}") def forward_split() -> None: # Generate the forward splits generate_forward_embedding_cuda( "embedding_forward_split_template.cu", "gen_embedding_forward_{}_codegen_cuda.cu", dense_options=[True, False], nobag_options=[False], # nobag is not used vbe_options=[True, False], ) # Generate the kernels for the forward splits generate_forward_embedding_cuda( "embedding_forward_split_kernel_template.cu", "gen_embedding_forward_{}_kernel.cu", dense_options=[True, False], nobag_options=[True, False], vbe_options=[True, False], ) # Generate the kernels for the forward splits v2 generate_forward_embedding_cuda( "embedding_forward_split_kernel_v2_template.cu", "gen_embedding_forward_{}_v2_kernel.cu", dense_options=[False], # dense is not supported nobag_options=[False], # nobag is not supported vbe_options=[False], # vbe is not supported ) # Generate the small kernels (for nobag only) for the forward splits template = env.get_template( "embedding_forward_split_kernel_nobag_small_template.cu" ) for dense in [True, False]: wdesc = f"{ 'dense' if dense else 'split' }" filename = f"gen_embedding_forward_{wdesc}_unweighted_nobag_kernel_small.cu" write(filename, template.render(dense=dense, is_index_select=False)) print(f"[Forward Split]: {filename}") # TODO: Separate this function into another codegen script def index_select() -> None: kwargs = make_args([(FLOAT, "unused")]) kwargs["args"] = kwargs["cuda"] for templ_file, gen_file in [ ( "embedding_forward_split_template.cu", "gen_batch_index_select_dim0_forward_codegen_cuda.cu", ), ( "embedding_forward_split_kernel_template.cu", "gen_batch_index_select_dim0_forward_kernel.cu", ), ( "embedding_forward_split_kernel_nobag_small_template.cu", "gen_batch_index_select_dim0_forward_kernel_small.cu", ), ( "embedding_backward_split_template.cu", "gen_batch_index_select_dim0_backward_codegen_cuda.cu", ), ( "embedding_backward_split_kernel_cta_template.cu", "gen_batch_index_select_dim0_backward_kernel_cta.cu", ), ( "embedding_backward_split_kernel_warp_template.cu", "gen_batch_index_select_dim0_backward_kernel_warp.cu", ), ]: template = env.get_template(templ_file) write( gen_file, template.render( weighted=False, dense=True, vbe=False, nobag=True, is_index_select=True, **kwargs, ), ) template = env.get_template("embedding_backward_split_grad_template.cu") write("gen_embedding_backward_split_grad.cu", template.render()) def forward_quantized() -> None: @dataclass class template_instance_params: output_rows_per_thread: str input_rows_in_flight: str min_128b_rows: str max_128b_rows: str @dataclass class elem_type: enum_name: str cpp_type_name: str primitive_type: str bit_width: int template_params: List[template_instance_params] type_map = { "FP32": elem_type( "FP32", "float", "FP", 32, [ template_instance_params(*map(str, (2, 4, 0, 4))), template_instance_params(*map(str, (2, 2, 4, 16))), template_instance_params(*map(str, (1, 1, 16, 32))), template_instance_params(*map(str, (1, 1, 32, 64))), ], ), "FP16": elem_type( "FP16", "__half2", "FP", 16, [ template_instance_params(*map(str, (2, 8, 0, 2))), template_instance_params(*map(str, (2, 8, 2, 4))), template_instance_params(*map(str, (2, 4, 4, 8))), template_instance_params(*map(str, (2, 2, 8, 16))), template_instance_params(*map(str, (2, 1, 16, 32))), ], ), "FP8": elem_type( "FP8", "uint32_t", "FP", 8, [ template_instance_params(*map(str, (2, 8, 0, 1))), template_instance_params(*map(str, (2, 4, 1, 2))), template_instance_params(*map(str, (2, 4, 2, 4))), template_instance_params(*map(str, (2, 4, 4, 8))), template_instance_params(*map(str, (2, 2, 4, 8))), ], ), "INT8": elem_type( "INT8", "uint32_t", "INT", 8, [ template_instance_params(*map(str, (2, 8, 0, 1))), template_instance_params(*map(str, (2, 4, 1, 2))), template_instance_params(*map(str, (2, 4, 2, 4))), template_instance_params(*map(str, (2, 4, 4, 8))), template_instance_params(*map(str, (2, 2, 8, 16))), ], ), "INT4": elem_type( "INT4", "uint32_t", "INT", 4, [ template_instance_params(*map(str, (4, 8, 0, 1))), template_instance_params(*map(str, (2, 8, 1, 2))), template_instance_params(*map(str, (1, 4, 2, 4))), template_instance_params(*map(str, (1, 4, 4, 8))), ], ), "INT2": elem_type( "INT2", "uint32_t", "INT", 2, [ template_instance_params(*map(str, (2, 16, 0, 1))), template_instance_params(*map(str, (2, 8, 1, 2))), template_instance_params(*map(str, (2, 8, 2, 4))), ], ), } # Generate the CUDA nbit (kernel) templates template = env.get_template( "embedding_forward_quantized_split_nbit_kernel_template.cu" ) for weighted in [True, False]: for nobag in [True, False]: if not nobag or not weighted: for emb_weight_type in type_map.values(): wdesc = f"{ 'weighted' if weighted else 'unweighted' }{ '_nobag' if nobag else '' }" filename = f"gen_embedding_forward_quantized_split_nbit_kernel_{ wdesc }_{ emb_weight_type.enum_name.lower() }_codegen_cuda.cu" write( filename, template.render( weighted=weighted, nobag=nobag, emb_weight_type=emb_weight_type, ), ) print(f"[Forward Quantized]: {filename}") # Generate the CUDA nbit (host) templates template = env.get_template( "embedding_forward_quantized_split_nbit_host_template.cu" ) for weighted in [True, False]: for nobag in [True, False]: if not nobag or not weighted: wdesc = f"{ 'weighted' if weighted else 'unweighted' }{ '_nobag' if nobag else '' }" filename = f"gen_embedding_forward_quantized_split_nbit_host_{ wdesc }_codegen_cuda.cu" write( filename, template.render(weighted=weighted, nobag=nobag, type_map=type_map), ) print(f"[Forward Quantized]: {filename}") # Generate the CPU templates template = env.get_template("embedding_forward_quantized_cpu_template.cpp") for weighted in [True, False]: filename = f"gen_embedding_forward_quantized_{ 'weighted' if weighted else 'unweighted' }_codegen_cpu.cpp" write(filename, template.render(weighted=weighted, type_map=type_map)) print(f"[Forward Quantized]: {filename}") def backward_grad() -> None: # Generate the common grad functions template = env.get_template("embedding_backward_split_grad_template.cu") write("gen_embedding_backward_split_grad.cu", template.render()) def backward_indices() -> None: template = env.get_template("embedding_backward_split_indice_weights_template.cu") src_cu = template.render() write("gen_embedding_backward_split_indice_weights_codegen_cuda.cu", src_cu) src_cu = template.render(dense=True) write("gen_embedding_backward_dense_indice_weights_codegen_cuda.cu", src_cu) def backward_dense() -> None: generate( optimizer="dense", dense=True, args=make_args( [ (FLOAT, "unused"), ] ), has_cpu_support=True, has_gpu_support=True, has_vbe_support=False, ) def gen__init__py() -> None: template = env.get_template("__init__.template") src_py = template.render() write("__init__.py", src_py) def emb_codegen( install_dir: Optional[str] = None, is_fbcode: Optional[bool] = None ) -> None: if install_dir is not None and len(install_dir) != 0: args.install_dir = install_dir if is_fbcode is not None: args.is_fbcode = is_fbcode backward_grad() # Generate forwards and specialized backwards backward_indices() backward_dense() forward_quantized() forward_split() # Generate backwards and optimizers generate(**(adagrad())) generate(**(adam())) generate(**(lamb())) generate(**(lars_sgd())) generate(**(partial_rowwise_adam())) generate(**(partial_rowwise_lamb())) generate(**(rowwise_adagrad())) generate(**(approx_rowwise_adagrad())) generate(**(rowwise_adagrad_with_weight_decay())) generate(**(approx_rowwise_adagrad_with_weight_decay())) generate(**(rowwise_adagrad_with_counter())) generate(**(approx_rowwise_adagrad_with_counter())) generate(**(rowwise_weighted_adagrad())) generate(**(sgd())) generate(**(approx_sgd())) generate(**(none_optimizer())) # Generate index_select ops using TBE backend index_select() gen__init__py() def main() -> None: emb_codegen() if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa F401 import argparse import os import re from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import jinja2 args: argparse.Namespace _: List[str] TENSOR: int INT_TENSOR: int LONG_TENSOR: int INT: int FLOAT: int parser = argparse.ArgumentParser() # By default the source template files are in the same folder as # embedding_backward_code_generator.py; # The install dir is by default the same as the current folder. parser.add_argument("--install_dir", default=".", help="where to put generated file") parser.add_argument("--opensource", action="store_false", dest="is_fbcode") parser.add_argument("--is_rocm", action="store_true") args, _ = parser.parse_known_args() env = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(os.path.abspath(__file__))) ) # Upper Limit of "max_embedding_dim (max_D)": # BT_block_size * sizeof(float) * 4 * kWarpSize * {{ kMaxVecsPerThread }} # needs to be smaller than the allocated shared memory size (2/3 of 96 KB # on V100 and 160 KB on A100. # BT_block_size * 4 * 4 * 32 * (max_D // 128) <= 64 * 1024 (V100) or 96 * 1024 (A100) # Since BT_block_size >= 1, max_D <= 16K (V100) or 24K (A100). # Note that if we increase max_D, it will increase the compilation time significantly. env.globals["max_embedding_dim"] = 1024 # An optimization for ROCm env.globals["items_per_warp"] = 128 if args.is_rocm is False else 256 env.globals["dense"] = False def write(filename: str, s: str) -> None: with open(os.path.join(args.install_dir, filename), "w") as f: f.write(s) def _arg_constructor( type: str, name: str, gpu: bool = True, precision: int = 32 ) -> str: return ( f"{name}.packed_accessor{precision}<{type}, 1, at::RestrictPtrTraits>()" if gpu else f"{name}.accessor<{type}, 1>()" ) def _arg( type: str, name: str, gpu: bool = True, precision: int = 32, pass_by_ref: bool = False, ) -> str: ref = "&" if pass_by_ref else "" return ( f"at::PackedTensorAccessor{precision}<{type}, 1, at::RestrictPtrTraits>{ref} {name}" if gpu else f"at::TensorAccessor<{type}, 1>{ref} {name}" ) def acc_cache_tensor_arg_constructor(name: str, gpu: bool = True) -> str: return _arg_constructor( "at::acc_type<" + ("cache_t" if gpu else "scalar_t") + ", true>", name, gpu=gpu, precision=64, ) def acc_cache_tensor_arg(name: str, gpu: bool = True, pass_by_ref: bool = False) -> str: return _arg( "at::acc_type<" + ("cache_t" if gpu else "scalar_t") + ", true>", name, gpu=gpu, precision=64, pass_by_ref=pass_by_ref, ) def long_tensor_arg_constructor(name: str, gpu: bool = True) -> str: return _arg_constructor("int64_t", name, gpu=gpu) def long_tensor_arg(name: str, gpu: bool = True, pass_by_ref: bool = False) -> str: return _arg("int64_t", name, gpu=gpu, pass_by_ref=pass_by_ref) def int_tensor_arg_constructor(name: str, gpu: bool = True) -> str: return _arg_constructor("int32_t", name, gpu=gpu) def int_tensor_arg(name: str, gpu: bool = True, pass_by_ref: bool = False) -> str: return _arg("int32_t", name, gpu=gpu, pass_by_ref=pass_by_ref) def tensor_arg(name: str) -> str: return f"Tensor {name}" def double_arg(name: str, default: float = 0.0) -> str: return f"double {name} = {default}" def double_arg_no_default(name: str) -> str: return f"double {name}" def float_arg(name: str, default: float = 0.0) -> str: return f"float {name} = {default}" def float_arg_no_default(name: str) -> str: return f"float {name}" def int64_arg(name: str, default: int = 0) -> str: return f"int64_t {name} = {default}" def int64_arg_no_default(name: str) -> str: return f"int64_t {name}" def int_arg(name: str, default: int = 0) -> str: return f"int {name} = {default}" # Format the macro call to generate pta::PackedTensorAccessors def make_pta_acc_format(pta_str_list: List[str], func_name: str) -> List[str]: new_str_list = [] for pta_str in pta_str_list: if "packed_accessor" in pta_str: match = re.search( r"([a-zA-z0-9_]*)[.]packed_accessor([3|6][2|4])<(.*)>\(\)", pta_str ) assert match is not None and len(match.groups()) == 3 tensor, acc_nbits, args = match.groups() if "acc_type" in args: match = re.search("at::acc_type<([a-zA-Z_]*), true>", args) assert match is not None and len(match.groups()) == 1 new_type = match.group(1) args = re.sub("at::acc_type<[a-zA-Z_]*, true>", new_type, args) macro_name = "MAKE_PTA_ACC_WITH_NAME" else: macro_name = "MAKE_PTA_WITH_NAME" args = args.replace(", at::RestrictPtrTraits", "") new_str_list.append( f"{macro_name}({func_name}, {tensor}, {args}, {acc_nbits})" ) else: new_str_list.append(pta_str) return new_str_list def replace_pta_namespace(pta_str_list: List[str]) -> List[str]: return [ pta_str.replace("at::PackedTensorAccessor", "pta::PackedTensorAccessor") for pta_str in pta_str_list ] env.filters["make_pta_acc_format"] = make_pta_acc_format env.filters["replace_pta_namespace"] = replace_pta_namespace @dataclass class Args: split_kernel_args: List[str] split_kernel_args_no_defaults: List[str] split_kernel_arg_constructors: List[str] split_cpu_kernel_args: List[str] split_cpu_kernel_arg_constructors: List[str] split_function_args: List[str] split_function_args_no_defaults: List[str] split_saved_tensors: List[str] split_tensors: List[str] saved_data: List[Tuple[str, str]] split_function_arg_names: List[str] split_function_schemas: List[str] split_variables: List[str] split_ref_kernel_args: List[str] TENSOR, INT_TENSOR, LONG_TENSOR, INT, FLOAT = range(5) def make_args( arg_spec: List[Union[Tuple[int, str], Tuple[int, str, Union[float, int]]]] ) -> Dict[str, Any]: def make_kernel_arg( ty: int, name: str, default: Union[int, float, None], pass_by_ref: bool = False ) -> str: return { TENSOR: lambda x: acc_cache_tensor_arg(x, pass_by_ref=pass_by_ref), INT_TENSOR: lambda x: int_tensor_arg(x, pass_by_ref=pass_by_ref), LONG_TENSOR: lambda x: long_tensor_arg(x, pass_by_ref=pass_by_ref), INT: (lambda x: int64_arg(x, default=int(default))) if default is not None else int64_arg_no_default, FLOAT: (lambda x: float_arg(x, default=default)) if default is not None else float_arg_no_default, }[ty](name) def make_kernel_arg_constructor(ty: int, name: str) -> str: return { TENSOR: acc_cache_tensor_arg_constructor, INT_TENSOR: int_tensor_arg_constructor, LONG_TENSOR: long_tensor_arg_constructor, INT: lambda x: x, FLOAT: lambda x: x, }[ty](name) def make_cpu_kernel_arg(ty: int, name: str, default: Union[int, float]) -> str: return { TENSOR: lambda x: acc_cache_tensor_arg(x, gpu=False), INT_TENSOR: lambda x: int_tensor_arg(x, gpu=False), LONG_TENSOR: lambda x: long_tensor_arg(x, gpu=False), INT: lambda x: int64_arg(x, default=int(default)), FLOAT: lambda x: float_arg(x, default=default), }[ty](name) def make_cpu_kernel_arg_constructor(ty: int, name: str) -> str: return { TENSOR: lambda x: acc_cache_tensor_arg_constructor(x, gpu=False), INT_TENSOR: lambda x: int_tensor_arg_constructor(x, gpu=False), LONG_TENSOR: lambda x: long_tensor_arg_constructor(x, gpu=False), INT: lambda x: x, FLOAT: lambda x: x, }[ty](name) def make_function_arg( ty: int, name: str, default: Optional[Union[int, float]] ) -> str: return { TENSOR: tensor_arg, INT_TENSOR: tensor_arg, LONG_TENSOR: tensor_arg, INT: (lambda x: int64_arg(x, default=int(default))) if default is not None else int64_arg_no_default, FLOAT: (lambda x: double_arg(x, default=default)) if default is not None else double_arg_no_default, }[ty](name) def make_function_schema_arg(ty: int, name: str, default: Union[int, float]) -> str: return { TENSOR: tensor_arg, INT_TENSOR: tensor_arg, LONG_TENSOR: tensor_arg, INT: lambda x: int_arg(x, default=int(default)), FLOAT: lambda x: float_arg(x, default=default), }[ty](name) def make_ivalue_cast(ty: int) -> str: return {INT: "toInt", FLOAT: "toDouble"}[ty] def make_args_for_compute_device( split_arg_spec: List[Tuple[int, str, Union[int, float]]] ) -> Args: return Args( split_kernel_args=[ make_kernel_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_kernel_args_no_defaults=[ make_kernel_arg(ty, name, None) for (ty, name, _) in split_arg_spec ], split_kernel_arg_constructors=[ make_kernel_arg_constructor(ty, name) for (ty, name, default) in split_arg_spec ], split_cpu_kernel_args=[ make_cpu_kernel_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_cpu_kernel_arg_constructors=[ make_cpu_kernel_arg_constructor(ty, name) for (ty, name, default) in split_arg_spec ], split_function_args=[ make_function_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_function_args_no_defaults=[ make_function_arg(ty, name, None) for (ty, name, default) in split_arg_spec ], split_tensors=[ name for (ty, name, default) in augmented_arg_spec if ty == TENSOR ], split_saved_tensors=[ name for (ty, name, default) in split_arg_spec if ty in (TENSOR, INT_TENSOR, LONG_TENSOR) ], saved_data=[ (name, make_ivalue_cast(ty)) for (ty, name, default) in augmented_arg_spec if ty != TENSOR ], split_function_arg_names=[name for (ty, name, default) in split_arg_spec], split_function_schemas=[ make_function_schema_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_variables=["Variable()" for _ in split_arg_spec], split_ref_kernel_args=[ make_kernel_arg(ty, name, default, pass_by_ref=True) for (ty, name, default) in split_arg_spec ], ) DEFAULT_ARG_VAL = 0 augmented_arg_spec = [ item if len(item) == 3 else (*item, DEFAULT_ARG_VAL) for item in arg_spec ] split_arg_spec = [] for (ty, arg, default) in augmented_arg_spec: if ty in (FLOAT, INT): split_arg_spec.append((ty, arg, default)) else: assert ty == TENSOR split_arg_spec.extend( [ (TENSOR, f"{arg}_host", default), (INT_TENSOR, f"{arg}_placements", default), (LONG_TENSOR, f"{arg}_offsets", default), ] ) cpu = make_args_for_compute_device(split_arg_spec) split_arg_spec = [] for (ty, arg, default) in augmented_arg_spec: if ty in (FLOAT, INT): split_arg_spec.append((ty, arg, default)) else: assert ty == TENSOR split_arg_spec.extend( [ (TENSOR, f"{arg}_dev", default), (TENSOR, f"{arg}_uvm", default), (INT_TENSOR, f"{arg}_placements", default), (LONG_TENSOR, f"{arg}_offsets", default), ] ) cuda = make_args_for_compute_device(split_arg_spec) return {"cpu": cpu, "cuda": cuda} def adagrad() -> Dict[str, Any]: split_weight_update = """ Vec4T<cache_t> m_t(&momentum1[idx * D + d]); m_t.acc.x += grad.acc.x * grad.acc.x; m_t.acc.y += grad.acc.y * grad.acc.y; m_t.acc.z += grad.acc.z * grad.acc.z; m_t.acc.w += grad.acc.w * grad.acc.w; m_t.store(&momentum1[idx * D + d]); weight_new.acc.x -= learning_rate * grad.acc.x / (sqrtf(m_t.acc.x) + eps); weight_new.acc.y -= learning_rate * grad.acc.y / (sqrtf(m_t.acc.y) + eps); weight_new.acc.z -= learning_rate * grad.acc.z / (sqrtf(m_t.acc.z) + eps); weight_new.acc.w -= learning_rate * grad.acc.w / (sqrtf(m_t.acc.w) + eps); """ split_weight_update_cpu = """ for (int64_t d = 0; d < D; ++d) { momentum1_host[embedding_begin + d] += grad_buffer[d] * grad_buffer[d]; host_weights_data[embedding_begin + d] -= learning_rate * grad_buffer[d] / (sqrt(momentum1_host[embedding_begin + d]) + eps); } """ return { "optimizer": "adagrad", "args": make_args( [(TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate")] ), "split_precomputation": "", "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": False, } def table_info_precomputation(momentum_prefix: str = "momentum1") -> str: template = """ // table_begin -> (E, D, {momentum_prefix}_row_begin). std::map<int64_t, std::tuple<int64_t, int64_t, int64_t>> table_info_map; for (int64_t t = 0; t < T; ++t) { const auto D = D_offsets_data[t + 1] - D_offsets_data[t]; const auto table_begin = weights_offsets_data[t]; const auto {momentum_prefix}_row_begin = {momentum_prefix}_offsets_data[t]; table_info_map[table_begin] = std::make_tuple(0, D, {momentum_prefix}_row_begin); } int64_t previous_table_begin = host_weights.numel(); // NOTE: table_info_map is sorted by table_begin! for (auto it = table_info_map.rbegin(); it != table_info_map.rend(); ++it) { const auto D = std::get<1>(it->second); // Calculates number of rows of each table. std::get<0>(it->second) = (previous_table_begin - it->first) / D; previous_table_begin = it->first; } """ return template.replace("{momentum_prefix}", momentum_prefix) def rowwise_adagrad() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = correction * weight_new.acc.x - multiplier * grad.acc.x; weight_new.acc.y = correction * weight_new.acc.y - multiplier * grad.acc.y; weight_new.acc.z = correction * weight_new.acc.z - multiplier * grad.acc.z; weight_new.acc.w = correction * weight_new.acc.w - multiplier * grad.acc.w; """ split_post_update = """ if (max_norm > 0.0) { CUDA_KERNEL_ASSERT(!(std::is_same<emb_t, uint8_t>::value && !cache_weights)); // not supported for uint8 yet // compute weight norm at::acc_type<cache_t, true> weight_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight_new = weight_row_template.load(d, qparams_template); weight_sum_square += weight_new.acc.x * weight_new.acc.x + weight_new.acc.y * weight_new.acc.y + weight_new.acc.z * weight_new.acc.z + weight_new.acc.w * weight_new.acc.w; } const at::acc_type<cache_t, true> weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_square, shfl_sync_mask)); // scale by max_norm if weight_norm exceeds max_norm if (threadIdx.x == 0) { multiplier = weight_norm > max_norm ? max_norm / weight_norm : 1.0f; } multiplier = SHFL_SYNC(multiplier, 0); if (weight_norm > max_norm) { #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight_new = weight_row_template.load(d, qparams_template); weight_new.acc.x *= multiplier; weight_new.acc.y *= multiplier; weight_new.acc.z *= multiplier; weight_new.acc.w *= multiplier; weight_row_template.store(weight_new, d, qparams_new); // qparams_new not used if embedding is not int8 } } } """ split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { auto gx = grad_sum[i].acc.x; auto gy = grad_sum[i].acc.y; auto gz = grad_sum[i].acc.z; auto gw = grad_sum[i].acc.w; if (weight_decay_mode == 1) { // L2 regularization int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); gx += weight_decay * weight.acc.x; gy += weight_decay * weight.acc.y; gz += weight_decay * weight.acc.z; gw += weight_decay * weight.acc.w; } g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } } multiplier = SHFL_SYNC(multiplier, 0); correction = SHFL_SYNC(correction, 0); """ split_weight_update_cpu = """ at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { auto grad = grad_buffer[d]; if (weight_decay_mode == 1) { // L2 regularization grad += weight_decay * host_weights_data[embedding_begin + d]; } g_local_sum_square += grad * grad; } auto g_avg_square = g_local_sum_square / D; at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[momentum1_offsets_data[feature_begin] + idx] + g_avg_square; momentum1_host[momentum1_offsets_data[feature_begin] + idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); at::acc_type<grad_t, true> correction; if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] = correction * host_weights_data[embedding_begin + d] - grad_buffer[d] * multiplier; } """ return { "optimizer": "rowwise_adagrad", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), (FLOAT, "max_norm", 0.0), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": split_post_update, "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": True, } def approx_rowwise_adagrad() -> Dict[str, Any]: rowwise_adagrad_args = rowwise_adagrad() approx_split_weight_update = """ // dummy computation to avoid unused variable warning weight_new.fma_(grad, -multiplier); assert(false); // approx rowwise AdaGrad is not supported on GPU """ return { "optimizer": "approx_rowwise_adagrad", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), ] ), "split_precomputation": rowwise_adagrad_args["split_precomputation"], "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": rowwise_adagrad_args["split_weight_update_cpu"], "has_cpu_support": False, "has_gpu_support": False, "has_vbe_support": False, } def rowwise_adagrad_with_weight_decay() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = correction * weight_new.acc.x - multiplier * grad.acc.x; weight_new.acc.y = correction * weight_new.acc.y - multiplier * grad.acc.y; weight_new.acc.z = correction * weight_new.acc.z - multiplier * grad.acc.z; weight_new.acc.w = correction * weight_new.acc.w - multiplier * grad.acc.w; """ split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { auto gx = grad_sum[i].acc.x; auto gy = grad_sum[i].acc.y; auto gz = grad_sum[i].acc.z; auto gw = grad_sum[i].acc.w; if (weight_decay_mode == 1) { // L2 regularization int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); gx += weight_decay * weight.acc.x; gy += weight_decay * weight.acc.y; gz += weight_decay * weight.acc.z; gw += weight_decay * weight.acc.w; } g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } } multiplier = SHFL_SYNC(multiplier, 0); correction = SHFL_SYNC(correction, 0); """ split_weight_update_cpu = """ at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { auto grad = grad_buffer[d]; if (weight_decay_mode == 1) { // L2 regularization grad += weight_decay * host_weights_data[embedding_begin + d]; } g_local_sum_square += grad * grad; } auto g_avg_square = g_local_sum_square / D; at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[momentum1_offsets_data[feature_begin] + idx] + g_avg_square; momentum1_host[momentum1_offsets_data[feature_begin] + idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); at::acc_type<grad_t, true> correction; if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] = correction * host_weights_data[embedding_begin + d] - grad_buffer[d] * multiplier; } """ return { "optimizer": "rowwise_adagrad_with_weight_decay", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def approx_rowwise_adagrad_with_weight_decay() -> Dict[str, Any]: rowwise_adagrad_with_weight_decay_args = rowwise_adagrad_with_weight_decay() approx_split_weight_update = """ // dummy computation to avoid unused variable warning weight_new.fma_(grad, -multiplier); assert(false); // approx rowwise AdaGrad is not supported on GPU """ return { "optimizer": "approx_rowwise_adagrad_with_weight_decay", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), ] ), "split_precomputation": rowwise_adagrad_with_weight_decay_args[ "split_precomputation" ], "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": rowwise_adagrad_with_weight_decay_args[ "split_weight_update_cpu" ], "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def rowwise_adagrad_with_counter() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = (exp_reg_correction * weight_new.acc.x - adjusted_multiplier * grad.acc.x); weight_new.acc.y = (exp_reg_correction * weight_new.acc.y - adjusted_multiplier * grad.acc.y); weight_new.acc.z = (exp_reg_correction * weight_new.acc.z - adjusted_multiplier * grad.acc.z); weight_new.acc.w = (exp_reg_correction * weight_new.acc.w - adjusted_multiplier * grad.acc.w); """ split_precomputation = """ at::acc_type<cache_t, true> freq = 1.0; at::acc_type<cache_t, true> l2_wd = 0.0; at::acc_type<cache_t, true> tail_id_threshold_val = tail_id_threshold; CUDA_KERNEL_ASSERT(max_counter > 0.0); // avoid divide by zero error if (is_tail_id_thresh_ratio == 1){ tail_id_threshold_val = floorf(tail_id_threshold * max_counter); } if (counter_halflife > 0 && threadIdx.x == 0) { // if id occurs multiple times in a batch, iter_delta=1 const auto iter_delta = prev_iter[idx] == 0 ? 1.0 : iter * 1.0 - prev_iter[idx]; prev_iter[idx] = iter * 1.0; const auto counter_log_rho = logf(2.0) / counter_halflife; row_counter[idx] = 1.0 + expf(-iter_delta * counter_log_rho) * row_counter[idx]; freq = counter_halflife / row_counter[idx]; if (weight_decay_mode == 1) { // L2 regularization l2_wd = 1.0; } } freq = SHFL_SYNC(freq, 0); l2_wd = SHFL_SYNC(l2_wd, 0); tail_id_threshold_val = SHFL_SYNC(tail_id_threshold_val, 0); at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); auto gx = grad_sum[i].acc.x + l2_wd * freq * weight_decay * weight.acc.x; auto gy = grad_sum[i].acc.y + l2_wd * freq * weight_decay * weight.acc.y; auto gz = grad_sum[i].acc.z + l2_wd * freq * weight_decay * weight.acc.z; auto gw = grad_sum[i].acc.w + l2_wd * freq * weight_decay * weight.acc.w; g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> adjusted_multiplier; at::acc_type<cache_t, true> exp_reg_correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); adjusted_multiplier = multiplier; if ( learning_rate_mode >=0 ) { if (adjustment_iter <= 0 || (adjustment_iter > 0 && iter > adjustment_iter)) { if (row_counter[idx] > tail_id_threshold_val) { if ( learning_rate_mode == 0 ) { adjusted_multiplier = multiplier * max(min(powf(max_counter/(row_counter[idx] + 1.0), adjustment_ub), 10.0), 1.0); } else if ( learning_rate_mode == 1 ) { adjusted_multiplier = multiplier * min(max(powf((row_counter[idx] + 1.0)/max_counter, adjustment_ub), 0.1), 1.0); } else if (learning_rate_mode == 2) { adjusted_multiplier = learning_rate / (sqrtf(adjustment_ub*row_counter[idx]) + eps); } } } } exp_reg_correction = 1.0; if (adjustment_iter <= 0 || (adjustment_iter > 0 && iter > adjustment_iter)) { if (weight_decay_mode == 2) { // Decoupled weight decay exp_reg_correction = 1.0 - freq * weight_decay * learning_rate; } else if (weight_decay_mode == 1) { // L2 regularization (coupled wd) exp_reg_correction = 1.0 - freq * weight_decay * multiplier; } } } multiplier = SHFL_SYNC(multiplier, 0); adjusted_multiplier = SHFL_SYNC(adjusted_multiplier, 0); exp_reg_correction = SHFL_SYNC(exp_reg_correction, 0); """ split_weight_update_cpu = """ at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { g_local_sum_square += grad_buffer[d] * grad_buffer[d]; } auto g_avg_square = g_local_sum_square / D; auto offset_idx = momentum1_offsets_data[feature_begin] + idx; at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[offset_idx] + g_avg_square; momentum1_host[offset_idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); const auto iter_delta = iter * 1.0 - prev_iter_host[offset_idx]; prev_iter_host[offset_idx] = iter * 1.0; const auto exp_reg = 1.0 / (weight_decay * multiplier + 1.0); const auto exp_reg_correction = powf(exp_reg, iter_delta); for (int64_t d = 0; d < D; ++d) { const auto weight = host_weights_data[embedding_begin + d]; host_weights_data[embedding_begin + d] = exp_reg_correction * weight - exp_reg * multiplier * grad_buffer[d]; } """ return { "optimizer": "rowwise_adagrad_with_counter", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "prev_iter"), (TENSOR, "row_counter"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "iter"), (INT, "counter_halflife", -1), (INT, "adjustment_iter", -1), (FLOAT, "adjustment_ub", 1.0), (INT, "learning_rate_mode", -1), (INT, "weight_decay_mode", 1), (INT, "grad_sum_decay", -1), (FLOAT, "max_counter"), (FLOAT, "tail_id_threshold", 0.0), (INT, "is_tail_id_thresh_ratio", 0), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": False, } def approx_rowwise_adagrad_with_counter() -> Dict[str, Any]: rowwise_adagrad_with_counter_args = rowwise_adagrad_with_counter() approx_split_weight_update = """ // dummy computation to avoid unused variable warning weight_new.fma_(grad, -multiplier); assert(false); // approx rowwise AdaGrad is not supported on GPU """ return { "optimizer": "approx_rowwise_adagrad_with_counter", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "prev_iter"), (TENSOR, "row_counter"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "iter"), (INT, "counter_halflife", -1), (INT, "adjustment_iter", -1), (FLOAT, "adjustment_ub", 1.0), (INT, "learning_rate_mode", -1), (INT, "weight_decay_mode", 1), (INT, "grad_sum_decay", -1), (FLOAT, "max_counter"), (FLOAT, "tail_id_threshold", 0.0), (INT, "is_tail_id_thresh_ratio", 0), ] ), "split_precomputation": rowwise_adagrad_with_counter_args[ "split_precomputation" ], "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": rowwise_adagrad_with_counter_args[ "split_weight_update_cpu" ], "has_cpu_support": False, "has_gpu_support": False, "has_vbe_support": False, } def rowwise_weighted_adagrad() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = correction * weight_new.acc.x - multiplier * grad.acc.x; weight_new.acc.y = correction * weight_new.acc.y - multiplier * grad.acc.y; weight_new.acc.z = correction * weight_new.acc.z - multiplier * grad.acc.z; weight_new.acc.w = correction * weight_new.acc.w - multiplier * grad.acc.w; """ split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); auto gx = grad_sum[i].acc.x + weight_decay * weight.acc.x; auto gy = grad_sum[i].acc.y + weight_decay * weight.acc.y; auto gz = grad_sum[i].acc.z + weight_decay * weight.acc.z; auto gw = grad_sum[i].acc.w + weight_decay * weight.acc.w; g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> lambda = sqrtf(iter + 1); at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + lambda * g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate * lambda / (cbrtf(new_sum_square_grads) + eps); correction = 1.0 - multiplier * weight_decay; } multiplier = SHFL_SYNC(multiplier, 0); correction = SHFL_SYNC(correction, 0); """ split_weight_update_cpu = """ // weight_decay not supported for cpu version at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { g_local_sum_square += grad_buffer[d] * grad_buffer[d]; } auto g_avg_square = g_local_sum_square / D; at::acc_type<grad_t, true> lambda = sqrtf(iter + 1); at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[momentum1_offsets_data[feature_begin] + idx] + lambda * g_avg_square; momentum1_host[momentum1_offsets_data[feature_begin] + idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate * lambda / (cbrtf(new_sum_square_grads) + eps); for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] -= grad_buffer[d] * multiplier; } """ return { "optimizer": "rowwise_weighted_adagrad", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": False, } def sgd() -> Dict[str, Any]: split_weight_update = """ weight_new.fma_(grad, -learning_rate); """ split_weight_update_cpu = """ for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] -= learning_rate * grad_buffer[d]; } """ return { "optimizer": "sgd", "args": make_args([(FLOAT, "learning_rate")]), "split_precomputation": "", "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": True, } def approx_sgd() -> Dict[str, Any]: sgd_args = sgd() approx_split_weight_update = """ // approx_sgd not supported for GPU. // Just do the same thing as exact sgd to avoid unused variable warning. weight_new.fma_(grad, -learning_rate); assert(false); // approx SGD is not supported on GPU """ return { "optimizer": "approx_sgd", "args": make_args([(FLOAT, "learning_rate")]), "split_precomputation": "", "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": sgd_args["split_weight_update_cpu"], "has_cpu_support": False, "has_gpu_support": False, "has_vbe_support": False, } def lamb() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> weight_sum_sq = 0.0; at::acc_type<cache_t, true> rtw_sum_sq = 0.0; auto weight_row = WeightRow<emb_t, cache_t, at::acc_type<cache_t, true>>(weights, cache_weights, D, nullptr); float2 qparams; if (std::is_same<emb_t, uint8_t>::value && !cache_weights) { qparams = weight_row.load_qparams(); } #pragma unroll 1 for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row.load(d, qparams); Vec4T<at::acc_type<cache_t, true>> m1(&momentum1[idx * D + d]); m1.acc.x = beta1 * m1.acc.x + (1.0 - beta1) * grad_sum[i].acc.x; m1.acc.y = beta1 * m1.acc.y + (1.0 - beta1) * grad_sum[i].acc.y; m1.acc.z = beta1 * m1.acc.z + (1.0 - beta1) * grad_sum[i].acc.z; m1.acc.w = beta1 * m1.acc.w + (1.0 - beta1) * grad_sum[i].acc.w; m1.store(&momentum1[idx * D + d]); Vec4T<at::acc_type<cache_t, true>> m2(&momentum2[idx * D + d]); m2.acc.x = beta2 * m2.acc.x + (1.0 - beta2) * grad_sum[i].acc.x * grad_sum[i].acc.x; m2.acc.y = beta2 * m2.acc.y + (1.0 - beta2) * grad_sum[i].acc.y * grad_sum[i].acc.y; m2.acc.z = beta2 * m2.acc.z + (1.0 - beta2) * grad_sum[i].acc.z * grad_sum[i].acc.z; m2.acc.w = beta2 * m2.acc.w + (1.0 - beta2) * grad_sum[i].acc.w * grad_sum[i].acc.w; m2.store(&momentum2[idx * D + d]); // now, we are finished with grad_sum. We can *reuse* grad_sum to store r_t + weight_decay * weight; grad_sum[i].acc.x = (m1.acc.x / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.x / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.x; grad_sum[i].acc.y = (m1.acc.y / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.y / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.y; grad_sum[i].acc.z = (m1.acc.z / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.z / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.z; grad_sum[i].acc.w = (m1.acc.w / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.w / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.w; weight_sum_sq += weight.acc.x * weight.acc.x + weight.acc.y * weight.acc.y + weight.acc.z * weight.acc.z + weight.acc.w * weight.acc.w; rtw_sum_sq += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const auto weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_sq, shfl_sync_mask)); const auto rtw_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(rtw_sum_sq, shfl_sync_mask)); const auto true_ratio = weight_norm / rtw_norm; """ split_weight_update = """ weight_new.fma_(grad, -learning_rate * true_ratio); """ split_weight_update_cpu = "" return { "optimizer": "lamb", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def partial_rowwise_lamb() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { g_local_sum_square += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> m2; if (threadIdx.x == 0) { m2 = beta2 * momentum2[idx] + (1.0 - beta2) * g_avg_square; momentum2[idx] = m2; } m2 = SHFL_SYNC(m2, 0); at::acc_type<cache_t, true> m2_hat = 1.0 / (sqrtf((m2 / (1.0 - powf(beta2, iter)))) + eps); at::acc_type<cache_t, true> weight_sum_sq = 0.0; at::acc_type<cache_t, true> rtw_sum_sq = 0.0; auto weight_row = WeightRow<emb_t, cache_t, at::acc_type<cache_t, true>>(weights, cache_weights, D, nullptr); float2 qparams; if (std::is_same<emb_t, uint8_t>::value && !cache_weights) { qparams = weight_row.load_qparams(); } #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> m1(&momentum1[idx * D + d]); m1.acc.x = beta1 * m1.acc.x + (1.0 - beta1) * grad_sum[i].acc.x; m1.acc.y = beta1 * m1.acc.y + (1.0 - beta1) * grad_sum[i].acc.y; m1.acc.z = beta1 * m1.acc.z + (1.0 - beta1) * grad_sum[i].acc.z; m1.acc.w = beta1 * m1.acc.w + (1.0 - beta1) * grad_sum[i].acc.w; m1.store(&momentum1[idx * D + d]); // now, we are finished with grad_sum. We can *reuse* grad_sum to store r_t + weight_decay * weight; Vec4T<at::acc_type<cache_t, true>> weight = weight_row.load(d, qparams); grad_sum[i].acc.x = (m1.acc.x / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.x; grad_sum[i].acc.y = (m1.acc.y / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.y; grad_sum[i].acc.z = (m1.acc.z / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.z; grad_sum[i].acc.w = (m1.acc.w / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.w; weight_sum_sq += weight.acc.x * weight.acc.x + weight.acc.y * weight.acc.y + weight.acc.z * weight.acc.z + weight.acc.w * weight.acc.w; rtw_sum_sq += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const auto weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_sq)); const auto rtw_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(rtw_sum_sq)); const auto true_ratio = weight_norm / rtw_norm; """ split_weight_update = """ weight_new.fma_(grad, -learning_rate * true_ratio); """ split_weight_update_cpu = "" # TODO return { "optimizer": "partial_rowwise_lamb", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def adam() -> Dict[str, Any]: split_weight_update = """ Vec4T<cache_t> m_t(&momentum1[idx * D + d]); m_t.acc.x *= beta1; m_t.acc.y *= beta1; m_t.acc.z *= beta1; m_t.acc.w *= beta1; m_t.fma_(grad, 1.0 - beta1); m_t.store(&momentum1[idx * D + d]); Vec4T<cache_t> v_t(&momentum2[idx * D + d]); v_t.acc.x *= beta2; v_t.acc.y *= beta2; v_t.acc.z *= beta2; v_t.acc.w *= beta2; grad.acc.x *= grad.acc.x; grad.acc.y *= grad.acc.y; grad.acc.z *= grad.acc.z; grad.acc.w *= grad.acc.w; v_t.fma_(grad, 1.0 - beta2); v_t.store(&momentum2[idx * D + d]); weight_new.acc.x -= learning_rate * (m_t.acc.x / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.x / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.x); weight_new.acc.y -= learning_rate * (m_t.acc.y / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.y / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.y); weight_new.acc.z -= learning_rate * (m_t.acc.z / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.z / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.z); weight_new.acc.w -= learning_rate * (m_t.acc.w / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.w / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.w); """ split_weight_update_cpu = "" # TODO return { "optimizer": "adam", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": "", "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def partial_rowwise_adam() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { g_local_sum_square += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square) / D; at::acc_type<cache_t, true> v_hat_t; if (threadIdx.x == 0) { at::acc_type<cache_t, true> v_t = momentum2[idx] * beta2 + g_avg_square * (1.0 - beta2); momentum2[idx] = v_t; v_hat_t = v_t / (1.0 - powf(beta2, iter)); } v_hat_t = SHFL_SYNC(v_hat_t, 0); """ split_weight_update = """ Vec4T<cache_t> m_t(&momentum1[idx * D + d]); m_t.acc.x *= beta1; m_t.acc.y *= beta1; m_t.acc.z *= beta1; m_t.acc.w *= beta1; m_t.fma_(grad, 1.0 - beta1); m_t.store(&momentum1[idx * D + d]); weight_new.acc.x -= learning_rate * (m_t.acc.x / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.x); weight_new.acc.y -= learning_rate * (m_t.acc.y / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.y); weight_new.acc.z -= learning_rate * (m_t.acc.z / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.z); weight_new.acc.w -= learning_rate * (m_t.acc.w / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.w); """ split_weight_update_cpu = "" # TODO return { "optimizer": "partial_rowwise_adam", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def lars_sgd() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> weight_sum_sq = 0.0; at::acc_type<cache_t, true> grad_sum_sq = 0.0; auto weight_row = WeightRow<emb_t, cache_t, at::acc_type<cache_t, true>>(weights, cache_weights, D, nullptr); float2 qparams; if (std::is_same<emb_t, uint8_t>::value && !cache_weights) { qparams = weight_row.load_qparams(); } #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t,true>> weight = weight_row.load(d, qparams); weight_sum_sq += weight.acc.x * weight.acc.x + weight.acc.y * weight.acc.y + weight.acc.z * weight.acc.z + weight.acc.w * weight.acc.w; grad_sum_sq += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const auto weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_sq)); const auto grad_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(grad_sum_sq)); const at::acc_type<cache_t, true> adjusted_lr = learning_rate * eta * weight_norm / (grad_norm + weight_decay * weight_norm); """ split_weight_update = """ Vec4T<cache_t> m1(&momentum1[idx * D + d]); m1.acc.x = momentum * m1.acc.x + adjusted_lr * (grad.acc.x + weight_decay * weight_new.acc.x); m1.acc.y = momentum * m1.acc.y + adjusted_lr * (grad.acc.y + weight_decay * weight_new.acc.y); m1.acc.z = momentum * m1.acc.z + adjusted_lr * (grad.acc.z + weight_decay * weight_new.acc.z); m1.acc.w = momentum * m1.acc.w + adjusted_lr * (grad.acc.w + weight_decay * weight_new.acc.w); m1.store(&momentum1[idx * D + d]); weight_new.acc.x -= m1.acc.x; weight_new.acc.y -= m1.acc.y; weight_new.acc.z -= m1.acc.z; weight_new.acc.w -= m1.acc.w; """ split_weight_update_cpu = "" # TODO return { "optimizer": "lars_sgd", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "learning_rate"), (FLOAT, "eta"), (FLOAT, "momentum"), (FLOAT, "weight_decay"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def none_optimizer() -> Dict[str, Any]: return { "optimizer": "none", "dense": False, "args": make_args( [ (INT, "total_hash_size"), (INT, "total_unique_indices"), ] ), # Generate only GPU code "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, }
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple import torch from torch import nn class SplitEmbeddingOptimizerParams(NamedTuple): weights_dev: nn.Parameter # TODO: Enable weights_uvm and weights_lxu_cache support # weights_uvm: nn.Parameter # weights_lxu_cache: nn.Parameter class SplitEmbeddingArgs(NamedTuple): weights_placements: torch.Tensor weights_offsets: torch.Tensor max_D: int
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple, Optional import torch class VBEMetadata(NamedTuple): B_offsets: Optional[torch.Tensor] output_offsets_feature_rank: Optional[torch.Tensor] B_offsets_rank_per_feature: Optional[torch.Tensor] max_B_feature_rank: int = -1 max_B: int = -1 output_size: int = -1 class CommonArgs(NamedTuple): placeholder_autograd_tensor: torch.Tensor dev_weights: torch.Tensor host_weights: torch.Tensor uvm_weights: torch.Tensor lxu_cache_weights: torch.Tensor weights_placements: torch.Tensor weights_offsets: torch.Tensor D_offsets: torch.Tensor total_D: int max_D: int hash_size_cumsum: torch.Tensor total_hash_size_bits: int indices: torch.Tensor offsets: torch.Tensor pooling_mode: int indice_weights: Optional[torch.Tensor] feature_requires_grad: Optional[torch.Tensor] lxu_cache_locations: torch.Tensor output_dtype: int vbe_metadata: VBEMetadata is_experimental: bool class OptimizerArgs(NamedTuple): stochastic_rounding: bool gradient_clipping: bool max_gradient: float learning_rate: float eps: float beta1: float beta2: float weight_decay: float weight_decay_mode: int eta: float momentum: float counter_halflife: int adjustment_iter: int adjustment_ub: float learning_rate_mode: int grad_sum_decay: int tail_id_threshold: float is_tail_id_thresh_ratio: int total_hash_size: int # Required for OptimType.NONE class Momentum(NamedTuple): dev: torch.Tensor host: torch.Tensor uvm: torch.Tensor offsets: torch.Tensor placements: torch.Tensor
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import os import subprocess def configureDoxyfile(input_dir, output_dir): with open("Doxyfile.in", "r") as file: filedata = file.read() filedata = filedata.replace("@DOXYGEN_INPUT_DIR@", input_dir) filedata = filedata.replace("@DOXYGEN_OUTPUT_DIR@", output_dir) with open("Doxyfile", "w") as file: file.write(filedata) # Check if we're running on Read the Docs' servers read_the_docs_build = os.environ.get("READTHEDOCS", None) == "True" breathe_projects = {} if read_the_docs_build: input_dir = "../include/fbgemm" output_dir = "build" configureDoxyfile(input_dir, output_dir) subprocess.call("doxygen", shell=True) breathe_projects["fbgemm"] = output_dir + "/xml" # -- Project information ----------------------------------------------------- project = "FBGEMM" copyright = "2020, Facebook Inc." author = "Facebook Inc." # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. # ... extensions = ["breathe"] # ... # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Breathe Configuration breathe_default_project = "FBGEMM"
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## This is a helper script that generates simple Caffe2 models. from caffe2.proto import caffe2_pb2 from caffe2.python import utils # Define a weights network weights = caffe2_pb2.NetDef() weights.name = "init" op = caffe2_pb2.OperatorDef() op.type = "fake_data_provider" op.output.extend(["data"]) weights.op.extend([op]) weights.external_output.extend(op.output) op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["fc_w"]) op.arg.extend([utils.MakeArgument("shape", [1, 4])]) op.arg.extend([utils.MakeArgument("values", [1.0 for i in range(4)])]) weights.op.extend([op]) weights.external_output.extend(op.output) op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["fc_b"]) op.arg.extend([utils.MakeArgument("shape", [1, 4])]) op.arg.extend([utils.MakeArgument("values", [1.0 for i in range(4)])]) weights.op.extend([op]) weights.external_output.extend(op.output) # Define an inference net net = caffe2_pb2.NetDef() net.name = "predict" op = caffe2_pb2.OperatorDef() op.type = "fake_operator" op.input.extend(["data"]) op.output.extend(["fake_out"]) net.op.extend([op]) op = caffe2_pb2.OperatorDef() op.type = "FC" op.input.extend(["fake_out"]) op.input.extend(["fc_w"]) op.input.extend(["fc_b"]) op.output.extend(["fc_out"]) net.op.extend([op]) op = caffe2_pb2.OperatorDef() op.type = "Relu" op.input.extend(["fc_out"]) op.output.extend(["relu_out"]) net.op.extend([op]) # Relu out is what we want net.external_output.extend(op.output) # We want DCE to remove this one op = caffe2_pb2.OperatorDef() op.type = "useless_operator" op.input.extend(["fake_out"]) op.output.extend(["useless_out"]) net.op.extend([op]) with open("predictNet.pb", "wb") as f: f.write(net.SerializeToString()) with open("initNet.pb", "wb") as f: f.write(weights.SerializeToString())
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from caffe2.proto import caffe2_pb2 from caffe2.python import workspace from google.protobuf import text_format def fix_tensor_fills(init_net_file): init_net_pb = open(init_net_file, "rb").read() init_net = caffe2_pb2.NetDef() init_net.ParseFromString(init_net_pb) for op in init_net.op: if any("indices" in x for x in op.output): op.type = "GivenTensorInt64Fill" elif any("lengths" in x for x in op.output): op.type = "GivenTensorIntFill" open(init_net_file + "txt", "w").write(text_format.MessageToString(init_net)) open(init_net_file, "wb").write(init_net.SerializeToString()) def read_init_net_pbtxt(init_net_file): init_net_txt = open(init_net_file, "r").read() init_net = caffe2_pb2.NetDef() text_format.Merge(init_net_txt, init_net) return init_net def read_init_net(init_net_file): init_net_pb = open(init_net_file, "rb").read() init_net = caffe2_pb2.NetDef() init_net.ParseFromString(init_net_pb) return init_net def read_predict_net(predict_net_file): predict_net_txt = open(predict_net_file, "r").read() predict_net = caffe2_pb2.NetDef() predict_net.name = "the_model" text_format.Merge(predict_net_txt, predict_net) return predict_net def run(predict_net, init_net): workspace.ResetWorkspace() workspace.RunNetOnce(init_net) workspace.CreateNet(predict_net) workspace.RunNet(predict_net.name) out = workspace.FetchBlob(predict_net.external_output[0]) print(out) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("predict_net", default="predict_net.pbtxt", nargs="?") parser.add_argument("init_net", default="init_net.pb", nargs="?") return parser.parse_args() if __name__ == "__main__": args = parse_args() init_net = read_init_net(args.init_net) predict_net = read_predict_net(args.predict_net) run(predict_net, init_net)
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch.onnx import torchvision from torch.autograd import Variable # Export ONNX model from PyTorch # Refer to https://pytorch.org/docs/stable/onnx.html class PyTorchPretrainedModel: def __init__(self, model_name): self.model_name = model_name method_to_call = getattr(torchvision.models, self.model_name) self.model = method_to_call(pretrained=True) self.model_parameters_num = len(list(self.model.state_dict())) def export_onnx_model( self, input_name, output_name, batch_size, model_path, verbose ): dummy_input = Variable(torch.randn(batch_size, 3, 224, 224)) input_names = [input_name] + [ "learned_%d" % i for i in range(self.model_parameters_num) ] output_names = [output_name] torch.onnx.export( self.model, dummy_input, model_path, verbose=verbose, input_names=input_names, output_names=output_names, ) if __name__ == "__main__": # For more pretrained model in PyTorch, refer to: # https://pytorch.org/docs/stable/torchvision/models.html parser = argparse.ArgumentParser("ONNX model exported from PyTorch.") parser.add_argument("--model_name", type=str, default="resnet18") parser.add_argument("--model_path", type=str, default="resnet18.onnx") parser.add_argument("--model_input_name", type=str, default="data") parser.add_argument("--model_output_name", type=str, default="output") parser.add_argument("--batch_size", type=int, default=16) parser.add_argument("--verbose", action="store_true") args = parser.parse_args() pytorch_model = PyTorchPretrainedModel(args.model_name) pytorch_model.export_onnx_model( args.model_input_name, args.model_output_name, args.batch_size, args.model_path, args.verbose, )
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re from collections import defaultdict from operator import attrgetter, itemgetter import numpy def formatUs(time): """Format human readable time (input in us).""" if time < 1000: return f"{time:.2f} us" time = time / 1000 if time < 1000: return f"{time:.2f} ms" time = time / 1000 return f"{time:.2f} s" class Event: """Class to hold TraceEvents, matches glow::TraceEvent.""" def __init__(self, name, start, end, optype): self.name = name self.start = start self.end = end self.optype = optype self.children = [] self.child_time = 0 def __repr__(self): return f"Event({self.name}, {self.start}, {self.end}, {self.optype})" def printTree(self, tabs): """Pretty print the tree.""" indent = tabs * "\t" print(f"{indent}{self.name} ({self.optype})") for c in self.children: c.printTree(tabs + 1) def totalOverlap(self, event): """Returns True if this Event completely incloses the provided event.""" return self.start <= event.start and self.end >= event.end def addChild(self, event): """Add an enclosed event.""" self.children.append(event) def updateChildTime(self): """Determine the total time cost of all children.""" self.child_time = 0 for child in self.children: child.updateChildTime() self.child_time += child.end - child.start def selfTime(self): """Return this Event's time cost above the sum of its children.""" return (self.end - self.start) - self.child_time def loadEvents(filename, runtimeEvents, fixedEvent, skip): """Load the json trace file and create Events.""" trace = None with open(filename) as f: trace = json.load(f) events = [] partialEvents = {} for line in trace: if "name" in line: name = line["name"] evtype = line["ph"] start = int(line["ts"]) optype = "runtime" if "args" in line: if "type" in line["args"]: optype = line["args"]["type"] elif "kind" in line["args"]: optype = line["args"]["kind"] # If we're looking for a single event, skip others. if ( fixedEvent and not re.match(fixedEvent, name) and not re.match(fixedEvent, optype) ): continue # if we're not including runtime events, skip them. if not fixedEvent and not runtimeEvents and optype == "runtime": continue # If we're skipping some number of events, skip them. if skip > 0: skip = skip - 1 continue end = 0 if evtype == "X": end = start + int(line["dur"]) events.append(Event(name, start, end, optype)) elif evtype == "B": partialEvents[name] = Event(name, start, end, optype) elif evtype == "E": if not name in partialEvents: # This is a bug in Glow tracing, but ignore for now. continue ev = partialEvents[name] ev.end = start events.append(ev) return events def stackEvents(events): """Find all enclosed events and move them to be children. Returns a tree of Events where parents completely enclose the timeline of their children.""" # Ensure events are sorted by time. events = sorted(events, key=attrgetter("end"), reverse=True) events = sorted(events, key=attrgetter("start")) result = [] lastEvent = None for ev in events: # If ev is enclosed by the previous event, add it as a child. if lastEvent: if lastEvent.totalOverlap(ev): lastEvent.addChild(ev) continue # If we're closing the previous event, recursively stack its children. if lastEvent.children: lastEvent.children = stackEvents(lastEvent.children) lastEvent.updateChildTime() # If not enclosed its a new top-level event, which may enclose other events. lastEvent = ev result.append(ev) # Stack children of the last Event. if lastEvent.children: lastEvent.children = stackEvents(lastEvent.children) lastEvent.updateChildTime() return result def dumpAccumulate(events, keyfunc, traceTime): """Accumulate Event durations by a key produced by keyfunc. Keyfunc is a lambda which takes an Event as a parameter.""" nameMap = defaultdict(list) for ev in events: name = keyfunc(ev) nameMap[name].append(ev.selfTime()) layers = [] for (name, times) in nameMap.items(): layers.append( (name, len(times), numpy.mean(times), numpy.std(times), numpy.sum(times)) ) # Iterate sorted by total time. for (name, num, mean, stddev, total) in sorted( layers, key=itemgetter(4), reverse=True ): mean = formatUs(mean) stddev = formatUs(stddev) pc = (total / traceTime) * 100 total = formatUs(total) print( f"{name} {num} events, mean: {mean}, stddev: {stddev}, total: {total} ({pc:.2f}%)" ) print() print() def main(): parser = argparse.ArgumentParser(description="process trace json") parser.add_argument("filename", type=str, help="filename for trace file to load") parser.add_argument( "--layers", action="store_true", help="aggregate and display by layer names" ) parser.add_argument( "--kinds", action="store_true", help="aggregate and display by op kind" ) parser.add_argument("--runtime", action="store_true", help="include runtime events") parser.add_argument( "--summarize", action="store_true", help="print a summary of the trace" ) parser.add_argument( "--event", type=str, default="", help="restrict events matching this regex" ) parser.add_argument( "--skip", type=int, default=0, help="skip a number of events matching conditions", ) args = parser.parse_args() events = loadEvents(args.filename, args.runtime, args.event, args.skip) if not events: return # Stack events so we can determine selfTime. stacked = stackEvents(events) # Ensure events are sorted by startTime. stacked = sorted(stacked, key=attrgetter("start")) totalTime = stacked[-1].end - stacked[0].start coveredTime = 0 for ev in stacked: coveredTime += ev.end - ev.start if args.layers: dumpAccumulate(events, lambda ev: f"{ev.name} ({ev.optype})", coveredTime) if args.kinds: dumpAccumulate(events, lambda ev: ev.optype, coveredTime) if args.event: dumpAccumulate(events, lambda ev: f"{ev.name} ({ev.optype})", coveredTime) if args.summarize: print("Total time of trace:", formatUs(totalTime)) print("Time covered by events:", formatUs(coveredTime)) print("Unattributed time:", formatUs(totalTime - coveredTime)) if __name__ == "__main__": main()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This was mostly taken from a tutorial from Caffe2: # caffe2/blob/master/caffe2/python/tutorials/py_gen/MNIST.py # It currently allows to train either LeNet or an MLP on MNIST. We can then load # the pre-trained protobuf file into Glow to run. import os import shutil import caffe2.python.predictor.predictor_exporter as pe import numpy as np from caffe2.python import brew, core, model_helper, optimizer, workspace from caffe2.python.predictor import mobile_exporter # If you would like to see some really detailed initializations, # you can change --caffe2_log_level=0 to --caffe2_log_level=-1 core.GlobalInit(["caffe2", "--caffe2_log_level=0"]) print("Necessities imported!") # If True, a more complicated convolutional model is used # If False, a multilayer perceptron model is used USE_LENET_MODEL = True # This section preps your image and test set in a lmdb database def DownloadResource(url, path): """Downloads resources from s3 by url and unzips them to the provided path""" import StringIO import zipfile import requests print("Downloading... {} to {}".format(url, path)) r = requests.get(url, stream=True) z = zipfile.ZipFile(StringIO.StringIO(r.content)) z.extractall(path) print("Completed download and extraction.") current_folder = os.path.join(os.path.expanduser("~"), "caffe2_notebooks") data_folder = os.path.join(current_folder, "tutorial_data", "mnist") root_folder = os.path.join(current_folder, "tutorial_files", "tutorial_mnist") db_missing = False if not os.path.exists(data_folder): os.makedirs(data_folder) print("Your data folder was not found!! This was generated: {}".format(data_folder)) # Look for existing database: lmdb # MNIST lmdb can be found here: # https://download.caffe2.ai/databases/mnist-lmdb.zip if os.path.exists(os.path.join(data_folder, "mnist-train-nchw-lmdb")): print("lmdb train db found!") else: db_missing = True if os.path.exists(os.path.join(data_folder, "mnist-test-nchw-lmdb")): print("lmdb test db found!") else: db_missing = True # attempt the download of the db if either was missing if db_missing: print("one or both of the MNIST lmbd dbs not found!!") db_url = "http://download.caffe2.ai/databases/mnist-lmdb.zip" try: DownloadResource(db_url, data_folder) except Exception as ex: print( "Failed to download dataset. Please download it manually from {}".format( db_url ) ) print( "Unzip it and place the two database folders here: {}".format(data_folder) ) raise ex if os.path.exists(root_folder): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree(root_folder) os.makedirs(root_folder) workspace.ResetWorkspace(root_folder) print("training data folder:" + data_folder) print("workspace root folder:" + root_folder) def AddInput(model, batch_size, db, db_type): # load the data data_uint8, label = brew.db_input( model, blobs_out=["data_uint8", "label"], batch_size=batch_size, db=db, db_type=db_type, ) print(data_uint8._from_net) # cast the data to float data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT) # scale data from [0,255] down to [0,1] data = model.Scale(data, data, scale=float(1.0 / 256)) # don't need the gradient for the backward pass data = model.StopGradient(data, data) return data, label def AddMLPModel(model, data): size = 28 * 28 * 1 sizes = [size, size * 2, size * 2, 10] layer = data for i in range(len(sizes) - 1): layer = brew.fc( model, layer, "dense_{}".format(i), dim_in=sizes[i], dim_out=sizes[i + 1], use_cudnn=False, ) layer = model.net.Relu(layer, "relu_{}".format(i), use_cudnn=False) softmax = model.net.Softmax(layer, "softmax", use_cudnn=False) return softmax def AddLeNetModel(model, data): """ This part is the standard LeNet model: from data to the softmax prediction. For each convolutional layer we specify dim_in - number of input channels and dim_out - number or output channels. Also each Conv and MaxPool layer changes the image size. For example, kernel of size 5 reduces each side of an image by 4. While when we have kernel and stride sizes equal 2 in a MaxPool layer, it divides each side in half. """ # Image size: 28 x 28 -> 24 x 24 conv1 = brew.conv( model, data, "conv1", dim_in=1, dim_out=20, kernel=5, use_cudnn=False ) # Image size: 24 x 24 -> 12 x 12 pool1 = model.net.MaxPool(conv1, "pool1", kernel=2, stride=2, use_cudnn=False) # Image size: 12 x 12 -> 8 x 8 conv2 = brew.conv( model, pool1, "conv2", dim_in=20, dim_out=50, kernel=5, use_cudnn=False ) # Image size: 8 x 8 -> 4 x 4 pool2 = model.net.MaxPool(conv2, "pool2", kernel=2, stride=2, use_cudnn=False) # 50 * 4 * 4 stands for dim_out from previous layer multiplied by the # image size fc3 = brew.fc(model, pool2, "fc3", dim_in=50 * 4 * 4, dim_out=500, use_cudnn=False) fc3 = model.net.Relu(fc3, "relu3", use_cudnn=False) pred = brew.fc(model, fc3, "pred", 500, 10, use_cudnn=False) softmax = model.net.Softmax(pred, "softmax", use_cudnn=False) return softmax def AddModel(model, data): if USE_LENET_MODEL: return AddLeNetModel(model, data) else: return AddMLPModel(model, data) def AddAccuracy(model, softmax, label): """Adds an accuracy op to the model""" accuracy = model.Accuracy([softmax, label], "accuracy", use_cudnn=False) return accuracy def AddTrainingOperators(model, softmax, label): """Adds training operators to the model.""" xent = model.LabelCrossEntropy([softmax, label], "xent", use_cudnn=False) # compute the expected loss loss = model.AveragedLoss(xent, "loss", use_cudnn=False) # track the accuracy of the model AddAccuracy(model, softmax, label) # use the average loss we just computed to add gradient operators to the # model model.AddGradientOperators([loss]) optimizer.build_sgd( model, base_learning_rate=0.1, policy="step", stepsize=1, gamma=0.999 ) arg_scope = {"order": "NCHW"} train_model = model_helper.ModelHelper(name="mnist_train", arg_scope=arg_scope) data, label = AddInput( train_model, batch_size=64, db=os.path.join(data_folder, "mnist-train-nchw-lmdb"), db_type="lmdb", ) softmax = AddModel(train_model, data) AddTrainingOperators(train_model, softmax, label) test_model = model_helper.ModelHelper( name="mnist_test", arg_scope=arg_scope, init_params=False ) data, label = AddInput( test_model, batch_size=100, db=os.path.join(data_folder, "mnist-test-nchw-lmdb"), db_type="lmdb", ) softmax = AddModel(test_model, data) # Deployment model. We simply need the main AddModel part. deploy_model = model_helper.ModelHelper( name="mnist_deploy", arg_scope=arg_scope, init_params=False ) AddModel(deploy_model, "data") # The parameter initialization network only needs to be run once. # Now all the parameter blobs are going to be initialized in the workspace. workspace.RunNetOnce(train_model.param_init_net) # overwrite=True allows you to run this cell several times and avoid errors workspace.CreateNet(train_model.net, overwrite=True) # Set the iterations number and track the accuracy & loss total_iters = 200 accuracy = np.zeros(total_iters) loss = np.zeros(total_iters) print("The blobs in the workspace pre-train: {}".format(workspace.Blobs())) # Now, we will manually run the network for 200 iterations. for i in range(total_iters): workspace.RunNet(train_model.net) accuracy[i] = workspace.blobs["accuracy"] loss[i] = workspace.blobs["loss"] print("The blobs in the workspace post-train: {}".format(workspace.Blobs())) # param_init_net here will only create a data reader # Other parameters won't be re-created because we selected # init_params=False before workspace.RunNetOnce(test_model.param_init_net) workspace.CreateNet(test_model.net, overwrite=True) test_accuracy = np.zeros(100) for i in range(100): workspace.RunNet(test_model.net.Proto().name) test_accuracy[i] = workspace.FetchBlob("accuracy") print("test_accuracy: %f" % test_accuracy.mean()) # construct the model to be exported # the inputs/outputs of the model are manually specified. pe_meta = pe.PredictorExportMeta( predict_net=deploy_model.net.Proto(), parameters=[str(b) for b in deploy_model.params], inputs=["data"], outputs=["softmax"], ) # save the model to a file. Use minidb as the file format pe.save_to_db("minidb", os.path.join(root_folder, "mnist_model.minidb"), pe_meta) print("The deploy model is saved to: " + root_folder + "/mnist_model.minidb") workspace.RunNetOnce(deploy_model.param_init_net) init_net, predict_net = mobile_exporter.Export( workspace, deploy_model.net, deploy_model.params ) with open("init_net.pb", "wb") as f: f.write(init_net.SerializeToString()) with open("predict_net.pb", "wb") as f: f.write(predict_net.SerializeToString()) with open("predict_net.pbtxt", "wb") as f: f.write(str(deploy_model.net.Proto())) # Now we can load the model back and run the prediction to verify it works. # we retrieve the last input data out and use it in our prediction test # before we scratch the workspace blob = workspace.FetchBlob("data") # reset the workspace, to make sure the model is actually loaded workspace.ResetWorkspace(root_folder) # verify that all blobs are destroyed. print("The blobs in the workspace after reset: {}".format(workspace.Blobs())) # load the predict net predict_net = pe.prepare_prediction_net( os.path.join(root_folder, "mnist_model.minidb"), "minidb" ) # verify that blobs are loaded back print( "The blobs in the workspace after loading the model: {}".format(workspace.Blobs()) ) # feed the previously saved data to the loaded model workspace.FeedBlob("data", blob) # predict workspace.RunNetOnce(predict_net) softmax = workspace.FetchBlob("softmax")
#!/usr/bin/env python # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division, print_function import argparse import array import collections import gzip import os.path import pickle import sys import tarfile try: from urllib.error import URLError except ImportError: from urllib2 import URLError try: from urllib.request import urlretrieve except ImportError: from urllib import urlretrieve Dataset = collections.namedtuple("TargetItem", "filename, url, handler, dest_path") # Load a file using pickle module, and parameters vary based on different # Python versions. def pickle_load(file): if sys.version_info.major >= 3: return pickle.load(file, encoding="bytes") return pickle.load(file) # A helper function to extract mnist dataset from tar file, and split the dataset # into data and labels. def handle_mnist(filename, dest_path): print("Extracting {} ...".format(filename)) with gzip.open(filename, "rb") as file: training_set, _, _ = pickle_load(file) data, labels = training_set images_file = open(os.path.join(dest_path, "mnist_images.bin"), "wb") data.tofile(images_file) images_file.close() labels_file = open(os.path.join(dest_path, "mnist_labels.bin"), "wb") L = array.array("B", labels) L.tofile(labels_file) labels_file.close() def untar(filename, dest_path, member=None): print("Extracting {} ...".format(filename)) tar = tarfile.open(filename, "r:gz") if not member: tar.extractall(dest_path) else: tar.extract(member, dest_path) tar.close() DATASETS = dict( mnist=Dataset( "mnist.pkl.gz", "http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz", handle_mnist, ".", ), cifar10=Dataset( "cifar-10.binary.tar.gz", "http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz", untar, ".", ), ptb=Dataset( "ptb.tgz", "http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz", untar, "ptb", ), fr2en=Dataset( "fr2en.tar.gz", "http://fb-glow-assets.s3.amazonaws.com/models/fr2en.tar.gz", untar, "fr2en", ), ) DATASET_NAMES = list(DATASETS.keys()) CAFFE2_MODELS = [ "densenet121", "inception_v1", "inception_v2", "lenet_mnist", "resnet50", "shufflenet", "squeezenet", "vgg19", "zfnet512", "bvlc_alexnet", "en2gr", "quant_resnet50", ] ONNX_MODELS = [ "resnet50", "vgg19", "squeezenet", "zfnet512", "densenet121", "shufflenet", "inception_v1", "inception_v2", "bvlc_alexnet", "lenet_mnist", "googlenet_v1_slim", "googlenet_v4_slim", "resnet50_tf", "emotion_ferplus", "bvlc_reference_rcnn_ilsvrc13", ] def report_download_progress(chunk_number, chunk_size, file_size): if file_size != -1: percent = min(1, (chunk_number * chunk_size) / file_size) bar = "#" * int(64 * percent) sys.stdout.write("\r0% |{:<64}| {}%".format(bar, int(percent * 100))) def download(path, filename, url): if not os.path.exists(path): os.mkdir(path) destFile = os.path.join(path, filename) if os.path.exists(destFile): print("{} already exists, skipping ...".format(filename)) else: print("Downloading {} from {} ...".format(filename, url)) try: urlretrieve(url, destFile, reporthook=report_download_progress) except URLError: print("Error downloading {}!".format(filename)) finally: # Just a newline. print() def download_caffe2_models(outDir, models): for modelname in models: print("For model ", modelname) for filename in ["predict_net.pbtxt", "predict_net.pb", "init_net.pb"]: path = os.path.join(outDir, modelname) url = "http://fb-glow-assets.s3.amazonaws.com/models/{}/{}".format( modelname, filename ) download(path, filename, url) if modelname == "en2gr": for filename in ["dst_dictionary.txt", "src_dictionary.txt"]: path = os.path.join(outDir, "en2gr") url = "http://fb-glow-assets.s3.amazonaws.com/models/en2gr/{}".format( filename ) download(path, filename, url) return def download_onnx_models(outDir, models): for modelname in models: if modelname in [ "resnet50", "vgg19", "squeezenet", "zfnet512", "densenet121", "shufflenet", ]: url = "https://s3.amazonaws.com/download.onnx/models/opset_6/{}.tar.gz".format( modelname ) filename = "{}.tar.gz".format(modelname) download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir) elif modelname in ["inception_v1", "inception_v2", "bvlc_alexnet"]: url = "https://s3.amazonaws.com/download.onnx/models/opset_8/{}.tar.gz".format( modelname ) filename = "{}.tar.gz".format(modelname) download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir) elif modelname in ["lenet_mnist"]: url = "http://fb-glow-assets.s3.amazonaws.com/models/{}.tar.gz".format( modelname ) filename = "{}.tar.gz".format(modelname) download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir) elif modelname in ["googlenet_v1_slim", "googlenet_v4_slim", "resnet50_tf"]: url = "http://fb-glow-assets.s3.amazonaws.com/models/{}.onnx".format( modelname ) filename = "{}.onnx".format(modelname) path = os.path.join(outDir, modelname) download(path, filename, url) elif modelname == "emotion_ferplus": url = "https://onnxzoo.blob.core.windows.net/models/opset_8/emotion_ferplus/emotion_ferplus.tar.gz" filename = "emotion_ferplus.tar.gz" download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir, "emotion_ferplus/model.onnx") elif modelname == "bvlc_reference_rcnn_ilsvrc13": url = "https://s3.amazonaws.com/download.onnx/models/opset_8/bvlc_reference_rcnn_ilsvrc13.tar.gz" filename = "bvlc_reference_rcnn_ilsvrc13.tar.gz" download(outDir, filename, url) untar( os.path.join(outDir, filename), outDir, "bvlc_reference_rcnn_ilsvrc13/model.onnx", ) return def parse(): parser = argparse.ArgumentParser(description="Download datasets for Glow") parser.add_argument("-d", "--datasets", nargs="+", choices=DATASET_NAMES) parser.add_argument("-D", "--all-datasets", action="store_true") parser.add_argument("-c", "--caffe2-models", nargs="+", choices=CAFFE2_MODELS) parser.add_argument("-C", "--all-caffe2-models", action="store_true") parser.add_argument("-o", "--onnx-models", nargs="+", choices=ONNX_MODELS) parser.add_argument("-O", "--all-onnx-models", action="store_true") parser.add_argument("-P", "--output-directory", default=".") options = parser.parse_args() if options.all_datasets: datasets = DATASET_NAMES elif options.datasets: datasets = options.datasets else: datasets = [] if options.all_caffe2_models: caffe2Models = CAFFE2_MODELS elif options.caffe2_models: caffe2Models = options.caffe2_models else: caffe2Models = [] if options.all_onnx_models: onnxModels = ONNX_MODELS elif options.onnx_models: onnxModels = options.onnx_models else: onnxModels = [] return options.output_directory, datasets, caffe2Models, onnxModels def main(): outDir, datasets, caffe2Models, onnxModels = parse() if not os.path.exists(outDir): os.mkdir(outDir) outDir = os.path.join(".", outDir) try: for name in datasets: dataset = DATASETS[name] download(outDir, dataset.filename, dataset.url) dataset.handler( os.path.join(outDir, dataset.filename), os.path.join(outDir, dataset.dest_path), ) if datasets: print("\n===Done with downloading datasets.\n\n") if caffe2Models: download_caffe2_models(outDir, caffe2Models) print("===Done with downloading caffe2 models.\n\n") if onnxModels: download_onnx_models(outDir, onnxModels) print("===Done with downloading onnx models.\n\n") except KeyboardInterrupt: print("Interrupted") if __name__ == "__main__": main()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Load a pre-trained Caffe2 image classifier and run it on an image. import argparse import collections import os import time import numpy as np import skimage.io from caffe2.python import workspace print("Required modules imported.") cmd_line_parser = argparse.ArgumentParser( description="Run Caffe2 using provided models and inputs." ) cmd_line_parser.add_argument( "--image", "-i", required=True, help="Image to be processed by the neural network" ) cmd_line_parser.add_argument( "--directory", "-d", required=True, help="Directory containing the network structure " "<predict_net.pb> and weight <init_net.pb> files. " "The model name is assumed to be the directory " "name, and should correspond to a model from the " "model_props (e.g. 'resnet50', 'lenet_mnist', " "etc.). If the directory name is not the model " "name, use --model-name (-m) to specify the name " "of the supported model to use.", ) cmd_line_parser.add_argument( "--model-name", "-m", required=False, help="Name of the model to be used" ) cmd_line_parser.add_argument( "--image_mode", required=False, help="Image mode; one of '0to1', '0to256', or '128to127'", ) cmd_line_parser.add_argument("--time", action="store_true") cmd_line_parser.add_argument("--iterations", type=int, default=1) args = cmd_line_parser.parse_args() # 0to256 is the default input def mode_0to256(x): return x def mode_0to1(x): return x / 255 def mode_128to127(x): return x - 128 Model = collections.namedtuple( "Model", "blob_name, image_mode_op, image_size, num_color_channels" ) model_props = dict( densenet121=Model("data", mode_0to1, 224, 3), inception_v1=Model("data", mode_128to127, 224, 3), inception_v2=Model("data", mode_128to127, 224, 3), # unknown resnet50=Model("gpu_0/data", mode_0to1, 224, 3), shufflenet=Model("gpu_0/data", mode_0to1, 224, 3), squeezenet=Model("data", mode_128to127, 224, 3), vgg19=Model("data", mode_128to127, 224, 3), zfnet512=Model("gpu_0/data", mode_0to256, 224, 3), lenet_mnist=Model("data", mode_0to1, 28, 1), resnext=Model("data", mode_0to1, 224, 3), ) MODEL = args.model_name if MODEL is None: MODEL = os.path.basename(os.path.normpath(args.directory)) if MODEL not in list(model_props.keys()): print( "Model " + MODEL + " is not supported. Specify --model-name (-m) if " "it is not the base name of the directory containing pb files." ) exit(1) MODEL_ROOT = args.directory IMAGE_LOCATION = args.image img = skimage.img_as_ubyte(skimage.io.imread(IMAGE_LOCATION)).astype(np.float32) image_shape = np.array(img).shape print("Initial img shape: " + str(image_shape)) if img.shape[0] != img.shape[1] or img.shape[0] != model_props[MODEL].image_size: print("Invalid image dimensions for model.") exit(2) num_dims = len(np.array(img).shape) if num_dims != 3: img = np.expand_dims(img, axis=num_dims) img = img[:, :, : model_props[MODEL].num_color_channels] # Create a zero initiated image. transposed_image = np.zeros( ( 1, model_props[MODEL].num_color_channels, model_props[MODEL].image_size, model_props[MODEL].image_size, ) ).astype(np.float32) for w in range(0, model_props[MODEL].image_size): for h in range(0, model_props[MODEL].image_size): for c in range(0, model_props[MODEL].num_color_channels): # WHC -> CWH, RGB -> BGR transposed_image[0][model_props[MODEL].num_color_channels - c - 1][w][ h ] = model_props[MODEL].image_mode_op(img[w][h][c]) final_image = transposed_image print("Shape of final_image: " + str(np.array(final_image).shape)) with open(MODEL_ROOT + "/init_net.pb", "rb") as f: init_net = f.read() with open(MODEL_ROOT + "/predict_net.pb", "rb") as f: predict_net = f.read() workspace.ResetWorkspace() blob_name = model_props[MODEL].blob_name workspace.FeedBlob(blob_name, final_image) print("The blobs in the workspace after FeedBlob: {}".format(workspace.Blobs())) # Create a predictor using the loaded model. p = workspace.Predictor(init_net, predict_net) start = time.time() for i in range(0, args.iterations): results = p.run([final_image]) end = time.time() if args.time: print( "Wall time per iteration (s): {:0.4f}".format((end - start) / args.iterations) ) max_idx = np.argmax(results[0][0]) sum_probability = sum(results[0][0]) print("Max index is {}".format(max_idx)) print( "Predicted class at index {} with probability {}".format( max_idx, results[0][0][max_idx] ) ) print("Number of classes {}".format(len(results[0][0]))) print("Sum of probabilities is {}".format(sum_probability))
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import os # imagenet-process : Runs preprocessing of standard imagenet images # to work with a pretrained model (e.g. resnet) # through glow # usage: python3 imagenet-process.py "images/*.JPEG" processed import PIL.Image import torchvision parser = argparse.ArgumentParser(description="imagenet preprocessor") parser.add_argument("input", metavar="input", help="glob to input images") parser.add_argument( "output", metavar="output", default="./", help="directory to put output images" ) parser.add_argument("--normalize", action="store_true") args = parser.parse_args() # create the output dir if necessary try: os.makedirs(args.output, exist_ok=True) except Exception as e: print(e) for ifn in glob.glob(args.input): name, ext = os.path.splitext(ifn) name = os.path.basename(name) outputname = os.path.join(args.output, name + ".png") print("processing", name, "as", outputname) im = PIL.Image.open(ifn) im = im.convert("RGB") resize = torchvision.transforms.Compose( [torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224)] ) processed_im = resize(im) if args.normalize: transform_fn = torchvision.transforms.Compose( [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) else: transform_fn = torchvision.transforms.ToTensor() processed_im = transform_fn(processed_im) processed_im = processed_im.unsqueeze(0) torchvision.utils.save_image(processed_im, outputname)
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import shutil import sys import tempfile import pexpect import PIL.Image as Image import torchvision parser = argparse.ArgumentParser( description="Glow image-classifier Driver for " "TopK ImageNet Calculation" ) parser.add_argument( "--validation-images-dir", metavar="DIR", required=True, help="Path to the directory containing the validation set " "of images. Subdirectories are expected to be organized " "such that when sorted their index corresponds to their " "label. For example, if the validation_images_dir contains " "{'abc/', 'def/', 'ghi/'}, then this should correspond to " "labels {0, 1, 2} respectively.", ) parser.add_argument( "--batch-size", default=1, type=int, metavar="N", help="Batch size for use with the model. The total number " "of images in the validation_images_dir should be " "divisible by the batch size.", ) parser.add_argument( "--only-resize-and-save", default=False, action="store_true", help="Use to pre-process images " "to 224x224. Saves the images to " "the validation_images_dir/processed/", ) parser.add_argument( "--resize-input-images", default=False, action="store_true", help="Resize and center-crop images " "at runtime to 224x224.", ) parser.add_argument( "--verbose", default=False, action="store_true", help="Verbose printing." ) parser.add_argument( "--image-classifier-cmd", default="", help="Command to use for running the image-classifier, " "including the binary and all of its command lime " "parameters.", ) # Opens and returns an image located at @param path using the PIL loader. def pil_loader(path): # open path as file to avoid ResourceWarning # (https://github.com/python-pillow/Pillow/issues/835) with open(path, "rb") as img: img = Image.open(img) return img.convert("RGB") # Opens and returns an image located at @param path using the accimage loader. def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) # Opens and returns an image located at @param path using either the accimage # loader or PIL loader. def default_image_loader(path): if torchvision.get_image_backend() == "accimage": return accimage_loader(path) return pil_loader(path) def get_sorted_img_subdirs(validation_images_dir): img_dir_paths = [] for img_dir in os.listdir(validation_images_dir): dir_path = os.path.join(validation_images_dir, img_dir) if os.path.isdir(dir_path): img_dir_paths.append(img_dir) img_dir_paths.sort() return img_dir_paths # @returns two lists of the same length found in directory # @param validation_images_dir; the first list contains paths to all images # found, and the second list contains the corresponding labels of the image. def get_img_paths_and_labels(validation_images_dir): img_subdirs = get_sorted_img_subdirs(validation_images_dir) # Create lists holding paths to each image to be classified and the label # for that image. img_paths = [] img_labels = [] curr_label_idx = 0 for img_subdir in img_subdirs: img_subdir_path = os.path.join(validation_images_dir, img_subdir) for img in os.listdir(img_subdir_path): full_img_path = os.path.join(img_subdir_path, img) if os.path.isfile(full_img_path): img_paths.append(full_img_path) img_labels.append(curr_label_idx) curr_label_idx = curr_label_idx + 1 return img_paths, img_labels # Given an image located at @param img_path, transform the image # and save it to the path @param path_to_new_img. def resize_and_save_image(img_path, path_to_new_img): # Load the image. img = default_image_loader(img_path) # Use to Resize and CenterCrop the images to 224x224. transform_resize = torchvision.transforms.Compose( [torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224)] ) resized_img = transform_resize(img) resized_img.save(path_to_new_img, format="png") # Used to pre-process an input set of images. Takes a string of a directory # @param validation_images_dir and saves the cropped subset of the images in a # subdirectory `processed/`, which must not yet exist. def save_centered_cropped_dataset(validation_images_dir): processed_validation_images_dir = os.path.join(validation_images_dir, "processed") print( "Saving centered cropped input images: %s" % (processed_validation_images_dir) ) img_subdirs = get_sorted_img_subdirs(validation_images_dir) try: os.makedirs(processed_validation_images_dir) except OSError: sys.exit("New validation directory must not exist") # Iterate over all labels subdirectories, loading, transforming and saving # all images to the new location. for img_subdir in img_subdirs: orig_img_subdir_path = os.path.join(validation_images_dir, img_subdir) processed_img_subdir_path = os.path.join( processed_validation_images_dir, img_subdir ) # Create a new subdirectory for the next label. try: os.makedirs(processed_img_subdir_path) except OSError: sys.exit("New label subdirectory somehow already existed.") # Transform and save all images in this label subdirectory. for orig_img_filename in os.listdir(orig_img_subdir_path): orig_img_path = os.path.join(orig_img_subdir_path, orig_img_filename) if os.path.isfile(orig_img_path): processed_img_path = os.path.join( processed_img_subdir_path, orig_img_filename ) resize_and_save_image(orig_img_path, processed_img_path) # @returns a list of strings (of length equal to the @param batch_size) which # are paths to images to do inference on. @param img_paths is the set of all # image paths, @param img_index is the next index to use in @param img_paths, # and @param tmp_dir_name is the location of where to save the images if # @param resize_input_images is true. Note that if @param resize_input_images is # true, then names for the temporary images are used for every batch, thus only # @param batch_size temporary images will ever exist in @param tmp_dir_name. def get_curr_img_paths( img_paths, img_index, batch_size, tmp_dir_name, resize_input_images ): curr_img_paths = [] for batch_idx in range(batch_size): img_path = img_paths[img_index + batch_idx] # If we are resizing the image then we are going to save it to a # temp location to read in later for inference. if resize_input_images: # Save the new image to the tmp directory. Note that these names are # reused every call to get_curr_img_paths(). path_to_tmp_img = os.path.join( tmp_dir_name, "tmp" + str(batch_idx) + ".png" ) resize_and_save_image(img_path, path_to_tmp_img) img_path = path_to_tmp_img curr_img_paths.append(img_path) return curr_img_paths # Verifies that the @param image_classifier_cmd is well formatted via # assertions. def verify_spawn_cmd(image_classifier_cmd): split_cmd = image_classifier_cmd.split() if "image-classifier" in split_cmd[0]: assert "-" in split_cmd, "Streaming mode must be used." assert "-topk=5" in split_cmd, "-topk=5 must be used." assert any( "-model-input-name=" in s for s in split_cmd ), "image-classifier requires -model-input-name to be specified." assert any( "-m=" in s for s in split_cmd ), "image-classifier requires -m to be specified" assert any( "-image-mode=" in s for s in split_cmd ), "image-classifier requires -image-mode to be specified" # Prints the Top-1 and Top-5 accuracy given @param total_image_count, @param # top1_count, and @param top5_count. def print_topk_accuracy(total_image_count, top1_count, top5_count): top1_accuracy = float(top1_count) / float(total_image_count) top5_accuracy = float(top5_count) / float(total_image_count) print("\tTop-1 accuracy: " + "{0:.4f}".format(top1_accuracy)) print("\tTop-5 accuracy: " + "{0:.4f}".format(top5_accuracy)) # Calculates and prints top-1 and top-5 accuracy for images located in # subdirectories at @param validation_images_dir, given the command line # parameters passed in to @param args. def calculate_top_k( validation_images_dir, image_classifier_cmd, batch_size, resize_input_images, verbose, ): print("Calculating Top-1 and Top-5 accuracy...") verify_spawn_cmd(image_classifier_cmd) img_paths, img_labels = get_img_paths_and_labels(validation_images_dir) total_image_count = len(img_paths) assert ( total_image_count % batch_size == 0 ), "Total number of images must be divisible by batch size" if verbose: print("Running image classifier with: " + image_classifier_cmd) try: # Create a temporary directory to store the transformed image we # classify (if applicable) and the log of image-classifer output. tmp_dir_name = tempfile.mkdtemp() path_to_tmp_log = os.path.join(tmp_dir_name, "log.txt") with open(path_to_tmp_log, "w") as fout: classifier_proc = pexpect.spawn( image_classifier_cmd, logfile=fout, timeout=None ) if verbose: print("Temp log located at: " + path_to_tmp_log) prompt = "Enter image filenames to classify: " top1_count = 0 top5_count = 0 # Process the images in batches as specified on the command line. for img_index in range(0, total_image_count, batch_size): curr_img_paths = get_curr_img_paths( img_paths, img_index, batch_size, tmp_dir_name, resize_input_images ) # Expect prompt from the image-classifier for the next image path. classifier_proc.expect(prompt) appended_paths = " ".join(curr_img_paths) assert ( len(appended_paths) <= 1024 ), "Line length is too long (max 1024): %r" % len(appended_paths) # Send the paths to the image-classifier. classifier_proc.sendline(appended_paths) for batch_idx in range(batch_size): # Now we expect the image-classifier's response with the label. # The first line will include the path to the file, e.g.: # File: tests/images/imagenet/cat_285.png classifier_proc.expect(" File: " + curr_img_paths[batch_idx]) # All labels will be formatted like: # Label-K1: 281 (probability: 0.7190) top5_labels = [] for _ in range(5): label_and_prob = classifier_proc.readline() # Get the label from the line. label = label_and_prob.split()[1] top5_labels.append(int(label)) expected_label = img_labels[img_index + batch_idx] if expected_label == top5_labels[0]: top1_count += 1 if expected_label in top5_labels: top5_count += 1 curr_completed_count = img_index + batch_size if curr_completed_count % 100 == 0: print( "Finished image index %d out of %d" % ((curr_completed_count, total_image_count)) ) if verbose: print(" Current Top-1/5 accuracy:") print_topk_accuracy( curr_completed_count, top1_count, top5_count ) else: print("") finally: classifier_proc.close(force=True) # Remove the temp directory we used to save the images and log. shutil.rmtree(tmp_dir_name) print( "\nCompleted running; Final Top-1/5 accuracy across %d images:" % (total_image_count) ) print_topk_accuracy(total_image_count, top1_count, top5_count) def main(): # Parse the recognized command line arguments into args. args = parser.parse_args() # Path to the directory containing the validation set of images. # Subdirectories are expected to be organized such that when sorted their # index corresponds to their label. For example, if the # validation_images_dir contains {'abc/', 'def/', 'ghi/'}, then this should # correspond to labels {0, 1, 2} respectively. validation_images_dir = os.path.join(args.validation_images_dir) assert os.path.exists(validation_images_dir), ( "Validation directory does not exist: " + validation_images_dir ) # This is used solely to pre-process the input image set. if args.only_resize_and_save: save_centered_cropped_dataset(validation_images_dir) return calculate_top_k( validation_images_dir, args.image_classifier_cmd, args.batch_size, args.resize_input_images, args.verbose, ) if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import re import sqlite3 import typing from typing import Dict, List, Tuple # Maintaining all nodes NODES_MAP: Dict[str, "Node"] = {} # Scope stack SCOPE_STACK: List[str] = [] # Scope related information scopeID = 0 class NodeNameAndKind(typing.NamedTuple): """A class that represents the named tuple of node name and kind.""" name: str kind: str class NodeValue(typing.NamedTuple): """A class that represents the named tuple of node and result number.""" node: "Node" resNo: int class Node: """A class that represents a node in the compute graph Public attributes: kindName_: str. The kind name. name_: str. The node name. inputs_: List[NodeValue]. Input node values. users_: Dict['Node', int]. The users of this node. """ def __init__(self, kindName: str, name: str): self.kindName_: str = kindName self.name_: str = name self.inputs_: List[NodeValue] = [] self.users_: Dict["Node", int] = {} def __repr__(self): return self.name_ def get_kind_name(self) -> str: """Gets the kind name.""" return self.kindName_ def get_name(self) -> str: """Gets the node name.""" return self.name_ def getNodeNameAndKind(self) -> NodeNameAndKind: """Gets the Name+Kind tuple.""" return (self.name_, self.kindName_) def get_inputs(self) -> List[NodeValue]: """Gets the input node.""" return self.inputs_ def get_users(self) -> Dict["Node", int]: """Gets the user of this node.""" return self.users_ def add_user(self, u: "Node") -> None: """Adds one user of this node. Increment the number of uses of the user by 1.""" if u not in self.users_: self.users_[u] = 0 self.users_[u] += 1 def remove_user(self, u: "Node") -> None: """Removes one use from the given user.""" if u in self.users_: self.users_[u] -= 1 if self.users_[u] == 0: del self.users_[u] def has_no_uses(self) -> bool: """Returns True if the node has no uses.""" return len(self.users_) == 0 def set_input(self, nodeVal: NodeValue) -> None: """Adds one input node value.""" self.inputs_.append(nodeVal) def replace_input(self, oldNodeVal: NodeValue, newNodeVal: NodeValue) -> None: """Replace one operand with another one. Args: oldNode: Node. Old operand node. oldResNo: int. Old operand result number. newNode: Node. New operand node. newResNo: int. New operand result number. """ try: self.inputs_.remove(oldNodeVal) except ValueError: print("Removed input value must already exist in the node's input list. ") self.inputs_.append(newNodeVal) def set_scope_of_creation(self, creationScopeName: str) -> None: self.creationScopeName_ = creationScopeName class DottyPrinter: """A class for generating the dotty graph file Public attributes: vertices_: List[str]. Vertices in the dotty file. edges_: List[str]. Edges in the dotty file. uniqueVertexMap_: Dict[Node, int]. A map for node with their unique index. uniqueVertexNo_: int. A incrementing number that represents the number of unique nodes in the graph. colors_: List[str]. A list for colors for nodes in the dotty graph. """ def __init__(self, nodesMap: Dict[NodeNameAndKind, Node]): self.nodesMap_ = nodesMap self.vertices_: List[str] = [] self.edges_: List[str] = [] self.uniqueVertexMap_: Dict[Node, int] = {} self.uniqueVertexNo_: int = 0 self.colors_: List[str] = [ "AliceBlue", "CadetBlue1", "Coral", "DarkOliveGreen1", "DarkSeaGreen1", "GhostWhite", "Khaki1", "LavenderBlush1", "LemonChiffon1", "LightSkyBlue", "MistyRose1", "MistyRose2", "PaleTurquoise2", "PeachPuff1", "PowderBlue", "Salmon", "Thistle1", "Thistle3", "Wheat1", "Yellow2", ] def get_unique_vertex_name(self, node: Node) -> str: """Get the unique vertex name given a Node object.""" if node not in self.uniqueVertexMap_: self.uniqueVertexMap_[node] = self.uniqueVertexNo_ self.uniqueVertexNo_ += 1 return f"v{self.uniqueVertexMap_[node]}" def dump_label(self, node: Node) -> str: """Returns the string for the label of the given node.""" labelStr = f"""{{ {{<Inputs>Inputs}}| {{ {node.get_kind_name()}\lname: {node.get_name()} }}| {{<Outputs>Outputs}} }}""" return labelStr def get_color(self, node: Node) -> str: """Returns the color for the given node.""" idx = hash(node.get_kind_name()) % len(self.colors_) return self.colors_[idx] def dump_node(self, node: Node) -> None: """Generates the dotty information for the given node.""" if not node: return nodeStr = f"""{self.get_unique_vertex_name(node)}[\n \tlabel = \"{self.dump_label(node)}\"\n \tshape = \"record\"\n \tstyle=\"filled,rounded\"\n \tfillcolor={self.get_color(node)}\n penwidth = 2];\n""" self.vertices_.append(nodeStr) def visitNodes(self) -> None: """Visits all nodes in nodesMap_ and dump the dotty information for each node.""" for node in self.nodesMap_.values(): self.dump_node(node) def visitEdges(self) -> None: """Visits all edges and dump the dotty information for each edge.""" for node in self.nodesMap_.values(): for nodeInput in node.get_inputs(): i = nodeInput[0] if i.get_name() not in self.nodesMap_: print(i.get_kind_name(), i.get_name()) edgeStr = self.get_unique_vertex_name(i) + ":Outputs -> " edgeStr += self.get_unique_vertex_name(node) + ":Inputs" self.edges_.append(edgeStr) def dump_graph(self, dagName: str) -> None: """Visits the node graph and generates the dotty information.""" self.visitNodes() self.visitEdges() with open(f"{dagName}_dotty.dot", "w") as f: f.write("digraph DAG {\n\trankdir=TB;\n") for v in self.vertices_: f.write(f"{v}\n") for e in self.edges_: f.write(f"{e};\n") f.write("}") def parse_args() -> Tuple[str, str, List[str]]: """Parse the arguments of this script.""" parser = argparse.ArgumentParser(description="Parse compilation log") parser.add_argument("-f", "--log-file") parser.add_argument("-d", "--db-file") parser.add_argument("--dump-phases", nargs="+") options = parser.parse_args() if options.dump_phases: dumpPhases = options.dump_phases else: dumpPhases = [] if options.db_file: dbFile = options.db_file else: dbFile = "compilation_log_db.sqlite" return dbFile, options.log_file, dumpPhases def dump_dag(dagName: str) -> None: """A helper function to dump the DAG.""" dotty = DottyPrinter(NODES_MAP) dotty.dump_graph(dagName) def store_transformation_into_DB( transID: int, baseNode: Node, addedNodes: List[Node], replacedNodes: List[Node], cursor: sqlite3.Cursor, fullScopeName: str, ) -> None: """A helper function to store nodes transformations into database. Args: transID: int. The ID for this stored transformation. baseNode: Node. The base node that changes its operands. addedNodes: List[Node]. A list of added nodes in this transformation. replacedNodes: List[Node]. A list of replaced nodes in this transformation. cursor: sqlite3.Cursor. Cursor of the sqlite3 database. fullScopeName: str. The full scope name of this transformation. """ cursor.execute( """INSERT INTO Log_Transformation VALUES ( ?, 'OPERATOR_BASE', ?, ?, ? )""", (transID, baseNode.get_name(), baseNode.get_kind_name(), fullScopeName), ) for an in addedNodes: cursor.execute( """INSERT INTO Log_Transformation VALUES ( ?, 'ADD_OPERAND', ?, ?, ? )""", (transID, an.get_name(), an.get_kind_name(), fullScopeName), ) for rn in replacedNodes: cursor.execute( """INSERT INTO Log_Transformation VALUES ( ?, 'REMOVE_OPERAND', ?, ?, ? )""", (transID, rn.get_name(), rn.get_kind_name(), fullScopeName), ) def find_all_replaced_nodes(replacedNode: Node) -> List[Node]: """Find all nodes that will lose user after the given node is removed. After one node lost all its uses (e.g. after replaceAllUsesOfWith()), we go through all of its parents to collect all nodes that will consequently lose all their uses. Args: replacedNode: Node. The node that just lost all uses. """ replacedNodeList = [] activeDCEList = [replacedNode] while len(activeDCEList): DCEnode = activeDCEList.pop() replacedNodeList.append(DCEnode) for nv in DCEnode.inputs_: n = nv.node if len(n.users_) <= 1: activeDCEList.append(n) return replacedNodeList def init_db(sqliteFile: str) -> sqlite3.Connection: """Initialize a sqlite3 database connection.""" if os.path.isfile(sqliteFile): os.remove(sqliteFile) # Connect to database file. conn = sqlite3.connect(sqliteFile) cursor = conn.cursor() cursor.execute( """CREATE TABLE Log_Transformation ( trans_id INTEGER, operation_type VARCHAR(200), node_name VARCHAR(200), node_kind VARCHAR(200), full_scope VARCHAR(200) )""" ) cursor.execute( """CREATE TABLE Log_Scope ( scope_id INTEGER, scope_str VARCHAR(200), full_scope_str VARCHAR(200) )""" ) cursor.execute( """CREATE TABLE Log_Node ( node_name VARCHAR(200), node_kind VARCHAR(200), create_scope_id INTEGER, delete_scope_id INTEGER )""" ) cursor.execute( """CREATE TABLE Log_Node_Operation ( scope_id INTEGER, operation VARCHAR(200), node_name VARCHAR(200), node_kind VARCHAR(200) )""" ) return conn def process(log: Dict, dumpPhases: List[str], conn: sqlite3.Connection) -> None: """Process all the log lines. Extract their information and reconstruct the node graph. And dump DAGs at given compilation phases. Args: logLines: List[str]. All lines of compilation log. dumpPhases: List[str]. The phase at which to dump the DAG. conn: sqlite3.Connection. The connection to a sqlite3 database that will store all the transformation in the compilation lop. """ # DB related vars cursor = conn.cursor() # Record nodes transformation replacedNodes: List[Node] = [] addedNodes: List[Node] = [] recordTransformation = False stopRecordTranformationNames = { "optimizeFunctionBeforeLowering", "optimizeFunction", } transID = 0 def process_create(event: Dict) -> None: global scopeID createdNode = Node(event["kind"], event["create"]) createdNode.set_scope_of_creation(SCOPE_STACK[-1]) NODES_MAP[createdNode.get_name()] = createdNode cursor.execute( """INSERT INTO Log_Node VALUES ( ?, ?, ?, ? )""", (event["create"], event["kind"], scopeID, -1), ) cursor.execute( """INSERT INTO Log_Node_Operation VALUES ( ?, 'CREATE', ?, ? )""", (scopeID, event["create"], event["kind"]), ) if len(event["inputs"]) == 0: # there's no node input for Splat assert event["kind"] in ( "Splat", "Constant", "Placeholder", ), "This node kind shouldn't have any inputs." for i in event["inputs"]: name, resNo = i.split(":", 1) if name in NODES_MAP: inputNode = NODES_MAP[name] createdNode.set_input(NodeValue(inputNode, resNo)) inputNode.add_user(createdNode) if recordTransformation: addedNodes.append(createdNode) def process_delete(event: Dict) -> None: global scopeID deletedNode = NODES_MAP[event["delete"]] for inputNode in deletedNode.inputs_: i = inputNode[0] i.remove_user(deletedNode) del NODES_MAP[deletedNode.get_name()] cursor.execute( """UPDATE Log_Node SET delete_scope_id=? WHERE node_name=? """, (scopeID, event["delete"]), ) cursor.execute( """INSERT INTO Log_Node_Operation VALUES ( ?, 'DELETE', ?, ? )""", (scopeID, event["delete"], event["kind"]), ) def process_input_change(event: Dict) -> None: changedNode = NODES_MAP[event["input_change"]] # Don't touch the line of node input changing into null, it only happened # in module destructor. if event["after"] == "NONE": return prevNodeName, prevResNo = event["before"].split(":", 1) newNodeName, newResNo = event["after"].split(":", 1) prevNode = NODES_MAP[prevNodeName] newNode = NODES_MAP[newNodeName] # change the input of changedNode changedNode.replace_input( NodeValue(prevNode, prevResNo), NodeValue(newNode, newResNo) ) prevNode.remove_user(changedNode) newNode.add_user(changedNode) # Record nodes transformation if recordTransformation: if prevNode.has_no_uses(): replacedNodes = find_all_replaced_nodes(prevNode) store_transformation_into_DB( transID, changedNode, addedNodes, replacedNodes, cursor, scopeName ) transID += 1 addedNodes = [] replacedNodes = [] def process_scope(scopeName: str, phase: List) -> None: global scopeID if "::" in scopeName: scopeName = scopeName.split("::", 1)[-1] scopeID += 1 if scopeName in dumpPhases: dump_dag(f"before_{scopeName}_{scopeID}") if str(scopeID) in dumpPhases: dump_dag(f"phase_{scopedID}") SCOPE_STACK.append(scopeName) # Start recording transformations. if scopeName in stopRecordTranformationNames and len(SCOPE_STACK) == 2: recordTransformation = True # Update scope entrance in database cursor.execute( """INSERT INTO Log_Scope VALUES ( ?, ?, ? )""", (scopeID, "ENTER " + scopeName, "ENTER " + scopeName), ) for ev in phase: if "create" in ev: process_create(ev) elif "delete" in ev: process_delete(ev) elif "input_change" in ev: process_input_change(ev) else: name, scope = list(ev.items())[0] process_scope(name, scope) # Stop recording transformations. if scopeName in stopRecordTranformationNames and len(SCOPE_STACK) == 1: recordTransformation = False # Update scope exit in database cursor.execute( """INSERT INTO Log_Scope VALUES ( ?, ?, ? )""", (scopeID, "EXIT " + scopeName, "EXIT " + name), ) scopeID += 1 if scopeName in dumpPhases: dump_dag(f"after_{scopeName}_{scopeID}") if str(scopeID) in dumpPhases: dump_dag(f"phase_{scopedID}") SCOPE_STACK.pop() print("Log Version:", log["version"]) process_scope("MODULE LOADER", log["passes"]) conn.commit() def main(): dbFile, logFile, dumpPhases = parse_args() log = json.load(open(logFile)) with init_db(dbFile) as conn: process(log, dumpPhases, conn) return if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sqlite3 from typing import Dict, List # A list of all filtered transformations. TRANS_LIST: List["Transformation"] = [] # Mapping between added nodes and the transformation that adds these nodes. NODES_ADDING_MAP: Dict[str, "Transformation"] = {} class Transformation: """A class that represents the nodes transformation, e.g. lower,fold etc. Public attributes: addedNodes_: List[str]. Nodes added by this transformation. removedNodes_: List[str]. Nodes removed by this transformation. ancestors_: List['Transformation']. The ancestor transformation of current transformation. scopeName_: str. The scope of current transformation. transID_: str. The internal transformation ID in the database. isDirectTrans_ :bool. Whether this transformation directly created/replaced the given nodeName that is passed to this script file. """ def __init__(self, transID: str): self.addedNodes_: List[str] = [] self.removedNodes_: List[str] = [] self.ancestors_: List["Transformation"] = [] self.scopeName_: str = "" self.transID_: str = transID self.isDirectTrans_: bool = False def appendAddedNode(self, nodeName: str) -> None: """Append the added nodes of this transformation.""" self.addedNodes_.append(nodeName) def appendRemovedNode(self, nodeName: str) -> None: """Append the removed nodes of this transformation.""" self.removedNodes_.append(nodeName) def addAncestor(self, ancestor: "Transformation") -> None: """Add ancestors of this transformation.""" self.ancestors_.append(ancestor) def setBase(self, baseName: str) -> None: """Set the operator base of this node.""" self.baseNode_ = baseName class DottyPrinter: """A class for generating the dotty graph file""" def __init__(self, transList: List[Transformation]): self.transList_ = transList self.vertices_ = [] self.edges_ = [] def get_color(self, isDirectTrans: bool) -> str: """Returns the color for the given node.""" if isDirectTrans: return "Yellow2" else: return "AliceBlue" def dump_label(self, tran: Transformation) -> str: """Returns the string for the label of the given transformation.""" labelStr = ( rf"""{{ {{SCOPE:\l{tran.scopeName_} }}|{{ORIGINAL OPERAND CHAIN:\l\l""" ) for rstr in tran.removedNodes_: labelStr += rf"""{rstr}\l\l""" labelStr += rf"}}| {{NEW OPERAND CHAIN:\l\l" for astr in tran.addedNodes_: labelStr += rf"""{astr}\l\l""" labelStr += rf"}} |{{USER NODE: \l\l {tran.baseNode_}}} }}" return labelStr def dump_node(self, tran: Transformation) -> None: """Generates the dotty information for the given transformation.""" if not tran: return tranStr = f"""v{tran.transID_}[\n \tlabel = \"{self.dump_label(tran)}\"\n \tshape = \"record\"\n \tstyle=\"filled,rounded\"\n \tfillcolor={self.get_color(tran.isDirectTrans_)}\n penwidth = 2];\n""" self.vertices_.append(tranStr) def visit_nodes(self) -> None: """Visits all transformation and dump the dotty information for each transformation.""" for tran in self.transList_: self.dump_node(tran) def visit_edges(self) -> None: """Visits all edges and dump the dotty information for each edge.""" for tran in self.transList_: for anc in tran.ancestors_: edgeStr = f"v{anc.transID_} -> v{tran.transID_}" self.edges_.append(edgeStr) def dump_graph(self, dottyFile: str) -> None: """Visits the graph and generates the dotty information.""" self.visit_nodes() self.visit_edges() with open(f"transformations_{dottyFile}.dot", "w") as f: print( f"\nWriting DAG info into dotty file transformations_{dottyFile}.dot ..." ) f.write("digraph DAG {\n\trankdir=TB;\n") for v in self.vertices_: f.write(f"{v}\n") for e in self.edges_: f.write(f"{e};\n") f.write("}") def dump_dotty_DAG(dottyFile: str) -> None: """A helper function to dump the dotty file.""" dotty = DottyPrinter(TRANS_LIST) dotty.dump_graph(dottyFile) def init_db(sqliteFile: str) -> sqlite3.Connection: """Initialize a sqlite3 database connection.""" assert os.path.isfile(sqliteFile) # Connect to database file. return sqlite3.connect(sqliteFile) def find_all_related_transformation(cursor: sqlite3.Cursor, transIDs: List[str]): """A recursive function that find all related transformations given a list of transformation IDs in the database. Args: cursor: sqlite3.Cursor. Cursor of current sqlite3 database connection. transIDs: List[str]. A list of transformation IDs. """ transQueryStr = "(" + ", ".join(transIDs) + ")" cursor.execute( f""" SELECT node_name FROM Log_Transformation WHERE trans_id in {transQueryStr} and operation_type in ('ADD_OPERAND', 'REMOVE_OPERAND') GROUP BY node_name """ ) rows = cursor.fetchall() nodesList = ["'" + r[0] + "'" for r in rows] transQueryStr = "(" + ", ".join(nodesList) + ")" cursor.execute( f""" SELECT trans_id FROM Log_Transformation WHERE node_name in {transQueryStr} and operation_type in ('ADD_OPERAND', 'REMOVE_OPERAND') GROUP BY trans_id """ ) rows = cursor.fetchall() newTransIDs = [str(r[0]) for r in rows] if sorted(newTransIDs) != sorted(transIDs): transIDs = find_all_related_transformation(cursor, newTransIDs) return transIDs def filter_node_transformation( nodeName: str, conn: sqlite3.Connection, verbose: bool, dottyFile: str ): """Filter out all node transformation that is related to the given node. Args: nodeName: str. The node name that is passed to this script. conn: sqlite3.Connection. A sqlite3 database connection. verbose: bool. Verbosity of the output. dottyFile: str. Dotty file name. """ cursor = conn.cursor() cursor.execute( """ SELECT trans_id FROM Log_Transformation WHERE node_name = ? GROUP BY trans_id """, (nodeName,), ) rows = cursor.fetchall() directTransIDs = [str(r[0]) for r in rows] transIDs = find_all_related_transformation(cursor, directTransIDs) for tid in transIDs: cursor.execute( """ SELECT * FROM Log_Transformation WHERE trans_id = ? """, (tid,), ) rows = cursor.fetchall() if len(rows): tran = Transformation(tid) if tid in directTransIDs: tran.isDirectTrans_ = True TRANS_LIST.append(tran) tran.scopeName_ = rows[0][4].replace("glow::", "").replace("->", r" --\> ") for r in rows: opr_type, name, kind = r[1:4] if opr_type == "ADD_OPERAND": nodeKindAndName = kind + r" \l" + name tran.appendAddedNode(nodeKindAndName) NODES_ADDING_MAP[nodeKindAndName] = tran elif opr_type == "REMOVE_OPERAND": nodeKindAndName = kind + r" \l" + name tran.appendRemovedNode(nodeKindAndName) if nodeKindAndName in NODES_ADDING_MAP: tran.addAncestor(NODES_ADDING_MAP[nodeKindAndName]) elif opr_type == "OPERATOR_BASE": nodeKindAndName = kind + r" \l" + name tran.setBase(nodeKindAndName) def processOutDottyName(dottyStyleName): return dottyStyleName.split(r"\l")[1] def checkNodeInIt(tran, nodeName): if nodeName == processOutDottyName(tran.baseNode_): return True for rn in tran.removedNodes_: if nodeName == processOutDottyName(rn): return True for an in tran.addedNodes_: if nodeName == processOutDottyName(an): return True return False for tran in TRANS_LIST: if not verbose: if not checkNodeInIt(tran, nodeName): continue print(f"\n===============Transformation ID: {tran.transID_} ================") print("Scope: " + tran.scopeName_.replace(r"\>", ">")) if nodeName == processOutDottyName(tran.baseNode_): print("USER NODE: \n(*)" + tran.baseNode_.replace(r"\l", " ")) else: print("USER NODE: \n" + tran.baseNode_.replace(r"\l", " ")) print("------ Previous operands set:") for rn in tran.removedNodes_: if nodeName == processOutDottyName(rn): print("\t(*)" + rn.replace(r"\l", " ")) else: print("\t" + rn.replace(r"\l", " ")) print("------ New operands set:") for an in tran.addedNodes_: if nodeName == processOutDottyName(an): print("\t(*)" + an.replace(r"\l", " ")) else: print("\t" + an.replace(r"\l", " ")) dump_dotty_DAG(dottyFile) conn.commit() def stat_list_phases(conn, depth=0): cursor = conn.cursor() cursor.execute( """ SELECT * FROM Log_Scope ORDER BY scope_id """ ) rows = cursor.fetchall() currDepth = 0 print("Phase ID \tPhase Name\n-------------------------\n") for r in rows: if "ENTER" in r[1]: currDepth += 1 if currDepth <= depth or depth == 0: print(r[0], "\t" * currDepth + r[1]) if "EXIT" in r[1]: currDepth -= 1 assert currDepth >= 0 def stat_phases_summary(conn: sqlite3.Connection, startPhase: int, endPhase: int): cursor = conn.cursor() cursor.execute( """ SELECT lng.scope_id, ls.full_scope_str, lng.operation, lng.node_kind, COUNT(node_kind) FROM Log_Node_Operation lng LEFT JOIN Log_Scope ls ON lng.scope_id = ls.scope_id WHERE lng.scope_id >= ? AND lng.scope_id < ? GROUP By lng.node_kind ORDER BY lng.scope_id """, (startPhase, endPhase), ) rows = cursor.fetchall() print(f"---- Between phase {startPhase} and phase {endPhase}:\n") summaryStrs = {} for r in rows: scope_id, scope, opr, kind, num = r if scope_id not in summaryStrs: summaryStrs[scope_id] = f"Phase {scope_id}: \n [{scope}]\n" summaryStrs[scope_id] += f"\t {opr}D {num} {kind} nodes.\n" for sid in summaryStrs: print(summaryStrs[sid]) def stat_phase(conn: sqlite3.Connection, phaseId: int): cursor = conn.cursor() cursor.execute( """SELECT full_scope_str FROM Log_Scope WHERE scope_id=?""", (phaseId,) ) rows = cursor.fetchall() fullScope = rows[0][0] cursor.execute( """ SELECT node_kind, COUNT(node_kind), COUNT(node_kind)*100.0/ (SELECT Count(*) FROM Log_Node WHERE create_scope_id < ? AND delete_scope_id >= ?) FROM Log_Node WHERE create_scope_id < ? AND delete_scope_id >= ? GROUP By node_kind ORDER BY COUNT(node_kind) DESC """, (phaseId, phaseId, phaseId, phaseId), ) rows = cursor.fetchall() print(f"=== At phase {phaseId} ({fullScope}): \n") print( "\t{:>4s} \t{:>12s} \t\t{:>2s}\n--------------------------------------------------------".format( "Num", "Kind", "(Percentage)" ) ) for r in rows: kind, num, perc = r print("\t{:>4d} \t{:>12s} \t\t({:>2f}%)".format(num, kind, round(perc, 2))) def process(): """Parse args and process this script.""" parser = argparse.ArgumentParser(description="Filter compilation and optimiztion.") parser.add_argument("--db-file") parser.add_argument("--filter-target") parser.add_argument("--filter-target-verbose") parser.add_argument("--dotty-file") parser.add_argument("--stat-list-phases", type=bool) parser.add_argument("--stat-list-phases-depth", type=int) parser.add_argument("--stat-phases-summary", type=int, nargs="+") parser.add_argument("--stat-phase", type=int) options = parser.parse_args() assert options.db_file, "Please specify db file." with init_db(options.db_file) as conn: dottyFile = options.dotty_file if options.dotty_file else "dotty" if options.filter_target: filter_node_transformation(options.filter_target, conn, False, dottyFile) if options.filter_target_verbose: filter_node_transformation( options.filter_target_verbose, conn, True, dottyFile ) if options.stat_list_phases: stat_list_phases(conn) if options.stat_list_phases_depth: stat_list_phases(conn, options.stat_list_phases_depth) if options.stat_phases_summary: assert len(options.stat_phases_summary) == 2 startPhase, endPhase = options.stat_phases_summary stat_phases_summary(conn, startPhase, endPhase) if options.stat_phase: stat_phase(conn, options.stat_phase) def main(): process() if __name__ == "__main__": main()
#!/usr/bin/env python # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import matplotlib.pyplot as plt import numpy as np import yaml # Command line options. parser = argparse.ArgumentParser( usage="Helper script to print the histogram from a Glow YAML profile." ) parser.add_argument( "-f", "--file", dest="file", required=True, type=str, help="Profile YAML file path." ) parser.add_argument( "-n", "--name", dest="name", required=True, type=str, help="Node value name to plot.", ) parser.add_argument( "-l", "--log-scale", dest="log_scale", required=False, default=False, action="store_true", help="Plot the histogram on a logarithmic scale (base 10).", ) args = parser.parse_args() # Get arguments. profile = args.file name = args.name log_scale = args.log_scale # Verify profile exists. if not os.path.isfile(profile): print('File "%s" not found!' % profile) exit(1) # Read YAML data. print('Reading file "%s" ...' % profile) data = None with open(profile, "r") as stream: try: data = yaml.safe_load(stream) except yaml.YAMLError as err: print(err) # Search YAML entry for node value. print('Searching node value name "%s" ...' % name) entry = None for item in data: if item["nodeOutputName"] == name: entry = item if not entry: print('Node value "%s" not found!' % name) exit(1) # Extract data. hist_min = entry["min"] hist_max = entry["max"] histogram = np.array(entry["histogram"]) num_bins = len(histogram) bin_width = (hist_max - hist_min) / num_bins bin_centers = [(hist_min + idx * bin_width + bin_width / 2) for idx in range(num_bins)] if log_scale: histogram = np.log10(histogram) histogram = np.maximum(histogram, np.zeros(histogram.shape)) # Plot histogram. fig = plt.figure() plt.plot(bin_centers, histogram) plt.bar(bin_centers, histogram, bin_width) fig.suptitle('Histogram for "%s" with range [%f, %f]' % (name, hist_min, hist_max)) plt.grid() plt.xlabel("Range") plt.ylabel("Bins [%s]" % ("Log Scale" if log_scale else "Linear Scale")) plt.show()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import torch import torch.nn import torch.onnx from onnx import helper, TensorProto # GRU enums GRU_DIR_FORWARD = "forward" GRU_DIR_REVERSE = "reverse" GRU_DIR_BIDIRECTIONAL = "bidirectional" GRU_DIRS = [GRU_DIR_FORWARD, GRU_DIR_REVERSE, GRU_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor( name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate GRU ONNX test model def gen_gru_onnx_test_model( model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, linear_before_reset=False, ): # Validate parameters assert direction in GRU_DIRS, "ONNX GRU direction invalid!" assert not has_sequence_lens, "ONNX GRU Variable sequence length not supported" # Get number of directions num_directions = 2 if (direction == GRU_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 3 * hidden_size, input_size] R_shape = [num_directions, 3 * hidden_size, hidden_size] B_shape = [num_directions, 6 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: z,r,h) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B = np.random.randn(*B_shape) if has_bias else np.zeros(B_shape) sequence_lens = ( np.random.randint(1, seq_length, batch_size) if has_sequence_lens else np.tile(seq_length, batch_size) ) initial_h = ( np.random.randn(*initial_h_shape) if has_initial_h else np.zeros(initial_h_shape) ) # Function to get all the weight components for the given direction def get_weights(dir_idx): Wz = np.reshape( W[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, input_size] ) Wr = np.reshape( W[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, input_size] ) Wh = np.reshape( W[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, input_size] ) Rz = np.reshape( R[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, hidden_size] ) Rr = np.reshape( R[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, hidden_size] ) Rh = np.reshape( R[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, hidden_size] ) bWz = np.reshape(B[dir_idx, 0 * hidden_size : 1 * hidden_size], [hidden_size]) bWr = np.reshape(B[dir_idx, 1 * hidden_size : 2 * hidden_size], [hidden_size]) bWh = np.reshape(B[dir_idx, 2 * hidden_size : 3 * hidden_size], [hidden_size]) bRz = np.reshape(B[dir_idx, 3 * hidden_size : 4 * hidden_size], [hidden_size]) bRr = np.reshape(B[dir_idx, 4 * hidden_size : 5 * hidden_size], [hidden_size]) bRh = np.reshape(B[dir_idx, 5 * hidden_size : 6 * hidden_size], [hidden_size]) return Wz, Wr, Wh, Rz, Rr, Rh, bWz, bWr, bWh, bRz, bRr, bRh # Function to get PyTorch weights (which are in the r,z,h order) def get_torch_weights(dir_idx): Wz, Wr, Wh, Rz, Rr, Rh, bWz, bWr, bWh, bRz, bRr, bRh = get_weights(dir_idx) W_torch = np.concatenate((Wr, Wz, Wh), 0) R_torch = np.concatenate((Rr, Rz, Rh), 0) bW_torch = np.concatenate((bWr, bWz, bWh), 0) bR_torch = np.concatenate((bRr, bRz, bRh), 0) return (W_torch, R_torch, bW_torch, bR_torch) # ----------------------------------------- COMPUTE pyTORCH REFERENCE ---------------------------------------------- # Compute reference using Pytorch. Pytorch GRU has only forward/bidirectional so we will do the reverse GRU using # a Pytorch forward GRU. gru = torch.nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=(direction == GRU_DIR_BIDIRECTIONAL), ) # Get GRU state dictionary gru_state_dict = gru.state_dict() # Assign forward weights forwardEnabled = direction in [GRU_DIR_FORWARD, GRU_DIR_BIDIRECTIONAL] if forwardEnabled: forward_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(forward_dir_idx) gru_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) gru_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) gru_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) gru_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) # Assign reverse weights reverseEnabled = direction in [GRU_DIR_REVERSE, GRU_DIR_BIDIRECTIONAL] if reverseEnabled: if direction == GRU_DIR_REVERSE: reverse_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) gru_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) gru_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) gru_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) gru_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) else: reverse_dir_idx = 1 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) gru_state_dict["weight_ih_l0_reverse"] = torch.tensor( W_torch, dtype=torch.float32 ) gru_state_dict["weight_hh_l0_reverse"] = torch.tensor( R_torch, dtype=torch.float32 ) gru_state_dict["bias_ih_l0_reverse"] = torch.tensor( bW_torch, dtype=torch.float32 ) gru_state_dict["bias_hh_l0_reverse"] = torch.tensor( bR_torch, dtype=torch.float32 ) # Set GRU state dictionary gru.load_state_dict(gru_state_dict, strict=True) # Perform inference X_torch = torch.tensor(X, dtype=torch.float32) initial_h_torch = torch.tensor(initial_h, dtype=torch.float32) if direction == GRU_DIR_REVERSE: Y, next_h = gru(X_torch.flip([0]), initial_h_torch) Y = Y.flip([0]) else: Y, next_h = gru(X_torch, initial_h_torch) # Reshape output to ONNX format [seq_length, num_directions, batch_size, hidden_size] Y_ref = Y.detach().numpy() Y_ref = np.reshape(Y_ref, [seq_length, batch_size, num_directions, hidden_size]) Y_ref = np.transpose(Y_ref, [0, 2, 1, 3]) # Reshape states to ONNX format Y_h_ref = next_h.detach().numpy() # --------------------------------------- COMPUTE PYTHON-NUMPY REFERENCE ------------------------------------------- # Create X slices Xslices = list() for t in range(seq_length): Xslices.append(np.reshape(X[t, :, :], [batch_size, input_size])) # Function to compute one GRU cell def compute_gru(forward): dir_idx = 0 if forward else (0 if direction == GRU_DIR_REVERSE else 1) Wz, Wr, Wh, Rz, Rr, Rh, bWz, bWr, bWh, bRz, bRr, bRh = get_weights(dir_idx) def f(x): return 1 / (1 + np.exp(-x)) def g(x): return np.tanh(x) def mm(x, w): return np.matmul(x, w.transpose()) Ht = np.reshape(initial_h[dir_idx, :, :], [batch_size, hidden_size]) Yslices = list() for t in range(seq_length): xt = Xslices[t] if forward else Xslices[seq_length - 1 - t] zt = f(mm(xt, Wz) + bWz + mm(Ht, Rz) + bRz) rt = f(mm(xt, Wr) + bWr + mm(Ht, Rr) + bRr) if linear_before_reset: htild = g(mm(xt, Wh) + bWh + rt * (mm(Ht, Rh) + bRh)) else: htild = g(mm(xt, Wh) + bWh + mm(rt * Ht, Rh) + bRh) Ht = (1 - zt) * htild + zt * Ht Yslices.append(Ht) return Yslices, Ht Yslices = list() Hslices = list() # Compute forward GRU forwardYslices = list() if forwardEnabled: Yt, Ht = compute_gru(True) forwardYslices += Yt Hslices.append(Ht) # Compute reverse GRU reverseYslices = list() if reverseEnabled: Yt, Ht = compute_gru(False) reverseYslices += Yt Hslices.append(Ht) # Concatenate slices for t in range(seq_length): if forwardEnabled: Yslices.append(forwardYslices[t]) if reverseEnabled: Yslices.append(reverseYslices[seq_length - 1 - t]) Y_ref_np = np.concatenate(Yslices, 0).reshape( [seq_length, num_directions, batch_size, hidden_size] ) Y_h_ref_np = np.concatenate(Hslices, 0).reshape( [num_directions, batch_size, hidden_size] ) # Use numpy implementation when linear_before_reset = False, else assert errors if linear_before_reset is False: Y_ref = Y_ref_np Y_h_ref = Y_h_ref_np else: assert ( np.max(np.abs(Y_ref - Y_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy GRU implementation" assert ( np.max(np.abs(Y_h_ref - Y_h_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy GRU implementation" # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # Node inputs node_inputs = [ "X", "W", "R", "B" if has_bias else "", "", "initial_h" if has_initial_h else "", ] # Node outputs node_outputs = ["Y", "Y_h"] # GRU node definition gru_node_def = onnx.helper.make_node( "GRU", name="gru", inputs=node_inputs, outputs=node_outputs, hidden_size=hidden_size, direction=direction, linear_before_reset=linear_before_reset, ) # Error node definition err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["Y", "Y_ref"], outputs=["Y_err"] ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # GRU inputs graph_input.append(helper.make_tensor_value_info("X", TensorProto.FLOAT, X_shape)) graph_input.append(helper.make_tensor_value_info("W", TensorProto.FLOAT, W_shape)) graph_input.append(helper.make_tensor_value_info("R", TensorProto.FLOAT, R_shape)) if has_bias: graph_input.append( helper.make_tensor_value_info("B", TensorProto.FLOAT, B_shape) ) if has_sequence_lens: graph_input.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, sequence_lens_shape ) ) if has_initial_h: graph_input.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, initial_h_shape ) ) # Reference input graph_input.append( helper.make_tensor_value_info("Y_ref", TensorProto.FLOAT, Y_shape) ) # GRU initializers graph_init.append(make_init("X", TensorProto.FLOAT, X)) graph_init.append(make_init("W", TensorProto.FLOAT, W)) graph_init.append(make_init("R", TensorProto.FLOAT, R)) if has_bias: graph_init.append(make_init("B", TensorProto.FLOAT, B)) if has_sequence_lens: graph_init.append(make_init("sequence_lens", TensorProto.INT32, sequence_lens)) if has_initial_h: graph_init.append(make_init("initial_h", TensorProto.FLOAT, initial_h)) # Reference initializer graph_init.append(make_init("Y_ref", TensorProto.FLOAT, Y_ref)) # Graph outputs graph_output.append( helper.make_tensor_value_info("Y_err", TensorProto.FLOAT, Y_shape) ) # Define graph (GraphProto) graph_name = "gru_test" graph_def = helper.make_graph( [gru_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-gru") # Check model onnx.checker.check_model(model_def) # Print model with open(model_path, "w") as f: f.write(str(model_def)) # Forward GRU gen_gru_onnx_test_model( model_path="gruForward.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Reverse GRU gen_gru_onnx_test_model( model_path="gruReverse.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="reverse", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Bidirectional GRU gen_gru_onnx_test_model( model_path="gruBidirectional.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="bidirectional", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Forward no bias GRU gen_gru_onnx_test_model( model_path="gruForwardNoBias.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=False, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Forward no state GRU gen_gru_onnx_test_model( model_path="gruForwardNoState.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=False, linear_before_reset=False, ) # Forward with linear before reset gen_gru_onnx_test_model( model_path="gruForwardLinearBeforeReset.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a helper script that generates Caffe2 models. # The generated model will be used for Caffe2 importer unittest: # ./tests/unittests/caffe2ImporterTest.cpp # Run $>python gen_caffe2_model.py to get the model files. from caffe2.proto import caffe2_pb2 from caffe2.python import utils from google.protobuf import text_format # Define a weights network weights = caffe2_pb2.NetDef() weights.name = "init" op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["conv_w"]) op.arg.extend([utils.MakeArgument("shape", [1, 1, 2, 2])]) op.arg.extend([utils.MakeArgument("values", [1.0 for i in range(4)])]) weights.op.extend([op]) op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["conv_b"]) op.arg.extend([utils.MakeArgument("shape", [1])]) op.arg.extend([utils.MakeArgument("values", [2.0 for i in range(1)])]) weights.op.extend([op]) weights.external_output.extend(op.output) # Define an inference net net = caffe2_pb2.NetDef() net.name = "predict" op = caffe2_pb2.OperatorDef() op.type = "Conv" op.input.extend(["data"]) op.input.extend(["conv_w"]) op.input.extend(["conv_b"]) op.arg.add().CopyFrom(utils.MakeArgument("kernel", 2)) op.arg.add().CopyFrom(utils.MakeArgument("stride", 1)) op.arg.add().CopyFrom(utils.MakeArgument("group", 1)) op.arg.add().CopyFrom(utils.MakeArgument("pad", 1)) op.output.extend(["conv_out"]) net.op.extend([op]) net.external_output.extend(op.output) # Generate model in text format. with open("predict_net.pbtxt", "w") as f: f.write(text_format.MessageToString(net)) with open("init_net.pbtxt", "w") as f: f.write(text_format.MessageToString(weights)) # Generate model in binary format. with open("predict_net.pb", "wb") as f: f.write(net.SerializeToString()) with open("init_net.pb", "wb") as f: f.write(weights.SerializeToString())
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a helper script that generates the TensorFlowLite models used # for testing the Glow importer. The models will be generated in a local # folder here 'tflite_models'. In order for the models to be used for unit # testing the files must be copied in the folder: # 'glow\tests\models\tfliteModels' # To generate the models you need to run this script without arguments: # python gen_tflite_models.py # Python requirements: Python 3.6 # Python package requirements: # TensorFlow 2.1.0 # Keras 2.3.1 # Numpy 1.16.2 # shutil, os, other dependencies import os import shutil import numpy as np import tensorflow as tf import tensorflow.keras.backend as keras_backend import tensorflow.keras.layers as layers from tensorflow.keras.models import Model from tensorflow.python.tools import freeze_graph # ---------------------------------------------------------------------------------------------------------------------- # UTILS # ---------------------------------------------------------------------------------------------------------------------- # Temporary folder path. TEMP_DIR = os.path.join(os.path.dirname(__file__), "temp") # Output model folder. OUT_DIR = os.path.join(os.path.dirname(__file__), "tflite_models") # Clean temporary directory. def clean_dir(dir_path): if os.path.exists(dir_path): shutil.rmtree(dir_path) os.mkdir(dir_path) # Remove temporary directory. def rm_dir(dir_path): if os.path.exists(dir_path): shutil.rmtree(dir_path) # Function to save a model in TensorFlowLite format. def save_model(model, filename): # Print status. print('Saving model "%s" ...' % filename) # Clean temporary folder. clean_dir(TEMP_DIR) # Get model inputs. model_inputs_dict = dict() model_inputs_array = [] for idx in range(len(model.inputs)): model_inputs_dict["input_%d" % idx] = model.inputs[idx] model_inputs_array.append(model.inputs[idx].op.name) # Get model outputs. model_outputs_dict = dict() model_outputs_array = [] for idx in range(len(model.outputs)): if idx == 0: output_name = model.outputs[idx].op.name else: output_name = model.outputs[idx].name model_outputs_dict[output_name] = model.outputs[idx] model_outputs_array.append(output_name) # Save TensorFlow checkpoint. tf.saved_model.simple_save( keras_backend.get_session(), os.path.join(TEMP_DIR, "checkpoint"), inputs=model_inputs_dict, outputs=model_outputs_dict, ) # Freeze TensorFlow graph. freeze_graph.freeze_graph( None, None, None, None, model.outputs[0].op.name, None, None, os.path.join(TEMP_DIR, "model.pb"), False, "", input_saved_model_dir=os.path.join(TEMP_DIR, "checkpoint"), ) # Convert and save TensorFlowLite model. converter = tf.lite.TFLiteConverter.from_frozen_graph( os.path.join(TEMP_DIR, "model.pb"), input_arrays=model_inputs_array, output_arrays=model_outputs_array, ) converter.dump_graphviz_video = False converter.allow_custom_ops = True tflite_model = converter.convert() model_filename = os.path.join(OUT_DIR, filename) if not model_filename.endswith(".tflite"): model_filename += ".tflite" open(model_filename, "wb").write(tflite_model) # Clean temporary folder. rm_dir(TEMP_DIR) # Function to save a tensor in binary format. In order for the GIT system # to correctly recognize these files as binary we will add a leading '0' # byte into the file. def save_tensor(tensor, filename): byte_array = b"\x00" + tensor.tobytes(order="C") with open(os.path.join(OUT_DIR, filename), "wb") as fh: fh.write(byte_array) # Create output directory. clean_dir(OUT_DIR) # ---------------------------------------------------------------------------------------------------------------------- # Strided Slice # ---------------------------------------------------------------------------------------------------------------------- def gen_strided_slice( name, input_shape, begin, end, strides, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, ): # Create model. inp = layers.Input( name="input", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.float32 ) out = tf.strided_slice( inp, begin, end, strides, begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask, ) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([inp_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() # Basic test. Default strides are 1. gen_strided_slice( name="strided_slice_test0", input_shape=(1, 2, 3), begin=(0, 0, 0), end=(1, 1, 1), strides=(1, 1, 1), ) # Test begin_mask. Ignore "begin" value for 2nd dimension and use value for maximum range. gen_strided_slice( name="strided_slice_test1", input_shape=(1, 3, 4), begin=(0, 2, 3), end=(1, 3, 4), strides=(1, 1, 1), begin_mask=2, ) # Test end_mask. Ignore "end" value for 2nd dimension and use value for maximum range. gen_strided_slice( name="strided_slice_test2", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 1, 1), strides=(1, 1, 1), end_mask=2, ) # Test begin_mask & end_mask. Ignore "begin"/"end" value for 2nd dimension and use values for maximum range. gen_strided_slice( name="strided_slice_test3", input_shape=(1, 3, 4), begin=(0, 1, 1), end=(1, 2, 2), strides=(1, 1, 1), begin_mask=2, end_mask=2, ) # Test ellipsis_mask. Test access pattern [0, ..., 0] where the ellipsis position is marked as 0's for begin/end. gen_strided_slice( name="strided_slice_test4", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 0, 1), strides=(1, 1, 1), begin_mask=0, end_mask=0, ellipsis_mask=2, ) # Test new_axis_mask. gen_strided_slice( name="strided_slice_test5", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 2, 3), strides=(1, 1, 1), new_axis_mask=2, ) # Test shrink_axis_mask. gen_strided_slice( name="strided_slice_test6", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 2, 3), strides=(1, 1, 1), shrink_axis_mask=2, ) # ---------------------------------------------------------------------------------------------------------------------- # Select # ---------------------------------------------------------------------------------------------------------------------- def gen_select_test(name, input_shape): # Create model. cond = layers.Input( name="cond", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.bool ) lhs = layers.Input( name="lhs", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.float32 ) rhs = layers.Input( name="rhs", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.float32 ) out = tf.where(cond, x=lhs, y=rhs) model = Model(inputs=[cond, lhs, rhs], outputs=[out]) # Create data. np.random.seed(0) cond_tensor = np.random.randint(low=0, high=2, size=input_shape).astype(np.bool) lhs_tensor = np.random.rand(*input_shape).astype(np.float32) rhs_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([cond_tensor, lhs_tensor, rhs_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(cond_tensor, name + ".inp0") save_tensor(lhs_tensor, name + ".inp1") save_tensor(rhs_tensor, name + ".inp2") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_select_test(name="select", input_shape=(1, 2, 3)) # ---------------------------------------------------------------------------------------------------------------------- # LogSoftmax # ---------------------------------------------------------------------------------------------------------------------- def gen_log_softmax_test(name, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.nn.log_softmax(inp, axis=axis) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_log_softmax_test(name="log_softmax", input_shape=(1, 3), axis=-1) # ---------------------------------------------------------------------------------------------------------------------- # GATHER ND # ---------------------------------------------------------------------------------------------------------------------- def gen_gather_nd_test(name, data_shape, indices_shape): # Create model. data = layers.Input( name="data", batch_size=data_shape[0], shape=data_shape[1:], dtype=tf.float32 ) indices = layers.Input( name="indices", batch_size=indices_shape[0], shape=indices_shape[1:], dtype=tf.int32, ) out = tf.gather_nd(data, indices, batch_dims=0) model = Model(inputs=[data, indices], outputs=[out]) # Create data. np.random.seed(0) data_tensor = np.random.rand(*data_shape).astype(np.float32) indices_tensor = np.random.randint( low=0, high=data_shape, size=indices_shape ).astype(np.int32) out_tensor = model.predict([data_tensor, indices_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(data_tensor, name + ".inp0") save_tensor(indices_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_gather_nd_test(name="gather_nd", data_shape=(2, 3, 4), indices_shape=(2, 3)) # ---------------------------------------------------------------------------------------------------------------------- # GATHER # ---------------------------------------------------------------------------------------------------------------------- def gen_gather_test(name, data_shape, indices_shape, axis): # Create model. data = layers.Input( name="data", batch_size=data_shape[0], shape=data_shape[1:], dtype=tf.float32 ) indices = layers.Input( name="indices", batch_size=indices_shape[0], shape=indices_shape[1:], dtype=tf.int32, ) out = tf.gather(data, indices, axis=axis, batch_dims=0) model = Model(inputs=[data, indices], outputs=[out]) # Create data. np.random.seed(0) data_tensor = np.random.rand(*data_shape).astype(np.float32) indices_tensor = np.random.randint(data_shape[axis], size=indices_shape).astype( np.int32 ) out_tensor = model.predict([data_tensor, indices_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(data_tensor, name + ".inp0") save_tensor(indices_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_gather_test( name="gather_axis0", data_shape=(1, 2, 3, 4), indices_shape=(1, 5), axis=0 ) gen_gather_test( name="gather_axis1", data_shape=(1, 2, 3, 4), indices_shape=(1, 5), axis=1 ) # ---------------------------------------------------------------------------------------------------------------------- # CAST # ---------------------------------------------------------------------------------------------------------------------- def gen_cast_test(name, input_shape, dtype): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.cast(inp, dtype=dtype) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_cast_test(name="cast_f32_to_int32", input_shape=(1, 1, 2, 12), dtype=tf.int32) # ---------------------------------------------------------------------------------------------------------------------- # Logical operators # ---------------------------------------------------------------------------------------------------------------------- def gen_unary_logical_operator_test(name, type): # Create model. inp = layers.Input(name="input1", batch_size=1, shape=2, dtype=tf.bool) if type == "not": out = tf.math.logical_not(inp) else: print('Logical unary operator "%s" not supported!') exit(1) model = Model(inputs=[inp], outputs=[out]) # Create data. inp_tensor = np.array([[False, True]]).astype(bool) out_tensor = model.predict([inp_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_unary_logical_operator_test(name="logical_not", type="not") def gen_binary_logical_operator_test(name, type): # Create model. inp1 = layers.Input(name="input1", batch_size=1, shape=4, dtype=tf.bool) inp2 = layers.Input(name="input2", batch_size=1, shape=4, dtype=tf.bool) if type == "and": out = tf.math.logical_and(inp1, inp2) elif type == "or": out = tf.math.logical_or(inp1, inp2) else: print('Logical binary operator "%s" not supported!') exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. inp1_tensor = np.array([[False, True, False, True]]).astype(bool) inp2_tensor = np.array([[False, False, True, True]]).astype(bool) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_binary_logical_operator_test(name="logical_and", type="and") gen_binary_logical_operator_test(name="logical_or", type="or") def gen_cmp_operator_test(name, type): # Create model. inp1 = layers.Input(name="input1", batch_size=1, shape=3) inp2 = layers.Input(name="input2", batch_size=1, shape=3) if type == "equal": out = tf.math.equal(inp1, inp2) elif type == "not_equal": out = tf.math.not_equal(inp1, inp2) elif type == "less": out = tf.math.less(inp1, inp2) elif type == "less_equal": out = tf.math.less_equal(inp1, inp2) elif type == "greater": out = tf.math.greater(inp1, inp2) elif type == "greater_equal": out = tf.math.greater_equal(inp1, inp2) else: print('Logical operator "%s" not supported!') exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. inp1_tensor = np.array([[1.0, 1.0, -1.0]]).astype(np.float32) inp2_tensor = np.array([[1.0, -1.0, 1.0]]).astype(np.float32) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_cmp_operator_test(name="equal", type="equal") gen_cmp_operator_test(name="not_equal", type="not_equal") gen_cmp_operator_test(name="less", type="less") gen_cmp_operator_test(name="less_equal", type="less_equal") gen_cmp_operator_test(name="greater", type="greater") gen_cmp_operator_test(name="greater_equal", type="greater_equal") # ---------------------------------------------------------------------------------------------------------------------- # Unary operators # ---------------------------------------------------------------------------------------------------------------------- def gen_unary_operator_test(name, type, input_shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) if type == "relu": out = tf.nn.relu(inp) elif type == "relu_n1to1": out = tf.clip_by_value(inp, -1.0, 1.0) elif type == "relu6": out = tf.nn.relu6(inp) elif type == "sigmoid": out = tf.nn.sigmoid(inp) elif type == "exp": out = tf.exp(inp) elif type == "log": out = tf.math.log(inp) elif type == "tanh": out = tf.nn.tanh(inp) elif type == "leaky_relu": out = tf.nn.leaky_relu(inp, alpha=0.1) elif type == "prelu": out = layers.PReLU(alpha_initializer="random_uniform")(inp) elif type == "square": out = tf.math.square(inp) elif type == "abs": out = tf.math.abs(inp) elif type == "neg": out = tf.math.negative(inp) elif type == "sqrt": out = tf.math.sqrt(inp) elif type == "rsqrt": out = tf.math.rsqrt(inp) elif type == "sin": out = tf.math.sin(inp) elif type == "cos": out = tf.math.cos(inp) elif type == "ceil": out = tf.math.ceil(inp) elif type == "round": out = tf.math.round(inp) elif type == "floor": out = tf.math.floor(inp) else: print('Unary operator "%s" not supported!') exit(1) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.randn(*input_shape).astype(np.float32) if type in ["log", "sqrt", "rsqrt"]: inp_tensor = np.abs(inp_tensor) + 1 out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_unary_operator_test(name="relu", type="relu", input_shape=(1, 10)) gen_unary_operator_test(name="relu_n1to1", type="relu_n1to1", input_shape=(1, 10)) gen_unary_operator_test(name="relu6", type="relu6", input_shape=(1, 10)) gen_unary_operator_test(name="sigmoid", type="sigmoid", input_shape=(1, 10)) gen_unary_operator_test(name="tanh", type="tanh", input_shape=(1, 10)) gen_unary_operator_test(name="exp", type="exp", input_shape=(1, 10)) gen_unary_operator_test(name="log", type="log", input_shape=(1, 10)) gen_unary_operator_test(name="leaky_relu", type="leaky_relu", input_shape=(1, 10)) gen_unary_operator_test(name="prelu", type="prelu", input_shape=(1, 10)) gen_unary_operator_test(name="square", type="square", input_shape=(1, 10)) gen_unary_operator_test(name="abs", type="abs", input_shape=(1, 10)) gen_unary_operator_test(name="neg", type="neg", input_shape=(1, 10)) gen_unary_operator_test(name="sqrt", type="sqrt", input_shape=(1, 10)) gen_unary_operator_test(name="rsqrt", type="rsqrt", input_shape=(1, 10)) gen_unary_operator_test(name="sin", type="sin", input_shape=(1, 10)) gen_unary_operator_test(name="cos", type="cos", input_shape=(1, 10)) gen_unary_operator_test(name="ceil", type="ceil", input_shape=(1, 10)) gen_unary_operator_test(name="round", type="round", input_shape=(1, 10)) gen_unary_operator_test(name="floor", type="floor", input_shape=(1, 10)) # ---------------------------------------------------------------------------------------------------------------------- # Binary operators # ---------------------------------------------------------------------------------------------------------------------- def gen_binary_operator_test(name, type, input_shape): # Create model. inp1 = layers.Input(name="input1", batch_size=input_shape[0], shape=input_shape[1:]) inp2 = layers.Input(name="input2", batch_size=input_shape[0], shape=input_shape[1:]) if type == "add": out = tf.math.add(inp1, inp2) elif type == "mul": out = tf.math.multiply(inp1, inp2) elif type == "sub": out = tf.math.subtract(inp1, inp2) elif type == "div": out = tf.math.divide(inp1, inp2) elif type == "pow": out = tf.math.pow(inp1, inp2) elif type == "max": out = tf.math.maximum(inp1, inp2) elif type == "min": out = tf.math.minimum(inp1, inp2) else: print('Binary operator "%s" not supported!') exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*input_shape).astype(np.float32) inp2_tensor = np.random.rand(*input_shape).astype(np.float32) if type == "pow": inp1_tensor = np.abs(inp1_tensor) + 1 out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_binary_operator_test(name="add", type="add", input_shape=(1, 10)) gen_binary_operator_test(name="mul", type="mul", input_shape=(1, 10)) gen_binary_operator_test(name="sub", type="sub", input_shape=(1, 10)) gen_binary_operator_test(name="div", type="div", input_shape=(1, 10)) gen_binary_operator_test(name="pow", type="pow", input_shape=(1, 10)) gen_binary_operator_test(name="max", type="max", input_shape=(1, 10)) gen_binary_operator_test(name="min", type="min", input_shape=(1, 10)) # ---------------------------------------------------------------------------------------------------------------------- # Binary broadcasted operators # ---------------------------------------------------------------------------------------------------------------------- def gen_binary_broadcast_operator_test(name, type, shape_1, shape_2): # Create model. inp1 = layers.Input(name="input1", batch_size=shape_1[0], shape=shape_1[1:]) inp2 = layers.Input(name="input2", batch_size=shape_2[0], shape=shape_2[1:]) if type == "add": out = tf.math.add(inp1, inp2) elif type == "mul": out = tf.math.multiply(inp1, inp2) elif type == "sub": out = tf.math.subtract(inp1, inp2) elif type == "div": out = tf.math.divide(inp1, inp2) elif type == "max": out = tf.math.maximum(inp1, inp2) elif type == "min": out = tf.math.minimum(inp1, inp2) else: print('Binary operator "%s" not supported!' % type) exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*shape_1).astype(np.float32) inp2_tensor = np.random.rand(*shape_2).astype(np.float32) if type == "pow": inp1_tensor = np.abs(inp1_tensor) + 1 out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_binary_broadcast_operator_test( name="add_broadcast", type="add", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="mul_broadcast", type="mul", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="sub_broadcast", type="sub", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="div_broadcast", type="div", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="max_broadcast", type="max", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="min_broadcast", type="min", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) # ---------------------------------------------------------------------------------------------------------------------- # Conv2D # ---------------------------------------------------------------------------------------------------------------------- def gen_conv2d_test( name, input_shape, filters, kernels, strides, padding, dilations, activation ): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Conv2D( filters=filters, kernel_size=kernels, strides=strides, padding=padding, dilation_rate=dilations, activation=activation, use_bias=True, bias_initializer="random_normal", )(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_conv2d_test( name="conv2d_valid", input_shape=(1, 5, 5, 3), filters=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_conv2d_test( name="conv2d_same", input_shape=(1, 5, 5, 3), filters=2, kernels=(2, 3), strides=(1, 1), padding="same", dilations=(1, 1), activation="linear", ) gen_conv2d_test( name="conv2d_relu", input_shape=(1, 5, 5, 3), filters=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="relu", ) # ---------------------------------------------------------------------------------------------------------------------- # DepthwiseConv2D # ---------------------------------------------------------------------------------------------------------------------- def gen_depthwise_conv2d_test( name, input_shape, depth_multiplier, kernels, strides, padding, dilations, activation, ): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.DepthwiseConv2D( kernel_size=kernels, strides=strides, padding=padding, depth_multiplier=depth_multiplier, dilation_rate=dilations, activation=activation, use_bias=True, bias_initializer="random_normal", )(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_depthwise_conv2d_test( name="depthwise_conv2d_c1_m1", input_shape=(1, 5, 5, 1), depth_multiplier=1, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_depthwise_conv2d_test( name="depthwise_conv2d_c1_m2", input_shape=(1, 5, 5, 1), depth_multiplier=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_depthwise_conv2d_test( name="depthwise_conv2d_c2_m1", input_shape=(1, 5, 5, 2), depth_multiplier=1, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_depthwise_conv2d_test( name="depthwise_conv2d_c2_m2", input_shape=(1, 5, 5, 2), depth_multiplier=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) # ---------------------------------------------------------------------------------------------------------------------- # FullyConnected # ---------------------------------------------------------------------------------------------------------------------- def gen_fully_connected_test(name, input_shape, out_channels, activation): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Dense( units=out_channels, activation=activation, use_bias=True, bias_initializer="random_normal", )(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_fully_connected_test( name="fully_connected", input_shape=(2, 5), out_channels=10, activation="linear" ) # ---------------------------------------------------------------------------------------------------------------------- # MaxPool2D # ---------------------------------------------------------------------------------------------------------------------- def gen_maxpool2d_test(name, input_shape, kernels, strides, padding): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.MaxPooling2D(pool_size=kernels, strides=strides, padding=padding)(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_maxpool2d_test( name="maxpool2d_valid", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="valid", ) gen_maxpool2d_test( name="maxpool2d_same", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="same", ) # ---------------------------------------------------------------------------------------------------------------------- # AvgPool2D # ---------------------------------------------------------------------------------------------------------------------- def gen_avgpool2d_test(name, input_shape, kernels, strides, padding): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.AveragePooling2D(pool_size=kernels, strides=strides, padding=padding)( inp ) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_avgpool2d_test( name="avgpool2d_valid", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="valid", ) gen_avgpool2d_test( name="avgpool2d_same", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="same", ) # ---------------------------------------------------------------------------------------------------------------------- # Softmax # ---------------------------------------------------------------------------------------------------------------------- def gen_softmax_test(name, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Softmax(axis=axis)(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_softmax_test(name="softmax", input_shape=(1, 3), axis=-1) # ---------------------------------------------------------------------------------------------------------------------- # Transpose # ---------------------------------------------------------------------------------------------------------------------- def gen_transpose_test(name, input_shape, perm): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Permute(perm)(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_transpose_test(name="transpose", input_shape=(1, 2, 3), perm=(2, 1)) # ---------------------------------------------------------------------------------------------------------------------- # Slice # ---------------------------------------------------------------------------------------------------------------------- def gen_slice_test(name, input_shape, begin, size): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.slice(inp, begin, size) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_slice_test(name="slice", input_shape=(1, 2, 3), begin=(0, 1, 2), size=(1, 1, 1)) gen_slice_test( name="slice_neg_size", input_shape=(1, 2, 3), begin=(0, 1, 2), size=(1, 1, -1) ) # ---------------------------------------------------------------------------------------------------------------------- # Reshape # ---------------------------------------------------------------------------------------------------------------------- def gen_reshape_test(name, input_shape, shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.reshape(inp, shape) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_reshape_test(name="reshape", input_shape=(1, 2, 3), shape=(1, 6)) gen_reshape_test(name="reshape_neg_shape", input_shape=(1, 2, 3), shape=(1, -1)) # ---------------------------------------------------------------------------------------------------------------------- # Concat # ---------------------------------------------------------------------------------------------------------------------- def gen_concat_test(name, input_shape, axis): # Create model. inp1 = layers.Input(name="input1", batch_size=input_shape[0], shape=input_shape[1:]) inp2 = layers.Input(name="input2", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.concat([inp1, inp2], axis) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*input_shape).astype(np.float32) inp2_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_concat_test(name="concat", input_shape=(1, 2, 3), axis=1) gen_concat_test(name="concat_neg_axis", input_shape=(1, 2, 3), axis=-1) # ---------------------------------------------------------------------------------------------------------------------- # Split # ---------------------------------------------------------------------------------------------------------------------- def gen_split_test(name, input_shape, axis, num_split): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) outs = tf.split(inp, num_or_size_splits=num_split, axis=axis) model = Model(inputs=[inp], outputs=outs) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensors = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") for idx in range(len(out_tensors)): save_tensor(out_tensors[idx], name + (".out%d" % idx)) # Clear session. keras_backend.clear_session() gen_split_test(name="split", input_shape=(1, 9), axis=-1, num_split=3) # ---------------------------------------------------------------------------------------------------------------------- # Pad # ---------------------------------------------------------------------------------------------------------------------- def gen_pad_test(name, input_shape, pads): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.pad(inp, paddings=pads) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_pad_test(name="pad", input_shape=(1, 2, 2), pads=[[0, 0], [1, 2], [0, 3]]) # ---------------------------------------------------------------------------------------------------------------------- # ArgMin/ArgMax # ---------------------------------------------------------------------------------------------------------------------- def gen_arg_min_max_test(name, type, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) if type == "min": out = tf.math.argmin(inp, axis=axis) else: out = tf.math.argmax(inp, axis=axis) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_arg_min_max_test(name="arg_min", type="min", input_shape=(1, 2, 10), axis=2) gen_arg_min_max_test(name="arg_max", type="max", input_shape=(1, 2, 10), axis=2) # ---------------------------------------------------------------------------------------------------------------------- # Pack # ---------------------------------------------------------------------------------------------------------------------- def gen_pack_test(name, input_shape, axis): # Create model. inp1 = layers.Input(name="input1", batch_size=input_shape[0], shape=input_shape[1:]) inp2 = layers.Input(name="input2", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.stack([inp1, inp2], axis=axis) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*input_shape).astype(np.float32) inp2_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_pack_test(name="pack", input_shape=(2, 3, 4), axis=1) # ---------------------------------------------------------------------------------------------------------------------- # Unpack # ---------------------------------------------------------------------------------------------------------------------- def gen_unpack_test(name, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) outs = tf.unstack(inp, axis=axis) model = Model(inputs=[inp], outputs=outs) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensors = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") for idx in range(len(out_tensors)): save_tensor(out_tensors[idx], name + (".out%d" % idx)) # Clear session. keras_backend.clear_session() gen_unpack_test(name="unpack", input_shape=(2, 3, 4), axis=1) # ---------------------------------------------------------------------------------------------------------------------- # Mean # ---------------------------------------------------------------------------------------------------------------------- def gen_mean_test(name, input_shape, axis, keep_dims): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.reduce_mean(inp, axis=axis, keepdims=keep_dims) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_mean_test(name="mean_keep_dims", input_shape=(1, 2, 10), axis=2, keep_dims=True) gen_mean_test(name="mean_no_keep_dims", input_shape=(1, 2, 10), axis=2, keep_dims=False) gen_mean_test( name="mean_multiple_axis_keep_dims", input_shape=(1, 2, 10), axis=(1, 2), keep_dims=True, ) gen_mean_test( name="mean_multiple_axis_no_keep_dims", input_shape=(1, 2, 10), axis=(1, 2), keep_dims=False, ) # ---------------------------------------------------------------------------------------------------------------------- # Tile # ---------------------------------------------------------------------------------------------------------------------- def gen_tile_test(name, input_shape, tiles): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.tile(inp, multiples=tiles) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_tile_test(name="tile", input_shape=(1, 2, 3), tiles=[1, 3, 2]) # ---------------------------------------------------------------------------------------------------------------------- # RESIZE NEAREST # ---------------------------------------------------------------------------------------------------------------------- def gen_resize_nearest_test(name, input_shape, output_shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.compat.v1.image.resize_nearest_neighbor(inp, size=output_shape) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_resize_nearest_test( name="resize_nearest", input_shape=(1, 3, 4, 2), output_shape=(5, 7) ) # ---------------------------------------------------------------------------------------------------------------------- # RESIZE BILINEAR # ---------------------------------------------------------------------------------------------------------------------- def gen_resize_bilinear_test(name, input_shape, output_shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.compat.v1.image.resize_bilinear(inp, size=output_shape) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_resize_bilinear_test( name="resize_bilinear", input_shape=(1, 3, 4, 2), output_shape=(5, 7) ) # ---------------------------------------------------------------------------------------------------------------------- # SPACE TO DEPTH # ---------------------------------------------------------------------------------------------------------------------- def gen_space_to_depth_test(name, input_shape, block_size): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.compat.v1.space_to_depth(inp, block_size=block_size) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_space_to_depth_test(name="space_to_depth", input_shape=(1, 2, 4, 3), block_size=2) # ---------------------------------------------------------------------------------------------------------------------- # DEPTH TO SPACE # ---------------------------------------------------------------------------------------------------------------------- # Note: Older version of TensorFlow handles this operator as custom. This test is generated separately by manually # editing the 'space_to_depth' test. def gen_depth_to_space_test(name, input_shape, block_size): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.nn.depth_to_space(inp, block_size=block_size) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_depth_to_space_test(name="depth_to_space", input_shape=(1, 1, 2, 12), block_size=2)
#!/usr/bin/env python # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from PIL import Image # This script is used to visualize memory allocations in the Glow compiler. # # Usage: ./visualize.py dump.txt # # The script will dump a sequence of bitmap files that can be combined into a # video. Example: heap100123.bmp, heap heap100124.bmp, heap100125.bmp ... ) # # On mac and linux this command will generate a gif file: # convert -delay 10 -loop 0 *.bmp video.gif # # The input file should contain a list of allocation/deallocation commands. # Allocation commands (marked with the letter 'a') report the start address and # the size of the buffer, and the deallocation commands (marked with the letter # 'd') report the address of the buffer. You can generate these command lists # by inserting printf calls into the Glow memory allocator. # # Example input: # a 348864 20000 # a 368896 20000 # a 388928 20000 # a 408960 200000 # d 388928 # d 368896 # d 348864 content = open(sys.argv[1]).read() lines = content.split("\n") canvas_size = 512 pixelsize = 8 img = Image.new("RGB", (canvas_size, canvas_size), "black") pixels = img.load() # Use this number to assign file names to frames in the video. filename_counter = 10000000 # Maps from address to size sizes = {} color_index = 0 colors = [ (218, 112, 214), (255, 182, 193), (250, 235, 215), (255, 250, 205), (210, 105, 30), (210, 180, 140), (188, 143, 143), (255, 240, 245), (230, 230, 250), (255, 255, 240), ] def getColor(): global color_index color_index += 1 return colors[color_index % len(colors)] def setPixel(addr, color): # Don't draw out-of-bounds pixels. if addr >= canvas_size * canvas_size: return # Only draw pixels that are aligned to the block size. if addr % pixelsize != 0: return # Draw large pixels. sx = addr % canvas_size sy = addr / canvas_size sx = int(sx / pixelsize) sy = int(sy / pixelsize) for x in range(pixelsize): for y in range(pixelsize): pixels[sx * pixelsize + x, sy * pixelsize + y] = color def saveFrame(): global filename_counter filename_counter += 1 img.save("heap" + str(filename_counter) + ".bmp") for line in lines: tokens = line.split() if len(tokens) < 1: break print(tokens) if tokens[0] == "a": frm = int(tokens[1]) sz = int(tokens[2]) sizes[frm] = sz if frm + sz >= canvas_size * canvas_size: continue for i in range(sz): setPixel(i + frm, (255, 255, 255)) # allocate saveFrame() cc = getColor() for i in range(sz): setPixel(i + frm, cc) # allocated saveFrame() if tokens[0] == "d": frm = int(tokens[1]) sz = sizes[frm] if frm + sz >= canvas_size * canvas_size: continue for i in range(sz): setPixel(i + frm, (128, 0, 0)) # deallocate saveFrame() for i in range(sz): setPixel(i + frm, (15, 15, 15)) # previously allocated saveFrame()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a helper script that generates ONNX models. # The generated model will be used for ONNX importer unittest: # ./tests/unittests/onnxImporterTest.cpp # Run $>python gen_onnx_model.py to get the ONNX model. import numpy as np import onnx from onnx import AttributeProto, GraphProto, helper, TensorProto # The protobuf definition can be found here: # https://github.com/onnx/onnx/blob/master/onnx/onnx.proto W = np.array( [[[[1.0, 1.0], [1.0, 1.0]]]] # (1, 1, 2, 2) tensor for convolution weights ).astype(np.float32) B = np.array([2.0]).astype(np.float32) # Convolution with padding. "data" represents the input data, # which will be provided by ONNX importer unittests. node_def = onnx.helper.make_node( "Conv", inputs=["data", "W", "B"], outputs=["y"], kernel_shape=[2, 2], strides=[1, 1], pads=[1, 1, 1, 1], name="conv1", ) weight_tensor = helper.make_tensor( name="W", data_type=TensorProto.FLOAT, dims=(1, 1, 2, 2), vals=W.reshape(4).tolist() ) bias_tensor = helper.make_tensor( name="B", data_type=TensorProto.FLOAT, dims=(1,), vals=B.reshape(1).tolist() ) # Create the graph (GraphProto) graph_def = helper.make_graph( [node_def], "test-model", inputs=[ helper.make_tensor_value_info("data", TensorProto.FLOAT, [1, 1, 3, 3]), helper.make_tensor_value_info("W", TensorProto.FLOAT, [1, 1, 2, 2]), helper.make_tensor_value_info("B", TensorProto.FLOAT, [1]), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, [1, 1, 4, 4])], ) graph_def.initializer.extend([weight_tensor]) graph_def.initializer.extend([bias_tensor]) graph_def.initializer[0].name = "W" graph_def.initializer[1].name = "B" # Create the model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-conv") with open("simpleConv.onnxtxt", "w") as f: f.write(str(model_def)) onnx.checker.check_model(model_def) print("The model is checked!")
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import tensorflow as tf from onnx import helper, TensorProto from tensorflow.python.ops import gen_audio_ops as audio_ops # ONNX utility. def make_init(name, dtype, tensor): return helper.make_tensor( name=name, data_type=dtype, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate AudioSpectrogram ONNX test model. def gen_spectrogram_onnx_test_model( model_path, window_count, window_size, stride, magnitude_squared=True ): # Tensor sizes. input_length = window_size + (window_count - 1) * stride fft_length = int(2 ** np.ceil(np.log2(window_size))) input_shape = [1, input_length] spectrogram_length = int(fft_length / 2 + 1) spectrogram_shape = [window_count, spectrogram_length] # Generate random input data. np.random.seed(1) input_data = np.random.randn(*input_shape) # ----------------------------------------- COMPUTE TensorFlow REFERENCE ------------------------------------------- # Define TensorFlow model. tf_input = tf.constant( input_data.reshape([input_length, 1]), name="input", dtype=tf.float32 ) tf_spectrogram = audio_ops.audio_spectrogram( tf_input, window_size=window_size, stride=stride, magnitude_squared=magnitude_squared, ) # Run TensorFlow model and get reference output. with tf.Session() as sess: spectrogram_ref = sess.run(tf_spectrogram) spectrogram_ref = np.reshape(spectrogram_ref, spectrogram_shape) # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # AudioSpectrogram node definition. spectrogram_node_def = onnx.helper.make_node( "AudioSpectrogram", name="audio_spectrogram", inputs=["input"], outputs=["spectrogram"], window_size=int(window_size), stride=int(stride), magnitude_squared=int(magnitude_squared), ) # Error node definition. err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["spectrogram", "spectrogram_ref"], outputs=["spectrogram_err"], ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # Graph inputs. graph_input.append( helper.make_tensor_value_info("input", TensorProto.FLOAT, input_shape) ) graph_input.append( helper.make_tensor_value_info( "spectrogram_ref", TensorProto.FLOAT, spectrogram_shape ) ) # Graph initializers. graph_init.append(make_init("input", TensorProto.FLOAT, input_data)) graph_init.append(make_init("spectrogram_ref", TensorProto.FLOAT, spectrogram_ref)) # Graph outputs. graph_output.append( helper.make_tensor_value_info( "spectrogram_err", TensorProto.FLOAT, spectrogram_shape ) ) # Graph name. graph_name = "audio_spectrogram_test" # Define graph (GraphProto). graph_def = helper.make_graph( [spectrogram_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers. graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto). model_def = helper.make_model(graph_def, producer_name="onnx-audio-spectrogram") # Print model. with open(model_path, "w") as f: f.write(str(model_def)) # One window spectrogram. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramOneWindow.onnxtxt", window_count=1, window_size=512, stride=256, magnitude_squared=True, ) # Two window spectrogram. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramTwoWindow.onnxtxt", window_count=2, window_size=640, stride=320, magnitude_squared=True, ) # Magnitude non-squared. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramNonSquared.onnxtxt", window_count=1, window_size=640, stride=320, magnitude_squared=False, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from caffe2.proto import caffe2_pb2 from google.protobuf import text_format def read_model_from_file(path): m = caffe2_pb2.NetDef() with open(path, "rb") as f: if ".pbtxt" in path: text_format.Merge(f.read(), m) else: m.ParseFromString(f.read()) return m def write_model_to_file(path, m): with open(path, "wb") as f: if ".pbtxt" in path: f.write(text_format.MessageToString(m)) else: f.write(m.SerializeToString()) # Perform dead code elimination on predict_net removing any nodes that aren't # used for producing values in predict_net.external_output. Remove any nodes in # init_net that produce values that are no longer needed by predict_net. def dce(init_net, predict_net): num_predict_net_ops_original = len(predict_net.op) num_predict_net_inputs_original = len(predict_net.external_input) # Find the set of tensors used in the computation of the outputs. live_predict_net_op_outputs = set(predict_net.external_output) prev_num_live_predict_net_op_outputs = len(live_predict_net_op_outputs) while True: for op in predict_net.op: for output_tensor in op.output: if output_tensor in live_predict_net_op_outputs: for input_tensor in op.input: live_predict_net_op_outputs.add(input_tensor) num_live_predict_net_op_outputs = len(live_predict_net_op_outputs) if num_live_predict_net_op_outputs == prev_num_live_predict_net_op_outputs: break prev_num_live_predict_net_op_outputs = num_live_predict_net_op_outputs # Find the ops that are required to compute the tensors used during # computation of the outputs. live_predict_net_ops = [] for op in predict_net.op: for output_tensor in op.output: if output_tensor in live_predict_net_op_outputs: live_predict_net_ops.append(op) # Delete all unused ops in predict_net. num_predict_net_ops_eliminated = len(predict_net.op) - len(live_predict_net_ops) del predict_net.op[:] predict_net.op.extend(live_predict_net_ops) # Find the set of all used inputs tensors in predict_net. live_predict_net_op_inputs = set() for op in predict_net.op: for input_tensor in op.input: live_predict_net_op_inputs.add(input_tensor) # Find the set of used external_inputs. live_predict_net_external_inputs = set() for external_input in predict_net.external_input: if external_input in live_predict_net_op_inputs: live_predict_net_external_inputs.add(external_input) # Delete unused external_inputs in predict_net. num_predict_net_inputs_eliminated = len(predict_net.external_input) - len( live_predict_net_external_inputs ) del predict_net.external_input[:] predict_net.external_input.extend(live_predict_net_external_inputs) print( "predict_net ops eliminated: {}/{}".format( num_predict_net_ops_eliminated, num_predict_net_ops_original ) ) print( "predict_net external_inputs eliminated: {}/{}".format( num_predict_net_inputs_eliminated, num_predict_net_inputs_original ) ) # Everything below pertains to removing unused outputs in the init_net, # if no init net was provided then stop here. if init_net is None: return num_init_net_ops_original = len(init_net.op) # Find the set of init_net ops with outputs needed by the init_net live_init_net_ops = [] for op in init_net.op: for output_tensor in op.output: if output_tensor in live_predict_net_external_inputs: live_init_net_ops.append(op) # Eliminate dead init_net ops num_init_net_ops_eliminated = len(init_net.op) - len(live_init_net_ops) del init_net.op[:] init_net.op.extend(live_init_net_ops) # Update init_net external_outputs live_init_net_op_outputs = set() for op in init_net.op: for output_tensor in op.output: live_init_net_op_outputs.add(output_tensor) live_init_net_external_outputs = set() for output_tensor in init_net.external_output: if output_tensor in live_init_net_op_outputs: live_init_net_external_outputs.add(output_tensor) del init_net.external_output[:] init_net.external_output.extend(live_init_net_external_outputs) print( "init_net ops eliminated: {}/{}".format( num_init_net_ops_eliminated, num_init_net_ops_original ) ) if __name__ == "__main__": parser = argparse.ArgumentParser("Caffe2 model dead code elimination") parser.add_argument("--input_init_net_path", type=str) parser.add_argument("--input_predict_net_path", type=str, required=True) parser.add_argument("--output_init_net_path", type=str) parser.add_argument("--output_predict_net_path", type=str, required=True) args = parser.parse_args() predict_net = read_model_from_file(args.input_predict_net_path) init_net = None if args.input_init_net_path is not None: init_net = read_model_from_file(args.input_init_net_path) dce(init_net, predict_net) write_model_to_file(args.output_predict_net_path, predict_net) if args.output_init_net_path is not None: write_model_to_file(args.output_init_net_path, init_net)
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import torch import torch.nn import torch.onnx from onnx import helper, TensorProto # LSTM enums LSTM_DIR_FORWARD = "forward" LSTM_DIR_REVERSE = "reverse" LSTM_DIR_BIDIRECTIONAL = "bidirectional" LSTM_DIRS = [LSTM_DIR_FORWARD, LSTM_DIR_REVERSE, LSTM_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor( name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate LSTM ONNX test model def gen_lstm_onnx_test_model( model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, has_initial_c, has_peephole, input_forget=False, ): # Validate parameters assert direction in LSTM_DIRS, "ONNX LSTM direction invalid!" assert not has_sequence_lens, "ONNX LSTM Variable sequence length not supported" # Get number of directions num_directions = 2 if (direction == LSTM_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 4 * hidden_size, input_size] R_shape = [num_directions, 4 * hidden_size, hidden_size] B_shape = [num_directions, 8 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] initial_c_shape = [num_directions, batch_size, hidden_size] P_shape = [num_directions, 3 * hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: i,o,f,c) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B = np.random.randn(*B_shape) if has_bias else np.zeros(B_shape) sequence_lens = ( np.random.randint(1, seq_length, batch_size) if has_sequence_lens else np.tile(seq_length, batch_size) ) initial_h = ( np.random.randn(*initial_h_shape) if has_initial_h else np.zeros(initial_h_shape) ) initial_c = ( np.random.randn(*initial_c_shape) if has_initial_c else np.zeros(initial_c_shape) ) P = np.random.randn(*P_shape) if has_peephole else np.zeros(P_shape) # Function to get all the weight components for the given direction def get_weights(dir_idx): Wi = np.reshape( W[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, input_size] ) Wo = np.reshape( W[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, input_size] ) Wf = np.reshape( W[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, input_size] ) Wc = np.reshape( W[dir_idx, 3 * hidden_size : 4 * hidden_size, :], [hidden_size, input_size] ) Ri = np.reshape( R[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, hidden_size] ) Ro = np.reshape( R[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, hidden_size] ) Rf = np.reshape( R[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, hidden_size] ) Rc = np.reshape( R[dir_idx, 3 * hidden_size : 4 * hidden_size, :], [hidden_size, hidden_size] ) bWi = np.reshape(B[dir_idx, 0 * hidden_size : 1 * hidden_size], [hidden_size]) bWo = np.reshape(B[dir_idx, 1 * hidden_size : 2 * hidden_size], [hidden_size]) bWf = np.reshape(B[dir_idx, 2 * hidden_size : 3 * hidden_size], [hidden_size]) bWc = np.reshape(B[dir_idx, 3 * hidden_size : 4 * hidden_size], [hidden_size]) bRi = np.reshape(B[dir_idx, 4 * hidden_size : 5 * hidden_size], [hidden_size]) bRo = np.reshape(B[dir_idx, 5 * hidden_size : 6 * hidden_size], [hidden_size]) bRf = np.reshape(B[dir_idx, 6 * hidden_size : 7 * hidden_size], [hidden_size]) bRc = np.reshape(B[dir_idx, 7 * hidden_size : 8 * hidden_size], [hidden_size]) Pi = np.tile(P[dir_idx, 0 * hidden_size : 1 * hidden_size], (batch_size, 1)) Po = np.tile(P[dir_idx, 1 * hidden_size : 2 * hidden_size], (batch_size, 1)) Pf = np.tile(P[dir_idx, 2 * hidden_size : 3 * hidden_size], (batch_size, 1)) return ( Wi, Wo, Wf, Wc, Ri, Ro, Rf, Rc, bWi, bWo, bWf, bWc, bRi, bRo, bRf, bRc, Pi, Po, Pf, ) # Function to get PyTorch weights (which are in the i, f, c, o order) def get_torch_weights(dir_idx): ( Wi, Wo, Wf, Wc, Ri, Ro, Rf, Rc, bWi, bWo, bWf, bWc, bRi, bRo, bRf, bRc, Pi, Po, Pf, ) = get_weights(dir_idx) W_torch = np.concatenate((Wi, Wf, Wc, Wo), 0) R_torch = np.concatenate((Ri, Rf, Rc, Ro), 0) bW_torch = np.concatenate((bWi, bWf, bWc, bWo), 0) bR_torch = np.concatenate((bRi, bRf, bRc, bRo), 0) return (W_torch, R_torch, bW_torch, bR_torch) # ----------------------------------------- COMPUTE pyTORCH REFERENCE ---------------------------------------------- # Compute reference using Pytorch. Pytorch LSTM has only forward/bidirectional so we will do the reverse LSTM using # a Pytorch forward LSTM. lstm = torch.nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=(direction == LSTM_DIR_BIDIRECTIONAL), ) # Get LSTM state dictionary lstm_state_dict = lstm.state_dict() # Assign forward weights forwardEnabled = direction in [LSTM_DIR_FORWARD, LSTM_DIR_BIDIRECTIONAL] if forwardEnabled: forward_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(forward_dir_idx) lstm_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) lstm_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) lstm_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) lstm_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) # Assign reverse weights reverseEnabled = direction in [LSTM_DIR_REVERSE, LSTM_DIR_BIDIRECTIONAL] if reverseEnabled: if direction == LSTM_DIR_REVERSE: reverse_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) lstm_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) lstm_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) lstm_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) lstm_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) else: reverse_dir_idx = 1 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) lstm_state_dict["weight_ih_l0_reverse"] = torch.tensor( W_torch, dtype=torch.float32 ) lstm_state_dict["weight_hh_l0_reverse"] = torch.tensor( R_torch, dtype=torch.float32 ) lstm_state_dict["bias_ih_l0_reverse"] = torch.tensor( bW_torch, dtype=torch.float32 ) lstm_state_dict["bias_hh_l0_reverse"] = torch.tensor( bR_torch, dtype=torch.float32 ) # Set LSTM state dictionary lstm.load_state_dict(lstm_state_dict, strict=True) # Perform inference X_torch = torch.tensor(X, dtype=torch.float32) initial_h_torch = torch.tensor(initial_h, dtype=torch.float32) initial_c_torch = torch.tensor(initial_c, dtype=torch.float32) if direction == LSTM_DIR_REVERSE: Y, (next_h, next_c) = lstm( X_torch.flip([0]), (initial_h_torch, initial_c_torch) ) Y = Y.flip([0]) else: Y, (next_h, next_c) = lstm(X_torch, (initial_h_torch, initial_c_torch)) # Reshape output to ONNX format [seq_length, num_directions, batch_size, hidden_size] Y_ref = Y.detach().numpy() Y_ref = np.reshape(Y_ref, [seq_length, batch_size, num_directions, hidden_size]) Y_ref = np.transpose(Y_ref, [0, 2, 1, 3]) # Reshape states to ONNX format Y_h_ref = next_h.detach().numpy() Y_c_ref = next_c.detach().numpy() # --------------------------------------- COMPUTE PYTHON-NUMPY REFERENCE ------------------------------------------- # Create X slices Xslices = list() for t in range(seq_length): Xslices.append(np.reshape(X[t, :, :], [batch_size, input_size])) # Function to compute one LSTM cell def compute_lstm(forward): dir_idx = 0 if forward else (0 if direction == LSTM_DIR_REVERSE else 1) ( Wi, Wo, Wf, Wc, Ri, Ro, Rf, Rc, bWi, bWo, bWf, bWc, bRi, bRo, bRf, bRc, Pi, Po, Pf, ) = get_weights(dir_idx) def f(x): return 1 / (1 + np.exp(-x)) def g(x): return np.tanh(x) def h(x): return np.tanh(x) def mm(x, w): return np.matmul(x, w.transpose()) Ht = np.reshape(initial_h[dir_idx, :, :], [batch_size, hidden_size]) Ct = np.reshape(initial_c[dir_idx, :, :], [batch_size, hidden_size]) Yslices = list() for t in range(seq_length): xt = Xslices[t] if forward else Xslices[seq_length - 1 - t] ft = f(mm(xt, Wf) + bWf + mm(Ht, Rf) + bRf + Pf * Ct) if input_forget: it = 1 - ft else: it = f(mm(xt, Wi) + bWi + mm(Ht, Ri) + bRi + Pi * Ct) ctild = g(mm(xt, Wc) + bWc + mm(Ht, Rc) + bRc) Ct = ft * Ct + it * ctild ot = f(mm(xt, Wo) + bWo + mm(Ht, Ro) + bRo + Po * Ct) Ht = ot * h(Ct) Yslices.append(Ht) return Yslices, Ht, Ct Yslices = list() Hslices = list() Cslices = list() # Compute forward LSTM forwardYslices = list() if forwardEnabled: Yt, Ht, Ct = compute_lstm(True) forwardYslices += Yt Hslices.append(Ht) Cslices.append(Ct) # Compute reverse LSTM reverseYslices = list() if reverseEnabled: Yt, Ht, Ct = compute_lstm(False) reverseYslices += Yt Hslices.append(Ht) Cslices.append(Ct) # Concatenate slices for t in range(seq_length): if forwardEnabled: Yslices.append(forwardYslices[t]) if reverseEnabled: Yslices.append(reverseYslices[seq_length - 1 - t]) Y_ref_np = np.concatenate(Yslices, 0).reshape( [seq_length, num_directions, batch_size, hidden_size] ) Y_h_ref_np = np.concatenate(Hslices, 0).reshape( [num_directions, batch_size, hidden_size] ) Y_c_ref_np = np.concatenate(Cslices, 0).reshape( [num_directions, batch_size, hidden_size] ) # Use numpy implementation when using peepholes or input_forget, else assert errors if has_peephole or input_forget: Y_ref = Y_ref_np Y_h_ref = Y_h_ref_np Y_c_ref = Y_c_ref_np else: assert ( np.max(np.abs(Y_ref - Y_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy LSTM implementation" assert ( np.max(np.abs(Y_h_ref - Y_h_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy LSTM implementation" assert ( np.max(np.abs(Y_c_ref - Y_c_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy LSTM implementation" # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # Node inputs node_inputs = [ "X", "W", "R", "B" if has_bias else "", "", "initial_h" if has_initial_h else "", "initial_c" if has_initial_c else "", "P" if has_peephole else "", ] # Node outputs node_outputs = ["Y", "Y_h", "Y_c"] # LSTM node definition lstm_node_def = onnx.helper.make_node( "LSTM", name="lstm", inputs=node_inputs, outputs=node_outputs, hidden_size=hidden_size, direction=direction, input_forget=input_forget, ) # Error node definition err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["Y", "Y_ref"], outputs=["Y_err"] ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # LSTM inputs graph_input.append(helper.make_tensor_value_info("X", TensorProto.FLOAT, X_shape)) graph_input.append(helper.make_tensor_value_info("W", TensorProto.FLOAT, W_shape)) graph_input.append(helper.make_tensor_value_info("R", TensorProto.FLOAT, R_shape)) if has_bias: graph_input.append( helper.make_tensor_value_info("B", TensorProto.FLOAT, B_shape) ) if has_sequence_lens: graph_input.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, sequence_lens_shape ) ) if has_initial_h: graph_input.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, initial_h_shape ) ) if has_initial_c: graph_input.append( helper.make_tensor_value_info( "initial_c", TensorProto.FLOAT, initial_c_shape ) ) if has_peephole: graph_input.append( helper.make_tensor_value_info("P", TensorProto.FLOAT, P_shape) ) # Reference input graph_input.append( helper.make_tensor_value_info("Y_ref", TensorProto.FLOAT, Y_shape) ) # LSTM initializers graph_init.append(make_init("X", TensorProto.FLOAT, X)) graph_init.append(make_init("W", TensorProto.FLOAT, W)) graph_init.append(make_init("R", TensorProto.FLOAT, R)) if has_bias: graph_init.append(make_init("B", TensorProto.FLOAT, B)) if has_sequence_lens: graph_init.append(make_init("sequence_lens", TensorProto.INT32, sequence_lens)) if has_initial_h: graph_init.append(make_init("initial_h", TensorProto.FLOAT, initial_h)) if has_initial_c: graph_init.append(make_init("initial_c", TensorProto.FLOAT, initial_c)) if has_peephole: graph_init.append(make_init("P", TensorProto.FLOAT, P)) # Reference initializer graph_init.append(make_init("Y_ref", TensorProto.FLOAT, Y_ref)) # Graph outputs graph_output.append( helper.make_tensor_value_info("Y_err", TensorProto.FLOAT, Y_shape) ) # Define graph (GraphProto) graph_name = "lstm_test" graph_def = helper.make_graph( [lstm_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-lstm") # Check model onnx.checker.check_model(model_def) # Print model with open(model_path, "w") as f: f.write(str(model_def)) # Forward LSTM gen_lstm_onnx_test_model( model_path="lstmForward.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Reverse LSTM gen_lstm_onnx_test_model( model_path="lstmReverse.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="reverse", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Bidirectional LSTM gen_lstm_onnx_test_model( model_path="lstmBidirectional.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="bidirectional", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Forward no bias LSTM gen_lstm_onnx_test_model( model_path="lstmForwardNoBias.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=False, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Forward no state LSTM gen_lstm_onnx_test_model( model_path="lstmForwardNoState.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=False, has_initial_c=False, has_peephole=False, input_forget=False, ) # Forward with peephole LSTM gen_lstm_onnx_test_model( model_path="lstmForwardWithPeephole.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=True, input_forget=False, ) # Forward with input forget LSTM gen_lstm_onnx_test_model( model_path="lstmForwardInputForget.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import tensorflow as tf from onnx import helper, TensorProto from tensorflow.python.ops import gen_audio_ops as audio_ops # ONNX utility. def make_init(name, dtype, tensor): return helper.make_tensor( name=name, data_type=dtype, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate MFCC ONNX test model. def gen_mfcc_onnx_test_model( model_path, window_count, window_size, stride, sample_rate, lower_frequency_limit, upper_frequency_limit, filterbank_channel_count, dct_coefficient_count, ): # Tensor sizes. input_length = window_size + (window_count - 1) * stride fft_length = int(2 ** np.ceil(np.log2(window_size))) input_shape = [1, input_length] spectrogram_length = int(fft_length / 2 + 1) spectrogram_shape = [window_count, spectrogram_length] coefficients_shape = [window_count, dct_coefficient_count] # Generate random input data. np.random.seed(1) input_data = np.random.randn(*input_shape) # ----------------------------------------- COMPUTE TensorFlow REFERENCE ------------------------------------------- # Define TensorFlow model. tf_input = tf.constant( input_data.reshape([input_length, 1]), name="input", dtype=tf.float32 ) tf_spectrogram = audio_ops.audio_spectrogram( tf_input, window_size=window_size, stride=stride, magnitude_squared=True ) tf_mfcc = audio_ops.mfcc( spectrogram=tf_spectrogram, sample_rate=sample_rate, upper_frequency_limit=upper_frequency_limit, lower_frequency_limit=lower_frequency_limit, filterbank_channel_count=filterbank_channel_count, dct_coefficient_count=dct_coefficient_count, ) # Run TensorFlow model and get spectrogram input. with tf.Session() as sess: spectrogram = sess.run(tf_spectrogram) spectrogram = np.reshape(spectrogram, spectrogram_shape) # Run TensorFlow model and get reference output coefficients. with tf.Session() as sess: coefficients_ref = sess.run(tf_mfcc) coefficients_ref = np.reshape(coefficients_ref, coefficients_shape) # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # MFCC node definition. mfcc_node_def = onnx.helper.make_node( "MFCC", name="mfcc", inputs=["spectrogram"], outputs=["coefficients"], sample_rate=float(sample_rate), lower_frequency_limit=float(lower_frequency_limit), upper_frequency_limit=float(upper_frequency_limit), filterbank_channel_count=int(filterbank_channel_count), dct_coefficient_count=int(dct_coefficient_count), ) # Error node definition. err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["coefficients", "coefficients_ref"], outputs=["coefficients_err"], ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # Graph inputs. graph_input.append( helper.make_tensor_value_info( "spectrogram", TensorProto.FLOAT, spectrogram_shape ) ) graph_input.append( helper.make_tensor_value_info( "coefficients_ref", TensorProto.FLOAT, coefficients_shape ) ) # Graph initializers. graph_init.append(make_init("spectrogram", TensorProto.FLOAT, spectrogram)) graph_init.append( make_init("coefficients_ref", TensorProto.FLOAT, coefficients_ref) ) # Graph outputs. graph_output.append( helper.make_tensor_value_info( "coefficients_err", TensorProto.FLOAT, coefficients_shape ) ) # Graph name. graph_name = "mfcc_test" # Define graph (GraphProto). graph_def = helper.make_graph( [mfcc_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers. graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto). model_def = helper.make_model(graph_def, producer_name="onnx-mfcc") # Print model. with open(model_path, "w") as f: f.write(str(model_def)) # One window MFCC. gen_mfcc_onnx_test_model( model_path="mfccOneWindow.onnxtxt", window_count=1, window_size=640, stride=320, sample_rate=16000, lower_frequency_limit=20, upper_frequency_limit=4000, filterbank_channel_count=40, dct_coefficient_count=10, ) # Two window MFCC. gen_mfcc_onnx_test_model( model_path="mfccTwoWindow.onnxtxt", window_count=2, window_size=512, stride=256, sample_rate=16000, lower_frequency_limit=20, upper_frequency_limit=4000, filterbank_channel_count=40, dct_coefficient_count=10, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import torch import torch.nn import torch.onnx from onnx import helper, TensorProto # RNN enums RNN_DIR_FORWARD = "forward" RNN_DIR_REVERSE = "reverse" RNN_DIR_BIDIRECTIONAL = "bidirectional" RNN_DIRS = [RNN_DIR_FORWARD, RNN_DIR_REVERSE, RNN_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor( name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate RNN ONNX test model def gen_rnn_onnx_test_model( model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, ): # Validate parameters assert direction in RNN_DIRS, "ONNX RNN direction invalid!" assert not has_sequence_lens, "ONNX RNN Variable sequence length not supported" # Get number of directions num_directions = 2 if (direction == RNN_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 1 * hidden_size, input_size] R_shape = [num_directions, 1 * hidden_size, hidden_size] B_shape = [num_directions, 2 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: z,r,h) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B = np.random.randn(*B_shape) if has_bias else np.zeros(B_shape) sequence_lens = ( np.random.randint(1, seq_length, batch_size) if has_sequence_lens else np.tile(seq_length, batch_size) ) initial_h = ( np.random.randn(*initial_h_shape) if has_initial_h else np.zeros(initial_h_shape) ) # Function to get all the weight components for the given direction def get_weights(dir_idx): Wi = np.reshape( W[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, input_size] ) Ri = np.reshape( R[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, hidden_size] ) bWi = np.reshape(B[dir_idx, 0 * hidden_size : 1 * hidden_size], [hidden_size]) bRi = np.reshape(B[dir_idx, 1 * hidden_size : 2 * hidden_size], [hidden_size]) return (Wi, Ri, bWi, bRi) # Function to get PyTorch weights (which are in the r,z,h order) def get_torch_weights(dir_idx): Wi, Ri, bWi, bRi = get_weights(dir_idx) W_torch = Wi R_torch = Ri bW_torch = bWi bR_torch = bRi return (W_torch, R_torch, bW_torch, bR_torch) # ----------------------------------------- COMPUTE pyTORCH REFERENCE ---------------------------------------------- # Compute reference using Pytorch. Pytorch RNN has only forward/bidirectional so we will do the reverse RNN using # a Pytorch forward RNN. rnn = torch.nn.RNN( input_size=input_size, hidden_size=hidden_size, num_layers=1, nonlinearity="tanh", bias=True, batch_first=False, dropout=0, bidirectional=(direction == RNN_DIR_BIDIRECTIONAL), ) # Get RNN state dictionary rnn_state_dict = rnn.state_dict() # Assign forward weights forwardEnabled = direction in [RNN_DIR_FORWARD, RNN_DIR_BIDIRECTIONAL] if forwardEnabled: forward_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(forward_dir_idx) rnn_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) rnn_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) rnn_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) rnn_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) # Assign reverse weights reverseEnabled = direction in [RNN_DIR_REVERSE, RNN_DIR_BIDIRECTIONAL] if reverseEnabled: if direction == RNN_DIR_REVERSE: reverse_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) rnn_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) rnn_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) rnn_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) rnn_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) else: reverse_dir_idx = 1 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) rnn_state_dict["weight_ih_l0_reverse"] = torch.tensor( W_torch, dtype=torch.float32 ) rnn_state_dict["weight_hh_l0_reverse"] = torch.tensor( R_torch, dtype=torch.float32 ) rnn_state_dict["bias_ih_l0_reverse"] = torch.tensor( bW_torch, dtype=torch.float32 ) rnn_state_dict["bias_hh_l0_reverse"] = torch.tensor( bR_torch, dtype=torch.float32 ) # Set RNN state dictionary rnn.load_state_dict(rnn_state_dict, strict=True) # Perform inference X_torch = torch.tensor(X, dtype=torch.float32) initial_h_torch = torch.tensor(initial_h, dtype=torch.float32) if direction == RNN_DIR_REVERSE: Y, next_h = rnn(X_torch.flip([0]), initial_h_torch) Y = Y.flip([0]) else: Y, next_h = rnn(X_torch, initial_h_torch) # Reshape output to ONNX format [seq_length, num_directions, batch_size, hidden_size] Y_ref = Y.detach().numpy() Y_ref = np.reshape(Y_ref, [seq_length, batch_size, num_directions, hidden_size]) Y_ref = np.transpose(Y_ref, [0, 2, 1, 3]) # Reshape states to ONNX format Y_h_ref = next_h.detach().numpy() # --------------------------------------- COMPUTE PYTHON-NUMPY REFERENCE ------------------------------------------- # Create X slices Xslices = list() for t in range(seq_length): Xslices.append(np.reshape(X[t, :, :], [batch_size, input_size])) # Function to compute one RNN cell def compute_rnn(forward): dir_idx = 0 if forward else (0 if direction == RNN_DIR_REVERSE else 1) Wi, Ri, bWi, bRi = get_weights(dir_idx) def f(x): return np.tanh(x) def mm(x, w): return np.matmul(x, w.transpose()) Ht = np.reshape(initial_h[dir_idx, :, :], [batch_size, hidden_size]) Yslices = list() for t in range(seq_length): xt = Xslices[t] if forward else Xslices[seq_length - 1 - t] Ht = f(mm(xt, Wi) + bWi + mm(Ht, Ri) + bRi) Yslices.append(Ht) return Yslices, Ht Yslices = list() Hslices = list() # Compute forward RNN forwardYslices = list() if forwardEnabled: Yt, Ht = compute_rnn(True) forwardYslices += Yt Hslices.append(Ht) # Compute reverse RNN reverseYslices = list() if reverseEnabled: Yt, Ht = compute_rnn(False) reverseYslices += Yt Hslices.append(Ht) # Concatenate slices for t in range(seq_length): if forwardEnabled: Yslices.append(forwardYslices[t]) if reverseEnabled: Yslices.append(reverseYslices[seq_length - 1 - t]) Y_ref_np = np.concatenate(Yslices, 0).reshape( [seq_length, num_directions, batch_size, hidden_size] ) Y_h_ref_np = np.concatenate(Hslices, 0).reshape( [num_directions, batch_size, hidden_size] ) # Compare Numpy with Torch implementation. assert ( np.max(np.abs(Y_ref - Y_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy RNN implementation" assert ( np.max(np.abs(Y_h_ref - Y_h_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy RNN implementation" # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # Node inputs node_inputs = [ "X", "W", "R", "B" if has_bias else "", "", "initial_h" if has_initial_h else "", ] # Node outputs node_outputs = ["Y", "Y_h"] # RNN node definition rnn_node_def = onnx.helper.make_node( "RNN", name="rnn", inputs=node_inputs, outputs=node_outputs, hidden_size=hidden_size, direction=direction, ) # Error node definition err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["Y", "Y_ref"], outputs=["Y_err"] ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # RNN inputs graph_input.append(helper.make_tensor_value_info("X", TensorProto.FLOAT, X_shape)) graph_input.append(helper.make_tensor_value_info("W", TensorProto.FLOAT, W_shape)) graph_input.append(helper.make_tensor_value_info("R", TensorProto.FLOAT, R_shape)) if has_bias: graph_input.append( helper.make_tensor_value_info("B", TensorProto.FLOAT, B_shape) ) if has_sequence_lens: graph_input.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, sequence_lens_shape ) ) if has_initial_h: graph_input.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, initial_h_shape ) ) # Reference input graph_input.append( helper.make_tensor_value_info("Y_ref", TensorProto.FLOAT, Y_shape) ) # RNN initializers graph_init.append(make_init("X", TensorProto.FLOAT, X)) graph_init.append(make_init("W", TensorProto.FLOAT, W)) graph_init.append(make_init("R", TensorProto.FLOAT, R)) if has_bias: graph_init.append(make_init("B", TensorProto.FLOAT, B)) if has_sequence_lens: graph_init.append(make_init("sequence_lens", TensorProto.INT32, sequence_lens)) if has_initial_h: graph_init.append(make_init("initial_h", TensorProto.FLOAT, initial_h)) # Reference initializer graph_init.append(make_init("Y_ref", TensorProto.FLOAT, Y_ref)) # Graph outputs graph_output.append( helper.make_tensor_value_info("Y_err", TensorProto.FLOAT, Y_shape) ) # Define graph (GraphProto) graph_name = "rnn_test" graph_def = helper.make_graph( [rnn_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-rnn") # Check model onnx.checker.check_model(model_def) # Print model with open(model_path, "w") as f: f.write(str(model_def)) # Forward RNN gen_rnn_onnx_test_model( model_path="rnnForward.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, ) # Reverse RNN gen_rnn_onnx_test_model( model_path="rnnReverse.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="reverse", has_bias=True, has_sequence_lens=False, has_initial_h=True, ) # Bidirectional RNN gen_rnn_onnx_test_model( model_path="rnnBidirectional.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="bidirectional", has_bias=True, has_sequence_lens=False, has_initial_h=True, ) # Forward no bias RNN gen_rnn_onnx_test_model( model_path="rnnForwardNoBias.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=False, has_sequence_lens=False, has_initial_h=True, ) # Forward no state RNN gen_rnn_onnx_test_model( model_path="rnnForwardNoState.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=False, )
from __future__ import absolute_import, division, print_function, unicode_literals import argparse import glob import multiprocessing import os import shlex import subprocess import sys from collections import namedtuple from contextlib import contextmanager from distutils import log, sysconfig from distutils.spawn import find_executable from textwrap import dedent import setuptools import setuptools.command.build_ext import setuptools.command.build_py import setuptools.command.develop try: import torch except ImportError as e: print("Unable to import torch. Error:") print("\t", e) print("You need to install pytorch first.") sys.exit(1) print("torch version:", torch.__version__) print("torch location:", os.path.dirname(os.path.realpath(torch.__file__))) # Current setup.py file directory, i.e. glow/torch_glow. FILE_DIR = os.path.realpath(os.path.dirname(__file__)) # Find the top directory with root Makefile, i.e. glow TOP_DIR = os.path.realpath(os.path.dirname(FILE_DIR)) os.environ["TOP_DIR"] = TOP_DIR # Make build directory a subdirectory of FILE_DIR, i.e. # glow/build. CMAKE_BUILD_DIR = os.path.join(TOP_DIR, "build") CMAKE = find_executable("cmake") or find_executable("cmake3") if not CMAKE: print('Could not find "cmake". Make sure it is in your PATH.') sys.exit(1) install_requires = [] setup_requires = [] tests_require = [] extras_require = {} # ################################################################################ # # Flags # ################################################################################ # store first argument assert len(sys.argv) > 0 first_arg = sys.argv[0] # parse known arguments parser = argparse.ArgumentParser() parser.add_argument("--run_cmake", action="store_true", default=False, help="Run cmake") parser.add_argument( "--release", action="store_true", default=False, help="Compile with release on" ) parser.add_argument( "--cmake_prefix_path", type=str, help="Populates -DCMAKE_PREFIX_PATH" ) # restore first and remaining arguments to argv arg_parse_res = parser.parse_known_args() args = arg_parse_res[0] sys.argv = [first_arg] + arg_parse_res[1] # ################################################################################ # # Utilities # ################################################################################ @contextmanager def cd(path): if not os.path.isabs(path): raise RuntimeError("Can only cd to absolute path, got: {}".format(path)) orig_path = os.getcwd() os.chdir(path) try: yield finally: os.chdir(orig_path) # ################################################################################ # # Customized commands # ################################################################################ class cmake_build(setuptools.Command): """ Compiles everything when `python setup.py develop` is run using cmake. Custom args can be passed to cmake by specifying the `CMAKE_ARGS` environment variable. """ def initialize_options(self): pass def finalize_options(self): pass def _run_cmake(self): with cd(CMAKE_BUILD_DIR): cmake_args = [ CMAKE, "-DC10_USE_GLOG=1", "-DCMAKE_BUILD_RTTI=ON", "-DGLOW_BUILD_PYTORCH_INTEGRATION=ON", "-DGLOW_BUILD_EXAMPLES=OFF", "-DGLOW_BUILD_TESTS=OFF", "-DBUILD_SHARED_LIBS=OFF", "-DCMAKE_EXPORT_COMPILE_COMMANDS=ON", "-DCMAKE_BUILD_TYPE={}".format("Release" if args.release else "Debug"), "-DPYTHON_EXECUTABLE={}".format(sys.executable), # PyTorch cmake args "-DPYTORCH_DIR={}".format( os.path.dirname(os.path.realpath(torch.__file__)) ), "-DTORCH_GLOW={}".format(FILE_DIR), ] if args.cmake_prefix_path: cmake_args.append( "-DCMAKE_PREFIX_PATH={}".format(args.cmake_prefix_path) ) if "CMAKE_ARGS" in os.environ: extra_cmake_args = shlex.split(os.environ["CMAKE_ARGS"]) log.info("Extra cmake args: {}".format(extra_cmake_args)) cmake_args.extend(extra_cmake_args) cmake_args.append(TOP_DIR) subprocess.check_call(cmake_args) def _run_build(self): with cd(CMAKE_BUILD_DIR): build_args = [ CMAKE, "--build", os.curdir, "--", "-j", str(multiprocessing.cpu_count()), ] subprocess.check_call(build_args) def run(self): is_initial_build = not os.path.exists(CMAKE_BUILD_DIR) if is_initial_build: os.makedirs(CMAKE_BUILD_DIR) if is_initial_build or args.run_cmake: self._run_cmake() self._run_build() class develop(setuptools.command.develop.develop): def run(self): self.run_command("build_ext") setuptools.command.develop.develop.run(self) class build_ext(setuptools.command.build_ext.build_ext): def run(self): self.run_command("cmake_build") setuptools.command.build_ext.build_ext.run(self) def build_extensions(self): for ext in self.extensions: fullname = self.get_ext_fullname(ext.name) filename = os.path.basename(self.get_ext_filename(fullname)) src = os.path.join(CMAKE_BUILD_DIR, "torch_glow", "src", filename) dst = os.path.join(os.path.realpath(self.build_lib), "torch_glow", filename) print("dst", dst) if not os.path.exists(os.path.dirname(dst)): os.makedirs(os.path.dirname(dst)) self.copy_file(src, dst) cmdclass = {"cmake_build": cmake_build, "develop": develop, "build_ext": build_ext} # ################################################################################ # # Extensions # ################################################################################ ext_modules = [setuptools.Extension(name=str("torch_glow._torch_glow"), sources=[])] # ################################################################################ # # Packages # ################################################################################ # # no need to do fancy stuff so far packages = setuptools.find_packages() # ################################################################################ # # Test # ################################################################################ setup_requires.append("pytest-runner") tests_require.append("pytest") # ################################################################################ # # Final # ################################################################################ setuptools.setup( name="torch_glow", description="PyTorch + Glow", ext_modules=ext_modules, cmdclass=cmdclass, packages=packages, include_package_data=True, install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, extras_require=extras_require, author="jackm321", author_email="[email protected]", url="https://github.com/pytorch/glow", )
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch_glow def pytest_addoption(parser): parser.addoption("--backend", action="store", default=None) def pytest_sessionstart(session): backend = session.config.getoption("--backend") if backend: torch_glow.setGlowBackend(backend)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import itertools import os import unittest from contextlib import contextmanager from copy import deepcopy from io import BytesIO import numpy as np import torch import torch_glow from parameterized import parameterized GLOW_FUSION_GROUP = "glow::FusionGroup" SUBGRAPH_ATTR = "Subgraph" BACKEND_NAME_KEY = "BACKEND_NAME" INTERPRETER = "Interpreter" DEFAULT_BACKEND = os.environ.get(BACKEND_NAME_KEY, "Interpreter") def get_backend_name(): return os.environ.get(BACKEND_NAME_KEY, INTERPRETER) @contextmanager def ephemeral_torchglow_settings( fp16=False, backend=DEFAULT_BACKEND, fusion=False, blocklist=None, accept_all_layouts=False, ): old_fp16 = torch_glow.get_convert_to_fp16() old_clip = torch_glow.get_clip_fp16() old_convert_fused = torch_glow.get_convert_fused_to_fp16() old_backend = torch_glow.getGlowBackendName() old_blocklist = torch_glow.getFusionBlocklist() old_fusion = torch_glow.getFusionPassEnabled() try: if fusion: torch_glow.enableFusionPass_DO_NOT_USE_THIS() else: torch_glow.disableFusionPass() if fp16: torch_glow.enable_convert_to_fp16() torch_glow.enable_convert_fused_to_fp16() torch_glow.enable_clip_fp16() else: torch_glow.disable_convert_to_fp16() torch_glow.disable_convert_fused_to_fp16() torch_glow.disable_clip_fp16() if blocklist is None: torch_glow.clearFusionBlocklist() else: torch_glow.setFusionBlocklist(list(blocklist)) if accept_all_layouts: torch_glow.enable_accept_all_layout() else: torch_glow.disable_accept_all_layout() torch_glow.setGlowBackend(backend) yield finally: torch_glow.enable_convert_to_fp16() if old_fp16 else torch_glow.disable_convert_to_fp16() torch_glow.enable_clip_fp16() if old_clip else torch_glow.disable_clip_fp16() torch_glow.enable_convert_fused_to_fp16() if old_convert_fused else torch_glow.disable_convert_fused_to_fp16() torch_glow.enableFusionPass_DO_NOT_USE_THIS() if old_fusion else torch_glow.disableFusionPass() torch_glow.setGlowBackend(old_backend) torch_glow.setFusionBlocklist(old_blocklist) def check_skip(case): backend = DEFAULT_BACKEND supported = {INTERPRETER} try: supported = supported | case.supported_backends except AttributeError: pass if backend not in supported: case.skipTest("Skipping tests for backend: " + backend) def assert_equivalent( result1_name, result1, result2_name, result2, atol=5e-4, rtol=1e-3, use_eq=False ): if isinstance(result1, tuple) or isinstance(result2, tuple): assert isinstance(result1, tuple) and isinstance(result2, tuple) assert len(result1) == len(result2) return all( assert_equivalent( result1_name, a, result2_name, b, atol=atol, rtol=rtol, use_eq=use_eq ) for a, b in zip(result1, result2) ) elif result2.dtype == torch.bool: diff = torch.eq(result1, result2) if torch.all(diff): return True else: error = f"Diff:{diff}\n" raise AssertionError(error) else: matches = ( torch.equal(result1, result2) if use_eq else torch.allclose(result1, result2, rtol=rtol, atol=atol) ) if matches: return True else: diff = torch.abs(result1 - result2) error = f"{result1_name} result:\n{result1}\n" error += f"{result2_name} result:\n{result2}\n" error += f"Diff:\n{diff}\n" error += f"Max diff:\n{torch.max(diff)}" raise AssertionError(error) # To avoid linter complaining about allocating default value DEFAULT_SKIP_BACKENDS_SET = {} def run_comparison_tests( module, inputs, fusible_ops, fp32vfp32_atol=5e-4, fp32vfp32_rtol=1e-3, fp32vfp16_atol=1e-2, fp32vfp16_rtol=1e-2, fp16vfp16_atol=5e-4, fp16vfp16_rtol=1e-3, fusion_blocklist=None, scripted=False, check_trace=True, skip_for_backends=DEFAULT_SKIP_BACKENDS_SET, skip_fp32_vs_fp16=False, skip_to_glow=False, # Ugly hack, TODO: Remove ): # tuplify inputs if not isinstance(inputs, tuple): inputs = (inputs,) # Check that test is setup properly if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") if "Interpreter" in skip_for_backends: raise AssertionError( "Interpreter backend can't be skipped, skip entire test until Interpreter is supported" ) # If other_backend isn't supported then skip the test other_backend = torch_glow.getGlowBackendName() if other_backend in skip_for_backends: raise unittest.SkipTest(f"backend {other_backend} not supported for this test") # Get other Glow backend besides Interpreter to test if applicable if other_backend == "Interpreter": other_backend = None if skip_to_glow and other_backend: raise AssertionError( f"to_glow must be used for non-interpreter backends, skip this test for {other_backend} backend until the test supports to_glow" ) def prepare(m, inputs, fp16, backend, fusion): """ "Helper to prepare a JIT module to run either on PyTorch or Glow""" inputs = deepcopy(inputs) def getJITModule(): m_jit = None if scripted: m_jit = torch.jit.script(m) else: m_jit = torch.jit.trace(m, inputs, check_trace=check_trace) if scripted or not check_trace: # run it once to activate the fuser if not run yet m_jit(*inputs) return m_jit with torch.no_grad(): m_jit = None if fusion: with ephemeral_torchglow_settings( fusion=True, fp16=fp16, backend=backend, blocklist=fusion_blocklist ): m_jit = getJITModule() assert_fused( m_jit.graph_for(*(deepcopy(inputs))), fusible_ops, ) else: m_jit = getJITModule() if backend != "PyTorch": # to_glow m_jit = torch_glow.lower( model=m_jit, example_inputs=inputs, backend=backend, convert_to_fp16=fp16, ) return m_jit def compare(a_name, a, b_name, b, atol, rtol, use_eq=False): """ "Helper to compare two JIT modules, skip comparison if either is None""" if not a: print(f"Skipping {a_name} vs {b_name} because {a_name} not computed") return if not b: print(f"Skipping {a_name} vs {b_name} because {b_name} not computed") return a_ouputs = a(*deepcopy(inputs)) b_ouputs = b(*deepcopy(inputs)) assert_equivalent(a_name, a_ouputs, b_name, b_ouputs, atol, rtol, use_eq) # Prepare modules for testing m_pytorch_fp32 = prepare( module, inputs, fp16=False, backend="PyTorch", fusion=False ) m_interpreter_fuser_fp32 = prepare( module, inputs, fp16=False, backend="Interpreter", fusion=True ) m_interpreter_fp32 = None m_interpreter_fp16 = None m_other_fp16 = None if not skip_to_glow: m_interpreter_fp32 = prepare( module, inputs, fp16=False, backend="Interpreter", fusion=True ) m_interpreter_fp16 = prepare( module, inputs, fp16=True, backend="Interpreter", fusion=True ) m_other_fp16 = None if other_backend: m_other_fp16 = prepare( module, inputs, fp16=True, backend=other_backend, fusion=False ) # JIT vs Interpreter, via to_glow, fp32-fp32 compare( "m_pytorch_fp32", m_pytorch_fp32, "m_interpreter_fp32", m_interpreter_fp32, fp32vfp32_atol, fp32vfp32_rtol, ) # Interpreter vs Interpreter, via to_glow and fuser, fp32-fp32 compare( "m_interpreter_fp32", m_interpreter_fp32, "m_interpreter_fuser_fp32", m_interpreter_fuser_fp32, fp32vfp32_atol, fp32vfp32_rtol, use_eq=True, # fuser and to_glow should match exactly ) # Interpreter vs Other, via to_glow, fp16-fp16 compare( "m_interpreter_fp16", m_interpreter_fp16, "m_other_fp16", m_other_fp16, fp16vfp16_atol, fp16vfp16_rtol, ) if not skip_fp32_vs_fp16: # JIT vs Interpreter, via to_glow, fp32-fp16 compare( "m_pytorch_fp32", m_pytorch_fp32, "m_interpreter_fp16", m_interpreter_fp16, fp32vfp16_atol, fp32vfp16_rtol, ) def compare_tracing_methods( module, *inputs, atol=5e-4, rtol=1e-3, reference=None, fusible_ops=None, fusion_blocklist=None, fp16=False, scripted=False, check_trace=True, accept_all_layouts=False, skip_to_glow=False, # Ugly hack, TODO: Remove ): if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") def trace(mod, ins): if scripted: return torch.jit.script(mod) else: return torch.jit.trace(mod, ins, check_trace=check_trace) with torch.no_grad(): with ephemeral_torchglow_settings( fusion=True, fp16=fp16, blocklist=fusion_blocklist, accept_all_layouts=accept_all_layouts, ): fusion_inputs = deepcopy(inputs) fusion_trace = trace(module, fusion_inputs) assert_fused( fusion_trace.graph_for(*fusion_inputs), (fusible_ops or []), accept_any=fusible_ops is None, ) fusion_result = fusion_trace(*fusion_inputs) with ephemeral_torchglow_settings( fusion=False, fp16=fp16, accept_all_layouts=accept_all_layouts ): if scripted: torchscript_result = module(*deepcopy(inputs)) else: torchscript_inputs = deepcopy(inputs) torchscript_trace = trace(module, torchscript_inputs) torchscript_result = torchscript_trace(*torchscript_inputs) with ephemeral_torchglow_settings( fusion=False, fp16=fp16, accept_all_layouts=accept_all_layouts ): if not skip_to_glow: glow_inputs = deepcopy(inputs) traced_module = trace(module, glow_inputs) lowered_module = torch_glow.lower( traced_module, glow_inputs, DEFAULT_BACKEND ) glow_result = lowered_module(*glow_inputs) if reference: assert_equivalent( "Reference", reference, "Glow fusion", fusion_trace, atol=atol, rtol=rtol, ) assert_equivalent( "Reference", reference, "TorchScript", torchscript_result, atol=atol, rtol=rtol, ) if not skip_to_glow: assert_equivalent( "Reference", reference, "Glow", glow_result, atol=atol, rtol=rtol ) # This is written out manually instead of using combinations in order to aid # debugging. TODO: Clean up. assert_equivalent( "Glow fusion", fusion_result, "TorchScript", torchscript_result, atol=atol, rtol=rtol, ) if not skip_to_glow: assert_equivalent( "Glow fusion", fusion_result, "Glow", glow_result, atol=atol, rtol=rtol ) assert_equivalent( "TorchScript", torchscript_result, "Glow", glow_result, atol=atol, rtol=rtol, ) # Compilation test for glow lowering without executing. # This is designed for use cases where the original graph contains placeholder operators. def test_lowering( module, *inputs, fusible_ops=None, fusion_blocklist=None, fp16=False, scripted=False, check_trace=True, accept_all_layouts=False, ): if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") def trace(mod, ins): if scripted: return torch.jit.script(mod) else: return torch.jit.trace(mod, ins, check_trace=check_trace) with torch.no_grad(): with ephemeral_torchglow_settings( fusion=False, fp16=fp16, accept_all_layouts=accept_all_layouts ): glow_inputs = deepcopy(inputs) traced_module = trace(module, glow_inputs) # If deferred weight loader is not set, it will throw a runtime exception _lowered_module = torch_glow.lower( traced_module, glow_inputs, DEFAULT_BACKEND ) # unused def compare_tracing_methods_error( module, *inputs, fusible_ops=None, fusion_blocklist=None, fp16=False, ): if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") def trace(mod, ins): return torch.jit.trace(mod, ins) with torch.no_grad(): with ephemeral_torchglow_settings( fusion=True, fp16=fp16, blocklist=fusion_blocklist ): fusion_inputs = deepcopy(inputs) try: fusion_trace = trace(module, fusion_inputs) assert_fused( fusion_trace.graph_for(*fusion_inputs), *(fusible_ops or []), accept_any=fusible_ops is None, ) fusion_trace(*fusion_inputs) except Exception: pass else: raise AssertionError("Error expected (fusion), but none were received") with ephemeral_torchglow_settings(fusion=False, fp16=fp16): try: torchscript_inputs = deepcopy(inputs) torchscript_trace = trace(module, torchscript_inputs) torchscript_trace(*torchscript_inputs) except Exception: pass else: raise AssertionError( "Error expected (torchscript), but none were received" ) with ephemeral_torchglow_settings(fusion=False, fp16=fp16): try: glow_inputs = deepcopy(inputs) glow_spec = torch_glow.lower( model=module, example_inputs=glow_inputs, backend=DEFAULT_BACKEND, ) glow_trace = torch_glow.to_glow(trace(module, glow_inputs), glow_spec) glow_trace(*glow_inputs) except Exception: pass else: raise AssertionError("Error expected (glow), but none were received") def assert_fused(fused_graph, ops, accept_any=False, strict=False): expected = set(ops) fused = set() with torch.no_grad(): for node in fused_graph.nodes(): kind = node.kind() if kind == GLOW_FUSION_GROUP: fused.update(map(lambda n: n.kind(), node.g(SUBGRAPH_ATTR).nodes())) else: assert ( kind not in expected ), f"Expected {kind} to be fused in graph\n{fused_graph}" missing = set() if (accept_any and fused) else expected - fused unexpected = set() if (accept_any or not strict) else fused - expected assert ( not unexpected ), f"Expected fusion of {expected}, but {fused} was fused in graph\n{fused_graph}" assert ( not missing ), f"Expected fusion of {expected}, but only {fused} was fused in graph\n{fused_graph}" def graph_contains_str(graph, substr): return graph.str().find(substr) >= 0 # Verifies equal modules for save-load tests. def assertModulesEqual(case, mod1, mod2, message=None): for p1, p2 in itertools.zip_longest(mod1.parameters(), mod2.parameters()): case.assertTrue(p1.equal(p2), message) def save_and_reload_model(model): buf = BytesIO() print("saving ...") torch.jit.save(model, buf) print("done") print("reloading....") buf.seek(0) reloaded_model = torch.jit.load(buf) print("done") return reloaded_model class TorchGlowTestCase(unittest.TestCase): """ Base class for torch_glow tests that ensure that torch.manual_seed is called before each test. NOTE: this won't effect arguments to the test case so make sure that test cases generate their own inputs to the test network within the test case not outside of it. """ def setUp(self): torch.manual_seed(0) np.random.seed(0) print("running the setup for TorchGlowTest") def deterministic_expand(params): """Takes params as a list of lambdas where each lambda produces a tuple of unique parameters for the test""" torch.manual_seed(0) np.random.seed(0) return parameterized.expand([p() for p in params])
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import pickle import torch import torch_glow from tests import utils class TestCompilationSpec(utils.TorchGlowTestCase): def build_compiliation_spec(self): compilation_spec = torch_glow.CompilationSpec() compilation_spec_settings = compilation_spec.get_settings() compilation_spec_settings.set_glow_backend("CPU") compilation_spec_settings.set_enable_fuser(True) fuser_settings = compilation_spec.get_fuser_settings() fuser_settings.set_min_fusion_group_size(3) fuser_settings.set_max_fusion_merge_size(4) fuser_settings.set_fusion_start_index(5) fuser_settings.set_fusion_end_index(6) fuser_settings.op_blacklist_append("aten::mean") fuser_settings.op_blacklist_append("aten::dropout") compilation_group = torch_glow.CompilationGroup() input1_spec = torch_glow.input_spec_from_tensor(torch.randn(2, 3, 224, 224)) input2_spec = torch_glow.input_spec_from_tensor( torch.randn(3, 2).to(torch.float16) ) compilation_group.input_sets_append([input1_spec, input2_spec]) compilation_group.input_sets_append( torch_glow.input_specs_from_tensors( [torch.randn(1, 3, 224, 224), torch.randn(4, 1)] ) ) compilation_group_settings = compilation_group.get_settings() compilation_group_settings.set_convert_to_fp16(True) compilation_group_settings.set_num_devices_to_use(50) compilation_group_settings.set_replication_count(52) compilation_group_settings.backend_specific_opts_insert("apple", "orange") compilation_spec.compilation_groups_append(compilation_group) default_compilation_group_settings = ( compilation_spec.get_default_compilation_group_settings() ) default_compilation_group_settings.set_convert_to_fp16(False) default_compilation_group_settings.set_num_devices_to_use(89) default_compilation_group_settings.set_replication_count(90) default_compilation_group_settings.backend_specific_opts_insert( "hello", "goodbye" ) return compilation_spec def validate_compilation_spec(self, compilation_spec): compilation_spec_settings = compilation_spec.get_settings() self.assertEqual(compilation_spec_settings.get_glow_backend(), "CPU") self.assertEqual(compilation_spec_settings.get_enable_fuser(), True) fuser_settings = compilation_spec.get_fuser_settings() self.assertEqual(fuser_settings.get_min_fusion_group_size(), 3) self.assertEqual(fuser_settings.get_max_fusion_merge_size(), 4) self.assertEqual(fuser_settings.get_fusion_start_index(), 5) self.assertEqual(fuser_settings.get_fusion_end_index(), 6) self.assertEqual(fuser_settings.get_op_blacklist()[0], "aten::mean") self.assertEqual(fuser_settings.get_op_blacklist()[1], "aten::dropout") compilation_groups = compilation_spec.get_compilation_groups() self.assertEqual(len(compilation_groups), 1) compilation_group = compilation_groups[0] input_sets = compilation_group.get_input_sets() self.assertEqual(len(input_sets), 2) self.assertEqual(input_sets[0][0].get_dims(), [2, 3, 224, 224]) self.assertEqual(input_sets[0][1].get_dims(), [3, 2]) self.assertEqual(input_sets[1][0].get_dims(), [1, 3, 224, 224]) self.assertEqual(input_sets[1][1].get_dims(), [4, 1]) # 5 is at::Half self.assertEqual(input_sets[0][1].get_elem_type(), 5) compilation_group_settings = compilation_group.get_settings() self.assertEqual(compilation_group_settings.get_convert_to_fp16(), True) self.assertEqual(compilation_group_settings.get_num_devices_to_use(), 50) self.assertEqual(compilation_group_settings.get_replication_count(), 52) self.assertEqual( compilation_group_settings.backend_specific_opts_at("apple"), "orange" ) default_compilation_group_settings = ( compilation_spec.get_default_compilation_group_settings() ) self.assertEqual( default_compilation_group_settings.get_convert_to_fp16(), False ) self.assertEqual( default_compilation_group_settings.get_num_devices_to_use(), 89 ) self.assertEqual(default_compilation_group_settings.get_replication_count(), 90) self.assertEqual( default_compilation_group_settings.backend_specific_opts_at("hello"), "goodbye", ) def test_new_glow_compile_spec(self): """Test glow compile spec basics.""" compilation_spec = self.build_compiliation_spec() # Sanity check self.validate_compilation_spec(compilation_spec) # Serialize and deserialize pickled = pickle.dumps(compilation_spec) unpickled = pickle.loads(pickled) # Recheck the spec self.validate_compilation_spec(unpickled)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import tempfile import torch import torch_glow from tests import utils class TestLoadBackendSpecificOptions(utils.TorchGlowTestCase): def test_backend_specific_options(self): """Test loading backend specific options from YAML file.""" def test_f(a, b): return a.add(b) x = torch.randn(4) y = torch.randn(4) # Create YAML file with backend options with tempfile.NamedTemporaryFile() as options_fd: options_fd.write(b"interpreter-memory: 4194304\n") options_fd.flush() # Run Glow torch_glow.loadBackendSpecificOptions(options_fd.name) torch_glow.enableFusionPass_DO_NOT_USE_THIS() glow_trace = torch.jit.trace(test_f, (x, y), check_trace=False) glow_trace(x, y)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils def get_compilation_spec(inputs): """helper function to get the compilation spec of the submodule""" spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) compilation_group.input_sets_append(torch_glow.input_specs_from_tensors(inputs)) return spec class QuantizedModule(torch.nn.Module): def forward(self, a, b): return torch.ops.quantized.add(a, b, scale=1.0 / 21, zero_point=10) class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.nn.quantized.Quantize( scale=1.0 / 21, zero_point=0, dtype=torch.qint8 ) self.dequant = torch.nn.quantized.DeQuantize() self.add = QuantizedModule() def forward(self, a, b): return self.dequant(self.add(self.quant(a), self.quant(b))) class TestInputSpec(utils.TorchGlowTestCase): def test_input_spec(self): """Test setting quantized and non-quantized input specs.""" with torch.no_grad(): a = torch.tensor([[0.1]]) b = torch.tensor([[0.1]]) mod = TestModule() traced_model = torch.jit.trace(mod, (a, b)) ref_result = traced_model(a, b) # test non-quantized input glow_mod = torch_glow.to_glow(traced_model, get_compilation_spec((a, b))) glow_result = glow_mod(a, b) self.assertTrue(torch.allclose(ref_result, glow_result)) # test quantized input add_inputs = torch_glow.get_submod_inputs(mod, "add", (a, b)) glow_mod = torch_glow.to_glow_selective( traced_model, {"add": get_compilation_spec(add_inputs)} ) glow_result = glow_mod(a, b) self.assertTrue(torch.allclose(ref_result, glow_result))
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils class Qux(torch.nn.Module): def __init__(self, x): super(Qux, self).__init__() self.x = x def forward(self, a, b): return a - b - self.x class Baz(torch.nn.Module): def __init__(self, x): super(Baz, self).__init__() self.x = x def forward(self, a, b): return a + b * self.x class Bar(torch.nn.Module): def __init__(self, x): super(Bar, self).__init__() self.x = x def forward(self, a, b): return a * b + self.x class Foo(torch.nn.Module): def __init__(self, bar, baz): super(Foo, self).__init__() self.bar = bar self.baz = baz def forward(self, a, b): return self.baz(self.bar(a.reshape(1, -1), b.reshape(1, -1)), b) class Model(torch.nn.Module): def __init__(self, foo, qux): super(Model, self).__init__() self.foo = foo self.qux = qux def forward(self, a, b): return self.qux(self.foo(a, b), a) r""" model / \ foo qux (Glow) / \ bar (Glow) baz """ bar = Bar(4.0) baz = Baz(2.0) qux = Qux(3.0) foo = Foo(bar, baz) model = Model(foo, qux) def get_compilation_spec(inputs): """helper function to get the compilation spec of the submodule""" spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) compilation_group.input_sets_append(torch_glow.input_specs_from_tensors(inputs)) return spec class TestSelectiveToGlow(utils.TorchGlowTestCase): def test_to_glow_selective(self): inputs = (torch.zeros(4) + 8, torch.zeros(4) + 7) torch_res = model(*inputs) bar_inputs = torch_glow.get_submod_inputs(model, "foo.bar", inputs) qux_inputs = torch_glow.get_submod_inputs(model, "qux", inputs) glow_mod = torch_glow.to_glow_selective( model, { "foo.bar": (get_compilation_spec(bar_inputs), bar_inputs), "qux": (get_compilation_spec(qux_inputs), qux_inputs), }, inplace=False, ) glow_mod = torch.jit.trace(glow_mod, inputs) glow_res = glow_mod(*inputs) assert torch.allclose(torch_res, glow_res) def test_to_glow_selective_already_scripted(self): inputs = (torch.zeros(4) + 8, torch.zeros(4) + 7) torch_res = model(*inputs) bar_inputs = torch_glow.get_submod_inputs(model, "foo.bar", inputs) qux_inputs = torch_glow.get_submod_inputs(model, "qux", inputs) with torch.no_grad(): traced_model = torch.jit.trace(model, inputs) glow_mod = torch_glow.to_glow_selective( traced_model, { "foo.bar": get_compilation_spec(bar_inputs), "qux": get_compilation_spec(qux_inputs), }, inplace=False, ) glow_res = glow_mod(*inputs) assert torch.allclose(torch_res, glow_res)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import GLOW_FUSION_GROUP class TestOnlyTensorOutputs(utils.TorchGlowTestCase): def test_only_tensor_outputs(self): """Test that Glow fuser only produces tensor outputs.""" def f(a, b): x = (a + b).size(0) c = a.reshape(x, -1) return a + c torch_glow.disableFusionPass() a = torch.randn(5, 5) b = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a, b)) jit_f_graph = jit_f.graph_for(a, b) # By creating a graph with an aten::size (supported) feeding into an # unsupported op (prim::ListConstruct), we see that even if an op is # supported, if it produces a non-tensor output to the fusion group it # would not be fused. torch_glow.glowCustomFuseDebug_( jit_f_graph, ["prim::Constant", "aten::add", "aten::size", "aten::reshape"] ) fusion_nodes = 0 aten_sizes = 0 for node in jit_f_graph.nodes(): if node.kind() == GLOW_FUSION_GROUP: fusion_nodes += 1 if node.kind() == "aten::size": aten_sizes += 1 assert ( fusion_nodes == 2 ), "Expected two fusion nodes to be split up with aten::size between them" assert aten_sizes == 1, "Expected aten::size not to be fused"
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F import torch_glow from tests import utils class TestJITVsGlowPath(utils.TorchGlowTestCase): def test_jit_vs_glow_path(self): """Basic test of the JIT vs. Glow logging feature.""" torch_glow.enable_jit_vs_glow_compare() class TestModule(torch.nn.Module): def forward(self, input, weight): return F.linear((input + input), weight) n = 5 in_features = 4 out_features = 3 input = torch.randn(n, in_features) weight = torch.randn(out_features, in_features) utils.compare_tracing_methods( TestModule(), input, weight, fusible_ops={"aten::add", "aten::linear"}, ) def test_jit_vs_glow_int_path(self): """Test JIT vs. Glow logging with int type""" torch_glow.enable_jit_vs_glow_compare() class TestModule(torch.nn.Module): def forward(self, a, b): c = a + b return c a = torch.randn(5, 6).to(dtype=torch.int32) b = torch.randn(5, 6).to(dtype=torch.int32) utils.compare_tracing_methods(TestModule(), a, b, fusible_ops={"aten::add"}) def test_jit_vs_glow_inplace(self): """Test JIT vs. Glow logging with in-place op""" torch_glow.enable_jit_vs_glow_compare() class TestModule(torch.nn.Module): def forward(self, a, b): a += b return a a = torch.randn(5, 6) b = torch.randn(5, 6) utils.compare_tracing_methods(TestModule(), a, b, fusible_ops={"aten::add_"})
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import GLOW_FUSION_GROUP, SUBGRAPH_ATTR class TestBlockList(utils.TorchGlowTestCase): def test_op_blocklist(self): """Test Glow fuser op kind blacklisting mechanism.""" def f(a, b): return (a + b) * (a - b) torch_glow.enableFusionPass_DO_NOT_USE_THIS() torch_glow.setFusionBlocklist(["aten::add"]) a = torch.randn(5, 5) b = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a, b)) jit_f_graph = jit_f.graph_for(a, b) fused_add = False fused_sub = False for node in jit_f_graph.nodes(): if node.kind() == GLOW_FUSION_GROUP: glow_subgraph = node.g(SUBGRAPH_ATTR) for node in glow_subgraph.nodes(): if node.kind() == "aten::add": fused_add = True if node.kind() == "aten::sub": fused_sub = True assert not fused_add, "Expected aten::add to be blacklisted" assert fused_sub, "Expected aten::sub to not be blacklisted" torch_glow.clearFusionBlocklist() def test_op_index_blocklist(self): """Test Glow fuser index blacklisting mechanism.""" def f(a, b): x1 = a * b x2 = x1 * b x3 = x2 * a x4 = x3 / b x5 = x4 / a x6 = x5 / b x7 = x6 * a x8 = x7 * b return x8 torch_glow.enableFusionPass_DO_NOT_USE_THIS() torch_glow.setFusionStartIndex(3) torch_glow.setFusionEndIndex(6) a = torch.randn(5, 5) b = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a, b)) jit_f_graph = jit_f.graph_for(a, b) torch_glow.clearFusionIndices() fused_muls = 0 fused_divs = 0 for node in jit_f_graph.nodes(): if node.kind() == GLOW_FUSION_GROUP: glow_subgraph = node.g(SUBGRAPH_ATTR) for node in glow_subgraph.nodes(): if node.kind() == "aten::mul": fused_muls += 1 if node.kind() == "aten::div": fused_divs += 1 assert fused_muls == 0, "Expected no aten::muls to be fused" assert fused_divs == 3, "Expected all 3 aten::divs to be fused"
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import graph_contains_str graph_str = """ graph(%input : Tensor, %weight : Tensor, %bias : Tensor): %c : int = prim::Constant[value=4]() %d : int = prim::Constant[value=1]() %1 : int = aten::dim(%input) %2 : bool = aten::eq(%1, %c) %3 : Tensor = prim::If(%2) block0(): %4 : Tensor = aten::t(%weight) %5 : int = prim::Constant[value=1]() %6 : Tensor = aten::mm(%input, %4) %7 : Tensor = aten::add(%bias, %6, %5) -> (%7) block1(): %8 : Tensor = aten::t(%weight) %9 : Tensor = aten::matmul(%input, %8) %10 : Tensor = aten::add_(%9, %bias, %d) -> (%10) return (%3) """ class TestFuseLinear(utils.TorchGlowTestCase): def test_fuse_linear(self): """Test Glow's fuseBranchedLinearPattern JIT pass""" graph = torch._C.parse_ir(graph_str) assert not graph_contains_str(graph, "glow::fused_linear") torch_glow.fuseBranchedLinearPattern_(graph) assert graph_contains_str(graph, "glow::fused_linear")
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.linear = torch.nn.Linear(5, 10) def forward(self, x): return self.linear(x) def run_model(m, input, randomize): torch_glow.disableFusionPass() traced_m = torch.jit.trace(m, input) if randomize: torch_glow.enable_randomize_constants() else: torch_glow.disable_randomize_constants() spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) input_spec = torch_glow.InputSpec() input_spec.set_same_as(input) compilation_group.input_sets_append([input_spec]) glow_m = torch_glow.to_glow(traced_m, {"forward": spec}) return glow_m(input) class TestRandomizeWeights(utils.TorchGlowTestCase): def test_randomize_weights(self): m = Model() input = torch.randn(5) normal1 = run_model(m, input, False) normal2 = run_model(m, input, False) rand = run_model(m, input, True) assert torch.allclose(normal1, normal2) assert not torch.allclose(normal1, rand)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import glob import os import torch import torch_glow from tests import utils class Foo(torch.nn.Module): def __init__(self): super(Foo, self).__init__() self.conv1 = torch.nn.Conv2d(3, 6, 3) self.relu = torch.nn.ReLU() self.conv2 = torch.nn.Conv2d(6, 16, 3) def forward(self, x): x = self.conv1(x) x = self.relu(x) y = self.conv2(x) return y class Bar(torch.nn.Module): def __init__(self, foo): super(Bar, self).__init__() self.foo = foo def forward(self, x): y = self.foo(x) return y class Baz(torch.nn.Module): def __init__(self, foo): super(Baz, self).__init__() self.foo = foo def forward(self, x): y = self.foo(x) return (x, y) def create_model(x, ModType): foo = Foo() foo = torch.ao.quantization.QuantWrapper(foo) foo.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") torch.ao.quantization.prepare(foo, inplace=True) foo(x) torch.ao.quantization.convert(foo, inplace=True) model = ModType(foo) return model class TestToGlowWriteToOnnx(utils.TorchGlowTestCase): def lower_and_write_to_onnx_helper(self, ModType, onnx_prefix): x = torch.randn(1, 3, 8, 8) model = create_model(x, ModType) spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) input_spec = torch_glow.InputSpec() input_spec.set_same_as(x) compilation_group.input_sets_append([input_spec]) scripted_mod = torch.jit.trace(model, x) torch_glow.enable_write_to_onnx() torch_glow.set_onnx_file_name_prefix(onnx_prefix) torch_glow.enable_write_without_randomize() lowered_model = torch_glow.to_glow(scripted_mod, {"forward": spec}) # Run Glow model g = lowered_model(x) # Run reference model t = model(x) self.assertEqual(type(g), type(t)) self.assertEqual(len(g), len(t)) for (gi, ti) in zip(g, t): self.assertTrue(torch.allclose(gi, ti)) assert os.path.exists(onnx_prefix + ".onnxtxt") onnx_files = glob.glob(onnx_prefix + "*.onnx*") for f in onnx_files: os.remove(f) def test_lower_and_write_to_onnx_tensor_output(self): onnx_prefix = "write_to_onnx_test1" self.lower_and_write_to_onnx_helper(Bar, onnx_prefix) def test_lower_and_write_to_onnx_tuple_output(self): onnx_prefix = "write_to_onnx_test2" self.lower_and_write_to_onnx_helper(Baz, onnx_prefix)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import unittest import torch import torch_glow from tests import utils class TestFuseParallelBranches(utils.TorchGlowTestCase): def test_fuse_parallel_branches_with_fusible_root(self): r"""Test GlowFuser fusing parallel branches with a common fusible root a = add(x, y) / \ b1 = add(a, x) b2 = add(a, y) \ / res = TupleConstruct(b1, b2) This should be fused as glow::FusionGroup_0 | TupleConstruct """ def test_fuser(x, y): a = x + y branch1 = a + x branch2 = a + y res = (branch1, branch2) return res inputs = (torch.randn(2, 4), torch.randn(2, 4)) traced = torch.jit.trace(test_fuser, inputs) torch_glow.glowCustomFuseDebug_(traced.graph) count = 0 for node in traced.graph.nodes(): if node.kind() == "glow::FusionGroup": count += 1 assert count == 1, f"Expect 1 glow::FusionGroup, found {count}." # TODO: support fusing parallel branches without a common fusible root correctly @unittest.skip("Not supported yet") def test_fuse_parallel_branches_without_fusible_root(self): r"""Test GlowFuser fusing parallel branches without a common fusible root x = add(x, x) y = add(y, y) | | b1 = add(x, x) b2 = add(y, y) \ / res = TupleConstruct(b1, b2) This should be fused as glow::FusionGroup_0 | TupleConstruct """ def test_fuser(x, y): x = x + x y = y + y branch1 = x + x branch2 = y + y res = (branch1, branch2) return res inputs = (torch.randn(2, 4), torch.randn(2, 4)) traced = torch.jit.trace(test_fuser, inputs) torch_glow.glowCustomFuseDebug_(traced.graph) count = 0 for node in traced.graph.nodes(): if node.kind() == "glow::FusionGroup": count += 1 assert count == 1, f"Expect 1 glow::FusionGroup, found {count}."
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals from collections import OrderedDict import torch import torch_glow from tests import utils def create_model(x, relu, bias=True): """x is an example input, relu is whether or not to include a fused relu.""" with torch.no_grad(): x_size = len(x.size()) conv_op = None if x_size == 4: if bias: conv_op = torch.nn.Conv2d(3, 10, 3) else: conv_op = torch.nn.Conv2d(3, 10, 3, bias=False) elif x_size == 5: conv_op = torch.nn.Conv3d(3, 10, 3) else: print(f"Only 2d and 3d conv supported, got {x_size}d inputs") exit(1) conv_op.weight.random_(-1, 1) if bias: conv_op.bias.data.random_(-1, 1) model = None if relu: model = torch.nn.Sequential( OrderedDict([("conv", conv_op), ("relu", torch.nn.ReLU())]) ) model = torch.ao.quantization.fuse_modules(model, [["conv", "relu"]]) else: model = torch.nn.Sequential(OrderedDict([("conv", conv_op)])) model = torch.ao.quantization.QuantWrapper(model) model.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") torch.ao.quantization.prepare(model, inplace=True) model(x) torch.ao.quantization.convert(model, inplace=True) return model def run_to_glow(m, x): """Trace the model m with input x and call to_glow""" traced_m = torch.jit.trace(m, (x)) spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) input_spec = torch_glow.InputSpec() input_spec.set_same_as(x) compilation_group.input_sets_append([input_spec]) lowered_module = torch_glow.to_glow(traced_m, spec) return lowered_module class TestConvToGlow(utils.TorchGlowTestCase): def test_conv2d_to_glow(self): x = torch.randn([1, 3, 30, 30]) m = create_model(x, False) run_to_glow(m, x) def test_conv2d_relu_to_glow(self): x = torch.randn([1, 3, 30, 30]) m = create_model(x, True) run_to_glow(m, x) def test_conv3d_to_glow(self): x = torch.randn([1, 3, 30, 30, 30]) m = create_model(x, False) run_to_glow(m, x) def test_conv3d_relu_to_glow(self): x = torch.randn([1, 3, 30, 30, 30]) m = create_model(x, True) run_to_glow(m, x) def test_conv2d_to_glow_empty_bias(self): x = torch.randn([1, 3, 30, 30]) m = create_model(x, False, False) run_to_glow(m, x)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import graph_contains_str def foo(x): y = x.dim() if y == 1: return x else: if x == 2: return x * 2 else: raise RuntimeError("hi") class TestRemoveException(utils.TorchGlowTestCase): def test_remove_exceptions(self): """Test Glow's removeExceptions JIT pass""" foo_jit = torch.jit.script(foo) graph = foo_jit.graph assert graph_contains_str(graph, "prim::RaiseException") torch_glow.removeExceptions_(graph) assert not graph_contains_str(graph, "prim::RaiseException")
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import GLOW_FUSION_GROUP class TestQuantizedCut(utils.TorchGlowTestCase): def test_quantized_cut(self): """Test cut quantized chunk in the middle.""" torch._C._jit_set_profiling_executor(False) torch._C._jit_set_profiling_mode(False) def fun(a, b, c, d): q = torch.nn.quantized.Quantize( scale=1.0 / 21, zero_point=0, dtype=torch.quint8 ) dq = torch.nn.quantized.DeQuantize() a = q(a) b = q(b) c = q(c) d = q(d) adds = torch.ops.quantized.add(a, b, scale=1.0 / 17, zero_point=5) adds2 = torch.ops.quantized.add(c, d, scale=1.0 / 14, zero_point=4) res = torch.ops.quantized.add_relu( adds, adds2, scale=1.0 / 18, zero_point=6 ) res = torch.ops.quantized.add(res, res, scale=1.0 / 13, zero_point=7) res = dq(res) return res with torch.no_grad(): a = torch.randn([5, 5]) b = torch.randn([5, 5]) c = torch.randn([5, 5]) d = torch.randn([5, 5]) res_torch = fun(a, b, c, d) torch_glow.enableFusionPass_DO_NOT_USE_THIS() # Cut using blocklist functionality blocklist = ["quantized::add_relu"] torch_glow.setFusionBlocklist(blocklist) torch_glow.setGlowBackend("Interpreter") traced_model = torch.jit.trace(fun, (a, b, c, d)) for node in traced_model.graph_for(a, b, c, d).nodes(): kind = node.kind() # Make sure the blocklist is working assert ( kind == GLOW_FUSION_GROUP or kind in blocklist or kind == "prim::Constant" ) res_glow = traced_model(a, b, c, d) print(res_torch) print(res_glow) assert torch.allclose(res_torch, res_glow)
from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils class SimpleModule(torch.nn.Module): def __init__(self): super(SimpleModule, self).__init__() def forward(self, x): y = x + x y = y + 2 return y class TestToGlowNumDevicesToUse(utils.TorchGlowTestCase): def devices_to_use_test_helper(self, input, num_replications): model = SimpleModule() spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") # Init with total number of devices. torch_glow.setGlowBackendNumDevices(6) compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) input_spec = torch_glow.InputSpec() input_spec.set_same_as(input) compilation_group.input_sets_append([input_spec]) compilation_group_settings = compilation_group.get_settings() compilation_group_settings.set_num_devices_to_use(3) compilation_group_settings.set_replication_count(num_replications) traced_mod = torch.jit.trace(model, input) lowered_model = torch_glow.to_glow(traced_mod, {"forward": spec}) g = lowered_model(input) t = model(input) self.assertEqual(type(g), type(t)) self.assertEqual(len(g), len(t)) for (gi, ti) in zip(g, t): self.assertTrue(torch.allclose(gi, ti)) def devices_to_use_test(self): self.devices_to_use_test_helper(input=torch.randn(4), num_replications=2)
from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils class Foo(torch.nn.Module): def __init__(self): super(Foo, self).__init__() def forward(self, x, y): return x + y class TestToGlowMultpleInputSets(utils.TorchGlowTestCase): def test_to_glow_multiple_groups_and_input_sets(self): x1 = torch.randn(1, 4) y1 = torch.randn(2, 4) x2 = torch.randn(1, 2) y2 = torch.randn(5, 2) x3 = torch.randn(7) y3 = torch.randn(3, 7) mod = Foo() scripted_mod = torch.jit.script(mod) x1_y1_set = torch_glow.input_specs_from_tensors([x1, y1]) x2_y2_set = torch_glow.input_specs_from_tensors([x2, y2]) x3_y3_set = torch_glow.input_specs_from_tensors([x3, y3]) # Create two CompilationGroup, first one contains two input sets # and the second CompilationGroup has the third input set spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group_1 = torch_glow.CompilationGroup() compilation_group_2 = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group_1) spec.compilation_groups_append(compilation_group_2) compilation_group_1.input_sets_append(x1_y1_set) compilation_group_1.input_sets_append(x2_y2_set) compilation_group_2.input_sets_append(x3_y3_set) lowered_module = torch_glow.to_glow(scripted_mod, spec) torch_res1 = mod(x1, y1) torch_res2 = mod(x2, y2) torch_res3 = mod(x3, y3) glow_res1 = lowered_module(x1, y1) glow_res2 = lowered_module(x2, y2) glow_res3 = lowered_module(x3, y3) assert torch.allclose(torch_res1, glow_res1) assert torch.allclose(torch_res2, glow_res2) assert torch.allclose(torch_res3, glow_res3)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow class LinearModel(torch.nn.Module): def __init__(self): super(LinearModel, self).__init__() self.linear1 = torch.nn.Linear(5, 3) self.linear2 = torch.nn.Linear(3, 1) def forward(self, x): return self.linear2(self.linear1(x)) class ConvModel(torch.nn.Module): def __init__(self): super(ConvModel, self).__init__() self.conv1 = torch.nn.Conv2d(3, 3, 1) self.conv2 = torch.nn.Conv2d(3, 3, 1) self.linear = torch.nn.Linear(5, 5) def forward(self, x): return self.linear(self.conv2(self.conv1(x))) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.conv = ConvModel() self.linear = LinearModel() def forward(self, x): return self.linear(self.conv(x)) def test_fuse_necessary_getattrs_only(): m = Model() x = torch.randn(1, 3, 5, 5) torch_glow.disableFusionPass() jit_m = torch.jit.trace(m, x) jit_m_graph = jit_m.graph_for(x) # don't fuse aten::_convolutions torch_glow.glowCustomFuseDebug_( jit_m_graph, ["prim::Constant", "prim::GetAttr", "aten::t", "aten::matmul", "aten::add_"], ) return m(x)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch_glow from tests import utils class TestSetGlowBackend(utils.TorchGlowTestCase): def test_set_glow_backend(self): """Test setting the Glow backend type""" backend_name_before = torch_glow.getGlowBackendName() backend_num_devices_before = torch_glow.getGlowBackendNumDevices() torch_glow.setGlowBackend("CPU") torch_glow.setGlowBackendNumDevices(4) assert torch_glow.getGlowBackendName() == "CPU" assert torch_glow.getGlowBackendNumDevices() == 4 # reset everything torch_glow.setGlowBackend(backend_name_before) torch_glow.setGlowBackendNumDevices(backend_num_devices_before)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import GLOW_FUSION_GROUP class TestMinGraphSize(utils.TorchGlowTestCase): def test_min_graph_size(self): """Test Glow fuser minimum fusion group size mechanism.""" def f(a, b, c): return (a * a * a * a) / (b * b * b) / (c * c * c * c * c) torch_glow.disableFusionPass() # Disable aten::div so that each group of aten::mul nodes will be forced # into separate subgraphs torch_glow.setFusionBlocklist(["aten::div"]) # Set minimum fusion group size to 3 nodes so that the smallest group which # contains only 2 nodes will not be created torch_glow.setMinFusionGroupSize(3) a = torch.randn(5, 5) b = torch.randn(5, 5) c = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a, b, c)) jit_f_graph = jit_f.graph_for(a, b, c) # print("before: ", jit_f_graph) torch_glow.glowCustomFuseDebug_(jit_f_graph) # print("after: ", jit_f_graph) fusion_nodes = 0 for node in jit_f_graph.nodes(): if node.kind() == GLOW_FUSION_GROUP: fusion_nodes += 1 assert fusion_nodes == 2, "Expected smallest fusion group to not be created" torch_glow.clearFusionBlocklist() torch_glow.setMinFusionGroupSize(0)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.jit import torch_glow from tests import utils # Use a model containing quantized::conv2d to verify preprocessed module is # save correctly in a lowered module (ops with packed weights like this one # are rewirtten during lowering, therefore should only be present in the # original graph). class Bar(torch.nn.Module): def __init__(self): super(Bar, self).__init__() with torch.no_grad(): conv = torch.nn.Conv2d(4, 2, [2, 2], groups=1) conv.weight.random_(-1, 1) conv.bias.data.random_(-1, 1) self.model = torch.ao.quantization.QuantWrapper(conv) self.model.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") torch.ao.quantization.prepare(self.model, inplace=True) torch.ao.quantization.convert(self.model, inplace=True) def forward(self, x): return self.model(x) class TestToGlowSavePreprocessedModule(utils.TorchGlowTestCase): def test_save_preprocessed_module(self): with torch.no_grad(): x = torch.randn([1, 4, 4, 4], dtype=torch.float32) model = Bar() model.eval() model = torch.jit.trace(model, x) spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) compilation_group.input_sets_append( torch_glow.input_specs_from_tensors([x]) ) torch_glow.disableFusionPass() torch_glow.enable_convert_to_fp16() glow_mod = torch_glow.to_glow(model, spec) reloaded = utils.save_and_reload_model(glow_mod) wrappername = "__loweredModule__" attrname = "__processed_module" wp = getattr(reloaded._c, wrappername) pp = getattr(wp, attrname) pt_model = torch.jit._recursive.wrap_cpp_module(pp) graph = pt_model.graph_for(x) found = False for node in graph.nodes(): if node.kind() == "quantized::conv2d": found = True assert found
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import GLOW_FUSION_GROUP class TestMaxFusionMergeSize(utils.TorchGlowTestCase): def test_max_fusion_merge_size(self): """Test Glow fuser maximum fusion merge size mechanism.""" def f(a): return a * a * a * a * a * a torch_glow.disableFusionPass() # Set maximum fusion merge size to 3 nodes so that the # graph will not fit into 1 node torch_glow.setMaxFusionMergeSize(3) a = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a)) jit_f_graph = jit_f.graph_for(a) # print("before: ", jit_f_graph) torch_glow.glowCustomFuseDebug_(jit_f_graph) # print("after: ", jit_f_graph) fusion_nodes = 0 for node in jit_f_graph.nodes(): if node.kind() == GLOW_FUSION_GROUP: fusion_nodes += 1 assert fusion_nodes > 1, "Expected more than one fusion group to be created" torch_glow.setMaxFusionMergeSize(0) def test_max_fusion_merge_size_zero(self): """Test Glow fuser maximum fusion merge size mechanism set to zero.""" def f(a): return a * a * a * a * a * a torch_glow.disableFusionPass() # Set maximum fusion merge size to 0 so that there is # no limit to fusion torch_glow.setMaxFusionMergeSize(0) a = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a)) jit_f_graph = jit_f.graph_for(a) # print("before: ", jit_f_graph) torch_glow.glowCustomFuseDebug_(jit_f_graph) # print("after: ", jit_f_graph) fusion_nodes = 0 for node in jit_f_graph.nodes(): if node.kind() == GLOW_FUSION_GROUP: fusion_nodes += 1 assert fusion_nodes == 1, "Expected just one fusion group to be created" torch_glow.setMaxFusionMergeSize(0)
from __future__ import absolute_import, division, print_function, unicode_literals import io import torch import torch_glow from tests import utils from tests.utils import assertModulesEqual class TwoTupleModule(torch.nn.Module): def __init__(self): super(TwoTupleModule, self).__init__() def forward(self, x): y = 2 * x return (x, y) class OneTupleModule(torch.nn.Module): def __init__(self): super(OneTupleModule, self).__init__() def forward(self, x): y = 2 * x return (y,) class TestToGlowTupleOutput(utils.TorchGlowTestCase): def tuple_test_helper(self, ModType): input = torch.randn(4) model = ModType() spec = torch_glow.CompilationSpec() spec.get_settings().set_glow_backend("Interpreter") compilation_group = torch_glow.CompilationGroup() spec.compilation_groups_append(compilation_group) input_spec = torch_glow.InputSpec() input_spec.set_same_as(input) compilation_group.input_sets_append([input_spec]) scripted_mod = torch.jit.script(model) lowered_model = torch_glow.to_glow(scripted_mod, {"forward": spec}) # Run Glow model g = lowered_model(input) # Run reference model t = model(input) self.assertEqual(type(g), type(t)) self.assertEqual(len(g), len(t)) for (gi, ti) in zip(g, t): self.assertTrue(torch.allclose(gi, ti)) # test module ser/de with tuple output buffer = io.BytesIO() torch.jit.save(lowered_model, buffer) buffer.seek(0) loaded_model = torch.jit.load(buffer) assertModulesEqual(self, lowered_model, loaded_model) def test_to_glow_one_tuple_output(self): self.tuple_test_helper(OneTupleModule) def test_to_glow_two_tuple_output(self): self.tuple_test_helper(TwoTupleModule)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils class TestGlowShapeInference(utils.TorchGlowTestCase): def test_shape_inference_basics(self): """Test Glow shape inference basic usage.""" def f(a): return a * a a = torch.randn(1) jit_f = torch.jit.trace(f, (a)) jit_f_graph = jit_f.graph_for(a) args = (a,) actual = torch_glow.glow_shape_inference( jit_f_graph, args, ) assert actual def test_shape_inference_input_mismatch(self): """Test Glow shape inference basic error handling.""" def f(a): return a * a a = torch.randn(1) jit_f = torch.jit.trace(f, (a)) jit_f_graph = jit_f.graph_for(a) # Input/args is empty, but the funciton expects one input. # Shape Inference should raise an exception in this case. args = () self.assertRaises( Exception, lambda: torch_glow.glow_shape_inference( jit_f_graph, args, ), ) def test_shape_inference_supported_symbols(self): """Test Glow shape inference unsupported symbols.""" def f(a): return a * a a = torch.randn(1) jit_f = torch.jit.trace(f, (a)) jit_f_graph = jit_f.graph_for(a) args = (a,) actual = torch_glow.glow_shape_inference_find_unsupported_symbols( jit_f_graph, args ) expected = [] self.assertEqual(set(expected), set(actual)) def test_shape_inference_unsupported_symbols(self): """Test Glow shape inference unsupported symbols.""" def f(a): # linalg.multi_dot is currently not supported by shape inference engine return torch.matrix_power(torch.linalg.multi_dot([a * 3, a + 4]), 3) a = torch.randn(3, 3) jit_f = torch.jit.trace(f, (a)) jit_f_graph = jit_f.graph_for(a) args = (a,) actual = torch_glow.glow_shape_inference_find_unsupported_symbols( jit_f_graph, args ) expected = ["aten::linalg_multi_dot", "aten::linalg_matrix_power"] self.assertEqual(set(expected), set(actual)) blocklist = ["aten::linalg_multi_dot"] actual = torch_glow.glow_shape_inference_find_unsupported_symbols( jit_f_graph, args, blocklist ) expected = ["aten::linalg_matrix_power"] self.assertEqual(set(expected), set(actual)) def test_shape_inference_unsupported_symbols_skip_fusion_group(self): """Test Glow shape inference unsupported symbols including skipping of symbols after a secondary fusion group.""" def f(a, b): x1 = a * b x2 = x1 * b x3 = x2 * a x4 = x3 / b x5 = x4 / a x6 = x5 / b x7 = x6 * a x8 = x7 * b return x8 * torch.linalg.multi_dot([x8, x8]) torch_glow.enableFusionPass_DO_NOT_USE_THIS() torch_glow.setFusionStartIndex(3) torch_glow.setFusionEndIndex(6) a = torch.randn(5, 5) b = torch.randn(5, 5) jit_f = torch.jit.trace(f, (a, b)) jit_f_graph = jit_f.graph_for(a, b) torch_glow.clearFusionIndices() args = (a, b) # Don't skip nodes after the last fusion node. # in this case, one of the nodes (linalg.multi_dot) following the last fusion node # is not supported, and should be reported. actual = torch_glow.glow_shape_inference_find_unsupported_symbols( jit_f_graph, args, skip_last_fusion_node=False ) expected = [ "aten::linalg_multi_dot", ] self.assertEqual(set(expected), set(actual)) # DO skip nodes after the last fusion node. # in this case, one of the nodes (linalg.multi_dot) following the last fusion node # is not supported, but is suppressed due to the skip_last_fusion_node flag. actual = torch_glow.glow_shape_inference_find_unsupported_symbols( jit_f_graph, args, skip_last_fusion_node=True ) expected = [] self.assertEqual(set(expected), set(actual))
from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils class TestPrintJitNodeIndices(utils.TorchGlowTestCase): """Test printing PyTorch jit node indices.""" def test_print_jit_indices(self): def test_f(a, b): c = a.add(b) return c.add(c) x = torch.randn(4) y = torch.randn(4) torch_glow.enableFusionPass_DO_NOT_USE_THIS() torch_glow.enable_printing_jit_node_indices() graph = torch.jit.trace(test_f, (x, y), check_trace=False) graph(x, y)
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleSizeModel(torch.nn.Module): def __init__(self, dimension): super(SimpleSizeModel, self).__init__() self.dimension = dimension def forward(self, tensor): return tensor.size(self.dimension) class TestSize(utils.TorchGlowTestCase): # Need to be able to export lists from Glow fused nodes # Commented out both test cases for not triggering internal CI # @unittest.skip(reason="not ready") # def test_size_basic(self): # """Test of the PyTorch aten::size Node on Glow.""" # def test_f(a): # b = a + a.size(0) # return b # x = torch.zeros([4], dtype=torch.int32) # utils.compare_tracing_methods(test_f, x, fusible_ops={"aten::size"}) @utils.deterministic_expand( [ lambda: ( "basic", SimpleSizeModel(-1), torch.randn(2, 3, 4, dtype=torch.float32), ) ] ) def test_size(self, _, module, tensor): utils.compare_tracing_methods(module, tensor, fusible_ops={"aten::size"}) @utils.deterministic_expand( [ lambda: ( "oob", SimpleSizeModel(-4), torch.randn(2, 3, 4, dtype=torch.float32), ) ] ) def test_size_failure(self, _, module, tensor): with self.assertRaises(IndexError): utils.compare_tracing_methods(module, tensor, fusible_ops={"aten::size"})
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class TestFullLike(utils.TorchGlowTestCase): def test_empty_like_basic(self): """Basic test of the PyTorch empty_like Node on Glow.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.empty_like(a, dtype=torch.float) c = torch.zeros_like(a, dtype=torch.float) return a + (b * c) x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::empty_like"}) def test_empty_like_no_assign_type(self): """Basic test of the PyTorch empty_like Node on Glow without assigning type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.empty_like(a) c = torch.zeros_like(a) return a + (b * c) x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::empty_like"}) def test_empty_like_int(self): """Basic test of the PyTorch empty_like Node on Glow with int type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.empty_like(a, dtype=torch.int) c = torch.zeros_like(a, dtype=torch.int) return b * c x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::empty_like"}) def test_full_like_basic(self): """Basic test of the PyTorch full_like Node on Glow.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.full_like(a, fill_value=3.1415, dtype=torch.float) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::full_like"}) def test_full_like_no_assign_type(self): """Basic test of the PyTorch full_like Node on Glow without assigning type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.full_like(a, fill_value=3.1415) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::full_like"}) def test_full_like_int(self): """Basic test of the PyTorch full_like Node on Glow with int type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.full_like(a, fill_value=4, dtype=torch.int) c = torch.full_like(a, fill_value=5, dtype=torch.int) return b + c x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::full_like"}) def test_zeros_like_basic(self): """Basic test of the PyTorch zeros_like Node on Glow.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.zeros_like(a, dtype=torch.float) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::zeros_like"}) def test_zeros_like_no_assign_type(self): """Basic test of the PyTorch zeros_like Node on Glow without assign type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.zeros_like(a) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::zeros_like"}) def test_zeros_like_int(self): """Basic test of the PyTorch zeros_like Node on Glow with int type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.zeros_like(a, dtype=torch.int) c = torch.zeros_like(b) return b + c x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::zeros_like"}) def test_ones_like_basic(self): """Basic test of the PyTorch ones_like Node on Glow.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.ones_like(a, dtype=torch.float) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::ones_like"}) def test_ones_like_no_assign_type(self): """Basic test of the PyTorch ones_like Node on Glow without assign type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.ones_like(a) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::ones_like"}) def test_ones_like_int(self): """Basic test of the PyTorch ones_like Node on Glow with int type.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.ones_like(a, dtype=torch.int) c = torch.ones_like(b, dtype=torch.int) return b + c x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::ones_like"})
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from tests import utils class SimpleQuantizedLinearModel(torch.nn.Sequential): def __init__( self, in_features, out_features, quantization, per_tensor, weight=None, bias=None, ): linear = torch.nn.Linear(in_features, out_features, bias=(bias is not None)) if weight: linear.weight.data.fill_(weight) else: linear.weight.data.random_(0, 100) if bias: linear.bias.data.fill_(bias) super(SimpleQuantizedLinearModel, self).__init__( quantization, linear, torch.nn.quantized.DeQuantize() ) weight_observer = ( torch.ao.quantization.default_weight_observer if per_tensor else torch.ao.quantization.default_per_channel_weight_observer ) self.qconfig = torch.ao.quantization.QConfig( activation=torch.ao.quantization.default_observer, weight=weight_observer, ) torch.ao.quantization.prepare(self, inplace=True) torch.ao.quantization.convert(self, inplace=True) def _make_input(size, duplications, shape, dtype=torch.float): tensor = torch.tensor(range(size), dtype=dtype) tensor = torch.cat(tuple(tensor for _ in range(duplications))) tensor = torch.reshape(tensor, shape) return tensor class TestQuantizedLinear(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "basic", SimpleQuantizedLinearModel( 5, 5, torch.nn.quantized.Quantize( scale=1 / 25, zero_point=17, dtype=torch.quint8 ), False, # per_tensor 1.2, 3.0, ), _make_input(5, 6, [3, 2, 5]), ), lambda: ( "no_bias", SimpleQuantizedLinearModel( 5, 3, torch.nn.quantized.Quantize( scale=1 / 15, zero_point=17, dtype=torch.quint8 ), False, # per_tensor 1.2, ), _make_input(5, 6, [3, 2, 5]), ), lambda: ( "exclude_dq", SimpleQuantizedLinearModel( 5, 5, torch.nn.quantized.Quantize( scale=1 / 25, zero_point=17, dtype=torch.quint8 ), False, # per_tensor 1.2, 3.0, ), _make_input(5, 6, [3, 2, 5]), {"aten::dequantize"}, ), lambda: ( "rowwise", SimpleQuantizedLinearModel( 6, 5, torch.nn.quantized.Quantize( scale=1 / 25, zero_point=17, dtype=torch.quint8 ), False, # per_tensor ), _make_input(36, 1, [3, 2, 6]), ), lambda: ( "tensorwise", SimpleQuantizedLinearModel( 6, 5, torch.nn.quantized.Quantize( scale=1 / 25, zero_point=17, dtype=torch.quint8 ), True, # per_tensor ), _make_input(36, 1, [3, 2, 6]), ), ] ) def test_quantized_linear(self, _, model, tensor, fusion_blocklist=None): fusible_ops = { "aten::quantize_per_tensor", "quantized::linear", "aten::dequantize", } fusible_ops -= fusion_blocklist or set() utils.compare_tracing_methods( model, tensor, fusible_ops=fusible_ops, fusion_blocklist=fusion_blocklist )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals from collections import OrderedDict import torch from tests import utils class TestQuantizedConv2dRelu(utils.TorchGlowTestCase): def _test_quantized_conv2d_relu_packed(self, groups): """Basic test of PyTorch quantized::conv2d_relu Node with packed weights on Glow.""" with torch.no_grad(): x = torch.tensor(range(5), dtype=torch.float) / 3 x = torch.cat((x, x, x, x, x)) x = torch.cat((x, x, x)) x = torch.reshape(x, [1, 3, 5, 5]) q = torch.nn.quantized.Quantize(1, 2, torch.quint8) conv = torch.nn.Conv2d(3, 3, [2, 2], groups=groups) relu = torch.nn.ReLU() dq = torch.nn.quantized.DeQuantize() # Due to the off-by-one error, we cannot let the weights, bias & input # to be totally random. conv.weight.set_( torch.arange(36 / groups, dtype=torch.float).reshape( [3, 3 // groups, 2, 2] ) / 3 ) conv.bias.data.fill_(2) model = torch.nn.Sequential( OrderedDict( [ ("quantize", q), ("conv1", conv), ("relu1", relu), ("dequantize", dq), ] ) ) model.eval() model.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") # Fuse conv and relu to conv_relu model = torch.ao.quantization.fuse_modules(model, [["conv1", "relu1"]]) torch.ao.quantization.prepare(model, inplace=True) torch.ao.quantization.convert(model, inplace=True) utils.compare_tracing_methods( model, x, fusible_ops={ "aten::quantize_per_tensor", "quantized::conv2d_relu", "aten::dequantize", }, skip_to_glow=True, ) def test_quantized_conv2d_relu_packed_groupwise(self): """PyTorch groupwise quantized::conv2d_relu Node with packed weights on Glow.""" self._test_quantized_conv2d_relu_packed(groups=3) def test_quantized_conv2d_relu_packed_nongroupwise(self): """PyTorch vanilla quantized::conv2d_relu Node with packed weights on Glow.""" self._test_quantized_conv2d_relu_packed(groups=1) def test_quantized_conv2d_relu_packed_cut_q_dq(self): """Basic test of PyTorch quantized::conv2d_relu Node with packed weights on Glow, with quantize and dequantize excluded.""" with torch.no_grad(): x = torch.tensor(range(5), dtype=torch.float) / 3 x = torch.cat((x, x, x, x, x)) x = torch.cat((x, x, x)) x = torch.reshape(x, [1, 3, 5, 5]) q = torch.nn.quantized.Quantize(1, 2, torch.quint8) conv = torch.nn.Conv2d(3, 3, [2, 2], groups=1) relu = torch.nn.ReLU() dq = torch.nn.quantized.DeQuantize() # Due to the off-by-one error, we cannot let the weights, bias & input # to be totally random. conv.weight.set_( torch.arange(36, dtype=torch.float).reshape([3, 3, 2, 2]) / 3 ) conv.bias.data.fill_(2) model = torch.nn.Sequential( OrderedDict( [ ("quantize", q), ("conv1", conv), ("relu1", relu), ("dequantize", dq), ] ) ) model.eval() model.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") # Fuse conv and relu to conv_relu model = torch.ao.quantization.fuse_modules(model, [["conv1", "relu1"]]) torch.ao.quantization.prepare(model, inplace=True) torch.ao.quantization.convert(model, inplace=True) utils.compare_tracing_methods( model, x, fusible_ops={"quantized::conv2d_relu"}, fusion_blocklist=["aten::quantize_per_tensor", "aten::dequantize"], skip_to_glow=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleQuantizedAddReluModule(torch.nn.Module): def __init__(self, left_quantization, right_quantization, scale, zero_point): super(SimpleQuantizedAddReluModule, self).__init__() self.left_quantization = left_quantization self.right_quantization = right_quantization self.scale = scale self.zero_point = zero_point def forward(self, left, right): return torch.nn.quantized.DeQuantize()( torch.ops.quantized.add_relu( self.left_quantization(left), self.right_quantization(right), scale=self.scale, zero_point=self.zero_point, ) ) class TestQuantizedAddRelu(utils.TorchGlowTestCase): def test_quantized_add_relu_zerooffset(self): """Basic test of the PyTorch quantized::add Node_relu on Glow with zero offset.""" utils.compare_tracing_methods( SimpleQuantizedAddReluModule( torch.nn.quantized.Quantize( scale=0.3, zero_point=0, dtype=torch.quint8 ), torch.nn.quantized.Quantize( scale=0.3, zero_point=0, dtype=torch.quint8 ), 0.05, 0, ), torch.tensor([1, 2, 3, 4], dtype=torch.float32), torch.tensor([5, 6, 7, 8], dtype=torch.float32), skip_to_glow=True, ) def test_quantized_add_relu(self): """Basic test of the PyTorch quantized::add_relu Node on Glow.""" utils.compare_tracing_methods( SimpleQuantizedAddReluModule( torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=5, dtype=torch.quint8 ), torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=10, dtype=torch.quint8 ), 1.0 / 128, 3, ), torch.rand([5, 5]), torch.rand([5, 5]), skip_to_glow=True, ) def test_quantized_add_relu_cut_q_dq(self): """Basic test of the PyTorch quantized::add_relu Node on Glow, with quantize and dequantize excluded.""" utils.compare_tracing_methods( SimpleQuantizedAddReluModule( torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=5, dtype=torch.quint8 ), torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=10, dtype=torch.quint8 ), 1.0 / 128, 3, ), torch.rand([5, 5]), torch.rand([5, 5]), fusible_ops={"quantized::add_relu"}, fusion_blocklist=["aten::quantize_per_tensor", "aten::dequantize"], skip_to_glow=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleSubtractModel(torch.nn.Module): def __init__(self): super(SimpleSubtractModel, self).__init__() def forward(self, a, b): if b.size() == torch.Size([]): return (a * a).sub(b.item()) else: c = a.sub(b) return c.sub(c) class TestSub(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("basic", SimpleSubtractModel(), torch.randn(4), torch.randn(4)), lambda: ( "broadcast_1", SimpleSubtractModel(), torch.randn(8, 3, 4, 2), torch.randn(4, 2), ), lambda: ( "broadcast_2", SimpleSubtractModel(), torch.randn(8, 3, 4, 2), torch.randn(1, 2), ), lambda: ( "broadcast_3", SimpleSubtractModel(), torch.randn(4, 2), torch.randn(8, 3, 4, 2), ), lambda: ("float", SimpleSubtractModel(), torch.randn(4), torch.tensor(3.9)), lambda: ( "int", SimpleSubtractModel(), torch.randn(4), torch.tensor(20), ), lambda: ( "int64", SimpleSubtractModel(), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), ), ] ) def test_subtract(self, _, module, tensor, other): utils.run_comparison_tests(module, (tensor, other), fusible_ops={"aten::sub"})
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleFloorDivideModule(torch.nn.Module): def __init__(self, inplace=False): super(SimpleFloorDivideModule, self).__init__() self.inplace = inplace def forward(self, a, b): if b.size() == torch.Size([]): b = b.item() if self.inplace: return (a + a).floor_divide_(b) else: return (a + a).floor_divide(b) class TestFloorDiv(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "basic", SimpleFloorDivideModule(), torch.Tensor(4).random_(0, 5), torch.Tensor(4).random_(1, 5), ), lambda: ( "inplace", SimpleFloorDivideModule(True), torch.Tensor(4).random_(0, 5), torch.Tensor(4).random_(1, 5), ), lambda: ( "positive_float", SimpleFloorDivideModule(), torch.Tensor(4).random_(0, 5), torch.tensor(3.9), ), lambda: ( "negative_float", SimpleFloorDivideModule(), torch.tensor([-4.0]), torch.tensor([3.0]), ), lambda: ( "positive_broadcast", SimpleFloorDivideModule(), torch.Tensor(8, 3, 4, 2).random_(0, 5), torch.Tensor(4, 2).random_(1, 5), ), lambda: ( "positive_broadcast", SimpleFloorDivideModule(), torch.Tensor(8, 3, 4, 2).random_(0, 5), torch.Tensor(1, 2).random_(1, 5), ), lambda: ( "positive_broadcast", SimpleFloorDivideModule(), torch.Tensor(4, 2).random_(0, 5), torch.Tensor(8, 3, 4, 2).random_(1, 5), ), lambda: ( "positive_int", SimpleFloorDivideModule(), torch.tensor([5]), torch.tensor([4]), ), lambda: ( "negative_int", SimpleFloorDivideModule(), torch.tensor([-5]), torch.tensor([4]), ), lambda: ( "int64", SimpleFloorDivideModule(), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), ), ] ) def test_floor_div(self, _, module, left, right): utils.run_comparison_tests( module, (left, right), fusible_ops={"aten::floor_divide"}, skip_for_backends="NNPI", )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleSliceModel(torch.nn.Module): def __init__(self, start, end): super(SimpleSliceModel, self).__init__() self.start = start self.end = end def forward(self, x): x = x + x if self.start is None and self.end is None: return x[:] elif self.start is None: return x[: self.end] elif self.end is None: return x[self.start :] else: return x[self.start : self.end] class TestSlice(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: (0, 1), lambda: (0, 2), lambda: (0, 3), lambda: (1, 2), lambda: (1, 3), lambda: (2, 3), lambda: (-3, 1), lambda: (-2, 2), lambda: (-1, 3), lambda: (-2, -1), lambda: (0, -1), lambda: (1, -1), lambda: (None, 2), lambda: (None, -1), lambda: (0, None), lambda: (-2, None), lambda: (None, None), ] ) def test_slice(self, start, end): """Test of the PyTorch slice Node on Glow.""" input = torch.rand(3, 2, 2) utils.compare_tracing_methods( SimpleSliceModel(start, end), input, fusible_ops={"aten::slice"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals from typing import Optional import torch from tests import utils class SimpleDivModule(torch.nn.Module): def __init__(self, rounding_mode: Optional[str] = None): super(SimpleDivModule, self).__init__() self.rounding_mode = rounding_mode def forward(self, a, b): rounding_mode = self.rounding_mode if True: # until 3rd agr is implemented, then: rounding_mode is None: if b.size() == torch.Size([]): return (a * a).div(b.item()) else: c = a.div(b) return c.div(c) else: if b.size() == torch.Size([]): return (a * a).div(b.item(), rounding_mode=rounding_mode) else: c = a.div(b, rounding_mode=rounding_mode) return c.div(c, rounding_mode=rounding_mode) class TestDiv(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("basic", SimpleDivModule(), torch.randn(4), torch.randn(4)), lambda: ( "basic_rm_true", SimpleDivModule(rounding_mode="true"), torch.randn(4), torch.randn(4), ), lambda: ( "basic_rm_trunc", SimpleDivModule(rounding_mode="trunc"), torch.randn(4), torch.randn(4), ), lambda: ( "basic_rm_floor", SimpleDivModule(rounding_mode="floor"), torch.randn(4), torch.randn(4), ), lambda: ( "broadcast", SimpleDivModule(), torch.randn(8, 3, 4, 2), torch.randn(4, 2), ), lambda: ( "broadcast_rm_true", SimpleDivModule(rounding_mode="true"), torch.randn(8, 3, 4, 2), torch.randn(4, 2), ), lambda: ( "broadcast_rm_trunc", SimpleDivModule(rounding_mode="trunc"), torch.randn(8, 3, 4, 2), torch.randn(4, 2), ), lambda: ( "broadcast_rm_floor", SimpleDivModule(rounding_mode="floor"), torch.randn(8, 3, 4, 2), torch.randn(4, 2), ), lambda: ( "broadcast", SimpleDivModule(), torch.randn(8, 3, 4, 2), torch.randn(1, 2), ), lambda: ( "broadcast", SimpleDivModule(), torch.randn(4, 2), torch.randn(8, 3, 4, 2), ), lambda: ( "float_tensor", SimpleDivModule(), torch.randn(4), torch.tensor(3.9), ), lambda: ( "int_tensor", SimpleDivModule(), torch.tensor([4]), torch.tensor([10]), {"NNPI"}, # skip_for_backends ), # This one will go through (a * a) / b.item() and b.item() is an integer. lambda: ( "int_number", SimpleDivModule(), torch.tensor([4]), torch.tensor(10), {"NNPI"}, # skip_for_backends ), lambda: ( "int64", SimpleDivModule(), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), {"NNPI"}, # skip_for_backends ), ] ) def test_div(self, _, module, a, b, skip_for_backends={}): utils.run_comparison_tests( module, (a, b), fusible_ops={"aten::div"}, skip_for_backends=skip_for_backends, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleTypeasModel(torch.nn.Module): def __init__(self): super(SimpleTypeasModel, self).__init__() def forward(self, tensor, other=None): # TODO: Understand and document the utility of the self-conversion test # as well as the additional tensor + tensor step other = tensor if other is None else other if tensor.dtype != torch.bool: tensor = tensor + tensor typed = tensor.type_as(other) return typed + typed class TestTypeAs(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "to_int32", SimpleTypeasModel(), torch.randn(4), torch.zeros(4, dtype=torch.int32), ), lambda: ( "from_int32", SimpleTypeasModel(), torch.randn(4).to(dtype=torch.int32), torch.zeros(4), ), lambda: ( "from_bool", SimpleTypeasModel(), torch.randn(4).to(dtype=torch.bool), torch.zeros(4), ), lambda: ("self", SimpleTypeasModel(), torch.randn(4), None, False), lambda: ( "f2f2", SimpleTypeasModel(), torch.randn(4, 2), torch.randn(8, 3, 4, 2), False, ), lambda: ( "f2i2", SimpleTypeasModel(), torch.randn(4, 2), torch.randn(8, 3, 4, 2).to(dtype=torch.int32), ), ] ) def test_typeas(self, _, module, tensor, other=None, should_fuse=True): if other is not None: utils.compare_tracing_methods( module, tensor, other, fusible_ops={"aten::type_as"} if should_fuse else {}, ) else: utils.compare_tracing_methods( module, tensor, fusible_ops={"aten::type_as"} if should_fuse else {} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class CloneModel(torch.nn.Module): def __init__(self, memory_format=torch.contiguous_format): super(CloneModel, self).__init__() self.memory_format = memory_format def forward(self, a): b = a.clone(memory_format=self.memory_format) return b + a class TestClone(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("1x3", [1, 3]), lambda: ("8x3x5", [8, 3, 5]), ] ) def test_clone(self, _, tensor_shape): """Test of the PyTorch clone method on Glow.""" utils.compare_tracing_methods( CloneModel(), torch.randn(tensor_shape), fusible_ops={"aten::clone"}, ) @utils.deterministic_expand( [ lambda: ("8x3x5x10", [8, 3, 5, 10]), ] ) def test_clone_alt_memory_format(self, _, tensor_shape): """Test of the PyTorch clone method on Glow.""" utils.compare_tracing_methods( CloneModel(memory_format=torch.channels_last), torch.randn(tensor_shape), fusible_ops={"aten::clone"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleAbsModule(torch.nn.Module): def __init__(self): super(SimpleAbsModule, self).__init__() def forward(self, a): return torch.abs(a + a) class TestAbs(utils.TorchGlowTestCase): def test_abs_basic(self): """Basic test of the PyTorch Abs Node on Glow.""" x = torch.randn(10) utils.run_comparison_tests( SimpleAbsModule(), x, fusible_ops={"aten::abs"}, ) def test_abs_3d(self): """Test multidimensional tensor for the PyTorch Abs Node on Glow.""" x = torch.randn(2, 3, 5) utils.run_comparison_tests( SimpleAbsModule(), x, fusible_ops={"aten::abs"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleAddModule(torch.nn.Module): def __init__(self, inplace=False): super(SimpleAddModule, self).__init__() self.inplace = inplace def forward(self, a, b): if b.size() == torch.Size([]): return (a * a).add(b.item()) if self.inplace: c = a.add_(b) return c.add_(c) else: c = a.add(b) return c.add(c) class TestAdd(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("basic", SimpleAddModule(), torch.randn(4), torch.randn(4)), lambda: ("inplace", SimpleAddModule(True), torch.randn(4), torch.randn(4)), lambda: ( "broadcast", SimpleAddModule(), torch.randn(8, 3, 4, 2), torch.randn(4, 2), ), lambda: ( "broadcast", SimpleAddModule(), torch.randn(8, 3, 4, 2), torch.randn(1, 2), ), lambda: ( "broadcast", SimpleAddModule(), torch.randn(4, 2), torch.randn(8, 3, 4, 2), ), lambda: ("float", SimpleAddModule(), torch.randn(4), torch.tensor(1.2345)), lambda: ( "float_and_int", SimpleAddModule(), torch.randn(4), torch.tensor(42), True, ), lambda: ( "int32", SimpleAddModule(), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int32), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int32), ), lambda: ( "int64", SimpleAddModule(), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), torch.torch.randint(-10, 10, (2, 4), dtype=torch.int64), ), ] ) def test_add(self, _, module, a, b, skip_to_glow=False): utils.run_comparison_tests( module, (a, b), fusible_ops={"aten::add_"} if module.inplace else {"aten::add"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleExpModule(torch.nn.Module): def forward(self, input): other = torch.exp(input) return torch.exp(other) class TestExp(utils.TorchGlowTestCase): def test_exp_basic(self): """Test of the PyTorch exp Node on Glow.""" utils.compare_tracing_methods( SimpleExpModule(), torch.randn(4), fusible_ops={"aten::exp"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F from tests import utils class SimpleAvgPool1dModule(torch.nn.Module): def __init__(self, kernel_size, stride=None, padding=0): super(SimpleAvgPool1dModule, self).__init__() self.kernel_size = kernel_size self.padding = padding self.stride = stride def forward(self, inputs): return F.avg_pool1d( inputs, self.kernel_size, padding=self.padding, stride=self.stride ) class TestAvgPool1d(utils.TorchGlowTestCase): def test_avg_pool1d_basic(self): """Basic test of the PyTorch avg_pool1d Node on Glow.""" inputs = torch.randn(1, 4, 9) utils.compare_tracing_methods( SimpleAvgPool1dModule(3), inputs, fusible_ops={"aten::avg_pool1d"} ) def test_avg_pool1d_with_args(self): """Test of the PyTorch avg_pool1d Node with arguments on Glow.""" inputs = torch.randn(1, 4, 10) utils.compare_tracing_methods( SimpleAvgPool1dModule(3, stride=7), inputs, fusible_ops={"aten::avg_pool1d"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleIntModule(torch.nn.Module): def __init__(self, dtype): super(SimpleIntModule, self).__init__() # This has to be done in the init block, because control flow statements in the # forward method won't be fused during scripting. if dtype == torch.int32: self.forward = self._int32_forward else: self.forward = self._int64_forward def _int32_forward(self, a): b = a.size(0) c = a.size(1) bt = torch.ops.prim.NumToTensor(b) ct = torch.ops.prim.NumToTensor(c) d = bt + ct d = d.to(torch.int32) i = torch.ops.aten.Int(d) res = torch.ops.prim.NumToTensor(i) return res def _int64_forward(self, a): b = a.size(0) c = a.size(1) bt = torch.ops.prim.NumToTensor(b) ct = torch.ops.prim.NumToTensor(c) d = bt * ct i = torch.ops.aten.Int(d) res = torch.ops.prim.NumToTensor(i) return res class SimpleIntModuleEmptyShape(torch.nn.Module): def __init__(self): super().__init__() def forward(self, a): d = torch._shape_as_tensor(a)[0] # tensor with empty shape i = torch.ops.aten.Int(d) res = torch.ops.prim.NumToTensor(i) return res class TestInt(utils.TorchGlowTestCase): def test_Int(self): """Basic test of the PyTorch Int Node on Glow, along with constant propagation. Using int32 dtype, and aten::add.""" x = torch.randn(2, 3, 4, dtype=torch.float32) utils.compare_tracing_methods( SimpleIntModule(torch.int32), x, fusible_ops={"aten::Int"}, scripted=True ) def test_Int_mul_long(self): """Basic test of the PyTorch Int Node on Glow, along with constant propagation. Using int64 dtype, and aten::mul""" x = torch.randn(2, 3, 4, dtype=torch.float32) utils.compare_tracing_methods( SimpleIntModule(torch.int64), x, fusible_ops={"aten::Int"}, scripted=True ) def test_Int_empty_shape(self): """Basic test of the PyTorch Int Node on Glow. Input tensor has empty shape.""" x = torch.randn(2, 3, 4, dtype=torch.float32) utils.compare_tracing_methods( SimpleIntModuleEmptyShape(), x, fusible_ops={"aten::Int"}, scripted=True )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class TestZero(utils.TorchGlowTestCase): def test_zero_basic(self): """Basic test of the PyTorch zero Node on Glow.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.zeros(a.size(), dtype=torch.float) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::zeros"})
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals from typing import Union import torch from tests import utils class SimpleCompareOpsModule(torch.nn.Module): def __init__(self, opType): super(SimpleCompareOpsModule, self).__init__() self.opType = opType def forward(self, a, b): if self.opType == "equal": return torch.eq(a, b + 0.1) elif self.opType == "notEqual": return torch.ne(a, b + 0.1) elif self.opType == "lessThan": return torch.lt(a, b + 0.1) elif self.opType == "lessEqual": return torch.le(a, b + 0.1) elif self.opType == "greaterThan": return torch.gt(a, b + 0.1) elif self.opType == "greaterEqual": return torch.ge(a, b + 0.1) class SimpleScalarVectorCmpModule(torch.nn.Module): def __init__(self, opType: str, rhsScalar: Union[float, int]): super().__init__() self.opType = opType self.rhsScalar = rhsScalar def forward(self, a: torch.Tensor) -> torch.Tensor: if self.opType == "equal": return a == self.rhsScalar if self.opType == "greaterEqual": return a >= self.rhsScalar if self.opType == "greaterThan": return a > self.rhsScalar if self.opType == "lessEqual": return a <= self.rhsScalar if self.opType == "lessThan": return a < self.rhsScalar if self.opType == "notEqual": return a != self.rhsScalar class TestCmp(utils.TorchGlowTestCase): def test_equal_basic(self): """Basic test of the PyTorch Equal Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("equal"), torch.randn(3, 4, 5), torch.randn(3, 4, 5), fusible_ops={"aten::eq"}, ) def test_equal_bcast(self): """Basic test of the PyTorch Equal Node (broadcast) on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("equal"), torch.randn(3, 4, 5), torch.randn(4, 5), fusible_ops={"aten::eq"}, ) def test_not_equal(self): """Basic test of the PyTorch Not equal Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("notEqual"), torch.randn(3, 4, 5), torch.randn(3, 4, 5), fusible_ops={"aten::ne"}, ) def test_not_equal_bcast(self): """Basic test of the PyTorch Not equal (broadcast) Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("notEqual"), torch.randn(3, 4, 5), torch.randn(4, 5), fusible_ops={"aten::ne"}, ) def test_less_than(self): """Basic test of the PyTorch Less than Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("lessThan"), torch.randn(3, 4, 5), torch.randn(3, 4, 5), fusible_ops={"aten::lt"}, ) def test_less_than_bcast(self): """Basic test of the PyTorch Less than (broadcast) Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("lessThan"), torch.randn(3, 4, 5), torch.randn(4, 5), fusible_ops={"aten::lt"}, ) def test_less_equal(self): """Basic test of the PyTorch less equal Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("lessEqual"), torch.randn(3, 4, 5), torch.randn(3, 4, 5), fusible_ops={"aten::le"}, ) def test_less_equal_bcast(self): """Basic test of the PyTorch less equal (Broadcast) Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("lessEqual"), torch.randn(3, 4, 5), torch.randn(4, 5), fusible_ops={"aten::le"}, ) def test_greater_than(self): """Basic test of the PyTorch Greater than Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("greaterThan"), torch.randn(3, 4, 5), torch.randn(3, 4, 5), fusible_ops={"aten::gt"}, ) def test_greater_than_bcast(self): """Basic test of the PyTorch Greater than (Broadcast) Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("greaterThan"), torch.randn(3, 4, 5), torch.randn(4, 5), fusible_ops={"aten::gt"}, ) def test_greater_equal(self): """Basic test of the PyTorch Greater Equal Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("greaterEqual"), torch.randn(3, 4, 5), torch.randn(3, 4, 5), fusible_ops={"aten::ge"}, ) def test_greater_equal_bcast(self): """Basic test of the PyTorch Greater Equal (broadcast) Node on Glow.""" utils.compare_tracing_methods( SimpleCompareOpsModule("greaterEqual"), torch.randn(3, 4, 5), torch.randn(4, 5), fusible_ops={"aten::ge"}, ) @utils.deterministic_expand( [ lambda: ( "eq_tensor_scalar", "equal", "aten::eq", torch.randn(3, 4, 5), 0.5, ), lambda: ( "gt_tensor_scalar", "greaterThan", "aten::gt", torch.randn(3, 4, 5), 0.5, ), lambda: ( "ge_tensor_scalar", "greaterEqual", "aten::ge", torch.randn(3, 4, 5), 0.5, ), lambda: ( "le_tensor_scalar", "lessEqual", "aten::le", torch.randn(3, 4, 5), 0.5, ), lambda: ( "lt_tensor_scalar", "lessThan", "aten::lt", torch.randn(3, 4, 5), 0.5, ), lambda: ( "ne_tensor_scalar", "notEqual", "aten::ne", torch.randn(3, 4, 5), 0.5, ), lambda: ( "eq_tensor_scalar_int64", "equal", "aten::eq", torch.randn(3, 4, 5).to(torch.int64), 5, ), lambda: ( "gt_tensor_scalar_int64", "greaterThan", "aten::gt", torch.randn(3, 4, 5).to(torch.int64), 5, ), lambda: ( "ge_tensor_scalar_int64", "greaterEqual", "aten::ge", torch.randn(3, 4, 5).to(torch.int64), 5, ), lambda: ( "le_tensor_scalar_int64", "lessEqual", "aten::le", torch.randn(3, 4, 5).to(torch.int64), 5, ), lambda: ( "lt_tensor_scalar_int64", "lessThan", "aten::lt", torch.randn(3, 4, 5).to(torch.int64), 5, ), lambda: ( "ne_tensor_scalar_int64", "notEqual", "aten::ne", torch.randn(3, 4, 5).to(torch.int64), 5, ), lambda: ( "eq_tensor_scalar_int32", "equal", "aten::eq", torch.randn(3, 4, 5).to(torch.int32), 5, ), lambda: ( "gt_tensor_scalar_int32", "greaterThan", "aten::gt", torch.randn(3, 4, 5).to(torch.int32), 5, ), lambda: ( "lt_tensor_scalar_int32", "lessThan", "aten::lt", torch.randn(3, 4, 5).to(torch.int32), 5, ), lambda: ( "eq_tensor_scalar_float_int", "equal", "aten::eq", torch.randn(3, 4, 5), 5, ), lambda: ( "gt_tensor_scalar_float_int", "greaterThan", "aten::gt", torch.randn(3, 4, 5), 5, ), lambda: ( "lt_tensor_scalar_float_int", "lessThan", "aten::lt", torch.randn(3, 4, 5), 5, ), ] ) def test_scalar_vector_cmp(self, _, opType, op, lhsTensor, rhsScalar): """Testing comparisons between tensors and scalars.""" utils.compare_tracing_methods( SimpleScalarVectorCmpModule(opType, rhsScalar), lhsTensor, fusible_ops={op}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SelectModule(torch.nn.Module): def __init__(self, indices, axis, rank): super(SelectModule, self).__init__() self.indices = indices self.axis = axis self.rank = rank def forward(self, a): if self.rank == 2: if self.axis == 0: return (a + a)[self.indices[0], :] elif self.axis == 1: return (a + a)[:, self.indices[0]] else: return (a + a)[self.indices[0], self.indices[1]] elif self.rank == 3: if self.axis == 0: if len(self.indices) == 1: return (a + a)[self.indices[0], :, :] else: return (a + a)[self.indices[0], self.indices[1], :] elif self.axis == 1: if len(self.indices) == 1: return (a + a)[:, :, self.indices[0]] else: return (a + a)[:, self.indices[0], self.indices[1]] else: if len(self.indices) == 2: return (a + a)[self.indices[0], :, self.indices[1]] else: return (a + a)[self.indices[0], self.indices[1], self.indices[2]] class TestComplexSelect(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("2d_axis_0", SelectModule([1], 0, 2), torch.rand(2, 3)), lambda: ("2d_axis_1", SelectModule([2], 1, 2), torch.rand(2, 3)), lambda: ("2d_axis_0_1", SelectModule([0, 1], 2, 2), torch.rand(2, 3)), lambda: ("3d_axis_0", SelectModule([0], 0, 3), torch.rand(3, 4, 5)), lambda: ("3d_axis_0_1", SelectModule([2, 1], 0, 3), torch.rand(3, 4, 5)), lambda: ("3d_axis_1", SelectModule([0], 1, 3), torch.rand(3, 4, 5)), lambda: ("3d_axis_1_2", SelectModule([2, 1], 1, 3), torch.rand(3, 4, 5)), lambda: ("3d_axis_0_2", SelectModule([1, 3], 2, 3), torch.rand(3, 4, 5)), lambda: ( "3d_axis_0_1_2", SelectModule([2, 0, 4], 1, 3), torch.rand(3, 4, 5), ), ] ) def test_f(self, _, module, tensor): """Test multidimensional tensors in the PyTorch Select Node on Glow.""" utils.compare_tracing_methods(module, tensor, fusible_ops={"aten::select"})
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class ExpandModel(torch.nn.Module): def __init__(self, shape): super(ExpandModel, self).__init__() self.shape = shape def forward(self, a): return a.expand(self.shape) class TestExpand(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "unit_vector", ExpandModel([3]), torch.randn(1), ), lambda: ( "unit_matrix", ExpandModel([3, 4]), torch.randn(1, 1), ), lambda: ( "singleton_matrix", ExpandModel([2, 4]), torch.randn(2, 1), ), lambda: ( "singleton_matrix_minus_one", ExpandModel([-1, 4]), torch.randn(2, 1), ), lambda: ( "fourD", ExpandModel([2, 4, 5, 8]), torch.randn(2, 1, 5, 8), ), lambda: ( "fourD_two_singleton", ExpandModel([2, 4, 5, 8]), torch.randn(2, 1, 5, 1), ), lambda: ( "fourD_minus_ones", ExpandModel([2, 4, -1, -1]), torch.randn(2, 1, 5, 8), ), lambda: ( "add_dim", ExpandModel([3, 4, 2]), torch.randn(4, 2), ), lambda: ( "add_two_dims", ExpandModel([8, 3, 4, 2]), torch.randn(4, 2), ), lambda: ( "add_dim_minus_one", ExpandModel([3, -1, 2]), torch.randn(4, 2), ), lambda: ( "add_dim_minus_ones", ExpandModel([3, -1, -1]), torch.randn(4, 2), ), lambda: ( "add_dims_minus_one", ExpandModel([8, 3, -1, 2]), torch.randn(4, 2), ), lambda: ( "add_dims_minus_ones", ExpandModel([8, 3, -1, -1]), torch.randn(4, 2), ), ] ) def test_expand(self, _, module, a): """Test of the PyTorch expand Node on Glow.""" utils.compare_tracing_methods( module, a, fusible_ops={"aten::expand"}, ) class TestExpandError(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "no_singleton", ExpandModel([3, 3]), torch.randn(2, 2), ), lambda: ( "shape_too_small", ExpandModel([3]), torch.randn(2, 2), ), lambda: ( "invalid_zero", ExpandModel([0, 3]), torch.randn(1, 2), ), lambda: ( "invalid_negative", ExpandModel([-2, 3]), torch.randn(1, 2), ), lambda: ( "add_dims_undefined_m1", ExpandModel([-1, 2, 3]), torch.randn(1, 2), ), lambda: ( "add_dims_undefined_zero", ExpandModel([0, 2, 3]), torch.randn(1, 2), ), lambda: ( "add_dims_undefined_m2", ExpandModel([-2, 2, 3]), torch.randn(1, 2), ), ] ) def test_expand_error(self, _, module, a): """Test of the PyTorch expand Node on Glow.""" utils.compare_tracing_methods_error( module, a, fusible_ops={"aten::expand"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F from tests import utils class SimplePreluModule(torch.nn.Module): def __init__(self): super(SimplePreluModule, self).__init__() def forward(self, inputs, weights): return F.prelu(inputs + inputs, weights) class TestPrelu(utils.TorchGlowTestCase): def test_prelu_basic(self): """Basic test of the PyTorch prelu Node on Glow.""" utils.compare_tracing_methods( SimplePreluModule(), torch.randn(1, 4, 5, 5), torch.tensor([0.25]), fusible_ops={"aten::prelu"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleAndModule(torch.nn.Module): def __init__(self): super(SimpleAndModule, self).__init__() def forward(self, a, b): c = a & b return torch.logical_or(c, b) class TestAnd(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "basic", torch.tensor([True, True, False, False], dtype=torch.bool), torch.tensor([True, False, True, False], dtype=torch.bool), ), lambda: ( "basic_3d", torch.zeros((3, 4, 5), dtype=torch.bool), torch.ones((3, 4, 5), dtype=torch.bool), ), lambda: ( "broadcast_3d", torch.zeros((3, 4, 5), dtype=torch.bool), torch.ones((4, 5), dtype=torch.bool), ), ] ) def test_and(self, _, a, b, skip_to_glow=False): utils.run_comparison_tests( SimpleAndModule(), (a, b), fusible_ops={"aten::__and__"}, skip_to_glow=skip_to_glow, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimplePowModule(torch.nn.Module): def __init__(self, power): super(SimplePowModule, self).__init__() self.power = power def forward(self, tensor): return torch.pow(tensor, self.power) class TestPow(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("float", 2.2), lambda: ("tensor_basic", torch.randn(4) + 2), lambda: ("tensor_size[]", torch.tensor(2.2)), lambda: ("tensor_broadcast", torch.randn(1) + 2), ] ) def test_pow_basic(self, _, power): """Test of the PyTorch pow Node on Glow.""" utils.compare_tracing_methods( SimplePowModule(power), torch.rand(4) + 5, fusible_ops={"aten::pow"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleTransposeModel(torch.nn.Module): def __init__(self, dim0=None, dim1=None, inplace=False): super(SimpleTransposeModel, self).__init__() self.dims = (dim0, dim1) if dim0 and dim1 else None self.inplace = inplace def forward(self, tensor): t = tensor + tensor if self.dims: return t.transpose_(*self.dims) if self.inplace else t.transpose(*self.dims) else: return t.t_() if self.inplace else t.t() class TestTranspose(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("2d", SimpleTransposeModel(), torch.randn(7, 4)), lambda: ("1d", SimpleTransposeModel(), torch.randn(7)), lambda: ("inplace", SimpleTransposeModel(inplace=True), torch.randn(7, 4)), ] ) def test_t(self, _, module, tensor): utils.compare_tracing_methods(module, tensor, fusible_ops={"aten::t"}) @utils.deterministic_expand( [ lambda: ("simple", SimpleTransposeModel(1, 2), torch.randn(2, 3, 4)), lambda: ( "inplace", SimpleTransposeModel(1, 2, inplace=True), torch.randn(2, 3, 4), ), lambda: ("neg_dim", SimpleTransposeModel(-2, -1), torch.randn(2, 3, 4)), ] ) def test_transpose(self, _, module, tensor, reference=None): utils.compare_tracing_methods(module, tensor, fusible_ops={"aten::transpose"}) @utils.deterministic_expand( [lambda: ("oob_neg_dim", SimpleTransposeModel(-2, -4), torch.randn(2, 3, 4))] ) def test_transpose_failure(self, _, module, tensor): with self.assertRaises(IndexError): utils.compare_tracing_methods( module, tensor, fusible_ops={"aten::transpose"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch_glow from tests import utils from tests.utils import GLOW_FUSION_GROUP, SUBGRAPH_ATTR class TestGetAttr(utils.TorchGlowTestCase): def test_getattr(self): """Test fusion of the PyTorch prim::GetAttr Node into the Glow subgraph.""" with torch.no_grad(): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.linear = torch.nn.Linear(2, 1) def forward(self, x): return self.linear(x) x = torch.tensor([2.0, 3.0]) torch_glow.enableFusionPass_DO_NOT_USE_THIS() m = Model() jit_m = torch.jit.trace(m, x) jit_m_graph = jit_m.graph_for(x) # Ensure all prim::GetAttrs were fused and none were left out found_getattrs = False for node in jit_m_graph.nodes(): kind = node.kind() assert ( kind != "prim::GetAttr" ), "Expected all prim::GetAttrsGlow to be in Glow subgraph" if kind == GLOW_FUSION_GROUP: glow_subgraph = node.g(SUBGRAPH_ATTR) for node in glow_subgraph.nodes(): if node.kind() == "prim::GetAttr": found_getattrs = True assert ( found_getattrs ), "Expected to find prim::GetAttrs in the Glow subgraph"
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleClampModel(torch.nn.Module): def __init__(self, min, max): super(SimpleClampModel, self).__init__() self.min = min self.max = max def forward(self, input): return torch.clamp(input, self.min, self.max) class TestClamp(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("basic", 0.0, 0.8, torch.float), lambda: ("no_min", None, 0.8, torch.float), lambda: ("no_max", 0.0, None, torch.float), lambda: ("int_basic", 4, 8, torch.int32), ] ) def test_clamp(self, _, min, max, dtype): """Test of the PyTorch clamp Node on Glow.""" a = torch.randn(2, 7) if dtype == torch.int32: a = torch.randint(max * 2, (2, 7)) utils.compare_tracing_methods( SimpleClampModel(min, max), a, fusible_ops={"aten::clamp"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleContiguousModel(torch.nn.Module): def __init__(self, memory_format=torch.contiguous_format): super(SimpleContiguousModel, self).__init__() self.memory_format = memory_format def forward(self, input): formatted = input.contiguous(memory_format=self.memory_format) return formatted + formatted class TestContiguous(utils.TorchGlowTestCase): def test_contiguous_basic(self): """Test of the PyTorch contiguous Node on Glow.""" x = torch.randn(2, 2, 2) utils.compare_tracing_methods( SimpleContiguousModel(), x, fusible_ops={"aten::contiguous"} ) def test_with_alternate_memory_format(self): x = torch.randn(3, 4, 5, 6) utils.compare_tracing_methods( SimpleContiguousModel(torch.channels_last), x, fusible_ops={"aten::contiguous"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleNormModule(torch.nn.Module): def __init__(self, *args, **kwargs): super(SimpleNormModule, self).__init__() self.args = args self.kwargs = kwargs def forward(self, tensor): return torch.norm(tensor, *self.args, **self.kwargs) # TODO([email protected]): uncomment the following tests # after https://github.com/pytorch/pytorch/pull/81761 lands # class TestNorm(utils.TorchGlowTestCase): # def test_norm_basic(self): # """Basic test of the PyTorch norm Node on Glow.""" # utils.compare_tracing_methods( # SimpleNormModule(dim=0, p=2), # torch.arange(8, dtype=torch.float).reshape(2, 4), # fusible_ops={"aten::linalg_vector_norm"}, # ) # def test_norm_float_p(self): # """Test of the PyTorch norm Node that has p=2.0 on Glow.""" # utils.compare_tracing_methods( # SimpleNormModule(dim=0, p=2.0), # torch.arange(8, dtype=torch.float).reshape(2, 4), # fusible_ops={"aten::linalg_vector_norm"}, # ) # def test_norm_3d_inner_axis(self): # """Basic test of the PyTorch norm Node on Glow.""" # utils.compare_tracing_methods( # SimpleNormModule(dim=1), # torch.arange(8, dtype=torch.float).reshape(2, 2, 2), # fusible_ops={"aten::linalg_vector_norm"}, # ) # def test_norm_4d_outer_axis(self): # """Basic test of the PyTorch norm Node on Glow.""" # utils.compare_tracing_methods( # SimpleNormModule(dim=[3]), # torch.arange(16, dtype=torch.float).reshape(2, 2, 2, 2), # fusible_ops={"aten::linalg_vector_norm"}, # ) # def test_norm_keepdim(self): # """Basic test of the PyTorch norm Node on Glow.""" # utils.compare_tracing_methods( # SimpleNormModule(dim=[1], keepdim=True), # torch.arange(16, dtype=torch.float).reshape(2, 4, 2), # fusible_ops={"aten::linalg_vector_norm"}, # )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleMinModule(torch.nn.Module): def __init__(self): super(SimpleMinModule, self).__init__() def forward(self, a, b): return torch.min(a + a, b + b) class UnaryMinModule(torch.nn.Module): def __init__(self): super(UnaryMinModule, self).__init__() def forward(self, a): return torch.min(a + a) class TestMin(utils.TorchGlowTestCase): def test_elementwise_min(self): """Test of the PyTorch min Node on Glow.""" utils.compare_tracing_methods( SimpleMinModule(), torch.randn(7), torch.randn(7), fusible_ops={"aten::min"} ) def test_elementwise_min_broadcast(self): """Test of the PyTorch min Node with broadcast on Glow.""" utils.compare_tracing_methods( SimpleMinModule(), torch.randn(2, 7), torch.randn(7), fusible_ops={"aten::min"}, ) def test_unary_min(self): """Test of the PyTorch unary min Node on Glow.""" utils.compare_tracing_methods( UnaryMinModule(), torch.randint( 20, ( 10, 10, ), dtype=torch.int32, ), fusible_ops={"aten::min"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import torch from tests import utils from tests.utils import check_skip, DEFAULT_BACKEND class TestEmbeddingBag(utils.TorchGlowTestCase): supported_backends = {"Interpreter", "NNPI"} def test_embedding_bag_basic(self): """Test of aten::embedding_bag node on glow""" check_skip(self) class TestModule(torch.nn.Module): def forward(self, input, offsets, per_sample_weights): weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) embedding_sum = torch.nn.EmbeddingBag.from_pretrained( weight, mode="sum", include_last_offset=True ) a = embedding_sum(input, offsets) b = embedding_sum(input, offsets, per_sample_weights) return a, b input = torch.LongTensor([1, 0, 0, 1, 1]) offsets = torch.LongTensor([0, 1, 5]) # final item is endOffset per_sample_weights = torch.FloatTensor([1, 2, 3, 4, 5]) utils.compare_tracing_methods( TestModule(), input, offsets, per_sample_weights, fusible_ops={"aten::embedding_bag"}, ) class TestQuantizedEmbeddingBag(utils.TorchGlowTestCase): supported_backends = {"Interpreter", "NNPI"} @utils.deterministic_expand( [ # explicit local param declaration required for lambda fn with loops for correct param generation lambda num_lengths=num_lengths, is4bit=is4bit, is_weighted=is_weighted, use_fp16=use_fp16, per_sample_weights_fp16=per_sample_weights_fp16: ( "{len}{bits}{weighted}{fp16}{sample_weights}{backend}".format( len=num_lengths, bits="_4bit" if is4bit else "_byte", weighted="_weighted" if is_weighted else "", fp16="_fp16" if use_fp16 else "", sample_weights="_sample_weights_fp16" if per_sample_weights_fp16 and is_weighted else "", backend="_" + DEFAULT_BACKEND, ), num_lengths, is4bit, is_weighted, use_fp16, per_sample_weights_fp16, ) for num_lengths in [0, 8] for is4bit in [False, True] for is_weighted in [False, True] for use_fp16 in [False, True] for per_sample_weights_fp16 in [False, True] ] ) def test_embedding_bag_rowwise_offsets( self, name, num_lengths, is4bit, is_weighted, use_fp16, per_sample_weights_fp16, ): """Test of quantized::embedding_bag_byte_rowwise_offsets and quantized::embedding_bag_4bit_rowwise_offsets node on glow""" check_skip(self) class TestModule(torch.nn.Module): def __init__(self, q_weights, is4bit=False, per_sample_weights=None): super().__init__() self.q_weights = q_weights self.per_sample_weights = per_sample_weights if is4bit: self.op = torch.ops.quantized.embedding_bag_4bit_rowwise_offsets else: self.op = torch.ops.quantized.embedding_bag_byte_rowwise_offsets def forward(self, indices, offsets): return self.op( self.q_weights, indices, offsets, mode=0, per_sample_weights=self.per_sample_weights, include_last_offset=True, ) # generate random weights and indices num_embeddings = 16 embedding_dim = 4 weights = torch.from_numpy( (np.random.random_sample((num_embeddings, embedding_dim)) + 1).astype( np.float32 ) ) q_weights = ( torch.ops.quantized.embedding_bag_4bit_prepack(weights) if is4bit else torch.ops.quantized.embedding_bag_byte_prepack(weights) ) np_lengths = ( np.zeros(shape=[10]).astype(np.int32) if num_lengths == 0 else np.random.randint(0, num_lengths, size=10).astype(np.int32) ) num_lengths = np.sum(np_lengths) lengths = torch.from_numpy(np_lengths) indices = torch.from_numpy( np.random.randint( low=0, high=num_embeddings, size=num_lengths, dtype=np.int64 ) ).long() offsets = torch.cat([torch.zeros([1]), torch.cumsum(lengths, 0)]).long() per_sample_weights_type = ( np.float16 if per_sample_weights_fp16 and is4bit else np.float32 ) per_sample_weights = torch.from_numpy( np.random.uniform(low=0.01, high=0.5, size=[len(indices)]).astype( per_sample_weights_type ) ) m = TestModule(q_weights, is4bit, per_sample_weights if is_weighted else None) utils.compare_tracing_methods( m, indices, offsets, fusible_ops={ "quantized::embedding_bag_4bit_rowwise_offsets" if is4bit else "quantized::embedding_bag_byte_rowwise_offsets" }, fp16=use_fp16, # FP16 version is known to yeild different results, so our # test here is mainly focusing on the flow rather than actual # accuracy. There will be additional coverage on accuracy of # the lowered modules atol=0.02 if (is4bit or use_fp16) else 5e-4, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleFlattenModule(torch.nn.Module): def __init__(self, start_dim=0, end_dim=-1): super(SimpleFlattenModule, self).__init__() self.start_dim = start_dim self.end_dim = end_dim def forward(self, input): return torch.flatten(input, start_dim=self.start_dim, end_dim=self.end_dim) class TestFlatten(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("basic", SimpleFlattenModule(), torch.randn(2, 3, 2, 5)), lambda: ("start_at_0", SimpleFlattenModule(0, 2), torch.randn(2, 3, 2, 5)), lambda: ( "start_in_middle", SimpleFlattenModule(1, 2), torch.randn(2, 3, 2, 5), ), lambda: ( "negative_end_dim", SimpleFlattenModule(0, -2), torch.randn(2, 3, 2, 5), ), lambda: ("same_dim", SimpleFlattenModule(2, 2), torch.randn(2, 3, 2, 5)), lambda: ( "negative_start_dim", SimpleFlattenModule(-3, -1), torch.randn(2, 3, 2, 5), ), ] ) def test_flatten(self, _, module, input): utils.compare_tracing_methods(module, input, fusible_ops={"aten::flatten"})
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F from tests import utils class SimpleGeluModule(torch.nn.Module): def forward(self, tensor): return F.gelu(tensor + tensor) class TestGelu(utils.TorchGlowTestCase): def test_gelu_basic(self): """Basic test of the PyTorch gelu Node on Glow.""" def test_f(a): return F.gelu(a + a) for _ in range(100): x = torch.randn(10) utils.compare_tracing_methods( SimpleGeluModule(), x, check_trace=False, atol=1e-3, fusible_ops={"aten::gelu"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleBmmModule(torch.nn.Module): def forward(self, a, b): return (a + a).bmm(b) class TestBmm(utils.TorchGlowTestCase): def test_bmm(self): """Basic test of the PyTorch bmm Node on Glow.""" x = torch.randn(6, 4, 10) y = torch.randn(6, 10, 2) utils.compare_tracing_methods( SimpleBmmModule(), x, y, fusible_ops={"aten::bmm"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F from tests import utils class SimpleLinearModule(torch.nn.Module): def __init__(self): super(SimpleLinearModule, self).__init__() def forward(self, input, weight, bias=None): return F.linear((input + input), weight, bias) class TestLinear(utils.TorchGlowTestCase): def test_linear_basic(self): """Basic test of the PyTorch aten::linear op on Glow.""" def test_f(input, weight, bias=None): return F.linear((input + input), weight, bias) n = 5 in_features = 4 out_features = 3 input = torch.randn(n, in_features) weight = torch.randn(out_features, in_features) utils.compare_tracing_methods( SimpleLinearModule(), input, weight, fusible_ops={"aten::linear"} ) def test_linear_bias(self): """Test of the PyTorch aten::linear op on Glow.""" def test_f(input, weight, bias=None): return F.linear((input + input), weight, bias) n = 5 in_features = 4 out_features = 3 input = torch.randn(n, in_features) weight = torch.randn(out_features, in_features) bias = torch.randn(out_features) utils.compare_tracing_methods( SimpleLinearModule(), input, weight, bias, fusible_ops={"aten::linear"} ) def test_linear_broadcast(self): """Test of the PyTorch aten::linear op with broadcasting on Glow.""" def test_f(input, weight, bias=None): return F.linear((input + input), weight, bias) n = 5 in_features = 4 out_features = 3 input = torch.randn(n, 9, 7, in_features) weight = torch.randn(out_features, in_features) utils.compare_tracing_methods( SimpleLinearModule(), input, weight, fusible_ops={"aten::linear"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class IndexPutModule(torch.nn.Module): def __init__(self, indices, accumulate=False): super(IndexPutModule, self).__init__() self.indices = indices self.accumulate = accumulate def forward(self, tensor, val): tensor.index_put_(self.indices, val, accumulate=self.accumulate) tensor = tensor + tensor return tensor class TestIndexPut(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "basic", IndexPutModule([torch.tensor([1, 1]), torch.tensor([0, 1])]), torch.zeros(2, 3), torch.tensor([1.0, 2.0]), ), lambda: ( "3d_0", IndexPutModule( [torch.tensor([1, 1]), torch.tensor([0, 1]), torch.tensor([0, 1])] ), torch.zeros(2, 3, 4), torch.tensor([1.0, 2.0]), ), lambda: ( "3d_1", IndexPutModule( [ torch.tensor([1, 1, 0]), torch.tensor([0, 1, 1]), torch.tensor([0, 1, 0]), ] ), torch.zeros(2, 3, 4), torch.tensor([1.0, 2.0, 3.0]), ), lambda: ( "broadcast_value_0", IndexPutModule( [ torch.tensor([2, 0, 1]), torch.tensor([1, 2, 0]), torch.tensor([2, 0, 1]), ] ), torch.zeros(5, 3, 4), torch.tensor([1.0]), ), lambda: ( "broadcast_value_1", IndexPutModule( [ torch.tensor([1, 1, 2]), torch.tensor([0, 1, 2]), torch.tensor([0, 1, 3]), ] ), torch.zeros(5, 3, 4), torch.tensor([1.0]), ), lambda: ( "broadcast_value_2", IndexPutModule( [ torch.tensor([1, 1, 0]), torch.tensor([0, 1, 0]), ] ), torch.zeros(5, 3, 4), torch.tensor([1.0, 1.0, 1.0, 1.0]), ), lambda: ( "accumulate_basic", IndexPutModule([torch.tensor([1, 2]), torch.tensor([0, 1])]), torch.zeros(4, 3), torch.tensor([1.0, 2.0]), ), lambda: ( "accumulate_broadcast", IndexPutModule( [ torch.tensor([1, 1, 2]), torch.tensor([0, 1, 2]), torch.tensor([0, 1, 3]), ], True, ), torch.ones(5, 4, 6), torch.tensor([5.0]), ), lambda: ( "dim_0", IndexPutModule( [ torch.tensor([1]), ] ), torch.zeros(5, 3, 4), torch.tensor([5.0]), ), lambda: ( "dim_1", IndexPutModule( [ torch.tensor([1]), ] ), torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), torch.tensor([-3.0, -4.0]), ), lambda: ( "dim_2", IndexPutModule( [ torch.tensor([1, 0]), ] ), torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), torch.tensor([-3.0, -4.0]), ), lambda: ( "dim_3", IndexPutModule( [ torch.tensor([1, 0, 2]), ] ), torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), torch.tensor([[-3.0], [-4.0], [-5.0]]), ), ] ) def test_index_put(self, _, module, tensor, value): utils.compare_tracing_methods( module, tensor, value, fusible_ops={"aten::index_put_"} )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F from tests import utils class SimpleDropoutModule(torch.nn.Module): def __init__(self, p=0.5, training=True, inplace=False): super(SimpleDropoutModule, self).__init__() self.p = p self.training = training self.inplace = inplace def forward(self, input): return F.dropout( input + input, p=self.p, training=self.training, inplace=self.inplace ) class TestDropout(utils.TorchGlowTestCase): def test_dropout(self): """Basic test of the PyTorch aten::dropout Node on Glow.""" utils.compare_tracing_methods( SimpleDropoutModule(training=False), torch.randn(6, 4, 10), fusible_ops={"aten::dropout"}, ) def test_dropout_inplace(self): """Basic test of the PyTorch aten::dropout_ Node on Glow.""" # Expect fuser to out-of-place the operator utils.compare_tracing_methods( SimpleDropoutModule(training=False, inplace=True), torch.randn(6, 4, 10), fusible_ops={"aten::dropout"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleToModel(torch.nn.Module): def __init__(self, *conversions): super(SimpleToModel, self).__init__() self.conversions = conversions def forward(self, tensor): for conversion_type in self.conversions: tensor = tensor.to(conversion_type) return tensor class ToWithDeviceModel(torch.nn.Module): def __init__(self, *conversions): super(ToWithDeviceModel, self).__init__() self.conversions = conversions def forward(self, tensor): for conversion_type in self.conversions: tensor = tensor.to(device="cpu", dtype=conversion_type) return tensor class SimplePrimToModel(torch.nn.Module): def __init__(self, conversion, device=None): super().__init__() self.device = None self.conversion = conversion if self.device is None: self.forward = self._forward_dtype else: self.forward = self._forward_device_dtype def _forward_device_dtype(self, dummy): return torch.ops.prim.NumToTensor(dummy.size(0)).to( device=self.device, dtype=self.conversion ) def _forward_dtype(self, dummy): return torch.ops.prim.NumToTensor(dummy.size(0)).to(self.conversion) class TestTo(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("to_int", SimpleToModel(torch.int), torch.randn(1, 2, 3, 4)), lambda: ("to_float", SimpleToModel(torch.float), torch.randn(1, 2, 3, 4)), lambda: ( "to_int_to_float", SimpleToModel(torch.int, torch.float), torch.randn(1, 2, 3, 4), ), lambda: ( "to_int_with_device", ToWithDeviceModel(torch.int), torch.randn(1, 2, 3, 4), ), lambda: ("to_cpu", SimpleToModel("cpu"), torch.randn(1, 2, 3, 4)), lambda: ( "to_tensor", SimpleToModel(torch.randn(3, 4).type(torch.int32)), torch.randn(1, 2, 3, 4), ), ] ) def test_to(self, _, module, tensor): utils.compare_tracing_methods(module, tensor, fusible_ops={"aten::to"}) @utils.deterministic_expand( [ lambda: ( "to_prim_dtype", SimplePrimToModel(torch.float), torch.randn(5, 6, 7), ), lambda: ("to_prim_device", SimplePrimToModel("cpu"), torch.randn(5, 6, 7)), lambda: ( "to_prim_device_with_dtype", SimplePrimToModel(torch.float, "cuda"), torch.randn(5, 6, 7), ), ] ) def test_to_prim(self, _, module, tensor): utils.compare_tracing_methods( module, tensor, fusible_ops={"prim::NumToTensor", "aten::to"}, scripted=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimplePermuteModule(torch.nn.Module): def __init__(self, *dimensions): super(SimplePermuteModule, self).__init__() self.dimensions = dimensions def forward(self, tensor): return tensor.permute(*self.dimensions) class TestPermute(utils.TorchGlowTestCase): def test_permute(self): """Basic test of the PyTorch aten::permute node on Glow.""" utils.compare_tracing_methods( SimplePermuteModule(0, 2, 1), torch.randn(2, 3, 4), fusible_ops={"aten::permute"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleQuantizedCatModel(torch.nn.Module): def __init__(self, dimension, scale, zero_point): super(SimpleQuantizedCatModel, self).__init__() self.dimension = dimension self.scale = scale self.zero_point = zero_point def forward(self, a, b): return torch.nn.quantized.DeQuantize()( torch.ops.quantized.cat( (a, b), dim=self.dimension, scale=self.scale, zero_point=self.zero_point, ) ) class TestQuantizedCat(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "zero_offset", SimpleQuantizedCatModel( 0, 0.05, 0, ), ( torch.nn.quantized.Quantize( scale=0.3, zero_point=0, dtype=torch.quint8, )(torch.randn([1, 2, 3, 4], dtype=torch.float32)), torch.nn.quantized.Quantize( scale=0.3, zero_point=0, dtype=torch.quint8, )(torch.randn([5, 2, 3, 4], dtype=torch.float32)), ), ), lambda: ( "basic", SimpleQuantizedCatModel( 1, 0.05, 0, ), ( torch.nn.quantized.Quantize( scale=0.3, zero_point=0.3, dtype=torch.quint8, )(torch.randn([8, 8, 8, 8], dtype=torch.float32)), torch.nn.quantized.Quantize( scale=0.3, zero_point=0.3, dtype=torch.quint8, )(torch.randn([8, 8, 8, 8], dtype=torch.float32)), ), ), lambda: ( "with_empty_tensor", SimpleQuantizedCatModel( 0, 0.05, 0, ), ( torch.nn.quantized.Quantize( scale=0.2, zero_point=0.1, dtype=torch.quint8, )(torch.empty(0, dtype=torch.float32)), torch.nn.quantized.Quantize( scale=0.2, zero_point=0.1, dtype=torch.quint8, )(torch.randn([8, 8], dtype=torch.float32)), ), ), lambda: ( "with_differing_quantizations", SimpleQuantizedCatModel( 2, 0.05, 0, ), ( torch.nn.quantized.Quantize( scale=0.6, zero_point=0.2, dtype=torch.quint8, )(torch.randn([7, 7, 7], dtype=torch.float32)), torch.nn.quantized.Quantize( scale=0.2, zero_point=0.1, dtype=torch.quint8, )(torch.randn([7, 7, 7], dtype=torch.float32)), ), ), ] ) def test_quantized_cat(self, _, module, tensors, fusion_blocklist=None): utils.compare_tracing_methods( module, *tensors, fusible_ops={"quantized::cat"}, fusion_blocklist=None, skip_to_glow=False, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleSplitModel(torch.nn.Module): def __init__(self, split_size_or_sections, dimension): super(SimpleSplitModel, self).__init__() self.split_size_or_sections = split_size_or_sections self.dimension = dimension def forward(self, x): return torch.split(x, self.split_size_or_sections, self.dimension) class TestSplit(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: (torch.randn(8), 4, 0), lambda: (torch.randn(10), [1, 2, 3, 4], 0), lambda: (torch.randn(10, 10, 10), 3, 2), lambda: (torch.randn(100, 100), [25, 50, 25], 1), lambda: (torch.randn(100, 100), [25, 50, 25], -2), lambda: (torch.randn(100, 100), 25, -1), ] ) def test_split(self, tensor, split_size_or_sections, dimension): utils.compare_tracing_methods( SimpleSplitModel(split_size_or_sections, dimension), tensor )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleAddMmModule(torch.nn.Module): def __init__(self, alpha=1, beta=1): super(SimpleAddMmModule, self).__init__() self.alpha = alpha self.beta = beta def forward(self, a, b, c): return (a + a).addmm(b, c) class TestAddMM(utils.TorchGlowTestCase): def test_addmm_basic(self): """Basic test of the PyTorch addmm Node on Glow.""" utils.run_comparison_tests( SimpleAddMmModule(), (torch.randn(6, 4), torch.randn(6, 10), torch.randn(10, 4)), fusible_ops={"aten::add", "aten::mm"}, fp16vfp16_atol=1e-3, fp16vfp16_rtol=1e-3, ) def test_addmm_broadcast(self): """Test of the PyTorch addmm with broadcasting add on Glow.""" utils.run_comparison_tests( SimpleAddMmModule(), (torch.randn(4), torch.randn(6, 10), torch.randn(10, 4)), fusible_ops={"aten::add", "aten::mm"}, ) def test_addmm_broadcast_with_alpha_and_beta(self): """Test of the PyTorch addmm with broadcasting add on Glow.""" utils.run_comparison_tests( SimpleAddMmModule(2.0, 3.0), (torch.randn(4), torch.randn(6, 10), torch.randn(10, 4)), fusible_ops={"aten::add", "aten::mm"}, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleMmModule(torch.nn.Module): def __init__(self): super(SimpleMmModule, self).__init__() def forward(self, a, b, t): r = torch.mm(a, b) return r.mm(t) class TestMm(utils.TorchGlowTestCase): def test_mm_basic(self): """Test of the PyTorch mm Node on Glow.""" x = torch.randn(2, 3) y = torch.randn(4, 3).t() t = torch.randn(4, 2) utils.compare_tracing_methods( SimpleMmModule(), x, y, t, fusible_ops={"aten::mm"}, skip_to_glow=True )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleQuantizedMaxPoolModel(torch.nn.Module): def __init__(self, scale, zero_point, dtype, kernel_size): super(SimpleQuantizedMaxPoolModel, self).__init__() self.scale = scale self.zero_point = zero_point self.dtype = dtype def forward(self, tensor): quantize = torch.nn.quantized.Quantize( scale=self.scale, zero_point=self.zero_point, dtype=self.dtype ) dequantize = torch.nn.quantized.DeQuantize() maxpool = torch.nn.MaxPool2d(3) dequantize = torch.nn.quantized.DeQuantize() return dequantize(maxpool(quantize(tensor))) class TestQuantizedMaxPool(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ( "basic", SimpleQuantizedMaxPoolModel(1.0 / 128, 3, torch.quint8, 3), torch.randn(1, 4, 5, 5), ), lambda: ( "cut_q", SimpleQuantizedMaxPoolModel(1.0 / 128, 3, torch.quint8, 3), torch.randn(1, 4, 5, 5), {"aten::quantize_per_tensor"}, ), ] ) def test_quantized_maxpool(self, _, module, tensor, fusion_blocklist=None): fusible_ops = { "aten::max_pool2d", "aten::quantize_per_tensor", "aten::dequantize", } fusible_ops -= fusion_blocklist or set() utils.compare_tracing_methods( module, tensor, fusible_ops=fusible_ops, fusion_blocklist=fusion_blocklist )