python_code
stringlengths
0
229k
"""Collect the PRs between two specified tags or commits and output the commit titles, PR numbers, and labels in a json file. Usage: python tools/release_notes/retrieve_prs.py tags/v0.10.0 \ 18685a517ae68353b05b9a0ede5343df31525c76 --file data.json """ import argparse import json import re import subprocess from collections import namedtuple from os.path import expanduser import requests Features = namedtuple( "Features", [ "title", "pr_number", "labels", ], ) def _run_cmd(cmd): return subprocess.check_output(cmd).decode('utf-8').strip() def commit_title(commit_hash): cmd = ['git', 'log', '-n', '1', '--pretty=format:%s', f'{commit_hash}'] return _run_cmd(cmd) def parse_pr_number(commit_hash, title): regex = r"(#[0-9]+)" matches = re.findall(regex, title) if len(matches) == 0: print(f"[{commit_hash}: {title}] Could not parse PR number, ignoring PR") return None if len(matches) > 1: print(f"[{commit_hash}: {title}] Got two PR numbers, using the last one") return matches[-1][1:] return matches[0][1:] def get_ghstack_token(): pattern = "github_oauth = (.*)" with open(expanduser("~/.ghstackrc"), "r+") as f: config = f.read() matches = re.findall(pattern, config) if len(matches) == 0: raise RuntimeError("Can't find a github oauth token") return matches[0] token = get_ghstack_token() headers = {"Authorization": f"token {token}"} def run_query(query): response = requests.post("https://api.github.com/graphql", json={"query": query}, headers=headers) response.raise_for_status() return response.json() def gh_labels(pr_number): query = f""" {{ repository(owner: "pytorch", name: "audio") {{ pullRequest(number: {pr_number}) {{ labels(first: 10) {{ edges {{ node {{ name }} }} }} }} }} }} """ query = run_query(query) edges = query["data"]["repository"]["pullRequest"]["labels"]["edges"] return [edge["node"]["name"] for edge in edges] def get_features(commit_hash): title = commit_title(commit_hash) pr_number = parse_pr_number(commit_hash, title) labels = [] if pr_number is not None: labels = gh_labels(pr_number) return Features(title, pr_number, labels) def get_commits_between(base_version, new_version): cmd = ['git', 'merge-base', f'{base_version}', f'{new_version}'] merge_base = _run_cmd(cmd) # Returns a list of items in the form # a7854f33 Add HuBERT model architectures (#1769) cmd = ['git', 'log', '--reverse', '--oneline', f'{merge_base}..{new_version}'] commits = _run_cmd(cmd) log_lines = commits.split("\n") hashes, titles = zip(*[log_line.split(" ", 1) for log_line in log_lines]) return hashes, titles def _parse_args(args=None): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument("base_version", type=str, help="starting tag or commit (exclusive)") parser.add_argument("new_version", type=str, help="final tag or commit (inclusive)") parser.add_argument("--file", type=str, default="data.json", help="output json file") return parser.parse_args(args) def _main(args): hashes, titles = get_commits_between(args.base_version, args.new_version) data = {} for idx, commit in enumerate(hashes): data[commit] = get_features(commit) if idx % 10 == 0: print(f"{idx} / {len(hashes)}") data = {commit: features._asdict() for commit, features in data.items()} with open(args.file, "w") as f: json.dump(data, f) if __name__ == "__main__": _main(_parse_args())
# In[1]: import pandas as pd # In[2]: # from https://github.com/pytorch/audio/blob/main/.github/process_commit.py primary_labels_mapping = { "BC-breaking": "Backward-incompatible changes", "deprecation": "Deprecations", "bug fix": "Bug Fixes", "new feature": "New Features", "improvement": "Improvements", "example": "Examples", "prototype": "Prototypes", "other": "Other", "None": "Missing", } secondary_labels_mapping = { "module: I/O": "I/O", "module: ops": "Ops", "module: models": "Models", "module: pipelines": "Pipelines", "module: datasets": "Datasets", "module: docs": "Documentation", "module: tests": "Tests", "build": "Build", "style": "Style", "perf": "Performance", "other": "Other", "None": "Missing", } # In[3]: df = pd.read_json("data.json").T df.tail() # In[4]: def get_labels(col_name, labels): df[col_name] = [[] for _ in range(len(df))] for i, row in df.iterrows(): row[col_name] = "None" for label in labels: if label in row["labels"]: row[col_name] = label break # In[5]: get_labels("primary_label", primary_labels_mapping.keys()) get_labels("secondary_label", secondary_labels_mapping.keys()) df.tail(5) # In[6]: for primary_label in primary_labels_mapping.keys(): primary_df = df[df["primary_label"] == primary_label] if primary_df.empty: continue print(f"## {primary_labels_mapping[primary_label]}") for secondary_label in secondary_labels_mapping.keys(): secondary_df = primary_df[primary_df["secondary_label"] == secondary_label] if secondary_df.empty: continue print(f"### {secondary_labels_mapping[secondary_label]}") for idx, row in secondary_df.iterrows(): print(f"- {row['title']}") print() print()
from .extension import * # noqa
import os import platform import subprocess from pathlib import Path import distutils.sysconfig from setuptools import Extension from setuptools.command.build_ext import build_ext import torch __all__ = [ 'get_ext_modules', 'CMakeBuild', ] _THIS_DIR = Path(__file__).parent.resolve() _ROOT_DIR = _THIS_DIR.parent.parent.resolve() _TORCHAUDIO_DIR = _ROOT_DIR / 'torchaudio' def _get_build(var, default=False): if var not in os.environ: return default val = os.environ.get(var, '0') trues = ['1', 'true', 'TRUE', 'on', 'ON', 'yes', 'YES'] falses = ['0', 'false', 'FALSE', 'off', 'OFF', 'no', 'NO'] if val in trues: return True if val not in falses: print( f'WARNING: Unexpected environment variable value `{var}={val}`. ' f'Expected one of {trues + falses}') return False _BUILD_SOX = False if platform.system() == 'Windows' else _get_build("BUILD_SOX", True) _BUILD_KALDI = False if platform.system() == 'Windows' else _get_build("BUILD_KALDI", True) _BUILD_RNNT = _get_build("BUILD_RNNT", True) _USE_ROCM = _get_build("USE_ROCM", torch.cuda.is_available() and torch.version.hip is not None) _USE_CUDA = _get_build("USE_CUDA", torch.cuda.is_available() and torch.version.hip is None) _USE_OPENMP = _get_build("USE_OPENMP", True) and \ 'ATen parallel backend: OpenMP' in torch.__config__.parallel_info() _TORCH_CUDA_ARCH_LIST = os.environ.get('TORCH_CUDA_ARCH_LIST', None) def get_ext_modules(): return [ Extension(name='torchaudio.lib.libtorchaudio', sources=[]), Extension(name='torchaudio._torchaudio', sources=[]), ] # Based off of # https://github.com/pybind/cmake_example/blob/580c5fd29d4651db99d8874714b07c0c49a53f8a/setup.py class CMakeBuild(build_ext): def run(self): try: subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError("CMake is not available.") from None super().run() def build_extension(self, ext): # Since two library files (libtorchaudio and _torchaudio) need to be # recognized by setuptools, we instantiate `Extension` twice. (see `get_ext_modules`) # This leads to the situation where this `build_extension` method is called twice. # However, the following `cmake` command will build all of them at the same time, # so, we do not need to perform `cmake` twice. # Therefore we call `cmake` only for `torchaudio._torchaudio`. if ext.name != 'torchaudio._torchaudio': return extdir = os.path.abspath( os.path.dirname(self.get_ext_fullpath(ext.name))) # required for auto-detection of auxiliary "native" libs if not extdir.endswith(os.path.sep): extdir += os.path.sep cfg = "Debug" if self.debug else "Release" cmake_args = [ f"-DCMAKE_BUILD_TYPE={cfg}", f"-DCMAKE_PREFIX_PATH={torch.utils.cmake_prefix_path}", f"-DCMAKE_INSTALL_PREFIX={extdir}", '-DCMAKE_VERBOSE_MAKEFILE=ON', f"-DPython_INCLUDE_DIR={distutils.sysconfig.get_python_inc()}", f"-DBUILD_SOX:BOOL={'ON' if _BUILD_SOX else 'OFF'}", f"-DBUILD_KALDI:BOOL={'ON' if _BUILD_KALDI else 'OFF'}", f"-DBUILD_RNNT:BOOL={'ON' if _BUILD_RNNT else 'OFF'}", "-DBUILD_TORCHAUDIO_PYTHON_EXTENSION:BOOL=ON", f"-DUSE_ROCM:BOOL={'ON' if _USE_ROCM else 'OFF'}", f"-DUSE_CUDA:BOOL={'ON' if _USE_CUDA else 'OFF'}", f"-DUSE_OPENMP:BOOL={'ON' if _USE_OPENMP else 'OFF'}", ] build_args = [ '--target', 'install' ] # Pass CUDA architecture to cmake if _TORCH_CUDA_ARCH_LIST is not None: # Convert MAJOR.MINOR[+PTX] list to new style one # defined at https://cmake.org/cmake/help/latest/prop_tgt/CUDA_ARCHITECTURES.html _arches = _TORCH_CUDA_ARCH_LIST.replace('.', '').split(";") _arches = [arch[:-4] if arch.endswith("+PTX") else f"{arch}-real" for arch in _arches] cmake_args += [f"-DCMAKE_CUDA_ARCHITECTURES={';'.join(_arches)}"] # Default to Ninja if 'CMAKE_GENERATOR' not in os.environ or platform.system() == 'Windows': cmake_args += ["-GNinja"] if platform.system() == 'Windows': import sys python_version = sys.version_info cmake_args += [ "-DCMAKE_C_COMPILER=cl", "-DCMAKE_CXX_COMPILER=cl", f"-DPYTHON_VERSION={python_version.major}.{python_version.minor}", ] # Set CMAKE_BUILD_PARALLEL_LEVEL to control the parallel build level # across all generators. if "CMAKE_BUILD_PARALLEL_LEVEL" not in os.environ: # self.parallel is a Python 3 only way to set parallel jobs by hand # using -j in the build_ext call, not supported by pip or PyPA-build. if hasattr(self, "parallel") and self.parallel: # CMake 3.12+ only. build_args += ["-j{}".format(self.parallel)] if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call( ["cmake", str(_ROOT_DIR)] + cmake_args, cwd=self.build_temp) subprocess.check_call( ["cmake", "--build", "."] + build_args, cwd=self.build_temp) def get_ext_filename(self, fullname): ext_filename = super().get_ext_filename(fullname) ext_filename_parts = ext_filename.split('.') without_abi = ext_filename_parts[:-2] + ext_filename_parts[-1:] ext_filename = '.'.join(without_abi) return ext_filename
import torch from torchaudio._internal import download_url_to_file import pytest class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return ''.join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { 'en': 'Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac', 'de': '20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac', 'en2': '20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac', 'es': '20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac', 'fr': '20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac', 'it': '20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac', } @pytest.fixture def sample_speech(tmp_path, lang): if lang not in _FILES: raise NotImplementedError(f'Unexpected lang: {lang}') filename = _FILES[lang] path = tmp_path.parent / filename if not path.exists(): url = f'https://download.pytorch.org/torchaudio/test-assets/{filename}' print(f'downloading from {url}') download_url_to_file(url, path, progress=False) return path def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ) ) @pytest.fixture(autouse=True) def temp_hub_dir(tmpdir, pytestconfig): if not pytestconfig.getoption('use_tmp_hub_dir'): yield else: org_dir = torch.hub.get_dir() torch.hub.set_dir(tmpdir) yield torch.hub.set_dir(org_dir)
from torchaudio.pipelines import ( TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH, TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH, TACOTRON2_WAVERNN_CHAR_LJSPEECH, TACOTRON2_WAVERNN_PHONE_LJSPEECH, ) import pytest @pytest.mark.parametrize( 'bundle', [ TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH, TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH, TACOTRON2_WAVERNN_CHAR_LJSPEECH, TACOTRON2_WAVERNN_PHONE_LJSPEECH, ] ) def test_tts_models(bundle): """Smoke test of TTS pipeline""" text = "Hello world! Text to Speech!" processor = bundle.get_text_processor() tacotron2 = bundle.get_tacotron2() vocoder = bundle.get_vocoder() processed, lengths = processor(text) mel_spec, lengths, _ = tacotron2.infer(processed, lengths) waveforms, lengths = vocoder(mel_spec, lengths)
import torchaudio from torchaudio.pipelines import ( WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_ASR_BASE_10M, WAV2VEC2_ASR_BASE_100H, WAV2VEC2_ASR_BASE_960H, WAV2VEC2_ASR_LARGE_10M, WAV2VEC2_ASR_LARGE_100H, WAV2VEC2_ASR_LARGE_960H, WAV2VEC2_ASR_LARGE_LV60K_10M, WAV2VEC2_ASR_LARGE_LV60K_100H, WAV2VEC2_ASR_LARGE_LV60K_960H, WAV2VEC2_XLSR53, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, HUBERT_ASR_LARGE, HUBERT_ASR_XLARGE, VOXPOPULI_ASR_BASE_10K_EN, VOXPOPULI_ASR_BASE_10K_ES, VOXPOPULI_ASR_BASE_10K_DE, VOXPOPULI_ASR_BASE_10K_FR, VOXPOPULI_ASR_BASE_10K_IT, ) import pytest @pytest.mark.parametrize( "bundle", [ WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_XLSR53, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, ] ) def test_pretraining_models(bundle): """Smoke test of downloading weights for pretraining models""" bundle.get_model() @pytest.mark.parametrize( "bundle,lang,expected", [ (WAV2VEC2_ASR_BASE_10M, 'en', 'I|HAD|THAT|CURIYOSSITY|BESID|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_BASE_100H, 'en', 'I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_BASE_960H, 'en', 'I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_LARGE_10M, 'en', 'I|HAD|THAT|CURIOUSITY|BESIDE|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_LARGE_100H, 'en', 'I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_LARGE_960H, 'en', 'I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_LARGE_LV60K_10M, 'en', 'I|HAD|THAT|CURIOUSSITY|BESID|ME|AT|THISS|MOMENT|'), (WAV2VEC2_ASR_LARGE_LV60K_100H, 'en', 'I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (WAV2VEC2_ASR_LARGE_LV60K_960H, 'en', 'I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (HUBERT_ASR_LARGE, 'en', 'I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (HUBERT_ASR_XLARGE, 'en', 'I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|'), (VOXPOPULI_ASR_BASE_10K_EN, 'en2', 'i|hope|that|we|will|see|a|ddrasstic|decrease|of|funding|for|the|failed|eu|project|and|that|more|money|will|come|back|to|the|taxpayers'), # noqa: E501 (VOXPOPULI_ASR_BASE_10K_ES, 'es', "la|primera|que|es|imprescindible|pensar|a|pequeña|a|escala|para|implicar|y|complementar|así|la|actuación|global"), # noqa: E501 (VOXPOPULI_ASR_BASE_10K_DE, 'de', "dabei|spielt|auch|eine|sorgfältige|berichterstattung|eine|wichtige|rolle"), (VOXPOPULI_ASR_BASE_10K_FR, 'fr', 'la|commission|va|faire|des|propositions|sur|ce|sujet|comment|mettre|en|place|cette|capacité|fiscale|et|le|conseil|européen|y|reviendra|sour|les|sujets|au|moins|de|mars'), # noqa: E501 (VOXPOPULI_ASR_BASE_10K_IT, 'it', 'credo|che|illatino|non|sia|contemplato|tra|le|traduzioni|e|quindi|mi|attengo|allitaliano') # noqa: E501 ] ) def test_finetune_asr_model( bundle, lang, expected, sample_speech, ctc_decoder, ): """Smoke test of downloading weights for fine-tuning models and simple transcription""" model = bundle.get_model().eval() waveform, sample_rate = torchaudio.load(sample_speech) emission, _ = model(waveform) decoder = ctc_decoder(bundle.get_labels()) result = decoder(emission[0]) assert result == expected
import torch import torchaudio.kaldi_io as kio from torchaudio_unittest import common_utils class Test_KaldiIO(common_utils.TorchaudioTestCase): data1 = [[1, 2, 3], [11, 12, 13], [21, 22, 23]] data2 = [[31, 32, 33], [41, 42, 43], [51, 52, 53]] def _test_helper(self, file_name, expected_data, fn, expected_dtype): """ Takes a file_name to the input data and a function fn to extract the data. It compares the extracted data to the expected_data. The expected_dtype will be used to check that the extracted data is of the right type. """ test_filepath = common_utils.get_asset_path(file_name) expected_output = {'key' + str(idx + 1): torch.tensor(val, dtype=expected_dtype) for idx, val in enumerate(expected_data)} for key, vec in fn(test_filepath): self.assertTrue(key in expected_output) self.assertTrue(isinstance(vec, torch.Tensor)) self.assertEqual(vec.dtype, expected_dtype) self.assertTrue(torch.all(torch.eq(vec, expected_output[key]))) def test_read_vec_int_ark(self): self._test_helper("vec_int.ark", self.data1, kio.read_vec_int_ark, torch.int32) def test_read_vec_flt_ark(self): self._test_helper("vec_flt.ark", self.data1, kio.read_vec_flt_ark, torch.float32) def test_read_mat_ark(self): self._test_helper("mat.ark", [self.data1, self.data2], kio.read_mat_ark, torch.float32)
try: from . import fb # noqa except Exception: pass
import torch import torchaudio.compliance.kaldi as kaldi from torchaudio_unittest import common_utils def extract_window(window, wave, f, frame_length, frame_shift, snip_edges): # just a copy of ExtractWindow from feature-window.cc in python def first_sample_of_frame(frame, window_size, window_shift, snip_edges): if snip_edges: return frame * window_shift else: midpoint_of_frame = frame * window_shift + window_shift // 2 beginning_of_frame = midpoint_of_frame - window_size // 2 return beginning_of_frame sample_offset = 0 num_samples = sample_offset + wave.size(0) start_sample = first_sample_of_frame(f, frame_length, frame_shift, snip_edges) end_sample = start_sample + frame_length if snip_edges: assert(start_sample >= sample_offset and end_sample <= num_samples) else: assert(sample_offset == 0 or start_sample >= sample_offset) wave_start = start_sample - sample_offset wave_end = wave_start + frame_length if wave_start >= 0 and wave_end <= wave.size(0): window[f, :] = wave[wave_start:(wave_start + frame_length)] else: wave_dim = wave.size(0) for s in range(frame_length): s_in_wave = s + wave_start while s_in_wave < 0 or s_in_wave >= wave_dim: if s_in_wave < 0: s_in_wave = - s_in_wave - 1 else: s_in_wave = 2 * wave_dim - 1 - s_in_wave window[f, s] = wave[s_in_wave] class Test_Kaldi(common_utils.TempDirMixin, common_utils.TorchaudioTestCase): def _test_get_strided_helper(self, num_samples, window_size, window_shift, snip_edges): waveform = torch.arange(num_samples).float() output = kaldi._get_strided(waveform, window_size, window_shift, snip_edges) # from NumFrames in feature-window.cc n = window_size if snip_edges: m = 0 if num_samples < window_size else 1 + (num_samples - window_size) // window_shift else: m = (num_samples + (window_shift // 2)) // window_shift self.assertTrue(output.dim() == 2) self.assertTrue(output.shape[0] == m and output.shape[1] == n) window = torch.empty((m, window_size)) for r in range(m): extract_window(window, waveform, r, window_size, window_shift, snip_edges) self.assertEqual(window, output) def test_get_strided(self): # generate any combination where 0 < window_size <= num_samples and # 0 < window_shift. for num_samples in range(1, 20): for window_size in range(1, num_samples + 1): for window_shift in range(1, 2 * num_samples + 1): for snip_edges in range(0, 2): self._test_get_strided_helper(num_samples, window_size, window_shift, snip_edges) def test_mfcc_empty(self): # Passing in an empty tensor should result in an error self.assertRaises(AssertionError, kaldi.mfcc, torch.empty(0))
from typing import Optional import numpy as np import torch def psd_numpy( X: np.array, mask: Optional[np.array], multi_mask: bool = False, normalize: bool = True, eps: float = 1e-15 ) -> np.array: X_conj = np.conj(X) psd_X = np.einsum("...cft,...eft->...ftce", X, X_conj) if mask is not None: if multi_mask: mask = mask.mean(axis=-3) if normalize: mask = mask / (mask.sum(axis=-1, keepdims=True) + eps) psd = psd_X * mask[..., None, None] else: psd = psd_X psd = psd.sum(axis=-3) return torch.tensor(psd, dtype=torch.cdouble)
import io import torch def torch_script(obj): """TorchScript the given function or Module""" buffer = io.BytesIO() torch.jit.save(torch.jit.script(obj), buffer) buffer.seek(0) return torch.jit.load(buffer)
import json from itertools import product from parameterized import param, parameterized from .data_utils import get_asset_path def load_params(*paths): with open(get_asset_path(*paths), 'r') as file: return [param(json.loads(line)) for line in file] def _name_func(func, _, params): strs = [] for arg in params.args: if isinstance(arg, tuple): strs.append("_".join(str(a) for a in arg)) else: strs.append(str(arg)) # sanitize the test name name = "_".join(strs).replace(".", "_") return f'{func.__name__}_{name}' def nested_params(*params_set): """Generate the cartesian product of the given list of parameters. Args: params_set (list of parameters): Parameters. When using ``parameterized.param`` class, all the parameters have to be specified with the class, only using kwargs. """ flatten = [p for params in params_set for p in params] # Parameters to be nested are given as list of plain objects if all(not isinstance(p, param) for p in flatten): args = list(product(*params_set)) return parameterized.expand(args, name_func=_name_func) # Parameters to be nested are given as list of `parameterized.param` if not all(isinstance(p, param) for p in flatten): raise TypeError( "When using ``parameterized.param``, " "all the parameters have to be of the ``param`` type.") if any(p.args for p in flatten): raise ValueError( "When using ``parameterized.param``, " "all the parameters have to be provided as keyword argument." ) args = [param()] for params in params_set: args = [param(**x.kwargs, **y.kwargs) for x in args for y in params] return parameterized.expand(args)
import unittest import torchaudio def set_audio_backend(backend): """Allow additional backend value, 'default'""" backends = torchaudio.list_audio_backends() if backend == 'soundfile': be = 'soundfile' elif backend == 'default': if 'sox_io' in backends: be = 'sox_io' elif 'soundfile' in backends: be = 'soundfile' else: raise unittest.SkipTest('No default backend available') else: be = backend torchaudio.set_audio_backend(be)
from typing import Optional import torch import scipy.io.wavfile def normalize_wav(tensor: torch.Tensor) -> torch.Tensor: if tensor.dtype == torch.float32: pass elif tensor.dtype == torch.int32: tensor = tensor.to(torch.float32) tensor[tensor > 0] /= 2147483647. tensor[tensor < 0] /= 2147483648. elif tensor.dtype == torch.int16: tensor = tensor.to(torch.float32) tensor[tensor > 0] /= 32767. tensor[tensor < 0] /= 32768. elif tensor.dtype == torch.uint8: tensor = tensor.to(torch.float32) - 128 tensor[tensor > 0] /= 127. tensor[tensor < 0] /= 128. return tensor def get_wav_data( dtype: str, num_channels: int, *, num_frames: Optional[int] = None, normalize: bool = True, channels_first: bool = True, ): """Generate linear signal of the given dtype and num_channels Data range is [-1.0, 1.0] for float32, [-2147483648, 2147483647] for int32 [-32768, 32767] for int16 [0, 255] for uint8 num_frames allow to change the linear interpolation parameter. Default values are 256 for uint8, else 1 << 16. 1 << 16 as default is so that int16 value range is completely covered. """ dtype_ = getattr(torch, dtype) if num_frames is None: if dtype == 'uint8': num_frames = 256 else: num_frames = 1 << 16 if dtype == 'uint8': base = torch.linspace(0, 255, num_frames, dtype=dtype_) elif dtype == 'int8': base = torch.linspace(-128, 127, num_frames, dtype=dtype_) elif dtype == 'float32': base = torch.linspace(-1., 1., num_frames, dtype=dtype_) elif dtype == 'float64': base = torch.linspace(-1., 1., num_frames, dtype=dtype_) elif dtype == 'int32': base = torch.linspace(-2147483648, 2147483647, num_frames, dtype=dtype_) elif dtype == 'int16': base = torch.linspace(-32768, 32767, num_frames, dtype=dtype_) else: raise NotImplementedError(f'Unsupported dtype {dtype}') data = base.repeat([num_channels, 1]) if not channels_first: data = data.transpose(1, 0) if normalize: data = normalize_wav(data) return data def load_wav(path: str, normalize=True, channels_first=True) -> torch.Tensor: """Load wav file without torchaudio""" sample_rate, data = scipy.io.wavfile.read(path) data = torch.from_numpy(data.copy()) if data.ndim == 1: data = data.unsqueeze(1) if normalize: data = normalize_wav(data) if channels_first: data = data.transpose(1, 0) return data, sample_rate def save_wav(path, data, sample_rate, channels_first=True): """Save wav file without torchaudio""" if channels_first: data = data.transpose(1, 0) scipy.io.wavfile.write(path, sample_rate, data.numpy())
from .data_utils import ( get_asset_path, get_whitenoise, get_sinusoid, get_spectrogram, ) from .backend_utils import ( set_audio_backend, ) from .case_utils import ( TempDirMixin, HttpServerMixin, TestBaseMixin, PytorchTestCase, TorchaudioTestCase, skipIfNoCuda, skipIfNoExec, skipIfNoModule, skipIfNoKaldi, skipIfNoSox, skipIfRocm, skipIfNoQengine, ) from .wav_utils import ( get_wav_data, normalize_wav, load_wav, save_wav, ) from .parameterized_utils import ( load_params, nested_params ) from .func_utils import torch_script __all__ = [ 'get_asset_path', 'get_whitenoise', 'get_sinusoid', 'get_spectrogram', 'set_audio_backend', 'TempDirMixin', 'HttpServerMixin', 'TestBaseMixin', 'PytorchTestCase', 'TorchaudioTestCase', 'skipIfNoCuda', 'skipIfNoExec', 'skipIfNoModule', 'skipIfNoKaldi', 'skipIfNoSox', 'skipIfNoSoxBackend', 'skipIfRocm', 'skipIfNoQengine', 'get_wav_data', 'normalize_wav', 'load_wav', 'save_wav', 'load_params', 'nested_params', 'torch_script', ]
import unittest import random import torch import numpy as np from torchaudio.functional import rnnt_loss CPU_DEVICE = torch.device("cpu") class _NumpyTransducer(torch.autograd.Function): @staticmethod def forward( ctx, log_probs, logit_lengths, target_lengths, targets, blank=-1, ): device = log_probs.device log_probs = log_probs.cpu().data.numpy() logit_lengths = logit_lengths.cpu().data.numpy() target_lengths = target_lengths.cpu().data.numpy() targets = targets.cpu().data.numpy() gradients, costs, _, _ = __class__.compute( log_probs=log_probs, logit_lengths=logit_lengths, target_lengths=target_lengths, targets=targets, blank=blank, ) costs = torch.FloatTensor(costs).to(device=device) gradients = torch.FloatTensor(gradients).to(device=device) ctx.grads = torch.autograd.Variable(gradients) return costs @staticmethod def backward(ctx, grad_output): grad_output = grad_output.view(-1, 1, 1, 1).to(ctx.grads) return ctx.grads.mul(grad_output), None, None, None, None, None, None, None, None @staticmethod def compute_alpha_one_sequence(log_probs, targets, blank=-1): max_T, max_U, D = log_probs.shape alpha = np.zeros((max_T, max_U), dtype=np.float32) for t in range(1, max_T): alpha[t, 0] = alpha[t - 1, 0] + log_probs[t - 1, 0, blank] for u in range(1, max_U): alpha[0, u] = alpha[0, u - 1] + log_probs[0, u - 1, targets[u - 1]] for t in range(1, max_T): for u in range(1, max_U): skip = alpha[t - 1, u] + log_probs[t - 1, u, blank] emit = alpha[t, u - 1] + log_probs[t, u - 1, targets[u - 1]] alpha[t, u] = np.logaddexp(skip, emit) cost = -(alpha[-1, -1] + log_probs[-1, -1, blank]) return alpha, cost @staticmethod def compute_beta_one_sequence(log_probs, targets, blank=-1): max_T, max_U, D = log_probs.shape beta = np.zeros((max_T, max_U), dtype=np.float32) beta[-1, -1] = log_probs[-1, -1, blank] for t in reversed(range(max_T - 1)): beta[t, -1] = beta[t + 1, -1] + log_probs[t, -1, blank] for u in reversed(range(max_U - 1)): beta[-1, u] = beta[-1, u + 1] + log_probs[-1, u, targets[u]] for t in reversed(range(max_T - 1)): for u in reversed(range(max_U - 1)): skip = beta[t + 1, u] + log_probs[t, u, blank] emit = beta[t, u + 1] + log_probs[t, u, targets[u]] beta[t, u] = np.logaddexp(skip, emit) cost = -beta[0, 0] return beta, cost @staticmethod def compute_gradients_one_sequence( log_probs, alpha, beta, targets, blank=-1 ): max_T, max_U, D = log_probs.shape gradients = np.full(log_probs.shape, float("-inf")) cost = -beta[0, 0] gradients[-1, -1, blank] = alpha[-1, -1] gradients[:-1, :, blank] = alpha[:-1, :] + beta[1:, :] for u, l in enumerate(targets): gradients[:, u, l] = alpha[:, u] + beta[:, u + 1] gradients = -(np.exp(gradients + log_probs + cost)) return gradients @staticmethod def compute( log_probs, logit_lengths, target_lengths, targets, blank=-1, ): gradients = np.zeros_like(log_probs) B_tgt, max_T, max_U, D = log_probs.shape B_src = logit_lengths.shape[0] H = int(B_tgt / B_src) alphas = np.zeros((B_tgt, max_T, max_U)) betas = np.zeros((B_tgt, max_T, max_U)) betas.fill(float("-inf")) alphas.fill(float("-inf")) costs = np.zeros(B_tgt) for b_tgt in range(B_tgt): b_src = int(b_tgt / H) T = int(logit_lengths[b_src]) # NOTE: see https://arxiv.org/pdf/1211.3711.pdf Section 2.1 U = int(target_lengths[b_tgt]) + 1 seq_log_probs = log_probs[b_tgt, :T, :U, :] seq_targets = targets[b_tgt, : int(target_lengths[b_tgt])] alpha, alpha_cost = __class__.compute_alpha_one_sequence( log_probs=seq_log_probs, targets=seq_targets, blank=blank ) beta, beta_cost = __class__.compute_beta_one_sequence( log_probs=seq_log_probs, targets=seq_targets, blank=blank ) seq_gradients = __class__.compute_gradients_one_sequence( log_probs=seq_log_probs, alpha=alpha, beta=beta, targets=seq_targets, blank=blank, ) np.testing.assert_almost_equal(alpha_cost, beta_cost, decimal=2) gradients[b_tgt, :T, :U, :] = seq_gradients costs[b_tgt] = beta_cost alphas[b_tgt, :T, :U] = alpha betas[b_tgt, :T, :U] = beta return gradients, costs, alphas, betas class NumpyTransducerLoss(torch.nn.Module): def __init__(self, blank=-1): super().__init__() self.blank = blank def forward( self, logits, logit_lengths, target_lengths, targets, ): log_probs = torch.nn.functional.log_softmax(logits, dim=-1) return _NumpyTransducer.apply( log_probs, logit_lengths, target_lengths, targets, self.blank, ) def compute_with_numpy_transducer(data): costs = NumpyTransducerLoss( blank=data["blank"], )( logits=data["logits"], logit_lengths=data["logit_lengths"], target_lengths=data["target_lengths"], targets=data["targets"], ) loss = torch.sum(costs) loss.backward() costs = costs.cpu() gradients = data["logits"].saved_grad.cpu() return costs, gradients def compute_with_pytorch_transducer(data): costs = rnnt_loss( logits=data["logits"], logit_lengths=data["logit_lengths"], target_lengths=data["target_lengths"], targets=data["targets"], blank=data["blank"], reduction="none", ) loss = torch.sum(costs) loss.backward() costs = costs.cpu() gradients = data["logits"].saved_grad.cpu() return costs, gradients def get_basic_data(device): # Example provided # in 6f73a2513dc784c59eec153a45f40bc528355b18 # of https://github.com/HawkAaron/warp-transducer logits = torch.tensor( [ [ [ [0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1], ], [ [0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], [0.7, 0.1, 0.2, 0.1, 0.1], ], ] ], dtype=torch.float32, device=device, ) targets = torch.tensor([[1, 2]], dtype=torch.int, device=device) logit_lengths = torch.tensor([2], dtype=torch.int, device=device) target_lengths = torch.tensor([2], dtype=torch.int, device=device) logits.requires_grad_(True) return logits, targets, logit_lengths, target_lengths def get_B1_T10_U3_D4_data( random=False, dtype=torch.float32, device=CPU_DEVICE, ): B, T, U, D = 2, 10, 3, 4 logits = torch.rand(B, T, U, D, dtype=dtype, device=device) if not random: logits.fill_(0.1) logits.requires_grad_(True) def grad_hook(grad): logits.saved_grad = grad.clone() logits.register_hook(grad_hook) data = {} data["logits"] = logits data["logit_lengths"] = torch.tensor([10, 10], dtype=torch.int32, device=device) data["target_lengths"] = torch.tensor([2, 2], dtype=torch.int32, device=device) data["targets"] = torch.tensor([[1, 2], [1, 2]], dtype=torch.int32, device=device) data["blank"] = 0 return data def get_B1_T2_U3_D5_data(dtype=torch.float32, device=CPU_DEVICE): logits = torch.tensor( [ 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.2, 0.8, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.7, 0.1, 0.2, 0.1, 0.1, ], dtype=dtype, device=device, ).reshape(1, 2, 3, 5) logits.requires_grad_(True) def grad_hook(grad): logits.saved_grad = grad.clone() logits.register_hook(grad_hook) targets = torch.tensor([[1, 2]], dtype=torch.int32, device=device) logit_lengths = torch.tensor([2], dtype=torch.int32, device=device) target_lengths = torch.tensor([2], dtype=torch.int32, device=device) blank = -1 ref_costs = torch.tensor([5.09566688538], dtype=dtype) ref_gradients = torch.tensor( [ 0.17703132, -0.39992708, 0.17703132, 0.17703132, -0.13116692, 0.12247062, 0.12247062, -0.181684, 0.12247062, -0.1857276, 0.06269141, 0.06269141, 0.06928471, 0.12624498, -0.32091248, 0.05456069, -0.2182428, 0.05456069, 0.05456069, 0.05456069, 0.12073967, 0.12073967, -0.48295838, 0.12073967, 0.12073967, 0.30741188, 0.16871123, 0.18645471, 0.16871123, -0.83128875, ], dtype=dtype, ).reshape(1, 2, 3, 5) data = { "logits": logits, "targets": targets, "logit_lengths": logit_lengths, "target_lengths": target_lengths, "blank": blank, } return data, ref_costs, ref_gradients def get_B2_T4_U3_D3_data(dtype=torch.float32, device=CPU_DEVICE): # Test from D21322854 logits = torch.tensor( [ 0.065357, 0.787530, 0.081592, 0.529716, 0.750675, 0.754135, 0.609764, 0.868140, 0.622532, 0.668522, 0.858039, 0.164539, 0.989780, 0.944298, 0.603168, 0.946783, 0.666203, 0.286882, 0.094184, 0.366674, 0.736168, 0.166680, 0.714154, 0.399400, 0.535982, 0.291821, 0.612642, 0.324241, 0.800764, 0.524106, 0.779195, 0.183314, 0.113745, 0.240222, 0.339470, 0.134160, 0.505562, 0.051597, 0.640290, 0.430733, 0.829473, 0.177467, 0.320700, 0.042883, 0.302803, 0.675178, 0.569537, 0.558474, 0.083132, 0.060165, 0.107958, 0.748615, 0.943918, 0.486356, 0.418199, 0.652408, 0.024243, 0.134582, 0.366342, 0.295830, 0.923670, 0.689929, 0.741898, 0.250005, 0.603430, 0.987289, 0.592606, 0.884672, 0.543450, 0.660770, 0.377128, 0.358021, ], dtype=dtype, device=device, ).reshape(2, 4, 3, 3) logits.requires_grad_(True) def grad_hook(grad): logits.saved_grad = grad.clone() logits.register_hook(grad_hook) targets = torch.tensor([[1, 2], [1, 1]], dtype=torch.int32, device=device) logit_lengths = torch.tensor([4, 4], dtype=torch.int32, device=device) target_lengths = torch.tensor([2, 2], dtype=torch.int32, device=device) blank = 0 ref_costs = torch.tensor([4.2806528590890736, 3.9384369822503591], dtype=dtype) ref_gradients = torch.tensor( [ -0.186844, -0.062555, 0.249399, -0.203377, 0.202399, 0.000977, -0.141016, 0.079123, 0.061893, -0.011552, -0.081280, 0.092832, -0.154257, 0.229433, -0.075176, -0.246593, 0.146405, 0.100188, -0.012918, -0.061593, 0.074512, -0.055986, 0.219831, -0.163845, -0.497627, 0.209240, 0.288387, 0.013605, -0.030220, 0.016615, 0.113925, 0.062781, -0.176706, -0.667078, 0.367659, 0.299419, -0.356344, -0.055347, 0.411691, -0.096922, 0.029459, 0.067463, -0.063518, 0.027654, 0.035863, -0.154499, -0.073942, 0.228441, -0.166790, -0.000088, 0.166878, -0.172370, 0.105565, 0.066804, 0.023875, -0.118256, 0.094381, -0.104707, -0.108934, 0.213642, -0.369844, 0.180118, 0.189726, 0.025714, -0.079462, 0.053748, 0.122328, -0.238789, 0.116460, -0.598687, 0.302203, 0.296484, ], dtype=dtype, ).reshape(2, 4, 3, 3) data = { "logits": logits, "targets": targets, "logit_lengths": logit_lengths, "target_lengths": target_lengths, "blank": blank, } return data, ref_costs, ref_gradients def get_random_data( max_B=8, max_T=128, max_U=32, max_D=40, blank=-1, dtype=torch.float32, device=CPU_DEVICE, seed=None, ): if seed is not None: torch.manual_seed(seed=seed) if blank != -1: raise ValueError("blank != -1 is not supported yet.") random.seed(0) B = random.randint(1, max_B - 1) T = random.randint(5, max_T - 1) U = random.randint(5, max_U - 1) D = random.randint(2, max_D - 1) logit_lengths = torch.randint(low=5, high=T + 1, size=(B,), dtype=torch.int32, device=device) target_lengths = torch.randint(low=5, high=U + 1, size=(B,), dtype=torch.int32, device=device) max_src_length = torch.max(logit_lengths) max_tgt_length = torch.max(target_lengths) targets = torch.randint( low=0, high=D - 1, size=(B, max_tgt_length), dtype=torch.int32, device=device ) logits = torch.rand( size=(B, max_src_length, max_tgt_length + 1, D), dtype=dtype, device=device, ).requires_grad_(True) def grad_hook(grad): logits.saved_grad = grad.clone() logits.register_hook(grad_hook) return { "logits": logits, "targets": targets, "logit_lengths": logit_lengths, "target_lengths": target_lengths, "blank": blank, } def skipIfNoRNNT(test_item): try: torch.ops.torchaudio.rnnt_loss return test_item except RuntimeError: return unittest.skip("torchaudio C++ extension is not compiled with RNN transducer loss")
import subprocess import torch def convert_args(**kwargs): args = [] for key, value in kwargs.items(): if key == 'sample_rate': key = 'sample_frequency' key = '--' + key.replace('_', '-') value = str(value).lower() if value in [True, False] else str(value) args.append('%s=%s' % (key, value)) return args def run_kaldi(command, input_type, input_value): """Run provided Kaldi command, pass a tensor and get the resulting tensor Args: command (list of str): The command with arguments input_type (str): 'ark' or 'scp' input_value (Tensor for 'ark', string for 'scp'): The input to pass. Must be a path to an audio file for 'scp'. """ import kaldi_io key = 'foo' process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) if input_type == 'ark': kaldi_io.write_mat(process.stdin, input_value.cpu().numpy(), key=key) elif input_type == 'scp': process.stdin.write(f'{key} {input_value}'.encode('utf8')) else: raise NotImplementedError('Unexpected type') process.stdin.close() result = dict(kaldi_io.read_mat_ark(process.stdout))['foo'] return torch.from_numpy(result.copy()) # copy supresses some torch warning
import os.path from typing import Union, Optional import torch _TEST_DIR_PATH = os.path.realpath( os.path.join(os.path.dirname(__file__), '..')) def get_asset_path(*paths): """Return full path of a test asset""" return os.path.join(_TEST_DIR_PATH, 'assets', *paths) def convert_tensor_encoding( tensor: torch.tensor, dtype: torch.dtype, ): """Convert input tensor with values between -1 and 1 to integer encoding Args: tensor: input tensor, assumed between -1 and 1 dtype: desired output tensor dtype Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if dtype == torch.int32: tensor *= (tensor > 0) * 2147483647 + (tensor < 0) * 2147483648 if dtype == torch.int16: tensor *= (tensor > 0) * 32767 + (tensor < 0) * 32768 if dtype == torch.uint8: tensor *= (tensor > 0) * 127 + (tensor < 0) * 128 tensor += 128 tensor = tensor.to(dtype) return tensor def get_whitenoise( *, sample_rate: int = 16000, duration: float = 1, # seconds n_channels: int = 1, seed: int = 0, dtype: Union[str, torch.dtype] = "float32", device: Union[str, torch.device] = "cpu", channels_first=True, scale_factor: float = 1, ): """Generate pseudo audio data with whitenoise Args: sample_rate: Sampling rate duration: Length of the resulting Tensor in seconds. n_channels: Number of channels seed: Seed value used for random number generation. Note that this function does not modify global random generator state. dtype: Torch dtype device: device channels_first: whether first dimension is n_channels scale_factor: scale the Tensor before clamping and quantization Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if isinstance(dtype, str): dtype = getattr(torch, dtype) if dtype not in [torch.float64, torch.float32, torch.int32, torch.int16, torch.uint8]: raise NotImplementedError(f'dtype {dtype} is not supported.') # According to the doc, folking rng on all CUDA devices is slow when there are many CUDA devices, # so we only fork on CPU, generate values and move the data to the given device with torch.random.fork_rng([]): torch.random.manual_seed(seed) tensor = torch.randn([n_channels, int(sample_rate * duration)], dtype=torch.float32, device='cpu') tensor /= 2.0 tensor *= scale_factor tensor.clamp_(-1.0, 1.0) if not channels_first: tensor = tensor.t() tensor = tensor.to(device) return convert_tensor_encoding(tensor, dtype) def get_sinusoid( *, frequency: float = 300, sample_rate: int = 16000, duration: float = 1, # seconds n_channels: int = 1, dtype: Union[str, torch.dtype] = "float32", device: Union[str, torch.device] = "cpu", channels_first: bool = True, ): """Generate pseudo audio data with sine wave. Args: frequency: Frequency of sine wave sample_rate: Sampling rate duration: Length of the resulting Tensor in seconds. n_channels: Number of channels dtype: Torch dtype device: device Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if isinstance(dtype, str): dtype = getattr(torch, dtype) pie2 = 2 * 3.141592653589793 end = pie2 * frequency * duration theta = torch.linspace(0, end, int(sample_rate * duration), dtype=torch.float32, device=device) tensor = torch.sin(theta, out=None).repeat([n_channels, 1]) if not channels_first: tensor = tensor.t() return convert_tensor_encoding(tensor, dtype) def get_spectrogram( waveform, *, n_fft: int = 2048, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: Optional[torch.Tensor] = None, center: bool = True, pad_mode: str = 'reflect', power: Optional[float] = None, ): """Generate a spectrogram of the given Tensor Args: n_fft: The number of FFT bins. hop_length: Stride for sliding window. default: ``n_fft // 4``. win_length: The size of window frame and STFT filter. default: ``n_fft``. winwdow: Window function. default: Hann window center: Pad the input sequence if True. See ``torch.stft`` for the detail. pad_mode: Padding method used when center is True. Default: "reflect". power: If ``None``, raw spectrogram with complex values are returned, otherwise the norm of the spectrogram is returned. """ hop_length = hop_length or n_fft // 4 win_length = win_length or n_fft window = torch.hann_window(win_length, device=waveform.device) if window is None else window spec = torch.stft( waveform, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=center, window=window, pad_mode=pad_mode, return_complex=True) if power is not None: spec = spec.abs() ** power return spec
import sys import subprocess import warnings def get_encoding(dtype): encodings = { 'float32': 'floating-point', 'int32': 'signed-integer', 'int16': 'signed-integer', 'uint8': 'unsigned-integer', } return encodings[dtype] def get_bit_depth(dtype): bit_depths = { 'float32': 32, 'int32': 32, 'int16': 16, 'uint8': 8, } return bit_depths[dtype] def gen_audio_file( path, sample_rate, num_channels, *, encoding=None, bit_depth=None, compression=None, attenuation=None, duration=1, comment_file=None, ): """Generate synthetic audio file with `sox` command.""" if path.endswith('.wav'): warnings.warn('Use get_wav_data and save_wav to generate wav file for accurate result.') command = [ 'sox', '-V3', # verbose '--no-dither', # disable automatic dithering '-R', # -R is supposed to be repeatable, though the implementation looks suspicious # and not setting the seed to a fixed value. # https://fossies.org/dox/sox-14.4.2/sox_8c_source.html # search "sox_globals.repeatable" ] if bit_depth is not None: command += ['--bits', str(bit_depth)] command += [ '--rate', str(sample_rate), '--null', # no input '--channels', str(num_channels), ] if compression is not None: command += ['--compression', str(compression)] if bit_depth is not None: command += ['--bits', str(bit_depth)] if encoding is not None: command += ['--encoding', str(encoding)] if comment_file is not None: command += ['--comment-file', str(comment_file)] command += [ str(path), 'synth', str(duration), # synthesizes for the given duration [sec] 'sawtooth', '1', # saw tooth covers the both ends of value range, which is a good property for test. # similar to linspace(-1., 1.) # this introduces bigger boundary effect than sine when converted to mp3 ] if attenuation is not None: command += ['vol', f'-{attenuation}dB'] print(' '.join(command), file=sys.stderr) subprocess.run(command, check=True) def convert_audio_file( src_path, dst_path, *, encoding=None, bit_depth=None, compression=None): """Convert audio file with `sox` command.""" command = ['sox', '-V3', '--no-dither', '-R', str(src_path)] if encoding is not None: command += ['--encoding', str(encoding)] if bit_depth is not None: command += ['--bits', str(bit_depth)] if compression is not None: command += ['--compression', str(compression)] command += [dst_path] print(' '.join(command), file=sys.stderr) subprocess.run(command, check=True) def _flattern(effects): if not effects: return effects if isinstance(effects[0], str): return effects return [item for sublist in effects for item in sublist] def run_sox_effect(input_file, output_file, effect, *, output_sample_rate=None, output_bitdepth=None): """Run sox effects""" effect = _flattern(effect) command = ['sox', '-V', '--no-dither', input_file] if output_bitdepth: command += ['--bits', str(output_bitdepth)] command += [output_file] + effect if output_sample_rate: command += ['rate', str(output_sample_rate)] print(' '.join(command)) subprocess.run(command, check=True)
import shutil import os.path import subprocess import tempfile import time import unittest import torch from torch.testing._internal.common_utils import TestCase as PytorchTestCase from torchaudio._internal.module_utils import ( is_module_available, is_sox_available, is_kaldi_available ) from .backend_utils import set_audio_backend class TempDirMixin: """Mixin to provide easy access to temp dir""" temp_dir_ = None @classmethod def get_base_temp_dir(cls): # If TORCHAUDIO_TEST_TEMP_DIR is set, use it instead of temporary directory. # this is handy for debugging. key = 'TORCHAUDIO_TEST_TEMP_DIR' if key in os.environ: return os.environ[key] if cls.temp_dir_ is None: cls.temp_dir_ = tempfile.TemporaryDirectory() return cls.temp_dir_.name @classmethod def tearDownClass(cls): super().tearDownClass() if cls.temp_dir_ is not None: cls.temp_dir_.cleanup() cls.temp_dir_ = None def get_temp_path(self, *paths): temp_dir = os.path.join(self.get_base_temp_dir(), self.id()) path = os.path.join(temp_dir, *paths) os.makedirs(os.path.dirname(path), exist_ok=True) return path class HttpServerMixin(TempDirMixin): """Mixin that serves temporary directory as web server This class creates temporary directory and serve the directory as HTTP service. The server is up through the execution of all the test suite defined under the subclass. """ _proc = None _port = 8000 @classmethod def setUpClass(cls): super().setUpClass() cls._proc = subprocess.Popen( ['python', '-m', 'http.server', f'{cls._port}'], cwd=cls.get_base_temp_dir(), stderr=subprocess.DEVNULL) # Disable server-side error log because it is confusing time.sleep(2.0) @classmethod def tearDownClass(cls): super().tearDownClass() cls._proc.kill() def get_url(self, *route): return f'http://localhost:{self._port}/{self.id()}/{"/".join(route)}' class TestBaseMixin: """Mixin to provide consistent way to define device/dtype/backend aware TestCase""" dtype = None device = None backend = None def setUp(self): super().setUp() set_audio_backend(self.backend) @property def complex_dtype(self): if self.dtype in ['float32', 'float', torch.float, torch.float32]: return torch.cfloat if self.dtype in ['float64', 'double', torch.double, torch.float64]: return torch.cdouble raise ValueError(f'No corresponding complex dtype for {self.dtype}') class TorchaudioTestCase(TestBaseMixin, PytorchTestCase): pass def skipIfNoExec(cmd): return unittest.skipIf(shutil.which(cmd) is None, f'`{cmd}` is not available') def skipIfNoModule(module, display_name=None): display_name = display_name or module return unittest.skipIf(not is_module_available(module), f'"{display_name}" is not available') def skipIfNoCuda(test_item): if torch.cuda.is_available(): return test_item force_cuda_test = os.environ.get('TORCHAUDIO_TEST_FORCE_CUDA', '0') if force_cuda_test not in ['0', '1']: raise ValueError('"TORCHAUDIO_TEST_FORCE_CUDA" must be either "0" or "1".') if force_cuda_test == '1': raise RuntimeError('"TORCHAUDIO_TEST_FORCE_CUDA" is set but CUDA is not available.') return unittest.skip('CUDA is not available.')(test_item) skipIfNoSox = unittest.skipIf(not is_sox_available(), reason='Sox not available') skipIfNoKaldi = unittest.skipIf(not is_kaldi_available(), reason='Kaldi not available') skipIfRocm = unittest.skipIf(os.getenv('TORCHAUDIO_TEST_WITH_ROCM', '0') == '1', reason="test doesn't currently work on the ROCm stack") skipIfNoQengine = unittest.skipIf( 'fbgemm' not in torch.backends.quantized.supported_engines, reason="`fbgemm` is not available." )
import os import sys sys.path.append( os.path.join( os.path.dirname(__file__), '..', '..', '..', 'examples'))
import os from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) from source_separation.utils.dataset import wsj0mix _FILENAMES = [ "012c0207_1.9952_01cc0202_-1.9952.wav", "01co0302_1.63_014c020q_-1.63.wav", "01do0316_0.24011_205a0104_-0.24011.wav", "01lc020x_1.1301_027o030r_-1.1301.wav", "01mc0202_0.34056_205o0106_-0.34056.wav", "01nc020t_0.53821_018o030w_-0.53821.wav", "01po030f_2.2136_40ko031a_-2.2136.wav", "01ra010o_2.4098_403a010f_-2.4098.wav", "01xo030b_0.22377_016o031a_-0.22377.wav", "02ac020x_0.68566_01ec020b_-0.68566.wav", "20co010m_0.82801_019c0212_-0.82801.wav", "20da010u_1.2483_017c0211_-1.2483.wav", "20oo010d_1.0631_01ic020s_-1.0631.wav", "20sc0107_2.0222_20fo010h_-2.0222.wav", "20tc010f_0.051456_404a0110_-0.051456.wav", "407c0214_1.1712_02ca0113_-1.1712.wav", "40ao030w_2.4697_20vc010a_-2.4697.wav", "40pa0101_1.1087_40ea0107_-1.1087.wav", ] def _mock_dataset(root_dir, num_speaker): dirnames = ["mix"] + [f"s{i+1}" for i in range(num_speaker)] for dirname in dirnames: os.makedirs(os.path.join(root_dir, dirname), exist_ok=True) seed = 0 sample_rate = 8000 expected = [] for filename in _FILENAMES: mix = None src = [] for dirname in dirnames: waveform = get_whitenoise( sample_rate=8000, duration=1, n_channels=1, dtype="int16", seed=seed ) seed += 1 path = os.path.join(root_dir, dirname, filename) save_wav(path, waveform, sample_rate) waveform = normalize_wav(waveform) if dirname == "mix": mix = waveform else: src.append(waveform) expected.append((sample_rate, mix, src)) return expected class TestWSJ0Mix2(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 2) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=2, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected) class TestWSJ0Mix3(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 3) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=3, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[2], expected_src[2], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected)
"""Reference Implementation of SDR and PIT SDR. This module was taken from the following implementation https://github.com/naplab/Conv-TasNet/blob/e66d82a8f956a69749ec8a4ae382217faa097c5c/utility/sdr.py which was made available by Yi Luo under the following liscence, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. The module was modified in the following manner; - Remove the functions other than `calc_sdr_torch` and `batch_SDR_torch`, - Remove the import statements required only for the removed functions. - Add `# flake8: noqa` so as not to report any format issue on this module. The implementation of the retained functions and their formats are kept as-is. """ # flake8: noqa import numpy as np from itertools import permutations import torch def calc_sdr_torch(estimation, origin, mask=None): """ batch-wise SDR caculation for one audio file on pytorch Variables. estimation: (batch, nsample) origin: (batch, nsample) mask: optional, (batch, nsample), binary """ if mask is not None: origin = origin * mask estimation = estimation * mask origin_power = torch.pow(origin, 2).sum(1, keepdim=True) + 1e-8 # (batch, 1) scale = torch.sum(origin*estimation, 1, keepdim=True) / origin_power # (batch, 1) est_true = scale * origin # (batch, nsample) est_res = estimation - est_true # (batch, nsample) true_power = torch.pow(est_true, 2).sum(1) res_power = torch.pow(est_res, 2).sum(1) return 10*torch.log10(true_power) - 10*torch.log10(res_power) # (batch, 1) def batch_SDR_torch(estimation, origin, mask=None): """ batch-wise SDR caculation for multiple audio files. estimation: (batch, nsource, nsample) origin: (batch, nsource, nsample) mask: optional, (batch, nsample), binary """ batch_size_est, nsource_est, nsample_est = estimation.size() batch_size_ori, nsource_ori, nsample_ori = origin.size() assert batch_size_est == batch_size_ori, "Estimation and original sources should have same shape." assert nsource_est == nsource_ori, "Estimation and original sources should have same shape." assert nsample_est == nsample_ori, "Estimation and original sources should have same shape." assert nsource_est < nsample_est, "Axis 1 should be the number of sources, and axis 2 should be the signal." batch_size = batch_size_est nsource = nsource_est nsample = nsample_est # zero mean signals estimation = estimation - torch.mean(estimation, 2, keepdim=True).expand_as(estimation) origin = origin - torch.mean(origin, 2, keepdim=True).expand_as(estimation) # possible permutations perm = list(set(permutations(np.arange(nsource)))) # pair-wise SDR SDR = torch.zeros((batch_size, nsource, nsource)).type(estimation.type()) for i in range(nsource): for j in range(nsource): SDR[:,i,j] = calc_sdr_torch(estimation[:,i], origin[:,j], mask) # choose the best permutation SDR_max = [] SDR_perm = [] for permute in perm: sdr = [] for idx in range(len(permute)): sdr.append(SDR[:,idx,permute[idx]].view(batch_size,-1)) sdr = torch.sum(torch.cat(sdr, 1), 1) SDR_perm.append(sdr.view(batch_size, 1)) SDR_perm = torch.cat(SDR_perm, 1) SDR_max, _ = torch.max(SDR_perm, dim=1) return SDR_max / nsource
from itertools import product import torch from torch.testing._internal.common_utils import TestCase from parameterized import parameterized from . import sdr_reference from source_separation.utils import metrics class TestSDR(TestCase): @parameterized.expand([(1, ), (2, ), (32, )]) def test_sdr(self, batch_size): """sdr produces the same result as the reference implementation""" num_frames = 256 estimation = torch.rand(batch_size, num_frames) origin = torch.rand(batch_size, num_frames) sdr_ref = sdr_reference.calc_sdr_torch(estimation, origin) sdr = metrics.sdr(estimation.unsqueeze(1), origin.unsqueeze(1)).squeeze(1) self.assertEqual(sdr, sdr_ref) @parameterized.expand(list(product([1, 2, 32], [2, 3, 4, 5]))) def test_sdr_pit(self, batch_size, num_sources): """sdr_pit produces the same result as the reference implementation""" num_frames = 256 estimation = torch.randn(batch_size, num_sources, num_frames) origin = torch.randn(batch_size, num_sources, num_frames) estimation -= estimation.mean(axis=2, keepdim=True) origin -= origin.mean(axis=2, keepdim=True) batch_sdr_ref = sdr_reference.batch_SDR_torch(estimation, origin) batch_sdr = metrics.sdr_pit(estimation, origin) self.assertEqual(batch_sdr, batch_sdr_ref)
import torch from .tacotron2_loss_impl import ( Tacotron2LossShapeTests, Tacotron2LossTorchscriptTests, Tacotron2LossGradcheckTests, ) from torchaudio_unittest.common_utils import PytorchTestCase class TestTacotron2LossShapeFloat32CPU(Tacotron2LossShapeTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2TorchsciptFloat32CPU(Tacotron2LossTorchscriptTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2GradcheckFloat64CPU(Tacotron2LossGradcheckTests, PytorchTestCase): dtype = torch.float64 # gradcheck needs a higher numerical accuracy device = torch.device("cpu")
import torch from torch.autograd import gradcheck, gradgradcheck from pipeline_tacotron2.loss import Tacotron2Loss from torchaudio_unittest.common_utils import ( TestBaseMixin, torch_script, ) class Tacotron2LossInputMixin(TestBaseMixin): def _get_inputs(self, n_mel=80, n_batch=16, max_mel_specgram_length=300): mel_specgram = torch.rand( n_batch, n_mel, max_mel_specgram_length, dtype=self.dtype, device=self.device ) mel_specgram_postnet = torch.rand( n_batch, n_mel, max_mel_specgram_length, dtype=self.dtype, device=self.device ) gate_out = torch.rand(n_batch, dtype=self.dtype, device=self.device) truth_mel_specgram = torch.rand( n_batch, n_mel, max_mel_specgram_length, dtype=self.dtype, device=self.device ) truth_gate_out = torch.rand(n_batch, dtype=self.dtype, device=self.device) truth_mel_specgram.requires_grad = False truth_gate_out.requires_grad = False return ( mel_specgram, mel_specgram_postnet, gate_out, truth_mel_specgram, truth_gate_out, ) class Tacotron2LossShapeTests(Tacotron2LossInputMixin): def test_tacotron2_loss_shape(self): """Validate the output shape of Tacotron2Loss.""" n_batch = 16 ( mel_specgram, mel_specgram_postnet, gate_out, truth_mel_specgram, truth_gate_out, ) = self._get_inputs(n_batch=n_batch) mel_loss, mel_postnet_loss, gate_loss = Tacotron2Loss()( (mel_specgram, mel_specgram_postnet, gate_out), (truth_mel_specgram, truth_gate_out) ) self.assertEqual(mel_loss.size(), torch.Size([])) self.assertEqual(mel_postnet_loss.size(), torch.Size([])) self.assertEqual(gate_loss.size(), torch.Size([])) class Tacotron2LossTorchscriptTests(Tacotron2LossInputMixin): def _assert_torchscript_consistency(self, fn, tensors): ts_func = torch_script(fn) output = fn(tensors[:3], tensors[3:]) ts_output = ts_func(tensors[:3], tensors[3:]) self.assertEqual(ts_output, output) def test_tacotron2_loss_torchscript_consistency(self): """Validate the torchscript consistency of Tacotron2Loss.""" loss_fn = Tacotron2Loss() self._assert_torchscript_consistency(loss_fn, self._get_inputs()) class Tacotron2LossGradcheckTests(Tacotron2LossInputMixin): def test_tacotron2_loss_gradcheck(self): """Performing gradient check on Tacotron2Loss.""" ( mel_specgram, mel_specgram_postnet, gate_out, truth_mel_specgram, truth_gate_out, ) = self._get_inputs() mel_specgram.requires_grad_(True) mel_specgram_postnet.requires_grad_(True) gate_out.requires_grad_(True) def _fn(mel_specgram, mel_specgram_postnet, gate_out, truth_mel_specgram, truth_gate_out): loss_fn = Tacotron2Loss() return loss_fn( (mel_specgram, mel_specgram_postnet, gate_out), (truth_mel_specgram, truth_gate_out), ) gradcheck( _fn, (mel_specgram, mel_specgram_postnet, gate_out, truth_mel_specgram, truth_gate_out), fast_mode=True, ) gradgradcheck( _fn, (mel_specgram, mel_specgram_postnet, gate_out, truth_mel_specgram, truth_gate_out), fast_mode=True, )
import torch from .tacotron2_loss_impl import ( Tacotron2LossShapeTests, Tacotron2LossTorchscriptTests, Tacotron2LossGradcheckTests, ) from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase @skipIfNoCuda class TestTacotron2LossShapeFloat32CUDA(PytorchTestCase, Tacotron2LossShapeTests): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class TestTacotron2TorchsciptFloat32CUDA(PytorchTestCase, Tacotron2LossTorchscriptTests): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class TestTacotron2GradcheckFloat64CUDA(PytorchTestCase, Tacotron2LossGradcheckTests): dtype = torch.float64 # gradcheck needs a higher numerical accuracy device = torch.device("cuda")
from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import TorchaudioTestCase, skipIfNoModule if is_module_available("unidecode") and is_module_available("inflect"): from pipeline_tacotron2.text.text_preprocessing import text_to_sequence from pipeline_tacotron2.text.numbers import ( _remove_commas, _expand_pounds, _expand_dollars, _expand_decimal_point, _expand_ordinal, _expand_number, ) @skipIfNoModule("unidecode") @skipIfNoModule("inflect") class TestTextPreprocessor(TorchaudioTestCase): @parameterized.expand( [ ["dr. Strange?", [15, 26, 14, 31, 26, 29, 11, 30, 31, 29, 12, 25, 18, 16, 10]], ["ML, is fun.", [24, 23, 6, 11, 20, 30, 11, 17, 32, 25, 7]], ["I love torchaudio!", [20, 11, 23, 26, 33, 16, 11, 31, 26, 29, 14, 19, 12, 32, 15, 20, 26, 2]], # 'one thousand dollars, twenty cents' ["$1,000.20", [26, 25, 16, 11, 31, 19, 26, 32, 30, 12, 25, 15, 11, 15, 26, 23, 23, 12, 29, 30, 6, 11, 31, 34, 16, 25, 31, 36, 11, 14, 16, 25, 31, 30]], ] ) def test_text_to_sequence(self, sent, seq): assert (text_to_sequence(sent) == seq) @parameterized.expand( [ ["He, she, and I have $1,000", "He, she, and I have $1000"], ] ) def test_remove_commas(self, sent, truth): assert (_remove_commas(sent) == truth) @parameterized.expand( [ ["He, she, and I have £1000", "He, she, and I have 1000 pounds"], ] ) def test_expand_pounds(self, sent, truth): assert (_expand_pounds(sent) == truth) @parameterized.expand( [ ["He, she, and I have $1000", "He, she, and I have 1000 dollars"], ["He, she, and I have $3000.01", "He, she, and I have 3000 dollars, 1 cent"], ["He has $500.20 and she has $1000.50.", "He has 500 dollars, 20 cents and she has 1000 dollars, 50 cents."], ] ) def test_expand_dollars(self, sent, truth): assert (_expand_dollars(sent) == truth) @parameterized.expand( [ ["1000.20", "1000 point 20"], ["1000.1", "1000 point 1"], ] ) def test_expand_decimal_point(self, sent, truth): assert (_expand_decimal_point(sent) == truth) @parameterized.expand( [ ["21st centry", "twenty-first centry"], ["20th centry", "twentieth centry"], ["2nd place.", "second place."], ] ) def test_expand_ordinal(self, sent, truth): assert (_expand_ordinal(sent) == truth) _expand_ordinal, @parameterized.expand( [ ["100020 dollars.", "one hundred thousand twenty dollars."], ["1234567890!", "one billion, two hundred thirty-four million, " "five hundred sixty-seven thousand, eight hundred ninety!"], ] ) def test_expand_number(self, sent, truth): assert (_expand_number(sent) == truth)
from torchaudio import sox_effects from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, skipIfNoSox, get_wav_data, get_sinusoid, save_wav, ) from .common import ( load_params, ) @skipIfNoSox class SmokeTest(TempDirMixin, TorchaudioTestCase): """Run smoke test on various effects The purpose of this test suite is to verify that sox_effect functionalities do not exhibit abnormal behaviors. This test suite should be able to run without any additional tools (such as sox command), however without such tools, the correctness of each function cannot be verified. """ @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_tensor(self, args): """`apply_effects_tensor` should not crash""" effects = args['effects'] num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) original = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype='float32') _found, _sr = sox_effects.apply_effects_tensor(original, input_sr, effects) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_file(self, args): """`apply_effects_file` should return identical data as sox command""" dtype = 'int32' channels_first = True effects = args['effects'] num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) input_path = self.get_temp_path('input.wav') data = get_wav_data(dtype, num_channels, channels_first=channels_first) save_wav(input_path, data, input_sr, channels_first=channels_first) _found, _sr = sox_effects.apply_effects_file( input_path, effects, normalize=False, channels_first=channels_first) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_fileobj(self, args): """`apply_effects_file` should return identical data as sox command""" dtype = 'int32' channels_first = True effects = args['effects'] num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) input_path = self.get_temp_path('input.wav') data = get_wav_data(dtype, num_channels, channels_first=channels_first) save_wav(input_path, data, input_sr, channels_first=channels_first) with open(input_path, 'rb') as fileobj: _found, _sr = sox_effects.apply_effects_file( fileobj, effects, normalize=False, channels_first=channels_first)
import io import itertools from pathlib import Path import tarfile from parameterized import parameterized from torchaudio import sox_effects from torchaudio._internal import module_utils as _mod_utils from torchaudio_unittest.common_utils import ( TempDirMixin, HttpServerMixin, PytorchTestCase, skipIfNoSox, skipIfNoModule, skipIfNoExec, get_asset_path, get_sinusoid, get_wav_data, save_wav, load_wav, sox_utils, ) from .common import ( load_params, name_func, ) if _mod_utils.is_module_available("requests"): import requests @skipIfNoSox class TestSoxEffects(PytorchTestCase): def test_init(self): """Calling init_sox_effects multiple times does not crush""" for _ in range(3): sox_effects.init_sox_effects() @skipIfNoSox class TestSoxEffectsTensor(TempDirMixin, PytorchTestCase): """Test suite for `apply_effects_tensor` function""" @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2, 4, 8], [True, False] )), name_func=name_func) def test_apply_no_effect(self, dtype, sample_rate, num_channels, channels_first): """`apply_effects_tensor` without effects should return identical data as input""" original = get_wav_data(dtype, num_channels, channels_first=channels_first) expected = original.clone() found, output_sample_rate = sox_effects.apply_effects_tensor( expected, sample_rate, [], channels_first) assert output_sample_rate == sample_rate # SoxEffect should not alter the input Tensor object self.assertEqual(original, expected) # SoxEffect should not return the same Tensor object assert expected is not found # Returned Tensor should equal to the input Tensor self.assertEqual(expected, found) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects(self, args): """`apply_effects_tensor` should return identical data as sox command""" effects = args['effects'] num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) output_sr = args.get("output_sample_rate") input_path = self.get_temp_path('input.wav') reference_path = self.get_temp_path('reference.wav') original = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype='float32') save_wav(input_path, original, input_sr) sox_utils.run_sox_effect( input_path, reference_path, effects, output_sample_rate=output_sr) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_tensor(original, input_sr, effects) assert sr == expected_sr self.assertEqual(expected, found) @skipIfNoSox class TestSoxEffectsFile(TempDirMixin, PytorchTestCase): """Test suite for `apply_effects_file` function""" @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2, 4, 8], [False, True], )), name_func=name_func) def test_apply_no_effect(self, dtype, sample_rate, num_channels, channels_first): """`apply_effects_file` without effects should return identical data as input""" path = self.get_temp_path('input.wav') expected = get_wav_data(dtype, num_channels, channels_first=channels_first) save_wav(path, expected, sample_rate, channels_first=channels_first) found, output_sample_rate = sox_effects.apply_effects_file( path, [], normalize=False, channels_first=channels_first) assert output_sample_rate == sample_rate self.assertEqual(expected, found) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_str(self, args): """`apply_effects_file` should return identical data as sox command""" dtype = 'int32' channels_first = True effects = args['effects'] num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) output_sr = args.get("output_sample_rate") input_path = self.get_temp_path('input.wav') reference_path = self.get_temp_path('reference.wav') data = get_wav_data(dtype, num_channels, channels_first=channels_first) save_wav(input_path, data, input_sr, channels_first=channels_first) sox_utils.run_sox_effect( input_path, reference_path, effects, output_sample_rate=output_sr) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_file( input_path, effects, normalize=False, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) def test_apply_effects_path(self): """`apply_effects_file` should return identical data as sox command when file path is given as a Path Object""" dtype = 'int32' channels_first = True effects = [["hilbert"]] num_channels = 2 input_sr = 8000 output_sr = 8000 input_path = self.get_temp_path('input.wav') reference_path = self.get_temp_path('reference.wav') data = get_wav_data(dtype, num_channels, channels_first=channels_first) save_wav(input_path, data, input_sr, channels_first=channels_first) sox_utils.run_sox_effect( input_path, reference_path, effects, output_sample_rate=output_sr) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_file( Path(input_path), effects, normalize=False, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @skipIfNoSox class TestFileFormats(TempDirMixin, PytorchTestCase): """`apply_effects_file` gives the same result as sox on various file formats""" @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}') def test_wav(self, dtype, sample_rate, num_channels): """`apply_effects_file` works on various wav format""" channels_first = True effects = [['band', '300', '10']] input_path = self.get_temp_path('input.wav') reference_path = self.get_temp_path('reference.wav') data = get_wav_data(dtype, num_channels, channels_first=channels_first) save_wav(input_path, data, sample_rate, channels_first=channels_first) sox_utils.run_sox_effect(input_path, reference_path, effects) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_file( input_path, effects, normalize=False, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], )), name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}') def test_mp3(self, sample_rate, num_channels): """`apply_effects_file` works on various mp3 format""" channels_first = True effects = [['band', '300', '10']] input_path = self.get_temp_path('input.mp3') reference_path = self.get_temp_path('reference.wav') sox_utils.gen_audio_file(input_path, sample_rate, num_channels) sox_utils.run_sox_effect(input_path, reference_path, effects) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_file( input_path, effects, channels_first=channels_first) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected, atol=1e-4, rtol=1e-8) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], )), name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}') def test_flac(self, sample_rate, num_channels): """`apply_effects_file` works on various flac format""" channels_first = True effects = [['band', '300', '10']] input_path = self.get_temp_path('input.flac') reference_path = self.get_temp_path('reference.wav') sox_utils.gen_audio_file(input_path, sample_rate, num_channels) sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_file( input_path, effects, channels_first=channels_first) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], )), name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}') def test_vorbis(self, sample_rate, num_channels): """`apply_effects_file` works on various vorbis format""" channels_first = True effects = [['band', '300', '10']] input_path = self.get_temp_path('input.vorbis') reference_path = self.get_temp_path('reference.wav') sox_utils.gen_audio_file(input_path, sample_rate, num_channels) sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32) expected, expected_sr = load_wav(reference_path) found, sr = sox_effects.apply_effects_file( input_path, effects, channels_first=channels_first) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @skipIfNoSox class TestApplyEffectFileWithoutExtension(PytorchTestCase): def test_mp3(self): """Providing format allows to read mp3 without extension libsox does not check header for mp3 https://github.com/pytorch/audio/issues/1040 The file was generated with the following command ffmpeg -f lavfi -i "sine=frequency=1000:duration=5" -ar 16000 -f mp3 test_noext """ effects = [['band', '300', '10']] path = get_asset_path("mp3_without_ext") _, sr = sox_effects.apply_effects_file(path, effects, format="mp3") assert sr == 16000 @skipIfNoExec('sox') @skipIfNoSox class TestFileObject(TempDirMixin, PytorchTestCase): @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_fileobj(self, ext, compression): """Applying effects via file object works""" sample_rate = 16000 channels_first = True effects = [['band', '300', '10']] format_ = ext if ext in ['mp3'] else None input_path = self.get_temp_path(f'input.{ext}') reference_path = self.get_temp_path('reference.wav') sox_utils.gen_audio_file( input_path, sample_rate, num_channels=2, compression=compression) sox_utils.run_sox_effect( input_path, reference_path, effects, output_bitdepth=32) expected, expected_sr = load_wav(reference_path) with open(input_path, 'rb') as fileobj: found, sr = sox_effects.apply_effects_file( fileobj, effects, channels_first=channels_first, format=format_) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_bytesio(self, ext, compression): """Applying effects via BytesIO object works""" sample_rate = 16000 channels_first = True effects = [['band', '300', '10']] format_ = ext if ext in ['mp3'] else None input_path = self.get_temp_path(f'input.{ext}') reference_path = self.get_temp_path('reference.wav') sox_utils.gen_audio_file( input_path, sample_rate, num_channels=2, compression=compression) sox_utils.run_sox_effect( input_path, reference_path, effects, output_bitdepth=32) expected, expected_sr = load_wav(reference_path) with open(input_path, 'rb') as file_: fileobj = io.BytesIO(file_.read()) found, sr = sox_effects.apply_effects_file( fileobj, effects, channels_first=channels_first, format=format_) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_tarfile(self, ext, compression): """Applying effects to compressed audio via file-like file works""" sample_rate = 16000 channels_first = True effects = [['band', '300', '10']] format_ = ext if ext in ['mp3'] else None audio_file = f'input.{ext}' input_path = self.get_temp_path(audio_file) reference_path = self.get_temp_path('reference.wav') archive_path = self.get_temp_path('archive.tar.gz') sox_utils.gen_audio_file( input_path, sample_rate, num_channels=2, compression=compression) sox_utils.run_sox_effect( input_path, reference_path, effects, output_bitdepth=32) expected, expected_sr = load_wav(reference_path) with tarfile.TarFile(archive_path, 'w') as tarobj: tarobj.add(input_path, arcname=audio_file) with tarfile.TarFile(archive_path, 'r') as tarobj: fileobj = tarobj.extractfile(audio_file) found, sr = sox_effects.apply_effects_file( fileobj, effects, channels_first=channels_first, format=format_) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected) @skipIfNoSox @skipIfNoExec('sox') @skipIfNoModule("requests") class TestFileObjectHttp(HttpServerMixin, PytorchTestCase): @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_requests(self, ext, compression): sample_rate = 16000 channels_first = True effects = [['band', '300', '10']] format_ = ext if ext in ['mp3'] else None audio_file = f'input.{ext}' input_path = self.get_temp_path(audio_file) reference_path = self.get_temp_path('reference.wav') sox_utils.gen_audio_file( input_path, sample_rate, num_channels=2, compression=compression) sox_utils.run_sox_effect( input_path, reference_path, effects, output_bitdepth=32) expected, expected_sr = load_wav(reference_path) url = self.get_url(audio_file) with requests.get(url, stream=True) as resp: found, sr = sox_effects.apply_effects_file( resp.raw, effects, channels_first=channels_first, format=format_) save_wav(self.get_temp_path('result.wav'), found, sr, channels_first=channels_first) assert sr == expected_sr self.assertEqual(found, expected)
import sys import platform from unittest import skipIf from typing import List, Tuple from concurrent.futures import ProcessPoolExecutor import numpy as np import torch import torchaudio from torchaudio_unittest.common_utils import ( TempDirMixin, PytorchTestCase, skipIfNoSox, get_whitenoise, save_wav, ) class RandomPerturbationFile(torch.utils.data.Dataset): """Given flist, apply random speed perturbation""" def __init__(self, flist: List[str], sample_rate: int): super().__init__() self.flist = flist self.sample_rate = sample_rate self.rng = None def __getitem__(self, index): speed = self.rng.uniform(0.5, 2.0) effects = [ ['gain', '-n', '-10'], ['speed', f'{speed:.5f}'], # duration of data is 0.5 ~ 2.0 seconds. ['rate', f'{self.sample_rate}'], ['pad', '0', '1.5'], # add 1.5 seconds silence at the end ['trim', '0', '2'], # get the first 2 seconds ] data, _ = torchaudio.sox_effects.apply_effects_file(self.flist[index], effects) return data def __len__(self): return len(self.flist) class RandomPerturbationTensor(torch.utils.data.Dataset): """Apply speed purturbation to (synthetic) Tensor data""" def __init__(self, signals: List[Tuple[torch.Tensor, int]], sample_rate: int): super().__init__() self.signals = signals self.sample_rate = sample_rate self.rng = None def __getitem__(self, index): speed = self.rng.uniform(0.5, 2.0) effects = [ ['gain', '-n', '-10'], ['speed', f'{speed:.5f}'], # duration of data is 0.5 ~ 2.0 seconds. ['rate', f'{self.sample_rate}'], ['pad', '0', '1.5'], # add 1.5 seconds silence at the end ['trim', '0', '2'], # get the first 2 seconds ] tensor, sample_rate = self.signals[index] data, _ = torchaudio.sox_effects.apply_effects_tensor(tensor, sample_rate, effects) return data def __len__(self): return len(self.signals) def init_random_seed(worker_id): dataset = torch.utils.data.get_worker_info().dataset dataset.rng = np.random.RandomState(worker_id) @skipIfNoSox @skipIf( platform.system() == 'Darwin' and sys.version_info.major == 3 and sys.version_info.minor in [6, 7], 'This test is known to get stuck for macOS with Python < 3.8. ' 'See https://github.com/pytorch/pytorch/issues/46409' ) class TestSoxEffectsDataset(TempDirMixin, PytorchTestCase): """Test `apply_effects_file` in multi-process dataloader setting""" def _generate_dataset(self, num_samples=128): flist = [] for i in range(num_samples): sample_rate = np.random.choice([8000, 16000, 44100]) dtype = np.random.choice(['float32', 'int32', 'int16', 'uint8']) data = get_whitenoise(n_channels=2, sample_rate=sample_rate, duration=1, dtype=dtype) path = self.get_temp_path(f'{i:03d}_{dtype}_{sample_rate}.wav') save_wav(path, data, sample_rate) flist.append(path) return flist def test_apply_effects_file(self): sample_rate = 12000 flist = self._generate_dataset() dataset = RandomPerturbationFile(flist, sample_rate) loader = torch.utils.data.DataLoader( dataset, batch_size=32, num_workers=16, worker_init_fn=init_random_seed, ) for batch in loader: assert batch.shape == (32, 2, 2 * sample_rate) def _generate_signals(self, num_samples=128): signals = [] for _ in range(num_samples): sample_rate = np.random.choice([8000, 16000, 44100]) data = get_whitenoise( n_channels=2, sample_rate=sample_rate, duration=1, dtype='float32') signals.append((data, sample_rate)) return signals def test_apply_effects_tensor(self): sample_rate = 12000 signals = self._generate_signals() dataset = RandomPerturbationTensor(signals, sample_rate) loader = torch.utils.data.DataLoader( dataset, batch_size=32, num_workers=16, worker_init_fn=init_random_seed, ) for batch in loader: assert batch.shape == (32, 2, 2 * sample_rate) def speed(path): wav, sample_rate = torchaudio.backend.sox_io_backend.load(path) effects = [ ['speed', '1.03756523535464655'], ['rate', f'{sample_rate}'], ] return torchaudio.sox_effects.apply_effects_tensor(wav, sample_rate, effects)[0] @skipIfNoSox class TestProcessPoolExecutor(TempDirMixin, PytorchTestCase): backend = "sox_io" def setUp(self): sample_rate = 16000 self.flist = [] for i in range(10): path = self.get_temp_path(f'{i}.wav') data = get_whitenoise(n_channels=1, sample_rate=sample_rate, duration=1, dtype='float') save_wav(path, data, sample_rate) self.flist.append(path) def test_executor(self): """Test that apply_effects_tensor with speed + rate does not crush https://github.com/pytorch/audio/issues/1021 """ executor = ProcessPoolExecutor(1) futures = [executor.submit(speed, path) for path in self.flist] for future in futures: future.result()
from typing import List import torch from torchaudio import sox_effects from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, skipIfNoSox, get_sinusoid, save_wav, torch_script, ) from .common import ( load_params, ) class SoxEffectTensorTransform(torch.nn.Module): effects: List[List[str]] def __init__(self, effects: List[List[str]], sample_rate: int, channels_first: bool): super().__init__() self.effects = effects self.sample_rate = sample_rate self.channels_first = channels_first def forward(self, tensor: torch.Tensor): return sox_effects.apply_effects_tensor( tensor, self.sample_rate, self.effects, self.channels_first) class SoxEffectFileTransform(torch.nn.Module): effects: List[List[str]] channels_first: bool def __init__(self, effects: List[List[str]], channels_first: bool): super().__init__() self.effects = effects self.channels_first = channels_first def forward(self, path: str): return sox_effects.apply_effects_file(path, self.effects, self.channels_first) @skipIfNoSox class TestTorchScript(TempDirMixin, TorchaudioTestCase): @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_tensor(self, args): effects = args['effects'] channels_first = True num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) trans = SoxEffectTensorTransform(effects, input_sr, channels_first) trans = torch_script(trans) wav = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype='float32', channels_first=channels_first) found, sr_found = trans(wav) expected, sr_expected = sox_effects.apply_effects_tensor( wav, input_sr, effects, channels_first) assert sr_found == sr_expected self.assertEqual(expected, found) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_file(self, args): effects = args['effects'] channels_first = True num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) trans = SoxEffectFileTransform(effects, channels_first) trans = torch_script(trans) path = self.get_temp_path('input.wav') wav = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype='float32', channels_first=channels_first) save_wav(path, wav, sample_rate=input_sr, channels_first=channels_first) found, sr_found = trans(path) expected, sr_expected = sox_effects.apply_effects_file(path, effects, channels_first) assert sr_found == sr_expected self.assertEqual(expected, found)
import json from parameterized import param from torchaudio_unittest.common_utils import get_asset_path def name_func(func, _, params): if isinstance(params.args[0], str): args = "_".join([str(arg) for arg in params.args]) else: args = "_".join([str(arg) for arg in params.args[0]]) return f'{func.__name__}_{args}' def load_params(*paths): params = [] with open(get_asset_path(*paths), 'r') as file: for line in file: data = json.loads(line) for effect in data['effects']: for i, arg in enumerate(effect): if arg.startswith("<ASSET_DIR>"): effect[i] = arg.replace("<ASSET_DIR>", get_asset_path()) params.append(param(data)) return params
import os from pathlib import Path from torchaudio.datasets import vctk from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) # Used to generate a unique transcript for each dummy audio file _TRANSCRIPT = [ 'Please call Stella', 'Ask her to bring these things', 'with her from the store', 'Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob', 'We also need a small plastic snake and a big toy frog for the kids', 'She can scoop these things into three red bags, and we will go meet her Wednesday at the train station', 'When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow', 'The rainbow is a division of white light into many beautiful colors', 'These take the shape of a long round arch, with its path high above, and its two ends \ apparently beyond the horizon', 'There is, according to legend, a boiling pot of gold at one end' ] def get_mock_dataset(root_dir): """ root_dir: root directory of the mocked data """ mocked_samples = [] dataset_dir = os.path.join(root_dir, 'VCTK-Corpus-0.92') os.makedirs(dataset_dir, exist_ok=True) sample_rate = 48000 seed = 0 for speaker in range(225, 230): speaker_id = 'p' + str(speaker) audio_dir = os.path.join(dataset_dir, 'wav48_silence_trimmed', speaker_id) os.makedirs(audio_dir, exist_ok=True) file_dir = os.path.join(dataset_dir, 'txt', speaker_id) os.makedirs(file_dir, exist_ok=True) for utterance_id in range(1, 11): filename = f'{speaker_id}_{utterance_id:03d}_mic2' audio_file_path = os.path.join(audio_dir, filename + '.wav') data = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype='float32', seed=seed ) save_wav(audio_file_path, data, sample_rate) txt_file_path = os.path.join(file_dir, filename[:-5] + '.txt') transcript = _TRANSCRIPT[utterance_id - 1] with open(txt_file_path, 'w') as f: f.write(transcript) sample = ( normalize_wav(data), sample_rate, transcript, speaker_id, utterance_id ) mocked_samples.append(sample) seed += 1 return mocked_samples class TestVCTK(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_vctk(self, dataset): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, utterance_id) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert int(utterance_id) == self.samples[i][4] num_samples += 1 assert num_samples == len(self.samples) def test_vctk_str(self): dataset = vctk.VCTK_092(self.root_dir, audio_ext=".wav") self._test_vctk(dataset) def test_vctk_path(self): dataset = vctk.VCTK_092(Path(self.root_dir), audio_ext=".wav") self._test_vctk(dataset)
import os from pathlib import Path from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, normalize_wav, save_wav, ) from torchaudio.datasets import speechcommands _LABELS = [ "bed", "bird", "cat", "dog", "down", "eight", "five", "follow", "forward", "four", "go", "happy", "house", "learn", "left", "marvin", "nine", "no", "off", "on", "one", "right", "seven", "sheila", "six", "stop", "three", "tree", "two", "up", "visual", "wow", "yes", "zero", ] def get_mock_dataset(dataset_dir): """ dataset_dir: directory to the mocked dataset """ mocked_samples = [] mocked_train_samples = [] mocked_valid_samples = [] mocked_test_samples = [] os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz sample rate seed = 0 valid_file = os.path.join(dataset_dir, "validation_list.txt") test_file = os.path.join(dataset_dir, "testing_list.txt") with open(valid_file, "w") as valid, open(test_file, "w") as test: for label in _LABELS: path = os.path.join(dataset_dir, label) os.makedirs(path, exist_ok=True) for j in range(6): # generate hash ID for speaker speaker = "{:08x}".format(j) for utterance in range(3): filename = f"{speaker}{speechcommands.HASH_DIVIDER}{utterance}.wav" file_path = os.path.join(path, filename) seed += 1 data = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="int16", seed=seed, ) save_wav(file_path, data, sample_rate) sample = ( normalize_wav(data), sample_rate, label, speaker, utterance, ) mocked_samples.append(sample) if j < 2: mocked_train_samples.append(sample) elif j < 4: valid.write(f'{label}/{filename}\n') mocked_valid_samples.append(sample) elif j < 6: test.write(f'{label}/{filename}\n') mocked_test_samples.append(sample) return mocked_samples, mocked_train_samples, mocked_valid_samples, mocked_test_samples class TestSpeechCommands(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] train_samples = [] valid_samples = [] test_samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() dataset_dir = os.path.join( cls.root_dir, speechcommands.FOLDER_IN_ARCHIVE, speechcommands.URL ) cls.samples, cls.train_samples, cls.valid_samples, cls.test_samples = get_mock_dataset(dataset_dir) def _testSpeechCommands(self, dataset, data_samples): num_samples = 0 for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate( dataset ): self.assertEqual(data, data_samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == data_samples[i][1] assert label == data_samples[i][2] assert speaker_id == data_samples[i][3] assert utterance_number == data_samples[i][4] num_samples += 1 assert num_samples == len(data_samples) def testSpeechCommands_str(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir) self._testSpeechCommands(dataset, self.samples) def testSpeechCommands_path(self): dataset = speechcommands.SPEECHCOMMANDS(Path(self.root_dir)) self._testSpeechCommands(dataset, self.samples) def testSpeechCommandsSubsetTrain(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training") self._testSpeechCommands(dataset, self.train_samples) def testSpeechCommandsSubsetValid(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation") self._testSpeechCommands(dataset, self.valid_samples) def testSpeechCommandsSubsetTest(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing") self._testSpeechCommands(dataset, self.test_samples) def testSpeechCommandsSum(self): dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir) dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training") dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation") dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing") assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == len(dataset_all)
import os from pathlib import Path from torchaudio.datasets import cmuarctic from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] sample_rate = 16000 transcript = "This is a test transcript." base_dir = os.path.join(root_dir, "ARCTIC", "cmu_us_aew_arctic") txt_dir = os.path.join(base_dir, "etc") os.makedirs(txt_dir, exist_ok=True) txt_file = os.path.join(txt_dir, "txt.done.data") audio_dir = os.path.join(base_dir, "wav") os.makedirs(audio_dir, exist_ok=True) seed = 42 with open(txt_file, "w") as txt: for c in ["a", "b"]: for i in range(5): utterance_id = f"arctic_{c}{i:04d}" path = os.path.join(audio_dir, f"{utterance_id}.wav") data = get_whitenoise( sample_rate=sample_rate, duration=3, n_channels=1, dtype="int16", seed=seed, ) save_wav(path, data, sample_rate) sample = ( normalize_wav(data), sample_rate, transcript, utterance_id.split("_")[1], ) mocked_data.append(sample) txt.write(f'( {utterance_id} "{transcript}" )\n') seed += 1 return mocked_data class TestCMUARCTIC(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_cmuarctic(self, dataset): n_ite = 0 for i, (waveform, sample_rate, transcript, utterance_id) in enumerate(dataset): expected_sample = self.samples[i] assert sample_rate == expected_sample[1] assert transcript == expected_sample[2] assert utterance_id == expected_sample[3] self.assertEqual(expected_sample[0], waveform, atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.samples) def test_cmuarctic_str(self): dataset = cmuarctic.CMUARCTIC(self.root_dir) self._test_cmuarctic(dataset) def test_cmuarctic_path(self): dataset = cmuarctic.CMUARCTIC(Path(self.root_dir)) self._test_cmuarctic(dataset)
import csv import os from pathlib import Path from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, normalize_wav, save_wav, ) from torchaudio.datasets import ljspeech _TRANSCRIPTS = [ "Test transcript 1", "Test transcript 2", "Test transcript 3", "In 1465 Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome," ] _NORMALIZED_TRANSCRIPT = [ "Test transcript one", "Test transcript two", "Test transcript three", "In fourteen sixty-five Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome," ] def get_mock_dataset(root_dir): """ root_dir: path to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LJSpeech-1.1") archive_dir = os.path.join(base_dir, "wavs") os.makedirs(archive_dir, exist_ok=True) metadata_path = os.path.join(base_dir, "metadata.csv") sample_rate = 22050 with open(metadata_path, mode="w", newline='') as metadata_file: metadata_writer = csv.writer( metadata_file, delimiter="|", quoting=csv.QUOTE_NONE ) for i, (transcript, normalized_transcript) in enumerate( zip(_TRANSCRIPTS, _NORMALIZED_TRANSCRIPT) ): fileid = f'LJ001-{i:04d}' metadata_writer.writerow([fileid, transcript, normalized_transcript]) filename = fileid + ".wav" path = os.path.join(archive_dir, filename) data = get_whitenoise( sample_rate=sample_rate, duration=1, n_channels=1, dtype="int16", seed=i ) save_wav(path, data, sample_rate) mocked_data.append(normalize_wav(data)) return mocked_data, _TRANSCRIPTS, _NORMALIZED_TRANSCRIPT class TestLJSpeech(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data, _transcripts, _normalized_transcript = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._transcripts, cls._normalized_transcript = get_mock_dataset(cls.root_dir) def _test_ljspeech(self, dataset): n_ite = 0 for i, (waveform, sample_rate, transcript, normalized_transcript) in enumerate( dataset ): expected_transcript = self._transcripts[i] expected_normalized_transcript = self._normalized_transcript[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == sample_rate assert transcript == expected_transcript assert normalized_transcript == expected_normalized_transcript n_ite += 1 assert n_ite == len(self.data) def test_ljspeech_str(self): dataset = ljspeech.LJSPEECH(self.root_dir) self._test_ljspeech(dataset) def test_ljspeech_path(self): dataset = ljspeech.LJSPEECH(Path(self.root_dir)) self._test_ljspeech(dataset)
import os from pathlib import Path from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) from torchaudio.datasets.libritts import LIBRITTS _UTTERANCE_IDS = [ [19, 198, '000000', '000000'], [26, 495, '000004', '000000'], ] _ORIGINAL_TEXT = 'this is the original text.' _NORMALIZED_TEXT = 'this is the normalized text.' def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, 'LibriTTS', 'train-clean-100') for i, utterance_id in enumerate(_UTTERANCE_IDS): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype='int16', seed=i) save_wav(path, data, 24000) mocked_data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, 'w') as file_: file_.write(_ORIGINAL_TEXT) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, 'w') as file_: file_.write(_NORMALIZED_TEXT) return mocked_data, _UTTERANCE_IDS, _ORIGINAL_TEXT, _NORMALIZED_TEXT class TestLibriTTS(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None data = [] _utterance_ids, _original_text, _normalized_text = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._utterance_ids, cls._original_text, cls._normalized_text = get_mock_dataset(cls.root_dir) def _test_libritts(self, dataset): n_ites = 0 for i, (waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id) in enumerate(dataset): expected_ids = self._utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self._original_text assert normalized_text == self._normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self._utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)
import csv import os from pathlib import Path from typing import Tuple, Dict from torch import Tensor from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) from torchaudio.datasets import COMMONVOICE _ORIGINAL_EXT_AUDIO = COMMONVOICE._ext_audio _SAMPLE_RATE = 48000 _HEADERS = [u"client_ids", u"path", u"sentence", u"up_votes", u"down_votes", u"age", u"gender", u"accent"] _EN_TRAIN_CSV_CONTENTS = [ ["9d16c5d980247861130e0480e2719f448be73d86a496c36d01a477cbdecd8cfd1399403d7a77bf458d211a70711b2da0845c", "common_voice_en_18885784.wav", "He was accorded a State funeral, and was buried in Drayton and Toowoomba Cemetery.", "2", "0", "", "", ""], ["c82eb9291328620f06025a1f8112b909099e447e485e99236cb87df008650250e79fea5ca772061fb6a370830847b9c44d20", "common_voice_en_556542.wav", "Once more into the breach", "2", "0", "thirties", "male", "us"], ["f74d880c5ad4c5917f314a604d3fc4805159d255796fb9f8defca35333ecc002bdf53dc463503c12674ea840b21b4a507b7c", "common_voice_en_18607573.wav", "Caddy, show Miss Clare and Miss Summerson their rooms.", "2", "0", "twenties", "male", "canada"], ] _FR_TRAIN_CSV_CONTENTS = [ [ "a2e8e1e1cc74d08c92a53d7b9ff84e077eb90410edd85b8882f16fd037cecfcb6a19413c6c63ce6458cfea9579878fa91cef" "18343441c601cae0597a4b0d3144", "89e67e7682b36786a0b4b4022c4d42090c86edd96c78c12d30088e62522b8fe466ea4912e6a1055dfb91b296a0743e0a2bbe" "16cebac98ee5349e3e8262cb9329", "Or sur ce point nous n’avons aucune réponse de votre part.", "2", "0", "twenties", "male", "france"], [ "a2e8e1e1cc74d08c92a53d7b9ff84e077eb90410edd85b8882f16fd037cecfcb6a19413c6c63ce6458cfea9579878fa91cef18" "343441c601cae0597a4b0d3144", "87d71819a26179e93acfee149d0b21b7bf5e926e367d80b2b3792d45f46e04853a514945783ff764c1fc237b4eb0ee2b0a7a7" "cbd395acbdfcfa9d76a6e199bbd", "Monsieur de La Verpillière, laissez parler le ministre", "2", "0", "twenties", "male", "france"], ] def get_mock_dataset(root_dir, train_csv_contents, ext_audio) -> Tuple[Tensor, int, Dict[str, str]]: """ prepares mocked dataset """ mocked_data = [] # Note: extension is changed to wav for the sake of test # Note: the first content is missing values for `age`, `gender` and `accent` as in the original data. # Tsv file name difference does not mean different subset, testing as a whole dataset here tsv_filename = os.path.join(root_dir, "train.tsv") audio_base_path = os.path.join(root_dir, "clips") os.makedirs(audio_base_path, exist_ok=True) with open(tsv_filename, "w", newline='') as tsv: writer = csv.writer(tsv, delimiter='\t') writer.writerow(_HEADERS) for i, content in enumerate(train_csv_contents): content[2] = str(content[2].encode("utf-8")) writer.writerow(content) if not content[1].endswith(ext_audio): audio_path = os.path.join(audio_base_path, content[1] + ext_audio) else: audio_path = os.path.join(audio_base_path, content[1]) data = get_whitenoise(sample_rate=_SAMPLE_RATE, duration=1, n_channels=1, seed=i, dtype='float32') save_wav(audio_path, data, _SAMPLE_RATE) # Append data entry mocked_data.append((normalize_wav(data), _SAMPLE_RATE, dict(zip(_HEADERS, content)))) return mocked_data def get_mock_dataset_en(root_dir, ext_audio) -> Tuple[Tensor, int, Dict[str, str]]: """ prepares english mocked dataset """ return get_mock_dataset(root_dir, _EN_TRAIN_CSV_CONTENTS, ext_audio) def get_mock_dataset_fr(root_dir, ext_audio) -> Tuple[Tensor, int, Dict[str, str]]: """ prepares french mocked dataset """ return get_mock_dataset(root_dir, _FR_TRAIN_CSV_CONTENTS, ext_audio) class BaseTestCommonVoice(TempDirMixin): root_dir = None data = None @classmethod def setUpClass(cls): super().setUpClass() cls.root_dir = cls.get_base_temp_dir() COMMONVOICE._ext_audio = ".wav" @classmethod def tearDownClass(cls): super().tearDownClass() COMMONVOICE._ext_audio = _ORIGINAL_EXT_AUDIO def _test_commonvoice(self, dataset): n_ite = 0 for i, (waveform, sample_rate, dictionary) in enumerate(dataset): expected_dictionary = self.data[i][2] expected_data = self.data[i][0] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == _SAMPLE_RATE assert dictionary == expected_dictionary n_ite += 1 assert n_ite == len(self.data) class TestCommonVoiceEN(BaseTestCommonVoice, TorchaudioTestCase): backend = 'default' root_dir = None @classmethod def setUpClass(cls): super().setUpClass() cls.data = get_mock_dataset_en(cls.root_dir, COMMONVOICE._ext_audio) def test_commonvoice_str(self): dataset = COMMONVOICE(self.root_dir) self._test_commonvoice(dataset) def test_commonvoice_path(self): dataset = COMMONVOICE(Path(self.root_dir)) self._test_commonvoice(dataset) class TestCommonVoiceFR(BaseTestCommonVoice, TorchaudioTestCase): backend = 'default' root_dir = None @classmethod def setUpClass(cls): super().setUpClass() cls.data = get_mock_dataset_fr(cls.root_dir, COMMONVOICE._ext_audio) def test_commonvoice_str(self): dataset = COMMONVOICE(self.root_dir) self._test_commonvoice(dataset)
import os from pathlib import Path from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) from torchaudio.datasets import librispeech # Used to generate a unique transcript for each dummy audio file _NUMBERS = [ 'ZERO', 'ONE', 'TWO', 'THREE', 'FOUR', 'FIVE', 'SIX', 'SEVEN', 'EIGHT', 'NINE' ] def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] dataset_dir = os.path.join( root_dir, librispeech.FOLDER_IN_ARCHIVE, librispeech.URL ) os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz seed = 0 for speaker_id in range(5): speaker_path = os.path.join(dataset_dir, str(speaker_id)) os.makedirs(speaker_path, exist_ok=True) for chapter_id in range(3): chapter_path = os.path.join(speaker_path, str(chapter_id)) os.makedirs(chapter_path, exist_ok=True) trans_content = [] for utterance_id in range(10): filename = f'{speaker_id}-{chapter_id}-{utterance_id:04d}.wav' path = os.path.join(chapter_path, filename) transcript = ' '.join( [_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]] ) trans_content.append( f'{speaker_id}-{chapter_id}-{utterance_id:04d} {transcript}' ) data = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype='float32', seed=seed ) save_wav(path, data, sample_rate) sample = ( normalize_wav(data), sample_rate, transcript, speaker_id, chapter_id, utterance_id ) mocked_data.append(sample) seed += 1 trans_filename = f'{speaker_id}-{chapter_id}.trans.txt' trans_path = os.path.join(chapter_path, trans_filename) with open(trans_path, 'w') as f: f.write('\n'.join(trans_content)) return mocked_data class TestLibriSpeech(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) @classmethod def tearDownClass(cls): # In case of test failure librispeech.LIBRISPEECH._ext_audio = '.flac' def _test_librispeech(self, dataset): num_samples = 0 for i, ( data, sample_rate, transcript, speaker_id, chapter_id, utterance_id ) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert chapter_id == self.samples[i][4] assert utterance_id == self.samples[i][5] num_samples += 1 assert num_samples == len(self.samples) librispeech.LIBRISPEECH._ext_audio = '.flac' def test_librispeech_str(self): librispeech.LIBRISPEECH._ext_audio = '.wav' dataset = librispeech.LIBRISPEECH(self.root_dir) self._test_librispeech(dataset) def test_librispeech_path(self): librispeech.LIBRISPEECH._ext_audio = '.wav' dataset = librispeech.LIBRISPEECH(Path(self.root_dir)) self._test_librispeech(dataset)
import os from pathlib import Path from torchaudio.datasets import yesno from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) def get_mock_data(root_dir, labels): """ root_dir: path labels: list of labels """ mocked_data = [] base_dir = os.path.join(root_dir, 'waves_yesno') os.makedirs(base_dir, exist_ok=True) for i, label in enumerate(labels): filename = f'{"_".join(str(l) for l in label)}.wav' path = os.path.join(base_dir, filename) data = get_whitenoise(sample_rate=8000, duration=6, n_channels=1, dtype='int16', seed=i) save_wav(path, data, 8000) mocked_data.append(normalize_wav(data)) return mocked_data class TestYesNo(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None data = [] labels = [ [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1], ] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data = get_mock_data(cls.root_dir, cls.labels) def _test_yesno(self, dataset): n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): expected_label = self.labels[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 8000 assert label == expected_label n_ite += 1 assert n_ite == len(self.data) def test_yesno_str(self): dataset = yesno.YESNO(self.root_dir) self._test_yesno(dataset) def test_yesno_path(self): dataset = yesno.YESNO(Path(self.root_dir)) self._test_yesno(dataset)
from pathlib import Path import pytest from torchaudio.datasets import dr_vctk from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, ) _SUBSETS = ["train", "test"] _CONDITIONS = ["clean", "device-recorded"] _SOURCES = ["DR-VCTK_Office1_ClosedWindow", "DR-VCTK_Office1_OpenedWindow"] _SPEAKER_IDS = range(226, 230) _CHANNEL_IDS = range(1, 6) def get_mock_dataset(root_dir): """ root_dir: root directory of the mocked data """ mocked_samples = {} dataset_dir = Path(root_dir) / "DR-VCTK" / "DR-VCTK" dataset_dir.mkdir(parents=True, exist_ok=True) config_dir = dataset_dir / "configurations" config_dir.mkdir(parents=True, exist_ok=True) sample_rate = 16000 seed = 0 for subset in _SUBSETS: mocked_samples[subset] = [] for condition in _CONDITIONS: audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k" audio_dir.mkdir(parents=True, exist_ok=True) config_filepath = config_dir / f"{subset}_ch_log.txt" with open(config_filepath, "w") as f: if subset == "train": f.write("\n") f.write("File Name\tMain Source\tChannel Idx\n") for speaker_id in _SPEAKER_IDS: utterance_id = 1 for source in _SOURCES: for channel_id in _CHANNEL_IDS: filename = f"p{speaker_id}_{utterance_id:03d}.wav" f.write(f"{filename}\t{source}\t{channel_id}\n") data = {} for condition in _CONDITIONS: data[condition] = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype='float32', seed=seed ) audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k" audio_file_path = audio_dir / filename save_wav(audio_file_path, data[condition], sample_rate) seed += 1 sample = ( data[_CONDITIONS[0]], sample_rate, data[_CONDITIONS[1]], sample_rate, "p" + str(speaker_id), f"{utterance_id:03d}", source, channel_id, ) mocked_samples[subset].append(sample) utterance_id += 1 return mocked_samples class TestDRVCTK(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None samples = {} @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_dr_vctk(self, dataset, subset): num_samples = 0 for i, ( waveform_clean, sample_rate_clean, waveform_dr, sample_rate_dr, speaker_id, utterance_id, source, channel_id, ) in enumerate(dataset): self.assertEqual(waveform_clean, self.samples[subset][i][0], atol=5e-5, rtol=1e-8) assert sample_rate_clean == self.samples[subset][i][1] self.assertEqual(waveform_dr, self.samples[subset][i][2], atol=5e-5, rtol=1e-8) assert sample_rate_dr == self.samples[subset][i][3] assert speaker_id == self.samples[subset][i][4] assert utterance_id == self.samples[subset][i][5] assert source == self.samples[subset][i][6] assert channel_id == self.samples[subset][i][7] num_samples += 1 assert num_samples == len(self.samples[subset]) def test_dr_vctk_train_str(self): subset = "train" dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_test_str(self): subset = "test" dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_train_path(self): subset = "train" dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_test_path(self): subset = "test" dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_invalid_subset(self): subset = "invalid" with pytest.raises(RuntimeError, match=f"The subset '{subset}' does not match any of the supported subsets"): dr_vctk.DR_VCTK(self.root_dir, subset=subset)
import os import platform from pathlib import Path from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, skipIfNoSox ) from torchaudio.datasets import tedlium # Used to generate a unique utterance for each dummy audio file _UTTERANCES = [ "AaronHuey_2010X 1 AaronHuey_2010X 0.0 2.0 <o,f0,female> script1\n", "AaronHuey_2010X 1 AaronHuey_2010X 2.0 4.0 <o,f0,female> script2\n", "AaronHuey_2010X 1 AaronHuey_2010X 4.0 6.0 <o,f0,female> script3\n", "AaronHuey_2010X 1 AaronHuey_2010X 6.0 8.0 <o,f0,female> script4\n", "AaronHuey_2010X 1 AaronHuey_2010X 8.0 10.0 <o,f0,female> script5\n", ] _PHONEME = [ "a AH", "a(2) EY", "aachen AA K AH N", "aad AE D", "aaden EY D AH N", "aadmi AE D M IY", "aae EY EY", ] def get_mock_dataset(dataset_dir): """ dataset_dir: directory of the mocked dataset """ mocked_samples = {} os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz seed = 0 for release in ["release1", "release2", "release3"]: data = get_whitenoise(sample_rate=sample_rate, duration=10.00, n_channels=1, dtype="float32", seed=seed) if release in ["release1", "release2"]: release_dir = os.path.join( dataset_dir, tedlium._RELEASE_CONFIGS[release]["folder_in_archive"], tedlium._RELEASE_CONFIGS[release]["subset"], ) else: release_dir = os.path.join( dataset_dir, tedlium._RELEASE_CONFIGS[release]["folder_in_archive"], tedlium._RELEASE_CONFIGS[release]["data_path"], ) os.makedirs(release_dir, exist_ok=True) os.makedirs(os.path.join(release_dir, "stm"), exist_ok=True) # Subfolder for transcripts os.makedirs(os.path.join(release_dir, "sph"), exist_ok=True) # Subfolder for audio files filename = f"{release}.sph" path = os.path.join(os.path.join(release_dir, "sph"), filename) save_wav(path, data, sample_rate) trans_filename = f"{release}.stm" trans_path = os.path.join(os.path.join(release_dir, "stm"), trans_filename) with open(trans_path, "w") as f: f.write("".join(_UTTERANCES)) dict_filename = f"{release}.dic" dict_path = os.path.join(release_dir, dict_filename) with open(dict_path, "w") as f: f.write("\n".join(_PHONEME)) # Create a samples list to compare with mocked_samples[release] = [] for utterance in _UTTERANCES: talk_id, _, speaker_id, start_time, end_time, identifier, transcript = utterance.split(" ", 6) start_time = int(float(start_time)) * sample_rate end_time = int(float(end_time)) * sample_rate sample = ( data[:, start_time:end_time], sample_rate, transcript, talk_id, speaker_id, identifier, ) mocked_samples[release].append(sample) seed += 1 return mocked_samples class Tedlium(TempDirMixin): root_dir = None samples = {} @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.root_dir = dataset_dir = os.path.join(cls.root_dir, "tedlium") cls.samples = get_mock_dataset(dataset_dir) def _test_tedlium(self, dataset, release): num_samples = 0 for i, (data, sample_rate, transcript, talk_id, speaker_id, identifier) in enumerate(dataset): self.assertEqual(data, self.samples[release][i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[release][i][1] assert transcript == self.samples[release][i][2] assert talk_id == self.samples[release][i][3] assert speaker_id == self.samples[release][i][4] assert identifier == self.samples[release][i][5] num_samples += 1 assert num_samples == len(self.samples[release]) dataset._dict_path = os.path.join(dataset._path, f"{release}.dic") phoneme_dict = dataset.phoneme_dict phoenemes = [f"{key} {' '.join(value)}" for key, value in phoneme_dict.items()] assert phoenemes == _PHONEME def test_tedlium_release1_str(self): release = "release1" dataset = tedlium.TEDLIUM(self.root_dir, release=release) self._test_tedlium(dataset, release) def test_tedlium_release1_path(self): release = "release1" dataset = tedlium.TEDLIUM(Path(self.root_dir), release=release) self._test_tedlium(dataset, release) def test_tedlium_release2(self): release = "release2" dataset = tedlium.TEDLIUM(self.root_dir, release=release) self._test_tedlium(dataset, release) def test_tedlium_release3(self): release = "release3" dataset = tedlium.TEDLIUM(self.root_dir, release=release) self._test_tedlium(dataset, release) class TestTedliumSoundfile(Tedlium, TorchaudioTestCase): backend = "soundfile" if platform.system() != "Windows": @skipIfNoSox class TestTedliumSoxIO(Tedlium, TorchaudioTestCase): backend = "sox_io"
import os from pathlib import Path from torchaudio.datasets import CMUDict from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, ) def get_mock_dataset(root_dir, return_punc=False): """ root_dir: directory to the mocked dataset """ header = [ ";;; # CMUdict -- Major Version: 0.07", ";;; ", ";;; # $HeadURL$", ] puncs = [ "!EXCLAMATION-POINT EH2 K S K L AH0 M EY1 SH AH0 N P OY2 N T", "\"CLOSE-QUOTE K L OW1 Z K W OW1 T", "#HASH-MARK HH AE1 M AA2 R K", "%PERCENT P ER0 S EH1 N T", "&AMPERSAND AE1 M P ER0 S AE2 N D", "'END-INNER-QUOTE EH1 N D IH1 N ER0 K W OW1 T", "(BEGIN-PARENS B IH0 G IH1 N P ER0 EH1 N Z", ")CLOSE-PAREN K L OW1 Z P ER0 EH1 N", "+PLUS P L UH1 S", ",COMMA K AA1 M AH0", "--DASH D AE1 SH", "!EXCLAMATION-POINT EH2 K S K L AH0 M EY1 SH AH0 N P OY2 N T", "/SLASH S L AE1 SH", ":COLON K OW1 L AH0 N", ";SEMI-COLON S EH1 M IY0 K OW1 L AH0 N", "?QUESTION-MARK K W EH1 S CH AH0 N M AA1 R K", "{BRACE B R EY1 S", "}CLOSE-BRACE K L OW1 Z B R EY1 S", "...ELLIPSIS IH2 L IH1 P S IH0 S", ] punc_outputs = [ "!", "\"", "#", "%", "&", "'", "(", ")", "+", ",", "--", "!", "/", ":", ";", "?", "{", "}", "...", ] words = [ "3-D TH R IY1 D IY2", "'BOUT B AW1 T", "'CAUSE K AH0 Z", "'TWAS T W AH1 Z", "A AH0", "B B IY1", "C S IY1", "D D IY1", "E IY1", "F EH1 F", "G JH IY1", "H EY1 CH", "I AY1", "J JH EY1", "K K EY1", "L EH1 L", "M EH1 M", "N EH1 N", "O OW1", "P P IY1", "Q K Y UW1", "R AA1 R", "S EH1 S", "T T IY1", "U Y UW1", "V V IY1", "X EH1 K S", "Y W AY1", "Z Z IY1", ] mocked_symbols = [ "AA1", "AA2", "AE1", "AE2", "AH0", "AH1", "AY1", "B", "CH", "D", "EH1", "EH2", "ER0", "EY1", "F", "G", "HH", "IH0", "IH1", "IY0", "IY1", "IY2", "JH", "K", "L", "M", "N", "OW1", "OY2", "P", "R", "S", "SH", "T", "TH", "UH1", "UW0", "UW1", "V", "W", "Y", "Z", ] dict_file = os.path.join(root_dir, "cmudict-0.7b") symbol_file = os.path.join(root_dir, "cmudict-0.7b.symbols") with open(dict_file, "w") as fileobj: for section in [header, puncs, words]: for line in section: fileobj.write(line) fileobj.write("\n") with open(symbol_file, "w") as txt: txt.write("\n".join(mocked_symbols)) mocked_data = [] if return_punc: for i, ent in enumerate(puncs): _, phones = ent.split(" ") mocked_data.append((punc_outputs[i], phones.split(" "))) for ent in words: word, phones = ent.split(" ") mocked_data.append((word, phones.split(" "))) return mocked_data class TestCMUDict(TempDirMixin, TorchaudioTestCase): root_dir = None root_punc_dir = None samples = [] punc_samples = [] @classmethod def setUpClass(cls): cls.root_dir = os.path.join(cls.get_base_temp_dir(), "normal") os.mkdir(cls.root_dir) cls.samples = get_mock_dataset(cls.root_dir) cls.root_punc_dir = os.path.join(cls.get_base_temp_dir(), "punc") os.mkdir(cls.root_punc_dir) cls.punc_samples = get_mock_dataset(cls.root_punc_dir, return_punc=True) def _test_cmudict(self, dataset): """Test if the dataset is reading the mocked data correctly.""" n_item = 0 for i, (word, phones) in enumerate(dataset): expected_word, expected_phones = self.samples[i] assert word == expected_word assert phones == expected_phones n_item += 1 assert n_item == len(self.samples) def _test_punc_cmudict(self, dataset): """Test if the dataset is reading the mocked data with punctuations correctly.""" n_item = 0 for i, (word, phones) in enumerate(dataset): expected_word, expected_phones = self.punc_samples[i] assert word == expected_word assert phones == expected_phones n_item += 1 assert n_item == len(self.punc_samples) def test_cmuarctic_path_with_punctuation(self): dataset = CMUDict(Path(self.root_punc_dir), exclude_punctuations=False) self._test_punc_cmudict(dataset) def test_cmuarctic_str_with_punctuation(self): dataset = CMUDict(self.root_punc_dir, exclude_punctuations=False) self._test_punc_cmudict(dataset) def test_cmuarctic_path(self): dataset = CMUDict(Path(self.root_punc_dir), exclude_punctuations=True) self._test_cmudict(dataset) def test_cmuarctic_str(self): dataset = CMUDict(self.root_punc_dir, exclude_punctuations=True) self._test_cmudict(dataset)
import os from pathlib import Path from torchaudio.datasets import gtzan from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_samples = [] mocked_training = [] mocked_validation = [] mocked_testing = [] sample_rate = 22050 seed = 0 for genre in gtzan.gtzan_genres: base_dir = os.path.join(root_dir, 'genres', genre) os.makedirs(base_dir, exist_ok=True) for i in range(100): filename = f'{genre}.{i:05d}' path = os.path.join(base_dir, f'{filename}.wav') data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype='int16', seed=seed) save_wav(path, data, sample_rate) sample = (normalize_wav(data), sample_rate, genre) mocked_samples.append(sample) if filename in gtzan.filtered_test: mocked_testing.append(sample) if filename in gtzan.filtered_train: mocked_training.append(sample) if filename in gtzan.filtered_valid: mocked_validation.append(sample) seed += 1 return (mocked_samples, mocked_training, mocked_validation, mocked_testing) class TestGTZAN(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None samples = [] training = [] validation = [] testing = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() mocked_data = get_mock_dataset(cls.root_dir) cls.samples = mocked_data[0] cls.training = mocked_data[1] cls.validation = mocked_data[2] cls.testing = mocked_data[3] def test_no_subset(self): dataset = gtzan.GTZAN(self.root_dir) n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): self.assertEqual(waveform, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert label == self.samples[i][2] n_ite += 1 assert n_ite == len(self.samples) def _test_training(self, dataset): n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): self.assertEqual(waveform, self.training[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.training[i][1] assert label == self.training[i][2] n_ite += 1 assert n_ite == len(self.training) def _test_validation(self, dataset): n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): self.assertEqual(waveform, self.validation[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.validation[i][1] assert label == self.validation[i][2] n_ite += 1 assert n_ite == len(self.validation) def _test_testing(self, dataset): n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): self.assertEqual(waveform, self.testing[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.testing[i][1] assert label == self.testing[i][2] n_ite += 1 assert n_ite == len(self.testing) def test_training_str(self): train_dataset = gtzan.GTZAN(self.root_dir, subset='training') self._test_training(train_dataset) def test_validation_str(self): val_dataset = gtzan.GTZAN(self.root_dir, subset='validation') self._test_validation(val_dataset) def test_testing_str(self): test_dataset = gtzan.GTZAN(self.root_dir, subset='testing') self._test_testing(test_dataset) def test_training_path(self): root_dir = Path(self.root_dir) train_dataset = gtzan.GTZAN(root_dir, subset='training') self._test_training(train_dataset) def test_validation_path(self): root_dir = Path(self.root_dir) val_dataset = gtzan.GTZAN(root_dir, subset='validation') self._test_validation(val_dataset) def test_testing_path(self): root_dir = Path(self.root_dir) test_dataset = gtzan.GTZAN(root_dir, subset='testing') self._test_testing(test_dataset)
from torchaudio.utils import sox_utils from torchaudio_unittest.common_utils import ( PytorchTestCase, skipIfNoSox, ) @skipIfNoSox class TestSoxUtils(PytorchTestCase): """Smoke tests for sox_util module""" def test_set_seed(self): """`set_seed` does not crush""" sox_utils.set_seed(0) def test_set_verbosity(self): """`set_verbosity` does not crush""" for val in range(6, 0, -1): sox_utils.set_verbosity(val) def test_set_buffer_size(self): """`set_buffer_size` does not crush""" sox_utils.set_buffer_size(131072) # back to default sox_utils.set_buffer_size(8192) def test_set_use_threads(self): """`set_use_threads` does not crush""" sox_utils.set_use_threads(True) # back to default sox_utils.set_use_threads(False) def test_list_effects(self): """`list_effects` returns the list of available effects""" effects = sox_utils.list_effects() # We cannot infer what effects are available, so only check some of them. assert 'highpass' in effects assert 'phaser' in effects assert 'gain' in effects def test_list_read_formats(self): """`list_read_formats` returns the list of supported formats""" formats = sox_utils.list_read_formats() assert 'wav' in formats def test_list_write_formats(self): """`list_write_formats` returns the list of supported formats""" formats = sox_utils.list_write_formats() assert 'opus' not in formats
import torchaudio from torchaudio_unittest import common_utils class BackendSwitchMixin: """Test set/get_audio_backend works""" backend = None backend_module = None def test_switch(self): torchaudio.set_audio_backend(self.backend) if self.backend is None: assert torchaudio.get_audio_backend() is None else: assert torchaudio.get_audio_backend() == self.backend assert torchaudio.load == self.backend_module.load assert torchaudio.save == self.backend_module.save assert torchaudio.info == self.backend_module.info class TestBackendSwitch_NoBackend(BackendSwitchMixin, common_utils.TorchaudioTestCase): backend = None backend_module = torchaudio.backend.no_backend @common_utils.skipIfNoSox class TestBackendSwitch_SoXIO(BackendSwitchMixin, common_utils.TorchaudioTestCase): backend = 'sox_io' backend_module = torchaudio.backend.sox_io_backend @common_utils.skipIfNoModule('soundfile') class TestBackendSwitch_soundfile(BackendSwitchMixin, common_utils.TorchaudioTestCase): backend = 'soundfile' backend_module = torchaudio.backend.soundfile_backend
from torchaudio_unittest.common_utils import sox_utils def get_encoding(ext, dtype): exts = { 'mp3', 'flac', 'vorbis', } encodings = { 'float32': 'PCM_F', 'int32': 'PCM_S', 'int16': 'PCM_S', 'uint8': 'PCM_U', } return ext.upper() if ext in exts else encodings[dtype] def get_bits_per_sample(ext, dtype): bits_per_samples = { 'flac': 24, 'mp3': 0, 'vorbis': 0, } return bits_per_samples.get(ext, sox_utils.get_bit_depth(dtype))
from unittest.mock import patch import warnings import tarfile import torch from torchaudio.backend import soundfile_backend from torchaudio._internal import module_utils as _mod_utils from torchaudio_unittest.common_utils import ( TempDirMixin, PytorchTestCase, skipIfNoModule, get_wav_data, save_wav, nested_params, ) from torchaudio_unittest.backend.common import ( get_bits_per_sample, get_encoding, ) from .common import skipIfFormatNotSupported, parameterize if _mod_utils.is_module_available("soundfile"): import soundfile @skipIfNoModule("soundfile") class TestInfo(TempDirMixin, PytorchTestCase): @parameterize( ["float32", "int32", "int16", "uint8"], [8000, 16000], [1, 2], ) def test_wav(self, dtype, sample_rate, num_channels): """`soundfile_backend.info` can check wav file correctly""" duration = 1 path = self.get_temp_path("data.wav") data = get_wav_data( dtype, num_channels, normalize=False, num_frames=duration * sample_rate ) save_wav(path, data, sample_rate) info = soundfile_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == get_bits_per_sample("wav", dtype) assert info.encoding == get_encoding("wav", dtype) @parameterize([8000, 16000], [1, 2]) @skipIfFormatNotSupported("FLAC") def test_flac(self, sample_rate, num_channels): """`soundfile_backend.info` can check flac file correctly""" duration = 1 num_frames = sample_rate * duration data = torch.randn(num_frames, num_channels).numpy() path = self.get_temp_path("data.flac") soundfile.write(path, data, sample_rate) info = soundfile_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == num_frames assert info.num_channels == num_channels assert info.bits_per_sample == 16 assert info.encoding == "FLAC" @parameterize([8000, 16000], [1, 2]) @skipIfFormatNotSupported("OGG") def test_ogg(self, sample_rate, num_channels): """`soundfile_backend.info` can check ogg file correctly""" duration = 1 num_frames = sample_rate * duration data = torch.randn(num_frames, num_channels).numpy() path = self.get_temp_path("data.ogg") soundfile.write(path, data, sample_rate) info = soundfile_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 0 assert info.encoding == "VORBIS" @nested_params( [8000, 16000], [1, 2], [ ('PCM_24', 24), ('PCM_32', 32) ], ) @skipIfFormatNotSupported("NIST") def test_sphere(self, sample_rate, num_channels, subtype_and_bit_depth): """`soundfile_backend.info` can check sph file correctly""" duration = 1 num_frames = sample_rate * duration data = torch.randn(num_frames, num_channels).numpy() path = self.get_temp_path("data.nist") subtype, bits_per_sample = subtype_and_bit_depth soundfile.write(path, data, sample_rate, subtype=subtype) info = soundfile_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == bits_per_sample assert info.encoding == "PCM_S" def test_unknown_subtype_warning(self): """soundfile_backend.info issues a warning when the subtype is unknown This will happen if a new subtype is supported in SoundFile: the _SUBTYPE_TO_BITS_PER_SAMPLE dict should be updated. """ def _mock_info_func(_): class MockSoundFileInfo: samplerate = 8000 frames = 356 channels = 2 subtype = 'UNSEEN_SUBTYPE' format = 'UNKNOWN' return MockSoundFileInfo() with patch("soundfile.info", _mock_info_func): with warnings.catch_warnings(record=True) as w: info = soundfile_backend.info("foo") assert len(w) == 1 assert "UNSEEN_SUBTYPE subtype is unknown to TorchAudio" in str(w[-1].message) assert info.bits_per_sample == 0 @skipIfNoModule("soundfile") class TestFileObject(TempDirMixin, PytorchTestCase): def _test_fileobj(self, ext, subtype, bits_per_sample): """Query audio via file-like object works""" duration = 2 sample_rate = 16000 num_channels = 2 num_frames = sample_rate * duration path = self.get_temp_path(f'test.{ext}') data = torch.randn(num_frames, num_channels).numpy() soundfile.write(path, data, sample_rate, subtype=subtype) with open(path, 'rb') as fileobj: info = soundfile_backend.info(fileobj) assert info.sample_rate == sample_rate assert info.num_frames == num_frames assert info.num_channels == num_channels assert info.bits_per_sample == bits_per_sample assert info.encoding == "FLAC" if ext == 'flac' else "PCM_S" def test_fileobj_wav(self): """Loading audio via file-like object works""" self._test_fileobj('wav', 'PCM_16', 16) @skipIfFormatNotSupported("FLAC") def test_fileobj_flac(self): """Loading audio via file-like object works""" self._test_fileobj('flac', 'PCM_16', 16) def _test_tarobj(self, ext, subtype, bits_per_sample): """Query compressed audio via file-like object works""" duration = 2 sample_rate = 16000 num_channels = 2 num_frames = sample_rate * duration audio_file = f'test.{ext}' audio_path = self.get_temp_path(audio_file) archive_path = self.get_temp_path('archive.tar.gz') data = torch.randn(num_frames, num_channels).numpy() soundfile.write(audio_path, data, sample_rate, subtype=subtype) with tarfile.TarFile(archive_path, 'w') as tarobj: tarobj.add(audio_path, arcname=audio_file) with tarfile.TarFile(archive_path, 'r') as tarobj: fileobj = tarobj.extractfile(audio_file) info = soundfile_backend.info(fileobj) assert info.sample_rate == sample_rate assert info.num_frames == num_frames assert info.num_channels == num_channels assert info.bits_per_sample == bits_per_sample assert info.encoding == "FLAC" if ext == 'flac' else "PCM_S" def test_tarobj_wav(self): """Query compressed audio via file-like object works""" self._test_tarobj('wav', 'PCM_16', 16) @skipIfFormatNotSupported("FLAC") def test_tarobj_flac(self): """Query compressed audio via file-like object works""" self._test_tarobj('flac', 'PCM_16', 16)
import os import tarfile from unittest.mock import patch import torch from torchaudio._internal import module_utils as _mod_utils from torchaudio.backend import soundfile_backend from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, PytorchTestCase, skipIfNoModule, get_wav_data, normalize_wav, load_wav, save_wav, ) from .common import ( parameterize, dtype2subtype, skipIfFormatNotSupported, ) if _mod_utils.is_module_available("soundfile"): import soundfile def _get_mock_path( ext: str, dtype: str, sample_rate: int, num_channels: int, num_frames: int, ): return f"{dtype}_{sample_rate}_{num_channels}_{num_frames}.{ext}" def _get_mock_params(path: str): filename, ext = path.split(".") parts = filename.split("_") return { "ext": ext, "dtype": parts[0], "sample_rate": int(parts[1]), "num_channels": int(parts[2]), "num_frames": int(parts[3]), } class SoundFileMock: def __init__(self, path, mode): assert mode == "r" self.path = path self._params = _get_mock_params(path) self._start = None @property def samplerate(self): return self._params["sample_rate"] @property def format(self): if self._params["ext"] == "wav": return "WAV" if self._params["ext"] == "flac": return "FLAC" if self._params["ext"] == "ogg": return "OGG" if self._params["ext"] in ["sph", "nis", "nist"]: return "NIST" @property def subtype(self): if self._params["ext"] == "ogg": return "VORBIS" return dtype2subtype(self._params["dtype"]) def _prepare_read(self, start, stop, frames): assert stop is None self._start = start return frames def read(self, frames, dtype, always_2d): assert always_2d data = get_wav_data( dtype, self._params["num_channels"], normalize=False, num_frames=self._params["num_frames"], channels_first=False, ).numpy() return data[self._start:self._start + frames] def __enter__(self): return self def __exit__(self, *args, **kwargs): pass class MockedLoadTest(PytorchTestCase): def assert_dtype( self, ext, dtype, sample_rate, num_channels, normalize, channels_first ): """When format is WAV or NIST, normalize=False will return the native dtype Tensor, otherwise float32""" num_frames = 3 * sample_rate path = _get_mock_path(ext, dtype, sample_rate, num_channels, num_frames) expected_dtype = ( torch.float32 if normalize or ext not in ["wav", "nist"] else getattr(torch, dtype) ) with patch("soundfile.SoundFile", SoundFileMock): found, sr = soundfile_backend.load( path, normalize=normalize, channels_first=channels_first ) assert found.dtype == expected_dtype assert sample_rate == sr @parameterize( ["uint8", "int16", "int32", "float32", "float64"], [8000, 16000], [1, 2], [True, False], [True, False], ) def test_wav(self, dtype, sample_rate, num_channels, normalize, channels_first): """Returns native dtype when normalize=False else float32""" self.assert_dtype( "wav", dtype, sample_rate, num_channels, normalize, channels_first ) @parameterize( ["int8", "int16", "int32"], [8000, 16000], [1, 2], [True, False], [True, False], ) def test_sphere(self, dtype, sample_rate, num_channels, normalize, channels_first): """Returns float32 always""" self.assert_dtype( "sph", dtype, sample_rate, num_channels, normalize, channels_first ) @parameterize([8000, 16000], [1, 2], [True, False], [True, False]) def test_ogg(self, sample_rate, num_channels, normalize, channels_first): """Returns float32 always""" self.assert_dtype( "ogg", "int16", sample_rate, num_channels, normalize, channels_first ) @parameterize([8000, 16000], [1, 2], [True, False], [True, False]) def test_flac(self, sample_rate, num_channels, normalize, channels_first): """`soundfile_backend.load` can load ogg format.""" self.assert_dtype( "flac", "int16", sample_rate, num_channels, normalize, channels_first ) class LoadTestBase(TempDirMixin, PytorchTestCase): def assert_wav( self, dtype, sample_rate, num_channels, normalize, channels_first=True, duration=1, ): """`soundfile_backend.load` can load wav format correctly. Wav data loaded with soundfile backend should match those with scipy """ path = self.get_temp_path("reference.wav") num_frames = duration * sample_rate data = get_wav_data( dtype, num_channels, normalize=normalize, num_frames=num_frames, channels_first=channels_first, ) save_wav(path, data, sample_rate, channels_first=channels_first) expected = load_wav(path, normalize=normalize, channels_first=channels_first)[0] data, sr = soundfile_backend.load( path, normalize=normalize, channels_first=channels_first ) assert sr == sample_rate self.assertEqual(data, expected) def assert_sphere( self, dtype, sample_rate, num_channels, channels_first=True, duration=1, ): """`soundfile_backend.load` can load SPHERE format correctly.""" path = self.get_temp_path("reference.sph") num_frames = duration * sample_rate raw = get_wav_data( dtype, num_channels, num_frames=num_frames, normalize=False, channels_first=False, ) soundfile.write( path, raw, sample_rate, subtype=dtype2subtype(dtype), format="NIST" ) expected = normalize_wav(raw.t() if channels_first else raw) data, sr = soundfile_backend.load(path, channels_first=channels_first) assert sr == sample_rate self.assertEqual(data, expected, atol=1e-4, rtol=1e-8) def assert_flac( self, dtype, sample_rate, num_channels, channels_first=True, duration=1, ): """`soundfile_backend.load` can load FLAC format correctly.""" path = self.get_temp_path("reference.flac") num_frames = duration * sample_rate raw = get_wav_data( dtype, num_channels, num_frames=num_frames, normalize=False, channels_first=False, ) soundfile.write(path, raw, sample_rate) expected = normalize_wav(raw.t() if channels_first else raw) data, sr = soundfile_backend.load(path, channels_first=channels_first) assert sr == sample_rate self.assertEqual(data, expected, atol=1e-4, rtol=1e-8) @skipIfNoModule("soundfile") class TestLoad(LoadTestBase): """Test the correctness of `soundfile_backend.load` for various formats""" @parameterize( ["float32", "int32", "int16"], [8000, 16000], [1, 2], [False, True], [False, True], ) def test_wav(self, dtype, sample_rate, num_channels, normalize, channels_first): """`soundfile_backend.load` can load wav format correctly.""" self.assert_wav(dtype, sample_rate, num_channels, normalize, channels_first) @parameterize( ["int16"], [16000], [2], [False], ) def test_wav_large(self, dtype, sample_rate, num_channels, normalize): """`soundfile_backend.load` can load large wav file correctly.""" two_hours = 2 * 60 * 60 self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=two_hours) @parameterize(["float32", "int32", "int16"], [4, 8, 16, 32], [False, True]) def test_multiple_channels(self, dtype, num_channels, channels_first): """`soundfile_backend.load` can load wav file with more than 2 channels.""" sample_rate = 8000 normalize = False self.assert_wav(dtype, sample_rate, num_channels, normalize, channels_first) @parameterize(["int32", "int16"], [8000, 16000], [1, 2], [False, True]) @skipIfFormatNotSupported("NIST") def test_sphere(self, dtype, sample_rate, num_channels, channels_first): """`soundfile_backend.load` can load sphere format correctly.""" self.assert_sphere(dtype, sample_rate, num_channels, channels_first) @parameterize(["int32", "int16"], [8000, 16000], [1, 2], [False, True]) @skipIfFormatNotSupported("FLAC") def test_flac(self, dtype, sample_rate, num_channels, channels_first): """`soundfile_backend.load` can load flac format correctly.""" self.assert_flac(dtype, sample_rate, num_channels, channels_first) @skipIfNoModule("soundfile") class TestLoadFormat(TempDirMixin, PytorchTestCase): """Given `format` parameter, `so.load` can load files without extension""" original = None path = None def _make_file(self, format_): sample_rate = 8000 path_with_ext = self.get_temp_path(f'test.{format_}') data = get_wav_data('float32', num_channels=2).numpy().T soundfile.write(path_with_ext, data, sample_rate) expected = soundfile.read(path_with_ext, dtype='float32')[0].T path = os.path.splitext(path_with_ext)[0] os.rename(path_with_ext, path) return path, expected def _test_format(self, format_): """Providing format allows to read file without extension""" path, expected = self._make_file(format_) found, _ = soundfile_backend.load(path) self.assertEqual(found, expected) @parameterized.expand([ ('WAV', ), ('wav', ), ]) def test_wav(self, format_): self._test_format(format_) @parameterized.expand([ ('FLAC', ), ('flac',), ]) @skipIfFormatNotSupported("FLAC") def test_flac(self, format_): self._test_format(format_) @skipIfNoModule("soundfile") class TestFileObject(TempDirMixin, PytorchTestCase): def _test_fileobj(self, ext): """Loading audio via file-like object works""" sample_rate = 16000 path = self.get_temp_path(f'test.{ext}') data = get_wav_data('float32', num_channels=2).numpy().T soundfile.write(path, data, sample_rate) expected = soundfile.read(path, dtype='float32')[0].T with open(path, 'rb') as fileobj: found, sr = soundfile_backend.load(fileobj) assert sr == sample_rate self.assertEqual(expected, found) def test_fileobj_wav(self): """Loading audio via file-like object works""" self._test_fileobj('wav') @skipIfFormatNotSupported("FLAC") def test_fileobj_flac(self): """Loading audio via file-like object works""" self._test_fileobj('flac') def _test_tarfile(self, ext): """Loading audio via file-like object works""" sample_rate = 16000 audio_file = f'test.{ext}' audio_path = self.get_temp_path(audio_file) archive_path = self.get_temp_path('archive.tar.gz') data = get_wav_data('float32', num_channels=2).numpy().T soundfile.write(audio_path, data, sample_rate) expected = soundfile.read(audio_path, dtype='float32')[0].T with tarfile.TarFile(archive_path, 'w') as tarobj: tarobj.add(audio_path, arcname=audio_file) with tarfile.TarFile(archive_path, 'r') as tarobj: fileobj = tarobj.extractfile(audio_file) found, sr = soundfile_backend.load(fileobj) assert sr == sample_rate self.assertEqual(expected, found) def test_tarfile_wav(self): """Loading audio via file-like object works""" self._test_tarfile('wav') @skipIfFormatNotSupported("FLAC") def test_tarfile_flac(self): """Loading audio via file-like object works""" self._test_tarfile('flac')
import io from unittest.mock import patch from torchaudio._internal import module_utils as _mod_utils from torchaudio.backend import soundfile_backend from torchaudio_unittest.common_utils import ( TempDirMixin, PytorchTestCase, skipIfNoModule, get_wav_data, load_wav, nested_params, ) from .common import ( fetch_wav_subtype, parameterize, skipIfFormatNotSupported, ) if _mod_utils.is_module_available("soundfile"): import soundfile class MockedSaveTest(PytorchTestCase): @nested_params( ["float32", "int32", "int16", "uint8"], [8000, 16000], [1, 2], [False, True], [ (None, None), ('PCM_U', None), ('PCM_U', 8), ('PCM_S', None), ('PCM_S', 16), ('PCM_S', 32), ('PCM_F', None), ('PCM_F', 32), ('PCM_F', 64), ('ULAW', None), ('ULAW', 8), ('ALAW', None), ('ALAW', 8), ], ) @patch("soundfile.write") def test_wav(self, dtype, sample_rate, num_channels, channels_first, enc_params, mocked_write): """soundfile_backend.save passes correct subtype to soundfile.write when WAV""" filepath = "foo.wav" input_tensor = get_wav_data( dtype, num_channels, num_frames=3 * sample_rate, normalize=dtype == "float32", channels_first=channels_first, ).t() encoding, bits_per_sample = enc_params soundfile_backend.save( filepath, input_tensor, sample_rate, channels_first=channels_first, encoding=encoding, bits_per_sample=bits_per_sample ) # on +Py3.8 call_args.kwargs is more descreptive args = mocked_write.call_args[1] assert args["file"] == filepath assert args["samplerate"] == sample_rate assert args["subtype"] == fetch_wav_subtype( dtype, encoding, bits_per_sample) assert args["format"] is None self.assertEqual( args["data"], input_tensor.t() if channels_first else input_tensor ) @patch("soundfile.write") def assert_non_wav( self, fmt, dtype, sample_rate, num_channels, channels_first, mocked_write, encoding=None, bits_per_sample=None, ): """soundfile_backend.save passes correct subtype and format to soundfile.write when SPHERE""" filepath = f"foo.{fmt}" input_tensor = get_wav_data( dtype, num_channels, num_frames=3 * sample_rate, normalize=False, channels_first=channels_first, ).t() expected_data = input_tensor.t() if channels_first else input_tensor soundfile_backend.save( filepath, input_tensor, sample_rate, channels_first, encoding=encoding, bits_per_sample=bits_per_sample, ) # on +Py3.8 call_args.kwargs is more descreptive args = mocked_write.call_args[1] assert args["file"] == filepath assert args["samplerate"] == sample_rate if fmt in ["sph", "nist", "nis"]: assert args["format"] == "NIST" else: assert args["format"] is None self.assertEqual(args["data"], expected_data) @nested_params( ["sph", "nist", "nis"], ["int32", "int16"], [8000, 16000], [1, 2], [False, True], [ ('PCM_S', 8), ('PCM_S', 16), ('PCM_S', 24), ('PCM_S', 32), ('ULAW', 8), ('ALAW', 8), ('ALAW', 16), ('ALAW', 24), ('ALAW', 32), ], ) def test_sph(self, fmt, dtype, sample_rate, num_channels, channels_first, enc_params): """soundfile_backend.save passes default format and subtype (None-s) to soundfile.write when not WAV""" encoding, bits_per_sample = enc_params self.assert_non_wav(fmt, dtype, sample_rate, num_channels, channels_first, encoding=encoding, bits_per_sample=bits_per_sample) @parameterize( ["int32", "int16"], [8000, 16000], [1, 2], [False, True], [8, 16, 24], ) def test_flac(self, dtype, sample_rate, num_channels, channels_first, bits_per_sample): """soundfile_backend.save passes default format and subtype (None-s) to soundfile.write when not WAV""" self.assert_non_wav("flac", dtype, sample_rate, num_channels, channels_first, bits_per_sample=bits_per_sample) @parameterize( ["int32", "int16"], [8000, 16000], [1, 2], [False, True], ) def test_ogg(self, dtype, sample_rate, num_channels, channels_first): """soundfile_backend.save passes default format and subtype (None-s) to soundfile.write when not WAV""" self.assert_non_wav("ogg", dtype, sample_rate, num_channels, channels_first) @skipIfNoModule("soundfile") class SaveTestBase(TempDirMixin, PytorchTestCase): def assert_wav(self, dtype, sample_rate, num_channels, num_frames): """`soundfile_backend.save` can save wav format.""" path = self.get_temp_path("data.wav") expected = get_wav_data( dtype, num_channels, num_frames=num_frames, normalize=False ) soundfile_backend.save(path, expected, sample_rate) found, sr = load_wav(path, normalize=False) assert sample_rate == sr self.assertEqual(found, expected) def _assert_non_wav(self, fmt, dtype, sample_rate, num_channels): """`soundfile_backend.save` can save non-wav format. Due to precision missmatch, and the lack of alternative way to decode the resulting files without using soundfile, only meta data are validated. """ num_frames = sample_rate * 3 path = self.get_temp_path(f"data.{fmt}") expected = get_wav_data( dtype, num_channels, num_frames=num_frames, normalize=False ) soundfile_backend.save(path, expected, sample_rate) sinfo = soundfile.info(path) assert sinfo.format == fmt.upper() assert sinfo.frames == num_frames assert sinfo.channels == num_channels assert sinfo.samplerate == sample_rate def assert_flac(self, dtype, sample_rate, num_channels): """`soundfile_backend.save` can save flac format.""" self._assert_non_wav("flac", dtype, sample_rate, num_channels) def assert_sphere(self, dtype, sample_rate, num_channels): """`soundfile_backend.save` can save sph format.""" self._assert_non_wav("nist", dtype, sample_rate, num_channels) def assert_ogg(self, dtype, sample_rate, num_channels): """`soundfile_backend.save` can save ogg format. As we cannot inspect the OGG format (it's lossy), we only check the metadata. """ self._assert_non_wav("ogg", dtype, sample_rate, num_channels) @skipIfNoModule("soundfile") class TestSave(SaveTestBase): @parameterize( ["float32", "int32", "int16"], [8000, 16000], [1, 2], ) def test_wav(self, dtype, sample_rate, num_channels): """`soundfile_backend.save` can save wav format.""" self.assert_wav(dtype, sample_rate, num_channels, num_frames=None) @parameterize( ["float32", "int32", "int16"], [4, 8, 16, 32], ) def test_multiple_channels(self, dtype, num_channels): """`soundfile_backend.save` can save wav with more than 2 channels.""" sample_rate = 8000 self.assert_wav(dtype, sample_rate, num_channels, num_frames=None) @parameterize( ["int32", "int16"], [8000, 16000], [1, 2], ) @skipIfFormatNotSupported("NIST") def test_sphere(self, dtype, sample_rate, num_channels): """`soundfile_backend.save` can save sph format.""" self.assert_sphere(dtype, sample_rate, num_channels) @parameterize( [8000, 16000], [1, 2], ) @skipIfFormatNotSupported("FLAC") def test_flac(self, sample_rate, num_channels): """`soundfile_backend.save` can save flac format.""" self.assert_flac("float32", sample_rate, num_channels) @parameterize( [8000, 16000], [1, 2], ) @skipIfFormatNotSupported("OGG") def test_ogg(self, sample_rate, num_channels): """`soundfile_backend.save` can save ogg/vorbis format.""" self.assert_ogg("float32", sample_rate, num_channels) @skipIfNoModule("soundfile") class TestSaveParams(TempDirMixin, PytorchTestCase): """Test the correctness of optional parameters of `soundfile_backend.save`""" @parameterize([True, False]) def test_channels_first(self, channels_first): """channels_first swaps axes""" path = self.get_temp_path("data.wav") data = get_wav_data("int32", 2, channels_first=channels_first) soundfile_backend.save(path, data, 8000, channels_first=channels_first) found = load_wav(path)[0] expected = data if channels_first else data.transpose(1, 0) self.assertEqual(found, expected, atol=1e-4, rtol=1e-8) @skipIfNoModule("soundfile") class TestFileObject(TempDirMixin, PytorchTestCase): def _test_fileobj(self, ext): """Saving audio to file-like object works""" sample_rate = 16000 path = self.get_temp_path(f'test.{ext}') subtype = 'FLOAT' if ext == 'wav' else None data = get_wav_data('float32', num_channels=2) soundfile.write(path, data.numpy().T, sample_rate, subtype=subtype) expected = soundfile.read(path, dtype='float32')[0] fileobj = io.BytesIO() soundfile_backend.save(fileobj, data, sample_rate, format=ext) fileobj.seek(0) found, sr = soundfile.read(fileobj, dtype='float32') assert sr == sample_rate self.assertEqual(expected, found, atol=1e-4, rtol=1e-8) def test_fileobj_wav(self): """Saving audio via file-like object works""" self._test_fileobj('wav') @skipIfFormatNotSupported("FLAC") def test_fileobj_flac(self): """Saving audio via file-like object works""" self._test_fileobj('flac') @skipIfFormatNotSupported("NIST") def test_fileobj_nist(self): """Saving audio via file-like object works""" self._test_fileobj('NIST') @skipIfFormatNotSupported("OGG") def test_fileobj_ogg(self): """Saving audio via file-like object works""" self._test_fileobj('OGG')
import itertools from unittest import skipIf from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available def name_func(func, _, params): return f'{func.__name__}_{"_".join(str(arg) for arg in params.args)}' def dtype2subtype(dtype): return { "float64": "DOUBLE", "float32": "FLOAT", "int32": "PCM_32", "int16": "PCM_16", "uint8": "PCM_U8", "int8": "PCM_S8", }[dtype] def skipIfFormatNotSupported(fmt): fmts = [] if is_module_available("soundfile"): import soundfile fmts = soundfile.available_formats() return skipIf(fmt not in fmts, f'"{fmt}" is not supported by soundfile') return skipIf(True, '"soundfile" not available.') def parameterize(*params): return parameterized.expand(list(itertools.product(*params)), name_func=name_func) def fetch_wav_subtype(dtype, encoding, bits_per_sample): subtype = { (None, None): dtype2subtype(dtype), (None, 8): "PCM_U8", ('PCM_U', None): "PCM_U8", ('PCM_U', 8): "PCM_U8", ('PCM_S', None): "PCM_32", ('PCM_S', 16): "PCM_16", ('PCM_S', 32): "PCM_32", ('PCM_F', None): "FLOAT", ('PCM_F', 32): "FLOAT", ('PCM_F', 64): "DOUBLE", ('ULAW', None): "ULAW", ('ULAW', 8): "ULAW", ('ALAW', None): "ALAW", ('ALAW', 8): "ALAW", }.get((encoding, bits_per_sample)) if subtype: return subtype raise ValueError( f"wav does not support ({encoding}, {bits_per_sample}).")
import io import itertools import unittest from torchaudio.utils import sox_utils from torchaudio.backend import sox_io_backend from torchaudio._internal.module_utils import is_sox_available from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, skipIfNoSox, get_wav_data, ) from .common import name_func skipIfNoMP3 = unittest.skipIf( not is_sox_available() or 'mp3' not in sox_utils.list_read_formats() or 'mp3' not in sox_utils.list_write_formats(), '"sox_io" backend does not support MP3') @skipIfNoSox class SmokeTest(TempDirMixin, TorchaudioTestCase): """Run smoke test on various audio format The purpose of this test suite is to verify that sox_io_backend functionalities do not exhibit abnormal behaviors. This test suite should be able to run without any additional tools (such as sox command), however without such tools, the correctness of each function cannot be verified. """ def run_smoke_test(self, ext, sample_rate, num_channels, *, compression=None, dtype='float32'): duration = 1 num_frames = sample_rate * duration path = self.get_temp_path(f'test.{ext}') original = get_wav_data(dtype, num_channels, normalize=False, num_frames=num_frames) # 1. run save sox_io_backend.save(path, original, sample_rate, compression=compression) # 2. run info info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_channels == num_channels # 3. run load loaded, sr = sox_io_backend.load(path, normalize=False) assert sr == sample_rate assert loaded.shape[0] == num_channels @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_wav(self, dtype, sample_rate, num_channels): """Run smoke test on wav format""" self.run_smoke_test('wav', sample_rate, num_channels, dtype=dtype) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [-4.2, -0.2, 0, 0.2, 96, 128, 160, 192, 224, 256, 320], ))) @skipIfNoMP3 def test_mp3(self, sample_rate, num_channels, bit_rate): """Run smoke test on mp3 format""" self.run_smoke_test('mp3', sample_rate, num_channels, compression=bit_rate) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [-1, 0, 1, 2, 3, 3.6, 5, 10], ))) def test_vorbis(self, sample_rate, num_channels, quality_level): """Run smoke test on vorbis format""" self.run_smoke_test('vorbis', sample_rate, num_channels, compression=quality_level) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_flac(self, sample_rate, num_channels, compression_level): """Run smoke test on flac format""" self.run_smoke_test('flac', sample_rate, num_channels, compression=compression_level) @skipIfNoSox class SmokeTestFileObj(TorchaudioTestCase): """Run smoke test on various audio format The purpose of this test suite is to verify that sox_io_backend functionalities do not exhibit abnormal behaviors. This test suite should be able to run without any additional tools (such as sox command), however without such tools, the correctness of each function cannot be verified. """ def run_smoke_test(self, ext, sample_rate, num_channels, *, compression=None, dtype='float32'): duration = 1 num_frames = sample_rate * duration original = get_wav_data(dtype, num_channels, normalize=False, num_frames=num_frames) fileobj = io.BytesIO() # 1. run save sox_io_backend.save(fileobj, original, sample_rate, compression=compression, format=ext) # 2. run info fileobj.seek(0) info = sox_io_backend.info(fileobj, format=ext) assert info.sample_rate == sample_rate assert info.num_channels == num_channels # 3. run load fileobj.seek(0) loaded, sr = sox_io_backend.load(fileobj, normalize=False, format=ext) assert sr == sample_rate assert loaded.shape[0] == num_channels @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_wav(self, dtype, sample_rate, num_channels): """Run smoke test on wav format""" self.run_smoke_test('wav', sample_rate, num_channels, dtype=dtype) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [-4.2, -0.2, 0, 0.2, 96, 128, 160, 192, 224, 256, 320], ))) @skipIfNoMP3 def test_mp3(self, sample_rate, num_channels, bit_rate): """Run smoke test on mp3 format""" self.run_smoke_test('mp3', sample_rate, num_channels, compression=bit_rate) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [-1, 0, 1, 2, 3, 3.6, 5, 10], ))) def test_vorbis(self, sample_rate, num_channels, quality_level): """Run smoke test on vorbis format""" self.run_smoke_test('vorbis', sample_rate, num_channels, compression=quality_level) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_flac(self, sample_rate, num_channels, compression_level): """Run smoke test on flac format""" self.run_smoke_test('flac', sample_rate, num_channels, compression=compression_level)
from contextlib import contextmanager import io import os import itertools import tarfile from parameterized import parameterized from torchaudio.backend import sox_io_backend from torchaudio.utils.sox_utils import get_buffer_size, set_buffer_size from torchaudio._internal import module_utils as _mod_utils from torchaudio_unittest.backend.common import ( get_bits_per_sample, get_encoding, ) from torchaudio_unittest.common_utils import ( TempDirMixin, HttpServerMixin, PytorchTestCase, skipIfNoExec, skipIfNoModule, skipIfNoSox, get_asset_path, get_wav_data, save_wav, sox_utils, ) from .common import ( name_func, ) if _mod_utils.is_module_available("requests"): import requests @skipIfNoExec('sox') @skipIfNoSox class TestInfo(TempDirMixin, PytorchTestCase): @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_wav(self, dtype, sample_rate, num_channels): """`sox_io_backend.info` can check wav file correctly""" duration = 1 path = self.get_temp_path('data.wav') data = get_wav_data(dtype, num_channels, normalize=False, num_frames=duration * sample_rate) save_wav(path, data, sample_rate) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == sox_utils.get_bit_depth(dtype) assert info.encoding == get_encoding('wav', dtype) @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [4, 8, 16, 32], )), name_func=name_func) def test_wav_multiple_channels(self, dtype, sample_rate, num_channels): """`sox_io_backend.info` can check wav file with channels more than 2 correctly""" duration = 1 path = self.get_temp_path('data.wav') data = get_wav_data(dtype, num_channels, normalize=False, num_frames=duration * sample_rate) save_wav(path, data, sample_rate) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == sox_utils.get_bit_depth(dtype) assert info.encoding == get_encoding('wav', dtype) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [96, 128, 160, 192, 224, 256, 320], )), name_func=name_func) def test_mp3(self, sample_rate, num_channels, bit_rate): """`sox_io_backend.info` can check mp3 file correctly""" duration = 1 path = self.get_temp_path('data.mp3') sox_utils.gen_audio_file( path, sample_rate, num_channels, compression=bit_rate, duration=duration, ) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate # mp3 does not preserve the number of samples # assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 0 # bit_per_sample is irrelevant for compressed formats assert info.encoding == "MP3" @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_flac(self, sample_rate, num_channels, compression_level): """`sox_io_backend.info` can check flac file correctly""" duration = 1 path = self.get_temp_path('data.flac') sox_utils.gen_audio_file( path, sample_rate, num_channels, compression=compression_level, duration=duration, ) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 24 # FLAC standard assert info.encoding == "FLAC" @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [-1, 0, 1, 2, 3, 3.6, 5, 10], )), name_func=name_func) def test_vorbis(self, sample_rate, num_channels, quality_level): """`sox_io_backend.info` can check vorbis file correctly""" duration = 1 path = self.get_temp_path('data.vorbis') sox_utils.gen_audio_file( path, sample_rate, num_channels, compression=quality_level, duration=duration, ) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 0 # bit_per_sample is irrelevant for compressed formats assert info.encoding == "VORBIS" @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [16, 32], )), name_func=name_func) def test_sphere(self, sample_rate, num_channels, bits_per_sample): """`sox_io_backend.info` can check sph file correctly""" duration = 1 path = self.get_temp_path('data.sph') sox_utils.gen_audio_file( path, sample_rate, num_channels, duration=duration, bit_depth=bits_per_sample) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == bits_per_sample assert info.encoding == "PCM_S" @parameterized.expand(list(itertools.product( ['int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_amb(self, dtype, sample_rate, num_channels): """`sox_io_backend.info` can check amb file correctly""" duration = 1 path = self.get_temp_path('data.amb') bits_per_sample = sox_utils.get_bit_depth(dtype) sox_utils.gen_audio_file( path, sample_rate, num_channels, bit_depth=bits_per_sample, duration=duration) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == bits_per_sample assert info.encoding == get_encoding("amb", dtype) def test_amr_nb(self): """`sox_io_backend.info` can check amr-nb file correctly""" duration = 1 num_channels = 1 sample_rate = 8000 path = self.get_temp_path('data.amr-nb') sox_utils.gen_audio_file( path, sample_rate=sample_rate, num_channels=num_channels, bit_depth=16, duration=duration) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 0 assert info.encoding == "AMR_NB" def test_ulaw(self): """`sox_io_backend.info` can check ulaw file correctly""" duration = 1 num_channels = 1 sample_rate = 8000 path = self.get_temp_path('data.wav') sox_utils.gen_audio_file( path, sample_rate=sample_rate, num_channels=num_channels, bit_depth=8, encoding='u-law', duration=duration) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 8 assert info.encoding == "ULAW" def test_alaw(self): """`sox_io_backend.info` can check alaw file correctly""" duration = 1 num_channels = 1 sample_rate = 8000 path = self.get_temp_path('data.wav') sox_utils.gen_audio_file( path, sample_rate=sample_rate, num_channels=num_channels, bit_depth=8, encoding='a-law', duration=duration) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 8 assert info.encoding == "ALAW" def test_gsm(self): """`sox_io_backend.info` can check gsm file correctly""" duration = 1 num_channels = 1 sample_rate = 8000 path = self.get_temp_path('data.gsm') sox_utils.gen_audio_file( path, sample_rate=sample_rate, num_channels=num_channels, duration=duration) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_channels == num_channels assert info.bits_per_sample == 0 assert info.encoding == "GSM" def test_htk(self): """`sox_io_backend.info` can check HTK file correctly""" duration = 1 num_channels = 1 sample_rate = 8000 path = self.get_temp_path('data.htk') sox_utils.gen_audio_file( path, sample_rate=sample_rate, num_channels=num_channels, bit_depth=16, duration=duration) info = sox_io_backend.info(path) assert info.sample_rate == sample_rate assert info.num_frames == sample_rate * duration assert info.num_channels == num_channels assert info.bits_per_sample == 16 assert info.encoding == "PCM_S" @skipIfNoSox class TestInfoOpus(PytorchTestCase): @parameterized.expand(list(itertools.product( ['96k'], [1, 2], [0, 5, 10], )), name_func=name_func) def test_opus(self, bitrate, num_channels, compression_level): """`sox_io_backend.info` can check opus file correcty""" path = get_asset_path('io', f'{bitrate}_{compression_level}_{num_channels}ch.opus') info = sox_io_backend.info(path) assert info.sample_rate == 48000 assert info.num_frames == 32768 assert info.num_channels == num_channels assert info.bits_per_sample == 0 # bit_per_sample is irrelevant for compressed formats assert info.encoding == "OPUS" @skipIfNoSox class TestLoadWithoutExtension(PytorchTestCase): def test_mp3(self): """Providing `format` allows to read mp3 without extension libsox does not check header for mp3 https://github.com/pytorch/audio/issues/1040 The file was generated with the following command ffmpeg -f lavfi -i "sine=frequency=1000:duration=5" -ar 16000 -f mp3 test_noext """ path = get_asset_path("mp3_without_ext") sinfo = sox_io_backend.info(path, format="mp3") assert sinfo.sample_rate == 16000 assert sinfo.num_frames == 81216 assert sinfo.num_channels == 1 assert sinfo.bits_per_sample == 0 # bit_per_sample is irrelevant for compressed formats assert sinfo.encoding == "MP3" class FileObjTestBase(TempDirMixin): def _gen_file(self, ext, dtype, sample_rate, num_channels, num_frames, *, comments=None): path = self.get_temp_path(f'test.{ext}') bit_depth = sox_utils.get_bit_depth(dtype) duration = num_frames / sample_rate comment_file = self._gen_comment_file(comments) if comments else None sox_utils.gen_audio_file( path, sample_rate, num_channels=num_channels, encoding=sox_utils.get_encoding(dtype), bit_depth=bit_depth, duration=duration, comment_file=comment_file, ) return path def _gen_comment_file(self, comments): comment_path = self.get_temp_path("comment.txt") with open(comment_path, "w") as file_: file_.writelines(comments) return comment_path @skipIfNoSox @skipIfNoExec('sox') class TestFileObject(FileObjTestBase, PytorchTestCase): def _query_fileobj(self, ext, dtype, sample_rate, num_channels, num_frames, *, comments=None): path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames, comments=comments) format_ = ext if ext in ['mp3'] else None with open(path, 'rb') as fileobj: return sox_io_backend.info(fileobj, format_) def _query_bytesio(self, ext, dtype, sample_rate, num_channels, num_frames): path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames) format_ = ext if ext in ['mp3'] else None with open(path, 'rb') as file_: fileobj = io.BytesIO(file_.read()) return sox_io_backend.info(fileobj, format_) def _query_tarfile(self, ext, dtype, sample_rate, num_channels, num_frames): audio_path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames) audio_file = os.path.basename(audio_path) archive_path = self.get_temp_path('archive.tar.gz') with tarfile.TarFile(archive_path, 'w') as tarobj: tarobj.add(audio_path, arcname=audio_file) format_ = ext if ext in ['mp3'] else None with tarfile.TarFile(archive_path, 'r') as tarobj: fileobj = tarobj.extractfile(audio_file) return sox_io_backend.info(fileobj, format_) @contextmanager def _set_buffer_size(self, buffer_size): try: original_buffer_size = get_buffer_size() set_buffer_size(buffer_size) yield finally: set_buffer_size(original_buffer_size) @parameterized.expand([ ('wav', "float32"), ('wav', "int32"), ('wav', "int16"), ('wav', "uint8"), ('mp3', "float32"), ('flac', "float32"), ('vorbis', "float32"), ('amb', "int16"), ]) def test_fileobj(self, ext, dtype): """Querying audio via file object works""" sample_rate = 16000 num_frames = 3 * sample_rate num_channels = 2 sinfo = self._query_fileobj(ext, dtype, sample_rate, num_channels, num_frames) bits_per_sample = get_bits_per_sample(ext, dtype) num_frames = 0 if ext in ['mp3', 'vorbis'] else num_frames assert sinfo.sample_rate == sample_rate assert sinfo.num_channels == num_channels assert sinfo.num_frames == num_frames assert sinfo.bits_per_sample == bits_per_sample assert sinfo.encoding == get_encoding(ext, dtype) @parameterized.expand([ ('vorbis', "float32"), ]) def test_fileobj_large_header(self, ext, dtype): """ For audio file with header size exceeding default buffer size: - Querying audio via file object without enlarging buffer size fails. - Querying audio via file object after enlarging buffer size succeeds. """ sample_rate = 16000 num_frames = 3 * sample_rate num_channels = 2 comments = "metadata=" + " ".join(["value" for _ in range(1000)]) with self.assertRaisesRegex(RuntimeError, "^Error loading audio file:"): sinfo = self._query_fileobj(ext, dtype, sample_rate, num_channels, num_frames, comments=comments) with self._set_buffer_size(16384): sinfo = self._query_fileobj(ext, dtype, sample_rate, num_channels, num_frames, comments=comments) bits_per_sample = get_bits_per_sample(ext, dtype) num_frames = 0 if ext in ['mp3', 'vorbis'] else num_frames assert sinfo.sample_rate == sample_rate assert sinfo.num_channels == num_channels assert sinfo.num_frames == num_frames assert sinfo.bits_per_sample == bits_per_sample assert sinfo.encoding == get_encoding(ext, dtype) @parameterized.expand([ ('wav', "float32"), ('wav', "int32"), ('wav', "int16"), ('wav', "uint8"), ('mp3', "float32"), ('flac', "float32"), ('vorbis', "float32"), ('amb', "int16"), ]) def test_bytesio(self, ext, dtype): """Querying audio via ByteIO object works for small data""" sample_rate = 16000 num_frames = 3 * sample_rate num_channels = 2 sinfo = self._query_bytesio(ext, dtype, sample_rate, num_channels, num_frames) bits_per_sample = get_bits_per_sample(ext, dtype) num_frames = 0 if ext in ['mp3', 'vorbis'] else num_frames assert sinfo.sample_rate == sample_rate assert sinfo.num_channels == num_channels assert sinfo.num_frames == num_frames assert sinfo.bits_per_sample == bits_per_sample assert sinfo.encoding == get_encoding(ext, dtype) @parameterized.expand([ ('wav', "float32"), ('wav', "int32"), ('wav', "int16"), ('wav', "uint8"), ('mp3', "float32"), ('flac', "float32"), ('vorbis', "float32"), ('amb', "int16"), ]) def test_bytesio_tiny(self, ext, dtype): """Querying audio via ByteIO object works for small data""" sample_rate = 8000 num_frames = 4 num_channels = 2 sinfo = self._query_bytesio(ext, dtype, sample_rate, num_channels, num_frames) bits_per_sample = get_bits_per_sample(ext, dtype) num_frames = 0 if ext in ['mp3', 'vorbis'] else num_frames assert sinfo.sample_rate == sample_rate assert sinfo.num_channels == num_channels assert sinfo.num_frames == num_frames assert sinfo.bits_per_sample == bits_per_sample assert sinfo.encoding == get_encoding(ext, dtype) @parameterized.expand([ ('wav', "float32"), ('wav', "int32"), ('wav', "int16"), ('wav', "uint8"), ('mp3', "float32"), ('flac', "float32"), ('vorbis', "float32"), ('amb', "int16"), ]) def test_tarfile(self, ext, dtype): """Querying compressed audio via file-like object works""" sample_rate = 16000 num_frames = 3.0 * sample_rate num_channels = 2 sinfo = self._query_tarfile(ext, dtype, sample_rate, num_channels, num_frames) bits_per_sample = get_bits_per_sample(ext, dtype) num_frames = 0 if ext in ['mp3', 'vorbis'] else num_frames assert sinfo.sample_rate == sample_rate assert sinfo.num_channels == num_channels assert sinfo.num_frames == num_frames assert sinfo.bits_per_sample == bits_per_sample assert sinfo.encoding == get_encoding(ext, dtype) @skipIfNoSox @skipIfNoExec('sox') @skipIfNoModule("requests") class TestFileObjectHttp(HttpServerMixin, FileObjTestBase, PytorchTestCase): def _query_http(self, ext, dtype, sample_rate, num_channels, num_frames): audio_path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames) audio_file = os.path.basename(audio_path) url = self.get_url(audio_file) format_ = ext if ext in ['mp3'] else None with requests.get(url, stream=True) as resp: return sox_io_backend.info(resp.raw, format=format_) @parameterized.expand([ ('wav', "float32"), ('wav', "int32"), ('wav', "int16"), ('wav', "uint8"), ('mp3', "float32"), ('flac', "float32"), ('vorbis', "float32"), ('amb', "int16"), ]) def test_requests(self, ext, dtype): """Querying compressed audio via requests works""" sample_rate = 16000 num_frames = 3.0 * sample_rate num_channels = 2 sinfo = self._query_http(ext, dtype, sample_rate, num_channels, num_frames) bits_per_sample = get_bits_per_sample(ext, dtype) num_frames = 0 if ext in ['mp3', 'vorbis'] else num_frames assert sinfo.sample_rate == sample_rate assert sinfo.num_channels == num_channels assert sinfo.num_frames == num_frames assert sinfo.bits_per_sample == bits_per_sample assert sinfo.encoding == get_encoding(ext, dtype) @skipIfNoSox class TestInfoNoSuchFile(PytorchTestCase): def test_info_fail(self): """ When attempted to get info on a non-existing file, error message must contain the file path. """ path = "non_existing_audio.wav" with self.assertRaisesRegex(RuntimeError, "^Error loading audio file: failed to open file {0}$".format(path)): sox_io_backend.info(path)
import io import itertools import tarfile from parameterized import parameterized from torchaudio.backend import sox_io_backend from torchaudio._internal import module_utils as _mod_utils from torchaudio_unittest.common_utils import ( TempDirMixin, HttpServerMixin, PytorchTestCase, skipIfNoExec, skipIfNoModule, skipIfNoSox, get_asset_path, get_wav_data, load_wav, save_wav, sox_utils, ) from .common import ( name_func, ) if _mod_utils.is_module_available("requests"): import requests class LoadTestBase(TempDirMixin, PytorchTestCase): def assert_format( self, format: str, sample_rate: float, num_channels: int, compression: float = None, bit_depth: int = None, duration: float = 1, normalize: bool = True, encoding: str = None, atol: float = 4e-05, rtol: float = 1.3e-06, ): """`sox_io_backend.load` can load given format correctly. file encodings introduce delay and boundary effects so we create a reference wav file from the original file format x | | 1. Generate given format with Sox | v 2. Convert to wav with Sox given format ----------------------> wav | | | 3. Load with torchaudio | 4. Load with scipy | | v v tensor ----------> x <----------- tensor 5. Compare Underlying assumptions are; i. Conversion of given format to wav with Sox preserves data. ii. Loading wav file with scipy is correct. By combining i & ii, step 2. and 4. allows to load reference given format data without using torchaudio """ path = self.get_temp_path(f'1.original.{format}') ref_path = self.get_temp_path('2.reference.wav') # 1. Generate the given format with sox sox_utils.gen_audio_file( path, sample_rate, num_channels, encoding=encoding, compression=compression, bit_depth=bit_depth, duration=duration, ) # 2. Convert to wav with sox wav_bit_depth = 32 if bit_depth == 24 else None # for 24-bit wav sox_utils.convert_audio_file(path, ref_path, bit_depth=wav_bit_depth) # 3. Load the given format with torchaudio data, sr = sox_io_backend.load(path, normalize=normalize) # 4. Load wav with scipy data_ref = load_wav(ref_path, normalize=normalize)[0] # 5. Compare assert sr == sample_rate self.assertEqual(data, data_ref, atol=atol, rtol=rtol) def assert_wav(self, dtype, sample_rate, num_channels, normalize, duration): """`sox_io_backend.load` can load wav format correctly. Wav data loaded with sox_io backend should match those with scipy """ path = self.get_temp_path('reference.wav') data = get_wav_data(dtype, num_channels, normalize=normalize, num_frames=duration * sample_rate) save_wav(path, data, sample_rate) expected = load_wav(path, normalize=normalize)[0] data, sr = sox_io_backend.load(path, normalize=normalize) assert sr == sample_rate self.assertEqual(data, expected) @skipIfNoExec('sox') @skipIfNoSox class TestLoad(LoadTestBase): """Test the correctness of `sox_io_backend.load` for various formats""" @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], [False, True], )), name_func=name_func) def test_wav(self, dtype, sample_rate, num_channels, normalize): """`sox_io_backend.load` can load wav format correctly.""" self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=1) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [False, True], )), name_func=name_func) def test_24bit_wav(self, sample_rate, num_channels, normalize): """`sox_io_backend.load` can load 24bit wav format correctly. Corectly casts it to ``int32`` tensor dtype.""" self.assert_format("wav", sample_rate, num_channels, bit_depth=24, normalize=normalize, duration=1) @parameterized.expand(list(itertools.product( ['int16'], [16000], [2], [False], )), name_func=name_func) def test_wav_large(self, dtype, sample_rate, num_channels, normalize): """`sox_io_backend.load` can load large wav file correctly.""" two_hours = 2 * 60 * 60 self.assert_wav(dtype, sample_rate, num_channels, normalize, two_hours) @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [4, 8, 16, 32], )), name_func=name_func) def test_multiple_channels(self, dtype, num_channels): """`sox_io_backend.load` can load wav file with more than 2 channels.""" sample_rate = 8000 normalize = False self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=1) @parameterized.expand(list(itertools.product( [8000, 16000, 44100], [1, 2], [96, 128, 160, 192, 224, 256, 320], )), name_func=name_func) def test_mp3(self, sample_rate, num_channels, bit_rate): """`sox_io_backend.load` can load mp3 format correctly.""" self.assert_format("mp3", sample_rate, num_channels, compression=bit_rate, duration=1, atol=5e-05) @parameterized.expand(list(itertools.product( [16000], [2], [128], )), name_func=name_func) def test_mp3_large(self, sample_rate, num_channels, bit_rate): """`sox_io_backend.load` can load large mp3 file correctly.""" two_hours = 2 * 60 * 60 self.assert_format("mp3", sample_rate, num_channels, compression=bit_rate, duration=two_hours, atol=5e-05) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_flac(self, sample_rate, num_channels, compression_level): """`sox_io_backend.load` can load flac format correctly.""" self.assert_format("flac", sample_rate, num_channels, compression=compression_level, bit_depth=16, duration=1) @parameterized.expand(list(itertools.product( [16000], [2], [0], )), name_func=name_func) def test_flac_large(self, sample_rate, num_channels, compression_level): """`sox_io_backend.load` can load large flac file correctly.""" two_hours = 2 * 60 * 60 self.assert_format( "flac", sample_rate, num_channels, compression=compression_level, bit_depth=16, duration=two_hours) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], [-1, 0, 1, 2, 3, 3.6, 5, 10], )), name_func=name_func) def test_vorbis(self, sample_rate, num_channels, quality_level): """`sox_io_backend.load` can load vorbis format correctly.""" self.assert_format("vorbis", sample_rate, num_channels, compression=quality_level, bit_depth=16, duration=1) @parameterized.expand(list(itertools.product( [16000], [2], [10], )), name_func=name_func) def test_vorbis_large(self, sample_rate, num_channels, quality_level): """`sox_io_backend.load` can load large vorbis file correctly.""" two_hours = 2 * 60 * 60 self.assert_format( "vorbis", sample_rate, num_channels, compression=quality_level, bit_depth=16, duration=two_hours) @parameterized.expand(list(itertools.product( ['96k'], [1, 2], [0, 5, 10], )), name_func=name_func) def test_opus(self, bitrate, num_channels, compression_level): """`sox_io_backend.load` can load opus file correctly.""" ops_path = get_asset_path('io', f'{bitrate}_{compression_level}_{num_channels}ch.opus') wav_path = self.get_temp_path(f'{bitrate}_{compression_level}_{num_channels}ch.opus.wav') sox_utils.convert_audio_file(ops_path, wav_path) expected, sample_rate = load_wav(wav_path) found, sr = sox_io_backend.load(ops_path) assert sample_rate == sr self.assertEqual(expected, found) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], )), name_func=name_func) def test_sphere(self, sample_rate, num_channels): """`sox_io_backend.load` can load sph format correctly.""" self.assert_format("sph", sample_rate, num_channels, bit_depth=32, duration=1) @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16'], [8000, 16000], [1, 2], [False, True], )), name_func=name_func) def test_amb(self, dtype, sample_rate, num_channels, normalize): """`sox_io_backend.load` can load amb format correctly.""" bit_depth = sox_utils.get_bit_depth(dtype) encoding = sox_utils.get_encoding(dtype) self.assert_format( "amb", sample_rate, num_channels, bit_depth=bit_depth, duration=1, encoding=encoding, normalize=normalize) def test_amr_nb(self): """`sox_io_backend.load` can load amr_nb format correctly.""" self.assert_format("amr-nb", sample_rate=8000, num_channels=1, bit_depth=32, duration=1) @skipIfNoExec('sox') @skipIfNoSox class TestLoadParams(TempDirMixin, PytorchTestCase): """Test the correctness of frame parameters of `sox_io_backend.load`""" original = None path = None def setUp(self): super().setUp() sample_rate = 8000 self.original = get_wav_data('float32', num_channels=2) self.path = self.get_temp_path('test.wav') save_wav(self.path, self.original, sample_rate) @parameterized.expand(list(itertools.product( [0, 1, 10, 100, 1000], [-1, 1, 10, 100, 1000], )), name_func=name_func) def test_frame(self, frame_offset, num_frames): """num_frames and frame_offset correctly specify the region of data""" found, _ = sox_io_backend.load(self.path, frame_offset, num_frames) frame_end = None if num_frames == -1 else frame_offset + num_frames self.assertEqual(found, self.original[:, frame_offset:frame_end]) @parameterized.expand([(True, ), (False, )], name_func=name_func) def test_channels_first(self, channels_first): """channels_first swaps axes""" found, _ = sox_io_backend.load(self.path, channels_first=channels_first) expected = self.original if channels_first else self.original.transpose(1, 0) self.assertEqual(found, expected) @skipIfNoSox class TestLoadWithoutExtension(PytorchTestCase): def test_mp3(self): """Providing format allows to read mp3 without extension libsox does not check header for mp3 https://github.com/pytorch/audio/issues/1040 The file was generated with the following command ffmpeg -f lavfi -i "sine=frequency=1000:duration=5" -ar 16000 -f mp3 test_noext """ path = get_asset_path("mp3_without_ext") _, sr = sox_io_backend.load(path, format="mp3") assert sr == 16000 class CloggedFileObj: def __init__(self, fileobj): self.fileobj = fileobj self.buffer = b'' def read(self, n): if not self.buffer: self.buffer += self.fileobj.read(n) ret = self.buffer[:2] self.buffer = self.buffer[2:] return ret @skipIfNoSox @skipIfNoExec('sox') class TestFileObject(TempDirMixin, PytorchTestCase): """ In this test suite, the result of file-like object input is compared against file path input, because `load` function is rigrously tested for file path inputs to match libsox's result, """ @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_fileobj(self, ext, compression): """Loading audio via file object returns the same result as via file path.""" sample_rate = 16000 format_ = ext if ext in ['mp3'] else None path = self.get_temp_path(f'test.{ext}') sox_utils.gen_audio_file( path, sample_rate, num_channels=2, compression=compression) expected, _ = sox_io_backend.load(path) with open(path, 'rb') as fileobj: found, sr = sox_io_backend.load(fileobj, format=format_) assert sr == sample_rate self.assertEqual(expected, found) @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_bytesio(self, ext, compression): """Loading audio via BytesIO object returns the same result as via file path.""" sample_rate = 16000 format_ = ext if ext in ['mp3'] else None path = self.get_temp_path(f'test.{ext}') sox_utils.gen_audio_file( path, sample_rate, num_channels=2, compression=compression) expected, _ = sox_io_backend.load(path) with open(path, 'rb') as file_: fileobj = io.BytesIO(file_.read()) found, sr = sox_io_backend.load(fileobj, format=format_) assert sr == sample_rate self.assertEqual(expected, found) @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_bytesio_clogged(self, ext, compression): """Loading audio via clogged file object returns the same result as via file path. This test case validates the case where fileobject returns shorter bytes than requeted. """ sample_rate = 16000 format_ = ext if ext in ['mp3'] else None path = self.get_temp_path(f'test.{ext}') sox_utils.gen_audio_file( path, sample_rate, num_channels=2, compression=compression) expected, _ = sox_io_backend.load(path) with open(path, 'rb') as file_: fileobj = CloggedFileObj(io.BytesIO(file_.read())) found, sr = sox_io_backend.load(fileobj, format=format_) assert sr == sample_rate self.assertEqual(expected, found) @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_bytesio_tiny(self, ext, compression): """Loading very small audio via file object returns the same result as via file path. """ sample_rate = 16000 format_ = ext if ext in ['mp3'] else None path = self.get_temp_path(f'test.{ext}') sox_utils.gen_audio_file( path, sample_rate, num_channels=2, compression=compression, duration=1 / 1600) expected, _ = sox_io_backend.load(path) with open(path, 'rb') as file_: fileobj = io.BytesIO(file_.read()) found, sr = sox_io_backend.load(fileobj, format=format_) assert sr == sample_rate self.assertEqual(expected, found) @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_tarfile(self, ext, compression): """Loading compressed audio via file-like object returns the same result as via file path.""" sample_rate = 16000 format_ = ext if ext in ['mp3'] else None audio_file = f'test.{ext}' audio_path = self.get_temp_path(audio_file) archive_path = self.get_temp_path('archive.tar.gz') sox_utils.gen_audio_file( audio_path, sample_rate, num_channels=2, compression=compression) expected, _ = sox_io_backend.load(audio_path) with tarfile.TarFile(archive_path, 'w') as tarobj: tarobj.add(audio_path, arcname=audio_file) with tarfile.TarFile(archive_path, 'r') as tarobj: fileobj = tarobj.extractfile(audio_file) found, sr = sox_io_backend.load(fileobj, format=format_) assert sr == sample_rate self.assertEqual(expected, found) @skipIfNoSox @skipIfNoExec('sox') @skipIfNoModule("requests") class TestFileObjectHttp(HttpServerMixin, PytorchTestCase): @parameterized.expand([ ('wav', None), ('mp3', 128), ('mp3', 320), ('flac', 0), ('flac', 5), ('flac', 8), ('vorbis', -1), ('vorbis', 10), ('amb', None), ]) def test_requests(self, ext, compression): sample_rate = 16000 format_ = ext if ext in ['mp3'] else None audio_file = f'test.{ext}' audio_path = self.get_temp_path(audio_file) sox_utils.gen_audio_file( audio_path, sample_rate, num_channels=2, compression=compression) expected, _ = sox_io_backend.load(audio_path) url = self.get_url(audio_file) with requests.get(url, stream=True) as resp: found, sr = sox_io_backend.load(resp.raw, format=format_) assert sr == sample_rate self.assertEqual(expected, found) @parameterized.expand(list(itertools.product( [0, 1, 10, 100, 1000], [-1, 1, 10, 100, 1000], )), name_func=name_func) def test_frame(self, frame_offset, num_frames): """num_frames and frame_offset correctly specify the region of data""" sample_rate = 8000 audio_file = 'test.wav' audio_path = self.get_temp_path(audio_file) original = get_wav_data('float32', num_channels=2) save_wav(audio_path, original, sample_rate) frame_end = None if num_frames == -1 else frame_offset + num_frames expected = original[:, frame_offset:frame_end] url = self.get_url(audio_file) with requests.get(url, stream=True) as resp: found, sr = sox_io_backend.load(resp.raw, frame_offset, num_frames) assert sr == sample_rate self.assertEqual(expected, found) @skipIfNoSox class TestLoadNoSuchFile(PytorchTestCase): def test_load_fail(self): """ When attempted to load a non-existing file, error message must contain the file path. """ path = "non_existing_audio.wav" with self.assertRaisesRegex(RuntimeError, "^Error loading audio file: failed to open file {0}$".format(path)): sox_io_backend.load(path)
import itertools from torchaudio.backend import sox_io_backend from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, PytorchTestCase, skipIfNoExec, skipIfNoSox, get_wav_data, ) from .common import ( name_func, get_enc_params, ) @skipIfNoExec('sox') @skipIfNoSox class TestRoundTripIO(TempDirMixin, PytorchTestCase): """save/load round trip should not degrade data for lossless formats""" @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_wav(self, dtype, sample_rate, num_channels): """save/load round trip should not degrade data for wav formats""" original = get_wav_data(dtype, num_channels, normalize=False) enc, bps = get_enc_params(dtype) data = original for i in range(10): path = self.get_temp_path(f'{i}.wav') sox_io_backend.save(path, data, sample_rate, encoding=enc, bits_per_sample=bps) data, sr = sox_io_backend.load(path, normalize=False) assert sr == sample_rate self.assertEqual(original, data) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_flac(self, sample_rate, num_channels, compression_level): """save/load round trip should not degrade data for flac formats""" original = get_wav_data('float32', num_channels) data = original for i in range(10): path = self.get_temp_path(f'{i}.flac') sox_io_backend.save(path, data, sample_rate, compression=compression_level) data, sr = sox_io_backend.load(path) assert sr == sample_rate self.assertEqual(original, data)
import io import os import unittest import torch from torchaudio.backend import sox_io_backend from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, PytorchTestCase, skipIfNoExec, skipIfNoSox, get_wav_data, load_wav, save_wav, sox_utils, nested_params, ) from .common import ( name_func, get_enc_params, ) def _get_sox_encoding(encoding): encodings = { 'PCM_F': 'floating-point', 'PCM_S': 'signed-integer', 'PCM_U': 'unsigned-integer', 'ULAW': 'u-law', 'ALAW': 'a-law', } return encodings.get(encoding) class SaveTestBase(TempDirMixin, TorchaudioTestCase): def assert_save_consistency( self, format: str, *, compression: float = None, encoding: str = None, bits_per_sample: int = None, sample_rate: float = 8000, num_channels: int = 2, num_frames: float = 3 * 8000, src_dtype: str = 'int32', test_mode: str = "path", ): """`save` function produces file that is comparable with `sox` command To compare that the file produced by `save` function agains the file produced by the equivalent `sox` command, we need to load both files. But there are many formats that cannot be opened with common Python modules (like SciPy). So we use `sox` command to prepare the original data and convert the saved files into a format that SciPy can read (PCM wav). The following diagram illustrates this process. The difference is 2.1. and 3.1. This assumes that - loading data with SciPy preserves the data well. - converting the resulting files into WAV format with `sox` preserve the data well. x | 1. Generate source wav file with SciPy | v -------------- wav ---------------- | | | 2.1. load with scipy | 3.1. Convert to the target | then save it into the target | format depth with sox | format with torchaudio | v v target format target format | | | 2.2. Convert to wav with sox | 3.2. Convert to wav with sox | | v v wav wav | | | 2.3. load with scipy | 3.3. load with scipy | | v v tensor -------> compare <--------- tensor """ cmp_encoding = 'floating-point' cmp_bit_depth = 32 src_path = self.get_temp_path('1.source.wav') tgt_path = self.get_temp_path(f'2.1.torchaudio.{format}') tst_path = self.get_temp_path('2.2.result.wav') sox_path = self.get_temp_path(f'3.1.sox.{format}') ref_path = self.get_temp_path('3.2.ref.wav') # 1. Generate original wav data = get_wav_data(src_dtype, num_channels, normalize=False, num_frames=num_frames) save_wav(src_path, data, sample_rate) # 2.1. Convert the original wav to target format with torchaudio data = load_wav(src_path, normalize=False)[0] if test_mode == "path": sox_io_backend.save( tgt_path, data, sample_rate, compression=compression, encoding=encoding, bits_per_sample=bits_per_sample) elif test_mode == "fileobj": with open(tgt_path, 'bw') as file_: sox_io_backend.save( file_, data, sample_rate, format=format, compression=compression, encoding=encoding, bits_per_sample=bits_per_sample) elif test_mode == "bytesio": file_ = io.BytesIO() sox_io_backend.save( file_, data, sample_rate, format=format, compression=compression, encoding=encoding, bits_per_sample=bits_per_sample) file_.seek(0) with open(tgt_path, 'bw') as f: f.write(file_.read()) else: raise ValueError(f"Unexpected test mode: {test_mode}") # 2.2. Convert the target format to wav with sox sox_utils.convert_audio_file( tgt_path, tst_path, encoding=cmp_encoding, bit_depth=cmp_bit_depth) # 2.3. Load with SciPy found = load_wav(tst_path, normalize=False)[0] # 3.1. Convert the original wav to target format with sox sox_encoding = _get_sox_encoding(encoding) sox_utils.convert_audio_file( src_path, sox_path, compression=compression, encoding=sox_encoding, bit_depth=bits_per_sample) # 3.2. Convert the target format to wav with sox sox_utils.convert_audio_file( sox_path, ref_path, encoding=cmp_encoding, bit_depth=cmp_bit_depth) # 3.3. Load with SciPy expected = load_wav(ref_path, normalize=False)[0] self.assertEqual(found, expected) @skipIfNoExec('sox') @skipIfNoSox class SaveTest(SaveTestBase): @nested_params( ["path", "fileobj", "bytesio"], [ ('PCM_U', 8), ('PCM_S', 16), ('PCM_S', 32), ('PCM_F', 32), ('PCM_F', 64), ('ULAW', 8), ('ALAW', 8), ], ) def test_save_wav(self, test_mode, enc_params): encoding, bits_per_sample = enc_params self.assert_save_consistency( "wav", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], [ ('float32', ), ('int32', ), ('int16', ), ('uint8', ), ], ) def test_save_wav_dtype(self, test_mode, params): dtype, = params self.assert_save_consistency( "wav", src_dtype=dtype, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], [ None, -4.2, -0.2, 0, 0.2, 96, 128, 160, 192, 224, 256, 320, ], ) def test_save_mp3(self, test_mode, bit_rate): if test_mode in ["fileobj", "bytesio"]: if bit_rate is not None and bit_rate < 1: raise unittest.SkipTest( "mp3 format with variable bit rate is known to " "not yield the exact same result as sox command.") self.assert_save_consistency( "mp3", compression=bit_rate, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], [8, 16, 24], [ None, 0, 1, 2, 3, 4, 5, 6, 7, 8, ], ) def test_save_flac(self, test_mode, bits_per_sample, compression_level): self.assert_save_consistency( "flac", compression=compression_level, bits_per_sample=bits_per_sample, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], ) def test_save_htk(self, test_mode): self.assert_save_consistency("htk", test_mode=test_mode, num_channels=1) @nested_params( ["path", "fileobj", "bytesio"], [ None, -1, 0, 1, 2, 3, 3.6, 5, 10, ], ) def test_save_vorbis(self, test_mode, quality_level): self.assert_save_consistency( "vorbis", compression=quality_level, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], [ ('PCM_S', 8, ), ('PCM_S', 16, ), ('PCM_S', 24, ), ('PCM_S', 32, ), ('ULAW', 8), ('ALAW', 8), ('ALAW', 16), ('ALAW', 24), ('ALAW', 32), ], ) def test_save_sphere(self, test_mode, enc_params): encoding, bits_per_sample = enc_params self.assert_save_consistency( "sph", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], [ ('PCM_U', 8, ), ('PCM_S', 16, ), ('PCM_S', 24, ), ('PCM_S', 32, ), ('PCM_F', 32, ), ('PCM_F', 64, ), ('ULAW', 8, ), ('ALAW', 8, ), ], ) def test_save_amb(self, test_mode, enc_params): encoding, bits_per_sample = enc_params self.assert_save_consistency( "amb", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], [ None, 0, 1, 2, 3, 4, 5, 6, 7, ], ) def test_save_amr_nb(self, test_mode, bit_rate): self.assert_save_consistency( "amr-nb", compression=bit_rate, num_channels=1, test_mode=test_mode) @nested_params( ["path", "fileobj", "bytesio"], ) def test_save_gsm(self, test_mode): self.assert_save_consistency( "gsm", num_channels=1, test_mode=test_mode) with self.assertRaises( RuntimeError, msg="gsm format only supports single channel audio."): self.assert_save_consistency( "gsm", num_channels=2, test_mode=test_mode) with self.assertRaises( RuntimeError, msg="gsm format only supports a sampling rate of 8kHz."): self.assert_save_consistency( "gsm", sample_rate=16000, test_mode=test_mode) @parameterized.expand([ ("wav", "PCM_S", 16), ("mp3", ), ("flac", ), ("vorbis", ), ("sph", "PCM_S", 16), ("amr-nb", ), ("amb", "PCM_S", 16), ], name_func=name_func) def test_save_large(self, format, encoding=None, bits_per_sample=None): """`sox_io_backend.save` can save large files.""" sample_rate = 8000 one_hour = 60 * 60 * sample_rate self.assert_save_consistency( format, num_channels=1, sample_rate=8000, num_frames=one_hour, encoding=encoding, bits_per_sample=bits_per_sample) @parameterized.expand([ (32, ), (64, ), (128, ), (256, ), ], name_func=name_func) def test_save_multi_channels(self, num_channels): """`sox_io_backend.save` can save audio with many channels""" self.assert_save_consistency( "wav", encoding="PCM_S", bits_per_sample=16, num_channels=num_channels) @skipIfNoExec('sox') @skipIfNoSox class TestSaveParams(TempDirMixin, PytorchTestCase): """Test the correctness of optional parameters of `sox_io_backend.save`""" @parameterized.expand([(True, ), (False, )], name_func=name_func) def test_save_channels_first(self, channels_first): """channels_first swaps axes""" path = self.get_temp_path('data.wav') data = get_wav_data( 'int16', 2, channels_first=channels_first, normalize=False) sox_io_backend.save( path, data, 8000, channels_first=channels_first) found = load_wav(path, normalize=False)[0] expected = data if channels_first else data.transpose(1, 0) self.assertEqual(found, expected) @parameterized.expand([ 'float32', 'int32', 'int16', 'uint8' ], name_func=name_func) def test_save_noncontiguous(self, dtype): """Noncontiguous tensors are saved correctly""" path = self.get_temp_path('data.wav') enc, bps = get_enc_params(dtype) expected = get_wav_data(dtype, 4, normalize=False)[::2, ::2] assert not expected.is_contiguous() sox_io_backend.save( path, expected, 8000, encoding=enc, bits_per_sample=bps) found = load_wav(path, normalize=False)[0] self.assertEqual(found, expected) @parameterized.expand([ 'float32', 'int32', 'int16', 'uint8', ]) def test_save_tensor_preserve(self, dtype): """save function should not alter Tensor""" path = self.get_temp_path('data.wav') expected = get_wav_data(dtype, 4, normalize=False)[::2, ::2] data = expected.clone() sox_io_backend.save(path, data, 8000) self.assertEqual(data, expected) @skipIfNoSox class TestSaveNonExistingDirectory(PytorchTestCase): def test_save_fail(self): """ When attempted to save into a non-existing dir, error message must contain the file path. """ path = os.path.join("non_existing_directory", "foo.wav") with self.assertRaisesRegex(RuntimeError, "^Error saving audio file: failed to open file {0}$".format(path)): sox_io_backend.save(path, torch.zeros(1, 1), 8000)
import itertools from typing import Optional import torch import torchaudio from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, skipIfNoExec, skipIfNoSox, get_wav_data, save_wav, load_wav, sox_utils, torch_script, ) from .common import ( name_func, get_enc_params, ) def py_info_func(filepath: str) -> torchaudio.backend.sox_io_backend.AudioMetaData: return torchaudio.info(filepath) def py_load_func(filepath: str, normalize: bool, channels_first: bool): return torchaudio.load( filepath, normalize=normalize, channels_first=channels_first) def py_save_func( filepath: str, tensor: torch.Tensor, sample_rate: int, channels_first: bool = True, compression: Optional[float] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, ): torchaudio.save( filepath, tensor, sample_rate, channels_first, compression, None, encoding, bits_per_sample) @skipIfNoExec('sox') @skipIfNoSox class SoxIO(TempDirMixin, TorchaudioTestCase): """TorchScript-ability Test suite for `sox_io_backend`""" backend = 'sox_io' @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_info_wav(self, dtype, sample_rate, num_channels): """`sox_io_backend.info` is torchscript-able and returns the same result""" audio_path = self.get_temp_path(f'{dtype}_{sample_rate}_{num_channels}.wav') data = get_wav_data(dtype, num_channels, normalize=False, num_frames=1 * sample_rate) save_wav(audio_path, data, sample_rate) ts_info_func = torch_script(py_info_func) py_info = py_info_func(audio_path) ts_info = ts_info_func(audio_path) assert py_info.sample_rate == ts_info.sample_rate assert py_info.num_frames == ts_info.num_frames assert py_info.num_channels == ts_info.num_channels @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], [False, True], [False, True], )), name_func=name_func) def test_load_wav(self, dtype, sample_rate, num_channels, normalize, channels_first): """`sox_io_backend.load` is torchscript-able and returns the same result""" audio_path = self.get_temp_path(f'test_load_{dtype}_{sample_rate}_{num_channels}_{normalize}.wav') data = get_wav_data(dtype, num_channels, normalize=False, num_frames=1 * sample_rate) save_wav(audio_path, data, sample_rate) ts_load_func = torch_script(py_load_func) py_data, py_sr = py_load_func( audio_path, normalize=normalize, channels_first=channels_first) ts_data, ts_sr = ts_load_func( audio_path, normalize=normalize, channels_first=channels_first) self.assertEqual(py_sr, ts_sr) self.assertEqual(py_data, ts_data) @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_save_wav(self, dtype, sample_rate, num_channels): ts_save_func = torch_script(py_save_func) expected = get_wav_data(dtype, num_channels, normalize=False) py_path = self.get_temp_path(f'test_save_py_{dtype}_{sample_rate}_{num_channels}.wav') ts_path = self.get_temp_path(f'test_save_ts_{dtype}_{sample_rate}_{num_channels}.wav') enc, bps = get_enc_params(dtype) py_save_func(py_path, expected, sample_rate, True, None, enc, bps) ts_save_func(ts_path, expected, sample_rate, True, None, enc, bps) py_data, py_sr = load_wav(py_path, normalize=False) ts_data, ts_sr = load_wav(ts_path, normalize=False) self.assertEqual(sample_rate, py_sr) self.assertEqual(sample_rate, ts_sr) self.assertEqual(expected, py_data) self.assertEqual(expected, ts_data) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_save_flac(self, sample_rate, num_channels, compression_level): ts_save_func = torch_script(py_save_func) expected = get_wav_data('float32', num_channels) py_path = self.get_temp_path(f'test_save_py_{sample_rate}_{num_channels}_{compression_level}.flac') ts_path = self.get_temp_path(f'test_save_ts_{sample_rate}_{num_channels}_{compression_level}.flac') py_save_func(py_path, expected, sample_rate, True, compression_level, None, None) ts_save_func(ts_path, expected, sample_rate, True, compression_level, None, None) # converting to 32 bit because flac file has 24 bit depth which scipy cannot handle. py_path_wav = f'{py_path}.wav' ts_path_wav = f'{ts_path}.wav' sox_utils.convert_audio_file(py_path, py_path_wav, bit_depth=32) sox_utils.convert_audio_file(ts_path, ts_path_wav, bit_depth=32) py_data, py_sr = load_wav(py_path_wav, normalize=True) ts_data, ts_sr = load_wav(ts_path_wav, normalize=True) self.assertEqual(sample_rate, py_sr) self.assertEqual(sample_rate, ts_sr) self.assertEqual(expected, py_data) self.assertEqual(expected, ts_data)
def name_func(func, _, params): return f'{func.__name__}_{"_".join(str(arg) for arg in params.args)}' def get_enc_params(dtype): if dtype == 'float32': return 'PCM_F', 32 if dtype == 'int32': return 'PCM_S', 32 if dtype == 'int16': return 'PCM_S', 16 if dtype == 'uint8': return 'PCM_U', 8 raise ValueError(f'Unexpected dtype: {dtype}')
import itertools from collections import namedtuple import torch from parameterized import parameterized from torchaudio.models import ConvTasNet, DeepSpeech, Wav2Letter, WaveRNN from torchaudio.models.wavernn import MelResNet, UpsampleNetwork from torchaudio_unittest import common_utils from torchaudio_unittest.common_utils import torch_script class TestWav2Letter(common_utils.TorchaudioTestCase): def test_waveform(self): batch_size = 2 num_features = 1 num_classes = 40 input_length = 320 model = Wav2Letter(num_classes=num_classes, num_features=num_features) x = torch.rand(batch_size, num_features, input_length) out = model(x) assert out.size() == (batch_size, num_classes, 2) def test_mfcc(self): batch_size = 2 num_features = 13 num_classes = 40 input_length = 2 model = Wav2Letter(num_classes=num_classes, input_type="mfcc", num_features=num_features) x = torch.rand(batch_size, num_features, input_length) out = model(x) assert out.size() == (batch_size, num_classes, 2) class TestMelResNet(common_utils.TorchaudioTestCase): def test_waveform(self): """Validate the output dimensions of a MelResNet block. """ n_batch = 2 n_time = 200 n_freq = 100 n_output = 128 n_res_block = 10 n_hidden = 128 kernel_size = 5 model = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size) x = torch.rand(n_batch, n_freq, n_time) out = model(x) assert out.size() == (n_batch, n_output, n_time - kernel_size + 1) class TestUpsampleNetwork(common_utils.TorchaudioTestCase): def test_waveform(self): """Validate the output dimensions of a UpsampleNetwork block. """ upsample_scales = [5, 5, 8] n_batch = 2 n_time = 200 n_freq = 100 n_output = 256 n_res_block = 10 n_hidden = 128 kernel_size = 5 total_scale = 1 for upsample_scale in upsample_scales: total_scale *= upsample_scale model = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size) x = torch.rand(n_batch, n_freq, n_time) out1, out2 = model(x) assert out1.size() == (n_batch, n_freq, total_scale * (n_time - kernel_size + 1)) assert out2.size() == (n_batch, n_output, total_scale * (n_time - kernel_size + 1)) class TestWaveRNN(common_utils.TorchaudioTestCase): def test_waveform(self): """Validate the output dimensions of a WaveRNN model. """ upsample_scales = [5, 5, 8] n_rnn = 512 n_fc = 512 n_classes = 512 hop_length = 200 n_batch = 2 n_time = 200 n_freq = 100 n_output = 256 n_res_block = 10 n_hidden = 128 kernel_size = 5 model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output) x = torch.rand(n_batch, 1, hop_length * (n_time - kernel_size + 1)) mels = torch.rand(n_batch, 1, n_freq, n_time) out = model(x, mels) assert out.size() == (n_batch, 1, hop_length * (n_time - kernel_size + 1), n_classes) def test_infer_waveform(self): """Validate the output dimensions of a WaveRNN model's infer method. """ upsample_scales = [5, 5, 8] n_rnn = 128 n_fc = 128 n_classes = 128 hop_length = 200 n_batch = 2 n_time = 50 n_freq = 25 n_output = 64 n_res_block = 2 n_hidden = 32 kernel_size = 5 model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output) x = torch.rand(n_batch, n_freq, n_time) lengths = torch.tensor([n_time, n_time // 2]) out, waveform_lengths = model.infer(x, lengths) assert out.size() == (n_batch, 1, hop_length * n_time) assert waveform_lengths[0] == hop_length * n_time assert waveform_lengths[1] == hop_length * n_time // 2 def test_torchscript_infer(self): """Scripted model outputs the same as eager mode""" upsample_scales = [5, 5, 8] n_rnn = 128 n_fc = 128 n_classes = 128 hop_length = 200 n_batch = 2 n_time = 50 n_freq = 25 n_output = 64 n_res_block = 2 n_hidden = 32 kernel_size = 5 model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output) model.eval() x = torch.rand(n_batch, n_freq, n_time) torch.random.manual_seed(0) out_eager = model.infer(x) torch.random.manual_seed(0) out_script = torch_script(model).infer(x) self.assertEqual(out_eager, out_script) _ConvTasNetParams = namedtuple( '_ConvTasNetParams', [ 'enc_num_feats', 'enc_kernel_size', 'msk_num_feats', 'msk_num_hidden_feats', 'msk_kernel_size', 'msk_num_layers', 'msk_num_stacks', ] ) class TestConvTasNet(common_utils.TorchaudioTestCase): @parameterized.expand(list(itertools.product( [2, 3], [ _ConvTasNetParams(128, 40, 128, 256, 3, 7, 2), _ConvTasNetParams(256, 40, 128, 256, 3, 7, 2), _ConvTasNetParams(512, 40, 128, 256, 3, 7, 2), _ConvTasNetParams(512, 40, 128, 256, 3, 7, 2), _ConvTasNetParams(512, 40, 128, 512, 3, 7, 2), _ConvTasNetParams(512, 40, 128, 512, 3, 7, 2), _ConvTasNetParams(512, 40, 256, 256, 3, 7, 2), _ConvTasNetParams(512, 40, 256, 512, 3, 7, 2), _ConvTasNetParams(512, 40, 256, 512, 3, 7, 2), _ConvTasNetParams(512, 40, 128, 512, 3, 6, 4), _ConvTasNetParams(512, 40, 128, 512, 3, 4, 6), _ConvTasNetParams(512, 40, 128, 512, 3, 8, 3), _ConvTasNetParams(512, 32, 128, 512, 3, 8, 3), _ConvTasNetParams(512, 16, 128, 512, 3, 8, 3), ], ))) def test_paper_configuration(self, num_sources, model_params): """ConvTasNet model works on the valid configurations in the paper""" batch_size = 32 num_frames = 8000 model = ConvTasNet( num_sources=num_sources, enc_kernel_size=model_params.enc_kernel_size, enc_num_feats=model_params.enc_num_feats, msk_kernel_size=model_params.msk_kernel_size, msk_num_feats=model_params.msk_num_feats, msk_num_hidden_feats=model_params.msk_num_hidden_feats, msk_num_layers=model_params.msk_num_layers, msk_num_stacks=model_params.msk_num_stacks, ) tensor = torch.rand(batch_size, 1, num_frames) output = model(tensor) assert output.shape == (batch_size, num_sources, num_frames) class TestDeepSpeech(common_utils.TorchaudioTestCase): def test_deepspeech(self): n_batch = 2 n_feature = 1 n_channel = 1 n_class = 40 n_time = 320 model = DeepSpeech(n_feature=n_feature, n_class=n_class) x = torch.rand(n_batch, n_channel, n_time, n_feature) out = model(x) assert out.size() == (n_batch, n_time, n_class)
import os import torch import torch.nn.functional as F from typing import Tuple from torchaudio.models.wav2vec2 import ( wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, hubert_base, hubert_large, hubert_xlarge, ) from torchaudio_unittest.common_utils import ( TorchaudioTestCase, skipIfNoQengine, skipIfNoCuda, torch_script, ) from parameterized import parameterized TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2]) if TORCH_VERSION >= (1, 10): import torch.ao.quantization as tq else: import torch.quantization as tq def _name_func(testcase_func, i, param): return f"{testcase_func.__name__}_{i}_{param[0][0].__name__}" factory_funcs = parameterized.expand([ (wav2vec2_base, ), (wav2vec2_large, ), (wav2vec2_large_lv60k, ), (hubert_base, ), (hubert_large, ), (hubert_xlarge, ), ], name_func=_name_func) class TestWav2Vec2Model(TorchaudioTestCase): def _smoke_test(self, model, device, dtype): model = model.to(device=device, dtype=dtype) model = model.eval() torch.manual_seed(0) batch_size, num_frames = 3, 1024 waveforms = torch.randn( batch_size, num_frames, device=device, dtype=dtype) lengths = torch.randint( low=0, high=num_frames, size=[batch_size, ], device=device) model(waveforms, lengths) @parameterized.expand([(torch.float32, ), (torch.float64, )]) def test_cpu_smoke_test(self, dtype): model = wav2vec2_base() self._smoke_test(model, torch.device('cpu'), dtype) model = wav2vec2_base(aux_num_out=32) self._smoke_test(model, torch.device('cpu'), dtype) @parameterized.expand([(torch.float32, ), (torch.float64, )]) @skipIfNoCuda def test_cuda_smoke_test(self, dtype): model = wav2vec2_base() self._smoke_test(model, torch.device('cuda'), dtype) model = wav2vec2_base(aux_num_out=32) self._smoke_test(model, torch.device('cuda'), dtype) def _feature_extractor_test(self, model): batch_size, num_frames = 3, 1024 model.eval() num_layers = len(model.encoder.transformer.layers) torch.manual_seed(0) waveforms = torch.randn(batch_size, num_frames) lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) # Not providing num_layers returns all the intermediate features from # tranformer layers all_features, lengths_ = model.extract_features(waveforms, lengths, num_layers=None) assert len(all_features) == num_layers for features in all_features: assert features.ndim == 3 assert features.shape[0] == batch_size assert lengths_.shape == torch.Size([batch_size]) # Limiting the number of layers to `l`. for l in range(1, num_layers + 1): features, lengths_ = model.extract_features(waveforms, lengths, num_layers=l) assert len(features) == l for i in range(l): self.assertEqual(all_features[i], features[i]) assert lengths_.shape == torch.Size([batch_size]) @factory_funcs def test_extract_feature(self, factory_func): """`extract_features` method does not fail""" self._feature_extractor_test(factory_func(aux_num_out=32)) def _test_batch_consistency(self, model): model.eval() batch_size, max_frames = 5, 5 * 1024 torch.manual_seed(0) waveforms = torch.randn(batch_size, max_frames) input_lengths = torch.tensor([i * 3200 for i in range(1, 6)]) # Batch process with lengths batch_logits, output_lengths = model(waveforms, input_lengths) for i in range(batch_size): # Par-sample process without feeding length single_logit, _ = model(waveforms[i:i + 1, :input_lengths[i]], None) batch_logit = batch_logits[i:i + 1, :output_lengths[i]] # Convert to probability so that it's easier to interpretate the diff single_prob = F.softmax(single_logit, dim=2) batch_prob = F.softmax(batch_logit, dim=2) # We allow max atol=0.005 -> 0.5% self.assertEqual(single_prob, batch_prob, atol=0.005, rtol=0) @factory_funcs def test_pretrain_batch_consistency(self, factory_func): """Results from single process and batched process should be reasonably close """ self._test_batch_consistency(factory_func()) @factory_funcs def test_finetune_batch_consistency(self, factory_func): """Results from single process and batched process should be reasonably close """ self._test_batch_consistency(factory_func(aux_num_out=32)) def _test_zero_length(self, model): model.eval() torch.manual_seed(0) batch_size = 3 waveforms = torch.randn(batch_size, 1024) input_lengths = torch.zeros(batch_size) _, output_lengths = model(waveforms, input_lengths) self.assertEqual(torch.zeros_like(output_lengths), output_lengths) _, output_lengths = model.extract_features(waveforms, input_lengths) self.assertEqual(torch.zeros_like(output_lengths), output_lengths) @factory_funcs def test_pretrain_zero_length(self, factory_func): """Passing zero length should not fail""" self._test_zero_length(factory_func()) @factory_funcs def test_finetune_zero_length(self, factory_func): """Passing zero length should not fail""" self._test_zero_length(factory_func(aux_num_out=32)) def _test_torchscript(self, model): model.eval() batch_size, num_frames = 3, 1024 torch.manual_seed(0) waveforms = torch.randn(batch_size, num_frames) lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) ref_out, ref_len = model(waveforms, lengths) scripted = torch_script(model) hyp_out, hyp_len = scripted(waveforms, lengths) self.assertEqual(hyp_out, ref_out) self.assertEqual(hyp_len, ref_len) @factory_funcs def test_pretrain_torchscript(self, factory_func): """Wav2Vec2Model should be scriptable""" if factory_func is hubert_xlarge and os.name == 'nt' and os.environ.get('CI') == 'true': self.skipTest( 'hubert_xlarge is known to fail on Windows CI. ' 'See https://github.com/pytorch/pytorch/issues/65776') self._test_torchscript(factory_func()) @factory_funcs def test_finetune_torchscript(self, factory_func): """Wav2Vec2Model should be scriptable""" if factory_func is hubert_xlarge and os.name == 'nt' and os.environ.get('CI') == 'true': self.skipTest( 'hubert_xlarge is known to fail on Windows CI. ' 'See https://github.com/pytorch/pytorch/issues/65776') self._test_torchscript(factory_func(aux_num_out=32)) def _test_quantize_smoke_test(self, model): model.eval() batch_size, num_frames = 3, 1024 # Remove the weight normalization forward hook model.encoder.transformer.pos_conv_embed.__prepare_scriptable__() quantized = tq.quantize_dynamic( model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8) # A lazy way to check that Modules are different assert str(quantized) != str(model), "Dynamic quantization did not modify the module." torch.manual_seed(0) waveforms = torch.randn(batch_size, num_frames) lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) _, _ = quantized(waveforms, lengths) @factory_funcs @skipIfNoQengine def test_quantize(self, factory_func): """Wav2Vec2Model should support basic quantization""" self._test_quantize_smoke_test(factory_func(aux_num_out=32)) def _test_quantize_torchscript(self, model): model.eval() batch_size, num_frames = 3, 1024 # Remove the weight normalization forward hook model.encoder.transformer.pos_conv_embed.__prepare_scriptable__() quantized = tq.quantize_dynamic( model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8) # A lazy way to check that Modules are different assert str(quantized) != str(model), "Dynamic quantization did not modify the module." torch.manual_seed(0) waveforms = torch.randn(batch_size, num_frames) lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) ref_out, ref_len = quantized(waveforms, lengths) # Script scripted = torch_script(quantized) hyp_out, hyp_len = scripted(waveforms, lengths) self.assertEqual(hyp_out, ref_out) self.assertEqual(hyp_len, ref_len) @factory_funcs @skipIfNoQengine def test_quantize_torchscript(self, factory_func): """Quantized Wav2Vec2Model should be scriptable""" self._test_quantize_torchscript(factory_func(aux_num_out=32))
import json import torch from torchaudio.models.wav2vec2 import ( wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, ) from torchaudio.models.wav2vec2.utils import import_huggingface_model from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_asset_path, skipIfNoModule, TorchaudioTestCase, ) def _load_config(*paths): with open(f'{get_asset_path("wav2vec2", "huggingface", *paths)}.json', 'r') as file_: return json.load(file_) def _name_func(testcase_func, i, param): return f"{testcase_func.__name__}_{i}_{param[0][1].__name__}" # Pretrained HF_BASE = _load_config('facebook', 'wav2vec2-base') HF_LARGE = _load_config('facebook', 'wav2vec2-large') HF_LARGE_LV60 = _load_config('facebook', 'wav2vec2-large-lv60') HF_LARGE_XLSR_53 = _load_config('facebook', 'wav2vec2-large-xlsr-53') HF_BASE_10K_VOXPOPULI = _load_config('facebook', 'wav2vec2-base-10k-voxpopuli') # Finetuned HF_BASE_960H = _load_config('facebook', 'wav2vec2-base-960h') HF_LARGE_960H = _load_config('facebook', 'wav2vec2-large-960h') HF_LARGE_LV60_960H = _load_config('facebook', 'wav2vec2-large-960h-lv60') HF_LARGE_LV60_SELF_960H = _load_config('facebook', 'wav2vec2-large-960h-lv60-self') HF_LARGE_XLSR_DE = _load_config('facebook', 'wav2vec2-large-xlsr-53-german') # Config and corresponding factory functions PRETRAIN_CONFIGS = parameterized.expand([ (HF_BASE, wav2vec2_base), (HF_LARGE, wav2vec2_large), (HF_LARGE_LV60, wav2vec2_large_lv60k), (HF_LARGE_XLSR_53, wav2vec2_large_lv60k), (HF_BASE_10K_VOXPOPULI, wav2vec2_base), ], name_func=_name_func) FINETUNE_CONFIGS = parameterized.expand([ (HF_BASE_960H, wav2vec2_base), (HF_LARGE_960H, wav2vec2_large), (HF_LARGE_LV60_960H, wav2vec2_large_lv60k), (HF_LARGE_LV60_SELF_960H, wav2vec2_large_lv60k), (HF_LARGE_XLSR_DE, wav2vec2_large_lv60k), ], name_func=_name_func) @skipIfNoModule('transformers') class TestHFIntegration(TorchaudioTestCase): """Test the process of importing the models from Hugging Face Transformers Test methods in this test suite check the following things 1. Models loaded with Hugging Face Transformers cane be imported. 2. The same model can be recreated without Hugging Face Transformers. """ def _get_model(self, config): # Helper function to avoid importing transformers on module scope. # Normally, we use `is_module_available` helper function to check if # the library is available, and import it on module scope if available. # However, somehow, once "transformers" is imported, `is_module_available` # starts to fail. Therefore, we defer importing "transformers" until # the actual tests are started. from transformers.models.wav2vec2 import ( Wav2Vec2Config, Wav2Vec2Model, Wav2Vec2ForCTC, ) if config['architectures'] == ['Wav2Vec2Model']: return Wav2Vec2Model(Wav2Vec2Config(**config)) if config['architectures'] == ['Wav2Vec2ForCTC']: return Wav2Vec2ForCTC(Wav2Vec2Config(**config)) raise ValueError(f'Unexpected arch: {config["architectures"]}') def _test_import_pretrain(self, original, imported, config): torch.manual_seed(0) # FeatureExtractor x = torch.randn(3, 1024) ref = original.feature_extractor(x).transpose(1, 2) hyp, _ = imported.feature_extractor(x, None) self.assertEqual(ref, hyp) # Feature projection x = torch.randn(3, 10, config['conv_dim'][-1]) ref = original.feature_projection(x)[0] hyp = imported.encoder.feature_projection(x) self.assertEqual(ref, hyp) # Convolutional Positional Encoder x = torch.randn(3, 256, config['hidden_size']) ref = original.encoder.pos_conv_embed(x) hyp = imported.encoder.transformer.pos_conv_embed(x) self.assertEqual(ref, hyp) # Encoder Transformer Layer for original_, imported_ in zip(original.encoder.layers, imported.encoder.transformer.layers): b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) mask = torch.randn(b, 1, l, l) ref, = original_(x, attention_mask=mask, output_attentions=False) hyp = imported_(x, mask) self.assertEqual(ref, hyp) # The whole Encoder Transformer b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) ref = original.encoder(x).last_hidden_state hyp = imported.encoder.transformer(x) self.assertEqual(ref, hyp) def _test_import_finetune(self, original, imported, config): # Aux x = torch.randn(3, 10, config["hidden_size"]) ref = original.lm_head(x) hyp = imported.aux(x) self.assertEqual(ref, hyp) # The whole model without mask x = torch.randn(3, 1024) ref = original(x).logits hyp, _ = imported(x) self.assertEqual(ref, hyp) # The whole model without mask batch_size, num_frames = 3, 1024 x = torch.randn(batch_size, num_frames) ref = original(x).logits hyp, _ = imported(x) self.assertEqual(ref, hyp) # The whole model with mask batch_size, num_frames = 3, 1024 x = torch.randn(batch_size, num_frames) lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) mask = torch.arange(num_frames).expand(batch_size, num_frames) < lengths[:, None] ref = original(x, attention_mask=mask).logits hyp, output_lengths = imported(x, lengths) for i, l in enumerate(output_lengths): self.assertEqual(ref[i, :l, ...], hyp[i, :l, ...]) @PRETRAIN_CONFIGS def test_import_pretrain(self, config, _): """wav2vec2 models from HF transformers can be imported and yields the same results""" original = self._get_model(config).eval() imported = import_huggingface_model(original).eval() self._test_import_pretrain(original, imported, config) @FINETUNE_CONFIGS def test_import_finetune(self, config, _): """wav2vec2 models from HF transformers can be imported and yields the same results""" original = self._get_model(config).eval() imported = import_huggingface_model(original).eval() self._test_import_pretrain(original.wav2vec2, imported, config) self._test_import_finetune(original, imported, config) def _test_recreate(self, imported, reloaded, config): torch.manual_seed(0) # FeatureExtractor x = torch.randn(3, 1024) ref, _ = imported.feature_extractor(x, None) hyp, _ = reloaded.feature_extractor(x, None) self.assertEqual(ref, hyp) # Feature projection x = torch.randn(3, 10, config['conv_dim'][-1]) ref = imported.encoder.feature_projection(x) hyp = reloaded.encoder.feature_projection(x) self.assertEqual(ref, hyp) # Convolutional Positional Encoder x = torch.randn(3, 256, config['hidden_size']) ref = imported.encoder.transformer.pos_conv_embed(x) hyp = reloaded.encoder.transformer.pos_conv_embed(x) self.assertEqual(ref, hyp) # Encoder Transformer Layer for imported_, reloaded_ in zip(imported.encoder.transformer.layers, reloaded.encoder.transformer.layers): b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) mask = torch.randn(b, 1, l, l) ref = imported_(x, mask) hyp = reloaded_(x, mask) self.assertEqual(ref, hyp) # The whole Encoder Transformer # TODO: Add mask pattern. Expected mask shapes and values are different. b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) mask = torch.randn(b, 1, l, l) ref = imported.encoder.transformer(x) hyp = reloaded.encoder.transformer(x) self.assertEqual(ref, hyp) # Aux if imported.aux is not None: x = torch.randn(3, 10, config["hidden_size"]) ref = imported.aux(x) hyp = reloaded.aux(x) self.assertEqual(ref, hyp) # The whole model x = torch.randn(3, 1024) ref, _ = imported(x) hyp, _ = reloaded(x) self.assertEqual(ref, hyp) @PRETRAIN_CONFIGS def test_recreate_pretrain(self, config, factory_func): """Imported models can be recreated via a factory function without Hugging Face transformers.""" imported = import_huggingface_model(self._get_model(config)).eval() reloaded = factory_func() reloaded.load_state_dict(imported.state_dict()) reloaded.eval() self._test_recreate(imported, reloaded, config) @FINETUNE_CONFIGS def test_recreate_finetune(self, config, factory_func): """Imported models can be recreated via a factory function without Hugging Face transformers.""" imported = import_huggingface_model(self._get_model(config)).eval() reloaded = factory_func(aux_num_out=imported.aux.out_features) reloaded.load_state_dict(imported.state_dict()) reloaded.eval() self._test_recreate(imported, reloaded, config)
import json import torch from torchaudio.models.wav2vec2 import ( wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, hubert_base, hubert_large, hubert_xlarge, ) from torchaudio.models.wav2vec2.utils import ( import_fairseq_model, ) from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_asset_path, skipIfNoModule, TorchaudioTestCase, ) def _load_config(*paths): with open(f'{get_asset_path("wav2vec2", "fairseq", *paths)}.json', 'r') as file_: return json.load(file_) def _name_func(testcase_func, i, param): return f'{testcase_func.__name__}_{i}_{param[0][1].__name__}' # Pretraining models WAV2VEC2_BASE = _load_config('wav2vec_small') WAV2VEC2_LARGE = _load_config('libri960_big') WAV2VEC2_LARGE_LV60K = _load_config('wav2vec_vox_new') WAV2VEC2_XLSR_53_56K = _load_config('xlsr_53_56k') HUBERT_BASE = _load_config('hubert_base_ls960') HUBERT_LARGE_LL60K = _load_config('hubert_large_ll60k') HUBERT_XLARGE_LL60K = _load_config('hubert_xtralarge_ll60k') # Finetuning models WAV2VEC2_BASE_960H = _load_config('wav2vec_small_960h') WAV2VEC2_LARGE_960H = _load_config('wav2vec_large_960h') WAV2VEC2_LARGE_LV60K_960H = _load_config('wav2vec_large_lv60k_960h') WAV2VEC2_LARGE_LV60K_SELF_960H = _load_config('wav2vec_large_lv60k_self_960h') HUBERT_LARGE = _load_config('hubert_large_ll60k_finetune_ls960') HUBERT_XLARGE = _load_config('hubert_xtralarge_ll60k_finetune_ls960') # Config and corresponding factory functions WAV2VEC2_PRETRAINING_CONFIGS = parameterized.expand([ (WAV2VEC2_BASE, wav2vec2_base), (WAV2VEC2_LARGE, wav2vec2_large), (WAV2VEC2_LARGE_LV60K, wav2vec2_large_lv60k), (WAV2VEC2_XLSR_53_56K, wav2vec2_large_lv60k), ], name_func=_name_func) HUBERT_PRETRAINING_CONFIGS = parameterized.expand([ (HUBERT_BASE, hubert_base), (HUBERT_LARGE_LL60K, hubert_large), (HUBERT_XLARGE_LL60K, hubert_xlarge), ], name_func=_name_func) ALL_PRETRAINING_CONFIGS = parameterized.expand([ (WAV2VEC2_BASE, wav2vec2_base), (WAV2VEC2_LARGE, wav2vec2_large), (WAV2VEC2_LARGE_LV60K, wav2vec2_large_lv60k), (WAV2VEC2_XLSR_53_56K, wav2vec2_large_lv60k), (HUBERT_BASE, hubert_base), (HUBERT_LARGE_LL60K, hubert_large), (HUBERT_XLARGE_LL60K, hubert_xlarge), ], name_func=_name_func) FINETUNING_CONFIGS = parameterized.expand([ (WAV2VEC2_BASE_960H, wav2vec2_base), (WAV2VEC2_LARGE_960H, wav2vec2_large), (WAV2VEC2_LARGE_LV60K_960H, wav2vec2_large_lv60k), (WAV2VEC2_LARGE_LV60K_SELF_960H, wav2vec2_large_lv60k), (HUBERT_LARGE, hubert_large), (HUBERT_XLARGE, hubert_xlarge), ], name_func=_name_func) @skipIfNoModule('fairseq') class TestFairseqIntegration(TorchaudioTestCase): """Test the process of importing the models from fairseq. Test methods in this test suite check the following things 1. Models loaded with fairseq cane be imported. 2. The same model can be recreated without fairseq. """ def _get_model(self, config, num_out=None): import copy from omegaconf import OmegaConf from fairseq.models.wav2vec.wav2vec2 import ( Wav2Vec2Config, Wav2Vec2Model, ) from fairseq.models.wav2vec.wav2vec2_asr import ( Wav2VecEncoder, Wav2Vec2CtcConfig, ) from fairseq.models.hubert.hubert_asr import ( HubertCtcConfig, HubertEncoder, ) from fairseq.models.hubert.hubert import ( HubertModel, HubertConfig, ) from fairseq.tasks.hubert_pretraining import HubertPretrainingConfig if config['_name'] == 'wav2vec_ctc': config = copy.deepcopy(config) config['w2v_args'] = OmegaConf.create(config['w2v_args']) return Wav2VecEncoder(Wav2Vec2CtcConfig(**config), num_out) if config['_name'] == 'wav2vec2': return Wav2Vec2Model(Wav2Vec2Config(**config)) if config['_name'] == 'hubert_ctc': config = copy.deepcopy(config) config['w2v_args'] = OmegaConf.create(config['w2v_args']) ctc_cfg = HubertCtcConfig(**config) return HubertEncoder(ctc_cfg, tgt_dict=range(num_out)) if config['_name'] == 'hubert': dicts = [list(range(i)) for i in config['num_classes']] return HubertModel( HubertConfig(**config['model']), HubertPretrainingConfig(**config['task']), dicts, ) raise ValueError(f'Unexpected configuration: {config["_name"]}') @WAV2VEC2_PRETRAINING_CONFIGS def test_import_wave2vec2_pretraining_model(self, config, _): """Wav2vec2 pretraining models from fairseq can be imported and yields the same results""" batch_size, num_frames = 3, 1024 torch.manual_seed(0) original = self._get_model(config).eval() imported = import_fairseq_model(original).eval() x = torch.randn(batch_size, num_frames) hyp, _ = imported.extract_features(x) refs = original.extract_features(x, padding_mask=torch.zeros_like(x), layer=-1) for i, (ref, _) in enumerate(refs['layer_results']): self.assertEqual(hyp[i], ref.transpose(0, 1)) @HUBERT_PRETRAINING_CONFIGS def test_import_hubert_pretraining_model(self, config, factory_func): """HuBERT pretraining models from fairseq can be imported and yields the same results""" batch_size, num_frames = 3, 1024 torch.manual_seed(0) original = self._get_model(config).eval() imported = import_fairseq_model(original).eval() x = torch.randn(batch_size, num_frames) mask = torch.zeros_like(x) hyp, _ = imported.extract_features(x) # check the last layer ref, _ = original.extract_features(x, padding_mask=mask, output_layer=len(original.encoder.layers)) atol = 3.0e-05 if factory_func is hubert_xlarge else 1.0e-5 self.assertEqual(hyp[-1], ref, atol=atol, rtol=1.3e-6) # check the first layer ref, _ = original.extract_features(x, padding_mask=mask, output_layer=1) self.assertEqual(hyp[0], ref) @ALL_PRETRAINING_CONFIGS def test_recreate_pretraining_model(self, config, factory_func): """Imported pretraining models can be recreated via a factory function without fairseq.""" batch_size, num_frames = 3, 1024 original = self._get_model(config).eval() imported = import_fairseq_model(original).eval() reloaded = factory_func() reloaded.load_state_dict(imported.state_dict()) reloaded.eval() x = torch.randn(batch_size, num_frames) lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) # Without mask ref, _ = imported(x) hyp, _ = reloaded(x) self.assertEqual(ref, hyp) # With mask ref, ref_lengths = imported(x, lengths) hyp, hyp_lengths = reloaded(x, lengths) self.assertEqual(ref, hyp) self.assertEqual(ref_lengths, hyp_lengths) @FINETUNING_CONFIGS def test_import_finetuning_model(self, config, _): """Fintuned wav2vec2 models from fairseq can be imported and yields the same results""" num_out = 28 batch_size, num_frames = 3, 1024 original = self._get_model(config, num_out).eval() imported = import_fairseq_model(original).eval() # Without mask x = torch.randn(batch_size, num_frames) ref = original(x, torch.zeros_like(x))['encoder_out'].transpose(0, 1) hyp, _ = imported(x) self.assertEqual(ref, hyp) # With mask lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) mask = torch.arange(num_frames).expand(batch_size, num_frames) >= lengths[:, None] ref = original(x, mask)['encoder_out'].transpose(0, 1) hyp, output_lengths = imported(x, lengths) for i, l in enumerate(output_lengths): self.assertEqual(ref[i, :l, ...], hyp[i, :l, ...]) @FINETUNING_CONFIGS def test_recreate_finetuning_model(self, config, factory_func): """Imported finetuning models can be recreated via a factory function without fairseq.""" num_out = 28 batch_size, num_frames = 3, 1024 original = self._get_model(config, num_out).eval() imported = import_fairseq_model(original).eval() reloaded = factory_func(aux_num_out=num_out) reloaded.load_state_dict(imported.state_dict()) reloaded.eval() # Without mask torch.manual_seed(0) x = torch.randn(batch_size, num_frames) ref, _ = imported(x) hyp, _ = reloaded(x) self.assertEqual(ref, hyp) # With mask lengths = torch.randint(low=0, high=num_frames, size=[batch_size, ]) ref, ref_lengths = imported(x, lengths) hyp, hyp_lengths = reloaded(x, lengths) self.assertEqual(ref, hyp) self.assertEqual(ref_lengths, hyp_lengths)
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .model_test_impl import ( Tacotron2EncoderTests, Tacotron2DecoderTests, Tacotron2Tests, ) class TestTacotron2EncoderFloat32CPU(Tacotron2EncoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2DecoderFloat32CPU(Tacotron2DecoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2Float32CPU(Tacotron2Tests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu")
from typing import Tuple import torch from torch import Tensor from torchaudio.models import Tacotron2 from torchaudio.models.tacotron2 import _Encoder, _Decoder from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class Tacotron2InferenceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, text: Tensor, text_lengths: Tensor) -> Tuple[Tensor, Tensor, Tensor]: return self.model.infer(text, text_lengths) class Tacotron2DecoderInferenceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, memory: Tensor, memory_lengths: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]: return self.model.infer(memory, memory_lengths) class TorchscriptConsistencyMixin(TestBaseMixin): r"""Mixin to provide easy access assert torchscript consistency""" def _assert_torchscript_consistency(self, model, tensors): ts_func = torch_script(model) torch.random.manual_seed(40) output = model(*tensors) torch.random.manual_seed(40) ts_output = ts_func(*tensors) self.assertEqual(ts_output, output) class Tacotron2EncoderTests(TorchscriptConsistencyMixin): def test_tacotron2_torchscript_consistency(self): r"""Validate the torchscript consistency of a Encoder.""" n_batch, n_seq, encoder_embedding_dim = 16, 64, 512 model = _Encoder(encoder_embedding_dim=encoder_embedding_dim, encoder_n_convolution=3, encoder_kernel_size=5).to(self.device).eval() x = torch.rand( n_batch, encoder_embedding_dim, n_seq, device=self.device, dtype=self.dtype ) input_lengths = ( torch.ones(n_batch, device=self.device, dtype=torch.int32) * n_seq ) self._assert_torchscript_consistency(model, (x, input_lengths)) def test_encoder_output_shape(self): r"""Feed tensors with specific shape to Tacotron2 Decoder and validate that it outputs with a tensor with expected shape. """ n_batch, n_seq, encoder_embedding_dim = 16, 64, 512 model = _Encoder(encoder_embedding_dim=encoder_embedding_dim, encoder_n_convolution=3, encoder_kernel_size=5).to(self.device).eval() x = torch.rand( n_batch, encoder_embedding_dim, n_seq, device=self.device, dtype=self.dtype ) input_lengths = ( torch.ones(n_batch, device=self.device, dtype=torch.int32) * n_seq ) out = model(x, input_lengths) assert out.size() == (n_batch, n_seq, encoder_embedding_dim) def _get_decoder_model(n_mels=80, encoder_embedding_dim=512, decoder_max_step=2000, gate_threshold=0.5): model = _Decoder( n_mels=n_mels, n_frames_per_step=1, encoder_embedding_dim=encoder_embedding_dim, decoder_rnn_dim=1024, decoder_max_step=decoder_max_step, decoder_dropout=0.1, decoder_early_stopping=True, attention_rnn_dim=1024, attention_hidden_dim=128, attention_location_n_filter=32, attention_location_kernel_size=31, attention_dropout=0.1, prenet_dim=256, gate_threshold=gate_threshold, ) return model class Tacotron2DecoderTests(TorchscriptConsistencyMixin): def test_decoder_torchscript_consistency(self): r"""Validate the torchscript consistency of a Decoder.""" n_batch = 16 n_mels = 80 n_seq = 200 encoder_embedding_dim = 256 n_time_steps = 150 model = _get_decoder_model(n_mels=n_mels, encoder_embedding_dim=encoder_embedding_dim) model = model.to(self.device).eval() memory = torch.rand( n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device ) decoder_inputs = torch.rand( n_batch, n_mels, n_time_steps, dtype=self.dtype, device=self.device ) memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device) self._assert_torchscript_consistency( model, (memory, decoder_inputs, memory_lengths) ) def test_decoder_output_shape(self): r"""Feed tensors with specific shape to Tacotron2 Decoder and validate that it outputs with a tensor with expected shape. """ n_batch = 16 n_mels = 80 n_seq = 200 encoder_embedding_dim = 256 n_time_steps = 150 model = _get_decoder_model(n_mels=n_mels, encoder_embedding_dim=encoder_embedding_dim) model = model.to(self.device).eval() memory = torch.rand( n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device ) decoder_inputs = torch.rand( n_batch, n_mels, n_time_steps, dtype=self.dtype, device=self.device ) memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device) mel_specgram, gate_outputs, alignments = model( memory, decoder_inputs, memory_lengths ) assert mel_specgram.size() == (n_batch, n_mels, n_time_steps) assert gate_outputs.size() == (n_batch, n_time_steps) assert alignments.size() == (n_batch, n_time_steps, n_seq) def test_decoder_inference_torchscript_consistency(self): r"""Validate the torchscript consistency of a Decoder.""" n_batch = 16 n_mels = 80 n_seq = 200 encoder_embedding_dim = 256 decoder_max_step = 300 # make inference more efficient gate_threshold = 0.505 # make inference more efficient model = _get_decoder_model( n_mels=n_mels, encoder_embedding_dim=encoder_embedding_dim, decoder_max_step=decoder_max_step, gate_threshold=gate_threshold, ) model = model.to(self.device).eval() memory = torch.rand( n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device ) memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device) model_wrapper = Tacotron2DecoderInferenceWrapper(model) self._assert_torchscript_consistency(model_wrapper, (memory, memory_lengths)) def test_decoder_inference_output_shape(self): r"""Validate the torchscript consistency of a Decoder.""" n_batch = 16 n_mels = 80 n_seq = 200 encoder_embedding_dim = 256 decoder_max_step = 300 # make inference more efficient gate_threshold = 0.505 # if set to 0.5, the model will only run one step model = _get_decoder_model( n_mels=n_mels, encoder_embedding_dim=encoder_embedding_dim, decoder_max_step=decoder_max_step, gate_threshold=gate_threshold, ) model = model.to(self.device).eval() memory = torch.rand( n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device ) memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device) mel_specgram, mel_specgram_lengths, gate_outputs, alignments = model.infer( memory, memory_lengths ) assert len(mel_specgram.size()) == 3 assert mel_specgram.size()[:-1] == (n_batch, n_mels, ) assert mel_specgram.size()[2] == mel_specgram_lengths.max().item() assert len(mel_specgram_lengths.size()) == 1 assert mel_specgram_lengths.size()[0] == n_batch assert mel_specgram_lengths.max().item() <= model.decoder_max_step assert len(gate_outputs.size()) == 2 assert gate_outputs.size()[0] == n_batch assert gate_outputs.size()[1] == mel_specgram_lengths.max().item() assert len(alignments.size()) == 2 assert alignments.size()[0] == n_seq assert alignments.size()[1] == mel_specgram_lengths.max().item() * n_batch def _get_tacotron2_model(n_mels, decoder_max_step=2000, gate_threshold=0.5): return Tacotron2( mask_padding=False, n_mels=n_mels, n_symbol=148, n_frames_per_step=1, symbol_embedding_dim=512, encoder_embedding_dim=512, encoder_n_convolution=3, encoder_kernel_size=5, decoder_rnn_dim=1024, decoder_max_step=decoder_max_step, decoder_dropout=0.1, decoder_early_stopping=True, attention_rnn_dim=1024, attention_hidden_dim=128, attention_location_n_filter=32, attention_location_kernel_size=31, attention_dropout=0.1, prenet_dim=256, postnet_n_convolution=5, postnet_kernel_size=5, postnet_embedding_dim=512, gate_threshold=gate_threshold, ) class Tacotron2Tests(TorchscriptConsistencyMixin): def _get_inputs( self, n_mels: int, n_batch: int, max_mel_specgram_length: int, max_text_length: int ): text = torch.randint( 0, 148, (n_batch, max_text_length), dtype=torch.int32, device=self.device ) text_lengths = max_text_length * torch.ones( (n_batch,), dtype=torch.int32, device=self.device ) mel_specgram = torch.rand( n_batch, n_mels, max_mel_specgram_length, dtype=self.dtype, device=self.device, ) mel_specgram_lengths = max_mel_specgram_length * torch.ones( (n_batch,), dtype=torch.int32, device=self.device ) return text, text_lengths, mel_specgram, mel_specgram_lengths def test_tacotron2_torchscript_consistency(self): r"""Validate the torchscript consistency of a Tacotron2.""" n_batch = 16 n_mels = 80 max_mel_specgram_length = 300 max_text_length = 100 model = _get_tacotron2_model(n_mels).to(self.device).eval() inputs = self._get_inputs( n_mels, n_batch, max_mel_specgram_length, max_text_length ) self._assert_torchscript_consistency(model, inputs) def test_tacotron2_output_shape(self): r"""Feed tensors with specific shape to Tacotron2 and validate that it outputs with a tensor with expected shape. """ n_batch = 16 n_mels = 80 max_mel_specgram_length = 300 max_text_length = 100 model = _get_tacotron2_model(n_mels).to(self.device).eval() inputs = self._get_inputs( n_mels, n_batch, max_mel_specgram_length, max_text_length ) mel_out, mel_out_postnet, gate_outputs, alignments = model(*inputs) assert mel_out.size() == (n_batch, n_mels, max_mel_specgram_length) assert mel_out_postnet.size() == (n_batch, n_mels, max_mel_specgram_length) assert gate_outputs.size() == (n_batch, max_mel_specgram_length) assert alignments.size() == (n_batch, max_mel_specgram_length, max_text_length) def test_tacotron2_backward(self): r"""Make sure calling the backward function on Tacotron2's outputs does not error out. Following: https://github.com/pytorch/vision/blob/23b8760374a5aaed53c6e5fc83a7e83dbe3b85df/test/test_models.py#L255 """ n_batch = 16 n_mels = 80 max_mel_specgram_length = 300 max_text_length = 100 model = _get_tacotron2_model(n_mels).to(self.device) inputs = self._get_inputs( n_mels, n_batch, max_mel_specgram_length, max_text_length ) mel_out, mel_out_postnet, gate_outputs, _ = model(*inputs) mel_out.sum().backward(retain_graph=True) mel_out_postnet.sum().backward(retain_graph=True) gate_outputs.sum().backward() def _get_inference_inputs(self, n_batch: int, max_text_length: int): text = torch.randint( 0, 148, (n_batch, max_text_length), dtype=torch.int32, device=self.device ) text_lengths = max_text_length * torch.ones( (n_batch,), dtype=torch.int32, device=self.device ) return text, text_lengths def test_tacotron2_inference_torchscript_consistency(self): r"""Validate the torchscript consistency of Tacotron2 inference function.""" n_batch = 16 n_mels = 40 max_text_length = 100 decoder_max_step = 200 # make inference more efficient gate_threshold = 0.51 # if set to 0.5, the model will only run one step model = _get_tacotron2_model( n_mels, decoder_max_step=decoder_max_step, gate_threshold=gate_threshold ).to(self.device).eval() inputs = self._get_inference_inputs(n_batch, max_text_length) model_wrapper = Tacotron2InferenceWrapper(model) self._assert_torchscript_consistency(model_wrapper, inputs) def test_tacotron2_inference_output_shape(self): r"""Feed tensors with specific shape to Tacotron2 inference function and validate that it outputs with a tensor with expected shape. """ n_batch = 16 n_mels = 40 max_text_length = 100 decoder_max_step = 200 # make inference more efficient gate_threshold = 0.51 # if set to 0.5, the model will only run one step model = _get_tacotron2_model( n_mels, decoder_max_step=decoder_max_step, gate_threshold=gate_threshold ).to(self.device).eval() inputs = self._get_inference_inputs(n_batch, max_text_length) mel_out, mel_specgram_lengths, alignments = model.infer(*inputs) # There is no guarantee on exactly what max_mel_specgram_length should be # We only know that it should be smaller than model.decoder.decoder_max_step assert len(mel_out.size()) == 3 assert mel_out.size()[:2] == (n_batch, n_mels, ) assert mel_out.size()[2] == mel_specgram_lengths.max().item() assert len(mel_specgram_lengths.size()) == 1 assert mel_specgram_lengths.size()[0] == n_batch assert mel_specgram_lengths.max().item() <= model.decoder.decoder_max_step assert len(alignments.size()) == 3 assert alignments.size()[0] == n_batch assert alignments.size()[1] == mel_specgram_lengths.max().item() assert alignments.size()[2] == max_text_length
import torch from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from .model_test_impl import ( Tacotron2EncoderTests, Tacotron2DecoderTests, Tacotron2Tests, ) @skipIfNoCuda class TestTacotron2EncoderFloat32CUDA(Tacotron2EncoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class TestTacotron2DecoderFloat32CUDA(Tacotron2DecoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class TestTacotron2Float32CUDA(Tacotron2Tests, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda")
import torch from torchaudio_unittest.common_utils import TestBaseMixin, torch_script from torchaudio.prototype import Emformer class EmformerTestImpl(TestBaseMixin): def _gen_model(self, input_dim, right_context_length): emformer = Emformer( input_dim, 8, 256, 3, segment_length=4, left_context_length=30, right_context_length=right_context_length, max_memory_size=1, ).to(device=self.device, dtype=self.dtype) return emformer def _gen_inputs(self, input_dim, batch_size, num_frames, right_context_length): input = torch.rand(batch_size, num_frames, input_dim).to( device=self.device, dtype=self.dtype ) lengths = torch.randint(1, num_frames - right_context_length, (batch_size,)).to( device=self.device, dtype=self.dtype ) return input, lengths def test_torchscript_consistency_forward(self): r"""Verify that scripting Emformer does not change the behavior of method `forward`.""" input_dim = 128 batch_size = 10 num_frames = 400 right_context_length = 1 emformer = self._gen_model(input_dim, right_context_length) input, lengths = self._gen_inputs( input_dim, batch_size, num_frames, right_context_length ) scripted = torch_script(emformer) ref_out, ref_len = emformer(input, lengths) scripted_out, scripted_len = scripted(input, lengths) self.assertEqual(ref_out, scripted_out) self.assertEqual(ref_len, scripted_len) def test_torchscript_consistency_infer(self): r"""Verify that scripting Emformer does not change the behavior of method `infer`.""" input_dim = 128 batch_size = 10 num_frames = 400 right_context_length = 1 emformer = self._gen_model(input_dim, right_context_length).eval() scripted = torch_script(emformer).eval() ref_state, scripted_state = None, None for _ in range(3): input, lengths = self._gen_inputs(input_dim, batch_size, num_frames, 0) ref_out, ref_len, ref_state = emformer.infer(input, lengths, ref_state) scripted_out, scripted_len, scripted_state = scripted.infer( input, lengths, scripted_state ) self.assertEqual(ref_out, scripted_out) self.assertEqual(ref_len, scripted_len) self.assertEqual(ref_state, scripted_state) def test_output_shape_forward(self): r"""Check that method `forward` produces correctly-shaped outputs.""" input_dim = 128 batch_size = 10 num_frames = 123 right_context_length = 9 emformer = self._gen_model(input_dim, right_context_length) input, lengths = self._gen_inputs( input_dim, batch_size, num_frames, right_context_length ) output, output_lengths = emformer(input, lengths) self.assertEqual( (batch_size, num_frames - right_context_length, input_dim), output.shape ) self.assertEqual((batch_size,), output_lengths.shape) def test_output_shape_infer(self): r"""Check that method `infer` produces correctly-shaped outputs.""" input_dim = 256 batch_size = 5 num_frames = 200 right_context_length = 2 emformer = self._gen_model(input_dim, right_context_length).eval() state = None for _ in range(3): input, lengths = self._gen_inputs(input_dim, batch_size, num_frames, 0) output, output_lengths, state = emformer.infer(input, lengths, state) self.assertEqual( (batch_size, num_frames - right_context_length, input_dim), output.shape ) self.assertEqual((batch_size,), output_lengths.shape) def test_output_lengths_forward(self): r"""Check that method `forward` returns input `lengths` unmodified.""" input_dim = 88 batch_size = 13 num_frames = 123 right_context_length = 2 emformer = self._gen_model(input_dim, right_context_length) input, lengths = self._gen_inputs( input_dim, batch_size, num_frames, right_context_length ) _, output_lengths = emformer(input, lengths) self.assertEqual(lengths, output_lengths) def test_output_lengths_infer(self): r"""Check that method `infer` returns input `lengths` with right context length subtracted.""" input_dim = 88 batch_size = 13 num_frames = 123 right_context_length = 2 emformer = self._gen_model(input_dim, right_context_length).eval() input, lengths = self._gen_inputs(input_dim, batch_size, num_frames, 0) _, output_lengths, _ = emformer.infer(input, lengths) self.assertEqual( torch.clamp(lengths - right_context_length, min=0), output_lengths )
import torch from torchaudio_unittest.prototype.emformer_test_impl import EmformerTestImpl from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase @skipIfNoCuda class EmformerFloat32GPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class EmformerFloat64GPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
import torch from torchaudio_unittest.prototype.emformer_test_impl import EmformerTestImpl from torchaudio_unittest.common_utils import PytorchTestCase class EmformerFloat32CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class EmformerFloat64CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
import torch import torchaudio.transforms as T from parameterized import parameterized, param from torchaudio_unittest.common_utils import ( TestBaseMixin, get_whitenoise, get_spectrogram, nested_params, ) from torchaudio_unittest.common_utils.psd_utils import psd_numpy def _get_ratio(mat): return (mat.sum() / mat.numel()).item() class TransformsTestBase(TestBaseMixin): def test_InverseMelScale(self): """Gauge the quality of InverseMelScale transform. As InverseMelScale is currently implemented with random initialization + iterative optimization, it is not practically possible to assert the difference between the estimated spectrogram and the original spectrogram as a whole. Estimated spectrogram has very huge descrepency locally. Thus in this test we gauge what percentage of elements are bellow certain tolerance. At the moment, the quality of estimated spectrogram is not good. When implementation is changed in a way it makes the quality even worse, this test will fail. """ n_fft = 400 power = 1 n_mels = 64 sample_rate = 8000 n_stft = n_fft // 2 + 1 # Generate reference spectrogram and input mel-scaled spectrogram expected = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=1, n_channels=2), n_fft=n_fft, power=power).to(self.device, self.dtype) input = T.MelScale( n_mels=n_mels, sample_rate=sample_rate, n_stft=n_stft ).to(self.device, self.dtype)(expected) # Run transform transform = T.InverseMelScale( n_stft, n_mels=n_mels, sample_rate=sample_rate).to(self.device, self.dtype) torch.random.manual_seed(0) result = transform(input) # Compare epsilon = 1e-60 relative_diff = torch.abs((result - expected) / (expected + epsilon)) for tol in [1e-1, 1e-3, 1e-5, 1e-10]: print( f"Ratio of relative diff smaller than {tol:e} is " f"{_get_ratio(relative_diff < tol)}") assert _get_ratio(relative_diff < 1e-1) > 0.2 assert _get_ratio(relative_diff < 1e-3) > 5e-3 assert _get_ratio(relative_diff < 1e-5) > 1e-5 @nested_params( ["sinc_interpolation", "kaiser_window"], [16000, 44100], ) def test_resample_identity(self, resampling_method, sample_rate): """When sampling rate is not changed, the transform returns an identical Tensor""" waveform = get_whitenoise(sample_rate=sample_rate, duration=1) resampler = T.Resample(sample_rate, sample_rate, resampling_method) resampled = resampler(waveform) self.assertEqual(waveform, resampled) @nested_params( ["sinc_interpolation", "kaiser_window"], [None, torch.float64], ) def test_resample_cache_dtype(self, resampling_method, dtype): """Providing dtype changes the kernel cache dtype""" transform = T.Resample(16000, 44100, resampling_method, dtype=dtype) assert transform.kernel.dtype == dtype if dtype is not None else torch.float32 @parameterized.expand([ param(n_fft=300, center=True, onesided=True), param(n_fft=400, center=True, onesided=False), param(n_fft=400, center=True, onesided=False), param(n_fft=300, center=True, onesided=False), param(n_fft=400, hop_length=10), param(n_fft=800, win_length=400, hop_length=20), param(n_fft=800, win_length=400, hop_length=20, normalized=True), param(), param(n_fft=400, pad=32), # These tests do not work - cause runtime error # See https://github.com/pytorch/pytorch/issues/62323 # param(n_fft=400, center=False, onesided=True), # param(n_fft=400, center=False, onesided=False), ]) def test_roundtrip_spectrogram(self, **args): """Test the spectrogram + inverse spectrogram results in approximate identity.""" waveform = get_whitenoise(sample_rate=8000, duration=0.5, dtype=self.dtype) s = T.Spectrogram(**args, power=None) inv_s = T.InverseSpectrogram(**args) transformed = s.forward(waveform) restored = inv_s.forward(transformed, length=waveform.shape[-1]) self.assertEqual(waveform, restored, atol=1e-6, rtol=1e-6) @parameterized.expand([ param(0.5, 1, True, False), param(0.5, 1, None, False), param(1, 4, True, True), param(1, 6, None, True), ]) def test_psd(self, duration, channel, mask, multi_mask): """Providing dtype changes the kernel cache dtype""" transform = T.PSD(multi_mask) waveform = get_whitenoise(sample_rate=8000, duration=duration, n_channels=channel) spectrogram = get_spectrogram(waveform, n_fft=400) # (channel, freq, time) spectrogram = spectrogram.to(torch.cdouble) if mask is not None: if multi_mask: mask = torch.rand(spectrogram.shape[-3:]) else: mask = torch.rand(spectrogram.shape[-2:]) psd_np = psd_numpy(spectrogram.detach().numpy(), mask.detach().numpy(), multi_mask) else: psd_np = psd_numpy(spectrogram.detach().numpy(), mask, multi_mask) psd = transform(spectrogram, mask) self.assertEqual(psd, psd_np, atol=1e-5, rtol=1e-5)
from typing import List import unittest from parameterized import parameterized import torch from torch.autograd import gradcheck, gradgradcheck import torchaudio.transforms as T from torchaudio_unittest.common_utils import ( TestBaseMixin, get_whitenoise, get_spectrogram, nested_params, rnnt_utils, ) class _DeterministicWrapper(torch.nn.Module): """Helper transform wrapper to make the given transform deterministic""" def __init__(self, transform, seed=0): super().__init__() self.seed = seed self.transform = transform def forward(self, input: torch.Tensor): torch.random.manual_seed(self.seed) return self.transform(input) class AutogradTestMixin(TestBaseMixin): def assert_grad( self, transform: torch.nn.Module, inputs: List[torch.Tensor], *, nondet_tol: float = 0.0, ): transform = transform.to(dtype=torch.float64, device=self.device) # gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or # `torch.cdouble`, when the default eps and tolerance values are used. inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to( dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device) i.requires_grad = True inputs_.append(i) assert gradcheck(transform, inputs_) assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol) @parameterized.expand([ ({'pad': 0, 'normalized': False, 'power': None, 'return_complex': True}, ), ({'pad': 3, 'normalized': False, 'power': None, 'return_complex': True}, ), ({'pad': 0, 'normalized': True, 'power': None, 'return_complex': True}, ), ({'pad': 3, 'normalized': True, 'power': None, 'return_complex': True}, ), ({'pad': 0, 'normalized': False, 'power': None}, ), ({'pad': 3, 'normalized': False, 'power': None}, ), ({'pad': 0, 'normalized': True, 'power': None}, ), ({'pad': 3, 'normalized': True, 'power': None}, ), ({'pad': 0, 'normalized': False, 'power': 1.0}, ), ({'pad': 3, 'normalized': False, 'power': 1.0}, ), ({'pad': 0, 'normalized': True, 'power': 1.0}, ), ({'pad': 3, 'normalized': True, 'power': 1.0}, ), ({'pad': 0, 'normalized': False, 'power': 2.0}, ), ({'pad': 3, 'normalized': False, 'power': 2.0}, ), ({'pad': 0, 'normalized': True, 'power': 2.0}, ), ({'pad': 3, 'normalized': True, 'power': 2.0}, ), ]) def test_spectrogram(self, kwargs): # replication_pad1d_backward_cuda is not deteministic and # gives very small (~2.7756e-17) difference. # # See https://github.com/pytorch/pytorch/issues/54093 transform = T.Spectrogram(**kwargs) waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) def test_inverse_spectrogram(self): # create a realistic input: waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) length = waveform.shape[-1] spectrogram = get_spectrogram(waveform, n_fft=400) # test inv_transform = T.InverseSpectrogram(n_fft=400) self.assert_grad(inv_transform, [spectrogram, length]) def test_melspectrogram(self): # replication_pad1d_backward_cuda is not deteministic and # gives very small (~2.7756e-17) difference. # # See https://github.com/pytorch/pytorch/issues/54093 sample_rate = 8000 transform = T.MelSpectrogram(sample_rate=sample_rate) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) @nested_params( [0, 0.99], [False, True], ) def test_griffinlim(self, momentum, rand_init): n_fft = 400 power = 1 n_iter = 3 spec = get_spectrogram( get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2), n_fft=n_fft, power=power) transform = _DeterministicWrapper( T.GriffinLim(n_fft=n_fft, n_iter=n_iter, momentum=momentum, rand_init=rand_init, power=power)) self.assert_grad(transform, [spec]) @parameterized.expand([(False, ), (True, )]) def test_mfcc(self, log_mels): sample_rate = 8000 transform = T.MFCC(sample_rate=sample_rate, log_mels=log_mels) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform]) @parameterized.expand([(False, ), (True, )]) def test_lfcc(self, log_lf): sample_rate = 8000 transform = T.LFCC(sample_rate=sample_rate, log_lf=log_lf) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform]) def test_compute_deltas(self): transform = T.ComputeDeltas() spec = torch.rand(10, 20) self.assert_grad(transform, [spec]) @parameterized.expand([(8000, 8000), (8000, 4000), (4000, 8000)]) def test_resample(self, orig_freq, new_freq): transform = T.Resample(orig_freq=orig_freq, new_freq=new_freq) waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform]) @parameterized.expand([("linear", ), ("exponential", ), ("logarithmic", ), ("quarter_sine", ), ("half_sine", )]) def test_fade(self, fade_shape): transform = T.Fade(fade_shape=fade_shape) waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) @parameterized.expand([(T.TimeMasking,), (T.FrequencyMasking,)]) def test_masking(self, masking_transform): sample_rate = 8000 n_fft = 400 spectrogram = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1) deterministic_transform = _DeterministicWrapper(masking_transform(400)) self.assert_grad(deterministic_transform, [spectrogram]) @parameterized.expand([(T.TimeMasking,), (T.FrequencyMasking,)]) def test_masking_iid(self, masking_transform): sample_rate = 8000 n_fft = 400 specs = [get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2, seed=i), n_fft=n_fft, power=1) for i in range(3) ] batch = torch.stack(specs) assert batch.ndim == 4 deterministic_transform = _DeterministicWrapper(masking_transform(400, True)) self.assert_grad(deterministic_transform, [batch]) def test_spectral_centroid(self): sample_rate = 8000 transform = T.SpectralCentroid(sample_rate=sample_rate) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) def test_amplitude_to_db(self): sample_rate = 8000 transform = T.AmplitudeToDB() waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform]) def test_melscale(self): sample_rate = 8000 n_fft = 400 n_mels = n_fft // 2 + 1 transform = T.MelScale(sample_rate=sample_rate, n_mels=n_mels) spec = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1) self.assert_grad(transform, [spec]) @parameterized.expand([(1.5, "amplitude"), (2, "power"), (10, "db")]) def test_vol(self, gain, gain_type): sample_rate = 8000 transform = T.Vol(gain=gain, gain_type=gain_type) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform]) @parameterized.expand([ ({'cmn_window': 100, 'min_cmn_window': 50, 'center': False, 'norm_vars': False}, ), ({'cmn_window': 100, 'min_cmn_window': 50, 'center': True, 'norm_vars': False}, ), ({'cmn_window': 100, 'min_cmn_window': 50, 'center': False, 'norm_vars': True}, ), ({'cmn_window': 100, 'min_cmn_window': 50, 'center': True, 'norm_vars': True}, ), ]) def test_sliding_window_cmn(self, kwargs): n_fft = 10 power = 1 spec = get_spectrogram( get_whitenoise(sample_rate=200, duration=0.05, n_channels=2), n_fft=n_fft, power=power) spec_reshaped = spec.transpose(-1, -2) transform = T.SlidingWindowCmn(**kwargs) self.assert_grad(transform, [spec_reshaped]) @unittest.expectedFailure def test_timestretch_zeros_fail(self): """Test that ``T.TimeStretch`` fails gradcheck at 0 This is because ``F.phase_vocoder`` converts data from cartesian to polar coordinate, which performs ``atan2(img, real)``, and gradient is not defined at 0. """ n_fft = 16 transform = T.TimeStretch(n_freq=n_fft // 2 + 1, fixed_rate=0.99) waveform = torch.zeros(2, 40) spectrogram = get_spectrogram(waveform, n_fft=n_fft, power=None) self.assert_grad(transform, [spectrogram]) @nested_params([0.7, 0.8, 0.9, 1.0, 1.3]) def test_timestretch_non_zero(self, rate): """Verify that ``T.TimeStretch`` does not fail if it's not close to 0 ``T.TimeStrech`` is not differentiable around 0, so this test checks the differentiability for cases where input is not zero. As tested above, when spectrogram contains values close to zero, the gradients are unstable and gradcheck fails. In this test, we generate spectrogram from random signal, then we push the points around zero away from the origin. This process does not reflect the real use-case, and it is not practical for users, but this helps us understand to what degree the function is differentiable and when not. """ n_fft = 16 transform = T.TimeStretch(n_freq=n_fft // 2 + 1, fixed_rate=rate) waveform = get_whitenoise(sample_rate=40, duration=1, n_channels=2) spectrogram = get_spectrogram(waveform, n_fft=n_fft, power=None) # 1e-3 is too small (on CPU) epsilon = 1e-2 too_close = spectrogram.abs() < epsilon spectrogram[too_close] = epsilon * spectrogram[too_close] / spectrogram[too_close].abs() self.assert_grad(transform, [spectrogram]) def test_psd(self): transform = T.PSD() waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) spectrogram = get_spectrogram(waveform, n_fft=400) self.assert_grad(transform, [spectrogram]) @parameterized.expand([ [True], [False], ]) def test_psd_with_mask(self, multi_mask): transform = T.PSD(multi_mask=multi_mask) waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) spectrogram = get_spectrogram(waveform, n_fft=400) if multi_mask: mask = torch.rand(spectrogram.shape[-3:]) else: mask = torch.rand(spectrogram.shape[-2:]) self.assert_grad(transform, [spectrogram, mask]) @parameterized.expand([ "ref_channel", # stv_power test time too long, comment for now # "stv_power", # stv_evd will fail since the eigenvalues are not distinct # "stv_evd", ]) def test_mvdr(self, solution): transform = T.MVDR(solution=solution) waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2) spectrogram = get_spectrogram(waveform, n_fft=400) mask_s = torch.rand(spectrogram.shape[-2:]) mask_n = torch.rand(spectrogram.shape[-2:]) self.assert_grad(transform, [spectrogram, mask_s, mask_n]) class AutogradTestFloat32(TestBaseMixin): def assert_grad( self, transform: torch.nn.Module, inputs: List[torch.Tensor], ): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=torch.float32, device=self.device) inputs_.append(i) # gradcheck with float32 requires higher atol and epsilon assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.) @parameterized.expand([ (rnnt_utils.get_B1_T10_U3_D4_data, ), (rnnt_utils.get_B2_T4_U3_D3_data, ), (rnnt_utils.get_B1_T2_U3_D5_data, ), ]) def test_rnnt_loss(self, data_func): def get_data(data_func, device): data = data_func() if type(data) == tuple: data = data[0] return data data = get_data(data_func, self.device) inputs = ( data["logits"].to(torch.float32), data["targets"], data["logit_lengths"], data["target_lengths"], ) loss = T.RNNTLoss(blank=data["blank"]) self.assert_grad(loss, inputs)
import warnings import torch import torchaudio.transforms as T from parameterized import parameterized from torchaudio_unittest.common_utils import ( skipIfNoSox, skipIfNoExec, TempDirMixin, TorchaudioTestCase, get_asset_path, sox_utils, load_wav, save_wav, get_whitenoise, ) @skipIfNoSox @skipIfNoExec('sox') class TestFunctionalFiltering(TempDirMixin, TorchaudioTestCase): def run_sox_effect(self, input_file, effect): output_file = self.get_temp_path('expected.wav') sox_utils.run_sox_effect(input_file, output_file, [str(e) for e in effect]) return load_wav(output_file) def assert_sox_effect(self, result, input_path, effects, atol=1e-04, rtol=1e-5): expected, _ = self.run_sox_effect(input_path, effects) self.assertEqual(result, expected, atol=atol, rtol=rtol) def get_whitenoise(self, sample_rate=8000): noise = get_whitenoise( sample_rate=sample_rate, duration=3, scale_factor=0.9, ) path = self.get_temp_path("whitenoise.wav") save_wav(path, noise, sample_rate) return noise, path @parameterized.expand([ ('q', 'quarter_sine'), ('h', 'half_sine'), ('t', 'linear'), ]) def test_fade(self, fade_shape_sox, fade_shape): fade_in_len, fade_out_len = 44100, 44100 data, path = self.get_whitenoise(sample_rate=44100) result = T.Fade(fade_in_len, fade_out_len, fade_shape)(data) self.assert_sox_effect(result, path, ['fade', fade_shape_sox, '1', '0', '1']) @parameterized.expand([ ('amplitude', 1.1), ('db', 2), ('power', 2), ]) def test_vol(self, gain_type, gain): data, path = self.get_whitenoise() result = T.Vol(gain, gain_type)(data) self.assert_sox_effect(result, path, ['vol', f'{gain}', gain_type]) @parameterized.expand(['vad-go-stereo-44100.wav', 'vad-go-mono-32000.wav']) def test_vad(self, filename): path = get_asset_path(filename) data, sample_rate = load_wav(path) result = T.Vad(sample_rate)(data) self.assert_sox_effect(result, path, ['vad']) def test_vad_warning(self): """vad should throw a warning if input dimension is greater than 2""" sample_rate = 41100 data = torch.rand(5, 5, sample_rate) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") T.Vad(sample_rate)(data) assert len(w) == 1 data = torch.rand(5, sample_rate) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") T.Vad(sample_rate)(data) assert len(w) == 0 data = torch.rand(sample_rate) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") T.Vad(sample_rate)(data) assert len(w) == 0
import math import torch import torchaudio import torchaudio.transforms as transforms import torchaudio.functional as F from torchaudio_unittest import common_utils class Tester(common_utils.TorchaudioTestCase): backend = 'default' # create a sinewave signal for testing sample_rate = 16000 freq = 440 volume = .3 waveform = (torch.cos(2 * math.pi * torch.arange(0, 4 * sample_rate).float() * freq / sample_rate)) waveform.unsqueeze_(0) # (1, 64000) waveform = (waveform * volume * 2**31).long() def scale(self, waveform, factor=2.0**31): # scales a waveform by a factor if not waveform.is_floating_point(): waveform = waveform.to(torch.get_default_dtype()) return waveform / factor def test_mu_law_companding(self): quantization_channels = 256 waveform = self.waveform.clone() if not waveform.is_floating_point(): waveform = waveform.to(torch.get_default_dtype()) waveform /= torch.abs(waveform).max() self.assertTrue(waveform.min() >= -1. and waveform.max() <= 1.) waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform) self.assertTrue(waveform_mu.min() >= 0. and waveform_mu.max() <= quantization_channels) waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu) self.assertTrue(waveform_exp.min() >= -1. and waveform_exp.max() <= 1.) def test_AmplitudeToDB(self): filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav') waveform = common_utils.load_wav(filepath)[0] mag_to_db_transform = transforms.AmplitudeToDB('magnitude', 80.) power_to_db_transform = transforms.AmplitudeToDB('power', 80.) mag_to_db_torch = mag_to_db_transform(torch.abs(waveform)) power_to_db_torch = power_to_db_transform(torch.pow(waveform, 2)) self.assertEqual(mag_to_db_torch, power_to_db_torch) def test_melscale_load_save(self): specgram = torch.ones(1, 201, 100) melscale_transform = transforms.MelScale() melscale_transform(specgram) melscale_transform_copy = transforms.MelScale() melscale_transform_copy.load_state_dict(melscale_transform.state_dict()) fb = melscale_transform.fb fb_copy = melscale_transform_copy.fb self.assertEqual(fb_copy.size(), (201, 128)) self.assertEqual(fb, fb_copy) def test_melspectrogram_load_save(self): waveform = self.waveform.float() mel_spectrogram_transform = transforms.MelSpectrogram() mel_spectrogram_transform(waveform) mel_spectrogram_transform_copy = transforms.MelSpectrogram() mel_spectrogram_transform_copy.load_state_dict(mel_spectrogram_transform.state_dict()) window = mel_spectrogram_transform.spectrogram.window window_copy = mel_spectrogram_transform_copy.spectrogram.window fb = mel_spectrogram_transform.mel_scale.fb fb_copy = mel_spectrogram_transform_copy.mel_scale.fb self.assertEqual(window, window_copy) # the default for n_fft = 400 and n_mels = 128 self.assertEqual(fb_copy.size(), (201, 128)) self.assertEqual(fb, fb_copy) def test_mel2(self): top_db = 80. s2db = transforms.AmplitudeToDB('power', top_db) waveform = self.waveform.clone() # (1, 16000) waveform_scaled = self.scale(waveform) # (1, 16000) mel_transform = transforms.MelSpectrogram() # check defaults spectrogram_torch = s2db(mel_transform(waveform_scaled)) # (1, 128, 321) self.assertTrue(spectrogram_torch.dim() == 3) self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all()) self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels) # check correctness of filterbank conversion matrix self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.).all()) self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.).all()) # check options kwargs = {'window_fn': torch.hamming_window, 'pad': 10, 'win_length': 500, 'hop_length': 125, 'n_fft': 800, 'n_mels': 50} mel_transform2 = transforms.MelSpectrogram(**kwargs) spectrogram2_torch = s2db(mel_transform2(waveform_scaled)) # (1, 50, 513) self.assertTrue(spectrogram2_torch.dim() == 3) self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all()) self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels) self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.).all()) self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.).all()) # check on multi-channel audio filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav') x_stereo = common_utils.load_wav(filepath)[0] # (2, 278756), 44100 spectrogram_stereo = s2db(mel_transform(x_stereo)) # (2, 128, 1394) self.assertTrue(spectrogram_stereo.dim() == 3) self.assertTrue(spectrogram_stereo.size(0) == 2) self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all()) self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels) # check filterbank matrix creation fb_matrix_transform = transforms.MelScale( n_mels=100, sample_rate=16000, f_min=0., f_max=None, n_stft=400) self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all()) self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all()) self.assertEqual(fb_matrix_transform.fb.size(), (400, 100)) def test_mfcc_defaults(self): """Check the default configuration of the MFCC transform. """ sample_rate = 16000 audio = common_utils.get_whitenoise(sample_rate=sample_rate) n_mfcc = 40 mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho') torch_mfcc = mfcc_transform(audio) # (1, 40, 81) self.assertEqual(torch_mfcc.dim(), 3) self.assertEqual(torch_mfcc.shape[1], n_mfcc) self.assertEqual(torch_mfcc.shape[2], 81) def test_mfcc_kwargs_passthrough(self): """Check kwargs get correctly passed to the MelSpectrogram transform. """ sample_rate = 16000 audio = common_utils.get_whitenoise(sample_rate=sample_rate) n_mfcc = 40 melkwargs = {'win_length': 200} mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho', melkwargs=melkwargs) torch_mfcc = mfcc_transform(audio) # (1, 40, 161) self.assertEqual(torch_mfcc.shape[2], 161) def test_mfcc_norms(self): """Check if MFCC-DCT norms work correctly. """ sample_rate = 16000 audio = common_utils.get_whitenoise(sample_rate=sample_rate) n_mfcc = 40 n_mels = 128 mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho') # check norms work correctly mfcc_transform_norm_none = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm=None) torch_mfcc_norm_none = mfcc_transform_norm_none(audio) # (1, 40, 81) norm_check = mfcc_transform(audio) norm_check[:, 0, :] *= math.sqrt(n_mels) * 2 norm_check[:, 1:, :] *= math.sqrt(n_mels / 2) * 2 self.assertEqual(torch_mfcc_norm_none, norm_check) def test_lfcc_defaults(self): """Check default settings for LFCC transform. """ sample_rate = 16000 audio = common_utils.get_whitenoise(sample_rate=sample_rate) n_lfcc = 40 n_filter = 128 lfcc_transform = torchaudio.transforms.LFCC(sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm='ortho') torch_lfcc = lfcc_transform(audio) # (1, 40, 81) self.assertEqual(torch_lfcc.dim(), 3) self.assertEqual(torch_lfcc.shape[1], n_lfcc) self.assertEqual(torch_lfcc.shape[2], 81) def test_lfcc_arg_passthrough(self): """Check if kwargs get correctly passed to the underlying Spectrogram transform. """ sample_rate = 16000 audio = common_utils.get_whitenoise(sample_rate=sample_rate) n_lfcc = 40 n_filter = 128 speckwargs = {'win_length': 200} lfcc_transform = torchaudio.transforms.LFCC(sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm='ortho', speckwargs=speckwargs) torch_lfcc = lfcc_transform(audio) # (1, 40, 161) self.assertEqual(torch_lfcc.shape[2], 161) def test_lfcc_norms(self): """Check if LFCC-DCT norm works correctly. """ sample_rate = 16000 audio = common_utils.get_whitenoise(sample_rate=sample_rate) n_lfcc = 40 n_filter = 128 lfcc_transform = torchaudio.transforms.LFCC(sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm='ortho') lfcc_transform_norm_none = torchaudio.transforms.LFCC(sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm=None) torch_lfcc_norm_none = lfcc_transform_norm_none(audio) # (1, 40, 161) norm_check = lfcc_transform(audio) # (1, 40, 161) norm_check[:, 0, :] *= math.sqrt(n_filter) * 2 norm_check[:, 1:, :] *= math.sqrt(n_filter / 2) * 2 self.assertEqual(torch_lfcc_norm_none, norm_check) def test_resample_size(self): input_path = common_utils.get_asset_path('sinewave.wav') waveform, sample_rate = common_utils.load_wav(input_path) upsample_rate = sample_rate * 2 downsample_rate = sample_rate // 2 invalid_resampling_method = 'foo' with self.assertRaises(ValueError): torchaudio.transforms.Resample(sample_rate, upsample_rate, resampling_method=invalid_resampling_method) upsample_resample = torchaudio.transforms.Resample( sample_rate, upsample_rate, resampling_method='sinc_interpolation') up_sampled = upsample_resample(waveform) # we expect the upsampled signal to have twice as many samples self.assertTrue(up_sampled.size(-1) == waveform.size(-1) * 2) downsample_resample = torchaudio.transforms.Resample( sample_rate, downsample_rate, resampling_method='sinc_interpolation') down_sampled = downsample_resample(waveform) # we expect the downsampled signal to have half as many samples self.assertTrue(down_sampled.size(-1) == waveform.size(-1) // 2) def test_compute_deltas(self): channel = 13 n_mfcc = channel * 3 time = 1021 win_length = 2 * 7 + 1 specgram = torch.randn(channel, n_mfcc, time) transform = transforms.ComputeDeltas(win_length=win_length) computed = transform(specgram) self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape)) def test_compute_deltas_transform_same_as_functional(self, atol=1e-6, rtol=1e-8): channel = 13 n_mfcc = channel * 3 time = 1021 win_length = 2 * 7 + 1 specgram = torch.randn(channel, n_mfcc, time) transform = transforms.ComputeDeltas(win_length=win_length) computed_transform = transform(specgram) computed_functional = F.compute_deltas(specgram, win_length=win_length) self.assertEqual(computed_functional, computed_transform, atol=atol, rtol=rtol) def test_compute_deltas_twochannel(self): specgram = torch.tensor([1., 2., 3., 4.]).repeat(1, 2, 1) expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5], [0.5, 1.0, 1.0, 0.5]]]) transform = transforms.ComputeDeltas(win_length=3) computed = transform(specgram) assert computed.shape == expected.shape, (computed.shape, expected.shape) self.assertEqual(computed, expected, atol=1e-6, rtol=1e-8) class SmokeTest(common_utils.TorchaudioTestCase): def test_spectrogram(self): specgram = transforms.Spectrogram(center=False, pad_mode="reflect", onesided=False) self.assertEqual(specgram.center, False) self.assertEqual(specgram.pad_mode, "reflect") self.assertEqual(specgram.onesided, False) def test_melspectrogram(self): melspecgram = transforms.MelSpectrogram(center=True, pad_mode="reflect", onesided=False) specgram = melspecgram.spectrogram self.assertEqual(specgram.center, True) self.assertEqual(specgram.pad_mode, "reflect") self.assertEqual(specgram.onesided, False)
import torch from torchaudio_unittest.common_utils import ( PytorchTestCase, skipIfNoCuda, ) from . transforms_test_impl import TransformsTestBase @skipIfNoCuda class TransformsCUDAFloat32Test(TransformsTestBase, PytorchTestCase): device = 'cuda' dtype = torch.float32 @skipIfNoCuda class TransformsCUDAFloat64Test(TransformsTestBase, PytorchTestCase): device = 'cuda' dtype = torch.float64
import torch from torchaudio_unittest.common_utils import PytorchTestCase from . transforms_test_impl import TransformsTestBase class TransformsCPUFloat32Test(TransformsTestBase, PytorchTestCase): device = 'cpu' dtype = torch.float32 class TransformsCPUFloat64Test(TransformsTestBase, PytorchTestCase): device = 'cpu' dtype = torch.float64
from torchaudio_unittest.common_utils import ( PytorchTestCase, skipIfNoCuda, ) from .autograd_test_impl import AutogradTestMixin, AutogradTestFloat32 @skipIfNoCuda class AutogradCUDATest(AutogradTestMixin, PytorchTestCase): device = 'cuda' @skipIfNoCuda class AutogradRNNTCUDATest(AutogradTestFloat32, PytorchTestCase): device = 'cuda'
"""Test suites for jit-ability and its numerical compatibility""" import torch import torchaudio.transforms as T from parameterized import parameterized from torchaudio_unittest import common_utils from torchaudio_unittest.common_utils import ( skipIfRocm, TestBaseMixin, torch_script, ) class Transforms(TestBaseMixin): """Implements test for Transforms that are performed for different devices""" def _assert_consistency(self, transform, tensor, *args): tensor = tensor.to(device=self.device, dtype=self.dtype) transform = transform.to(device=self.device, dtype=self.dtype) ts_transform = torch_script(transform) output = transform(tensor, *args) ts_output = ts_transform(tensor, *args) self.assertEqual(ts_output, output) def _assert_consistency_complex(self, transform, tensor, *args): assert tensor.is_complex() tensor = tensor.to(device=self.device, dtype=self.complex_dtype) transform = transform.to(device=self.device, dtype=self.dtype) ts_transform = torch_script(transform) output = transform(tensor, *args) ts_output = ts_transform(tensor, *args) self.assertEqual(ts_output, output) def test_Spectrogram(self): tensor = torch.rand((1, 1000)) self._assert_consistency(T.Spectrogram(), tensor) def test_Spectrogram_return_complex(self): tensor = torch.rand((1, 1000)) self._assert_consistency(T.Spectrogram(power=None, return_complex=True), tensor) def test_InverseSpectrogram(self): tensor = common_utils.get_whitenoise(sample_rate=8000) spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100) self._assert_consistency_complex(T.InverseSpectrogram(n_fft=400, hop_length=100), spectrogram) @skipIfRocm def test_GriffinLim(self): tensor = torch.rand((1, 201, 6)) self._assert_consistency(T.GriffinLim(length=1000, rand_init=False), tensor) def test_AmplitudeToDB(self): spec = torch.rand((6, 201)) self._assert_consistency(T.AmplitudeToDB(), spec) def test_MelScale(self): spec_f = torch.rand((1, 201, 6)) self._assert_consistency(T.MelScale(n_stft=201), spec_f) def test_MelSpectrogram(self): tensor = torch.rand((1, 1000)) self._assert_consistency(T.MelSpectrogram(), tensor) def test_MFCC(self): tensor = torch.rand((1, 1000)) self._assert_consistency(T.MFCC(), tensor) def test_LFCC(self): tensor = torch.rand((1, 1000)) self._assert_consistency(T.LFCC(), tensor) def test_Resample(self): sr1, sr2 = 16000, 8000 tensor = common_utils.get_whitenoise(sample_rate=sr1) self._assert_consistency(T.Resample(sr1, sr2), tensor) def test_MuLawEncoding(self): tensor = common_utils.get_whitenoise() self._assert_consistency(T.MuLawEncoding(), tensor) def test_MuLawDecoding(self): tensor = torch.rand((1, 10)) self._assert_consistency(T.MuLawDecoding(), tensor) def test_Fade(self): waveform = common_utils.get_whitenoise() fade_in_len = 3000 fade_out_len = 3000 self._assert_consistency(T.Fade(fade_in_len, fade_out_len), waveform) def test_FrequencyMasking(self): tensor = torch.rand((10, 2, 50, 10, 2)) self._assert_consistency(T.FrequencyMasking(freq_mask_param=60, iid_masks=False), tensor) def test_TimeMasking(self): tensor = torch.rand((10, 2, 50, 10, 2)) self._assert_consistency(T.TimeMasking(time_mask_param=30, iid_masks=False), tensor) def test_Vol(self): waveform = common_utils.get_whitenoise() self._assert_consistency(T.Vol(1.1), waveform) def test_SlidingWindowCmn(self): tensor = torch.rand((1000, 10)) self._assert_consistency(T.SlidingWindowCmn(), tensor) def test_Vad(self): filepath = common_utils.get_asset_path("vad-go-mono-32000.wav") waveform, sample_rate = common_utils.load_wav(filepath) self._assert_consistency(T.Vad(sample_rate=sample_rate), waveform) def test_SpectralCentroid(self): sample_rate = 44100 waveform = common_utils.get_whitenoise(sample_rate=sample_rate) self._assert_consistency(T.SpectralCentroid(sample_rate=sample_rate), waveform) def test_TimeStretch(self): n_fft = 1025 n_freq = n_fft // 2 + 1 hop_length = 512 fixed_rate = 1.3 tensor = torch.rand((10, 2, n_freq, 10), dtype=torch.cfloat) batch = 10 num_channels = 2 waveform = common_utils.get_whitenoise(sample_rate=8000, n_channels=batch * num_channels) tensor = common_utils.get_spectrogram(waveform, n_fft=n_fft) tensor = tensor.reshape(batch, num_channels, n_freq, -1) self._assert_consistency_complex( T.TimeStretch(n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate), tensor, ) def test_PitchShift(self): sample_rate = 8000 n_steps = 4 waveform = common_utils.get_whitenoise(sample_rate=sample_rate) self._assert_consistency( T.PitchShift(sample_rate=sample_rate, n_steps=n_steps), waveform ) def test_PSD(self): tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4) spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100) spectrogram = spectrogram.to(self.device) self._assert_consistency_complex(T.PSD(), spectrogram) def test_PSD_with_mask(self): tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4) spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100) spectrogram = spectrogram.to(self.device) mask = torch.rand(spectrogram.shape[-2:], device=self.device) self._assert_consistency_complex(T.PSD(), spectrogram, mask) class TransformsFloat32Only(TestBaseMixin): def test_rnnt_loss(self): logits = torch.tensor([[[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1]], [[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], [0.7, 0.1, 0.2, 0.1, 0.1]]]]) tensor = logits.to(device=self.device, dtype=torch.float32) targets = torch.tensor([[1, 2]], device=tensor.device, dtype=torch.int32) logit_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32) target_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32) self._assert_consistency(T.RNNTLoss(), logits, targets, logit_lengths, target_lengths) class TransformsFloat64Only(TestBaseMixin): @parameterized.expand([ ["ref_channel", True], ["stv_evd", True], ["stv_power", True], ["ref_channel", False], ["stv_evd", False], ["stv_power", False], ]) def test_MVDR(self, solution, online): tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4) spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100) spectrogram = spectrogram.to(device=self.device, dtype=torch.cdouble) mask_s = torch.rand(spectrogram.shape[-2:], device=self.device) mask_n = torch.rand(spectrogram.shape[-2:], device=self.device) self._assert_consistency_complex( T.MVDR(solution=solution, online=online), spectrogram, mask_s, mask_n )
from torchaudio_unittest.common_utils import PytorchTestCase from .autograd_test_impl import AutogradTestMixin, AutogradTestFloat32 class AutogradCPUTest(AutogradTestMixin, PytorchTestCase): device = 'cpu' class AutogradRNNTCPUTest(AutogradTestFloat32, PytorchTestCase): device = 'cpu'
"""Test numerical consistency among single input and batched input.""" import torch from parameterized import parameterized from torchaudio import transforms as T from torchaudio_unittest import common_utils class TestTransforms(common_utils.TorchaudioTestCase): """Test suite for classes defined in `transforms` module""" backend = 'default' def assert_batch_consistency( self, transform, batch, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs): n = batch.size(0) # Compute items separately, then batch the result torch.random.manual_seed(seed) items_input = batch.clone() items_result = torch.stack([ transform(items_input[i], *args, **kwargs) for i in range(n) ]) # Batch the input and run torch.random.manual_seed(seed) batch_input = batch.clone() batch_result = transform(batch_input, *args, **kwargs) self.assertEqual(items_input, batch_input, rtol=rtol, atol=atol) self.assertEqual(items_result, batch_result, rtol=rtol, atol=atol) def test_batch_AmplitudeToDB(self): spec = torch.rand((3, 2, 6, 201)) transform = T.AmplitudeToDB() self.assert_batch_consistency(transform, spec) def test_batch_Resample(self): waveform = torch.randn(3, 2, 2786) transform = T.Resample() self.assert_batch_consistency(transform, waveform) def test_batch_MelScale(self): specgram = torch.randn(3, 2, 201, 256) transform = T.MelScale() self.assert_batch_consistency(transform, specgram) def test_batch_InverseMelScale(self): n_mels = 32 n_stft = 5 mel_spec = torch.randn(3, 2, n_mels, 32) ** 2 transform = T.InverseMelScale(n_stft, n_mels) # Because InverseMelScale runs SGD on randomly initialized values so they do not yield # exactly same result. For this reason, tolerance is very relaxed here. self.assert_batch_consistency(transform, mel_spec, atol=1.0, rtol=1e-5) def test_batch_compute_deltas(self): specgram = torch.randn(3, 2, 31, 2786) transform = T.ComputeDeltas() self.assert_batch_consistency(transform, specgram) def test_batch_mulaw(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) # Single then transform then batch expected = [T.MuLawEncoding()(waveform[i]) for i in range(3)] expected = torch.stack(expected) # Batch then transform computed = T.MuLawEncoding()(waveform) # shape = (3, 2, 201, 1394) self.assertEqual(computed, expected) # Single then transform then batch expected_decoded = [T.MuLawDecoding()(expected[i]) for i in range(3)] expected_decoded = torch.stack(expected_decoded) # Batch then transform computed_decoded = T.MuLawDecoding()(computed) # shape = (3, 2, 201, 1394) self.assertEqual(computed_decoded, expected_decoded) def test_batch_spectrogram(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.Spectrogram() self.assert_batch_consistency(transform, waveform) def test_batch_inverse_spectrogram(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) specgram = common_utils.get_spectrogram(waveform, n_fft=400) specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1]) transform = T.InverseSpectrogram(n_fft=400) self.assert_batch_consistency(transform, specgram) def test_batch_melspectrogram(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.MelSpectrogram() self.assert_batch_consistency(transform, waveform) def test_batch_mfcc(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.MFCC() self.assert_batch_consistency(transform, waveform, atol=1e-4, rtol=1e-5) def test_batch_lfcc(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.LFCC() self.assert_batch_consistency(transform, waveform, atol=1e-4, rtol=1e-5) def test_batch_TimeStretch(self): rate = 2 num_freq = 1025 batch = 3 tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=batch) spec = common_utils.get_spectrogram(tensor, n_fft=num_freq) transform = T.TimeStretch( fixed_rate=rate, n_freq=num_freq // 2 + 1, hop_length=512 ) self.assert_batch_consistency(transform, spec, atol=1e-5, rtol=1e-5) def test_batch_Fade(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) fade_in_len = 3000 fade_out_len = 3000 transform = T.Fade(fade_in_len, fade_out_len) self.assert_batch_consistency(transform, waveform) def test_batch_Vol(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.Vol(gain=1.1) self.assert_batch_consistency(transform, waveform) def test_batch_spectral_centroid(self): sample_rate = 44100 waveform = common_utils.get_whitenoise(sample_rate=sample_rate, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.SpectralCentroid(sample_rate) self.assert_batch_consistency(transform, waveform) def test_batch_pitch_shift(self): sample_rate = 8000 n_steps = -2 waveform = common_utils.get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=6) waveform = waveform.reshape(3, 2, -1) transform = T.PitchShift(sample_rate, n_steps, n_fft=400) self.assert_batch_consistency(transform, waveform) def test_batch_PSD(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) specgram = common_utils.get_spectrogram(waveform, n_fft=400) specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1]) transform = T.PSD() self.assert_batch_consistency(transform, specgram) def test_batch_PSD_with_mask(self): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.to(torch.double) specgram = common_utils.get_spectrogram(waveform, n_fft=400) specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1]) mask = torch.rand((3, specgram.shape[-2], specgram.shape[-1])) transform = T.PSD() # Single then transform then batch expected = [transform(specgram[i], mask[i]) for i in range(3)] expected = torch.stack(expected) # Batch then transform computed = transform(specgram, mask) self.assertEqual(computed, expected) @parameterized.expand([ [True], [False], ]) def test_MVDR(self, multi_mask): waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6) waveform = waveform.to(torch.double) specgram = common_utils.get_spectrogram(waveform, n_fft=400) specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1]) if multi_mask: mask_s = torch.rand((3, 2, specgram.shape[-2], specgram.shape[-1])) mask_n = torch.rand((3, 2, specgram.shape[-2], specgram.shape[-1])) else: mask_s = torch.rand((3, specgram.shape[-2], specgram.shape[-1])) mask_n = torch.rand((3, specgram.shape[-2], specgram.shape[-1])) transform = T.MVDR(multi_mask=multi_mask) # Single then transform then batch expected = [transform(specgram[i], mask_s[i], mask_n[i]) for i in range(3)] expected = torch.stack(expected) # Batch then transform computed = transform(specgram, mask_s, mask_n) self.assertEqual(computed, expected)
import unittest import torch import torchaudio.transforms as T from torchaudio._internal.module_utils import is_module_available from parameterized import param, parameterized from torchaudio_unittest.common_utils import ( TestBaseMixin, get_whitenoise, get_sinusoid, get_spectrogram, nested_params, ) LIBROSA_AVAILABLE = is_module_available('librosa') if LIBROSA_AVAILABLE: import librosa @unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available") class TransformsTestBase(TestBaseMixin): @parameterized.expand([ param(n_fft=400, hop_length=200, power=2.0), param(n_fft=600, hop_length=100, power=2.0), param(n_fft=400, hop_length=200, power=3.0), param(n_fft=200, hop_length=50, power=2.0), ]) def test_Spectrogram(self, n_fft, hop_length, power): sample_rate = 16000 waveform = get_whitenoise( sample_rate=sample_rate, n_channels=1, ).to(self.device, self.dtype) expected = librosa.core.spectrum._spectrogram( y=waveform[0].cpu().numpy(), n_fft=n_fft, hop_length=hop_length, power=power)[0] result = T.Spectrogram( n_fft=n_fft, hop_length=hop_length, power=power, ).to(self.device, self.dtype)(waveform)[0] self.assertEqual(result, torch.from_numpy(expected), atol=1e-5, rtol=1e-5) def test_Spectrogram_complex(self): n_fft = 400 hop_length = 200 sample_rate = 16000 waveform = get_whitenoise( sample_rate=sample_rate, n_channels=1, ).to(self.device, self.dtype) expected = librosa.core.spectrum._spectrogram( y=waveform[0].cpu().numpy(), n_fft=n_fft, hop_length=hop_length, power=1)[0] result = T.Spectrogram( n_fft=n_fft, hop_length=hop_length, power=None, return_complex=True, ).to(self.device, self.dtype)(waveform)[0] self.assertEqual(result.abs(), torch.from_numpy(expected), atol=1e-5, rtol=1e-5) @nested_params( [ param(n_fft=400, hop_length=200, n_mels=64), param(n_fft=600, hop_length=100, n_mels=128), param(n_fft=200, hop_length=50, n_mels=32), ], [param(norm=norm) for norm in [None, 'slaney']], [param(mel_scale=mel_scale) for mel_scale in ['htk', 'slaney']], ) def test_MelSpectrogram(self, n_fft, hop_length, n_mels, norm, mel_scale): sample_rate = 16000 waveform = get_sinusoid( sample_rate=sample_rate, n_channels=1, ).to(self.device, self.dtype) expected = librosa.feature.melspectrogram( y=waveform[0].cpu().numpy(), sr=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, norm=norm, htk=mel_scale == "htk") result = T.MelSpectrogram( sample_rate=sample_rate, window_fn=torch.hann_window, hop_length=hop_length, n_mels=n_mels, n_fft=n_fft, norm=norm, mel_scale=mel_scale, ).to(self.device, self.dtype)(waveform)[0] self.assertEqual(result, torch.from_numpy(expected), atol=5e-4, rtol=1e-5) def test_magnitude_to_db(self): spectrogram = get_spectrogram( get_whitenoise(), n_fft=400, power=2).to(self.device, self.dtype) result = T.AmplitudeToDB('magnitude', 80.).to(self.device, self.dtype)(spectrogram)[0] expected = librosa.core.spectrum.amplitude_to_db(spectrogram[0].cpu().numpy()) self.assertEqual(result, torch.from_numpy(expected)) def test_power_to_db(self): spectrogram = get_spectrogram( get_whitenoise(), n_fft=400, power=2).to(self.device, self.dtype) result = T.AmplitudeToDB('power', 80.).to(self.device, self.dtype)(spectrogram)[0] expected = librosa.core.spectrum.power_to_db(spectrogram[0].cpu().numpy()) self.assertEqual(result, torch.from_numpy(expected)) @nested_params([ param(n_fft=400, hop_length=200, n_mels=64, n_mfcc=40), param(n_fft=600, hop_length=100, n_mels=128, n_mfcc=20), param(n_fft=200, hop_length=50, n_mels=32, n_mfcc=25), ]) def test_mfcc(self, n_fft, hop_length, n_mels, n_mfcc): sample_rate = 16000 waveform = get_whitenoise( sample_rate=sample_rate, n_channels=1).to(self.device, self.dtype) result = T.MFCC( sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho', melkwargs={'hop_length': hop_length, 'n_fft': n_fft, 'n_mels': n_mels}, ).to(self.device, self.dtype)(waveform)[0] melspec = librosa.feature.melspectrogram( y=waveform[0].cpu().numpy(), sr=sample_rate, n_fft=n_fft, win_length=n_fft, hop_length=hop_length, n_mels=n_mels, htk=True, norm=None) expected = librosa.feature.mfcc( S=librosa.core.spectrum.power_to_db(melspec), n_mfcc=n_mfcc, dct_type=2, norm='ortho') self.assertEqual(result, torch.from_numpy(expected), atol=5e-4, rtol=1e-5) @parameterized.expand([ param(n_fft=400, hop_length=200), param(n_fft=600, hop_length=100), param(n_fft=200, hop_length=50), ]) def test_spectral_centroid(self, n_fft, hop_length): sample_rate = 16000 waveform = get_whitenoise( sample_rate=sample_rate, n_channels=1).to(self.device, self.dtype) result = T.SpectralCentroid( sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, ).to(self.device, self.dtype)(waveform) expected = librosa.feature.spectral_centroid( y=waveform[0].cpu().numpy(), sr=sample_rate, n_fft=n_fft, hop_length=hop_length) self.assertEqual(result, torch.from_numpy(expected), atol=5e-4, rtol=1e-5)
import torch from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from .torchscript_consistency_impl import Transforms, TransformsFloat32Only, TransformsFloat64Only @skipIfNoCuda class TestTransformsFloat32(Transforms, TransformsFloat32Only, PytorchTestCase): dtype = torch.float32 device = torch.device('cuda') @skipIfNoCuda class TestTransformsFloat64(Transforms, TransformsFloat64Only, PytorchTestCase): dtype = torch.float64 device = torch.device('cuda')
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .torchscript_consistency_impl import Transforms, TransformsFloat32Only, TransformsFloat64Only class TestTransformsFloat32(Transforms, TransformsFloat32Only, PytorchTestCase): dtype = torch.float32 device = torch.device('cpu') class TestTransformsFloat64(Transforms, TransformsFloat64Only, PytorchTestCase): dtype = torch.float64 device = torch.device('cpu')
import torch from torchaudio_unittest import common_utils from .kaldi_compatibility_impl import Kaldi @common_utils.skipIfNoCuda class TestKaldiFloat32(Kaldi, common_utils.PytorchTestCase): dtype = torch.float32 device = torch.device('cuda') @common_utils.skipIfNoCuda class TestKaldiFloat64(Kaldi, common_utils.PytorchTestCase): dtype = torch.float64 device = torch.device('cuda')
"""Test suites for checking numerical compatibility against Kaldi""" import torchaudio.compliance.kaldi from parameterized import parameterized from torchaudio_unittest.common_utils import ( TestBaseMixin, TempDirMixin, load_params, skipIfNoExec, get_asset_path, load_wav, ) from torchaudio_unittest.common_utils.kaldi_utils import ( convert_args, run_kaldi, ) class Kaldi(TempDirMixin, TestBaseMixin): def assert_equal(self, output, *, expected, rtol=None, atol=None): expected = expected.to(dtype=self.dtype, device=self.device) self.assertEqual(output, expected, rtol=rtol, atol=atol) @parameterized.expand(load_params('kaldi_test_fbank_args.jsonl')) @skipIfNoExec('compute-fbank-feats') def test_fbank(self, kwargs): """fbank should be numerically compatible with compute-fbank-feats""" wave_file = get_asset_path('kaldi_file.wav') waveform = load_wav(wave_file, normalize=False)[0].to(dtype=self.dtype, device=self.device) result = torchaudio.compliance.kaldi.fbank(waveform, **kwargs) command = ['compute-fbank-feats'] + convert_args(**kwargs) + ['scp:-', 'ark:-'] kaldi_result = run_kaldi(command, 'scp', wave_file) self.assert_equal(result, expected=kaldi_result, rtol=1e-4, atol=1e-8) @parameterized.expand(load_params('kaldi_test_spectrogram_args.jsonl')) @skipIfNoExec('compute-spectrogram-feats') def test_spectrogram(self, kwargs): """spectrogram should be numerically compatible with compute-spectrogram-feats""" wave_file = get_asset_path('kaldi_file.wav') waveform = load_wav(wave_file, normalize=False)[0].to(dtype=self.dtype, device=self.device) result = torchaudio.compliance.kaldi.spectrogram(waveform, **kwargs) command = ['compute-spectrogram-feats'] + convert_args(**kwargs) + ['scp:-', 'ark:-'] kaldi_result = run_kaldi(command, 'scp', wave_file) self.assert_equal(result, expected=kaldi_result, rtol=1e-4, atol=1e-8) @parameterized.expand(load_params('kaldi_test_mfcc_args.jsonl')) @skipIfNoExec('compute-mfcc-feats') def test_mfcc(self, kwargs): """mfcc should be numerically compatible with compute-mfcc-feats""" wave_file = get_asset_path('kaldi_file.wav') waveform = load_wav(wave_file, normalize=False)[0].to(dtype=self.dtype, device=self.device) result = torchaudio.compliance.kaldi.mfcc(waveform, **kwargs) command = ['compute-mfcc-feats'] + convert_args(**kwargs) + ['scp:-', 'ark:-'] kaldi_result = run_kaldi(command, 'scp', wave_file) self.assert_equal(result, expected=kaldi_result, rtol=1e-4, atol=1e-8)