python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import torch from torch import nn class Pooler(torch.nn.Module): def __init__( self, dim_in: int, projection_size: int, widening_factor: int = 4, use_projection_head: bool = True, #TODO: add to config use_simsiam_mlp: bool = False ): super().__init__() hidden_size = dim_in * widening_factor self.use_projection_head = use_projection_head if use_projection_head: if use_simsiam_mlp: self.mlp = nn.Sequential( nn.Linear(dim_in, hidden_size, bias=False), nn.BatchNorm1d(hidden_size), nn.ReLU(inplace=True), nn.Linear(hidden_size, hidden_size, bias=False), nn.BatchNorm1d(hidden_size), nn.ReLU(inplace=True), nn.Linear(hidden_size, projection_size, bias=False), nn.BatchNorm1d(projection_size, affine=False) ) else: self.mlp = nn.Sequential( nn.Linear(dim_in, hidden_size), nn.BatchNorm1d(hidden_size), nn.ReLU(inplace=True), nn.Linear(hidden_size, projection_size) ) def forward( self, last_hidden_state: torch.Tensor = None, ) -> torch.Tensor: batch_size, sequence_length, _ = last_hidden_state.size() attention_mask = torch.ones(batch_size, sequence_length) output_vectors = [] input_mask_expanded = attention_mask.unsqueeze(-1).expand( last_hidden_state.size()).float().to(last_hidden_state.device ) sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) output_vectors.append(sum_embeddings / sum_mask) output_vector = torch.cat(output_vectors, 0) if self.use_projection_head: return self.mlp(output_vector) # batch size, projection size else: return output_vector # batch size, hidden size
multimodal-self-distillation-main
src/models/components/pooler.py
from typing import Optional, List from dataclasses import dataclass import torch from torch import nn from src.models.components.preprocessor import PreprocessorType from src.models.components.masking import mask_hidden_states from src.models.components.outputs import ModelOutput from src.models.components.pooler import Pooler class MultiHeadAttention(nn.Module): """Multi-head attention""" def __init__( self, kv_dim: int, q_dim: int, *, qk_out_dim: Optional[int] = None, v_out_dim: Optional[int] = None, output_dim: Optional[int] = None, num_heads: int = 1, dropout: float = 0.0 ): """Constructor. Args: kv_dim: Size of input key and value vectors. q_dim: Size of input query vector. qk_out_dim: Size of Query and Key matrices last dimension. If None, it will be equal to q_dim. Defaults to None. v_out_dim: Size of Value matrix last dimension. If None, it will be equal to qk_out_dim. Defaults to None. output_dim: Size of output after the QKV attention. If none, it will be equal to v_out_dim. Defaults to None. num_heads: Number of heads. Defaults to 1. dropout: Dropout probability. Defaults to 0.0. """ super().__init__() if qk_out_dim is None: qk_out_dim = q_dim if v_out_dim is None: v_out_dim = qk_out_dim if output_dim is None: output_dim = v_out_dim self.num_heads = num_heads self.qk_head_dim = qk_out_dim // num_heads self.v_head_dim = v_out_dim // num_heads self.k = nn.Linear(kv_dim, qk_out_dim) self.q = nn.Linear(q_dim, qk_out_dim) self.v = nn.Linear(kv_dim, v_out_dim) self.projection = nn.Linear(v_out_dim, output_dim) self.dropout = nn.Dropout(dropout) self.scale = self.qk_head_dim ** -0.5 def transform_for_scores(self, x: torch.Tensor, head_dim: int): # (..., seq_len, dim) -> (..., n_heads, seq_len, head_dim) *dims, seq, hid = x.size() x = x.view(*dims, seq, self.num_heads, head_dim) return x.transpose(-3, -2) def forward( self, inputs_kv: torch.Tensor, inputs_q: torch.Tensor, attention_mask: Optional[torch.Tensor] = None ): """ Args: inputs_kv: Key/Value embeddings of shape (B, ..., M, C). inputs_q: Query embeddings of shape (B, ..., N, D) attention_mask: Tensor of shape (B, ..., N, M). Returns: Tensor of shape (B, ..., N, D) """ keys, queries, values = self.k(inputs_kv), self.q(inputs_q), self.v(inputs_kv) keys = self.transform_for_scores(keys, self.qk_head_dim) queries = self.transform_for_scores(queries, self.qk_head_dim) values = self.transform_for_scores(values, self.v_head_dim) attention = (queries @ keys.transpose(-2, -1) * self.scale) if attention_mask is not None: min_value = torch.finfo(attention.dtype).min extended_mask = (1 - attention_mask) * min_value attention = attention + extended_mask attention = attention.softmax(dim=-1) attention = self.dropout(attention) if attention_mask is not None: attention = attention.masked_fill(1 - attention_mask, value=0) weighted = attention @ values # (..., n_heads, seq_len, head_dim) -> (..., seq_len, hid) *dims, n_heads, seq, hid = weighted.size() weighted = weighted.transpose(-3, -2) weighted = weighted.reshape(*dims, seq, n_heads * hid) return self.projection(weighted) class FeedForward(nn.Module): """Transformer Feed-Forward network.""" def __init__( self, dim: int, widening_factor: int = 4, dropout: float = 0.0 ): """Constructor. Args: dim: Dimension of input tensor. widening_factor: Widening factor. Defaults to 4. dropout: Dropout probability. Defaults to 0. """ super().__init__() self.mlp = nn.Sequential( nn.Linear(dim, dim * widening_factor), nn.GELU(), nn.Linear(dim * widening_factor, dim), nn.Dropout(dropout) ) def forward(self, x: torch.Tensor): return self.mlp(x) class SelfAttention(nn.Module): """Self-attention module.""" def __init__( self, *, hidden_dim: int, qk_out_dim: Optional[int] = None, v_out_dim: Optional[int] = None, widening_factor: int = 4, num_heads: int = 1, dropout: float = 0.0, attention_dropout: float = 0.0 ): """Constructor. Args: hidden_dim: Dimension of input tensor. qk_out_dim: Size of Query and Key matrices last dimension. Defaults to None. v_out_dim: Size of Value matrix last dimension. Defaults to None. widening_factor: Feed-forward network widening factor. Defaults to 4. num_heads: Number of attention heads. Defaults to 1. dropout: Dropout probability. Defaults to 0. attention_dropout: Attention scores probability. Defaults to 0. """ super().__init__() self.layer_norm = nn.LayerNorm(hidden_dim) self.qkv_layer_norm = nn.LayerNorm(hidden_dim) self.attention = MultiHeadAttention( kv_dim=hidden_dim, q_dim=hidden_dim, qk_out_dim=qk_out_dim, v_out_dim=v_out_dim, output_dim=hidden_dim, num_heads=num_heads, dropout=attention_dropout ) self.dropout = nn.Dropout(dropout) self.mlp = FeedForward(hidden_dim, widening_factor, dropout) def forward( self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None ): """ Args: x: Input tensor of shape (B, ..., M, C). attention_mask: Input mask tensor of shape (B, ..., M, M). Mask values selected in [0, 1]. Defaults to None. """ x_norm = self.layer_norm(x) attention = self.attention( inputs_kv=x_norm, inputs_q=x_norm, attention_mask=attention_mask ) attention = self.dropout(attention) x = x + attention x = x + self.mlp(self.qkv_layer_norm(x)) return x class CrossAttention(nn.Module): """Cross-attention module.""" def __init__( self, *, kv_dim: int, q_dim: int, qk_out_dim: Optional[int] = None, v_out_dim: Optional[int] = None, widening_factor: int = 1, num_heads: int = 1, use_query_residual: bool = True, dropout: float = 0.0, attention_dropout: float = 0.0 ): """Constructor. Args: kv_dim: Dimension of key/value input tensor. q_dim: Dimension of query input tensor. qk_out_dim: Size of Query and Key matrices last dimension. Defaults to None. v_out_dim: Size of Value matrix last dimension. Defaults to None. widening_factor: Feed-forward network widening factor. Defaults to 4. num_heads: Number of attention heads. Defaults to 1. use_query_residual: Indicates whether to use query residual in cross-attention. Defaults to True. dropout: Dropout probability. Defaults to 0. attention_dropout: Attention scores probability. Defaults to 0. """ super().__init__() self.use_query_residual = use_query_residual self.kv_layer_norm = nn.LayerNorm(kv_dim) self.q_layer_norm = nn.LayerNorm(q_dim) self.qkv_layer_norm = nn.LayerNorm(q_dim) self.attention = MultiHeadAttention( kv_dim=kv_dim, q_dim=q_dim, qk_out_dim=qk_out_dim, v_out_dim=v_out_dim, output_dim=q_dim, num_heads=num_heads, dropout=attention_dropout ) self.dropout = nn.Dropout(dropout) self.mlp = FeedForward(q_dim, widening_factor, dropout) def forward( self, inputs_kv: torch.Tensor, inputs_q: torch.Tensor, attention_mask: Optional[torch.Tensor] = None ): """ Args: inputs_kv: Key/Value embeddings of shape (B, ..., M, C). inputs_q: Query embeddings of shape (B, ..., N, D) attention_mask: Tensor of shape (B, ..., N, M). Mask values selected in [0, 1]. Defaults to None. """ attention = self.attention( inputs_kv=self.kv_layer_norm(inputs_kv), inputs_q=self.q_layer_norm(inputs_q), attention_mask=attention_mask ) attention = self.dropout(attention) if self.use_query_residual: x = inputs_q + attention else: x = attention x = x + self.mlp(self.qkv_layer_norm(x)) return x class PerceiverBlock(nn.Module): """Basic Hierarchical Perceiver block. Consists of learned set of latent vectors (one for each group), cross-attention encoding layer and number of self-attention processing layers. All parameters of cross- and self-attention layers are shared. """ def __init__( self, input_dim: int, num_groups: int, num_latents: int, hidden_size: int, num_self_attn_layers: int = 1, num_cross_attn_heads: int = 1, num_self_attn_heads: int = 1, qk_out_dim: Optional[int] = None, v_out_dim: Optional[int] = None, cross_attn_widening_factor: int = 1, self_attn_widening_factor: int = 1, use_query_residual: bool = True, dropout: float = 0.0, cross_attn_dropout: float = 0.0, self_attn_dropout: float = 0.0 ): super().__init__() self.num_groups = num_groups self.hidden_size = hidden_size self.latents = nn.Parameter(torch.randn(num_groups, num_latents, hidden_size)) #? is this producing the latent arrary? self.cross_attention = CrossAttention( kv_dim=input_dim, q_dim=hidden_size, num_heads=num_cross_attn_heads, dropout=dropout, attention_dropout=cross_attn_dropout, widening_factor=cross_attn_widening_factor, use_query_residual=use_query_residual, qk_out_dim=qk_out_dim, v_out_dim=v_out_dim ) self.self_attention_layers = nn.ModuleList([ SelfAttention( hidden_dim=hidden_size, num_heads=num_self_attn_heads, dropout=dropout, attention_dropout=self_attn_dropout, widening_factor=self_attn_widening_factor, qk_out_dim=qk_out_dim, v_out_dim=v_out_dim ) for _ in range(num_self_attn_layers) ]) def forward(self, inputs, attention_mask=None): *dims, seq_len, input_dim = inputs.size() if attention_mask is not None: # (bs, seq_len) -> (bs, num_groups, group_len) attention_mask = attention_mask.view(*dims, self.num_groups, -1) # (bs, num_groups, group_len) -> (bs, num_groups, num_heads, q_seq_len, kv_seq_len) # num_groups and q_seq_len are broadcast # group_len is the same as kv_seq_len attention_mask = attention_mask[:, :, None, None, :] # (..., seq_len, hid_dim) -> (..., num_groups, group_len, hid_dim) inputs = inputs.view(*dims, self.num_groups, -1, input_dim) latents = self.cross_attention(inputs, self.latents, attention_mask) for self_attention in self.self_attention_layers: latents = self_attention(latents) # (.., num_groups, group_len, latent_dim) -> (.., seq_len, hid_dim) *_, latents_dim = latents.size() outputs = latents.view(*dims, -1, latents_dim) return outputs @dataclass class BlockConfig: num_groups: int num_self_attn_layers: int num_self_attn_heads: int num_latents: int hidden_size: int class HiP(nn.Module): def __init__( self, input_dim: int, block_configs: List[BlockConfig] ): super().__init__() layers = [] input_dim = input_dim for cfg in block_configs: layer = PerceiverBlock( input_dim=input_dim, num_groups=cfg.num_groups, num_self_attn_layers=cfg.num_self_attn_layers, num_self_attn_heads=cfg.num_self_attn_heads, num_latents=cfg.num_latents, hidden_size=cfg.hidden_size ) layers.append(layer) input_dim = cfg.hidden_size self.layers = nn.ModuleList(layers) def forward(self, x, attention_mask=None): hidden_states = [] for i, layer in enumerate(self.layers): x = layer(x, attention_mask) hidden_states.append(x) attention_mask = None return x, hidden_states class HiPModel(nn.Module): def __init__( self, preprocessor: PreprocessorType, hip: HiP, is_student: bool = False, is_training: bool = False, mask_time_prob: float = 0.05, mask_time_length: int = 10, use_projection_head: bool = True, use_simsiam_mlp: bool = False ): super().__init__() self.preprocessor = preprocessor self.hip = hip self.pooler = Pooler( dim_in=self.hip.layers[-1].hidden_size, projection_size=self.hip.layers[-1].hidden_size, use_projection_head=use_projection_head, use_simsiam_mlp=use_simsiam_mlp ) self.is_student = is_student self.is_training = is_training self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length def set_student_status(self, is_student: bool): self.is_student = is_student def forward(self, x, attention_mask=None, apply_mask=True): x, _, _ = self.preprocessor(x) batch_size, seq_length, _ = x.size() if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length))) #TODO move to CUDA if self.is_student and apply_mask: x = mask_hidden_states( hidden_states=x, attention_mask=attention_mask, mask_time_prob=self.mask_time_prob, mask_time_length=self.mask_time_length, training=self.is_training ) x, hidden_states = self.hip(x, attention_mask) pooler_output = self.pooler(x) return ModelOutput( pooler_output=pooler_output, last_hidden_state=x, hidden_states=hidden_states )
multimodal-self-distillation-main
src/models/components/hip.py
from typing import Tuple import torch from torch.nn import functional as F def k_nearest_neighbor( prediction_features: torch.Tensor, query_features: torch.Tensor = None, labels: torch.Tensor = None, num_classes: int = 1000, k: int = 20, chunking: bool = True, ) -> Tuple: probabilities = [] predictions = [] temperature = 0.1 num_classes = len(set(list(labels.numpy()))) if query_features is None: # means that similarity is computed between prediction features and itself query_features = prediction_features zero_diagonal = True trim_preds = False else: zero_diagonal = False trim_preds = True if chunking: num_chunks = 10 # this was 100 but had to be reduced to 10 to avoid OOM for local testing (was it really??) num_test_samples = query_features.size()[0] samples_per_chunk = num_test_samples // num_chunks for idx in range(0, num_test_samples, samples_per_chunk): query_chunk_features = query_features[ idx : min((idx + samples_per_chunk), num_test_samples), : ] chunk_labels = labels[ idx : min((idx + samples_per_chunk), num_test_samples) ] batch_size = chunk_labels.shape[0] _, _, _, _, probs, _, preds = knn_core( prediction_features, query_chunk_features, labels, k, temperature, zero_diagonal, num_classes, batch_size) probabilities.append(probs) predictions.append(preds) probabilities = torch.cat(probabilities, dim=0) predictions = torch.cat(predictions, dim=0) return probabilities, predictions, labels else: batch_size = labels.shape[0] return knn_core( prediction_features, query_features, labels, k, temperature, zero_diagonal, num_classes, batch_size) def knn_core(prediction_features, query_features, labels, k, temperature, zero_diagonal, num_classes, batch_size): # if k is larger than the number of prediction features, we just use all of them if k > len(prediction_features): k = len(prediction_features) similarity = F.normalize(query_features) @ F.normalize(prediction_features).t() similarity_ground_truth = torch.diag(similarity) torch.diagonal(similarity, 0).zero_() if zero_diagonal else None distances, indices = similarity.topk(k, largest=True, sorted=True) candidates = labels.view(1, -1).expand(batch_size, -1) retrieved_neighbors = torch.gather(candidates, 1, indices) retrieval_one_hot = torch.zeros(batch_size * k, num_classes) retrieval_one_hot.scatter_(1, retrieved_neighbors.view(-1, 1), 1) distances_transform = (distances / temperature).exp_() probs = torch.sum( torch.mul( retrieval_one_hot.view(batch_size, -1, num_classes), distances_transform.view(batch_size, -1, 1), ), 1, ) probs.div_(probs.sum(dim=1, keepdim=True)) probs_sorted, predictions = probs.sort(1, True) return similarity, similarity_ground_truth, distances, indices, probs, probs_sorted, predictions
multimodal-self-distillation-main
src/models/components/knn.py
import torch # output classes for bi-encoder and mm-encoder account for flexibility in case of additional byol or data2vec outputs class DispatcherOutput: def __init__( self, student_input, teacher_inputs, align_fuse, apply_mask: bool, labels: torch.Tensor, output_modalities: dict, metric: str, num_classes: int, ) -> None: self.student_input = student_input self.teacher_inputs = teacher_inputs self.align_fuse = align_fuse self.apply_mask = apply_mask self.labels = labels self.output_modalities = output_modalities self.metric = metric self.num_classes = num_classes def set_attributes(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) class ModelOutput: def __init__( self, pooler_output: torch.Tensor, last_hidden_state: torch.Tensor, hidden_states: torch.Tensor, attentions: torch.Tensor, cross_attentions: torch.Tensor ) -> None: self.pooler_output = pooler_output self.last_hidden_state = last_hidden_state self.hidden_states = hidden_states self.attentions = attentions self.cross_attentions = cross_attentions def set_attributes(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) class CriterionOutput: def __init__( self, total_loss: torch.Tensor, latent_loss: torch.Tensor = None, align_loss: torch.Tensor = None, ) -> None: self.total_loss = total_loss self.latent_loss = latent_loss self.align_loss = align_loss def set_attributes(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) class ForwardPassOutput: def __init__( self, student_output: ModelOutput = None, teacher_output: ModelOutput = None, align_fuse: dict = None, labels: torch.Tensor = None, output_modalities: dict = None, metric: str = None, num_classes: int = None, criterion_output: CriterionOutput = None, ) -> None: self.student_output = student_output self.teacher_output = teacher_output self.align_fuse = align_fuse self.labels = labels self.output_modalities = output_modalities self.metric = metric self.num_classes = num_classes, self.criterion_output = criterion_output def set_attributes(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value)
multimodal-self-distillation-main
src/models/components/outputs.py
import pytest import torch import triton import triton.language as tl from flashtriton.attention import attention @pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(6, 9, 1024, 64)]) @pytest.mark.parametrize('causal', [False, True]) def test_op(Z, H, N_CTX, D_HEAD, causal, dtype=torch.float16): torch.manual_seed(20) q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=0) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=0) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=0) try: from flash_attn.flash_attn_interface import flash_attn_qkvpacked_func as flash_attn_func FLASH_VER = 2 except BaseException: try: from flash_attn.flash_attn_interface import flash_attn_func FLASH_VER = 1 except BaseException: FLASH_VER = None HAS_FLASH = FLASH_VER is not None BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64 # vary seq length for fixed head and batch=4 configs = [triton.testing.Benchmark( x_names=['N_CTX'], x_vals=[2**i for i in range(10, 15)], line_arg='provider', line_vals=['triton'] + (['flash'] if HAS_FLASH else []), line_names=['Triton'] + ([f'Flash-{FLASH_VER}'] if HAS_FLASH else []), styles=[('red', '-'), ('blue', '-')], ylabel='ms', plot_name=f'fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-{mode}', args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'dtype': torch.float16, 'mode': mode, 'causal': causal} ) for mode in ['fwd', 'bwd'] for causal in [False, True]] @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, D_HEAD, causal, mode, provider="triton", dtype=torch.float16, device="cuda"): assert mode in ['fwd', 'bwd'] warmup = 25 rep = 100 if provider == "triton": q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == 'bwd': o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, D_HEAD), dtype=dtype, device=device, requires_grad=True) if FLASH_VER == 1: lengths = torch.full((BATCH,), fill_value=N_CTX, device=device) cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32) cu_seqlens[1:] = lengths.cumsum(0) qkv = qkv.reshape(BATCH * N_CTX, 3, H, D_HEAD) fn = lambda: flash_attn_func(qkv, cu_seqlens, 0., N_CTX, causal=causal) elif FLASH_VER == 2: fn = lambda: flash_attn_func(qkv, causal=causal) else: raise ValueError(f'unknown {FLASH_VER = }') if mode == 'bwd': o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2. * BATCH * H * N_CTX * N_CTX * D_HEAD total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == 'bwd': total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops / ms * 1e-9 # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path='.', print_data=True)
FlashAttention20Triton-main
benchmark_flash_triton.py
FlashAttention20Triton-main
benchmark_mpt.py
import time import torch import pytest from flashtriton.flash_torch import FlashAttention # Model Arguments args = { "dim": 512, "heads": 8, "dim_head": 64, "causal": False, "q_bucket_size": 512, "k_bucket_size": 1024, "parallel": False, "mixed_precision": False } # Initialize model model = FlashAttention(**args) model.cuda() # Generate some input data x = torch.randn(64, 1024, args['dim']).cuda() def test_flash_attention_forward(): # Start timing start_time = time.time() # Run method model(x) # End timing end_time = time.time() # Print execution time print(f'Execution time for sequence length 1024: {end_time - start_time} seconds') def test_flash_attention_forward_scaling(): # Modify sequence length and run benchmark x = torch.randn(64, 16000, args['dim']).cuda() # Start timing start_time = time.time() # Run method model(x) # End timing end_time = time.time() # Print execution time print(f'Execution time for sequence length 16000: {end_time - start_time} seconds') # Run tests if __name__ == "__main__": test_flash_attention_forward() test_flash_attention_forward_scaling()
FlashAttention20Triton-main
benchmark_flash_torch.py
import torch from flashtriton.attention import attention # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import torch import torch.nn.functional as F from torch import nn try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from .multiway_network import MultiwayWrapper from .xpos_relative_position import XPOS class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, is_first_step=False, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None and not is_first_step: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn, attn_weights q = torch.randn((4, 48, 22009, 64), dtype=torch.float16, device="cuda", requires_grad=True) k = torch.randn((4, 48, 22009, 64), dtype=torch.float16, device="cuda", requires_grad=True) v = torch.randn((4, 48, 22009, 64), dtype=torch.float16, device="cuda", requires_grad=True) casual=True sm_scale=1.3 #forward pass output = attention(q, k, v, casual, sm_scale) #backward pass result = output.backward(torch.ones_like(output)) print(f'Result: {result}')
FlashAttention20Triton-main
flashtriton/flash_mha.py
import pytest import torch import triton import triton.language as tl @triton.jit def max_fn(x, y): return tl.math.max(x, y) @triton.jit def _fwd_kernel( Q, K, V, sm_scale, L, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, IS_CAUSAL: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) qvk_offset = off_hz * stride_qh Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1) ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0) ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q = (q * qk_scale).to(tl.float16) # loop over k, v and update accumulator lo = 0 hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX for start_n in range(lo, hi, BLOCK_N): # -- load k, v -- k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) # -- compute qk --- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if IS_CAUSAL: qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant --- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(tl.float16), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new # update pointers K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) # write back l and m acc = acc / l_i[:, None] l_ptrs = L + off_hz * N_CTX + offs_m tl.store(l_ptrs, m_i + tl.math.log2(l_i)) # write back O O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) tl.store(O_block_ptr, acc.to(tl.float16)) @triton.jit def _bwd_preprocess( Out, DO, Delta, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr, ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_n = tl.arange(0, D_HEAD) # load o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) # compute delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_m, delta) @triton.jit def _bwd_kernel( Q, K, V, sm_scale, Out, DO, DQ, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, Z, H, N_CTX, num_block, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ): off_hz = tl.program_id(0) off_z = off_hz // H off_h = off_hz % H qk_scale = sm_scale * 1.44269504 # offset pointers for batch/head Q += off_z * stride_qz + off_h * stride_qh K += off_z * stride_qz + off_h * stride_qh V += off_z * stride_qz + off_h * stride_qh DO += off_z * stride_qz + off_h * stride_qh DQ += off_z * stride_qz + off_h * stride_qh DK += off_z * stride_qz + off_h * stride_qh DV += off_z * stride_qz + off_h * stride_qh for start_n in range(0, num_block): if CAUSAL: lo = start_n * BLOCK_M else: lo = 0 # initialize row/col offsets offs_qm = lo + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) offs_m = tl.arange(0, BLOCK_N) offs_k = tl.arange(0, BLOCK_DMODEL) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) # pointer to row-wise quantities in value-like data D_ptrs = D + off_hz * N_CTX l_ptrs = L + off_hz * N_CTX # initialize dv amd dk dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # k and v stay in SRAM throughout k = tl.load(k_ptrs) v = tl.load(v_ptrs) # loop over rows for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): offs_m_curr = start_m + offs_m # load q, k, v, do on-chip q = tl.load(q_ptrs) # recompute p = softmax(qk, dim=-1).T if CAUSAL: qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), float(0.), float("-inf")) else: qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, tl.trans(k)) qk *= qk_scale l_i = tl.load(l_ptrs + offs_m_curr) p = tl.math.exp2(qk - l_i[:, None]) # compute dv do = tl.load(do_ptrs) dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do) # compute dp = dot(v, do) Di = tl.load(D_ptrs + offs_m_curr) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp += tl.dot(do, tl.trans(v)) # compute ds = p * (dp - delta[:, None]) ds = p * dp * sm_scale # compute dk = dot(ds.T, q) dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q) # compute dq dq = tl.load(dq_ptrs) dq += tl.dot(ds.to(Q.dtype.element_ty), k) tl.store(dq_ptrs, dq) # increment pointers dq_ptrs += BLOCK_M * stride_qm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_qm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) empty = torch.empty(128, device="cuda") class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.empty_like(q) BLOCK_M = 128 BLOCK_N = 64 grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1) L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) num_warps = 4 if Lk <= 64 else 8 _fwd_kernel[grid]( q, k, v, sm_scale, L, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk, IS_CAUSAL=causal, num_warps=num_warps, num_stages=4) ctx.save_for_backward(q, k, v, o, L) ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk ctx.causal = causal return o @staticmethod def backward(ctx, do): BLOCK = 128 q, k, v, o, L = ctx.saved_tensors do = do.contiguous() dq = torch.zeros_like(q, dtype=torch.float32) dk = torch.empty_like(k) dv = torch.empty_like(v) delta = torch.empty_like(L) _bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )]( o, do, delta, BLOCK_M=BLOCK, D_HEAD=ctx.BLOCK_DMODEL, ) _bwd_kernel[(ctx.grid[1],)]( q, k, v, ctx.sm_scale, o, do, dq, dk, dv, L, delta, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), q.shape[0], q.shape[1], q.shape[2], ctx.grid[0], BLOCK_M=BLOCK, BLOCK_N=BLOCK, BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=8, CAUSAL=ctx.causal, num_stages=1, ) return dq, dk, dv, None, None attention = _attention.apply @pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(6, 9, 1024, 64)]) @pytest.mark.parametrize('causal', [False, True]) def test_op(Z, H, N_CTX, D_HEAD, causal, dtype=torch.float16): torch.manual_seed(20) q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=0) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=0) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=0) try: from flash_attn.flash_attn_interface import flash_attn_qkvpacked_func as flash_attn_func FLASH_VER = 2 except BaseException: try: from flash_attn.flash_attn_interface import flash_attn_func FLASH_VER = 1 except BaseException: FLASH_VER = None HAS_FLASH = FLASH_VER is not None BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64 # vary seq length for fixed head and batch=4 configs = [triton.testing.Benchmark( x_names=['N_CTX'], x_vals=[2**i for i in range(10, 15)], line_arg='provider', line_vals=['triton'] + (['flash'] if HAS_FLASH else []), line_names=['Triton'] + ([f'Flash-{FLASH_VER}'] if HAS_FLASH else []), styles=[('red', '-'), ('blue', '-')], ylabel='ms', plot_name=f'fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-{mode}', args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'dtype': torch.float16, 'mode': mode, 'causal': causal} ) for mode in ['fwd', 'bwd'] for causal in [False, True]] @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, D_HEAD, causal, mode, provider="triton", dtype=torch.float16, device="cuda"): assert mode in ['fwd', 'bwd'] warmup = 25 rep = 100 if provider == "triton": q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == 'bwd': o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, D_HEAD), dtype=dtype, device=device, requires_grad=True) if FLASH_VER == 1: lengths = torch.full((BATCH,), fill_value=N_CTX, device=device) cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32) cu_seqlens[1:] = lengths.cumsum(0) qkv = qkv.reshape(BATCH * N_CTX, 3, H, D_HEAD) fn = lambda: flash_attn_func(qkv, cu_seqlens, 0., N_CTX, causal=causal) elif FLASH_VER == 2: fn = lambda: flash_attn_func(qkv, causal=causal) else: raise ValueError(f'unknown {FLASH_VER = }') if mode == 'bwd': o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2. * BATCH * H * N_CTX * N_CTX * D_HEAD total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == 'bwd': total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops / ms * 1e-9 # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path='.', print_data=True)
FlashAttention20Triton-main
flashtriton/attention.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Attention layers.""" import math import warnings from typing import Optional import torch import torch.nn as nn from einops import rearrange from packaging import version from torch import nn from llmfoundry.models.layers.fc import FC_CLASS_REGISTRY from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool): # disable causal when it is not needed # necessary for flash & triton for generation with kv_cache if original_is_causal and num_query_tokens != num_key_tokens: if num_query_tokens != 1: raise NotImplementedError( 'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.' ) else: return False return original_is_causal def scaled_multihead_dot_product_attention( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) kv_n_heads = 1 if multiquery else n_heads k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) if past_key_value is not None: # attn_impl: flash & triton use kernels which expect input shape [b, s, h, d_head]. # kv_cache is therefore stored using that shape. # attn_impl: torch stores the kv_cache in the ordering which is most advantageous # for its attn computation ie # keys are stored as tensors with shape [b, h, d_head, s] and # values are stored as tensors with shape [b, h, s, d_head] if len(past_key_value) != 0: k = torch.cat([past_key_value[0], k], dim=3) v = torch.cat([past_key_value[1], v], dim=2) past_key_value = (k, v) b, _, s_q, d = q.shape s_k = k.size(-1) if softmax_scale is None: softmax_scale = 1 / math.sqrt(d) attn_weight = q.matmul(k) * softmax_scale if attn_bias is not None: # clamp to 0 necessary for torch 2.0 compile() _s_q = max(0, attn_bias.size(2) - s_q) _s_k = max(0, attn_bias.size(3) - s_k) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if (attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): raise RuntimeError( f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.' ) attn_weight = attn_weight + attn_bias min_val = torch.finfo(q.dtype).min if key_padding_mask is not None: if attn_bias is not None: warnings.warn( 'Propogating key_padding_mask to the attention module ' +\ 'and applying it within the attention module can cause ' +\ 'unneccessary computation/memory usage. Consider integrating ' +\ 'into attn_bias once and passing that to each attention ' +\ 'module instead.' ) attn_weight = attn_weight.masked_fill( ~key_padding_mask.view((b, 1, 1, s_k)), min_val) if is_causal and (not q.size(2) == 1): s = max(s_q, s_k) causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32) causal_mask = causal_mask.tril() causal_mask = causal_mask.to(torch.bool) causal_mask = ~causal_mask causal_mask = causal_mask[-s_q:, -s_k:] attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) attn_weight = torch.softmax(attn_weight, dim=-1) if dropout_p: attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) out = attn_weight.to(v.dtype).matmul(v) out = rearrange(out, 'b h s d -> b s (h d)') if needs_weights: return out, attn_weight, past_key_value return out, None, past_key_value def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): for tensor in tensors: if tensor.dtype not in valid_dtypes: raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.') if not tensor.is_cuda: raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).') def flash_attn_fn( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from flash_attn import bert_padding, flash_attn_interface # type: ignore # yapf: disable # isort: skip except: raise RuntimeError('Please install flash-attn==1.0.3.post0') check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: # clamp to 0 necessary for torch 2.0 compile() _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if attn_bias is not None: raise NotImplementedError(f'attn_bias not implemented for flash attn.') batch_size, seqlen = query.shape[:2] if key_padding_mask is None: key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) query_padding_mask = key_padding_mask[:, -query.size(1):] query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input( query, query_padding_mask) query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input( key, key_padding_mask) key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask) value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) if multiquery: # Expanding a tensor does not allocate new memory, but only creates a new # view on the existing tensor where a dimension of size one is expanded # to a larger size by setting the stride to 0. # - pytorch docs # # hopefully the kernels can utilize this and we're jot just wasting BW here key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) output_unpad = flash_attn_interface.flash_attn_unpadded_func( query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) output = bert_padding.pad_input( rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) return output, None, past_key_value def triton_flash_attn_fn( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from llmfoundry.models.layers.flash_attn_triton import flash_attn_func except: _installed = False if version.parse(torch.__version__) < version.parse('2.0.0'): _installed = True # if torch1.13.1 revert to using triton flash attn from HazyResearch # with flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202 try: from flash_attn.flash_attn_triton import flash_attn_func except: _installed = False if not _installed: # installing triton-pre-mlir works for both torch1.13.1 and torch2.0+ # default recommendation is to install this variant raise RuntimeError( 'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' 'and `pip install .[gpu]` if installing from llm-foundry source or ' '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' 'Note: (1) requires you have CMake and PyTorch already installed.' ) check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: # clamp to 0 necessary for torch 2.0 compile() _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if dropout_p: raise NotImplementedError( f'Dropout not implemented for attn_impl: triton.') if needs_weights: raise NotImplementedError( f'attn_impl: triton cannot return attn weights.') if key_padding_mask is not None: warnings.warn( 'Propagating key_padding_mask to the attention module ' +\ 'and applying it within the attention module can cause ' +\ 'unnecessary computation/memory usage. Consider integrating ' +\ 'into attn_bias once and passing that to each attention ' +\ 'module instead.' ) b_size, s_k = key_padding_mask.shape[:2] if attn_bias is None: attn_bias = query.new_zeros(b_size, 1, 1, s_k) attn_bias = attn_bias.masked_fill( ~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) if multiquery: # necessary to repeat instead of expand tensor because # output contains NaN in edge cases such as with head dimension = 8 key = key.repeat(1, 1, n_heads, 1) value = value.repeat(1, 1, n_heads, 1) reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) output = attn_output.view(*attn_output.shape[:2], -1) return output, None, past_key_value class MultiheadAttention(nn.Module): """Multi-head self attention. Using torch or triton attention implemetation enables user to also use additive bias. """ def __init__( self, d_model: int, n_heads: int, attn_impl: str = 'triton', clip_qkv: Optional[float] = None, qk_ln: bool = False, softmax_scale: Optional[float] = None, attn_pdrop: float = 0.0, norm_type: str = 'low_precision_layernorm', fc_type: str = 'torch', verbose: int = 0, device: Optional[str] = None, ): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) self.attn_dropout_p = attn_pdrop fc_kwargs = {} if fc_type != 'te': fc_kwargs['device'] = device self.Wqkv = FC_CLASS_REGISTRY[fc_type]( self.d_model, 3 * self.d_model, **fc_kwargs, ) # for param init fn; enables shape based init of fused layers fuse_splits = (d_model, 2 * d_model) self.Wqkv._fused = (0, fuse_splits) # type: ignore if self.qk_ln: norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] self.q_ln = norm_class(self.d_model, device=device) self.k_ln = norm_class(self.d_model, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( 'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ 'it uses more memory. When training larger models this can trigger ' +\ 'alloc retries which hurts performance. If encountered, we recommend ' +\ 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' ) elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( 'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ 'we recommend using `attn_impl: triton`.' ) else: raise ValueError(f'{attn_impl=} is an invalid setting.') self.out_proj = FC_CLASS_REGISTRY[fc_type]( self.d_model, self.d_model, **fc_kwargs, ) self.out_proj._is_residual = True # type: ignore def forward( self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False, ): qkv = self.Wqkv(x) if self.clip_qkv: qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.chunk(3, dim=2) key_padding_mask = attention_mask if self.qk_ln: # Applying layernorm to qk dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) context, attn_weights, past_key_value = self.attn_fn( query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, ) return self.out_proj(context), attn_weights, past_key_value class MultiQueryAttention(nn.Module): """Multi-Query self attention. Using torch or triton attention implemetation enables user to also use additive bias. """ def __init__( self, d_model: int, n_heads: int, attn_impl: str = 'triton', clip_qkv: Optional[float] = None, qk_ln: bool = False, softmax_scale: Optional[float] = None, attn_pdrop: float = 0.0, norm_type: str = 'low_precision_layernorm', fc_type: str = 'torch', verbose: int = 0, device: Optional[str] = None, ): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.head_dim = d_model // n_heads self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.head_dim) self.attn_dropout_p = attn_pdrop fc_kwargs = {} if fc_type != 'te': fc_kwargs['device'] = device # NOTE: if we ever want to make attn TensorParallel, I'm pretty sure we'll # want to split Wqkv into Wq and Wkv where Wq can be TensorParallel but # Wkv shouldn't be TensorParallel # - vchiley self.Wqkv = FC_CLASS_REGISTRY[fc_type]( d_model, d_model + 2 * self.head_dim, **fc_kwargs, ) # for param init fn; enables shape based init of fused layers fuse_splits = (d_model, d_model + self.head_dim) self.Wqkv._fused = (0, fuse_splits) # type: ignore if self.qk_ln: norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] self.q_ln = norm_class(d_model, device=device) self.k_ln = norm_class(self.head_dim, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( 'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ 'it uses more memory. When training larger models this can trigger ' +\ 'alloc retries which hurts performance. If encountered, we recommend ' +\ 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' ) elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( 'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ 'we recommend using `attn_impl: triton`.' ) else: raise ValueError(f'{attn_impl=} is an invalid setting.') self.out_proj = FC_CLASS_REGISTRY[fc_type]( self.d_model, self.d_model, **fc_kwargs, ) self.out_proj._is_residual = True # type: ignore def forward( self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False, ): qkv = self.Wqkv(x) if self.clip_qkv: qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.split( [self.d_model, self.head_dim, self.head_dim], dim=2) key_padding_mask = attention_mask if self.qk_ln: # Applying layernorm to qk dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) context, attn_weights, past_key_value = self.attn_fn( query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True, ) return self.out_proj(context), attn_weights, past_key_value def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id): if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: if (prefix_lm or not causal) or use_sequence_id: return (1, n_heads, seq_len, seq_len) return (1, n_heads, 1, seq_len) elif prefix_lm or use_sequence_id: return (1, 1, seq_len, seq_len) return None else: raise ValueError(f'{attn_impl=} is an invalid setting.') def build_attn_bias( attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8, ): if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: # in place add alibi to attn bias device, dtype = attn_bias.device, attn_bias.dtype attn_bias = attn_bias.add( build_alibi_bias( n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype, )) return attn_bias else: raise ValueError(f'{attn_impl=} is an invalid setting.') def gen_slopes(n_heads, alibi_bias_max=8, device=None): _n_heads = 2**math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) m = m.mul(alibi_bias_max / _n_heads) slopes = (1. / torch.pow(2, m)) if _n_heads != n_heads: # if n_heads is not a power of two, # Huggingface and FasterTransformer calculate slopes normally, # then return this strided concatenation of slopes slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] return slopes.view(1, n_heads, 1, 1) def build_alibi_bias( n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None, ): alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) if full: # generate 1 x Heads x SeqLen x SeqLen alibi bias mask # otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size) alibi_bias = alibi_bias - torch.arange( 1 - seq_len, 1, dtype=torch.int32, device=device).view( 1, 1, seq_len, 1) alibi_bias = alibi_bias.abs().mul(-1) slopes = gen_slopes(n_heads, alibi_bias_max, device=device) alibi_bias = alibi_bias * slopes return alibi_bias.to(dtype=dtype) ATTN_CLASS_REGISTRY = { 'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, }
FlashAttention20Triton-main
flashtriton/flash_mpt.py
import math import torch from functools import partial from torch import nn, einsum from torch.autograd.function import Function from einops import rearrange from torch.jit import fork, wait from torch.cuda.amp import autocast, GradScaler from torch.nn import DataParallel # constants EPSILON = 1e-10 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # flash attention forwards and backwards # flash attention v1 - https://arxiv.org/abs/2205.14135 # flash attention v2 - https://tridao.me/publications/flash2/flash2.pdf class FlashAttentionFunction(Function): @staticmethod @torch.no_grad() def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): """ Algorithm 1 in the v2 paper """ device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) o = torch.zeros_like(q) all_row_sums = torch.zeros((*q.shape[:-1], 1), device = device) all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device = device) scale = (q.shape[-1] ** -0.5) num_row_tiles = math.ceil(q.shape[-2] / q_bucket_size) num_col_tiles = math.ceil(k.shape[-2] / k_bucket_size) if exists(mask) and mask.ndim == 2: mask = rearrange(mask, 'b n -> b 1 1 n') if not exists(mask): col_masks = (None,) * num_col_tiles mask = (col_masks,) * num_row_tiles else: mask = ((mask,) * num_row_tiles) if mask.shape[-2] == 1 else mask.split(q_bucket_size, dim = -2) mask = tuple(((row_mask,) * num_col_tiles) if row_mask.shape[-1] == 1 else row_mask.split(k_bucket_size, dim = -1) for row_mask in mask) row_splits = zip( q.split(q_bucket_size, dim = -2), o.split(q_bucket_size, dim = -2), mask, all_row_sums.split(q_bucket_size, dim = -2), all_row_maxes.split(q_bucket_size, dim = -2), ) for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim = -2), v.split(k_bucket_size, dim = -2), row_mask ) for k_ind, (kc, vc, col_mask) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if exists(col_mask): attn_weights.masked_fill_(~col_mask, max_neg_value) if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) block_row_maxes = attn_weights.amax(dim = -1, keepdims = True) new_row_maxes = torch.maximum(block_row_maxes, row_maxes) exp_weights = torch.exp(attn_weights - new_row_maxes) if exists(col_mask): exp_weights.masked_fill_(~col_mask, 0.) block_row_sums = exp_weights.sum(dim = -1, keepdims = True).clamp(min = EPSILON) exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) new_row_sums = exp_row_max_diff * row_sums + block_row_sums oc.mul_(exp_row_max_diff).add_(exp_values) row_maxes.copy_(new_row_maxes) row_sums.copy_(new_row_sums) oc.div_(row_sums) lse = all_row_sums.log() + all_row_maxes ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) ctx.save_for_backward(q, k, v, o, lse) return o @staticmethod @torch.no_grad() def backward(ctx, do): """ Algorithm 2 in the v2 paper """ causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args q, k, v, o, lse = ctx.saved_tensors device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) dq = torch.zeros_like(q) dk = torch.zeros_like(k) dv = torch.zeros_like(v) row_splits = zip( q.split(q_bucket_size, dim = -2), o.split(q_bucket_size, dim = -2), do.split(q_bucket_size, dim = -2), mask, lse.split(q_bucket_size, dim = -2), dq.split(q_bucket_size, dim = -2) ) for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim = -2), v.split(k_bucket_size, dim = -2), dk.split(k_bucket_size, dim = -2), dv.split(k_bucket_size, dim = -2), row_mask ) for k_ind, (kc, vc, dkc, dvc, col_mask) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) p = torch.exp(attn_weights - lsec) if exists(col_mask): p.masked_fill_(~col_mask, 0.) dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) dp = einsum('... i d, ... j d -> ... i j', doc, vc) D = (doc * oc).sum(dim = -1, keepdims = True) ds = p * scale * (dp - D) dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) dqc.add_(dq_chunk) dkc.add_(dk_chunk) dvc.add_(dv_chunk) return dq, dk, dv, None, None, None, None # main class # just flash attention in plain pytorch # it will be way slower than implementing it in CUDA # for tinkering and educational purposes class FlashAttention(nn.Module): def __init__( self, *, dim, heads = 8, dim_head = 64, causal = False, q_bucket_size = 512, k_bucket_size = 1024, parallel = False, mixed_precision = False ): super().__init__() self.heads = heads self.causal = causal self.parallel = parallel self.mixed_precision = mixed_precision inner_dim = heads * dim_head self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) # memory efficient attention related parameters # can be overriden on forward self.q_bucket_size = q_bucket_size self.k_bucket_size = k_bucket_size if self.parallel: self.model = DataParallel(self) if self.mixed_precision: self.scaler = GradScaler() def forward( self, x, context = None, mask = None, q_bucket_size = None, k_bucket_size = None, ): q_bucket_size = default(q_bucket_size, self.q_bucket_size) k_bucket_size = default(k_bucket_size, self.k_bucket_size) h = self.heads context = default(context, x) q = self.to_q(x) k, v = self.to_kv(context).chunk(2, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) if self.parallel: # Split the input data into chunks and move each chunk to the correct GPU num_gpus = torch.cuda.device_count() x_chunks = x.split(x.size(0) // num_gpus) x_chunks = [chunk.to(f'cuda:{i}') for i, chunk in enumerate(x_chunks)] q = x_chunks if self.mixed_precision: # Use autocast to allow operations to run in lower precision with autocast(): out = FlashAttentionFunction.apply(q, k, v, mask, self.causal, q_bucket_size, k_bucket_size) else: out = FlashAttentionFunction.apply(q, k, v, mask, self.causal, q_bucket_size, k_bucket_size) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out)
FlashAttention20Triton-main
flashtriton/flash_torch.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import math from dataclasses import dataclass from typing import Any, Optional, Tuple import fairscale.nn.model_parallel.initialize as fs_init import torch import torch.nn.functional as F from fairscale.nn.model_parallel.layers import ( ColumnParallelLinear, ParallelEmbedding, RowParallelLinear, ) from torch import nn @dataclass class ModelArgs: dim: int = 4096 n_layers: int = 32 n_heads: int = 32 n_kv_heads: Optional[int] = None vocab_size: int = -1 # defined later by tokenizer multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 ffn_dim_multiplier: Optional[float] = None norm_eps: float = 1e-5 max_batch_size: int = 32 max_seq_len: int = 2048 class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) # type: ignore freqs = torch.outer(t, freqs).float() # type: ignore freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" bs, slen, n_kv_heads, head_dim = x.shape if n_rep == 1: return x return ( x[:, :, :, None, :] .expand(bs, slen, n_kv_heads, n_rep, head_dim) .reshape(bs, slen, n_kv_heads * n_rep, head_dim) ) class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads model_parallel_size = fs_init.get_model_parallel_world_size() self.n_local_heads = args.n_heads // model_parallel_size self.n_local_kv_heads = self.n_kv_heads // model_parallel_size self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.dim // args.n_heads self.wq = ColumnParallelLinear( args.dim, args.n_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wk = ColumnParallelLinear( args.dim, self.n_kv_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wv = ColumnParallelLinear( args.dim, self.n_kv_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wo = RowParallelLinear( args.n_heads * self.head_dim, args.dim, bias=False, input_is_parallel=True, init_method=lambda x: x, ) self.cache_k = torch.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ).cuda() self.cache_v = torch.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ).cuda() def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) self.cache_k = self.cache_k.to(xq) self.cache_v = self.cache_v.to(xq) self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] # repeat k/v heads if n_kv_heads < n_heads keys = repeat_kv(keys, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) values = repeat_kv(values, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen) scores = F.softmax(scores.float(), dim=-1).type_as(xq) output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) return self.wo(output)
FlashAttention20Triton-main
flashtriton/lama.py
from setuptools import find_packages, setup setup( name='gato-tf', version='0.0.2', description='Unofficial Gato: A Generalist Agent', url='https://github.com/OrigamiDream/gato.git', author='OrigamiDream', author_email='[email protected]', license='MIT', packages=find_packages(), install_requires=[ 'tensorflow>=2.11', ], keywords=[ 'deep learning', 'gato', 'tensorflow', 'generalist agent' ] )
GATO-by-Deepmind-main
setup.py
import copy from typing import Dict, Any class GatoConfig: @staticmethod def large(): return GatoConfig(num_transformer_blocks=24, num_attention_heads=16, layer_width=2048, feedforward_hidden_size=8192, key_value_size=128) @staticmethod def baseline(): return GatoConfig(num_transformer_blocks=12, num_attention_heads=12, layer_width=1536, feedforward_hidden_size=6144, key_value_size=128) @staticmethod def small(): return GatoConfig(num_transformer_blocks=8, num_attention_heads=24, layer_width=768, feedforward_hidden_size=3072, key_value_size=32) def __init__(self, **kwargs): self.input_dim = kwargs.pop('input_dim', 768) self.img_patch_size = kwargs.pop('img_patch_size', 16) # Section 2.3. Training self.token_sequence_length = kwargs.pop('token_sequence_length', 1024) # Section 2.1. Tokenization # Text - SentencePiece self.vocabulary_size = kwargs.pop('vocabulary_size', 32000) # Discrete values self.actions_size = kwargs.pop('actions_size', 1024) # Continuous values self.continuous_values_size = kwargs.pop('continuous_values_size', 1024) # Appendix C.1. Transformer Hyperparameters self.num_transformer_blocks = kwargs.pop('num_transformer_blocks', 8) self.num_attention_heads = kwargs.pop('num_attention_heads', 24) self.layer_width = kwargs.pop('layer_width', 768) self.feedforward_hidden_size = kwargs.pop('feedforward_hidden_size', 3072) self.key_value_size = kwargs.pop('key_value_size', 32) # Appendix E. Regularization self.dropout_rate = kwargs.pop('dropout_rate', 0.1) # Appendix C.2. Embedding Function self.num_group_norm_groups = kwargs.pop('num_group_norm_groups', 32) # Appendix C.3. Position Encodings > Patch Position Encodings self.discretize_depth = kwargs.pop('discretize_depth', 128) # Appendix C.3. Position Encodings > Local Observation Position Encodings self.local_position_encoding_size = kwargs.pop('local_position_encoding_size', 512) @property def embedding_input_size(self): return self.vocabulary_size + self.continuous_values_size + self.actions_size + 1 @property def output_target_size(self): return self.vocabulary_size + self.actions_size def to_dict(self) -> Dict[str, Any]: output = copy.deepcopy(self.__dict__) return output @classmethod def from_dict(cls, config_dict: Dict[str, Any]) -> "GatoConfig": config = cls(**config_dict) return config
GATO-by-Deepmind-main
gato/config.py
from gato.config import GatoConfig from gato.models import Gato
GATO-by-Deepmind-main
gato/__init__.py
import tensorflow as tf from tensorflow.keras import layers, models from gato import GatoConfig from typing import Dict, Any, Union def _randomized_positions(from_v, to_v): pos = tf.random.uniform(from_v.shape, minval=0, maxval=1, dtype=tf.float32) pos = pos * tf.cast(to_v - from_v, dtype=tf.float32) pos = tf.cast(pos, dtype=tf.int32) return pos def _rounded_mean_positions(from_v, to_v): pos = tf.cast(from_v + to_v, tf.float32) pos = pos / 2 pos = tf.round(pos) return pos def _broadcast(row_pos, col_pos, row_ones, col_ones): # broadcast (5,) to (20,) with column-axis row_pos = tf.expand_dims(row_pos, 1) row_pos = tf.matmul(row_pos, col_ones, transpose_b=True) row_pos = tf.reshape(row_pos, (-1,)) row_pos = tf.stop_gradient(row_pos) # broadcast (4,) to (20,) with row-axis col_pos = tf.expand_dims(col_pos, 1) col_pos = tf.matmul(row_ones, col_pos, transpose_b=True) col_pos = tf.reshape(col_pos, (-1,)) col_pos = tf.stop_gradient(col_pos) return row_pos, col_pos class PatchPositionEncoding(layers.Layer): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable=True, name=None, *args, **kwargs): """ Appendix C.3. Position Encodings """ super(PatchPositionEncoding, self).__init__(trainable=trainable, name=name, *args, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.embedding_dim = self.config.layer_width self.discretize_depth = self.config.discretize_depth self.patch_size = self.config.img_patch_size self.row_embedding = layers.Embedding(self.discretize_depth, self.embedding_dim, name='row_embedding') self.col_embedding = layers.Embedding(self.discretize_depth, self.embedding_dim, name='col_embedding') def _discretize(self, pos): return tf.round(pos * self.discretize_depth) def _discretize_interval(self, interval): pos_from, pos_to = interval return self._discretize(pos_from), self._discretize(pos_to) def call(self, inputs, *args, **kwargs): # Appendix C.3. Position Encodings; Figure 15 | Patch position encodings. training = kwargs['training'] if 'training' in kwargs else False # input_ids must already be embedded by the resnet embedding function. # row_pos and col_pos must be intervals which is tuple of (pos_from, pos_to) # row_pos and col_pos must be normalized between [0, 1] to show their relativity. input_ids, (row_pos, col_pos) = inputs row_pos_from, row_pos_to = self._discretize_interval(row_pos) col_pos_from, col_pos_to = self._discretize_interval(col_pos) if training: # > During training a random index is uniformly sampled from the quantized interval. row_pos = row_pos_from + _randomized_positions(row_pos_from, row_pos_to) col_pos = col_pos_from + _randomized_positions(col_pos_from, col_pos_to) else: # > During evaluation we deterministically take the (rounded) mean of the interval. row_pos = _rounded_mean_positions(row_pos_from, row_pos_to) col_pos = _rounded_mean_positions(col_pos_from, col_pos_to) col_pos = tf.cast(col_pos, dtype=tf.int32) row_pos = tf.cast(row_pos, dtype=tf.int32) # > Once row and column position encoding are retrieved from the embedding table, # > they are added onto the token embedding produced by the resnet embedding function. return input_ids + self.row_embedding(row_pos) + self.col_embedding(col_pos) def get_config(self): config = super(PatchPositionEncoding, self).get_config() config.update({ 'config': self.config.to_dict(), }) return config class ResidualUnit(layers.Layer): def __init__(self, num_groups: int, filters: int, trainable=True, name=None, *args, **kwargs): super(ResidualUnit, self).__init__(trainable=trainable, name=name, *args, **kwargs) self.num_groups = num_groups self.filters = filters self.gn1 = self.gn2 = None self.conv1 = self.conv2 = None self.conv_proj = self.gn_proj = None def build(self, input_shape): self.gn1 = layers.GroupNormalization(groups=self.num_groups, name='gn1') self.gn2 = layers.GroupNormalization(groups=self.num_groups, name='gn2') self.conv1 = layers.Conv2D(filters=self.filters // 2, kernel_size=(3, 3), strides=(1, 1), use_bias=False, padding='same', name='conv1') self.conv2 = layers.Conv2D(filters=self.filters, kernel_size=(3, 3), strides=(2, 2), use_bias=False, padding='same', name='conv2') self.conv_proj = layers.Conv2D(filters=self.filters, kernel_size=(1, 1), strides=(2, 2), use_bias=False, padding='same', name='conv_proj') self.gn_proj = layers.GroupNormalization(groups=self.num_groups, name='gn_proj') def call(self, inputs, *args, **kwargs): # Supplementary Material B. Agent Data Tokenization Details; Figure 16 # > This block uses the v2 ResNet architecture, GroupNorm (instead of LayerNorm) normalization, # > and GELU (instead RELU) activation functions. x = inputs residual = self.conv_proj(self.gn_proj(x)) x = tf.nn.gelu(self.gn1(x)) x = self.conv1(x) x = tf.nn.gelu(self.gn2(x)) x = self.conv2(x) return x + residual class ResidualEmbedding(layers.Layer): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable=True, name=None, *args, **kwargs): """ Appendix C.2. Embedding Function """ super(ResidualEmbedding, self).__init__(trainable=trainable, name=name, *args, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.root_conv = self.conv_proj = None self.residual_units = None self.num_patches = None def build(self, input_shape): if self.config.input_dim != self.config.layer_width: self.conv_proj = layers.Conv2D(filters=self.config.layer_width, kernel_size=(1, 1), strides=(1, 1), padding='same', use_bias=False, name='conv_proj') self.root_conv = models.Sequential([ layers.Conv2D(filters=96, kernel_size=(7, 7), strides=(2, 2), use_bias=False, padding='same', name='conv_root'), layers.GroupNormalization(groups=self.config.num_group_norm_groups, name='gn_root'), layers.Activation('gelu', name='act_root') ]) self.residual_units = [ResidualUnit(num_groups=self.config.num_group_norm_groups, filters=96 * 2 ** (i + 1), name='residual_unit_{}'.format(i + 1)) for i in range(3)] def call(self, inputs, *args, **kwargs): # Section 2.1 Tokenization. x = self.root_conv(inputs) # NOTE: Page 3-4, Section 2.2 Embedding input tokens and setting output targets # > Tokens belonging to image patches for any time-step are embedded # > using a single ResNet block to obtain a vector per patch. # I don't think that transforming single 16x16 patch into feature map # with depth 768 at once does not give advantages coming from inductive bias. # This is currently discussing in issue #2 for block in self.residual_units: x = block(x) if self.conv_proj is not None: x = self.conv_proj(x) x = tf.reshape(x, shape=(-1, inputs.shape[1], self.config.layer_width)) return x def get_config(self): config = super(ResidualEmbedding, self).get_config() config.update({ 'config': self.config.to_dict() }) return config class LocalPositionEncoding(layers.Layer): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable=True, name=None, *args, **kwargs): """ Appendix C.3. Position Encodings > Local Observation Position Encodings """ super(LocalPositionEncoding, self).__init__(trainable=trainable, name=name, *args, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.embedding = None def build(self, input_shape): self.embedding = layers.Embedding(self.config.token_sequence_length, self.config.layer_width) self.built = True def call(self, inputs, *args, **kwargs): # Appendix C.3. Position Encodings > Local Observation Position Encodings; Figure 18 | Local position encodings. # > Note that no position encodings are added to action tokens. # So I added `obs_mask` to mask the action token into zeros. obs_pos, obs_mask = inputs embed = self.embedding(obs_pos) ones = tf.ones((embed.shape[0], 1, self.config.layer_width), dtype=tf.float32) obs_mask = tf.cast(obs_mask, dtype=tf.float32) obs_mask = tf.matmul(obs_mask, ones, transpose_a=True) return embed * obs_mask def get_config(self): config = super(LocalPositionEncoding, self).get_config() config.update({ 'config': self.config.to_dict() }) return config class DiscreteEmbedding(layers.Layer): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable=True, name=None, *args, **kwargs): super(DiscreteEmbedding, self).__init__(trainable=trainable, name=name, *args, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.embedding = None def build(self, input_shape): # Appendix C.1. Transformer Hyperparameters # Shared Embedding with tf.name_scope('discrete_shared_embedding'): self.embedding = layers.Embedding(self.config.embedding_input_size, self.config.layer_width, name='discrete_embedding') self.built = True def call(self, inputs, *args, **kwargs): return self.embedding(inputs) def get_config(self): config = super(DiscreteEmbedding, self).get_config() config.update({ 'config': self.config.to_dict() }) return config
GATO-by-Deepmind-main
gato/models/embedding.py
import tensorflow as tf from gato.models.transformer import TransformerBlock from gato.models.embedding import PatchPositionEncoding, ResidualEmbedding, LocalPositionEncoding, DiscreteEmbedding from gato.models.tokenizers import ContinuousValueTokenizer from tensorflow.keras import models from gato import GatoConfig from typing import Dict, Any, Union class Gato(models.Model): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable: bool = True, name: str = 'Gato', **kwargs): super(Gato, self).__init__(trainable=trainable, name=name, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.image_embedding = PatchEmbedding(config, trainable=trainable, name='ImagePatchEmbedding') self.discrete_embedding = DiscreteEmbedding(config, trainable=trainable, name='DiscreteEmbedding') self.continuous_encoding = ContinuousValueTokenizer(config, name='ContinuousValueEncoding') self.transformer = Transformer(config, trainable=trainable, name='Transformers') self.local_pos_encoding = LocalPositionEncoding(config, trainable=trainable, name='LocalPositionEncoding') def call(self, inputs, training=None, mask=None): # input_ids with (B, L, 768) # encoding with (B, L) or (B,) # row_pos and col_pos with tuple of (pos_from, pos_to) # obs_pos and obs_mask with (B, L) or (B,) input_ids, (encoding, row_pos, col_pos), (obs_pos, obs_mask) = inputs # Encoding flags for embed masks # 0 - image # 1 - continuous # 2 - discrete (actions, texts) encoding = tf.one_hot(encoding, depth=3, dtype=tf.float32) ones = tf.ones((input_ids.shape[0], 1, self.config.layer_width), dtype=tf.float32) image_embed = self.image_embedding((input_ids, (row_pos, col_pos)), training=training) image_embed *= tf.matmul(encoding[..., 0], ones, transpose_a=True) # image patch masking # continuous value takes from first value of input_ids continuous_embed = self.continuous_encoding(input_ids[..., 0]) continuous_embed = self.discrete_embedding(continuous_embed) continuous_embed *= tf.matmul(encoding[..., 1], ones, transpose_a=True) # continuous value masking discrete_embed = self.discrete_embedding(input_ids[..., 0]) discrete_embed *= tf.matmul(encoding[..., 2], ones, transpose_a=True) # discrete value masking # Appendix C.3. Position Encodings > Local Observation Position Encodings # add local observation position encodings embed = image_embed + continuous_embed + discrete_embed embed += self.local_pos_encoding((obs_pos, obs_mask)) hidden_states = self.transformer(embed) return hidden_states def get_config(self): return super(Gato, self).get_config() class Transformer(models.Model): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable: bool = True, name: str = None, **kwargs): super(Transformer, self).__init__(trainable=trainable, name=name, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.encoders = [TransformerBlock(config=self.config, trainable=trainable, name='EncoderBlock{}'.format(idx)) for idx in range(self.config.num_transformer_blocks)] def call(self, inputs, training=None, mask=None): x = inputs for encoder in self.encoders: x = encoder(x) return x def get_config(self): return super(Transformer, self).get_config() class PatchEmbedding(models.Model): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable: bool = True, name: str = None, **kwargs): super(PatchEmbedding, self).__init__(trainable=trainable, name=name, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.residual_embedding = ResidualEmbedding(config, trainable=trainable, name='ResidualEmbedding') self.pos_encoding = PatchPositionEncoding(config, trainable=trainable, name='PatchPositionEncoding') def call(self, inputs, training=None, mask=None): input_ids, (row_pos, col_pos) = inputs patch_size = self.config.img_patch_size depth = self.config.input_dim // (patch_size * patch_size) x = tf.reshape(input_ids, (-1, input_ids.shape[1], patch_size, patch_size, depth)) x = self.residual_embedding(x) x = self.pos_encoding((x, (row_pos, col_pos))) return x def get_config(self): return super(PatchEmbedding, self).get_config()
GATO-by-Deepmind-main
gato/models/__init__.py
import tensorflow as tf from tensorflow.keras import layers, models, activations from gato import GatoConfig from typing import Dict, Any, Union class TransformerBlock(layers.Layer): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], trainable: bool = True, name: str = None, *args, **kwargs): super(TransformerBlock, self).__init__(trainable, name, *args, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.attention = self.feed_forward = self.dropout = None self.layer_norm1 = self.layer_norm2 = None def build(self, input_shape): input_shape = tf.TensorShape(input_shape) hidden_size = input_shape[-1] self.attention = layers.MultiHeadAttention(num_heads=self.config.num_attention_heads, key_dim=self.config.key_value_size, value_dim=self.config.key_value_size, dropout=self.config.dropout_rate, name='attention') self.dropout = layers.Dropout(self.config.dropout_rate, name='attention_dropout') self.feed_forward = models.Sequential(layers=[ layers.Dense(units=self.config.feedforward_hidden_size, activation='linear', name='dense_intermediate'), # Appendix C.1. Transformer Hyperparameters # Activation Function: GEGLU layers.Lambda(lambda x: activations.gelu(x, approximate=False), name='gelu'), layers.Dropout(self.config.dropout_rate, name='dropout_intermediate'), layers.Dense(units=hidden_size, activation='linear', name='dense'), layers.Dropout(self.config.dropout_rate, name='dropout'), ], name='feed_forward') self.layer_norm1 = layers.LayerNormalization(epsilon=1e-6, name='layer_norm1') self.layer_norm2 = layers.LayerNormalization(epsilon=1e-6, name='layer_norm2') def call(self, inputs, *args, **kwargs): # Appendix C.1. Transformer Hyperparameters # Layer Normalization: Pre-Norm residual = inputs x = self.layer_norm1(inputs) x = self.attention(x, x, x) x = self.dropout(x) x = x + residual residual = x x = self.layer_norm2(inputs) x = self.feed_forward(x) x = x + residual return x def get_config(self): config = super(TransformerBlock, self).get_config() config.update({ 'config': self.config.to_dict(), }) return config
GATO-by-Deepmind-main
gato/models/transformer.py
import tensorflow as tf from gato import GatoConfig from tensorflow.keras import models from typing import Union, Dict, Any def mu_law_encode(x, mu=100, m=256): # Appendix B. Agent Data Tokenization Details sign = tf.math.sign(x) numerator = tf.math.log(tf.abs(x) * mu + 1.0) denominator = tf.math.log(m * mu + 1.0) return (numerator / denominator) * sign def tokenize_continuous_values(x, mu=100, m=256, bins=1024, shift=None): # Appendix B. Agent Data Tokenization Details # > Finally, they are discretized using bins of uniform width on the domain [-1, 1]. c = mu_law_encode(x, mu, m) # > We use 1024 bins and shift the resulting integers # > so they are not overlapping with the ones used for text tokens. c = (c + 1) * (bins / 2) c = tf.cast(c, tf.int32) if shift is not None: c += shift return c class ContinuousValueTokenizer(models.Model): def __init__(self, config: Union[GatoConfig, Dict[str, Any]], mu=100, m=256, bins=1024, trainable=False, name=None, **kwargs): super(ContinuousValueTokenizer, self).__init__(trainable=trainable, name=name, **kwargs) if isinstance(config, dict): config = GatoConfig(**config) self.config = config self.mu = mu self.m = m self.bins = bins def call(self, inputs, training=None, mask=None): return tokenize_continuous_values(inputs, self.mu, self.m, self.bins, shift=self.config.vocabulary_size) def get_config(self): return super(ContinuousValueTokenizer, self).get_config()
GATO-by-Deepmind-main
gato/models/tokenizers.py
import os from tiktokx.train import Trainer, parse_args if __name__ == '__main__': args = parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) data_config = { 'n_users': 12345, 'n_items': 67890 } trainer = Trainer(data_config) best_recall, run_time = trainer.train() print(f'Best Recall@{args.Ks}: {best_recall}') print(f'Total Running Time: {run_time}')
Tiktokx-main
example.py
from tiktokx.utils import * from tiktokx.model import Tiktok from tiktokx.train import Trainer
Tiktokx-main
tiktokx/__init__.py
import os import pickle from time import time import numpy as np import scipy.sparse as sp import torch import torch.nn as nn import torch.nn.functional as F from scipy.sparse import csr_matrix from torch.nn import init from tiktokx.utils import build_knn_normalized_graph, build_sim, parse_args args = parse_args() class Tiktok(nn.Module): def __init__(self, n_users, n_items, embedding_dim, weight_size, dropout_list, image_feats, text_feats): super().__init__() self.n_users = n_users self.n_items = n_items self.embedding_size = embedding_dim self.weight_size = weight_size self.n_ui_layers = len(self.weight_size) self.weight_size = [self.embedding_size] + self.weight_size self.image_trans = nn.Linear(image_feats.shape[1], args.embed_size) self.text_trans = nn.Linear(text_feats.shape[1], args.embed_size) nn.init.xavier_unifrom_(self.image_trans.weight) nn.init.xavier_uniform_(self.text_trans.weight) self.encoder = nn.ModuleDict() self.encoder["image_encoder"] = self.image_trans self.encoder["text_encoder"] = self.text_trans self.common_trans = nn.Linear(args.embed_size, args.embed_size) nn.init.xavier_uniform_(self.common_trans.weight) self.align = nn.ModuleDict() self.align["common_trans"] = self.common_trans self.user_id_embedding = nn.Embedding(n_users, self.embedding_dim) self.item_id_embedding = nn.Embedding(n_items, self.embedding_dim) nn.init.xavier_uniform_(self.user_id_embedding.weight) nn.init.xavier_uniform_(self.item_id_embedding.weight) self.image_feats = torch.tensor(image_feats).float().cuda() self.text_feats = torch.tensor(text_feats).float().cuda() self.image_embedding = nn.Embedding.from_pretrained(torch.Tensor(image_feats), freeze=False) self.text_embedding = nn.Embedding.from_pretrained(torch.Tensor(text_feats), freeze=False) self.softmax = nn.Softmax(dim=-1) self.act = nn.Sigmoid() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout(p=args.drop_rate) self.batch_norm = nn.BatchNorm1d(args.embed_size) self.tau = 0.5 initializer = nn.init.xavier_uniform_ self.weight_dict = nn.ParameterDict({ 'w_q': nn.Parameter(initializer(torch.empty([args.embed_size, args.embed_size]))), 'w_k': nn.Parameter(initializer(torch.empty([args.embed_size, args.embed_size]))), 'w_v': nn.Parameter(initializer(torch.empty([args.embed_size, args.embed_size]))), 'w_self_attention_item': nn.Parameter(initializer(torch.empty([args.embed_size, args.embed_size]))), 'w_self_attention_user': nn.Parameter(initializer(torch.empty([args.embed_size, args.embed_size]))), 'w_self_attention_cat': nn.Parameter(initializer(torch.empty([args.head_num*args.embed_size, args.embed_size]))), }) self.embedding_size = {'user': {}, 'item': {}} def mm(self, x, y): if args.sparse: return torch.sparse.mm(x, y) else: return torch.mm(x, y) def sim(self, z1, z2): z1 = F.normalize(z1) z2 = F.normalize(z2) return torch.mm(z1, z2.t()) def batched_contrastive_loss(self, z1, z2, batch_size=4096): device = z1.device num_nodes = z1.size(0) num_batches = (num_nodes - 1) // batch_size + 1 f = lambda x: torch.exp(x / self.tau) indices = torch.arange(0, num_nodes).to(device) losses = [] for i in range(num_batches): mask = indices[i * batch_size:(i + 1) * batch_size] refl_sim = f(self.sim(z1[mask], z1)) between_sim = f(self.sim(z1[mask], z2)) losses.append(-torch.log( between_sim[:, i * batch_size:(i + 1) * batch_size].diag() / (refl_sim.sum(1) + between_sim.sum(1) - refl_sim[:, i * batch_size:(i + 1) * batch_size].diag()))) loss_vec = torch.cat(losses) return loss_vec.mea() def csr_norm(self, csr_mat, mean_flag=False): rowsum = np.array(csr_mat.sum(1)) rowsum = np.power(rowsum+1e-8, -0.5).flatten() rowsum[np.isinf(rowsum)] = 0. rowsum_diag = sp.diags(rowsum) colsum = np.array(csr_mat.sum(0)) colsum = np.power(colsum+1e-8, -0.5).flatten() colsum[np.isinf(colsum)] = 0. colsum_diag = sp.diags(colsum) if mean_flag is False: return rowsum_diag*csr_mat*colsum_diag else: return rowsum_diag*csr_mat def matrix_to_tensor(self, cur_matrix): if type(cur_matrix) != sp.coo_matrix: cur_matrix = cur_matrix.tocoo() indices = torch.from_numpy(np.vstack((cur_matrix.row, cur_matrix.col)).astype(np.int64)) values = torch.from_numpy(cur_matrix.data) shape = torch.Size(cur_matrix.shape) return torch.sparse.FloatTensor(indices, values, shape).to(torch.float32).cuda() def para_dict_to_tensor(self, para_dict): tensors = [] for beh in para_dict.keys(): tensors.append(para_dict[beh]) tensors = torch.stack(tensors, dim=0) return tensors def multihead_attention(self, trans_w, embedding_t_1, embedding_t): q = self.para_dict_to_tensor(embedding_t) v = k = self.para_dict_to_tensor(embedding_t_1) beh, N, d_h = q.shape[0], q.shape[1], args.embed_size/args.head_num Q = torch.matmul(q, trans_w["w_q"]) K = torch.matmul(k, trans_w["w_k"]) V = v Q = Q.reshape(beh, N, args.head_num, int(d_h)).permute(2, 0, 1, 3) K = Q.reshape(beh, N, args.head_num, int(d_h)).permute(2, 0, 1, 3) Q = torch.unsqueeze(Q, 2) K = torch.unsqueeze(K, 1) V = torch.unsqueeze(V, 1) att = torch.mul(Q, K) / torch.sqrt(torch.tensor(d_h)) att = torch.sum(att, dim=-1) att = torch.unsqueeze(att, dim=-1) att = F.softmax(att, dim=2) Z = torch.mul(att, V) Z = torch.sum(Z, dim=2) Z_list = [value for value in Z] Z = torch.cat(Z_list, -1) Z = torch.matmul(Z, self.weight_dict['w_self_attention_cat']) args.model_cat_rate*F.normalize(Z, p=2, dim=2) return Z, att.detach() def forward(self, ui_graph, iu_graph, image_ui_graph, image_iu_graph, text_ui_graph, text_iu_graph): image_feats = image_item_feats = self.dropout(self.image_trans(self.image_feats)) text_feats = text_item_feats = self.dropout(self.text_trans(self.text_feats)) for i in range(args.layers): image_user_feats = self.mm(ui_graph, image_feats) image_item_feats = self.mm(iu_graph, image_user_feats) image_user_id = self.mm(image_ui_graph, self.item_id_embedding.weight) image_item_id = self.mm(image_iu_graph, self.user_id_embedding.weight) text_user_feats = self.mm(ui_graph, text_feats) text_item_feats = self.mm(iu_graph, text_user_feats) text_user_id = self.mm(text_ui_graph, self.item_id_embedding.weight) text_item_id = self.mm(text_iu_graph, self.user_id_embedding.weight) self.embedding_dict['user']['image'] = image_user_id self.embedding_dict['user']['text'] = text_user_id self.embedding_dict['item']['image'] = image_item_id self.embedding_dict['item']['text'] = text_item_id user_z, _ = self.multihead_attention(self.weight_dict, self.embedding_dict['user'], self.embedding_dict['user']) item_z, _ = self.multihead_attention(self.weight_dict, self.embedding_dict['item'], self.embedding_dict['item']) user_emb = user_z.mean(0) item_emb = item_z.mean(0) u_g_embeddings = self.user_id_embedding.weight + args.id_cat_rate*F.normalize(user_emb, p=2, dim=1) i_g_embeddings = self.item_id_embedding.weight + args.id_cat_rate*F.normalize(item_emb, p=2, dim=1) user_emb_list = [u_g_embeddings] item_emb_list = [i_g_embeddings] for i in range[self.n_ui_layers]: if i == (self.n_ui_layers-1): u_g_embeddings = self.softmax(torch.mm(ui_graph, i_g_embeddings)) i_g_embeddings = self.softmax(torch.mm(iu_graph, u_g_embeddings)) else: u_g_embeddings = torch.mm(ui_graph, i_g_embeddings) i_g_embeddings = torch.mm(iu_graph, u_g_embeddings) user_emb.append(u_g_embeddings) item_emb_list.append(i_g_embeddings) u_g_embeddings = torch.mean(torch.stack(user_emb_list), dim=0) i_g_embeddings = torch.mean(torch.stack(item_emb_list), dim=0) u_g_embeddings = u_g_embeddings + args.model_cat_rate*F.normalize(image_user_feats, p=2, dim=1) \ + args.model_cat_rate*F.normalize(text_user_feats,p=2, dim=1 ) i_g_embeddings = i_g_embeddings + args.model_cat_rate*F.normalize(image_item_feats, p=2, dim=1) \ + args.model_cat_rate*F.normalize(text_item_feats, p=2, dim=1) return u_g_embeddings, i_g_embeddings, image_item_feats, text_item_feats, \ image_user_feats, text_user_feats, u_g_embeddings, i_g_embeddings, image_user_id, \ text_user_id, image_item_id, text_item_id class Discriminator(nn.Module): def __init__(self, dim): super(Discriminator, self).__init__() self.net = nn.Sequential( nn.Linear(dim, int(dim/4)), nn.LeakyReLU(True), nn.BatchNorm1d(int(dim/4)), nn.Dropout(args.G_drop1), nn.Linear(int(dim/4), int(dim/8)), nn.LeakyReLU(True), nn.BatchNorm1d(int(dim/8)), nn.Dropout(args.G_drop2), nn.Linear(int(dim/8), 1), nn.Sigmoid() ) def forward(self, x): output = 100*self.net(x.float()) return output.view(-1)
Tiktokx-main
tiktokx/model.py
import argparse import json import os import random as rd from datetime import datetime from time import time import numpy as np import scipy.sparse as sp import torch from scipy.parse import csr_matrix from sklearn.metrics import roc_auc_score from tiktokx.utils import parse_args args = parse_args() def build_sim(context): context_norm = context.div(torch.norm(context, p=2, dim=-1, keepdim=True)) sim = torch.sparse.nn(context_norm, context_norm.transpose(1, 0)) return sim def build_knn_normalized_graph(adj, topk, is_sparse, norm_type): device = adj.device knn_val, knn_ind, = torch.topk(adj, topk, dim=1) #[7050, 10][7050, 10] n_item = knn_val.shape[0] n_data = knn_val.shape[0]*knn_val.shape[1] data = np.ones(n_data) if is_sparse: tuple_list = [[row, int(col)] for row in range(len(knn_ind)) for col in knn_ind[row]] row = [i[0] for i in tuple_list] col = [i[i] for i in tuple_list] ll_graph = csr_matrix((data, (row, col)), shape=(n_item, n_item)) return ll_graph else: weighted_adjacency_matrix = (torch.zeros_like(adj)).scatter_(-1, knn_ind, knn_val) return get_dense_laplacian(weighted_adjacency_matrix, normalization=norm_type) def get_sparse_laplacian(edge_index, edge_weight, num_nodes, normalization='none'): #[2, 70500], [70500] from torch_scatter import scatter_add row, col = edge_index[0], edge_index[1] #[70500] [70500] deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) #[7050] if normalization == 'sym': deg_inv_sqrt = deg.pow_(-0.5) deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0) edge_weight = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] elif normalization == 'rw': deg_inv = 1.0 / deg deg_inv.masked_fill_(deg_inv == float('inf'), 0) edge_weight = deg_inv[row] * edge_weight return edge_index, edge_weight def get_dense_laplacian(adj, normalization='none'): if normalization == 'sym': rowsum = torch.sum(adj, -1) d_inv_sqrt = torch.pow(rowsum, -0.5) d_inv_sqrt[torch.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = torch.diagflat(d_inv_sqrt) L_norm = torch.mm(torch.mm(d_mat_inv_sqrt, adj), d_mat_inv_sqrt) elif normalization == 'rw': rowsum = torch.sum(adj, -1) d_inv = torch.pow(rowsum, -1) d_inv[torch.isinf(d_inv)] = 0. d_mat_inv = torch.diagflat(d_inv) L_norm = torch.mm(d_mat_inv, adj) elif normalization == 'none': L_norm = adj return L_norm ######## Metrics def recall(rank, ground_truth, N): return len(set(rank[:N]) & set(ground_truth)) / float(len(set(ground_truth))) def precision_at_k(r, k): assert k >= 1 r = np.asarray(r)[:k] return np.mean(r) def average_precision(r, cut): r = np.asarray(r) out = [precision_at_k(r, k + 1) for k in range(cut) if r[k]] if not out: return 0. return np.sum(out)/float(min(cut, np.sum(r))) def mean_average_preision(rs): return np.mean([average_precision(r) for r in rs]) def dcg_at_k(r, k, method=1): r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1)) ) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 and 1') return 0. def ndcg_at_k(r, k, method=1): dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max def recall_at_k(r, k, all_pos_num): r = np.asfarray(r)[:k] if all_pos_num == 0: return 0 else: return np.sum(r) / all_pos_num def hit_at_k(r, k): r = np.array(r)[:k] if np.sum(r) > 0: return 1. else: return 0. def F1(pre, rec): if pre + rec > 0: return (2.0 * pre * rec) / (pre + rec) else: return 0. def auc(ground_truth, prediction): try: res = roc_auc_score(y_true=ground_truth, y_score=prediction) except Exception: res = 0. return res ######## Logger class Logger(): def __init__(self, filename, is_debug, path="tiktok/logs"): self.filename = filename self.path = path self.log_ = not is_debug def logging(self, s): s = str(s) print(datetime.now().strftime('%Y-%m-%d %H:%M: '), s) if self.log_: with open(os.path.join(os.path.join(self.path, self.filename)), 'a+') as f_log: f_log.write(str(datetime.now().strftime('%Y-%m-%d %H:%M: ')) + s + '\n') ############ class Data(object): def __init__(self, path, batch_size): self.path = path #+ '/%d-core' % args.core self.batch_size = batch_size train_file = path + '/train.json'#+ '/%d-core/train.json' % (args.core) val_file = path + '/val.json' #+ '/%d-core/val.json' % (args.core) test_file = path + '/test.json' #+ '/%d-core/test.json' % (args.core) #get number of users and items self.n_users, self.n_items = 0, 0 self.n_train, self.n_test = 0, 0 self.neg_pools = {} self.exist_users = [] train = json.load(open(train_file)) test = json.load(open(test_file)) val = json.load(open(val_file)) for uid, items in train.items(): if len(items) == 0: continue uid = int(uid) self.exist_users.append(uid) self.n_items = max(self.n_items, max(items)) self.n_users = max(self.n_users, uid) self.n_train += len(items) for uid, items in test.items(): uid = int(uid) try: self.n_items = max(self.n_items, max(items)) self.n_test += len(items) except: continue for uid, items in val.items(): uid = int(uid) try: self.n_items = max(self.n_items, max(items)) self.n_val += len(items) except: continue self.n_items += 1 self.n_users += 1 self.print_statistics() self.R = sp.dok_matrix((self.n_users, self.n_items), dtype=np.float32) self.R_Item_Interacts = sp.dok_matrix((self.n_items, self.n_items), dtype=np.float32) self.train_items, self.test_set, self.val_set = {}, {}, {} for uid, train_items in train.items(): if len(train_items) == 0: continue uid = int(uid) for idx, i in enumerate(train_items): self.R[uid, i] = 1. self.train_items[uid] = train_items for uid, test_items in test.items(): uid = int(uid) if len(test_items) == 0: continue try: self.test_set[uid] = test_items except: continue for uid, val_items in val.items(): uid = int(uid) if len(val_items) == 0: continue try: self.val_set[uid] = val_items except: continue def get_adj_mat(self): try: t1 = time() adj_mat = sp.load_npz(self.path + '/s_adj_mat.npz') norm_adj_mat = sp.load_npz(self.path + '/s_norm_adj_mat.npz') mean_adj_mat = sp.load_npz(self.path + '/s_mean_adj_mat.npz') print('already load adj matrix', adj_mat.shape, time() - t1) except Exception: adj_mat, norm_adj_mat, mean_adj_mat = self.create_adj_mat() sp.save_npz(self.path + '/s_adj_mat.npz', adj_mat) sp.save_npz(self.path + '/s_norm_adj_mat.npz', norm_adj_mat) sp.save_npz(self.path + '/s_mean_adj_mat.npz', mean_adj_mat) return adj_mat, norm_adj_mat, mean_adj_mat def create_adj_mat(self): t1 = time() adj_mat = sp.dok_matrix((self.n_users + self.n_items, self.n_users + self.n_items), dtype=np.float32) adj_mat = adj_mat.tolil() R = self.R.tolil() adj_mat[:self.n_users, self.n_users:] = R adj_mat[self.n_users:, :self.n_users] = R.T adj_mat = adj_mat.todok() print('already create adjacency matrix', adj_mat.shape, time() - t1) t2 = time() def normalized_adj_single(adj): rowsum = np.array(adj.sum(1)) d_inv = np.power(rowsum, -1).flatten() d_inv[np.isinf(d_inv)] = 0. d_mat_inv = sp.diags(d_inv) norm_adj = d_mat_inv.dot(adj) # norm_adj = adj.dot(d_mat_inv) print('generate single-normalized adjacency matrix.') return norm_adj.tocoo() def get_D_inv(adj): rowsum = np.array(adj.sum(1)) d_inv = np.power(rowsum, -1).flatten() d_inv[np.isinf(d_inv)] = 0. d_mat_inv = sp.diags(d_inv) return d_mat_inv def check_adj_if_equal(adj): dense_A = np.array(adj.todense()) degree = np.sum(dense_A, axis=1, keepdims=False) temp = np.dot(np.diag(np.power(degree, -1)), dense_A) print('check normalized adjacency matrix whether equal to this laplacian matrix.') return temp norm_adj_mat = normalized_adj_single(adj_mat + sp.eye(adj_mat.shape[0])) mean_adj_mat = normalized_adj_single(adj_mat) print('already normalize adjacency matrix', time() - t2) return adj_mat.tocsr(), norm_adj_mat.tocsr(), mean_adj_mat.tocsr() def sample(self): if self.batch_size <= self.n_users: users = rd.sample(self.exist_users, self.batch_size) else: users = [rd.choice(self.exist_users) for _ in range(self.batch_size)] # users = self.exist_users[:] def sample_pos_items_for_u(u, num): pos_items = self.train_items[u] n_pos_items = len(pos_items) pos_batch = [] while True: if len(pos_batch) == num: break pos_id = np.random.randint(low=0, high=n_pos_items, size=1)[0] pos_i_id = pos_items[pos_id] if pos_i_id not in pos_batch: pos_batch.append(pos_i_id) return pos_batch def sample_neg_items_for_u(u, num): neg_items = [] while True: if len(neg_items) == num: break neg_id = np.random.randint(low=0, high=self.n_items, size=1)[0] if neg_id not in self.train_items[u] and neg_id not in neg_items: neg_items.append(neg_id) return neg_items def sample_neg_items_for_u_from_pools(u, num): neg_items = list(set(self.neg_pools[u]) - set(self.train_items[u])) return rd.sample(neg_items, num) pos_items, neg_items = [], [] for u in users: pos_items += sample_pos_items_for_u(u, 1) neg_items += sample_neg_items_for_u(u, 1) # neg_items += sample_neg_items_for_u(u, 3) return users, pos_items, neg_items def print_statistics(self): print('n_users=%d, n_items=%d' % (self.n_users, self.n_items)) print('n_interactions=%d' % (self.n_train + self.n_test)) print('n_train=%d, n_test=%d, sparsity=%.5f' % (self.n_train, self.n_test, (self.n_train + self.n_test)/(self.n_users * self.n_items))) def parse_args(): parser = argparse.ArgumentParser(description="") #useless parser.add_argument('--verbose', type=int, default=5, help='Interval of evaluation.') parser.add_argument('--core', type=int, default=5, help='5-core for warm-start; 0-core for cold start') parser.add_argument('--lambda_coeff', type=float, default=0.9, help='Lambda value of skip connection') parser.add_argument('--early_stopping_patience', type=int, default=7, help='') parser.add_argument('--layers', type=int, default=1, help='Number of feature graph conv layers') parser.add_argument('--mess_dropout', nargs='?', default='[0.1, 0.1]', help='Keep probability w.r.t. message dropout (i.e., 1-dropout_ratio) for each deep layer. 1: no dropout.') parser.add_argument('--sparse', type=int, default=1, help='Sparse or dense adjacency matrix') parser.add_argument('--test_flag', nargs='?', default='part', help='Specify the test type from {part, full}, indicating whether the reference is done in mini-batch') parser.add_argument('--metapath_threshold', default=2, type=int, help='metapath_threshold') parser.add_argument('--sc', type=float, default=1.0, help='GCN self connection') parser.add_argument('--ssl_c_rate', type=float, default=1.3, help='ssl_c_rate') parser.add_argument('--ssl_s_rate', type=float, default=0.8, help='ssl_s_rate') parser.add_argument('--g_rate', type=float, default=0.000029, help='ssl_s_rate') parser.add_argument('--sample_num', default=1, type=int, help='sample_num') parser.add_argument('--sample_num_neg', default=1, type=int, help='sample_num') parser.add_argument('--sample_num_ii', default=8, type=int, help='sample_num') parser.add_argument('--sample_num_co', default=2, type=int, help='sample_num') parser.add_argument('--mask_rate', default=0.75, type=float, help='sample_num') parser.add_argument('--gss_rate', default=0.85, type=float, help='gene_self_subgraph_rate') parser.add_argument('--anchor_rate', default=0.75, type=float, help='anchor_rate') parser.add_argument('--feat_reg_decay', default=1e-5, type=float, help='feat_reg_decay') parser.add_argument('--ad1_rate', default=0.2, type=float, help='ad1_rate') parser.add_argument('--ad2_rate', default=0.2, type=float, help='ad1_rate') parser.add_argument('--ad_sampNum', type=int, default=1, help='ad topk') parser.add_argument('--ad_topk_multi_num', type=int, default=100, help='ad topk') parser.add_argument('--fake_gene_rate', default=0.0001, type=float, help='fake_gene_rate') parser.add_argument('--ID_layers', type=int, default=1, help='Number of item graph conv layers') parser.add_argument('--reward_rate', default=1, type=float, help='fake_gene_rate') parser.add_argument('--G_embed_size', type=int, default=64, help='Embedding size.') parser.add_argument('--model_num', default=2, type=float, help='fake_gene_rate') parser.add_argument('--negrate', default=0.01, type=float, help='item_neg_sample_rate') parser.add_argument('--cis', default=25, type=int, help='') parser.add_argument('--confidence', default=0.5, type=float, help='') parser.add_argument('--ii_it', default=15, type=int, help='') parser.add_argument('--isload', default=False , type=bool, help='whether load model') # parser.add_argument('--isJustTest', default=False , type=bool, help='whether load model') parser.add_argument('--loadModelPath', default='/home/ww/Code/work3/BSTRec/Model/retailrocket/for_meta_hidden_dim_dim__8_retailrocket_2021_07_10__18_35_32_lr_0.0003_reg_0.01_batch_size_1024_gnn_layer_[16,16,16].pth', type=str, help='loadModelPath') parser.add_argument('--title', default="try_to_draw_line", type=str, help='') # #train parser.add_argument('--data_path', nargs='?', default='/home/ww/Code/work5/MMSSL/data/', help='Input data path.') parser.add_argument('--seed', type=int, default=2022, help='Random seed') parser.add_argument('--dataset', nargs='?', default='', help='Choose a dataset from {sports, baby, clothing, tiktok, allrecipes}') parser.add_argument('--epoch', type=int, default=1000, help='Number of epoch.') #default: 1000 parser.add_argument('--batch_size', type=int, default=1024, help='Batch size.') parser.add_argument('--embed_size', type=int, default=64,help='Embedding size.') parser.add_argument('--D_lr', type=float, default=3e-4, help='Learning rate.') parser.add_argument('--topk', type=int, default=10, help='K value of k-NN sparsification') parser.add_argument('--cf_model', nargs='?', default='slmrec', help='Downstream Collaborative Filtering model {mf}') parser.add_argument('--debug', action='store_true') parser.add_argument('--cl_rate', type=float, default=0.03, help='Control the effect of the contrastive auxiliary task') parser.add_argument('--norm_type', nargs='?', default='sym', help='Adjacency matrix normalization operation') parser.add_argument('--gpu_id', type=int, default=0, help='GPU id') parser.add_argument('--Ks', nargs='?', default='[10, 20, 50]', help='K value of ndcg/recall @ k') parser.add_argument('--regs', nargs='?', default='[1e-5,1e-5,1e-2]', help='for emb_loss.') #default: '[1e-5,1e-5,1e-2]' parser.add_argument('--lr', type=float, default=0.00055, help='Learning rate.') parser.add_argument('--emm', default=1e-3, type=float, help='for feature embedding bpr') # parser.add_argument('--L2_alpha', default=1e-3, type=float, help='') # parser.add_argument('--weight_decay', default=1e-4, type=float, help='for opt_D') # #GNN parser.add_argument('--drop_rate', type=float, default=0.2, help='dropout rate') parser.add_argument('--model_cat_rate', type=float, default=0.55, help='model_cat_rate') parser.add_argument('--gnn_cat_rate', type=float, default=0.55, help='gnn_cat_rate') parser.add_argument('--id_cat_rate', type=float, default=0.36, help='before GNNs') parser.add_argument('--id_cat_rate1', type=float, default=0.36, help='id_cat_rate') parser.add_argument('--head_num', default=4, type=int, help='head_num_of_multihead_attention. For multi-model relation.') # parser.add_argument('--dgl_nei_num', default=8, type=int, help='dgl_nei_num') # #GAN parser.add_argument('--weight_size', nargs='?', default='[64, 64]', help='Output sizes of every layer') #default: '[64, 64]' parser.add_argument('--G_rate', default=0.0001, type=float, help='for D model1') # parser.add_argument('--G_drop1', default=0.31, type=float, help='for D model2') # parser.add_argument('--G_drop2', default=0.5, type=float, help='') # parser.add_argument('--gp_rate', default=1, type=float, help='gradient penal') # parser.add_argument('--real_data_tau', default=0.005, type=float, help='for real_data soft') # parser.add_argument('--ui_pre_scale', default=100, type=int, help='ui_pre_scale') #cl parser.add_argument('--T', default=1, type=int, help='it for ui update') parser.add_argument('--tau', default=0.5, type=float, help='') # parser.add_argument('--geneGraph_rate', default=0.1, type=float, help='') # parser.add_argument('--geneGraph_rate_pos', default=2, type=float, help='') # parser.add_argument('--geneGraph_rate_neg', default=-1, type=float, help='') # parser.add_argument('--m_topk_rate', default=0.0001, type=float, help='for reconstruct') parser.add_argument('--log_log_scale', default=0.00001, type=int, help='log_log_scale') parser.add_argument('--point', default='', type=str, help='point') return parser.parse_args()
Tiktokx-main
tiktokx/utils.py
import copy import math import os import pickle import random import sys from datetime import datetime from time import time import dgl import numpy as np import scipy.sparse as sp import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.sparse as sparse import visdom from Models import MMSSL, Discriminator from scipy.sparse import csr_matrix from torch import autograd from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from tiktokx.utils import * from tiktokx.utils import Logger, build_knn_normalized_graph, build_sim, parse_args args = parse_args() class Trainer(object): def __init__(self, data_config): self.task_name = "%s_%s_%s" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), args.dataset, args.cf_model,) self.logger = Logger(filename=self.task_name, is_debug=args.debug) self.logger.logging("PID: %d" % os.getpid()) self.logger.logging(str(args)) self.mess_dropout = eval(args.mess_dropout) self.lr = args.lr self.emb_dim = args.embed_size self.batch_size = args.batch_size self.weight_size = eval(args.weight_size) self.n_layers = len(self.weight_size) self.regs = eval(args.regs) self.decay = self.regs[0] self.image_feats = np.load(args.data_path + '{}/image_feat.npy'.format(args.dataset)) self.text_feats = np.load(args.data_path + '{}/text_feat.npy'.format(args.dataset)) self.image_feat_dim = self.image_feats.shape[-1] self.text_feat_dim = self.text_feats.shape[-1] self.ui_graph = self.ui_graph_raw = pickle.load(open(args.data_path + args.dataset + '/train_mat','rb')) self.image_ui_graph_tmp = self.text_ui_graph_tmp = torch.tensor(self.ui_graph_raw.todense()).cuda() self.image_iu_graph_tmp = self.text_iu_graph_tmp = torch.tensor(self.ui_graph_raw.T.todense()).cuda() self.image_ui_index = {'x':[], 'y':[]} self.text_ui_index = {'x':[], 'y':[]} self.n_users = self.ui_graph.shape[0] self.n_items = self.ui_graph.shape[1] self.iu_graph = self.ui_graph.T self.ui_graph = self.matrix_to_tensor(self.csr_norm(self.ui_graph, mean_flag=True)) self.iu_graph = self.matrix_to_tensor(self.csr_norm(self.iu_graph, mean_flag=True)) self.image_ui_graph = self.text_ui_graph = self.ui_graph self.image_iu_graph = self.text_iu_graph = self.iu_graph self.model = MMSSL(self.n_users, self.n_items, self.emb_dim, self.weight_size, self.mess_dropout, self.image_feats, self.text_feats) self.model = self.model.cuda() self.D = Discriminator(self.n_items).cuda() self.D.apply(self.weights_init) self.optim_D = optim.Adam(self.D.parameters(), lr=args.D_lr, betas=(0.5, 0.9)) self.optimizer_D = optim.AdamW( [ {'params':self.model.parameters()}, ] , lr=self.lr) self.scheduler_D = self.set_lr_scheduler() def set_lr_scheduler(self): fac = lambda epoch: 0.96 ** (epoch / 50) scheduler_D = optim.lr_scheduler.LambdaLR(self.optimizer_D, lr_lambda=fac) return scheduler_D def csr_norm(self, csr_mat, mean_flag=False): rowsum = np.array(csr_mat.sum(1)) rowsum = np.power(rowsum+1e-8, -0.5).flatten() rowsum[np.isinf(rowsum)] = 0. rowsum_diag = sp.diags(rowsum) colsum = np.array(csr_mat.sum(0)) colsum = np.power(colsum+1e-8, -0.5).flatten() colsum[np.isinf(colsum)] = 0. colsum_diag = sp.diags(colsum) if mean_flag == False: return rowsum_diag*csr_mat*colsum_diag else: return rowsum_diag*csr_mat def matrix_to_tensor(self, cur_matrix): if type(cur_matrix) != sp.coo_matrix: cur_matrix = cur_matrix.tocoo() # indices = torch.from_numpy(np.vstack((cur_matrix.row, cur_matrix.col)).astype(np.int64)) # values = torch.from_numpy(cur_matrix.data) # shape = torch.Size(cur_matrix.shape) return torch.sparse.FloatTensor(indices, values, shape).to(torch.float32).cuda() # def innerProduct(self, u_pos, i_pos, u_neg, j_neg): pred_i = torch.sum(torch.mul(u_pos,i_pos), dim=-1) pred_j = torch.sum(torch.mul(u_neg,j_neg), dim=-1) return pred_i, pred_j def sampleTrainBatch_dgl(self, batIds, pos_id=None, g=None, g_neg=None, sample_num=None, sample_num_neg=None): sub_g = dgl.sampling.sample_neighbors(g.cpu(), {'user':batIds}, sample_num, edge_dir='out', replace=True) row, col = sub_g.edges() row = row.reshape(len(batIds), sample_num) col = col.reshape(len(batIds), sample_num) if g_neg==None: return row, col else: sub_g_neg = dgl.sampling.sample_neighbors(g_neg, {'user':batIds}, sample_num_neg, edge_dir='out', replace=True) row_neg, col_neg = sub_g_neg.edges() row_neg = row_neg.reshape(len(batIds), sample_num_neg) col_neg = col_neg.reshape(len(batIds), sample_num_neg) return row, col, col_neg def weights_init(self, m): if isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight) m.bias.data.fill_(0) def gradient_penalty(self, D, xr, xf): LAMBDA = 0.3 xf = xf.detach() xr = xr.detach() alpha = torch.rand(args.batch_size*2, 1).cuda() alpha = alpha.expand_as(xr) interpolates = alpha * xr + ((1 - alpha) * xf) interpolates.requires_grad_() disc_interpolates = D(interpolates) gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones_like(disc_interpolates), create_graph=True, retain_graph=True, only_inputs=True)[0] gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA return gp def weighted_sum(self, anchor, nei, co): ac = torch.multiply(anchor, co).sum(-1).sum(-1) nc = torch.multiply(nei, co).sum(-1).sum(-1) an = (anchor.permute(1, 0, 2)[0]) ne = (nei.permute(1, 0, 2)[0]) an_w = an*(ac.unsqueeze(-1).repeat(1, args.embed_size)) ne_w = ne*(nc.unsqueeze(-1).repeat(1, args.embed_size)) res = (args.anchor_rate*an_w + (1-args.anchor_rate)*ne_w).reshape(-1, args.sample_num_ii, args.embed_size).sum(1) return res def sample_topk(self, u_sim, users, emb_type=None): topk_p, topk_id = torch.topk(u_sim, args.ad_topk*10, dim=-1) topk_data = topk_p.reshape(-1).cpu() topk_col = topk_id.reshape(-1).cpu().int() topk_row = torch.tensor(np.array(users)).unsqueeze(1).repeat(1, args.ad_topk*args.ad_topk_multi_num).reshape(-1).int() # topk_csr = csr_matrix((topk_data.detach().numpy(), (topk_row.detach().numpy(), topk_col.detach().numpy())), shape=(self.n_users, self.n_items)) topk_g = dgl.heterograph({('user','ui','item'):topk_csr.nonzero()}) _, topk_id = self.sampleTrainBatch_dgl(users, g=topk_g, sample_num=args.ad_topk, pos_id=None, g_neg=None, sample_num_neg=None) self.gene_fake[emb_type] = topk_id topk_id_u = torch.arange(len(users)).unsqueeze(1).repeat(1, args.ad_topk) topk_p = u_sim[topk_id_u, topk_id] return topk_p, topk_id def ssl_loss_calculation(self, ssl_image_logit, ssl_text_logit, ssl_common_logit): ssl_label_1_s2 = torch.ones(1, self.n_items).cuda() ssl_label_0_s2 = torch.zeros(1, self.n_items).cuda() ssl_label_s2 = torch.cat((ssl_label_1_s2, ssl_label_0_s2), 1) ssl_image_s2 = self.bce(ssl_image_logit, ssl_label_s2) ssl_text_s2 = self.bce(ssl_text_logit, ssl_label_s2) ssl_loss_s2 = ssl_image_s2 + ssl_text_s2 ssl_label_1_c2 = torch.ones(1, self.n_items*2).cuda() ssl_label_0_c2 = torch.zeros(1, self.n_items*2).cuda() ssl_label_c2 = torch.cat((ssl_label_1_c2, ssl_label_0_c2), 1) ssl_result_c2 = self.bce(ssl_common_logit, ssl_label_c2) ssl_loss_c2 = ssl_result_c2 ssl_loss2 = args.ssl_s_rate*ssl_loss_s2 + args.ssl_c_rate*ssl_loss_c2 return ssl_loss2 def sim(self, z1, z2): z1 = F.normalize(z1) z2 = F.normalize(z2) # z1 = z1/((z1**2).sum(-1) + 1e-8) # z2 = z2/((z2**2).sum(-1) + 1e-8) return torch.mm(z1, z2.t()) def batched_contrastive_loss(self, z1, z2, batch_size=1024): device = z1.device num_nodes = z1.size(0) num_batches = (num_nodes - 1) // batch_size + 1 f = lambda x: torch.exp(x / args.tau) # indices = torch.arange(0, num_nodes).to(device) losses = [] for i in range(num_batches): tmp_i = indices[i * batch_size:(i + 1) * batch_size] tmp_refl_sim_list = [] tmp_between_sim_list = [] for j in range(num_batches): tmp_j = indices[j * batch_size:(j + 1) * batch_size] tmp_refl_sim = f(self.sim(z1[tmp_i], z1[tmp_j])) tmp_between_sim = f(self.sim(z1[tmp_i], z2[tmp_j])) tmp_refl_sim_list.append(tmp_refl_sim) tmp_between_sim_list.append(tmp_between_sim) refl_sim = torch.cat(tmp_refl_sim_list, dim=-1) between_sim = torch.cat(tmp_between_sim_list, dim=-1) losses.append(-torch.log(between_sim[:, i * batch_size:(i + 1) * batch_size].diag()/ (refl_sim.sum(1) + between_sim.sum(1) - refl_sim[:, i * batch_size:(i + 1) * batch_size].diag())+1e-8)) del refl_sim, between_sim, tmp_refl_sim_list, tmp_between_sim_list loss_vec = torch.cat(losses) return loss_vec.mean() def feat_reg_loss_calculation(self, g_item_image, g_item_text, g_user_image, g_user_text): feat_reg = 1./2*(g_item_image**2).sum() + 1./2*(g_item_text**2).sum() \ + 1./2*(g_user_image**2).sum() + 1./2*(g_user_text**2).sum() feat_reg = feat_reg / self.n_items feat_emb_loss = args.feat_reg_decay * feat_reg return feat_emb_loss def fake_gene_loss_calculation(self, u_emb, i_emb, emb_type=None): if self.gene_u!=None: gene_real_loss = (-F.logsigmoid((u_emb[self.gene_u]*i_emb[self.gene_real]).sum(-1)+1e-8)).mean() gene_fake_loss = (1-(-F.logsigmoid((u_emb[self.gene_u]*i_emb[self.gene_fake[emb_type]]).sum(-1)+1e-8))).mean() gene_loss = gene_real_loss + gene_fake_loss else: gene_loss = 0 return gene_loss def reward_loss_calculation(self, users, re_u, re_i, topk_id, topk_p): self.gene_u = torch.tensor(np.array(users)).unsqueeze(1).repeat(1, args.ad_topk) reward_u = re_u[self.gene_u] reward_i = re_i[topk_id] reward_value = (reward_u*reward_i).sum(-1) reward_loss = -(((topk_p*reward_value).sum(-1)).mean()+1e-8).log() return reward_loss def u_sim_calculation(self, users, user_final, item_final): topk_u = user_final[users] u_ui = torch.tensor(self.ui_graph_raw[users].todense()).cuda() num_batches = (self.n_items - 1) // args.batch_size + 1 indices = torch.arange(0, self.n_items).cuda() u_sim_list = [] for i_b in range(num_batches): index = indices[i_b * args.batch_size:(i_b + 1) * args.batch_size] sim = torch.mm(topk_u, item_final[index].T) sim_gt = torch.multiply(sim, (1-u_ui[:, index])) u_sim_list.append(sim_gt) u_sim = F.normalize(torch.cat(u_sim_list, dim=-1), p=2, dim=1) return u_sim def test(self, users_to_test, is_val): self.model.eval() with torch.no_grad(): ua_embeddings, ia_embeddings, *rest = self.model(self.ui_graph, self.iu_graph, self.image_ui_graph, self.image_iu_graph, self.text_ui_graph, self.text_iu_graph) result = test_torch(ua_embeddings, ia_embeddings, users_to_test, is_val) return result def train(self): now_time = datetime.now() run_time = datetime.strftime(now_time,'%Y_%m_%d__%H_%M_%S') training_time_list = [] loss_loger, pre_loger, rec_loger, ndcg_loger, hit_loger = [], [], [], [], [] line_var_loss, line_g_loss, line_d_loss, line_cl_loss, line_var_recall, line_var_precision, line_var_ndcg = [], [], [], [], [], [], [] stopping_step = 0 should_stop = False cur_best_pre_0 = 0. # tb_writer = SummaryWriter(log_dir="/home/ww/Code/work5/MICRO2Ours/tensorboard/") # tensorboard_cnt = 0 n_batch = data_generator.n_train // args.batch_size + 1 best_recall = 0 for epoch in range(args.epoch): t1 = time() loss, mf_loss, emb_loss, reg_loss = 0., 0., 0., 0. contrastive_loss = 0. n_batch = data_generator.n_train // args.batch_size + 1 sample_time = 0. self.gene_u, self.gene_real, self.gene_fake = None, None, {} self.topk_p_dict, self.topk_id_dict = {}, {} for idx in tqdm(range(n_batch)): self.model.train() sample_t1 = time() users, pos_items, neg_items = data_generator.sample() sample_time += time() - sample_t1 with torch.no_grad(): ua_embeddings, ia_embeddings, image_item_embeds, text_item_embeds, image_user_embeds, text_user_embeds \ , _, _, _, _, _, _ \ = self.model(self.ui_graph, self.iu_graph, self.image_ui_graph, self.image_iu_graph, self.text_ui_graph, self.text_iu_graph) ui_u_sim_detach = self.u_sim_calculation(users, ua_embeddings, ia_embeddings).detach() image_u_sim_detach = self.u_sim_calculation(users, image_user_embeds, image_item_embeds).detach() text_u_sim_detach = self.u_sim_calculation(users, text_user_embeds, text_item_embeds).detach() inputf = torch.cat((image_u_sim_detach, text_u_sim_detach), dim=0) predf = (self.D(inputf)) lossf = (predf.mean()) u_ui = torch.tensor(self.ui_graph_raw[users].todense()).cuda() u_ui = F.softmax(u_ui - args.log_log_scale*torch.log(-torch.log(torch.empty((u_ui.shape[0], u_ui.shape[1]), dtype=torch.float32).uniform_(0,1).cuda()+1e-8)+1e-8)/args.real_data_tau, dim=1) #0.002 u_ui += ui_u_sim_detach*args.ui_pre_scale u_ui = F.normalize(u_ui, dim=1) inputr = torch.cat((u_ui, u_ui), dim=0) predr = (self.D(inputr)) lossr = - (predr.mean()) gp = self.gradient_penalty(self.D, inputr, inputf.detach()) loss_D = lossr + lossf + args.gp_rate*gp self.optim_D.zero_grad() loss_D.backward() self.optim_D.step() line_d_loss.append(loss_D.detach().data) G_ua_embeddings, G_ia_embeddings, G_image_item_embeds, G_text_item_embeds, G_image_user_embeds, G_text_user_embeds \ , G_user_emb, _, G_image_user_id, G_text_user_id, _, _ \ = self.model(self.ui_graph, self.iu_graph, self.image_ui_graph, self.image_iu_graph, self.text_ui_graph, self.text_iu_graph) G_u_g_embeddings = G_ua_embeddings[users] G_pos_i_g_embeddings = G_ia_embeddings[pos_items] G_neg_i_g_embeddings = G_ia_embeddings[neg_items] G_batch_mf_loss, G_batch_emb_loss, G_batch_reg_loss = self.bpr_loss(G_u_g_embeddings, G_pos_i_g_embeddings, G_neg_i_g_embeddings) G_image_u_sim = self.u_sim_calculation(users, G_image_user_embeds, G_image_item_embeds) G_text_u_sim = self.u_sim_calculation(users, G_text_user_embeds, G_text_item_embeds) G_image_u_sim_detach = G_image_u_sim.detach() G_text_u_sim_detach = G_text_u_sim.detach() if idx%args.T==0 and idx!=0: self.image_ui_graph_tmp = csr_matrix((torch.ones(len(self.image_ui_index['x'])),(self.image_ui_index['x'], self.image_ui_index['y'])), shape=(self.n_users, self.n_items)) self.text_ui_graph_tmp = csr_matrix((torch.ones(len(self.text_ui_index['x'])),(self.text_ui_index['x'], self.text_ui_index['y'])), shape=(self.n_users, self.n_items)) self.image_iu_graph_tmp = self.image_ui_graph_tmp.T self.text_iu_graph_tmp = self.text_ui_graph_tmp.T self.image_ui_graph = self.sparse_mx_to_torch_sparse_tensor( \ self.csr_norm(self.image_ui_graph_tmp, mean_flag=True) ).cuda() self.text_ui_graph = self.sparse_mx_to_torch_sparse_tensor( self.csr_norm(self.text_ui_graph_tmp, mean_flag=True) ).cuda() self.image_iu_graph = self.sparse_mx_to_torch_sparse_tensor( self.csr_norm(self.image_iu_graph_tmp, mean_flag=True) ).cuda() self.text_iu_graph = self.sparse_mx_to_torch_sparse_tensor( self.csr_norm(self.text_iu_graph_tmp, mean_flag=True) ).cuda() self.image_ui_index = {'x':[], 'y':[]} self.text_ui_index = {'x':[], 'y':[]} else: _, image_ui_id = torch.topk(G_image_u_sim_detach, int(self.n_items*args.m_topk_rate), dim=-1) self.image_ui_index['x'] += np.array(torch.tensor(users).repeat(1, int(self.n_items*args.m_topk_rate)).view(-1)).tolist() self.image_ui_index['y'] += np.array(image_ui_id.cpu().view(-1)).tolist() _, text_ui_id = torch.topk(G_text_u_sim_detach, int(self.n_items*args.m_topk_rate), dim=-1) self.text_ui_index['x'] += np.array(torch.tensor(users).repeat(1, int(self.n_items*args.m_topk_rate)).view(-1)).tolist() self.text_ui_index['y'] += np.array(text_ui_id.cpu().view(-1)).tolist() feat_emb_loss = self.feat_reg_loss_calculation(G_image_item_embeds, G_text_item_embeds, G_image_user_embeds, G_text_user_embeds) batch_contrastive_loss = 0 batch_contrastive_loss1 = self.batched_contrastive_loss(G_image_user_id[users],G_user_emb[users]) batch_contrastive_loss2 = self.batched_contrastive_loss(G_text_user_id[users],G_user_emb[users]) batch_contrastive_loss = batch_contrastive_loss1 + batch_contrastive_loss2 G_inputf = torch.cat((G_image_u_sim, G_text_u_sim), dim=0) G_predf = (self.D(G_inputf)) G_lossf = -(G_predf.mean()) batch_loss = G_batch_mf_loss + G_batch_emb_loss + G_batch_reg_loss + feat_emb_loss + args.cl_rate*batch_contrastive_loss + args.G_rate*G_lossf #feat_emb_loss line_var_loss.append(batch_loss.detach().data) line_g_loss.append(G_lossf.detach().data) line_cl_loss.append(batch_contrastive_loss.detach().data) self.optimizer_D.zero_grad() batch_loss.backward(retain_graph=False) self.optimizer_D.step() loss += float(batch_loss) mf_loss += float(G_batch_mf_loss) emb_loss += float(G_batch_emb_loss) reg_loss += float(G_batch_reg_loss) del ua_embeddings, ia_embeddings, G_ua_embeddings, G_ia_embeddings, G_u_g_embeddings, G_neg_i_g_embeddings, G_pos_i_g_embeddings if math.isnan(loss) == True: self.logger.logging('ERROR: loss is nan.') sys.exit() if (epoch + 1) % args.verbose != 0: perf_str = 'Epoch %d [%.1fs]: train==[%.5f=%.5f + %.5f + %.5f + %.5f]' % ( epoch, time() - t1, loss, mf_loss, emb_loss, reg_loss, contrastive_loss) training_time_list.append(time() - t1) self.logger.logging(perf_str) t2 = time() users_to_test = list(data_generator.test_set.keys()) users_to_val = list(data_generator.val_set.keys()) ret = self.test(users_to_val, is_val=True) training_time_list.append(t2 - t1) t3 = time() loss_loger.append(loss) rec_loger.append(ret['recall'].data) pre_loger.append(ret['precision'].data) ndcg_loger.append(ret['ndcg'].data) hit_loger.append(ret['hit_ratio'].data) line_var_recall.append(ret['recall'][1]) line_var_precision.append(ret['precision'][1]) line_var_ndcg.append(ret['ndcg'][1]) tags = ["recall", "precision", "ndcg"] # tb_writer.add_scalar(tags[0], ret['recall'][1], epoch) # tb_writer.add_scalar(tags[1], ret['precision'][1], epoch) # tb_writer.add_scalar(tags[2], ret['ndcg'][1], epoch) if args.verbose > 0: perf_str = 'Epoch %d [%.1fs + %.1fs]: train==[%.5f=%.5f + %.5f + %.5f], recall=[%.5f, %.5f, %.5f, %.5f], ' \ 'precision=[%.5f, %.5f, %.5f, %.5f], hit=[%.5f, %.5f, %.5f, %.5f], ndcg=[%.5f, %.5f, %.5f, %.5f]' % \ (epoch, t2 - t1, t3 - t2, loss, mf_loss, emb_loss, reg_loss, ret['recall'][0], ret['recall'][1], ret['recall'][2], ret['recall'][-1], ret['precision'][0], ret['precision'][1], ret['precision'][2], ret['precision'][-1], ret['hit_ratio'][0], ret['hit_ratio'][1], ret['hit_ratio'][2], ret['hit_ratio'][-1], ret['ndcg'][0], ret['ndcg'][1], ret['ndcg'][2], ret['ndcg'][-1]) self.logger.logging(perf_str) if ret['recall'][1] > best_recall: best_recall = ret['recall'][1] test_ret = self.test(users_to_test, is_val=False) self.logger.logging("Test_Recall@%d: %.5f, precision=[%.5f], ndcg=[%.5f]" % (eval(args.Ks)[1], test_ret['recall'][1], test_ret['precision'][1], test_ret['ndcg'][1])) stopping_step = 0 elif stopping_step < args.early_stopping_patience: stopping_step += 1 self.logger.logging('#####Early stopping steps: %d #####' % stopping_step) else: self.logger.logging('#####Early stop! #####') break self.logger.logging(str(test_ret)) return best_recall, run_time def bpr_loss(self, users, pos_items, neg_items): pos_scores = torch.sum(torch.mul(users, pos_items), dim=1) neg_scores = torch.sum(torch.mul(users, neg_items), dim=1) regularizer = 1./2*(users**2).sum() + 1./2*(pos_items**2).sum() + 1./2*(neg_items**2).sum() regularizer = regularizer / self.batch_size maxi = F.logsigmoid(pos_scores - neg_scores) mf_loss = -torch.mean(maxi) emb_loss = self.decay * regularizer reg_loss = 0.0 return mf_loss, emb_loss, reg_loss def sparse_mx_to_torch_sparse_tensor(self, sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) indices = torch.from_numpy( np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)) values = torch.from_numpy(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) def set_seed(seed): np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if __name__ == '__main__': os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) set_seed(args.seed) config = dict() config['n_users'] = data_generator.n_users config['n_items'] = data_generator.n_items trainer = Trainer(data_config=config) trainer.train()
Tiktokx-main
tiktokx/train.py
from setuptools import setup, find_packages setup( name = 'PaLM-rlhf-pytorch', packages = find_packages(exclude=[]), version = '0.2.1', license='MIT', description = 'PaLM + Reinforcement Learning with Human Feedback - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/PaLM-rlhf-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'reinforcement learning', 'human feedback' ], install_requires=[ 'accelerate', 'beartype', 'einops>=0.6', 'lion-pytorch', 'torch>=1.6', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
PaLM-rlhf-pytorch-main
setup.py
import gzip import random import tqdm import numpy as np import torch from lion_pytorch import Lion from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset from palm_rlhf_pytorch import PaLM from accelerate import Accelerator # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 PRIME_LENGTH = 128 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 1024 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return "".join(list(map(decode_token, tokens))) # accelerator accelerator = Accelerator() device = accelerator.device # instantiate palm model = PaLM( num_tokens=256, dim=512, depth=8, flash_attn=True ).to(device) # prepare enwik8 data with gzip.open("./data/enwik8.gz") as file: data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() np_train, np_valid = np.split(data, [int(90e6)]) data_train, data_val = torch.from_numpy(np_train), torch.from_numpy(np_valid) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long() return full_seq.to(device) def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE)) # optimizer optim = Lion(model.palm_parameters(), lr = LEARNING_RATE) model, optim, train_loader, val_loader = accelerator.prepare( model, optim, train_loader, val_loader ) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"): model.train() for _ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader), return_loss = True) accelerator.backward(loss / GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"training loss: {loss.item()}") accelerator.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader), return_loss = True) accelerator.print(f"validation loss: {loss.item()}") if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:PRIME_LENGTH] prime = decode_tokens(inp) accelerator.print(f"%s \n\n %s", (prime, "*" * 100)) sample = model.generate(GENERATE_LENGTH, inp[None, ...]) output_str = decode_tokens(sample[0]) accelerator.print(output_str, "\n")
PaLM-rlhf-pytorch-main
train.py
import torch from torch import nn, einsum import torch.nn.functional as F from collections import namedtuple from functools import wraps from packaging import version from einops import rearrange # constants Config = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attention(nn.Module): def __init__( self, dropout = 0., causal = False, use_flash_attn = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.register_buffer("mask", None, persistent=False) self.use_flash_attn = use_flash_attn assert not (use_flash_attn and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = Config(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not use_flash_attn: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = Config(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = Config(False, True, True) def get_mask(self, n, device): if exists(self.mask) and self.mask.shape[-1] >= n: return self.mask[:n, :n] mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) self.register_buffer("mask", mask, persistent=False) return mask def flash_attn(self, q, k, v, mask = None): _, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = self.causal ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.use_flash_attn: return self.flash_attn(q, k, v, mask = mask) # similarity sim = einsum("b h i d, b j d -> b h i j", q, k) * scale # key padding mask if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # causal mask if self.causal: causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum("b h i j, b j d -> b h i d", attn, v) return out
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/attention.py
import math import copy from pathlib import Path from collections import namedtuple from functools import wraps from itertools import zip_longest from tqdm import tqdm from beartype import beartype from beartype.typing import Tuple, Optional import torch from torch import einsum, nn import torch.nn.functional as F from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange, Reduce from palm_rlhf_pytorch.attention import Attention from palm_rlhf_pytorch.utils import top_p, top_k, masked_mean, gumbel_sample, eval_decorator from palm_rlhf_pytorch.lora import LoRA # functions and decorators def exists(val): return val is not None def default(val, d): return val if exists(val) else d def identity(t, *args, **kwargs): return t def l2norm(t): return F.normalize(t, dim = -1) # normalization # they use layernorm without bias, something that pytorch does not offer class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) # residual class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): y = self.fn(x, **kwargs) if not any([t.requires_grad for t in (x, y)]): return x.add_(y) return y + x # rotary positional embedding w/ xpos # https://arxiv.org/abs/2104.09864 # https://arxiv.org/abs/2212.10554v1 class RotaryEmbedding(nn.Module): def __init__(self, dim, scale_base = 512, use_xpos = True): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.use_xpos = use_xpos self.scale_base = scale_base scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.register_buffer('scale', scale) def forward(self, seq_len, device): t = torch.arange(seq_len, device = device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) if not self.use_xpos: return freqs, torch.ones(1, device = device) power = (t - (seq_len // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t, scale = 1.): return (t * pos.cos() * scale) + (rotate_half(t) * pos.sin() * scale) # classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward # https://arxiv.org/abs/2002.05202 class SwiGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) return F.silu(gate) * x # parallel attention and feedforward with residual # discovered by Wang et al + EleutherAI from GPT-J fame class ParallelTransformerBlock(nn.Module): def __init__( self, dim, dim_head = 64, causal = True, heads = 8, qk_rmsnorm = False, qk_scale = 8, ff_mult = 4, attn_dropout = 0., ff_dropout = 0., use_xpos = True, xpos_scale_base = 512, flash_attn = False, ): super().__init__() self.norm = LayerNorm(dim) attn_inner_dim = dim_head * heads ff_inner_dim = dim * ff_mult self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2)) self.qk_rmsnorm = qk_rmsnorm if qk_rmsnorm: self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.attend = Attention( causal = causal, dropout = attn_dropout, use_flash_attn = flash_attn ) self.heads = heads self.scale = (dim_head ** -0.5) if not qk_rmsnorm else qk_scale self.causal = causal self.rotary_emb = RotaryEmbedding(dim_head, scale_base = xpos_scale_base, use_xpos = use_xpos and causal) self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) self.flash_attn = flash_attn self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) self.attn_dropout = nn.Dropout(attn_dropout) self.flash_attn_dropout = attn_dropout # parallel feedforward tail self.ff_out = nn.Sequential( SwiGLU(), nn.Dropout(ff_dropout), nn.Linear(ff_inner_dim, dim, bias=False) ) # for caching causal mask and rotary embeddings self.register_buffer("pos_emb", None, persistent=False) self.register_buffer("pos_emb_scale", None, persistent=False) def get_rotary_embedding(self, n, device): if exists(self.pos_emb) and self.pos_emb.shape[-2] >= n: return self.pos_emb[:n], self.pos_emb_scale[:n] pos_emb, scale = self.rotary_emb(n, device=device) self.register_buffer("pos_emb", pos_emb, persistent=False) self.register_buffer("pos_emb_scale", scale, persistent=False) return pos_emb, scale def forward( self, x, mask = None, finetune_modules = None ): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device, h = x.shape[1], x.device, self.heads # pre layernorm x = self.norm(x) # attention queries, keys, values, and feedforward inner q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) # finetune loras lora_q = lora_k = lora_v = lora_o = None if exists(finetune_modules): lora_q, lora_k, lora_v, lora_o = finetune_modules q = q + lora_q(x) k = k + lora_k(x) v = v + lora_v(x) # split heads # they use multi-query single-key-value attention, yet another Noam Shazeer paper # they found no performance loss past a certain scale, and more efficient decoding obviously # https://arxiv.org/abs/1911.02150 q = rearrange(q, "b n (h d) -> b h n d", h=h) # qk rmsnorm if self.qk_rmsnorm: q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # rotary embeddings with xpos decay for better length extrapolation positions, scale = self.get_rotary_embedding(n, device) q = apply_rotary_pos_emb(positions, q, scale) k = apply_rotary_pos_emb(positions, k, scale ** -1) # attention function, either regular or flash out = self.attend(q, k, v, mask = mask) # merge heads out = rearrange(out, "b h n d -> b n (h d)") attn_out = self.attn_out(out) ff_out = self.ff_out(ff) if exists(lora_o): attn_out = attn_out + lora_o(out) return attn_out + ff_out # transformer @beartype class PaLM(nn.Module): def __init__( self, *, dim, num_tokens, depth, causal = True, dim_head = 64, heads = 8, ff_mult = 4, attn_dropout = 0., ff_dropout = 0., qk_rmsnorm = False, lora_r = 8, rotary_xpos_scale_base = 512, flash_attn = False, finetune_scopes = tuple(), cross_entropy_ignore_index = 0 ): super().__init__() self.dim = dim self.dim_head = dim_head self.heads = heads self.causal = causal self.num_tokens = num_tokens self.token_emb = nn.Embedding(num_tokens, dim) self.layers = nn.ModuleList([]) for _ in range(depth): block = Residual(ParallelTransformerBlock( dim = dim, causal = causal, dim_head = dim_head, heads = heads, qk_rmsnorm = qk_rmsnorm, ff_mult = ff_mult, attn_dropout = attn_dropout, ff_dropout = ff_dropout, xpos_scale_base = rotary_xpos_scale_base, flash_attn = flash_attn )) self.layers.append(block) self.norm = LayerNorm(dim) self.to_logits = nn.Linear(dim, num_tokens, bias=False) self.to_logits.weight = self.token_emb.weight nn.init.normal_(self.token_emb.weight, std=0.02) # fine tuning related self.lora_r = lora_r self.finetune_modules = nn.ModuleDict({}) for scope in finetune_scopes: self.add_finetune_params(scope) # loss related self.cross_entropy_ignore_index = cross_entropy_ignore_index @property def device(self): return next(self.parameters()).device def load(self, path): path = Path(path) assert path.exists() self.load_state_dict(torch.load(str(path))) def set_dropout(self, dropout): for module in self.layers.modules(): if isinstance(module, nn.Dropout): module.p = dropout return self def add_finetune_params(self, scope, lora_r = None): assert scope not in self.finetune_modules, f'finetune scope {scope} already found' dim, dim_head, heads, r, device = self.dim, self.dim_head, self.heads, default(lora_r, self.lora_r), self.device q_inner_dim = heads * dim_head kv_inner_dim = dim_head lora_modules = nn.ModuleList([]) for _ in range(len(self.layers)): lora_modules.append(nn.ModuleList([ LoRA(dim, q_inner_dim, r = r), # queries LoRA(dim, kv_inner_dim, r = r), # keys LoRA(dim, kv_inner_dim, r = r), # values LoRA(q_inner_dim, dim, r = r) # wo ])) self.finetune_modules[scope] = lora_modules.to(device) def remove_finetune_params(self, scope): assert scope in self.finetune_modules, f'finetune scope {scope} not found' return self.finetune_modules.pop(scope) @torch.no_grad() def merge_finetune_params(self, scope): """ in the case one wants to merge the fine-tuned actor LORA parameters and do multiple rounds of fine tuning off different reward models """ assert scope in self.finetune_modules, f'finetune scope {scope} not found' lora_modules = self.finetune_modules.pop(scope) for layer, (lora_q, lora_k, lora_v, lora_o) in zip(self.layers, lora_modules): block = layer.fn fused_attn_ff_weight = block.fused_attn_ff_proj.weight attn_out_weight = block.attn_out.weight fused_proj_out_dim = fused_attn_ff_weight.shape[0] lora_qkv_weight, _ = pack([lora_q.weight, lora_k.weight, lora_v.weight], 'i *') lora_qkv_weight = F.pad(lora_qkv_weight, (0, fused_proj_out_dim - lora_qkv_weight.shape[1])) lora_qkv_weight = rearrange(lora_qkv_weight, 'i o -> o i') lora_o_weight = rearrange(lora_o.weight, 'i o -> o i') fused_attn_ff_weight.add_(lora_qkv_weight) attn_out_weight.add_(lora_o_weight) # researcher train palm parameters first # before finetuning def palm_parameters(self): return set(self.parameters()) - set(self.finetune_modules.parameters()) def finetune_parameters(self, scope = 'default'): assert scope in self.finetune_modules, f'finetune parameters of scope {scope} not found' return self.finetune_modules[scope].parameters() # generate function @torch.no_grad() @eval_decorator def generate( self, seq_len, prompt = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, pad_value = 0., eos_token = None, return_seq_without_prompt = True, use_tqdm = False, **kwargs ): if not exists(prompt): prompt = torch.randint(0, self.num_tokens, (1, 1)) prompt = prompt.to(self.device) return_seq_without_prompt = False prompt, leading_dims = pack([prompt], '* n') n, out = prompt.shape[-1], prompt.clone() wrapper_fn = identity if not use_tqdm else tqdm sample_num_times = max(1, seq_len - prompt.shape[-1]) for _ in wrapper_fn(range(sample_num_times)): logits, embeds = self.forward(out, return_logits_with_embedding = True, **kwargs) logits, embeds = logits[:, -1], embeds[:, -1] if exists(filter_logits_fn): logits = filter_logits_fn(logits, thres = filter_thres) sample = gumbel_sample(logits, temperature = temperature, dim = -1) out, _ = pack([out, sample], 'b *') if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, pad_value) break out, = unpack(out, leading_dims, '* n') if not return_seq_without_prompt: return out return out[..., n:] def forward( self, x, return_loss = False, disable_lora = False, finetune_scope = None, extra_embed = None, return_only_embedding = False, return_logits_with_embedding = False ): if return_loss: x, labels = x[:, :-1], x[:, 1:] # mask if encoder # treat any token ids that are negative as tokens to mask out - only needed if not autoregressive if not self.causal: mask = x >= 0 x = x.masked_fill(~mask, 0) else: mask = None # get token embedding x = self.token_emb(x) if exists(extra_embed): x = x + extra_embed # finetune modules finetune_modules = tuple() if exists(finetune_scope) and not disable_lora: assert finetune_scope in self.finetune_modules finetune_modules = self.finetune_modules[finetune_scope] # parallel attention / ff blocks, passing in finetuning loras for layer, finetune_modules in zip_longest(self.layers, finetune_modules): x = layer(x, mask = mask, finetune_modules = finetune_modules) # final norm embeds = self.norm(x) if return_only_embedding: return embeds # to logits logits = self.to_logits(embeds) ret = (logits, embeds) if return_logits_with_embedding else logits if not return_loss: return ret logits = rearrange(logits, 'b n c -> b c n') return F.cross_entropy(logits, labels, ignore_index = self.cross_entropy_ignore_index)
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/palm.py
from palm_rlhf_pytorch.palm import PaLM from palm_rlhf_pytorch.reward import RewardModel from palm_rlhf_pytorch.ppo import RLHFTrainer, ActorCritic
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/__init__.py
import math import torch from torch import einsum, nn import torch.nn.functional as F from einops import rearrange def exists(val): return val is not None # decorators def eval_decorator(fn): def inner(self, *args, **kwargs): was_training = self.training self.eval() out = fn(self, *args, **kwargs) self.train(was_training) return out return inner # tensor helpers def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def masked_mean(seq, mask = None, dim = 1, keepdim = False): if not exists(mask): return seq.mean(dim = dim) if seq.ndim == 3: mask = rearrange(mask, 'b n -> b n 1') masked_seq = seq.masked_fill(~mask, 0.) numer = masked_seq.sum(dim = dim, keepdim = keepdim) denom = mask.sum(dim = dim, keepdim = keepdim) masked_mean = numer / denom.clamp(min = 1e-3) masked_mean = masked_mean.masked_fill(denom == 0, 0.) return masked_mean # sampling helpers def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim) def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) def top_k(logits, thres = 0.9): k = math.ceil((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/utils.py
from torch.optim import AdamW, Adam from lion_pytorch import Lion def separate_weight_decayable_params(params): wd_params, no_wd_params = [], [] for param in params: param_list = no_wd_params if param.ndim < 2 else wd_params param_list.append(param) return wd_params, no_wd_params def get_optimizer( params, lr = 1e-4, wd = 1e-2, betas = (0.9, 0.99), eps = 1e-8, filter_by_requires_grad = False, group_wd_params = True, use_lion = True, **kwargs ): if filter_by_requires_grad: params = list(filter(lambda t: t.requires_grad, params)) if group_wd_params and wd > 0: wd_params, no_wd_params = separate_weight_decayable_params(params) params = [ {'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}, ] if use_lion: return Lion(params, lr = lr, betas = betas, weight_decay = wd) if wd == 0: return Adam(params, lr = lr, betas = betas, eps = eps) return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/optimizer.py
import torch from torch import nn # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # LoRA - https://arxiv.org/abs/2106.09685 class LoRA(nn.Module): def __init__( self, dim, dim_out, r = 8, alpha = None ): super().__init__() alpha = default(alpha, r) self.scale = alpha / r self.A = nn.Parameter(torch.randn(dim, r)) self.B = nn.Parameter(torch.zeros(r, dim_out)) @property def weight(self): return (self.A @ self.B) * self.scale def forward(self, x): return x @ self.weight
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/lora.py
import math from pathlib import Path import copy from tqdm import tqdm from functools import partial from collections import deque, namedtuple from random import randrange from beartype import beartype from beartype.typing import List, Optional, Callable, Deque import torch from torch import nn import torch.nn.functional as F from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torch.nn.utils.rnn import pad_sequence from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange from palm_rlhf_pytorch.palm import PaLM from palm_rlhf_pytorch.reward import RewardModel from palm_rlhf_pytorch.optimizer import get_optimizer from palm_rlhf_pytorch.utils import masked_mean, eval_decorator from accelerate import Accelerator # actor critic - PaLM with lora PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [ 'actions', 'sequence', 'mask', 'prompt_mask', 'action_logits', 'values' ]) @beartype class ActorCritic(nn.Module): def __init__( self, palm: PaLM, critic_palm: Optional[PaLM] = None, pooled_values = False, actor_lora = True, critic_lora = True, actor_lora_r = 8, critic_lora_r = 8, actor_lora_scope = 'actor', critic_lora_scope = 'critic', actor_dropout = 0., critic_dropout = 0. ): super().__init__() self.actor_palm = palm self.critic_palm = critic_palm if not exists(self.critic_palm): self.critic_palm = copy.deepcopy(palm) self.actor_palm.set_dropout(actor_dropout) self.critic_palm.set_dropout(critic_dropout) self.actor_lora = actor_lora self.critic_lora = critic_lora self.actor_lora_scope = actor_lora_scope if actor_lora else None self.critic_lora_scope = critic_lora_scope if critic_lora else None if self.actor_lora: self.actor_palm.add_finetune_params(actor_lora_scope, lora_r = actor_lora_r) if self.critic_lora: self.critic_palm.add_finetune_params(critic_lora_scope, lora_r = critic_lora_r) self.pooled_values = pooled_values self.value_head = nn.Sequential( nn.Linear(palm.dim, 1), Rearrange('... 1 -> ...') ) nn.init.zeros_(self.value_head[0].bias) nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2)) def actor_parameters(self): if not self.actor_lora: return self.actor_palm.parameters() return [ *self.actor_palm.finetune_parameters(self.actor_lora_scope) ] def critic_parameters(self): if not self.actor_lora: return [*self.critic_palm.parameters(), *self.value_head.parameters()] return [ *self.critic_palm.finetune_parameters(self.critic_lora_scope), *self.value_head.parameters() ] @torch.no_grad() @eval_decorator def generate( self, state, max_seq_len, eos_token = None, return_values = False, **kwargs ): actions = self.actor_palm.generate( max_seq_len, prompt = state, eos_token = eos_token, finetune_scope = self.actor_lora_scope, use_tqdm = True, **kwargs ) sequence = torch.cat((state, actions), dim = -1) action_len = actions.shape[-1] state_len = state.shape[-1] prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0]) action_mask = ~prompt_mask mask = None if exists(eos_token): mask = ((sequence == eos_token).cumsum(dim = -1) == 0) mask = F.pad(mask, (1, -1), value = True) # include eos token action_mask &= mask action_logits, value = self.forward( sequence, mask = action_mask, return_values = return_values ) return PPOActionCriticReturn( actions, sequence, mask, prompt_mask, action_logits, value ) def forward( self, x, mask = None, return_values = True ): action_logits = self.actor_palm( x, finetune_scope = self.actor_lora_scope ) if not return_values: return action_logits, None critic_embeds = self.critic_palm( x, return_only_embedding = True, finetune_scope = self.critic_lora_scope ) if self.pooled_values: critic_embeds = shift(critic_embeds, shift = 1, dim = -2) critic_embeds = masked_mean(critic_embeds, mask, dim = 1) values = self.value_head(critic_embeds) return action_logits, values # data Memory = namedtuple('Memory', [ 'sequence', 'prompt_mask', 'mask', 'action_prob', 'action_log_prob', 'reward', 'value' ]) @beartype class ExperienceDataset(Dataset): def __init__( self, data: List[torch.Tensor], device = None ): super().__init__() self.data = data self.device = device def __len__(self): return self.data[0].shape[0] def __getitem__(self, ind): return tuple(map(lambda t: t[ind].to(self.device), self.data)) def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs): ds = ExperienceDataset(data, device = device) return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs) # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def masked_normalize(t, eps = 1e-5, mask = None, dim = None): dim = default(dim, tuple(range(t.ndim))) kwargs = dict(dim = dim, keepdim = True) mean = masked_mean(t, mask = mask, **kwargs) mean_centered = t - mean var = masked_mean(mean_centered ** 2, mask = mask, **kwargs) return mean_centered * var.clamp(min = eps).rsqrt() def pad_sequence_fixed(sequences, *args, **kwargs): first_el = sequences[0] has_no_dimension = first_el.ndim == 0 # if no dimensions, add a single dimension if has_no_dimension: sequences = tuple(map(lambda t: t[None], sequences)) out = pad_sequence(sequences, *args, **kwargs) if has_no_dimension: out = rearrange(out, '... 1 -> ...') return out def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def log_prob(prob, indices): assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match' return log(prob.gather(-1, indices[..., None])).squeeze(-1) def shift(t, value = 0, shift = 1, dim = -1): zeros = (0, 0) * (-dim - 1) return F.pad(t, (*zeros, shift, -shift), value = value) def masked_entropy(prob, dim = -1, mask = None): entropies = (prob * log(prob)).sum(dim = -1) return masked_mean(entropies, mask = mask).mean() def masked_kl_div(prob1, prob2, mask = None, reduce_batch = False): """ need to account for variable sequence lengths, therefore not using the built-in functional version """ kl_divs = (prob1 * (log(prob1) - log(prob2))).sum(dim = -1) loss = masked_mean(kl_divs, mask) if reduce_batch: return loss.mean() return loss def clipped_value_loss(values, rewards, old_values, clip): value_clipped = old_values + (values - old_values).clamp(-clip, clip) value_loss_1 = (value_clipped.flatten() - rewards) ** 2 value_loss_2 = (values.flatten() - rewards) ** 2 return torch.mean(torch.max(value_loss_1, value_loss_2)) # rlhf trainer @beartype class RLHFTrainer(nn.Module): def __init__( self, *, prompts: Optional[List[str]] = None, prompts_path: Optional[str] = None, prompt_token_ids: Optional[torch.Tensor] = None, tokenizer: Callable = None, palm: PaLM, reward_model: RewardModel, critic_palm: Optional[PaLM] = None, actor_critic: Optional[ActorCritic] = None, actor_lr = 1e-4, critic_lr = 1e-4, actor_wd = 0., critic_wd = 0., actor_adam_eps = 1e-7, critic_adam_eps = 1e-7, actor_lora = True, critic_lora = True, actor_lora_r = 8, critic_lora_r = 8, critic_pooled_values = True, actor_dropout = 0., critic_dropout = 0., betas = (0.9, 0.999), max_norm = None, eps_clip = 0.2, value_clip = 0.4, beta_s = .01, pad_value = 0., minibatch_size = 16, epochs = 1, kl_div_loss_weight = 0.1, # between old action probs and new action probs - not sure what the right value is accelerate_kwargs: dict = {}, use_lion = False ): super().__init__() self.accelerate = Accelerator(**accelerate_kwargs) # take care of prompts -> token ids assert (exists(prompts) + exists(prompts_path) + exists(prompt_token_ids)) == 1 if exists(prompts_path): path = Path(prompts_path) prompts = path.read_text().split('\n') if exists(prompts): assert len(prompts) > 0, 'no prompts' assert exists(tokenizer), 'tokenizer must be passed in if raw text prompts are given' prompt_token_ids = tokenizer(prompts) self.pad_value = pad_value # token pad value self.num_prompts = prompt_token_ids.shape[0] self.register_buffer('prompt_token_ids', prompt_token_ids) # models self.palm = palm if not exists(actor_critic): actor_critic = ActorCritic( palm = palm, critic_palm = critic_palm, actor_lora = actor_lora, critic_lora = critic_lora, actor_lora_r = actor_lora_r, critic_lora_r = critic_lora_r, pooled_values = critic_pooled_values, actor_dropout = actor_dropout, critic_dropout = critic_dropout ).to(palm.device) self.actor_critic = actor_critic self.reward_model = reward_model.eval() # train hyperparameters self.epochs = epochs self.minibatch_size = minibatch_size self.max_norm = max_norm self.kl_div_loss_weight = kl_div_loss_weight # optimizers self.actor_optim = get_optimizer(actor_critic.actor_parameters(), lr = actor_lr, wd = actor_wd, betas = betas, eps = actor_adam_eps, use_lion = use_lion) self.critic_optim = get_optimizer(actor_critic.critic_parameters(), lr = critic_lr, wd = critic_wd, betas = betas, eps = critic_adam_eps, use_lion = use_lion) # ppo hyperparams self.eps_clip = eps_clip self.value_clip = value_clip self.beta_s = beta_s # prepare with accelerator ( self.actor_critic, self.reward_model, self.actor_optim, self.critic_optim ) = self.accelerate.prepare( self.actor_critic, self.reward_model, self.actor_optim, self.critic_optim ) def print(self, msg): return self.accelerate.print(msg) def save(self, filepath = './checkpoint.pt'): torch.save(self.actor_critic.state_dict(), filepath) def load(self, filepath = './checkpoint.pt'): state_dict = torch.load(filepath) self.actor_critic.load_state_dict(state_dict) @property def device(self): return self.accelerate.device @torch.no_grad() def generate( self, max_seq_len, *args, prompt, num_samples = 4, # sample 4 per prompt and select the one with highest reward **kwargs ): assert prompt.ndim == 1, 'only one prompt allowed at a time for now' prompt = repeat(prompt, 'n -> b n', b = num_samples) actor_critic = self.accelerate.unwrap_model(self.actor_critic) reward_model = self.accelerate.unwrap_model(self.reward_model) actor_critic.eval() ( actions, sequences, mask, prompt_mask, action_logits, _ ) = actor_critic.generate( prompt, *args, max_seq_len = max_seq_len, return_values = False, **kwargs ) rewards = reward_model( sequences, prompt_mask = prompt_mask, mask = mask, sample = True ) best_sequence_index = rewards.topk(1, dim = -1).indices best_sequence = sequences[best_sequence_index] best_sequence = rearrange(best_sequence, '1 ... -> ...') return best_sequence def learn( self, memories: Deque[Memory] ): # stack all data stored in the memories all_memories_stacked_and_padded = list(map(partial(pad_sequence_fixed, batch_first = True), zip(*memories))) # prepare dataloader for policy phase training dl = create_dataloader(all_memories_stacked_and_padded, self.minibatch_size, device = self.device) self.actor_critic.train() # PPO training for _ in range(self.epochs): for ( sequences, prompt_masks, masks, old_action_probs, old_log_probs, rewards, old_values ) in dl: action_masks = ~prompt_masks & masks action_logits, values = self.actor_critic( sequences, mask = action_masks ) action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token action_len = old_log_probs.shape[-1] action_probs = action_logits.softmax(dim = -1) action_log_probs = log_prob(action_probs, sequences) action_log_probs = action_log_probs[:, -action_len:] # calculate entropies, taking into account which part of the sequence is actually an action entropies = masked_entropy(action_probs, mask = action_masks) # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not kl_penalty = 0. if self.kl_div_loss_weight > 0: kl_penalty = masked_kl_div(old_action_probs, action_probs, mask = action_masks) * self.kl_div_loss_weight # subtract the kl penalty from the rewards rewards = rewards - kl_penalty # handle non-pooled values normalize_kwargs = dict() if old_values.ndim == 2: old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values)) old_values = old_values[:, -action_len:] values = values[:, -action_len:] rewards = rearrange(rewards, 'b -> b 1') normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:]) if values.ndim < rewards.ndim: values = rearrange(values, '... -> ... 1') # calculate clipped surrogate objective, classic PPO loss ratios = (action_log_probs - old_log_probs).exp() advantages = masked_normalize(rewards - old_values, **normalize_kwargs) if advantages.ndim == 1: advantages = rearrange(advantages, 'b -> b 1') surr1 = ratios * advantages surr2 = ratios.clamp(1 - self.eps_clip, 1 + self.eps_clip) * advantages policy_loss = - torch.min(surr1, surr2) - self.beta_s * entropies # combine losses loss = policy_loss.mean() # update actor self.accelerate.backward(loss) self.print(f'policy_loss: {loss.item():.3f}') if exists(self.max_norm): self.accelerator.clip_grad_norm_(self.actor_critic.actor_parameters(), self.max_norm) self.actor_optim.step() self.actor_optim.zero_grad() # calculate value loss and update value network separate from policy network value_loss = clipped_value_loss(values, rewards.detach(), old_values, self.value_clip) value_loss = value_loss.mean() self.print(f'critic_loss: {value_loss.item():.3f}') self.accelerate.backward(value_loss) if exists(self.max_norm): self.accelerator.clip_grad_norm_(self.actor_critic.critic_parameters(), self.max_norm) self.critic_optim.step() self.critic_optim.zero_grad() def train( self, num_episodes = 50000, max_timesteps = 500, update_timesteps = 5000, max_batch_size = 16, max_seq_len = 2048, eos_token = None, temperature = 1. ): device = self.device time = 0 memories = deque([]) for eps in tqdm(range(num_episodes), desc = 'episodes'): for timestep in range(max_timesteps): time += 1 # select a bunch of random states (prompts) # and get the action (sampled sequence from palm as well as the action probs) # also calculate the reward using reward model and store rand_prompt_index = randrange(0, self.num_prompts) state = self.prompt_token_ids[rand_prompt_index] # remove padding from state state_mask = state != self.pad_value state = state[state_mask] # get predicted sequence ( actions, sequence, mask, prompt_mask, action_logits, value ) = self.actor_critic.generate( rearrange(state, 'n -> 1 n'), max_seq_len = max_seq_len, eos_token = eos_token, temperature = temperature, return_values = True ) action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token action_prob = action_logits.softmax(dim = -1) action_len = actions.shape[-1] action_log_prob = log_prob(action_prob, sequence) action_log_prob = action_log_prob[:, -action_len:] actions = rearrange(actions, '1 ... -> ...') # get reward as given by supervised trained reward model sequence = torch.cat((state, actions), dim = 0) prompt_length = len(state) prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length sequence = rearrange(sequence, 'n -> 1 n') prompt_mask = rearrange(prompt_mask, 'n -> 1 n') mask = default(mask, lambda: torch.ones(sequence.shape, dtype = torch.bool, device = device)) reward = self.reward_model( sequence, prompt_mask = prompt_mask, mask = mask, sample = True ) detach_to_cpu_ = lambda t: rearrange(t.detach().cpu(), '1 ... -> ...') # store memory for learning memories.append(Memory(*map(detach_to_cpu_, ( sequence, prompt_mask, mask, action_prob, action_log_prob, reward, value )))) # learn from the stored memories if time % update_timesteps == 0: self.learn(memories) memories.clear() print('rlhf training complete')
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/ppo.py
import copy from pathlib import Path from tqdm import tqdm from beartype import beartype from beartype.typing import Tuple, Optional import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange, Reduce from palm_rlhf_pytorch.utils import masked_mean, gumbel_sample from palm_rlhf_pytorch.palm import PaLM # helper functions def exists(val): return val is not None # Reward Model - PaLM with a scalar head @beartype class RewardModel(nn.Module): def __init__( self, palm: PaLM, dropout = 0.1, num_binned_output = 0., use_lora = True, lora_r = 8, reward_lora_scope = 'reward', ): super().__init__() self.palm = copy.deepcopy(palm) self.palm.set_dropout(dropout) self.reward_lora_scope = reward_lora_scope if use_lora else None if exists(self.reward_lora_scope): self.palm.add_finetune_params(reward_lora_scope, lora_r = lora_r) dim = palm.dim self.binned_output = num_binned_output > 1 self.prompt_embed = nn.Parameter(torch.zeros(1, 1, dim)) self.response_embed = nn.Parameter(torch.zeros(1, 1, dim)) if self.binned_output: self.to_pred = nn.Linear(dim, num_binned_output) else: self.to_pred = nn.Sequential( nn.Linear(dim, 1, bias = False), Rearrange('... 1 -> ...') ) def load(self, path): path = Path(path) assert path.exists() self.load_state_dict(torch.load(str(path))) def finetune_parameters(self): return [ *self.to_pred.parameters(), *(self.palm.finetune_parameters(self.reward_lora_scope) if exists(self.reward_lora_scope) else self.palm.parameters()) ] def forward( self, x, mask = None, prompt_mask = None, prompt_lengths = None, labels = None, sample = False, sample_temperature = 1., disable_lora = False ): assert not (exists(prompt_mask) and exists(prompt_lengths)) # derive prompt mask from prompt lengths if exists(prompt_lengths): batch, seq_len = x.shape arange = torch.arange(seq_len, device = x.device) prompt_mask = repeat(arange, 'n -> b n', b = batch) < rearrange(prompt_lengths, 'b -> b 1') # reward model should have an understanding of which section is prompt, and which section is response extra_embed = None if exists(prompt_mask): extra_embed = torch.where( rearrange(prompt_mask, 'b n -> b n 1'), self.prompt_embed, self.response_embed ) # get embeddings from palm embeds = self.palm( x, extra_embed = extra_embed, return_only_embedding = True, disable_lora = disable_lora, finetune_scope = self.reward_lora_scope ) pooled = masked_mean(embeds, mask, dim = 1) pred = self.to_pred(pooled) if sample and self.binned_output: assert not exists(labels) pred = gumbel_sample(pred, temperature = sample_temperature, dim = -1) if not exists(labels): return pred if not self.binned_output: return F.mse_loss(pred, labels) return F.cross_entropy(pred, labels)
PaLM-rlhf-pytorch-main
palm_rlhf_pytorch/reward.py
# -------------------------------------------------------- # SEEM -- Segment Everything Everywhere All At Once # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected]) # -------------------------------------------------------- import os import warnings import PIL from PIL import Image from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple import gradio as gr import torch import argparse import whisper import numpy as np from gradio import processing_utils from xdecoder.BaseModel import BaseModel from xdecoder import build_model from utils.distributed import init_distributed from utils.arguments import load_opt_from_config_files from utils.constants import COCO_PANOPTIC_CLASSES from tasks import * def parse_option(): parser = argparse.ArgumentParser('SEEM Demo', add_help=False) parser.add_argument('--conf_files', default="configs/seem/seem_focall_lang.yaml", metavar="FILE", help='path to config file', ) args = parser.parse_args() return args ''' build args ''' args = parse_option() opt = load_opt_from_config_files(args.conf_files) opt = init_distributed(opt) # META DATA cur_model = 'None' if 'focalt' in args.conf_files: pretrained_pth = os.path.join("seem_focalt_v2.pt") if not os.path.exists(pretrained_pth): os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v2.pt")) cur_model = 'Focal-T' elif 'focal' in args.conf_files: pretrained_pth = os.path.join("seem_focall_v1.pt") if not os.path.exists(pretrained_pth): os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v1.pt")) cur_model = 'Focal-L' ''' build model ''' model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda() with torch.no_grad(): model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(COCO_PANOPTIC_CLASSES + ["background"], is_eval=True) ''' audio ''' audio = whisper.load_model("base") @torch.no_grad() def inference(image, task, *args, **kwargs): with torch.autocast(device_type='cuda', dtype=torch.float16): if 'Video' in task: return interactive_infer_video(model, audio, image, task, *args, **kwargs) else: return interactive_infer_image(model, audio, image, task, *args, **kwargs) class ImageMask(gr.components.Image): """ Sets: source="canvas", tool="sketch" """ is_template = True def __init__(self, **kwargs): super().__init__(source="upload", tool="sketch", interactive=True, **kwargs) def preprocess(self, x): return super().preprocess(x) class Video(gr.components.Video): """ Sets: source="canvas", tool="sketch" """ is_template = True def __init__(self, **kwargs): super().__init__(source="upload", **kwargs) def preprocess(self, x): return super().preprocess(x) ''' launch app ''' title = "SEEM: Segment Everything Everywhere All At Once" description = """ <div style="text-align: center; font-weight: bold;"> <span style="font-size: 18px" id="paper-info"> [<a href="https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once" target="_blank">GitHub</a>] [<a href="https://arxiv.org/pdf/2304.06718.pdf" target="_blank">arXiv</a>] </span> </div> <div style="text-align: left; font-weight: bold;"> <br> &#x1F32A Note: The current model is run on <span style="color:blue;">SEEM {}</span>, for <span style="color:blue;">best performance</span> refer to <a href="https://huggingface.co/spaces/xdecoder/SEEM" target="_blank"><span style="color:red;">our demo</span></a>. </p> </div> """.format(cur_model) '''Usage Instructions: &#x1F388 Try our default examples first (Sketch is not automatically drawed on input and example image); &#x1F388 For video demo, it takes about 30-60s to process, please refresh if you meet an error on uploading; &#x1F388 Upload an image/video (If you want to use referred region of another image please check "Example" and upload another image in referring image panel); &#x1F388 Select at least one type of prompt of your choice (If you want to use referred region of another image please check "Example"); &#x1F388 Remember to provide the actual prompt for each promt type you select, otherwise you will meet an error (e.g., rember to draw on the referring image); &#x1F388 Our model by default support the vocabulary of COCO 133 categories, others will be classified to 'others' or misclassifed. ''' article = "The Demo is Run on SEEM-Tiny." inputs = [ImageMask(label="[Stroke] Draw on Image",type="pil"), gr.inputs.CheckboxGroup(choices=["Stroke", "Example", "Text", "Audio", "Video", "Panoptic"], type="value", label="Interative Mode"), ImageMask(label="[Example] Draw on Referring Image",type="pil"), gr.Textbox(label="[Text] Referring Text"), gr.Audio(label="[Audio] Referring Audio", source="microphone", type="filepath"), gr.Video(label="[Video] Referring Video Segmentation",format="mp4",interactive=True)] gr.Interface( fn=inference, inputs=inputs, outputs=[ gr.outputs.Image( type="pil", label="Segmentation Results (COCO classes as label)"), gr.Video( label="Video Segmentation Results (COCO classes as label)", format="mp4" ), ], examples=[ ["examples/corgi1.webp", ["Text"], "examples/corgi2.jpg", "The corgi.", None, None], ["examples/river1.png", ["Text", "Audio"], "examples/river2.png", "The green trees.", "examples/river1.wav", None], ["examples/zebras1.jpg", ["Example"], "examples/zebras2.jpg", "", None, None], ["examples/fries1.png", ["Example"], "examples/fries2.png", "", None, None], ["examples/placeholder.png", ["Video"], "examples/ref_vase.JPG", "", None, "examples/vasedeck.mp4"], ], title=title, description=description, article=article, allow_flagging='never', cache_examples=False, ).launch()
Segment-Everything-Everywhere-All-At-Once-main
demo_code/app.py
from .interactive import interactive_infer_video, interactive_infer_image
Segment-Everything-Everywhere-All-At-Once-main
demo_code/tasks/__init__.py
# -------------------------------------------------------- # SEEM -- Segment Everything Everywhere All At Once # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]) # -------------------------------------------------------- import torch import numpy as np import torch.nn.functional as F from PIL import Image from torchvision import transforms from utils.visualizer import Visualizer from detectron2.utils.colormap import random_color from detectron2.data import MetadataCatalog from detectron2.structures import BitMasks from xdecoder.language.loss import vl_similarity from utils.constants import COCO_PANOPTIC_CLASSES from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES import cv2 import os import glob import subprocess from PIL import Image import random t = [] t.append(transforms.Resize(512, interpolation=Image.BICUBIC)) transform = transforms.Compose(t) metadata = MetadataCatalog.get('coco_2017_train_panoptic') all_classes = [name.replace('-other','').replace('-merged','') for name in COCO_PANOPTIC_CLASSES] + ["others"] colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]] def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None): image_ori = transform(image['image']) mask_ori = image['mask'] width = image_ori.size[0] height = image_ori.size[1] image_ori = np.asarray(image_ori) visual = Visualizer(image_ori, metadata=metadata) images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda() # stroke_inimg = None # stroke_refimg = None data = {"image": images, "height": height, "width": width} if len(tasks) == 0: tasks = ["Panoptic"] # inistalize task model.model.task_switch['spatial'] = False model.model.task_switch['visual'] = False model.model.task_switch['grounding'] = False model.model.task_switch['audio'] = False example = None if 'Example' in tasks: model.model.task_switch['visual'] = True model.model.task_switch['spatial'] = True refimg_ori, refimg_mask = refimg['image'], refimg['mask'] refimg_ori = transform(refimg_ori) _width = refimg_ori.size[0] _height = refimg_ori.size[1] refimg_ori = np.asarray(refimg_ori) refimg_ori_np = refimg_ori.copy() images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda() batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}] refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy() refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,] refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0) batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs) model.model.task_switch['spatial'] = False data['visual'] = outputs_refimg # overlay = refimg_mask[0,0].float().numpy()[:,:,None] * np.array([0,0,255]) # x = refimg_ori_np # stroke_refimg = x * (1 - refimg_mask[0,0].float().numpy()[:,:,None]) + (x * refimg_mask[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8) # stroke_refimg = Image.fromarray(stroke_refimg.astype(np.uint8)) stroke = None if 'Stroke' in tasks: model.model.task_switch['spatial'] = True mask_ori = np.asarray(mask_ori)[:,:,0:1].copy() mask_ori = torch.from_numpy(mask_ori).permute(2,0,1)[None,] mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0) data['stroke'] = mask_ori # overlay = mask_ori[0,0].float().numpy()[:,:,None] * np.array([0,255,0]) # x = image_ori # stroke_inimg = x * (1 - mask_ori[0,0].float().numpy()[:,:,None]) + (x * mask_ori[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8) # stroke_inimg = Image.fromarray(stroke_inimg.astype(np.uint8)) text = None if 'Text' in tasks: model.model.task_switch['grounding'] = True data['text'] = [reftxt] audio = None if 'Audio' in tasks: model.model.task_switch['audio'] = True audio_result = audio_model.transcribe(audio_pth) data['audio'] = [audio_result['text']] batch_inputs = [data] if 'Panoptic' in tasks: model.model.metadata = metadata results = model.model.evaluate(batch_inputs) pano_seg = results[-1]['panoptic_seg'][0] pano_seg_info = results[-1]['panoptic_seg'][1] demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image res = demo.get_image() return Image.fromarray(res), None else: results,image_size,extra = model.model.evaluate_demo(batch_inputs) # If contians spatial use spatial: if 'Stroke' in tasks: v_emb = results['pred_maskembs'] s_emb = results['pred_pspatials'] pred_masks = results['pred_masks'] pred_logits = v_emb @ s_emb.transpose(1,2) logits_idx_y = pred_logits[:,:,0].max(dim=1)[1] logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device) logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist() pred_masks_pos = pred_masks[logits_idx] pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1] elif 'Example' in tasks: v_emb = results['pred_maskembs'] s_emb = results['pred_pvisuals'] pred_masks = results['pred_masks'] pred_logits = v_emb @ s_emb.transpose(1,2) logits_idx_y = pred_logits[:,:,0].max(dim=1)[1] logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device) logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist() pred_masks_pos = pred_masks[logits_idx] pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1] elif 'Text' in tasks: pred_masks = results['pred_masks'][0] v_emb = results['pred_captions'][0] t_emb = extra['grounding_class'] t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) matched_id = out_prob.max(0)[1] pred_masks_pos = pred_masks[matched_id,:,:] pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1] elif 'Audio' in tasks: pred_masks = results['pred_masks'][0] v_emb = results['pred_captions'][0] t_emb = extra['audio_class'] t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) matched_id = out_prob.max(0)[1] pred_masks_pos = pred_masks[matched_id,:,:] pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1] # interpolate mask to ori size pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy() texts = [all_classes[pred_class[0]]] for idx, mask in enumerate(pred_masks_pos): # color = random_color(rgb=True, maximum=1).astype(np.int32).tolist() out_txt = texts[idx] if 'Text' not in tasks else reftxt demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt) res = demo.get_image() torch.cuda.empty_cache() # return Image.fromarray(res), stroke_inimg, stroke_refimg return Image.fromarray(res), None def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None): if 'Video' in tasks: input_dir = video_pth.replace('.mp4', '') input_name = input_dir.split('/')[-1] random_number = str(random.randint(10000, 99999)) output_dir = input_dir + '_output' output_name = output_dir.split('/')[-1] output_file = video_pth.replace('.mp4', '_{}_output.mp4'.format(random_number)) frame_interval = 10 # Ensure output directory exists if not os.path.exists(input_dir): os.makedirs(input_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Build the FFmpeg command ffmpeg_cmd = "ffmpeg -i {} -vf \"fps=5\" {}/%04d.png".format(video_pth, input_dir) os.system(ffmpeg_cmd) data = {} model.model.task_switch['visual'] = True model.model.task_switch['spatial'] = True refimg_ori, refimg_mask = refimg['image'], refimg['mask'] refimg_ori = transform(refimg_ori) _width = refimg_ori.size[0] _height = refimg_ori.size[1] refimg_ori = np.asarray(refimg_ori) refimg_ori_np = refimg_ori.copy() images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda() batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}] refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy() refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,] refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0) batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs) model.model.task_switch['visual'] = False model.model.task_switch['spatial'] = False data['visual'] = outputs_refimg model.model.task_switch['visual'] = True frame_pths = sorted(glob.glob(os.path.join(input_dir, '*.png'))) for frame_pth in frame_pths: image_ori = transform(Image.open(frame_pth)) width = image_ori.size[0] height = image_ori.size[1] image_ori = np.asarray(image_ori) visual = Visualizer(image_ori[:,:,::-1], metadata=metadata) images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda() data.update({"image": images, "height": height, "width": width}) batch_inputs = [data] results,image_size,extra = model.model.evaluate_demo(batch_inputs) v_emb = results['pred_maskembs'] s_emb = results['pred_pvisuals'] pred_masks = results['pred_masks'] pred_logits = v_emb @ s_emb.transpose(1,2) logits_idx_y = pred_logits[:,:,0].max(dim=1)[1] logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device) logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist() pred_masks_pos = pred_masks[logits_idx] pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1] pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy() texts = [all_classes[pred_class[0]]] for idx, mask in enumerate(pred_masks_pos): out_txt = texts[idx] demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt) res = demo.get_image() output_pth = frame_pth.replace(input_name, output_name) cv2.imwrite(output_pth, res) ffmpeg_cmd = "ffmpeg -framerate 5 -pattern_type glob -i '{}/*.png' -c:v libx264 {}".format(output_dir, output_file) os.system(ffmpeg_cmd) return None, output_file
Segment-Everything-Everywhere-All-At-Once-main
demo_code/tasks/interactive.py
# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]) # -------------------------------------------------------- import os import logging import torch import torch.nn as nn from utils.model_loading import align_and_update_state_dicts logger = logging.getLogger(__name__) class BaseModel(nn.Module): def __init__(self, opt, module: nn.Module): super(BaseModel, self).__init__() self.opt = opt self.model = module def forward(self, *inputs, **kwargs): outputs = self.model(*inputs, **kwargs) return outputs def save_pretrained(self, save_dir): save_path = os.path.join(save_dir, 'model_state_dict.pt') torch.save(self.model.state_dict(), save_path) def from_pretrained(self, load_path): state_dict = torch.load(load_path, map_location=self.opt['device']) state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict) self.model.load_state_dict(state_dict, strict=False) return self
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/BaseModel.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .architectures import build_model
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/__init__.py
from .registry import model_entrypoints from .registry import is_model from .xdecoder_head import * def build_xdecoder_head(config, *args, **kwargs): model_name = config['MODEL']['HEAD'] if not is_model(model_name): raise ValueError(f'Unkown model: {model_name}') body = model_entrypoints(model_name)(config, *args, **kwargs) return body
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/build.py
# Copyright (c) Facebook, Inc. and its affiliates. # -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected]) # -------------------------------------------------------- from typing import Dict from torch import nn from detectron2.layers import ShapeSpec from .registry import register_body from .encoder import build_encoder from .decoder import build_decoder from ..utils import configurable class XDecoderHead(nn.Module): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, num_classes: int, pixel_decoder: nn.Module, loss_weight: float = 1.0, ignore_value: int = -1, # extra parameters transformer_predictor: nn.Module, transformer_in_feature: str, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features num_classes: number of classes to predict pixel_decoder: the pixel decoder module loss_weight: loss weight ignore_value: category id to be ignored during training. transformer_predictor: the transformer decoder that makes prediction transformer_in_feature: input feature name to the transformer_predictor """ super().__init__() input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] feature_strides = [v.stride for k, v in input_shape] feature_channels = [v.channels for k, v in input_shape] self.ignore_value = ignore_value self.common_stride = 4 self.loss_weight = loss_weight self.pixel_decoder = pixel_decoder self.predictor = transformer_predictor self.transformer_in_feature = transformer_in_feature self.num_classes = num_classes @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec], lang_encoder: nn.Module, extra: dict): in_features_type = cfg['MODEL']['DECODER']['TRANSFORMER_IN_FEATURE'] enc_cfg = cfg['MODEL']['ENCODER'] dec_cfg = cfg['MODEL']['DECODER'] # figure out in_channels to transformer predictor if in_features_type == "transformer_encoder": transformer_predictor_in_channels = enc_cfg['CONVS_DIM'] elif in_features_type == "pixel_embedding": transformer_predictor_in_channels = enc_cfg['MASK_DIM'] elif in_features_type == "multi_scale_pixel_decoder": # for maskformer2 transformer_predictor_in_channels = enc_cfg['CONVS_DIM'] else: transformer_predictor_in_channels = input_shape[dec_cfg['TRANSFORMER_IN_FEATURE']].channels return { "input_shape": { k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES'] }, "ignore_value": enc_cfg['IGNORE_VALUE'], "num_classes": enc_cfg.get('NUM_CLASSES', None), "pixel_decoder": build_encoder(cfg, input_shape), "loss_weight": enc_cfg['LOSS_WEIGHT'], "transformer_in_feature": dec_cfg['TRANSFORMER_IN_FEATURE'], "transformer_predictor": build_decoder( cfg, transformer_predictor_in_channels, lang_encoder, mask_classification=True, extra=extra, ), } def forward(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): return self.layers(features, mask, target_queries, target_vlp, task, extra) def layers(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features) if self.transformer_in_feature == "multi_scale_pixel_decoder": predictions = self.predictor(multi_scale_features, mask_features, mask, target_queries, target_vlp, task, extra) else: if self.transformer_in_feature == "transformer_encoder": assert ( transformer_encoder_features is not None ), "Please use the TransformerEncoderPixelDecoder." predictions = self.predictor(transformer_encoder_features, mask_features, mask) elif self.transformer_in_feature == "pixel_embedding": predictions = self.predictor(mask_features, mask_features, mask) else: predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask) return predictions @register_body def get_xdecoder_head(cfg, input_shape, lang_encoder, extra): return XDecoderHead(cfg, input_shape, lang_encoder, extra)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/xdecoder_head.py
_model_entrypoints = {} def register_body(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _model_entrypoints[model_name] = fn return fn def model_entrypoints(model_name): return _model_entrypoints[model_name] def is_model(model_name): return model_name in _model_entrypoints
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/registry.py
from .build import build_xdecoder_head
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/transformer.py """ Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy from typing import List, Optional import torch import torch.nn.functional as F from torch import Tensor, nn class Transformer(nn.Module): def __init__( self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False, ): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) decoder_layer = TransformerDecoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, ) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, query_embed, pos_embed): # flatten NxCxHxW to HWxNxC bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) if mask is not None: mask = mask.flatten(1) tgt = torch.zeros_like(query_embed) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) hs = self.decoder( tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed ) return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w) class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward( self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): output = src for layer in self.layers: output = layer( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos ) if self.norm is not None: output = self.norm(output) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output = tgt intermediate = [] for layer in self.layers: output = layer( output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, ) if self.return_intermediate: intermediate.append(self.norm(output)) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) return output.unsqueeze(0) class TransformerEncoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn( q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn( q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn( q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre( tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) return self.forward_post( tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/transformer_blocks.py
from .registry import model_entrypoints from .registry import is_model from .transformer_encoder_fpn import * # from .transformer_encoder_deform import * def build_encoder(config, *args, **kwargs): model_name = config['MODEL']['ENCODER']['NAME'] if not is_model(model_name): raise ValueError(f'Unkown model: {model_name}') return model_entrypoints(model_name)(config, *args, **kwargs)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/build.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import functional as F from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ from torch.cuda.amp import autocast import fvcore.nn.weight_init as weight_init from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm from .registry import register_encoder from ..transformer_blocks import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn from ...modules import PositionEmbeddingSine from ...utils import configurable # from ..layers import Conv2d, DeformConv, ShapeSpec, get_norm # This is a modified FPN decoder. class BasePixelDecoder(nn.Module): def __init__( self, input_shape: Dict[str, ShapeSpec], *, conv_dim: int, mask_dim: int, mask_on: bool, norm: Optional[Union[str, Callable]] = None, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features conv_dims: number of output channels for the intermediate conv layers. mask_dim: number of output channels for the final conv layer. norm (str or callable): normalization for all conv layers """ super().__init__() input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5" feature_channels = [v.channels for k, v in input_shape] lateral_convs = [] output_convs = [] use_bias = norm == "" for idx, in_channels in enumerate(feature_channels): if idx == len(self.in_features) - 1: output_norm = get_norm(norm, conv_dim) output_conv = Conv2d( in_channels, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(output_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(None) output_convs.append(output_conv) else: lateral_norm = get_norm(norm, conv_dim) output_norm = get_norm(norm, conv_dim) lateral_conv = Conv2d( in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm ) output_conv = Conv2d( conv_dim, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(lateral_conv) weight_init.c2_xavier_fill(output_conv) self.add_module("adapter_{}".format(idx + 1), lateral_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(lateral_conv) output_convs.append(output_conv) # Place convs into top-down order (from low to high resolution) # to make the top-down computation in forward clearer. self.lateral_convs = lateral_convs[::-1] self.output_convs = output_convs[::-1] self.mask_on = mask_on if self.mask_on: self.mask_dim = mask_dim self.mask_features = Conv2d( conv_dim, mask_dim, kernel_size=3, stride=1, padding=1, ) weight_init.c2_xavier_fill(self.mask_features) self.maskformer_num_feature_levels = 3 # always use 3 scales @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): enc_cfg = cfg['MODEL']['ENCODER'] ret = {} ret["input_shape"] = { k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES'] } ret["conv_dim"] = enc_cfg['CONVS_DIM'] ret["mask_dim"] = enc_cfg['MASK_DIM'] ret["norm"] = enc_cfg['NORM'] return ret def forward_features(self, features): multi_scale_features = [] num_cur_levels = 0 # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.in_features[::-1]): x = features[f] lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] if lateral_conv is None: y = output_conv(x) else: cur_fpn = lateral_conv(x) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest") y = output_conv(y) if num_cur_levels < self.maskformer_num_feature_levels: multi_scale_features.append(y) num_cur_levels += 1 mask_features = self.mask_features(y) if self.mask_on else None return mask_features, None, multi_scale_features def forward(self, features, targets=None): logger = logging.getLogger(__name__) logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.") return self.forward_features(features) class TransformerEncoderOnly(nn.Module): def __init__( self, d_model=512, nhead=8, num_encoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, pos_embed): # flatten NxCxHxW to HWxNxC bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) if mask is not None: mask = mask.flatten(1) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) return memory.permute(1, 2, 0).view(bs, c, h, w) # This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map. class TransformerEncoderPixelDecoder(BasePixelDecoder): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, transformer_dropout: float, transformer_nheads: int, transformer_dim_feedforward: int, transformer_enc_layers: int, transformer_pre_norm: bool, conv_dim: int, mask_dim: int, mask_on: int, norm: Optional[Union[str, Callable]] = None, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features transformer_dropout: dropout probability in transformer transformer_nheads: number of heads in transformer transformer_dim_feedforward: dimension of feedforward network transformer_enc_layers: number of transformer encoder layers transformer_pre_norm: whether to use pre-layernorm or not conv_dims: number of output channels for the intermediate conv layers. mask_dim: number of output channels for the final conv layer. norm (str or callable): normalization for all conv layers """ super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm, mask_on=mask_on) input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5" feature_strides = [v.stride for k, v in input_shape] feature_channels = [v.channels for k, v in input_shape] in_channels = feature_channels[len(self.in_features) - 1] self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1) weight_init.c2_xavier_fill(self.input_proj) self.transformer = TransformerEncoderOnly( d_model=conv_dim, dropout=transformer_dropout, nhead=transformer_nheads, dim_feedforward=transformer_dim_feedforward, num_encoder_layers=transformer_enc_layers, normalize_before=transformer_pre_norm, ) N_steps = conv_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) # update layer use_bias = norm == "" output_norm = get_norm(norm, conv_dim) output_conv = Conv2d( conv_dim, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(output_conv) delattr(self, "layer_{}".format(len(self.in_features))) self.add_module("layer_{}".format(len(self.in_features)), output_conv) self.output_convs[0] = output_conv @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): enc_cfg = cfg['MODEL']['ENCODER'] dec_cfg = cfg['MODEL']['DECODER'] ret = super().from_config(cfg, input_shape) ret["transformer_dropout"] = dec_cfg['DROPOUT'] ret["transformer_nheads"] = dec_cfg['NHEADS'] ret["transformer_dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD'] ret["transformer_enc_layers"] = enc_cfg['TRANSFORMER_ENC_LAYERS'] # a separate config ret["transformer_pre_norm"] = dec_cfg['PRE_NORM'] ret['mask_on'] = cfg['MODEL']['DECODER']['MASK'] return ret def forward_features(self, features): multi_scale_features = [] num_cur_levels = 0 # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.in_features[::-1]): x = features[f] lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] if lateral_conv is None: transformer = self.input_proj(x) pos = self.pe_layer(x) transformer = self.transformer(transformer, None, pos) y = output_conv(transformer) # save intermediate feature as input to Transformer decoder transformer_encoder_features = transformer else: cur_fpn = lateral_conv(x) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest") y = output_conv(y) if num_cur_levels < self.maskformer_num_feature_levels: multi_scale_features.append(y) num_cur_levels += 1 mask_features = self.mask_features(y) if self.mask_on else None return mask_features, transformer_encoder_features, multi_scale_features def forward(self, features, targets=None): logger = logging.getLogger(__name__) logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.") return self.forward_features(features) @register_encoder def get_transformer_encoder_fpn(cfg, input_shape): """ Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`. """ model = TransformerEncoderPixelDecoder(cfg, input_shape) forward_features = getattr(model, "forward_features", None) if not callable(forward_features): raise ValueError( "Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. " f"Please implement forward_features for {name} to only return mask features." ) return model
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/transformer_encoder_fpn.py
_model_entrypoints = {} def register_encoder(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _model_entrypoints[model_name] = fn return fn def model_entrypoints(model_name): return _model_entrypoints[model_name] def is_model(model_name): return model_name in _model_entrypoints
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/registry.py
from .build import build_encoder
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Callable, Dict, List, Optional, Tuple, Union import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ from torch.cuda.amp import autocast from detectron2.layers import Conv2d, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from .ops.modules import MSDeformAttn from .registry import register_encoder from ...utils import configurable from ...modules import PositionEmbeddingSine from ..transformer_blocks import _get_clones, _get_activation_fn # MSDeformAttn Transformer encoder in deformable detr class MSDeformAttnTransformerEncoderOnly(nn.Module): def __init__(self, d_model=256, nhead=8, num_encoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", num_feature_levels=4, enc_n_points=4, ): super().__init__() self.d_model = d_model self.nhead = nhead encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points) self.encoder = MSDeformAttnTransformerEncoder(encoder_layer, num_encoder_layers) self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() normal_(self.level_embed) def get_valid_ratio(self, mask): _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def forward(self, srcs, pos_embeds): masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs] # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, c, h, w = src.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) src = src.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) src_flatten = torch.cat(src_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # encoder memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten) return memory, spatial_shapes, level_start_index class MSDeformAttnTransformerEncoderLayer(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4): super().__init__() # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None): # self attention src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class MSDeformAttnTransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None): output = src reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) for _, layer in enumerate(self.layers): output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask) return output # @SEM_SEG_HEADS_REGISTRY.register() class MSDeformAttnPixelDecoder(nn.Module): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, transformer_dropout: float, transformer_nheads: int, transformer_dim_feedforward: int, transformer_enc_layers: int, conv_dim: int, mask_dim: int, norm: Optional[Union[str, Callable]] = None, # deformable transformer encoder args transformer_in_features: List[str], common_stride: int, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features transformer_dropout: dropout probability in transformer transformer_nheads: number of heads in transformer transformer_dim_feedforward: dimension of feedforward network transformer_enc_layers: number of transformer encoder layers conv_dims: number of output channels for the intermediate conv layers. mask_dim: number of output channels for the final conv layer. norm (str or callable): normalization for all conv layers """ super().__init__() transformer_input_shape = { k: v for k, v in input_shape.items() if k in transformer_in_features } # this is the input shape of pixel decoder input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5" self.feature_strides = [v.stride for k, v in input_shape] self.feature_channels = [v.channels for k, v in input_shape] # this is the input shape of transformer encoder (could use less features than pixel decoder transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride) self.transformer_in_features = [k for k, v in transformer_input_shape] # starting from "res2" to "res5" transformer_in_channels = [v.channels for k, v in transformer_input_shape] self.transformer_feature_strides = [v.stride for k, v in transformer_input_shape] # to decide extra FPN layers self.transformer_num_feature_levels = len(self.transformer_in_features) if self.transformer_num_feature_levels > 1: input_proj_list = [] # from low resolution to high resolution (res5 -> res2) for in_channels in transformer_in_channels[::-1]: input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, conv_dim, kernel_size=1), nn.GroupNorm(32, conv_dim), )) self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList([ nn.Sequential( nn.Conv2d(transformer_in_channels[-1], conv_dim, kernel_size=1), nn.GroupNorm(32, conv_dim), )]) for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) self.transformer = MSDeformAttnTransformerEncoderOnly( d_model=conv_dim, dropout=transformer_dropout, nhead=transformer_nheads, dim_feedforward=transformer_dim_feedforward, num_encoder_layers=transformer_enc_layers, num_feature_levels=self.transformer_num_feature_levels, ) N_steps = conv_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) self.mask_dim = mask_dim # use 1x1 conv instead self.mask_features = Conv2d( conv_dim, mask_dim, kernel_size=1, stride=1, padding=0, ) weight_init.c2_xavier_fill(self.mask_features) self.maskformer_num_feature_levels = 3 # always use 3 scales self.common_stride = common_stride # extra fpn levels stride = min(self.transformer_feature_strides) self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride)) lateral_convs = [] output_convs = [] use_bias = norm == "" for idx, in_channels in enumerate(self.feature_channels[:self.num_fpn_levels]): lateral_norm = get_norm(norm, conv_dim) output_norm = get_norm(norm, conv_dim) lateral_conv = Conv2d( in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm ) output_conv = Conv2d( conv_dim, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(lateral_conv) weight_init.c2_xavier_fill(output_conv) self.add_module("adapter_{}".format(idx + 1), lateral_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(lateral_conv) output_convs.append(output_conv) # Place convs into top-down order (from low to high resolution) # to make the top-down computation in forward clearer. self.lateral_convs = lateral_convs[::-1] self.output_convs = output_convs[::-1] @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): ret = {} enc_cfg = cfg['MODEL']['ENCODER'] dec_cfg = cfg['MODEL']['DECODER'] ret["input_shape"] = { k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES'] } ret["conv_dim"] = enc_cfg['CONVS_DIM'] ret["mask_dim"] = enc_cfg['MASK_DIM'] ret["norm"] = enc_cfg['NORM'] ret["transformer_dropout"] = dec_cfg['DROPOUT'] ret["transformer_nheads"] = dec_cfg['NHEADS'] # ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD ret["transformer_dim_feedforward"] = 1024 # use 1024 for deformable transformer encoder ret[ "transformer_enc_layers" ] = enc_cfg['TRANSFORMER_ENC_LAYERS'] # a separate config ret["transformer_in_features"] = enc_cfg['DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES'] ret["common_stride"] = enc_cfg['COMMON_STRIDE'] return ret @autocast(enabled=False) def forward_features(self, features): srcs = [] pos = [] # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.transformer_in_features[::-1]): x = features[f].float() # deformable detr does not support half precision srcs.append(self.input_proj[idx](x)) pos.append(self.pe_layer(x)) y, spatial_shapes, level_start_index = self.transformer(srcs, pos) bs = y.shape[0] split_size_or_sections = [None] * self.transformer_num_feature_levels for i in range(self.transformer_num_feature_levels): if i < self.transformer_num_feature_levels - 1: split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i] else: split_size_or_sections[i] = y.shape[1] - level_start_index[i] y = torch.split(y, split_size_or_sections, dim=1) out = [] multi_scale_features = [] num_cur_levels = 0 for i, z in enumerate(y): out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1])) # append `out` with extra FPN levels # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]): x = features[f].float() lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] cur_fpn = lateral_conv(x) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + F.interpolate(out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False) y = output_conv(y) out.append(y) for o in out: if num_cur_levels < self.maskformer_num_feature_levels: multi_scale_features.append(o) num_cur_levels += 1 return self.mask_features(out[-1]), out[0], multi_scale_features @register_encoder def get_transformer_encoder_deform(cfg, input_shape): """ Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`. """ model = MSDeformAttnPixelDecoder(cfg, input_shape) forward_features = getattr(model, "forward_features", None) if not callable(forward_features): raise ValueError( "Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. " f"Please implement forward_features for {name} to only return mask features." ) return model
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/transformer_encoder_deform.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from __future__ import absolute_import from __future__ import print_function from __future__ import division import time import torch import torch.nn as nn from torch.autograd import gradcheck from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch N, M, D = 1, 2, 2 Lq, L, P = 2, 2, 2 shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1])) S = sum([(H*W).item() for H, W in shapes]) torch.manual_seed(3) @torch.no_grad() def check_forward_equal_with_pytorch_double(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') @torch.no_grad() def check_forward_equal_with_pytorch_float(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True): value = torch.rand(N, S, M, channels).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 func = MSDeformAttnFunction.apply value.requires_grad = grad_value sampling_locations.requires_grad = grad_sampling_loc attention_weights.requires_grad = grad_attn_weight gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step)) print(f'* {gradok} check_gradient_numerical(D={channels})') if __name__ == '__main__': check_forward_equal_with_pytorch_double() check_forward_equal_with_pytorch_float() for channels in [30, 32, 64, 71, 1025, 2048, 3096]: check_gradient_numerical(channels, True, True, True)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/ops/test.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR import os import glob import torch from torch.utils.cpp_extension import CUDA_HOME from torch.utils.cpp_extension import CppExtension from torch.utils.cpp_extension import CUDAExtension from setuptools import find_packages from setuptools import setup requirements = ["torch", "torchvision"] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "src") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) sources = main_file + source_cpu extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] # Force cuda since torch ask for a device, not if cuda is in fact available. if (os.environ.get('FORCE_CUDA') or torch.cuda.is_available()) and CUDA_HOME is not None: extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] else: if CUDA_HOME is None: raise NotImplementedError('CUDA_HOME is None. Please set environment variable CUDA_HOME.') else: raise NotImplementedError('No CUDA runtime is found. Please set FORCE_CUDA=1 or test it by running torch.cuda.is_available().') sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "MultiScaleDeformableAttention", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules setup( name="MultiScaleDeformableAttention", version="1.0", author="Weijie Su", url="https://github.com/fundamentalvision/Deformable-DETR", description="PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention", packages=find_packages(exclude=("configs", "tests",)), ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/ops/setup.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn.functional as F from torch.autograd import Function from torch.autograd.function import once_differentiable try: import MultiScaleDeformableAttention as MSDA except ModuleNotFoundError as e: info_string = ( "\n\nPlease compile MultiScaleDeformableAttention CUDA op with the following commands:\n" "\t`cd mask2former/modeling/pixel_decoder/ops`\n" "\t`sh make.sh`\n" ) raise ModuleNotFoundError(info_string) class MSDeformAttnFunction(Function): @staticmethod def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step): ctx.im2col_step = im2col_step output = MSDA.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step) ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) return output @staticmethod @once_differentiable def backward(ctx, grad_output): value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = \ MSDA.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights): # for debug and test only, # need to use cuda version instead N_, S_, M_, D_ = value.shape _, Lq_, M_, L_, P_, _ = sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for lid_, (H_, W_) in enumerate(value_spatial_shapes): # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_) # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1) # N_*M_, D_, Lq_, P_ sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_, mode='bilinear', padding_mode='zeros', align_corners=False) sampling_value_list.append(sampling_value_l_) # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_) attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_) output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_) return output.transpose(1, 2).contiguous()
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/ops/functions/ms_deform_attn_func.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from .ms_deform_attn_func import MSDeformAttnFunction
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/ops/functions/__init__.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from __future__ import absolute_import from __future__ import print_function from __future__ import division import warnings import math import torch from torch import nn import torch.nn.functional as F from torch.nn.init import xavier_uniform_, constant_ from ..functions import MSDeformAttnFunction from ..functions.ms_deform_attn_func import ms_deform_attn_core_pytorch def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) return (n & (n-1) == 0) and n != 0 class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """ Multi-Scale Deformable Attention Module :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation.") self.im2col_step = 128 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1])) try: output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) except: # CPU output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) # # For FLOPs calculation only # output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/ops/modules/ms_deform_attn.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from .ms_deform_attn import MSDeformAttn
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/encoder/ops/modules/__init__.py
from .registry import model_entrypoints from .registry import is_model from .seem import * def build_decoder(config, *args, **kwargs): model_name = config['MODEL']['DECODER']['NAME'] if not is_model(model_name): raise ValueError(f'Unkown model: {model_name}') return model_entrypoints(model_name)(config, *args, **kwargs)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/build.py
# -------------------------------------------------------- # SEEM -- Segment Everything Everywhere All At Once # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected]) # -------------------------------------------------------- import logging from typing import Optional import torch from torch import nn, Tensor from torch.nn import functional as F from timm.models.layers import trunc_normal_ from detectron2.layers import Conv2d import fvcore.nn.weight_init as weight_init from .utils.utils import rand_sample, prepare_features from .utils.attn import MultiheadAttention from .utils.attention_data_struct import AttentionDataStruct from .registry import register_decoder from ...utils import configurable from ...modules import PositionEmbeddingSine from ...modules.point_features import point_sample class SelfAttentionLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False): super().__init__() self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, tgt_mask, tgt_key_padding_mask, query_pos) return self.forward_post(tgt, tgt_mask, tgt_key_padding_mask, query_pos) class CrossAttentionLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False): super().__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt, avg_attn def forward_pre(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm(tgt) tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout(tgt2) return tgt, avg_attn def forward(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, memory, memory_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(tgt, memory, memory_mask, memory_key_padding_mask, pos, query_pos) class FFNLayer(nn.Module): def __init__(self, d_model, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False): super().__init__() # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm = nn.LayerNorm(d_model) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt): tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt): tgt2 = self.norm(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt): if self.normalize_before: return self.forward_pre(tgt) return self.forward_post(tgt) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class MultiScaleMaskedTransformerDecoder(nn.Module): _version = 2 @configurable def __init__( self, lang_encoder: nn.Module, in_channels, mask_classification=True, *, hidden_dim: int, dim_proj: int, num_queries: int, contxt_len: int, nheads: int, dim_feedforward: int, dec_layers: int, pre_norm: bool, mask_dim: int, task_switch: dict, enforce_input_project: bool, max_spatial_len: int, attn_arch: dict, ): """ NOTE: this interface is experimental. Args: in_channels: channels of the input features mask_classification: whether to add mask classifier or not num_classes: number of classes hidden_dim: Transformer feature dimension num_queries: number of queries nheads: number of heads dim_feedforward: feature dimension in feedforward network enc_layers: number of Transformer encoder layers dec_layers: number of Transformer decoder layers pre_norm: whether to use pre-LayerNorm or not mask_dim: mask feature dimension enforce_input_project: add input project 1x1 conv even if input channels and hidden dim is identical """ super().__init__() assert mask_classification, "Only support mask classification model" self.mask_classification = mask_classification # positional encoding N_steps = hidden_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) # define Transformer decoder here self.num_heads = nheads self.num_layers = dec_layers self.contxt_len = contxt_len self.transformer_self_attention_layers = nn.ModuleList() self.transformer_cross_attention_layers = nn.ModuleList() self.transformer_ffn_layers = nn.ModuleList() for _ in range(self.num_layers): self.transformer_self_attention_layers.append( SelfAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_cross_attention_layers.append( CrossAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_ffn_layers.append( FFNLayer( d_model=hidden_dim, dim_feedforward=dim_feedforward, dropout=0.0, normalize_before=pre_norm, ) ) self.decoder_norm = nn.LayerNorm(hidden_dim) self.num_queries = num_queries # learnable query features self.query_feat = nn.Embedding(num_queries, hidden_dim) # learnable query p.e. self.query_embed = nn.Embedding(num_queries, hidden_dim) # learnable positive negative indicator self.pn_indicator = nn.Embedding(2, hidden_dim) # level embedding (we always use 3 scales) self.num_feature_levels = 3 self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) self.input_proj = nn.ModuleList() for _ in range(self.num_feature_levels): if in_channels != hidden_dim or enforce_input_project: self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1)) weight_init.c2_xavier_fill(self.input_proj[-1]) else: self.input_proj.append(nn.Sequential()) self.task_switch = task_switch self.query_index = {} # output FFNs self.lang_encoder = lang_encoder if self.task_switch['mask']: self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj)) trunc_normal_(self.class_embed, std=.02) if task_switch['bbox']: self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) if task_switch['spatial']: # spatial query self.mask_sptial_embed = nn.ParameterList([nn.Parameter(torch.empty(hidden_dim, hidden_dim)) for x in range(3)]) trunc_normal_(self.mask_sptial_embed[0], std=.02) trunc_normal_(self.mask_sptial_embed[1], std=.02) trunc_normal_(self.mask_sptial_embed[2], std=.02) self.max_spatial_len = max_spatial_len # spatial memory num_spatial_memories = attn_arch['SPATIAL_MEMORIES'] self.spatial_embed = nn.Embedding(num_spatial_memories, hidden_dim) self.spatial_featured = nn.Embedding(num_spatial_memories, hidden_dim) # build AttentionDataStruct attn_arch['NUM_LAYERS'] = self.num_layers self.attention_data = AttentionDataStruct(attn_arch, task_switch) @classmethod def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra): ret = {} ret["lang_encoder"] = lang_encoder ret["in_channels"] = in_channels ret["mask_classification"] = mask_classification enc_cfg = cfg['MODEL']['ENCODER'] dec_cfg = cfg['MODEL']['DECODER'] ret["hidden_dim"] = dec_cfg['HIDDEN_DIM'] ret["dim_proj"] = cfg['MODEL']['DIM_PROJ'] ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES'] ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] # Transformer parameters: ret["nheads"] = dec_cfg['NHEADS'] ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD'] # NOTE: because we add learnable query features which requires supervision, # we add minus 1 to decoder layers to be consistent with our loss # implementation: that is, number of auxiliary losses is always # equal to number of decoder layers. With learnable query features, the number of # auxiliary losses equals number of decoders plus 1. assert dec_cfg['DEC_LAYERS'] >= 1 ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1 ret["pre_norm"] = dec_cfg['PRE_NORM'] ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ'] ret["mask_dim"] = enc_cfg['MASK_DIM'] ret["task_switch"] = extra['task_switch'] ret["max_spatial_len"] = dec_cfg['MAX_SPATIAL_LEN'] # attn data struct ret["attn_arch"] = cfg['ATTENTION_ARCH'] return ret def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): # x is a list of multi-scale feature assert len(x) == self.num_feature_levels; del mask spatial_extra_flag = 'spatial_query_pos_mask' in extra.keys() or task == 'refimg' grounding_extra_flag = 'grounding_tokens' in extra.keys() visual_extra_flag = 'visual_query_pos' in extra.keys() audio_extra_flag = 'audio_tokens' in extra.keys() spatial_memory_flag = 'prev_mask' in extra.keys() flags = {"spatial": spatial_extra_flag, "grounding": grounding_extra_flag, "memories_spatial": spatial_memory_flag, "visual": visual_extra_flag, "audio": audio_extra_flag} self.attention_data.reset(flags, task, extra) src, pos, size_list = prepare_features(x, self.num_feature_levels, self.pe_layer, self.input_proj, self.level_embed) _, bs, _ = src[0].shape # QxNxC query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) self.attention_data.set('queries_object', 'queries', output, query_embed) if self.task_switch['spatial'] and spatial_extra_flag: # get divisor _,h,w = extra['spatial_query_pos_mask'][0].shape divisor = torch.tensor([h,w], device=output.device)[None,] # Get mean pos spatial query non_zero_pos_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']] non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2) non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0) spatial_query_pos = point_sample(mask_features, non_zero_pos_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True) spatial_query_pos = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask)]).transpose(0,1).nan_to_num() # Get mean neg spatial query non_zero_neg_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']] non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2) non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0) spatial_query_neg = point_sample(mask_features, non_zero_neg_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True) spatial_query_neg = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask)]).transpose(0,1).nan_to_num() # merge positive and negative sample points for self attention # Get layerwise spatial query src_spatial_queries = [] src_spatial_maskings = [] for i in range(len(src)): hw,_,dc = src[i].shape src_mask_features = src[i].view(size_list[i][0],size_list[i][1],bs,dc) src_mask_features = src_mask_features @ self.mask_sptial_embed[i] non_zero_query_point_pos = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']] non_zero_query_point_neg = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']] non_zero_query_point = [torch.cat([x,y], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0) non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2) non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0) non_zero_query_point[non_zero_query_mask] = 0 spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1) spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1] spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2] src_spatial_queries += [spatial_tokens] src_spatial_maskings += [non_zero_query_mask] if 'refimg' in task: output_refimg = {} output_refimg['visual_query_pos'] = spatial_query_pos output_refimg['visual_query_neg'] = spatial_query_neg output_refimg['src_visual_queries'] = src_spatial_queries output_refimg['src_visual_maskings'] = src_spatial_maskings return output_refimg if task != 'demo': # Get object query for spatial index self.attention_data.set('queries_spatial', 'queries') if self.task_switch['visual'] and visual_extra_flag: visual_query_pos = extra['visual_query_pos'] visual_query_neg = extra['visual_query_neg'] src_visual_queries = extra['src_visual_queries'] src_visual_maskings = extra['src_visual_maskings'] if self.task_switch['grounding'] and grounding_extra_flag: # Get grounding tokens grounding_tokens = extra['grounding_tokens'] _grounding_tokens = grounding_tokens.detach().clone() self.attention_data.set('tokens_grounding', 'tokens', grounding_tokens, _grounding_tokens) self.attention_data.set_maskings('tokens_grounding', extra['grounding_nonzero_mask']) if self.task_switch['audio'] and audio_extra_flag: # Get grounding tokens grounding_tokens = extra['audio_tokens'] _grounding_tokens = grounding_tokens.detach().clone() self.attention_data.set('tokens_audio', 'tokens', grounding_tokens, _grounding_tokens) self.attention_data.set_maskings('tokens_audio', extra['audio_nonzero_mask']) output, query_embed = self.attention_data.cross_attn_variables() # prediction heads on learnable query features results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0]) results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None results["predictions_pos_visual"] = visual_query_pos.transpose(0,1) if visual_extra_flag else None results["predictions_neg_visual"] = visual_query_neg.transpose(0,1) if visual_extra_flag else None self.attention_data.set_results(results) for i in range(self.num_layers): level_index = i % self.num_feature_levels # CROSS ATTENTION output, avg_attn = self.transformer_cross_attention_layers[i]( output, src[level_index], memory_mask=self.attention_data.cross_attn_mask(size_list[level_index], self.num_heads), memory_key_padding_mask=None, # here we do not apply masking on padded region pos=pos[level_index], query_pos=query_embed ) self.attention_data.update_variables(output, 'cross_attn') # SELF ATTENTION self_attn_mask = torch.zeros((bs, self.num_queries, self.num_queries), device=query_embed.device).bool() # Default False (attend oq) if self.task_switch['spatial'] and spatial_extra_flag: # get spatial tokens spatial_tokens = src_spatial_queries[level_index] _spatial_tokens = spatial_tokens.detach().clone() self.attention_data.set('tokens_spatial', 'tokens', spatial_tokens, _spatial_tokens) self.attention_data.set_maskings('tokens_spatial', src_spatial_maskings[level_index]) if self.task_switch['visual'] and visual_extra_flag: # get spatial tokens visual_tokens = src_visual_queries[level_index] _visual_tokens = visual_tokens.detach().clone() self.attention_data.set('tokens_visual', 'tokens', visual_tokens, _visual_tokens) self.attention_data.set_maskings('tokens_visual', src_visual_maskings[level_index]) output, query_embed, self_attn_mask = self.attention_data.self_attn(bs, self.num_heads) output = self.transformer_self_attention_layers[i]( output, tgt_mask=self_attn_mask, tgt_key_padding_mask=None, query_pos=query_embed) # FFN output = self.transformer_ffn_layers[i]( output ) self.attention_data.update_variables(output, 'self_attn') output, query_embed = self.attention_data.cross_attn_variables() results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i) results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None results["predictions_pos_visual"] = visual_query_pos.transpose(0,1) if visual_extra_flag else None results["predictions_neg_visual"] = visual_query_neg.transpose(0,1) if visual_extra_flag else None self.attention_data.set_results(results) return self.attention_data.organize_output() def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1): decoder_output = self.decoder_norm(output) decoder_output = decoder_output.transpose(0, 1) class_embed = decoder_output @ self.class_embed outputs_class = self.lang_encoder.compute_similarity(class_embed) mask_embed = self.mask_embed(decoder_output) outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) outputs_bbox = [None for i in range(len(outputs_mask))] if self.task_switch['bbox']: outputs_bbox = self.bbox_embed(decoder_output) # NOTE: prediction is of higher-resolution # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW] attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False) # must use bool type # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool() attn_mask = attn_mask.detach() outputs_caption = class_embed results = { "attn_mask": attn_mask, "predictions_class": outputs_class, "predictions_mask": outputs_mask, "predictions_bbox": outputs_bbox, "predictions_caption": outputs_caption, "predictions_maskemb": mask_embed, } return results @register_decoder def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra): return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/seem.py
_model_entrypoints = {} def register_decoder(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _model_entrypoints[model_name] = fn return fn def model_entrypoints(model_name): return _model_entrypoints[model_name] def is_model(model_name): return model_name in _model_entrypoints
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/registry.py
from .build import build_decoder
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/__init__.py
from .utils import * from .attention_data_struct import * from .attn import *
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/utils/__init__.py
# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]) # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F predict_name_matcher = {"predictions_class": ["pred_logits"], "predictions_mask":["pred_masks", "pred_gmasks", "pred_smasks"], "predictions_caption":["pred_captions", "pred_gtexts"], "predictions_maskemb":["pred_maskembs", "pred_smaskembs"], "predictions_pos_spatial":["pred_pspatials"], "predictions_neg_spatial":["pred_nspatials"], "predictions_pos_visual":["pred_pvisuals"], "predictions_neg_visual":["pred_nvisuals"]} predict_index_matcher = {"predictions_class": ["queries_object"], "predictions_mask":["queries_object", "queries_grounding", "queries_spatial"], "predictions_caption": ["queries_object", "queries_grounding"], "predictions_maskemb":["queries_object", "queries_spatial"], "predictions_pos_spatial":["all"], "predictions_neg_spatial":["all"], "predictions_pos_visual":["all"], "predictions_neg_visual":["all"]} class Variable(object): ''' Store dataset variable for attention output: embedding that accumuates during cross/self attention pos: positional embedding that is fixed during cross/self attention name: name of the variable type: type of the variable, e.g. queries, tokens attn_mask: attention mask for corss attention masking: masking for padding ''' def __init__(self, output, name, _type, pos=None): self.output = output self.pos = pos self.name = name self.type = _type self.attn_mask = None self.masking = None def copy(self,): output = self.output.clone() if self.output is not None else None pos = self.pos.clone() if self.pos is not None else None return Variable(output, self.name, self.type, pos) class AttentionDataStruct(nn.Module): ''' Store dataset structure for cross/self attention task_switch: switch for different tasks p_attn_variables: prototype of variables that is used in cross/self attention p_self_attn: prototype of variables that is used in self attention p_cross_attn: prototype of variables that is used in cross attention p_iter: prototype of iteration for different queries p_masking: prototype of masking for different tokens p_duplication: prototype of duplication for different quries ''' def __init__(self, attn_arch, task_switch): super(AttentionDataStruct, self).__init__() self.task_switch = task_switch # p stands for prototype self.p_attn_variables = attn_arch['VARIABLE'] self.p_self_attn = attn_arch['SELF_ATTENTION'] self.p_cross_attn = attn_arch['CROSS_ATTENTION'] self.p_masking = attn_arch['MASKING'] self.p_duplication = attn_arch['DUPLICATION'] self.num_layers = attn_arch['NUM_LAYERS'] def reset(self, flags, task, extra): # reset variables self.attn_variables = {} self.cross_attn_dict = {} self.self_attn_dict = {} self.duplication_dict = {} self.query_index = {} self.output = {} self.flags = {} self.spatial_memory = {} # initialize duplication for key, values in self.p_duplication.items(): for name in values: self.duplication_dict["{}_{}".format(key, name)] = self.p_duplication[key][name] # initialize flag self.flags = {"object": True} self.flags.update(flags) # initialize task self.task = task # initialize output if self.task_switch['mask']: self.output['predictions_class'] = [] self.output['predictions_mask'] = [] self.output['predictions_maskemb'] = [] if self.task_switch['bbox']: self.output['predictions_bbox'] = [] if self.task_switch['spatial'] and ('spatial' in self.flags and self.flags['spatial']==True): self.output['predictions_pos_spatial'] = [] self.output['predictions_neg_spatial'] = [] if self.task_switch['spatial'] and ('memories_spatial' in self.flags and self.flags['memories_spatial']==True): self.spatial_memory['prev_batch_mask'] = extra['prev_mask'] if (self.task_switch['grounding'] and ('grounding' in self.flags and self.flags['grounding']==True)) \ or (self.task_switch['audio'] and ('audio' in self.flags and self.flags['audio']==True)): self.output['predictions_caption'] = [] if self.task_switch['visual']: self.output['predictions_pos_visual'] = [] self.output['predictions_neg_visual'] = [] # initialize cross_attn, whether the variable is used in cross attention for key, values in self.p_cross_attn.items(): for name in values: self.cross_attn_dict["{}_{}".format(key, name)] = self.p_cross_attn[key][name] # initialize self_attn, whether the variable is used in self attention, and the interactions between queries for key, values in self.p_self_attn.items(): for name in values: self.self_attn_dict["{}_{}".format(key, name)] = self.p_self_attn[key][name] # initialize masking self.masking = self.p_masking # initialize query_index self.query_index = {"all":[0, None]} def set(self, name, _type, output=None, pos=None, var=None): if var is not None: self.attn_variables[name] = var elif name in self.duplication_dict: assert self.duplication_dict[name] in self.attn_variables, "Duplication variable {} is not initialized yet.".format(name) self.attn_variables[name] = self.attn_variables[self.duplication_dict[name]].copy() else: var = Variable(output, name, _type, pos) self.attn_variables[name] = var def set_results(self, results): for name in self.cross_attn_name: self.attn_variables[name].attn_mask = results['attn_mask'][:,self.query_index[name][0]:self.query_index[name][1]] for key in self.output: self.output[key].append(results[key]) def set_maskings(self, name, masking): self.attn_variables[name].masking = masking def cross_attn_variables(self, ): cross_attn_name = [key for key, value in self.cross_attn_dict.items() if (value==True) and (key in self.attn_variables) and ((key not in self.flags) or (key in self.flags and self.flags[key]==True))] self.cross_attn_name = cross_attn_name output = torch.cat([self.attn_variables[name].output for name in cross_attn_name]) pos_emb = torch.cat([self.attn_variables[name].pos for name in cross_attn_name]) index = 0 for name in cross_attn_name: self.query_index[name] = [index, index + self.attn_variables[name].output.shape[0]] index += self.attn_variables[name].output.shape[0] return output, pos_emb def cross_attn_mask(self, size, num_heads): attn_mask = torch.cat([self.attn_variables[name].attn_mask for name in self.cross_attn_name], dim=1) # hard code memories_spatial to previous selected mask if 'memories_spatial' in self.cross_attn_name: memory_attn_mask = self.spatial_memory['prev_batch_mask'] bs,c,_,_ = memory_attn_mask.shape memory_attn_mask = F.interpolate(memory_attn_mask, size, mode='bilinear', align_corners=False) memory_attn_mask = (memory_attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, num_heads, 1, 1).flatten(0, 1) < 0.5).bool().detach() attn_mask[:,self.query_index['memories_spatial'][0]:self.query_index['memories_spatial'][1]] = memory_attn_mask attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False return attn_mask def self_attn(self, bs, num_heads): self_attn_name = [key for key, value in self.self_attn_dict.items() if len(value)>0 and key in self.attn_variables and ((key not in self.flags) or (key in self.flags and self.flags[key]==True))] self.self_attn_name = self_attn_name output = torch.cat([self.attn_variables[name].output for name in self_attn_name]) pos_emb = torch.cat([self.attn_variables[name].pos for name in self_attn_name]) index = 0 for name in self_attn_name: self.query_index[name] = [index, index + self.attn_variables[name].output.shape[0]] index += self.attn_variables[name].output.shape[0] self_attn_mask = torch.ones((bs, output.shape[0], output.shape[0]), dtype=torch.bool, device=output.device) self_attn_pair = [] # build self_attention mask by query interaction for key1, value in self.self_attn_dict.items(): for key2 in value: if key1 not in self_attn_name or key2 not in self_attn_name: # exclude the variables that are not used in the current layer continue if (key1 in self.masking or key2 in self.masking) and (key1 != key2): self_attn_pair += [[key1, key2]] self_attn_mask[:,self.query_index[key1][0]:self.query_index[key1][1], self.query_index[key2][0]:self.query_index[key2][1]] = False # build self_attention mask by masking, for birectional for key in self.masking: if key in self_attn_name: self_attn_mask[:,self.query_index[key][0]:self.query_index[key][1],self.query_index[key][0]:self.query_index[key][1]][self.attn_variables[key].masking] = True self_attn_mask[:,self.query_index[key][0]:self.query_index[key][1],self.query_index[key][0]:self.query_index[key][1]].transpose(1,2)[self.attn_variables[key].masking] = True # build self_attention mask by masking, for uni-directional for key1, key2 in self_attn_pair: if key1 not in self_attn_name or key2 not in self_attn_name: # exclude the variables that are not used in the current layer continue if key1 in self.masking: self_attn_mask[:,self.query_index[key1][0]:self.query_index[key1][1],self.query_index[key2][0]:self.query_index[key2][1]][self.attn_variables[key1].masking] = True # HACK, not verified if key2 in self.masking: self_attn_mask[:,self.query_index[key1][0]:self.query_index[key1][1],self.query_index[key2][0]:self.query_index[key2][1]].transpose(1,2)[self.attn_variables[key2].masking] = True self_attn_mask = self_attn_mask.repeat_interleave(num_heads, dim=0) return output, pos_emb, self_attn_mask def update_variables(self, output, mode): name_set = self.self_attn_name if mode=='self_attn' else self.cross_attn_name for key in name_set: self.attn_variables[key].output = output[self.query_index[key][0]:self.query_index[key][1]] def update_spatial_results(self, results): v_emb = results['pred_smaskembs'] pred_smasks = results['pred_smasks'] s_emb = results['pred_pspatials'] pred_logits = v_emb @ s_emb.transpose(1,2) logits_idx_y = pred_logits[:,:,0].max(dim=1)[1] logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device) logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist() pred_masks_pos = pred_smasks[logits_idx][:,None,] extra = {"prev_mask": pred_masks_pos} return extra def organize_output(self, ): outputs = {} outputs['aux_outputs'] = [{} for i in range(self.num_layers)] for key, values in self.output.items(): for _key, idx_name in zip(predict_name_matcher[key], predict_index_matcher[key]): if idx_name not in self.query_index: continue outputs[_key] = self.output[key][-1][:,self.query_index[idx_name][0]:self.query_index[idx_name][1]] for idx, aux_values in enumerate(self.output[key][:-1]): outputs['aux_outputs'][idx][_key] = aux_values[:,self.query_index[idx_name][0]:self.query_index[idx_name][1]] return outputs
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/utils/attention_data_struct.py
import torch import copy from torch import nn, Tensor import os import math import torch.nn.functional as F from torch import nn def rand_sample(x, max_len): if x.shape[1] <= max_len: return x else: rand_idx = torch.randperm(x.shape[1])[:max_len] return x[:,rand_idx] def prepare_features(x, num_feature_levels, pe_layer, input_proj, level_embed): src = [] pos = [] size_list = [] # disable mask, it does not affect performance for i in range(num_feature_levels): size_list.append(x[i].shape[-2:]) pos.append(pe_layer(x[i], None).flatten(2)) src.append(input_proj[i](x[i]).flatten(2) + level_embed.weight[i][None, :, None]) # flatten NxCxHxW to HWxNxC pos[-1] = pos[-1].permute(2, 0, 1) src[-1] = src[-1].permute(2, 0, 1) return src, pos, size_list
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/utils/utils.py
from typing import Callable, List, Optional, Tuple import torch import torch.nn.functional as F from torch.nn import Parameter from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_, constant_ from torch.overrides import ( has_torch_function, has_torch_function_unary, has_torch_function_variadic, handle_torch_function) Tensor = torch.Tensor class _LinearWithBias(Linear): bias: Tensor # type: ignore def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) # type: ignore def multi_head_attention_forward( query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v, ) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)): # self-attention q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif key is value or torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = F.linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = F.linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = F.linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = F.linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = F.linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim : (embed_dim * 2)]) v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2) :]) else: q = F.linear(query, q_proj_weight_non_opt, in_proj_bias) k = F.linear(key, k_proj_weight_non_opt, in_proj_bias) v = F.linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert ( attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead." ) key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float("-inf")) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float("-inf"), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = F.softmax(attn_output_weights, dim=-1).nan_to_num() attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None class MultiheadAttention(torch.nn.Module): r"""Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_ .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set to :attr:`embed_dim` such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shapes for inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Shapes for outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/body/decoder/utils/attn.py
from .registry import model_entrypoints from .registry import is_model def build_model(config, **kwargs): model_name = config['MODEL']['NAME'] if not is_model(model_name): raise ValueError(f'Unkown model: {model_name}') return model_entrypoints(model_name)(config, **kwargs)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/architectures/build.py
_model_entrypoints = {} def register_model(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _model_entrypoints[model_name] = fn return fn def model_entrypoints(model_name): return _model_entrypoints[model_name] def is_model(model_name): return model_name in _model_entrypoints
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/architectures/registry.py
# -------------------------------------------------------- # SEEM -- Segment Everything Everywhere All At Once # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]) # -------------------------------------------------------- import random from typing import Tuple import torch from torch import nn from torch.nn import functional as F import numpy as np from kornia.contrib import distance_transform from .registry import register_model from ..utils import configurable from ..utils import get_iou from ..backbone import build_backbone, Backbone from ..body import build_xdecoder_head from ..modules import sem_seg_postprocess, bbox_postprocess from ..language import build_language_encoder from ..language.loss import vl_similarity from nltk.stem.lancaster import LancasterStemmer from detectron2.structures import Boxes, ImageList, Instances, BitMasks from detectron2.utils.memory import retry_if_cuda_oom from detectron2.data import MetadataCatalog st = LancasterStemmer() class SEEM_Model(nn.Module): """ Main class for mask classification semantic segmentation architectures. """ @configurable def __init__( self, *, backbone: Backbone, sem_seg_head: nn.Module, criterion: nn.Module, losses: dict, num_queries: int, object_mask_threshold: float, overlap_threshold: float, metadata, task_switch: dict, phrase_prob: float, size_divisibility: int, sem_seg_postprocess_before_inference: bool, pixel_mean: Tuple[float], pixel_std: Tuple[float], # inference semantic_on: bool, panoptic_on: bool, instance_on: bool, test_topk_per_image: int, train_dataset_name: str, interactive_mode: str, interactive_iter: str, dilation_kernel: torch.Tensor, ): super().__init__() self.backbone = backbone self.sem_seg_head = sem_seg_head self.criterion = criterion self.losses = losses self.num_queries = num_queries self.overlap_threshold = overlap_threshold self.object_mask_threshold = object_mask_threshold self.metadata = metadata if size_divisibility < 0: # use backbone size_divisibility if not set size_divisibility = self.backbone.size_divisibility self.size_divisibility = size_divisibility self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) # additional args self.semantic_on = semantic_on self.instance_on = instance_on self.panoptic_on = panoptic_on # caption argument self.task_switch = task_switch self.phrase_prob = phrase_prob self.test_topk_per_image = test_topk_per_image self.train_class_names = None self.interactive_mode = interactive_mode self.interactive_iter = interactive_iter if not self.semantic_on: assert self.sem_seg_postprocess_before_inference self.register_buffer("dilation_kernel", dilation_kernel) @classmethod def from_config(cls, cfg): enc_cfg = cfg['MODEL']['ENCODER'] dec_cfg = cfg['MODEL']['DECODER'] openimage_switch = {'grounding': dec_cfg['OPENIMAGE']['GROUNDING'].get('ENABLED', False), 'mask': dec_cfg['OPENIMAGE'].get('ENABLED', False)} task_switch = {'bbox': dec_cfg.get('DETECTION', False), 'mask': dec_cfg.get('MASK', True), 'spatial': dec_cfg['SPATIAL'].get('ENABLED', False), 'grounding': dec_cfg['GROUNDING'].get('ENABLED', False), 'openimage': openimage_switch, 'visual': dec_cfg['VISUAL'].get('ENABLED', False), 'audio': dec_cfg['AUDIO'].get('ENABLED', False)} # build model extra = {'task_switch': task_switch} backbone = build_backbone(cfg) lang_encoder = build_language_encoder(cfg) sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra=extra) # Training Settings. loss_weights = {} matcher = None losses = {} weight_dict = {} grd_weight = {} top_x_layers = {} criterion = None train_dataset_name = None phrase_prob = None # Loss parameters: deep_supervision = None no_object_weight = None interactive_mode = 'best' interactive_iter = 20 dilation = 3 dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device()) return { "backbone": backbone, "sem_seg_head": sem_seg_head, "criterion": criterion, "losses": losses, "num_queries": dec_cfg['NUM_OBJECT_QUERIES'], "object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'], "overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'], "metadata": None, "size_divisibility": dec_cfg['SIZE_DIVISIBILITY'], "sem_seg_postprocess_before_inference": ( dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE'] or dec_cfg['TEST']['PANOPTIC_ON'] or dec_cfg['TEST']['INSTANCE_ON'] ), "pixel_mean": cfg['INPUT']['PIXEL_MEAN'], "pixel_std": cfg['INPUT']['PIXEL_STD'], "task_switch": task_switch, "phrase_prob": phrase_prob, # inference "semantic_on": dec_cfg['TEST']['SEMANTIC_ON'], "instance_on": dec_cfg['TEST']['INSTANCE_ON'], "panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'], "test_topk_per_image": cfg['MODEL']['DECODER']['TEST']['DETECTIONS_PER_IMAGE'], "train_dataset_name": train_dataset_name, "interactive_mode": interactive_mode, "interactive_iter": interactive_iter, "dilation_kernel": dilation_kernel, } @property def device(self): return self.pixel_mean.device def forward(self, batched_inputs, mode='default'): if self.training: losses = {} if self.task_switch['mask']: losses_seg = self.forward_seg(batched_inputs) losses.update(losses_seg) if self.task_switch['openimage'] and self.task_switch['openimage']['mask']: losses_openimage = self.forward_openimage(batched_inputs['openimage']) losses_openimage = {key.replace('mask', 'openimage'):value for key, value in losses_openimage.items()} losses_openimage = {key.replace('grounding', 'grounding_openimage'):value for key, value in losses_openimage.items()} losses.update(losses_openimage) for k in list(losses.keys()): if k in self.criterion.weight_dict: losses[k] *= self.criterion.weight_dict[k] else: # remove this loss if not specified in `weight_dict` losses.pop(k) return losses else: if mode == 'interactive': return self.evaluate_interactive(batched_inputs) elif mode == 'grounding_spatial': return self.evaluate_grounding_sptial(batched_inputs, mode) elif mode in ['grounding_phrasecut', 'grounding_refcoco']: return self.evaluate_grounding(batched_inputs, mode) else: return self.evaluate(batched_inputs) def forward_seg(self, batched_inputs): images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False) extra = {} # mask classification target if "instances" in batched_inputs[0]: # input bounding box is checked to be correct. targets = self.prepare_targets(batched_inputs, images) if self.task_switch['grounding']: grounding_tokens = [x['grounding_query_embs'] for x in targets] # need to pad for more than one grounding token grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens, padding_value=-1) non_zero_query_mask = (grounding_tokens.sum(dim=-1) == -grounding_tokens.shape[-1]) grounding_tokens[non_zero_query_mask] = 0 extra['grounding_tokens'] = grounding_tokens extra['grounding_nonzero_mask'] = non_zero_query_mask.t() if self.task_switch['spatial']: pos_masks = [x['spatial_query']['rand_shape'].to(self.device) for x in batched_inputs] neg_masks = [(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs] fp_masks = torch.stack([(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs]) extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks, 'false_positive_mask': fp_masks}) features = self.backbone(images.tensor) mask_features, _, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) # forward spatial only without gradient if self.task_switch['spatial']: with torch.no_grad(): # generate random integeter between [0,3] rand_iter_num = random.randint(0, 2) for i in range(rand_iter_num): outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='spatial') extra.update(outputs) extra.update(self.prepare_next_spaital_mask(extra, batched_inputs)) outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='seg') extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale, 'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default')), 'false_positive_mask': extra['false_positive_mask']} # bipartite matching-based loss self.criterion.losses = self.losses['seg'] # seg criterion losses losses = self.criterion(outputs, targets, extra) del outputs return losses def evaluate_demo(self, batched_inputs): assert len(batched_inputs) == 1, "only support batch size equal to 1" images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) img_bs = images.tensor.shape[0] targets = targets_grounding = queries_grounding = None features = self.backbone(images.tensor) mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) image_sizes = [x["image"].shape[-2:] for x in batched_inputs] extra = {} if 'stroke' in batched_inputs[0]: pos_masks = (batched_inputs[0]['stroke'].to(self.device)).unbind(0) pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) neg_masks = (batched_inputs[0]['stroke'].to(self.device) & False).unbind(0) neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) if 'visual' in batched_inputs[0]: extra.update(batched_inputs[0]['visual']) if 'text' in batched_inputs[0]: gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(batched_inputs[0]['text'], name='grounding', token=False, norm=False) token_emb = gtext['token_emb'] tokens = gtext['tokens'] query_emb = token_emb[tokens['attention_mask'].bool()] non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) extra['grounding_tokens'] = query_emb[:,None] extra['grounding_nonzero_mask'] = non_zero_query_mask.t() extra['grounding_class'] = gtext['class_emb'] if 'audio' in batched_inputs[0]: gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(batched_inputs[0]['audio'], name='grounding', token=False, norm=False) token_emb = gtext['token_emb'] tokens = gtext['tokens'] query_emb = token_emb[tokens['attention_mask'].bool()] non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) extra['audio_tokens'] = query_emb[:,None] extra['audio_nonzero_mask'] = non_zero_query_mask.t() extra['audio_class'] = gtext['class_emb'] outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='demo') return outputs, images.tensor.shape, extra assert self.task_switch['spatial'] assert 'spatial_query' in batched_inputs[0] assert len(batched_inputs) == 1, "only support batch size equal to 1" images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) img_bs = images.tensor.shape[0] targets = targets_grounding = queries_grounding = None extra = {} features = self.backbone(images.tensor) mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) image_sizes = [x["image"].shape[-2:] for x in batched_inputs] nm = len(batched_inputs[0]['spatial_query']['rand_shape']) multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] mask_features = mask_features.repeat(nm,1,1,1) all_batch_shape_iou = [] pred_smask_pointer = None prev_smask_pointer = None pred_smask_all = None query_index = self.sem_seg_head.predictor.query_index assert self.interactive_mode == 'best' pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) for i in range(self.interactive_iter): outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') extra.update(outputs) pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bicubic') s = image_sizes[0] b = batched_inputs[0] pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bicubic')[:,0].sigmoid() > 0.5 gt_smask = b['gt_masks_orisize'] all_batch_shape_iou += [get_iou(gt_smask, pred_smask_all)] extra.update(self.prepare_next_spaital_mask(extra, batched_inputs)) all_batch_shape_iou = torch.stack(all_batch_shape_iou) processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))] return processed_results def evaluate(self, batched_inputs): images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) img_bs = images.tensor.shape[0] targets = targets_grounding = queries_grounding = None features = self.backbone(images.tensor) outputs = self.sem_seg_head(features, target_queries=queries_grounding) mask_cls_results = outputs["pred_logits"] mask_pred_results = outputs["pred_masks"] box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))] # upsample masks mask_pred_results = F.interpolate( mask_pred_results, size=(images.tensor.shape[-2], images.tensor.shape[-1]), mode="bilinear", align_corners=False, ) input_size = mask_pred_results.shape[-2:] del outputs processed_results = [] for mask_cls_result, mask_pred_result, box_pred_result, input_per_image, image_size in zip( mask_cls_results, mask_pred_results, box_pred_results, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) processed_results.append({}) if self.sem_seg_postprocess_before_inference: mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( mask_pred_result, image_size, height, width ) mask_cls_result = mask_cls_result.to(mask_pred_result) # semantic segmentation inference if self.semantic_on: r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) if not self.sem_seg_postprocess_before_inference: r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) processed_results[-1]["sem_seg"] = r # panoptic segmentation inference if self.panoptic_on: panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) processed_results[-1]["panoptic_seg"] = panoptic_r # instance segmentation inference if self.instance_on: if self.task_switch['bbox']: box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width) instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result) processed_results[-1]["instances"] = instance_r return processed_results def evaluate_interactive(self, batched_inputs): assert self.task_switch['spatial'] assert 'spatial_query' in batched_inputs[0] assert len(batched_inputs) == 1, "only support batch size equal to 1" images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) img_bs = images.tensor.shape[0] targets = targets_grounding = queries_grounding = None extra = {} features = self.backbone(images.tensor) mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) image_sizes = [x["image"].shape[-2:] for x in batched_inputs] nm = len(batched_inputs[0]['spatial_query']['rand_shape']) multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] mask_features = mask_features.repeat(nm,1,1,1) all_batch_shape_iou = [] pred_smask_pointer = None prev_smask_pointer = None pred_smask_all = None query_index = self.sem_seg_head.predictor.query_index assert self.interactive_mode == 'best' pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) for i in range(self.interactive_iter): outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') extra.update(outputs) pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bicubic') s = image_sizes[0] b = batched_inputs[0] pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bicubic')[:,0].sigmoid() > 0.5 gt_smask = b['gt_masks_orisize'] all_batch_shape_iou += [get_iou(gt_smask, pred_smask_all)] extra.update(self.prepare_next_spaital_mask(extra, batched_inputs)) all_batch_shape_iou = torch.stack(all_batch_shape_iou) processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))] return processed_results def evaluate_referring_image(self, batched_inputs, extra={}): assert self.task_switch['spatial'] assert len(batched_inputs) == 1, "only support batch size equal to 1" assert self.interactive_mode == 'best' images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) img_bs = images.tensor.shape[0] targets = targets_grounding = queries_grounding = None features = self.backbone(images.tensor) mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) if 'spatial_query' in batched_inputs[0]: image_sizes = [x["image"].shape[-2:] for x in batched_inputs] nm = len(batched_inputs[0]['spatial_query']['rand_shape']) multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] mask_features = mask_features.repeat(nm,1,1,1) query_index = self.sem_seg_head.predictor.query_index pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='refimg') return outputs, images.tensor.shape def evaluate_grounding(self, batched_inputs, mode): images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" extra = {} # mask_pred_results = [] # for idx, batch_per_image in enumerate(batched_inputs): # grd_texts = batch_per_image['groundings']['texts'] # grd_masks = [] # for anno_text in grd_texts: # gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) # token_emb = gtext['token_emb'] # tokens = gtext['tokens'] # grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] # extra['grounding_tokens'] = grd_emb[:,None] # assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" # features = self.backbone(images.tensor) # outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') # pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1] # v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1] # t_emb = grd_emb[-1:] # t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) # v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) # temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale # out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) # matched_id = out_prob.max(0)[1] # grd_masks += [pred_gmasks[matched_id,:,:]] # mask_pred_results += [torch.cat(grd_masks)] # comment for multi object inference. mask_pred_results = [] for idx, batch_per_image in enumerate(batched_inputs): grd_texts = batch_per_image['groundings']['texts'] grd_texts = [x[0] for x in grd_texts] gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) token_emb = gtext['token_emb'] tokens = gtext['tokens'] query_emb = token_emb[tokens['attention_mask'].bool()] non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) extra['grounding_tokens'] = query_emb[:,None] extra['grounding_nonzero_mask'] = non_zero_query_mask.t() features = self.backbone(images.tensor) outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') pred_gmasks = outputs['pred_gmasks'][idx] v_emb = outputs['pred_gtexts'][idx] t_emb = gtext['class_emb'] t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) matched_id = out_prob.max(0)[1] mask_pred_results += [pred_gmasks[matched_id,:,:]] for i in range(len(mask_pred_results)): # upsample masks mask_pred_results[i] = F.interpolate( mask_pred_results[i][None,], size=(images.tensor.shape[-2], images.tensor.shape[-1]), mode="bilinear", align_corners=False, )[0] processed_results = [] for mask_pred_result, input_per_image, image_size in zip( mask_pred_results, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) processed_results.append({}) mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( mask_pred_result, image_size, height, width ) processed_results[-1]['grounding_mask'] = mask_pred_result # compute bbox # bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes() # bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) # processed_results[-1]['grounding_box'] = bbox return processed_results def evaluate_grounding_sptial(self, batched_inputs, mode): images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" extra = {} dilation = 3 pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor pos_masks = (F.conv2d(pos_masks.float(), self.dilation_kernel, padding=dilation//2) > 0).unbind(0) neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) mask_pred_results = [] for idx, batch_per_image in enumerate(batched_inputs): grd_texts = batch_per_image['groundings']['texts'] grd_masks = [] for idx2, anno_text in enumerate(grd_texts): extra.update({'spatial_query_pos_mask': [pos_masks[idx2]], 'spatial_query_neg_mask': [neg_masks[idx2]]}) gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) token_emb = gtext['token_emb'] tokens = gtext['tokens'] grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] non_zero_query_mask = torch.zeros(grd_emb[:,None].shape[:-1], dtype=torch.bool, device=grd_emb.device) extra['grounding_tokens'] = grd_emb[:,None] extra['grounding_nonzero_mask'] = non_zero_query_mask.t() assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" features = self.backbone(images.tensor) outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') pred_gmasks = outputs['pred_gmasks'][idx] v_emb = outputs['pred_gtexts'][idx] t_emb = gtext['class_emb'] t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) matched_id = out_prob.max(0)[1] grd_masks += [pred_gmasks[matched_id,:,:]] mask_pred_results += [torch.cat(grd_masks)] # comment for multi object inference. # mask_pred_results = [] # for idx, batch_per_image in enumerate(batched_inputs): # grd_texts = batch_per_image['groundings']['texts'] # grd_texts = [x[0] for x in grd_texts] # gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) # token_emb = gtext['token_emb'] # tokens = gtext['tokens'] # query_emb = token_emb[tokens['attention_mask'].bool()] # non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) # extra['grounding_tokens'] = query_emb[:,None] # extra['grounding_nonzero_mask'] = non_zero_query_mask.t() # features = self.backbone(images.tensor) # outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') # pred_gmasks = outputs['pred_gmasks'][idx] # v_emb = outputs['pred_gtexts'][idx] # t_emb = gtext['class_emb'] # t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) # v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) # temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale # out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) # matched_id = out_prob.max(0)[1] # mask_pred_results += [pred_gmasks[matched_id,:,:]] for i in range(len(mask_pred_results)): # upsample masks mask_pred_results[i] = F.interpolate( mask_pred_results[i][None,], size=(images.tensor.shape[-2], images.tensor.shape[-1]), mode="bilinear", align_corners=False, )[0] processed_results = [] for mask_pred_result, input_per_image, image_size in zip( mask_pred_results, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) processed_results.append({}) mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( mask_pred_result, image_size, height, width ) processed_results[-1]['grounding_mask'] = mask_pred_result return processed_results def prepare_targets(self, batched_inputs, images): h_pad, w_pad = images.tensor.shape[-2:] new_targets = [] for idx, batch_per_image in enumerate(batched_inputs): targets_per_image = batch_per_image['instances'].to(self.device) # pad gt gt_masks = targets_per_image.gt_masks.tensor padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks gt_boxes = targets_per_image.gt_boxes.tensor ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:] gt_boxes = gt_boxes / ratio xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1] gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0) target_dict = { "labels": targets_per_image.gt_classes, "is_things": targets_per_image.is_things, "masks": padded_masks, "boxes": gt_boxes, } if self.task_switch['spatial']: # prepare targets for spatial query target_dict['gt_spatial_masks'] = batch_per_image['spatial_query']['gt_masks'] if self.task_switch['grounding']: grd_masks = batch_per_image['groundings']['masks'] grd_texts = batch_per_image['groundings']['texts'] grd_hash = batch_per_image['groundings']['hash'] grd_task = batch_per_image['groundings']['mode'] if len(grd_masks) == 0: padded_masks = None else: padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device) padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) token_emb = gtext['token_emb'] tokens = gtext['tokens'] unique_hash_id = np.unique(grd_hash, return_index=True)[1] selected_mask = np.zeros(len(grd_hash)).astype(np.bool) selected_mask[unique_hash_id] = True selected_token_emb = token_emb[selected_mask] selected_attn_mask = tokens['attention_mask'][selected_mask] query_emb = selected_token_emb[selected_attn_mask.bool()] class_idx = tokens['attention_mask'].sum(dim=-1) - 1 class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist() class_emb = token_emb[class_idx] target_dict['grounding_masks'] = padded_masks target_dict['grounding_query_embs'] = query_emb target_dict['grounding_class_embs'] = class_emb target_dict['grounding_hash'] = grd_hash target_dict['grounding_task'] = grd_task new_targets.append(target_dict) return new_targets def prepare_next_spaital_mask(self, outputs, batched_inputs): gt_masks = [batched_inputs[i]['spatial_query']['gt_masks'] for i in range(len(batched_inputs))] if self.training: gt_masks = ImageList.from_tensors(gt_masks, self.size_divisibility).tensor else: gt_masks = ImageList.from_tensors(gt_masks, self.size_divisibility).tensor.transpose(0,1) pred_masks = (F.interpolate(outputs['prev_mask'], size=gt_masks.shape[-2:], mode='bilinear', align_corners=False).sigmoid() > 0.5) prev_masks = torch.stack(outputs['spatial_query_pos_mask']) | torch.stack(outputs['spatial_query_neg_mask']) fn = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks) # fn: False Negative, gt:1, pred:0, prev:0 fp = (~gt_masks & pred_masks) & (~prev_masks) # fp: False Positive, gt:0, pred:1, prev:0 # compute iou between gt and pred iou = (gt_masks & pred_masks).sum(list(range(1,len(fn.shape)))) / ((gt_masks | pred_masks).sum(dim=list(range(1,len(fn.shape)))) + 1e-8) fn_sum = fn.sum(dim=list(range(1,len(fn.shape)))) fp_sum = fp.sum(dim=list(range(1,len(fp.shape)))) is_postive = fn_sum > fp_sum # is_postive = torch.ones(len(fn_sum), device=torch.cuda.current_device()).bool() select_mask = torch.stack([fn[i] if is_postive[i] else fp[i] for i in range(len(fn))]) # conv implementation n,_,h,w=select_mask.shape mask_dt = (distance_transform((~F.pad(select_mask, pad=(1, 1, 1, 1), mode='constant', value=0)).float())[:,:,1:-1,1:-1]).reshape(n,-1) max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist() next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() next_mask = next_mask.view(n,-1) next_mask[max_xy_idx] = True next_mask = next_mask.reshape((n,1,h,w)).float() dilation = 3 next_mask = F.conv2d(next_mask, self.dilation_kernel, padding=dilation//2) > 0 # determine whether next mask is zero keep = (iou < 0.925) next_mask = next_mask & keep.view(-1,1,1,1) pos_mask = [] neg_mask = [] for idx, ip in enumerate(is_postive): if ip: pos_mask += [outputs['spatial_query_pos_mask'][idx] | next_mask[idx]] neg_mask += [outputs['spatial_query_neg_mask'][idx]] else: pos_mask += [outputs['spatial_query_pos_mask'][idx]] neg_mask += [outputs['spatial_query_neg_mask'][idx] | next_mask[idx]] if 'false_positive_mask' in outputs: fp = outputs['false_positive_mask'] | fp return {'spatial_query_pos_mask': pos_mask, 'spatial_query_neg_mask': neg_mask, 'false_positive_mask': fp} def semantic_inference(self, mask_cls, mask_pred): mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] mask_pred = mask_pred.sigmoid() semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) return semseg def panoptic_inference(self, mask_cls, mask_pred): scores, labels = F.softmax(mask_cls, dim=-1).max(-1) mask_pred = mask_pred.sigmoid() keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) cur_scores = scores[keep] cur_classes = labels[keep] cur_masks = mask_pred[keep] cur_mask_cls = mask_cls[keep] cur_mask_cls = cur_mask_cls[:, :-1] cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks h, w = cur_masks.shape[-2:] panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) segments_info = [] current_segment_id = 0 if cur_masks.shape[0] == 0: # We didn't detect any mask :( return panoptic_seg, segments_info else: # take argmax cur_mask_ids = cur_prob_masks.argmax(0) stuff_memory_list = {} for k in range(cur_classes.shape[0]): pred_class = cur_classes[k].item() isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() mask_area = (cur_mask_ids == k).sum().item() original_area = (cur_masks[k] >= 0.5).sum().item() mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: if mask_area / original_area < self.overlap_threshold: continue # merge stuff regions if not isthing: if int(pred_class) in stuff_memory_list.keys(): panoptic_seg[mask] = stuff_memory_list[int(pred_class)] continue else: stuff_memory_list[int(pred_class)] = current_segment_id + 1 current_segment_id += 1 panoptic_seg[mask] = current_segment_id segments_info.append( { "id": current_segment_id, "isthing": bool(isthing), "category_id": int(pred_class), } ) return panoptic_seg, segments_info def instance_inference(self, mask_cls, mask_pred, box_pred): # mask_pred is already processed to have the same shape as original input image_size = mask_pred.shape[-2:] # [Q, K] scores = F.softmax(mask_cls, dim=-1)[:, :-1] labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) labels_per_image = labels[topk_indices] topk_indices = (topk_indices // self.sem_seg_head.num_classes) # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) mask_pred = mask_pred[topk_indices] if box_pred is not None: box_pred = box_pred[topk_indices] # if this is panoptic segmentation, we only keep the "thing" classes if self.panoptic_on: keep = torch.zeros_like(scores_per_image).bool() for i, lab in enumerate(labels_per_image): keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] mask_pred = mask_pred[keep] if box_pred is not None: box_pred = box_pred[keep] result = Instances(image_size) # mask (before sigmoid) result.pred_masks = (mask_pred > 0).float() # result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) # Uncomment the following to get boxes from masks (this is slow) if box_pred is not None: result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() else: result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) # calculate average mask prob mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) result.scores = scores_per_image * mask_scores_per_image result.pred_classes = labels_per_image return result @register_model def get_segmentation_model(cfg, **kwargs): return SEEM_Model(cfg)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/architectures/seem_model.py
from .seem_model import * from .build import build_model
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/architectures/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py # Modified by Xueyan Zou """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ from typing import List, Optional import torch import torch.distributed as dist import torchvision from torch import Tensor def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False elif tensor_list[0].ndim == 2: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(txt.shape) for txt in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, l = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, l), dtype=torch.bool, device=device) for txt, pad_txt, m in zip(tensor_list, tensor, mask): pad_txt[: txt.shape[0], : txt.shape[1]] = txt m[: txt.shape[1]] = False else: raise ValueError("not supported") return NestedTensor(tensor, mask) def _collate_and_pad_divisibility(tensor_list: list, div=32): max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.tensor([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) c,h,w = max_size pad_h = (div - h % div) if h % div != 0 else 0 pad_w = (div - w % div) if w % div != 0 else 0 max_size = (c,h+pad_h,w+pad_w) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) return padded_imgs # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_iou(gt_masks, pred_masks, ignore_label=-1): rev_ignore_mask = ~(gt_masks == ignore_label) gt_masks = gt_masks.bool() n,h,w = gt_masks.shape intersection = ((gt_masks & pred_masks) & rev_ignore_mask).reshape(n,h*w).sum(dim=-1) union = ((gt_masks | pred_masks) & rev_ignore_mask).reshape(n,h*w).sum(dim=-1) ious = (intersection / union) return ious
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/utils/misc.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) wrapped.from_config = from_config return wrapped return wrapper def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (dict)): return True if isinstance(kwargs.pop("cfg", None), (dict)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/utils/config.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def box_xywh_to_xyxy(x): x0, y0, x1, y1 = x.unbind(-1) b = [x0, y0, (x0 + x1), (y0 + y1)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = (masks * x.unsqueeze(0)) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = (masks * y.unsqueeze(0)) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/utils/box_ops.py
from .config import * from .misc import * from .box_ops import * from .it_contrastive import *
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/utils/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F def is_dist_initialized(): return torch.distributed.is_initialized() def get_world_size(): if is_dist_initialized(): return torch.distributed.get_world_size() return 1 def all_gather_grad(x): if get_world_size() > 1: all_x = [torch.zeros_like(x) for _ in range(get_world_size())] torch.distributed.all_gather(all_x, x) all_x[torch.distributed.get_rank()] = x x = torch.cat(all_x, dim=0) return x @torch.no_grad() def all_gather_nograd(tensor): # from albef """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ if get_world_size() > 1: tensors_gather = [torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) tensor = torch.cat(tensors_gather, dim=0) return tensor def image_text_contrastive_loss(image_feat, text_feat, temperature, image_id=None, text_id=None): # add the following 4 lines image_feat = all_gather_grad(image_feat) text_feat = all_gather_grad(text_feat) logits = torch.matmul(image_feat, text_feat.t()) logits /= temperature if image_id is None and text_id is None: gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logits, gt) loss2 = F.cross_entropy(logits.t(), gt) else: image_id = all_gather_grad(image_id) text_id = all_gather_grad(text_id) gt_image = image_id.reshape((-1, 1)) == image_id.reshape((1, -1)) gt_text = text_id.reshape((-1, 1)) == text_id.reshape((1, -1)) gt = torch.logical_or(gt_image, gt_text) loss1 = -torch.sum(gt * F.log_softmax(logits, dim=1)) / gt.sum() loss2 = -torch.sum(gt.t() * F.log_softmax(logits.t(), dim=1)) / gt.sum() return (loss1 + loss2) / 2 * get_world_size() # scale it up by the number of GPUs
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/utils/it_contrastive.py
from .registry import model_entrypoints from .registry import is_model def build_language_encoder(config, **kwargs): model_name = config['MODEL']['TEXT']['ARCH'] if not is_model(model_name): raise ValueError(f'Unkown model: {model_name}') return model_entrypoints(model_name)(config, **kwargs)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/build.py
import random import nltk nltk.data.path.append('/mnt/data/nltk_data') import numpy as np from utils.constants import IMAGENET_DEFAULT_TEMPLATES def get_tag(tokenized, tags): if not isinstance(tags, (list, tuple)): tags = [tags] ret = [] for (word, pos) in nltk.pos_tag(tokenized): for tag in tags: if pos == tag: ret.append(word) return ret def get_noun_phrase(tokenized): # Taken from Su Nam Kim Paper... grammar = r""" NBAR: {<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with Nouns NP: {<NBAR>} {<NBAR><IN><NBAR>} # Above, connected with in/of/etc... """ chunker = nltk.RegexpParser(grammar) chunked = chunker.parse(nltk.pos_tag(tokenized)) continuous_chunk = [] current_chunk = [] for subtree in chunked: if isinstance(subtree, nltk.Tree): current_chunk.append(' '.join([token for token, pos in subtree.leaves()])) elif current_chunk: named_entity = ' '.join(current_chunk) if named_entity not in continuous_chunk: continuous_chunk.append(named_entity) current_chunk = [] else: continue return continuous_chunk def text_noun_with_prompt_all(text, phrase_prob=0.0, append_text=True): tokenized = nltk.word_tokenize(text) if random.random() >= phrase_prob: nouns = get_tag(tokenized, ['NN', 'NNS', 'NNP']) else: nouns = get_noun_phrase(tokenized) prompt_texts = [np.random.choice(IMAGENET_DEFAULT_TEMPLATES).format(noun) for noun in nouns] if append_text: prompt_texts += [text] nouns += [text] return prompt_texts, nouns
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/misc.py
_model_entrypoints = {} def register_model(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _model_entrypoints[model_name] = fn return fn def model_entrypoints(model_name): return _model_entrypoints[model_name] def is_model(model_name): return model_name in _model_entrypoints
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/registry.py
from .fixvlpencoder import * from .vlpencoder import * from .build import build_language_encoder
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/__init__.py
import pickle from distutils import log import torch import torch.nn.functional as F import torch.distributed as dist from einops import rearrange, repeat from timm.loss import SoftTargetCrossEntropy soft_cross_entropy = SoftTargetCrossEntropy() def is_dist_initialized(): return torch.distributed.is_initialized() def get_world_size(): if is_dist_initialized(): return torch.distributed.get_world_size() return 1 def get_rank(): if is_dist_initialized(): return dist.get_rank() return 0 def all_gather_grad(x): if get_world_size() > 1: all_x = [torch.zeros_like(x) for _ in range(get_world_size())] torch.distributed.all_gather(all_x, x) all_x[torch.distributed.get_rank()] = x x = torch.cat(all_x, dim=0) return x def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1): """ Args: image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256 text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256 Returns: """ # [B, L1, C], L1 = 1 # image_feat = F.normalize(image_feat, dim=-1) # [B, L2, C] # text_feat = F.normalize(text_feat, dim=-1) # HACK: normalize outside # [B, L1, L2] dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l') # [B, L2, L1] dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l') batch = image_feat.shape[0] img_len = image_feat.shape[1] text_len = text_feat.shape[1] # [B, L1, L2] pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2') # [B, L2, L1] pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1') image_x = rearrange(image_feat, 'b l c -> (b l) c') text_x = rearrange(text_feat, 'b l c -> (b l) c') logits_per_img = image_x @ all_gather_grad(text_x).t() logits_per_text = text_x @ all_gather_grad(image_x).t() # get label globally # [B, L1, B, L2, W] labels_per_img = F.one_hot( torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(), num_classes=get_world_size()).to(image_x.dtype) labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat( torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1') # [BxL1, WxBxL2] labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)') # [B, L2, B, L1, W] labels_per_text = F.one_hot( torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(), num_classes=get_world_size()).to(text_x.dtype) labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat( torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1') # [BxL2, WxBxL1] labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)') logit_scale = temperature.exp().clamp(max=100) loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img) loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text) loss = 0.5 * (loss_img + loss_text) return loss def vl_contrastive_loss(image_feat, text_feat, temperature=1): # if image_id or text_id is None, it should be None across all GPUs # image_feat = F.normalize(image_feat, dim=1) # text_feat = F.normalize(text_feat, dim=1) # handle normalization outside # add the following 4 lines image_feat = all_gather_grad(image_feat) text_feat = all_gather_grad(text_feat) logits = torch.matmul(image_feat, text_feat.t()) logit_scale = temperature.exp().clamp(max=100) gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logit_scale * logits, gt) loss2 = F.cross_entropy(logit_scale * logits.t(), gt) return (loss1 + loss2) / 2 # scale it up by the number of GPUs def all_gather_pickle(data, device): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device) # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]).cuda() size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).cuda()) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).cuda() tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def all_gather_arbitary_tensor(tensor): if get_world_size() > 1: device = tensor.device tensor_batch = all_gather_pickle(tensor.cpu(), device) tensor_batch = [x.to(device) for x in tensor_batch] tensor_batch[torch.distributed.get_rank()] = tensor tensor_batch = torch.cat(tensor_batch, dim=0) else: tensor_batch = tensor return tensor_batch def ql_contrastive_loss(image_feat, text_feat, temperature=1): # add the following 4 lines image_feat = all_gather_arbitary_tensor(image_feat) text_feat = all_gather_arbitary_tensor(text_feat) logits = torch.matmul(image_feat, text_feat.t()) logit_scale = temperature.exp().clamp(max=100) gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logit_scale * logits, gt) loss2 = F.cross_entropy(logit_scale * logits.t(), gt) return (loss1 + loss2) / 2 # scale it up by the number of GPUs def vl_similarity(image_feat, text_feat, temperature=1): # Only support single GPU for now. logits = torch.matmul(image_feat, text_feat.t()) logits = temperature.exp().clamp(max=100) * logits return logits def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1): # add the following 4 lines image_feat = all_gather_arbitary_tensor(image_feat) text_feat = all_gather_arbitary_tensor(text_feat) text_hash_batch = all_gather_pickle(text_hash, text_feat.device) text_hash_all = torch.cat(text_hash_batch) text_hash_all_unique = torch.unique(text_hash_all).tolist() gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device) text_hash_all = text_hash_all.tolist() text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique]) for idx, txt in enumerate(text_hash_all): gt[idx][text_hash_all_unique.index(txt)] = 1 logits = torch.matmul(image_feat, text_feat_unique.t()) logits = logits*temperature.exp().clamp(max=100) loss_img = soft_cross_entropy(logits, gt) loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True)) loss = 0.7 * loss_img + 0.3 * loss_text return loss def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training): # add the following 4 lines image_feat = all_gather_grad(image_feat_inp.contiguous()) text_feat = all_gather_grad(text_feat_inp.contiguous()) image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7) text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7) temperature = lang_enc.logit_scale logits = torch.matmul(image_feat, text_feat.t()) logit_scale = temperature.exp().clamp(max=100) gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logit_scale * logits, gt) loss2 = F.cross_entropy(logit_scale * logits.t(), gt) return (loss1 + loss2) / 2 # scale it up by the number of GPUs
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/loss.py
# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected]) # -------------------------------------------------------- import torch from torch import nn from torch.nn import functional as F from timm.models.layers import trunc_normal_ from .registry import register_model from ..utils import configurable from .LangEncoder import build_tokenizer, build_lang_encoder from utils.misc import prompt_engineering, get_prompt_templates class LanguageEncoder(nn.Module): @configurable def __init__( self, tokenizer, tokenizer_type, lang_encoder, lang_projection, max_token_num, ): super().__init__() self.tokenizer = tokenizer self.tokenizer_type = tokenizer_type self.lang_encoder = lang_encoder self.lang_proj = lang_projection self.max_token_num = max_token_num self.logit_scale = nn.Parameter(torch.ones([])) @classmethod def from_config(cls, cfg): tokenizer = build_tokenizer(cfg['MODEL']['TEXT']) tokenizer_type = cfg['MODEL']['TEXT']['TOKENIZER'] lang_encoder = build_lang_encoder(cfg['MODEL']['TEXT'], tokenizer, cfg['VERBOSE']) max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] dim_lang = cfg['MODEL']['TEXT']['WIDTH'] dim_projection = cfg['MODEL']['DIM_PROJ'] lang_projection = nn.Parameter(torch.empty(dim_lang, dim_projection)) trunc_normal_(lang_projection, std=.02) return { "tokenizer": tokenizer, "tokenizer_type": tokenizer_type, "lang_encoder": lang_encoder, "lang_projection": lang_projection, "max_token_num": max_token_num, } def get_text_embeddings(self, class_names, name='default', is_eval=False, add_bgd=False, prompt=True, norm=True): if not is_eval: if prompt: # randomly sample one template arbitary_concepts = [ prompt_engineering(class_names[label].replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \ for label in range(len(class_names)) ] if add_bgd: arbitary_concepts.append("A background in coco.") else: arbitary_concepts = class_names input_ids = [] attention_masks = [] for txt in arbitary_concepts: tokens = self.tokenizer( txt, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' ) tokens['input_ids'].squeeze_() tokens['attention_mask'].squeeze_() input_ids.append(tokens['input_ids']) attention_masks.append(tokens['attention_mask']) arbitary_tokens = torch.stack(input_ids) arbitary_attention_masks = torch.stack(attention_masks) text_emb = self.forward_language((arbitary_tokens.cuda(), arbitary_attention_masks.cuda()), norm=norm) setattr(self, '{}_text_embeddings'.format(name), text_emb) else: with torch.no_grad(): def extract_mean_emb(txts): tokens = self.tokenizer( txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' ) clss_embedding = self.forward_language((tokens['input_ids'].cuda(), tokens['attention_mask'].cuda()), norm=norm) clss_embedding = clss_embedding.mean(dim=0) clss_embedding /= clss_embedding.norm() return clss_embedding templates = get_prompt_templates() clss_embeddings = [] if prompt: for clss in class_names: txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff','')) for template in templates] clss_embeddings.append(extract_mean_emb(txts)) else: clss_embeddings.append(extract_mean_emb(class_names)) if add_bgd: txts = ["A background in coco."] clss_embeddings.append(extract_mean_emb(txts)) text_emb = torch.stack(clss_embeddings, dim=0) setattr(self, '{}_text_embeddings'.format(name), text_emb) def get_text_token_embeddings(self, txts, name='default', token=False, norm=False): if not token: tokens = self.tokenizer( txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' ) tokens = {key: value.cuda() for key, value in tokens.items()} else: tokens = txts token_emb, class_emb = self.forward_language_token((tokens['input_ids'], tokens['attention_mask']), norm=norm) ret = {"tokens": tokens, "token_emb": token_emb, "class_emb": class_emb,} setattr(self, '{}_token_embeddings'.format(name), ret) return ret def forward_language(self, texts, norm=True): x = self.lang_encoder(*texts) x = x['last_hidden_state'] if self.tokenizer_type == 'clip': x = x[torch.arange(x.size(0)), texts[0].argmax(dim=-1)] else: x = x[:, 0] x = x @ self.lang_proj if norm: x = x / (x.norm(dim=-1, keepdim=True) + 1e-7) return x def forward_language_token(self, texts, norm=False): x = self.lang_encoder(*texts) token_x = x['last_hidden_state'] if self.tokenizer_type == 'clip': class_x = token_x[torch.arange(token_x.size(0)), texts[0].argmax(dim=-1)] else: class_x = token_x[:, 0] class_x = class_x @ self.lang_proj token_x = token_x @ self.lang_proj if norm: class_x = class_x / (class_x.norm(dim=-1, keepdim=True) + 1e-7) token_x = token_x / (token_x.norm(dim=-1, keepdim=True) + 1e-7) return token_x, class_x def compute_similarity(self, v_emb, name='default', fake=False): if fake: return None v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) t_emb = getattr(self, '{}_text_embeddings'.format(name)) output = self.logit_scale.exp() * v_emb @ t_emb.unsqueeze(0).transpose(1, 2) return output @register_model def get_language_model(cfg, **kwargs): return LanguageEncoder(cfg)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/vlpencoder.py
from importlib.metadata import requires import torch import torch.nn as nn from .registry import register_model from .vlpencoder import LanguageEncoder class FixLanguageEncoder(LanguageEncoder): def __init__( self, *args, **kwargs): super(FixLanguageEncoder, self).__init__(*args, **kwargs) self.logit_scale = nn.Parameter(torch.ones([]), requires_grad=False) @torch.no_grad() def get_text_embeddings(self, *args, **kwargs): return super().get_text_embeddings(*args, **kwargs) @torch.no_grad() def get_text_token_embeddings(self, *args, **kwargs): return super().get_text_token_embeddings(*args, **kwargs) @torch.no_grad() def forward_language(self, *args, **kwargs): return super().forward_language(*args, **kwargs) @torch.no_grad() def forward_language_token(self, *args, **kwargs): return super().forward_language_token(*args, **kwargs) @register_model def get_language_model(cfg, **kwargs): return FixLanguageEncoder(cfg)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/fixvlpencoder.py
import os from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers import AutoTokenizer from .registry import lang_encoders from .registry import is_lang_encoder def build_lang_encoder(config_encoder, tokenizer, verbose, **kwargs): model_name = config_encoder['NAME'] if not is_lang_encoder(model_name): raise ValueError(f'Unkown model: {model_name}') return lang_encoders(model_name)(config_encoder, tokenizer, verbose, **kwargs) def build_tokenizer(config_encoder): tokenizer = None os.environ['TOKENIZERS_PARALLELISM'] = 'true' if config_encoder['TOKENIZER'] == 'clip': pretrained_tokenizer = config_encoder.get( 'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32' ) tokenizer = CLIPTokenizer.from_pretrained(pretrained_tokenizer) tokenizer.add_special_tokens({'cls_token': tokenizer.eos_token}) elif config_encoder['TOKENIZER'] == 'clip-fast': pretrained_tokenizer = config_encoder.get( 'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32' ) tokenizer = CLIPTokenizerFast.from_pretrained(pretrained_tokenizer, from_slow=True) else: tokenizer = AutoTokenizer.from_pretrained(config_encoder['TOKENIZER']) return tokenizer
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/LangEncoder/build.py
_lang_encoders = {} def register_lang_encoder(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _lang_encoders[model_name] = fn return fn def lang_encoders(model_name): return _lang_encoders[model_name] def is_lang_encoder(model_name): return model_name in _lang_encoders
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/LangEncoder/registry.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .build import build_lang_encoder from .build import build_tokenizer from .transformer import *
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/LangEncoder/__init__.py
from collections import OrderedDict from typing import Tuple, Union import logging import os import numpy as np import torch import torch.nn.functional as F from torch import nn from timm.models.layers import DropPath, trunc_normal_ from .registry import register_lang_encoder from utils.distributed import is_main_process from utils.model import register_norm_module logger = logging.getLogger(__name__) @register_norm_module class LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(LayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): pdtype = x.dtype x = x.float() u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x.to(pdtype) + self.bias class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, drop_path: float = 0.0): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \ if self.attn_mask is not None else None return self.attn( x, x, x, key_padding_mask=key_padding_mask, need_weights=False, attn_mask=self.attn_mask )[0] def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None): x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, context_length: int, vocab_size: int, width: int, layers: int, heads: int, drop_path: float = 0.0, autogressive: bool =True): super().__init__() self.token_embedding = nn.Embedding(vocab_size, width) self.context_length = context_length self.positional_embedding = nn.Parameter( torch.empty(self.context_length, width) ) self.width = width self.layers = layers self.autogressive = autogressive attn_mask = self.build_attention_mask() if autogressive else None dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] # stochastic depth decay rule self.resblocks = nn.ModuleList( [ ResidualAttentionBlock(width, heads, attn_mask, dpr[i]) for i in range(layers) ] ) self.ln_final = LayerNorm(width) trunc_normal_(self.positional_embedding, std=.02) # nn.init.normal_(self.token_embedding, std=.02) trunc_normal_(self.token_embedding.weight, std=.02) self.apply(self._init_weights) @property def dim_out(self): return self.width def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def _init_weights(self, m): if isinstance(m, (nn.Linear, nn.Conv2d)): if is_main_process(): logger.info('=> init weight of Linear/Conv2d from trunc norm') trunc_normal_(m.weight, std=0.02) if m.bias is not None: if is_main_process(): logger.info('=> init bias of Linear/Conv2d to zeros') nn.init.constant_(m.bias, 0) elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)): nn.init.constant_(m.bias, 0) def load_pretrained(self, pretrained='', pretrained_layers=[], verbose=True): if os.path.isfile(pretrained): pretrained_dict = torch.load(pretrained, map_location='cpu') logging.info(f'=> loading pretrained model {pretrained}') model_dict = self.state_dict() stripped_key = lambda x: x[13:] if x.startswith('lang_encoder.') else x pretrained_dict = { stripped_key(k): v for k, v in pretrained_dict.items() if stripped_key(k) in model_dict.keys() } need_init_state_dict = {} for k, v in pretrained_dict.items(): need_init = ( k.split('.')[0] in pretrained_layers or pretrained_layers[0] == '*' ) if need_init: if verbose: logger.info(f'=> init {k} from {pretrained}') if 'positional_embedding' in k and v.size() != model_dict[k].size(): positional_embedding_pretrained = v positional_embedding_current = model_dict[k] L1, nH1 = positional_embedding_pretrained.size() L2, nH2 = positional_embedding_current.size() if nH1 != nH2: logger.info(f"Error in loading {k}, passing") else: if L1 != L2: logger.info( '=> load_pretrained: resized variant: {} to {}' .format((L1, nH1), (L2, nH2)) ) posemb = positional_embedding_pretrained.float() posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1) posemb_grid = torch.nn.functional.interpolate(posemb_grid, size=L2, mode='linear') posemb_grid = posemb_grid.permute(0, 2, 1).squeeze(dim=0) v = posemb_grid need_init_state_dict[k] = v self.load_state_dict(need_init_state_dict, strict=False) @torch.jit.ignore def no_weight_decay(self): return { 'positional_embedding', 'token_embedding', } def forward(self, input_ids, attention_mask=None): key_padding_mask = (attention_mask == 0) if (not self.autogressive and attention_mask is not None) else None # key_padding_mask = (input_ids == 0) if not self.autogressive else None x = self.token_embedding(input_ids) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND for block in self.resblocks: x = block(x, key_padding_mask) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) return {'last_hidden_state': x} @register_lang_encoder def lang_encoder(config_encoder, tokenizer, verbose, **kwargs): transformer = Transformer( context_length=config_encoder['CONTEXT_LENGTH'], vocab_size=tokenizer.vocab_size, width=config_encoder['WIDTH'], layers=config_encoder['LAYERS'], heads=config_encoder['HEADS'], autogressive=config_encoder.get('AUTOGRESSIVE', True) ) if config_encoder.get('LOAD_PRETRAINED', False): transformer.load_pretrained(config_encoder['PRETRAINED'], config_encoder.get('PRETRAINED_LAYERS', ['*'])) return transformer
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/language/LangEncoder/transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch from torch.nn import functional as F from detectron2.layers import cat, shapes_to_tensor from detectron2.structures import BitMasks, Boxes # from ..layers import cat, shapes_to_tensor # from ..structures import BitMasks, Boxes """ Shape shorthand in this module: N: minibatch dimension size, i.e. the number of RoIs for instance segmenation or the number of images for semantic segmenation. R: number of ROIs, combined over all images, in the minibatch P: number of points """ def point_sample(input, point_coords, **kwargs): """ A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors. Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside [0, 1] x [0, 1] square. Args: input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid. point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains [0, 1] x [0, 1] normalized point coordinates. Returns: output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains features for points in `point_coords`. The features are obtained via bilinear interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`. """ add_dim = False if point_coords.dim() == 3: add_dim = True point_coords = point_coords.unsqueeze(2) output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs) if add_dim: output = output.squeeze(3) return output def generate_regular_grid_point_coords(R, side_size, device): """ Generate regular square grid of points in [0, 1] x [0, 1] coordinate space. Args: R (int): The number of grids to sample, one for each region. side_size (int): The side size of the regular grid. device (torch.device): Desired device of returned tensor. Returns: (Tensor): A tensor of shape (R, side_size^2, 2) that contains coordinates for the regular grids. """ aff = torch.tensor([[[0.5, 0, 0.5], [0, 0.5, 0.5]]], device=device) r = F.affine_grid(aff, torch.Size((1, 1, side_size, side_size)), align_corners=False) return r.view(1, -1, 2).expand(R, -1, -1) def get_uncertain_point_coords_with_randomness( coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio ): """ Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties are calculated for each point using 'uncertainty_func' function that takes point's logit prediction as input. See PointRend paper for details. Args: coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for class-specific or class-agnostic prediction. uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that contains logit predictions for P points and returns their uncertainties as a Tensor of shape (N, 1, P). num_points (int): The number of points P to sample. oversample_ratio (int): Oversampling parameter. importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. Returns: point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P sampled points. """ assert oversample_ratio >= 1 assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0 num_boxes = coarse_logits.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device, dtype=coarse_logits.dtype) point_logits = point_sample(coarse_logits, point_coords, align_corners=False) # It is crucial to calculate uncertainty based on the sampled prediction value for the points. # Calculating uncertainties of the coarse predictions first and sampling them for points leads # to incorrect results. # To illustrate this: assume uncertainty_func(logits)=-abs(logits), a sampled point between # two coarse predictions with -1 and 1 logits has 0 logits, and therefore 0 uncertainty value. # However, if we calculate uncertainties for the coarse predictions first, # both will have -1 uncertainty, and the sampled point will get -1 uncertainty. point_uncertainties = uncertainty_func(point_logits) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( num_boxes, num_uncertain_points, 2 ) if num_random_points > 0: point_coords = cat( [ point_coords, torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device), ], dim=1, ) return point_coords def get_uncertain_point_coords_on_grid(uncertainty_map, num_points): """ Find `num_points` most uncertain points from `uncertainty_map` grid. Args: uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty values for a set of points on a regular H x W grid. num_points (int): The number of points P to select. Returns: point_indices (Tensor): A tensor of shape (N, P) that contains indices from [0, H x W) of the most uncertain points. point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized coordinates of the most uncertain points from the H x W grid. """ R, _, H, W = uncertainty_map.shape h_step = 1.0 / float(H) w_step = 1.0 / float(W) num_points = min(H * W, num_points) point_indices = torch.topk(uncertainty_map.view(R, H * W), k=num_points, dim=1)[1] point_coords = torch.zeros(R, num_points, 2, dtype=torch.float, device=uncertainty_map.device) point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step return point_indices, point_coords def point_sample_fine_grained_features(features_list, feature_scales, boxes, point_coords): """ Get features from feature maps in `features_list` that correspond to specific point coordinates inside each bounding box from `boxes`. Args: features_list (list[Tensor]): A list of feature map tensors to get features from. feature_scales (list[float]): A list of scales for tensors in `features_list`. boxes (list[Boxes]): A list of I Boxes objects that contain R_1 + ... + R_I = R boxes all together. point_coords (Tensor): A tensor of shape (R, P, 2) that contains [0, 1] x [0, 1] box-normalized coordinates of the P sampled points. Returns: point_features (Tensor): A tensor of shape (R, C, P) that contains features sampled from all features maps in feature_list for P sampled points for all R boxes in `boxes`. point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains image-level coordinates of P points. """ cat_boxes = Boxes.cat(boxes) num_boxes = [b.tensor.size(0) for b in boxes] point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords) split_point_coords_wrt_image = torch.split(point_coords_wrt_image, num_boxes) point_features = [] for idx_img, point_coords_wrt_image_per_image in enumerate(split_point_coords_wrt_image): point_features_per_image = [] for idx_feature, feature_map in enumerate(features_list): h, w = feature_map.shape[-2:] scale = shapes_to_tensor([w, h]) / feature_scales[idx_feature] point_coords_scaled = point_coords_wrt_image_per_image / scale.to(feature_map.device) point_features_per_image.append( point_sample( feature_map[idx_img].unsqueeze(0), point_coords_scaled.unsqueeze(0), align_corners=False, ) .squeeze(0) .transpose(1, 0) ) point_features.append(cat(point_features_per_image, dim=1)) return cat(point_features, dim=0), point_coords_wrt_image def get_point_coords_wrt_image(boxes_coords, point_coords): """ Convert box-normalized [0, 1] x [0, 1] point cooordinates to image-level coordinates. Args: boxes_coords (Tensor): A tensor of shape (R, 4) that contains bounding boxes. coordinates. point_coords (Tensor): A tensor of shape (R, P, 2) that contains [0, 1] x [0, 1] box-normalized coordinates of the P sampled points. Returns: point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains image-normalized coordinates of P sampled points. """ with torch.no_grad(): point_coords_wrt_image = point_coords.clone() point_coords_wrt_image[:, :, 0] = point_coords_wrt_image[:, :, 0] * ( boxes_coords[:, None, 2] - boxes_coords[:, None, 0] ) point_coords_wrt_image[:, :, 1] = point_coords_wrt_image[:, :, 1] * ( boxes_coords[:, None, 3] - boxes_coords[:, None, 1] ) point_coords_wrt_image[:, :, 0] += boxes_coords[:, None, 0] point_coords_wrt_image[:, :, 1] += boxes_coords[:, None, 1] return point_coords_wrt_image def sample_point_labels(instances, point_coords): """ Sample point labels from ground truth mask given point_coords. Args: instances (list[Instances]): A list of N Instances, where N is the number of images in the batch. So, i_th elememt of the list contains R_i objects and R_1 + ... + R_N is equal to R. The ground-truth gt_masks in each instance will be used to compute labels. points_coords (Tensor): A tensor of shape (R, P, 2), where R is the total number of instances and P is the number of points for each instance. The coordinates are in the absolute image pixel coordinate space, i.e. [0, H] x [0, W]. Returns: Tensor: A tensor of shape (R, P) that contains the labels of P sampled points. """ with torch.no_grad(): gt_mask_logits = [] point_coords_splits = torch.split( point_coords, [len(instances_per_image) for instances_per_image in instances] ) for i, instances_per_image in enumerate(instances): if len(instances_per_image) == 0: continue assert isinstance( instances_per_image.gt_masks, BitMasks ), "Point head works with GT in 'bitmask' format. Set INPUT.MASK_FORMAT to 'bitmask'." gt_bit_masks = instances_per_image.gt_masks.tensor h, w = instances_per_image.gt_masks.image_size scale = torch.tensor([w, h], dtype=torch.float, device=gt_bit_masks.device) points_coord_grid_sample_format = point_coords_splits[i] / scale gt_mask_logits.append( point_sample( gt_bit_masks.to(torch.float32).unsqueeze(1), points_coord_grid_sample_format, align_corners=False, ).squeeze(1) ) point_labels = cat(gt_mask_logits) return point_labels
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/modules/point_features.py
# Code copy from PyTorch, modified by Xueyan Zou import warnings from typing import Optional, Tuple import torch import torch.nn as nn from torch import Tensor from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ from torch.nn.parameter import Parameter from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import pad, linear, softmax, dropout def multi_head_attention_forward( query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v, ) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif key is value or torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim : (embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2) :]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert ( attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead." ) key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: # assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float("-inf")) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1), float("-inf"), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None # This class exists solely for Transformer; it has an annotation stating # that bias is never None, which appeases TorchScript class _LinearWithBias(nn.Linear): bias: Tensor # type: ignore def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) # type: ignore class MultiheadAttention(nn.Module): r"""Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_ .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set to :attr:`embed_dim` such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shapes for inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Shapes for outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/modules/attention.py
# Copyright (c) Facebook, Inc. and its affiliates. ## Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py """ Various positional encodings for the transformer. """ import math import torch from torch import nn class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=x.dtype) x_embed = not_mask.cumsum(2, dtype=x.dtype) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=x.dtype, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self, _repr_indent=4): head = "Positional encoding " + self.__class__.__name__ body = [ "num_pos_feats: {}".format(self.num_pos_feats), "temperature: {}".format(self.temperature), "normalize: {}".format(self.normalize), "scale: {}".format(self.scale), ] # _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/modules/position_encoding.py
from .position_encoding import * from .attention import * from .postprocessing import * from .point_features import *
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch from torch.nn import functional as F from detectron2.structures import Instances, ROIMasks # perhaps should rename to "resize_instance" def detector_postprocess( results: Instances, output_height: int, output_width: int, mask_threshold: float = 0.5 ): """ Resize the output instances. The input images are often resized when entering an object detector. As a result, we often need the outputs of the detector in a different resolution from its inputs. This function will resize the raw outputs of an R-CNN detector to produce outputs according to the desired output resolution. Args: results (Instances): the raw outputs from the detector. `results.image_size` contains the input image resolution the detector sees. This object might be modified in-place. output_height, output_width: the desired output resolution. Returns: Instances: the resized output from the model, based on the output resolution """ if isinstance(output_width, torch.Tensor): # This shape might (but not necessarily) be tensors during tracing. # Converts integer tensors to float temporaries to ensure true # division is performed when computing scale_x and scale_y. output_width_tmp = output_width.float() output_height_tmp = output_height.float() new_size = torch.stack([output_height, output_width]) else: new_size = (output_height, output_width) output_width_tmp = output_width output_height_tmp = output_height scale_x, scale_y = ( output_width_tmp / results.image_size[1], output_height_tmp / results.image_size[0], ) results = Instances(new_size, **results.get_fields()) if results.has("pred_boxes"): output_boxes = results.pred_boxes elif results.has("proposal_boxes"): output_boxes = results.proposal_boxes else: output_boxes = None assert output_boxes is not None, "Predictions must contain boxes!" output_boxes.scale(scale_x, scale_y) output_boxes.clip(results.image_size) results = results[output_boxes.nonempty()] if results.has("pred_masks"): if isinstance(results.pred_masks, ROIMasks): roi_masks = results.pred_masks else: # pred_masks is a tensor of shape (N, 1, M, M) roi_masks = ROIMasks(results.pred_masks[:, 0, :, :]) results.pred_masks = roi_masks.to_bitmasks( results.pred_boxes, output_height, output_width, mask_threshold ).tensor # TODO return ROIMasks/BitMask object in the future if results.has("pred_keypoints"): results.pred_keypoints[:, :, 0] *= scale_x results.pred_keypoints[:, :, 1] *= scale_y return results def bbox_postprocess(result, input_size, img_size, output_height, output_width): """ result: [xc,yc,w,h] range [0,1] to [x1,y1,x2,y2] range [0,w], [0,h] """ if result is None: return None scale = torch.tensor([input_size[1], input_size[0], input_size[1], input_size[0]])[None,:].to(result.device) result = result.sigmoid() * scale x1,y1,x2,y2 = result[:,0] - result[:,2]/2, result[:,1] - result[:,3]/2, result[:,0] + result[:,2]/2, result[:,1] + result[:,3]/2 h,w = img_size x1 = x1.clamp(min=0, max=w) y1 = y1.clamp(min=0, max=h) x2 = x2.clamp(min=0, max=w) y2 = y2.clamp(min=0, max=h) box = torch.stack([x1,y1,x2,y2]).permute(1,0) scale = torch.tensor([output_width/w, output_height/h, output_width/w, output_height/h])[None,:].to(result.device) box = box*scale return box def sem_seg_postprocess(result, img_size, output_height, output_width): """ Return semantic segmentation predictions in the original resolution. The input images are often resized when entering semantic segmentor. Moreover, in same cases, they also padded inside segmentor to be divisible by maximum network stride. As a result, we often need the predictions of the segmentor in a different resolution from its inputs. Args: result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W), where C is the number of classes, and H, W are the height and width of the prediction. img_size (tuple): image size that segmentor is taking as input. output_height, output_width: the desired output resolution. Returns: semantic segmentation prediction (Tensor): A tensor of the shape (C, output_height, output_width) that contains per-pixel soft predictions. """ result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1) result = F.interpolate( result, size=(output_height, output_width), mode="bilinear", align_corners=False )[0] return result
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/modules/postprocessing.py
from .registry import model_entrypoints from .registry import is_model from .backbone import * def build_backbone(config, **kwargs): model_name = config['MODEL']['BACKBONE']['NAME'] if not is_model(model_name): raise ValueError(f'Unkown model: {model_name}') return model_entrypoints(model_name)(config, **kwargs)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/build.py
import os import itertools import logging import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from collections import OrderedDict from einops import rearrange from timm.models.layers import DropPath, trunc_normal_ from detectron2.utils.file_io import PathManager from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec from .registry import register_backbone logger = logging.getLogger(__name__) class MySequential(nn.Sequential): def forward(self, *inputs): for module in self._modules.values(): if type(inputs) == tuple: inputs = module(*inputs) else: inputs = module(inputs) return inputs class PreNorm(nn.Module): def __init__(self, norm, fn, drop_path=None): super().__init__() self.norm = norm self.fn = fn self.drop_path = drop_path def forward(self, x, *args, **kwargs): shortcut = x if self.norm != None: x, size = self.fn(self.norm(x), *args, **kwargs) else: x, size = self.fn(x, *args, **kwargs) if self.drop_path: x = self.drop_path(x) x = shortcut + x return x, size class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.net = nn.Sequential(OrderedDict([ ("fc1", nn.Linear(in_features, hidden_features)), ("act", act_layer()), ("fc2", nn.Linear(hidden_features, out_features)) ])) def forward(self, x, size): return self.net(x), size class DepthWiseConv2d(nn.Module): def __init__( self, dim_in, kernel_size, padding, stride, bias=True, ): super().__init__() self.dw = nn.Conv2d( dim_in, dim_in, kernel_size=kernel_size, padding=padding, groups=dim_in, stride=stride, bias=bias ) def forward(self, x, size): B, N, C = x.shape H, W = size assert N == H * W x = self.dw(x.transpose(1, 2).view(B, C, H, W)) size = (x.size(-2), x.size(-1)) x = x.flatten(2).transpose(1, 2) return x, size class ConvEmbed(nn.Module): """ Image to Patch Embedding """ def __init__( self, patch_size=7, in_chans=3, embed_dim=64, stride=4, padding=2, norm_layer=None, pre_norm=True ): super().__init__() self.patch_size = patch_size self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding ) dim_norm = in_chans if pre_norm else embed_dim self.norm = norm_layer(dim_norm) if norm_layer else None self.pre_norm = pre_norm def forward(self, x, size): H, W = size if len(x.size()) == 3: if self.norm and self.pre_norm: x = self.norm(x) x = rearrange( x, 'b (h w) c -> b c h w', h=H, w=W ) x = self.proj(x) _, _, H, W = x.shape x = rearrange(x, 'b c h w -> b (h w) c') if self.norm and not self.pre_norm: x = self.norm(x) return x, (H, W) class ChannelAttention(nn.Module): def __init__(self, dim, groups=8, qkv_bias=True): super().__init__() self.groups = groups self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) def forward(self, x, size): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * (N ** -0.5) attention = q.transpose(-1, -2) @ k attention = attention.softmax(dim=-1) x = (attention @ v.transpose(-1, -2)).transpose(-1, -2) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) return x, size class ChannelBlock(nn.Module): def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True): super().__init__() drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None self.channel_attn = PreNorm( norm_layer(dim), ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias), drop_path ) self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None self.ffn = PreNorm( norm_layer(dim), Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), drop_path ) def forward(self, x, size): if self.conv1: x, size = self.conv1(x, size) x, size = self.channel_attn(x, size) if self.conv2: x, size = self.conv2(x, size) x, size = self.ffn(x, size) return x, size def window_partition(x, window_size: int): B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size: int, H: int, W: int): B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): def __init__(self, dim, num_heads, window_size, qkv_bias=True): super().__init__() self.dim = dim self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.softmax = nn.Softmax(dim=-1) def forward(self, x, size): H, W = size B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape x = window_partition(x, self.window_size) x = x.view(-1, self.window_size * self.window_size, C) # W-MSA/SW-MSA # attn_windows = self.attn(x_windows) B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = self.softmax(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) # merge windows x = x.view( -1, self.window_size, self.window_size, C ) x = window_reverse(x, self.window_size, Hp, Wp) if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) return x, size class SpatialBlock(nn.Module): def __init__(self, dim, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True): super().__init__() drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None self.window_attn = PreNorm( norm_layer(dim), WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias), drop_path ) self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None self.ffn = PreNorm( norm_layer(dim), Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), drop_path ) def forward(self, x, size): if self.conv1: x, size = self.conv1(x, size) x, size = self.window_attn(x, size) if self.conv2: x, size = self.conv2(x, size) x, size = self.ffn(x, size) return x, size class DaViT(nn.Module): """ DaViT: Dual-Attention Transformer Args: img_size (int): Image size, Default: 224. in_chans (int): Number of input image channels. Default: 3. num_classes (int): Number of classes for classification head. Default: 1000. patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2). patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2). patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0). patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False). embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256). num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16). num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16). window_size (int): Window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True. drop_path_rate (float): Stochastic depth rate. Default: 0.1. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. enable_checkpoint (bool): If True, enable checkpointing. Default: False. conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True. conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True. """ def __init__( self, img_size=224, in_chans=3, num_classes=1000, depths=(1, 1, 3, 1), patch_size=(7, 2, 2, 2), patch_stride=(4, 2, 2, 2), patch_padding=(3, 0, 0, 0), patch_prenorm=(False, False, False, False), embed_dims=(64, 128, 192, 256), num_heads=(3, 6, 12, 24), num_groups=(3, 6, 12, 24), window_size=7, mlp_ratio=4., qkv_bias=True, drop_path_rate=0.1, norm_layer=nn.LayerNorm, enable_checkpoint=False, conv_at_attn=True, conv_at_ffn=True, out_indices=[], ): super().__init__() self.num_classes = num_classes self.embed_dims = embed_dims self.num_heads = num_heads self.num_groups = num_groups self.num_stages = len(self.embed_dims) self.enable_checkpoint = enable_checkpoint assert self.num_stages == len(self.num_heads) == len(self.num_groups) num_stages = len(embed_dims) self.img_size = img_size dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)] depth_offset = 0 convs = [] blocks = [] for i in range(num_stages): conv_embed = ConvEmbed( patch_size=patch_size[i], stride=patch_stride[i], padding=patch_padding[i], in_chans=in_chans if i == 0 else self.embed_dims[i - 1], embed_dim=self.embed_dims[i], norm_layer=norm_layer, pre_norm=patch_prenorm[i] ) convs.append(conv_embed) print(f'=> Depth offset in stage {i}: {depth_offset}') block = MySequential( *[ MySequential(OrderedDict([ ( 'spatial_block', SpatialBlock( embed_dims[i], num_heads[i], window_size, drop_path_rate=dpr[depth_offset+j*2], qkv_bias=qkv_bias, mlp_ratio=mlp_ratio, conv_at_attn=conv_at_attn, conv_at_ffn=conv_at_ffn, ) ), ( 'channel_block', ChannelBlock( embed_dims[i], num_groups[i], drop_path_rate=dpr[depth_offset+j*2+1], qkv_bias=qkv_bias, mlp_ratio=mlp_ratio, conv_at_attn=conv_at_attn, conv_at_ffn=conv_at_ffn, ) ) ])) for j in range(depths[i]) ] ) blocks.append(block) depth_offset += depths[i]*2 self.convs = nn.ModuleList(convs) self.blocks = nn.ModuleList(blocks) self.out_indices = out_indices # self.norms = norm_layer(self.embed_dims[-1]) # self.avgpool = nn.AdaptiveAvgPool1d(1) # self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) @property def dim_out(self): return self.embed_dims[-1] def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.02) for name, _ in m.named_parameters(): if name in ['bias']: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0) def _try_remap_keys(self, pretrained_dict): remap_keys = { "conv_embeds": "convs", "main_blocks": "blocks", "0.cpe.0.proj": "spatial_block.conv1.fn.dw", "0.attn": "spatial_block.window_attn.fn", "0.cpe.1.proj": "spatial_block.conv2.fn.dw", "0.mlp": "spatial_block.ffn.fn.net", "1.cpe.0.proj": "channel_block.conv1.fn.dw", "1.attn": "channel_block.channel_attn.fn", "1.cpe.1.proj": "channel_block.conv2.fn.dw", "1.mlp": "channel_block.ffn.fn.net", "0.norm1": "spatial_block.window_attn.norm", "0.norm2": "spatial_block.ffn.norm", "1.norm1": "channel_block.channel_attn.norm", "1.norm2": "channel_block.ffn.norm" } full_key_mappings = {} for k in pretrained_dict.keys(): old_k = k for remap_key in remap_keys.keys(): if remap_key in k: print(f'=> Repace {remap_key} with {remap_keys[remap_key]}') k = k.replace(remap_key, remap_keys[remap_key]) full_key_mappings[old_k] = k return full_key_mappings def from_state_dict(self, pretrained_dict, pretrained_layers=[], verbose=True): model_dict = self.state_dict() stripped_key = lambda x: x[14:] if x.startswith('image_encoder.') else x full_key_mappings = self._try_remap_keys(pretrained_dict) pretrained_dict = { stripped_key(full_key_mappings[k]): v for k, v in pretrained_dict.items() if stripped_key(full_key_mappings[k]) in model_dict.keys() } need_init_state_dict = {} for k, v in pretrained_dict.items(): need_init = ( k.split('.')[0] in pretrained_layers or pretrained_layers[0] == '*' ) if need_init: if verbose: print(f'=> init {k} from pretrained state dict') need_init_state_dict[k] = v self.load_state_dict(need_init_state_dict, strict=False) def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True): if os.path.isfile(pretrained): print(f'=> loading pretrained model {pretrained}') pretrained_dict = torch.load(pretrained, map_location='cpu') self.from_state_dict(pretrained_dict, pretrained_layers, verbose) def forward_features(self, x): input_size = (x.size(2), x.size(3)) outs = {} for i, (conv, block) in enumerate(zip(self.convs, self.blocks)): x, input_size = conv(x, input_size) if self.enable_checkpoint: x, input_size = checkpoint.checkpoint(block, x, input_size) else: x, input_size = block(x, input_size) if i in self.out_indices: out = x.view(-1, *input_size, self.embed_dims[i]).permute(0, 3, 1, 2).contiguous() outs["res{}".format(i + 2)] = out if len(self.out_indices) == 0: outs["res5"] = x.view(-1, *input_size, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous() return outs def forward(self, x): x = self.forward_features(x) # x = self.head(x) return x class D2DaViT(DaViT, Backbone): def __init__(self, cfg, input_shape): spec = cfg['BACKBONE']['DAVIT'] super().__init__( num_classes=0, depths=spec['DEPTHS'], embed_dims=spec['DIM_EMBED'], num_heads=spec['NUM_HEADS'], num_groups=spec['NUM_GROUPS'], patch_size=spec['PATCH_SIZE'], patch_stride=spec['PATCH_STRIDE'], patch_padding=spec['PATCH_PADDING'], patch_prenorm=spec['PATCH_PRENORM'], drop_path_rate=spec['DROP_PATH_RATE'], img_size=input_shape, window_size=spec.get('WINDOW_SIZE', 7), enable_checkpoint=spec.get('ENABLE_CHECKPOINT', False), conv_at_attn=spec.get('CONV_AT_ATTN', True), conv_at_ffn=spec.get('CONV_AT_FFN', True), out_indices=spec.get('OUT_INDICES', []), ) self._out_features = cfg['BACKBONE']['DAVIT']['OUT_FEATURES'] self._out_feature_strides = { "res2": 4, "res3": 8, "res4": 16, "res5": 32, } self._out_feature_channels = { "res2": self.embed_dims[0], "res3": self.embed_dims[1], "res4": self.embed_dims[2], "res5": self.embed_dims[3], } def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert ( x.dim() == 4 ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} y = super().forward(x) for k in y.keys(): if k in self._out_features: outputs[k] = y[k] return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } @property def size_divisibility(self): return 32 @register_backbone def get_davit_backbone(cfg): davit = D2DaViT(cfg['MODEL'], 224) if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] logger.info(f'=> init from {filename}') davit.from_pretrained( filename, cfg['MODEL']['BACKBONE']['DAVIT'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) return davit
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/davit.py
# -------------------------------------------------------- # FocalNet for Semantic Segmentation # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Jianwei Yang # -------------------------------------------------------- import math import time import numpy as np import logging import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from detectron2.utils.file_io import PathManager from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec from .registry import register_backbone logger = logging.getLogger(__name__) class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class FocalModulation(nn.Module): """ Focal Modulation Args: dim (int): Number of input channels. proj_drop (float, optional): Dropout ratio of output. Default: 0.0 focal_level (int): Number of focal levels focal_window (int): Focal window size at focal level 1 focal_factor (int, default=2): Step to increase the focal window use_postln (bool, default=False): Whether use post-modulation layernorm """ def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False): super().__init__() self.dim = dim # specific args for focalv3 self.focal_level = focal_level self.focal_window = focal_window self.focal_factor = focal_factor self.use_postln_in_modulation = use_postln_in_modulation self.scaling_modulator = scaling_modulator self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True) self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True) self.act = nn.GELU() self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.focal_layers = nn.ModuleList() if self.use_postln_in_modulation: self.ln = nn.LayerNorm(dim) for k in range(self.focal_level): kernel_size = self.focal_factor*k + self.focal_window self.focal_layers.append( nn.Sequential( nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size//2, bias=False), nn.GELU(), ) ) def forward(self, x): """ Forward function. Args: x: input features with shape of (B, H, W, C) """ B, nH, nW, C = x.shape x = self.f(x) x = x.permute(0, 3, 1, 2).contiguous() q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1) ctx_all = 0 for l in range(self.focal_level): ctx = self.focal_layers[l](ctx) ctx_all = ctx_all + ctx*gates[:, l:l+1] ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:] if self.scaling_modulator: ctx_all = ctx_all / (self.focal_level + 1) x_out = q * self.h(ctx_all) x_out = x_out.permute(0, 2, 3, 1).contiguous() if self.use_postln_in_modulation: x_out = self.ln(x_out) x_out = self.proj(x_out) x_out = self.proj_drop(x_out) return x_out class FocalModulationBlock(nn.Module): """ Focal Modulation Block. Args: dim (int): Number of input channels. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm focal_level (int): number of focal levels focal_window (int): focal kernel size at level 1 """ def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, focal_level=2, focal_window=9, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False, use_layerscale=False, layerscale_value=1e-4): super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.focal_window = focal_window self.focal_level = focal_level self.use_postln = use_postln self.use_layerscale = use_layerscale self.norm1 = norm_layer(dim) self.modulation = FocalModulation( dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.H = None self.W = None self.gamma_1 = 1.0 self.gamma_2 = 1.0 if self.use_layerscale: self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) def forward(self, x): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape H, W = self.H, self.W assert L == H * W, "input feature has wrong size" shortcut = x if not self.use_postln: x = self.norm1(x) x = x.view(B, H, W, C) # FM x = self.modulation(x).view(B, H * W, C) if self.use_postln: x = self.norm1(x) # FFN x = shortcut + self.drop_path(self.gamma_1 * x) if self.use_postln: x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) else: x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class BasicLayer(nn.Module): """ A basic focal modulation layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None focal_level (int): Number of focal levels focal_window (int): Focal window size at focal level 1 use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, dim, depth, mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, focal_window=9, focal_level=2, use_conv_embed=False, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False, use_layerscale=False, use_checkpoint=False ): super().__init__() self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ FocalModulationBlock( dim=dim, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, focal_window=focal_window, focal_level=focal_level, use_postln=use_postln, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator, use_layerscale=use_layerscale, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample( patch_size=2, in_chans=dim, embed_dim=2*dim, use_conv_embed=use_conv_embed, norm_layer=norm_layer, is_stem=False ) else: self.downsample = None def forward(self, x, H, W): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W) x_down = self.downsample(x_reshaped) x_down = x_down.flatten(2).transpose(1, 2) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x, H, W, x_down, Wh, Ww else: return x, H, W, x, H, W class PatchEmbed(nn.Module): """ Image to Patch Embedding Args: patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False is_stem (bool): Is the stem block or not. """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim if use_conv_embed: # if we choose to use conv embedding, then we treat the stem and non-stem differently if is_stem: kernel_size = 7; padding = 2; stride = 4 else: kernel_size = 3; padding = 1; stride = 2 self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) else: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" _, _, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x class FocalNet(nn.Module): """ FocalNet backbone. Args: pretrain_img_size (int): Input image size for training the pretrained model, used in absolute postion embedding. Default 224. patch_size (int | tuple(int)): Patch size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. drop_rate (float): Dropout rate. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. patch_norm (bool): If True, add normalization after patch embedding. Default: True. out_indices (Sequence[int]): Output from which stages. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. focal_levels (Sequence[int]): Number of focal levels at four stages focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages use_conv_embed (bool): Whether use overlapped convolution for patch embedding use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, pretrain_img_size=1600, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], mlp_ratio=4., drop_rate=0., drop_path_rate=0.2, norm_layer=nn.LayerNorm, patch_norm=True, out_indices=[0, 1, 2, 3], frozen_stages=-1, focal_levels=[2,2,2,2], focal_windows=[9,9,9,9], use_conv_embed=False, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False, use_layerscale=False, use_checkpoint=False, ): super().__init__() self.pretrain_img_size = pretrain_img_size self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.out_indices = out_indices self.frozen_stages = frozen_stages # split image into non-overlapping patches self.patch_embed = PatchEmbed( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, use_conv_embed=use_conv_embed, is_stem=True) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, focal_window=focal_windows[i_layer], focal_level=focal_levels[i_layer], use_conv_embed=use_conv_embed, use_postln=use_postln, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator, use_layerscale=use_layerscale, use_checkpoint=use_checkpoint) self.layers.append(layer) num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] self.num_features = num_features # add a norm layer for each output for i_layer in out_indices: layer = norm_layer(num_features[i_layer]) layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 2: self.pos_drop.eval() for i in range(0, self.frozen_stages - 1): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True): model_dict = self.state_dict() missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict] logger.info(f'=> Missed keys {missed_dict}') unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict] logger.info(f'=> Unexpected keys {unexpected_dict}') pretrained_dict = { k: v for k, v in pretrained_dict.items() if k in model_dict.keys() } need_init_state_dict = {} for k, v in pretrained_dict.items(): need_init = ( ( k.split('.')[0] in pretrained_layers or pretrained_layers[0] == '*' ) and 'relative_position_index' not in k and 'attn_mask' not in k ) if need_init: # if verbose: # logger.info(f'=> init {k} from {pretrained}') if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size(): table_pretrained = v table_current = model_dict[k] fsize1 = table_pretrained.shape[2] fsize2 = table_current.shape[2] # NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv if fsize1 < fsize2: table_pretrained_resized = torch.zeros(table_current.shape) table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained v = table_pretrained_resized elif fsize1 > fsize2: table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2] v = table_pretrained_resized if ("modulation.f" in k or "pre_conv" in k): table_pretrained = v table_current = model_dict[k] if table_pretrained.shape != table_current.shape: if len(table_pretrained.shape) == 2: dim = table_pretrained.shape[1] assert table_current.shape[1] == dim L1 = table_pretrained.shape[0] L2 = table_current.shape[0] if L1 < L2: table_pretrained_resized = torch.zeros(table_current.shape) # copy for linear project table_pretrained_resized[:2*dim] = table_pretrained[:2*dim] # copy for global token gating table_pretrained_resized[-1] = table_pretrained[-1] # copy for first multiple focal levels table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] # reassign pretrained weights v = table_pretrained_resized elif L1 > L2: raise NotImplementedError elif len(table_pretrained.shape) == 1: dim = table_pretrained.shape[0] L1 = table_pretrained.shape[0] L2 = table_current.shape[0] if L1 < L2: table_pretrained_resized = torch.zeros(table_current.shape) # copy for linear project table_pretrained_resized[:dim] = table_pretrained[:dim] # copy for global token gating table_pretrained_resized[-1] = table_pretrained[-1] # copy for first multiple focal levels # table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] # reassign pretrained weights v = table_pretrained_resized elif L1 > L2: raise NotImplementedError need_init_state_dict[k] = v self.load_state_dict(need_init_state_dict, strict=False) def forward(self, x): """Forward function.""" tic = time.time() x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = {} for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') x_out = norm_layer(x_out) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs["res{}".format(i + 2)] = out if len(self.out_indices) == 0: outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() toc = time.time() return outs def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(FocalNet, self).train(mode) self._freeze_stages() class D2FocalNet(FocalNet, Backbone): def __init__(self, cfg, input_shape): pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE'] patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE'] in_chans = 3 embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM'] depths = cfg['BACKBONE']['FOCAL']['DEPTHS'] mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO'] drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE'] drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE'] norm_layer = nn.LayerNorm patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM'] use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT'] out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES'] scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False) super().__init__( pretrain_img_size, patch_size, in_chans, embed_dim, depths, mlp_ratio, drop_rate, drop_path_rate, norm_layer, patch_norm, out_indices, focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'], focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'], use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'], use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'], use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'], scaling_modulator=scaling_modulator, use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'], use_checkpoint=use_checkpoint, ) self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES'] self._out_feature_strides = { "res2": 4, "res3": 8, "res4": 16, "res5": 32, } self._out_feature_channels = { "res2": self.num_features[0], "res3": self.num_features[1], "res4": self.num_features[2], "res5": self.num_features[3], } def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert ( x.dim() == 4 ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} y = super().forward(x) for k in y.keys(): if k in self._out_features: outputs[k] = y[k] return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } @property def size_divisibility(self): return 32 @register_backbone def get_focal_backbone(cfg): focal = D2FocalNet(cfg['MODEL'], 224) if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] logger.info(f'=> init from {filename}') with PathManager.open(filename, "rb") as f: ckpt = torch.load(f)['model'] focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) return focal
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/focal.py
_model_entrypoints = {} def register_backbone(fn): module_name_split = fn.__module__.split('.') model_name = module_name_split[-1] _model_entrypoints[model_name] = fn return fn def model_entrypoints(model_name): return _model_entrypoints[model_name] def is_model(model_name): return model_name in _model_entrypoints
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/registry.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu, Yutong Lin, Yixuan Wei # -------------------------------------------------------- # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from detectron2.modeling import Backbone, ShapeSpec from detectron2.utils.file_io import PathManager from .registry import register_backbone logger = logging.getLogger(__name__) class Mlp(nn.Module): """Multilayer perceptron.""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0 ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): """Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) ) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=0.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = ( self.qkv(x) .reshape(B_, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1) ].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): """Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop ) self.H = None self.W = None def forward(self, x, mask_matrix): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. mask_matrix: Attention mask for cyclic shift. """ B, L, C = x.shape H, W = self.H, self.W assert L == H * W, "input feature has wrong size" # HACK model will not upsampling # if min([H, W]) <= self.window_size: # if window size is larger than input resolution, we don't partition windows # self.shift_size = 0 # self.window_size = min([H,W]) shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # pad feature maps to multiples of window size pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition( shifted_x, self.window_size ) # nW*B, window_size, window_size, C x_windows = x_windows.view( -1, self.window_size * self.window_size, C ) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchMerging(nn.Module): """Patch Merging Layer Args: dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x, H, W): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. num_heads (int): Number of attention head. window_size (int): Local window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, dim, depth, num_heads, window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, ): super().__init__() self.window_size = window_size self.shift_size = window_size // 2 self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, H, W): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ # calculate attention mask for SW-MSA Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 h_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) w_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size ) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ).type(x.dtype) for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) if self.downsample is not None: x_down = self.downsample(x, H, W) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x, H, W, x_down, Wh, Ww else: return x, H, W, x, H, W class PatchEmbed(nn.Module): """Image to Patch Embedding Args: patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x class SwinTransformer(nn.Module): """Swin Transformer backbone. A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: pretrain_img_size (int): Input image size for training the pretrained model, used in absolute postion embedding. Default 224. patch_size (int | tuple(int)): Patch size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. num_heads (tuple[int]): Number of attention head of each stage. window_size (int): Window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop_rate (float): Dropout rate. attn_drop_rate (float): Attention dropout rate. Default: 0. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. patch_norm (bool): If True, add normalization after patch embedding. Default: True. out_indices (Sequence[int]): Output from which stages. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, pretrain_img_size=224, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.2, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, out_indices=(0, 1, 2, 3), frozen_stages=-1, use_checkpoint=False, ): super().__init__() self.pretrain_img_size = pretrain_img_size self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.out_indices = out_indices self.frozen_stages = frozen_stages # split image into non-overlapping patches self.patch_embed = PatchEmbed( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) # absolute position embedding if self.ape: pretrain_img_size = to_2tuple(pretrain_img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1], ] self.absolute_pos_embed = nn.Parameter( torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]) ) trunc_normal_(self.absolute_pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, ) self.layers.append(layer) num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] self.num_features = num_features # add a norm layer for each output for i_layer in out_indices: layer = norm_layer(num_features[i_layer]) layer_name = f"norm{i_layer}" self.add_module(layer_name, layer) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1 and self.ape: self.absolute_pos_embed.requires_grad = False if self.frozen_stages >= 2: self.pos_drop.eval() for i in range(0, self.frozen_stages - 1): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True): model_dict = self.state_dict() pretrained_dict = { k: v for k, v in pretrained_dict.items() if k in model_dict.keys() } need_init_state_dict = {} for k, v in pretrained_dict.items(): need_init = ( ( k.split('.')[0] in pretrained_layers or pretrained_layers[0] == '*' ) and 'relative_position_index' not in k and 'attn_mask' not in k ) if need_init: # if verbose: # logger.info(f'=> init {k} from {pretrained}') if 'relative_position_bias_table' in k and v.size() != model_dict[k].size(): relative_position_bias_table_pretrained = v relative_position_bias_table_current = model_dict[k] L1, nH1 = relative_position_bias_table_pretrained.size() L2, nH2 = relative_position_bias_table_current.size() if nH1 != nH2: logger.info(f"Error in loading {k}, passing") else: if L1 != L2: logger.info( '=> load_pretrained: resized variant: {} to {}' .format((L1, nH1), (L2, nH2)) ) S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') v = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0) if 'absolute_pos_embed' in k and v.size() != model_dict[k].size(): absolute_pos_embed_pretrained = v absolute_pos_embed_current = model_dict[k] _, L1, C1 = absolute_pos_embed_pretrained.size() _, L2, C2 = absolute_pos_embed_current.size() if C1 != C1: logger.info(f"Error in loading {k}, passing") else: if L1 != L2: logger.info( '=> load_pretrained: resized variant: {} to {}' .format((1, L1, C1), (1, L2, C2)) ) S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1) absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2) absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate( absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic') v = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1).flatten(1, 2) need_init_state_dict[k] = v self.load_state_dict(need_init_state_dict, strict=False) def forward(self, x): """Forward function.""" x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) if self.ape: # interpolate the position embedding to the corresponding size absolute_pos_embed = F.interpolate( self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic" ) x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C else: x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = {} for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) if i in self.out_indices: norm_layer = getattr(self, f"norm{i}") x_out = norm_layer(x_out) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs["res{}".format(i + 2)] = out if len(self.out_indices) == 0: outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() return outs def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(SwinTransformer, self).train(mode) self._freeze_stages() class D2SwinTransformer(SwinTransformer, Backbone): def __init__(self, cfg, pretrain_img_size, patch_size, in_chans, embed_dim, depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape, patch_norm, out_indices, use_checkpoint): super().__init__( pretrain_img_size, patch_size, in_chans, embed_dim, depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape, patch_norm, out_indices, use_checkpoint=use_checkpoint, ) self._out_features = cfg['OUT_FEATURES'] self._out_feature_strides = { "res2": 4, "res3": 8, "res4": 16, "res5": 32, } self._out_feature_channels = { "res2": self.num_features[0], "res3": self.num_features[1], "res4": self.num_features[2], "res5": self.num_features[3], } def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert ( x.dim() == 4 ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} y = super().forward(x) for k in y.keys(): if k in self._out_features: outputs[k] = y[k] return outputs def output_shape(self): feature_names = list(set(self._out_feature_strides.keys()) & set(self._out_features)) return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in feature_names } @property def size_divisibility(self): return 32 @register_backbone def get_swin_backbone(cfg): swin_cfg = cfg['MODEL']['BACKBONE']['SWIN'] pretrain_img_size = swin_cfg['PRETRAIN_IMG_SIZE'] patch_size = swin_cfg['PATCH_SIZE'] in_chans = 3 embed_dim = swin_cfg['EMBED_DIM'] depths = swin_cfg['DEPTHS'] num_heads = swin_cfg['NUM_HEADS'] window_size = swin_cfg['WINDOW_SIZE'] mlp_ratio = swin_cfg['MLP_RATIO'] qkv_bias = swin_cfg['QKV_BIAS'] qk_scale = swin_cfg['QK_SCALE'] drop_rate = swin_cfg['DROP_RATE'] attn_drop_rate = swin_cfg['ATTN_DROP_RATE'] drop_path_rate = swin_cfg['DROP_PATH_RATE'] norm_layer = nn.LayerNorm ape = swin_cfg['APE'] patch_norm = swin_cfg['PATCH_NORM'] use_checkpoint = swin_cfg['USE_CHECKPOINT'] out_indices = swin_cfg.get('OUT_INDICES', [0,1,2,3]) swin = D2SwinTransformer( swin_cfg, pretrain_img_size, patch_size, in_chans, embed_dim, depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape, patch_norm, out_indices, use_checkpoint=use_checkpoint, ) if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] with PathManager.open(filename, "rb") as f: ckpt = torch.load(f, map_location=cfg['device'])['model'] swin.load_weights(ckpt, swin_cfg.get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) return swin
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/swin.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch.nn as nn from detectron2.modeling import ShapeSpec __all__ = ["Backbone"] class Backbone(nn.Module): """ Abstract base class for network backbones. """ def __init__(self): """ The `__init__` method of any subclass can specify its own set of arguments. """ super().__init__() def forward(self): """ Subclasses must override this method, but adhere to the same return type. Returns: dict[str->Tensor]: mapping from feature name (e.g., "res2") to tensor """ pass @property def size_divisibility(self) -> int: """ Some backbones require the input height and width to be divisible by a specific integer. This is typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required. """ return 0 def output_shape(self): """ Returns: dict[str->ShapeSpec] """ # this is a backward-compatible default return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features }
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/backbone.py
# -------------------------------------------------------- # FocalNet for Semantic Segmentation # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Jianwei Yang # -------------------------------------------------------- import math import time import numpy as np import logging import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from detectron2.utils.file_io import PathManager from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec from .registry import register_backbone logger = logging.getLogger(__name__) class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class FocalModulation(nn.Module): """ Focal Modulation Args: dim (int): Number of input channels. proj_drop (float, optional): Dropout ratio of output. Default: 0.0 focal_level (int): Number of focal levels focal_window (int): Focal window size at focal level 1 focal_factor (int, default=2): Step to increase the focal window use_postln (bool, default=False): Whether use post-modulation layernorm """ def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False): super().__init__() self.dim = dim # specific args for focalv3 self.focal_level = focal_level self.focal_window = focal_window self.focal_factor = focal_factor self.use_postln_in_modulation = use_postln_in_modulation self.scaling_modulator = scaling_modulator self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True) self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True) self.act = nn.GELU() self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.focal_layers = nn.ModuleList() if self.use_postln_in_modulation: self.ln = nn.LayerNorm(dim) for k in range(self.focal_level): kernel_size = self.focal_factor*k + self.focal_window self.focal_layers.append( nn.Sequential( nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size//2, bias=False), nn.GELU(), ) ) def forward(self, x): """ Forward function. Args: x: input features with shape of (B, H, W, C) """ B, nH, nW, C = x.shape x = self.f(x) x = x.permute(0, 3, 1, 2).contiguous() q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1) ctx_all = 0 for l in range(self.focal_level): ctx = self.focal_layers[l](ctx) ctx_all = ctx_all + ctx*gates[:, l:l+1] ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:] if self.scaling_modulator: ctx_all = ctx_all / (self.focal_level + 1) x_out = q * self.h(ctx_all) x_out = x_out.permute(0, 2, 3, 1).contiguous() if self.use_postln_in_modulation: x_out = self.ln(x_out) x_out = self.proj(x_out) x_out = self.proj_drop(x_out) return x_out class FocalModulationBlock(nn.Module): """ Focal Modulation Block. Args: dim (int): Number of input channels. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm focal_level (int): number of focal levels focal_window (int): focal kernel size at level 1 """ def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, focal_level=2, focal_window=9, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False, use_layerscale=False, layerscale_value=1e-4): super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.focal_window = focal_window self.focal_level = focal_level self.use_postln = use_postln self.use_layerscale = use_layerscale self.dw1 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.modulation = FocalModulation( dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator ) self.dw2 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.H = None self.W = None self.gamma_1 = 1.0 self.gamma_2 = 1.0 if self.use_layerscale: self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) def forward(self, x): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape H, W = self.H, self.W assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = x + self.dw1(x) x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) shortcut = x if not self.use_postln: x = self.norm1(x) x = x.view(B, H, W, C) # FM x = self.modulation(x).view(B, H * W, C) x = shortcut + self.drop_path(self.gamma_1 * x) if self.use_postln: x = self.norm1(x) x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = x + self.dw2(x) x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) if not self.use_postln: x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_2 * self.mlp(x)) x = self.norm2(x) return x class BasicLayer(nn.Module): """ A basic focal modulation layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None focal_level (int): Number of focal levels focal_window (int): Focal window size at focal level 1 use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, dim, depth, mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, focal_window=9, focal_level=2, use_conv_embed=False, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False, use_layerscale=False, use_checkpoint=False, use_pre_norm=False, ): super().__init__() self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ FocalModulationBlock( dim=dim, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, focal_window=focal_window, focal_level=focal_level, use_postln=use_postln, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator, use_layerscale=use_layerscale, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample( patch_size=2, in_chans=dim, embed_dim=2*dim, use_conv_embed=use_conv_embed, norm_layer=norm_layer, is_stem=False, use_pre_norm=use_pre_norm ) else: self.downsample = None def forward(self, x, H, W): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W) x_down = self.downsample(x_reshaped) x_down = x_down.flatten(2).transpose(1, 2) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x, H, W, x_down, Wh, Ww else: return x, H, W, x, H, W # class PatchEmbed(nn.Module): # r""" Image to Patch Embedding # Args: # img_size (int): Image size. Default: 224. # patch_size (int): Patch token size. Default: 4. # in_chans (int): Number of input image channels. Default: 3. # embed_dim (int): Number of linear projection output channels. Default: 96. # norm_layer (nn.Module, optional): Normalization layer. Default: None # """ # def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, # use_conv_embed=False, norm_layer=None, is_stem=False, use_pre_norm=False): # super().__init__() # patch_size = to_2tuple(patch_size) # patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] # self.img_size = img_size # self.patch_size = patch_size # self.patches_resolution = patches_resolution # self.num_patches = patches_resolution[0] * patches_resolution[1] # self.in_chans = in_chans # self.embed_dim = embed_dim # self.use_pre_norm = use_pre_norm # if use_conv_embed: # # if we choose to use conv embedding, then we treat the stem and non-stem differently # if is_stem: # kernel_size = 7; padding = 3; stride = 4 # else: # kernel_size = 3; padding = 1; stride = 2 # self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) # else: # self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) # if self.use_pre_norm: # if norm_layer is not None: # self.norm = norm_layer(in_chans) # else: # self.norm = None # else: # if norm_layer is not None: # self.norm = norm_layer(embed_dim) # else: # self.norm = None # def forward(self, x): # B, C, H, W = x.shape # # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # if self.use_pre_norm: # if self.norm is not None: # x = x.flatten(2).transpose(1, 2) # B Ph*Pw C # x = self.norm(x).transpose(1, 2).view(B, C, H, W) # x = self.proj(x).flatten(2).transpose(1, 2) # else: # x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C # if self.norm is not None: # x = self.norm(x) # return x # def flops(self): # Ho, Wo = self.patches_resolution # flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) # if self.norm is not None: # flops += Ho * Wo * self.embed_dim # return flops class PatchEmbed(nn.Module): """ Image to Patch Embedding Args: patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False is_stem (bool): Is the stem block or not. """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False, use_pre_norm=False): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.use_pre_norm = use_pre_norm if use_conv_embed: # if we choose to use conv embedding, then we treat the stem and non-stem differently if is_stem: kernel_size = 7; padding = 3; stride = 4 else: kernel_size = 3; padding = 1; stride = 2 self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) else: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if self.use_pre_norm: if norm_layer is not None: self.norm = norm_layer(in_chans) else: self.norm = None else: if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" B, C, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) if self.use_pre_norm: if self.norm is not None: x = x.flatten(2).transpose(1, 2) # B Ph*Pw C x = self.norm(x).transpose(1, 2).view(B, C, H, W) x = self.proj(x) else: x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x class FocalNet(nn.Module): """ FocalNet backbone. Args: pretrain_img_size (int): Input image size for training the pretrained model, used in absolute postion embedding. Default 224. patch_size (int | tuple(int)): Patch size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. drop_rate (float): Dropout rate. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. patch_norm (bool): If True, add normalization after patch embedding. Default: True. out_indices (Sequence[int]): Output from which stages. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. focal_levels (Sequence[int]): Number of focal levels at four stages focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages use_conv_embed (bool): Whether use overlapped convolution for patch embedding use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, pretrain_img_size=1600, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], mlp_ratio=4., drop_rate=0., drop_path_rate=0.2, norm_layer=nn.LayerNorm, patch_norm=True, out_indices=[0, 1, 2, 3], frozen_stages=-1, focal_levels=[2,2,2,2], focal_windows=[9,9,9,9], use_pre_norms=[False, False, False, False], use_conv_embed=False, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False, use_layerscale=False, use_checkpoint=False, ): super().__init__() self.pretrain_img_size = pretrain_img_size self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.out_indices = out_indices self.frozen_stages = frozen_stages # split image into non-overlapping patches self.patch_embed = PatchEmbed( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, use_conv_embed=use_conv_embed, is_stem=True, use_pre_norm=False) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, focal_window=focal_windows[i_layer], focal_level=focal_levels[i_layer], use_pre_norm=use_pre_norms[i_layer], use_conv_embed=use_conv_embed, use_postln=use_postln, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator, use_layerscale=use_layerscale, use_checkpoint=use_checkpoint) self.layers.append(layer) num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] self.num_features = num_features # self.norm = norm_layer(num_features[-1]) # add a norm layer for each output for i_layer in self.out_indices: layer = norm_layer(num_features[i_layer]) layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 2: self.pos_drop.eval() for i in range(0, self.frozen_stages - 1): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True): model_dict = self.state_dict() missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict] logger.info(f'=> Missed keys {missed_dict}') unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict] logger.info(f'=> Unexpected keys {unexpected_dict}') pretrained_dict = { k: v for k, v in pretrained_dict.items() if k in model_dict.keys() } need_init_state_dict = {} for k, v in pretrained_dict.items(): need_init = ( ( k.split('.')[0] in pretrained_layers or pretrained_layers[0] == '*' ) and 'relative_position_index' not in k and 'attn_mask' not in k ) if need_init: # if verbose: # logger.info(f'=> init {k} from {pretrained}') if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size(): table_pretrained = v table_current = model_dict[k] fsize1 = table_pretrained.shape[2] fsize2 = table_current.shape[2] # NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv if fsize1 < fsize2: table_pretrained_resized = torch.zeros(table_current.shape) table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained v = table_pretrained_resized elif fsize1 > fsize2: table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2] v = table_pretrained_resized if ("modulation.f" in k or "pre_conv" in k): table_pretrained = v table_current = model_dict[k] if table_pretrained.shape != table_current.shape: if len(table_pretrained.shape) == 2: dim = table_pretrained.shape[1] assert table_current.shape[1] == dim L1 = table_pretrained.shape[0] L2 = table_current.shape[0] if L1 < L2: table_pretrained_resized = torch.zeros(table_current.shape) # copy for linear project table_pretrained_resized[:2*dim] = table_pretrained[:2*dim] # copy for global token gating table_pretrained_resized[-1] = table_pretrained[-1] # copy for first multiple focal levels table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] # reassign pretrained weights v = table_pretrained_resized elif L1 > L2: raise NotImplementedError elif len(table_pretrained.shape) == 1: dim = table_pretrained.shape[0] L1 = table_pretrained.shape[0] L2 = table_current.shape[0] if L1 < L2: table_pretrained_resized = torch.zeros(table_current.shape) # copy for linear project table_pretrained_resized[:dim] = table_pretrained[:dim] # copy for global token gating table_pretrained_resized[-1] = table_pretrained[-1] # copy for first multiple focal levels # table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] # reassign pretrained weights v = table_pretrained_resized elif L1 > L2: raise NotImplementedError need_init_state_dict[k] = v self.load_state_dict(need_init_state_dict, strict=False) def forward(self, x): """Forward function.""" tic = time.time() x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = {} for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') x_out = norm_layer(x_out) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs["res{}".format(i + 2)] = out if len(self.out_indices) == 0: outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() toc = time.time() return outs def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(FocalNet, self).train(mode) self._freeze_stages() class D2FocalNet(FocalNet, Backbone): def __init__(self, cfg, input_shape): pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE'] patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE'] in_chans = 3 embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM'] depths = cfg['BACKBONE']['FOCAL']['DEPTHS'] mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO'] drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE'] drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE'] norm_layer = nn.LayerNorm patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM'] use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT'] out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES'] scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False) super().__init__( pretrain_img_size, patch_size, in_chans, embed_dim, depths, mlp_ratio, drop_rate, drop_path_rate, norm_layer, patch_norm, out_indices, focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'], focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'], use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'], use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'], use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'], scaling_modulator=scaling_modulator, use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'], use_checkpoint=use_checkpoint, ) self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES'] self._out_feature_strides = { "res2": 4, "res3": 8, "res4": 16, "res5": 32, } self._out_feature_channels = { "res2": self.num_features[0], "res3": self.num_features[1], "res4": self.num_features[2], "res5": self.num_features[3], } def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert ( x.dim() == 4 ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} y = super().forward(x) for k in y.keys(): if k in self._out_features: outputs[k] = y[k] return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } @property def size_divisibility(self): return 32 @register_backbone def get_focal_backbone(cfg): focal = D2FocalNet(cfg['MODEL'], 224) if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] logger.info(f'=> init from {filename}') with PathManager.open(filename, "rb") as f: ckpt = torch.load(f)['model'] focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) return focal
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/focal_dw.py
from .build import build_backbone from .resnet import * from .swin import * from .focal import * from .focal_dw import * from .backbone import * from .davit import *
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import pickle import numpy as np from typing import Any, Dict import fvcore.nn.weight_init as weight_init import torch import torch.nn.functional as F from torch import nn from .backbone import Backbone from .registry import register_backbone from detectron2.layers import ( CNNBlockBase, Conv2d, DeformConv, ModulatedDeformConv, ShapeSpec, get_norm, ) from detectron2.utils.file_io import PathManager __all__ = [ "ResNetBlockBase", "BasicBlock", "BottleneckBlock", "DeformBottleneckBlock", "BasicStem", "ResNet", "make_stage", "get_resnet_backbone", ] class BasicBlock(CNNBlockBase): """ The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`, with two 3x3 conv layers and a projection shortcut if needed. """ def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"): """ Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. stride (int): Stride for the first conv. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. """ super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.shortcut = Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False, norm=get_norm(norm, out_channels), ) else: self.shortcut = None self.conv1 = Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False, norm=get_norm(norm, out_channels), ) self.conv2 = Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False, norm=get_norm(norm, out_channels), ) for layer in [self.conv1, self.conv2, self.shortcut]: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) def forward(self, x): out = self.conv1(x) out = F.relu_(out) out = self.conv2(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = F.relu_(out) return out class BottleneckBlock(CNNBlockBase): """ The standard bottleneck residual block used by ResNet-50, 101 and 152 defined in :paper:`ResNet`. It contains 3 conv layers with kernels 1x1, 3x3, 1x1, and a projection shortcut if needed. """ def __init__( self, in_channels, out_channels, *, bottleneck_channels, stride=1, num_groups=1, norm="BN", stride_in_1x1=False, dilation=1, ): """ Args: bottleneck_channels (int): number of output channels for the 3x3 "bottleneck" conv layers. num_groups (int): number of groups for the 3x3 conv layer. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. stride_in_1x1 (bool): when stride>1, whether to put stride in the first 1x1 convolution or the bottleneck 3x3 convolution. dilation (int): the dilation rate of the 3x3 conv layer. """ super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.shortcut = Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False, norm=get_norm(norm, out_channels), ) else: self.shortcut = None # The original MSRA ResNet models have stride in the first 1x1 conv # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have # stride in the 3x3 conv stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, norm=get_norm(norm, bottleneck_channels), ) self.conv2 = Conv2d( bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, norm=get_norm(norm, bottleneck_channels), ) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False, norm=get_norm(norm, out_channels), ) for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) # Zero-initialize the last normalization in each residual branch, # so that at the beginning, the residual branch starts with zeros, # and each residual block behaves like an identity. # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "For BN layers, the learnable scaling coefficient γ is initialized # to be 1, except for each residual block's last BN # where γ is initialized to be 0." # nn.init.constant_(self.conv3.norm.weight, 0) # TODO this somehow hurts performance when training GN models from scratch. # Add it as an option when we need to use this code to train a backbone. def forward(self, x): out = self.conv1(x) out = F.relu_(out) out = self.conv2(out) out = F.relu_(out) out = self.conv3(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = F.relu_(out) return out class DeformBottleneckBlock(CNNBlockBase): """ Similar to :class:`BottleneckBlock`, but with :paper:`deformable conv <deformconv>` in the 3x3 convolution. """ def __init__( self, in_channels, out_channels, *, bottleneck_channels, stride=1, num_groups=1, norm="BN", stride_in_1x1=False, dilation=1, deform_modulated=False, deform_num_groups=1, ): super().__init__(in_channels, out_channels, stride) self.deform_modulated = deform_modulated if in_channels != out_channels: self.shortcut = Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False, norm=get_norm(norm, out_channels), ) else: self.shortcut = None stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, norm=get_norm(norm, bottleneck_channels), ) if deform_modulated: deform_conv_op = ModulatedDeformConv # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size offset_channels = 27 else: deform_conv_op = DeformConv offset_channels = 18 self.conv2_offset = Conv2d( bottleneck_channels, offset_channels * deform_num_groups, kernel_size=3, stride=stride_3x3, padding=1 * dilation, dilation=dilation, ) self.conv2 = deform_conv_op( bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, deformable_groups=deform_num_groups, norm=get_norm(norm, bottleneck_channels), ) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False, norm=get_norm(norm, out_channels), ) for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) nn.init.constant_(self.conv2_offset.weight, 0) nn.init.constant_(self.conv2_offset.bias, 0) def forward(self, x): out = self.conv1(x) out = F.relu_(out) if self.deform_modulated: offset_mask = self.conv2_offset(out) offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1) offset = torch.cat((offset_x, offset_y), dim=1) mask = mask.sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = F.relu_(out) out = self.conv3(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = F.relu_(out) return out class BasicStem(CNNBlockBase): """ The standard ResNet stem (layers before the first residual block), with a conv, relu and max_pool. """ def __init__(self, in_channels=3, out_channels=64, norm="BN"): """ Args: norm (str or callable): norm after the first conv layer. See :func:`layers.get_norm` for supported format. """ super().__init__(in_channels, out_channels, 4) self.in_channels = in_channels self.conv1 = Conv2d( in_channels, out_channels, kernel_size=7, stride=2, padding=3, bias=False, norm=get_norm(norm, out_channels), ) weight_init.c2_msra_fill(self.conv1) def forward(self, x): x = self.conv1(x) x = F.relu_(x) x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) return x class ResNet(Backbone): """ Implement :paper:`ResNet`. """ def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0): """ Args: stem (nn.Module): a stem module stages (list[list[CNNBlockBase]]): several (typically 4) stages, each contains multiple :class:`CNNBlockBase`. num_classes (None or int): if None, will not perform classification. Otherwise, will create a linear layer. out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in "stem", "linear", or "res2" ... If None, will return the output of the last layer. freeze_at (int): The number of stages at the beginning to freeze. see :meth:`freeze` for detailed explanation. """ super().__init__() self.stem = stem self.num_classes = num_classes current_stride = self.stem.stride self._out_feature_strides = {"stem": current_stride} self._out_feature_channels = {"stem": self.stem.out_channels} self.stage_names, self.stages = [], [] if out_features is not None: # Avoid keeping unused layers in this module. They consume extra memory # and may cause allreduce to fail num_stages = max( [{"res2": 1, "res3": 2, "res4": 3, "res5": 4}.get(f, 0) for f in out_features] ) stages = stages[:num_stages] for i, blocks in enumerate(stages): assert len(blocks) > 0, len(blocks) for block in blocks: assert isinstance(block, CNNBlockBase), block name = "res" + str(i + 2) stage = nn.Sequential(*blocks) self.add_module(name, stage) self.stage_names.append(name) self.stages.append(stage) self._out_feature_strides[name] = current_stride = int( current_stride * np.prod([k.stride for k in blocks]) ) self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels self.stage_names = tuple(self.stage_names) # Make it static for scripting if num_classes is not None: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.linear = nn.Linear(curr_channels, num_classes) # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "The 1000-way fully-connected layer is initialized by # drawing weights from a zero-mean Gaussian with standard deviation of 0.01." nn.init.normal_(self.linear.weight, std=0.01) name = "linear" if out_features is None: out_features = [name] self._out_features = out_features assert len(self._out_features) children = [x[0] for x in self.named_children()] for out_feature in self._out_features: assert out_feature in children, "Available children: {}".format(", ".join(children)) self.freeze(freeze_at) def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} x = self.stem(x) if "stem" in self._out_features: outputs["stem"] = x for name, stage in zip(self.stage_names, self.stages): x = stage(x) if name in self._out_features: outputs[name] = x if self.num_classes is not None: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.linear(x) if "linear" in self._out_features: outputs["linear"] = x return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } def freeze(self, freeze_at=0): """ Freeze the first several stages of the ResNet. Commonly used in fine-tuning. Layers that produce the same feature map spatial size are defined as one "stage" by :paper:`FPN`. Args: freeze_at (int): number of stages to freeze. `1` means freezing the stem. `2` means freezing the stem and one residual stage, etc. Returns: nn.Module: this ResNet itself """ if freeze_at >= 1: self.stem.freeze() for idx, stage in enumerate(self.stages, start=2): if freeze_at >= idx: for block in stage.children(): block.freeze() return self @staticmethod def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs): """ Create a list of blocks of the same type that forms one ResNet stage. Args: block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this stage. A module of this type must not change spatial resolution of inputs unless its stride != 1. num_blocks (int): number of blocks in this stage in_channels (int): input channels of the entire stage. out_channels (int): output channels of **every block** in the stage. kwargs: other arguments passed to the constructor of `block_class`. If the argument name is "xx_per_block", the argument is a list of values to be passed to each block in the stage. Otherwise, the same argument is passed to every block in the stage. Returns: list[CNNBlockBase]: a list of block module. Examples: :: stage = ResNet.make_stage( BottleneckBlock, 3, in_channels=16, out_channels=64, bottleneck_channels=16, num_groups=1, stride_per_block=[2, 1, 1], dilations_per_block=[1, 1, 2] ) Usually, layers that produce the same feature map spatial size are defined as one "stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should all be 1. """ blocks = [] for i in range(num_blocks): curr_kwargs = {} for k, v in kwargs.items(): if k.endswith("_per_block"): assert len(v) == num_blocks, ( f"Argument '{k}' of make_stage should have the " f"same length as num_blocks={num_blocks}." ) newk = k[: -len("_per_block")] assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!" curr_kwargs[newk] = v[i] else: curr_kwargs[k] = v blocks.append( block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs) ) in_channels = out_channels return blocks @staticmethod def make_default_stages(depth, block_class=None, **kwargs): """ Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152). If it doesn't create the ResNet variant you need, please use :meth:`make_stage` instead for fine-grained customization. Args: depth (int): depth of ResNet block_class (type): the CNN block class. Has to accept `bottleneck_channels` argument for depth > 50. By default it is BasicBlock or BottleneckBlock, based on the depth. kwargs: other arguments to pass to `make_stage`. Should not contain stride and channels, as they are predefined for each depth. Returns: list[list[CNNBlockBase]]: modules in all stages; see arguments of :class:`ResNet.__init__`. """ num_blocks_per_stage = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth] if block_class is None: block_class = BasicBlock if depth < 50 else BottleneckBlock if depth < 50: in_channels = [64, 64, 128, 256] out_channels = [64, 128, 256, 512] else: in_channels = [64, 256, 512, 1024] out_channels = [256, 512, 1024, 2048] ret = [] for (n, s, i, o) in zip(num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels): if depth >= 50: kwargs["bottleneck_channels"] = o // 4 ret.append( ResNet.make_stage( block_class=block_class, num_blocks=n, stride_per_block=[s] + [1] * (n - 1), in_channels=i, out_channels=o, **kwargs, ) ) return ret ResNetBlockBase = CNNBlockBase """ Alias for backward compatibiltiy. """ def make_stage(*args, **kwargs): """ Deprecated alias for backward compatibiltiy. """ return ResNet.make_stage(*args, **kwargs) def _convert_ndarray_to_tensor(state_dict: Dict[str, Any]) -> None: """ In-place convert all numpy arrays in the state_dict to torch tensor. Args: state_dict (dict): a state-dict to be loaded to the model. Will be modified. """ # model could be an OrderedDict with _metadata attribute # (as returned by Pytorch's state_dict()). We should preserve these # properties. for k in list(state_dict.keys()): v = state_dict[k] if not isinstance(v, np.ndarray) and not isinstance(v, torch.Tensor): raise ValueError( "Unsupported type found in checkpoint! {}: {}".format(k, type(v)) ) if not isinstance(v, torch.Tensor): state_dict[k] = torch.from_numpy(v) @register_backbone def get_resnet_backbone(cfg): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ res_cfg = cfg['MODEL']['BACKBONE']['RESNETS'] # need registration of new blocks/stems? norm = res_cfg['NORM'] stem = BasicStem( in_channels=res_cfg['STEM_IN_CHANNELS'], out_channels=res_cfg['STEM_OUT_CHANNELS'], norm=norm, ) # fmt: off freeze_at = res_cfg['FREEZE_AT'] out_features = res_cfg['OUT_FEATURES'] depth = res_cfg['DEPTH'] num_groups = res_cfg['NUM_GROUPS'] width_per_group = res_cfg['WIDTH_PER_GROUP'] bottleneck_channels = num_groups * width_per_group in_channels = res_cfg['STEM_OUT_CHANNELS'] out_channels = res_cfg['RES2_OUT_CHANNELS'] stride_in_1x1 = res_cfg['STRIDE_IN_1X1'] res5_dilation = res_cfg['RES5_DILATION'] deform_on_per_stage = res_cfg['DEFORM_ON_PER_STAGE'] deform_modulated = res_cfg['DEFORM_MODULATED'] deform_num_groups = res_cfg['DEFORM_NUM_GROUPS'] # fmt: on assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation) num_blocks_per_stage = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth] if depth in [18, 34]: assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34" assert not any( deform_on_per_stage ), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34" assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34" assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34" stages = [] for idx, stage_idx in enumerate(range(2, 6)): # res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper dilation = res5_dilation if stage_idx == 5 else 1 first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 stage_kargs = { "num_blocks": num_blocks_per_stage[idx], "stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1), "in_channels": in_channels, "out_channels": out_channels, "norm": norm, } # Use BasicBlock for R18 and R34. if depth in [18, 34]: stage_kargs["block_class"] = BasicBlock else: stage_kargs["bottleneck_channels"] = bottleneck_channels stage_kargs["stride_in_1x1"] = stride_in_1x1 stage_kargs["dilation"] = dilation stage_kargs["num_groups"] = num_groups if deform_on_per_stage[idx]: stage_kargs["block_class"] = DeformBottleneckBlock stage_kargs["deform_modulated"] = deform_modulated stage_kargs["deform_num_groups"] = deform_num_groups else: stage_kargs["block_class"] = BottleneckBlock blocks = ResNet.make_stage(**stage_kargs) in_channels = out_channels out_channels *= 2 bottleneck_channels *= 2 stages.append(blocks) backbone = ResNet(stem, stages, out_features=out_features, freeze_at=freeze_at) if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] with PathManager.open(filename, "rb") as f: ckpt = pickle.load(f, encoding="latin1")['model'] _convert_ndarray_to_tensor(ckpt) ckpt.pop('stem.fc.weight') ckpt.pop('stem.fc.bias') backbone.load_state_dict(ckpt) return backbone
Segment-Everything-Everywhere-All-At-Once-main
demo_code/xdecoder/backbone/resnet.py
"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from functools import partial from .util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for DDIM sampling is {size}, eta {eta}') samples, intermediates = self.ddim_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, ) return samples, intermediates @torch.no_grad() def ddim_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None,): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, c]) e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/ddim.py
import math import numpy as np def get_prompt_templates(): prompt_templates = [ '{}.', 'a photo of a {}.', 'a bad photo of a {}.', 'a photo of many {}.', 'a sculpture of a {}.', 'a photo of the hard to see {}.', 'a low resolution photo of the {}.', 'a rendering of a {}.', 'graffiti of a {}.', 'a bad photo of the {}.', 'a cropped photo of the {}.', 'a tattoo of a {}.', 'the embroidered {}.', 'a photo of a hard to see {}.', 'a bright photo of a {}.', 'a photo of a clean {}.', 'a photo of a dirty {}.', 'a dark photo of the {}.', 'a drawing of a {}.', 'a photo of my {}.', 'the plastic {}.', 'a photo of the cool {}.', 'a close-up photo of a {}.', 'a black and white photo of the {}.', 'a painting of the {}.', 'a painting of a {}.', 'a pixelated photo of the {}.', 'a sculpture of the {}.', 'a bright photo of the {}.', 'a cropped photo of a {}.', 'a plastic {}.', 'a photo of the dirty {}.', 'a jpeg corrupted photo of a {}.', 'a blurry photo of the {}.', 'a photo of the {}.', 'a good photo of the {}.', 'a rendering of the {}.', 'a {} in a video game.', 'a photo of one {}.', 'a doodle of a {}.', 'a close-up photo of the {}.', 'the origami {}.', 'the {} in a video game.', 'a sketch of a {}.', 'a doodle of the {}.', 'a origami {}.', 'a low resolution photo of a {}.', 'the toy {}.', 'a rendition of the {}.', 'a photo of the clean {}.', 'a photo of a large {}.', 'a rendition of a {}.', 'a photo of a nice {}.', 'a photo of a weird {}.', 'a blurry photo of a {}.', 'a cartoon {}.', 'art of a {}.', 'a sketch of the {}.', 'a embroidered {}.', 'a pixelated photo of a {}.', 'itap of the {}.', 'a jpeg corrupted photo of the {}.', 'a good photo of a {}.', 'a plushie {}.', 'a photo of the nice {}.', 'a photo of the small {}.', 'a photo of the weird {}.', 'the cartoon {}.', 'art of the {}.', 'a drawing of the {}.', 'a photo of the large {}.', 'a black and white photo of a {}.', 'the plushie {}.', 'a dark photo of a {}.', 'itap of a {}.', 'graffiti of the {}.', 'a toy {}.', 'itap of my {}.', 'a photo of a cool {}.', 'a photo of a small {}.', 'a tattoo of the {}.', ] return prompt_templates def prompt_engineering(classnames, topk=1, suffix='.'): prompt_templates = get_prompt_templates() temp_idx = np.random.randint(min(len(prompt_templates), topk)) if isinstance(classnames, list): classname = random.choice(classnames) else: classname = classnames return prompt_templates[temp_idx].replace('.', suffix).format(classname.replace(',', '').replace('+', ' ')) class AverageMeter(object): """Computes and stores the average and current value.""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1, decay=0): self.val = val if decay: alpha = math.exp(-n / decay) # exponential decay over 100 updates self.sum = alpha * self.sum + (1 - alpha) * val * n self.count = alpha * self.count + (1 - alpha) * n else: self.sum += val * n self.count += n self.avg = self.sum / self.count
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/misc.py
from fvcore.common.config import CfgNode as _CfgNode class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ def merge_from_dict(self, dict): pass node = CfgNode()
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/Config.py