python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod import torch from ..builder import MASK_ASSIGNERS, build_match_cost try: from scipy.optimize import linear_sum_assignment except ImportError: linear_sum_assignment = None class AssignResult(metaclass=ABCMeta): """Collection of assign results.""" def __init__(self, num_gts, gt_inds, labels): self.num_gts = num_gts self.gt_inds = gt_inds self.labels = labels @property def info(self): info = { "num_gts": self.num_gts, "gt_inds": self.gt_inds, "labels": self.labels, } return info class BaseAssigner(metaclass=ABCMeta): """Base assigner that assigns boxes to ground truth boxes.""" @abstractmethod def assign(self, masks, gt_masks, gt_masks_ignore=None, gt_labels=None): """Assign boxes to either a ground truth boxes or a negative boxes.""" pass @MASK_ASSIGNERS.register_module() class MaskHungarianAssigner(BaseAssigner): """Computes one-to-one matching between predictions and ground truth for mask. This class computes an assignment between the targets and the predictions based on the costs. The costs are weighted sum of three components: classification cost, regression L1 cost and regression iou cost. The targets don't include the no_object, so generally there are more predictions than targets. After the one-to-one matching, the un-matched are treated as backgrounds. Thus each query prediction will be assigned with `0` or a positive integer indicating the ground truth index: - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: cls_cost (obj:`mmcv.ConfigDict`|dict): Classification cost config. mask_cost (obj:`mmcv.ConfigDict`|dict): Mask cost config. dice_cost (obj:`mmcv.ConfigDict`|dict): Dice cost config. """ def __init__( self, cls_cost=dict(type="ClassificationCost", weight=1.0), dice_cost=dict(type="DiceCost", weight=1.0), mask_cost=dict(type="MaskFocalCost", weight=1.0), ): self.cls_cost = build_match_cost(cls_cost) self.dice_cost = build_match_cost(dice_cost) self.mask_cost = build_match_cost(mask_cost) def assign(self, cls_pred, mask_pred, gt_labels, gt_masks, img_meta, gt_masks_ignore=None, eps=1e-7): """Computes one-to-one matching based on the weighted costs. This method assign each query prediction to a ground truth or background. The `assigned_gt_inds` with -1 means don't care, 0 means negative sample, and positive number is the index (1-based) of assigned gt. The assignment is done in the following steps, the order matters. 1. assign every prediction to -1 2. compute the weighted costs 3. do Hungarian matching on CPU based on the costs 4. assign all to 0 (background) first, then for each matched pair between predictions and gts, treat this prediction as foreground and assign the corresponding gt index (plus 1) to it. Args: mask_pred (Tensor): Predicted mask, shape [num_query, h, w] cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_masks (Tensor): Ground truth mask, shape [num_gt, h, w]. gt_labels (Tensor): Label of `gt_masks`, shape (num_gt,). img_meta (dict): Meta information for current image. gt_masks_ignore (Tensor, optional): Ground truth masks that are labelled as `ignored`. Default None. eps (int | float, optional): A value added to the denominator for numerical stability. Default 1e-7. Returns: :obj:`AssignResult`: The assigned result. """ assert gt_masks_ignore is None, "Only case when gt_masks_ignore is None is supported." num_gts, num_queries = gt_labels.shape[0], cls_pred.shape[0] # 1. assign -1 by default assigned_gt_inds = cls_pred.new_full((num_queries,), -1, dtype=torch.long) assigned_labels = cls_pred.new_full((num_queries,), -1, dtype=torch.long) if num_gts == 0 or num_queries == 0: # No ground truth or boxes, return empty assignment if num_gts == 0: # No ground truth, assign all to background assigned_gt_inds[:] = 0 return AssignResult(num_gts, assigned_gt_inds, labels=assigned_labels) # 2. compute the weighted costs # classification and maskcost. if self.cls_cost.weight != 0 and cls_pred is not None: cls_cost = self.cls_cost(cls_pred, gt_labels) else: cls_cost = 0 if self.mask_cost.weight != 0: # mask_pred shape = [nq, h, w] # gt_mask shape = [ng, h, w] # mask_cost shape = [nq, ng] mask_cost = self.mask_cost(mask_pred, gt_masks) else: mask_cost = 0 if self.dice_cost.weight != 0: dice_cost = self.dice_cost(mask_pred, gt_masks) else: dice_cost = 0 cost = cls_cost + mask_cost + dice_cost # 3. do Hungarian matching on CPU using linear_sum_assignment cost = cost.detach().cpu() if linear_sum_assignment is None: raise ImportError('Please run "pip install scipy" ' "to install scipy first.") matched_row_inds, matched_col_inds = linear_sum_assignment(cost) matched_row_inds = torch.from_numpy(matched_row_inds).to(cls_pred.device) matched_col_inds = torch.from_numpy(matched_col_inds).to(cls_pred.device) # 4. assign backgrounds and foregrounds # assign all indices to backgrounds first assigned_gt_inds[:] = 0 # assign foregrounds based on matching results assigned_gt_inds[matched_row_inds] = matched_col_inds + 1 assigned_labels[matched_row_inds] = gt_labels[matched_col_inds] return AssignResult(num_gts, assigned_gt_inds, labels=assigned_labels)
dinov2-main
dinov2/eval/segmentation_m2f/models/utils/assigner.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .vit_adapter import ViTAdapter
dinov2-main
dinov2/eval/segmentation_m2f/models/backbones/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from mmseg.models.builder import BACKBONES from torch.nn.init import normal_ from ...ops.modules import MSDeformAttn from .adapter_modules import InteractionBlock, InteractionBlockWithCls, SpatialPriorModule, deform_inputs from .vit import TIMMVisionTransformer @BACKBONES.register_module() class ViTAdapter(TIMMVisionTransformer): def __init__( self, pretrain_size=224, num_heads=12, conv_inplane=64, n_points=4, deform_num_heads=6, init_values=0.0, interaction_indexes=None, with_cffn=True, cffn_ratio=0.25, deform_ratio=1.0, add_vit_feature=True, pretrained=None, use_extra_extractor=True, freeze_vit=False, use_cls=True, with_cp=False, *args, **kwargs ): super().__init__(num_heads=num_heads, pretrained=pretrained, with_cp=with_cp, *args, **kwargs) if freeze_vit: for param in self.parameters(): param.requires_grad = False # self.num_classes = 80 self.use_cls = use_cls if not self.use_cls: self.cls_token = None self.num_block = len(self.blocks) self.pretrain_size = (pretrain_size, pretrain_size) self.interaction_indexes = interaction_indexes self.add_vit_feature = add_vit_feature embed_dim = self.embed_dim block_fn = InteractionBlockWithCls if use_cls else InteractionBlock self.level_embed = nn.Parameter(torch.zeros(3, embed_dim)) self.spm = SpatialPriorModule(inplanes=conv_inplane, embed_dim=embed_dim, with_cp=False) self.interactions = nn.Sequential( *[ block_fn( dim=embed_dim, num_heads=deform_num_heads, n_points=n_points, init_values=init_values, drop_path=self.drop_path_rate, norm_layer=self.norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, extra_extractor=((True if i == len(interaction_indexes) - 1 else False) and use_extra_extractor), with_cp=with_cp, ) for i in range(len(interaction_indexes)) ] ) self.up = nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) self.norm1 = nn.SyncBatchNorm(embed_dim) self.norm2 = nn.SyncBatchNorm(embed_dim) self.norm3 = nn.SyncBatchNorm(embed_dim) self.norm4 = nn.SyncBatchNorm(embed_dim) self.up.apply(self._init_weights) self.spm.apply(self._init_weights) self.interactions.apply(self._init_weights) self.apply(self._init_deform_weights) normal_(self.level_embed) def _init_weights(self, m): if isinstance(m, nn.Linear): torch.nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _get_pos_embed(self, pos_embed, H, W): pos_embed = pos_embed.reshape( 1, self.pretrain_size[0] // self.patch_size, self.pretrain_size[1] // self.patch_size, -1 ).permute(0, 3, 1, 2) pos_embed = ( F.interpolate(pos_embed, size=(H, W), mode="bicubic", align_corners=False) .reshape(1, -1, H * W) .permute(0, 2, 1) ) return pos_embed def _init_deform_weights(self, m): if isinstance(m, MSDeformAttn): m._reset_parameters() def _add_level_embed(self, c2, c3, c4): c2 = c2 + self.level_embed[0] c3 = c3 + self.level_embed[1] c4 = c4 + self.level_embed[2] return c2, c3, c4 def forward(self, x): deform_inputs1, deform_inputs2 = deform_inputs(x, self.patch_size) # SPM forward c1, c2, c3, c4 = self.spm(x) c2, c3, c4 = self._add_level_embed(c2, c3, c4) c = torch.cat([c2, c3, c4], dim=1) # Patch Embedding forward H_c, W_c = x.shape[2] // 16, x.shape[3] // 16 x, H_toks, W_toks = self.patch_embed(x) # print("H_toks, W_toks =", H_toks, W_toks) bs, n, dim = x.shape pos_embed = self._get_pos_embed(self.pos_embed[:, 1:], H_toks, W_toks) if self.use_cls: cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_token, x), dim=1) pos_embed = torch.cat((self.pos_embed[:, :1], pos_embed), dim=1) x = self.pos_drop(x + pos_embed) # For CLIP x = self.norm_pre(x) # Interaction if self.use_cls: cls, x = ( x[ :, :1, ], x[ :, 1:, ], ) outs = list() for i, layer in enumerate(self.interactions): indexes = self.interaction_indexes[i] if self.use_cls: x, c, cls = layer( x, c, cls, self.blocks[indexes[0] : indexes[-1] + 1], deform_inputs1, deform_inputs2, H_c, W_c, H_toks, W_toks, ) else: x, c = layer( x, c, self.blocks[indexes[0] : indexes[-1] + 1], deform_inputs1, deform_inputs2, H_c, W_c, H_toks, W_toks, ) outs.append(x.transpose(1, 2).view(bs, dim, H_toks, W_toks).contiguous()) # Split & Reshape c2 = c[:, 0 : c2.size(1), :] c3 = c[:, c2.size(1) : c2.size(1) + c3.size(1), :] c4 = c[:, c2.size(1) + c3.size(1) :, :] c2 = c2.transpose(1, 2).view(bs, dim, H_c * 2, W_c * 2).contiguous() c3 = c3.transpose(1, 2).view(bs, dim, H_c, W_c).contiguous() c4 = c4.transpose(1, 2).view(bs, dim, H_c // 2, W_c // 2).contiguous() c1 = self.up(c2) + c1 if self.add_vit_feature: x1, x2, x3, x4 = outs x1 = F.interpolate(x1, size=(4 * H_c, 4 * W_c), mode="bilinear", align_corners=False) x2 = F.interpolate(x2, size=(2 * H_c, 2 * W_c), mode="bilinear", align_corners=False) x3 = F.interpolate(x3, size=(1 * H_c, 1 * W_c), mode="bilinear", align_corners=False) x4 = F.interpolate(x4, size=(H_c // 2, W_c // 2), mode="bilinear", align_corners=False) # print(c1.shape, c2.shape, c3.shape, c4.shape, x1.shape, x2.shape, x3.shape, x4.shape, H_c, H_toks) c1, c2, c3, c4 = c1 + x1, c2 + x2, c3 + x3, c4 + x4 # Final Norm f1 = self.norm1(c1) f2 = self.norm2(c2) f3 = self.norm3(c3) f4 = self.norm4(c4) return [f1, f2, f3, f4]
dinov2-main
dinov2/eval/segmentation_m2f/models/backbones/vit_adapter.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. """Vision Transformer (ViT) in PyTorch. A PyTorch implement of Vision Transformers as described in: 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` - https://arxiv.org/abs/2106.10270 The official jax code is released and available at https://github.com/google-research/vision_transformer DeiT model defs and weights from https://github.com/facebookresearch/deit, paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2021 Ross Wightman """ import logging import math from functools import partial from itertools import repeat from typing import Callable, Optional import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.runner import BaseModule, load_checkpoint from mmseg.ops import resize from mmseg.utils import get_root_logger from torch import Tensor from .drop_path import DropPath def to_2tuple(x): return tuple(repeat(x, 2)) class Mlp(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = nn.GELU, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) self.drop = nn.Dropout(drop) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class SwiGLUFFN(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = None, drop: float = 0.0, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features swiglu_hidden_features = int(2 * hidden_features / 3) align_as = 8 swiglu_hidden_features = (swiglu_hidden_features + align_as - 1) // align_as * align_as self.w1 = nn.Linear(in_features, swiglu_hidden_features) self.w2 = nn.Linear(in_features, swiglu_hidden_features) self.w3 = nn.Linear(swiglu_hidden_features, out_features) def forward(self, x: Tensor) -> Tensor: x1 = self.w1(x) x2 = self.w2(x) hidden = F.silu(x1) * x2 return self.w3(hidden) class PatchEmbed(nn.Module): """2D Image to Patch Embedding.""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, bias=True ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): x = self.proj(x) _, _, H, W = x.shape if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x, H, W class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, H, W): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: Tensor, H, W) -> Tensor: from xformers.ops import memory_efficient_attention, unbind B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowedAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, window_size=14, pad_mode="constant" ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.window_size = window_size self.pad_mode = pad_mode def forward(self, x, H, W): B, N, C = x.shape N_ = self.window_size * self.window_size H_ = math.ceil(H / self.window_size) * self.window_size W_ = math.ceil(W / self.window_size) * self.window_size qkv = self.qkv(x) # [B, N, C] qkv = qkv.transpose(1, 2).reshape(B, C * 3, H, W) # [B, C, H, W] qkv = F.pad(qkv, [0, W_ - W, 0, H_ - H], mode=self.pad_mode) qkv = F.unfold( qkv, kernel_size=(self.window_size, self.window_size), stride=(self.window_size, self.window_size) ) B, C_kw_kw, L = qkv.shape # L - the num of windows qkv = qkv.reshape(B, C * 3, N_, L).permute(0, 3, 2, 1) # [B, L, N_, C] qkv = qkv.reshape(B, L, N_, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # q,k,v [B, L, num_head, N_, C/num_head] attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] # if self.mask: # attn = attn * mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] # attn @ v = [B, L, num_head, N_, C/num_head] x = (attn @ v).permute(0, 2, 4, 3, 1).reshape(B, C_kw_kw // 3, L) x = F.fold( x, output_size=(H_, W_), kernel_size=(self.window_size, self.window_size), stride=(self.window_size, self.window_size), ) # [B, C, H_, W_] x = x[:, :, :H, :W].reshape(B, C, N).transpose(-1, -2) x = self.proj(x) x = self.proj_drop(x) return x # class WindowedAttention(nn.Module): # def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., window_size=14, pad_mode="constant"): # super().__init__() # self.num_heads = num_heads # head_dim = dim // num_heads # self.scale = head_dim ** -0.5 # # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(dim, dim) # self.proj_drop = nn.Dropout(proj_drop) # self.window_size = window_size # self.pad_mode = pad_mode # # def forward(self, x, H, W): # B, N, C = x.shape # # N_ = self.window_size * self.window_size # H_ = math.ceil(H / self.window_size) * self.window_size # W_ = math.ceil(W / self.window_size) * self.window_size # x = x.view(B, H, W, C) # x = F.pad(x, [0, 0, 0, W_ - W, 0, H_- H], mode=self.pad_mode) # # x = window_partition(x, window_size=self.window_size)# nW*B, window_size, window_size, C # x = x.view(-1, N_, C) # # qkv = self.qkv(x).view(-1, N_, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] # attn = attn.softmax(dim=-1) # attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] # x = (attn @ v).transpose(1, 2).reshape(-1, self.window_size, self.window_size, C) # # x = window_reverse(x, self.window_size, H_, W_) # x = x[:, :H, :W, :].reshape(B, N, C).contiguous() # x = self.proj(x) # x = self.proj_drop(x) # return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, windowed=False, window_size=14, pad_mode="constant", layer_scale=False, with_cp=False, ffn_layer=Mlp, memeff=False, ): super().__init__() self.with_cp = with_cp self.norm1 = norm_layer(dim) if windowed: self.attn = WindowedAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, pad_mode=pad_mode, ) elif memeff: self.attn = MemEffAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop ) else: self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = ffn_layer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.layer_scale = layer_scale if layer_scale: self.gamma1 = nn.Parameter(torch.ones((dim)), requires_grad=True) self.gamma2 = nn.Parameter(torch.ones((dim)), requires_grad=True) def forward(self, x, H, W): def _inner_forward(x): if self.layer_scale: x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x if self.with_cp and x.requires_grad: x = cp.checkpoint(_inner_forward, x) else: x = _inner_forward(x) return x class TIMMVisionTransformer(BaseModule): """Vision Transformer. A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, layer_scale=True, embed_layer=PatchEmbed, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, window_attn=False, window_size=14, pretrained=None, with_cp=False, pre_norm=False, ffn_type="mlp", memeff=False, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer pretrained: (str): pretrained path """ super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.norm_layer = norm_layer self.act_layer = act_layer self.pretrain_size = img_size self.drop_path_rate = drop_path_rate self.drop_rate = drop_rate self.patch_size = patch_size window_attn = [window_attn] * depth if not isinstance(window_attn, list) else window_attn window_size = [window_size] * depth if not isinstance(window_size, list) else window_size logging.info("window attention:", window_attn) logging.info("window size:", window_size) logging.info("layer scale:", layer_scale) self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm ) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) ffn_types = {"mlp": Mlp, "swiglu": SwiGLUFFN} dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.Sequential( *[ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, windowed=window_attn[i], window_size=window_size[i], layer_scale=layer_scale, with_cp=with_cp, ffn_layer=ffn_types[ffn_type], memeff=memeff, ) for i in range(depth) ] ) # self.norm = norm_layer(embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # For CLIP if pre_norm: norm_pre = norm_layer(embed_dim) self.norm_pre = norm_pre else: self.norm_pre = nn.Identity() self.init_weights(pretrained) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location="cpu", strict=False, logger=logger) def forward_features(self, x): x, H, W = self.patch_embed(x) cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_token, x), dim=1) x = self.pos_drop(x + self.pos_embed) # For CLIP x = self.norm_pre(x) for blk in self.blocks: x = blk(x, H, W) x = self.norm(x) return x def forward(self, x): x = self.forward_features(x) return x @staticmethod def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode): """Resize pos_embed weights. Resize pos_embed using bicubic interpolate method. Args: pos_embed (torch.Tensor): Position embedding weights. input_shpae (tuple): Tuple for (downsampled input image height, downsampled input image width). pos_shape (tuple): The resolution of downsampled origin training image. mode (str): Algorithm used for upsampling: ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | ``'trilinear'``. Default: ``'nearest'`` Return: torch.Tensor: The resized pos_embed of shape [B, L_new, C] """ assert pos_embed.ndim == 3, "shape of pos_embed must be [B, L, C]" pos_h, pos_w = pos_shape # keep dim for easy deployment cls_token_weight = pos_embed[:, 0:1] pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w) :] pos_embed_weight = pos_embed_weight.reshape(1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) pos_embed_weight = resize(pos_embed_weight, size=input_shpae, align_corners=False, mode=mode) pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) return pos_embed
dinov2-main
dinov2/eval/segmentation_m2f/models/backbones/vit.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from functools import partial import torch import torch.nn as nn import torch.utils.checkpoint as cp from ...ops.modules import MSDeformAttn from .drop_path import DropPath def get_reference_points(spatial_shapes, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device), ) ref_y = ref_y.reshape(-1)[None] / H_ ref_x = ref_x.reshape(-1)[None] / W_ ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] return reference_points def deform_inputs(x, patch_size): bs, c, h, w = x.shape spatial_shapes = torch.as_tensor( [(h // 8, w // 8), (h // 16, w // 16), (h // 32, w // 32)], dtype=torch.long, device=x.device ) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = get_reference_points([(h // patch_size, w // patch_size)], x.device) deform_inputs1 = [reference_points, spatial_shapes, level_start_index] spatial_shapes = torch.as_tensor([(h // patch_size, w // patch_size)], dtype=torch.long, device=x.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = get_reference_points([(h // 8, w // 8), (h // 16, w // 16), (h // 32, w // 32)], x.device) deform_inputs2 = [reference_points, spatial_shapes, level_start_index] return deform_inputs1, deform_inputs2 class ConvFFN(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x, H, W): x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class DWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape n = N // 21 x1 = x[:, 0 : 16 * n, :].transpose(1, 2).view(B, C, H * 2, W * 2).contiguous() x2 = x[:, 16 * n : 20 * n, :].transpose(1, 2).view(B, C, H, W).contiguous() x3 = x[:, 20 * n :, :].transpose(1, 2).view(B, C, H // 2, W // 2).contiguous() x1 = self.dwconv(x1).flatten(2).transpose(1, 2) x2 = self.dwconv(x2).flatten(2).transpose(1, 2) x3 = self.dwconv(x3).flatten(2).transpose(1, 2) x = torch.cat([x1, x2, x3], dim=1) return x class Extractor(nn.Module): def __init__( self, dim, num_heads=6, n_points=4, n_levels=1, deform_ratio=1.0, with_cffn=True, cffn_ratio=0.25, drop=0.0, drop_path=0.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), with_cp=False, ): super().__init__() self.query_norm = norm_layer(dim) self.feat_norm = norm_layer(dim) self.attn = MSDeformAttn( d_model=dim, n_levels=n_levels, n_heads=num_heads, n_points=n_points, ratio=deform_ratio ) self.with_cffn = with_cffn self.with_cp = with_cp if with_cffn: self.ffn = ConvFFN(in_features=dim, hidden_features=int(dim * cffn_ratio), drop=drop) self.ffn_norm = norm_layer(dim) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, query, reference_points, feat, spatial_shapes, level_start_index, H, W): def _inner_forward(query, feat): attn = self.attn( self.query_norm(query), reference_points, self.feat_norm(feat), spatial_shapes, level_start_index, None ) query = query + attn if self.with_cffn: query = query + self.drop_path(self.ffn(self.ffn_norm(query), H, W)) return query if self.with_cp and query.requires_grad: query = cp.checkpoint(_inner_forward, query, feat) else: query = _inner_forward(query, feat) return query class Injector(nn.Module): def __init__( self, dim, num_heads=6, n_points=4, n_levels=1, deform_ratio=1.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0.0, with_cp=False, ): super().__init__() self.with_cp = with_cp self.query_norm = norm_layer(dim) self.feat_norm = norm_layer(dim) self.attn = MSDeformAttn( d_model=dim, n_levels=n_levels, n_heads=num_heads, n_points=n_points, ratio=deform_ratio ) self.gamma = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) def forward(self, query, reference_points, feat, spatial_shapes, level_start_index): def _inner_forward(query, feat): attn = self.attn( self.query_norm(query), reference_points, self.feat_norm(feat), spatial_shapes, level_start_index, None ) return query + self.gamma * attn if self.with_cp and query.requires_grad: query = cp.checkpoint(_inner_forward, query, feat) else: query = _inner_forward(query, feat) return query class InteractionBlock(nn.Module): def __init__( self, dim, num_heads=6, n_points=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0.0, drop_path=0.0, with_cffn=True, cffn_ratio=0.25, init_values=0.0, deform_ratio=1.0, extra_extractor=False, with_cp=False, ): super().__init__() self.injector = Injector( dim=dim, n_levels=3, num_heads=num_heads, init_values=init_values, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cp=with_cp, ) self.extractor = Extractor( dim=dim, n_levels=1, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cffn=with_cffn, cffn_ratio=cffn_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp, ) if extra_extractor: self.extra_extractors = nn.Sequential( *[ Extractor( dim=dim, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp, ) for _ in range(2) ] ) else: self.extra_extractors = None def forward(self, x, c, blocks, deform_inputs1, deform_inputs2, H_c, W_c, H_toks, W_toks): x = self.injector( query=x, reference_points=deform_inputs1[0], feat=c, spatial_shapes=deform_inputs1[1], level_start_index=deform_inputs1[2], ) for idx, blk in enumerate(blocks): x = blk(x, H_toks, W_toks) c = self.extractor( query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H_c, W=W_c, ) if self.extra_extractors is not None: for extractor in self.extra_extractors: c = extractor( query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H_c, W=W_c, ) return x, c class InteractionBlockWithCls(nn.Module): def __init__( self, dim, num_heads=6, n_points=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0.0, drop_path=0.0, with_cffn=True, cffn_ratio=0.25, init_values=0.0, deform_ratio=1.0, extra_extractor=False, with_cp=False, ): super().__init__() self.injector = Injector( dim=dim, n_levels=3, num_heads=num_heads, init_values=init_values, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cp=with_cp, ) self.extractor = Extractor( dim=dim, n_levels=1, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cffn=with_cffn, cffn_ratio=cffn_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp, ) if extra_extractor: self.extra_extractors = nn.Sequential( *[ Extractor( dim=dim, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp, ) for _ in range(2) ] ) else: self.extra_extractors = None def forward(self, x, c, cls, blocks, deform_inputs1, deform_inputs2, H_c, W_c, H_toks, W_toks): x = self.injector( query=x, reference_points=deform_inputs1[0], feat=c, spatial_shapes=deform_inputs1[1], level_start_index=deform_inputs1[2], ) x = torch.cat((cls, x), dim=1) for idx, blk in enumerate(blocks): x = blk(x, H_toks, W_toks) cls, x = ( x[ :, :1, ], x[ :, 1:, ], ) c = self.extractor( query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H_c, W=W_c, ) if self.extra_extractors is not None: for extractor in self.extra_extractors: c = extractor( query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H_c, W=W_c, ) return x, c, cls class SpatialPriorModule(nn.Module): def __init__(self, inplanes=64, embed_dim=384, with_cp=False): super().__init__() self.with_cp = with_cp self.stem = nn.Sequential( *[ nn.Conv2d(3, inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ] ) self.conv2 = nn.Sequential( *[ nn.Conv2d(inplanes, 2 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(2 * inplanes), nn.ReLU(inplace=True), ] ) self.conv3 = nn.Sequential( *[ nn.Conv2d(2 * inplanes, 4 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(4 * inplanes), nn.ReLU(inplace=True), ] ) self.conv4 = nn.Sequential( *[ nn.Conv2d(4 * inplanes, 4 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(4 * inplanes), nn.ReLU(inplace=True), ] ) self.fc1 = nn.Conv2d(inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc2 = nn.Conv2d(2 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc3 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc4 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, x): def _inner_forward(x): c1 = self.stem(x) c2 = self.conv2(c1) c3 = self.conv3(c2) c4 = self.conv4(c3) c1 = self.fc1(c1) c2 = self.fc2(c2) c3 = self.fc3(c3) c4 = self.fc4(c4) bs, dim, _, _ = c1.shape # c1 = c1.view(bs, dim, -1).transpose(1, 2) # 4s c2 = c2.view(bs, dim, -1).transpose(1, 2) # 8s c3 = c3.view(bs, dim, -1).transpose(1, 2) # 16s c4 = c4.view(bs, dim, -1).transpose(1, 2) # 32s return c1, c2, c3, c4 if self.with_cp and x.requires_grad: outs = cp.checkpoint(_inner_forward, x) else: outs = _inner_forward(x) return outs
dinov2-main
dinov2/eval/segmentation_m2f/models/backbones/adapter_modules.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py from torch import nn def drop_path(x, drop_prob: float = 0.0, training: bool = False): if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: float = 0.0): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training)
dinov2-main
dinov2/eval/segmentation_m2f/models/backbones/drop_path.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from mmseg.core import add_prefix from mmseg.models import builder from mmseg.models.builder import SEGMENTORS from mmseg.models.segmentors.base import BaseSegmentor from mmseg.ops import resize @SEGMENTORS.register_module() class EncoderDecoderMask2Former(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__( self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, ): super(EncoderDecoderMask2Former, self).__init__(init_cfg) if pretrained is not None: assert backbone.get("pretrained") is None, "both backbone and segmentor set pretrained weight" backbone.pretrained = pretrained self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) decode_head.update(train_cfg=train_cfg) decode_head.update(test_cfg=test_cfg) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(builder.build_head(head_cfg)) else: self.auxiliary_head = builder.build_head(auxiliary_head) def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) out = resize(input=out, size=img.shape[2:], mode="bilinear", align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg, **kwargs): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, gt_semantic_seg, **kwargs) losses.update(add_prefix(loss_decode, "decode")) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, f"aux_{idx}")) else: loss_aux = self.auxiliary_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, "aux")) return losses def forward_dummy(self, img): """Dummy forward function.""" seg_logit = self.encode_decode(img, None) return seg_logit def forward_train(self, img, img_metas, gt_semantic_seg, **kwargs): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, gt_semantic_seg, **kwargs) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train(x, img_metas, gt_semantic_seg) losses.update(loss_aux) return losses def slide_inference(self, img, img_meta, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = img.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, img_meta) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy(count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat if rescale: preds = resize( preds, size=img_meta[0]["ori_shape"][:2], mode="bilinear", align_corners=self.align_corners, warning=False, ) return preds def whole_inference(self, img, img_meta, rescale): """Inference with full image.""" seg_logit = self.encode_decode(img, img_meta) if rescale: # support dynamic shape for onnx if torch.onnx.is_in_onnx_export(): size = img.shape[2:] else: size = img_meta[0]["ori_shape"][:2] seg_logit = resize(seg_logit, size=size, mode="bilinear", align_corners=self.align_corners, warning=False) return seg_logit def inference(self, img, img_meta, rescale): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ["slide", "whole"] ori_shape = img_meta[0]["ori_shape"] assert all(_["ori_shape"] == ori_shape for _ in img_meta) if self.test_cfg.mode == "slide": seg_logit = self.slide_inference(img, img_meta, rescale) else: seg_logit = self.whole_inference(img, img_meta, rescale) output = F.softmax(seg_logit, dim=1) flip = img_meta[0]["flip"] if flip: flip_direction = img_meta[0]["flip_direction"] assert flip_direction in ["horizontal", "vertical"] if flip_direction == "horizontal": output = output.flip(dims=(3,)) elif flip_direction == "vertical": output = output.flip(dims=(2,)) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" seg_logit = self.inference(img, img_meta, rescale) seg_pred = seg_logit.argmax(dim=1) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output seg_pred = seg_pred.unsqueeze(0) return seg_pred seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(imgs) seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred
dinov2-main
dinov2/eval/segmentation_m2f/models/segmentors/encoder_decoder_mask2former.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .encoder_decoder_mask2former import EncoderDecoderMask2Former
dinov2-main
dinov2/eval/segmentation_m2f/models/segmentors/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .mask2former_head import Mask2FormerHead
dinov2-main
dinov2/eval/segmentation_m2f/models/decode_heads/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import copy import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Conv2d, build_plugin_layer, caffe2_xavier_init from mmcv.cnn.bricks.transformer import build_positional_encoding, build_transformer_layer_sequence from mmcv.ops import point_sample from mmcv.runner import ModuleList, force_fp32 from mmseg.models.builder import HEADS, build_loss from mmseg.models.decode_heads.decode_head import BaseDecodeHead from ...core import build_sampler, multi_apply, reduce_mean from ..builder import build_assigner from ..utils import get_uncertain_point_coords_with_randomness @HEADS.register_module() class Mask2FormerHead(BaseDecodeHead): """Implements the Mask2Former head. See `Masked-attention Mask Transformer for Universal Image Segmentation <https://arxiv.org/pdf/2112.01527>`_ for details. Args: in_channels (list[int]): Number of channels in the input feature map. feat_channels (int): Number of channels for features. out_channels (int): Number of channels for output. num_things_classes (int): Number of things. num_stuff_classes (int): Number of stuff. num_queries (int): Number of query in Transformer decoder. pixel_decoder (:obj:`mmcv.ConfigDict` | dict): Config for pixel decoder. Defaults to None. enforce_decoder_input_project (bool, optional): Whether to add a layer to change the embed_dim of tranformer encoder in pixel decoder to the embed_dim of transformer decoder. Defaults to False. transformer_decoder (:obj:`mmcv.ConfigDict` | dict): Config for transformer decoder. Defaults to None. positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for transformer decoder position encoding. Defaults to None. loss_cls (:obj:`mmcv.ConfigDict` | dict): Config of the classification loss. Defaults to None. loss_mask (:obj:`mmcv.ConfigDict` | dict): Config of the mask loss. Defaults to None. loss_dice (:obj:`mmcv.ConfigDict` | dict): Config of the dice loss. Defaults to None. train_cfg (:obj:`mmcv.ConfigDict` | dict): Training config of Mask2Former head. test_cfg (:obj:`mmcv.ConfigDict` | dict): Testing config of Mask2Former head. init_cfg (dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__( self, in_channels, feat_channels, out_channels, num_things_classes=80, num_stuff_classes=53, num_queries=100, num_transformer_feat_level=3, pixel_decoder=None, enforce_decoder_input_project=False, transformer_decoder=None, positional_encoding=None, loss_cls=None, loss_mask=None, loss_dice=None, train_cfg=None, test_cfg=None, init_cfg=None, **kwargs, ): super(Mask2FormerHead, self).__init__( in_channels=in_channels, channels=feat_channels, num_classes=(num_things_classes + num_stuff_classes), init_cfg=init_cfg, input_transform="multiple_select", **kwargs, ) self.num_things_classes = num_things_classes self.num_stuff_classes = num_stuff_classes self.num_classes = self.num_things_classes + self.num_stuff_classes self.num_queries = num_queries self.num_transformer_feat_level = num_transformer_feat_level self.num_heads = transformer_decoder.transformerlayers.attn_cfgs.num_heads self.num_transformer_decoder_layers = transformer_decoder.num_layers assert pixel_decoder.encoder.transformerlayers.attn_cfgs.num_levels == num_transformer_feat_level pixel_decoder_ = copy.deepcopy(pixel_decoder) pixel_decoder_.update(in_channels=in_channels, feat_channels=feat_channels, out_channels=out_channels) self.pixel_decoder = build_plugin_layer(pixel_decoder_)[1] self.transformer_decoder = build_transformer_layer_sequence(transformer_decoder) self.decoder_embed_dims = self.transformer_decoder.embed_dims self.decoder_input_projs = ModuleList() # from low resolution to high resolution for _ in range(num_transformer_feat_level): if self.decoder_embed_dims != feat_channels or enforce_decoder_input_project: self.decoder_input_projs.append(Conv2d(feat_channels, self.decoder_embed_dims, kernel_size=1)) else: self.decoder_input_projs.append(nn.Identity()) self.decoder_positional_encoding = build_positional_encoding(positional_encoding) self.query_embed = nn.Embedding(self.num_queries, feat_channels) self.query_feat = nn.Embedding(self.num_queries, feat_channels) # from low resolution to high resolution self.level_embed = nn.Embedding(self.num_transformer_feat_level, feat_channels) self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1) self.mask_embed = nn.Sequential( nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), nn.Linear(feat_channels, out_channels), ) self.conv_seg = None # fix a bug here (conv_seg is not used) self.test_cfg = test_cfg self.train_cfg = train_cfg if train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) self.sampler = build_sampler(self.train_cfg.sampler, context=self) self.num_points = self.train_cfg.get("num_points", 12544) self.oversample_ratio = self.train_cfg.get("oversample_ratio", 3.0) self.importance_sample_ratio = self.train_cfg.get("importance_sample_ratio", 0.75) self.class_weight = loss_cls.class_weight self.loss_cls = build_loss(loss_cls) self.loss_mask = build_loss(loss_mask) self.loss_dice = build_loss(loss_dice) def init_weights(self): for m in self.decoder_input_projs: if isinstance(m, Conv2d): caffe2_xavier_init(m, bias=0) self.pixel_decoder.init_weights() for p in self.transformer_decoder.parameters(): if p.dim() > 1: nn.init.xavier_normal_(p) def get_targets(self, cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas): """Compute classification and mask targets for all images for a decoder layer. Args: cls_scores_list (list[Tensor]): Mask score logits from a single decoder layer for all images. Each with shape [num_queries, cls_out_channels]. mask_preds_list (list[Tensor]): Mask logits from a single decoder layer for all images. Each with shape [num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for all images. Each with shape (n, ), n is the sum of number of stuff type and number of instance in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image, each with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: tuple[list[Tensor]]: a tuple containing the following targets. - labels_list (list[Tensor]): Labels of all images. Each with shape [num_queries, ]. - label_weights_list (list[Tensor]): Label weights of all images.Each with shape [num_queries, ]. - mask_targets_list (list[Tensor]): Mask targets of all images. Each with shape [num_queries, h, w]. - mask_weights_list (list[Tensor]): Mask weights of all images. Each with shape [num_queries, ]. - num_total_pos (int): Number of positive samples in all images. - num_total_neg (int): Number of negative samples in all images. """ ( labels_list, label_weights_list, mask_targets_list, mask_weights_list, pos_inds_list, neg_inds_list, ) = multi_apply( self._get_target_single, cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas ) num_total_pos = sum((inds.numel() for inds in pos_inds_list)) num_total_neg = sum((inds.numel() for inds in neg_inds_list)) return (labels_list, label_weights_list, mask_targets_list, mask_weights_list, num_total_pos, num_total_neg) def _get_target_single(self, cls_score, mask_pred, gt_labels, gt_masks, img_metas): """Compute classification and mask targets for one image. Args: cls_score (Tensor): Mask score logits from a single decoder layer for one image. Shape (num_queries, cls_out_channels). mask_pred (Tensor): Mask logits for a single decoder layer for one image. Shape (num_queries, h, w). gt_labels (Tensor): Ground truth class indices for one image with shape (num_gts, ). gt_masks (Tensor): Ground truth mask for each image, each with shape (num_gts, h, w). img_metas (dict): Image informtation. Returns: tuple[Tensor]: A tuple containing the following for one image. - labels (Tensor): Labels of each image. \ shape (num_queries, ). - label_weights (Tensor): Label weights of each image. \ shape (num_queries, ). - mask_targets (Tensor): Mask targets of each image. \ shape (num_queries, h, w). - mask_weights (Tensor): Mask weights of each image. \ shape (num_queries, ). - pos_inds (Tensor): Sampled positive indices for each \ image. - neg_inds (Tensor): Sampled negative indices for each \ image. """ # sample points num_queries = cls_score.shape[0] num_gts = gt_labels.shape[0] point_coords = torch.rand((1, self.num_points, 2), device=cls_score.device) # shape (num_queries, num_points) mask_points_pred = point_sample(mask_pred.unsqueeze(1), point_coords.repeat(num_queries, 1, 1)).squeeze(1) # shape (num_gts, num_points) gt_points_masks = point_sample(gt_masks.unsqueeze(1).float(), point_coords.repeat(num_gts, 1, 1)).squeeze(1) # assign and sample assign_result = self.assigner.assign(cls_score, mask_points_pred, gt_labels, gt_points_masks, img_metas) sampling_result = self.sampler.sample(assign_result, mask_pred, gt_masks) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds # label target labels = gt_labels.new_full((self.num_queries,), self.num_classes, dtype=torch.long) labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] label_weights = gt_labels.new_ones((self.num_queries,)) # mask target mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds] mask_weights = mask_pred.new_zeros((self.num_queries,)) mask_weights[pos_inds] = 1.0 return (labels, label_weights, mask_targets, mask_weights, pos_inds, neg_inds) def loss_single(self, cls_scores, mask_preds, gt_labels_list, gt_masks_list, img_metas): """Loss function for outputs from a single decoder layer. Args: cls_scores (Tensor): Mask score logits from a single decoder layer for all images. Shape (batch_size, num_queries, cls_out_channels). Note `cls_out_channels` should includes background. mask_preds (Tensor): Mask logits for a pixel decoder for all images. Shape (batch_size, num_queries, h, w). gt_labels_list (list[Tensor]): Ground truth class indices for each image, each with shape (num_gts, ). gt_masks_list (list[Tensor]): Ground truth mask for each image, each with shape (num_gts, h, w). img_metas (list[dict]): List of image meta information. Returns: tuple[Tensor]: Loss components for outputs from a single \ decoder layer. """ num_imgs = cls_scores.size(0) cls_scores_list = [cls_scores[i] for i in range(num_imgs)] mask_preds_list = [mask_preds[i] for i in range(num_imgs)] ( labels_list, label_weights_list, mask_targets_list, mask_weights_list, num_total_pos, num_total_neg, ) = self.get_targets(cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas) # shape (batch_size, num_queries) labels = torch.stack(labels_list, dim=0) # shape (batch_size, num_queries) label_weights = torch.stack(label_weights_list, dim=0) # shape (num_total_gts, h, w) mask_targets = torch.cat(mask_targets_list, dim=0) # shape (batch_size, num_queries) mask_weights = torch.stack(mask_weights_list, dim=0) # classfication loss # shape (batch_size * num_queries, ) cls_scores = cls_scores.flatten(0, 1) labels = labels.flatten(0, 1) label_weights = label_weights.flatten(0, 1) class_weight = cls_scores.new_tensor(self.class_weight) loss_cls = self.loss_cls(cls_scores, labels, label_weights, avg_factor=class_weight[labels].sum()) num_total_masks = reduce_mean(cls_scores.new_tensor([num_total_pos])) num_total_masks = max(num_total_masks, 1) # extract positive ones # shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w) mask_preds = mask_preds[mask_weights > 0] if mask_targets.shape[0] == 0: # zero match loss_dice = mask_preds.sum() loss_mask = mask_preds.sum() return loss_cls, loss_mask, loss_dice with torch.no_grad(): points_coords = get_uncertain_point_coords_with_randomness( mask_preds.unsqueeze(1), None, self.num_points, self.oversample_ratio, self.importance_sample_ratio ) # shape (num_total_gts, h, w) -> (num_total_gts, num_points) mask_point_targets = point_sample(mask_targets.unsqueeze(1).float(), points_coords).squeeze(1) # shape (num_queries, h, w) -> (num_queries, num_points) mask_point_preds = point_sample(mask_preds.unsqueeze(1), points_coords).squeeze(1) # dice loss loss_dice = self.loss_dice(mask_point_preds, mask_point_targets, avg_factor=num_total_masks) # mask loss # shape (num_queries, num_points) -> (num_queries * num_points, ) mask_point_preds = mask_point_preds.reshape(-1, 1) # shape (num_total_gts, num_points) -> (num_total_gts * num_points, ) mask_point_targets = mask_point_targets.reshape(-1) loss_mask = self.loss_mask(mask_point_preds, mask_point_targets, avg_factor=num_total_masks * self.num_points) return loss_cls, loss_mask, loss_dice @force_fp32(apply_to=("all_cls_scores", "all_mask_preds")) def loss(self, all_cls_scores, all_mask_preds, gt_labels_list, gt_masks_list, img_metas): """Loss function. Args: all_cls_scores (Tensor): Classification scores for all decoder layers with shape [num_decoder, batch_size, num_queries, cls_out_channels]. all_mask_preds (Tensor): Mask scores for all decoder layers with shape [num_decoder, batch_size, num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (n, ). n is the sum of number of stuff type and number of instance in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: dict[str, Tensor]: A dictionary of loss components. """ num_dec_layers = len(all_cls_scores) all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] all_gt_masks_list = [gt_masks_list for _ in range(num_dec_layers)] img_metas_list = [img_metas for _ in range(num_dec_layers)] losses_cls, losses_mask, losses_dice = multi_apply( self.loss_single, all_cls_scores, all_mask_preds, all_gt_labels_list, all_gt_masks_list, img_metas_list ) loss_dict = dict() # loss from the last decoder layer loss_dict["loss_cls"] = losses_cls[-1] loss_dict["loss_mask"] = losses_mask[-1] loss_dict["loss_dice"] = losses_dice[-1] # loss from other decoder layers num_dec_layer = 0 for loss_cls_i, loss_mask_i, loss_dice_i in zip(losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]): loss_dict[f"d{num_dec_layer}.loss_cls"] = loss_cls_i loss_dict[f"d{num_dec_layer}.loss_mask"] = loss_mask_i loss_dict[f"d{num_dec_layer}.loss_dice"] = loss_dice_i num_dec_layer += 1 return loss_dict def forward_head(self, decoder_out, mask_feature, attn_mask_target_size): """Forward for head part which is called after every decoder layer. Args: decoder_out (Tensor): in shape (num_queries, batch_size, c). mask_feature (Tensor): in shape (batch_size, c, h, w). attn_mask_target_size (tuple[int, int]): target attention mask size. Returns: tuple: A tuple contain three elements. - cls_pred (Tensor): Classification scores in shape \ (batch_size, num_queries, cls_out_channels). \ Note `cls_out_channels` should includes background. - mask_pred (Tensor): Mask scores in shape \ (batch_size, num_queries,h, w). - attn_mask (Tensor): Attention mask in shape \ (batch_size * num_heads, num_queries, h, w). """ decoder_out = self.transformer_decoder.post_norm(decoder_out) decoder_out = decoder_out.transpose(0, 1) # shape (num_queries, batch_size, c) cls_pred = self.cls_embed(decoder_out) # shape (num_queries, batch_size, c) mask_embed = self.mask_embed(decoder_out) # shape (num_queries, batch_size, h, w) mask_pred = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_feature) attn_mask = F.interpolate(mask_pred, attn_mask_target_size, mode="bilinear", align_corners=False) # shape (num_queries, batch_size, h, w) -> # (batch_size * num_head, num_queries, h, w) attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat((1, self.num_heads, 1, 1)).flatten(0, 1) attn_mask = attn_mask.sigmoid() < 0.5 attn_mask = attn_mask.detach() return cls_pred, mask_pred, attn_mask def forward(self, feats, img_metas): """Forward function. Args: feats (list[Tensor]): Multi scale Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. Returns: tuple: A tuple contains two elements. - cls_pred_list (list[Tensor)]: Classification logits \ for each decoder layer. Each is a 3D-tensor with shape \ (batch_size, num_queries, cls_out_channels). \ Note `cls_out_channels` should includes background. - mask_pred_list (list[Tensor]): Mask logits for each \ decoder layer. Each with shape (batch_size, num_queries, \ h, w). """ batch_size = len(img_metas) mask_features, multi_scale_memorys = self.pixel_decoder(feats) # multi_scale_memorys (from low resolution to high resolution) decoder_inputs = [] decoder_positional_encodings = [] for i in range(self.num_transformer_feat_level): decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i]) # shape (batch_size, c, h, w) -> (h*w, batch_size, c) decoder_input = decoder_input.flatten(2).permute(2, 0, 1) level_embed = self.level_embed.weight[i].view(1, 1, -1) decoder_input = decoder_input + level_embed # shape (batch_size, c, h, w) -> (h*w, batch_size, c) mask = decoder_input.new_zeros((batch_size,) + multi_scale_memorys[i].shape[-2:], dtype=torch.bool) decoder_positional_encoding = self.decoder_positional_encoding(mask) decoder_positional_encoding = decoder_positional_encoding.flatten(2).permute(2, 0, 1) decoder_inputs.append(decoder_input) decoder_positional_encodings.append(decoder_positional_encoding) # shape (num_queries, c) -> (num_queries, batch_size, c) query_feat = self.query_feat.weight.unsqueeze(1).repeat((1, batch_size, 1)) query_embed = self.query_embed.weight.unsqueeze(1).repeat((1, batch_size, 1)) cls_pred_list = [] mask_pred_list = [] cls_pred, mask_pred, attn_mask = self.forward_head(query_feat, mask_features, multi_scale_memorys[0].shape[-2:]) cls_pred_list.append(cls_pred) mask_pred_list.append(mask_pred) for i in range(self.num_transformer_decoder_layers): level_idx = i % self.num_transformer_feat_level # if a mask is all True(all background), then set it all False. attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False # cross_attn + self_attn layer = self.transformer_decoder.layers[i] attn_masks = [attn_mask, None] query_feat = layer( query=query_feat, key=decoder_inputs[level_idx], value=decoder_inputs[level_idx], query_pos=query_embed, key_pos=decoder_positional_encodings[level_idx], attn_masks=attn_masks, query_key_padding_mask=None, # here we do not apply masking on padded region key_padding_mask=None, ) cls_pred, mask_pred, attn_mask = self.forward_head( query_feat, mask_features, multi_scale_memorys[(i + 1) % self.num_transformer_feat_level].shape[-2:] ) cls_pred_list.append(cls_pred) mask_pred_list.append(mask_pred) return cls_pred_list, mask_pred_list def forward_train(self, x, img_metas, gt_semantic_seg, gt_labels, gt_masks): """Forward function for training mode. Args: x (list[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[Dict]): List of image information. gt_semantic_seg (list[tensor]):Each element is the ground truth of semantic segmentation with the shape (N, H, W). train_cfg (dict): The training config, which not been used in maskformer. gt_labels (list[Tensor]): Each element is ground truth labels of each box, shape (num_gts,). gt_masks (list[BitmapMasks]): Each element is masks of instances of a image, shape (num_gts, h, w). Returns: losses (dict[str, Tensor]): a dictionary of loss components """ # forward all_cls_scores, all_mask_preds = self(x, img_metas) # loss losses = self.loss(all_cls_scores, all_mask_preds, gt_labels, gt_masks, img_metas) return losses def forward_test(self, inputs, img_metas, test_cfg): """Test segment without test-time aumengtation. Only the output of last decoder layers was used. Args: inputs (list[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. test_cfg (dict): Testing config. Returns: seg_mask (Tensor): Predicted semantic segmentation logits. """ all_cls_scores, all_mask_preds = self(inputs, img_metas) cls_score, mask_pred = all_cls_scores[-1], all_mask_preds[-1] ori_h, ori_w, _ = img_metas[0]["ori_shape"] # semantic inference cls_score = F.softmax(cls_score, dim=-1)[..., :-1] mask_pred = mask_pred.sigmoid() seg_mask = torch.einsum("bqc,bqhw->bchw", cls_score, mask_pred) return seg_mask
dinov2-main
dinov2/eval/segmentation_m2f/models/decode_heads/mask2former_head.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import math import warnings import torch import torch.nn.functional as F from torch import nn from torch.autograd import Function from torch.cuda.amp import custom_fwd from torch.nn.init import constant_, xavier_uniform_ class MSDeformAttnFunction(Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward( ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step ): output = ms_deform_attn_core_pytorch( value, value_spatial_shapes, # value_level_start_index, sampling_locations, attention_weights, ) return output def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights): # for debug and test only, # need to use cuda version instead N_, S_, M_, D_ = value.shape _, Lq_, M_, L_, P_, _ = sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for lid_, (H_, W_) in enumerate(value_spatial_shapes): # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_ * M_, D_, H_, W_) # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1) # N_*M_, D_, Lq_, P_ sampling_value_l_ = F.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False ) sampling_value_list.append(sampling_value_l_) # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_) attention_weights = attention_weights.transpose(1, 2).reshape(N_ * M_, 1, Lq_, L_ * P_) output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_ * D_, Lq_) return output.transpose(1, 2).contiguous() def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) return (n & (n - 1) == 0) and n != 0 class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4, ratio=1.0): """Multi-Scale Deformable Attention Module. :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError("d_model must be divisible by n_heads, " "but got {} and {}".format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 # which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn( "You'd better set d_model in MSDeformAttn to make " "the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation." ) self.im2col_step = 64 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.ratio = ratio self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, int(d_model * ratio)) self.output_proj = nn.Linear(int(d_model * ratio), d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.0) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(self.n_heads, 1, 1, 2) .repeat(1, self.n_levels, self.n_points, 1) ) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.0) constant_(self.attention_weights.bias.data, 0.0) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.0) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.0) def forward( self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None, ): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \\sum_{l=0}^{L-1} H_l \\cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \\sum_{l=0}^{L-1} H_l \\cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ # print(query.shape) # print(reference_points.shape) # print(input_flatten.shape) # print(input_spatial_shapes.shape) # print(input_level_start_index.shape) # print(input_spatial_shapes) # print(input_level_start_index) N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, int(self.ratio * self.d_model) // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError( "Last dim of reference_points must be 2 or 4, but get {} instead.".format(reference_points.shape[-1]) ) output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step, ) output = self.output_proj(output) return output
dinov2-main
dinov2/eval/segmentation_m2f/ops/modules/ms_deform_attn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/fundamentalvision/Deformable-DETR/tree/main/models/ops/modules # https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 from .ms_deform_attn import MSDeformAttn
dinov2-main
dinov2/eval/segmentation_m2f/ops/modules/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path from typing import List, Optional import submitit from dinov2.utils.cluster import ( get_slurm_executor_parameters, get_slurm_partition, get_user_checkpoint_path, ) logger = logging.getLogger("dinov2") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = None, add_help: bool = True, ) -> argparse.ArgumentParser: parents = parents or [] slurm_partition = get_slurm_partition() parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--ngpus", "--gpus", "--gpus-per-node", default=8, type=int, help="Number of GPUs to request on each node", ) parser.add_argument( "--nodes", "--nnodes", default=1, type=int, help="Number of nodes to request", ) parser.add_argument( "--timeout", default=2800, type=int, help="Duration of the job", ) parser.add_argument( "--partition", default=slurm_partition, type=str, help="Partition where to submit", ) parser.add_argument( "--use-volta32", action="store_true", help="Request V100-32GB GPUs", ) parser.add_argument( "--comment", default="", type=str, help="Comment to pass to scheduler, e.g. priority message", ) parser.add_argument( "--exclude", default="", type=str, help="Nodes to exclude", ) return parser def get_shared_folder() -> Path: user_checkpoint_path = get_user_checkpoint_path() if user_checkpoint_path is None: raise RuntimeError("Path to user checkpoint cannot be determined") path = user_checkpoint_path / "experiments" path.mkdir(exist_ok=True) return path def submit_jobs(task_class, args, name: str): if not args.output_dir: args.output_dir = str(get_shared_folder() / "%j") Path(args.output_dir).mkdir(parents=True, exist_ok=True) executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30) kwargs = {} if args.use_volta32: kwargs["slurm_constraint"] = "volta32gb" if args.comment: kwargs["slurm_comment"] = args.comment if args.exclude: kwargs["slurm_exclude"] = args.exclude executor_params = get_slurm_executor_parameters( nodes=args.nodes, num_gpus_per_node=args.ngpus, timeout_min=args.timeout, # max is 60 * 72 slurm_signal_delay_s=120, slurm_partition=args.partition, **kwargs, ) executor.update_parameters(name=name, **executor_params) task = task_class(args) job = executor.submit(task) logger.info(f"Submitted job_id: {job.job_id}") str_output_dir = os.path.abspath(args.output_dir).replace("%j", str(job.job_id)) logger.info(f"Logs and checkpoints will be saved at: {str_output_dir}")
dinov2-main
dinov2/run/submit.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree.
dinov2-main
dinov2/run/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.logging import setup_logging from dinov2.train import get_args_parser as get_train_args_parser from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Trainer(object): def __init__(self, args): self.args = args def __call__(self): from dinov2.train import main as train_main self._setup_args() train_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 training" train_args_parser = get_train_args_parser(add_help=False) parents = [train_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Trainer, args, name="dinov2:train") return 0 if __name__ == "__main__": sys.exit(main())
dinov2-main
dinov2/run/train/train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.eval.linear import get_args_parser as get_linear_args_parser from dinov2.logging import setup_logging from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Evaluator: def __init__(self, args): self.args = args def __call__(self): from dinov2.eval.linear import main as linear_main self._setup_args() linear_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 linear evaluation" linear_args_parser = get_linear_args_parser(add_help=False) parents = [linear_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Evaluator, args, name="dinov2:linear") return 0 if __name__ == "__main__": sys.exit(main())
dinov2-main
dinov2/run/eval/linear.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.eval.log_regression import get_args_parser as get_log_regression_args_parser from dinov2.logging import setup_logging from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Evaluator: def __init__(self, args): self.args = args def __call__(self): from dinov2.eval.log_regression import main as log_regression_main self._setup_args() log_regression_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 logistic evaluation" log_regression_args_parser = get_log_regression_args_parser(add_help=False) parents = [log_regression_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Evaluator, args, name="dinov2:logreg") return 0 if __name__ == "__main__": sys.exit(main())
dinov2-main
dinov2/run/eval/log_regression.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.eval.knn import get_args_parser as get_knn_args_parser from dinov2.logging import setup_logging from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Evaluator: def __init__(self, args): self.args = args def __call__(self): from dinov2.eval.knn import main as knn_main self._setup_args() knn_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 k-NN evaluation" knn_args_parser = get_knn_args_parser(add_help=False) parents = [knn_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Evaluator, args, name="dinov2:knn") return 0 if __name__ == "__main__": sys.exit(main())
dinov2-main
dinov2/run/eval/knn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from typing import Sequence import torch from torchvision import transforms class GaussianBlur(transforms.RandomApply): """ Apply Gaussian Blur to the PIL image. """ def __init__(self, *, p: float = 0.5, radius_min: float = 0.1, radius_max: float = 2.0): # NOTE: torchvision is applying 1 - probability to return the original image keep_p = 1 - p transform = transforms.GaussianBlur(kernel_size=9, sigma=(radius_min, radius_max)) super().__init__(transforms=[transform], p=keep_p) class MaybeToTensor(transforms.ToTensor): """ Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor, or keep as is if already a tensor. """ def __call__(self, pic): """ Args: pic (PIL Image, numpy.ndarray or torch.tensor): Image to be converted to tensor. Returns: Tensor: Converted image. """ if isinstance(pic, torch.Tensor): return pic return super().__call__(pic) # Use timm's names IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) def make_normalize_transform( mean: Sequence[float] = IMAGENET_DEFAULT_MEAN, std: Sequence[float] = IMAGENET_DEFAULT_STD, ) -> transforms.Normalize: return transforms.Normalize(mean=mean, std=std) # This roughly matches torchvision's preset for classification training: # https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L6-L44 def make_classification_train_transform( *, crop_size: int = 224, interpolation=transforms.InterpolationMode.BICUBIC, hflip_prob: float = 0.5, mean: Sequence[float] = IMAGENET_DEFAULT_MEAN, std: Sequence[float] = IMAGENET_DEFAULT_STD, ): transforms_list = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)] if hflip_prob > 0.0: transforms_list.append(transforms.RandomHorizontalFlip(hflip_prob)) transforms_list.extend( [ MaybeToTensor(), make_normalize_transform(mean=mean, std=std), ] ) return transforms.Compose(transforms_list) # This matches (roughly) torchvision's preset for classification evaluation: # https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L47-L69 def make_classification_eval_transform( *, resize_size: int = 256, interpolation=transforms.InterpolationMode.BICUBIC, crop_size: int = 224, mean: Sequence[float] = IMAGENET_DEFAULT_MEAN, std: Sequence[float] = IMAGENET_DEFAULT_STD, ) -> transforms.Compose: transforms_list = [ transforms.Resize(resize_size, interpolation=interpolation), transforms.CenterCrop(crop_size), MaybeToTensor(), make_normalize_transform(mean=mean, std=std), ] return transforms.Compose(transforms_list)
dinov2-main
dinov2/data/transforms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import random def collate_data_and_cast(samples_list, mask_ratio_tuple, mask_probability, dtype, n_tokens=None, mask_generator=None): # dtype = torch.half # TODO: Remove n_global_crops = len(samples_list[0][0]["global_crops"]) n_local_crops = len(samples_list[0][0]["local_crops"]) collated_global_crops = torch.stack([s[0]["global_crops"][i] for i in range(n_global_crops) for s in samples_list]) collated_local_crops = torch.stack([s[0]["local_crops"][i] for i in range(n_local_crops) for s in samples_list]) B = len(collated_global_crops) N = n_tokens n_samples_masked = int(B * mask_probability) probs = torch.linspace(*mask_ratio_tuple, n_samples_masked + 1) upperbound = 0 masks_list = [] for i in range(0, n_samples_masked): prob_min = probs[i] prob_max = probs[i + 1] masks_list.append(torch.BoolTensor(mask_generator(int(N * random.uniform(prob_min, prob_max))))) upperbound += int(N * prob_max) for i in range(n_samples_masked, B): masks_list.append(torch.BoolTensor(mask_generator(0))) random.shuffle(masks_list) collated_masks = torch.stack(masks_list).flatten(1) mask_indices_list = collated_masks.flatten().nonzero().flatten() masks_weight = (1 / collated_masks.sum(-1).clamp(min=1.0)).unsqueeze(-1).expand_as(collated_masks)[collated_masks] return { "collated_global_crops": collated_global_crops.to(dtype), "collated_local_crops": collated_local_crops.to(dtype), "collated_masks": collated_masks, "mask_indices_list": mask_indices_list, "masks_weight": masks_weight, "upperbound": upperbound, "n_masked_patches": torch.full((1,), fill_value=mask_indices_list.shape[0], dtype=torch.long), }
dinov2-main
dinov2/data/collate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging from enum import Enum from typing import Any, Callable, List, Optional, TypeVar import torch from torch.utils.data import Sampler from .datasets import ImageNet, ImageNet22k from .samplers import EpochSampler, InfiniteSampler, ShardedInfiniteSampler logger = logging.getLogger("dinov2") class SamplerType(Enum): DISTRIBUTED = 0 EPOCH = 1 INFINITE = 2 SHARDED_INFINITE = 3 SHARDED_INFINITE_NEW = 4 def _make_bool_str(b: bool) -> str: return "yes" if b else "no" def _make_sample_transform(image_transform: Optional[Callable] = None, target_transform: Optional[Callable] = None): def transform(sample): image, target = sample if image_transform is not None: image = image_transform(image) if target_transform is not None: target = target_transform(target) return image, target return transform def _parse_dataset_str(dataset_str: str): tokens = dataset_str.split(":") name = tokens[0] kwargs = {} for token in tokens[1:]: key, value = token.split("=") assert key in ("root", "extra", "split") kwargs[key] = value if name == "ImageNet": class_ = ImageNet if "split" in kwargs: kwargs["split"] = ImageNet.Split[kwargs["split"]] elif name == "ImageNet22k": class_ = ImageNet22k else: raise ValueError(f'Unsupported dataset "{name}"') return class_, kwargs def make_dataset( *, dataset_str: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ): """ Creates a dataset with the specified parameters. Args: dataset_str: A dataset string description (e.g. ImageNet:split=TRAIN). transform: A transform to apply to images. target_transform: A transform to apply to targets. Returns: The created dataset. """ logger.info(f'using dataset: "{dataset_str}"') class_, kwargs = _parse_dataset_str(dataset_str) dataset = class_(transform=transform, target_transform=target_transform, **kwargs) logger.info(f"# of dataset samples: {len(dataset):,d}") # Aggregated datasets do not expose (yet) these attributes, so add them. if not hasattr(dataset, "transform"): setattr(dataset, "transform", transform) if not hasattr(dataset, "target_transform"): setattr(dataset, "target_transform", target_transform) return dataset def _make_sampler( *, dataset, type: Optional[SamplerType] = None, shuffle: bool = False, seed: int = 0, size: int = -1, advance: int = 0, ) -> Optional[Sampler]: sample_count = len(dataset) if type == SamplerType.INFINITE: logger.info("sampler: infinite") if size > 0: raise ValueError("sampler size > 0 is invalid") return InfiniteSampler( sample_count=sample_count, shuffle=shuffle, seed=seed, advance=advance, ) elif type in (SamplerType.SHARDED_INFINITE, SamplerType.SHARDED_INFINITE_NEW): logger.info("sampler: sharded infinite") if size > 0: raise ValueError("sampler size > 0 is invalid") # TODO: Remove support for old shuffling use_new_shuffle_tensor_slice = type == SamplerType.SHARDED_INFINITE_NEW return ShardedInfiniteSampler( sample_count=sample_count, shuffle=shuffle, seed=seed, advance=advance, use_new_shuffle_tensor_slice=use_new_shuffle_tensor_slice, ) elif type == SamplerType.EPOCH: logger.info("sampler: epoch") if advance > 0: raise NotImplementedError("sampler advance > 0 is not supported") size = size if size > 0 else sample_count logger.info(f"# of samples / epoch: {size:,d}") return EpochSampler( size=size, sample_count=sample_count, shuffle=shuffle, seed=seed, ) elif type == SamplerType.DISTRIBUTED: logger.info("sampler: distributed") if size > 0: raise ValueError("sampler size > 0 is invalid") if advance > 0: raise ValueError("sampler advance > 0 is invalid") return torch.utils.data.DistributedSampler( dataset=dataset, shuffle=shuffle, seed=seed, drop_last=False, ) logger.info("sampler: none") return None T = TypeVar("T") def make_data_loader( *, dataset, batch_size: int, num_workers: int, shuffle: bool = True, seed: int = 0, sampler_type: Optional[SamplerType] = SamplerType.INFINITE, sampler_size: int = -1, sampler_advance: int = 0, drop_last: bool = True, persistent_workers: bool = False, collate_fn: Optional[Callable[[List[T]], Any]] = None, ): """ Creates a data loader with the specified parameters. Args: dataset: A dataset (third party, LaViDa or WebDataset). batch_size: The size of batches to generate. num_workers: The number of workers to use. shuffle: Whether to shuffle samples. seed: The random seed to use. sampler_type: Which sampler to use: EPOCH, INFINITE, SHARDED_INFINITE, SHARDED_INFINITE_NEW, DISTRIBUTED or None. sampler_size: The number of images per epoch (when applicable) or -1 for the entire dataset. sampler_advance: How many samples to skip (when applicable). drop_last: Whether the last non-full batch of data should be dropped. persistent_workers: maintain the workers Dataset instances alive after a dataset has been consumed once. collate_fn: Function that performs batch collation """ sampler = _make_sampler( dataset=dataset, type=sampler_type, shuffle=shuffle, seed=seed, size=sampler_size, advance=sampler_advance, ) logger.info("using PyTorch data loader") data_loader = torch.utils.data.DataLoader( dataset, sampler=sampler, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=drop_last, persistent_workers=persistent_workers, collate_fn=collate_fn, ) try: logger.info(f"# of batches: {len(data_loader):,d}") except TypeError: # data loader has no length logger.info("infinite data loader") return data_loader
dinov2-main
dinov2/data/loaders.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .adapters import DatasetWithEnumeratedTargets from .loaders import make_data_loader, make_dataset, SamplerType from .collate import collate_data_and_cast from .masking import MaskingGenerator from .augmentations import DataAugmentationDINO
dinov2-main
dinov2/data/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import random import math import numpy as np class MaskingGenerator: def __init__( self, input_size, num_masking_patches=None, min_num_patches=4, max_num_patches=None, min_aspect=0.3, max_aspect=None, ): if not isinstance(input_size, tuple): input_size = (input_size,) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self): repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1], ) return repr_str def get_shape(self): return self.height, self.width def _mask(self, mask, max_mask_patches): delta = 0 for _ in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top : top + h, left : left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self, num_masking_patches=0): mask = np.zeros(shape=self.get_shape(), dtype=bool) mask_count = 0 while mask_count < num_masking_patches: max_mask_patches = num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return mask
dinov2-main
dinov2/data/masking.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import itertools from typing import Any, Optional import warnings import numpy as np import torch from torch.utils.data.sampler import Sampler import dinov2.distributed as distributed class EpochSampler(Sampler): def __init__( self, *, size: int, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, ): self._size = size self._sample_count = sample_count self._shuffle = shuffle self._seed = seed self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._epoch = 0 def __iter__(self): count = (self._size + self._sample_count - 1) // self._sample_count tiled_indices = np.tile(np.arange(self._sample_count), count) if self._shuffle: seed = self._seed * self._epoch if self._seed != 0 else self._epoch rng = np.random.default_rng(seed) iterable = rng.choice(tiled_indices, self._size, replace=False) else: iterable = tiled_indices[: self._size] yield from itertools.islice(iterable, self._start, None, self._step) def __len__(self): return (self._size - self._start + self._step - 1) // self._step def set_epoch(self, epoch): self._epoch = epoch def _get_numpy_dtype(size: int) -> Any: return np.int32 if size <= 2**31 else np.int64 def _get_torch_dtype(size: int) -> Any: return torch.int32 if size <= 2**31 else torch.int64 def _generate_randperm_indices(*, size: int, generator: torch.Generator): """Generate the indices of a random permutation.""" dtype = _get_torch_dtype(size) # This is actually matching PyTorch's CPU implementation, see: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorFactories.cpp#L900-L921 perm = torch.arange(size, dtype=dtype) for i in range(size): j = torch.randint(i, size, size=(1,), generator=generator).item() # Always swap even if no-op value = perm[j].item() perm[j] = perm[i].item() perm[i] = value yield value class InfiniteSampler(Sampler): def __init__( self, *, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, advance: int = 0, ): self._sample_count = sample_count self._seed = seed self._shuffle = shuffle self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._advance = advance def __iter__(self): if self._shuffle: iterator = self._shuffled_iterator() else: iterator = self._iterator() yield from itertools.islice(iterator, self._advance, None) def _iterator(self): assert not self._shuffle while True: iterable = range(self._sample_count) yield from itertools.islice(iterable, self._start, None, self._step) def _shuffled_iterator(self): assert self._shuffle # Instantiate a generator here (rather than in the ctor) to keep the class # picklable (requirement of mp.spawn) generator = torch.Generator().manual_seed(self._seed) while True: iterable = _generate_randperm_indices(size=self._sample_count, generator=generator) yield from itertools.islice(iterable, self._start, None, self._step) # The following function is somewhat equivalent to _new_shuffle_tensor_slice below, # but avoids a full in-place random permutation generation. def _shuffle_tensor_slice( *, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator ) -> np.ndarray: stop = len(tensor) count = stop // step drop_count = stop - step * count if drop_count: warnings.warn(f"# of dropped samples: {drop_count}") dtype = _get_numpy_dtype(stop) result = np.empty(count, dtype=dtype) for i in range(count): j = torch.randint(0, i + 1, size=(1,), generator=generator).item() if i > 0 else 0 result[i] = result[j] result[j] = tensor[start + i * step].item() return result def _new_shuffle_tensor_slice( *, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator ) -> np.ndarray: stop = len(tensor) count = stop // step dtype = torch.int64 # Needed for using randperm result as indices count = stop // step drop_count = stop - step * count if drop_count: warnings.warn(f"# of dropped samples: {drop_count}") indices = torch.randperm(count, dtype=dtype, generator=generator) return tensor[start::step][indices].numpy() def _make_seed(seed: int, start: int, iter_count: int) -> int: # NOTE: Tried a few variants (including iter_count << 32), this one worked best. return seed + start + (iter_count << 24) class ShardedInfiniteSampler(Sampler): def __init__( self, *, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, advance: int = 0, use_new_shuffle_tensor_slice: bool = False, ): self._sample_count = sample_count self._seed = seed self._shuffle = shuffle self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._advance = advance self._iter_count = 0 self._shuffle_tensor_slice_fn = ( _new_shuffle_tensor_slice if use_new_shuffle_tensor_slice else _shuffle_tensor_slice ) def __iter__(self): iter_count = self._advance // self._sample_count if iter_count > 0: self._advance -= iter_count * self._sample_count self._iter_count += iter_count if self._shuffle: iterator = self._shuffled_iterator() else: iterator = self._iterator() yield from itertools.islice(iterator, self._advance, None) def _iterator(self): assert not self._shuffle while True: iterable = range(self._sample_count) yield from itertools.islice(iterable, self._start, None, self._step) def _shuffled_iterator(self): assert self._shuffle # Instantiate a generator here (rather than in the ctor) to be keep the class # picklable (requirement of mp.spawn) generator = torch.Generator() # Always shuffle everything first generator.manual_seed(self._seed) dtype = _get_torch_dtype(self._sample_count) perm = torch.randperm(self._sample_count, dtype=dtype, generator=generator) while True: # Re-seed on each iteration to allow skipping whole permutations seed = _make_seed(self._seed, self._start, self._iter_count) generator.manual_seed(seed) iterable = self._shuffle_tensor_slice_fn( tensor=perm, start=self._start, step=self._step, generator=generator ) yield from iterable self._iter_count += 1
dinov2-main
dinov2/data/samplers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging from torchvision import transforms from .transforms import ( GaussianBlur, make_normalize_transform, ) logger = logging.getLogger("dinov2") class DataAugmentationDINO(object): def __init__( self, global_crops_scale, local_crops_scale, local_crops_number, global_crops_size=224, local_crops_size=96, ): self.global_crops_scale = global_crops_scale self.local_crops_scale = local_crops_scale self.local_crops_number = local_crops_number self.global_crops_size = global_crops_size self.local_crops_size = local_crops_size logger.info("###################################") logger.info("Using data augmentation parameters:") logger.info(f"global_crops_scale: {global_crops_scale}") logger.info(f"local_crops_scale: {local_crops_scale}") logger.info(f"local_crops_number: {local_crops_number}") logger.info(f"global_crops_size: {global_crops_size}") logger.info(f"local_crops_size: {local_crops_size}") logger.info("###################################") # random resized crop and flip self.geometric_augmentation_global = transforms.Compose( [ transforms.RandomResizedCrop( global_crops_size, scale=global_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC ), transforms.RandomHorizontalFlip(p=0.5), ] ) self.geometric_augmentation_local = transforms.Compose( [ transforms.RandomResizedCrop( local_crops_size, scale=local_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC ), transforms.RandomHorizontalFlip(p=0.5), ] ) # color distorsions / blurring color_jittering = transforms.Compose( [ transforms.RandomApply( [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.8, ), transforms.RandomGrayscale(p=0.2), ] ) global_transfo1_extra = GaussianBlur(p=1.0) global_transfo2_extra = transforms.Compose( [ GaussianBlur(p=0.1), transforms.RandomSolarize(threshold=128, p=0.2), ] ) local_transfo_extra = GaussianBlur(p=0.5) # normalization self.normalize = transforms.Compose( [ transforms.ToTensor(), make_normalize_transform(), ] ) self.global_transfo1 = transforms.Compose([color_jittering, global_transfo1_extra, self.normalize]) self.global_transfo2 = transforms.Compose([color_jittering, global_transfo2_extra, self.normalize]) self.local_transfo = transforms.Compose([color_jittering, local_transfo_extra, self.normalize]) def __call__(self, image): output = {} # global crops: im1_base = self.geometric_augmentation_global(image) global_crop_1 = self.global_transfo1(im1_base) im2_base = self.geometric_augmentation_global(image) global_crop_2 = self.global_transfo2(im2_base) output["global_crops"] = [global_crop_1, global_crop_2] # global crops for teacher: output["global_crops_teacher"] = [global_crop_1, global_crop_2] # local crops: local_crops = [ self.local_transfo(self.geometric_augmentation_local(image)) for _ in range(self.local_crops_number) ] output["local_crops"] = local_crops output["offsets"] = () return output
dinov2-main
dinov2/data/augmentations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from typing import Any, Tuple from torch.utils.data import Dataset class DatasetWithEnumeratedTargets(Dataset): def __init__(self, dataset): self._dataset = dataset def get_image_data(self, index: int) -> bytes: return self._dataset.get_image_data(index) def get_target(self, index: int) -> Tuple[Any, int]: target = self._dataset.get_target(index) return (index, target) def __getitem__(self, index: int) -> Tuple[Any, Tuple[Any, int]]: image, target = self._dataset[index] target = index if target is None else target return image, (index, target) def __len__(self) -> int: return len(self._dataset)
dinov2-main
dinov2/data/adapters.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import csv from enum import Enum import logging import os from typing import Callable, List, Optional, Tuple, Union import numpy as np from .extended import ExtendedVisionDataset logger = logging.getLogger("dinov2") _Target = int class _Split(Enum): TRAIN = "train" VAL = "val" TEST = "test" # NOTE: torchvision does not support the test split @property def length(self) -> int: split_lengths = { _Split.TRAIN: 1_281_167, _Split.VAL: 50_000, _Split.TEST: 100_000, } return split_lengths[self] def get_dirname(self, class_id: Optional[str] = None) -> str: return self.value if class_id is None else os.path.join(self.value, class_id) def get_image_relpath(self, actual_index: int, class_id: Optional[str] = None) -> str: dirname = self.get_dirname(class_id) if self == _Split.TRAIN: basename = f"{class_id}_{actual_index}" else: # self in (_Split.VAL, _Split.TEST): basename = f"ILSVRC2012_{self.value}_{actual_index:08d}" return os.path.join(dirname, basename + ".JPEG") def parse_image_relpath(self, image_relpath: str) -> Tuple[str, int]: assert self != _Split.TEST dirname, filename = os.path.split(image_relpath) class_id = os.path.split(dirname)[-1] basename, _ = os.path.splitext(filename) actual_index = int(basename.split("_")[-1]) return class_id, actual_index class ImageNet(ExtendedVisionDataset): Target = Union[_Target] Split = Union[_Split] def __init__( self, *, split: "ImageNet.Split", root: str, extra: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transforms, transform, target_transform) self._extra_root = extra self._split = split self._entries = None self._class_ids = None self._class_names = None @property def split(self) -> "ImageNet.Split": return self._split def _get_extra_full_path(self, extra_path: str) -> str: return os.path.join(self._extra_root, extra_path) def _load_extra(self, extra_path: str) -> np.ndarray: extra_full_path = self._get_extra_full_path(extra_path) return np.load(extra_full_path, mmap_mode="r") def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None: extra_full_path = self._get_extra_full_path(extra_path) os.makedirs(self._extra_root, exist_ok=True) np.save(extra_full_path, extra_array) @property def _entries_path(self) -> str: return f"entries-{self._split.value.upper()}.npy" @property def _class_ids_path(self) -> str: return f"class-ids-{self._split.value.upper()}.npy" @property def _class_names_path(self) -> str: return f"class-names-{self._split.value.upper()}.npy" def _get_entries(self) -> np.ndarray: if self._entries is None: self._entries = self._load_extra(self._entries_path) assert self._entries is not None return self._entries def _get_class_ids(self) -> np.ndarray: if self._split == _Split.TEST: assert False, "Class IDs are not available in TEST split" if self._class_ids is None: self._class_ids = self._load_extra(self._class_ids_path) assert self._class_ids is not None return self._class_ids def _get_class_names(self) -> np.ndarray: if self._split == _Split.TEST: assert False, "Class names are not available in TEST split" if self._class_names is None: self._class_names = self._load_extra(self._class_names_path) assert self._class_names is not None return self._class_names def find_class_id(self, class_index: int) -> str: class_ids = self._get_class_ids() return str(class_ids[class_index]) def find_class_name(self, class_index: int) -> str: class_names = self._get_class_names() return str(class_names[class_index]) def get_image_data(self, index: int) -> bytes: entries = self._get_entries() actual_index = entries[index]["actual_index"] class_id = self.get_class_id(index) image_relpath = self.split.get_image_relpath(actual_index, class_id) image_full_path = os.path.join(self.root, image_relpath) with open(image_full_path, mode="rb") as f: image_data = f.read() return image_data def get_target(self, index: int) -> Optional[Target]: entries = self._get_entries() class_index = entries[index]["class_index"] return None if self.split == _Split.TEST else int(class_index) def get_targets(self) -> Optional[np.ndarray]: entries = self._get_entries() return None if self.split == _Split.TEST else entries["class_index"] def get_class_id(self, index: int) -> Optional[str]: entries = self._get_entries() class_id = entries[index]["class_id"] return None if self.split == _Split.TEST else str(class_id) def get_class_name(self, index: int) -> Optional[str]: entries = self._get_entries() class_name = entries[index]["class_name"] return None if self.split == _Split.TEST else str(class_name) def __len__(self) -> int: entries = self._get_entries() assert len(entries) == self.split.length return len(entries) def _load_labels(self, labels_path: str) -> List[Tuple[str, str]]: labels_full_path = os.path.join(self.root, labels_path) labels = [] try: with open(labels_full_path, "r") as f: reader = csv.reader(f) for row in reader: class_id, class_name = row labels.append((class_id, class_name)) except OSError as e: raise RuntimeError(f'can not read labels file "{labels_full_path}"') from e return labels def _dump_entries(self) -> None: split = self.split if split == ImageNet.Split.TEST: dataset = None sample_count = split.length max_class_id_length, max_class_name_length = 0, 0 else: labels_path = "labels.txt" logger.info(f'loading labels from "{labels_path}"') labels = self._load_labels(labels_path) # NOTE: Using torchvision ImageFolder for consistency from torchvision.datasets import ImageFolder dataset_root = os.path.join(self.root, split.get_dirname()) dataset = ImageFolder(dataset_root) sample_count = len(dataset) max_class_id_length, max_class_name_length = -1, -1 for sample in dataset.samples: _, class_index = sample class_id, class_name = labels[class_index] max_class_id_length = max(len(class_id), max_class_id_length) max_class_name_length = max(len(class_name), max_class_name_length) dtype = np.dtype( [ ("actual_index", "<u4"), ("class_index", "<u4"), ("class_id", f"U{max_class_id_length}"), ("class_name", f"U{max_class_name_length}"), ] ) entries_array = np.empty(sample_count, dtype=dtype) if split == ImageNet.Split.TEST: old_percent = -1 for index in range(sample_count): percent = 100 * (index + 1) // sample_count if percent > old_percent: logger.info(f"creating entries: {percent}%") old_percent = percent actual_index = index + 1 class_index = np.uint32(-1) class_id, class_name = "", "" entries_array[index] = (actual_index, class_index, class_id, class_name) else: class_names = {class_id: class_name for class_id, class_name in labels} assert dataset old_percent = -1 for index in range(sample_count): percent = 100 * (index + 1) // sample_count if percent > old_percent: logger.info(f"creating entries: {percent}%") old_percent = percent image_full_path, class_index = dataset.samples[index] image_relpath = os.path.relpath(image_full_path, self.root) class_id, actual_index = split.parse_image_relpath(image_relpath) class_name = class_names[class_id] entries_array[index] = (actual_index, class_index, class_id, class_name) logger.info(f'saving entries to "{self._entries_path}"') self._save_extra(entries_array, self._entries_path) def _dump_class_ids_and_names(self) -> None: split = self.split if split == ImageNet.Split.TEST: return entries_array = self._load_extra(self._entries_path) max_class_id_length, max_class_name_length, max_class_index = -1, -1, -1 for entry in entries_array: class_index, class_id, class_name = ( entry["class_index"], entry["class_id"], entry["class_name"], ) max_class_index = max(int(class_index), max_class_index) max_class_id_length = max(len(str(class_id)), max_class_id_length) max_class_name_length = max(len(str(class_name)), max_class_name_length) class_count = max_class_index + 1 class_ids_array = np.empty(class_count, dtype=f"U{max_class_id_length}") class_names_array = np.empty(class_count, dtype=f"U{max_class_name_length}") for entry in entries_array: class_index, class_id, class_name = ( entry["class_index"], entry["class_id"], entry["class_name"], ) class_ids_array[class_index] = class_id class_names_array[class_index] = class_name logger.info(f'saving class IDs to "{self._class_ids_path}"') self._save_extra(class_ids_array, self._class_ids_path) logger.info(f'saving class names to "{self._class_names_path}"') self._save_extra(class_names_array, self._class_names_path) def dump_extra(self) -> None: self._dump_entries() self._dump_class_ids_and_names()
dinov2-main
dinov2/data/datasets/image_net.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from io import BytesIO from typing import Any from PIL import Image class Decoder: def decode(self) -> Any: raise NotImplementedError class ImageDataDecoder(Decoder): def __init__(self, image_data: bytes) -> None: self._image_data = image_data def decode(self) -> Image: f = BytesIO(self._image_data) return Image.open(f).convert(mode="RGB") class TargetDecoder(Decoder): def __init__(self, target: Any): self._target = target def decode(self) -> Any: return self._target
dinov2-main
dinov2/data/datasets/decoders.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from typing import Any, Tuple from torchvision.datasets import VisionDataset from .decoders import TargetDecoder, ImageDataDecoder class ExtendedVisionDataset(VisionDataset): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) # type: ignore def get_image_data(self, index: int) -> bytes: raise NotImplementedError def get_target(self, index: int) -> Any: raise NotImplementedError def __getitem__(self, index: int) -> Tuple[Any, Any]: try: image_data = self.get_image_data(index) image = ImageDataDecoder(image_data).decode() except Exception as e: raise RuntimeError(f"can not read image for sample {index}") from e target = self.get_target(index) target = TargetDecoder(target).decode() if self.transforms is not None: image, target = self.transforms(image, target) return image, target def __len__(self) -> int: raise NotImplementedError
dinov2-main
dinov2/data/datasets/extended.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .image_net import ImageNet from .image_net_22k import ImageNet22k
dinov2-main
dinov2/data/datasets/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from dataclasses import dataclass from enum import Enum from functools import lru_cache from gzip import GzipFile from io import BytesIO from mmap import ACCESS_READ, mmap import os from typing import Any, Callable, List, Optional, Set, Tuple import warnings import numpy as np from .extended import ExtendedVisionDataset _Labels = int _DEFAULT_MMAP_CACHE_SIZE = 16 # Warning: This can exhaust file descriptors @dataclass class _ClassEntry: block_offset: int maybe_filename: Optional[str] = None @dataclass class _Entry: class_index: int # noqa: E701 start_offset: int end_offset: int filename: str class _Split(Enum): TRAIN = "train" VAL = "val" @property def length(self) -> int: return { _Split.TRAIN: 11_797_647, _Split.VAL: 561_050, }[self] def entries_path(self): return f"imagenet21kp_{self.value}.txt" def _get_tarball_path(class_id: str) -> str: return f"{class_id}.tar" def _make_mmap_tarball(tarballs_root: str, mmap_cache_size: int): @lru_cache(maxsize=mmap_cache_size) def _mmap_tarball(class_id: str) -> mmap: tarball_path = _get_tarball_path(class_id) tarball_full_path = os.path.join(tarballs_root, tarball_path) with open(tarball_full_path) as f: return mmap(fileno=f.fileno(), length=0, access=ACCESS_READ) return _mmap_tarball class ImageNet22k(ExtendedVisionDataset): _GZIPPED_INDICES: Set[int] = { 841_545, 1_304_131, 2_437_921, 2_672_079, 2_795_676, 2_969_786, 6_902_965, 6_903_550, 6_903_628, 7_432_557, 7_432_589, 7_813_809, 8_329_633, 10_296_990, 10_417_652, 10_492_265, 10_598_078, 10_782_398, 10_902_612, 11_203_736, 11_342_890, 11_397_596, 11_589_762, 11_705_103, 12_936_875, 13_289_782, } Labels = _Labels def __init__( self, *, root: str, extra: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, mmap_cache_size: int = _DEFAULT_MMAP_CACHE_SIZE, ) -> None: super().__init__(root, transforms, transform, target_transform) self._extra_root = extra entries_path = self._get_entries_path(root) self._entries = self._load_extra(entries_path) class_ids_path = self._get_class_ids_path(root) self._class_ids = self._load_extra(class_ids_path) self._gzipped_indices = ImageNet22k._GZIPPED_INDICES self._mmap_tarball = _make_mmap_tarball(self._tarballs_root, mmap_cache_size) def _get_entries_path(self, root: Optional[str] = None) -> str: return "entries.npy" def _get_class_ids_path(self, root: Optional[str] = None) -> str: return "class-ids.npy" def _find_class_ids(self, path: str) -> List[str]: class_ids = [] with os.scandir(path) as entries: for entry in entries: root, ext = os.path.splitext(entry.name) if ext != ".tar": continue class_ids.append(root) return sorted(class_ids) def _load_entries_class_ids(self, root: Optional[str] = None) -> Tuple[List[_Entry], List[str]]: root = self.get_root(root) entries: List[_Entry] = [] class_ids = self._find_class_ids(root) for class_index, class_id in enumerate(class_ids): path = os.path.join(root, "blocks", f"{class_id}.log") class_entries = [] try: with open(path) as f: for line in f: line = line.rstrip() block, filename = line.split(":") block_offset = int(block[6:]) filename = filename[1:] maybe_filename = None if filename != "** Block of NULs **": maybe_filename = filename _, ext = os.path.splitext(filename) # assert ext == ".JPEG" class_entry = _ClassEntry(block_offset, maybe_filename) class_entries.append(class_entry) except OSError as e: raise RuntimeError(f'can not read blocks file "{path}"') from e assert class_entries[-1].maybe_filename is None for class_entry1, class_entry2 in zip(class_entries, class_entries[1:]): assert class_entry1.block_offset <= class_entry2.block_offset start_offset = 512 * class_entry1.block_offset end_offset = 512 * class_entry2.block_offset assert class_entry1.maybe_filename is not None filename = class_entry1.maybe_filename entry = _Entry(class_index, start_offset, end_offset, filename) # Skip invalid image files (PIL throws UnidentifiedImageError) if filename == "n06470073_47249.JPEG": continue entries.append(entry) return entries, class_ids def _load_extra(self, extra_path: str) -> np.ndarray: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) return np.load(extra_full_path, mmap_mode="r") def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) os.makedirs(extra_root, exist_ok=True) np.save(extra_full_path, extra_array) @property def _tarballs_root(self) -> str: return self.root def find_class_id(self, class_index: int) -> str: return str(self._class_ids[class_index]) def get_image_data(self, index: int) -> bytes: entry = self._entries[index] class_id = entry["class_id"] class_mmap = self._mmap_tarball(class_id) start_offset, end_offset = entry["start_offset"], entry["end_offset"] try: mapped_data = class_mmap[start_offset:end_offset] data = mapped_data[512:] # Skip entry header block if len(data) >= 2 and tuple(data[:2]) == (0x1F, 0x8B): assert index in self._gzipped_indices, f"unexpected gzip header for sample {index}" with GzipFile(fileobj=BytesIO(data)) as g: data = g.read() except Exception as e: raise RuntimeError(f"can not retrieve image data for sample {index} " f'from "{class_id}" tarball') from e return data def get_target(self, index: int) -> Any: return int(self._entries[index]["class_index"]) def get_targets(self) -> np.ndarray: return self._entries["class_index"] def get_class_id(self, index: int) -> str: return str(self._entries[index]["class_id"]) def get_class_ids(self) -> np.ndarray: return self._entries["class_id"] def __getitem__(self, index: int) -> Tuple[Any, Any]: with warnings.catch_warnings(): warnings.simplefilter("ignore") return super().__getitem__(index) def __len__(self) -> int: return len(self._entries) def _dump_entries(self, *args, **kwargs) -> None: entries, class_ids = self._load_entries_class_ids(*args, **kwargs) max_class_id_length, max_filename_length, max_class_index = -1, -1, -1 for entry in entries: class_id = class_ids[entry.class_index] max_class_index = max(entry.class_index, max_class_index) max_class_id_length = max(len(class_id), max_class_id_length) max_filename_length = max(len(entry.filename), max_filename_length) dtype = np.dtype( [ ("class_index", "<u4"), ("class_id", f"U{max_class_id_length}"), ("start_offset", "<u4"), ("end_offset", "<u4"), ("filename", f"U{max_filename_length}"), ] ) sample_count = len(entries) entries_array = np.empty(sample_count, dtype=dtype) for i, entry in enumerate(entries): class_index = entry.class_index class_id = class_ids[class_index] start_offset = entry.start_offset end_offset = entry.end_offset filename = entry.filename entries_array[i] = ( class_index, class_id, start_offset, end_offset, filename, ) entries_path = self._get_entries_path(*args, **kwargs) self._save_extra(entries_array, entries_path) def _dump_class_ids(self, *args, **kwargs) -> None: entries_path = self._get_entries_path(*args, **kwargs) entries_array = self._load_extra(entries_path) max_class_id_length, max_class_index = -1, -1 for entry in entries_array: class_index, class_id = entry["class_index"], entry["class_id"] max_class_index = max(int(class_index), max_class_index) max_class_id_length = max(len(str(class_id)), max_class_id_length) class_ids_array = np.empty(max_class_index + 1, dtype=f"U{max_class_id_length}") for entry in entries_array: class_index, class_id = entry["class_index"], entry["class_id"] class_ids_array[class_index] = class_id class_ids_path = self._get_class_ids_path(*args, **kwargs) self._save_extra(class_ids_array, class_ids_path) def _dump_extra(self, *args, **kwargs) -> None: self._dump_entries(*args, *kwargs) self._dump_class_ids(*args, *kwargs) def dump_extra(self, root: Optional[str] = None) -> None: return self._dump_extra(root)
dinov2-main
dinov2/data/datasets/image_net_22k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import functools import logging import os import sys from typing import Optional import dinov2.distributed as distributed from .helpers import MetricLogger, SmoothedValue # So that calling _configure_logger multiple times won't add many handlers @functools.lru_cache() def _configure_logger( name: Optional[str] = None, *, level: int = logging.DEBUG, output: Optional[str] = None, ): """ Configure a logger. Adapted from Detectron2. Args: name: The name of the logger to configure. level: The logging level to use. output: A file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. Returns: The configured logger. """ logger = logging.getLogger(name) logger.setLevel(level) logger.propagate = False # Loosely match Google glog format: # [IWEF]yyyymmdd hh:mm:ss.uuuuuu threadid file:line] msg # but use a shorter timestamp and include the logger name: # [IWEF]yyyymmdd hh:mm:ss logger threadid file:line] msg fmt_prefix = "%(levelname).1s%(asctime)s %(process)s %(name)s %(filename)s:%(lineno)s] " fmt_message = "%(message)s" fmt = fmt_prefix + fmt_message datefmt = "%Y%m%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) # stdout logging for main worker only if distributed.is_main_process(): handler = logging.StreamHandler(stream=sys.stdout) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger.addHandler(handler) # file logging for all workers if output: if os.path.splitext(output)[-1] in (".txt", ".log"): filename = output else: filename = os.path.join(output, "logs", "log.txt") if not distributed.is_main_process(): global_rank = distributed.get_global_rank() filename = filename + ".rank{}".format(global_rank) os.makedirs(os.path.dirname(filename), exist_ok=True) handler = logging.StreamHandler(open(filename, "a")) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger.addHandler(handler) return logger def setup_logging( output: Optional[str] = None, *, name: Optional[str] = None, level: int = logging.DEBUG, capture_warnings: bool = True, ) -> None: """ Setup logging. Args: output: A file name or a directory to save log files. If None, log files will not be saved. If output ends with ".txt" or ".log", it is assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. name: The name of the logger to configure, by default the root logger. level: The logging level to use. capture_warnings: Whether warnings should be captured as logs. """ logging.captureWarnings(capture_warnings) _configure_logger(name, level=level, output=output)
dinov2-main
dinov2/logging/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from collections import defaultdict, deque import datetime import json import logging import time import torch import dinov2.distributed as distributed logger = logging.getLogger("dinov2") class MetricLogger(object): def __init__(self, delimiter="\t", output_file=None): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter self.output_file = output_file def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def dump_in_output_file(self, iteration, iter_time, data_time): if self.output_file is None or not distributed.is_main_process(): return dict_to_dump = dict( iteration=iteration, iter_time=iter_time, data_time=data_time, ) dict_to_dump.update({k: v.median for k, v in self.meters.items()}) with open(self.output_file, "a") as f: f.write(json.dumps(dict_to_dump) + "\n") pass def log_every(self, iterable, print_freq, header=None, n_iterations=None, start_iteration=0): i = start_iteration if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.6f}") data_time = SmoothedValue(fmt="{avg:.6f}") if n_iterations is None: n_iterations = len(iterable) space_fmt = ":" + str(len(str(n_iterations))) + "d" log_list = [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] if torch.cuda.is_available(): log_list += ["max mem: {memory:.0f}"] log_msg = self.delimiter.join(log_list) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == n_iterations - 1: self.dump_in_output_file(iteration=i, iter_time=iter_time.avg, data_time=data_time.avg) eta_seconds = iter_time.global_avg * (n_iterations - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): logger.info( log_msg.format( i, n_iterations, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: logger.info( log_msg.format( i, n_iterations, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() if i >= n_iterations: break total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info("{} Total time: {} ({:.6f} s / it)".format(header, total_time_str, total_time / n_iterations)) class SmoothedValue: """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, num=1): self.deque.append(value) self.count += num self.total += value * num def synchronize_between_processes(self): """ Distributed synchronization of the metric Warning: does not synchronize the deque! """ if not distributed.is_enabled(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") torch.distributed.barrier() torch.distributed.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, )
dinov2-main
dinov2/logging/helpers.py
import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__))) sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation import torch from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler import os from langchain.agents.initialize import initialize_agent from langchain.agents.tools import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms.openai import OpenAI import re import uuid from diffusers import StableDiffusionInpaintPipeline from PIL import Image import numpy as np from omegaconf import OmegaConf from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering import cv2 import einops from pytorch_lightning import seed_everything import random from ldm.util import instantiate_from_config from ControlNet.cldm.model import create_model, load_state_dict from ControlNet.cldm.ddim_hacked import DDIMSampler from ControlNet.annotator.canny import CannyDetector from ControlNet.annotator.mlsd import MLSDdetector from ControlNet.annotator.util import HWC3, resize_image from ControlNet.annotator.hed import HEDdetector, nms from ControlNet.annotator.openpose import OpenposeDetector from ControlNet.annotator.uniformer import UniformerDetector from ControlNet.annotator.midas import MidasDetector VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated. Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description. Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. TOOLS: ------ Visual ChatGPT has access to the following tools:""" VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: ``` Thought: Do I need to use a tool? Yes Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ``` When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: ``` Thought: Do I need to use a tool? No {ai_prefix}: [your response here] ``` """ VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist. You will remember to provide the image file name loyally if it's provided in the last tool observation. Begin! Previous conversation history: {chat_history} New input: {input} Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination. The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human. Thought: Do I need to use a tool? {agent_scratchpad}""" def cut_dialogue_history(history_memory, keep_last_n_words=500): tokens = history_memory.split() n_tokens = len(tokens) print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}") if n_tokens < keep_last_n_words: return history_memory else: paragraphs = history_memory.split('\n') last_n_tokens = n_tokens while last_n_tokens >= keep_last_n_words: last_n_tokens = last_n_tokens - len(paragraphs[0].split(' ')) paragraphs = paragraphs[1:] return '\n' + '\n'.join(paragraphs) def get_new_image_name(org_img_name, func_name="update"): head_tail = os.path.split(org_img_name) head = head_tail[0] tail = head_tail[1] name_split = tail.split('.')[0].split('_') this_new_uuid = str(uuid.uuid4())[0:4] if len(name_split) == 1: most_org_file_name = name_split[0] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) else: assert len(name_split) == 4 most_org_file_name = name_split[3] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) return os.path.join(head, new_file_name) def create_model(config_path, device): config = OmegaConf.load(config_path) OmegaConf.update(config, "model.params.cond_stage_config.params.device", device) model = instantiate_from_config(config.model).cpu() print(f'Loaded model config from [{config_path}]') return model class MaskFormer: def __init__(self, device): self.device = device self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) def inference(self, image_path, text): threshold = 0.5 min_area = 0.02 padding = 20 original_image = Image.open(image_path) image = original_image.resize((512, 512)) inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device) with torch.no_grad(): outputs = self.model(**inputs) mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) if area_ratio < min_area: return None true_indices = np.argwhere(mask) mask_array = np.zeros_like(mask, dtype=bool) for idx in true_indices: padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) mask_array[padded_slice] = True visual_mask = (mask_array * 255).astype(np.uint8) image_mask = Image.fromarray(visual_mask) return image_mask.resize(image.size) class ImageEditing: def __init__(self, device): print("Initializing StableDiffusionInpaint to %s" % device) self.device = device self.mask_former = MaskFormer(device=self.device) self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",).to(device) def remove_part_of_image(self, input): image_path, to_be_removed_txt = input.split(",") print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}') return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background") def replace_part_of_image(self, input): image_path, to_be_replaced_txt, replace_with_txt = input.split(",") print(f'replace_part_of_image: replace_with_txt {replace_with_txt}') original_image = Image.open(image_path) mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0] updated_image_path = get_new_image_name(image_path, func_name="replace-something") updated_image.save(updated_image_path) return updated_image_path class Pix2Pix: def __init__(self, device): print("Initializing Pix2Pix to %s" % device) self.device = device self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device) self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) def inference(self, inputs): """Change style of image.""" print("===>Starting Pix2Pix Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) original_image = Image.open(image_path) image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0] updated_image_path = get_new_image_name(image_path, func_name="pix2pix") image.save(updated_image_path) return updated_image_path class T2I: def __init__(self, device): print("Initializing T2I to %s" % device) self.device = device self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) self.pipe.to(device) def inference(self, text): image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] print(f'{text} refined to {refined_text}') image = self.pipe(refined_text).images[0] image.save(image_filename) print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): print("Initializing ImageCaptioning to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) return captions class image2canny: def __init__(self): print("Direct detect canny.") self.detector = CannyDetector() self.low_thresh = 100 self.high_thresh = 200 def inference(self, inputs): print("===>Starting image2canny Inference") image = Image.open(inputs) image = np.array(image) canny = self.detector(image, self.low_thresh, self.high_thresh) canny = 255 - canny image = Image.fromarray(canny) updated_image_path = get_new_image_name(inputs, func_name="edge") image.save(updated_image_path) return updated_image_path class canny2image: def __init__(self, device): print("Initialize the canny2image model.") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting canny2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="canny2image") real_image = Image.fromarray(x_samples[0]) # get default the index0 image real_image.save(updated_image_path) return updated_image_path class image2line: def __init__(self): print("Direct detect straight line...") self.detector = MLSDdetector() self.value_thresh = 0.1 self.dis_thresh = 0.1 self.resolution = 512 def inference(self, inputs): print("===>Starting image2hough Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh) updated_image_path = get_new_image_name(inputs, func_name="line-of") hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) image = Image.fromarray(hough) image.save(updated_image_path) return updated_image_path class line2image: def __init__(self, device): print("Initialize the line2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting line2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\ cpu().numpy().clip(0,255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="line2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2hed: def __init__(self): print("Direct detect soft HED boundary...") self.detector = HEDdetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2hed Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) hed = self.detector(resize_image(image, self.resolution)) updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") image = Image.fromarray(hed) image.save(updated_image_path) return updated_image_path class hed2image: def __init__(self, device): print("Initialize the hed2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting hed2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="hed2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2scribble: def __init__(self): print("Direct detect scribble.") self.detector = HEDdetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2scribble Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 detected_map = 255 - detected_map updated_image_path = get_new_image_name(inputs, func_name="scribble") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class scribble2image: def __init__(self, device): print("Initialize the scribble2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting scribble2image Inference") print(f'sketch device {self.device}') image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text image = 255 - image img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="scribble2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2pose: def __init__(self): print("Direct human pose.") self.detector = OpenposeDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2pose Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map, _ = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="human-pose") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class pose2image: def __init__(self, device): print("Initialize the pose2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting pose2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="pose2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2seg: def __init__(self): print("Direct segmentations.") self.detector = UniformerDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2seg Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="segmentation") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class seg2image: def __init__(self, device): print("Initialize the seg2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting seg2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="segment2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2depth: def __init__(self): print("Direct depth estimation.") self.detector = MidasDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2depth Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map, _ = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="depth") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class depth2image: def __init__(self, device): print("Initialize depth2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting depth2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="depth2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2normal: def __init__(self): print("Direct normal estimation.") self.detector = MidasDetector() self.resolution = 512 self.bg_threshold = 0.4 def inference(self, inputs): print("===>Starting image2 normal Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="normal-map") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class normal2image: def __init__(self, device): print("Initialize normal2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting normal2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = image[:, :, ::-1].copy() img = resize_image(HWC3(img), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="normal2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class BLIPVQA: def __init__(self, device): print("Initializing BLIP VQA to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device) def get_answer_from_question_and_image(self, inputs): image_path, question = inputs.split(",") raw_image = Image.open(image_path).convert('RGB') print(F'BLIPVQA :question :{question}') inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device) out = self.model.generate(**inputs) answer = self.processor.decode(out[0], skip_special_tokens=True) return answer class ConversationBot: def __init__(self): print("Initializing VisualChatGPT") self.llm = OpenAI(temperature=0) self.edit = ImageEditing(device="cuda:6") self.i2t = ImageCaptioning(device="cuda:4") self.t2i = T2I(device="cuda:1") self.image2canny = image2canny() self.canny2image = canny2image(device="cuda:1") self.image2line = image2line() self.line2image = line2image(device="cuda:1") self.image2hed = image2hed() self.hed2image = hed2image(device="cuda:2") self.image2scribble = image2scribble() self.scribble2image = scribble2image(device="cuda:3") self.image2pose = image2pose() self.pose2image = pose2image(device="cuda:3") self.BLIPVQA = BLIPVQA(device="cuda:4") self.image2seg = image2seg() self.seg2image = seg2image(device="cuda:7") self.image2depth = image2depth() self.depth2image = depth2image(device="cuda:7") self.image2normal = image2normal() self.normal2image = normal2image(device="cuda:5") self.pix2pix = Pix2Pix(device="cuda:3") self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') self.tools = [ Tool(name="Get Photo Description", func=self.i2t.inference, description="useful when you want to know what is inside the photo. receives image_path as input. " "The input to this tool should be a string, representing the image_path. "), Tool(name="Generate Image From User Input Text", func=self.t2i.inference, description="useful when you want to generate an image from a user input text and save it to a file. like: generate an image of an object or something, or generate an image that includes some objects. " "The input to this tool should be a string, representing the text used to generate image. "), Tool(name="Remove Something From The Photo", func=self.edit.remove_part_of_image, description="useful when you want to remove and object or something from the photo from its description or location. " "The input to this tool should be a comma seperated string of two, representing the image_path and the object need to be removed. "), Tool(name="Replace Something From The Photo", func=self.edit.replace_part_of_image, description="useful when you want to replace an object from the object description or location with another object from its description. " "The input to this tool should be a comma seperated string of three, representing the image_path, the object to be replaced, the object to be replaced with "), Tool(name="Instruct Image Using Text", func=self.pix2pix.inference, description="useful when you want to the style of the image to be like the text. like: make it look like a painting. or make it like a robot. " "The input to this tool should be a comma seperated string of two, representing the image_path and the text. "), Tool(name="Answer Question About The Image", func=self.BLIPVQA.get_answer_from_question_and_image, description="useful when you need an answer for a question based on an image. like: what is the background color of the last image, how many cats in this figure, what is in this figure. " "The input to this tool should be a comma seperated string of two, representing the image_path and the question"), Tool(name="Edge Detection On Image", func=self.image2canny.inference, description="useful when you want to detect the edge of the image. like: detect the edges of this image, or canny detection on image, or peform edge detection on this image, or detect the canny image of this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Canny Image", func=self.canny2image.inference, description="useful when you want to generate a new real image from both the user desciption and a canny image. like: generate a real image of a object or something from this canny image, or generate a new real image of a object or something from this edge image. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "), Tool(name="Line Detection On Image", func=self.image2line.inference, description="useful when you want to detect the straight line of the image. like: detect the straight lines of this image, or straight line detection on image, or peform straight line detection on this image, or detect the straight line image of this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Line Image", func=self.line2image.inference, description="useful when you want to generate a new real image from both the user desciption and a straight line image. like: generate a real image of a object or something from this straight line image, or generate a new real image of a object or something from this straight lines. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "), Tool(name="Hed Detection On Image", func=self.image2hed.inference, description="useful when you want to detect the soft hed boundary of the image. like: detect the soft hed boundary of this image, or hed boundary detection on image, or peform hed boundary detection on this image, or detect soft hed boundary image of this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Soft Hed Boundary Image", func=self.hed2image.inference, description="useful when you want to generate a new real image from both the user desciption and a soft hed boundary image. like: generate a real image of a object or something from this soft hed boundary image, or generate a new real image of a object or something from this hed boundary. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"), Tool(name="Segmentation On Image", func=self.image2seg.inference, description="useful when you want to detect segmentations of the image. like: segment this image, or generate segmentations on this image, or peform segmentation on this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Segmentations", func=self.seg2image.inference, description="useful when you want to generate a new real image from both the user desciption and segmentations. like: generate a real image of a object or something from this segmentation image, or generate a new real image of a object or something from these segmentations. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"), Tool(name="Predict Depth On Image", func=self.image2depth.inference, description="useful when you want to detect depth of the image. like: generate the depth from this image, or detect the depth map on this image, or predict the depth for this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Depth", func=self.depth2image.inference, description="useful when you want to generate a new real image from both the user desciption and depth image. like: generate a real image of a object or something from this depth image, or generate a new real image of a object or something from the depth map. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"), Tool(name="Predict Normal Map On Image", func=self.image2normal.inference, description="useful when you want to detect norm map of the image. like: generate normal map from this image, or predict normal map of this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Normal Map", func=self.normal2image.inference, description="useful when you want to generate a new real image from both the user desciption and normal map. like: generate a real image of a object or something from this normal map, or generate a new real image of a object or something from the normal map. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"), Tool(name="Sketch Detection On Image", func=self.image2scribble.inference, description="useful when you want to generate a scribble of the image. like: generate a scribble of this image, or generate a sketch from this image, detect the sketch from this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Sketch Image", func=self.scribble2image.inference, description="useful when you want to generate a new real image from both the user desciption and a scribble image or a sketch image. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"), Tool(name="Pose Detection On Image", func=self.image2pose.inference, description="useful when you want to detect the human pose of the image. like: generate human poses of this image, or generate a pose image from this image. " "The input to this tool should be a string, representing the image_path"), Tool(name="Generate Image Condition On Pose Image", func=self.pose2image.inference, description="useful when you want to generate a new real image from both the user desciption and a human pose image. like: generate a real image of a human from this human pose image, or generate a new real image of a human from this pose. " "The input to this tool should be a comma seperated string of two, representing the image_path and the user description")] self.agent = initialize_agent( self.tools, self.llm, agent="conversational-react-description", verbose=True, memory=self.memory, return_intermediate_steps=True, agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': VISUAL_CHATGPT_SUFFIX}, ) def run_text(self, text, state): print("===============Running run_text =============") print("Inputs:", text, state) print("======>Previous memory:\n %s" % self.agent.memory) self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) res = self.agent({"input": text}) print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) state = state + [(text, response)] print("Outputs:", state) return state, state def run_image(self, image, state, txt): print("===============Running run_image =============") print("Inputs:", image, state) print("======>Previous memory:\n %s" % self.agent.memory) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") print("======>Auto Resize Image...") img = Image.open(image.name) width, height = img.size ratio = min(512 / width, 512 / height) width_new, height_new = (round(width * ratio), round(height * ratio)) img = img.resize((width_new, height_new)) img = img.convert('RGB') img.save(image_filename, "PNG") print(f"Resize image form {width}x{height} to {width_new}x{height_new}") description = self.i2t.inference(image_filename) Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)] print("Outputs:", state) return state, state, txt + ' ' + image_filename + ' ' if __name__ == '__main__': bot = ConversationBot() with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo: chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT") state = gr.State([]) with gr.Row(): with gr.Column(scale=0.7): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False) with gr.Column(scale=0.15, min_width=0): clear = gr.Button("Clear️") with gr.Column(scale=0.15, min_width=0): btn = gr.UploadButton("Upload", file_types=["image"]) txt.submit(bot.run_text, [txt, state], [chatbot, state]) txt.submit(lambda: "", None, txt) btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt]) clear.click(bot.memory.clear) clear.click(lambda: [], None, chatbot) clear.click(lambda: [], None, state) demo.launch(server_name="0.0.0.0", server_port=7860)
visual-chatgpt-main
visual_chatgpt.py
Koi-main
example.py
from koi.main import Koi
Koi-main
koi/__init__.py
import torch from torch import nn from copy import deepcopy class Koi: def __init__( self, model, step_size, num_steps, num_iterations ): """ init Koi model = nn.Sequential( nn.Linear(1, 64), nn.Tanh(), nn.Linear(64, 64), nn.Tanh(), nn.Linear(64, 1), ) koi = Koi( model, step_size=0.01, num_steps=10, num_iterations=1000 ) """ self.model = model self.step_size = step_size self.num_steps = num_steps self.num_iterations = num_iterations def sgd_on_task(self, task): initial_parameters = deepcopy(self.model.state_dict()) for _ in range(self.num_steps): loss = task.loss(self.model) loss.backward() with torch.no_grad(): for param in self.model.parameters(): param -= self.step_size * param.grad param.grad.zero_() return self.model.state_dict() def train(self, tasks): for _ in range(self.num_iterations): task = tasks.sample() final_parameters = self.sgd_on_task(task) with torch.no_grad(): for name, param in self.model.named_parameters(): param.data += self.step_size * (final_parameters[name] - param.data) return self.model def forward(self, x): return self.model(x) class Sakana: """ # Initialize the model model = nn.Sequential( nn.Linear(1, 64), nn.Tanh(), nn.Linear(64, 64), nn.Tanh(), nn.Linear(64, 1), ) # Create a random torch input x = torch.randn(1, 1) # Initialize the swarm sakana = Sakana(num_koi=10, model=model, step_size=0.01, num_steps=10, num_iterations=1000) # Perform a forward pass through the swarm outputs = sakana.forward(x) # Print the outputs for i, output in enumerate(outputs): print(f"Output of Koi instance {i}: {output.item()}") """ def __init__( self, num_koi, model, step_size, num_steps, num_iterations ): self.kois = [ Koi( deepcopy(model), step_size, num_steps, num_iterations) for _ in range(num_koi) ] self.best_positions = [koi.model.state_dict() for koi in self.kois] self.best_swarm_position = deepcopy(self.best_positions[0]) self.velocities = [0 for _ in range(num_koi)] def update_positions(self): for i, koi in enumerate(self.kois): for param in koi.model.parameters(): self.velocities[i] += 0.1 * ( self.best_positions[i] - param.data ) + 0.1 * (self.best_swarm_position - param.data) param.data += self.velocities[i] def forward(self, x): return [koi.forward(x) for koi in self.kois]
Koi-main
koi/main.py
Paper-Implementation-Template-main
example.py
import torch import time import matplotlib.pyplot as plt import pytest from flashlora.attention import FlashAttention # Setup model = FlashAttention(dim=512, heads=8, dim_head=64, lora_dim_out=64, r=8).cuda() sequence_lengths = [2**i for i in range(10, 15)] # Benchmarking times = [] for sequence_length in sequence_lengths: x = torch.randn(16, sequence_length, 512).cuda() # batch of 16, sequence length varies, embedding dimension 512 y = torch.randn(16, sequence_length, 512).cuda() # target # Warmup for _ in range(10): out = model(x) loss = (out - y).sum() loss.backward() # Measure execution time start_time = time.time() for _ in range(100): out = model(x) loss = (out - y).sum() loss.backward() end_time = time.time() times.append(end_time - start_time) # Comparison for sequence_length, time in zip(sequence_lengths, times): print(f'Sequence length {sequence_length}: {time:.2f} seconds') # Plotting plt.plot(sequence_lengths, times) plt.title('Execution Time Comparison') plt.xlabel('Sequence Length') plt.ylabel('Time (seconds)') plt.show()
FlashLora-main
test.py
import math import torch from functools import partial from torch import nn, einsum from torch.autograd.function import Function from einops import rearrange from torch.jit import fork, wait from torch.cuda.amp import autocast, GradScaler from torch.nn import DataParallel from flashlora.lora import Lora # constants EPSILON = 1e-10 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # flash attention v1 - https://arxiv.org/abs/2205.14135 # flash attention v2 - https://tridao.me/publications/flash2/flash2.pdf class FlashAttentionFunction(Function): @staticmethod @torch.no_grad() def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): """ Algorithm 1 in the v2 paper """ device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) o = torch.zeros_like(q) all_row_sums = torch.zeros((*q.shape[:-1], 1), device = device) all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device = device) scale = (q.shape[-1] ** -0.5) num_row_tiles = math.ceil(q.shape[-2] / q_bucket_size) num_col_tiles = math.ceil(k.shape[-2] / k_bucket_size) if exists(mask) and mask.ndim == 2: mask = rearrange(mask, 'b n -> b 1 1 n') if not exists(mask): col_masks = (None,) * num_col_tiles mask = (col_masks,) * num_row_tiles else: mask = ((mask,) * num_row_tiles) if mask.shape[-2] == 1 else mask.split(q_bucket_size, dim = -2) mask = tuple(((row_mask,) * num_col_tiles) if row_mask.shape[-1] == 1 else row_mask.split(k_bucket_size, dim = -1) for row_mask in mask) row_splits = zip( q.split(q_bucket_size, dim = -2), o.split(q_bucket_size, dim = -2), mask, all_row_sums.split(q_bucket_size, dim = -2), all_row_maxes.split(q_bucket_size, dim = -2), ) for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim = -2), v.split(k_bucket_size, dim = -2), row_mask ) for k_ind, (kc, vc, col_mask) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if exists(col_mask): attn_weights.masked_fill_(~col_mask, max_neg_value) if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) block_row_maxes = attn_weights.amax(dim = -1, keepdims = True) new_row_maxes = torch.maximum(block_row_maxes, row_maxes) exp_weights = torch.exp(attn_weights - new_row_maxes) if exists(col_mask): exp_weights.masked_fill_(~col_mask, 0.) block_row_sums = exp_weights.sum(dim = -1, keepdims = True).clamp(min = EPSILON) exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) new_row_sums = exp_row_max_diff * row_sums + block_row_sums oc.mul_(exp_row_max_diff).add_(exp_values) row_maxes.copy_(new_row_maxes) row_sums.copy_(new_row_sums) oc.div_(row_sums) lse = all_row_sums.log() + all_row_maxes ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) ctx.save_for_backward(q, k, v, o, lse) return o @staticmethod @torch.no_grad() def backward(ctx, do): """ Algorithm 2 in the v2 paper """ causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args q, k, v, o, lse = ctx.saved_tensors device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) dq = torch.zeros_like(q) dk = torch.zeros_like(k) dv = torch.zeros_like(v) row_splits = zip( q.split(q_bucket_size, dim = -2), o.split(q_bucket_size, dim = -2), do.split(q_bucket_size, dim = -2), mask, lse.split(q_bucket_size, dim = -2), dq.split(q_bucket_size, dim = -2) ) for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim = -2), v.split(k_bucket_size, dim = -2), dk.split(k_bucket_size, dim = -2), dv.split(k_bucket_size, dim = -2), row_mask ) for k_ind, (kc, vc, dkc, dvc, col_mask) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) p = torch.exp(attn_weights - lsec) if exists(col_mask): p.masked_fill_(~col_mask, 0.) dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) dp = einsum('... i d, ... j d -> ... i j', doc, vc) D = (doc * oc).sum(dim = -1, keepdims = True) ds = p * scale * (dp - D) dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) dqc.add_(dq_chunk) dkc.add_(dk_chunk) dvc.add_(dv_chunk) return dq, dk, dv, None, None, None, None # main class # just flash attention in plain pytorch # it will be way slower than implementing it in CUDA # for tinkering and educational purposes class FlashAttention(nn.Module): def __init__( self, *, dim, heads = 8, dim_head = 64, causal = False, q_bucket_size = 512, k_bucket_size = 1024, parallel = False, mixed_precision = False, lora_dim_out = 64, lora_r = 8, lora_alpha = None ): super().__init__() self.heads = heads self.causal = causal self.parallel = parallel self.mixed_precision = mixed_precision inner_dim = heads * dim_head self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) # Initialize Lora modules for queries, keys, and values self.lora_q = Lora(dim, lora_dim_out, r=lora_r, alpha=lora_alpha) self.lora_k = Lora(dim, lora_dim_out, r=lora_r, alpha=lora_alpha) self.lora_v = Lora(dim, lora_dim_out, r=lora_r, alpha=lora_alpha) # memory efficient attention related parameters self.q_bucket_size = q_bucket_size self.k_bucket_size = k_bucket_size if self.parallel: self.model = DataParallel(self) if self.mixed_precision: self.scaler = GradScaler() def forward( self, x, context = None, mask = None, q_bucket_size = None, k_bucket_size = None, ): q_bucket_size = default(q_bucket_size, self.q_bucket_size) k_bucket_size = default(k_bucket_size, self.k_bucket_size) h = self.heads context = default(context, x) q = self.to_q(x) k, v = self.to_kv(context).chunk(2, dim=-1) # Use Lora modules to modify queries, keys, and values q = q + self.lora_q(x) print(f"q shape: {q.shape}") k = k + self.lora_k(x) print(f" K shape: {k.shape}") v = v + self.lora_v(x) print(f"V = v.shape: {v.shape}") q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) if self.parallel: # Split the input data into chunks and move each chunk to the correct GPU num_gpus = torch.cuda.device_count() x_chunks = x.split(x.size(0) // num_gpus) x_chunks = [chunk.to(f'cuda:{i}') for i, chunk in enumerate(x_chunks)] q = x_chunks if self.mixed_precision: # Use autocast to allow operations to run in lower precision with autocast(): out = FlashAttentionFunction.apply(q, k, v, mask, self.causal, q_bucket_size, k_bucket_size) else: out = FlashAttentionFunction.apply(q, k, v, mask, self.causal, q_bucket_size, k_bucket_size) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out)
FlashLora-main
flashlora/attention.py
import torch from torch import nn #helper exists( def exists(val): return val is not None def default(val, d): return val if exists(val) else d class Lora(nn.Module): def __init__( self, dim, dim_out, r=8, alpha=None, ): super().__init__() self.linear = nn.Linear(dim, dim_out) alpha = default(alpha, r) self.scale = alpha / r self.A = nn.Parameter(torch.randn(dim, r)) self.B = nn.Parameter(torch.randn(r, dim_out)) @property def weight(self): return (self.A @ self.B) * self.scale def forward(self, x): x = self.linear(x) #apply the linear layer return x @ self.weight
FlashLora-main
flashlora/lora.py
import timeit import torch from longnet.attention import MultiHeadDilatedAttention # Model config d_model = 512 num_heads = 8 dilation_rate = 2 segment_size = 64 device = "cuda:0" dtype = torch.float16 # Input data batch_size = 32 seq_len = 8192 # Create model and data # Convert model to dtype along with moving to device model = MultiHeadDilatedAttention(d_model, num_heads, dilation_rate, segment_size).to(device).to(dtype) x = torch.randn((batch_size, seq_len, d_model), device=device, dtype=dtype) # Test forward pass with torch.no_grad(): output = model(x) print(f"Output shape: {output.shape}") # Expected (batch_size, seq_len) # Benchmark model num_runs = 1000 start_time = timeit.default_timer() for _ in range(num_runs): model(x) elapsed_time = timeit.default_timer() - start_time print(f"Average forward pass time: {elapsed_time / num_runs:.6f} seconds")
LongNet-master
mh_example.py
import timeit import torch from longnet.attention import ParallelWrapper, DilatedAttention #model condig d_model = 512 num_heads = 8 dilation_rate = 2 segment_size = 64 device="cuda:0" dtype=torch.float16 #inputs batch_size = 32 seq_len = 8192 #create model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = DilatedAttention( d_model, num_heads, dilation_rate, segment_size ) parallel_model = ParallelWrapper(model, device=device) x = torch.randn((batch_size, seq_len, d_model), device=device, dtype=dtype) #test forward pass with torch.no_grad(): output = model(x) print(f"Output shape: {output.shape}") #expected (batch_size, seq_len) #benchmark model num_runs = 1000 start_time = timeit.default_timer() for _ in range(num_runs): model(x) elapsed_time = timeit.default_timer() - start_time print(f"Average forward pass time: {elapsed_time / num_runs:.6f} seconds")
LongNet-master
parallel_example.py
from setuptools import setup, find_packages setup( name = 'LongNet', packages = find_packages(exclude=[]), version = '0.4.8', license='MIT', description = 'LongNet - Pytorch', author = 'Kye Gomez', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/kyegomez/LongNet', keywords = [ 'artificial intelligence', 'deep learning', 'optimizers', "Prompt Engineering" ], install_requires=[ 'torch', 'einops', 'torchscale', 'transformers', 'accelerate', 'bitsandbytes', 'fairscale', 'timm', 'dataclasses', 'beartype' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
LongNet-master
setup.py
import timeit import torch from longnet.attention import DilatedAttention #model config d_model = 512 num_heads = 8 dilation_rate = 2 segment_size = 64 device = "cuda:0" dtype=torch.float16 #input data batch_size = 32 seq_len = 8192 #create model and data model = DilatedAttention(d_model, num_heads, dilation_rate, segment_size).to(device) x = torch.randn((batch_size, seq_len, d_model), device=device, dtype=dtype) #test forward pass with torch.no_grad(): output = model(x) print(f"Output shape: {output.shape}") # expected (batch_size, seq_Len) #benchmark model num_runs = 1000 start_time = timeit.default_timer() for _ in range(num_runs): model(x) elapsed_time = timeit.default_timer() - start_time print(f"Average forward pass time: {elapsed_time / num_runs:.6f} seconds")
LongNet-master
example.py
import time import torch import matplotlib.pyplot as plt from longnet.attention import DilatedAttention from longnet.attend import FlashAttention class DilatedAttentionTest: def __init__(self, batch_size, d_model, device): self.model = DilatedAttention(d_model=d_model, num_heads=8, dilation_rate=2, segment_size=64, use_xpos=False, use_rel_pos_bias=False) self.model.to(device) self.batch_size = batch_size self.device = device def test(self, seq_len): x = torch.randn(self.batch_size, seq_len, self.model.d_model).to(self.device) #warm up gpu for _ in range(10): _ = self.model(x) #benchmark start_time = time.time() for _ in range(100): _ = self.model(x) end_time = time.time() #calculate average forward pass time avg_time = (end_time - start_time) / 100 return avg_time class FlashAttentionTest(DilatedAttention): def __init__(self, batch_size, d_model, device): self.model = FlashAttention(causal=False, dropout=0.0, flash=True) self.model.to(device) self.batch_size = batch_size self.device = device #inti testing seq_lengths = [64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 64000] batch_size = 32 d_model = 512 device = "cuda:0" dilated_tester = DilatedAttentionTest(batch_size, d_model, device) flash_tester = FlashAttentionTest(batch_size, d_model, device) dilated_times = [] flash_times = [] #test models on each sequence length for seq_len in seq_lengths: dilated_time = dilated_tester.test(seq_len) dilated_times.append(dilated_time) flash_time = flash_tester.test(seq_len) flash_times.append(flash_time) print(f"Sequence lengths: {seq_len}, Dilated Attention time: {dilated_time}, flash Attention time: {flash_time}") # Plot the results plt.figure(figsize=(10, 6)) plt.plot(seq_lengths, dilated_times, marker='o', label='Dilated Attention') plt.plot(seq_lengths, flash_times, marker='o', label='Flash Attention') plt.title('Average forward pass time for different sequence lengths') plt.xlabel('Sequence length') plt.ylabel('Average forward pass time (seconds)') plt.legend() plt.grid(True) plt.show()
LongNet-master
benchmark/benchmark.py
import timeit import torch from LongNet import DilatedAttention #model config d_model = 512 num_heads = 8 dilation_rate = 2 segment_size = 64 device = "cuda:0" dtype=torch.float16 #input data batch_size = 32 seq_len = 1024 #create model and data model = DilatedAttention(d_model, num_heads, dilation_rate, segment_size).to(device) x = torch.randn((batch_size, seq_len, d_model), device=device, dtype=dtype) #test forward pass with torch.no_grad(): output = model(x) print(f"Output shape: {output.shape}") # expected (batch_size, seq_Len) #benchmark model num_runs = 1000 start_time = timeit.default_timer() for _ in range(num_runs): model(x) elapsed_time = timeit.default_timer() - start_time print(f"Average forward pass time: {elapsed_time / num_runs:.6f} seconds")
LongNet-master
benchmark/test.py
import time import unittest import torch from LongNet import DilatedAttention class TestDilatedAttention(unittest.TestCase): def test_output_shape(self): # Setup input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) # Action output = dilated_attention(input_tensor) # Assert self.assertEqual(output.shape, (2, 128, 512)) def test_xpos(self): # Setup input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64, use_xpos=True) # Action output = dilated_attention(input_tensor) # Assert self.assertEqual(output.shape, (2, 128, 512)) def test_relative_position_bias(self): # Setup input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64, use_rel_pos_bias=True) # Action output = dilated_attention(input_tensor) # Assert self.assertEqual(output.shape, (2, 128, 512)) def test_attention_consistency(self): # Setup input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) # Action output = dilated_attention(input_tensor) # Assert self.assertTrue((output.std(dim=-1) > 0).all()) def test_speed(self): # Setup input_tensor = torch.randn(2, 1024, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) # Action start_time = time.time() dilated_attention(input_tensor) end_time = time.time() # Assert self.assertLess(end_time - start_time, 1) def test_gradient_flow(self): # Setup input_tensor = torch.randn(2, 128, 512, requires_grad=True) dilated_attention = DilatedAttention(512, 8, 2, 64) # Action output = dilated_attention(input_tensor) output.sum().backward() grad_norm = input_tensor.grad.norm().item() # Assert self.assertLess(grad_norm, 1e6) self.assertGreater(grad_norm, 1e-6) def test_scaling(self): input_tensor = torch.randn(2, 1024, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) start_time = time.time() _ = dilated_attention(input_tensor) time_for_1024 = time.time() - start_time input_tensor = torch.randn(2, 2048, 512) start_time = time.time() _ = dilated_attention(input_tensor) time_for_2048 = time.time() - start_time self.assertLessEqual(time_for_2048/time_for_1024, 2) def test_reproducibility(self): torch.manual_seed(0) input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) output1 = dilated_attention(input_tensor) torch.manual_seed(0) input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) output2 = dilated_attention(input_tensor) self.assertTrue(torch.allclose(output1, output2)) def test_attention_distribution(self): input_tensor = torch.randn(2, 128, 512) dilated_attention = DilatedAttention(512, 8, 2, 64) _, attn_weights = dilated_attention(input_tensor) self.assertTrue(torch.allclose(attn_weights.sum(dim=-1), torch.tensor(1.))) def setUp(self): self.d_model = 128 self.num_heads = 4 self.dilation_rate = 2 self.segment_size = 32 self.dropout = 0.1 self.casual = False self.use_xpos = False self.use_rel_pos_bias = False self.batch_size = 10 self.seq_len = 100 self.x = torch.rand(self.batch_size, self.seq_len, self.d_model) self.sparse_dilated_attention = DilatedAttention(self.d_model, self.num_heads, self.dilation_rate, self.segment_size, self.dropout, self.casual, self.use_xpos, self.use_rel_pos_bias) def test_forward_pass(self): output = self.sparse_dilated_attention(self.x) self.assertEqual(output.size(), (self.batch_size, self.seq_len, self.d_model)) def test_attention_outputs(self): output = self.sparse_dilated_attention(self.x) self.assertTrue(torch.all(output >= 0)) self.assertTrue(torch.all(output <= 1)) def test_dropout(self): self.sparse_dilated_attention.dropout.p = 1.0 output = self.sparse_dilated_attention(self.x) self.assertTrue(torch.all(output == 0)) # class TestMultiModalDilationAttention(unittest.TestCase): # def test_output_shape(self): # # Setup # input_tensor = [torch.randn(2, 128, 512), torch.randn(2, 128, 512)] # multi_modal_attention = MultiModalDilationAttention(512, 8, 2, 64, num_modalities=2) # # Action # output = multi_modal_attention(input_tensor) # # Assert # self.assertEqual(output.shape, (2, 128, 512)) # def test_single_modality(self): # # Setup # input_tensor = [torch.randn(2, 128, 512)] # multi_modal_attention = MultiModalDilationAttention(512, 8, 2, 64, num_modalities=1) # # Action # output = multi_modal_attention(input_tensor) # # Assert # self.assertEqual(output.shape, (2, 128, 512)) if __name__ == '__main__': unittest.main()
LongNet-master
test/attention.py
import torch import time from longnet.attention import DilatedAttention # Initialize parameters bsz = 32 d_model = 512 num_heads = 8 dilation_rate = 2 segment_size = 512 # You might want to adjust this dropout = 0.1 casual = False use_xpos = False use_rel_pos_bias = False sequence_lengths = list(range(500, 2500, 500)) # Device configuration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype=torch.float32 # Initialize model model = DilatedAttention( d_model=d_model, num_heads=num_heads, dilation_rate=dilation_rate, segment_size=segment_size, dropout=dropout, casual=casual, use_xpos=use_xpos, use_rel_pos_bias=use_rel_pos_bias ).to(device) time_taken = [] tflops_per_s = [] # Benchmark model for seq_len in sequence_lengths: x = torch.randn(bsz, seq_len, d_model).to(device).type(dtype) torch.cuda.synchronize() start = time.time() output = model(x) torch.cuda.synchronize() elapsed = time.time() - start time_taken.append(elapsed) total_flops = 4 * seq_len**2 * (d_model // num_heads) * num_heads tflops_per_s.append(total_flops / elapsed / 1e12) # Convert to TFLOPs # Print benchmark results for seq_len, elapsed, tflops in zip(sequence_lengths, time_taken, tflops_per_s): print(f"Sequence length: {seq_len}, Time elapsed: {elapsed} s, TFLOPs/s: {tflops}") # # Plotting # plt.figure(figsize=(10,4)) # plt.subplot(1,2,1) # plt.plot(sequence_lengths, time_taken) # plt.title('Time Taken vs Sequence Length') # plt.xlabel('Sequence Length') # plt.ylabel('Time Taken (s)') # plt.subplot(1,2,2) # plt.plot(sequence_lengths, tflops_per_s) # plt.title('Performance vs Sequence Length') # plt.xlabel('Sequence Length') # plt.ylabel('Performance (TFLOPs/s)') # plt.tight_layout() # plt.show()
LongNet-master
test/flops_test.py
import torch import time from longnet.attention import DilatedAttention import matplotlib.pyplot as plt # Define sequence lengths to test seq_lengths = [64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 64000] # Define batch size and feature dimension batch_size = 32 d_model = 512 device = 'cuda:0' # Initialize DilatedAttentionold module attention = DilatedAttention(d_model=d_model, num_heads=8, dilation_rate=2, segment_size=64, use_xpos=False, use_rel_pos_bias=False) # Move the model to GPU attention.to(device) # Prepare a list to store times times = [] # Benchmark each sequence length for seq_len in seq_lengths: # Create a random input tensor x = torch.randn(batch_size, seq_len, d_model).to(device) # Warm up GPU for _ in range(10): _ = attention(x) # Benchmark start_time = time.time() for _ in range(100): _ = attention(x) end_time = time.time() # Calculate average forward pass time avg_time = (end_time - start_time) / 100 # Store the time times.append(avg_time) print(f"Sequence length: {seq_len}, Average forward pass time: {avg_time} seconds") # Plot the results plt.figure(figsize=(10, 6)) plt.plot(seq_lengths, times, marker='o') plt.title('Average forward pass time for different sequence lengths') plt.xlabel('Sequence length') plt.ylabel('Average forward pass time (seconds)') plt.grid(True) plt.show()
LongNet-master
test/speed_sequence.py
import timeit import torch from longnet.attention import DilatedAttention #model config d_model = 512 num_heads = 8 dilation_rate = 2 segment_size = 64 device = "cuda:0" dtype=torch.float16 #input data batch_size = 32 seq_len = 1024 #create model and data model = DilatedAttention(d_model, num_heads, dilation_rate, segment_size).to(device) x = torch.randn((batch_size, seq_len, d_model), device=device, dtype=dtype) #test forward pass with torch.no_grad(): output = model(x) print(f"Output shape: {output.shape}") # expected (batch_size, seq_Len) #benchmark model num_runs = 1000 start_time = timeit.default_timer() for _ in range(num_runs): model(x) elapsed_time = timeit.default_timer() - start_time print(f"Average forward pass time: {elapsed_time / num_runs:.6f} seconds")
LongNet-master
test/example_old.py
# from longnet.model import LongNetTokenizer, LongNetSelector import torch # from model import LongNetTokenizer, from longnet.model import LongNetTokenizer, LongNet class LongNetTest: def __init__(self): self.longnet_selector = LongNet() self.tokenizer = LongNetTokenizer() def run_test(self, model_type: str): data = { 'target_text': ["This is a test sentence."] * 2, 'image': torch.rand(2, 3, 224, 224) # 2 random images } inputs = self.tokenizer.tokenize(data) if model_type.lower() == 'multimodal': self._test_model('multimodal', inputs) elif model_type.lower() == 'language': self._test_model('language', inputs) else: raise ValueError(f"Invalid model_type: {model_type}. Please use either 'multimodal' or 'language'.") def _test_model(self, model_type: str, inputs: dict): print(f"Testing {model_type} LongNet model...") model = self.longnet_selector.get_model(model_type) model(**inputs) print(f"{model_type} LongNet model forward pass succeeded!") # # Now you can use the class like this: # tester = LongNetTest() # tester.run_test('multimodal') # tester.run_test('language')
LongNet-master
test/model/model_test.py
import unittest import torch from LongNet import DilatedLongNet class TestDilatedLongNet(unittest.TestCase): def setUp(self): self.model = DilatedLongNet() def test_model_shape(self): # Test input and output dimensions x = torch.randint(0, 16000, (4, 1024)) out = self.model(x) self.assertEqual(out.shape, (4, 1024, 16000)) def test_generate(self): # Test sample generation out = self.model.generate(x, temperature=1.0, filter_thres=0.9) self.assertEqual(out.shape[0], 4) self.assertEqual(out.shape[1], 1024) self.assertEqual(out.shape[2], 4) def test_dilation(self): # Test dilated attention self.assertEqual(self.model.dilation_rate, 1) self.assertEqual(self.model.segment_size, 0) self.assertFalse(self.model.casual) def test_gradients(self): # Test backward pass x = torch.randint(0, 16000, (4, 1024)) out = self.model(x) out.backward() for name, param in self.model.named_parameters(): self.assertTrue(param.grad is not None) self.assertFalse(torch.isnan(param.grad).any()) param.grad.zero_() def test_training(self): # End-to-end training test optim = torch.optim.Adam(self.model.parameters()) for _ in range(100): x = torch.randint(0, 16000, (4, 1024)) loss = self.model(x).loss optim.zero_grad() loss.backward() optim.step() self.assertLess(loss.item(), 10) if __name__ == '__main__': unittest.main()
LongNet-master
test/model/dilated_model.py
import unittest from transformers import TrainingArguments, Trainer from longnet.model import LongNetTokenizer, LongNet class TestLongNetModels(unittest.TestCase): def setUp(self): self.model = LongNet() self.tokenizer = LongNetTokenizer() self.training_args = TrainingArguments( output_dir="./test_output", num_train_epochs=1, per_device_train_batch_size=1, save_steps=10_000, save_total_limit=2, logging_steps=500, logging_dir='./test_logs', ) def test_language_model(self): model = self.model train_dataset = self.get_sample_dataset() trainer = Trainer( model=model, args=self.training_args, train_dataset=train_dataset, ) trainer.train() def get_sample_dataset(self): # generate a simple dataset for testing data = {'target_text': ["This is a test sentence."] * 10} # Tokenize dataset inputs = self.tokenizer.tokenize(data) return inputs if __name__ == "__main__": unittest.main()
LongNet-master
test/model/test.py
import torch import time from LongNet import DilatedLongNet # Instantiate the DilatedLongNet model model = DilatedLongNet() # Define the input tensor batch_size = 1 sequence_length = 512 input_tensor = torch.randn(batch_size, sequence_length).long() # Enable CUDA if available if torch.cuda.is_available(): model = model.cuda() input_tensor = input_tensor.cuda() # Measure the model forward pass speed start_time = time.time() _ = model(input_tensor) end_time = time.time() forward_pass_time = end_time - start_time print(f"Model Forward Pass Time: {forward_pass_time} seconds") # Count the number of parameters in the model num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"Number of Model Parameters: {num_parameters}")
LongNet-master
test/model/model.py
import torch import torch.nn as nn import torch.nn.functional as F from longnet.attend import FlashAttention from longnet.utils import XPOS, MixOutputs, RelativePositionBias, SparsifyIndices device = "cuda:0" dtype=torch.float16 class ParallelWrapper: """ A simple wrapper to enable easy usage of data parallelism. Arguments: model: The neural network model to be parallelized. device (optional): The device to which the model should be moved. Default: "cuda". use_data_parallel (optional): A boolean flag to indicate whether to use data parallelism or not. Default: True. """ def __init__( self, model, device="cuda", use_data_parallel=True ): self.model = model.to(device) self.use_data_parallel = use_data_parallel self.device = device if self.use_data_parallel and torch.cuda.device_count() < 1: print(f"Using {torch.cuda.device_count()} GPUS") self.model = nn.DataParallel(self.model) def forward(self, *args, **kwargs): return self.model(*args, **kwargs) def to(self, device): self.device = device self.model= self.model.to(device) return self def __getattr__(self, name): #redirect attribute access to the internal model to allow direct access to its methods and props return getattr(self.model, name) #add alibi, qk layer norm, one write head, multiway, class DilatedAttentionNew(nn.Module): """ Dilated Attention Module. Arguments: d_model: The dimension of the attention layers. num_heads: The number of attention heads. dilation_rate: The dilation rate for dilated attention. segment_size: The segment size for dilated attention. dropout (optional): The dropout probability. Default: 0.0 casual (optional): If set to True, the attention mechanism is casual. Default: False use_xpos (optional): If set to True, xpos is used for positional encoding. Default: False use_rel_pos_bias (optional): If set to True, relative position bias is used in the attention mechanism. Default: False Usage: The `DilatedAttention` class can be used as a module for neural networks and is especially suited for transformer architectures. Example: attention = DilatedAttention(d_model=512, num_heads=8, dilation_rate=2, segment_size=64, use_xpos=True, use_rel_pos_bias=True) output = attention(input_tensor) This will return the output tensor after applying dilated attention. The `use_xpos` and `use_rel_pos_bias` parameters allow for switching on positional encoding and relative positional bias respectively. """ def __init__(self, d_model, num_heads, dilation_rate, segment_size, dropout=0.0, casual=False, use_xpos=False, use_rel_pos_bias=False): super(DilatedAttentionNew, self).__init__() self.d_model = d_model self.num_heads = num_heads self.dilation_rate = dilation_rate self.segment_size = segment_size self.dropout = nn.Dropout(dropout) self.casual = casual self.use_xpos = use_xpos self.use_rel_pos_bias = use_rel_pos_bias self.attention = FlashAttention(causal=self.casual, dropout=dropout).to(device) if use_xpos: self.xpos = XPOS(head_dim=d_model//num_heads) if use_rel_pos_bias: self.relative_bias = RelativePositionBias(num_buckets=32, max_distance=128, n_heads=num_heads) #head offsets self.head_offsets = nn.Parameter(torch.randn(num_heads, d_model)) def get_mask(self, i, j): return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 2) def forward(self, x): # get dimensions batch_size, seq_len, _ = x.shape print(f"X shape: {x.shape} and dtype: {x.dtype}") # calculate the necessary padding padding_len = -seq_len % self.segment_size x = F.pad(x, (0,0,0,padding_len)) print(f"f x after pad: {x.shape} and dtype: {x.dtype}") seq_len = seq_len + padding_len if self.use_xpos: x = self.xpos(x) print(f"XPOS shape and dtype: {x.shape} and dtype: {x.dtype}") head_idx = int(self.head_offsets[0, 0].item()) print(f"head_idx: {head_idx}") # Prepare sparse indices # max_subatt_n, sparse_indices, padding_mask = sparsify_indices(x, [self.segment_size], [self.dilation_rate], self.head_offsets) max_subatt_n, sparse_indices, padding_mask = SparsifyIndices(x, [self.segment_size], [self.dilation_rate], head_idx) # Split and sparsify x = x.view(batch_size, -1, self.segment_size, self.d_model) print(f"Split and sparsify x: {x.shape} and dtype: {x.dtype}") #Gather operation x_dim1 = x.size(1) x = x.gather(2, sparse_indices[:, :x_dim1, :].unsqueeze(-1).expand(-1, -1, -1, self.d_model)) print(f"gather op: {x.shape} and xdtype: {x.dtype}") # Perform attention attn_output = self.attention(x, x, x) print(f"attn output shape and type: {attn_output.shape} and dtype: {attn_output.dtype}") #if use rel pos => apply relative positioning bias if self.use_rel_pos_bias: attn_output += self.relative_bias(batch_size, attn_output.size(1), attn_output.size(1)) print(f"attn_output shape and dtype: {attn_output.shape} and dtype: {attn_output.dtype}") # if casual create a mask and apply to the output if self.casual: mask = self.get_mask(attn_output.size(1), attn_output.size(1)) attn_output = attn_output.masked_fill(mask, float('-inf')) # apply dropout attn_output = self.dropout(attn_output) # Mix outputs attn_output = MixOutputs((batch_size, seq_len, self.d_model), x.dtype, x.device, attn_output, attn_output.sum(dim=-1), sparse_indices) print(f"Attn output dtype and shape: {attn_output.shape}") return attn_output #add alibi, qk layer norm, one write head, multihway, class DilatedAttention(nn.Module): """ Dilated Attention Module. Arguments: d_model: The dimension of the attention layers. num_heads: The number of attention heads. dilation_rate: The dilation rate for dilated attention. segment_size: The segment size for dilated attention. dropout (optional): The dropout probability. Default: 0.0 casual (optional): If set to True, the attention mechanism is casual. Default: False use_xpos (optional): If set to True, xpos is used for positional encoding. Default: False use_rel_pos_bias (optional): If set to True, relative position bias is used in the attention mechanism. Default: False Usage: The `DilatedAttention` class can be used as a module for neural networks and is especially suited for transformer architectures. Example: attention = DilatedAttention(d_model=512, num_heads=8, dilation_rate=2, segment_size=64, use_xpos=True, use_rel_pos_bias=True) output = attention(input_tensor) This will return the output tensor after applying dilated attention. The `use_xpos` and `use_rel_pos_bias` parameters allow for switching on positional encoding and relative positional bias respectively. """ def __init__(self, d_model, num_heads, dilation_rate, segment_size, dropout=0.0, casual=False, use_xpos=False, use_rel_pos_bias=False): super(DilatedAttention, self).__init__() self.d_model = d_model self.num_heads = num_heads self.dilation_rate = dilation_rate self.segment_size = segment_size self.dropout = nn.Dropout(dropout) self.casual = casual self.use_xpos = use_xpos self.use_rel_pos_bias = use_rel_pos_bias self.attention = FlashAttention(causal=self.casual, dropout=dropout).to(device) if use_xpos: self.xpos = XPOS(head_dim=d_model//num_heads) if use_rel_pos_bias: self.relative_bias = RelativePositionBias(num_buckets=32, max_distance=128, n_heads=num_heads) #head offsets self.head_offsets = nn.Parameter(torch.randn(num_heads, d_model)) def get_mask(self, i, j): return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 2) def forward(self, x): print(f"X original shape: {x.shape} and x dtype: {x.dtype}") batch_size, seq_len, _ = x.shape padding_len = -seq_len % self.segment_size x = F.pad(x, (0,0,0,padding_len)) seq_len = seq_len + padding_len print(f"Paddex x shape: {x.shape}") if self.use_xpos: x = self.xpos(x) # Split and sparsify x = x.view(batch_size, -1, self.segment_size, self.d_model) print(f"z after view shape: {x.shape}") x = x[:, :, :: self.dilation_rate, :] print(f"x after dilation shape: {x.shape} and x.dtype: {x.dtype}") # Perform attention attn_output = self.attention(x, x, x) print(f"Attn output: {attn_output.shape} and dtype: {attn_output.dtype}") #if use rel pos => apply relative positioning bias if self.use_rel_pos_bias: attn_output += self.relative_bias(batch_size, attn_output.size(1), attn_output.size(1)) print(f"attn_output: {attn_output.shape} and attn output: {attn_output.dtype}") # if casual create a mask and apply to the output if self.casual: mask = self.get_mask(attn_output.size(1), attn_output.size(1)) print(f"mask shape: {mask.shape} and mask dtype: {x.dtype}") attn_output = attn_output.masked_fill(mask, float('-inf')) print(f"attn output shape: {attn_output.shape} and attn_output: {attn_output.dtype}") # apply dropout attn_output = self.dropout(attn_output) print(f"attn output after dropout: {attn_output.shape} and dtype: {attn_output.dtype}") # Scatter and concatenate attn_output = attn_output.reshape(batch_size, -1, self.d_model) print(f"attn_output scatter and concatenate: {attn_output.shape} and {attn_output.dtype}") return attn_output class MultiHeadDilatedAttention(DilatedAttention): """ **Description:** The `MultiHeadDilatedAttention` class offers a multi-head version of dilated attention, allowing the model to focus on various parts of an input sequence with different patterns. **Parameters:** - `d_model`: Dimension of the model. This is usually a multiple of `num_heads`. - `num_heads`: Number of attention heads. - `dilation_rate`: The rate of dilation for the dilated attention mechanism. - `segment_size`: The size of the segment for dilated attention. Additionally, the parameters from the parent class `DilatedAttention` are inherited. **Methods:** - `sparsify(x, sj, head_layer)`: Transforms the tensor by applying the dilated attention offset based on the given head layer. It's used internally and typically not called directly. - `forward(x)`: Computes the multi-head dilated attention on the input tensor `x`. """ def __init__( self, d_model, num_heads, dilation_rate, segment_size, *args, **kwargs, ): super(MultiHeadDilatedAttention, self).__init__(d_model, num_heads, dilation_rate, segment_size, *args, **kwargs) self.head_dim = d_model // num_heads #define linear layers for Q, K, V projections for each head self.query_layers = nn.ModuleList([nn.Linear(d_model, self.head_dim) for _ in range(num_heads)]) self.key_layers = nn.ModuleList([nn.Linear(d_model, self.head_dim) for _ in range(num_heads)]) self.value_layers = nn.ModuleList([nn.Linear(d_model, self.head_dim) for _ in range(num_heads)]) #define linear layer for concat the multi head outputs self.concat_layer = nn.Linear(num_heads * self.head_dim, d_model) def sparsify(self, x, sj, head_layer): x_proj = head_layer(x) batch_size, seq_len, _ = x_proj.shape padding_len = -seq_len % self.segment_size x_proj = F.pad(x_proj, (0, 0, 0, padding_len)) seq_len += padding_len x_proj = x_proj.view(batch_size, -1, self.segment_size, self.head_dim) x_proj = x_proj[:, :, sj::self.dilation_rate, :] return x_proj def forward(self, x): batch_size, seq_len, _ = x.shape all_heads_output = [] for j in range(self.num_heads): sj = j % self.dilation_rate #create Q, K, V for each head based on offset Qi = self.sparsify(x, sj, self.query_layers[j]) Ki = self.sparsify(x, sj, self.key_layers[j]) Vi = self.sparsify(x, sj, self.value_layers[j]) #combine q, k, v tensors for base class forward method torch.cat([Qi, Ki, Vi], dim=-1) #apply inherited atention on q, k, v head_output = super().forward(Qi, Ki, Vi) all_heads_output.append(head_output) #concat multi head outputs and pdd through final linear layer concat_heads = torch.cat(all_heads_output, dim=-1) return self.concat_layer(concat_heads)
LongNet-master
LongNet/attention.py
from longnet.attention import ParallelWrapper, DilatedAttention # from longnet.model import LongNetTokenizer, LongNet, DecoderConfig, Decoder, DilatedLongNet # from longnet.iterations import DynamicDilatedAttention, DilatedAttentionOld, DilatedAttentionOP from longnet.model import LongNet
LongNet-master
LongNet/__init__.py
from torch.nn import Module from transformers import AutoTokenizer from longnet.transformer import LongNet class LongNetTokenizer: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/gpt-neox-20b", eos_token="<eos>", pad_token="<pad>", extra_ids=0, model_max_length=8192 ) def tokenize_texts(self, texts): return self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True).input_ids class LongNet(Module): def __init__(self): super().__init__() self.model = LongNet( num_tokens = 16000, # number of tokens dim = (512, 256), # transformer model dimension (512 for coarsest, 256 for fine in this example) max_seq_len = (1024, 4), # sequence length for global and then local. this can be more than 2 depth = (6, 4), # number of layers for global and then local. this can be more than 2, but length must match the max_seq_len's dim_head = 64, # dimension per head heads = 8, # number of attention heads flash_attn = True, # use flash attention dilation_rate = 1, # dilation rate for DilatedAttention segment_size = 0, # segment size for DilatedAttention casual = False, # whether to use causal attention for DilatedAttention use_xpos = False, # whether to use absolute positional embeddings for DilatedAttention use_rel_pos_bias = False, # whether to use relative positional bias for DilatedAttention distributed = False # whether to distribute attention for DilatedAttention ) def generate(self, text_tokens, temperature: int = None, filter_thres: int = None, **kwargs): sampled = self.model.generate(temperature=temperature, filter_thres=filter_thres) return sampled
LongNet-master
LongNet/model.py
from collections import namedtuple from functools import wraps from packaging import version import torch from torch import nn, einsum, Tensor import torch.nn.functional as F from einops import rearrange from dataclasses import dataclass # constants EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class @dataclass class Intermediates: qk_similarities: Tensor = None pre_softmax_attn: Tensor = None post_softmax_attn: Tensor = None def to_tuple(self): return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) # helpers class FlashAttention(nn.Module): def __init__( self, causal = False, dropout = 0., flash = True ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = EfficientAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(False, True, True) def get_mask(self, i, j, device): return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1) def flash_attn( self, q, k, v, mask = None, attn_bias = None ): batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) if v.ndim == 3: v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L causal = self.causal if exists(mask): assert mask.ndim == 4 mask = mask.expand(batch, heads, q_len, k_len) # manually handle causal mask, if another mask was given if causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) mask = mask & ~causal_mask causal = False # handle alibi positional bias # convert from bool to float if exists(attn_bias): attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) # if mask given, the mask would already contain the causal mask from above logic # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number mask_value = -torch.finfo(q.dtype).max if exists(mask): attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) elif causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) causal = False # scaled_dot_product_attention handles attn_mask either as bool or additive bias # make it an additive bias here mask = attn_bias # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = causal ) return out def forward(self, q, k, v, mask = None, attn_bias = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = q.shape[-1] ** -0.5 kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' if self.flash: return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) # similarity sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale # attention bias if exists(attn_bias): sim = sim + attn_bias # causal mask if self.causal: causal_mask = self.get_mask(q_len, k_len, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v) return out
LongNet-master
LongNet/attend.py
import math from typing import List, Optional, Tuple, Union import torch import torch.nn as nn class StableAdamWUnfused(torch.optim.Optimizer): def __init__( self, params, lr=0.002, weight_decay=0.2, betas=(0.9, 0.99), eps=1e-8, clip_thresh=1.0, precision="amp_bfloat16", custom_scalar=65536, ): beta1, beta2 = betas[0], betas[1] defaults = dict(lr=lr, weight_decay=weight_decay, beta1=beta1, beta2=beta2) super(StableAdamWUnfused, self).__init__(params, defaults) self.eps = eps self.d = clip_thresh # Set precision to "custom_fp16" if you want to use a fixed loss scalar, custom_scalar, which is divided out in the update step. # If you do this, call (custom_scalar * loss).backward() instead of loss.backward(). self.precision = precision self.custom_scaler = custom_scalar for group in self.param_groups: group["step"] = 1.0 print("Using StableAdamWUnfused-v1") def __setstate__(self, state): super(StableAdamWUnfused, self).__setstate__(state) def step(self, closure=None): if closure is not None: closure() for group in self.param_groups: lr = group["lr"] weight_decay = group["weight_decay"] beta1 = group["beta1"] beta2 = group["beta2"] step = group["step"] for p in group["params"]: if p.grad is None: continue theta = p.data param_state = self.state[p] if self.precision == "custom_fp16": g = p.grad.data / self.custom_scaler if torch.any(torch.isnan(g) | torch.isinf(g)): continue else: g = p.grad.data if "exp_avg" not in param_state: v = param_state["exp_avg"] = torch.zeros_like(theta) u = param_state["exp_avg_sq"] = torch.zeros_like(theta) else: v = param_state["exp_avg"] u = param_state["exp_avg_sq"] beta1hat = beta1 * (1 - beta1 ** (step - 1)) / (1 - beta1**step) beta2hat = beta2 * (1 - beta2 ** (step - 1)) / (1 - beta2**step) v = v.mul_(beta1hat).add_(g, alpha=1.0 - beta1hat) u = u.mul_(beta2hat).addcmul_(g, g, value=1.0 - beta2hat) denominator = u.sqrt().add_(self.eps) # StableAdamW = AdamW + update clipping (https://arxiv.org/abs/1804.04235) applied tensor-wise. rms = ( torch.div( g.pow(2), torch.maximum(u, (self.eps**2) * torch.ones_like(u)) ) .mean() .sqrt() .item() ) theta = theta.mul_(1.0 - lr * weight_decay).addcdiv_( v, denominator, value=-lr * (1.0 / max(1.0, rms / self.d)) ) # save current params param_state["exp_avg"] = v param_state["exp_avg_sq"] = u group["step"] = step + 1 class RelativePositionBias(nn.Module): def __init__( self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=12 ): super().__init__() self.bidirectional = bidirectional self.num_buckets = num_buckets self.max_distance = max_distance self.n_heads = n_heads self.relative_attention_bias = nn.Embedding(self.num_buckets, self.n_heads) @staticmethod def _relative_position_bucket( relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): ret = 0 n = -relative_position if bidirectional: num_buckets //= 2 ret += (n < 0).to(torch.long) * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min( val_if_large, torch.full_like(val_if_large, num_buckets - 1) ) ret += torch.where(is_small, n, val_if_large) return ret def compute_bias(self, qlen, klen, step=None): step = 0 if step is None else step context_position = torch.arange( step, step + qlen, dtype=torch.long, device=self.relative_attention_bias.weight.device, )[:, None] memory_position = torch.arange( klen, dtype=torch.long, device=self.relative_attention_bias.weight.device )[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket( relative_position, # shape (qlen, klen) bidirectional=self.bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance, ) rp_bucket = rp_bucket.to(self.relative_attention_bias.weight.device) values = self.relative_attention_bias( rp_bucket ) # shape (qlen, klen, num_heads) values = values.permute([2, 0, 1]).unsqueeze( 0 ) # shape (1, num_heads, qlen, klen) return values def forward(self, batch_size, qlen, klen, step=None): # shape (batch * num_heads, qlen, klen) return ( self.compute_bias(qlen, klen, step) .repeat(batch_size, 1, 1, 1) .view(-1, qlen, klen) ) def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x def SparsifyIndices( x: torch.Tensor, ws: List[int], rs: List[int], head_idx: int ) -> Tuple[int, torch.Tensor, Optional[torch.Tensor]]: b, n, c = x.size() print(f'x.size 1st: {x.shape} and xdtype: {x.dtype}') x_indices = torch.arange(0, n, dtype=torch.long, device=x.device)[None, :, None] print(f"X indices dtype: {x_indices.shape} and dtype: {x.dtype}") num_subatt = sum([int(math.ceil(n / w)) for w in ws]) max_subatt_n = min(n, max([w // r for w, r in zip(ws, rs)])) sparse_indices = -1*torch.ones((b, num_subatt * max_subatt_n, c), device=x.device, dtype=torch.int64) print(f"Sparse indices shape and dtype: {sparse_indices.shape} and dtype: {sparse_indices.dtype}") subatt_idx = 0 for w, r in zip(ws, rs): for segment_indices in torch.split(x_indices, w, 1): offset = head_idx % r cur_sparse_indices = segment_indices[:, offset::r, :] print(f"Current sparse indices shape {cur_sparse_indices.shape} and dtype: {cur_sparse_indices.dtype}") start_idx = subatt_idx*max_subatt_n end_idx = start_idx+cur_sparse_indices.shape[1] sparse_indices[:, start_idx:end_idx] = cur_sparse_indices subatt_idx += 1 if -1 in sparse_indices: padding_mask = sparse_indices[:, :, 0] != -1 # to allow gather work for batching sparse_indices[~padding_mask] = 0 # combine batch and subattention dims print(f"Padding mask shape: {padding_mask.shape} and dtype: {padding_mask.dtype}") padding_mask = padding_mask.view((-1, max_subatt_n)) else: padding_mask = None return max_subatt_n, sparse_indices, padding_mask def MixOutputs( out_shape: Tuple[int, int, int], out_dtype: torch.dtype, out_device: Union[torch.device, str], a_os: torch.Tensor, a_denoms: torch.Tensor, a_indices: torch.Tensor, ) -> torch.Tensor: print(f"Input 'a_os' shape: {a_os.shape} and dtype: {a_os.dtype}") print(f"Input 'a_denoms' shape: {a_denoms.shape} and dtype: {a_denoms.dtype}") print(f"Input 'a_indices' shape: {a_indices.shape} and dtype: {a_indices.dtype}") # Ensure the source tensor has the same dtype as the target tensor before the scatter operation a_denoms = a_denoms.to(out_dtype) print(f"Converted 'a_denoms' dtype: {a_denoms.dtype}") # explicitly define the shape of att_denom_sums att_denom_sums_shape = (out_shape[0], out_shape[1]) print(f"Att_denom_sums shape to be initialized: {att_denom_sums_shape}") # calculate sums of softmax denominators att_denom_sums = torch.zeros(att_denom_sums_shape, device=out_device, dtype=out_dtype) print(f"Initialized 'att_denom_sums' shape: {att_denom_sums.shape} and dtype: {att_denom_sums.dtype}") # Use scatter_add_ without unsqueezing a_denoms att_denom_sums.scatter_add_(1, a_indices[:, :, 0].squeeze(-1), a_denoms) # select attention softmax denominator sums for current sparse indices sparse_att_denom_sum = torch.gather(att_denom_sums, 1, a_indices[:, :, 0]) print(f"'sparse_att_denom_sum' shape: {sparse_att_denom_sum.shape} and dtype: {sparse_att_denom_sum.dtype}") # compute alphas alphas = torch.divide(a_denoms, sparse_att_denom_sum)[:, :, None] print(f"Alphas shape: {alphas.shape} and dtype: {alphas.dtype}") out = torch.zeros(out_shape, dtype=out_dtype, device=out_device) print(f"Initialized 'out' shape: {out.shape} and dtype: {out.dtype}") out.scatter_add_( 1, a_indices[:, :, :out.shape[2]], torch.multiply(a_os, alphas), ) return out
LongNet-master
LongNet/utils.py
import functools from itertools import zip_longest import torch import torch.nn.functional as F from torch import nn from einops import rearrange, repeat, pack, unpack from einops.layers.torch import Rearrange from beartype import beartype from beartype.typing import Tuple, Union # from LongNet_pytorch.attfend import Attend from longnet.attention import DilatedAttention as Attention from tqdm import tqdm # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def remainder_to_mult(num, mult): return (mult - num % mult) % mult def cast_tuple(t, length = 1): return t if isinstance(t, tuple) else ((t,) * length) def reduce_mult(nums): return functools.reduce(lambda x, y: x * y, nums, 1) # tensor helpers def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) def top_k(logits, thres = 0.5): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # token shift, from Peng et al of RWKV def token_shift(t): t, t_shift = t.chunk(2, dim = -1) t_shift = F.pad(t_shift, (0, 0, 1, -1)) return torch.cat((t, t_shift), dim = -1) # rotary positional embedding class RotaryEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) @property def device(self): return next(self.buffers()).device def forward(self, seq_len): t = torch.arange(seq_len, device = self.device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) return freqs def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t): return t * pos.cos() + rotate_half(t) * pos.sin() # norm class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # helper classes def FeedForward(*, dim, mult = 4, dropout = 0.): return nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) class Transformer(nn.Module): def __init__( self, *, dim, layers, dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., ff_mult = 4, dilation_rate = 1, # additional parameter for DilatedAttention segment_size = 1, # additional parameter for DilatedAttention casual = False, # additional parameter for DilatedAttention use_xpos = False, # additional parameter for DilatedAttention use_rel_pos_bias = False, # additional parameter for DilatedAttention # distributed = False, # additional parameter for DilatedAttention rel_pos = True, flash_attn = False ): super().__init__() self.rotary_emb = RotaryEmbedding(dim_head) if rel_pos else None self.layers = nn.ModuleList([]) for _ in range(layers): self.layers.append(nn.ModuleList([ Attention( d_model=dim, num_heads=heads, dilation_rate=dilation_rate, segment_size=segment_size, dropout=attn_dropout, casual=casual, use_xpos=use_xpos, use_rel_pos_bias=use_rel_pos_bias, # distributed=distributed ), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) def forward(self, x): n = x.shape[-2] self.rotary_emb(n) if exists(self.rotary_emb) else None for attn, ff in self.layers: x = attn(token_shift(x)) + x # rotary_emb removed as it's not supported in DilatedAttention x = ff(token_shift(x)) + x return self.norm(x) class LongNet(nn.Module): @beartype def __init__( self, *, num_tokens, dim: Union[Tuple, int], depth: Tuple, max_seq_len: Tuple, dim_head = 64, heads = 8, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., pad_id = 0, rel_pos = False, pos_emb = False, flash_attn = False, dilation_rate = 1, # added segment_size = 0, # added casual = False, # added use_xpos = False, # added use_rel_pos_bias = False, # added # distributed = False, # added ): super().__init__() # simplified configuration for each stage of the hierarchy # depth = (2, 2, 4) would translate to depth 2 at first stage, depth 2 second stage, depth 4 third # max_seq_len = (16, 8, 4) would translate to max sequence length of 16 at first stage, length of 8 at second stage, length of 4 for last assert isinstance(depth, tuple) and isinstance(max_seq_len, tuple) assert len(depth) == len(max_seq_len) self.stages = len(depth) dim = cast_tuple(dim, self.stages) assert len(dim) == self.stages coarsest_dim, *_, fine_dim = dim self.max_seq_len = max_seq_len self.start_tokens = nn.ParameterList([nn.Parameter(torch.randn(h_dim)) for h_dim, seq_len in zip(dim, max_seq_len)]) self.pos_embs = nn.ModuleList([nn.Embedding(seq_len, h_dim) for h_dim, seq_len in zip(dim, max_seq_len)]) if pos_emb else None self.token_embs = nn.ModuleList([]) patch_size = 1 self.token_embs.append(nn.Embedding(num_tokens, fine_dim)) for dim_out, seq_len in zip(reversed(dim[:-1]), reversed(max_seq_len[1:])): patch_size *= seq_len self.token_embs.append(nn.Sequential( nn.Embedding(num_tokens, fine_dim), Rearrange('... r d -> ... (r d)'), nn.LayerNorm(patch_size * fine_dim), nn.Linear(patch_size * fine_dim, dim_out), nn.LayerNorm(dim_out) )) self.transformers = nn.ModuleList([]) self.to_next_transformer_projections = nn.ModuleList([]) for h_dim, next_h_dim, stage_depth, next_seq_len in zip_longest(dim, dim[1:], depth, max_seq_len[1:]): self.transformers.append(Transformer( dim = h_dim, layers = stage_depth, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, ff_mult = ff_mult, dilation_rate = dilation_rate, # added segment_size = segment_size, # added casual = casual, # added use_xpos = use_xpos, # added use_rel_pos_bias = use_rel_pos_bias, # added # distributed = distributed, # added rel_pos = rel_pos, flash_attn = flash_attn )) proj = nn.Identity() if exists(next_h_dim) and next_h_dim != dim: proj = nn.Sequential( Rearrange('b ... d -> b (...) d'), nn.Linear(h_dim, next_h_dim * next_seq_len), Rearrange('b m (n d) -> (b m) n d', n = next_seq_len) ) self.to_next_transformer_projections.append(proj) self.to_logits = nn.Linear(fine_dim, num_tokens) self.pad_id = pad_id def generate(self, prime = None, filter_thres = 0.9, temperature = 1., default_batch_size = 1): total_seq_len = reduce_mult(self.max_seq_len) device = next(self.parameters()).device if not exists(prime): prime = torch.empty((default_batch_size, 0), dtype = torch.long, device = device) seq = prime batch = seq.shape[0] for _ in tqdm(range(total_seq_len - seq.shape[-1])): logits = self.forward(seq)[:, -1] logits = top_k(logits, thres = filter_thres) sampled = gumbel_sample(logits, dim = -1, temperature = temperature) seq = torch.cat((seq, rearrange(sampled, 'b -> b 1')), dim = -1) return seq.reshape(batch, *self.max_seq_len) def forward_empty(self, batch_size): # take care of special case # where you sample from input of 0 (start token only) prev_stage_tokens_repr = None for stage_start_tokens, transformer, proj in zip(self.start_tokens, self.transformers, self.to_next_transformer_projections): tokens = repeat(stage_start_tokens, 'd -> b 1 d', b = batch_size) if exists(prev_stage_tokens_repr): tokens = tokens + prev_stage_tokens_repr[..., :tokens.shape[-2], :] tokens = transformer(tokens) prev_stage_tokens_repr = proj(tokens) return self.to_logits(tokens) def forward(self, ids, return_loss = False): batch = ids.shape[0] assert ids.ndim in {2, self.stages + 1} flattened_dims = ids.ndim == 2 if ids.numel() == 0: return self.forward_empty(ids.shape[0]) if flattened_dims: # allow for ids to be given in the shape of (batch, seq) # in which case it will be auto-padded to the next nearest multiple of depth seq len seq_len = ids.shape[-1] multiple_of = reduce_mult(self.max_seq_len[1:]) padding = remainder_to_mult(seq_len, multiple_of) ids = F.pad(ids, (0, padding), value = self.pad_id) ids = ids.reshape(batch, -1, *self.max_seq_len[1:]) b, *prec_dims, device = *ids.shape, ids.device # check some dimensions assert prec_dims[0] <= self.max_seq_len[0], 'the first dimension of your axial autoregressive transformer must be less than the first tuple element of max_seq_len (like any autoregressive transformer)' assert tuple(prec_dims[1:]) == tuple(self.max_seq_len[1:]), 'all subsequent dimensions must match exactly' # get tokens for all hierarchical stages, reducing by appropriate dimensions # and adding the absolute positional embeddings tokens_at_stages = [] pos_embs = default(self.pos_embs, (None,)) for ind, pos_emb, token_emb in zip_longest(range(len(prec_dims)), pos_embs, self.token_embs): is_first = ind == 0 tokens = token_emb(ids) if exists(pos_emb): positions = pos_emb(torch.arange(tokens.shape[-2], device = device)) tokens = tokens + positions tokens_at_stages.insert(0, tokens) if is_first: continue ids = rearrange(ids, '... m n -> ... (m n)') # the un-pixelshuffled representations of the previous hierarchy, starts with None prev_stage_tokens_repr = None # spatial tokens is tokens with depth pos reduced along depth dimension + spatial positions for stage_start_tokens, stage_tokens, transformer, proj in zip(self.start_tokens, tokens_at_stages, self.transformers, self.to_next_transformer_projections): stage_tokens, ps = pack_one(stage_tokens, '* n d') stage_start_tokens = repeat(stage_start_tokens, 'f -> b 1 f', b = stage_tokens.shape[0]) # concat start token stage_tokens = torch.cat(( stage_start_tokens, stage_tokens, ), dim = -2) # sum the previous hierarchy's representation if exists(prev_stage_tokens_repr): prev_stage_tokens_repr = F.pad(prev_stage_tokens_repr, (0, 0, 1, 0), value = 0.) stage_tokens = stage_tokens + prev_stage_tokens_repr attended = transformer(stage_tokens) attended = unpack_one(attended, ps, '* n d') # project for next stage in the hierarchy prev_stage_tokens_repr = proj(attended[..., :-1, :]) # project to logits logits = self.to_logits(attended) start_tokens = logits[(slice(None), *((0,) * (logits.ndim - 2)), slice(None))] start_tokens = rearrange(start_tokens, 'b d -> b 1 d') logits = logits[..., 1:, :] if not return_loss: if flattened_dims: logits = rearrange(logits, 'b ... c -> b (...) c') logits = logits[:, :seq_len] return logits logits = rearrange(logits, 'b ... c -> b (...) c') logits = torch.cat((start_tokens, logits), dim = -2) preds = rearrange(logits, 'b n c -> b c n') labels = rearrange(ids, 'b ... -> b (...)') loss = F.cross_entropy( preds[..., :-1], labels, ignore_index = self.pad_id ) return loss
LongNet-master
LongNet/Transformer.py
import math import multiprocessing import os from datetime import timedelta from functools import partial from itertools import chain import torch from torch.distributed.fsdp import ( FullyShardedDataParallel, MixedPrecision, BackwardPrefetch, ShardingStrategy, ) from accelerate import Accelerator from accelerate.utils import (DummyOptim, DummyScheduler, InitProcessGroupKwargs) from datasets import load_dataset from lion_pytorch import Lion from torch.nn import LayerNorm from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper) from torch.distributed.fsdp.wrap import ( transformer_auto_wrap_policy ) from torch.optim import AdamW from torch.utils.data import DataLoader from tqdm import tqdm from transformers import (AutoTokenizer, default_data_collator, get_cosine_schedule_with_warmup, get_linear_schedule_with_warmup, set_seed) from longnet.utils import StableAdamWUnfused from longnet.model import Decoder, LongNet import bitsandbytes as bnb class CFG: BATCH_SIZE = 3 GRADIENT_ACCUMULATE_EVERY: int = 1 SEED: int = 42 LEARNING_RATE: float = 3e-4 WEIGHT_DECAY: float = 0.1 SEQ_LEN: int = 8192 NUM_CPU: int = multiprocessing.cpu_count() USE_DEEPSPEED: bool = True USE_FSDP: bool = True USE_PRETOKENIZED: bool = True USE_ACTIVATION_CHECKPOINTING: bool = True RESUME_FROM_CHECKPOINT: str = False CHECKPOINTING_STEPS: int = 1000 OUTPUT_DIR: str = 'checkpoints/' # Folder ENTITY_NAME: str = "LongNet" # helpers def print_num_params(model, accelerator: Accelerator): # n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) accelerator.print(f"Number of parameters in model: {n_params}") # activation checkpointing def activation_checkpointing( model: torch.nn.Module, offload_to_cpu: bool = False, accelerator: Accelerator = None, ): """ Apply activation checkpointing to a model. Args: model (Module): The model to which to apply activation checkpointing. offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. """ if accelerator is not None: accelerator.print("Using activation checkpointing") def check_fn(submodule): return isinstance(submodule, Decoder) non_reentrant_wrapper = partial( checkpoint_wrapper, offload_to_cpu=offload_to_cpu, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ) apply_activation_checkpointing( model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn ) # FSDP def fsdp( model: torch.nn.Module, auto_wrap: bool = False, mp: str = "fp32", shard_strat: str = "NO_SHARD", ): """ This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding. Args: model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP. auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False. mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'. shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'. Raises: ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'. ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'. Returns: torch.nn.Module: The input model wrapped with FSDP. """ if auto_wrap: LongNet_auto_wrap_policy = partial( transformer_auto_wrap_policy, transformer_layer_cls={ Decoder, }, ) else: LongNet_auto_wrap_policy = None if mp == "bf16": mp_fsdp = MixedPrecision( param_dtype=torch.bfloat16, # Gradient communication precision. reduce_dtype=torch.bfloat16, # Buffer precision. buffer_dtype=torch.bfloat16, ) elif mp == "fp16": mp_fsdp = MixedPrecision( param_dtype=torch.float16, # Gradient communication precision. reduce_dtype=torch.float16, # Buffer precision. buffer_dtype=torch.float16, ) elif mp == "fp32": mp_fsdp = MixedPrecision( param_dtype=torch.float32, # Gradient communication precision. reduce_dtype=torch.float32, # Buffer precision. buffer_dtype=torch.float32, ) else: raise ValueError( "Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format( mp ) ) if shard_strat == "SHARD_GRAD": sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP elif shard_strat == "FULL_SHARD": sharding_strat_fsdp = ShardingStrategy.FULL_SHARD elif shard_strat == "NO_SHARD": sharding_strat_fsdp = ShardingStrategy.NO_SHARD else: raise ValueError( "Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format( shard_strat ) ) model = FullyShardedDataParallel( model, auto_wrap_policy=LongNet_auto_wrap_policy, mixed_precision=mp_fsdp, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, sharding_strategy=sharding_strat_fsdp, forward_prefetch=True, use_orig_params=True, ) return model # learning rate scheduler def get_lr_scheduler_with_warmup( optimizer: torch.optim.Optimizer, scheduler_type: str, num_warmup_steps: int, max_train_steps: int, grad_accumulate_every: int = 1, accelerator: Accelerator = None, ): """ Get a learning rate scheduler with warmup. Args: optimizer (Optimizer): The optimizer for which to create the learning rate scheduler. scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine". num_warmup_steps (int): The number of warmup steps for the learning rate scheduler. max_train_steps (int): The maximum number of training steps. grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. Returns: The learning rate scheduler with warmup. Raises: ValueError: If scheduler_type is not "linear" or "cosine". """ NUM_WARMUP_STEPS = num_warmup_steps GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every if accelerator is not None: accelerator.print(f"Using {scheduler_type} lr scheduler") if scheduler_type == "linear": return get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) elif scheduler_type == "cosine": return get_cosine_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) else: raise ValueError( "Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format( scheduler_type ) ) # optimizers def decoupled_optimizer( model: torch.nn.Module, learning_rate: float, weight_decay: float, beta_1: float, beta_2: float, optimizer_type: str, use_fsdp: bool = True, accelerator: Accelerator = None, ): """ Decouples the optimizer from the training process. This function sets up the optimizer for the model by creating two groups of parameters: one for weight decay and one without weight decay. Then, it initializes the optimizer with these two groups of parameters. Args: model (Module): The model whose parameters are optimized. learning_rate (float): The learning rate for the optimizer. weight_decay (float): The weight decay for the optimizer. beta_1 (float): The exponential decay rate for the 1st moment estimates. beta_2 (float): The exponential decay rate for the 2nd moment estimates. optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'. use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True. accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None. Returns: Optimizer: The initialized optimizer. Raises: ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'. """ accelerator.print(f"Using {optimizer_type} optimizer") # Create an empty dictionary called param_dict to store the model's named parameters. param_dict = {} # Iterate over the model's named parameters and populate the param_dict with key-value pairs. for param_name, param in model.named_parameters(): param_dict[param_name] = param # Separate the model's named modules into two groups: decay and no_decay. # Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay. no_decay = [] if use_fsdp: exclude_module = "_fsdp_wrapped_module.token_emb" else: exclude_module = "token_emb" # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding). for ndim in [LayerNorm, torch.nn.Embedding]: if isinstance(module, ndim): # If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list. if module_name == exclude_module: no_decay.append(f"{module_name}.weight") else: # If the module is an instance of LayerNorm no_decay.append(f"{module_name}.gamma") # Exit the inner loop since the desired module has been found. break # Create an empty list to store the names of the Linear layer weights with weight decay. decay = [] # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of the desired type (torch.nn.Linear). for ndim in [torch.nn.Linear]: if isinstance(module, ndim): # If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list. decay.append(f"{module_name}.weight") # Exit the inner loop since the desired module has been found. break # Create two separate lists of model parameters: decay_param and no_decay_param. # The decay_param list contains the parameters that should have weight decay applied. # The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter. # Create an empty list called decay_param to store the parameters with weight decay. decay_param = [] if use_fsdp: exclude_param = "_fsdp_wrapped_module.to_logits.weight" else: exclude_param = "to_logits.weight" # Iterate over the decay list, which contains the names of the parameters with weight decay. for param in decay: # Check if the current parameter is not 'to_logits.weight'. # Append the corresponding parameter from param_dict to the decay_param list. if param != exclude_param: decay_param.append(param_dict[param]) # Create an empty list called no_decay_param to store the parameters without weight decay. no_decay_param = [] # Iterate over the no_decay list, which contains the names of the parameters without weight decay. for param in no_decay: # Append the corresponding parameter from param_dict to the no_decay_param list. no_decay_param.append(param_dict[param]) # Create a list called grouped_params that contains two dictionaries. # The first dictionary has the decay_param list and the corresponding weight_decay value. # The second dictionary has the no_decay_param list and a weight_decay value of 0.0. grouped_params = [ {"params": decay_param, "weight_decay": weight_decay}, {"params": no_decay_param, "weight_decay": 0.0}, ] # Create a variable called optimizer that stores an instance of the optimizer. if optimizer_type == "lion": optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "adamw": optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "deepspeed": optimizer = DummyOptim(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "stable_adamw": optimizer = StableAdamWUnfused( grouped_params, lr=learning_rate, betas=(beta_1, beta_2), ) elif optimizer_type=="Adam8bit": optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) elif optimizer_type=="Lion8Bit": optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) else: raise ValueError( "Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format( optimizer_type ) ) # Return the optimizer. return optimizer # dataloaders def build_dataloaders(): """ Build data loaders for training. This function performs the following steps: 1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model. 2. Load the "openwebtext" dataset. 3. Tokenize the dataset, adding the end-of-sentence token to each text. 4. Process the tokenized dataset into chunks of a specified block size. Returns: Dataset: The processed dataset ready for training. """ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") dataset = load_dataset("openwebtext", split="train") tokenized_dataset = dataset.map( lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]), batched=True, num_proc=CFG.NUM_CPU, remove_columns=["text"], ) block_size = CFG.SEQ_LEN # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result train_dataset = tokenized_dataset.map( group_texts, batched=True, num_proc=CFG.NUM_CPU, ) return train_dataset #switch to falconwebdataset def build_pre_tokenized(): d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]") # d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train") # d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train") # d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train") # d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train") # train_dataset = concatenate_datasets([d0, d1, d2, d3, d4]) return d0 def Train(): # accelerator timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000)) accelerator = Accelerator( gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY, mixed_precision="fp16", log_with="wandb", kwargs_handlers=[timeout], ) # AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 4 #?????? accelerator.init_trackers( project_name="LongNet", config={ "batch_size": CFG.BATCH_SIZE, "gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY, "learning_rate": CFG.LEARNING_RATE, "seq_len": CFG.SEQ_LEN, }, init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}}, ) accelerator.print(f"Total GPUS: {accelerator.num_processes}") # set seed set_seed(CFG.SEED) model = LongNet().to(accelerator.device) print_num_params(model, accelerator) if CFG.USE_FSDP: model = fsdp( model, mp="fp16", shard_strat="SHARD_GRAD" ) if CFG.USE_ACTIVATION_CHECKPOINTING: activation_checkpointing(model, accelerator) model = accelerator.prepare(model) # dataloaders if CFG.USE_PRETOKENIZED: train_dataset = build_pre_tokenized() else: train_dataset = build_dataloaders() train_loader = DataLoader( train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator, ) # optimizer optim = decoupled_optimizer( model=model, learning_rate=CFG.LEARNING_RATE, weight_decay=CFG.WEIGHT_DECAY, beta_1=0.90, beta_2=0.95, optimizer_type='Adam8bit', use_fsdp=True, accelerator=accelerator ) # Determine number of training steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps: {max_train_steps}") # lr scheduler NUM_WARMUP_STEPS = int(max_train_steps * 0.01) accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}") if CFG.USE_DEEPSPEED: lr_scheduler = DummyScheduler( optim, total_num_steps=max_train_steps * accelerator.num_processes, warmup_num_steps=NUM_WARMUP_STEPS ) else: lr_scheduler = get_lr_scheduler_with_warmup( optimizer=optim, scheduler_type="cosine", num_warmup_steps=NUM_WARMUP_STEPS, max_train_steps=max_train_steps, grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY, ) # prepare optim, train_loader, lr_scheduler = accelerator.prepare( optim, train_loader, lr_scheduler ) # checkpoint scheduler accelerator.register_for_checkpointing(lr_scheduler) # I do not know why Huggingface recommends recalculation of max_train_steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps recalculated: {max_train_steps}") # Total batch size for logging total_batch_size = ( CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY ) accelerator.print(f"Total batch size: {total_batch_size}") # resume training progress_bar = tqdm( range(max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 if CFG.RESUME_FROM_CHECKPOINT: if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "": accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}") accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT) path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT) training_difference = os.path.splitext(path)[0] # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = ( int(training_difference.replace("step_", "")) * CFG.GRADIENT_ACCUMULATE_EVERY ) if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None: train_loader = accelerator.skip_first_batches(train_loader, resume_step) completed_steps += resume_step progress_bar.update(resume_step) # training model.train() for step, batch in enumerate(train_loader): with accelerator.accumulate(model): inputs = batch["input_ids"].to(accelerator.device) loss = model(inputs, return_loss=True) accelerator.backward(loss) accelerator.log({"loss": loss.item()}, step=step) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optim.step() lr_scheduler.step() optim.zero_grad() if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(CFG.CHECKPOINTING_STEPS, int): if completed_steps % CFG.CHECKPOINTING_STEPS == 0: output_dir = f"step_{completed_steps }" if CFG.OUTPUT_DIR is not None: output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir) accelerator.save_state(output_dir) if completed_steps >= max_train_steps: break # end training # accelerator.print(f"Training Finished") accelerator.end_training() # save final model # accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}") if CFG.OUTPUT_DIR is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) with accelerator.main_process_first(): accelerator.save( unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt" ) def main(): os.environ['MASTER_ADDR'] # = 'localhost' os.environ['MASTER_PORT'] #= '9994' # # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters # # Pay attention to this, use "accelerate config" os.environ['RANK'] #= str(0) # Number of nodes (servers) os.environ['WORLD_SIZE'] #= str(torch.cuda.device_count()) torch.distributed.init_process_group() Train() if __name__ == '__main__': main()
LongNet-master
LongNet/train.py
# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser import mmcv import mmcv_custom # noqa: F401,F403 import mmseg_custom # noqa: F401,F403 from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot from mmseg.core.evaluation import get_palette from mmcv.runner import load_checkpoint from mmseg.core import get_classes import cv2 import os.path as osp def main(): parser = ArgumentParser() parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('img', help='Image file') parser.add_argument('--out', type=str, default="demo", help='out dir') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='cityscapes', help='Color palette used for segmentation map') parser.add_argument( '--opacity', type=float, default=0.5, help='Opacity of painted segmentation map. In (0, 1] range.') args = parser.parse_args() # build the model from a config file and a checkpoint file model = init_segmentor(args.config, checkpoint=None, device=args.device) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = get_classes(args.palette) # test a single image result = inference_segmentor(model, args.img) # show the results if hasattr(model, 'module'): model = model.module img = model.show_result(args.img, result, palette=get_palette(args.palette), show=False, opacity=args.opacity) mmcv.mkdir_or_exist(args.out) out_path = osp.join(args.out, osp.basename(args.img)) cv2.imwrite(out_path, img) print(f"Result is save at {out_path}") if __name__ == '__main__': main()
ViT-Adapter-main
segmentation/image_demo.py
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import shutil import time import warnings import mmcv import mmcv_custom # noqa: F401,F403 import mmseg_custom # noqa: F401,F403 import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, wrap_fp16_model) from mmcv.utils import DictAction from mmseg.apis import multi_gpu_test, single_gpu_test from mmseg.datasets import build_dataloader, build_dataset from mmseg.models import build_segmentor def parse_args(): parser = argparse.ArgumentParser( description='mmseg test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help=('if specified, the evaluation metric results will be dumped' 'into the directory as json')) parser.add_argument( '--aug-test', action='store_true', help='Use Flip and Multi scale aug') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' ' for generic datasets, and "cityscapes" for Cityscapes') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu_collect is not specified') parser.add_argument( '--options', nargs='+', action=DictAction, help="--options is deprecated in favor of --cfg_options' and it will " 'not be supported in version v0.22.0. Override some settings in the ' 'used config, the key-value pair in xxx=yyy format will be merged ' 'into config file. If the value to be overwritten is a list, it ' 'should be like key="[a,b]" or key=a,b It also allows nested ' 'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation ' 'marks are necessary and that no white space is allowed.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument( '--opacity', type=float, default=0.5, help='Opacity of painted segmentation map. In (0, 1] range.') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options. ' '--options will not be supported in version v0.22.0.') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options. ' '--options will not be supported in version v0.22.0.') args.cfg_options = args.options return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True if args.aug_test: # hard code index cfg.data.test.pipeline[1].img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 ] cfg.data.test.pipeline[1].flip = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, _ = get_dist_info() # allows not to create if args.work_dir is not None and rank == 0: mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) if args.aug_test: json_file = osp.join(args.work_dir, f'eval_multi_scale_{timestamp}.json') else: json_file = osp.join(args.work_dir, f'eval_single_scale_{timestamp}.json') elif rank == 0: work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) mmcv.mkdir_or_exist(osp.abspath(work_dir)) timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) if args.aug_test: json_file = osp.join(work_dir, f'eval_multi_scale_{timestamp}.json') else: json_file = osp.join(work_dir, f'eval_single_scale_{timestamp}.json') # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: print('"CLASSES" not found in meta, use dataset.CLASSES instead') model.CLASSES = dataset.CLASSES if 'PALETTE' in checkpoint.get('meta', {}): model.PALETTE = checkpoint['meta']['PALETTE'] else: print('"PALETTE" not found in meta, use dataset.PALETTE instead') model.PALETTE = dataset.PALETTE # clean gpu memory when starting a new evaluation. torch.cuda.empty_cache() eval_kwargs = {} if args.eval_options is None else args.eval_options # Deprecated efficient_test = eval_kwargs.get('efficient_test', False) if efficient_test: warnings.warn( '``efficient_test=True`` does not have effect in tools/test.py, ' 'the evaluation and format results are CPU memory efficient by ' 'default') eval_on_format_results = ( args.eval is not None and 'cityscapes' in args.eval) if eval_on_format_results: assert len(args.eval) == 1, 'eval on format results is not ' \ 'applicable for metrics other than ' \ 'cityscapes' if args.format_only or eval_on_format_results: if 'imgfile_prefix' in eval_kwargs: tmpdir = eval_kwargs['imgfile_prefix'] else: tmpdir = '.format_cityscapes' eval_kwargs.setdefault('imgfile_prefix', tmpdir) mmcv.mkdir_or_exist(tmpdir) else: tmpdir = None if not distributed: model = MMDataParallel(model, device_ids=[0]) results = single_gpu_test( model, data_loader, args.show, args.show_dir, False, args.opacity, pre_eval=args.eval is not None and not eval_on_format_results, format_only=args.format_only or eval_on_format_results, format_args=eval_kwargs) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) results = multi_gpu_test( model, data_loader, args.tmpdir, args.gpu_collect, False, pre_eval=args.eval is not None and not eval_on_format_results, format_only=args.format_only or eval_on_format_results, format_args=eval_kwargs) rank, _ = get_dist_info() if rank == 0: if args.out: warnings.warn( 'The behavior of ``args.out`` has been changed since MMSeg ' 'v0.16, the pickled outputs could be seg map as type of ' 'np.array, pre-eval results or file paths for ' '``dataset.format_results()``.') print(f'\nwriting results to {args.out}') mmcv.dump(results, args.out) if args.eval: eval_kwargs.update(metric=args.eval) metric = dataset.evaluate(results, **eval_kwargs) metric_dict = dict(config=args.config, metric=metric) mmcv.dump(metric_dict, json_file, indent=4) if tmpdir is not None and eval_on_format_results: # remove tmp dir when cityscapes evaluation shutil.rmtree(tmpdir) if __name__ == '__main__': main()
ViT-Adapter-main
segmentation/test.py
# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import os.path as osp import time import warnings import mmcv import mmcv_custom # noqa: F401,F403 import mmseg_custom # noqa: F401,F403 import torch from mmcv.cnn.utils import revert_sync_batchnorm from mmcv.runner import get_dist_info, init_dist from mmcv.utils import Config, DictAction, get_git_hash from mmseg import __version__ from mmseg.apis import init_random_seed, set_random_seed, train_segmentor from mmseg.datasets import build_dataset from mmseg.models import build_segmentor from mmseg.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Train a segmentor') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--load-from', help='the checkpoint file to load weights from') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help="--options is deprecated in favor of --cfg_options' and it will " 'not be supported in version v0.22.0. Override some settings in the ' 'used config, the key-value pair in xxx=yyy format will be merged ' 'into config file. If the value to be overwritten is a list, it ' 'should be like key="[a,b]" or key=a,b It also allows nested ' 'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation ' 'marks are necessary and that no white space is allowed.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument( '--auto-resume', action='store_true', help='resume from the latest checkpoint automatically.') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options. ' '--options will not be supported in version v0.22.0.') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options. ' '--options will not be supported in version v0.22.0.') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.load_from is not None: cfg.load_from = args.load_from if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) cfg.auto_resume = args.auto_resume # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # gpu_ids is used to calculate iter when resuming checkpoint _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds seed = init_random_seed(args.seed) logger.info(f'Set random seed to {seed}, ' f'deterministic: {args.deterministic}') set_random_seed(seed, deterministic=args.deterministic) cfg.seed = seed meta['seed'] = seed meta['exp_name'] = osp.basename(args.config) model = build_segmentor( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() # SyncBN is not support for DP if not distributed: warnings.warn( 'SyncBN is only supported with DDP. To be compatible with DP, ' 'we convert SyncBN to BN. Please use dist_train.sh which can ' 'avoid this error.') model = revert_sync_batchnorm(model) logger.info(model) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmseg version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmseg_version=f'{__version__}+{get_git_hash()[:7]}', config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES # passing checkpoint meta for saving best checkpoint meta.update(cfg.checkpoint_config.meta) train_segmentor( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
ViT-Adapter-main
segmentation/train.py
# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser import cv2 import mmcv_custom # noqa: F401,F403 import mmseg_custom # noqa: F401,F403 from mmseg.apis import inference_segmentor, init_segmentor from mmseg.core.evaluation import get_palette from mmcv.runner import load_checkpoint from mmseg.core import get_classes def main(): parser = ArgumentParser() parser.add_argument('video', help='Video file or webcam id') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='cityscapes', help='Color palette used for segmentation map') parser.add_argument( '--show', action='store_true', help='Whether to show draw result') parser.add_argument( '--show-wait-time', default=1, type=int, help='Wait time after imshow') parser.add_argument( '--output-file', default=None, type=str, help='Output video file path') parser.add_argument( '--output-fourcc', default='MJPG', type=str, help='Fourcc of the output video') parser.add_argument( '--output-fps', default=-1, type=int, help='FPS of the output video') parser.add_argument( '--output-height', default=-1, type=int, help='Frame height of the output video') parser.add_argument( '--output-width', default=-1, type=int, help='Frame width of the output video') parser.add_argument( '--opacity', type=float, default=0.5, help='Opacity of painted segmentation map. In (0, 1] range.') args = parser.parse_args() assert args.show or args.output_file, \ 'At least one output should be enabled.' # build the model from a config file and a checkpoint file model = init_segmentor(args.config, None, device=args.device) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = get_classes(args.palette) # build input video cap = cv2.VideoCapture(args.video) assert (cap.isOpened()) input_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) input_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) input_fps = cap.get(cv2.CAP_PROP_FPS) # init output video writer = None output_height = None output_width = None if args.output_file is not None: fourcc = cv2.VideoWriter_fourcc(*args.output_fourcc) output_fps = args.output_fps if args.output_fps > 0 else input_fps output_height = args.output_height if args.output_height > 0 else int( input_height) output_width = args.output_width if args.output_width > 0 else int( input_width) writer = cv2.VideoWriter(args.output_file, fourcc, output_fps, (output_width, output_height), True) # start looping try: while True: flag, frame = cap.read() if not flag: break # test a single image result = inference_segmentor(model, frame) # blend raw image and prediction draw_img = model.show_result( frame, result, palette=get_palette(args.palette), show=False, opacity=args.opacity) if args.show: cv2.imshow('video_demo', draw_img) cv2.waitKey(args.show_wait_time) if writer: if draw_img.shape[0] != output_height or draw_img.shape[ 1] != output_width: draw_img = cv2.resize(draw_img, (output_width, output_height)) writer.write(draw_img) finally: if writer: writer.release() cap.release() if __name__ == '__main__': main()
ViT-Adapter-main
segmentation/video_demo.py
from .core import * # noqa: F401,F403 from .datasets import * # noqa: F401,F403 from .models import * # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/__init__.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from mmseg.core.evaluation import * # noqa: F401, F403 from mmseg.core.seg import * # noqa: F401, F403 from .anchor import * # noqa: F401,F403 from .box import * # noqa: F401,F403 from .evaluation import * # noqa: F401,F403 from .mask import * # noqa: F401,F403 from .utils import * # noqa: F401, F403
ViT-Adapter-main
segmentation/mmseg_custom/core/__init__.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .builder import * # noqa: F401,F403 from .samplers import MaskPseudoSampler # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/core/box/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.utils import Registry, build_from_cfg BBOX_SAMPLERS = Registry('bbox_sampler') BBOX_CODERS = Registry('bbox_coder') def build_sampler(cfg, **default_args): """Builder of box sampler.""" return build_from_cfg(cfg, BBOX_SAMPLERS, default_args) def build_bbox_coder(cfg, **default_args): """Builder of box coder.""" return build_from_cfg(cfg, BBOX_CODERS, default_args)
ViT-Adapter-main
segmentation/mmseg_custom/core/box/builder.py
# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from .sampling_result import SamplingResult class MaskSamplingResult(SamplingResult): """Mask sampling result.""" def __init__(self, pos_inds, neg_inds, masks, gt_masks, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.pos_masks = masks[pos_inds] self.neg_masks = masks[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_masks.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 if gt_masks.numel() == 0: # hack for index error case assert self.pos_assigned_gt_inds.numel() == 0 self.pos_gt_masks = torch.empty_like(gt_masks) else: self.pos_gt_masks = gt_masks[self.pos_assigned_gt_inds, :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def masks(self): """torch.Tensor: concatenated positive and negative boxes""" return torch.cat([self.pos_masks, self.neg_masks]) def __nice__(self): data = self.info.copy() data['pos_masks'] = data.pop('pos_masks').shape data['neg_masks'] = data.pop('neg_masks').shape parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] body = ' ' + ',\n '.join(parts) return '{\n' + body + '\n}' @property def info(self): """Returns a dictionary of info about the object.""" return { 'pos_inds': self.pos_inds, 'neg_inds': self.neg_inds, 'pos_masks': self.pos_masks, 'neg_masks': self.neg_masks, 'pos_is_gt': self.pos_is_gt, 'num_gts': self.num_gts, 'pos_assigned_gt_inds': self.pos_assigned_gt_inds, }
ViT-Adapter-main
segmentation/mmseg_custom/core/box/samplers/mask_sampling_result.py
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch from .sampling_result import SamplingResult class BaseSampler(metaclass=ABCMeta): """Base class of samplers.""" def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): self.num = num self.pos_fraction = pos_fraction self.neg_pos_ub = neg_pos_ub self.add_gt_as_proposals = add_gt_as_proposals self.pos_sampler = self self.neg_sampler = self @abstractmethod def _sample_pos(self, assign_result, num_expected, **kwargs): """Sample positive samples.""" pass @abstractmethod def _sample_neg(self, assign_result, num_expected, **kwargs): """Sample negative samples.""" pass def sample(self, assign_result, bboxes, gt_bboxes, gt_labels=None, **kwargs): """Sample positive and negative bboxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. bboxes (Tensor): Boxes to be sampled from. gt_bboxes (Tensor): Ground truth bboxes. gt_labels (Tensor, optional): Class labels of ground truth bboxes. Returns: :obj:`SamplingResult`: Sampling result. Example: >>> from mmdet.core.bbox import RandomSampler >>> from mmdet.core.bbox import AssignResult >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes >>> rng = ensure_rng(None) >>> assign_result = AssignResult.random(rng=rng) >>> bboxes = random_boxes(assign_result.num_preds, rng=rng) >>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) >>> gt_labels = None >>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, >>> add_gt_as_proposals=False) >>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels) """ if len(bboxes.shape) < 2: bboxes = bboxes[None, :] bboxes = bboxes[:, :4] gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) if self.add_gt_as_proposals and len(gt_bboxes) > 0: if gt_labels is None: raise ValueError( 'gt_labels must be given when add_gt_as_proposals is True') bboxes = torch.cat([gt_bboxes, bboxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int(self.num * self.pos_fraction) pos_inds = self.pos_sampler._sample_pos(assign_result, num_expected_pos, bboxes=bboxes, **kwargs) # We found that sampled indices have duplicated items occasionally. # (may be a bug of PyTorch) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = self.num - num_sampled_pos if self.neg_pos_ub >= 0: _pos = max(1, num_sampled_pos) neg_upper_bound = int(self.neg_pos_ub * _pos) if num_expected_neg > neg_upper_bound: num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg(assign_result, num_expected_neg, bboxes=bboxes, **kwargs) neg_inds = neg_inds.unique() sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
ViT-Adapter-main
segmentation/mmseg_custom/core/box/samplers/base_sampler.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .mask_pseudo_sampler import MaskPseudoSampler # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/core/box/samplers/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from ..builder import BBOX_SAMPLERS from .base_sampler import BaseSampler from .mask_sampling_result import MaskSamplingResult @BBOX_SAMPLERS.register_module() class MaskPseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result, masks, gt_masks, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Assigned results masks (torch.Tensor): Bounding boxes gt_masks (torch.Tensor): Ground truth boxes Returns: :obj:`SamplingResult`: sampler results """ pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = masks.new_zeros(masks.shape[0], dtype=torch.uint8) sampling_result = MaskSamplingResult(pos_inds, neg_inds, masks, gt_masks, assign_result, gt_flags) return sampling_result
ViT-Adapter-main
segmentation/mmseg_custom/core/box/samplers/mask_pseudo_sampler.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.utils import util_mixins class SamplingResult(util_mixins.NiceRepr): """Bbox sampling result. Example: >>> # xdoctest: +IGNORE_WANT >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA >>> self = SamplingResult.random(rng=10) >>> print(f'self = {self}') self = <SamplingResult({ 'neg_bboxes': torch.Size([12, 4]), 'neg_inds': tensor([ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12]), 'num_gts': 4, 'pos_assigned_gt_inds': tensor([], dtype=torch.int64), 'pos_bboxes': torch.Size([0, 4]), 'pos_inds': tensor([], dtype=torch.int64), 'pos_is_gt': tensor([], dtype=torch.uint8) })> """ def __init__(self, pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.pos_bboxes = bboxes[pos_inds] self.neg_bboxes = bboxes[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_bboxes.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 if gt_bboxes.numel() == 0: # hack for index error case assert self.pos_assigned_gt_inds.numel() == 0 self.pos_gt_bboxes = torch.empty_like(gt_bboxes).view(-1, 4) else: if len(gt_bboxes.shape) < 2: gt_bboxes = gt_bboxes.view(-1, 4) self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long(), :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def bboxes(self): """torch.Tensor: concatenated positive and negative boxes""" return torch.cat([self.pos_bboxes, self.neg_bboxes]) def to(self, device): """Change the device of the data inplace. Example: >>> self = SamplingResult.random() >>> print(f'self = {self.to(None)}') >>> # xdoctest: +REQUIRES(--gpu) >>> print(f'self = {self.to(0)}') """ _dict = self.__dict__ for key, value in _dict.items(): if isinstance(value, torch.Tensor): _dict[key] = value.to(device) return self def __nice__(self): data = self.info.copy() data['pos_bboxes'] = data.pop('pos_bboxes').shape data['neg_bboxes'] = data.pop('neg_bboxes').shape parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] body = ' ' + ',\n '.join(parts) return '{\n' + body + '\n}' @property def info(self): """Returns a dictionary of info about the object.""" return { 'pos_inds': self.pos_inds, 'neg_inds': self.neg_inds, 'pos_bboxes': self.pos_bboxes, 'neg_bboxes': self.neg_bboxes, 'pos_is_gt': self.pos_is_gt, 'num_gts': self.num_gts, 'pos_assigned_gt_inds': self.pos_assigned_gt_inds, } @classmethod def random(cls, rng=None, **kwargs): """ Args: rng (None | int | numpy.random.RandomState): seed or state. kwargs (keyword arguments): - num_preds: number of predicted boxes - num_gts: number of true boxes - p_ignore (float): probability of a predicted box assigned to \ an ignored truth. - p_assigned (float): probability of a predicted box not being \ assigned. - p_use_label (float | bool): with labels or not. Returns: :obj:`SamplingResult`: Randomly generated sampling result. Example: >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA >>> self = SamplingResult.random() >>> print(self.__dict__) """ from mmdet.core.bbox import demodata from mmdet.core.bbox.assigners.assign_result import AssignResult from mmdet.core.bbox.samplers.random_sampler import RandomSampler rng = demodata.ensure_rng(rng) # make probabalistic? num = 32 pos_fraction = 0.5 neg_pos_ub = -1 assign_result = AssignResult.random(rng=rng, **kwargs) # Note we could just compute an assignment bboxes = demodata.random_boxes(assign_result.num_preds, rng=rng) gt_bboxes = demodata.random_boxes(assign_result.num_gts, rng=rng) if rng.rand() > 0.2: # sometimes algorithms squeeze their data, be robust to that gt_bboxes = gt_bboxes.squeeze() bboxes = bboxes.squeeze() if assign_result.labels is None: gt_labels = None else: gt_labels = None # todo if gt_labels is None: add_gt_as_proposals = False else: add_gt_as_proposals = True # make probabalistic? sampler = RandomSampler(num, pos_fraction, neg_pos_ub=neg_pos_ub, add_gt_as_proposals=add_gt_as_proposals, rng=rng) self = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) return self
ViT-Adapter-main
segmentation/mmseg_custom/core/box/samplers/sampling_result.py
# Copyright (c) OpenMMLab. All rights reserved. def multi_apply(func, *args, **kwargs): """Apply function to a list of arguments. Note: This function applies the ``func`` to multiple inputs and map the multiple outputs of the ``func`` into different list. Each list contains the same type of outputs corresponding to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: tuple(list): A tuple containing multiple list, each list contains \ a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) def add_prefix(inputs, prefix): """Add prefix for dict. Args: inputs (dict): The input dict with str keys. prefix (str): The prefix to add. Returns: dict: The dict with keys updated with ``prefix``. """ outputs = dict() for name, value in inputs.items(): outputs[f'{prefix}.{name}'] = value return outputs
ViT-Adapter-main
segmentation/mmseg_custom/core/utils/misc.py
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import add_prefix, multi_apply __all__ = [ 'add_prefix', 'multi_apply', 'DistOptimizerHook', 'allreduce_grads', 'all_reduce_dict', 'reduce_mean' ]
ViT-Adapter-main
segmentation/mmseg_custom/core/utils/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import functools import pickle import warnings from collections import OrderedDict import torch import torch.distributed as dist from mmcv.runner import OptimizerHook, get_dist_info from torch._utils import (_flatten_dense_tensors, _take_tensors, _unflatten_dense_tensors) def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): if bucket_size_mb > 0: bucket_size_bytes = bucket_size_mb * 1024 * 1024 buckets = _take_tensors(tensors, bucket_size_bytes) else: buckets = OrderedDict() for tensor in tensors: tp = tensor.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(tensor) buckets = buckets.values() for bucket in buckets: flat_tensors = _flatten_dense_tensors(bucket) dist.all_reduce(flat_tensors) flat_tensors.div_(world_size) for tensor, synced in zip( bucket, _unflatten_dense_tensors(flat_tensors, bucket)): tensor.copy_(synced) def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): """Allreduce gradients. Args: params (list[torch.Parameters]): List of parameters of a model coalesce (bool, optional): Whether allreduce parameters as a whole. Defaults to True. bucket_size_mb (int, optional): Size of bucket, the unit is MB. Defaults to -1. """ grads = [ param.grad.data for param in params if param.requires_grad and param.grad is not None ] world_size = dist.get_world_size() if coalesce: _allreduce_coalesced(grads, world_size, bucket_size_mb) else: for tensor in grads: dist.all_reduce(tensor.div_(world_size)) class DistOptimizerHook(OptimizerHook): """Deprecated optimizer hook for distributed training.""" def __init__(self, *args, **kwargs): warnings.warn('"DistOptimizerHook" is deprecated, please switch to' '"mmcv.runner.OptimizerHook".') super().__init__(*args, **kwargs) def reduce_mean(tensor): """"Obtain the mean of tensor on different GPUs.""" if not (dist.is_available() and dist.is_initialized()): return tensor tensor = tensor.clone() dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) return tensor def obj2tensor(pyobj, device='cuda'): """Serialize picklable python object to tensor.""" storage = torch.ByteStorage.from_buffer(pickle.dumps(pyobj)) return torch.ByteTensor(storage).to(device=device) def tensor2obj(tensor): """Deserialize tensor to picklable python object.""" return pickle.loads(tensor.cpu().numpy().tobytes()) @functools.lru_cache() def _get_global_gloo_group(): """Return a process group based on gloo backend, containing all the ranks The result is cached.""" if dist.get_backend() == 'nccl': return dist.new_group(backend='gloo') else: return dist.group.WORLD def all_reduce_dict(py_dict, op='sum', group=None, to_float=True): """Apply all reduce function for python dict object. The code is modified from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py. NOTE: make sure that py_dict in different ranks has the same keys and the values should be in the same shape. Args: py_dict (dict): Dict to be applied all reduce op. op (str): Operator, could be 'sum' or 'mean'. Default: 'sum' group (:obj:`torch.distributed.group`, optional): Distributed group, Default: None. to_float (bool): Whether to convert all values of dict to float. Default: True. Returns: OrderedDict: reduced python dict object. """ _, world_size = get_dist_info() if world_size == 1: return py_dict if group is None: # TODO: May try not to use gloo in the future group = _get_global_gloo_group() if dist.get_world_size(group) == 1: return py_dict # all reduce logic across different devices. py_key = list(py_dict.keys()) py_key_tensor = obj2tensor(py_key) dist.broadcast(py_key_tensor, src=0) py_key = tensor2obj(py_key_tensor) tensor_shapes = [py_dict[k].shape for k in py_key] tensor_numels = [py_dict[k].numel() for k in py_key] if to_float: flatten_tensor = torch.cat( [py_dict[k].flatten().float() for k in py_key]) else: flatten_tensor = torch.cat([py_dict[k].flatten() for k in py_key]) dist.all_reduce(flatten_tensor, op=dist.ReduceOp.SUM) if op == 'mean': flatten_tensor /= world_size split_tensors = [ x.reshape(shape) for x, shape in zip( torch.split(flatten_tensor, tensor_numels), tensor_shapes) ] return OrderedDict({k: v for k, v in zip(py_key, split_tensors)})
ViT-Adapter-main
segmentation/mmseg_custom/core/utils/dist_utils.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .utils import mask2bbox # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/core/mask/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import pycocotools.mask as mask_util import torch def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list | tuple[list]): bitmap mask results. In mask scoring rcnn, mask_results is a tuple of (segm_results, segm_cls_score). Returns: list | tuple: RLE encoded mask. """ if isinstance(mask_results, tuple): # mask scoring cls_segms, cls_mask_scores = mask_results else: cls_segms = mask_results num_classes = len(cls_segms) encoded_mask_results = [[] for _ in range(num_classes)] for i in range(len(cls_segms)): for cls_segm in cls_segms[i]: encoded_mask_results[i].append( mask_util.encode( np.array( cls_segm[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE if isinstance(mask_results, tuple): return encoded_mask_results, cls_mask_scores else: return encoded_mask_results def mask2bbox(masks): """Obtain tight bounding boxes of binary masks. Args: masks (Tensor): Binary mask of shape (n, h, w). Returns: Tensor: Bboxe with shape (n, 4) of \ positive region in binary mask. """ N = masks.shape[0] bboxes = masks.new_zeros((N, 4), dtype=torch.float32) x_any = torch.any(masks, dim=1) y_any = torch.any(masks, dim=2) for i in range(N): x = torch.where(x_any[i, :])[0] y = torch.where(y_any[i, :])[0] if len(x) > 0 and len(y) > 0: bboxes[i, :] = bboxes.new_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1]) return bboxes
ViT-Adapter-main
segmentation/mmseg_custom/core/mask/utils.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .panoptic_utils import INSTANCE_OFFSET # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/core/evaluation/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. # A custom value to distinguish instance ID and category ID; need to # be greater than the number of categories. # For a pixel in the panoptic result map: # pan_id = ins_id * INSTANCE_OFFSET + cat_id INSTANCE_OFFSET = 1000
ViT-Adapter-main
segmentation/mmseg_custom/core/evaluation/panoptic_utils.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .point_generator import MlvlPointGenerator # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/core/anchor/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from torch.nn.modules.utils import _pair from .builder import PRIOR_GENERATORS @PRIOR_GENERATORS.register_module() class PointGenerator: def _meshgrid(self, x, y, row_major=True): xx = x.repeat(len(y)) yy = y.view(-1, 1).repeat(1, len(x)).view(-1) if row_major: return xx, yy else: return yy, xx def grid_points(self, featmap_size, stride=16, device='cuda'): feat_h, feat_w = featmap_size shift_x = torch.arange(0., feat_w, device=device) * stride shift_y = torch.arange(0., feat_h, device=device) * stride shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) stride = shift_x.new_full((shift_xx.shape[0], ), stride) shifts = torch.stack([shift_xx, shift_yy, stride], dim=-1) all_points = shifts.to(device) return all_points def valid_flags(self, featmap_size, valid_size, device='cuda'): feat_h, feat_w = featmap_size valid_h, valid_w = valid_size assert valid_h <= feat_h and valid_w <= feat_w valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device) valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device) valid_x[:valid_w] = 1 valid_y[:valid_h] = 1 valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) valid = valid_xx & valid_yy return valid @PRIOR_GENERATORS.register_module() class MlvlPointGenerator: """Standard points generator for multi-level (Mlvl) feature maps in 2D points-based detectors. Args: strides (list[int] | list[tuple[int, int]]): Strides of anchors in multiple feature levels in order (w, h). offset (float): The offset of points, the value is normalized with corresponding stride. Defaults to 0.5. """ def __init__(self, strides, offset=0.5): self.strides = [_pair(stride) for stride in strides] self.offset = offset @property def num_levels(self): """int: number of feature levels that the generator will be applied""" return len(self.strides) @property def num_base_priors(self): """list[int]: The number of priors (points) at a point on the feature grid""" return [1 for _ in range(len(self.strides))] def _meshgrid(self, x, y, row_major=True): yy, xx = torch.meshgrid(y, x) if row_major: # warning .flatten() would cause error in ONNX exporting # have to use reshape here return xx.reshape(-1), yy.reshape(-1) else: return yy.reshape(-1), xx.reshape(-1) def grid_priors(self, featmap_sizes, dtype=torch.float32, device='cuda', with_stride=False): """Generate grid points of multiple feature levels. Args: featmap_sizes (list[tuple]): List of feature map sizes in multiple feature levels, each size arrange as as (h, w). dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str): The device where the anchors will be put on. with_stride (bool): Whether to concatenate the stride to the last dimension of points. Return: list[torch.Tensor]: Points of multiple feature levels. The sizes of each tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). """ assert self.num_levels == len(featmap_sizes) multi_level_priors = [] for i in range(self.num_levels): priors = self.single_level_grid_priors(featmap_sizes[i], level_idx=i, dtype=dtype, device=device, with_stride=with_stride) multi_level_priors.append(priors) return multi_level_priors def single_level_grid_priors(self, featmap_size, level_idx, dtype=torch.float32, device='cuda', with_stride=False): """Generate grid Points of a single level. Note: This function is usually called by method ``self.grid_priors``. Args: featmap_size (tuple[int]): Size of the feature maps, arrange as (h, w). level_idx (int): The index of corresponding feature map level. dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. with_stride (bool): Concatenate the stride to the last dimension of points. Return: Tensor: Points of single feature levels. The shape of tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). """ feat_h, feat_w = featmap_size stride_w, stride_h = self.strides[level_idx] shift_x = (torch.arange(0, feat_w, device=device) + self.offset) * stride_w # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_x = shift_x.to(dtype) shift_y = (torch.arange(0, feat_h, device=device) + self.offset) * stride_h # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_y = shift_y.to(dtype) shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) if not with_stride: shifts = torch.stack([shift_xx, shift_yy], dim=-1) else: # use `shape[0]` instead of `len(shift_xx)` for ONNX export stride_w = shift_xx.new_full((shift_xx.shape[0], ), stride_w).to(dtype) stride_h = shift_xx.new_full((shift_yy.shape[0], ), stride_h).to(dtype) shifts = torch.stack([shift_xx, shift_yy, stride_w, stride_h], dim=-1) all_points = shifts.to(device) return all_points def valid_flags(self, featmap_sizes, pad_shape, device='cuda'): """Generate valid flags of points of multiple feature levels. Args: featmap_sizes (list(tuple)): List of feature map sizes in multiple feature levels, each size arrange as as (h, w). pad_shape (tuple(int)): The padded shape of the image, arrange as (h, w). device (str): The device where the anchors will be put on. Return: list(torch.Tensor): Valid flags of points of multiple levels. """ assert self.num_levels == len(featmap_sizes) multi_level_flags = [] for i in range(self.num_levels): point_stride = self.strides[i] feat_h, feat_w = featmap_sizes[i] h, w = pad_shape[:2] valid_feat_h = min(int(np.ceil(h / point_stride[1])), feat_h) valid_feat_w = min(int(np.ceil(w / point_stride[0])), feat_w) flags = self.single_level_valid_flags((feat_h, feat_w), (valid_feat_h, valid_feat_w), device=device) multi_level_flags.append(flags) return multi_level_flags def single_level_valid_flags(self, featmap_size, valid_size, device='cuda'): """Generate the valid flags of points of a single feature map. Args: featmap_size (tuple[int]): The size of feature maps, arrange as as (h, w). valid_size (tuple[int]): The valid size of the feature maps. The size arrange as as (h, w). device (str, optional): The device where the flags will be put on. Defaults to 'cuda'. Returns: torch.Tensor: The valid flags of each points in a single level \ feature map. """ feat_h, feat_w = featmap_size valid_h, valid_w = valid_size assert valid_h <= feat_h and valid_w <= feat_w valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device) valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device) valid_x[:valid_w] = 1 valid_y[:valid_h] = 1 valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) valid = valid_xx & valid_yy return valid def sparse_priors(self, prior_idxs, featmap_size, level_idx, dtype=torch.float32, device='cuda'): """Generate sparse points according to the ``prior_idxs``. Args: prior_idxs (Tensor): The index of corresponding anchors in the feature map. featmap_size (tuple[int]): feature map size arrange as (w, h). level_idx (int): The level index of corresponding feature map. dtype (obj:`torch.dtype`): Date type of points. Defaults to ``torch.float32``. device (obj:`torch.device`): The device where the points is located. Returns: Tensor: Anchor with shape (N, 2), N should be equal to the length of ``prior_idxs``. And last dimension 2 represent (coord_x, coord_y). """ height, width = featmap_size x = (prior_idxs % width + self.offset) * self.strides[level_idx][0] y = ((prior_idxs // width) % height + self.offset) * self.strides[level_idx][1] prioris = torch.stack([x, y], 1).to(dtype) prioris = prioris.to(device) return prioris
ViT-Adapter-main
segmentation/mmseg_custom/core/anchor/point_generator.py
# Copyright (c) OpenMMLab. All rights reserved. import warnings from mmcv.utils import Registry, build_from_cfg PRIOR_GENERATORS = Registry('Generator for anchors and points') ANCHOR_GENERATORS = PRIOR_GENERATORS def build_prior_generator(cfg, default_args=None): return build_from_cfg(cfg, PRIOR_GENERATORS, default_args) def build_anchor_generator(cfg, default_args=None): warnings.warn( '``build_anchor_generator`` would be deprecated soon, please use ' '``build_prior_generator`` ') return build_prior_generator(cfg, default_args=default_args)
ViT-Adapter-main
segmentation/mmseg_custom/core/anchor/builder.py
# Copyright (c) OpenMMLab. All rights reserved. from .mapillary import MapillaryDataset # noqa: F401,F403 from .potsdam import PotsdamDataset # noqa: F401,F403 from .pipelines import * # noqa: F401,F403
ViT-Adapter-main
segmentation/mmseg_custom/datasets/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. from mmseg.datasets.builder import DATASETS from mmseg.datasets.custom import CustomDataset @DATASETS.register_module(force=True) class PotsdamDataset(CustomDataset): """ISPRS Potsdam dataset. In segmentation map annotation for Potsdam dataset, 0 is the ignore index. ``reduce_zero_label`` should be set to True. The ``img_suffix`` and ``seg_map_suffix`` are both fixed to '.png'. """ CLASSES = ('impervious_surface', 'building', 'low_vegetation', 'tree', 'car', 'clutter') PALETTE = [[255, 255, 255], [0, 0, 255], [0, 255, 255], [0, 255, 0], [255, 255, 0], [255, 0, 0]] def __init__(self, **kwargs): super(PotsdamDataset, self).__init__( img_suffix='.png', seg_map_suffix='.png', reduce_zero_label=True, **kwargs)
ViT-Adapter-main
segmentation/mmseg_custom/datasets/potsdam.py
from mmseg.datasets.builder import DATASETS from mmseg.datasets.custom import CustomDataset @DATASETS.register_module() class MapillaryDataset(CustomDataset): """Mapillary dataset. """ CLASSES = ('Bird', 'Ground Animal', 'Curb', 'Fence', 'Guard Rail', 'Barrier', 'Wall', 'Bike Lane', 'Crosswalk - Plain', 'Curb Cut', 'Parking', 'Pedestrian Area', 'Rail Track', 'Road', 'Service Lane', 'Sidewalk', 'Bridge', 'Building', 'Tunnel', 'Person', 'Bicyclist', 'Motorcyclist', 'Other Rider', 'Lane Marking - Crosswalk', 'Lane Marking - General', 'Mountain', 'Sand', 'Sky', 'Snow', 'Terrain', 'Vegetation', 'Water', 'Banner', 'Bench', 'Bike Rack', 'Billboard', 'Catch Basin', 'CCTV Camera', 'Fire Hydrant', 'Junction Box', 'Mailbox', 'Manhole', 'Phone Booth', 'Pothole', 'Street Light', 'Pole', 'Traffic Sign Frame', 'Utility Pole', 'Traffic Light', 'Traffic Sign (Back)', 'Traffic Sign (Front)', 'Trash Can', 'Bicycle', 'Boat', 'Bus', 'Car', 'Caravan', 'Motorcycle', 'On Rails', 'Other Vehicle', 'Trailer', 'Truck', 'Wheeled Slow', 'Car Mount', 'Ego Vehicle', 'Unlabeled') PALETTE = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 153], [180, 165, 180], [90, 120, 150], [ 102, 102, 156], [128, 64, 255], [140, 140, 200], [170, 170, 170], [250, 170, 160], [96, 96, 96], [230, 150, 140], [128, 64, 128], [ 110, 110, 110], [244, 35, 232], [150, 100, 100], [70, 70, 70], [150, 120, 90], [220, 20, 60], [255, 0, 0], [255, 0, 100], [255, 0, 200], [200, 128, 128], [255, 255, 255], [64, 170, 64], [230, 160, 50], [70, 130, 180], [190, 255, 255], [152, 251, 152], [107, 142, 35], [0, 170, 30], [255, 255, 128], [250, 0, 30], [100, 140, 180], [220, 220, 220], [220, 128, 128], [222, 40, 40], [100, 170, 30], [40, 40, 40], [33, 33, 33], [100, 128, 160], [142, 0, 0], [70, 100, 150], [210, 170, 100], [153, 153, 153], [128, 128, 128], [0, 0, 80], [250, 170, 30], [192, 192, 192], [220, 220, 0], [140, 140, 20], [119, 11, 32], [150, 0, 255], [ 0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110], [0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10], [0, 0, 0]] def __init__(self, **kwargs): super(MapillaryDataset, self).__init__( img_suffix='.jpg', seg_map_suffix='.png', reduce_zero_label=False, **kwargs)
ViT-Adapter-main
segmentation/mmseg_custom/datasets/mapillary.py
# Copyright (c) OpenMMLab. All rights reserved. from .formatting import DefaultFormatBundle, ToMask from .transform import MapillaryHack, PadShortSide, SETR_Resize __all__ = [ 'DefaultFormatBundle', 'ToMask', 'SETR_Resize', 'PadShortSide', 'MapillaryHack' ]
ViT-Adapter-main
segmentation/mmseg_custom/datasets/pipelines/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmcv.parallel import DataContainer as DC from mmseg.datasets.builder import PIPELINES from mmseg.datasets.pipelines.formatting import to_tensor @PIPELINES.register_module(force=True) class DefaultFormatBundle(object): """Default formatting bundle. It simplifies the pipeline of formatting common fields, including "img" and "gt_semantic_seg". These fields are formatted as follows. - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, (3)to DataContainer (stack=True) """ def __call__(self, results): """Call function to transform and format common fields in results. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data that is formatted with default bundle. """ if 'img' in results: img = results['img'] if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)) results['img'] = DC(to_tensor(img), stack=True) if 'gt_semantic_seg' in results: # convert to long results['gt_semantic_seg'] = DC(to_tensor( results['gt_semantic_seg'][None, ...].astype(np.int64)), stack=True) if 'gt_masks' in results: results['gt_masks'] = DC(to_tensor(results['gt_masks'])) if 'gt_labels' in results: results['gt_labels'] = DC(to_tensor(results['gt_labels'])) return results def __repr__(self): return self.__class__.__name__ @PIPELINES.register_module() class ToMask(object): """Transfer gt_semantic_seg to binary mask and generate gt_labels.""" def __init__(self, ignore_index=255): self.ignore_index = ignore_index def __call__(self, results): gt_semantic_seg = results['gt_semantic_seg'] gt_labels = np.unique(gt_semantic_seg) # remove ignored region gt_labels = gt_labels[gt_labels != self.ignore_index] gt_masks = [] for class_id in gt_labels: gt_masks.append(gt_semantic_seg == class_id) if len(gt_masks) == 0: # Some image does not have annotation (all ignored) gt_masks = np.empty((0, ) + results['pad_shape'][:-1], dtype=np.int64) gt_labels = np.empty((0, ), dtype=np.int64) else: gt_masks = np.asarray(gt_masks, dtype=np.int64) gt_labels = np.asarray(gt_labels, dtype=np.int64) results['gt_labels'] = gt_labels results['gt_masks'] = gt_masks return results def __repr__(self): return self.__class__.__name__ + \ f'(ignore_index={self.ignore_index})'
ViT-Adapter-main
segmentation/mmseg_custom/datasets/pipelines/formatting.py
import mmcv import numpy as np import torch from mmseg.datasets.builder import PIPELINES @PIPELINES.register_module() class SETR_Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - ``ratio_range is not None``: randomly sample a ratio from the ratio range and multiply it with the image scale. - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, crop_size=None, setr_multi_scale=False): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] # assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given a scale and a range of image ratio assert len(self.img_scale) == 1 else: # mode 2: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.crop_size = crop_size self.setr_multi_scale = setr_multi_scale @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: if self.setr_multi_scale: if min(results['scale']) < self.crop_size[0]: new_short = self.crop_size[0] else: new_short = min(results['scale']) h, w = results['img'].shape[:2] if h > w: new_h, new_w = new_short * h / w, new_short else: new_h, new_w = new_short, new_short * w / h results['scale'] = (new_h, new_w) img, scale_factor = mmcv.imrescale(results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize(results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale(results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize(results[key], results['scale'], interpolation='nearest') results['gt_semantic_seg'] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class PadShortSide(object): """Pad the image & mask. Pad to the minimum size that is equal or larger than a number. Added keys are "pad_shape", "pad_fixed_size", Args: size (int, optional): Fixed padding size. pad_val (float, optional): Padding value. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. """ def __init__(self, size=None, pad_val=0, seg_pad_val=255): self.size = size self.pad_val = pad_val self.seg_pad_val = seg_pad_val # only one of size and size_divisor should be valid assert size is not None def _pad_img(self, results): """Pad images according to ``self.size``.""" h, w = results['img'].shape[:2] new_h = max(h, self.size) new_w = max(w, self.size) padded_img = mmcv.impad(results['img'], shape=(new_h, new_w), pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape # results['unpad_shape'] = (h, w) def _pad_seg(self, results): """Pad masks according to ``results['pad_shape']``.""" for key in results.get('seg_fields', []): results[key] = mmcv.impad(results[key], shape=results['pad_shape'][:2], pad_val=self.seg_pad_val) def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ h, w = results['img'].shape[:2] if h >= self.size and w >= self.size: # 短边比窗口大,跳过 pass else: self._pad_img(results) self._pad_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class MapillaryHack(object): """map MV 65 class to 19 class like Cityscapes.""" def __init__(self): self.map = [[13, 24, 41], [2, 15], [17], [6], [3], [45, 47], [48], [50], [30], [29], [27], [19], [20, 21, 22], [55], [61], [54], [58], [57], [52]] self.others = [i for i in range(66)] for i in self.map: for j in i: if j in self.others: self.others.remove(j) def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ gt_map = results['gt_semantic_seg'] # others -> 255 new_gt_map = np.zeros_like(gt_map) for value in self.others: new_gt_map[gt_map == value] = 255 for index, map in enumerate(self.map): for value in map: new_gt_map[gt_map == value] = index results['gt_semantic_seg'] = new_gt_map return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str
ViT-Adapter-main
segmentation/mmseg_custom/datasets/pipelines/transform.py
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .builder import (MASK_ASSIGNERS, MATCH_COST, TRANSFORMER, build_assigner, build_match_cost) from .decode_heads import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .plugins import * # noqa: F401,F403 from .segmentors import * # noqa: F401,F403 __all__ = [ 'MASK_ASSIGNERS', 'MATCH_COST', 'TRANSFORMER', 'build_assigner', 'build_match_cost' ]
ViT-Adapter-main
segmentation/mmseg_custom/models/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import warnings # noqa: F401,F403 from mmcv.utils import Registry TRANSFORMER = Registry('Transformer') MASK_ASSIGNERS = Registry('mask_assigner') MATCH_COST = Registry('match_cost') def build_match_cost(cfg): """Build Match Cost.""" return MATCH_COST.build(cfg) def build_assigner(cfg): """Build Assigner.""" return MASK_ASSIGNERS.build(cfg) def build_transformer(cfg): """Build Transformer.""" return TRANSFORMER.build(cfg)
ViT-Adapter-main
segmentation/mmseg_custom/models/builder.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmseg.models.builder import LOSSES from mmseg.models.losses.utils import weight_reduce_loss def dice_loss(pred, target, weight=None, eps=1e-3, reduction='mean', avg_factor=None): """Calculate dice loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.flatten(1) target = target.flatten(1).float() a = torch.sum(input * target, 1) b = torch.sum(input * input, 1) + eps c = torch.sum(target * target, 1) + eps d = (2 * a) / (b + c) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss def naive_dice_loss(pred, target, weight=None, eps=1e-3, reduction='mean', avg_factor=None): """Calculate naive dice loss, the coefficient in the denominator is the first power instead of the second power. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.flatten(1) target = target.flatten(1).float() a = torch.sum(input * target, 1) b = torch.sum(input, 1) c = torch.sum(target, 1) d = (2 * a + eps) / (b + c + eps) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module(force=True) class DiceLoss(nn.Module): def __init__(self, use_sigmoid=True, activate=True, reduction='mean', naive_dice=False, loss_weight=1.0, eps=1e-3): """Dice Loss, there are two forms of dice loss is supported: - the one proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. - the dice loss in which the power of the number in the denominator is the first power instead of the second power. Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. activate (bool): Whether to activate the predictions inside, this will disable the inside sigmoid operation. Defaults to True. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. naive_dice (bool, optional): If false, use the dice loss defined in the V-Net paper, otherwise, use the naive dice loss in which the power of the number in the denominator is the first power instead of the second power.Defaults to False. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. """ super(DiceLoss, self).__init__() self.use_sigmoid = use_sigmoid self.reduction = reduction self.naive_dice = naive_dice self.loss_weight = loss_weight self.eps = eps self.activate = activate def forward(self, pred, target, weight=None, reduction_override=None, avg_factor=None): """Forward function. Args: pred (torch.Tensor): The prediction, has a shape (n, *). target (torch.Tensor): The label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = (reduction_override if reduction_override else self.reduction) if self.activate: if self.use_sigmoid: pred = pred.sigmoid() else: raise NotImplementedError if self.naive_dice: loss = self.loss_weight * naive_dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor) else: loss = self.loss_weight * dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor) return loss
ViT-Adapter-main
segmentation/mmseg_custom/models/losses/dice_loss.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from ..builder import MATCH_COST @MATCH_COST.register_module() class FocalLossCost: """FocalLossCost. Args: weight (int | float, optional): loss_weight alpha (int | float, optional): focal_loss alpha gamma (int | float, optional): focal_loss gamma eps (float, optional): default 1e-12 Examples: >>> from mmdet.core.bbox.match_costs.match_cost import FocalLossCost >>> import torch >>> self = FocalLossCost() >>> cls_pred = torch.rand(4, 3) >>> gt_labels = torch.tensor([0, 1, 2]) >>> factor = torch.tensor([10, 8, 10, 8]) >>> self(cls_pred, gt_labels) tensor([[-0.3236, -0.3364, -0.2699], [-0.3439, -0.3209, -0.4807], [-0.4099, -0.3795, -0.2929], [-0.1950, -0.1207, -0.2626]]) """ def __init__(self, weight=1., alpha=0.25, gamma=2, eps=1e-12): self.weight = weight self.alpha = alpha self.gamma = gamma self.eps = eps def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). Returns: torch.Tensor: cls_cost value with weight """ cls_pred = cls_pred.sigmoid() neg_cost = -(1 - cls_pred + self.eps).log() * ( 1 - self.alpha) * cls_pred.pow(self.gamma) pos_cost = -(cls_pred + self.eps).log() * self.alpha * ( 1 - cls_pred).pow(self.gamma) cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels] return cls_cost * self.weight @MATCH_COST.register_module() class MaskFocalLossCost(FocalLossCost): """Cost of mask assignments based on focal losses. Args: weight (int | float, optional): loss_weight. alpha (int | float, optional): focal_loss alpha. gamma (int | float, optional): focal_loss gamma. eps (float, optional): default 1e-12. """ def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classfication logits in shape (N1, H, W), dtype=torch.float32. gt_labels (Tensor): Ground truth in shape (N2, H, W), dtype=torch.long. Returns: Tensor: classification cost matrix in shape (N1, N2). """ cls_pred = cls_pred.reshape((cls_pred.shape[0], -1)) gt_labels = gt_labels.reshape((gt_labels.shape[0], -1)).float() hw = cls_pred.shape[1] cls_pred = cls_pred.sigmoid() neg_cost = -(1 - cls_pred + self.eps).log() * ( 1 - self.alpha) * cls_pred.pow(self.gamma) pos_cost = -(cls_pred + self.eps).log() * self.alpha * ( 1 - cls_pred).pow(self.gamma) cls_cost = torch.einsum('nc,mc->nm', pos_cost, gt_labels) + \ torch.einsum('nc,mc->nm', neg_cost, (1 - gt_labels)) return cls_cost / hw * self.weight @MATCH_COST.register_module() class ClassificationCost: """ClsSoftmaxCost.Borrow from mmdet.core.bbox.match_costs.match_cost.ClassificationCost. Args: weight (int | float, optional): loss_weight Examples: >>> import torch >>> self = ClassificationCost() >>> cls_pred = torch.rand(4, 3) >>> gt_labels = torch.tensor([0, 1, 2]) >>> factor = torch.tensor([10, 8, 10, 8]) >>> self(cls_pred, gt_labels) tensor([[-0.3430, -0.3525, -0.3045], [-0.3077, -0.2931, -0.3992], [-0.3664, -0.3455, -0.2881], [-0.3343, -0.2701, -0.3956]]) """ def __init__(self, weight=1.): self.weight = weight def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). Returns: torch.Tensor: cls_cost value with weight """ # Following the official DETR repo, contrary to the loss that # NLL is used, we approximate it in 1 - cls_score[gt_label]. # The 1 is a constant that doesn't change the matching, # so it can be omitted. cls_score = cls_pred.softmax(-1) cls_cost = -cls_score[:, gt_labels] return cls_cost * self.weight @MATCH_COST.register_module() class DiceCost: """Cost of mask assignments based on dice losses. Args: weight (int | float, optional): loss_weight. Defaults to 1. pred_act (bool, optional): Whether to apply sigmoid to mask_pred. Defaults to False. eps (float, optional): default 1e-12. """ def __init__(self, weight=1., pred_act=False, eps=1e-3): self.weight = weight self.pred_act = pred_act self.eps = eps def binary_mask_dice_loss(self, mask_preds, gt_masks): """ Args: mask_preds (Tensor): Mask prediction in shape (N1, H, W). gt_masks (Tensor): Ground truth in shape (N2, H, W) store 0 or 1, 0 for negative class and 1 for positive class. Returns: Tensor: Dice cost matrix in shape (N1, N2). """ mask_preds = mask_preds.reshape((mask_preds.shape[0], -1)) gt_masks = gt_masks.reshape((gt_masks.shape[0], -1)).float() numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks) denominator = mask_preds.sum(-1)[:, None] + gt_masks.sum(-1)[None, :] loss = 1 - (numerator + self.eps) / (denominator + self.eps) return loss def __call__(self, mask_preds, gt_masks): """ Args: mask_preds (Tensor): Mask prediction logits in shape (N1, H, W). gt_masks (Tensor): Ground truth in shape (N2, H, W). Returns: Tensor: Dice cost matrix in shape (N1, N2). """ if self.pred_act: mask_preds = mask_preds.sigmoid() dice_cost = self.binary_mask_dice_loss(mask_preds, gt_masks) return dice_cost * self.weight
ViT-Adapter-main
segmentation/mmseg_custom/models/losses/match_loss.py
# Copyright (c) OpenMMLab. All rights reserved. from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .focal_loss import FocalLoss from .match_costs import (ClassificationCost, CrossEntropyLossCost, DiceCost, MaskFocalLossCost) __all__ = [ 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'DiceLoss', 'FocalLoss', 'ClassificationCost', 'MaskFocalLossCost', 'DiceCost', 'CrossEntropyLossCost' ]
ViT-Adapter-main
segmentation/mmseg_custom/models/losses/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.ops import sigmoid_focal_loss as _sigmoid_focal_loss from mmseg.models.builder import LOSSES from mmseg.models.losses.utils import weight_reduce_loss # This method is only for debugging def py_sigmoid_focal_loss(pred, target, weight=None, gamma=2.0, alpha=0.25, reduction='mean', avg_factor=None): """PyTorch version of `Focal Loss <https://arxiv.org/abs/1708.02002>`_. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes target (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 2.0. alpha (float, optional): A balanced form for Focal Loss. Defaults to 0.25. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ pred_sigmoid = pred.sigmoid() target = target.type_as(pred) pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target) focal_weight = (alpha * target + (1 - alpha) * (1 - target)) * pt.pow(gamma) loss = F.binary_cross_entropy_with_logits( pred, target, reduction='none') * focal_weight if weight is not None: if weight.shape != loss.shape: if weight.size(0) == loss.size(0): # For most cases, weight is of shape (num_priors, ), # which means it does not have the second axis num_class weight = weight.view(-1, 1) else: # Sometimes, weight per anchor per class is also needed. e.g. # in FSAF. But it may be flattened of shape # (num_priors x num_class, ), while loss is still of shape # (num_priors, num_class). assert weight.numel() == loss.numel() weight = weight.view(loss.size(0), -1) assert weight.ndim == loss.ndim loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss def sigmoid_focal_loss(pred, target, weight=None, gamma=2.0, alpha=0.25, reduction='mean', avg_factor=None): r"""A warpper of cuda version `Focal Loss <https://arxiv.org/abs/1708.02002>`_. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 2.0. alpha (float, optional): A balanced form for Focal Loss. Defaults to 0.25. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ # Function.apply does not accept keyword arguments, so the decorator # "weighted_loss" is not applicable loss = _sigmoid_focal_loss(pred.contiguous(), target.contiguous(), gamma, alpha, None, 'none') if weight is not None: if weight.shape != loss.shape: if weight.size(0) == loss.size(0): # For most cases, weight is of shape (num_priors, ), # which means it does not have the second axis num_class weight = weight.view(-1, 1) else: # Sometimes, weight per anchor per class is also needed. e.g. # in FSAF. But it may be flattened of shape # (num_priors x num_class, ), while loss is still of shape # (num_priors, num_class). assert weight.numel() == loss.numel() weight = weight.view(loss.size(0), -1) assert weight.ndim == loss.ndim loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module(force=True) class FocalLoss(nn.Module): def __init__(self, use_sigmoid=True, gamma=2.0, alpha=0.25, reduction='mean', loss_weight=1.0): """`Focal Loss <https://arxiv.org/abs/1708.02002>`_ Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 2.0. alpha (float, optional): A balanced form for Focal Loss. Defaults to 0.25. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". loss_weight (float, optional): Weight of loss. Defaults to 1.0. """ super(FocalLoss, self).__init__() assert use_sigmoid is True, 'Only sigmoid focal loss supported now.' self.use_sigmoid = use_sigmoid self.gamma = gamma self.alpha = alpha self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.use_sigmoid: if torch.cuda.is_available() and pred.is_cuda: calculate_loss_func = sigmoid_focal_loss else: num_classes = pred.size(1) target = F.one_hot(target, num_classes=num_classes + 1) target = target[:, :num_classes] calculate_loss_func = py_sigmoid_focal_loss loss_cls = self.loss_weight * calculate_loss_func( pred, target, weight, gamma=self.gamma, alpha=self.alpha, reduction=reduction, avg_factor=avg_factor) else: raise NotImplementedError return loss_cls
ViT-Adapter-main
segmentation/mmseg_custom/models/losses/focal_loss.py
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch import torch.nn as nn import torch.nn.functional as F from mmseg.models.builder import LOSSES from mmseg.models.losses.utils import get_class_weight, weight_reduce_loss def cross_entropy(pred, label, weight=None, class_weight=None, reduction='mean', avg_factor=None, ignore_index=-100, avg_non_ignore=False): """cross_entropy. The wrapper function for :func:`F.cross_entropy` Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. Default: None. class_weight (list[float], optional): The weight for each class. Default: None. reduction (str, optional): The method used to reduce the loss. Options are 'none', 'mean' and 'sum'. Default: 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. Default: None. ignore_index (int): Specifies a target value that is ignored and does not contribute to the input gradients. When ``avg_non_ignore `` is ``True``, and the ``reduction`` is ``''mean''``, the loss is averaged over non-ignored targets. Defaults: -100. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. `New in version 0.23.0.` """ # class_weight is a manual rescaling weight given to each class. # If given, has to be a Tensor of size C element-wise losses loss = F.cross_entropy( pred, label, weight=class_weight, reduction='none', ignore_index=ignore_index) # apply weights and do the reduction # average loss over non-ignored elements # pytorch's official cross_entropy average loss over non-ignored elements # refer to https://github.com/pytorch/pytorch/blob/56b43f4fec1f76953f15a627694d4bba34588969/torch/nn/functional.py#L2660 # noqa if (avg_factor is None) and avg_non_ignore and reduction == 'mean': avg_factor = label.numel() - (label == ignore_index).sum().item() if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights = bin_label_weights * valid_mask return bin_labels, bin_label_weights, valid_mask def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=-100, avg_non_ignore=False, **kwargs): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. Note: In bce loss, label < 0 is invalid. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int): The label index to be ignored. Default: -100. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. `New in version 0.23.0.` Returns: torch.Tensor: The calculated loss """ if pred.size(1) == 1: # For binary class segmentation, the shape of pred is # [N, 1, H, W] and that of label is [N, H, W]. assert label.max() <= 1, \ 'For pred with shape [N, 1, H, W], its label must have at ' \ 'most 2 classes' pred = pred.squeeze() if pred.dim() != label.dim(): assert (pred.dim() == 2 and label.dim() == 1) or ( pred.dim() == 4 and label.dim() == 3), \ 'Only pred shape [N, C], label shape [N] or pred shape [N, C, ' \ 'H, W], label shape [N, H, W] are supported' # `weight` returned from `_expand_onehot_labels` # has been treated for valid (non-ignore) pixels label, weight, valid_mask = _expand_onehot_labels( label, weight, pred.shape, ignore_index) else: # should mask out the ignored elements valid_mask = ((label >= 0) & (label != ignore_index)).float() if weight is not None: weight = weight * valid_mask else: weight = valid_mask # average loss over non-ignored and valid elements if reduction == 'mean' and avg_factor is None and avg_non_ignore: avg_factor = valid_mask.sum().item() loss = F.binary_cross_entropy_with_logits( pred, label.float(), pos_weight=class_weight, reduction='none') # do the reduction for the weighted loss loss = weight_reduce_loss( loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None, ignore_index=None, **kwargs): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss """ assert ignore_index is None, 'BCE loss does not support ignore_index' # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, weight=class_weight, reduction='mean')[None] @LOSSES.register_module(force=True) class CrossEntropyLoss(nn.Module): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float] | str, optional): Weight of each class. If in str format, read them from a file. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. loss_name (str, optional): Name of the loss item. If you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Defaults to 'loss_ce'. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. `New in version 0.23.0.` """ def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0, loss_name='loss_ce', avg_non_ignore=False): super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = get_class_weight(class_weight) self.avg_non_ignore = avg_non_ignore if not self.avg_non_ignore and self.reduction == 'mean': warnings.warn( 'Default ``avg_non_ignore`` is False, if you would like to ' 'ignore the certain label and average loss over non-ignore ' 'labels, which is the same with PyTorch official ' 'cross_entropy, set ``avg_non_ignore=True``.') if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy self._loss_name = loss_name def extra_repr(self): """Extra repr.""" s = f'avg_non_ignore={self.avg_non_ignore}' return s def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, ignore_index=-100, **kwargs): """Forward function.""" assert reduction_override in (None, 'none', 'mean', 'sum') reduction = (reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None # Note: for BCE loss, label < 0 is invalid. loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, avg_non_ignore=self.avg_non_ignore, ignore_index=ignore_index, **kwargs) return loss_cls @property def loss_name(self): """Loss Name. This function must be implemented and will return the name of this loss function. This name will be used to combine different loss items by simple sum operation. In addition, if you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Returns: str: The name of this loss item. """ return self._loss_name
ViT-Adapter-main
segmentation/mmseg_custom/models/losses/cross_entropy_loss.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from ..builder import MATCH_COST @MATCH_COST.register_module() class FocalLossCost: """FocalLossCost. Args: weight (int | float, optional): loss_weight alpha (int | float, optional): focal_loss alpha gamma (int | float, optional): focal_loss gamma eps (float, optional): default 1e-12 Examples: >>> from mmdet.core.bbox.match_costs.match_cost import FocalLossCost >>> import torch >>> self = FocalLossCost() >>> cls_pred = torch.rand(4, 3) >>> gt_labels = torch.tensor([0, 1, 2]) >>> factor = torch.tensor([10, 8, 10, 8]) >>> self(cls_pred, gt_labels) tensor([[-0.3236, -0.3364, -0.2699], [-0.3439, -0.3209, -0.4807], [-0.4099, -0.3795, -0.2929], [-0.1950, -0.1207, -0.2626]]) """ def __init__(self, weight=1., alpha=0.25, gamma=2, eps=1e-12): self.weight = weight self.alpha = alpha self.gamma = gamma self.eps = eps def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). Returns: torch.Tensor: cls_cost value with weight """ cls_pred = cls_pred.sigmoid() neg_cost = -(1 - cls_pred + self.eps).log() * ( 1 - self.alpha) * cls_pred.pow(self.gamma) pos_cost = -(cls_pred + self.eps).log() * self.alpha * ( 1 - cls_pred).pow(self.gamma) cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels] return cls_cost * self.weight @MATCH_COST.register_module() class MaskFocalLossCost(FocalLossCost): """Cost of mask assignments based on focal losses. Args: weight (int | float, optional): loss_weight. alpha (int | float, optional): focal_loss alpha. gamma (int | float, optional): focal_loss gamma. eps (float, optional): default 1e-12. """ def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classfication logits in shape (N1, H, W), dtype=torch.float32. gt_labels (Tensor): Ground truth in shape (N2, H, W), dtype=torch.long. Returns: Tensor: classification cost matrix in shape (N1, N2). """ cls_pred = cls_pred.reshape((cls_pred.shape[0], -1)) gt_labels = gt_labels.reshape((gt_labels.shape[0], -1)).float() hw = cls_pred.shape[1] cls_pred = cls_pred.sigmoid() neg_cost = -(1 - cls_pred + self.eps).log() * ( 1 - self.alpha) * cls_pred.pow(self.gamma) pos_cost = -(cls_pred + self.eps).log() * self.alpha * ( 1 - cls_pred).pow(self.gamma) cls_cost = torch.einsum('nc,mc->nm', pos_cost, gt_labels) + \ torch.einsum('nc,mc->nm', neg_cost, (1 - gt_labels)) return cls_cost / hw * self.weight @MATCH_COST.register_module() class ClassificationCost: """ClsSoftmaxCost.Borrow from mmdet.core.bbox.match_costs.match_cost.ClassificationCost. Args: weight (int | float, optional): loss_weight Examples: >>> import torch >>> self = ClassificationCost() >>> cls_pred = torch.rand(4, 3) >>> gt_labels = torch.tensor([0, 1, 2]) >>> factor = torch.tensor([10, 8, 10, 8]) >>> self(cls_pred, gt_labels) tensor([[-0.3430, -0.3525, -0.3045], [-0.3077, -0.2931, -0.3992], [-0.3664, -0.3455, -0.2881], [-0.3343, -0.2701, -0.3956]]) """ def __init__(self, weight=1.): self.weight = weight def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). Returns: torch.Tensor: cls_cost value with weight """ # Following the official DETR repo, contrary to the loss that # NLL is used, we approximate it in 1 - cls_score[gt_label]. # The 1 is a constant that doesn't change the matching, # so it can be omitted. cls_score = cls_pred.softmax(-1) cls_cost = -cls_score[:, gt_labels] return cls_cost * self.weight @MATCH_COST.register_module() class DiceCost: """Cost of mask assignments based on dice losses. Args: weight (int | float, optional): loss_weight. Defaults to 1. pred_act (bool, optional): Whether to apply sigmoid to mask_pred. Defaults to False. eps (float, optional): default 1e-12. """ def __init__(self, weight=1., pred_act=False, eps=1e-3): self.weight = weight self.pred_act = pred_act self.eps = eps def binary_mask_dice_loss(self, mask_preds, gt_masks): """ Args: mask_preds (Tensor): Mask prediction in shape (N1, H, W). gt_masks (Tensor): Ground truth in shape (N2, H, W) store 0 or 1, 0 for negative class and 1 for positive class. Returns: Tensor: Dice cost matrix in shape (N1, N2). """ mask_preds = mask_preds.reshape((mask_preds.shape[0], -1)) gt_masks = gt_masks.reshape((gt_masks.shape[0], -1)).float() numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks) denominator = mask_preds.sum(-1)[:, None] + gt_masks.sum(-1)[None, :] loss = 1 - (numerator + self.eps) / (denominator + self.eps) return loss def __call__(self, mask_preds, gt_masks): """ Args: mask_preds (Tensor): Mask prediction logits in shape (N1, H, W). gt_masks (Tensor): Ground truth in shape (N2, H, W). Returns: Tensor: Dice cost matrix in shape (N1, N2). """ if self.pred_act: mask_preds = mask_preds.sigmoid() dice_cost = self.binary_mask_dice_loss(mask_preds, gt_masks) return dice_cost * self.weight @MATCH_COST.register_module() class CrossEntropyLossCost: """CrossEntropyLossCost. Args: weight (int | float, optional): loss weight. Defaults to 1. use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to True. """ def __init__(self, weight=1., use_sigmoid=True): assert use_sigmoid, 'use_sigmoid = False is not supported yet.' self.weight = weight self.use_sigmoid = use_sigmoid def _binary_cross_entropy(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): The prediction with shape (num_query, 1, *) or (num_query, *). gt_labels (Tensor): The learning label of prediction with shape (num_gt, *). Returns: Tensor: Cross entropy cost matrix in shape (num_query, num_gt). """ cls_pred = cls_pred.flatten(1).float() gt_labels = gt_labels.flatten(1).float() n = cls_pred.shape[1] pos = F.binary_cross_entropy_with_logits( cls_pred, torch.ones_like(cls_pred), reduction='none') neg = F.binary_cross_entropy_with_logits( cls_pred, torch.zeros_like(cls_pred), reduction='none') cls_cost = torch.einsum('nc,mc->nm', pos, gt_labels) + \ torch.einsum('nc,mc->nm', neg, 1 - gt_labels) cls_cost = cls_cost / n return cls_cost def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits. gt_labels (Tensor): Labels. Returns: Tensor: Cross entropy cost matrix with weight in shape (num_query, num_gt). """ if self.use_sigmoid: cls_cost = self._binary_cross_entropy(cls_pred, gt_labels) else: raise NotImplementedError return cls_cost * self.weight
ViT-Adapter-main
segmentation/mmseg_custom/models/losses/match_costs.py
import torch import torch.nn.functional as F from mmcv.cnn import PLUGIN_LAYERS, Conv2d, ConvModule, kaiming_init from mmcv.cnn.bricks.transformer import (build_positional_encoding, build_transformer_layer_sequence) from mmcv.runner import BaseModule, ModuleList @PLUGIN_LAYERS.register_module() class PixelDecoder(BaseModule): """Pixel decoder with a structure like fpn. Args: in_channels (list[int] | tuple[int]): Number of channels in the input feature maps. feat_channels (int): Number channels for feature. out_channels (int): Number channels for output. norm_cfg (obj:`mmcv.ConfigDict`|dict): Config for normalization. Defaults to dict(type='GN', num_groups=32). act_cfg (obj:`mmcv.ConfigDict`|dict): Config for activation. Defaults to dict(type='ReLU'). encoder (obj:`mmcv.ConfigDict`|dict): Config for transorformer encoder.Defaults to None. positional_encoding (obj:`mmcv.ConfigDict`|dict): Config for transformer encoder position encoding. Defaults to dict(type='SinePositionalEncoding', num_feats=128, normalize=True). init_cfg (obj:`mmcv.ConfigDict`|dict): Initialization config dict. Default: None """ def __init__(self, in_channels, feat_channels, out_channels, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), init_cfg=None): super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.num_inputs = len(in_channels) self.lateral_convs = ModuleList() self.output_convs = ModuleList() self.use_bias = norm_cfg is None for i in range(0, self.num_inputs - 1): l_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=None) o_conv = ConvModule( feat_channels, feat_channels, kernel_size=3, stride=1, padding=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=act_cfg) self.lateral_convs.append(l_conv) self.output_convs.append(o_conv) self.last_feat_conv = ConvModule( in_channels[-1], feat_channels, kernel_size=3, padding=1, stride=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=act_cfg) self.mask_feature = Conv2d( feat_channels, out_channels, kernel_size=3, stride=1, padding=1) def init_weights(self): """Initialize weights.""" for i in range(0, self.num_inputs - 2): kaiming_init(self.lateral_convs[i].conv, a=1) kaiming_init(self.output_convs[i].conv, a=1) kaiming_init(self.mask_feature, a=1) kaiming_init(self.last_feat_conv, a=1) def forward(self, feats, img_metas): """ Args: feats (list[Tensor]): Feature maps of each level. Each has shape of [bs, c, h, w]. img_metas (list[dict]): List of image information. Pass in for creating more accurate padding mask. #! not used here. Returns: tuple: a tuple containing the following: - mask_feature (Tensor): Shape [bs, c, h, w]. - memory (Tensor): Output of last stage of backbone. Shape [bs, c, h, w]. """ y = self.last_feat_conv(feats[-1]) for i in range(self.num_inputs - 2, -1, -1): x = feats[i] cur_fpn = self.lateral_convs[i](x) y = cur_fpn + \ F.interpolate(y, size=cur_fpn.shape[-2:], mode='nearest') y = self.output_convs[i](y) mask_feature = self.mask_feature(y) memory = feats[-1] return mask_feature, memory @PLUGIN_LAYERS.register_module() class TransformerEncoderPixelDecoder(PixelDecoder): """Pixel decoder with transormer encoder inside. Args: in_channels (list[int] | tuple[int]): Number of channels in the input feature maps. feat_channels (int): Number channels for feature. out_channels (int): Number channels for output. norm_cfg (obj:`mmcv.ConfigDict`|dict): Config for normalization. Defaults to dict(type='GN', num_groups=32). act_cfg (obj:`mmcv.ConfigDict`|dict): Config for activation. Defaults to dict(type='ReLU'). encoder (obj:`mmcv.ConfigDict`|dict): Config for transorformer encoder.Defaults to None. positional_encoding (obj:`mmcv.ConfigDict`|dict): Config for transformer encoder position encoding. Defaults to dict(type='SinePositionalEncoding', num_feats=128, normalize=True). init_cfg (obj:`mmcv.ConfigDict`|dict): Initialization config dict. Default: None """ def __init__(self, in_channels, feat_channels, out_channels, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=None, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None): super(TransformerEncoderPixelDecoder, self).__init__( in_channels, feat_channels, out_channels, norm_cfg, act_cfg, init_cfg=init_cfg) self.last_feat_conv = None self.encoder = build_transformer_layer_sequence(encoder) self.encoder_embed_dims = self.encoder.embed_dims assert self.encoder_embed_dims == feat_channels, 'embed_dims({}) of ' \ 'tranformer encoder must equal to feat_channels({})'.format( feat_channels, self.encoder_embed_dims) self.positional_encoding = build_positional_encoding( positional_encoding) self.encoder_in_proj = Conv2d( in_channels[-1], feat_channels, kernel_size=1) self.encoder_out_proj = ConvModule( feat_channels, feat_channels, kernel_size=3, stride=1, padding=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=act_cfg) def init_weights(self): """Initialize weights.""" for i in range(0, self.num_inputs - 2): kaiming_init(self.lateral_convs[i].conv, a=1) kaiming_init(self.output_convs[i].conv, a=1) kaiming_init(self.mask_feature, a=1) kaiming_init(self.encoder_in_proj, a=1) kaiming_init(self.encoder_out_proj.conv, a=1) def forward(self, feats, img_metas): """ Args: feats (list[Tensor]): Feature maps of each level. Each has shape of [bs, c, h, w]. img_metas (list[dict]): List of image information. Pass in for creating more accurate padding mask. Returns: tuple: a tuple containing the following: - mask_feature (Tensor): shape [bs, c, h, w]. - memory (Tensor): shape [bs, c, h, w]. """ feat_last = feats[-1] bs, c, h, w = feat_last.shape input_img_h, input_img_w = img_metas[0]['pad_shape'][:-1] # input_img_h, input_img_w = img_metas[0]['batch_input_shape'] padding_mask = feat_last.new_ones((bs, input_img_h, input_img_w), dtype=torch.float32) for i in range(bs): img_h, img_w, _ = img_metas[i]['img_shape'] padding_mask[i, :img_h, :img_w] = 0 padding_mask = F.interpolate( padding_mask.unsqueeze(1), size=feat_last.shape[-2:], mode='nearest').to(torch.bool).squeeze(1) pos_embed = self.positional_encoding(padding_mask) feat_last = self.encoder_in_proj(feat_last) # [bs, c, h, w] -> [nq, bs, dim] feat_last = feat_last.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) padding_mask = padding_mask.flatten(1) # [bs, h, w] -> [bs, h*w] memory = self.encoder( query=feat_last, key=None, value=None, query_pos=pos_embed, query_key_padding_mask=padding_mask) # [nq, bs, em] -> [bs, c, h, w] memory = memory.permute(1, 2, 0).view(bs, self.encoder_embed_dims, h, w) y = self.encoder_out_proj(memory) for i in range(self.num_inputs - 2, -1, -1): x = feats[i] cur_fpn = self.lateral_convs[i](x) y = cur_fpn + \ F.interpolate(y, size=cur_fpn.shape[-2:], mode='nearest') y = self.output_convs[i](y) mask_feature = self.mask_feature(y) return mask_feature, memory
ViT-Adapter-main
segmentation/mmseg_custom/models/plugins/pixel_decoder.py