python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
norm_cfg = dict(type='BN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='STDCContextPathNet', backbone_cfg=dict( type='STDCNet', stdc_type='STDCNet1', in_channels=3, channels=(32, 64, 256, 512, 1024), bottleneck_type='cat', num_convs=4, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), with_final_conv=False), last_in_channels=(1024, 512), out_channels=128, ffm_cfg=dict(in_channels=384, out_channels=256, scale_factor=4)), decode_head=dict( type='FCNHead', in_channels=256, channels=256, num_convs=1, num_classes=19, in_index=3, concat_input=False, dropout_ratio=0.1, norm_cfg=norm_cfg, align_corners=True, sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='FCNHead', in_channels=128, channels=64, num_convs=1, num_classes=19, in_index=2, norm_cfg=norm_cfg, concat_input=False, align_corners=False, sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='FCNHead', in_channels=128, channels=64, num_convs=1, num_classes=19, in_index=1, norm_cfg=norm_cfg, concat_input=False, align_corners=False, sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='STDCHead', in_channels=256, channels=64, num_convs=1, num_classes=2, boundary_threshold=0.1, in_index=0, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=[ dict( type='CrossEntropyLoss', loss_name='loss_ce', use_sigmoid=True, loss_weight=1.0), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=1.0) ]), ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/stdc.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=160000) checkpoint_config = dict(by_epoch=False, interval=16000) evaluation = dict(interval=16000, metric='mIoU', pre_eval=True)
ViT-Adapter-main
segmentation/configs/_base_/schedules/schedule_160k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=80000) checkpoint_config = dict(by_epoch=False, interval=8000) evaluation = dict(interval=8000, metric='mIoU', pre_eval=True)
ViT-Adapter-main
segmentation/configs/_base_/schedules/schedule_80k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=320000) checkpoint_config = dict(by_epoch=False, interval=32000) evaluation = dict(interval=32000, metric='mIoU')
ViT-Adapter-main
segmentation/configs/_base_/schedules/schedule_320k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=40000) checkpoint_config = dict(by_epoch=False, interval=4000) evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)
ViT-Adapter-main
segmentation/configs/_base_/schedules/schedule_40k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=20000) checkpoint_config = dict(by_epoch=False, interval=2000) evaluation = dict(interval=2000, metric='mIoU', pre_eval=True)
ViT-Adapter-main
segmentation/configs/_base_/schedules/schedule_20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_base_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], ), decode_head=dict( in_channels=[768, 768, 768, 768], feat_channels=256, out_channels=256, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff10k/mask2former_beit_adapter_base_512_40k_cocostuff10k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=171, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=171 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff10k/upernet_beit_adapter_large_512_80k_cocostuff10k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff10k/mask2former_beit_adapter_large_512_40k_cocostuff10k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=171, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=171 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff10k/upernet_beit_adapter_large_512_80k_cocostuff10k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff10k/mask2former_beit_adapter_large_512_40k_cocostuff10k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_base_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], ), decode_head=dict( in_channels=[768, 768, 768, 768], feat_channels=256, out_channels=256, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff10k/mask2former_beit_adapter_base_512_40k_cocostuff10k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='EncoderDecoderMask2FormerAug', # this class is used to remove padding that generated by PadShortSide pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), img_ratios=[640./896., 768./896., 1.0], # Here we only use three scales, i.e., 640, 768, and 896 flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='PadShortSide', size=896, pad_val=0, seg_pad_val=255), # Pad small images to 896x896 with zeros dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beit_adapter_large_896_80k_ade20k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth' pretrained = 'pretrained/deit_small_patch16_224-cd65a155.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=6, cffn_ratio=0.25, deform_ratio=1.0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False] * 12, window_size=[None] * 12), decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]), auxiliary_head=dict(num_classes=150, in_channels=384), test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=6e-5, betas=(0.9, 0.999), weight_decay=0.01, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_deit_adapter_small_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beit_adapter_large_640_160k_ade20k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTBaseline', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/upernet_beit_large_512_160k_ade20k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] pretrained = 'pretrained/uni-perceiver-large-L24-H1024-224size-pretrained_converted.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='UniPerceiverAdapter', patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=0.4, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[False] * 24, window_size=[None] * 24), decode_head=dict(num_classes=150, in_channels=[1024, 1024, 1024, 1024]), auxiliary_head=dict(num_classes=150, in_channels=1024), test_cfg = dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=6e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.8)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_uniperceiver_adapter_large_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth' pretrained = 'pretrained/beitv2_large_patch16_224_pt1k_ft21k.pth' # please download the coco-stuff pre-trained model # load_from = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.3.1/mask2former_beitv2_adapter_large_896_80k_cocostuff164k.zip' load_from = 'pretrained/mask2former_beitv2_adapter_large_896_80k_cocostuff164k.pth' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beitv2_adapter_large_896_80k_ade20k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.1.6/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.pth' pretrained = 'pretrained/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', img_size=384, pretrain_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=0.4, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[False] * 24, window_size=[None] * 24), decode_head=dict(num_classes=150, in_channels=[1024, 1024, 1024, 1024]), auxiliary_head=dict(num_classes=150, in_channels=1024), test_cfg = dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/upernet_augreg_adapter_large_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 640), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/upernet_beit_adapter_large_640_160k_ade20k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth' pretrained = 'pretrained/deit_base_patch16_224-b5f2ef4d.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 11]], with_cffn=False, use_extra_extractor=False, add_vit_feature=False, window_attn=[False] * 12, window_size=[None] * 12), decode_head=dict(num_classes=150, in_channels=[768, 768, 768, 768]), auxiliary_head=dict(num_classes=150, in_channels=768), test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=6e-5, betas=(0.9, 0.999), weight_decay=0.01, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_deit_adapter_light_base_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth' pretrained = 'pretrained/deit_base_patch16_224-b5f2ef4d.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False] * 12, window_size=[None] * 12), decode_head=dict(num_classes=150, in_channels=[768, 768, 768, 768]), auxiliary_head=dict(num_classes=150, in_channels=768), test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=6e-5, betas=(0.9, 0.999), weight_decay=0.01, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_deit_adapter_base_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/upernet_beit_adapter_large_640_160k_ade20k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.3.1/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.pth' pretrained = 'pretrained/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', img_size=384, pretrain_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False] * 12, window_size=[None] * 12), decode_head=dict(num_classes=150, in_channels=[768, 768, 768, 768]), auxiliary_head=dict(num_classes=150, in_channels=768), test_cfg = dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict( _delete_=True, type='AdamW', lr=0.00002, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={ 'level_embed': dict(decay_mult=0.), 'pos_embed': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'bias': dict(decay_mult=0.), 'head': dict(lr_mult=10.0), })) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_augreg_adapter_base_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' # load_from = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.2.6/mask2former_beit_adapter_large_896_80k_cocostuff164k.zip' load_from = 'pretrained/mask2former_beit_adapter_large_896_80k_cocostuff164k.pth.tar' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beit_adapter_large_896_80k_ade20k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth' pretrained = 'pretrained/deit_tiny_patch16_224-a1311bcf.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, drop_path_rate=0.1, conv_inplane=64, n_points=4, deform_num_heads=6, cffn_ratio=0.25, deform_ratio=1.0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False] * 12, window_size=[None] * 12), decode_head=dict(num_classes=150, in_channels=[192, 192, 192, 192]), auxiliary_head=dict(num_classes=150, in_channels=192), test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=12e-5, betas=(0.9, 0.999), weight_decay=0.01, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_deit_adapter_tiny_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth' pretrained = 'pretrained/beitv2_large_patch16_224_pt1k_ft21k.pth' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beitv2_adapter_large_896_160k_ade20k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 640), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beit_adapter_large_640_160k_ade20k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTBaseline', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/upernet_beit_large_512_160k_ade20k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # pretrained = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.3.1/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.pth' pretrained = 'pretrained/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.pth' model = dict( pretrained=pretrained, backbone=dict( _delete_=True, type='ViTAdapter', patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, drop_path_rate=0.1, conv_inplane=64, n_points=4, deform_num_heads=6, cffn_ratio=0.25, deform_ratio=1.0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False] * 12, window_size=[None] * 12), decode_head=dict(num_classes=150, in_channels=[192, 192, 192, 192]), auxiliary_head=dict(num_classes=150, in_channels=192), test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=12e-5, betas=(0.9, 0.999), weight_decay=0.01, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU') fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
segmentation/configs/ade20k/upernet_augreg_adapter_tiny_512_160k_ade20k.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth' pretrained = 'pretrained/beitv2_large_patch16_224_pt1k_ft21k.pth' load_from = 'pretrained/mask2former_beitv2_adapter_large_896_80k_cocostuff164k.pth' model = dict( type='EncoderDecoderMask2FormerAug', # this class is used to remove padding that generated by PadShortSide pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), img_ratios=[800./896., 832./896., 864./896., 1.0], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='PadShortSide', size=896, pad_val=0, seg_pad_val=255), # Pad small images to 896x896 with zeros dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/ade20k/mask2former_beitv2_adapter_large_896_80k_ade20k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_potsdam.py', '../_base_/datasets/potsdam.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (512, 512) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=256, out_channels=256, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/potsdam/mask2former_beit_adapter_large_512_80k_potsdam_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_chase_db1.py', '../_base_/datasets/chase_db1.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (128, 128) img_scale = (960, 999) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=crop_size[0], patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=256, out_channels=256, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(85, 85)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=4, train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mDice', save_best='mDice')
ViT-Adapter-main
segmentation/configs/chase_db1/mask2former_beit_adapter_large_128_40k_chase_db1_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth' pretrained = 'pretrained/beitv2_large_patch16_224_pt1k_ft21k.pth' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff164k/mask2former_beitv2_adapter_large_896_80k_cocostuff164k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='EncoderDecoderMask2FormerAug', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), img_ratios=[640./896., 768./896., 1.0], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='PadShortSide', size=896, pad_val=0, seg_pad_val=255), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff164k/mask2former_beit_adapter_large_896_80k_cocostuff164k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (640, 640) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=171, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=171 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2560, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff164k/upernet_beit_adapter_large_640_80k_cocostuff164k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (640, 640) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=171, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=171 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2560, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff164k/upernet_beit_adapter_large_640_80k_cocostuff164k_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cocostuff.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='EncoderDecoderMask2Former', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=200, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(3584, 896), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(3584, 896), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/coco_stuff164k/mask2former_beit_adapter_large_896_80k_cocostuff164k_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (480, 480) img_scale = (520, 520) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=480, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=59, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=59 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(320, 320)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(4096, 520), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/pascal_context/upernet_beit_adapter_large_480_80k_pascal_context_59_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_pascal.py', '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (480, 480) img_scale = (520, 520) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_base_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=480, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], ), decode_head=dict( in_channels=[768, 768, 768, 768], feat_channels=256, out_channels=256, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(320, 320)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(4096, 520), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/pascal_context/mask2former_beit_adapter_base_480_40k_pascal_context_59_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_pascal.py', '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (480, 480) img_scale = (520, 520) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=480, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(320, 320)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(4096, 520), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/pascal_context/mask2former_beit_adapter_large_480_40k_pascal_context_59_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_pascal.py', '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (480, 480) img_scale = (520, 520) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_base_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=480, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], ), decode_head=dict( in_channels=[768, 768, 768, 768], feat_channels=256, out_channels=256, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(320, 320)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(4096, 520), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/pascal_context/mask2former_beit_adapter_base_480_40k_pascal_context_59_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_pascal.py', '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] crop_size = (480, 480) img_scale = (520, 520) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=480, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(320, 320)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(4096, 520), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=4000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/pascal_context/mask2former_beit_adapter_large_480_40k_pascal_context_59_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/upernet_beit.py', '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (480, 480) img_scale = (520, 520) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=480, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=59, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=59 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(320, 320)) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(4096, 520), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=8000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/pascal_context/upernet_beit_adapter_large_480_80k_pascal_context_59_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cityscapes.py', '../_base_/datasets/cityscapes_896x896.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='EncoderDecoderMask2FormerAug', pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=1000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/cityscapes/mask2former_beit_adapter_large_896_80k_cityscapes_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cityscapes.py', '../_base_/datasets/mapillary_896x896.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='MapillaryHack'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=1000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/cityscapes/mask2former_beit_adapter_large_896_80k_mapillary_ss.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask2former_beit_cityscapes.py', '../_base_/datasets/cityscapes_896x896.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (896, 896) # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' # load_from = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.2.3/mask2former_beit_adapter_large_896_80k_mapillary.zip' load_from = 'pretrained/mask2former_beit_adapter_large_896_80k_mapillary.pth.tar' model = dict( pretrained=pretrained, backbone=dict( type='BEiTAdapter', img_size=896, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, # set with_cp=True to save memory interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], feat_channels=1024, out_channels=1024, num_queries=100, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=1024, num_heads=32, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=1024, feedforward_channels=4096, num_fcs=2, ffn_drop=0.0, with_cp=True, # set with_cp=True to save memory act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=512, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=1024, num_heads=32, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=1024, feedforward_channels=4096, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, with_cp=True, # set with_cp=True to save memory add_identity=True), feedforward_channels=4096, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None) ), test_cfg=dict(mode='slide', crop_size=crop_size, stride=(512, 512)) ) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='ToMask'), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) ] optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data = dict(samples_per_gpu=1, train=dict(pipeline=train_pipeline)) runner = dict(type='IterBasedRunner') checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) evaluation = dict(interval=1000, metric='mIoU', save_best='mIoU')
ViT-Adapter-main
segmentation/configs/cityscapes/mask2former_beit_adapter_large_896_80k_cityscapes_ss.py
import torch import argparse parser = argparse.ArgumentParser(description='Hyperparams') parser.add_argument('filename', nargs='?', type=str, default=None) args = parser.parse_args() model = torch.load(args.filename, map_location=torch.device('cpu')) print(model.keys()) state_dict = model['state_dict'] new_state_dict = {} for k, v in state_dict.items(): if "ema_" in k: pass else: print(k) new_state_dict[k] = v new_dict = {'state_dict': new_state_dict} torch.save(new_dict, args.filename.replace(".pth", "_release.pth"))
ViT-Adapter-main
wsdm2023/release.py
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import time import warnings import mmcv import mmcv_custom # noqa: F401,F403 import mmdet_custom # noqa: F401,F403 import torch from mmcv import Config, DictAction from mmcv.cnn import fuse_conv_bn from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, wrap_fp16_model) from mmdet.apis import multi_gpu_test, single_gpu_test from mmdet.datasets import (build_dataloader, build_dataset, replace_ImageToTensor) from mmdet.models import build_detector def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help='the directory to save the file containing evaluation metrics') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument('--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed testing)') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--show-dir', help='directory where painted images will be saved') parser.add_argument('--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument('--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu-collect is not specified') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function (deprecate), ' 'change to --eval-options instead.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.eval_options: raise ValueError( '--options and --eval-options cannot be both ' 'specified, --options is deprecated in favor of --eval-options') if args.options: warnings.warn('--options is deprecated in favor of --eval-options') args.eval_options = args.options return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None if cfg.model.get('neck'): if isinstance(cfg.model.neck, list): for neck_cfg in cfg.model.neck: if neck_cfg.get('rfp_backbone'): if neck_cfg.rfp_backbone.get('pretrained'): neck_cfg.rfp_backbone.pretrained = None elif cfg.model.neck.get('rfp_backbone'): if cfg.model.neck.rfp_backbone.get('pretrained'): cfg.model.neck.rfp_backbone.pretrained = None # in case the test dataset is concatenated samples_per_gpu = 1 if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor( cfg.data.test.pipeline) elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True samples_per_gpu = max( [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test]) if samples_per_gpu > 1: for ds_cfg in cfg.data.test: ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False if len(cfg.gpu_ids) > 1: warnings.warn( f'We treat {cfg.gpu_ids} as gpu-ids, and reset to ' f'{cfg.gpu_ids[0:1]} as gpu-ids to avoid potential error in ' 'non-distribute testing time.') cfg.gpu_ids = cfg.gpu_ids[0:1] else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, _ = get_dist_info() # allows not to create if args.work_dir is not None and rank == 0: mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) json_file = osp.join(args.work_dir, f'eval_{timestamp}.json') # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=cfg.gpu_ids) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') urls = [] for info in dataset.data_infos: filename = info['filename'] urls.append(filename) pkl = dict(results=outputs, urls=urls) mmcv.dump(pkl, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule', 'dynamic_intervals' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.eval, **kwargs)) metric = dataset.evaluate(outputs, **eval_kwargs) print(metric) metric_dict = dict(config=args.config, metric=metric) if args.work_dir is not None and rank == 0: mmcv.dump(metric_dict, json_file) if __name__ == '__main__': main()
ViT-Adapter-main
wsdm2023/test.py
import pandas as pd from mmdet.apis import init_detector import torch from mmcv.parallel import collate, scatter from mmdet.datasets import replace_ImageToTensor from mmdet.datasets.pipelines import Compose from mmcv.ops import RoIPool import argparse import mmcv_custom # noqa: F401,F403 import mmdet_custom # noqa: F401,F403 def multimodel_inference(model, imgs, questions): if isinstance(imgs, (list, tuple)): is_batch = True else: imgs = [imgs] questions=[questions] is_batch = False cfg = model.cfg device = next(model.parameters()).device # model device cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img,question in zip(imgs,questions): # add information into dict data = dict(img_info=dict(filename=img,question=question), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] data['img'] = [img.data[0] for img in data['img']] if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # forward the model with torch.no_grad(): results = model(return_loss=False, rescale=True, **data) if not is_batch: return results[0] else: return results def main(dataset, config_file, checkpoint_file,device='cuda:0'): model=init_detector(config=config_file, checkpoint=checkpoint_file, device=device) ann=pd.read_csv(f'data/wsdm2023/annotations/{dataset}.csv') data_root=(f'data/wsdm2023/{dataset}/') for idx,data in ann.iterrows(): img_url=data['image'] img_name=img_url.split('/')[-1] res=multimodel_inference(model,data_root+img_name,data['question']) print(res) if __name__=='__main__': parser=argparse.ArgumentParser() parser.add_argument('config',type=str,default='') parser.add_argument('checkpoint',type=str,default='') parser.add_argument('dataset',type=str,default='') parser.add_argument('--device',type=str,default='cuda:0') args=parser.parse_args() main(args.dataset,args.config,args.checkpoint,args.device)
ViT-Adapter-main
wsdm2023/generate_results.py
# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import os.path as osp import time import warnings import mmcv import mmcv_custom # noqa: F401,F403 import mmdet_custom # noqa: F401,F403 import torch from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcv.utils import get_git_hash from mmdet import __version__ from mmdet.apis import init_random_seed, set_random_seed, train_detector from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument('--resume-from', help='the checkpoint file to resume from') parser.add_argument('--auto-resume', action='store_true', help='resume from the latest checkpoint automatically') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument('--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument('--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from cfg.auto_resume = args.auto_resume if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False if len(cfg.gpu_ids) > 1: warnings.warn( f'We treat {cfg.gpu_ids} as gpu-ids, and reset to ' f'{cfg.gpu_ids[0:1]} as gpu-ids to avoid potential error in ' 'non-distribute training time.') cfg.gpu_ids = cfg.gpu_ids[0:1] else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds seed = init_random_seed(args.seed) logger.info(f'Set random seed to {seed}, ' f'deterministic: {args.deterministic}') set_random_seed(seed, deterministic=args.deterministic) cfg.seed = seed meta['seed'] = seed meta['exp_name'] = osp.basename(args.config) model = build_detector(cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector(model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
ViT-Adapter-main
wsdm2023/train.py
import cv2 import argparse import torch import json from torchvision.utils import draw_bounding_boxes from torch.utils.tensorboard import SummaryWriter def xywh2xyxy(bbox): x, y, w, h = [int(val) for val in bbox] return [x, y, x+w, y+h] def draw_bboxes(img_url, pred, gt, args): img = cv2.imread(img_url) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.tensor(img).permute(2, 0, 1) if len(gt) == 0: pred_bb = torch.tensor(xywh2xyxy(pred)).reshape(1, -1) img = draw_bounding_boxes(img, pred_bb, labels=['pred'], colors=[ (255, 0, 0)], width=5, font_size=10) else: pred_bb = torch.tensor(xywh2xyxy(pred)).reshape(1, -1) gt_bb = torch.tensor(xywh2xyxy(gt)).reshape(1, -1) img = draw_bounding_boxes(img, torch.cat([pred_bb, gt_bb], dim=0), labels=[ 'pred', 'gt'], colors=[(255, 0, 0), (0, 255, 0)], width=5, font_size=10) return img def main(args): with open(f'data/wsdm2023/annotations/{args.data}.json', 'r') as load_f: load_dict = json.load(load_f) images = load_dict['images'] annotations = load_dict['annotations'] with open(args.result, 'r') as load_f: load_dict = json.load(load_f) img_index = dict() for img in images: img_index[img['id']] = img['coco_url'].split('/')[-1] ann_index = dict() for ann in annotations: ann_index[ann['image_id']] = ann['bbox'] with SummaryWriter(args.output) as writer: cnt = 0 for res in load_dict: id = res['image_id'] bbox = res['bbox'] img_url = f'data/wsdm2023/{args.data}/{img_index[id]}' gt = ann_index[id] img = draw_bboxes(img_url, bbox, gt, args) writer.add_image(img_index[id], img) cnt += 1 print( f'Add {img_url} to tensorboard {args.output}, finished [{cnt}/{len(load_dict)}].') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('data', type=str) parser.add_argument('result', type=str) parser.add_argument('--output', type=str, default='./runs/test_public') args = parser.parse_args() main(args)
ViT-Adapter-main
wsdm2023/tools/drawbbox.py
import json import pandas as pd import datetime def load_dataset(name): csv_path = f'data/wsdm2023/annotations/{name}.csv' dataset = pd.read_csv(csv_path) # img_path = f'/home/data2/gaoshengyi/datasets/wsdm2023/{name}' # if not os.path.exists(img_path): # os.mkdir(img_path) # for img_url in tqdm(dataset.image): # img_name = img_url.split('/')[-1] # if not os.path.exists(f'{img_path}/{img_name}'): # wget.download(img_url, out=img_path) anno_path = f'data/wsdm2023/annotations/{name}.json' info = { "description": "WSDMCUP2023 dataset", "url": "https://toloka.ai/challenges/wsdm2023/", "version": "1.0", "year": 2022, "contributor": "toloka", "date_created": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") } licenses = [] # no license images = [] for idx, data in dataset.iterrows(): url = data['image'] img_info = { "coco_url": url, "date_captured": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "file_name": url.split('/')[-1], "flickr_url": "", "id": idx, "license": 0, "width": data['width'], "height": data['height'] } images.append(img_info) annotations = [] for idx, data in dataset.iterrows(): x, y, w, h = data['left'], data['top'], data['right'] - \ data['left'], data['bottom']-data['top'] bbox_info = { "id": idx, "image_id": idx, "category_id": 1, "segmentation": [[x, y, x+w, y, x+w, y+h, x, y+h]], "area": w * h, "bbox": [] if name == 'test_public' else [x, y, w, h], "iscrowd": 0 } annotations.append(bbox_info) categories = [{ "id": 1, "name": "object", "supercategory": "object", }] # add question to annotation questions = [] for idx, data in dataset.iterrows(): question_info = { "id": idx, "image_id": idx, "question": data['question'] } questions.append(question_info) anno = { "info": info, "lisences": licenses, "images": images, "annotations": annotations, "categories": categories, "type": 'instances', "questions": questions } anno = json.dumps(anno) with open(anno_path, 'w') as f: f.write(anno) def main(): load_dataset('train_sample') load_dataset('train') load_dataset('test_public') load_dataset('val') if __name__ == '__main__': main()
ViT-Adapter-main
wsdm2023/tools/csv2coco.py
import torch from mmdet_custom.models.backbones.base.uniperceiver import UnifiedBertEncoder checkpoint = torch.load("pretrained/uni-perceiver-large-L24-H1024-224size-pretrained.pth", map_location=torch.device('cpu')) checkpoint = checkpoint['model'] new_checkpoint = {} for k, v in checkpoint.items(): new_k = k.replace("fused_encoder.", "") new_k = new_k.replace("in_proj_", "in_proj.") new_k = new_k.replace("video_embed.", "visual_embed.") new_k = new_k.replace("visual_embed.embeddings.weight", "visual_embed.patch_embed.proj.weight") new_k = new_k.replace("visual_embed.embeddings.bias", "visual_embed.patch_embed.proj.bias") new_k = new_k.replace("visual_embed.embeddings_st_pos.spatial_pos_embed.weight", "visual_embed.patch_embed.spatial_pos_embed.weight") new_k = new_k.replace("visual_embed.embeddings_st_pos.temporal_pos_embed.weight", "visual_embed.patch_embed.temporal_pos_embed.weight") if "loss_prepare" in new_k: pass # elif "token_embed" in new_k: # pass else: new_checkpoint[new_k] = v for k, v in new_checkpoint.items(): print(k, v.shape) model = UnifiedBertEncoder(embed_dim=1024, depth=24, num_heads=16) msg = model.load_state_dict(new_checkpoint, strict=False) torch.save(new_checkpoint, "pretrained/uni-perceiver-large-L24-H1024-224size-pretrained_converted.pth") print(msg)
ViT-Adapter-main
wsdm2023/tools/convertor.py
import torch from parrot import Parrot import json import pandas import argparse import warnings warnings.filterwarnings("ignore") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('csv', type=str, help='csv file path') parser.add_argument('out', type=str, help='output json file path') parser.add_argument('--topn', type=int, default=3, help='use top n paraphrase for augment') return parser.parse_args() def main(args): parrot = Parrot( model_tag="prithivida/parrot_paraphraser_on_T5") parrot.model = parrot.model.to('cuda:0') print('Successfully load model.') res = dict() df = pandas.read_csv(args.csv) total = len(df) for idx, data in df.iterrows(): name = data['image'].split('/')[-1] phrase = data['question'].replace( '\"', '').replace('?', '').strip(' ').lower() paras = parrot.augment(input_phrase=phrase, use_gpu=True) print('-'*100) print(phrase) print('-'*100) print(paras) if paras is None: res[name] = [phrase] else: selected = [] for i, p in enumerate(paras): selected.append(p[0]) if i >= args.topn: break res[name] = selected print(f'Finished [{idx+1}/{total}]\n') with open(args.out, 'w') as f: res = json.dumps(res) f.write(res) if __name__ == '__main__': main(parse_args())
ViT-Adapter-main
wsdm2023/tools/paraphrase.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .models import * # noqa: F401,F403 from .datasets import * from .apis import *
ViT-Adapter-main
wsdm2023/mmdet_custom/__init__.py
from .pipeline import LoadRefer, TokenizeRefer, RandomParaPhrase, RandomFlipWithRefer __all__ = ['LoadRefer', 'TokenizeRefer', 'RandomParaPhrase', 'RandomFlipWithRefer']
ViT-Adapter-main
wsdm2023/mmdet_custom/apis/__init__.py
from mmdet.datasets.builder import PIPELINES from mmdet.datasets.pipelines import RandomFlip from mmdet_custom.models.utils.tokenization import ClipTokenizer import torch import json import numpy as np @PIPELINES.register_module() class RandomFlipWithRefer(RandomFlip): # only allow horizontal flip def __init__(self, flip_ratio=None): super().__init__(flip_ratio, 'horizontal') def __call__(self, results): results = super().__call__(results) # if flipped, the direction related word in refer should be reversed if results['flip']: refer = results['refer'] refer = refer.replace( 'right', '*&^special^&*').replace('left', 'right').replace('*&^special^&*', 'left') results['refer'] = refer return results @PIPELINES.register_module() class LoadRefer: def __init__(self, tag='refer') -> None: self.tag = tag def __call__(self, results): info = results['img_info'] refer = info[self.tag] refer = refer.replace('\"', '').replace('?', '').strip(' ').lower() results['refer'] = refer return results @PIPELINES.register_module() class TokenizeRefer: def __init__(self, max_sent_len) -> None: self.max_sent_len = max_sent_len self.tokenizer = ClipTokenizer() def __call__(self, results): refer = results['refer'] input_ids = torch.tensor( self.tokenizer.encode(refer)) if len(input_ids) > self.max_sent_len: print(f"len(input_ids) > self.max_sent_len! len(input_ids) = {len(input_ids)}") input_ids = input_ids[0:self.max_sent_len] mask = torch.ones_like(input_ids) else: mask = torch.ones_like(input_ids) pad = torch.zeros( [self.max_sent_len-len(input_ids)], dtype=input_ids.dtype) input_ids = torch.cat([input_ids, pad], dim=0) mask = torch.cat([mask, pad], dim=0) results['refer'] = input_ids results['r_mask'] = mask return results @PIPELINES.register_module() class RandomParaPhrase: def __init__(self, phrase_cache, ratio=0.5) -> None: self.ratio = ratio with open(phrase_cache, 'r') as f: self.phrase_cache = json.load(f) def __call__(self, results): if np.random.random() >= self.ratio: name = results['img_info']['file_name'] cache = self.phrase_cache[name] phrase_num = len(cache) results['refer'] = cache[np.random.randint( 0, phrase_num)].replace('?', '').lower() return results
ViT-Adapter-main
wsdm2023/mmdet_custom/apis/pipeline.py
from .wsdm2023_coco import WSDMCocoDataset from .vg_dataset import VGDataset __all__ = ['WSDMCocoDataset','VGDataset']
ViT-Adapter-main
wsdm2023/mmdet_custom/datasets/__init__.py
import json import numpy as np from mmdet.datasets.builder import DATASETS from mmdet.datasets.custom import CustomDataset from collections import OrderedDict from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps from mmcv.utils import print_log @DATASETS.register_module() class VGDataset(CustomDataset): CLASSES = ('target',) def load_annotations(self, ann_file): with open(ann_file, 'r') as f: data_infos = json.load(f) return data_infos def get_ann_info(self, idx): info = self.data_infos[idx] bboxes = [info['bbox']] labels = [0] ann_info = dict( bboxes=np.array(bboxes).astype(np.float32), labels=np.array(labels).astype(np.int64)) return ann_info def _filter_imgs(self, min_size=32): valid_inds = [] for i, img_info in enumerate(self.data_infos): if min(img_info['width'], img_info['height']) >= min_size: if self.filter_empty_gt: bbox = img_info.get('bbox') if bbox != None and len(bbox) == 4: valid_inds.append(i) else: valid_inds.append(i) return valid_inds def evaluate(self, results, metric='Acc', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None): metrics = metric if type(metric) == list else [metric] eval_results = OrderedDict() allowed_metrics = ['Acc', 'IoU'] ious = None for m in metrics: if m not in allowed_metrics: raise KeyError(f'metric {m} is not supported') msg = f'Evaluating {m}...' if logger is None: msg = '\n'+msg print_log(msg, logger=logger) if m == 'IoU': if ious == None: ious = self.eval_ious(results) eval_results['mIoU'] = np.mean(ious) elif m == 'Acc': if ious is None: ious = self.eval_ious(results) valid_preds = np.sum(ious >= iou_thr) eval_results['mAcc'] = valid_preds/len(results) return eval_results def eval_ious(self, results): gt_bboxes = [] for info in self.data_infos: gt = np.array([info['bbox']], dtype=np.float32) gt_bboxes.append(gt) assert len(results) == len( gt_bboxes), f'Num of pred_bboxes {len(results)} not same with gt_bboxes {len(gt_bboxes)}.' all_ious = [] for pred, gt in zip(results, gt_bboxes): pred = pred[0] if pred.shape[0] == 0: ious = np.zeros([1, 1]) else: if pred.ndim == 2 and pred.shape[1] == 5: scores = pred[:, 4] sort_idx = np.argsort(scores)[-1] img_proposal = pred[sort_idx, :4] else: img_proposal = pred[:4] if img_proposal.ndim == 1: img_proposal = img_proposal.reshape( 1, img_proposal.shape[0]) ious = bbox_overlaps( img_proposal, gt, use_legacy_coordinate=False) # (n, 1) if ious.ndim == 2: ious = ious.max(axis=0) all_ious.append(ious.item()) return np.array(all_ious)
ViT-Adapter-main
wsdm2023/mmdet_custom/datasets/vg_dataset.py
# Copyright (c) OpenMMLab. All rights reserved. import contextlib import io import itertools import json import logging import os.path as osp import tempfile import warnings from collections import OrderedDict import mmcv import numpy as np from mmcv.utils import print_log from terminaltables import AsciiTable from mmdet.core import eval_recalls from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps from mmdet.datasets.api_wrappers import COCO, COCOeval from mmdet.datasets.custom import CustomDataset from mmdet.datasets.builder import DATASETS @DATASETS.register_module() class WSDMCocoDataset(CustomDataset): CLASSES = ('object',) def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) # The order of returned `cat_ids` will not # change with the order of the CLASSES self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] total_ann_ids = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) ann_ids = self.coco.get_ann_ids(img_ids=[i]) total_ann_ids.extend(ann_ids) assert len(set(total_ann_ids)) == len( total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" # read questions with open(ann_file, 'r') as f: questions = json.load(f)['questions'] assert len(questions) == len(data_infos) for i in range(len(questions)): data_infos[i]['question'] = questions[i]['question'] return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) ann_info = self._parse_ann_info(self.data_infos[idx], ann_info) ann_info['question'] = self.data_infos[idx]['question'] return ann_info def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def eval_iou(self, results): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) assert len(results) == len(gt_bboxes) all_ious = [] for i in range(len(results)): pred = results[i][0] if pred.shape[0] == 0: ious = np.zeros([1, 1]) else: if pred.ndim == 2 and pred.shape[1] == 5: scores = pred[:, 4] sort_idx = np.argsort(scores)[-1] img_proposal = pred[sort_idx, :4] else: img_proposal = pred[:4] if img_proposal.ndim == 1: img_proposal = img_proposal.reshape( 1, img_proposal.shape[0]) if gt_bboxes[i] is None or gt_bboxes[i].shape[0] == 0: ious = np.zeros( (0, img_proposal.shape[0]), dtype=np.float32) else: ious = bbox_overlaps( gt_bboxes[i], img_proposal, use_legacy_coordinate=False) all_ious.append(ious) all_ious = np.array(all_ious) return np.mean(all_ious) def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate_det_segm(self, results, result_files, coco_gt, metrics, logger=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Instance segmentation and object detection evaluation in COCO protocol. Args: results (list[list | tuple | dict]): Testing results of the dataset. result_files (dict[str, str]): a dict contains json file path. coco_gt (COCO): COCO API object with ground truth annotation. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] eval_results = OrderedDict() for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': if isinstance(results[0], tuple): raise KeyError('proposal_fast is not supported for ' 'instance segmentation result.') ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue iou_type = 'bbox' if metric == 'proposal' else metric if metric not in result_files: raise KeyError(f'{metric} is not in results') try: predictions = mmcv.load(result_files[metric]) if iou_type == 'segm': # Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa # When evaluating mask AP, if the results contain bbox, # cocoapi will use the box area instead of the mask area # for calculating the instance area. Though the overall AP # is not affected, this leads to different # small/medium/large mask AP results. for x in predictions: x.pop('bbox') warnings.simplefilter('once') warnings.warn( 'The key "bbox" is deleted for more accurate mask AP ' 'of small/medium/large instances since v2.12.0. This ' 'does not change the overall mAP calculation.', UserWarning) coco_det = coco_gt.loadRes(predictions) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break cocoEval = COCOeval(coco_gt, coco_det, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() # Save coco summarize print information to logger redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() print_log('\n' + redirect_string.getvalue(), logger=logger) if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() # Save coco summarize print information to logger redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() print_log('\n' + redirect_string.getvalue(), logger=logger) if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') return eval_results def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast', 'IoU'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if 'IoU' in metrics: metrics.remove('IoU') if len(metrics) > 0: coco_gt = self.coco self.cat_ids = coco_gt.get_cat_ids(cat_names=self.CLASSES) result_files, tmp_dir = self.format_results( results, jsonfile_prefix) eval_results = self.evaluate_det_segm(results, result_files, coco_gt, metrics, logger, classwise, proposal_nums, iou_thrs, metric_items) if tmp_dir is not None: tmp_dir.cleanup() metrics.append('IoU') eval_results['IoU'] = self.eval_iou(results) else: coco_gt = self.coco self.cat_ids = coco_gt.get_cat_ids(cat_names=self.CLASSES) result_files, tmp_dir = self.format_results( results, jsonfile_prefix) eval_results = self.evaluate_det_segm(results, result_files, coco_gt, metrics, logger, classwise, proposal_nums, iou_thrs, metric_items) if tmp_dir is not None: tmp_dir.cleanup() return eval_results
ViT-Adapter-main
wsdm2023/mmdet_custom/datasets/wsdm2023_coco.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .backbones import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .dense_heads import * # noqa: F401,F403 from .utils import * # noqa: F401,F403
ViT-Adapter-main
wsdm2023/mmdet_custom/models/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmdet.core import (bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, multi_apply, reduce_mean) from ..utils import build_dn_generator from mmdet.models.utils.transformer import inverse_sigmoid from mmdet.models.builder import HEADS from .deformable_detr_head import DeformableDETRHead from mmcv.runner import force_fp32 @HEADS.register_module() class DINOHead(DeformableDETRHead): def __init__(self, *args, dn_cfg=None, **kwargs): super(DINOHead, self).__init__(*args, **kwargs) self._init_layers() self.init_denoising(dn_cfg) assert self.as_two_stage, \ 'as_two_stage must be True for DINO' assert self.with_box_refine, \ 'with_box_refine must be True for DINO' def _init_layers(self): super()._init_layers() # NOTE The original repo of DINO set the num_embeddings 92 for coco, # 91 (0~90) of which represents target classes and the 92 (91) # indicates [Unknown] class. However, the embedding of unknown class # is not used in the original DINO self.label_embedding = nn.Embedding(self.cls_out_channels, self.embed_dims) def init_denoising(self, dn_cfg): if dn_cfg is not None: dn_cfg['num_classes'] = self.num_classes dn_cfg['num_queries'] = self.num_query dn_cfg['hidden_dim'] = self.embed_dims self.dn_generator = build_dn_generator(dn_cfg) def forward_train(self, x, img_metas, gt_bboxes, gt_labels=None, gt_bboxes_ignore=None, proposal_cfg=None, **kwargs): assert proposal_cfg is None, '"proposal_cfg" must be None' assert self.dn_generator is not None, '"dn_cfg" must be set' dn_label_query, dn_bbox_query, attn_mask, dn_meta = \ self.dn_generator(gt_bboxes, gt_labels, self.label_embedding, img_metas) outs = self(x, img_metas, dn_label_query, dn_bbox_query, attn_mask) if gt_labels is None: loss_inputs = outs + (gt_bboxes, img_metas, dn_meta) else: loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, dn_meta) losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses def forward(self, mlvl_feats, img_metas, dn_label_query=None, dn_bbox_query=None, attn_mask=None): batch_size = mlvl_feats[0].size(0) input_img_h, input_img_w = img_metas[0]['batch_input_shape'] img_masks = mlvl_feats[0].new_ones( (batch_size, input_img_h, input_img_w)) for img_id in range(batch_size): img_h, img_w, _ = img_metas[img_id]['img_shape'] img_masks[img_id, :img_h, :img_w] = 0 mlvl_masks = [] mlvl_positional_encodings = [] for feat in mlvl_feats: mlvl_masks.append( F.interpolate( img_masks[None], size=feat.shape[-2:]).to(torch.bool).squeeze(0)) mlvl_positional_encodings.append( self.positional_encoding(mlvl_masks[-1])) query_embeds = None hs, inter_references, topk_score, topk_anchor = \ self.transformer( mlvl_feats, mlvl_masks, query_embeds, mlvl_positional_encodings, dn_label_query, dn_bbox_query, attn_mask, reg_branches=self.reg_branches if self.with_box_refine else None, # noqa:E501 cls_branches=self.cls_branches if self.as_two_stage else None # noqa:E501 ) hs = hs.permute(0, 2, 1, 3) if dn_label_query is not None and dn_label_query.size(1) == 0: # NOTE: If there is no target in the image, the parameters of # label_embedding won't be used in producing loss, which raises # RuntimeError when using distributed mode. hs[0] += self.label_embedding.weight[0, 0] * 0.0 outputs_classes = [] outputs_coords = [] for lvl in range(hs.shape[0]): reference = inter_references[lvl] reference = inverse_sigmoid(reference, eps=1e-3) outputs_class = self.cls_branches[lvl](hs[lvl]) tmp = self.reg_branches[lvl](hs[lvl]) if reference.shape[-1] == 4: tmp += reference else: assert reference.shape[-1] == 2 tmp[..., :2] += reference outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) outputs_classes = torch.stack(outputs_classes) outputs_coords = torch.stack(outputs_coords) return outputs_classes, outputs_coords, topk_score, topk_anchor @force_fp32(apply_to=('all_cls_scores', 'all_bbox_preds')) def loss(self, all_cls_scores, all_bbox_preds, enc_topk_scores, enc_topk_anchors, gt_bboxes_list, gt_labels_list, img_metas, dn_meta=None, gt_bboxes_ignore=None): assert gt_bboxes_ignore is None, \ f'{self.__class__.__name__} only supports ' \ f'for gt_bboxes_ignore setting to None.' loss_dict = dict() # extract denoising and matching part of outputs all_cls_scores, all_bbox_preds, dn_cls_scores, dn_bbox_preds = \ self.extract_dn_outputs(all_cls_scores, all_bbox_preds, dn_meta) if enc_topk_scores is not None: # calculate loss from encode feature maps # NOTE The DeformDETR calculate binary cls loss # for all encoder embeddings, while DINO calculate # multi-class loss for topk embeddings. enc_loss_cls, enc_losses_bbox, enc_losses_iou = \ self.loss_single(enc_topk_scores, enc_topk_anchors, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore) # collate loss from encode feature maps loss_dict['interm_loss_cls'] = enc_loss_cls loss_dict['interm_loss_bbox'] = enc_losses_bbox loss_dict['interm_loss_iou'] = enc_losses_iou # calculate loss from all decoder layers num_dec_layers = len(all_cls_scores) all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] all_gt_bboxes_ignore_list = [ gt_bboxes_ignore for _ in range(num_dec_layers) ] img_metas_list = [img_metas for _ in range(num_dec_layers)] losses_cls, losses_bbox, losses_iou = multi_apply( self.loss_single, all_cls_scores, all_bbox_preds, all_gt_bboxes_list, all_gt_labels_list, img_metas_list, all_gt_bboxes_ignore_list) # collate loss from the last decoder layer loss_dict['loss_cls'] = losses_cls[-1] loss_dict['loss_bbox'] = losses_bbox[-1] loss_dict['loss_iou'] = losses_iou[-1] # collate loss from other decoder layers num_dec_layer = 0 for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]): loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i num_dec_layer += 1 if dn_cls_scores is not None: # calculate denoising loss from all decoder layers dn_meta = [dn_meta for _ in img_metas] dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn( dn_cls_scores, dn_bbox_preds, gt_bboxes_list, gt_labels_list, img_metas, dn_meta) # collate denoising loss loss_dict['dn_loss_cls'] = dn_losses_cls[-1] loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1] loss_dict['dn_loss_iou'] = dn_losses_iou[-1] num_dec_layer = 0 for loss_cls_i, loss_bbox_i, loss_iou_i in zip( dn_losses_cls[:-1], dn_losses_bbox[:-1], dn_losses_iou[:-1]): loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i num_dec_layer += 1 return loss_dict def loss_dn(self, dn_cls_scores, dn_bbox_preds, gt_bboxes_list, gt_labels_list, img_metas, dn_meta): num_dec_layers = len(dn_cls_scores) all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] img_metas_list = [img_metas for _ in range(num_dec_layers)] dn_meta_list = [dn_meta for _ in range(num_dec_layers)] return multi_apply(self.loss_dn_single, dn_cls_scores, dn_bbox_preds, all_gt_bboxes_list, all_gt_labels_list, img_metas_list, dn_meta_list) def loss_dn_single(self, dn_cls_scores, dn_bbox_preds, gt_bboxes_list, gt_labels_list, img_metas, dn_meta): num_imgs = dn_cls_scores.size(0) bbox_preds_list = [dn_bbox_preds[i] for i in range(num_imgs)] cls_reg_targets = self.get_dn_target(bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, dn_meta) (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets labels = torch.cat(labels_list, 0) label_weights = torch.cat(label_weights_list, 0) bbox_targets = torch.cat(bbox_targets_list, 0) bbox_weights = torch.cat(bbox_weights_list, 0) # classification loss cls_scores = dn_cls_scores.reshape(-1, self.cls_out_channels) # construct weighted avg_factor to match with the official DETR repo cls_avg_factor = \ num_total_pos * 1.0 + num_total_neg * self.bg_cls_weight if self.sync_cls_avg_factor: cls_avg_factor = reduce_mean( cls_scores.new_tensor([cls_avg_factor])) cls_avg_factor = max(cls_avg_factor, 1) if len(cls_scores) > 0: loss_cls = self.loss_cls( cls_scores, labels, label_weights, avg_factor=cls_avg_factor) else: loss_cls = torch.zeros( # TODO: How to better return zero loss 1, dtype=cls_scores.dtype, device=cls_scores.device) # Compute the average number of gt boxes across all gpus, for # normalization purposes num_total_pos = loss_cls.new_tensor([num_total_pos]) num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() # construct factors used for rescale bboxes factors = [] for img_meta, bbox_pred in zip(img_metas, dn_bbox_preds): img_h, img_w, _ = img_meta['img_shape'] factor = bbox_pred.new_tensor([img_w, img_h, img_w, img_h]).unsqueeze(0).repeat( bbox_pred.size(0), 1) factors.append(factor) factors = torch.cat(factors, 0) # DETR regress the relative position of boxes (cxcywh) in the image, # thus the learning target is normalized by the image size. So here # we need to re-scale them for calculating IoU loss bbox_preds = dn_bbox_preds.reshape(-1, 4) bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors # regression IoU loss, defaultly GIoU loss loss_iou = self.loss_iou( bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) # regression L1 loss loss_bbox = self.loss_bbox( bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) return loss_cls, loss_bbox, loss_iou def get_dn_target(self, dn_bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, dn_meta): (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply(self._get_dn_target_single, dn_bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, dn_meta) num_total_pos = sum((inds.numel() for inds in pos_inds_list)) num_total_neg = sum((inds.numel() for inds in neg_inds_list)) return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) def _get_dn_target_single(self, dn_bbox_pred, gt_bboxes, gt_labels, img_meta, dn_meta): num_groups = dn_meta['num_dn_group'] pad_size = dn_meta['pad_size'] assert pad_size % num_groups == 0 single_pad = pad_size // num_groups num_bboxes = dn_bbox_pred.size(0) if len(gt_labels) > 0: t = torch.range(0, len(gt_labels) - 1).long().cuda() t = t.unsqueeze(0).repeat(num_groups, 1) pos_assigned_gt_inds = t.flatten() pos_inds = (torch.tensor(range(num_groups)) * single_pad).long().cuda().unsqueeze(1) + t pos_inds = pos_inds.flatten() else: pos_inds = pos_assigned_gt_inds = torch.tensor([]).long().cuda() neg_inds = pos_inds + single_pad // 2 # label targets labels = gt_bboxes.new_full((num_bboxes, ), self.num_classes, dtype=torch.long) labels[pos_inds] = gt_labels[pos_assigned_gt_inds] label_weights = gt_bboxes.new_ones(num_bboxes) # bbox targets bbox_targets = torch.zeros_like(dn_bbox_pred) bbox_weights = torch.zeros_like(dn_bbox_pred) bbox_weights[pos_inds] = 1.0 img_h, img_w, _ = img_meta['img_shape'] # DETR regress the relative position of boxes (cxcywh) in the image. # Thus the learning target should be normalized by the image size, also # the box format should be converted from defaultly x1y1x2y2 to cxcywh. factor = dn_bbox_pred.new_tensor([img_w, img_h, img_w, img_h]).unsqueeze(0) gt_bboxes_normalized = gt_bboxes / factor gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized) bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1]) return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds) @staticmethod def extract_dn_outputs(all_cls_scores, all_bbox_preds, dn_meta): # if dn_meta and dn_meta['pad_size'] > 0: if dn_meta is not None: denoising_cls_scores = all_cls_scores[:, :, : dn_meta['pad_size'], :] denoising_bbox_preds = all_bbox_preds[:, :, : dn_meta['pad_size'], :] matching_cls_scores = all_cls_scores[:, :, dn_meta['pad_size']:, :] matching_bbox_preds = all_bbox_preds[:, :, dn_meta['pad_size']:, :] else: denoising_cls_scores = None denoising_bbox_preds = None matching_cls_scores = all_cls_scores matching_bbox_preds = all_bbox_preds return (matching_cls_scores, matching_bbox_preds, denoising_cls_scores, denoising_bbox_preds) def tta_test_bboxes(self, feats, img_metas, rescale=False): """Test det bboxes without test-time augmentation. Args: feats (tuple[torch.Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. """ # forward of this head requires img_metas outs = self.forward(feats, img_metas) all_cls_scores, all_bbox_preds, enc_cls_scores, enc_bbox_preds = outs cls_scores = all_cls_scores[-1] bbox_preds = all_bbox_preds[-1] return bbox_preds, cls_scores
ViT-Adapter-main
wsdm2023/mmdet_custom/models/dense_heads/dino_head.py
# Copyright (c) OpenMMLab. All rights reserved. import copy import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Linear, bias_init_with_prob, constant_init from mmcv.runner import force_fp32 from mmdet.core import multi_apply from mmdet.models.utils.transformer import inverse_sigmoid from mmdet.models.builder import HEADS from .detr_head import DETRHead @HEADS.register_module(force=True) class DeformableDETRHead(DETRHead): """Head of DeformDETR: Deformable DETR: Deformable Transformers for End-to- End Object Detection. Code is modified from the `official github repo <https://github.com/fundamentalvision/Deformable-DETR>`_. More details can be found in the `paper <https://arxiv.org/abs/2010.04159>`_ . Args: with_box_refine (bool): Whether to refine the reference points in the decoder. Defaults to False. as_two_stage (bool) : Whether to generate the proposal from the outputs of encoder. transformer (obj:`ConfigDict`): ConfigDict is used for building the Encoder and Decoder. """ def __init__(self, *args, with_box_refine=False, as_two_stage=False, transformer=None, **kwargs): self.with_box_refine = with_box_refine self.as_two_stage = as_two_stage if self.as_two_stage: transformer['as_two_stage'] = self.as_two_stage super(DeformableDETRHead, self).__init__( *args, transformer=transformer, **kwargs) def _init_layers(self): """Initialize classification branch and regression branch of head.""" fc_cls = Linear(self.embed_dims, self.cls_out_channels) reg_branch = [] for _ in range(self.num_reg_fcs): reg_branch.append(Linear(self.embed_dims, self.embed_dims)) reg_branch.append(nn.ReLU()) reg_branch.append(Linear(self.embed_dims, 4)) reg_branch = nn.Sequential(*reg_branch) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) # last reg_branch is used to generate proposal from # encode feature map when as_two_stage is True. num_pred = (self.transformer.decoder.num_layers + 1) if \ self.as_two_stage else self.transformer.decoder.num_layers if self.with_box_refine: self.cls_branches = _get_clones(fc_cls, num_pred) self.reg_branches = _get_clones(reg_branch, num_pred) else: self.cls_branches = nn.ModuleList( [fc_cls for _ in range(num_pred)]) self.reg_branches = nn.ModuleList( [reg_branch for _ in range(num_pred)]) if not self.as_two_stage: self.query_embedding = nn.Embedding( self.num_query, self.embed_dims * 2) def init_weights(self): """Initialize weights of the DeformDETR head.""" self.transformer.init_weights() if self.loss_cls.use_sigmoid: bias_init = bias_init_with_prob(0.01) for m in self.cls_branches: nn.init.constant_(m.bias, bias_init) for m in self.reg_branches: constant_init(m[-1], 0, bias=0) nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0) if self.as_two_stage: for m in self.reg_branches: nn.init.constant_(m[-1].bias.data[2:], 0.0) def forward(self, mlvl_feats, img_metas): """Forward function. Args: mlvl_feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor with shape (N, C, H, W). img_metas (list[dict]): List of image information. Returns: all_cls_scores (Tensor): Outputs from the classification head, \ shape [nb_dec, bs, num_query, cls_out_channels]. Note \ cls_out_channels should includes background. all_bbox_preds (Tensor): Sigmoid outputs from the regression \ head with normalized coordinate format (cx, cy, w, h). \ Shape [nb_dec, bs, num_query, 4]. enc_outputs_class (Tensor): The score of each point on encode \ feature map, has shape (N, h*w, num_class). Only when \ as_two_stage is True it would be returned, otherwise \ `None` would be returned. enc_outputs_coord (Tensor): The proposal generate from the \ encode feature map, has shape (N, h*w, 4). Only when \ as_two_stage is True it would be returned, otherwise \ `None` would be returned. """ batch_size = mlvl_feats[0].size(0) input_img_h, input_img_w = img_metas[0]['batch_input_shape'] img_masks = mlvl_feats[0].new_ones( (batch_size, input_img_h, input_img_w)) for img_id in range(batch_size): img_h, img_w, _ = img_metas[img_id]['img_shape'] img_masks[img_id, :img_h, :img_w] = 0 mlvl_masks = [] mlvl_positional_encodings = [] for feat in mlvl_feats: mlvl_masks.append( F.interpolate(img_masks[None], size=feat.shape[-2:]).to(torch.bool).squeeze(0)) mlvl_positional_encodings.append( self.positional_encoding(mlvl_masks[-1])) query_embeds = None if not self.as_two_stage: query_embeds = self.query_embedding.weight hs, init_reference, inter_references, \ enc_outputs_class, enc_outputs_coord = self.transformer( mlvl_feats, mlvl_masks, query_embeds, mlvl_positional_encodings, reg_branches=self.reg_branches if self.with_box_refine else None, # noqa:E501 cls_branches=self.cls_branches if self.as_two_stage else None # noqa:E501 ) hs = hs.permute(0, 2, 1, 3) outputs_classes = [] outputs_coords = [] for lvl in range(hs.shape[0]): if lvl == 0: reference = init_reference else: reference = inter_references[lvl - 1] reference = inverse_sigmoid(reference) outputs_class = self.cls_branches[lvl](hs[lvl]) tmp = self.reg_branches[lvl](hs[lvl]) if reference.shape[-1] == 4: tmp += reference else: assert reference.shape[-1] == 2 tmp[..., :2] += reference outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) outputs_classes = torch.stack(outputs_classes) outputs_coords = torch.stack(outputs_coords) if self.as_two_stage: return outputs_classes, outputs_coords, \ enc_outputs_class, \ enc_outputs_coord.sigmoid() else: return outputs_classes, outputs_coords, \ None, None @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) def loss(self, all_cls_scores, all_bbox_preds, enc_cls_scores, enc_bbox_preds, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore=None): """"Loss function. Args: all_cls_scores (Tensor): Classification score of all decoder layers, has shape [nb_dec, bs, num_query, cls_out_channels]. all_bbox_preds (Tensor): Sigmoid regression outputs of all decode layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape [nb_dec, bs, num_query, 4]. enc_cls_scores (Tensor): Classification scores of points on encode feature map , has shape (N, h*w, num_classes). Only be passed when as_two_stage is True, otherwise is None. enc_bbox_preds (Tensor): Regression results of each points on the encode feature map, has shape (N, h*w, 4). Only be passed when as_two_stage is True, otherwise is None. gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (num_gts, ). img_metas (list[dict]): List of image meta information. gt_bboxes_ignore (list[Tensor], optional): Bounding boxes which can be ignored for each image. Default None. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert gt_bboxes_ignore is None, \ f'{self.__class__.__name__} only supports ' \ f'for gt_bboxes_ignore setting to None.' num_dec_layers = len(all_cls_scores) all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] all_gt_bboxes_ignore_list = [ gt_bboxes_ignore for _ in range(num_dec_layers) ] img_metas_list = [img_metas for _ in range(num_dec_layers)] losses_cls, losses_bbox, losses_iou = multi_apply( self.loss_single, all_cls_scores, all_bbox_preds, all_gt_bboxes_list, all_gt_labels_list, img_metas_list, all_gt_bboxes_ignore_list) loss_dict = dict() # loss of proposal generated from encode feature map. if enc_cls_scores is not None: binary_labels_list = [ torch.zeros_like(gt_labels_list[i]) for i in range(len(img_metas)) ] enc_loss_cls, enc_losses_bbox, enc_losses_iou = \ self.loss_single(enc_cls_scores, enc_bbox_preds, gt_bboxes_list, binary_labels_list, img_metas, gt_bboxes_ignore) loss_dict['enc_loss_cls'] = enc_loss_cls loss_dict['enc_loss_bbox'] = enc_losses_bbox loss_dict['enc_loss_iou'] = enc_losses_iou # loss from the last decoder layer loss_dict['loss_cls'] = losses_cls[-1] loss_dict['loss_bbox'] = losses_bbox[-1] loss_dict['loss_iou'] = losses_iou[-1] # loss from other decoder layers num_dec_layer = 0 for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]): loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i num_dec_layer += 1 return loss_dict @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) def get_bboxes(self, all_cls_scores, all_bbox_preds, enc_cls_scores, enc_bbox_preds, img_metas, rescale=False): """Transform network outputs for a batch into bbox predictions. Args: all_cls_scores (Tensor): Classification score of all decoder layers, has shape [nb_dec, bs, num_query, cls_out_channels]. all_bbox_preds (Tensor): Sigmoid regression outputs of all decode layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape [nb_dec, bs, num_query, 4]. enc_cls_scores (Tensor): Classification scores of points on encode feature map , has shape (N, h*w, num_classes). Only be passed when as_two_stage is True, otherwise is None. enc_bbox_preds (Tensor): Regression results of each points on the encode feature map, has shape (N, h*w, 4). Only be passed when as_two_stage is True, otherwise is None. img_metas (list[dict]): Meta information of each image. rescale (bool, optional): If True, return boxes in original image space. Default False. Returns: list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ The first item is an (n, 5) tensor, where the first 4 columns \ are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ 5-th column is a score between 0 and 1. The second item is a \ (n,) tensor where each item is the predicted class label of \ the corresponding box. """ cls_scores = all_cls_scores[-1] bbox_preds = all_bbox_preds[-1] result_list = [] for img_id in range(len(img_metas)): cls_score = cls_scores[img_id] bbox_pred = bbox_preds[img_id] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self._get_bboxes_single(cls_score, bbox_pred, img_shape, scale_factor, rescale) result_list.append(proposals) return result_list
ViT-Adapter-main
wsdm2023/mmdet_custom/models/dense_heads/deformable_detr_head.py
from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .dino_head import DINOHead __all__ = ['DeformableDETRHead', 'DETRHead', 'DINOHead']
ViT-Adapter-main
wsdm2023/mmdet_custom/models/dense_heads/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Conv2d, Linear, build_activation_layer from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding from mmcv.runner import force_fp32 from mmdet.core import (bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, build_assigner, build_sampler, multi_apply, reduce_mean) from mmdet.models.utils import build_transformer from mmdet.models.builder import HEADS, build_loss from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead @HEADS.register_module(force=True) class DETRHead(AnchorFreeHead): """Implements the DETR transformer head. See `paper: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_ for details. Args: num_classes (int): Number of categories excluding the background. in_channels (int): Number of channels in the input feature map. num_query (int): Number of query in Transformer. num_reg_fcs (int, optional): Number of fully-connected layers used in `FFN`, which is then used for the regression head. Default 2. transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer. Default: None. sync_cls_avg_factor (bool): Whether to sync the avg_factor of all ranks. Default to False. positional_encoding (obj:`mmcv.ConfigDict`|dict): Config for position encoding. loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the classification loss. Default `CrossEntropyLoss`. loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the regression loss. Default `L1Loss`. loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the regression iou loss. Default `GIoULoss`. tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of transformer head. test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of transformer head. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ _version = 2 def __init__(self, num_classes, in_channels, num_query=100, num_reg_fcs=2, transformer=None, sync_cls_avg_factor=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), loss_cls=dict( type='CrossEntropyLoss', bg_cls_weight=0.1, use_sigmoid=False, loss_weight=1.0, class_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0), train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=1.), reg_cost=dict(type='BBoxL1Cost', weight=5.0), iou_cost=dict( type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=100), init_cfg=None, **kwargs): # NOTE here use `AnchorFreeHead` instead of `TransformerHead`, # since it brings inconvenience when the initialization of # `AnchorFreeHead` is called. super(AnchorFreeHead, self).__init__(init_cfg) self.bg_cls_weight = 0 self.sync_cls_avg_factor = sync_cls_avg_factor class_weight = loss_cls.get('class_weight', None) if class_weight is not None and (self.__class__ is DETRHead): assert isinstance(class_weight, float), 'Expected ' \ 'class_weight to have type float. Found ' \ f'{type(class_weight)}.' # NOTE following the official DETR rep0, bg_cls_weight means # relative classification weight of the no-object class. bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) assert isinstance(bg_cls_weight, float), 'Expected ' \ 'bg_cls_weight to have type float. Found ' \ f'{type(bg_cls_weight)}.' class_weight = torch.ones(num_classes + 1) * class_weight # set background class as the last indice class_weight[num_classes] = bg_cls_weight loss_cls.update({'class_weight': class_weight}) if 'bg_cls_weight' in loss_cls: loss_cls.pop('bg_cls_weight') self.bg_cls_weight = bg_cls_weight if train_cfg: assert 'assigner' in train_cfg, 'assigner should be provided ' \ 'when train_cfg is set.' assigner = train_cfg['assigner'] # assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], # 'The classification weight for loss and matcher should be' \ # 'exactly the same.' # assert loss_bbox['loss_weight'] == assigner['reg_cost'][ # 'weight'], 'The regression L1 weight for loss and matcher '\ # 'should be exactly the same.' # assert loss_iou['loss_weight'] == assigner['iou_cost']['weight'], # 'The regression iou weight for loss and matcher should be' \ # 'exactly the same.' self.assigner = build_assigner(assigner) # DETR sampling=False, so use PseudoSampler sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.num_query = num_query self.num_classes = num_classes self.in_channels = in_channels self.num_reg_fcs = num_reg_fcs self.train_cfg = train_cfg self.test_cfg = test_cfg self.fp16_enabled = False self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.loss_iou = build_loss(loss_iou) if self.loss_cls.use_sigmoid: self.cls_out_channels = num_classes else: self.cls_out_channels = num_classes + 1 self.act_cfg = transformer.get('act_cfg', dict(type='ReLU', inplace=True)) self.activate = build_activation_layer(self.act_cfg) self.positional_encoding = build_positional_encoding( positional_encoding) self.transformer = build_transformer(transformer) self.embed_dims = self.transformer.embed_dims assert 'num_feats' in positional_encoding num_feats = positional_encoding['num_feats'] assert num_feats * 2 == self.embed_dims, 'embed_dims should' \ f' be exactly 2 times of num_feats. Found {self.embed_dims}' \ f' and {num_feats}.' self._init_layers() def _init_layers(self): """Initialize layers of the transformer head.""" self.input_proj = Conv2d( self.in_channels, self.embed_dims, kernel_size=1) self.fc_cls = Linear(self.embed_dims, self.cls_out_channels) self.reg_ffn = FFN( self.embed_dims, self.embed_dims, self.num_reg_fcs, self.act_cfg, dropout=0.0, add_residual=False) self.fc_reg = Linear(self.embed_dims, 4) self.query_embedding = nn.Embedding(self.num_query, self.embed_dims) def init_weights(self): """Initialize weights of the transformer head.""" # The initialization for transformer is important self.transformer.init_weights() def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """load checkpoints.""" # NOTE here use `AnchorFreeHead` instead of `TransformerHead`, # since `AnchorFreeHead._load_from_state_dict` should not be # called here. Invoking the default `Module._load_from_state_dict` # is enough. # Names of some parameters in has been changed. version = local_metadata.get('version', None) if (version is None or version < 2) and self.__class__ is DETRHead: convert_dict = { '.self_attn.': '.attentions.0.', '.ffn.': '.ffns.0.', '.multihead_attn.': '.attentions.1.', '.decoder.norm.': '.decoder.post_norm.' } state_dict_keys = list(state_dict.keys()) for k in state_dict_keys: for ori_key, convert_key in convert_dict.items(): if ori_key in k: convert_key = k.replace(ori_key, convert_key) state_dict[convert_key] = state_dict[k] del state_dict[k] super(AnchorFreeHead, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, feats, img_metas): """Forward function. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. Returns: tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels. - all_cls_scores_list (list[Tensor]): Classification scores \ for each scale level. Each is a 4D-tensor with shape \ [nb_dec, bs, num_query, cls_out_channels]. Note \ `cls_out_channels` should includes background. - all_bbox_preds_list (list[Tensor]): Sigmoid regression \ outputs for each scale level. Each is a 4D-tensor with \ normalized coordinate format (cx, cy, w, h) and shape \ [nb_dec, bs, num_query, 4]. """ num_levels = len(feats) img_metas_list = [img_metas for _ in range(num_levels)] return multi_apply(self.forward_single, feats, img_metas_list) def forward_single(self, x, img_metas): """"Forward function for a single feature level. Args: x (Tensor): Input feature from backbone's single stage, shape [bs, c, h, w]. img_metas (list[dict]): List of image information. Returns: all_cls_scores (Tensor): Outputs from the classification head, shape [nb_dec, bs, num_query, cls_out_channels]. Note cls_out_channels should includes background. all_bbox_preds (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h). Shape [nb_dec, bs, num_query, 4]. """ # construct binary masks which used for the transformer. # NOTE following the official DETR repo, non-zero values representing # ignored positions, while zero values means valid positions. batch_size = x.size(0) input_img_h, input_img_w = img_metas[0]['batch_input_shape'] masks = x.new_ones((batch_size, input_img_h, input_img_w)) for img_id in range(batch_size): img_h, img_w, _ = img_metas[img_id]['img_shape'] masks[img_id, :img_h, :img_w] = 0 x = self.input_proj(x) # interpolate masks to have the same spatial shape with x masks = F.interpolate( masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1) # position encoding pos_embed = self.positional_encoding(masks) # [bs, embed_dim, h, w] # outs_dec: [nb_dec, bs, num_query, embed_dim] outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight, pos_embed) all_cls_scores = self.fc_cls(outs_dec) all_bbox_preds = self.fc_reg(self.activate( self.reg_ffn(outs_dec))).sigmoid() return all_cls_scores, all_bbox_preds @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) def loss(self, all_cls_scores_list, all_bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore=None): """"Loss function. Only outputs from the last feature level are used for computing losses by default. Args: all_cls_scores_list (list[Tensor]): Classification outputs for each feature level. Each is a 4D-tensor with shape [nb_dec, bs, num_query, cls_out_channels]. all_bbox_preds_list (list[Tensor]): Sigmoid regression outputs for each feature level. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape [nb_dec, bs, num_query, 4]. gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (num_gts, ). img_metas (list[dict]): List of image meta information. gt_bboxes_ignore (list[Tensor], optional): Bounding boxes which can be ignored for each image. Default None. Returns: dict[str, Tensor]: A dictionary of loss components. """ # NOTE defaultly only the outputs from the last feature scale is used. all_cls_scores = all_cls_scores_list[-1] all_bbox_preds = all_bbox_preds_list[-1] assert gt_bboxes_ignore is None, \ 'Only supports for gt_bboxes_ignore setting to None.' num_dec_layers = len(all_cls_scores) all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] all_gt_bboxes_ignore_list = [ gt_bboxes_ignore for _ in range(num_dec_layers) ] img_metas_list = [img_metas for _ in range(num_dec_layers)] losses_cls, losses_bbox, losses_iou = multi_apply( self.loss_single, all_cls_scores, all_bbox_preds, all_gt_bboxes_list, all_gt_labels_list, img_metas_list, all_gt_bboxes_ignore_list) loss_dict = dict() # loss from the last decoder layer loss_dict['loss_cls'] = losses_cls[-1] loss_dict['loss_bbox'] = losses_bbox[-1] loss_dict['loss_iou'] = losses_iou[-1] # loss from other decoder layers num_dec_layer = 0 for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]): loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i num_dec_layer += 1 return loss_dict def loss_single(self, cls_scores, bbox_preds, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list=None): """"Loss function for outputs from a single decoder layer of a single feature level. Args: cls_scores (Tensor): Box score logits from a single decoder layer for all images. Shape [bs, num_query, cls_out_channels]. bbox_preds (Tensor): Sigmoid outputs from a single decoder layer for all images, with normalized coordinate (cx, cy, w, h) and shape [bs, num_query, 4]. gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (num_gts, ). img_metas (list[dict]): List of image meta information. gt_bboxes_ignore_list (list[Tensor], optional): Bounding boxes which can be ignored for each image. Default None. Returns: dict[str, Tensor]: A dictionary of loss components for outputs from a single decoder layer. """ num_imgs = cls_scores.size(0) cls_scores_list = [cls_scores[i] for i in range(num_imgs)] bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)] cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list) (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets labels = torch.cat(labels_list, 0) label_weights = torch.cat(label_weights_list, 0) bbox_targets = torch.cat(bbox_targets_list, 0) bbox_weights = torch.cat(bbox_weights_list, 0) # classification loss cls_scores = cls_scores.reshape(-1, self.cls_out_channels) # construct weighted avg_factor to match with the official DETR repo cls_avg_factor = num_total_pos * 1.0 + \ num_total_neg * self.bg_cls_weight if self.sync_cls_avg_factor: cls_avg_factor = reduce_mean( cls_scores.new_tensor([cls_avg_factor])) cls_avg_factor = max(cls_avg_factor, 1) loss_cls = self.loss_cls( cls_scores, labels, label_weights, avg_factor=cls_avg_factor) # Compute the average number of gt boxes across all gpus, for # normalization purposes num_total_pos = loss_cls.new_tensor([num_total_pos]) num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() # construct factors used for rescale bboxes factors = [] for img_meta, bbox_pred in zip(img_metas, bbox_preds): img_h, img_w, _ = img_meta['img_shape'] factor = bbox_pred.new_tensor([img_w, img_h, img_w, img_h]).unsqueeze(0).repeat( bbox_pred.size(0), 1) factors.append(factor) factors = torch.cat(factors, 0) # DETR regress the relative position of boxes (cxcywh) in the image, # thus the learning target is normalized by the image size. So here # we need to re-scale them for calculating IoU loss bbox_preds = bbox_preds.reshape(-1, 4) bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors # regression IoU loss, defaultly GIoU loss loss_iou = self.loss_iou( bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) # regression L1 loss loss_bbox = self.loss_bbox( bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) return loss_cls, loss_bbox, loss_iou def get_targets(self, cls_scores_list, bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list=None): """"Compute regression and classification targets for a batch image. Outputs from a single decoder layer of a single feature level are used. Args: cls_scores_list (list[Tensor]): Box score logits from a single decoder layer for each image with shape [num_query, cls_out_channels]. bbox_preds_list (list[Tensor]): Sigmoid outputs from a single decoder layer for each image, with normalized coordinate (cx, cy, w, h) and shape [num_query, 4]. gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (num_gts, ). img_metas (list[dict]): List of image meta information. gt_bboxes_ignore_list (list[Tensor], optional): Bounding boxes which can be ignored for each image. Default None. Returns: tuple: a tuple containing the following targets. - labels_list (list[Tensor]): Labels for all images. - label_weights_list (list[Tensor]): Label weights for all \ images. - bbox_targets_list (list[Tensor]): BBox targets for all \ images. - bbox_weights_list (list[Tensor]): BBox weights for all \ images. - num_total_pos (int): Number of positive samples in all \ images. - num_total_neg (int): Number of negative samples in all \ images. """ assert gt_bboxes_ignore_list is None, \ 'Only supports for gt_bboxes_ignore setting to None.' num_imgs = len(cls_scores_list) gt_bboxes_ignore_list = [ gt_bboxes_ignore_list for _ in range(num_imgs) ] (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply( self._get_target_single, cls_scores_list, bbox_preds_list, gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list) num_total_pos = sum((inds.numel() for inds in pos_inds_list)) num_total_neg = sum((inds.numel() for inds in neg_inds_list)) return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) def _get_area_thr(self, img_shape, type): MIN_V = 0 MAX_V = 1e10 short_edge = min(img_shape[0], img_shape[1]) if type == 'v1': DELTA = 4 if short_edge <= 600: min_edge = 128 - DELTA max_edge = MAX_V elif 600 < short_edge <= 800: min_edge = 96 - DELTA max_edge = MAX_V elif 800 < short_edge <= 1000: min_edge = 64 - DELTA max_edge = MAX_V elif 1000 < short_edge <= 1200: min_edge = 32 - DELTA max_edge = MAX_V elif 1200 < short_edge <= 1400: min_edge = MIN_V max_edge = MAX_V else: min_edge = MIN_V max_edge = 2 + DELTA elif type == 'v2': if short_edge <= 1000: min_edge = 112 max_edge = MAX_V elif 1000 < short_edge <= 1400: min_edge = 32 max_edge = 160 elif short_edge > 1400: min_edge = 0 max_edge = 80 elif type == 'v3': if short_edge <= 800: min_edge = 96 max_edge = MAX_V elif 800 < short_edge <= 1000: min_edge = 64 max_edge = MAX_V elif 1000 < short_edge <= 1400: min_edge = MIN_V max_edge = MAX_V elif 1400 < short_edge <= 1600: min_edge = MIN_V max_edge = 96 elif short_edge > 1600: min_edge = MIN_V max_edge = 64 elif type == 'v4': DELTA = 4 if short_edge <= 800: min_edge = 96 - DELTA max_edge = MAX_V elif 800 < short_edge <= 1000: min_edge = 64 - DELTA max_edge = MAX_V elif 1000 < short_edge <= 1400: min_edge = MIN_V max_edge = MAX_V elif 1400 < short_edge <= 1600: min_edge = MIN_V max_edge = 64 + DELTA elif short_edge > 1600: min_edge = MIN_V max_edge = 32 + DELTA return min_edge ** 2, max_edge ** 2 def _get_target_single(self, cls_score, bbox_pred, gt_bboxes, gt_labels, img_meta, gt_bboxes_ignore=None): """"Compute regression and classification targets for one image. Outputs from a single decoder layer of a single feature level are used. Args: cls_score (Tensor): Box score logits from a single decoder layer for one image. Shape [num_query, cls_out_channels]. bbox_pred (Tensor): Sigmoid outputs from a single decoder layer for one image, with normalized coordinate (cx, cy, w, h) and shape [num_query, 4]. gt_bboxes (Tensor): Ground truth bboxes for one image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (Tensor): Ground truth class indices for one image with shape (num_gts, ). img_meta (dict): Meta information for one image. gt_bboxes_ignore (Tensor, optional): Bounding boxes which can be ignored. Default None. Returns: tuple[Tensor]: a tuple containing the following for one image. - labels (Tensor): Labels of each image. - label_weights (Tensor]): Label weights of each image. - bbox_targets (Tensor): BBox targets of each image. - bbox_weights (Tensor): BBox weights of each image. - pos_inds (Tensor): Sampled positive indices for each image. - neg_inds (Tensor): Sampled negative indices for each image. """ num_bboxes = bbox_pred.size(0) # assigner and sampler assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes, gt_labels, img_meta, gt_bboxes_ignore) sampling_result = self.sampler.sample(assign_result, bbox_pred, gt_bboxes) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds # label targets labels = gt_bboxes.new_full((num_bboxes, ), self.num_classes, dtype=torch.long) labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] label_weights = gt_bboxes.new_ones(num_bboxes) # bbox targets bbox_targets = torch.zeros_like(bbox_pred) bbox_weights = torch.zeros_like(bbox_pred) bbox_weights[pos_inds] = 1.0 img_h, img_w, _ = img_meta['img_shape'] if hasattr(self.train_cfg, 'snip_cfg'): # print('snip_cfg: ', self.train_cfg.snip_cfg) img_shape = img_meta['img_shape'] ori_shape = img_meta['ori_shape'] h_scale, w_scale = ori_shape[0] / \ img_shape[0], ori_shape[1] / img_shape[1] area_of_gt = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * h_scale * \ (gt_bboxes[:, 3] - gt_bboxes[:, 1]) * w_scale min_area, max_area = self._get_area_thr( img_shape, self.train_cfg.snip_cfg.type) invalid = (area_of_gt < min_area) & (area_of_gt >= max_area) if torch.sum(invalid.long()) > 0: label_weights[invalid] = self.train_cfg.snip_cfg.weight bbox_weights[invalid] = self.train_cfg.snip_cfg.weight # DETR regress the relative position of boxes (cxcywh) in the image. # Thus the learning target should be normalized by the image size, also # the box format should be converted from defaultly x1y1x2y2 to cxcywh. factor = bbox_pred.new_tensor([img_w, img_h, img_w, img_h]).unsqueeze(0) pos_gt_bboxes_normalized = sampling_result.pos_gt_bboxes / factor pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized) bbox_targets[pos_inds] = pos_gt_bboxes_targets return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds) # over-write because img_metas are needed as inputs for bbox_head. def forward_train(self, x, img_metas, gt_bboxes, gt_labels=None, gt_bboxes_ignore=None, proposal_cfg=None, **kwargs): """Forward function for training mode. Args: x (list[Tensor]): Features from backbone. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes (Tensor): Ground truth bboxes of the image, shape (num_gts, 4). gt_labels (Tensor): Ground truth labels of each box, shape (num_gts,). gt_bboxes_ignore (Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). proposal_cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert proposal_cfg is None, '"proposal_cfg" must be None' outs = self(x, img_metas) if gt_labels is None: loss_inputs = outs + (gt_bboxes, img_metas) else: loss_inputs = outs + (gt_bboxes, gt_labels, img_metas) losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) def get_bboxes(self, all_cls_scores_list, all_bbox_preds_list, img_metas, rescale=False): """Transform network outputs for a batch into bbox predictions. Args: all_cls_scores_list (list[Tensor]): Classification outputs for each feature level. Each is a 4D-tensor with shape [nb_dec, bs, num_query, cls_out_channels]. all_bbox_preds_list (list[Tensor]): Sigmoid regression outputs for each feature level. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape [nb_dec, bs, num_query, 4]. img_metas (list[dict]): Meta information of each image. rescale (bool, optional): If True, return boxes in original image space. Default False. Returns: list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ The first item is an (n, 5) tensor, where the first 4 columns \ are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ 5-th column is a score between 0 and 1. The second item is a \ (n,) tensor where each item is the predicted class label of \ the corresponding box. """ # NOTE defaultly only using outputs from the last feature level, # and only the outputs from the last decoder layer is used. cls_scores = all_cls_scores_list[-1][-1] bbox_preds = all_bbox_preds_list[-1][-1] result_list = [] for img_id in range(len(img_metas)): cls_score = cls_scores[img_id] bbox_pred = bbox_preds[img_id] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self._get_bboxes_single(cls_score, bbox_pred, img_shape, scale_factor, rescale) result_list.append(proposals) return result_list def _get_bboxes_single(self, cls_score, bbox_pred, img_shape, scale_factor, rescale=False): """Transform outputs from the last decoder layer into bbox predictions for each image. Args: cls_score (Tensor): Box score logits from the last decoder layer for each image. Shape [num_query, cls_out_channels]. bbox_pred (Tensor): Sigmoid outputs from the last decoder layer for each image, with coordinate format (cx, cy, w, h) and shape [num_query, 4]. img_shape (tuple[int]): Shape of input image, (height, width, 3). scale_factor (ndarray, optional): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). rescale (bool, optional): If True, return boxes in original image space. Default False. Returns: tuple[Tensor]: Results of detected bboxes and labels. - det_bboxes: Predicted bboxes with shape [num_query, 5], \ where the first 4 columns are bounding box positions \ (tl_x, tl_y, br_x, br_y) and the 5-th column are scores \ between 0 and 1. - det_labels: Predicted labels of the corresponding box with \ shape [num_query]. """ assert len(cls_score) == len(bbox_pred) max_per_img = self.test_cfg.get('max_per_img', self.num_query) # exclude background if self.loss_cls.use_sigmoid: cls_score = cls_score.sigmoid() scores, indexes = cls_score.view(-1).topk(max_per_img) det_labels = indexes % self.num_classes bbox_index = indexes // self.num_classes bbox_pred = bbox_pred[bbox_index] else: scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1) scores, bbox_index = scores.topk(max_per_img) bbox_pred = bbox_pred[bbox_index] det_labels = det_labels[bbox_index] det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred) det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1] det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) if rescale: det_bboxes /= det_bboxes.new_tensor(scale_factor) det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(1)), -1) return det_bboxes, det_labels def simple_test_bboxes(self, feats, img_metas, rescale=False): """Test det bboxes without test-time augmentation. Args: feats (tuple[torch.Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is ``bboxes`` with shape (n, 5), where 5 represent (tl_x, tl_y, br_x, br_y, score). The shape of the second tensor in the tuple is ``labels`` with shape (n,) """ # forward of this head requires img_metas outs = self.forward(feats, img_metas) results_list = self.get_bboxes(*outs, img_metas, rescale=rescale) return results_list def forward_onnx(self, feats, img_metas): """Forward function for exporting to ONNX. Over-write `forward` because: `masks` is directly created with zero (valid position tag) and has the same spatial size as `x`. Thus the construction of `masks` is different from that in `forward`. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. Returns: tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels. - all_cls_scores_list (list[Tensor]): Classification scores \ for each scale level. Each is a 4D-tensor with shape \ [nb_dec, bs, num_query, cls_out_channels]. Note \ `cls_out_channels` should includes background. - all_bbox_preds_list (list[Tensor]): Sigmoid regression \ outputs for each scale level. Each is a 4D-tensor with \ normalized coordinate format (cx, cy, w, h) and shape \ [nb_dec, bs, num_query, 4]. """ num_levels = len(feats) img_metas_list = [img_metas for _ in range(num_levels)] return multi_apply(self.forward_single_onnx, feats, img_metas_list) def forward_single_onnx(self, x, img_metas): """"Forward function for a single feature level with ONNX exportation. Args: x (Tensor): Input feature from backbone's single stage, shape [bs, c, h, w]. img_metas (list[dict]): List of image information. Returns: all_cls_scores (Tensor): Outputs from the classification head, shape [nb_dec, bs, num_query, cls_out_channels]. Note cls_out_channels should includes background. all_bbox_preds (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h). Shape [nb_dec, bs, num_query, 4]. """ # Note `img_shape` is not dynamically traceable to ONNX, # since the related augmentation was done with numpy under # CPU. Thus `masks` is directly created with zeros (valid tag) # and the same spatial shape as `x`. # The difference between torch and exported ONNX model may be # ignored, since the same performance is achieved (e.g. # 40.1 vs 40.1 for DETR) batch_size = x.size(0) h, w = x.size()[-2:] masks = x.new_zeros((batch_size, h, w)) # [B,h,w] x = self.input_proj(x) # interpolate masks to have the same spatial shape with x masks = F.interpolate( masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1) pos_embed = self.positional_encoding(masks) outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight, pos_embed) all_cls_scores = self.fc_cls(outs_dec) all_bbox_preds = self.fc_reg(self.activate( self.reg_ffn(outs_dec))).sigmoid() return all_cls_scores, all_bbox_preds def onnx_export(self, all_cls_scores_list, all_bbox_preds_list, img_metas): """Transform network outputs into bbox predictions, with ONNX exportation. Args: all_cls_scores_list (list[Tensor]): Classification outputs for each feature level. Each is a 4D-tensor with shape [nb_dec, bs, num_query, cls_out_channels]. all_bbox_preds_list (list[Tensor]): Sigmoid regression outputs for each feature level. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape [nb_dec, bs, num_query, 4]. img_metas (list[dict]): Meta information of each image. Returns: tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] and class labels of shape [N, num_det]. """ assert len(img_metas) == 1, \ 'Only support one input image while in exporting to ONNX' cls_scores = all_cls_scores_list[-1][-1] bbox_preds = all_bbox_preds_list[-1][-1] # Note `img_shape` is not dynamically traceable to ONNX, # here `img_shape_for_onnx` (padded shape of image tensor) # is used. img_shape = img_metas[0]['img_shape_for_onnx'] max_per_img = self.test_cfg.get('max_per_img', self.num_query) batch_size = cls_scores.size(0) # `batch_index_offset` is used for the gather of concatenated tensor batch_index_offset = torch.arange(batch_size).to( cls_scores.device) * max_per_img batch_index_offset = batch_index_offset.unsqueeze(1).expand( batch_size, max_per_img) # supports dynamical batch inference if self.loss_cls.use_sigmoid: cls_scores = cls_scores.sigmoid() scores, indexes = cls_scores.view(batch_size, -1).topk( max_per_img, dim=1) det_labels = indexes % self.num_classes bbox_index = indexes // self.num_classes bbox_index = (bbox_index + batch_index_offset).view(-1) bbox_preds = bbox_preds.view(-1, 4)[bbox_index] bbox_preds = bbox_preds.view(batch_size, -1, 4) else: scores, det_labels = F.softmax( cls_scores, dim=-1)[..., :-1].max(-1) scores, bbox_index = scores.topk(max_per_img, dim=1) bbox_index = (bbox_index + batch_index_offset).view(-1) bbox_preds = bbox_preds.view(-1, 4)[bbox_index] det_labels = det_labels.view(-1)[bbox_index] bbox_preds = bbox_preds.view(batch_size, -1, 4) det_labels = det_labels.view(batch_size, -1) det_bboxes = bbox_cxcywh_to_xyxy(bbox_preds) # use `img_shape_tensor` for dynamically exporting to ONNX img_shape_tensor = img_shape.flip(0).repeat(2) # [w,h,w,h] img_shape_tensor = img_shape_tensor.unsqueeze(0).unsqueeze(0).expand( batch_size, det_bboxes.size(1), 4) det_bboxes = det_bboxes * img_shape_tensor # dynamically clip bboxes x1, y1, x2, y2 = det_bboxes.split((1, 1, 1, 1), dim=-1) from mmdet.core.export import dynamic_clip_for_onnx x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, img_shape) det_bboxes = torch.cat([x1, y1, x2, y2], dim=-1) det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(-1)), -1) return det_bboxes, det_labels
ViT-Adapter-main
wsdm2023/mmdet_custom/models/dense_heads/detr_head.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.ops import point_sample def get_uncertainty(mask_pred, labels): """Estimate uncertainty based on pred logits. We estimate uncertainty as L1 distance between 0.0 and the logits prediction in 'mask_pred' for the foreground class in `classes`. Args: mask_pred (Tensor): mask predication logits, shape (num_rois, num_classes, mask_height, mask_width). labels (list[Tensor]): Either predicted or ground truth label for each predicted mask, of length num_rois. Returns: scores (Tensor): Uncertainty scores with the most uncertain locations having the highest uncertainty score, shape (num_rois, 1, mask_height, mask_width) """ if mask_pred.shape[1] == 1: gt_class_logits = mask_pred.clone() else: inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) gt_class_logits = mask_pred[inds, labels].unsqueeze(1) return -torch.abs(gt_class_logits) def get_uncertain_point_coords_with_randomness(mask_pred, labels, num_points, oversample_ratio, importance_sample_ratio): """Get ``num_points`` most uncertain points with random points during train. Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using 'get_uncertainty()' function that takes point's logit prediction as input. Args: mask_pred (Tensor): A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction. labels (list): The ground truth class for each instance. num_points (int): The number of points to sample. oversample_ratio (int): Oversampling parameter. importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. Returns: point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) that contains the coordinates sampled points. """ assert oversample_ratio >= 1 assert 0 <= importance_sample_ratio <= 1 batch_size = mask_pred.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand( batch_size, num_sampled, 2, device=mask_pred.device) point_logits = point_sample(mask_pred, point_coords) # It is crucial to calculate uncertainty based on the sampled # prediction value for the points. Calculating uncertainties of the # coarse predictions first and sampling them for points leads to # incorrect results. To illustrate this: assume uncertainty func( # logits)=-abs(logits), a sampled point between two coarse # predictions with -1 and 1 logits has 0 logits, and therefore 0 # uncertainty value. However, if we calculate uncertainties for the # coarse predictions first, both will have -1 uncertainty, # and sampled point will get -1 uncertainty. point_uncertainties = get_uncertainty(point_logits, labels) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk( point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange( batch_size, dtype=torch.long, device=mask_pred.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( batch_size, num_uncertain_points, 2) if num_random_points > 0: rand_roi_coords = torch.rand( batch_size, num_random_points, 2, device=mask_pred.device) point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) return point_coords
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/point_sample.py
from .query_denoising import build_dn_generator from .transformer import DinoTransformer, DinoTransformerDecoder from .point_sample import get_uncertainty, get_uncertain_point_coords_with_randomness __all__ = ['build_dn_generator', 'DinoTransformer', 'DinoTransformerDecoder', 'get_uncertainty', 'get_uncertain_point_coords_with_randomness']
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/__init__.py
import math import torch import torch.nn as nn from mmdet.models.utils.builder import TRANSFORMER from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER_SEQUENCE, FEEDFORWARD_NETWORK, DROPOUT_LAYERS) from mmdet.models.utils.transformer import (inverse_sigmoid, DeformableDetrTransformerDecoder, DeformableDetrTransformer) def build_MLP(input_dim, hidden_dim, output_dim, num_layers): # TODO: It can be implemented by add an out_channel arg of # mmcv.cnn.bricks.transformer.FFN assert num_layers > 1, \ f'num_layers should be greater than 1 but got {num_layers}' h = [hidden_dim] * (num_layers - 1) layers = list() for n, k in zip([input_dim] + h[:-1], h): layers.extend((nn.Linear(n, k), nn.ReLU())) # Note that the relu func of MLP in original DETR repo is set # 'inplace=False', however the ReLU cfg of FFN in mmdet is set # 'inplace=True' by default. layers.append(nn.Linear(hidden_dim, output_dim)) return nn.Sequential(*layers) @TRANSFORMER_LAYER_SEQUENCE.register_module() class DinoTransformerDecoder(DeformableDetrTransformerDecoder): def __init__(self, *args, with_rp_noise=False, **kwargs): super(DinoTransformerDecoder, self).__init__(*args, **kwargs) self.with_rp_noise = with_rp_noise self._init_layers() def _init_layers(self): self.ref_point_head = build_MLP( self.embed_dims * 2, self.embed_dims, self.embed_dims, 2) self.norm = nn.LayerNorm(self.embed_dims) @staticmethod def gen_sineembed_for_position(pos_tensor): # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange( 128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000**(2 * (dim_t // 2) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack( (pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack( (pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError('Unknown pos_tensor shape(-1):{}'.format( pos_tensor.size(-1))) return pos def forward(self, query, *args, reference_points=None, valid_ratios=None, reg_branches=None, **kwargs): output = query intermediate = [] intermediate_reference_points = [reference_points] for lid, layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = \ reference_points[:, :, None] * torch.cat( [valid_ratios, valid_ratios], -1)[:, None] else: assert reference_points.shape[-1] == 2 reference_points_input = \ reference_points[:, :, None] * valid_ratios[:, None] if self.with_rp_noise and self.training: device = reference_points.device b, n, d = reference_points.size() noise = torch.rand(b, n, d).to(device) * 0.02 - 0.01 reference_points = (reference_points + noise).clamp(0, 1) query_sine_embed = self.gen_sineembed_for_position( reference_points_input[:, :, 0, :]) query_pos = self.ref_point_head(query_sine_embed) query_pos = query_pos.permute(1, 0, 2) output = layer( output, *args, query_pos=query_pos, reference_points=reference_points_input, **kwargs) output = output.permute(1, 0, 2) if reg_branches is not None: tmp = reg_branches[lid](output) assert reference_points.shape[-1] == 4 # TODO: should do earlier new_reference_points = tmp + inverse_sigmoid( reference_points, eps=1e-3) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach() output = output.permute(1, 0, 2) if self.return_intermediate: intermediate.append(self.norm(output)) intermediate_reference_points.append(new_reference_points) # NOTE this is for the "Look Forward Twice" module, # in the DeformDETR, reference_points was appended. if self.return_intermediate: return torch.stack(intermediate), torch.stack( intermediate_reference_points) return output, reference_points @TRANSFORMER.register_module() class DinoTransformer(DeformableDetrTransformer): def __init__(self, *args, **kwargs): super(DinoTransformer, self).__init__(*args, **kwargs) def init_layers(self): """Initialize layers of the DinoTransformer.""" self.level_embeds = nn.Parameter( torch.Tensor(self.num_feature_levels, self.embed_dims)) self.enc_output = nn.Linear(self.embed_dims, self.embed_dims) self.enc_output_norm = nn.LayerNorm(self.embed_dims) self.query_embed = nn.Embedding(self.two_stage_num_proposals, self.embed_dims) def init_weights(self): super().init_weights() nn.init.normal_(self.query_embed.weight.data) def forward(self, mlvl_feats, mlvl_masks, query_embed, mlvl_pos_embeds, dn_label_query, dn_bbox_query, attn_mask, reg_branches=None, cls_branches=None, **kwargs): assert self.as_two_stage and query_embed is None, \ 'as_two_stage must be True for DINO' feat_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (feat, mask, pos_embed) in enumerate( zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): bs, c, h, w = feat.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) feat = feat.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) feat_flatten.append(feat) mask_flatten.append(mask) feat_flatten = torch.cat(feat_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor( spatial_shapes, dtype=torch.long, device=feat_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack( [self.get_valid_ratio(m) for m in mlvl_masks], 1) reference_points = self.get_reference_points( spatial_shapes, valid_ratios, device=feat.device) feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute( 1, 0, 2) # (H*W, bs, embed_dims) memory = self.encoder( query=feat_flatten, key=None, value=None, query_pos=lvl_pos_embed_flatten, query_key_padding_mask=mask_flatten, spatial_shapes=spatial_shapes, reference_points=reference_points, level_start_index=level_start_index, valid_ratios=valid_ratios, **kwargs) memory = memory.permute(1, 0, 2) bs, _, c = memory.shape output_memory, output_proposals = self.gen_encoder_output_proposals( memory, mask_flatten, spatial_shapes) enc_outputs_class = cls_branches[self.decoder.num_layers]( output_memory) enc_outputs_coord_unact = reg_branches[self.decoder.num_layers]( output_memory) + output_proposals cls_out_features = cls_branches[self.decoder.num_layers].out_features topk = self.two_stage_num_proposals # NOTE In DeformDETR, enc_outputs_class[..., 0] is used for topk TODO topk_indices = torch.topk(enc_outputs_class.max(-1)[0], topk, dim=1)[1] # topk_proposal = torch.gather( # output_proposals, 1, # topk_indices.unsqueeze(-1).repeat(1, 1, 4)).sigmoid() # topk_memory = torch.gather( # output_memory, 1, # topk_indices.unsqueeze(-1).repeat(1, 1, self.embed_dims)) topk_score = torch.gather( enc_outputs_class, 1, topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features)) topk_coords_unact = torch.gather( enc_outputs_coord_unact, 1, topk_indices.unsqueeze(-1).repeat(1, 1, 4)) topk_anchor = topk_coords_unact.sigmoid() # NOTE In the original DeformDETR, init_reference_out is obtained # from detached topk_coords_unact, which is different with DINO. TODO topk_coords_unact = topk_coords_unact.detach() query = self.query_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) if dn_label_query is not None: query = torch.cat([dn_label_query, query], dim=1) if dn_bbox_query is not None: reference_points = torch.cat([dn_bbox_query, topk_coords_unact], dim=1) else: reference_points = topk_coords_unact reference_points = reference_points.sigmoid() # decoder query = query.permute(1, 0, 2) memory = memory.permute(1, 0, 2) inter_states, inter_references = self.decoder( query=query, key=None, value=memory, attn_masks=attn_mask, key_padding_mask=mask_flatten, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, reg_branches=reg_branches, **kwargs) inter_references_out = inter_references return inter_states, inter_references_out, topk_score, topk_anchor
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/transformer.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner import BaseModule from mmdet.core import bbox_xyxy_to_cxcywh from mmdet.models.utils.transformer import inverse_sigmoid class DnQueryGenerator(BaseModule): def __init__(self, num_queries, hidden_dim, num_classes, noise_scale=dict(label=0.5, box=0.4), group_cfg=dict( dynamic=True, num_groups=None, num_dn_queries=None)): super(DnQueryGenerator, self).__init__() self.num_queries = num_queries self.hidden_dim = hidden_dim self.num_classes = num_classes self.label_noise_scale = noise_scale['label'] self.box_noise_scale = noise_scale['box'] self.dynamic_dn_groups = group_cfg.get('dynamic', False) if self.dynamic_dn_groups: assert 'num_dn_queries' in group_cfg, \ 'num_dn_queries should be set when using ' \ 'dynamic dn groups' self.num_dn = group_cfg['num_dn_queries'] else: assert 'num_groups' in group_cfg, \ 'num_groups should be set when using ' \ 'static dn groups' self.num_dn = group_cfg['num_groups'] assert isinstance(self.num_dn, int) and self.num_dn >= 1, \ f'Expected the num in group_cfg to have type int. ' \ f'Found {type(self.num_dn)} ' def get_num_groups(self, group_queries=None): """ Args: group_queries (int): Number of dn queries in one group. """ if self.dynamic_dn_groups: assert group_queries is not None, \ 'group_queries should be provided when using ' \ 'dynamic dn groups' if group_queries == 0: num_groups = 1 else: num_groups = self.num_dn // group_queries else: num_groups = self.num_dn if num_groups < 1: # avoid num_groups < 1 in query generator num_groups = 1 return int(num_groups) def forward(self, gt_bboxes, gt_labels=None, label_enc=None, img_metas=None): """ Args: gt_bboxes (List[Tensor]): List of ground truth bboxes of the image, shape of each (num_gts, 4). gt_labels (List[Tensor]): List of ground truth labels of the image, shape of each (num_gts,), if None, TODO:noisy_label would be None. Returns: TODO """ # TODO: temp only support for CDN # TODO: temp assert gt_labels is not None and label_enc is not None if self.training: if gt_labels is not None: assert len(gt_bboxes) == len(gt_labels), \ f'the length of provided gt_labels ' \ f'{len(gt_labels)} should be equal to' \ f' that of gt_bboxes {len(gt_bboxes)}' assert gt_labels is not None \ and label_enc is not None \ and img_metas is not None # TODO: adjust args batch_size = len(gt_bboxes) # convert bbox gt_bboxes_list = [] for img_meta, bboxes in zip(img_metas, gt_bboxes): img_h, img_w, _ = img_meta['img_shape'] factor = bboxes.new_tensor([img_w, img_h, img_w, img_h]).unsqueeze(0) bboxes_normalized = bbox_xyxy_to_cxcywh(bboxes) / factor gt_bboxes_list.append(bboxes_normalized) gt_bboxes = gt_bboxes_list known = [torch.ones_like(labels) for labels in gt_labels] known_num = [sum(k) for k in known] num_groups = self.get_num_groups(int(max(known_num))) unmask_bbox = unmask_label = torch.cat(known) labels = torch.cat(gt_labels) boxes = torch.cat(gt_bboxes) batch_idx = torch.cat([ torch.full_like(t.long(), i) for i, t in enumerate(gt_labels) ]) known_indice = torch.nonzero(unmask_label + unmask_bbox) known_indice = known_indice.view(-1) known_indice = known_indice.repeat(2 * num_groups, 1).view(-1) known_labels = labels.repeat(2 * num_groups, 1).view(-1) known_bid = batch_idx.repeat(2 * num_groups, 1).view(-1) known_bboxs = boxes.repeat(2 * num_groups, 1) known_labels_expand = known_labels.clone() known_bbox_expand = known_bboxs.clone() if self.label_noise_scale > 0: p = torch.rand_like(known_labels_expand.float()) chosen_indice = torch.nonzero( p < (self.label_noise_scale * 0.5)).view(-1) new_label = torch.randint_like(chosen_indice, 0, self.num_classes) known_labels_expand.scatter_(0, chosen_indice, new_label) single_pad = int(max(known_num)) # TODO pad_size = int(single_pad * 2 * num_groups) positive_idx = torch.tensor(range( len(boxes))).long().cuda().unsqueeze(0).repeat(num_groups, 1) positive_idx += (torch.tensor(range(num_groups)) * len(boxes) * 2).long().cuda().unsqueeze(1) positive_idx = positive_idx.flatten() negative_idx = positive_idx + len(boxes) if self.box_noise_scale > 0: known_bbox_ = torch.zeros_like(known_bboxs) known_bbox_[:, : 2] = \ known_bboxs[:, : 2] - known_bboxs[:, 2:] / 2 known_bbox_[:, 2:] = \ known_bboxs[:, :2] + known_bboxs[:, 2:] / 2 diff = torch.zeros_like(known_bboxs) diff[:, :2] = known_bboxs[:, 2:] / 2 diff[:, 2:] = known_bboxs[:, 2:] / 2 rand_sign = torch.randint_like( known_bboxs, low=0, high=2, dtype=torch.float32) rand_sign = rand_sign * 2.0 - 1.0 rand_part = torch.rand_like(known_bboxs) rand_part[negative_idx] += 1.0 rand_part *= rand_sign known_bbox_ += \ torch.mul(rand_part, diff).cuda() * self.box_noise_scale known_bbox_ = known_bbox_.clamp(min=0.0, max=1.0) known_bbox_expand[:, :2] = \ (known_bbox_[:, :2] + known_bbox_[:, 2:]) / 2 known_bbox_expand[:, 2:] = \ known_bbox_[:, 2:] - known_bbox_[:, :2] m = known_labels_expand.long().to('cuda') input_label_embed = label_enc(m) input_bbox_embed = inverse_sigmoid(known_bbox_expand, eps=1e-3) padding_label = torch.zeros(pad_size, self.hidden_dim).cuda() padding_bbox = torch.zeros(pad_size, 4).cuda() input_query_label = padding_label.repeat(batch_size, 1, 1) input_query_bbox = padding_bbox.repeat(batch_size, 1, 1) map_known_indice = torch.tensor([]).to('cuda') if len(known_num): map_known_indice = torch.cat( [torch.tensor(range(num)) for num in known_num]) map_known_indice = torch.cat([ map_known_indice + single_pad * i for i in range(2 * num_groups) ]).long() if len(known_bid): input_query_label[(known_bid.long(), map_known_indice)] = input_label_embed input_query_bbox[(known_bid.long(), map_known_indice)] = input_bbox_embed tgt_size = pad_size + self.num_queries attn_mask = torch.ones(tgt_size, tgt_size).to('cuda') < 0 # match query cannot see the reconstruct attn_mask[pad_size:, :pad_size] = True # reconstruct cannot see each other for i in range(num_groups): if i == 0: attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), single_pad * 2 * (i + 1):pad_size] = True if i == num_groups - 1: attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), :single_pad * i * 2] = True else: attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), single_pad * 2 * (i + 1):pad_size] = True attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), :single_pad * 2 * i] = True dn_meta = { 'pad_size': pad_size, 'num_dn_group': num_groups, } else: input_query_label = None input_query_bbox = None attn_mask = None dn_meta = None return input_query_label, input_query_bbox, attn_mask, dn_meta class CdnQueryGenerator(DnQueryGenerator): def __init__(self, *args, **kwargs): super(CdnQueryGenerator, self).__init__(*args, **kwargs) def build_dn_generator(dn_args): """ Args: dn_args (dict): Returns: """ if dn_args is None: return None type = dn_args.pop('type') if type == 'DnQueryGenerator': return DnQueryGenerator(**dn_args) elif type == 'CdnQueryGenerator': return CdnQueryGenerator(**dn_args) else: raise NotImplementedError(f'{type} is not supported yet')
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/query_denoising.py
from .builder import build_tokenizer from .tokenization_clip import ClipTokenizer
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/tokenization/__init__.py
from .tokenization_clip import MaskClipTokenizer def build_tokenizer(tokenizer): if tokenizer['name']=='clip_tokenizer': return MaskClipTokenizer(tokenizer['max_sent_len'])
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/tokenization/builder.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re import torch from torch._C import Value import pandas as pd @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class ClipTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>', '<|mask|>', '<|gen|>', '<|spe|>']) # vocablength=49411 self.encoder = dict(zip(vocab, range(len(vocab)))) self.encoder = pd.Series( list(self.encoder.values()), index=self.encoder.keys()) self.decoder = {v: k for k, v in self.encoder.items()} self.decoder = pd.Series( list(self.decoder.values()), index=self.decoder.keys()) self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>', '<|mask|>': '<|mask|>', '<|gen|>': '<|gen|>', '<|spe|>': '<|spe|>'} self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|<\|gen\|>|<\|spe\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) self.vocab = self.encoder self.ids_to_tokens = self.decoder def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get( pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors="replace").replace('</w>', ' ') return text def basic_tokenize(self, text): text = whitespace_clean(basic_clean(text)).lower() return list(re.findall(self.pat, text)) def encode_basic_tokenized_token(self, token): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens = [self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')] return bpe_tokens def tokenize(self, text): tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) tokens.extend( bpe_token for bpe_token in self.bpe(token).split(' ')) return tokens def convert_tokens_to_ids(self, tokens): return [self.encoder[bpe_token] for bpe_token in tokens] def add_special_tokens_single_sentence(self, token_ids, start_type='SoT'): if start_type == 'SoT': return [self.encoder['<|startoftext|>']] + token_ids + [self.encoder['<|endoftext|>']] elif start_type == 'Gen': return [self.encoder['<|gen|>']] + token_ids + [self.encoder['<|endoftext|>']] elif start_type == 'SPE': return token_ids else: raise ValueError def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1, start_type='SoT'): sep = [self.encoder['<|endoftext|>']] if start_type == 'SoT': cls = [self.encoder['<|startoftext|>']] elif start_type == 'Gen': cls = [self.encoder['<|gen|>']] elif start_type == 'SPE': cls = [] else: raise ValueError return cls + token_ids_0 + sep + token_ids_1 def get_cls_token_id(self): return self.encoder['<|startoftext|>'] def get_eos_token_id(self): return self.encoder['<|endoftext|>'] def convert_tokens_to_string(self, tokens): text = ''.join(tokens).strip() text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors="replace").replace('</w>', ' ') return text class MaskClipTokenizer(ClipTokenizer): def __init__(self, max_sent_len=128, bpe_path: str = default_bpe()): super().__init__(bpe_path) self.max_sent_len = max_sent_len def encode(self, text): input_ids = torch.tensor(super().encode(text)) if len(input_ids) > self.max_sent_len: input_ids = input_ids[0:self.max_sent_len] mask = torch.ones_like(input_ids) elif len(input_ids) < self.max_sent_len: mask = torch.ones_like(input_ids) pad = torch.zeros( [self.max_sent_len-len(input_ids)], dtype=input_ids.dtype) input_ids = torch.cat([input_ids, pad], dim=0) mask = torch.cat([mask, pad], dim=0) return input_ids,mask
ViT-Adapter-main
wsdm2023/mmdet_custom/models/utils/tokenization/tokenization_clip.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .uniperceiver_adapter import UniPerceiverAdapter __all__ = ['UniPerceiverAdapter']
ViT-Adapter-main
wsdm2023/mmdet_custom/models/backbones/__init__.py
# Copyright (c) Shanghai AI Lab. All rights reserved. import logging import math import torch import torch.nn as nn import torch.nn.functional as F from mmdet.models.builder import BACKBONES from ops.modules import MSDeformAttn from timm.models.layers import DropPath, trunc_normal_ from torch.nn.init import normal_ from .base.uniperceiver import UnifiedBertEncoder from .adapter_modules import SpatialPriorModule, InteractionBlock, deform_inputs from .base.grounding_block import GroundingCrossAttention _logger = logging.getLogger(__name__) @BACKBONES.register_module() class UniPerceiverAdapter(UnifiedBertEncoder): def __init__(self, pretrain_size=224, num_heads=12, conv_inplane=64, n_points=4, deform_num_heads=6, init_values=0., with_cffn=True, cffn_ratio=0.25, deform_ratio=1.0, add_vit_feature=True, interaction_indexes=None, num_classes=80, with_cp=False, out_indices=(0, 1, 2, 3), num_cross_attn=0, cross_attn=None, *args, **kwargs): super().__init__(num_heads=num_heads, with_cp=with_cp, *args, **kwargs) self.num_classes = num_classes self.cls_token = None self.num_block = len(self.layers) self.pretrain_size = (pretrain_size, pretrain_size) self.interaction_indexes = interaction_indexes self.add_vit_feature = add_vit_feature self.out_indices = out_indices embed_dim = self.embed_dim self.num_cross_attn = num_cross_attn if num_cross_attn > 0: self.cross_attn = nn.Sequential(*[ GroundingCrossAttention(**cross_attn) for i in range(num_cross_attn) ]) else: self.cross_attn = None self.level_embed = nn.Parameter(torch.zeros(3, embed_dim)) self.spm = SpatialPriorModule(inplanes=conv_inplane, embed_dim=embed_dim, out_indices=out_indices) self.interactions = nn.Sequential(*[ InteractionBlock(dim=embed_dim, num_heads=deform_num_heads, n_points=n_points, init_values=init_values, drop_path=self.drop_path_rate, norm_layer=self.norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, extra_extractor=True if i == len( interaction_indexes) - 1 else False, with_cp=with_cp) for i in range(len(interaction_indexes)) ]) if 0 in out_indices: self.up = nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) self.up.apply(self._init_weights) else: self.up = None for index in out_indices: norm = nn.SyncBatchNorm(embed_dim) setattr(self, f"norm{index+1}", norm) self.spm.apply(self._init_weights) self.interactions.apply(self._init_weights) self.apply(self._init_deform_weights) normal_(self.level_embed) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _init_deform_weights(self, m): if isinstance(m, MSDeformAttn): m._reset_parameters() def _add_level_embed(self, c2, c3, c4): c2 = c2 + self.level_embed[0] c3 = c3 + self.level_embed[1] c4 = c4 + self.level_embed[2] return c2, c3, c4 def forward(self, x, q, q_mask): deform_inputs1, deform_inputs2 = deform_inputs(x) # SPM forward c1, c2, c3, c4 = self.spm(x) c2, c3, c4 = self._add_level_embed(c2, c3, c4) c = torch.cat([c2, c3, c4], dim=1) # Patch Embedding forward x, H, W = self.visual_embed(x) q = self.token_embed(q) bs, n, dim = x.shape # Interaction for i, layer in enumerate(self.interactions): indexes = self.interaction_indexes[i] x, c, q = layer(x, c, q, q_mask, self.layers[indexes[0]:indexes[-1] + 1], deform_inputs1, deform_inputs2, H, W) # Cross Attention if self.cross_attn is not None: for i, blk in enumerate(self.cross_attn): x = blk(x, q, q_mask, H, W) # Split & Reshape c2 = c[:, 0:c2.size(1), :] c3 = c[:, c2.size(1):c2.size(1) + c3.size(1), :] c4 = c[:, c2.size(1) + c3.size(1):, :] c2 = c2.transpose(1, 2).view(bs, dim, H * 2, W * 2).contiguous() c3 = c3.transpose(1, 2).view(bs, dim, H, W).contiguous() c4 = c4.transpose(1, 2).view(bs, dim, H // 2, W // 2).contiguous() if self.up is not None: c1 = self.up(c2) + c1 if self.add_vit_feature: x3 = x.transpose(1, 2).view(bs, dim, H, W).contiguous() x1 = F.interpolate(x3, scale_factor=4, mode='bilinear', align_corners=False) x2 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False) x4 = F.interpolate(x3, scale_factor=0.5, mode='bilinear', align_corners=False) if len(self.out_indices) == 4: c1, c2, c3, c4 = c1 + x1, c2 + x2, c3 + x3, c4 + x4 else: c2, c3, c4 = c2 + x2, c3 + x3, c4 + x4 # Final Norm if len(self.out_indices) == 4: f1 = self.norm1(c1) f2 = self.norm2(c2) f3 = self.norm3(c3) f4 = self.norm4(c4) return [f1, f2, f3, f4] else: f2 = self.norm2(c2) f3 = self.norm3(c3) f4 = self.norm4(c4) return [f2, f3, f4]
ViT-Adapter-main
wsdm2023/mmdet_custom/models/backbones/uniperceiver_adapter.py
import logging from functools import partial import torch import torch.nn as nn from ops.modules import MSDeformAttn from timm.models.layers import DropPath import torch.utils.checkpoint as cp _logger = logging.getLogger(__name__) def get_reference_points(spatial_shapes, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / H_ ref_x = ref_x.reshape(-1)[None] / W_ ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] return reference_points def deform_inputs(x): bs, c, h, w = x.shape spatial_shapes = torch.as_tensor([(h // 8, w // 8), (h // 16, w // 16), (h // 32, w // 32)], dtype=torch.long, device=x.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = get_reference_points([(h // 16, w // 16)], x.device) deform_inputs1 = [reference_points, spatial_shapes, level_start_index] spatial_shapes = torch.as_tensor( [(h // 16, w // 16)], dtype=torch.long, device=x.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = get_reference_points([(h // 8, w // 8), (h // 16, w // 16), (h // 32, w // 32)], x.device) deform_inputs2 = [reference_points, spatial_shapes, level_start_index] return deform_inputs1, deform_inputs2 class ConvFFN(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x, H, W): x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class DWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape n = N // 21 x1 = x[:, 0:16 * n, :].transpose(1, 2).view(B, C, H * 2, W * 2).contiguous() x2 = x[:, 16 * n:20 * n, :].transpose(1, 2).view(B, C, H, W).contiguous() x3 = x[:, 20 * n:, :].transpose(1, 2).view(B, C, H // 2, W // 2).contiguous() x1 = self.dwconv(x1).flatten(2).transpose(1, 2) x2 = self.dwconv(x2).flatten(2).transpose(1, 2) x3 = self.dwconv(x3).flatten(2).transpose(1, 2) x = torch.cat([x1, x2, x3], dim=1) return x class Extractor(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, n_levels=1, deform_ratio=1.0, with_cffn=True, cffn_ratio=0.25, drop=0., drop_path=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), with_cp=False): super().__init__() self.query_norm = norm_layer(dim) self.feat_norm = norm_layer(dim) self.attn = MSDeformAttn(d_model=dim, n_levels=n_levels, n_heads=num_heads, n_points=n_points, ratio=deform_ratio) self.with_cffn = with_cffn self.with_cp = with_cp if with_cffn: self.ffn = ConvFFN(in_features=dim, hidden_features=int( dim * cffn_ratio), drop=drop) self.ffn_norm = norm_layer(dim) self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() def forward(self, query, reference_points, feat, spatial_shapes, level_start_index, H, W): def _inner_forward(query, feat): attn = self.attn(self.query_norm(query), reference_points, self.feat_norm(feat), spatial_shapes, level_start_index, None) query = query + attn if self.with_cffn: query = query + \ self.drop_path(self.ffn(self.ffn_norm(query), H, W)) return query if self.with_cp and query.requires_grad: query = cp.checkpoint(_inner_forward, query, feat) else: query = _inner_forward(query, feat) return query class Injector(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, n_levels=1, deform_ratio=1.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0., with_cp=False): super().__init__() self.with_cp = with_cp self.query_norm = norm_layer(dim) self.feat_norm = norm_layer(dim) self.attn = MSDeformAttn(d_model=dim, n_levels=n_levels, n_heads=num_heads, n_points=n_points, ratio=deform_ratio) self.gamma = nn.Parameter( init_values * torch.ones((dim)), requires_grad=True) def forward(self, query, reference_points, feat, spatial_shapes, level_start_index): def _inner_forward(query, feat): attn = self.attn(self.query_norm(query), reference_points, self.feat_norm(feat), spatial_shapes, level_start_index, None) return query + self.gamma * attn if self.with_cp and query.requires_grad: query = cp.checkpoint(_inner_forward, query, feat) else: query = _inner_forward(query, feat) return query class InteractionBlock(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., drop_path=0., with_cffn=True, cffn_ratio=0.25, init_values=0., deform_ratio=1.0, extra_extractor=False, with_cp=False): super().__init__() self.injector = Injector(dim=dim, n_levels=3, num_heads=num_heads, init_values=init_values, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cp=with_cp) self.extractor = Extractor(dim=dim, n_levels=1, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cffn=with_cffn, cffn_ratio=cffn_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp) if extra_extractor: self.extra_extractors = nn.Sequential(*[ Extractor(dim=dim, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp) for _ in range(2) ]) else: self.extra_extractors = None def forward(self, x, c, q, q_mask, blocks, deform_inputs1, deform_inputs2, H, W): x = self.injector(query=x, reference_points=deform_inputs1[0], feat=c, spatial_shapes=deform_inputs1[1], level_start_index=deform_inputs1[2]) for idx, blk in enumerate(blocks): # x = blk(x, H, W) x, q = blk(x, q, q_mask, H, W) c = self.extractor(query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H, W=W) if self.extra_extractors is not None: for extractor in self.extra_extractors: c = extractor(query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H, W=W) return x, c, q class SpatialPriorModule(nn.Module): def __init__(self, inplanes=64, embed_dim=384, out_indices=[0, 1, 2, 3]): super().__init__() self.stem = nn.Sequential(*[ nn.Conv2d(3, inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ]) self.conv2 = nn.Sequential(*[ nn.Conv2d(inplanes, 2 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(2 * inplanes), nn.ReLU(inplace=True) ]) self.conv3 = nn.Sequential(*[ nn.Conv2d(2 * inplanes, 4 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(4 * inplanes), nn.ReLU(inplace=True) ]) self.conv4 = nn.Sequential(*[ nn.Conv2d(4 * inplanes, 4 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(4 * inplanes), nn.ReLU(inplace=True) ]) self.out_indices = out_indices if len(out_indices) == 4: self.fc1 = nn.Conv2d(inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc2 = nn.Conv2d(2 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc3 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc4 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) else: self.fc2 = nn.Conv2d(2 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc3 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc4 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, x): c1 = self.stem(x) c2 = self.conv2(c1) c3 = self.conv3(c2) c4 = self.conv4(c3) if len(self.out_indices) == 4: c1 = self.fc1(c1) c2 = self.fc2(c2) c3 = self.fc3(c3) c4 = self.fc4(c4) bs, dim, _, _ = c2.shape # c1 = c1.view(bs, dim, -1).transpose(1, 2) # 4s c2 = c2.view(bs, dim, -1).transpose(1, 2) # 8s c3 = c3.view(bs, dim, -1).transpose(1, 2) # 16s c4 = c4.view(bs, dim, -1).transpose(1, 2) # 32s return c1, c2, c3, c4
ViT-Adapter-main
wsdm2023/mmdet_custom/models/backbones/adapter_modules.py
import logging import math import torch import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.runner import load_checkpoint from mmdet.utils import get_root_logger from timm.models.layers import DropPath from torch import nn def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x def batch_mean(x, batch_size): """ Args: x (torch.Tensor): shape=(B,N,C) batch_size (int): target batch size Returns: s: shape=(batch_size,N,C) """ B, N, C = x.shape assert B % batch_size == 0 Nw = B // batch_size x = x.reshape(Nw, batch_size, N, C) x = torch.mean(x, dim=0) return x.reshape(batch_size, N, C) class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., masked_value=1e-12, use_mask=False): super().__init__() self.use_mask = use_mask self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.masked_value = masked_value self.in_proj = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.out_proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, q, q_mask, H, W): # mask.shape = [Bq, Nq] B, N, C = x.shape Bq, Nq, Cq = q.shape assert B == Bq x = torch.cat([x, q], dim=1) qkv = self.in_proj(x).reshape( B, N+Nq, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # make torchscript happy (cannot use tensor as tuple) q, k, v = qkv.unbind(0) # [B, num_heads, N+Nq, C // num_heads] attn = (q @ k.transpose(-2, -1)) * \ self.scale # [B, num_heads, N+Nq, N+Nq] if self.use_mask: mask = torch.cat( [torch.ones([B, N], dtype=q_mask.dtype).cuda(), q_mask], dim=1) mask = mask.reshape(B, 1, 1, N+Nq) attn = attn.masked_fill(mask == 0, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N+Nq, C) x = self.out_proj(x) x = self.proj_drop(x) q = x[:, N:, :] x = x[:, :N, :] return x, q class WindowedAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., window_size=14): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.in_proj = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.out_proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.window_size = window_size def forward(self, x, q, q_mask, H, W): B, N, C = x.shape Bq, Nq, Cq = q.shape assert B == Bq N_ = self.window_size * self.window_size H_ = math.ceil(H / self.window_size) * self.window_size W_ = math.ceil(W / self.window_size) * self.window_size x = x.view(B, H, W, C) x = F.pad(x, [0, 0, 0, W_ - W, 0, H_ - H]) # nW*B, window_size, window_size, C x = window_partition(x, window_size=self.window_size) x = x.view(-1, N_, C) B_ = x.shape[0] q = q.unsqueeze(0).expand(B_//Bq, Bq, Nq, Cq).reshape(B_, Nq, Cq) x = torch.cat([x, q], dim=1) qkv = self.in_proj(x).view(-1, N_+Nq, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # make torchscript happy (cannot use tensor as tuple) q, k, v = qkv.unbind(0) attn = (q @ k.transpose(-2, -1)) * \ self.scale # [B, L, num_head, N_, N_] # mask if self.use_mask: mask = torch.cat( [torch.ones([B, N_], dtype=q_mask.dtype).cuda(), q_mask], dim=1) mask = mask.reshape(B, 1, 1, N_+Nq) mask = mask.unsqueeze(0).expand( B_//B, B, 1, 1, N_+Nq).reshape(B_, 1, 1, N_+Nq) attn = attn.masked_fill(mask == 0, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] x = (attn @ v).transpose(1, 2).reshape(-1, N_+Nq, C) i = x[:, :N_, :].reshape(-1, self.window_size, self.window_size, C) t = batch_mean(x[:, N_:, :], Bq) x = window_reverse(i, self.window_size, H_, W_) x = x[:, :H, :W, :].reshape(B, N, C).contiguous() x = self.out_proj(x) x = self.proj_drop(x) q = self.out_proj(t) q = self.proj_drop(q) return x, q class MultiModelBertLayer(nn.Module): def __init__(self, hidden_size=768, intermediate_size=3072, num_attention_heads=12, drop_path_ratio=0.1, windowed=False, window_size=14, with_cp=False, use_mask=False): super(MultiModelBertLayer, self).__init__() self.with_cp = with_cp if windowed: self.self_attn = WindowedAttention(hidden_size, num_attention_heads, qkv_bias=True, attn_drop=0., proj_drop=0., window_size=window_size, use_mask=use_mask) else: self.self_attn = Attention(hidden_size, num_attention_heads, qkv_bias=True, attn_drop=0., proj_drop=0., use_mask=use_mask) # self.intermediate = BertIntermediate(hidden_size, intermediate_size) self.linear1 = nn.Linear(hidden_size, intermediate_size) self.act_fn = nn.GELU() self.linear2 = nn.Linear(intermediate_size, hidden_size) self.drop_path = DropPath( drop_path_ratio) if drop_path_ratio > 0. else nn.Identity() self.norm1 = nn.LayerNorm(hidden_size) self.norm2 = nn.LayerNorm(hidden_size) self.gamma_1 = nn.Parameter(torch.zeros((hidden_size)), requires_grad=True) self.gamma_2 = nn.Parameter(torch.zeros((hidden_size)), requires_grad=True) def ffn_forward(self, x, q): x = self.linear1(x) x = self.act_fn(x) x = self.linear2(x) q = self.linear1(q) q = self.act_fn(q) q = self.linear2(q) return x, q def forward(self, x, q, q_mask, H, W): def _inner_forward(x, q, q_mask): x_, q_ = self.self_attn(self.norm1(x), self.norm1(q), q_mask, H, W) x = x + self.gamma_1 * self.drop_path(x_) q = q + self.gamma_1 * self.drop_path(q_) x_, q_ = self.ffn_forward(self.norm2(x), self.norm2(q)) x = x + self.gamma_2 * self.drop_path(x_) q = q + self.gamma_2 * self.drop_path(q_) return x, q if self.with_cp and x.requires_grad: x, q = cp.checkpoint(_inner_forward, x, q, q_mask) else: x, q = _inner_forward(x, q, q_mask) return x, q class VisualPatchEmbedding(nn.Module): def __init__(self, in_dim=3, out_dim=768, patch_size=16, image_size=224, dropout=0.): super(VisualPatchEmbedding, self).__init__() self.embeddings_act = None self.embeddings_norm = nn.LayerNorm(out_dim) # self.embeddings_type = nn.Embedding(1, 768) self.embeddings_dropout = nn.Dropout(dropout) self.patch_embed = PatchEmbed( img_size=(image_size, image_size), patch_size=(patch_size, patch_size), in_chans=in_dim, embed_dim=out_dim, ) def forward(self, x): embeddings, H, W = self.patch_embed(x) # data_type = torch.zeros(1).long().cuda() # embeddings_type = self.embeddings_type(data_type).unsqueeze(1) # embeddings = embeddings + embeddings_type # embeddings = embeddings + self.embeddings_type.weight[0].unsqueeze(0).unsqueeze(1).to(embeddings.dtype) if self.embeddings_act is not None: embeddings = self.embeddings_act(embeddings) if self.embeddings_norm is not None: embeddings = self.embeddings_norm(embeddings) if self.embeddings_dropout is not None: embeddings = self.embeddings_dropout(embeddings) return embeddings, H, W class PatchEmbed(torch.nn.Module): """Image to Patch Embedding.""" def __init__(self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.pretrain_size = img_size self.spatial_pos_embed = nn.Embedding(num_patches, embed_dim) self.temporal_pos_embed = nn.Embedding(8, embed_dim) self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def _get_pos_embed(self, pos_embed, H, W): pos_embed = pos_embed.reshape( 1, self.pretrain_size[0] // 16, self.pretrain_size[1] // 16, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \ reshape(1, -1, H * W).permute(0, 2, 1) return pos_embed def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) # B, N, C temp_len = 1 pos_embed = self._get_pos_embed(self.spatial_pos_embed.weight.unsqueeze(0), H // 16, W // 16) temporal_pos_ids = torch.arange(temp_len, dtype=torch.long, device=x.device) temporal_pos_embed = self.temporal_pos_embed(temporal_pos_ids).unsqueeze(0) x = x + pos_embed + temporal_pos_embed return x, H // 16, W // 16 class NNEmbeddingEncoding(nn.Module): def __init__(self, dim, max_len): super(NNEmbeddingEncoding, self).__init__() self.position_embeddings = nn.Embedding(max_len, dim) def forward(self, x, start_time=0): if isinstance(x, int): position_embeddings = self.position_embeddings(torch.tensor([x], dtype=torch.long).cuda()) elif isinstance(x, torch.Tensor) and x.dim() == 1: position_embeddings = self.position_embeddings(x) else: x_size = x.size(1) position_ids = torch.arange(x_size, dtype=torch.long, device=x.device) + start_time position_embeddings = self.position_embeddings(position_ids) return position_embeddings class TokenBaseEmbedding(nn.Module): def __init__(self, dim, vocab_size): super(TokenBaseEmbedding, self).__init__() self.embeddings = nn.Embedding(vocab_size, dim) self.embeddings_norm = nn.LayerNorm(dim) self.embeddings_pos = NNEmbeddingEncoding(dim, 512) self.embeddings_token_type = nn.Embedding(2, dim) def forward(self, input_ids, time_step=None, start_time=0): embeddings = self.embeddings(input_ids) pos_inputs = input_ids if time_step is None else time_step position_embeddings = self.embeddings_pos(pos_inputs, start_time=start_time) embeddings = embeddings + position_embeddings.to(embeddings.dtype) embeddings_token_type = self.embeddings_token_type.weight[0].unsqueeze(0).unsqueeze(1) embeddings = embeddings + embeddings_token_type.to(embeddings.dtype) embeddings = self.embeddings_norm(embeddings) return embeddings class UnifiedBertEncoder(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., drop_path_rate=0., norm_layer=nn.LayerNorm, window_attn=False, window_size=14, with_cp=False, use_mask=False, pretrained=None): super(UnifiedBertEncoder, self).__init__() self.embed_dim = embed_dim self.drop_path_rate = drop_path_rate self.norm_layer = norm_layer window_attn = [window_attn] * depth if not isinstance(window_attn, list) else window_attn window_size = [window_size] * depth if not isinstance(window_size, list) else window_size logging.info('window attention:', window_attn) logging.info('window size:', window_size) logging.info('use mask:', use_mask) layers = [] # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] for i in range(depth): layers.append( MultiModelBertLayer(hidden_size=embed_dim, intermediate_size=int(embed_dim * mlp_ratio), num_attention_heads=num_heads, drop_path_ratio=dpr[i], windowed=window_attn[i], window_size=window_size[i], with_cp=with_cp, use_mask=use_mask) ) self.layers = nn.ModuleList(layers) self.visual_embed = VisualPatchEmbedding(in_dim=in_chans, out_dim=embed_dim, patch_size=patch_size, image_size=img_size) self.token_embed = TokenBaseEmbedding(dim=embed_dim, vocab_size=49411) self.init_weights(pretrained) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) def forward(self, img, question): x, H, W = self.visual_embed(img) q = self.token_embed(question) for layer in self.layers: x, q = layer(x, q, H, W) return x, q
ViT-Adapter-main
wsdm2023/mmdet_custom/models/backbones/base/uniperceiver.py
import torch import torch.nn as nn import torch.utils.checkpoint as cp from timm.models.layers import DropPath, Mlp class GroundingAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.kv = nn.Linear(dim, dim*2, bias=qkv_bias) self.q = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, r): B, N, C = x.shape B_, N_, C_ = r.shape kv = self.kv(r).reshape(B_, N_, 2, self.num_heads, C_ // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = (q @ k.transpose(-2, -1)) * self.scale # (B, heads, N, N_) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class GroundingCrossAttention(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., with_cp=False, attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, layer_scale=False): super().__init__() self.with_cp = with_cp self.norm1 = norm_layer(dim) self.attn = GroundingAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.layer_scale = layer_scale if layer_scale: self.gamma1 = nn.Parameter(torch.ones((dim)), requires_grad=True) self.gamma2 = nn.Parameter(torch.ones((dim)), requires_grad=True) def forward(self, x, r): def _inner_forward(x, r): if self.layer_scale: x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x), self.norm1(r))) x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.attn(self.norm1(x), self.norm1(r))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x if self.with_cp and x.requires_grad: x = cp.checkpoint(_inner_forward, x, r) else: x = _inner_forward(x, r) return x
ViT-Adapter-main
wsdm2023/mmdet_custom/models/backbones/base/grounding_block.py
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.builder import DETECTORS from mmdet.models.detectors.detr import DETR from mmdet.core import (bbox2result, bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, bbox_flip) from mmdet.core.bbox.iou_calculators import BboxOverlaps2D import torch from mmcv.runner import auto_fp16 from mmseg.models.decode_heads import FPNHead import torch.nn as nn import torch.nn.functional as F class DiceLoss(nn.Module): def __init__(self, loss_weight=1.0): super(DiceLoss, self).__init__() self.loss_weight = loss_weight def forward(self, input, target, reduce=True): batch_size = input.size(0) input = torch.sigmoid(input) input = input.contiguous().view(batch_size, -1) target = target.contiguous().view(batch_size, -1).float() a = torch.sum(input * target, dim=1) b = torch.sum(input * input, dim=1) + 0.001 c = torch.sum(target * target, dim=1) + 0.001 d = (2 * a) / (b + c) loss = 1 - d loss = self.loss_weight * loss if reduce: loss = torch.mean(loss) return loss @DETECTORS.register_module() class GroundingDINO(DETR): def __init__(self, with_aux_loss=False, mul_aux_seg=False, *args, **kwargs): super(DETR, self).__init__(*args, **kwargs) self.iou_calculator = BboxOverlaps2D() self.with_aux_loss = with_aux_loss self.mul_aux_seg = mul_aux_seg if self.with_aux_loss: self.aux_seg_head = FPNHead( in_channels=[256, 256, 256], in_index=[0, 1, 2], feature_strides=[8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=1, norm_cfg=dict(type='SyncBN', requires_grad=True), align_corners=False, ) self.loss_aux = DiceLoss(loss_weight=1.0) def forward_dummy(self, img): raise NotImplementedError def onnx_export(self, img, img_metas): raise NotImplementedError def extract_feat(self, img, refer, r_mask): x = self.backbone(img, refer, r_mask) if self.with_neck: x = self.neck(x) return x def extract_feats(self, imgs, refers, r_masks): """Extract features from multiple images. Args: imgs (list[torch.Tensor]): A list of images. The images are augmented from the same image but in different ways. Returns: list[torch.Tensor]: Features of different images """ assert isinstance(imgs, list) return [self.extract_feat(img, refer, r_mask) for img, refer, r_mask in zip(imgs, refers, r_masks)] def forward_train(self, img, img_metas, refer, r_mask, gt_bboxes, gt_labels, gt_bboxes_ignore=None): batch_input_shape = tuple(img[0].size()[-2:]) for img_meta in img_metas: img_meta['batch_input_shape'] = batch_input_shape x = self.extract_feat(img, refer, r_mask) losses = {} if hasattr(self, "aux_seg_head"): b, _, h, w = x[0].shape gt_masks = torch.zeros(b, 1, h, w, device=x[0].device) for index, bbox in enumerate(gt_bboxes): x1, y1, x2, y2 = (bbox / 8).int()[0] gt_masks[index, :, y1:y2, x1:x2] = 1 seg = self.aux_seg_head(x) aux_loss = self.loss_aux(seg, gt_masks) losses.update(aux_loss=aux_loss) if self.mul_aux_seg: seg_8s = torch.sigmoid(seg) # [b, 1, h, w] x = list(x) seg_16s = F.interpolate(seg_8s, size=x[1].shape[-2:], mode="nearest") seg_32s = F.interpolate(seg_16s, size=x[2].shape[-2:], mode="nearest") x[0] = x[0] * seg_8s x[1] = x[1] * seg_16s x[2] = x[2] * seg_32s loss_head = self.bbox_head.forward_train(x, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore) losses.update(loss_head) return losses def simple_test(self, img, img_metas, refer, r_mask, rescale=False): feat = self.extract_feat(img, refer, r_mask) # if hasattr(self, "aux_seg_head"): # seg = self.aux_seg_head(feat) results_list = self.bbox_head.simple_test( feat, img_metas, rescale=rescale) bbox_results = [ bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for det_bboxes, det_labels in results_list ] return bbox_results @auto_fp16(apply_to=('img', 'refer', 'r_mask')) def forward(self, img, img_metas, refer, r_mask, return_loss=True, **kwargs): if torch.onnx.is_in_onnx_export(): raise NotImplementedError if return_loss: return self.forward_train(img, img_metas, refer, r_mask, **kwargs) else: return self.forward_test(img, img_metas, refer, r_mask, **kwargs) def forward_test(self, imgs, img_metas, refers, r_masks, **kwargs): for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas'), (refers, 'refers'), (r_masks, 'r_masks')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got {type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) ' f'!= num of image meta ({len(img_metas)})') # NOTE the batched image size information may be useful, e.g. # in DETR, this is needed for the construction of masks, which is # then used for the transformer_head. for img, img_meta in zip(imgs, img_metas): batch_size = len(img_meta) for img_id in range(batch_size): img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:]) if num_augs == 1: # proposals (List[List[Tensor]]): the outer list indicates # test-time augs (multiscale, flip, etc.) and the inner list # indicates images in a batch. # The Tensor should have a shape Px4, where P is the number of # proposals. if 'proposals' in kwargs: kwargs['proposals'] = kwargs['proposals'][0] return self.simple_test(imgs[0], img_metas[0], refers[0], r_masks[0], **kwargs) else: assert imgs[0].size(0) == 1, 'aug test does not support ' \ 'inference with batch size ' \ f'{imgs[0].size(0)}' # TODO: support test augmentation for predefined proposals assert 'proposals' not in kwargs return self.aug_test(imgs, img_metas, refers, r_masks, **kwargs) def aug_test(self, imgs, img_metas, refers, r_masks, rescale=False): return [self.aug_test_vote(imgs, img_metas, refers, r_masks, rescale)] def rescale_boxes(self, det_bboxes, det_scores, img_meta): det_scores = det_scores.sigmoid() # [900, 80] scores, indexes = det_scores.view(-1).topk(self.test_cfg.max_per_img) bbox_index = indexes // self.bbox_head.num_classes det_labels = indexes % self.bbox_head.num_classes det_bboxes = det_bboxes[bbox_index] det_scores = det_scores[bbox_index] det_bboxes = bbox_cxcywh_to_xyxy(det_bboxes) img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] flip_direction = img_meta[0]['flip_direction'] det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * \ img_shape[1] # to image-scale det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) det_bboxes = bbox_flip(det_bboxes, img_shape, flip_direction) if flip else det_bboxes # to object-scale det_bboxes = det_bboxes.view(-1, 4) / \ det_bboxes.new_tensor(scale_factor) return det_bboxes, scores, det_labels def scale_boxes(self, det_bboxes, img_meta, normalize): scale_factor = img_meta[0]['scale_factor'] img_shape = img_meta[0]['img_shape'] det_bboxes = det_bboxes.view(-1, 4) * \ det_bboxes.new_tensor(scale_factor) if normalize: det_bboxes[:, 0::2] = det_bboxes[:, 0::2] / img_shape[1] det_bboxes[:, 1::2] = det_bboxes[:, 1::2] / img_shape[0] det_bboxes = bbox_xyxy_to_cxcywh(det_bboxes) return det_bboxes def aug_test_vote(self, imgs, img_metas, refers, r_masks, rescale=False): feats = self.extract_feats(imgs, refers, r_masks) aug_bboxes, aug_scores, aug_labels = [], [], [] for i, (feat, img_meta) in enumerate(zip(feats, img_metas)): det_bboxes, det_logits = self.bbox_head.tta_test_bboxes( feat, img_meta, rescale=True) # [1, 900, 4] & [1, 900, 80] # cxcywh, [0-1] det_bboxes = det_bboxes[0] # [900, 4] det_logits = det_logits[0] # [900, 80] det_bboxes, det_scores, det_labels = self.rescale_boxes( det_bboxes, det_logits, img_meta) aug_bboxes.append(det_bboxes) # [n, 4] aug_scores.append(det_scores) # [n] aug_labels.append(det_labels) # [n] aug_bboxes = torch.cat(aug_bboxes, dim=0) aug_scores = torch.cat(aug_scores, dim=0) aug_labels = torch.cat(aug_labels, dim=0) iou = self.iou_calculator(aug_bboxes, aug_bboxes).mean(1) # aug_scores = aug_scores + 2 * iou # 77.5 aug_scores = aug_scores + iou # 77.4 max_index = torch.argmax(aug_scores).item() aug_bboxes = aug_bboxes[max_index].unsqueeze(0) aug_scores = aug_scores[max_index].unsqueeze(0) aug_labels = aug_labels[max_index].unsqueeze(0) out_bboxes = torch.cat((aug_bboxes, aug_scores.unsqueeze(1)), -1) # [300, 5] bbox_results = bbox2result( out_bboxes, aug_labels, self.bbox_head.num_classes) return bbox_results
ViT-Adapter-main
wsdm2023/mmdet_custom/models/detectors/grounding_dino.py
from .grounding_dino import GroundingDINO __all__ = ['GroundingDINO']
ViT-Adapter-main
wsdm2023/mmdet_custom/models/detectors/__init__.py
# Copyright (c) ByteDance, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Mostly copy-paste from BEiT library: https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py """ import json from mmcv.runner import (OPTIMIZER_BUILDERS, DefaultOptimizerConstructor, get_dist_info) def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ('backbone.cls_token', 'backbone.visual_embed', 'backbone.pos_embed'): return 0 elif var_name.startswith('backbone.visual_embed'): return 0 elif var_name.startswith('backbone.patch_embed'): return 0 elif var_name.startswith('backbone.layers'): layer_id = int(var_name.split('.')[2]) return layer_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') print('Build LayerDecayOptimizerConstructor %f - %d' % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith('.bias') or name in ( 'pos_embed', 'cls_token', 'visual_embed'): group_name = 'no_decay' this_weight_decay = 0. else: group_name = 'decay' this_weight_decay = weight_decay layer_id = get_num_layer_for_vit(name, num_layers) group_name = 'layer_%d_%s' % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate**(num_layers - layer_id - 1) parameter_groups[group_name] = { 'weight_decay': this_weight_decay, 'params': [], 'param_names': [], 'lr_scale': scale, 'group_name': group_name, 'lr': scale * self.base_lr, } parameter_groups[group_name]['params'].append(param) parameter_groups[group_name]['param_names'].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { 'param_names': parameter_groups[key]['param_names'], 'lr_scale': parameter_groups[key]['lr_scale'], 'lr': parameter_groups[key]['lr'], 'weight_decay': parameter_groups[key]['weight_decay'], } print('Param groups = %s' % json.dumps(to_display, indent=2)) # state_dict = module.state_dict() # for group_name in parameter_groups: # group = parameter_groups[group_name] # for name in group["param_names"]: # group["params"].append(state_dict[name]) params.extend(parameter_groups.values())
ViT-Adapter-main
wsdm2023/mmcv_custom/layer_decay_optimizer_constructor.py
# Copyright (c) Open-MMLab. All rights reserved. import io import math import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module from tempfile import TemporaryDirectory import mmcv import numpy as np import torch import torchvision from mmcv.fileio import FileClient from mmcv.fileio import load as load_file from mmcv.parallel import is_module_wrapper from mmcv.runner import get_dist_info from mmcv.utils import mkdir_or_exist from scipy import interpolate from torch.optim import Optimizer from torch.utils import model_zoo ENV_MMCV_HOME = 'MMCV_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' def _get_mmcv_home(): mmcv_home = os.path.expanduser( os.getenv( ENV_MMCV_HOME, os.path.join(os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # use _load_from_state_dict to enable checkpoint version control def load(module, prefix=''): # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None # break load->load reference cycle # ignore "num_batches_tracked" of BN layers missing_keys = [ key for key in all_missing_keys if 'num_batches_tracked' not in key ] if unexpected_keys: err_msg.append('unexpected key in source ' f'state_dict: {", ".join(unexpected_keys)}\n') if missing_keys: err_msg.append( f'missing keys in source state_dict: {", ".join(missing_keys)}\n') rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert( 0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: print(err_msg) def load_url_dist(url, model_dir=None, map_location='cpu'): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) return checkpoint def load_pavimodel_dist(model_path, map_location=None): """In distributed setting, this function only download checkpoint at local rank 0.""" try: from pavi import modelcloud except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) return checkpoint def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' 'use "torchvision://" instead') model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn(f'open-mmlab://{model_name} is deprecated in favor ' f'of open-mmlab://{deprecated_urls[model_name]}') model_name = deprecated_urls[model_name] model_url = model_urls[model_name] # check if is url if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist(filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print('Set warmup steps = %d' % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array([ final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters ]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) # OrderedDict is a subclass of dict if not isinstance(checkpoint, dict): raise RuntimeError( f'No state_dict found in checkpoint file {filename}') # get state_dict from checkpoint if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] elif 'module' in checkpoint: state_dict = checkpoint['module'] else: state_dict = checkpoint # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # for MoBY, load model of online branch if sorted(list(state_dict.keys()))[0].startswith('encoder'): state_dict = { k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.') } # reshape absolute position embedding for Swin if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning('Error in loading absolute_pos_embed, pass') else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view( N2, H, W, C2).permute(0, 3, 1, 2) rank, _ = get_dist_info() if 'rel_pos_bias.relative_position_bias_table' in state_dict: if rank == 0: print('Expand the shared relative position embedding to each layers. ') num_layers = model.get_num_layers() rel_pos_bias = state_dict['rel_pos_bias.relative_position_bias_table'] for i in range(num_layers): state_dict['blocks.%d.attn.relative_position_bias_table' % i] = rel_pos_bias.clone() state_dict.pop('rel_pos_bias.relative_position_bias_table') all_keys = list(state_dict.keys()) for key in all_keys: if 'relative_position_index' in key: state_dict.pop(key) if 'relative_position_bias_table' in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = 3 src_size = int((src_num_pos - num_extra_tokens)**0.5) dst_size = int((dst_num_pos)**0.5) if src_size != dst_size: if rank == 0: print('Position interpolate for %s from %dx%d to %dx%d' % (key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r**n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q**(i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print('x = {}'.format(x)) print('dx = {}'.format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to( rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) # new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) # state_dict[key] = new_rel_pos_bias state_dict[key] = rel_pos_bias else: rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] state_dict[key] = rel_pos_bias if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.spatial_pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int( (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5) # height (== width) for the new position embedding new_size = int(num_patches**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: if rank == 0: print('Position interpolate from %dx%d to %dx%d' % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute( 0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed # interpolate position bias table if needed # relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] # for table_key in relative_position_bias_table_keys: # table_pretrained = state_dict[table_key] # table_current = model.state_dict()[table_key] # L1, nH1 = table_pretrained.size() # L2, nH2 = table_current.size() # if nH1 != nH2: # logger.warning(f"Error in loading {table_key}, pass") # else: # if L1 != L2: # S1 = int(L1 ** 0.5) # S2 = int(L2 ** 0.5) # table_pretrained_resized = F.interpolate( # table_pretrained.permute(1, 0).view(1, nH1, S1, S1), # size=(S2, S2), mode='bicubic') # state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) # load state_dict load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def _save_to_state_dict(module, destination, prefix, keep_vars): """Saves module state to `destination` dictionary. This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. Args: module (nn.Module): The module to generate state_dict. destination (dict): A dict where state will be stored. prefix (str): The prefix for parameters and buffers used in this module. """ for name, param in module._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.detach() for name, buf in module._buffers.items(): # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d if buf is not None: destination[prefix + name] = buf if keep_vars else buf.detach() def get_state_dict(module, destination=None, prefix='', keep_vars=False): """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. This method is modified from :meth:`torch.nn.Module.state_dict` to recursively check parallel module in case that the model has a complicated structure, e.g., nn.Module(nn.Module(DDP)). Args: module (nn.Module): The module to generate state_dict. destination (OrderedDict): Returned dict for the state of the module. prefix (str): Prefix of the key. keep_vars (bool): Whether to keep the variable property of the parameters. Default: False. Returns: dict: A dictionary containing a whole state of the module. """ # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module # below is the same as torch.nn.Module.state_dict() if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() destination._metadata[prefix[:-1]] = local_metadata = dict( version=module._version) _save_to_state_dict(module, destination, prefix, keep_vars) for name, child in module._modules.items(): if child is not None: get_state_dict(child, destination, prefix + name + '.', keep_vars=keep_vars) for hook in module._state_dict_hooks.values(): hook_result = hook(module, destination, prefix, local_metadata) if hook_result is not None: destination = hook_result return destination def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
ViT-Adapter-main
wsdm2023/mmcv_custom/checkpoint.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .checkpoint import load_checkpoint from .customized_text import CustomizedTextLoggerHook from .layer_decay_optimizer_constructor import LayerDecayOptimizerConstructor __all__ = [ 'LayerDecayOptimizerConstructor', 'CustomizedTextLoggerHook', 'load_checkpoint' ]
ViT-Adapter-main
wsdm2023/mmcv_custom/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime from collections import OrderedDict import torch from mmcv.runner import HOOKS, TextLoggerHook @HOOKS.register_module() class CustomizedTextLoggerHook(TextLoggerHook): """Customized Text Logger hook. This logger prints out both lr and layer_0_lr. """ def _log_info(self, log_dict, runner): # print exp name for users to distinguish experiments # at every ``interval_exp_name`` iterations and the end of each epoch if runner.meta is not None and 'exp_name' in runner.meta: if (self.every_n_iters(runner, self.interval_exp_name)) or ( self.by_epoch and self.end_of_epoch(runner)): exp_info = f'Exp name: {runner.meta["exp_name"]}' runner.logger.info(exp_info) if log_dict['mode'] == 'train': lr_str = {} for lr_type in ['lr', 'layer_0_lr']: if isinstance(log_dict[lr_type], dict): lr_str[lr_type] = [] for k, val in log_dict[lr_type].items(): lr_str.append(f'{lr_type}_{k}: {val:.3e}') lr_str[lr_type] = ' '.join(lr_str) else: lr_str[lr_type] = f'{lr_type}: {log_dict[lr_type]:.3e}' # by epoch: Epoch [4][100/1000] # by iter: Iter [100/100000] if self.by_epoch: log_str = f'Epoch [{log_dict["epoch"]}]' \ f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t' else: log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t' log_str += f'{lr_str["lr"]}, {lr_str["layer_0_lr"]}, ' if 'time' in log_dict.keys(): self.time_sec_tot += (log_dict['time'] * self.interval) time_sec_avg = self.time_sec_tot / (runner.iter - self.start_iter + 1) eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) eta_str = str(datetime.timedelta(seconds=int(eta_sec))) log_str += f'eta: {eta_str}, ' log_str += f'time: {log_dict["time"]:.3f}, ' \ f'data_time: {log_dict["data_time"]:.3f}, ' # statistic memory if torch.cuda.is_available(): log_str += f'memory: {log_dict["memory"]}, ' else: # val/test time # here 1000 is the length of the val dataloader # by epoch: Epoch[val] [4][1000] # by iter: Iter[val] [1000] if self.by_epoch: log_str = f'Epoch({log_dict["mode"]}) ' \ f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t' else: log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t' log_items = [] for name, val in log_dict.items(): # TODO: resolve this hack # these items have been in log_str if name in [ 'mode', 'Epoch', 'iter', 'lr', 'layer_0_lr', 'time', 'data_time', 'memory', 'epoch' ]: continue if isinstance(val, float): val = f'{val:.4f}' log_items.append(f'{name}: {val}') log_str += ', '.join(log_items) runner.logger.info(log_str) def log(self, runner): if 'eval_iter_num' in runner.log_buffer.output: # this doesn't modify runner.iter and is regardless of by_epoch cur_iter = runner.log_buffer.output.pop('eval_iter_num') else: cur_iter = self.get_iter(runner, inner_iter=True) log_dict = OrderedDict(mode=self.get_mode(runner), epoch=self.get_epoch(runner), iter=cur_iter) # record lr and layer_0_lr cur_lr = runner.current_lr() if isinstance(cur_lr, list): log_dict['layer_0_lr'] = min(cur_lr) log_dict['lr'] = max(cur_lr) else: assert isinstance(cur_lr, dict) log_dict['lr'], log_dict['layer_0_lr'] = {}, {} for k, lr_ in cur_lr.items(): assert isinstance(lr_, list) log_dict['layer_0_lr'].update({k: min(lr_)}) log_dict['lr'].update({k: max(lr_)}) if 'time' in runner.log_buffer.output: # statistic memory if torch.cuda.is_available(): log_dict['memory'] = self._get_max_memory(runner) log_dict = dict(log_dict, **runner.log_buffer.output) self._log_info(log_dict, runner) self._dump_log(log_dict, runner) return log_dict
ViT-Adapter-main
wsdm2023/mmcv_custom/customized_text.py
_base_ = [ '_base_/datasets/wsdm2023_trainval.py', '_base_/default_runtime.py' ] # https://github.com/czczup/ViT-Adapter/releases/download/wsdm2023/dino_4scale_uniperceiver_adapter_large_6ep_gqa.pth load_from = 'pretrained/dino_4scale_uniperceiver_adapter_large_6ep_gqa.pth' model = dict( type='GroundingDINO', with_aux_loss=True, backbone=dict( type='UniPerceiverAdapter', patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, num_classes=1, with_cp=True, out_indices=(1, 2, 3), num_cross_attn=0, interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[False] * 24, window_size=[None] * 24, pretrained=None), neck=dict( type='ChannelMapper', in_channels=[1024, 1024, 1024], kernel_size=1, out_channels=256, act_cfg=None, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), bbox_head=dict( type='DINOHead', num_query=100, num_classes=1, in_channels=2048, # TODO sync_cls_avg_factor=True, as_two_stage=True, with_box_refine=True, dn_cfg=dict( type='CdnQueryGenerator', noise_scale=dict(label=0.5, box=1.0), # 0.5, 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), transformer=dict( type='DinoTransformer', two_stage_num_proposals=100, encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DinoTransformerDecoder', num_layers=6, return_intermediate=True, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.0), # 0.1 for DeformDETR dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR ], feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, temperature=20, normalize=True), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='FocalLossCost', weight=2.0), reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=1)) # TODO: Originally 100 img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer', tag='question'), dict(type='RandomParaPhrase', phrase_cache='data/wsdm2023/annotations/paraphrase_trainval.json'), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict( type='AutoAugment', policies=[ [ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', # The radio of all image in train dataset < 7 # follow the original impl img_scale=[(400, 4200), (500, 4200), (600, 4200)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=False), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']) ] # test_pipeline, NOTE the Pad's size_divisor is different from the default # setting (size_divisor=32). While there is little effect on the performance # whether we use the default setting or use size_divisor=1. test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer', tag='question'), dict( type='MultiScaleFlipAug', img_scale=[(1333, 600), (1333, 800), (1333, 1000)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=64), dict(type='Collect', keys=['img', 'refer', 'r_mask']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(filter_empty_gt=True, pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.8)) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(type='EpochBasedRunner', max_epochs=24) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, ) evaluation = dict(save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
wsdm2023/configs/dino_4scale_uniperceiver_adapter_large_24ep_gqa_wsdm2023_trainval.py
_base_ = [ '_base_/datasets/wsdm2023.py', '_base_/default_runtime.py' ] # https://github.com/czczup/ViT-Adapter/releases/download/wsdm2023/dino_4scale_uniperceiver_adapter_base_6ep_gqa.pth load_from = 'pretrained/dino_4scale_uniperceiver_adapter_base_6ep_gqa.pth' model = dict( type='GroundingDINO', with_aux_loss=True, backbone=dict( type='UniPerceiverAdapter', patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, num_classes=1, with_cp=True, out_indices=(1, 2, 3), num_cross_attn=0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False, False, False, False, False, False, False, False, False, False, False, False], window_size=[None, None, None, None, None, None, None, None, None, None, None, None], pretrained=None), neck=dict( type='ChannelMapper', in_channels=[768, 768, 768], kernel_size=1, out_channels=256, act_cfg=None, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), bbox_head=dict( type='DINOHead', num_query=100, num_classes=1, in_channels=2048, # TODO sync_cls_avg_factor=True, as_two_stage=True, with_box_refine=True, dn_cfg=dict( type='CdnQueryGenerator', noise_scale=dict(label=0.5, box=1.0), # 0.5, 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), transformer=dict( type='DinoTransformer', two_stage_num_proposals=100, encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DinoTransformerDecoder', num_layers=6, return_intermediate=True, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.0), # 0.1 for DeformDETR dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR ], feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, temperature=20, normalize=True), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='FocalLossCost', weight=2.0), reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=1)) # TODO: Originally 100 img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer', tag='question'), dict(type='RandomParaPhrase', phrase_cache='data/wsdm2023/annotations/paraphrase_train.json'), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict( type='AutoAugment', policies=[ [ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', # The radio of all image in train dataset < 7 # follow the original impl img_scale=[(400, 4200), (500, 4200), (600, 4200)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=False), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']) ] # test_pipeline, NOTE the Pad's size_divisor is different from the default # setting (size_divisor=32). While there is little effect on the performance # whether we use the default setting or use size_divisor=1. test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer', tag='question'), dict( type='MultiScaleFlipAug', img_scale=[(1333, 600), (1333, 800), (1333, 1000)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=64), dict(type='Collect', keys=['img', 'refer', 'r_mask']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(filter_empty_gt=True, pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65)) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(type='EpochBasedRunner', max_epochs=24) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, ) evaluation = dict(save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
wsdm2023/configs/dino_4scale_uniperceiver_adapter_base_24ep_gqa_wsdm2023.py
_base_ = [ '_base_/datasets/grounding_gqa.py', '_base_/default_runtime.py' ] # https://github.com/czczup/ViT-Adapter/releases/download/wsdm2023/uni-perceiver-base-L12-H768-224size-torch-pretrained_converted.pth pretrained = 'pretrained/uni-perceiver-base-L12-H768-224size-torch-pretrained_converted.pth' model = dict( type='GroundingDINO', with_aux_loss=True, backbone=dict( type='UniPerceiverAdapter', patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, num_classes=1, with_cp=True, out_indices=(1, 2, 3), num_cross_attn=0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[False, False, False, False, False, False, False, False, False, False, False, False], window_size=[None, None, None, None, None, None, None, None, None, None, None, None], pretrained=pretrained), neck=dict( type='ChannelMapper', in_channels=[768, 768, 768], kernel_size=1, out_channels=256, act_cfg=None, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), bbox_head=dict( type='DINOHead', num_query=100, num_classes=1, in_channels=2048, # TODO sync_cls_avg_factor=True, as_two_stage=True, with_box_refine=True, dn_cfg=dict( type='CdnQueryGenerator', noise_scale=dict(label=0.5, box=1.0), # 0.5, 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), transformer=dict( type='DinoTransformer', two_stage_num_proposals=100, encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DinoTransformerDecoder', num_layers=6, return_intermediate=True, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.0), # 0.1 for DeformDETR dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR ], feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, temperature=20, normalize=True), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='FocalLossCost', weight=2.0), reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=1)) # TODO: Originally 100 img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer'), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict( type='AutoAugment', policies=[ [ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', # The radio of all image in train dataset < 7 # follow the original impl img_scale=[(400, 4200), (500, 4200), (600, 4200)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=False), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']) ] # test_pipeline, NOTE the Pad's size_divisor is different from the default # setting (size_divisor=32). While there is little effect on the performance # whether we use the default setting or use size_divisor=1. test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer'), dict( type='MultiScaleFlipAug', img_scale=[(1333, 600), (1333, 800), (1333, 1000)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=64), dict(type='Collect', keys=['img', 'refer', 'r_mask']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(filter_empty_gt=True, pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65)) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(type='EpochBasedRunner', max_epochs=6) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, ) evaluation = dict(save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
wsdm2023/configs/dino_4scale_uniperceiver_adapter_base_6ep_gqa.py
_base_ = [ '_base_/datasets/grounding_gqa.py', '_base_/default_runtime.py' ] # https://github.com/czczup/ViT-Adapter/releases/download/wsdm2023/uni-perceiver-large-L24-H1024-224size-pretrained_converted.pth pretrained = 'pretrained/uni-perceiver-large-L24-H1024-224size-pretrained_converted.pth' model = dict( type='GroundingDINO', with_aux_loss=True, backbone=dict( type='UniPerceiverAdapter', patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, num_classes=1, with_cp=True, out_indices=(1, 2, 3), num_cross_attn=0, interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[False] * 24, window_size=[None] * 24, pretrained=pretrained), neck=dict( type='ChannelMapper', in_channels=[1024, 1024, 1024], kernel_size=1, out_channels=256, act_cfg=None, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), bbox_head=dict( type='DINOHead', num_query=100, num_classes=1, in_channels=2048, # TODO sync_cls_avg_factor=True, as_two_stage=True, with_box_refine=True, dn_cfg=dict( type='CdnQueryGenerator', noise_scale=dict(label=0.5, box=1.0), # 0.5, 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), transformer=dict( type='DinoTransformer', two_stage_num_proposals=100, encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DinoTransformerDecoder', num_layers=6, return_intermediate=True, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.0), # 0.1 for DeformDETR dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR ], feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, temperature=20, normalize=True), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='FocalLossCost', weight=2.0), reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=1)) # TODO: Originally 100 img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer'), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict( type='AutoAugment', policies=[ [ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', # The radio of all image in train dataset < 7 # follow the original impl img_scale=[(400, 4200), (500, 4200), (600, 4200)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=False), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']) ] # test_pipeline, NOTE the Pad's size_divisor is different from the default # setting (size_divisor=32). While there is little effect on the performance # whether we use the default setting or use size_divisor=1. test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer'), dict( type='MultiScaleFlipAug', img_scale=[(1333, 600), (1333, 800), (1333, 1000)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=64), dict(type='Collect', keys=['img', 'refer', 'r_mask']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(filter_empty_gt=True, pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.8)) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(type='EpochBasedRunner', max_epochs=6) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, ) evaluation = dict(save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
wsdm2023/configs/dino_4scale_uniperceiver_adapter_large_6ep_gqa.py
_base_ = [ '_base_/datasets/wsdm2023.py', '_base_/default_runtime.py' ] # https://github.com/czczup/ViT-Adapter/releases/download/wsdm2023/dino_4scale_uniperceiver_adapter_large_6ep_gqa.pth load_from = 'pretrained/dino_4scale_uniperceiver_adapter_large_6ep_gqa.pth' model = dict( type='GroundingDINO', with_aux_loss=True, backbone=dict( type='UniPerceiverAdapter', patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=0.3, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, num_classes=1, with_cp=True, out_indices=(1, 2, 3), num_cross_attn=0, interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[False] * 24, window_size=[None] * 24, pretrained=None), neck=dict( type='ChannelMapper', in_channels=[1024, 1024, 1024], kernel_size=1, out_channels=256, act_cfg=None, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), bbox_head=dict( type='DINOHead', num_query=100, num_classes=1, in_channels=2048, # TODO sync_cls_avg_factor=True, as_two_stage=True, with_box_refine=True, dn_cfg=dict( type='CdnQueryGenerator', noise_scale=dict(label=0.5, box=1.0), # 0.5, 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), transformer=dict( type='DinoTransformer', two_stage_num_proposals=100, encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DinoTransformerDecoder', num_layers=6, return_intermediate=True, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.0), # 0.1 for DeformDETR dict( type='MultiScaleDeformableAttention', embed_dims=256, dropout=0.0), # 0.1 for DeformDETR ], feedforward_channels=2048, # 1024 for DeformDETR ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=2048, num_fcs=2, ffn_drop=0., use_checkpoint=True, act_cfg=dict(type='ReLU', inplace=True)), ffn_dropout=0.0, # 0.1 for DeformDETR operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, temperature=20, normalize=True), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='FocalLossCost', weight=2.0), reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=1)) # TODO: Originally 100 img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer', tag='question'), dict(type='RandomParaPhrase', phrase_cache='data/wsdm2023/annotations/paraphrase_train.json'), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict( type='AutoAugment', policies=[ [ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', # The radio of all image in train dataset < 7 # follow the original impl img_scale=[(400, 4200), (500, 4200), (600, 4200)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=False), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']) ] # test_pipeline, NOTE the Pad's size_divisor is different from the default # setting (size_divisor=32). While there is little effect on the performance # whether we use the default setting or use size_divisor=1. test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer', tag='question'), dict( type='MultiScaleFlipAug', img_scale=[(1333, 600), (1333, 800), (1333, 1000)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=64), dict(type='Collect', keys=['img', 'refer', 'r_mask']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(filter_empty_gt=True, pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.8)) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(type='EpochBasedRunner', max_epochs=24) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, ) evaluation = dict(save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
wsdm2023/configs/dino_4scale_uniperceiver_adapter_large_24ep_gqa_wsdm2023.py
# Copyright (c) OpenMMLab. All rights reserved. checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)]
ViT-Adapter-main
wsdm2023/configs/_base_/default_runtime.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'WIDERFaceDataset' data_root = 'data/WIDERFace/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict(type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict(type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=60, workers_per_gpu=2, train=dict(type='RepeatDataset', times=2, dataset=dict(type=dataset_type, ann_file=data_root + 'train.txt', img_prefix=data_root + 'WIDER_train/', min_size=17, pipeline=train_pipeline)), val=dict(type=dataset_type, ann_file=data_root + 'val.txt', img_prefix=data_root + 'WIDER_val/', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'val.txt', img_prefix=data_root + 'WIDER_val/', pipeline=test_pipeline))
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/wider_face.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'WSDMCocoDataset' data_root = 'data/wsdm2023/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer', tag='question'), dict(type='RandomParaPhrase', phrase_cache=data_root+'annotations/paraphrase_train.json'), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=128), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer', tag='question'), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=128), dict(type='Collect', keys=['img', 'refer', 'r_mask']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(type=dataset_type, ann_file=data_root + 'annotations/train.json', img_prefix=data_root + 'train', pipeline=train_pipeline), val=dict(type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'train', pipeline=test_pipeline), # test=dict(type=dataset_type, # ann_file=data_root + 'annotations/test_public.json', # img_prefix=data_root + 'test_public', # pipeline=test_pipeline)) test=dict(type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'train', pipeline=test_pipeline)) evaluation = dict(interval=1, metric=['bbox', 'IoU'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/wsdm2023.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(2048, 1024), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=2, train=dict( type='RepeatDataset', times=8, dataset=dict(type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_train.json', img_prefix=data_root + 'leftImg8bit/train/', pipeline=train_pipeline)), val=dict(type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', img_prefix=data_root + 'leftImg8bit/val/', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_test.json', img_prefix=data_root + 'leftImg8bit/test/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/cityscapes_instance.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict(type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/coco_detection.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'WSDMCocoDataset' data_root = 'data/wsdm2023/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer', tag='question'), dict(type='RandomParaPhrase', phrase_cache=data_root+'annotations/paraphrase_train.json'), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=128), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer', tag='question'), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=128), dict(type='Collect', keys=['img', 'refer', 'r_mask']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(type=dataset_type, ann_file=[data_root + 'annotations/train.json', data_root + 'annotations/val.json'], img_prefix=[data_root + 'train', data_root + 'train'], pipeline=train_pipeline), val=dict(type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'train', pipeline=test_pipeline), # test=dict(type=dataset_type, # ann_file=data_root + 'annotations/test_public.json', # img_prefix=data_root + 'test_public', # pipeline=test_pipeline)) test=dict(type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'train', pipeline=test_pipeline)) evaluation = dict(interval=1, metric=['bbox', 'IoU'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/wsdm2023_trainval.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings _base_ = 'coco_instance.py' dataset_type = 'LVISV05Dataset' data_root = 'data/lvis_v0.5/' data = dict(samples_per_gpu=2, workers_per_gpu=2, train=dict(_delete_=True, type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict(type=dataset_type, ann_file=data_root + 'annotations/lvis_v0.5_train.json', img_prefix=data_root + 'train2017/')), val=dict(type=dataset_type, ann_file=data_root + 'annotations/lvis_v0.5_val.json', img_prefix=data_root + 'val2017/'), test=dict(type=dataset_type, ann_file=data_root + 'annotations/lvis_v0.5_val.json', img_prefix=data_root + 'val2017/')) evaluation = dict(metric=['bbox', 'segm'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/lvis_v0.5_instance.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'VGDataset' data_root = 'data/grounding_gqa/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='LoadRefer'), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlipWithRefer', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='TokenizeRefer', max_sent_len=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'refer', 'r_mask', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadRefer'), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlipWithRefer'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='TokenizeRefer', max_sent_len=64), dict(type='Collect', keys=['img', 'refer', 'r_mask']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(type=dataset_type, ann_file=data_root + 'annotations/train.json', img_prefix=data_root + 'images', pipeline=train_pipeline), val=dict(type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'images', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'images', pipeline=test_pipeline)) evaluation = dict(interval=1, metric=['IoU', 'Acc'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/grounding_gqa.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings _base_ = 'coco_instance.py' dataset_type = 'LVISV1Dataset' data_root = 'data/lvis_v1/' data = dict(samples_per_gpu=2, workers_per_gpu=2, train=dict(_delete_=True, type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict(type=dataset_type, ann_file=data_root + 'annotations/lvis_v1_train.json', img_prefix=data_root)), val=dict(type=dataset_type, ann_file=data_root + 'annotations/lvis_v1_val.json', img_prefix=data_root), test=dict(type=dataset_type, ann_file=data_root + 'annotations/lvis_v1_val.json', img_prefix=data_root)) evaluation = dict(metric=['bbox', 'segm'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/lvis_v1_instance.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(2048, 1024), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=2, train=dict( type='RepeatDataset', times=8, dataset=dict(type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_train.json', img_prefix=data_root + 'leftImg8bit/train/', pipeline=train_pipeline)), val=dict(type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', img_prefix=data_root + 'leftImg8bit/val/', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_test.json', img_prefix=data_root + 'leftImg8bit/test/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/cityscapes_detection.py
# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict(type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
ViT-Adapter-main
wsdm2023/configs/_base_/datasets/coco_instance.py