python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import (PLUGIN_LAYERS, Conv2d, ConvModule, caffe2_xavier_init, normal_init, xavier_init) from mmcv.cnn.bricks.transformer import (build_positional_encoding, build_transformer_layer_sequence) from mmcv.runner import BaseModule, ModuleList from ...core.anchor import MlvlPointGenerator from ..utils.transformer import MultiScaleDeformableAttention @PLUGIN_LAYERS.register_module() class MSDeformAttnPixelDecoder(BaseModule): """Pixel decoder with multi-scale deformable attention. Args: in_channels (list[int] | tuple[int]): Number of channels in the input feature maps. strides (list[int] | tuple[int]): Output strides of feature from backbone. feat_channels (int): Number of channels for feature. out_channels (int): Number of channels for output. num_outs (int): Number of output scales. norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization. Defaults to dict(type='GN', num_groups=32). act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation. Defaults to dict(type='ReLU'). encoder (:obj:`mmcv.ConfigDict` | dict): Config for transformer encoder. Defaults to `DetrTransformerEncoder`. positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for transformer encoder position encoding. Defaults to dict(type='SinePositionalEncoding', num_feats=128, normalize=True). init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict. """ def __init__(self, in_channels=[256, 512, 1024, 2048], strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), feedforward_channels=1024, ffn_dropout=0.0, operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None): super().__init__(init_cfg=init_cfg) self.strides = strides self.num_input_levels = len(in_channels) self.num_encoder_levels = \ encoder.transformerlayers.attn_cfgs.num_levels assert self.num_encoder_levels >= 1, \ 'num_levels in attn_cfgs must be at least one' input_conv_list = [] # from top to down (low to high resolution) for i in range(self.num_input_levels - 1, self.num_input_levels - self.num_encoder_levels - 1, -1): input_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=None, bias=True) input_conv_list.append(input_conv) self.input_convs = ModuleList(input_conv_list) self.encoder = build_transformer_layer_sequence(encoder) self.postional_encoding = build_positional_encoding( positional_encoding) # high resolution to low resolution self.level_encoding = nn.Embedding(self.num_encoder_levels, feat_channels) # fpn-like structure self.lateral_convs = ModuleList() self.output_convs = ModuleList() self.use_bias = norm_cfg is None # from top to down (low to high resolution) # fpn for the rest features that didn't pass in encoder for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, -1): lateral_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=None) output_conv = ConvModule( feat_channels, feat_channels, kernel_size=3, stride=1, padding=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=act_cfg) self.lateral_convs.append(lateral_conv) self.output_convs.append(output_conv) self.mask_feature = Conv2d( feat_channels, out_channels, kernel_size=1, stride=1, padding=0) self.num_outs = num_outs self.point_generator = MlvlPointGenerator(strides) def init_weights(self): """Initialize weights.""" for i in range(0, self.num_encoder_levels): xavier_init( self.input_convs[i].conv, gain=1, bias=0, distribution='uniform') for i in range(0, self.num_input_levels - self.num_encoder_levels): caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) caffe2_xavier_init(self.output_convs[i].conv, bias=0) caffe2_xavier_init(self.mask_feature, bias=0) normal_init(self.level_encoding, mean=0, std=1) for p in self.encoder.parameters(): if p.dim() > 1: nn.init.xavier_normal_(p) # init_weights defined in MultiScaleDeformableAttention for layer in self.encoder.layers: for attn in layer.attentions: if isinstance(attn, MultiScaleDeformableAttention): attn.init_weights() def forward(self, feats): """ Args: feats (list[Tensor]): Feature maps of each level. Each has shape of (batch_size, c, h, w). Returns: tuple: A tuple containing the following: - mask_feature (Tensor): shape (batch_size, c, h, w). - multi_scale_features (list[Tensor]): Multi scale \ features, each in shape (batch_size, c, h, w). """ # generate padding mask for each level, for each image batch_size = feats[0].shape[0] encoder_input_list = [] padding_mask_list = [] level_positional_encoding_list = [] spatial_shapes = [] reference_points_list = [] for i in range(self.num_encoder_levels): level_idx = self.num_input_levels - i - 1 feat = feats[level_idx] feat_projected = self.input_convs[i](feat) h, w = feat.shape[-2:] # no padding padding_mask_resized = feat.new_zeros( (batch_size, ) + feat.shape[-2:], dtype=torch.bool) pos_embed = self.postional_encoding(padding_mask_resized) level_embed = self.level_encoding.weight[i] level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed # (h_i * w_i, 2) reference_points = self.point_generator.single_level_grid_priors( feat.shape[-2:], level_idx, device=feat.device) # normalize factor = feat.new_tensor([[w, h]]) * self.strides[level_idx] reference_points = reference_points / factor # shape (batch_size, c, h_i, w_i) -> (h_i * w_i, batch_size, c) feat_projected = feat_projected.flatten(2).permute(2, 0, 1) level_pos_embed = level_pos_embed.flatten(2).permute(2, 0, 1) padding_mask_resized = padding_mask_resized.flatten(1) encoder_input_list.append(feat_projected) padding_mask_list.append(padding_mask_resized) level_positional_encoding_list.append(level_pos_embed) spatial_shapes.append(feat.shape[-2:]) reference_points_list.append(reference_points) # shape (batch_size, total_num_query), # total_num_query=sum([., h_i * w_i,.]) padding_masks = torch.cat(padding_mask_list, dim=1) # shape (total_num_query, batch_size, c) encoder_inputs = torch.cat(encoder_input_list, dim=0) level_positional_encodings = torch.cat( level_positional_encoding_list, dim=0) device = encoder_inputs.device # shape (num_encoder_levels, 2), from low # resolution to high resolution spatial_shapes = torch.as_tensor( spatial_shapes, dtype=torch.long, device=device) # shape (0, h_0*w_0, h_0*w_0+h_1*w_1, ...) level_start_index = torch.cat((spatial_shapes.new_zeros( (1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = torch.cat(reference_points_list, dim=0) reference_points = reference_points[None, :, None].repeat( batch_size, 1, self.num_encoder_levels, 1) valid_radios = reference_points.new_ones( (batch_size, self.num_encoder_levels, 2)) # shape (num_total_query, batch_size, c) memory = self.encoder( query=encoder_inputs, key=None, value=None, query_pos=level_positional_encodings, key_pos=None, attn_masks=None, key_padding_mask=None, query_key_padding_mask=padding_masks, spatial_shapes=spatial_shapes, reference_points=reference_points, level_start_index=level_start_index, valid_radios=valid_radios) # (num_total_query, batch_size, c) -> (batch_size, c, num_total_query) memory = memory.permute(1, 2, 0) # from low resolution to high resolution num_query_per_level = [e[0] * e[1] for e in spatial_shapes] outs = torch.split(memory, num_query_per_level, dim=-1) outs = [ x.reshape(batch_size, -1, spatial_shapes[i][0], spatial_shapes[i][1]) for i, x in enumerate(outs) ] for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, -1): x = feats[i] cur_feat = self.lateral_convs[i](x) y = cur_feat + F.interpolate( outs[-1], size=cur_feat.shape[-2:], mode='bilinear', align_corners=False) y = self.output_convs[i](y) outs.append(y) multi_scale_features = outs[:self.num_outs] mask_feature = self.mask_feature(outs[-1]) return mask_feature, multi_scale_features
ViT-Adapter-main
segmentation/mmseg_custom/models/plugins/msdeformattn_pixel_decoder.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder __all__ = [ 'PixelDecoder', 'TransformerEncoderPixelDecoder', 'MSDeformAttnPixelDecoder' ]
ViT-Adapter-main
segmentation/mmseg_custom/models/plugins/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.ops import point_sample def get_uncertainty(mask_pred, labels): """Estimate uncertainty based on pred logits. We estimate uncertainty as L1 distance between 0.0 and the logits prediction in 'mask_pred' for the foreground class in `classes`. Args: mask_pred (Tensor): mask predication logits, shape (num_rois, num_classes, mask_height, mask_width). labels (list[Tensor]): Either predicted or ground truth label for each predicted mask, of length num_rois. Returns: scores (Tensor): Uncertainty scores with the most uncertain locations having the highest uncertainty score, shape (num_rois, 1, mask_height, mask_width) """ if mask_pred.shape[1] == 1: gt_class_logits = mask_pred.clone() else: inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) gt_class_logits = mask_pred[inds, labels].unsqueeze(1) return -torch.abs(gt_class_logits) def get_uncertain_point_coords_with_randomness(mask_pred, labels, num_points, oversample_ratio, importance_sample_ratio): """Get ``num_points`` most uncertain points with random points during train. Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using 'get_uncertainty()' function that takes point's logit prediction as input. Args: mask_pred (Tensor): A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction. labels (list): The ground truth class for each instance. num_points (int): The number of points to sample. oversample_ratio (int): Oversampling parameter. importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. Returns: point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) that contains the coordinates sampled points. """ assert oversample_ratio >= 1 assert 0 <= importance_sample_ratio <= 1 batch_size = mask_pred.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand( batch_size, num_sampled, 2, device=mask_pred.device) point_logits = point_sample(mask_pred, point_coords) # It is crucial to calculate uncertainty based on the sampled # prediction value for the points. Calculating uncertainties of the # coarse predictions first and sampling them for points leads to # incorrect results. To illustrate this: assume uncertainty func( # logits)=-abs(logits), a sampled point between two coarse # predictions with -1 and 1 logits has 0 logits, and therefore 0 # uncertainty value. However, if we calculate uncertainties for the # coarse predictions first, both will have -1 uncertainty, # and sampled point will get -1 uncertainty. point_uncertainties = get_uncertainty(point_logits, labels) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk( point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange( batch_size, dtype=torch.long, device=mask_pred.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( batch_size, num_uncertain_points, 2) if num_random_points > 0: rand_roi_coords = torch.rand( batch_size, num_random_points, 2, device=mask_pred.device) point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) return point_coords
ViT-Adapter-main
segmentation/mmseg_custom/models/utils/point_sample.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .assigner import MaskHungarianAssigner from .point_sample import get_uncertain_point_coords_with_randomness from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, Transformer) __all__ = [ 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'DynamicConv', 'Transformer', 'LearnedPositionalEncoding', 'SinePositionalEncoding', 'MaskHungarianAssigner', 'get_uncertain_point_coords_with_randomness' ]
ViT-Adapter-main
segmentation/mmseg_custom/models/utils/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import math import warnings from typing import Sequence import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer, build_norm_layer, xavier_init) from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE, FEEDFORWARD_NETWORK) from mmcv.cnn.bricks.drop import build_dropout from mmcv.cnn.bricks.transformer import (BaseTransformerLayer, TransformerLayerSequence, build_transformer_layer_sequence, build_attention, build_feedforward_network) from mmcv.runner.base_module import BaseModule, ModuleList, Sequential from mmcv.utils import to_2tuple, ConfigDict, deprecated_api_warning from torch.nn.init import normal_ from ..builder import TRANSFORMER try: from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention except ImportError: warnings.warn( '`MultiScaleDeformableAttention` in MMCV has been moved to ' '`mmcv.ops.multi_scale_deform_attn`, please update your MMCV') from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention class AdaptivePadding(nn.Module): """Applies padding to input (if needed) so that input can get fully covered by filter you specified. It support two modes "same" and "corner". The "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around input. The "corner" mode would pad zero to bottom right. Args: kernel_size (int | tuple): Size of the kernel: stride (int | tuple): Stride of the filter. Default: 1: dilation (int | tuple): Spacing between kernel elements. Default: 1 padding (str): Support "same" and "corner", "corner" mode would pad zero to bottom right, and "same" mode would pad zero around input. Default: "corner". Example: >>> kernel_size = 16 >>> stride = 16 >>> dilation = 1 >>> input = torch.rand(1, 1, 15, 17) >>> adap_pad = AdaptivePadding( >>> kernel_size=kernel_size, >>> stride=stride, >>> dilation=dilation, >>> padding="corner") >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) >>> input = torch.rand(1, 1, 16, 17) >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) """ def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): super(AdaptivePadding, self).__init__() assert padding in ('same', 'corner') kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) padding = to_2tuple(padding) dilation = to_2tuple(dilation) self.padding = padding self.kernel_size = kernel_size self.stride = stride self.dilation = dilation def get_pad_shape(self, input_shape): input_h, input_w = input_shape kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.stride output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) pad_h = max((output_h - 1) * stride_h + (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) pad_w = max((output_w - 1) * stride_w + (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) return pad_h, pad_w def forward(self, x): pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) if pad_h > 0 or pad_w > 0: if self.padding == 'corner': x = F.pad(x, [0, pad_w, 0, pad_h]) elif self.padding == 'same': x = F.pad(x, [ pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2 ]) return x class PatchMerging(BaseModule): """Merge patch feature map. This layer groups feature map by kernel_size, and applies norm and linear layers to the grouped feature map. Our implementation uses `nn.Unfold` to merge patch, which is about 25% faster than original implementation. Instead, we need to modify pretrained models for compatibility. Args: in_channels (int): The num of input channels. to gets fully covered by filter and stride you specified.. Default: True. out_channels (int): The num of output channels. kernel_size (int | tuple, optional): the kernel size in the unfold layer. Defaults to 2. stride (int | tuple, optional): the stride of the sliding blocks in the unfold layer. Default: None. (Would be set as `kernel_size`) padding (int | tuple | string ): The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support "same" and "corner" now. Default: "corner". dilation (int | tuple, optional): dilation parameter in the unfold layer. Default: 1. bias (bool, optional): Whether to add bias in linear layer or not. Defaults: False. norm_cfg (dict, optional): Config dict for normalization layer. Default: dict(type='LN'). init_cfg (dict, optional): The extra config for initialization. Default: None. """ def __init__(self, in_channels, out_channels, kernel_size=2, stride=None, padding='corner', dilation=1, bias=False, norm_cfg=dict(type='LN'), init_cfg=None): super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.out_channels = out_channels if stride: stride = stride else: stride = kernel_size kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) if isinstance(padding, str): self.adap_padding = AdaptivePadding( kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding) # disable the padding of unfold padding = 0 else: self.adap_padding = None padding = to_2tuple(padding) self.sampler = nn.Unfold( kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride) sample_dim = kernel_size[0] * kernel_size[1] * in_channels if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, sample_dim)[1] else: self.norm = None self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) def forward(self, x, input_size): """ Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W). """ B, L, C = x.shape assert isinstance(input_size, Sequence), f'Expect ' \ f'input_size is ' \ f'`Sequence` ' \ f'but get {input_size}' H, W = input_size assert L == H * W, 'input feature has wrong size' x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W # Use nn.Unfold to merge patch. About 25% faster than original method, # but need to modify pretrained model for compatibility if self.adap_padding: x = self.adap_padding(x) H, W = x.shape[-2:] x = self.sampler(x) # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * (self.sampler.kernel_size[0] - 1) - 1) // self.sampler.stride[0] + 1 out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * (self.sampler.kernel_size[1] - 1) - 1) // self.sampler.stride[1] + 1 output_size = (out_h, out_w) x = x.transpose(1, 2) # B, H/2*W/2, 4*C x = self.norm(x) if self.norm else x x = self.reduction(x) return x, output_size def inverse_sigmoid(x, eps=1e-5): """Inverse function of sigmoid. Args: x (Tensor): The tensor to do the inverse. eps (float): EPS avoid numerical overflow. Defaults 1e-5. Returns: Tensor: The x has passed the inverse function of sigmoid, has same shape with input. """ x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) @FEEDFORWARD_NETWORK.register_module(force=True) class FFN(BaseModule): """Implements feed-forward networks (FFNs) with identity connection. Args: embed_dims (int): The feature dimension. Same as `MultiheadAttention`. Defaults: 256. feedforward_channels (int): The hidden dimension of FFNs. Defaults: 1024. num_fcs (int, optional): The number of fully-connected layers in FFNs. Default: 2. act_cfg (dict, optional): The activation config for FFNs. Default: dict(type='ReLU') ffn_drop (float, optional): Probability of an element to be zeroed in FFN. Default 0.0. add_identity (bool, optional): Whether to add the identity connection. Default: `True`. dropout_layer (obj:`ConfigDict`): The dropout_layer used when adding the shortcut. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ @deprecated_api_warning( { 'dropout': 'ffn_drop', 'add_residual': 'add_identity' }, cls_name='FFN') def __init__(self, embed_dims=256, feedforward_channels=1024, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0., dropout_layer=None, add_identity=True, init_cfg=None, with_cp=False, **kwargs): super().__init__(init_cfg) assert num_fcs >= 2, 'num_fcs should be no less ' \ f'than 2. got {num_fcs}.' self.embed_dims = embed_dims self.feedforward_channels = feedforward_channels self.num_fcs = num_fcs self.act_cfg = act_cfg self.activate = build_activation_layer(act_cfg) self.with_cp = with_cp layers = [] in_channels = embed_dims for _ in range(num_fcs - 1): layers.append( Sequential( Linear(in_channels, feedforward_channels), self.activate, nn.Dropout(ffn_drop))) in_channels = feedforward_channels layers.append(Linear(feedforward_channels, embed_dims)) layers.append(nn.Dropout(ffn_drop)) self.layers = Sequential(*layers) self.dropout_layer = build_dropout( dropout_layer) if dropout_layer else torch.nn.Identity() self.add_identity = add_identity @deprecated_api_warning({'residual': 'identity'}, cls_name='FFN') def forward(self, x, identity=None): """Forward function for `FFN`. The function would add x to the output tensor if residue is None. """ if self.with_cp and x.requires_grad: out = cp.checkpoint(self.layers, x) else: out = self.layers(x) if not self.add_identity: return self.dropout_layer(out) if identity is None: identity = x return identity + self.dropout_layer(out) @TRANSFORMER_LAYER.register_module() class DetrTransformerDecoderLayer(BaseTransformerLayer): """Implements decoder layer in DETR transformer. Args: attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )): Configs for self_attention or cross_attention, the order should be consistent with it in `operation_order`. If it is a dict, it would be expand to the number of attention in `operation_order`. feedforward_channels (int): The hidden dimension for FFNs. ffn_dropout (float): Probability of an element to be zeroed in ffn. Default 0.0. operation_order (tuple[str]): The execution order of operation in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). Default:None act_cfg (dict): The activation config for FFNs. Default: `LN` norm_cfg (dict): Config dict for normalization layer. Default: `LN`. ffn_num_fcs (int): The number of fully-connected layers in FFNs. Default:2. """ def __init__(self, attn_cfgs, feedforward_channels, ffn_dropout=0.0, operation_order=None, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN'), ffn_num_fcs=2, **kwargs): super(DetrTransformerDecoderLayer, self).__init__( attn_cfgs=attn_cfgs, feedforward_channels=feedforward_channels, ffn_dropout=ffn_dropout, operation_order=operation_order, act_cfg=act_cfg, norm_cfg=norm_cfg, ffn_num_fcs=ffn_num_fcs, **kwargs) assert len(operation_order) == 6 assert set(operation_order) == set( ['self_attn', 'norm', 'cross_attn', 'ffn']) @TRANSFORMER_LAYER_SEQUENCE.register_module() class DetrTransformerEncoder(TransformerLayerSequence): """TransformerEncoder of DETR. Args: post_norm_cfg (dict): Config of last normalization layer. Default: `LN`. Only used when `self.pre_norm` is `True` """ def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs): super(DetrTransformerEncoder, self).__init__(*args, **kwargs) if post_norm_cfg is not None: self.post_norm = build_norm_layer( post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None else: assert not self.pre_norm, f'Use prenorm in ' \ f'{self.__class__.__name__},' \ f'Please specify post_norm_cfg' self.post_norm = None def forward(self, *args, **kwargs): """Forward function for `TransformerCoder`. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ x = super(DetrTransformerEncoder, self).forward(*args, **kwargs) if self.post_norm is not None: x = self.post_norm(x) return x @TRANSFORMER_LAYER_SEQUENCE.register_module() class DetrTransformerDecoder(TransformerLayerSequence): """Implements the decoder in DETR transformer. Args: return_intermediate (bool): Whether to return intermediate outputs. post_norm_cfg (dict): Config of last normalization layer. Default: `LN`. """ def __init__(self, *args, post_norm_cfg=dict(type='LN'), return_intermediate=False, **kwargs): super(DetrTransformerDecoder, self).__init__(*args, **kwargs) self.return_intermediate = return_intermediate if post_norm_cfg is not None: self.post_norm = build_norm_layer(post_norm_cfg, self.embed_dims)[1] else: self.post_norm = None def forward(self, query, *args, **kwargs): """Forward function for `TransformerDecoder`. Args: query (Tensor): Input query with shape `(num_query, bs, embed_dims)`. Returns: Tensor: Results with shape [1, num_query, bs, embed_dims] when return_intermediate is `False`, otherwise it has shape [num_layers, num_query, bs, embed_dims]. """ if not self.return_intermediate: x = super().forward(query, *args, **kwargs) if self.post_norm: x = self.post_norm(x)[None] return x intermediate = [] for layer in self.layers: query = layer(query, *args, **kwargs) if self.return_intermediate: if self.post_norm is not None: intermediate.append(self.post_norm(query)) else: intermediate.append(query) return torch.stack(intermediate) @TRANSFORMER.register_module() class Transformer(BaseModule): """Implements the DETR transformer. Following the official DETR implementation, this module copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MultiheadAttention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers See `paper: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_ for details. Args: encoder (`mmcv.ConfigDict` | Dict): Config of TransformerEncoder. Defaults to None. decoder ((`mmcv.ConfigDict` | Dict)): Config of TransformerDecoder. Defaults to None init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Defaults to None. """ def __init__(self, encoder=None, decoder=None, init_cfg=None): super(Transformer, self).__init__(init_cfg=init_cfg) self.encoder = build_transformer_layer_sequence(encoder) self.decoder = build_transformer_layer_sequence(decoder) self.embed_dims = self.encoder.embed_dims def init_weights(self): # follow the official DETR to init parameters for m in self.modules(): if hasattr(m, 'weight') and m.weight.dim() > 1: xavier_init(m, distribution='uniform') self._is_init = True def forward(self, x, mask, query_embed, pos_embed): """Forward function for `Transformer`. Args: x (Tensor): Input query with shape [bs, c, h, w] where c = embed_dims. mask (Tensor): The key_padding_mask used for encoder and decoder, with shape [bs, h, w]. query_embed (Tensor): The query embedding for decoder, with shape [num_query, c]. pos_embed (Tensor): The positional encoding for encoder and decoder, with the same shape as `x`. Returns: tuple[Tensor]: results of decoder containing the following tensor. - out_dec: Output from decoder. If return_intermediate_dec \ is True output has shape [num_dec_layers, bs, num_query, embed_dims], else has shape [1, bs, \ num_query, embed_dims]. - memory: Output results from encoder, with shape \ [bs, embed_dims, h, w]. """ bs, c, h, w = x.shape # use `view` instead of `flatten` for dynamically exporting to ONNX x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c] pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat( 1, bs, 1) # [num_query, dim] -> [num_query, bs, dim] mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w] memory = self.encoder( query=x, key=None, value=None, query_pos=pos_embed, query_key_padding_mask=mask) target = torch.zeros_like(query_embed) # out_dec: [num_layers, num_query, bs, dim] out_dec = self.decoder( query=target, key=memory, value=memory, key_pos=pos_embed, query_pos=query_embed, key_padding_mask=mask) out_dec = out_dec.transpose(1, 2) memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) return out_dec, memory @TRANSFORMER_LAYER_SEQUENCE.register_module() class DeformableDetrTransformerDecoder(TransformerLayerSequence): """Implements the decoder in DETR transformer. Args: return_intermediate (bool): Whether to return intermediate outputs. coder_norm_cfg (dict): Config of last normalization layer. Default: `LN`. """ def __init__(self, *args, return_intermediate=False, **kwargs): super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs) self.return_intermediate = return_intermediate def forward(self, query, *args, reference_points=None, valid_ratios=None, reg_branches=None, **kwargs): """Forward function for `TransformerDecoder`. Args: query (Tensor): Input query with shape `(num_query, bs, embed_dims)`. reference_points (Tensor): The reference points of offset. has shape (bs, num_query, 4) when as_two_stage, otherwise has shape ((bs, num_query, 2). valid_ratios (Tensor): The radios of valid points on the feature map, has shape (bs, num_levels, 2) reg_branch: (obj:`nn.ModuleList`): Used for refining the regression results. Only would be passed when with_box_refine is True, otherwise would be passed a `None`. Returns: Tensor: Results with shape [1, num_query, bs, embed_dims] when return_intermediate is `False`, otherwise it has shape [num_layers, num_query, bs, embed_dims]. """ output = query intermediate = [] intermediate_reference_points = [] for lid, layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = reference_points[:, :, None] * \ torch.cat([valid_ratios, valid_ratios], -1)[:, None] else: assert reference_points.shape[-1] == 2 reference_points_input = reference_points[:, :, None] * \ valid_ratios[:, None] output = layer( output, *args, reference_points=reference_points_input, **kwargs) output = output.permute(1, 0, 2) if reg_branches is not None: tmp = reg_branches[lid](output) if reference_points.shape[-1] == 4: new_reference_points = tmp + inverse_sigmoid( reference_points) new_reference_points = new_reference_points.sigmoid() else: assert reference_points.shape[-1] == 2 new_reference_points = tmp new_reference_points[..., :2] = tmp[ ..., :2] + inverse_sigmoid( reference_points) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach() output = output.permute(1, 0, 2) if self.return_intermediate: intermediate.append(output) intermediate_reference_points.append(reference_points) if self.return_intermediate: return torch.stack(intermediate), torch.stack( intermediate_reference_points) return output, reference_points @TRANSFORMER.register_module() class DeformableDetrTransformer(Transformer): """Implements the DeformableDETR transformer. Args: as_two_stage (bool): Generate query from encoder features. Default: False. num_feature_levels (int): Number of feature maps from FPN: Default: 4. two_stage_num_proposals (int): Number of proposals when set `as_two_stage` as True. Default: 300. """ def __init__(self, as_two_stage=False, num_feature_levels=4, two_stage_num_proposals=300, **kwargs): super(DeformableDetrTransformer, self).__init__(**kwargs) self.as_two_stage = as_two_stage self.num_feature_levels = num_feature_levels self.two_stage_num_proposals = two_stage_num_proposals self.embed_dims = self.encoder.embed_dims self.init_layers() def init_layers(self): """Initialize layers of the DeformableDetrTransformer.""" self.level_embeds = nn.Parameter( torch.Tensor(self.num_feature_levels, self.embed_dims)) if self.as_two_stage: self.enc_output = nn.Linear(self.embed_dims, self.embed_dims) self.enc_output_norm = nn.LayerNorm(self.embed_dims) self.pos_trans = nn.Linear(self.embed_dims * 2, self.embed_dims * 2) self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) else: self.reference_points = nn.Linear(self.embed_dims, 2) def init_weights(self): """Initialize the transformer weights.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MultiScaleDeformableAttention): m.init_weights() if not self.as_two_stage: xavier_init(self.reference_points, distribution='uniform', bias=0.) normal_(self.level_embeds) def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes): """Generate proposals from encoded memory. Args: memory (Tensor) : The output of encoder, has shape (bs, num_key, embed_dim). num_key is equal the number of points on feature map from all level. memory_padding_mask (Tensor): Padding mask for memory. has shape (bs, num_key). spatial_shapes (Tensor): The shape of all feature maps. has shape (num_level, 2). Returns: tuple: A tuple of feature map and bbox prediction. - output_memory (Tensor): The input of decoder, \ has shape (bs, num_key, embed_dim). num_key is \ equal the number of points on feature map from \ all levels. - output_proposals (Tensor): The normalized proposal \ after a inverse sigmoid, has shape \ (bs, num_keys, 4). """ N, S, C = memory.shape proposals = [] _cur = 0 for lvl, (H, W) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view( N, H, W, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = torch.meshgrid( torch.linspace( 0, H - 1, H, dtype=torch.float32, device=memory.device), torch.linspace( 0, W - 1, W, dtype=torch.float32, device=memory.device)) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) proposal = torch.cat((grid, wh), -1).view(N, -1, 4) proposals.append(proposal) _cur += (H * W) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( -1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) output_proposals = output_proposals.masked_fill( memory_padding_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill( ~output_proposals_valid, float('inf')) output_memory = memory output_memory = output_memory.masked_fill( memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) output_memory = self.enc_output_norm(self.enc_output(output_memory)) return output_memory, output_proposals @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): """Get the reference points used in decoder. Args: spatial_shapes (Tensor): The shape of all feature maps, has shape (num_level, 2). valid_ratios (Tensor): The radios of valid points on the feature map, has shape (bs, num_levels, 2) device (obj:`device`): The device where reference_points should be. Returns: Tensor: reference points used in decoder, has \ shape (bs, num_keys, num_levels, 2). """ reference_points_list = [] for lvl, (H, W) in enumerate(spatial_shapes): # TODO check this 0.5 ref_y, ref_x = torch.meshgrid( torch.linspace( 0.5, H - 0.5, H, dtype=torch.float32, device=device), torch.linspace( 0.5, W - 0.5, W, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / ( valid_ratios[:, None, lvl, 1] * H) ref_x = ref_x.reshape(-1)[None] / ( valid_ratios[:, None, lvl, 0] * W) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def get_valid_ratio(self, mask): """Get the valid radios of feature maps of all level.""" _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def get_proposal_pos_embed(self, proposals, num_pos_feats=128, temperature=10000): """Get the position embedding of proposal.""" scale = 2 * math.pi dim_t = torch.arange( num_pos_feats, dtype=torch.float32, device=proposals.device) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) # N, L, 4 proposals = proposals.sigmoid() * scale # N, L, 4, 128 pos = proposals[:, :, :, None] / dim_t # N, L, 4, 64, 2 pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) return pos def forward(self, mlvl_feats, mlvl_masks, query_embed, mlvl_pos_embeds, reg_branches=None, cls_branches=None, **kwargs): """Forward function for `Transformer`. Args: mlvl_feats (list(Tensor)): Input queries from different level. Each element has shape [bs, embed_dims, h, w]. mlvl_masks (list(Tensor)): The key_padding_mask from different level used for encoder and decoder, each element has shape [bs, h, w]. query_embed (Tensor): The query embedding for decoder, with shape [num_query, c]. mlvl_pos_embeds (list(Tensor)): The positional encoding of feats from different level, has the shape [bs, embed_dims, h, w]. reg_branches (obj:`nn.ModuleList`): Regression heads for feature maps from each decoder layer. Only would be passed when `with_box_refine` is True. Default to None. cls_branches (obj:`nn.ModuleList`): Classification heads for feature maps from each decoder layer. Only would be passed when `as_two_stage` is True. Default to None. Returns: tuple[Tensor]: results of decoder containing the following tensor. - inter_states: Outputs from decoder. If return_intermediate_dec is True output has shape \ (num_dec_layers, bs, num_query, embed_dims), else has \ shape (1, bs, num_query, embed_dims). - init_reference_out: The initial value of reference \ points, has shape (bs, num_queries, 4). - inter_references_out: The internal value of reference \ points in decoder, has shape \ (num_dec_layers, bs,num_query, embed_dims) - enc_outputs_class: The classification score of \ proposals generated from \ encoder's feature maps, has shape \ (batch, h*w, num_classes). \ Only would be returned when `as_two_stage` is True, \ otherwise None. - enc_outputs_coord_unact: The regression results \ generated from encoder's feature maps., has shape \ (batch, h*w, 4). Only would \ be returned when `as_two_stage` is True, \ otherwise None. """ assert self.as_two_stage or query_embed is not None feat_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (feat, mask, pos_embed) in enumerate( zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): bs, c, h, w = feat.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) feat = feat.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) feat_flatten.append(feat) mask_flatten.append(mask) feat_flatten = torch.cat(feat_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor( spatial_shapes, dtype=torch.long, device=feat_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack( [self.get_valid_ratio(m) for m in mlvl_masks], 1) reference_points = \ self.get_reference_points(spatial_shapes, valid_ratios, device=feat.device) feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute( 1, 0, 2) # (H*W, bs, embed_dims) memory = self.encoder( query=feat_flatten, key=None, value=None, query_pos=lvl_pos_embed_flatten, query_key_padding_mask=mask_flatten, spatial_shapes=spatial_shapes, reference_points=reference_points, level_start_index=level_start_index, valid_ratios=valid_ratios, **kwargs) memory = memory.permute(1, 0, 2) bs, _, c = memory.shape if self.as_two_stage: output_memory, output_proposals = \ self.gen_encoder_output_proposals( memory, mask_flatten, spatial_shapes) enc_outputs_class = cls_branches[self.decoder.num_layers]( output_memory) enc_outputs_coord_unact = \ reg_branches[ self.decoder.num_layers](output_memory) + output_proposals topk = self.two_stage_num_proposals topk_proposals = torch.topk( enc_outputs_class[..., 0], topk, dim=1)[1] topk_coords_unact = torch.gather( enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) topk_coords_unact = topk_coords_unact.detach() reference_points = topk_coords_unact.sigmoid() init_reference_out = reference_points pos_trans_out = self.pos_trans_norm( self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) query_pos, query = torch.split(pos_trans_out, c, dim=2) else: query_pos, query = torch.split(query_embed, c, dim=1) query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1) query = query.unsqueeze(0).expand(bs, -1, -1) reference_points = self.reference_points(query_pos).sigmoid() init_reference_out = reference_points # decoder query = query.permute(1, 0, 2) memory = memory.permute(1, 0, 2) query_pos = query_pos.permute(1, 0, 2) inter_states, inter_references = self.decoder( query=query, key=None, value=memory, query_pos=query_pos, key_padding_mask=mask_flatten, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, reg_branches=reg_branches, **kwargs) inter_references_out = inter_references if self.as_two_stage: return inter_states, init_reference_out, \ inter_references_out, enc_outputs_class, \ enc_outputs_coord_unact return inter_states, init_reference_out, \ inter_references_out, None, None @TRANSFORMER.register_module() class DynamicConv(BaseModule): """Implements Dynamic Convolution. This module generate parameters for each sample and use bmm to implement 1*1 convolution. Code is modified from the `official github repo <https://github.com/PeizeSun/ SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ . Args: in_channels (int): The input feature channel. Defaults to 256. feat_channels (int): The inner feature channel. Defaults to 64. out_channels (int, optional): The output feature channel. When not specified, it will be set to `in_channels` by default input_feat_shape (int): The shape of input feature. Defaults to 7. with_proj (bool): Project two-dimentional feature to one-dimentional feature. Default to True. act_cfg (dict): The activation config for DynamicConv. norm_cfg (dict): Config dict for normalization layer. Default layer normalization. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ def __init__(self, in_channels=256, feat_channels=64, out_channels=None, input_feat_shape=7, with_proj=True, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN'), init_cfg=None): super(DynamicConv, self).__init__(init_cfg) self.in_channels = in_channels self.feat_channels = feat_channels self.out_channels_raw = out_channels self.input_feat_shape = input_feat_shape self.with_proj = with_proj self.act_cfg = act_cfg self.norm_cfg = norm_cfg self.out_channels = out_channels if out_channels else in_channels self.num_params_in = self.in_channels * self.feat_channels self.num_params_out = self.out_channels * self.feat_channels self.dynamic_layer = nn.Linear( self.in_channels, self.num_params_in + self.num_params_out) self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] self.activation = build_activation_layer(act_cfg) num_output = self.out_channels * input_feat_shape ** 2 if self.with_proj: self.fc_layer = nn.Linear(num_output, self.out_channels) self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] def forward(self, param_feature, input_feature): """Forward function for `DynamicConv`. Args: param_feature (Tensor): The feature can be used to generate the parameter, has shape (num_all_proposals, in_channels). input_feature (Tensor): Feature that interact with parameters, has shape (num_all_proposals, in_channels, H, W). Returns: Tensor: The output feature has shape (num_all_proposals, out_channels). """ input_feature = input_feature.flatten(2).permute(2, 0, 1) input_feature = input_feature.permute(1, 0, 2) parameters = self.dynamic_layer(param_feature) param_in = parameters[:, :self.num_params_in].view( -1, self.in_channels, self.feat_channels) param_out = parameters[:, -self.num_params_out:].view( -1, self.feat_channels, self.out_channels) # input_feature has shape (num_all_proposals, H*W, in_channels) # param_in has shape (num_all_proposals, in_channels, feat_channels) # feature has shape (num_all_proposals, H*W, feat_channels) features = torch.bmm(input_feature, param_in) features = self.norm_in(features) features = self.activation(features) # param_out has shape (batch_size, feat_channels, out_channels) features = torch.bmm(features, param_out) features = self.norm_out(features) features = self.activation(features) if self.with_proj: features = features.flatten(1) features = self.fc_layer(features) features = self.fc_norm(features) features = self.activation(features) return features
ViT-Adapter-main
segmentation/mmseg_custom/models/utils/transformer.py
# Copyright (c) OpenMMLab. All rights reserved. import math import torch import torch.nn as nn from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING from mmcv.runner import BaseModule @POSITIONAL_ENCODING.register_module() class SinePositionalEncoding(BaseModule): """Position encoding with sine and cosine functions. See `End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_ for details. Args: num_feats (int): The feature dimension for each position along x-axis or y-axis. Note the final returned dimension for each position is 2 times of this value. temperature (int, optional): The temperature used for scaling the position embedding. Defaults to 10000. normalize (bool, optional): Whether to normalize the position embedding. Defaults to False. scale (float, optional): A scale factor that scales the position embedding. The scale will be used only when `normalize` is True. Defaults to 2*pi. eps (float, optional): A value added to the denominator for numerical stability. Defaults to 1e-6. offset (float): offset add to embed when do the normalization. Defaults to 0. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, num_feats, temperature=10000, normalize=False, scale=2 * math.pi, eps=1e-6, offset=0., init_cfg=None): super(SinePositionalEncoding, self).__init__(init_cfg) if normalize: assert isinstance(scale, (float, int)), 'when normalize is set,' \ 'scale should be provided and in float or int type, ' \ f'found {type(scale)}' self.num_feats = num_feats self.temperature = temperature self.normalize = normalize self.scale = scale self.eps = eps self.offset = offset def forward(self, mask): """Forward function for `SinePositionalEncoding`. Args: mask (Tensor): ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, h, w]. Returns: pos (Tensor): Returned position embedding with shape [bs, num_feats*2, h, w]. """ # For convenience of exporting to ONNX, it's required to convert # `masks` from bool to int. mask = mask.to(torch.int) not_mask = 1 - mask # logical_not y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: y_embed = (y_embed + self.offset) / \ (y_embed[:, -1:, :] + self.eps) * self.scale x_embed = (x_embed + self.offset) / \ (x_embed[:, :, -1:] + self.eps) * self.scale dim_t = torch.arange( self.num_feats, dtype=torch.float32, device=mask.device) dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t # use `view` instead of `flatten` for dynamically exporting to ONNX B, H, W = mask.size() pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).view(B, H, W, -1) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).view(B, H, W, -1) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(num_feats={self.num_feats}, ' repr_str += f'temperature={self.temperature}, ' repr_str += f'normalize={self.normalize}, ' repr_str += f'scale={self.scale}, ' repr_str += f'eps={self.eps})' return repr_str @POSITIONAL_ENCODING.register_module() class LearnedPositionalEncoding(BaseModule): """Position embedding with learnable embedding weights. Args: num_feats (int): The feature dimension for each position along x-axis or y-axis. The final returned dimension for each position is 2 times of this value. row_num_embed (int, optional): The dictionary size of row embeddings. Default 50. col_num_embed (int, optional): The dictionary size of col embeddings. Default 50. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_feats, row_num_embed=50, col_num_embed=50, init_cfg=dict(type='Uniform', layer='Embedding')): super(LearnedPositionalEncoding, self).__init__(init_cfg) self.row_embed = nn.Embedding(row_num_embed, num_feats) self.col_embed = nn.Embedding(col_num_embed, num_feats) self.num_feats = num_feats self.row_num_embed = row_num_embed self.col_num_embed = col_num_embed def forward(self, mask): """Forward function for `LearnedPositionalEncoding`. Args: mask (Tensor): ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, h, w]. Returns: pos (Tensor): Returned position embedding with shape [bs, num_feats*2, h, w]. """ h, w = mask.shape[-2:] x = torch.arange(w, device=mask.device) y = torch.arange(h, device=mask.device) x_embed = self.col_embed(x) y_embed = self.row_embed(y) pos = torch.cat( (x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat( 1, w, 1)), dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(mask.shape[0], 1, 1, 1) return pos def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(num_feats={self.num_feats}, ' repr_str += f'row_num_embed={self.row_num_embed}, ' repr_str += f'col_num_embed={self.col_num_embed})' return repr_str
ViT-Adapter-main
segmentation/mmseg_custom/models/utils/positional_encoding.py
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch import torch.nn.functional as F from ..builder import MASK_ASSIGNERS, build_match_cost try: from scipy.optimize import linear_sum_assignment except ImportError: linear_sum_assignment = None class AssignResult(metaclass=ABCMeta): """Collection of assign results.""" def __init__(self, num_gts, gt_inds, labels): self.num_gts = num_gts self.gt_inds = gt_inds self.labels = labels @property def info(self): info = { 'num_gts': self.num_gts, 'gt_inds': self.gt_inds, 'labels': self.labels, } return info class BaseAssigner(metaclass=ABCMeta): """Base assigner that assigns boxes to ground truth boxes.""" @abstractmethod def assign(self, masks, gt_masks, gt_masks_ignore=None, gt_labels=None): """Assign boxes to either a ground truth boxes or a negative boxes.""" pass @MASK_ASSIGNERS.register_module() class MaskHungarianAssigner(BaseAssigner): """Computes one-to-one matching between predictions and ground truth for mask. This class computes an assignment between the targets and the predictions based on the costs. The costs are weighted sum of three components: classification cost, regression L1 cost and regression iou cost. The targets don't include the no_object, so generally there are more predictions than targets. After the one-to-one matching, the un-matched are treated as backgrounds. Thus each query prediction will be assigned with `0` or a positive integer indicating the ground truth index: - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: cls_cost (obj:`mmcv.ConfigDict`|dict): Classification cost config. mask_cost (obj:`mmcv.ConfigDict`|dict): Mask cost config. dice_cost (obj:`mmcv.ConfigDict`|dict): Dice cost config. """ def __init__(self, cls_cost=dict(type='ClassificationCost', weight=1.0), dice_cost=dict(type='DiceCost', weight=1.0), mask_cost=dict(type='MaskFocalCost', weight=1.0)): self.cls_cost = build_match_cost(cls_cost) self.dice_cost = build_match_cost(dice_cost) self.mask_cost = build_match_cost(mask_cost) def assign(self, cls_pred, mask_pred, gt_labels, gt_masks, img_meta, gt_masks_ignore=None, eps=1e-7): """Computes one-to-one matching based on the weighted costs. This method assign each query prediction to a ground truth or background. The `assigned_gt_inds` with -1 means don't care, 0 means negative sample, and positive number is the index (1-based) of assigned gt. The assignment is done in the following steps, the order matters. 1. assign every prediction to -1 2. compute the weighted costs 3. do Hungarian matching on CPU based on the costs 4. assign all to 0 (background) first, then for each matched pair between predictions and gts, treat this prediction as foreground and assign the corresponding gt index (plus 1) to it. Args: mask_pred (Tensor): Predicted mask, shape [num_query, h, w] cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_masks (Tensor): Ground truth mask, shape [num_gt, h, w]. gt_labels (Tensor): Label of `gt_masks`, shape (num_gt,). img_meta (dict): Meta information for current image. gt_masks_ignore (Tensor, optional): Ground truth masks that are labelled as `ignored`. Default None. eps (int | float, optional): A value added to the denominator for numerical stability. Default 1e-7. Returns: :obj:`AssignResult`: The assigned result. """ assert gt_masks_ignore is None, \ 'Only case when gt_masks_ignore is None is supported.' num_gts, num_queries = gt_labels.shape[0], cls_pred.shape[0] # 1. assign -1 by default assigned_gt_inds = cls_pred.new_full((num_queries, ), -1, dtype=torch.long) assigned_labels = cls_pred.new_full((num_queries, ), -1, dtype=torch.long) if num_gts == 0 or num_queries == 0: # No ground truth or boxes, return empty assignment if num_gts == 0: # No ground truth, assign all to background assigned_gt_inds[:] = 0 return AssignResult( num_gts, assigned_gt_inds, labels=assigned_labels) # 2. compute the weighted costs # classification and maskcost. if self.cls_cost.weight != 0 and cls_pred is not None: cls_cost = self.cls_cost(cls_pred, gt_labels) else: cls_cost = 0 if self.mask_cost.weight != 0: # mask_pred shape = [nq, h, w] # gt_mask shape = [ng, h, w] # mask_cost shape = [nq, ng] mask_cost = self.mask_cost(mask_pred, gt_masks) else: mask_cost = 0 if self.dice_cost.weight != 0: dice_cost = self.dice_cost(mask_pred, gt_masks) else: dice_cost = 0 cost = cls_cost + mask_cost + dice_cost # 3. do Hungarian matching on CPU using linear_sum_assignment cost = cost.detach().cpu() if linear_sum_assignment is None: raise ImportError('Please run "pip install scipy" ' 'to install scipy first.') matched_row_inds, matched_col_inds = linear_sum_assignment(cost) matched_row_inds = torch.from_numpy(matched_row_inds).to( cls_pred.device) matched_col_inds = torch.from_numpy(matched_col_inds).to( cls_pred.device) # 4. assign backgrounds and foregrounds # assign all indices to backgrounds first assigned_gt_inds[:] = 0 # assign foregrounds based on matching results assigned_gt_inds[matched_row_inds] = matched_col_inds + 1 assigned_labels[matched_row_inds] = gt_labels[matched_col_inds] return AssignResult(num_gts, assigned_gt_inds, labels=assigned_labels)
ViT-Adapter-main
segmentation/mmseg_custom/models/utils/assigner.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from mmcv_custom import load_checkpoint from mmseg.models.builder import BACKBONES from mmseg.utils import get_root_logger from timm.models.layers import drop_path, to_2tuple, trunc_normal_ class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the original BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww @BACKBONES.register_module() class BEiTBaseline(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, with_cp=False, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, out_indices=[3, 5, 7, 11], pretrained=None): super().__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.out_indices = out_indices self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.with_cp = with_cp self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) self.out_indices = out_indices if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) self.apply(self._init_weights) self.init_weights(pretrained) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) def get_num_layers(self): return len(self.blocks) def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None features = [] for i, blk in enumerate(self.blocks): if self.with_cp: x = checkpoint.checkpoint(blk, x, rel_pos_bias) else: x = blk(x, rel_pos_bias) if i in self.out_indices: xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) return tuple(features) def forward(self, x): x = self.forward_features(x) return x
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/beit_baseline.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .beit_adapter import BEiTAdapter from .beit_baseline import BEiTBaseline from .vit_adapter import ViTAdapter from .vit_baseline import ViTBaseline from .uniperceiver_adapter import UniPerceiverAdapter __all__ = ['ViTBaseline', 'ViTAdapter', 'BEiTAdapter', 'BEiTBaseline', 'UniPerceiverAdapter']
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/__init__.py
# Copyright (c) Shanghai AI Lab. All rights reserved. import logging import math import torch import torch.nn as nn import torch.nn.functional as F from mmseg.models.builder import BACKBONES from ops.modules import MSDeformAttn from timm.models.layers import trunc_normal_ from torch.nn.init import normal_ from .base.vit import TIMMVisionTransformer from .adapter_modules import SpatialPriorModule, InteractionBlock, deform_inputs _logger = logging.getLogger(__name__) @BACKBONES.register_module() class ViTAdapter(TIMMVisionTransformer): def __init__(self, pretrain_size=224, num_heads=12, conv_inplane=64, n_points=4, deform_num_heads=6, init_values=0., interaction_indexes=None, with_cffn=True, cffn_ratio=0.25, deform_ratio=1.0, add_vit_feature=True, pretrained=None, use_extra_extractor=True, with_cp=False, *args, **kwargs): super().__init__(num_heads=num_heads, pretrained=pretrained, with_cp=with_cp, *args, **kwargs) # self.num_classes = 80 self.cls_token = None self.num_block = len(self.blocks) self.pretrain_size = (pretrain_size, pretrain_size) self.interaction_indexes = interaction_indexes self.add_vit_feature = add_vit_feature embed_dim = self.embed_dim self.level_embed = nn.Parameter(torch.zeros(3, embed_dim)) self.spm = SpatialPriorModule(inplanes=conv_inplane, embed_dim=embed_dim, with_cp=False) self.interactions = nn.Sequential(*[ InteractionBlock(dim=embed_dim, num_heads=deform_num_heads, n_points=n_points, init_values=init_values, drop_path=self.drop_path_rate, norm_layer=self.norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, extra_extractor=((True if i == len(interaction_indexes) - 1 else False) and use_extra_extractor), with_cp=with_cp) for i in range(len(interaction_indexes)) ]) self.up = nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) self.norm1 = nn.SyncBatchNorm(embed_dim) self.norm2 = nn.SyncBatchNorm(embed_dim) self.norm3 = nn.SyncBatchNorm(embed_dim) self.norm4 = nn.SyncBatchNorm(embed_dim) self.up.apply(self._init_weights) self.spm.apply(self._init_weights) self.interactions.apply(self._init_weights) self.apply(self._init_deform_weights) normal_(self.level_embed) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _get_pos_embed(self, pos_embed, H, W): pos_embed = pos_embed.reshape( 1, self.pretrain_size[0] // 16, self.pretrain_size[1] // 16, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\ reshape(1, -1, H * W).permute(0, 2, 1) return pos_embed def _init_deform_weights(self, m): if isinstance(m, MSDeformAttn): m._reset_parameters() def _add_level_embed(self, c2, c3, c4): c2 = c2 + self.level_embed[0] c3 = c3 + self.level_embed[1] c4 = c4 + self.level_embed[2] return c2, c3, c4 def forward(self, x): deform_inputs1, deform_inputs2 = deform_inputs(x) # SPM forward c1, c2, c3, c4 = self.spm(x) c2, c3, c4 = self._add_level_embed(c2, c3, c4) c = torch.cat([c2, c3, c4], dim=1) # Patch Embedding forward x, H, W = self.patch_embed(x) bs, n, dim = x.shape pos_embed = self._get_pos_embed(self.pos_embed[:, 1:], H, W) x = self.pos_drop(x + pos_embed) # Interaction outs = list() for i, layer in enumerate(self.interactions): indexes = self.interaction_indexes[i] x, c = layer(x, c, self.blocks[indexes[0]:indexes[-1] + 1], deform_inputs1, deform_inputs2, H, W) outs.append(x.transpose(1, 2).view(bs, dim, H, W).contiguous()) # Split & Reshape c2 = c[:, 0:c2.size(1), :] c3 = c[:, c2.size(1):c2.size(1) + c3.size(1), :] c4 = c[:, c2.size(1) + c3.size(1):, :] c2 = c2.transpose(1, 2).view(bs, dim, H * 2, W * 2).contiguous() c3 = c3.transpose(1, 2).view(bs, dim, H, W).contiguous() c4 = c4.transpose(1, 2).view(bs, dim, H // 2, W // 2).contiguous() c1 = self.up(c2) + c1 if self.add_vit_feature: x1, x2, x3, x4 = outs x1 = F.interpolate(x1, scale_factor=4, mode='bilinear', align_corners=False) x2 = F.interpolate(x2, scale_factor=2, mode='bilinear', align_corners=False) x4 = F.interpolate(x4, scale_factor=0.5, mode='bilinear', align_corners=False) c1, c2, c3, c4 = c1 + x1, c2 + x2, c3 + x3, c4 + x4 # Final Norm f1 = self.norm1(c1) f2 = self.norm2(c2) f3 = self.norm3(c3) f4 = self.norm4(c4) return [f1, f2, f3, f4]
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/vit_adapter.py
# Copyright (c) Shanghai AI Lab. All rights reserved. import logging import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from mmseg.models.builder import BACKBONES from ops.modules import MSDeformAttn from timm.models.layers import DropPath, trunc_normal_ from torch.nn.init import normal_ from .base.beit import BEiT from .adapter_modules import SpatialPriorModule, deform_inputs from .adapter_modules import InteractionBlockWithCls as InteractionBlock _logger = logging.getLogger(__name__) @BACKBONES.register_module() class BEiTAdapter(BEiT): def __init__(self, pretrain_size=224, conv_inplane=64, n_points=4, deform_num_heads=6, init_values=0., cffn_ratio=0.25, deform_ratio=1.0, with_cffn=True, interaction_indexes=None, add_vit_feature=True, with_cp=False, *args, **kwargs): super().__init__(init_values=init_values, with_cp=with_cp, *args, **kwargs) # self.num_classes = 80 # self.cls_token = None self.num_block = len(self.blocks) self.pretrain_size = (pretrain_size, pretrain_size) self.flags = [i for i in range(-1, self.num_block, self.num_block // 4)][1:] self.interaction_indexes = interaction_indexes self.add_vit_feature = add_vit_feature embed_dim = self.embed_dim self.level_embed = nn.Parameter(torch.zeros(3, embed_dim)) self.spm = SpatialPriorModule(inplanes=conv_inplane, embed_dim=embed_dim, with_cp=False) self.interactions = nn.Sequential(*[ InteractionBlock(dim=embed_dim, num_heads=deform_num_heads, n_points=n_points, init_values=init_values, drop_path=self.drop_path_rate, norm_layer=self.norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, extra_extractor=True if i == len(interaction_indexes) - 1 else False, with_cp=with_cp) for i in range(len(interaction_indexes)) ]) self.up = nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) self.norm1 = nn.SyncBatchNorm(embed_dim) self.norm2 = nn.SyncBatchNorm(embed_dim) self.norm3 = nn.SyncBatchNorm(embed_dim) self.norm4 = nn.SyncBatchNorm(embed_dim) self.up.apply(self._init_weights) self.spm.apply(self._init_weights) self.interactions.apply(self._init_weights) self.apply(self._init_deform_weights) normal_(self.level_embed) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _get_pos_embed(self, pos_embed, H, W): pos_embed = pos_embed.reshape( 1, self.pretrain_size[0] // 16, self.pretrain_size[1] // 16, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\ reshape(1, -1, H * W).permute(0, 2, 1) return pos_embed def _init_deform_weights(self, m): if isinstance(m, MSDeformAttn): m._reset_parameters() def _add_level_embed(self, c2, c3, c4): c2 = c2 + self.level_embed[0] c3 = c3 + self.level_embed[1] c4 = c4 + self.level_embed[2] return c2, c3, c4 def forward(self, x): deform_inputs1, deform_inputs2 = deform_inputs(x) # SPM forward c1, c2, c3, c4 = self.spm(x) c2, c3, c4 = self._add_level_embed(c2, c3, c4) c = torch.cat([c2, c3, c4], dim=1) # Patch Embedding forward x, H, W = self.patch_embed(x) bs, n, dim = x.shape cls = self.cls_token.expand(bs, -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.pos_embed is not None: pos_embed = self._get_pos_embed(self.pos_embed, H, W) x = x + pos_embed x = self.pos_drop(x) # Interaction outs = list() for i, layer in enumerate(self.interactions): indexes = self.interaction_indexes[i] x, c, cls = layer(x, c, cls, self.blocks[indexes[0]:indexes[-1] + 1], deform_inputs1, deform_inputs2, H, W) outs.append(x.transpose(1, 2).view(bs, dim, H, W).contiguous()) # Split & Reshape c2 = c[:, 0:c2.size(1), :] c3 = c[:, c2.size(1):c2.size(1) + c3.size(1), :] c4 = c[:, c2.size(1) + c3.size(1):, :] c2 = c2.transpose(1, 2).view(bs, dim, H * 2, W * 2).contiguous() c3 = c3.transpose(1, 2).view(bs, dim, H, W).contiguous() c4 = c4.transpose(1, 2).view(bs, dim, H // 2, W // 2).contiguous() c1 = self.up(c2) + c1 if self.add_vit_feature: x1, x2, x3, x4 = outs x1 = F.interpolate(x1, scale_factor=4, mode='bilinear', align_corners=False) x2 = F.interpolate(x2, scale_factor=2, mode='bilinear', align_corners=False) x4 = F.interpolate(x4, scale_factor=0.5, mode='bilinear', align_corners=False) c1, c2, c3, c4 = c1 + x1, c2 + x2, c3 + x3, c4 + x4 # Final Norm f1 = self.norm1(c1) f2 = self.norm2(c2) f3 = self.norm3(c3) f4 = self.norm4(c4) return [f1, f2, f3, f4]
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/beit_adapter.py
# Copyright (c) Shanghai AI Lab. All rights reserved. import logging import math import torch import torch.nn as nn import torch.nn.functional as F from mmseg.models.builder import BACKBONES from ops.modules import MSDeformAttn from timm.models.layers import DropPath, trunc_normal_ from torch.nn.init import normal_ from .base.uniperceiver import UnifiedBertEncoder from .adapter_modules import SpatialPriorModule, InteractionBlock, deform_inputs _logger = logging.getLogger(__name__) @BACKBONES.register_module() class UniPerceiverAdapter(UnifiedBertEncoder): def __init__(self, pretrain_size=224, num_heads=12, conv_inplane=64, n_points=4, deform_num_heads=6, init_values=0., with_cffn=True, cffn_ratio=0.25, deform_ratio=1.0, add_vit_feature=True, interaction_indexes=None, *args, **kwargs): super().__init__(num_heads=num_heads, *args, **kwargs) # self.num_classes = 80 self.cls_token = None self.num_block = len(self.layers) self.pretrain_size = (pretrain_size, pretrain_size) self.interaction_indexes = interaction_indexes self.add_vit_feature = add_vit_feature embed_dim = self.embed_dim self.level_embed = nn.Parameter(torch.zeros(3, embed_dim)) self.spm = SpatialPriorModule(inplanes=conv_inplane, embed_dim=embed_dim) self.interactions = nn.Sequential(*[ InteractionBlock(dim=embed_dim, num_heads=deform_num_heads, n_points=n_points, init_values=init_values, drop_path=self.drop_path_rate, norm_layer=self.norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, extra_extractor=True if i == len(interaction_indexes) - 1 else False) for i in range(len(interaction_indexes)) ]) self.up = nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) self.norm1 = nn.SyncBatchNorm(embed_dim) self.norm2 = nn.SyncBatchNorm(embed_dim) self.norm3 = nn.SyncBatchNorm(embed_dim) self.norm4 = nn.SyncBatchNorm(embed_dim) self.up.apply(self._init_weights) self.spm.apply(self._init_weights) self.interactions.apply(self._init_weights) self.apply(self._init_deform_weights) normal_(self.level_embed) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _init_deform_weights(self, m): if isinstance(m, MSDeformAttn): m._reset_parameters() def _add_level_embed(self, c2, c3, c4): c2 = c2 + self.level_embed[0] c3 = c3 + self.level_embed[1] c4 = c4 + self.level_embed[2] return c2, c3, c4 def forward(self, x): deform_inputs1, deform_inputs2 = deform_inputs(x) # SPM forward c1, c2, c3, c4 = self.spm(x) c2, c3, c4 = self._add_level_embed(c2, c3, c4) c = torch.cat([c2, c3, c4], dim=1) # Patch Embedding forward x, H, W = self.visual_embed(x) bs, n, dim = x.shape # Interaction outs = list() for i, layer in enumerate(self.interactions): indexes = self.interaction_indexes[i] x, c = layer(x, c, self.layers[indexes[0]:indexes[-1] + 1], deform_inputs1, deform_inputs2, H, W) outs.append(x.transpose(1, 2).view(bs, dim, H, W).contiguous()) # Split & Reshape c2 = c[:, 0:c2.size(1), :] c3 = c[:, c2.size(1):c2.size(1) + c3.size(1), :] c4 = c[:, c2.size(1) + c3.size(1):, :] c2 = c2.transpose(1, 2).view(bs, dim, H * 2, W * 2).contiguous() c3 = c3.transpose(1, 2).view(bs, dim, H, W).contiguous() c4 = c4.transpose(1, 2).view(bs, dim, H // 2, W // 2).contiguous() c1 = self.up(c2) + c1 if self.add_vit_feature: x1, x2, x3, x4 = outs x1 = F.interpolate(x1, scale_factor=4, mode='bilinear', align_corners=False) x2 = F.interpolate(x2, scale_factor=2, mode='bilinear', align_corners=False) x4 = F.interpolate(x4, scale_factor=0.5, mode='bilinear', align_corners=False) c1, c2, c3, c4 = c1 + x1, c2 + x2, c3 + x3, c4 + x4 # Final Norm f1 = self.norm1(c1) f2 = self.norm2(c2) f3 = self.norm3(c3) f4 = self.norm4(c4) return [f1, f2, f3, f4]
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/uniperceiver_adapter.py
import logging from functools import partial import torch import torch.nn as nn import torch.utils.checkpoint as cp from ops.modules import MSDeformAttn from timm.models.layers import DropPath _logger = logging.getLogger(__name__) def get_reference_points(spatial_shapes, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / H_ ref_x = ref_x.reshape(-1)[None] / W_ ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] return reference_points def deform_inputs(x): bs, c, h, w = x.shape spatial_shapes = torch.as_tensor([(h // 8, w // 8), (h // 16, w // 16), (h // 32, w // 32)], dtype=torch.long, device=x.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = get_reference_points([(h // 16, w // 16)], x.device) deform_inputs1 = [reference_points, spatial_shapes, level_start_index] spatial_shapes = torch.as_tensor([(h // 16, w // 16)], dtype=torch.long, device=x.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = get_reference_points([(h // 8, w // 8), (h // 16, w // 16), (h // 32, w // 32)], x.device) deform_inputs2 = [reference_points, spatial_shapes, level_start_index] return deform_inputs1, deform_inputs2 class ConvFFN(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x, H, W): x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class DWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape n = N // 21 x1 = x[:, 0:16 * n, :].transpose(1, 2).view(B, C, H * 2, W * 2).contiguous() x2 = x[:, 16 * n:20 * n, :].transpose(1, 2).view(B, C, H, W).contiguous() x3 = x[:, 20 * n:, :].transpose(1, 2).view(B, C, H // 2, W // 2).contiguous() x1 = self.dwconv(x1).flatten(2).transpose(1, 2) x2 = self.dwconv(x2).flatten(2).transpose(1, 2) x3 = self.dwconv(x3).flatten(2).transpose(1, 2) x = torch.cat([x1, x2, x3], dim=1) return x class Extractor(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, n_levels=1, deform_ratio=1.0, with_cffn=True, cffn_ratio=0.25, drop=0., drop_path=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), with_cp=False): super().__init__() self.query_norm = norm_layer(dim) self.feat_norm = norm_layer(dim) self.attn = MSDeformAttn(d_model=dim, n_levels=n_levels, n_heads=num_heads, n_points=n_points, ratio=deform_ratio) self.with_cffn = with_cffn self.with_cp = with_cp if with_cffn: self.ffn = ConvFFN(in_features=dim, hidden_features=int(dim * cffn_ratio), drop=drop) self.ffn_norm = norm_layer(dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, query, reference_points, feat, spatial_shapes, level_start_index, H, W): def _inner_forward(query, feat): attn = self.attn(self.query_norm(query), reference_points, self.feat_norm(feat), spatial_shapes, level_start_index, None) query = query + attn if self.with_cffn: query = query + self.drop_path(self.ffn(self.ffn_norm(query), H, W)) return query if self.with_cp and query.requires_grad: query = cp.checkpoint(_inner_forward, query, feat) else: query = _inner_forward(query, feat) return query class Injector(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, n_levels=1, deform_ratio=1.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0., with_cp=False): super().__init__() self.with_cp = with_cp self.query_norm = norm_layer(dim) self.feat_norm = norm_layer(dim) self.attn = MSDeformAttn(d_model=dim, n_levels=n_levels, n_heads=num_heads, n_points=n_points, ratio=deform_ratio) self.gamma = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) def forward(self, query, reference_points, feat, spatial_shapes, level_start_index): def _inner_forward(query, feat): attn = self.attn(self.query_norm(query), reference_points, self.feat_norm(feat), spatial_shapes, level_start_index, None) return query + self.gamma * attn if self.with_cp and query.requires_grad: query = cp.checkpoint(_inner_forward, query, feat) else: query = _inner_forward(query, feat) return query class InteractionBlock(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., drop_path=0., with_cffn=True, cffn_ratio=0.25, init_values=0., deform_ratio=1.0, extra_extractor=False, with_cp=False): super().__init__() self.injector = Injector(dim=dim, n_levels=3, num_heads=num_heads, init_values=init_values, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cp=with_cp) self.extractor = Extractor(dim=dim, n_levels=1, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cffn=with_cffn, cffn_ratio=cffn_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp) if extra_extractor: self.extra_extractors = nn.Sequential(*[ Extractor(dim=dim, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp) for _ in range(2) ]) else: self.extra_extractors = None def forward(self, x, c, blocks, deform_inputs1, deform_inputs2, H, W): x = self.injector(query=x, reference_points=deform_inputs1[0], feat=c, spatial_shapes=deform_inputs1[1], level_start_index=deform_inputs1[2]) for idx, blk in enumerate(blocks): x = blk(x, H, W) c = self.extractor(query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H, W=W) if self.extra_extractors is not None: for extractor in self.extra_extractors: c = extractor(query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H, W=W) return x, c class InteractionBlockWithCls(nn.Module): def __init__(self, dim, num_heads=6, n_points=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., drop_path=0., with_cffn=True, cffn_ratio=0.25, init_values=0., deform_ratio=1.0, extra_extractor=False, with_cp=False): super().__init__() self.injector = Injector(dim=dim, n_levels=3, num_heads=num_heads, init_values=init_values, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cp=with_cp) self.extractor = Extractor(dim=dim, n_levels=1, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, deform_ratio=deform_ratio, with_cffn=with_cffn, cffn_ratio=cffn_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp) if extra_extractor: self.extra_extractors = nn.Sequential(*[ Extractor(dim=dim, num_heads=num_heads, n_points=n_points, norm_layer=norm_layer, with_cffn=with_cffn, cffn_ratio=cffn_ratio, deform_ratio=deform_ratio, drop=drop, drop_path=drop_path, with_cp=with_cp) for _ in range(2) ]) else: self.extra_extractors = None def forward(self, x, c, cls, blocks, deform_inputs1, deform_inputs2, H, W): x = self.injector(query=x, reference_points=deform_inputs1[0], feat=c, spatial_shapes=deform_inputs1[1], level_start_index=deform_inputs1[2]) x = torch.cat((cls, x), dim=1) for idx, blk in enumerate(blocks): x = blk(x, H, W) cls, x = x[:, :1, ], x[:, 1:, ] c = self.extractor(query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H, W=W) if self.extra_extractors is not None: for extractor in self.extra_extractors: c = extractor(query=c, reference_points=deform_inputs2[0], feat=x, spatial_shapes=deform_inputs2[1], level_start_index=deform_inputs2[2], H=H, W=W) return x, c, cls class SpatialPriorModule(nn.Module): def __init__(self, inplanes=64, embed_dim=384, with_cp=False): super().__init__() self.with_cp = with_cp self.stem = nn.Sequential(*[ nn.Conv2d(3, inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.SyncBatchNorm(inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ]) self.conv2 = nn.Sequential(*[ nn.Conv2d(inplanes, 2 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(2 * inplanes), nn.ReLU(inplace=True) ]) self.conv3 = nn.Sequential(*[ nn.Conv2d(2 * inplanes, 4 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(4 * inplanes), nn.ReLU(inplace=True) ]) self.conv4 = nn.Sequential(*[ nn.Conv2d(4 * inplanes, 4 * inplanes, kernel_size=3, stride=2, padding=1, bias=False), nn.SyncBatchNorm(4 * inplanes), nn.ReLU(inplace=True) ]) self.fc1 = nn.Conv2d(inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc2 = nn.Conv2d(2 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc3 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) self.fc4 = nn.Conv2d(4 * inplanes, embed_dim, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, x): def _inner_forward(x): c1 = self.stem(x) c2 = self.conv2(c1) c3 = self.conv3(c2) c4 = self.conv4(c3) c1 = self.fc1(c1) c2 = self.fc2(c2) c3 = self.fc3(c3) c4 = self.fc4(c4) bs, dim, _, _ = c1.shape # c1 = c1.view(bs, dim, -1).transpose(1, 2) # 4s c2 = c2.view(bs, dim, -1).transpose(1, 2) # 8s c3 = c3.view(bs, dim, -1).transpose(1, 2) # 16s c4 = c4.view(bs, dim, -1).transpose(1, 2) # 32s return c1, c2, c3, c4 if self.with_cp and x.requires_grad: outs = cp.checkpoint(_inner_forward, x) else: outs = _inner_forward(x) return outs
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/adapter_modules.py
# Copyright (c) Shanghai AI Lab. All rights reserved. import logging import math import torch.nn as nn import torch.nn.functional as F from mmcv.runner import load_checkpoint from mmseg.models.builder import BACKBONES from mmseg.utils import get_root_logger from timm.models.layers import trunc_normal_ from .base.vit import TIMMVisionTransformer _logger = logging.getLogger(__name__) @BACKBONES.register_module() class ViTBaseline(TIMMVisionTransformer): def __init__(self, pretrain_size=224, *args, **kwargs): super().__init__(*args, **kwargs) # self.num_classes = 80 self.cls_token = None self.num_block = len(self.blocks) self.pretrain_size = (pretrain_size, pretrain_size) self.flags = [i for i in range(-1, self.num_block, self.num_block // 4)][1:] embed_dim = self.embed_dim self.norm1 = self.norm_layer(embed_dim) self.norm2 = self.norm_layer(embed_dim) self.norm3 = self.norm_layer(embed_dim) self.norm4 = self.norm_layer(embed_dim) self.up1 = nn.Sequential(*[ nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2), nn.GroupNorm(32, embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) ]) self.up2 = nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2) self.up3 = nn.Identity() self.up4 = nn.MaxPool2d(kernel_size=2, stride=2) self.up1.apply(self._init_weights) self.up2.apply(self._init_weights) self.up3.apply(self._init_weights) self.up4.apply(self._init_weights) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def _get_pos_embed(self, pos_embed, H, W): pos_embed = pos_embed.reshape( 1, self.pretrain_size[0] // 16, self.pretrain_size[1] // 16, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\ reshape(1, -1, H * W).permute(0, 2, 1) return pos_embed def forward_features(self, x): outs = [] x, H, W = self.patch_embed(x) pos_embed = self._get_pos_embed(self.pos_embed[:, 1:], H, W) x = self.pos_drop(x + pos_embed) for index, blk in enumerate(self.blocks): x = blk(x, H, W) if index in self.flags: outs.append(x) return outs, H, W def forward(self, x): outs, H, W = self.forward_features(x) f1, f2, f3, f4 = outs bs, n, dim = f1.shape f1 = self.norm1(f1).transpose(1, 2).reshape(bs, dim, H, W) f2 = self.norm2(f2).transpose(1, 2).reshape(bs, dim, H, W) f3 = self.norm3(f3).transpose(1, 2).reshape(bs, dim, H, W) f4 = self.norm4(f4).transpose(1, 2).reshape(bs, dim, H, W) f1 = self.up1(f1).contiguous() f2 = self.up2(f2).contiguous() f3 = self.up3(f3).contiguous() f4 = self.up4(f4).contiguous() return [f1, f2, f3, f4]
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/vit_baseline.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv_custom import load_checkpoint from mmseg.models.builder import BACKBONES from mmseg.utils import get_root_logger from timm.models.layers import drop_path, to_2tuple, trunc_normal_ class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the original BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww # relative_position_bias = relative_position_bias[:, 1:, 1:] attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None, with_cp=False): super().__init__() self.with_cp = with_cp self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, H, W, rel_pos_bias=None): def _inner_forward(x): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x if self.with_cp and x.requires_grad: x = cp.checkpoint(_inner_forward, x) else: x = _inner_forward(x) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, Hp, Wp class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww @BACKBONES.register_module() class BEiT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=512, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, use_checkpoint=False, use_abs_pos_emb=False, use_rel_pos_bias=True, use_shared_rel_pos_bias=False, pretrained=None, with_cp=False): super().__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.norm_layer = norm_layer self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.drop_path_rate = drop_path_rate if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.use_checkpoint = use_checkpoint self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, with_cp=with_cp, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) # if self.pos_embed is not None: # trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.init_weights(pretrained) # self.fix_init_weight() def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ # pretrained = 'pretrained/beit_large_patch16_512_pt22k_ft22kto1k.pth' if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks)
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/base/beit.py
import logging import math import torch import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.runner import load_checkpoint from mmseg.utils import get_root_logger from timm.models.layers import DropPath from torch import nn def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.in_proj = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.out_proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, H, W): B, N, C = x.shape qkv = self.in_proj(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.out_proj(x) x = self.proj_drop(x) return x class WindowedAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., window_size=14): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.in_proj = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.out_proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.window_size = window_size def forward(self, x, H, W): B, N, C = x.shape N_ = self.window_size * self.window_size H_ = math.ceil(H / self.window_size) * self.window_size W_ = math.ceil(W / self.window_size) * self.window_size x = x.view(B, H, W, C) x = F.pad(x, [0, 0, 0, W_ - W, 0, H_ - H]) x = window_partition(x, window_size=self.window_size) # nW*B, window_size, window_size, C x = x.view(-1, N_, C) qkv = self.in_proj(x).view(-1, N_, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] x = (attn @ v).transpose(1, 2).reshape(-1, self.window_size, self.window_size, C) x = window_reverse(x, self.window_size, H_, W_) x = x[:, :H, :W, :].reshape(B, N, C).contiguous() x = self.out_proj(x) x = self.proj_drop(x) return x class BertLayer(nn.Module): def __init__(self, hidden_size=768, intermediate_size=3072, num_attention_heads=12, drop_path_ratio=0.1, windowed=False, window_size=14, with_cp=False): super(BertLayer, self).__init__() self.with_cp = with_cp if windowed: self.self_attn = WindowedAttention(hidden_size, num_attention_heads, qkv_bias=True, attn_drop=0., proj_drop=0., window_size=window_size) else: self.self_attn = Attention(hidden_size, num_attention_heads, qkv_bias=True, attn_drop=0., proj_drop=0.) # self.intermediate = BertIntermediate(hidden_size, intermediate_size) self.linear1 = nn.Linear(hidden_size, intermediate_size) self.act_fn = nn.GELU() self.linear2 = nn.Linear(intermediate_size, hidden_size) self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity() self.norm1 = nn.LayerNorm(hidden_size) self.norm2 = nn.LayerNorm(hidden_size) self.gamma_1 = nn.Parameter(torch.zeros((hidden_size)), requires_grad=True) self.gamma_2 = nn.Parameter(torch.zeros((hidden_size)), requires_grad=True) def ffn_forward(self, x): x = self.linear1(x) x = self.act_fn(x) x = self.linear2(x) return x def forward(self, x, H, W): def _inner_forward(x): x = x + self.gamma_1 * self.drop_path(self.self_attn(self.norm1(x), H, W)) x = x + self.gamma_2 * self.drop_path(self.ffn_forward(self.norm2(x))) return x if self.with_cp and x.requires_grad: x = cp.checkpoint(_inner_forward, x) else: x = _inner_forward(x) return x class VisualPatchEmbedding(nn.Module): def __init__(self, in_dim=3, out_dim=768, patch_size=16, image_size=224, dropout=0.): super(VisualPatchEmbedding, self).__init__() self.embeddings_act = None self.embeddings_norm = nn.LayerNorm(out_dim) # self.embeddings_type = nn.Embedding(1, 768) self.embeddings_dropout = nn.Dropout(dropout) self.patch_embed = PatchEmbed( img_size=(image_size, image_size), patch_size=(patch_size, patch_size), in_chans=in_dim, embed_dim=out_dim, ) def forward(self, x): embeddings, H, W = self.patch_embed(x) # data_type = torch.zeros(1).long().cuda() # embeddings_type = self.embeddings_type(data_type).unsqueeze(1) # embeddings = embeddings + embeddings_type # embeddings = embeddings + self.embeddings_type.weight[0].unsqueeze(0).unsqueeze(1).to(embeddings.dtype) if self.embeddings_act is not None: embeddings = self.embeddings_act(embeddings) if self.embeddings_norm is not None: embeddings = self.embeddings_norm(embeddings) if self.embeddings_dropout is not None: embeddings = self.embeddings_dropout(embeddings) return embeddings, H, W class PatchEmbed(torch.nn.Module): """Image to Patch Embedding.""" def __init__(self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.pretrain_size = img_size self.spatial_pos_embed = nn.Embedding(num_patches, embed_dim) self.temporal_pos_embed = nn.Embedding(8, embed_dim) self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def _get_pos_embed(self, pos_embed, H, W): pos_embed = pos_embed.reshape( 1, self.pretrain_size[0] // 16, self.pretrain_size[1] // 16, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \ reshape(1, -1, H * W).permute(0, 2, 1) return pos_embed def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) # B, N, C temp_len = 1 pos_embed = self._get_pos_embed(self.spatial_pos_embed.weight.unsqueeze(0), H // 16, W // 16) temporal_pos_ids = torch.arange(temp_len, dtype=torch.long, device=x.device) temporal_pos_embed = self.temporal_pos_embed(temporal_pos_ids).unsqueeze(0) x = x + pos_embed + temporal_pos_embed return x, H // 16, W // 16 class UnifiedBertEncoder(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., drop_path_rate=0., norm_layer=nn.LayerNorm, embed_layer=VisualPatchEmbedding, window_attn=False, window_size=14, with_cp=False, pretrained=None): super(UnifiedBertEncoder, self).__init__() self.embed_dim = embed_dim self.drop_path_rate = drop_path_rate self.norm_layer = norm_layer window_attn = [window_attn] * depth if not isinstance(window_attn, list) else window_attn window_size = [window_size] * depth if not isinstance(window_size, list) else window_size logging.info('window attention:', window_attn) logging.info('window size:', window_size) layers = [] dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule for i in range(depth): layers.append( BertLayer(hidden_size=embed_dim, intermediate_size=int(embed_dim * mlp_ratio), num_attention_heads=num_heads, drop_path_ratio=dpr[i], windowed=window_attn[i], window_size=window_size[i], with_cp=with_cp) ) self.layers = nn.ModuleList(layers) self.visual_embed = embed_layer(in_dim=in_chans, out_dim=embed_dim, patch_size=patch_size, image_size=img_size) self.init_weights(pretrained) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) def forward(self, x): x, H, W = self.visual_embed(x) for layer in self.layers: x = layer(x, H, W) return x
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/base/uniperceiver.py
"""Vision Transformer (ViT) in PyTorch. A PyTorch implement of Vision Transformers as described in: 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` - https://arxiv.org/abs/2106.10270 The official jax code is released and available at https://github.com/google-research/vision_transformer DeiT model defs and weights from https://github.com/facebookresearch/deit, paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2021 Ross Wightman """ import logging import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.runner import BaseModule from mmcv_custom import my_load_checkpoint as load_checkpoint from mmseg.utils import get_root_logger from timm.models.layers import DropPath, Mlp, to_2tuple class PatchEmbed(nn.Module): """2D Image to Patch Embedding.""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): x = self.proj(x) _, _, H, W = x.shape if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x, H, W class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, H, W): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowedAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., window_size=14, pad_mode="constant"): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.window_size = window_size self.pad_mode = pad_mode def forward(self, x, H, W): B, N, C = x.shape N_ = self.window_size * self.window_size H_ = math.ceil(H / self.window_size) * self.window_size W_ = math.ceil(W / self.window_size) * self.window_size qkv = self.qkv(x) # [B, N, C] qkv = qkv.transpose(1, 2).reshape(B, C * 3, H, W) # [B, C, H, W] qkv = F.pad(qkv, [0, W_ - W, 0, H_ - H], mode=self.pad_mode) qkv = F.unfold(qkv, kernel_size=(self.window_size, self.window_size), stride=(self.window_size, self.window_size)) B, C_kw_kw, L = qkv.shape # L - the num of windows qkv = qkv.reshape(B, C * 3, N_, L).permute(0, 3, 2, 1) # [B, L, N_, C] qkv = qkv.reshape(B, L, N_, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # q,k,v [B, L, num_head, N_, C/num_head] attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] # if self.mask: # attn = attn * mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] # attn @ v = [B, L, num_head, N_, C/num_head] x = (attn @ v).permute(0, 2, 4, 3, 1).reshape(B, C_kw_kw // 3, L) x = F.fold(x, output_size=(H_, W_), kernel_size=(self.window_size, self.window_size), stride=(self.window_size, self.window_size)) # [B, C, H_, W_] x = x[:, :, :H, :W].reshape(B, C, N).transpose(-1, -2) x = self.proj(x) x = self.proj_drop(x) return x # class WindowedAttention(nn.Module): # def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., window_size=14, pad_mode="constant"): # super().__init__() # self.num_heads = num_heads # head_dim = dim // num_heads # self.scale = head_dim ** -0.5 # # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(dim, dim) # self.proj_drop = nn.Dropout(proj_drop) # self.window_size = window_size # self.pad_mode = pad_mode # # def forward(self, x, H, W): # B, N, C = x.shape # # N_ = self.window_size * self.window_size # H_ = math.ceil(H / self.window_size) * self.window_size # W_ = math.ceil(W / self.window_size) * self.window_size # x = x.view(B, H, W, C) # x = F.pad(x, [0, 0, 0, W_ - W, 0, H_- H], mode=self.pad_mode) # # x = window_partition(x, window_size=self.window_size)# nW*B, window_size, window_size, C # x = x.view(-1, N_, C) # # qkv = self.qkv(x).view(-1, N_, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] # attn = attn.softmax(dim=-1) # attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] # x = (attn @ v).transpose(1, 2).reshape(-1, self.window_size, self.window_size, C) # # x = window_reverse(x, self.window_size, H_, W_) # x = x[:, :H, :W, :].reshape(B, N, C).contiguous() # x = self.proj(x) # x = self.proj_drop(x) # return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, windowed=False, window_size=14, pad_mode="constant", layer_scale=False, with_cp=False): super().__init__() self.with_cp = with_cp self.norm1 = norm_layer(dim) if windowed: self.attn = WindowedAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, pad_mode=pad_mode) else: self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.layer_scale = layer_scale if layer_scale: self.gamma1 = nn.Parameter(torch.ones((dim)), requires_grad=True) self.gamma2 = nn.Parameter(torch.ones((dim)), requires_grad=True) def forward(self, x, H, W): def _inner_forward(x): if self.layer_scale: x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x if self.with_cp and x.requires_grad: x = cp.checkpoint(_inner_forward, x) else: x = _inner_forward(x) return x class TIMMVisionTransformer(BaseModule): """Vision Transformer. A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., layer_scale=True, embed_layer=PatchEmbed, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, window_attn=False, window_size=14, pretrained=None, with_cp=False): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer pretrained: (str): pretrained path """ super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.norm_layer = norm_layer self.act_layer = act_layer self.pretrain_size = img_size self.drop_path_rate = drop_path_rate self.drop_rate = drop_rate window_attn = [window_attn] * depth if not isinstance(window_attn, list) else window_attn window_size = [window_size] * depth if not isinstance(window_size, list) else window_size logging.info("window attention:", window_attn) logging.info("window size:", window_size) logging.info("layer scale:", layer_scale) self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.Sequential(*[ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, windowed=window_attn[i], window_size=window_size[i], layer_scale=layer_scale, with_cp=with_cp) for i in range(depth)]) self.init_weights(pretrained) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) def forward_features(self, x): x, H, W = self.patch_embed(x) cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_token, x), dim=1) x = self.pos_drop(x + self.pos_embed) for blk in self.blocks: x = blk(x, H, W) x = self.norm(x) return x def forward(self, x): x = self.forward_features(x) return x
ViT-Adapter-main
segmentation/mmseg_custom/models/backbones/base/vit.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmseg.core import add_prefix from mmseg.models import builder from mmseg.models.builder import SEGMENTORS from mmseg.models.segmentors.base import BaseSegmentor from mmseg.ops import resize @SEGMENTORS.register_module() class EncoderDecoderMask2Former(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(EncoderDecoderMask2Former, self).__init__(init_cfg) if pretrained is not None: assert backbone.get('pretrained') is None, \ 'both backbone and segmentor set pretrained weight' backbone.pretrained = pretrained self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) decode_head.update(train_cfg=train_cfg) decode_head.update(test_cfg=test_cfg) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(builder.build_head(head_cfg)) else: self.auxiliary_head = builder.build_head(auxiliary_head) def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) out = resize( input=out, size=img.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg, **kwargs): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, gt_semantic_seg, **kwargs) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def forward_dummy(self, img): """Dummy forward function.""" seg_logit = self.encode_decode(img, None) return seg_logit def forward_train(self, img, img_metas, gt_semantic_seg, **kwargs): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, gt_semantic_seg, **kwargs) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, gt_semantic_seg) losses.update(loss_aux) return losses # TODO refactor def slide_inference(self, img, img_meta, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = img.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, img_meta) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy( count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat if rescale: preds = resize( preds, size=img_meta[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return preds def whole_inference(self, img, img_meta, rescale): """Inference with full image.""" seg_logit = self.encode_decode(img, img_meta) if rescale: # support dynamic shape for onnx if torch.onnx.is_in_onnx_export(): size = img.shape[2:] else: size = img_meta[0]['ori_shape'][:2] seg_logit = resize( seg_logit, size=size, mode='bilinear', align_corners=self.align_corners, warning=False) return seg_logit def inference(self, img, img_meta, rescale): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] ori_shape = img_meta[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in img_meta) if self.test_cfg.mode == 'slide': seg_logit = self.slide_inference(img, img_meta, rescale) else: seg_logit = self.whole_inference(img, img_meta, rescale) output = F.softmax(seg_logit, dim=1) flip = img_meta[0]['flip'] if flip: flip_direction = img_meta[0]['flip_direction'] assert flip_direction in ['horizontal', 'vertical'] if flip_direction == 'horizontal': output = output.flip(dims=(3,)) elif flip_direction == 'vertical': output = output.flip(dims=(2,)) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" seg_logit = self.inference(img, img_meta, rescale) seg_pred = seg_logit.argmax(dim=1) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output seg_pred = seg_pred.unsqueeze(0) return seg_pred seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(imgs) seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred
ViT-Adapter-main
segmentation/mmseg_custom/models/segmentors/encoder_decoder_mask2former.py
# Copyright (c) OpenMMLab. All rights reserved. from .encoder_decoder_mask2former import EncoderDecoderMask2Former from .encoder_decoder_mask2former_aug import EncoderDecoderMask2FormerAug __all__ = ['EncoderDecoderMask2Former', 'EncoderDecoderMask2FormerAug']
ViT-Adapter-main
segmentation/mmseg_custom/models/segmentors/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmseg.core import add_prefix from mmseg.models import builder from mmseg.models.builder import SEGMENTORS from mmseg.models.segmentors.base import BaseSegmentor from mmseg.ops import resize @SEGMENTORS.register_module() class EncoderDecoderMask2FormerAug(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(EncoderDecoderMask2FormerAug, self).__init__(init_cfg) if pretrained is not None: assert backbone.get('pretrained') is None, \ 'both backbone and segmentor set pretrained weight' backbone.pretrained = pretrained self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) decode_head.update(train_cfg=train_cfg) decode_head.update(test_cfg=test_cfg) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(builder.build_head(head_cfg)) else: self.auxiliary_head = builder.build_head(auxiliary_head) def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) out = resize( input=out, size=img.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg, **kwargs): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, gt_semantic_seg, **kwargs) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def forward_dummy(self, img): """Dummy forward function.""" seg_logit = self.encode_decode(img, None) return seg_logit def forward_train(self, img, img_metas, gt_semantic_seg, **kwargs): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, gt_semantic_seg, **kwargs) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, gt_semantic_seg) losses.update(loss_aux) return losses # TODO refactor def slide_inference(self, img, img_meta, rescale, unpad=True): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = img.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, img_meta) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy( count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat if unpad: unpad_h, unpad_w = img_meta[0]['img_shape'][:2] # logging.info(preds.shape, img_meta[0]) preds = preds[:, :, :unpad_h, :unpad_w] if rescale: preds = resize(preds, size=img_meta[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return preds def whole_inference(self, img, img_meta, rescale): """Inference with full image.""" seg_logit = self.encode_decode(img, img_meta) if rescale: # support dynamic shape for onnx if torch.onnx.is_in_onnx_export(): size = img.shape[2:] else: size = img_meta[0]['ori_shape'][:2] seg_logit = resize( seg_logit, size=size, mode='bilinear', align_corners=self.align_corners, warning=False) return seg_logit def inference(self, img, img_meta, rescale): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] ori_shape = img_meta[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in img_meta) if self.test_cfg.mode == 'slide': seg_logit = self.slide_inference(img, img_meta, rescale) else: seg_logit = self.whole_inference(img, img_meta, rescale) output = F.softmax(seg_logit, dim=1) flip = img_meta[0]['flip'] if flip: flip_direction = img_meta[0]['flip_direction'] assert flip_direction in ['horizontal', 'vertical'] if flip_direction == 'horizontal': output = output.flip(dims=(3, )) elif flip_direction == 'vertical': output = output.flip(dims=(2, )) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" seg_logit = self.inference(img, img_meta, rescale) seg_pred = seg_logit.argmax(dim=1) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output seg_pred = seg_pred.unsqueeze(0) return seg_pred seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(imgs) seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred
ViT-Adapter-main
segmentation/mmseg_custom/models/segmentors/encoder_decoder_mask2former_aug.py
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Conv2d, build_plugin_layer, kaiming_init from mmcv.cnn.bricks.transformer import (build_positional_encoding, build_transformer_layer_sequence) from mmcv.runner import force_fp32 from mmseg.models.builder import HEADS, build_loss from mmseg.models.decode_heads.decode_head import BaseDecodeHead from ...core import multi_apply, reduce_mean from ..builder import build_assigner, build_transformer @HEADS.register_module() class MaskFormerHead(BaseDecodeHead): """Implements the MaskFormer head. See `paper: Per-Pixel Classification is Not All You Need for Semantic Segmentation<https://arxiv.org/pdf/2107.06278>` for details. Args: in_channels (list[int]): Number of channels in the input feature map. feat_channels (int): Number channels for feature. out_channels (int): Number channels for output. num_things_classes (int): Number of things. num_stuff_classes (int): Number of stuff. num_queries (int): Number of query in Transformer. pixel_decoder (obj:`mmcv.ConfigDict`|dict): Config for pixel decoder. Defaults to None. enforce_decoder_input_project (bool, optional): Whether to add a layer to change the embed_dim of tranformer encoder in pixel decoder to the embed_dim of transformer decoder. Defaults to False. transformer_decoder (obj:`mmcv.ConfigDict`|dict): Config for transformer decoder. Defaults to None. positional_encoding (obj:`mmcv.ConfigDict`|dict): Config for transformer decoder position encoding. Defaults to None. loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the classification loss. Defaults to `CrossEntropyLoss`. loss_mask (obj:`mmcv.ConfigDict`|dict): Config of the mask loss. Defaults to `FocalLoss`. loss_dice (obj:`mmcv.ConfigDict`|dict): Config of the dice loss. Defaults to `DiceLoss`. train_cfg (obj:`mmcv.ConfigDict`|dict): Training config of Maskformer head. test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of Maskformer head. init_cfg (dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, out_channels, num_queries=100, pixel_decoder=None, enforce_decoder_input_project=False, transformer_decoder=None, positional_encoding=None, loss_cls=dict( type='CrossEntropyLoss', bg_cls_weight=0.1, use_sigmoid=False, loss_weight=1.0, class_weight=1.0), loss_mask=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=20.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, naive_dice=True, loss_weight=1.0), assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=1.), dice_cost=dict(type='DiceCost', weight=1.0, pred_act=True, eps=1.0), mask_cost=dict(type='MaskFocalLossCost', weight=20.0)), **kwargs): super(MaskFormerHead, self).__init__(input_transform='multiple_select', **kwargs) self.num_queries = num_queries pixel_decoder.update( in_channels=self.in_channels, feat_channels=self.channels, out_channels=out_channels) self.pixel_decoder = build_plugin_layer(pixel_decoder)[1] self.transformer_decoder = build_transformer_layer_sequence( transformer_decoder) self.decoder_embed_dims = self.transformer_decoder.embed_dims pixel_decoder_type = pixel_decoder.get('type') if pixel_decoder_type == 'PixelDecoder' and ( self.decoder_embed_dims != self.in_channels[-1] or enforce_decoder_input_project): self.decoder_input_proj = Conv2d( self.in_channels[-1], self.decoder_embed_dims, kernel_size=1) else: self.decoder_input_proj = nn.Identity() self.decoder_pe = build_positional_encoding(positional_encoding) self.query_embed = nn.Embedding(self.num_queries, out_channels) self.cls_embed = nn.Linear(self.channels, self.num_classes + 1) self.mask_embed = nn.Sequential( nn.Linear(self.channels, self.channels), nn.ReLU(inplace=True), nn.Linear(self.channels, self.channels), nn.ReLU(inplace=True), nn.Linear(self.channels, out_channels)) self.assigner = build_assigner(assigner) self.bg_cls_weight = 0 class_weight = loss_cls.get('class_weight', None) if class_weight is not None and (self.__class__ is MaskFormerHead): assert isinstance(class_weight, float), 'Expected ' \ 'class_weight to have type float. Found ' \ f'{type(class_weight)}.' # NOTE following the official MaskFormerHead repo, bg_cls_weight # means relative classification weight of the VOID class. bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) assert isinstance(bg_cls_weight, float), 'Expected ' \ 'bg_cls_weight to have type float. Found ' \ f'{type(bg_cls_weight)}.' class_weight = (self.num_classes + 1) * [class_weight] # set VOID class as the last indice class_weight[self.num_classes] = bg_cls_weight loss_cls.update({'class_weight': class_weight}) if 'bg_cls_weight' in loss_cls: loss_cls.pop('bg_cls_weight') self.bg_cls_weight = bg_cls_weight assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \ 'The classification weight for loss and matcher should be' \ 'exactly the same.' assert loss_dice['loss_weight'] == assigner['dice_cost']['weight'], \ f'The dice weight for loss and matcher' \ f'should be exactly the same.' assert loss_mask['loss_weight'] == assigner['mask_cost']['weight'], \ 'The focal weight for loss and matcher should be' \ 'exactly the same.' self.loss_cls = build_loss(loss_cls) self.loss_mask = build_loss(loss_mask) self.loss_dice = build_loss(loss_dice) self.init_weights() def init_weights(self): kaiming_init(self.decoder_input_proj, a=1) def get_targets(self, cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas): """Compute classification and mask targets for all images for a decoder layer. Args: cls_scores_list (list[Tensor]): Mask score logits from a single decoder layer for all images. Each with shape [num_queries, cls_out_channels]. mask_preds_list (list[Tensor]): Mask logits from a single decoder layer for all images. Each with shape [num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for all images. Each with shape (n, ), n is the sum of number of stuff type and number of instance in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image, each with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: tuple[list[Tensor]]: a tuple containing the following targets. - labels_list (list[Tensor]): Labels of all images. Each with shape [num_queries, ]. - label_weights_list (list[Tensor]): Label weights of all images.Each with shape [num_queries, ]. - mask_targets_list (list[Tensor]): Mask targets of all images. Each with shape [num_queries, h, w]. - mask_weights_list (list[Tensor]): Mask weights of all images. Each with shape [num_queries, ]. - num_total_pos (int): Number of positive samples in all images. - num_total_neg (int): Number of negative samples in all images. """ (labels_list, label_weights_list, mask_targets_list, mask_weights_list, pos_inds_list, neg_inds_list) = multi_apply(self._get_target_single, cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas) num_total_pos = sum((inds.numel() for inds in pos_inds_list)) num_total_neg = sum((inds.numel() for inds in neg_inds_list)) return (labels_list, label_weights_list, mask_targets_list, mask_weights_list, num_total_pos, num_total_neg) def _get_target_single(self, cls_score, mask_pred, gt_labels, gt_masks, img_metas): """Compute classification and mask targets for one image. Args: cls_score (Tensor): Mask score logits from a single decoder layer for one image. Shape [num_queries, cls_out_channels]. mask_pred (Tensor): Mask logits for a single decoder layer for one image. Shape [num_queries, h, w]. gt_labels (Tensor): Ground truth class indices for one image with shape (n, ). n is the sum of number of stuff type and number of instance in a image. gt_masks (Tensor): Ground truth mask for each image, each with shape (n, h, w). img_metas (dict): Image informtation. Returns: tuple[Tensor]: a tuple containing the following for one image. - labels (Tensor): Labels of each image. shape [num_queries, ]. - label_weights (Tensor): Label weights of each image. shape [num_queries, ]. - mask_targets (Tensor): Mask targets of each image. shape [num_queries, h, w]. - mask_weights (Tensor): Mask weights of each image. shape [num_queries, ]. - pos_inds (Tensor): Sampled positive indices for each image. - neg_inds (Tensor): Sampled negative indices for each image. """ target_shape = mask_pred.shape[-2:] gt_masks_downsampled = F.interpolate( gt_masks.unsqueeze(1).float(), target_shape, mode='nearest').squeeze(1).long() # assign and sample assign_result = self.assigner.assign(cls_score, mask_pred, gt_labels, gt_masks_downsampled, img_metas) # pos_ind: range from 1 to (self.num_classes) # which represents the positive index pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 # label target labels = gt_labels.new_full((self.num_queries, ), self.num_classes, dtype=torch.long) labels[pos_inds] = gt_labels[pos_assigned_gt_inds] label_weights = gt_labels.new_ones(self.num_queries) # mask target mask_targets = gt_masks[pos_assigned_gt_inds, :] mask_weights = mask_pred.new_zeros((self.num_queries, )) mask_weights[pos_inds] = 1.0 return (labels, label_weights, mask_targets, mask_weights, pos_inds, neg_inds) @force_fp32(apply_to=('all_cls_scores', 'all_mask_preds')) def loss(self, all_cls_scores, all_mask_preds, gt_labels_list, gt_masks_list, img_metas): """Loss function. Args: all_cls_scores (Tensor): Classification scores for all decoder layers with shape [num_decoder, batch_size, num_queries, cls_out_channels]. all_mask_preds (Tensor): Mask scores for all decoder layers with shape [num_decoder, batch_size, num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (n, ). n is the sum of number of stuff type and number of instance in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: dict[str, Tensor]: A dictionary of loss components. """ num_dec_layers = len(all_cls_scores) all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] all_gt_masks_list = [gt_masks_list for _ in range(num_dec_layers)] img_metas_list = [img_metas for _ in range(num_dec_layers)] losses_cls, losses_mask, losses_dice = multi_apply( self.loss_single, all_cls_scores, all_mask_preds, all_gt_labels_list, all_gt_masks_list, img_metas_list) loss_dict = dict() # loss from the last decoder layer loss_dict['loss_cls'] = losses_cls[-1] loss_dict['loss_mask'] = losses_mask[-1] loss_dict['loss_dice'] = losses_dice[-1] # loss from other decoder layers num_dec_layer = 0 for loss_cls_i, loss_mask_i, loss_dice_i in zip( losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]): loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i loss_dict[f'd{num_dec_layer}.loss_mask'] = loss_mask_i loss_dict[f'd{num_dec_layer}.loss_dice'] = loss_dice_i num_dec_layer += 1 return loss_dict def loss_single(self, cls_scores, mask_preds, gt_labels_list, gt_masks_list, img_metas): """Loss function for outputs from a single decoder layer. Args: cls_scores (Tensor): Mask score logits from a single decoder layer for all images. Shape [batch_size, num_queries, cls_out_channels]. mask_preds (Tensor): Mask logits for a pixel decoder for all images. Shape [batch_size, num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for each image, each with shape (n, ). n is the sum of number of stuff types and number of instances in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image, each with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: tuple[Tensor]:Loss components for outputs from a single decoder layer. """ num_imgs = cls_scores.size(0) cls_scores_list = [cls_scores[i] for i in range(num_imgs)] mask_preds_list = [mask_preds[i] for i in range(num_imgs)] (labels_list, label_weights_list, mask_targets_list, mask_weights_list, num_total_pos, num_total_neg) = self.get_targets(cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas) # shape [batch_size, num_queries] labels = torch.stack(labels_list, dim=0) # shape [batch_size, num_queries] label_weights = torch.stack(label_weights_list, dim=0) # shape [num_gts, h, w] mask_targets = torch.cat(mask_targets_list, dim=0) # shape [batch_size, num_queries] mask_weights = torch.stack(mask_weights_list, dim=0) # classfication loss # shape [batch_size * num_queries, ] cls_scores = cls_scores.flatten(0, 1) # shape [batch_size * num_queries, ] labels = labels.flatten(0, 1) # shape [batch_size* num_queries, ] label_weights = label_weights.flatten(0, 1) class_weight = cls_scores.new_ones(self.num_classes + 1) class_weight[-1] = self.bg_cls_weight loss_cls = self.loss_cls( cls_scores, labels, label_weights, avg_factor=class_weight[labels].sum()) num_total_masks = reduce_mean(cls_scores.new_tensor([num_total_pos])) num_total_masks = max(num_total_masks, 1) # extract positive ones mask_preds = mask_preds[mask_weights > 0] target_shape = mask_targets.shape[-2:] if mask_targets.shape[0] == 0: # zero match loss_dice = mask_preds.sum() loss_mask = mask_preds.sum() return loss_cls, loss_mask, loss_dice # upsample to shape of target # shape [num_gts, h, w] mask_preds = F.interpolate( mask_preds.unsqueeze(1), target_shape, mode='bilinear', align_corners=False).squeeze(1) # dice loss loss_dice = self.loss_dice( mask_preds, mask_targets, avg_factor=num_total_masks) # mask loss # FocalLoss support input of shape [n, num_class] h, w = mask_preds.shape[-2:] # shape [num_gts, h, w] -> [num_gts * h * w, 1] mask_preds = mask_preds.reshape(-1, 1) # shape [num_gts, h, w] -> [num_gts * h * w] mask_targets = mask_targets.reshape(-1) # target is (1 - mask_targets) !!! print("mask_pred:", mask_preds.shape) print("mask_targets:", mask_targets.shape) loss_mask = self.loss_mask( mask_preds, 1 - mask_targets, avg_factor=num_total_masks * h * w) return loss_cls, loss_mask, loss_dice def forward(self, feats, img_metas): """Forward function. Args: feats (list[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. Returns: all_cls_scores (Tensor): Classification scores for each scale level. Each is a 4D-tensor with shape [num_decoder, batch_size, num_queries, cls_out_channels]. Note `cls_out_channels` should includes background. all_mask_preds (Tensor): Mask scores for each decoder layer. Each with shape [num_decoder, batch_size, num_queries, h, w]. """ batch_size = len(img_metas) input_img_h, input_img_w = img_metas[0]['pad_shape'][:-1] # input_img_h, input_img_w = img_metas[0]['batch_input_shape'] padding_mask = feats[-1].new_ones( (batch_size, input_img_h, input_img_w), dtype=torch.float32) for i in range(batch_size): img_h, img_w, _ = img_metas[i]['img_shape'] padding_mask[i, :img_h, :img_w] = 0 padding_mask = F.interpolate( padding_mask.unsqueeze(1), size=feats[-1].shape[-2:], mode='nearest').to(torch.bool).squeeze(1) # when backbone is swin, memory is output of last stage of swin. # when backbone is r50, memory is output of tranformer encoder. mask_features, memory = self.pixel_decoder(feats, img_metas) pos_embed = self.decoder_pe(padding_mask) memory = self.decoder_input_proj(memory) # shape [batch_size, c, h, w] -> [h*w, batch_size, c] memory = memory.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) # shape [batch_size, h * w] padding_mask = padding_mask.flatten(1) # shape = [num_queries, embed_dims] query_embed = self.query_embed.weight # shape = [num_queries, batch_size, embed_dims] query_embed = query_embed.unsqueeze(1).repeat(1, batch_size, 1) target = torch.zeros_like(query_embed) # shape [num_decoder, num_queries, batch_size, embed_dims] out_dec = self.transformer_decoder( query=target, key=memory, value=memory, key_pos=pos_embed, query_pos=query_embed, key_padding_mask=padding_mask) # shape [num_decoder, batch_size, num_queries, embed_dims] out_dec = out_dec.transpose(1, 2) # cls_scores all_cls_scores = self.cls_embed(out_dec) # mask_preds mask_embed = self.mask_embed(out_dec) all_mask_preds = torch.einsum('lbqc,bchw->lbqhw', mask_embed, mask_features) return all_cls_scores, all_mask_preds def forward_train(self, x, img_metas, gt_semantic_seg, gt_labels, gt_masks): """Forward function for training mode. Args: x (list[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[Dict]): List of image information. gt_semantic_seg (list[tensor]):Each element is the ground truth of semantic segmentation with the shape (N, H, W). train_cfg (dict): The training config, which not been used in maskformer. gt_labels (list[Tensor]): Each element is ground truth labels of each box, shape (num_gts,). gt_masks (list[BitmapMasks]): Each element is masks of instances of a image, shape (num_gts, h, w). Returns: losses (dict[str, Tensor]): a dictionary of loss components """ # forward all_cls_scores, all_mask_preds = self(x, img_metas) # loss losses = self.loss(all_cls_scores, all_mask_preds, gt_labels, gt_masks, img_metas) return losses def forward_test(self, inputs, img_metas, test_cfg): """Test segment without test-time aumengtation. Only the output of last decoder layers was used. Args: inputs (list[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. test_cfg (dict): Testing config. Returns: seg_mask (Tensor): Predicted semantic segmentation logits. """ all_cls_scores, all_mask_preds = self(inputs, img_metas) cls_score, mask_pred = all_cls_scores[-1], all_mask_preds[-1] ori_h, ori_w, _ = img_metas[0]['ori_shape'] # semantic inference cls_score = F.softmax(cls_score, dim=-1)[..., :-1] mask_pred = mask_pred.sigmoid() seg_mask = torch.einsum('bqc,bqhw->bchw', cls_score, mask_pred) return seg_mask
ViT-Adapter-main
segmentation/mmseg_custom/models/decode_heads/maskformer_head.py
# Copyright (c) OpenMMLab. All rights reserved. from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead __all__ = [ 'MaskFormerHead', 'Mask2FormerHead', ]
ViT-Adapter-main
segmentation/mmseg_custom/models/decode_heads/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import copy import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Conv2d, build_plugin_layer, caffe2_xavier_init from mmcv.cnn.bricks.transformer import (build_positional_encoding, build_transformer_layer_sequence) from mmcv.ops import point_sample from mmcv.runner import ModuleList, force_fp32 from mmseg.models.builder import HEADS, build_loss from mmseg.models.decode_heads.decode_head import BaseDecodeHead from ...core import build_sampler, multi_apply, reduce_mean from ..builder import build_assigner from ..utils import get_uncertain_point_coords_with_randomness @HEADS.register_module() class Mask2FormerHead(BaseDecodeHead): """Implements the Mask2Former head. See `Masked-attention Mask Transformer for Universal Image Segmentation <https://arxiv.org/pdf/2112.01527>`_ for details. Args: in_channels (list[int]): Number of channels in the input feature map. feat_channels (int): Number of channels for features. out_channels (int): Number of channels for output. num_things_classes (int): Number of things. num_stuff_classes (int): Number of stuff. num_queries (int): Number of query in Transformer decoder. pixel_decoder (:obj:`mmcv.ConfigDict` | dict): Config for pixel decoder. Defaults to None. enforce_decoder_input_project (bool, optional): Whether to add a layer to change the embed_dim of tranformer encoder in pixel decoder to the embed_dim of transformer decoder. Defaults to False. transformer_decoder (:obj:`mmcv.ConfigDict` | dict): Config for transformer decoder. Defaults to None. positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for transformer decoder position encoding. Defaults to None. loss_cls (:obj:`mmcv.ConfigDict` | dict): Config of the classification loss. Defaults to None. loss_mask (:obj:`mmcv.ConfigDict` | dict): Config of the mask loss. Defaults to None. loss_dice (:obj:`mmcv.ConfigDict` | dict): Config of the dice loss. Defaults to None. train_cfg (:obj:`mmcv.ConfigDict` | dict): Training config of Mask2Former head. test_cfg (:obj:`mmcv.ConfigDict` | dict): Testing config of Mask2Former head. init_cfg (dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, in_channels, feat_channels, out_channels, num_things_classes=80, num_stuff_classes=53, num_queries=100, num_transformer_feat_level=3, pixel_decoder=None, enforce_decoder_input_project=False, transformer_decoder=None, positional_encoding=None, loss_cls=None, loss_mask=None, loss_dice=None, train_cfg=None, test_cfg=None, init_cfg=None, **kwargs): super(Mask2FormerHead, self).__init__( in_channels=in_channels, channels=feat_channels, num_classes=(num_things_classes + num_stuff_classes), init_cfg=init_cfg, input_transform='multiple_select', **kwargs) self.num_things_classes = num_things_classes self.num_stuff_classes = num_stuff_classes self.num_classes = self.num_things_classes + self.num_stuff_classes self.num_queries = num_queries self.num_transformer_feat_level = num_transformer_feat_level self.num_heads = transformer_decoder.transformerlayers. \ attn_cfgs.num_heads self.num_transformer_decoder_layers = transformer_decoder.num_layers assert pixel_decoder.encoder.transformerlayers. \ attn_cfgs.num_levels == num_transformer_feat_level pixel_decoder_ = copy.deepcopy(pixel_decoder) pixel_decoder_.update( in_channels=in_channels, feat_channels=feat_channels, out_channels=out_channels) self.pixel_decoder = build_plugin_layer(pixel_decoder_)[1] self.transformer_decoder = build_transformer_layer_sequence( transformer_decoder) self.decoder_embed_dims = self.transformer_decoder.embed_dims self.decoder_input_projs = ModuleList() # from low resolution to high resolution for _ in range(num_transformer_feat_level): if (self.decoder_embed_dims != feat_channels or enforce_decoder_input_project): self.decoder_input_projs.append( Conv2d( feat_channels, self.decoder_embed_dims, kernel_size=1)) else: self.decoder_input_projs.append(nn.Identity()) self.decoder_positional_encoding = build_positional_encoding( positional_encoding) self.query_embed = nn.Embedding(self.num_queries, feat_channels) self.query_feat = nn.Embedding(self.num_queries, feat_channels) # from low resolution to high resolution self.level_embed = nn.Embedding(self.num_transformer_feat_level, feat_channels) self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1) self.mask_embed = nn.Sequential( nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), nn.Linear(feat_channels, out_channels)) self.conv_seg = None # fix a bug here (conv_seg is not used) self.test_cfg = test_cfg self.train_cfg = train_cfg if train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) self.sampler = build_sampler(self.train_cfg.sampler, context=self) self.num_points = self.train_cfg.get('num_points', 12544) self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0) self.importance_sample_ratio = self.train_cfg.get( 'importance_sample_ratio', 0.75) self.class_weight = loss_cls.class_weight self.loss_cls = build_loss(loss_cls) self.loss_mask = build_loss(loss_mask) self.loss_dice = build_loss(loss_dice) def init_weights(self): for m in self.decoder_input_projs: if isinstance(m, Conv2d): caffe2_xavier_init(m, bias=0) self.pixel_decoder.init_weights() for p in self.transformer_decoder.parameters(): if p.dim() > 1: nn.init.xavier_normal_(p) def get_targets(self, cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas): """Compute classification and mask targets for all images for a decoder layer. Args: cls_scores_list (list[Tensor]): Mask score logits from a single decoder layer for all images. Each with shape [num_queries, cls_out_channels]. mask_preds_list (list[Tensor]): Mask logits from a single decoder layer for all images. Each with shape [num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for all images. Each with shape (n, ), n is the sum of number of stuff type and number of instance in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image, each with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: tuple[list[Tensor]]: a tuple containing the following targets. - labels_list (list[Tensor]): Labels of all images. Each with shape [num_queries, ]. - label_weights_list (list[Tensor]): Label weights of all images.Each with shape [num_queries, ]. - mask_targets_list (list[Tensor]): Mask targets of all images. Each with shape [num_queries, h, w]. - mask_weights_list (list[Tensor]): Mask weights of all images. Each with shape [num_queries, ]. - num_total_pos (int): Number of positive samples in all images. - num_total_neg (int): Number of negative samples in all images. """ (labels_list, label_weights_list, mask_targets_list, mask_weights_list, pos_inds_list, neg_inds_list) = multi_apply(self._get_target_single, cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas) num_total_pos = sum((inds.numel() for inds in pos_inds_list)) num_total_neg = sum((inds.numel() for inds in neg_inds_list)) return (labels_list, label_weights_list, mask_targets_list, mask_weights_list, num_total_pos, num_total_neg) def _get_target_single(self, cls_score, mask_pred, gt_labels, gt_masks, img_metas): """Compute classification and mask targets for one image. Args: cls_score (Tensor): Mask score logits from a single decoder layer for one image. Shape (num_queries, cls_out_channels). mask_pred (Tensor): Mask logits for a single decoder layer for one image. Shape (num_queries, h, w). gt_labels (Tensor): Ground truth class indices for one image with shape (num_gts, ). gt_masks (Tensor): Ground truth mask for each image, each with shape (num_gts, h, w). img_metas (dict): Image informtation. Returns: tuple[Tensor]: A tuple containing the following for one image. - labels (Tensor): Labels of each image. \ shape (num_queries, ). - label_weights (Tensor): Label weights of each image. \ shape (num_queries, ). - mask_targets (Tensor): Mask targets of each image. \ shape (num_queries, h, w). - mask_weights (Tensor): Mask weights of each image. \ shape (num_queries, ). - pos_inds (Tensor): Sampled positive indices for each \ image. - neg_inds (Tensor): Sampled negative indices for each \ image. """ # sample points num_queries = cls_score.shape[0] num_gts = gt_labels.shape[0] point_coords = torch.rand((1, self.num_points, 2), device=cls_score.device) # shape (num_queries, num_points) mask_points_pred = point_sample( mask_pred.unsqueeze(1), point_coords.repeat(num_queries, 1, 1)).squeeze(1) # shape (num_gts, num_points) gt_points_masks = point_sample( gt_masks.unsqueeze(1).float(), point_coords.repeat(num_gts, 1, 1)).squeeze(1) # assign and sample assign_result = self.assigner.assign(cls_score, mask_points_pred, gt_labels, gt_points_masks, img_metas) sampling_result = self.sampler.sample(assign_result, mask_pred, gt_masks) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds # label target labels = gt_labels.new_full((self.num_queries, ), self.num_classes, dtype=torch.long) labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] label_weights = gt_labels.new_ones((self.num_queries, )) # mask target mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds] mask_weights = mask_pred.new_zeros((self.num_queries, )) mask_weights[pos_inds] = 1.0 return (labels, label_weights, mask_targets, mask_weights, pos_inds, neg_inds) def loss_single(self, cls_scores, mask_preds, gt_labels_list, gt_masks_list, img_metas): """Loss function for outputs from a single decoder layer. Args: cls_scores (Tensor): Mask score logits from a single decoder layer for all images. Shape (batch_size, num_queries, cls_out_channels). Note `cls_out_channels` should includes background. mask_preds (Tensor): Mask logits for a pixel decoder for all images. Shape (batch_size, num_queries, h, w). gt_labels_list (list[Tensor]): Ground truth class indices for each image, each with shape (num_gts, ). gt_masks_list (list[Tensor]): Ground truth mask for each image, each with shape (num_gts, h, w). img_metas (list[dict]): List of image meta information. Returns: tuple[Tensor]: Loss components for outputs from a single \ decoder layer. """ num_imgs = cls_scores.size(0) cls_scores_list = [cls_scores[i] for i in range(num_imgs)] mask_preds_list = [mask_preds[i] for i in range(num_imgs)] (labels_list, label_weights_list, mask_targets_list, mask_weights_list, num_total_pos, num_total_neg) = self.get_targets(cls_scores_list, mask_preds_list, gt_labels_list, gt_masks_list, img_metas) # shape (batch_size, num_queries) labels = torch.stack(labels_list, dim=0) # shape (batch_size, num_queries) label_weights = torch.stack(label_weights_list, dim=0) # shape (num_total_gts, h, w) mask_targets = torch.cat(mask_targets_list, dim=0) # shape (batch_size, num_queries) mask_weights = torch.stack(mask_weights_list, dim=0) # classfication loss # shape (batch_size * num_queries, ) cls_scores = cls_scores.flatten(0, 1) labels = labels.flatten(0, 1) label_weights = label_weights.flatten(0, 1) class_weight = cls_scores.new_tensor(self.class_weight) loss_cls = self.loss_cls( cls_scores, labels, label_weights, avg_factor=class_weight[labels].sum()) num_total_masks = reduce_mean(cls_scores.new_tensor([num_total_pos])) num_total_masks = max(num_total_masks, 1) # extract positive ones # shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w) mask_preds = mask_preds[mask_weights > 0] if mask_targets.shape[0] == 0: # zero match loss_dice = mask_preds.sum() loss_mask = mask_preds.sum() return loss_cls, loss_mask, loss_dice with torch.no_grad(): points_coords = get_uncertain_point_coords_with_randomness( mask_preds.unsqueeze(1), None, self.num_points, self.oversample_ratio, self.importance_sample_ratio) # shape (num_total_gts, h, w) -> (num_total_gts, num_points) mask_point_targets = point_sample( mask_targets.unsqueeze(1).float(), points_coords).squeeze(1) # shape (num_queries, h, w) -> (num_queries, num_points) mask_point_preds = point_sample( mask_preds.unsqueeze(1), points_coords).squeeze(1) # dice loss loss_dice = self.loss_dice( mask_point_preds, mask_point_targets, avg_factor=num_total_masks) # mask loss # shape (num_queries, num_points) -> (num_queries * num_points, ) mask_point_preds = mask_point_preds.reshape(-1,1) # shape (num_total_gts, num_points) -> (num_total_gts * num_points, ) mask_point_targets = mask_point_targets.reshape(-1) loss_mask = self.loss_mask( mask_point_preds, mask_point_targets, avg_factor=num_total_masks * self.num_points) return loss_cls, loss_mask, loss_dice @force_fp32(apply_to=('all_cls_scores', 'all_mask_preds')) def loss(self, all_cls_scores, all_mask_preds, gt_labels_list, gt_masks_list, img_metas): """Loss function. Args: all_cls_scores (Tensor): Classification scores for all decoder layers with shape [num_decoder, batch_size, num_queries, cls_out_channels]. all_mask_preds (Tensor): Mask scores for all decoder layers with shape [num_decoder, batch_size, num_queries, h, w]. gt_labels_list (list[Tensor]): Ground truth class indices for each image with shape (n, ). n is the sum of number of stuff type and number of instance in a image. gt_masks_list (list[Tensor]): Ground truth mask for each image with shape (n, h, w). img_metas (list[dict]): List of image meta information. Returns: dict[str, Tensor]: A dictionary of loss components. """ num_dec_layers = len(all_cls_scores) all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] all_gt_masks_list = [gt_masks_list for _ in range(num_dec_layers)] img_metas_list = [img_metas for _ in range(num_dec_layers)] losses_cls, losses_mask, losses_dice = multi_apply( self.loss_single, all_cls_scores, all_mask_preds, all_gt_labels_list, all_gt_masks_list, img_metas_list) loss_dict = dict() # loss from the last decoder layer loss_dict['loss_cls'] = losses_cls[-1] loss_dict['loss_mask'] = losses_mask[-1] loss_dict['loss_dice'] = losses_dice[-1] # loss from other decoder layers num_dec_layer = 0 for loss_cls_i, loss_mask_i, loss_dice_i in zip( losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]): loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i loss_dict[f'd{num_dec_layer}.loss_mask'] = loss_mask_i loss_dict[f'd{num_dec_layer}.loss_dice'] = loss_dice_i num_dec_layer += 1 return loss_dict def forward_head(self, decoder_out, mask_feature, attn_mask_target_size): """Forward for head part which is called after every decoder layer. Args: decoder_out (Tensor): in shape (num_queries, batch_size, c). mask_feature (Tensor): in shape (batch_size, c, h, w). attn_mask_target_size (tuple[int, int]): target attention mask size. Returns: tuple: A tuple contain three elements. - cls_pred (Tensor): Classification scores in shape \ (batch_size, num_queries, cls_out_channels). \ Note `cls_out_channels` should includes background. - mask_pred (Tensor): Mask scores in shape \ (batch_size, num_queries,h, w). - attn_mask (Tensor): Attention mask in shape \ (batch_size * num_heads, num_queries, h, w). """ decoder_out = self.transformer_decoder.post_norm(decoder_out) decoder_out = decoder_out.transpose(0, 1) # shape (num_queries, batch_size, c) cls_pred = self.cls_embed(decoder_out) # shape (num_queries, batch_size, c) mask_embed = self.mask_embed(decoder_out) # shape (num_queries, batch_size, h, w) mask_pred = torch.einsum('bqc,bchw->bqhw', mask_embed, mask_feature) attn_mask = F.interpolate( mask_pred, attn_mask_target_size, mode='bilinear', align_corners=False) # shape (num_queries, batch_size, h, w) -> # (batch_size * num_head, num_queries, h, w) attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat( (1, self.num_heads, 1, 1)).flatten(0, 1) attn_mask = attn_mask.sigmoid() < 0.5 attn_mask = attn_mask.detach() return cls_pred, mask_pred, attn_mask def forward(self, feats, img_metas): """Forward function. Args: feats (list[Tensor]): Multi scale Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. Returns: tuple: A tuple contains two elements. - cls_pred_list (list[Tensor)]: Classification logits \ for each decoder layer. Each is a 3D-tensor with shape \ (batch_size, num_queries, cls_out_channels). \ Note `cls_out_channels` should includes background. - mask_pred_list (list[Tensor]): Mask logits for each \ decoder layer. Each with shape (batch_size, num_queries, \ h, w). """ batch_size = len(img_metas) mask_features, multi_scale_memorys = self.pixel_decoder(feats) # multi_scale_memorys (from low resolution to high resolution) decoder_inputs = [] decoder_positional_encodings = [] for i in range(self.num_transformer_feat_level): decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i]) # shape (batch_size, c, h, w) -> (h*w, batch_size, c) decoder_input = decoder_input.flatten(2).permute(2, 0, 1) level_embed = self.level_embed.weight[i].view(1, 1, -1) decoder_input = decoder_input + level_embed # shape (batch_size, c, h, w) -> (h*w, batch_size, c) mask = decoder_input.new_zeros( (batch_size, ) + multi_scale_memorys[i].shape[-2:], dtype=torch.bool) decoder_positional_encoding = self.decoder_positional_encoding( mask) decoder_positional_encoding = decoder_positional_encoding.flatten( 2).permute(2, 0, 1) decoder_inputs.append(decoder_input) decoder_positional_encodings.append(decoder_positional_encoding) # shape (num_queries, c) -> (num_queries, batch_size, c) query_feat = self.query_feat.weight.unsqueeze(1).repeat( (1, batch_size, 1)) query_embed = self.query_embed.weight.unsqueeze(1).repeat( (1, batch_size, 1)) cls_pred_list = [] mask_pred_list = [] cls_pred, mask_pred, attn_mask = self.forward_head( query_feat, mask_features, multi_scale_memorys[0].shape[-2:]) cls_pred_list.append(cls_pred) mask_pred_list.append(mask_pred) for i in range(self.num_transformer_decoder_layers): level_idx = i % self.num_transformer_feat_level # if a mask is all True(all background), then set it all False. attn_mask[torch.where( attn_mask.sum(-1) == attn_mask.shape[-1])] = False # cross_attn + self_attn layer = self.transformer_decoder.layers[i] attn_masks = [attn_mask, None] query_feat = layer( query=query_feat, key=decoder_inputs[level_idx], value=decoder_inputs[level_idx], query_pos=query_embed, key_pos=decoder_positional_encodings[level_idx], attn_masks=attn_masks, query_key_padding_mask=None, # here we do not apply masking on padded region key_padding_mask=None) cls_pred, mask_pred, attn_mask = self.forward_head( query_feat, mask_features, multi_scale_memorys[ (i + 1) % self.num_transformer_feat_level].shape[-2:]) cls_pred_list.append(cls_pred) mask_pred_list.append(mask_pred) return cls_pred_list, mask_pred_list def forward_train(self, x, img_metas, gt_semantic_seg, gt_labels, gt_masks): """Forward function for training mode. Args: x (list[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[Dict]): List of image information. gt_semantic_seg (list[tensor]):Each element is the ground truth of semantic segmentation with the shape (N, H, W). train_cfg (dict): The training config, which not been used in maskformer. gt_labels (list[Tensor]): Each element is ground truth labels of each box, shape (num_gts,). gt_masks (list[BitmapMasks]): Each element is masks of instances of a image, shape (num_gts, h, w). Returns: losses (dict[str, Tensor]): a dictionary of loss components """ # forward all_cls_scores, all_mask_preds = self(x, img_metas) # loss losses = self.loss(all_cls_scores, all_mask_preds, gt_labels, gt_masks, img_metas) return losses def forward_test(self, inputs, img_metas, test_cfg): """Test segment without test-time aumengtation. Only the output of last decoder layers was used. Args: inputs (list[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. test_cfg (dict): Testing config. Returns: seg_mask (Tensor): Predicted semantic segmentation logits. """ all_cls_scores, all_mask_preds = self(inputs, img_metas) cls_score, mask_pred = all_cls_scores[-1], all_mask_preds[-1] ori_h, ori_w, _ = img_metas[0]['ori_shape'] # semantic inference cls_score = F.softmax(cls_score, dim=-1)[..., :-1] mask_pred = mask_pred.sigmoid() seg_mask = torch.einsum('bqc,bqhw->bchw', cls_score, mask_pred) return seg_mask
ViT-Adapter-main
segmentation/mmseg_custom/models/decode_heads/mask2former_head.py
# Copyright (c) ByteDance, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Mostly copy-paste from BEiT library: https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py """ import json from mmcv.runner import (OPTIMIZER_BUILDERS, DefaultOptimizerConstructor, get_dist_info) def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ('backbone.cls_token', 'backbone.mask_token', 'backbone.pos_embed', 'backbone.visual_embed'): return 0 elif var_name.startswith('backbone.patch_embed') or \ var_name.startswith('backbone.visual_embed'): return 0 elif var_name.startswith('decode_head.mask_embed'): return 0 elif var_name.startswith('decode_head.cls_embed'): return 0 elif var_name.startswith('decode_head.level_embed'): return 0 elif var_name.startswith('decode_head.query_embed'): return 0 elif var_name.startswith('decode_head.query_feat'): return 0 elif var_name.startswith('backbone.blocks') or \ var_name.startswith('backbone.layers'): layer_id = int(var_name.split('.')[2]) return layer_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') print('Build LayerDecayOptimizerConstructor %f - %d' % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith('.bias') \ or name in ('pos_embed', 'cls_token', 'visual_embed'): # or "relative_position_bias_table" in name: group_name = 'no_decay' this_weight_decay = 0. else: group_name = 'decay' this_weight_decay = weight_decay layer_id = get_num_layer_for_vit(name, num_layers) group_name = 'layer_%d_%s' % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate**(num_layers - layer_id - 1) parameter_groups[group_name] = { 'weight_decay': this_weight_decay, 'params': [], 'param_names': [], 'lr_scale': scale, 'group_name': group_name, 'lr': scale * self.base_lr, } parameter_groups[group_name]['params'].append(param) parameter_groups[group_name]['param_names'].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { 'param_names': parameter_groups[key]['param_names'], 'lr_scale': parameter_groups[key]['lr_scale'], 'lr': parameter_groups[key]['lr'], 'weight_decay': parameter_groups[key]['weight_decay'], } print('Param groups = %s' % json.dumps(to_display, indent=2)) # state_dict = module.state_dict() # for group_name in parameter_groups: # group = parameter_groups[group_name] # for name in group["param_names"]: # group["params"].append(state_dict[name]) params.extend(parameter_groups.values())
ViT-Adapter-main
segmentation/mmcv_custom/layer_decay_optimizer_constructor.py
# Copyright (c) Open-MMLab. All rights reserved. import io import math import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module from tempfile import TemporaryDirectory import mmcv import numpy as np import torch import torchvision from mmcv.fileio import FileClient from mmcv.fileio import load as load_file from mmcv.parallel import is_module_wrapper from mmcv.runner import get_dist_info from mmcv.utils import mkdir_or_exist from scipy import interpolate from torch.nn import functional as F from torch.optim import Optimizer from torch.utils import model_zoo ENV_MMCV_HOME = 'MMCV_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' def _get_mmcv_home(): mmcv_home = os.path.expanduser( os.getenv( ENV_MMCV_HOME, os.path.join(os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # use _load_from_state_dict to enable checkpoint version control def load(module, prefix=''): # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None # break load->load reference cycle # ignore "num_batches_tracked" of BN layers missing_keys = [ key for key in all_missing_keys if 'num_batches_tracked' not in key ] if unexpected_keys: err_msg.append('unexpected key in source ' f'state_dict: {", ".join(unexpected_keys)}\n') if missing_keys: err_msg.append( f'missing keys in source state_dict: {", ".join(missing_keys)}\n') rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert( 0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: print(err_msg) def load_url_dist(url, model_dir=None, map_location='cpu'): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) return checkpoint def load_pavimodel_dist(model_path, map_location=None): """In distributed setting, this function only download checkpoint at local rank 0.""" try: from pavi import modelcloud except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) return checkpoint def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' 'use "torchvision://" instead') model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn(f'open-mmlab://{model_name} is deprecated in favor ' f'of open-mmlab://{deprecated_urls[model_name]}') model_name = deprecated_urls[model_name] model_url = model_urls[model_name] # check if is url if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist(filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print('Set warmup steps = %d' % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array([ final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters ]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) # OrderedDict is a subclass of dict if not isinstance(checkpoint, dict): raise RuntimeError( f'No state_dict found in checkpoint file {filename}') # get state_dict from checkpoint if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] elif 'module' in checkpoint: state_dict = checkpoint['module'] else: state_dict = checkpoint # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # for MoBY, load model of online branch if sorted(list(state_dict.keys()))[0].startswith('encoder'): state_dict = { k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.') } # reshape absolute position embedding for Swin if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning('Error in loading absolute_pos_embed, pass') else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view( N2, H, W, C2).permute(0, 3, 1, 2) rank, _ = get_dist_info() if 'rel_pos_bias.relative_position_bias_table' in state_dict: if rank == 0: print( 'Expand the shared relative position embedding to each layers. ' ) num_layers = model.get_num_layers() rel_pos_bias = state_dict[ 'rel_pos_bias.relative_position_bias_table'] for i in range(num_layers): state_dict['blocks.%d.attn.relative_position_bias_table' % i] = rel_pos_bias.clone() state_dict.pop('rel_pos_bias.relative_position_bias_table') all_keys = list(state_dict.keys()) for key in all_keys: if 'relative_position_index' in key: state_dict.pop(key) if 'relative_position_bias_table' in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens)**0.5) dst_size = int((dst_num_pos - num_extra_tokens)**0.5) if src_size != dst_size: if rank == 0: print('Position interpolate for %s from %dx%d to %dx%d' % (key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r**n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q**(i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print('x = {}'.format(x)) print('dx = {}'.format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to( rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int( (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5) # height (== width) for the new position embedding new_size = int(num_patches**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: if rank == 0: print('Position interpolate from %dx%d to %dx%d' % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute( 0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed # interpolate position bias table if needed relative_position_bias_table_keys = [ k for k in state_dict.keys() if 'relative_position_bias_table' in k ] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f'Error in loading {table_key}, pass') else: if L1 != L2: S1 = int(L1**0.5) S2 = int(L2**0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view( nH2, L2).permute(1, 0) # load state_dict load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def _save_to_state_dict(module, destination, prefix, keep_vars): """Saves module state to `destination` dictionary. This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. Args: module (nn.Module): The module to generate state_dict. destination (dict): A dict where state will be stored. prefix (str): The prefix for parameters and buffers used in this module. """ for name, param in module._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.detach() for name, buf in module._buffers.items(): # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d if buf is not None: destination[prefix + name] = buf if keep_vars else buf.detach() def get_state_dict(module, destination=None, prefix='', keep_vars=False): """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. This method is modified from :meth:`torch.nn.Module.state_dict` to recursively check parallel module in case that the model has a complicated structure, e.g., nn.Module(nn.Module(DDP)). Args: module (nn.Module): The module to generate state_dict. destination (OrderedDict): Returned dict for the state of the module. prefix (str): Prefix of the key. keep_vars (bool): Whether to keep the variable property of the parameters. Default: False. Returns: dict: A dictionary containing a whole state of the module. """ # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module # below is the same as torch.nn.Module.state_dict() if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() destination._metadata[prefix[:-1]] = local_metadata = dict( version=module._version) _save_to_state_dict(module, destination, prefix, keep_vars) for name, child in module._modules.items(): if child is not None: get_state_dict(child, destination, prefix + name + '.', keep_vars=keep_vars) for hook in module._state_dict_hooks.values(): hook_result = hook(module, destination, prefix, local_metadata) if hook_result is not None: destination = hook_result return destination def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
ViT-Adapter-main
segmentation/mmcv_custom/checkpoint.py
import os.path as osp import pkgutil import time from collections import OrderedDict from importlib import import_module import mmcv import torch from torch.utils import model_zoo open_mmlab_model_urls = { 'vgg16_caffe': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/vgg16_caffe-292e1171.pth', # noqa: E501 'resnet50_caffe': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet50_caffe-788b5fa3.pth', # noqa: E501 'resnet101_caffe': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet101_caffe-3ad79236.pth', # noqa: E501 'resnext50_32x4d': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext50-32x4d-0ab1a123.pth', # noqa: E501 'resnext101_32x4d': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext101_32x4d-a5af3160.pth', # noqa: E501 'resnext101_64x4d': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext101_64x4d-ee2c6f71.pth', # noqa: E501 'contrib/resnet50_gn': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet50_gn_thangvubk-ad1730dd.pth', # noqa: E501 'detectron/resnet50_gn': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet50_gn-9186a21c.pth', # noqa: E501 'detectron/resnet101_gn': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet101_gn-cac0ab98.pth', # noqa: E501 'jhu/resnet50_gn_ws': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet50_gn_ws-15beedd8.pth', # noqa: E501 'jhu/resnet101_gn_ws': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnet101_gn_ws-3e3c308c.pth', # noqa: E501 'jhu/resnext50_32x4d_gn_ws': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext50_32x4d_gn_ws-0d87ac85.pth', # noqa: E501 'jhu/resnext101_32x4d_gn_ws': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext101_32x4d_gn_ws-34ac1a9e.pth', # noqa: E501 'jhu/resnext50_32x4d_gn': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext50_32x4d_gn-c7e8b754.pth', # noqa: E501 'jhu/resnext101_32x4d_gn': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/resnext101_32x4d_gn-ac3bb84e.pth', # noqa: E501 'msra/hrnetv2_w18': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/hrnetv2_w18-00eb2006.pth', # noqa: E501 'msra/hrnetv2_w32': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/hrnetv2_w32-dc9eeb4f.pth', # noqa: E501 'msra/hrnetv2_w40': 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/pretrain/third_party/hrnetv2_w40-ed0b031c.pth', # noqa: E501 } # yapf: disable def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] own_state = module.state_dict() for name, param in state_dict.items(): if name not in own_state: unexpected_keys.append(name) continue if isinstance(param, torch.nn.Parameter): # backwards compatibility for serialized parameters param = param.data try: own_state[name].copy_(param) except Exception: raise RuntimeError( 'While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.'.format( name, own_state[name].size(), param.size())) missing_keys = set(own_state.keys()) - set(state_dict.keys()) err_msg = [] if unexpected_keys: err_msg.append('unexpected key in source state_dict: {}\n'.format( ', '.join(unexpected_keys))) if missing_keys: err_msg.append('missing keys in source state_dict: {}\n'.format( ', '.join(missing_keys))) err_msg = '\n'.join(err_msg) if err_msg: if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warn(err_msg) else: print(err_msg) def my_load_checkpoint(model, filename, map_location=None, strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Either a filepath or URL or modelzoo://xxxxxxx. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ # load checkpoint from modelzoo or file or url if filename.startswith('modelzoo://'): import torchvision model_urls = dict() for _, name, ispkg in pkgutil.walk_packages( torchvision.models.__path__): if not ispkg: _zoo = import_module('torchvision.models.{}'.format(name)) if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) model_name = filename[11:] checkpoint = model_zoo.load_url(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_name = filename[13:] checkpoint = model_zoo.load_url(open_mmlab_model_urls[model_name]) elif filename.startswith(('http://', 'https://')): checkpoint = model_zoo.load_url(filename) else: if not osp.isfile(filename): raise IOError('{} is not a checkpoint file'.format(filename)) checkpoint = torch.load(filename, map_location=map_location) # get state_dict from checkpoint if isinstance(checkpoint, OrderedDict): state_dict = checkpoint elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif isinstance(checkpoint, dict) and 'model' in checkpoint: state_dict = checkpoint['model'] # for classification weights else: state_dict = checkpoint # raise RuntimeError( # 'No state_dict found in checkpoint file {}'.format(filename)) # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in checkpoint['state_dict'].items()} # load state_dict if hasattr(model, 'module'): load_state_dict(model.module, state_dict, strict, logger) else: load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError('meta must be a dict or None, but got {}'.format( type(meta))) meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) mmcv.mkdir_or_exist(osp.dirname(filename)) if hasattr(model, 'module'): model = model.module checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(model.state_dict()) } if optimizer is not None: checkpoint['optimizer'] = optimizer.state_dict() torch.save(checkpoint, filename)
ViT-Adapter-main
segmentation/mmcv_custom/my_checkpoint.py
# Copyright (c) Shanghai AI Lab. All rights reserved. from .checkpoint import load_checkpoint from .customized_text import CustomizedTextLoggerHook from .layer_decay_optimizer_constructor import LayerDecayOptimizerConstructor from .my_checkpoint import my_load_checkpoint __all__ = [ 'LayerDecayOptimizerConstructor', 'CustomizedTextLoggerHook', 'load_checkpoint', 'my_checkpoint', ]
ViT-Adapter-main
segmentation/mmcv_custom/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime from collections import OrderedDict import mmcv import torch from mmcv.runner import HOOKS, TextLoggerHook @HOOKS.register_module() class CustomizedTextLoggerHook(TextLoggerHook): """Customized Text Logger hook. This logger prints out both lr and layer_0_lr. """ def _log_info(self, log_dict, runner): # print exp name for users to distinguish experiments # at every ``interval_exp_name`` iterations and the end of each epoch if runner.meta is not None and 'exp_name' in runner.meta: if (self.every_n_iters(runner, self.interval_exp_name)) or ( self.by_epoch and self.end_of_epoch(runner)): exp_info = f'Exp name: {runner.meta["exp_name"]}' runner.logger.info(exp_info) if log_dict['mode'] == 'train': lr_str = {} for lr_type in ['lr', 'layer_0_lr']: if isinstance(log_dict[lr_type], dict): lr_str[lr_type] = [] for k, val in log_dict[lr_type].items(): lr_str.append(f'{lr_type}_{k}: {val:.3e}') lr_str[lr_type] = ' '.join(lr_str) else: lr_str[lr_type] = f'{lr_type}: {log_dict[lr_type]:.3e}' # by epoch: Epoch [4][100/1000] # by iter: Iter [100/100000] if self.by_epoch: log_str = f'Epoch [{log_dict["epoch"]}]' \ f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t' else: log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t' log_str += f'{lr_str["lr"]}, {lr_str["layer_0_lr"]}, ' if 'time' in log_dict.keys(): self.time_sec_tot += (log_dict['time'] * self.interval) time_sec_avg = self.time_sec_tot / (runner.iter - self.start_iter + 1) eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) eta_str = str(datetime.timedelta(seconds=int(eta_sec))) log_str += f'eta: {eta_str}, ' log_str += f'time: {log_dict["time"]:.3f}, ' \ f'data_time: {log_dict["data_time"]:.3f}, ' # statistic memory if torch.cuda.is_available(): log_str += f'memory: {log_dict["memory"]}, ' else: # val/test time # here 1000 is the length of the val dataloader # by epoch: Epoch[val] [4][1000] # by iter: Iter[val] [1000] if self.by_epoch: log_str = f'Epoch({log_dict["mode"]}) ' \ f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t' else: log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t' log_items = [] for name, val in log_dict.items(): # TODO: resolve this hack # these items have been in log_str if name in [ 'mode', 'Epoch', 'iter', 'lr', 'layer_0_lr', 'time', 'data_time', 'memory', 'epoch' ]: continue if isinstance(val, float): val = f'{val:.4f}' log_items.append(f'{name}: {val}') log_str += ', '.join(log_items) runner.logger.info(log_str) def log(self, runner): if 'eval_iter_num' in runner.log_buffer.output: # this doesn't modify runner.iter and is regardless of by_epoch cur_iter = runner.log_buffer.output.pop('eval_iter_num') else: cur_iter = self.get_iter(runner, inner_iter=True) log_dict = OrderedDict(mode=self.get_mode(runner), epoch=self.get_epoch(runner), iter=cur_iter) # record lr and layer_0_lr cur_lr = runner.current_lr() if isinstance(cur_lr, list): log_dict['layer_0_lr'] = min(cur_lr) log_dict['lr'] = max(cur_lr) else: assert isinstance(cur_lr, dict) log_dict['lr'], log_dict['layer_0_lr'] = {}, {} for k, lr_ in cur_lr.items(): assert isinstance(lr_, list) log_dict['layer_0_lr'].update({k: min(lr_)}) log_dict['lr'].update({k: max(lr_)}) if 'time' in runner.log_buffer.output: # statistic memory if torch.cuda.is_available(): log_dict['memory'] = self._get_max_memory(runner) log_dict = dict(log_dict, **runner.log_buffer.output) self._log_info(log_dict, runner) self._dump_log(log_dict, runner) return log_dict
ViT-Adapter-main
segmentation/mmcv_custom/customized_text.py
# yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook', by_epoch=False), # dict(type='TensorboardLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] cudnn_benchmark = True
ViT-Adapter-main
segmentation/configs/_base_/default_runtime.py
# dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 1024) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, data_root=data_root, img_dir='leftImg8bit/train', ann_dir='gtFine/train', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='leftImg8bit/val', ann_dir='gtFine/val', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='leftImg8bit/val', ann_dir='gtFine/val', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/cityscapes.py
# dataset settings dataset_type = 'NYUDepthV2Dataset' data_root = 'data/nyu_depth_v2/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (480, 480) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(640, 480), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 480), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='image', ann_dir='label40', split='train.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='image', ann_dir='label40', split='test.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='image', ann_dir='label40', split='test.txt', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/nyu_depth_v2.py
# dataset settings dataset_type = 'PascalContextDataset' data_root = 'data/VOCdevkit/VOC2010/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (520, 520) crop_size = (480, 480) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClassContext', split='ImageSets/SegmentationContext/train.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClassContext', split='ImageSets/SegmentationContext/val.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClassContext', split='ImageSets/SegmentationContext/val.txt', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/pascal_context.py
# dataset settings dataset_type = 'LoveDADataset' data_root = 'data/loveDA' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1024, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='img_dir/train', ann_dir='ann_dir/train', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='img_dir/val', ann_dir='ann_dir/val', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='img_dir/val', ann_dir='ann_dir/val', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/loveda.py
# dataset settings dataset_type = 'MapillaryDataset' data_root = 'data/Mapillary/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='MapillaryHack'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 1.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, data_root='data/Mapillary/', img_dir=['training/images', 'validation/images'], ann_dir=['training/labels', 'validation/labels'], pipeline=train_pipeline), val=dict( type='CityscapesDataset', data_root='data/cityscapes/', img_dir='leftImg8bit/val', ann_dir='gtFine/val', pipeline=test_pipeline), test=dict( type='CityscapesDataset', data_root='data/cityscapes/', img_dir='leftImg8bit/val', ann_dir='gtFine/val', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/mapillary_896x896.py
_base_ = './cityscapes.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (1024, 1024) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/cityscapes_1024x1024.py
_base_ = './pascal_voc12.py' # dataset settings data = dict( train=dict( ann_dir=['SegmentationClass', 'SegmentationClassAug'], split=[ 'ImageSets/Segmentation/train.txt', 'ImageSets/Segmentation/aug.txt' ]))
ViT-Adapter-main
segmentation/configs/_base_/datasets/pascal_voc12_aug.py
# dataset settings dataset_type = 'PascalContextDataset59' data_root = 'data/VOCdevkit/VOC2010/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (520, 520) crop_size = (480, 480) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClassContext', split='ImageSets/SegmentationContext/train.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClassContext', split='ImageSets/SegmentationContext/val.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClassContext', split='ImageSets/SegmentationContext/val.txt', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/pascal_context_59.py
# dataset settings dataset_type = 'HRFDataset' data_root = 'data/HRF' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (2336, 3504) crop_size = (256, 256) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='RepeatDataset', times=40000, dataset=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline)), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/hrf.py
# dataset settings dataset_type = 'COCOStuffDataset' data_root = 'data/coco_stuff164k' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/train2017', ann_dir='annotations/train2017', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/val2017', ann_dir='annotations/val2017', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/val2017', ann_dir='annotations/val2017', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/coco-stuff164k.py
_base_ = './cityscapes.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (768, 768) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2049, 1025), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/cityscapes_768x768.py
# dataset settings dataset_type = 'COCOStuffDataset' data_root = 'data/coco_stuff10k' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, reduce_zero_label=True, img_dir='images/train2014', ann_dir='annotations/train2014', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, reduce_zero_label=True, img_dir='images/test2014', ann_dir='annotations/test2014', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, reduce_zero_label=True, img_dir='images/test2014', ann_dir='annotations/test2014', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/coco-stuff10k.py
# dataset settings dataset_type = 'PotsdamDataset' data_root = 'data/potsdam' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(512, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='img_dir/train', ann_dir='ann_dir/train', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='img_dir/val', ann_dir='ann_dir/val', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='img_dir/val', ann_dir='ann_dir/val', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/potsdam.py
_base_ = './cityscapes.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/cityscapes_896x896.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/ade20k.py
# dataset settings dataset_type = 'ChaseDB1Dataset' data_root = 'data/CHASE_DB1' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (960, 999) crop_size = (128, 128) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='RepeatDataset', times=40000, dataset=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline)), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/chase_db1.py
_base_ = './cityscapes.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (832, 832) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/cityscapes_832x832.py
_base_ = './cityscapes.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (769, 769) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2049, 1025), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/cityscapes_769x769.py
# dataset settings dataset_type = 'STAREDataset' data_root = 'data/STARE' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (605, 700) crop_size = (128, 128) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='RepeatDataset', times=40000, dataset=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline)), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/stare.py
# dataset settings dataset_type = 'DRIVEDataset' data_root = 'data/DRIVE' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (584, 565) crop_size = (64, 64) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='RepeatDataset', times=40000, dataset=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline)), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/drive.py
# dataset settings dataset_type = 'PascalVOCDataset' data_root = 'data/VOCdevkit/VOC2012' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/train.txt', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/val.txt', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', split='ImageSets/Segmentation/val.txt', pipeline=test_pipeline))
ViT-Adapter-main
segmentation/configs/_base_/datasets/pascal_voc12.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='FCNHead', in_channels=2048, in_index=3, channels=512, num_convs=2, concat_input=True, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/fcn_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='PSPHead', in_channels=2048, in_index=3, channels=512, pool_scales=(1, 2, 3, 6), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/pspnet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) backbone_norm_cfg = dict(type='LN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='SwinTransformer', pretrain_img_size=224, embed_dims=96, patch_size=4, window_size=7, mlp_ratio=4, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], strides=(4, 2, 2, 2), out_indices=(0, 1, 2, 3), qkv_bias=True, qk_scale=None, patch_norm=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, use_abs_pos_embed=False, act_cfg=dict(type='GELU'), norm_cfg=backbone_norm_cfg), decode_head=dict( type='UPerHead', in_channels=[96, 192, 384, 768], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/upernet_swin.py
# model settings backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth', backbone=dict( type='VisionTransformer', img_size=(768, 768), patch_size=16, in_channels=3, embed_dims=1024, num_layers=24, num_heads=16, out_indices=(9, 14, 19, 23), drop_rate=0.1, norm_cfg=backbone_norm_cfg, with_cls_token=True, interpolate_mode='bilinear', ), decode_head=dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=3, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=1, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=0, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=1, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=1, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=1, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=2, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=1, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)) ], train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/setr_naive.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='NLHead', in_channels=2048, in_index=3, channels=512, dropout_ratio=0.1, reduction=2, use_scale=True, mode='embedded_gaussian', num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/nonlocal_r50-d8.py
norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa backbone=dict( type='VisionTransformer', img_size=224, embed_dims=768, num_layers=12, num_heads=12, out_indices=(2, 5, 8, 11), final_norm=False, with_cls_token=True, output_cls_token=True), decode_head=dict( type='DPTHead', in_channels=(768, 768, 768, 768), channels=256, embed_dims=768, post_process_channels=[96, 192, 384, 768], num_classes=150, readout_type='project', input_transform='multiple_select', in_index=(0, 1, 2, 3), norm_cfg=norm_cfg, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=None, # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole')) # yapf: disable
ViT-Adapter-main
segmentation/configs/_base_/models/dpt_vit-b16.py
# model_cfg num_things_classes = 80 num_stuff_classes = 91 num_classes = num_things_classes + num_stuff_classes norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoderMask2Former', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside # strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, in_index=[0, 1, 2, 3], num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/mask2former_beit_cocostuff.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://msra/hrnetv2_w18', backbone=dict( type='HRNet', norm_cfg=norm_cfg, norm_eval=False, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(18, 36)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(18, 36, 72)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(18, 36, 72, 144)))), decode_head=dict( type='FCNHead', in_channels=[18, 36, 72, 144], in_index=(0, 1, 2, 3), channels=sum([18, 36, 72, 144]), input_transform='resize_concat', kernel_size=1, num_convs=1, concat_input=False, dropout_ratio=-1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/fcn_hr18.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='ISAHead', in_channels=2048, in_index=3, channels=512, isa_channels=256, down_factor=(8, 8), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/isanet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='EncHead', in_channels=[512, 1024, 2048], in_index=(1, 2, 3), channels=512, num_codes=32, use_se_loss=True, add_lateral=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_se_decode=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/encnet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='CGNet', norm_cfg=norm_cfg, in_channels=3, num_channels=(32, 64, 128), num_blocks=(3, 21), dilations=(2, 4), reductions=(8, 16)), decode_head=dict( type='FCNHead', in_channels=256, in_index=2, channels=256, num_convs=0, concat_input=False, dropout_ratio=0, num_classes=19, norm_cfg=norm_cfg, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0, class_weight=[ 2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352, 10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905, 10.347791, 6.3927646, 10.226669, 10.241062, 10.280587, 10.396974, 10.055647 ])), # model training and testing settings train_cfg=dict(sampler=None), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/cgnet.py
# model_cfg num_things_classes = 29 num_stuff_classes = 30 num_classes = num_things_classes + num_stuff_classes norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoderMask2Former', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside # strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, in_index=[0, 1, 2, 3], num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/mask2former_beit_pascal.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='ICNet', backbone_cfg=dict( type='ResNetV1c', in_channels=3, depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), in_channels=3, layer_channels=(512, 2048), light_branch_middle_channels=32, psp_out_channels=512, out_channels=(64, 256, 256), norm_cfg=norm_cfg, align_corners=False, ), neck=dict( type='ICNeck', in_channels=(64, 256, 256), out_channels=128, norm_cfg=norm_cfg, align_corners=False), decode_head=dict( type='FCNHead', in_channels=128, channels=128, num_convs=1, in_index=2, dropout_ratio=0, num_classes=19, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='FCNHead', in_channels=128, channels=128, num_convs=1, num_classes=19, in_index=0, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=128, channels=128, num_convs=1, num_classes=19, in_index=1, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/icnet_r50-d8.py
# model_cfg num_things_classes = 100 num_stuff_classes = 50 num_classes = num_things_classes + num_stuff_classes norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoderMask2Former', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside # strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, in_index=[0, 1, 2, 3], num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/mask2former_beit.py
# model settings backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth', backbone=dict( type='VisionTransformer', img_size=(768, 768), patch_size=16, in_channels=3, embed_dims=1024, num_layers=24, num_heads=16, out_indices=(5, 11, 17, 23), drop_rate=0.1, norm_cfg=backbone_norm_cfg, with_cls_token=False, interpolate_mode='bilinear', ), neck=dict( type='MLANeck', in_channels=[1024, 1024, 1024, 1024], out_channels=256, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), ), decode_head=dict( type='SETRMLAHead', in_channels=(256, 256, 256, 256), channels=512, in_index=(0, 1, 2, 3), dropout_ratio=0, mla_channels=128, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='FCNHead', in_channels=256, channels=256, in_index=0, dropout_ratio=0, num_convs=0, kernel_size=1, concat_input=False, num_classes=19, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=256, channels=256, in_index=1, dropout_ratio=0, num_convs=0, kernel_size=1, concat_input=False, num_classes=19, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=256, channels=256, in_index=2, dropout_ratio=0, num_convs=0, kernel_size=1, concat_input=False, num_classes=19, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=256, channels=256, in_index=3, dropout_ratio=0, num_convs=0, kernel_size=1, concat_input=False, num_classes=19, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), ], train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/setr_mla.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='CCHead', in_channels=2048, in_index=3, channels=512, recurrence=2, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/ccnet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='GCHead', in_channels=2048, in_index=3, channels=512, ratio=1 / 4., pooling_type='att', fusion_types=('channel_add', ), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/gcnet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='UNet', in_channels=3, base_channels=64, num_stages=5, strides=(1, 1, 1, 1, 1), enc_num_convs=(2, 2, 2, 2, 2), dec_num_convs=(2, 2, 2, 2), downsamples=(True, True, True, True), enc_dilations=(1, 1, 1, 1, 1), dec_dilations=(1, 1, 1, 1), with_cp=False, conv_cfg=None, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), upsample_cfg=dict(type='InterpConv'), norm_eval=False), decode_head=dict( type='ASPPHead', in_channels=64, in_index=4, channels=16, dilations=(1, 12, 24, 36), dropout_ratio=0.1, num_classes=2, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=128, in_index=3, channels=64, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=2, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='slide', crop_size=256, stride=170))
ViT-Adapter-main
segmentation/configs/_base_/models/deeplabv3_unet_s5-d16.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='DNLHead', in_channels=2048, in_index=3, channels=512, dropout_ratio=0.1, reduction=2, use_scale=True, mode='embedded_gaussian', num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/dnl_r50-d8.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='UPerHead', in_channels=[384, 384, 384, 384], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/upernet_beit.py
# model_cfg num_things_classes = 8 num_stuff_classes = 11 num_classes = num_things_classes + num_stuff_classes norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoderMask2Former', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside # strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, in_index=[0, 1, 2, 3], num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/mask2former_beit_cityscapes.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01) model = dict( type='EncoderDecoder', backbone=dict( type='FastSCNN', downsample_dw_channels=(32, 48), global_in_channels=64, global_block_channels=(64, 96, 128), global_block_strides=(2, 2, 1), global_out_channels=128, higher_in_channels=64, lower_in_channels=128, fusion_out_channels=128, out_indices=(0, 1, 2), norm_cfg=norm_cfg, align_corners=False), decode_head=dict( type='DepthwiseSeparableFCNHead', in_channels=128, channels=128, concat_input=False, num_classes=19, in_index=-1, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1)), auxiliary_head=[ dict( type='FCNHead', in_channels=128, channels=32, num_convs=1, num_classes=19, in_index=-2, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.4)), dict( type='FCNHead', in_channels=64, channels=32, num_convs=1, num_classes=19, in_index=-3, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.4)), ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/fast_scnn.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 1, 1), strides=(1, 2, 2, 2), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='UPerHead', in_channels=[256, 512, 1024, 2048], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/upernet_r50.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='UNet', in_channels=3, base_channels=64, num_stages=5, strides=(1, 1, 1, 1, 1), enc_num_convs=(2, 2, 2, 2, 2), dec_num_convs=(2, 2, 2, 2), downsamples=(True, True, True, True), enc_dilations=(1, 1, 1, 1, 1), dec_dilations=(1, 1, 1, 1), with_cp=False, conv_cfg=None, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), upsample_cfg=dict(type='InterpConv'), norm_eval=False), decode_head=dict( type='PSPHead', in_channels=64, in_index=4, channels=16, pool_scales=(1, 2, 3, 6), dropout_ratio=0.1, num_classes=2, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=128, in_index=3, channels=64, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=2, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='slide', crop_size=256, stride=170))
ViT-Adapter-main
segmentation/configs/_base_/models/pspnet_unet_s5-d16.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='MixVisionTransformer', in_channels=3, embed_dims=32, num_stages=4, num_layers=[2, 2, 2, 2], num_heads=[1, 2, 5, 8], patch_sizes=[7, 3, 3, 3], sr_ratios=[8, 4, 2, 1], out_indices=(0, 1, 2, 3), mlp_ratio=4, qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1), decode_head=dict( type='SegformerHead', in_channels=[32, 64, 160, 256], in_index=[0, 1, 2, 3], channels=256, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/segformer_mit-b0.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='UNet', in_channels=3, base_channels=64, num_stages=5, strides=(1, 1, 1, 1, 1), enc_num_convs=(2, 2, 2, 2, 2), dec_num_convs=(2, 2, 2, 2), downsamples=(True, True, True, True), enc_dilations=(1, 1, 1, 1, 1), dec_dilations=(1, 1, 1, 1), with_cp=False, conv_cfg=None, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), upsample_cfg=dict(type='InterpConv'), norm_eval=False), decode_head=dict( type='FCNHead', in_channels=64, in_index=4, channels=64, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=2, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=128, in_index=3, channels=64, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=2, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='slide', crop_size=256, stride=170))
ViT-Adapter-main
segmentation/configs/_base_/models/fcn_unet_s5-d16.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, dilations=(1, 1, 2, 4), strides=(1, 2, 2, 2), out_indices=(1, 2, 3), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), neck=dict( type='JPU', in_channels=(512, 1024, 2048), mid_channels=512, start_level=0, end_level=-1, dilations=(1, 2, 4, 8), align_corners=False, norm_cfg=norm_cfg), decode_head=dict( type='PSPHead', in_channels=2048, in_index=2, channels=512, pool_scales=(1, 2, 3, 6), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=1, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/fastfcn_r50-d32_jpu_psp.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='DAHead', in_channels=2048, in_index=3, channels=512, pam_channels=64, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/danet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='CascadeEncoderDecoder', num_stages=2, pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=[ dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='OCRHead', in_channels=2048, in_index=3, channels=512, ocr_channels=256, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)) ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/ocrnet_r50-d8.py
# model_cfg norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='MaskFormerHead', in_channels=[384, 384, 384, 384], # pass to pixel_decoder inside channels=256, in_index=[0, 1, 2, 3], num_classes=150, out_channels=256, num_queries=100, pixel_decoder=dict( type='PixelDecoder', norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU')), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.1, proj_drop=0.1, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.1, dropout_layer=None, add_identity=True), # the following parameter was not used, # just make current api happy feedforward_channels=2048, operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', bg_cls_weight=0.1, use_sigmoid=False, loss_weight=1.0, reduction='mean', class_weight=1.0), loss_mask=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, reduction='mean', loss_weight=20.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=1.0), assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=1.0), mask_cost=dict(type='MaskFocalLossCost', weight=20.0), dice_cost=dict( type='DiceCost', weight=1.0, pred_act=True, eps=1.0))), # training and testing settings train_cfg=dict(), test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)), ) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/maskformer_beit.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='CascadeEncoderDecoder', num_stages=2, pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 1, 1), strides=(1, 2, 2, 2), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=4), decode_head=[ dict( type='FPNHead', in_channels=[256, 256, 256, 256], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=-1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='PointHead', in_channels=[256], in_index=[0], channels=256, num_fcs=3, coarse_pred_each_layer=True, dropout_ratio=-1, num_classes=19, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)) ], # model training and testing settings train_cfg=dict( num_points=2048, oversample_ratio=3, importance_sample_ratio=0.75), test_cfg=dict( mode='whole', subdivision_steps=2, subdivision_num_points=8196, scale_factor=2))
ViT-Adapter-main
segmentation/configs/_base_/models/pointrend_r50.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='PSAHead', in_channels=2048, in_index=3, channels=512, mask_size=(97, 97), psa_type='bi-direction', compact=False, shrink_factor=2, normalization_factor=1.0, psa_softmax=True, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/psanet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='BiSeNetV2', detail_channels=(64, 64, 128), semantic_channels=(16, 32, 64, 128), semantic_expansion_ratio=6, bga_channels=128, out_indices=(0, 1, 2, 3, 4), init_cfg=None, align_corners=False), decode_head=dict( type='FCNHead', in_channels=128, in_index=0, channels=1024, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='FCNHead', in_channels=16, channels=16, num_convs=2, num_classes=19, in_index=1, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='FCNHead', in_channels=32, channels=64, num_convs=2, num_classes=19, in_index=2, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='FCNHead', in_channels=64, channels=256, num_convs=2, num_classes=19, in_index=3, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='FCNHead', in_channels=128, channels=1024, num_convs=2, num_classes=19, in_index=4, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/bisenetv2.py
# model_cfg num_things_classes = 1 num_stuff_classes = 5 num_classes = num_things_classes + num_stuff_classes norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoderMask2Former', pretrained=None, backbone=dict( type='BEiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside # strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, in_index=[0, 1, 2, 3], num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/mask2former_beit_potsdam.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='CascadeEncoderDecoder', num_stages=2, pretrained='open-mmlab://msra/hrnetv2_w18', backbone=dict( type='HRNet', norm_cfg=norm_cfg, norm_eval=False, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(18, 36)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(18, 36, 72)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(18, 36, 72, 144)))), decode_head=[ dict( type='FCNHead', in_channels=[18, 36, 72, 144], channels=sum([18, 36, 72, 144]), in_index=(0, 1, 2, 3), input_transform='resize_concat', kernel_size=1, num_convs=1, concat_input=False, dropout_ratio=-1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='OCRHead', in_channels=[18, 36, 72, 144], in_index=(0, 1, 2, 3), input_transform='resize_concat', channels=512, ocr_channels=256, dropout_ratio=-1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/ocrnet_hr18.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='DepthwiseSeparableASPPHead', in_channels=2048, in_index=3, channels=512, dilations=(1, 12, 24, 36), c1_in_channels=256, c1_channels=48, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/deeplabv3plus_r50-d8.py
# model settings backbone_norm_cfg = dict(type='LN') norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='PCPVT', init_cfg=dict( type='Pretrained', checkpoint='pretrained/pcpvt_small.pth'), in_channels=3, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], mlp_ratios=[8, 8, 4, 4], out_indices=(0, 1, 2, 3), qkv_bias=True, norm_cfg=backbone_norm_cfg, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], norm_after_stage=False, drop_rate=0.0, attn_drop_rate=0., drop_path_rate=0.2), decode_head=dict( type='UPerHead', in_channels=[64, 128, 320, 512], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=320, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/twins_pcpvt-s_upernet.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='DMHead', in_channels=2048, in_index=3, channels=512, filter_sizes=(1, 3, 5, 7), dropout_ratio=0.1, num_classes=19, norm_cfg=dict(type='SyncBN', requires_grad=True), align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/dmnet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='pretrain/jx_vit_base_p16_224-80ecf9dd.pth', backbone=dict( type='VisionTransformer', img_size=(512, 512), patch_size=16, in_channels=3, embed_dims=768, num_layers=12, num_heads=12, mlp_ratio=4, out_indices=(2, 5, 8, 11), qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, with_cls_token=True, norm_cfg=dict(type='LN', eps=1e-6), act_cfg=dict(type='GELU'), norm_eval=False, interpolate_mode='bicubic'), neck=dict( type='MultiLevelNeck', in_channels=[768, 768, 768, 768], out_channels=768, scales=[4, 2, 1, 0.5]), decode_head=dict( type='UPerHead', in_channels=[768, 768, 768, 768], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=768, in_index=3, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole')) # yapf: disable
ViT-Adapter-main
segmentation/configs/_base_/models/upernet_vit-b16_ln_mln.py
# model settings norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='MobileNetV3', arch='large', out_indices=(1, 3, 16), norm_cfg=norm_cfg), decode_head=dict( type='LRASPPHead', in_channels=(16, 24, 960), in_index=(0, 1, 2), channels=128, input_transform='multiple_select', dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/lraspp_m-v3-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='ASPPHead', in_channels=2048, in_index=3, channels=512, dilations=(1, 12, 24, 36), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/deeplabv3_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 1, 1), strides=(1, 2, 2, 2), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=4), decode_head=dict( type='FPNHead', in_channels=[256, 256, 256, 256], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/fpn_r50.py
# model settings backbone_norm_cfg = dict(type='LN') norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='PCPVT', init_cfg=dict( type='Pretrained', checkpoint='pretrained/pcpvt_small.pth'), in_channels=3, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], mlp_ratios=[8, 8, 4, 4], out_indices=(0, 1, 2, 3), qkv_bias=True, norm_cfg=backbone_norm_cfg, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], norm_after_stage=False, drop_rate=0.0, attn_drop_rate=0., drop_path_rate=0.2), neck=dict( type='FPN', in_channels=[64, 128, 320, 512], out_channels=256, num_outs=4), decode_head=dict( type='FPNHead', in_channels=[256, 256, 256, 256], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/twins_pcpvt-s_fpn.py
# model_cfg num_things_classes = 0 num_stuff_classes = 2 num_classes = num_things_classes + num_stuff_classes norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoderMask2Former', pretrained=None, backbone=dict( type='BEiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside # strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, in_index=[0, 1, 2, 3], num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # find_unused_parameters = True
ViT-Adapter-main
segmentation/configs/_base_/models/mask2former_beit_chase_db1.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='ANNHead', in_channels=[1024, 2048], in_index=[2, 3], channels=512, project_channels=256, query_scales=(1, ), key_pool_scales=(1, 3, 6, 8), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/ann_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='BiSeNetV1', in_channels=3, context_channels=(128, 256, 512), spatial_channels=(64, 64, 64, 128), out_indices=(0, 1, 2), out_channels=256, backbone_cfg=dict( type='ResNet', in_channels=3, depth=18, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 1, 1), strides=(1, 2, 2, 2), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), norm_cfg=norm_cfg, align_corners=False, init_cfg=None), decode_head=dict( type='FCNHead', in_channels=256, in_index=0, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='FCNHead', in_channels=128, channels=64, num_convs=1, num_classes=19, in_index=1, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='FCNHead', in_channels=128, channels=64, num_convs=1, num_classes=19, in_index=2, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ], # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/bisenetv1_r18-d32.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='APCHead', in_channels=2048, in_index=3, channels=512, pool_scales=(1, 2, 3, 6), dropout_ratio=0.1, num_classes=19, norm_cfg=dict(type='SyncBN', requires_grad=True), align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/apcnet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 2, 4), strides=(1, 2, 1, 1), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), decode_head=dict( type='EMAHead', in_channels=2048, in_index=3, channels=256, ema_channels=512, num_bases=64, num_stages=3, momentum=0.1, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/emanet_r50-d8.py
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='ERFNet', in_channels=3, enc_downsample_channels=(16, 64, 128), enc_stage_non_bottlenecks=(5, 8), enc_non_bottleneck_dilations=(2, 4, 8, 16), enc_non_bottleneck_channels=(64, 128), dec_upsample_channels=(64, 16), dec_stages_non_bottleneck=(2, 2), dec_non_bottleneck_channels=(64, 16), dropout_ratio=0.1, init_cfg=None), decode_head=dict( type='FCNHead', in_channels=16, channels=128, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/erfnet_fcn.py
# model settings backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth', backbone=dict( type='VisionTransformer', img_size=(768, 768), patch_size=16, in_channels=3, embed_dims=1024, num_layers=24, num_heads=16, out_indices=(9, 14, 19, 23), drop_rate=0.1, norm_cfg=backbone_norm_cfg, with_cls_token=True, interpolate_mode='bilinear', ), decode_head=dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=3, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=4, up_scale=2, kernel_size=3, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=[ dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=0, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=3, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=1, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=3, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='SETRUPHead', in_channels=1024, channels=256, in_index=2, num_classes=19, dropout_ratio=0, norm_cfg=norm_cfg, num_convs=1, up_scale=4, kernel_size=3, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), ], train_cfg=dict(), test_cfg=dict(mode='whole'))
ViT-Adapter-main
segmentation/configs/_base_/models/setr_pup.py