python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import unittest import torch SKIP_TEST = None try: from apex.contrib.transducer import TransducerJoint from apex.contrib.transducer import _transducer_ref as transducer_ref except ImportError as e: SKIP_TEST = e @unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") class TransducerJointTest(unittest.TestCase): def setUp(self, seed=1234): torch.manual_seed(seed) def gen_input(self, for_vector_kernel): self.B = 4 T_min = 51 T_max = 101 U_min = 12 U_max = 25 if for_vector_kernel: H = 512 else: H = 509 dtype = torch.float16 device = "cuda" self.f_tst = torch.randn((self.B, T_max, H), dtype=dtype, requires_grad=True, device=device) self.g_tst = torch.randn((self.B, U_max, H), dtype=dtype, requires_grad=True, device=device) self.h_grad = torch.randn(self.B, T_max, U_max, H, dtype=dtype, device=device) self.f_len = torch.randint(T_min, T_max+1, (self.B,), dtype=torch.int, device=device) self.g_len = torch.randint(U_min, U_max+1, (self.B,), dtype=torch.int, device=device) self.f_len[torch.randint(0, self.B, (1,)).item()] = T_max self.g_len[torch.randint(0, self.B, (1,)).item()] = U_max self.dropout_prob = 0.5 # Make sure gradients from out-of-bound locations are zero. This should be guaranteed by # the loss function for b in range(self.B): self.h_grad[b, self.f_len[b]:, :, :] = 0 self.h_grad[b, :, self.g_len[b]:, :] = 0 self.h_grad_packed = self._pack(self.h_grad, self.f_len, self.g_len) def _pack(self, x, f_len, g_len): B = x.size(0) list_x = [] for b in range(B): list_x_row = [x[b, t, :g_len[b]] for t in range(f_len[b])] x_row = torch.cat(list_x_row) list_x.append(x_row) x_packed = torch.cat(list_x).data.clone() x_packed.requires_grad = True batch_offset = torch.cumsum(f_len * g_len, dim=0) return x_packed def _unpack(self, x, f_len, g_len): batch_offset = torch.cumsum(f_len * g_len, dim=0) x_unpacked = torch.zeros_like(self.h_grad, dtype=torch.uint8) B = self.h_grad.size(0) H = self.h_grad.size(-1) for b in range(B): my_batch_offset = 0 if b == 0 else batch_offset[b-1] my_f_len = f_len[b] my_g_len = g_len[b] for t in range(my_f_len): x_unpacked[b, t, :my_g_len] = x[my_batch_offset + t*my_g_len : my_batch_offset + t*my_g_len + my_g_len] return x_unpacked def run_transducer_joint(self, for_vector_kernel, pack_output, relu, dropout): self.gen_input(for_vector_kernel=for_vector_kernel) # Generate reference f_ref = self.f_tst.data.clone() g_ref = self.g_tst.data.clone() f_ref.requires_grad = True g_ref.requires_grad = True my_joint = TransducerJoint(pack_output=pack_output, relu=relu, dropout=dropout, dropout_prob=self.dropout_prob, probe_mask=True) if not pack_output: h_tst = my_joint( f=self.f_tst, g=self.g_tst, f_len=self.f_len, g_len=self.g_len) h_tst.backward(self.h_grad) if dropout: mask = my_joint.mask_probe[0] else: batch_offset = torch.cumsum(self.f_len * self.g_len, dim=0) h_tst = my_joint( f=self.f_tst, g=self.g_tst, f_len=self.f_len, g_len=self.g_len, batch_offset=batch_offset, packed_batch=batch_offset[-1]) h_tst.backward(self.h_grad_packed) if dropout: mask_packed = my_joint.mask_probe[0] mask = self._unpack(mask_packed, self.f_len, self.g_len) # reference h_ref, f_grad_ref, g_grad_ref \ = transducer_ref.transducer_joint_reference(f=f_ref, g=g_ref, h_grad=self.h_grad, f_len=self.f_len, g_len=self.g_len, pack_output=pack_output, relu=relu, dropout=dropout, dropout_prob=self.dropout_prob, mask=mask if dropout else None) f_grad_tst = self.f_tst.grad g_grad_tst = self.g_tst.grad self.assertTrue(torch.allclose(h_ref, h_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(f_grad_ref, f_grad_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(g_grad_ref, g_grad_tst, atol=1e-4, rtol=1e-4)) def test_transducer_joint(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=False, dropout=False) def test_transducer_joint_vec(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=False, dropout=False) def test_transducer_joint_pack(self): self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=False, dropout=False) def test_transducer_joint_vec_pack(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=False, dropout=False) def test_transducer_joint_relu(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=False) def test_transducer_joint_vec_relu(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=True, dropout=False) def test_transducer_joint_pack_relu(self): self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=True, dropout=False) def test_transducer_joint_vec_pack_relu(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=False) @unittest.expectedFailure def test_transducer_joint_relu_dropout(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=True) @unittest.expectedFailure def test_transducer_joint_vec_relu_dropout(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=True, dropout=True) @unittest.expectedFailure def test_transducer_joint_pack_relu_dropout(self): self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=True, dropout=True) @unittest.expectedFailure def test_transducer_joint_vec_pack_relu_dropout(self): self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=True) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/apex/contrib/test/transducer/test_transducer_joint.py
import unittest import torch SKIP_TEST = None try: from apex.contrib.transducer import TransducerLoss from apex.contrib.transducer import _transducer_ref as transducer_ref except ImportError as e: SKIP_TEST = e @unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") class TransducerLossTest(unittest.TestCase): def setUp(self, seed=1234): torch.manual_seed(seed) def gen_input(self, scalar_t, for_vector_kernel): self.B = 5 T_min = 23 T_max = 51 U_min = 12 U_max = 25 V = 16 if for_vector_kernel else 14 self.blank_idx = V - 1 device = "cuda" self.x_tst = torch.randn((self.B, T_max, U_max, V), dtype=scalar_t, requires_grad=True, device=device) self.y = torch.randint(0, self.blank_idx, (self.B, U_max-1), dtype=torch.int, device=device) self.f_len = torch.randint(T_min, T_max+1, (self.B,), dtype=torch.int, device=device) self.y_len = torch.randint(U_min-1, U_max, (self.B,), dtype=torch.int, device=device) self.f_len[torch.randint(0, self.B, (1,)).item()] = T_max self.y_len[torch.randint(0, self.B, (1,)).item()] = U_max-1 self.x_tst_packed, self.batch_offset = self._pack(self.x_tst) # Generate reference x_ref = self.x_tst.data.clone() x_ref.requires_grad = True loss_grad = torch.ones(x_ref.size(0), dtype=x_ref.dtype, device=x_ref.device)/x_ref.size(0) _, _, self.grad_ref, self.loss_ref \ = transducer_ref.transducer_loss_reference( x=x_ref, label=self.y, f_len=self.f_len, y_len=self.y_len, blank_idx=self.blank_idx, loss_grad=loss_grad) def _pack(self, x): list_x = [] for b in range(self.B): list_x_row = [x[b, t, : self.y_len[b]+1] for t in range(self.f_len[b])] x_row = torch.cat(list_x_row) list_x.append(x_row) x_packed = torch.cat(list_x).data.clone() x_packed.requires_grad = True batch_offset = torch.cumsum(self.f_len * (self.y_len+1), dim=0) return x_packed, batch_offset def _unpack(self, x): x_unpacked = torch.zeros(self.B, self.f_len.max(), self.y_len.max()+1, x.size(-1), dtype=x.dtype, device=x.device) for b in range(self.B): my_batch_offset = 0 if b == 0 else self.batch_offset[b-1] my_f_len = self.f_len[b] my_g_len = self.y_len[b] + 1 for t in range(my_f_len): for u in range(my_g_len): x_unpacked[b, t, u] = x[my_batch_offset + t*my_g_len + u] return x_unpacked def run_transducer_loss(self, scalar_t, fuse_softmax_backward, packed_input, for_vector_kernel): self.gen_input(scalar_t, for_vector_kernel) my_loss = TransducerLoss( fuse_softmax_backward=fuse_softmax_backward, packed_input=packed_input) if not packed_input: loss_tst = my_loss( x=self.x_tst, label=self.y, f_len=self.f_len, y_len=self.y_len, blank_idx=self.blank_idx) loss_tst.mean().backward() grad_tst = self.x_tst.grad else: loss_tst = my_loss( x=self.x_tst_packed, label=self.y, f_len=self.f_len, y_len=self.y_len, blank_idx=self.blank_idx, batch_offset=self.batch_offset, max_f_len=max(self.f_len)) loss_tst.mean().backward() grad_tst_packed = self.x_tst_packed.grad grad_tst = self._unpack(grad_tst_packed) return loss_tst, grad_tst def test_transducer_loss_fp32(self): loss_tst, grad_tst = self.run_transducer_loss( scalar_t=torch.float32, fuse_softmax_backward=False, packed_input=False, for_vector_kernel=False) self.assertTrue(torch.allclose(self.loss_ref, loss_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(self.grad_ref, grad_tst, atol=1e-5, rtol=1e-5)) def test_transducer_loss_fp16(self): loss_tst, grad_tst = self.run_transducer_loss( scalar_t=torch.float16, fuse_softmax_backward=False, packed_input=False, for_vector_kernel=False) self.assertTrue(torch.allclose(self.loss_ref, loss_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(self.grad_ref, grad_tst, atol=1e-4, rtol=1e-3)) def test_transducer_loss_fp16_backward_fusion(self): loss_tst, grad_tst = self.run_transducer_loss( scalar_t=torch.float16, fuse_softmax_backward=True, packed_input=False, for_vector_kernel=False) self.assertTrue(torch.allclose(self.loss_ref, loss_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(self.grad_ref, grad_tst, atol=1e-4, rtol=1e-3)) def test_transducer_loss_fp16_backward_fusion_packed(self): loss_tst, grad_tst = self.run_transducer_loss( scalar_t=torch.float16, fuse_softmax_backward=True, packed_input=True, for_vector_kernel=False) self.assertTrue(torch.allclose(self.loss_ref, loss_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(self.grad_ref, grad_tst, atol=1e-4, rtol=1e-3)) def test_transducer_loss_fp16_backward_fusion_packed_vec(self): loss_tst, grad_tst = self.run_transducer_loss( scalar_t=torch.float16, fuse_softmax_backward=True, packed_input=True, for_vector_kernel=True) self.assertTrue(torch.allclose(self.loss_ref, loss_tst, atol=1e-5, rtol=1e-5)) self.assertTrue(torch.allclose(self.grad_ref, grad_tst, atol=1e-4, rtol=1e-3)) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/apex/contrib/test/transducer/test_transducer_loss.py
GeneSplice-main
GeneSplice/apex/apex/contrib/test/transducer/__init__.py
import unittest import torch from torch.testing._internal import common_utils SKIP_TEST = None from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase try: from apex.contrib.peer_memory import PeerMemoryPool, PeerHaloExchanger1d except ImportError as e: SKIP_TEST = e # How to run: # python /path/to/test_peer_halo_exchange_module.py # Output of this function is used as ground truth in module tests. def nccl_halo_ex(peer_rank, peer_group_size, y, half_halo, explicit_nhwc, H_split): if explicit_nhwc: if H_split: _, Hp, _, _ = list(y.shape) H = Hp - 2 * half_halo top_out_halo = y[:, half_halo : 2 * half_halo, :, :] top_inp_halo = y[:, :half_halo, :, :] btm_out_halo = y[:, H : H + half_halo, :, :] btm_inp_halo = y[:, H + half_halo : H + 2 * half_halo, :, :] else: _, _, Wp, _ = list(y.shape) W = Wp - 2 * half_halo top_out_halo = y[:, :, half_halo : 2 * half_halo, :] top_inp_halo = y[:, :, :half_halo, :] btm_out_halo = y[:, :, W : W + half_halo, :] btm_inp_halo = y[:, :, W + half_halo : W + 2 * half_halo, :] else: if H_split: _, _, Hp, _ = list(y.shape) H = Hp - 2 * half_halo top_out_halo = y[:, :, half_halo : 2 * half_halo, :] top_inp_halo = y[:, :, :half_halo, :] btm_out_halo = y[:, :, H : H + half_halo, :] btm_inp_halo = y[:, :, H + half_halo : H + 2 * half_halo, :] else: _, _, _, Wp = list(y.shape) W = Wp - 2 * half_halo top_out_halo = y[:, :, :, half_halo : 2 * half_halo] top_inp_halo = y[:, :, :, :half_halo] btm_out_halo = y[:, :, :, W : W + half_halo] btm_inp_halo = y[:, :, :, W + half_halo : W + 2 * half_halo] mf = torch.channels_last if y.is_contiguous(memory_format=torch.channels_last) else torch.contiguous_format top_out_halo = top_out_halo.contiguous() btm_out_halo = btm_out_halo.contiguous() top_inp_halos = [torch.empty_like(top_out_halo) for _ in range(peer_group_size)] torch.distributed.all_gather(top_inp_halos, top_out_halo) btm_inp_halos = [torch.empty_like(btm_out_halo) for _ in range(peer_group_size)] torch.distributed.all_gather(btm_inp_halos, btm_out_halo) top_rank = (peer_rank + peer_group_size - 1) % peer_group_size btm_rank = (peer_rank + 1) % peer_group_size if peer_rank == 0: top_inp_halo.zero_() else: top_inp_halo.copy_(btm_inp_halos[top_rank].to(memory_format=mf)) if peer_rank == peer_group_size - 1: btm_inp_halo.zero_() else: btm_inp_halo.copy_(top_inp_halos[btm_rank].to(memory_format=mf)) def single_test( peer_rank, peer_group_size, halo_ex, C, H, W, half_halo, dtype, memory_format, H_split, num_steps, numSM=1, ): if memory_format == 1: # 1 -> explicit nhwc explicit_nhwc = True if H_split: y = torch.randn([1, H + 2 * half_halo, W, C], dtype=dtype, device="cuda") ym = y[:, half_halo : H + half_halo, :, :] else: y = torch.randn([1, H, W + 2 * half_halo, C], dtype=dtype, device="cuda") ym = y[:, :, half_halo : W + half_halo, :] else: # 2 -> native nhwc # 3 -> nchw explicit_nhwc = False if H_split: y = torch.randn([1, C, H + 2 * half_halo, W], dtype=dtype, device="cuda") if memory_format == 2: y = y.to(memory_format=torch.channels_last) ym = y[:, :, half_halo : H + half_halo, :] else: y = torch.randn([1, C, H, W + 2 * half_halo], dtype=dtype, device="cuda") if memory_format == 2: y = y.to(memory_format=torch.channels_last) ym = y[:, :, :, half_halo : W + half_halo] y3 = y.clone() list_y = [] for step in range(num_steps): halo_ex(y, H_split, explicit_nhwc, numSM) list_y.append(y.clone()) y.copy_(y3) halo_ex.peer_pool.reset() torch.distributed.barrier() y2 = y3.clone() list_y2 = [] for step in range(num_steps): nccl_halo_ex(peer_rank, peer_group_size, y2, half_halo, explicit_nhwc, H_split) list_y2.append(y2.clone()) y2.copy_(y3) if memory_format == 1: memory_format_str = "explicit_nhwc" elif memory_format == 2: memory_format_str = "native nhwc" elif memory_format == 3: memory_format_str = "nchw" else: memory_format_str = "???" torch.testing.assert_close(list_y, list_y2, msg=memory_format_str) # is_equal = [torch.all(torch.eq(yy, yy2)) for yy, yy2 in zip(list_y, list_y2)] # is_equal = torch.tensor(is_equal, dtype=torch.bool) # is_equal = torch.all(is_equal) # if peer_rank == 0: # if is_equal: # print( # "SUCCESS : N,C,H,W = 1,%d,%d,%d, half_halo=%d, %s, %s, %s" # % ( # C, # H, # W, # half_halo, # str(dtype), # memory_format_str, # "H-split" if H_split else "W-split", # ) # ) # else: # print( # "FAILURE : N,C,H,W = 1,%d,%d,%d, half_halo=%d, %s, %s, %s" # % ( # C, # H, # W, # half_halo, # str(dtype), # memory_format_str, # "H-split" if H_split else "W-split", # ) # ) # # peer memory flag sync relies on there being at least one barrier per step # torch.distributed.barrier() def H_split_tests(N, C, H, W, half_halo, rank, world_size, halo_ex, num_steps): Hr = 8 * world_size Hp = ((H + Hr - 1) // Hr) * 8 for i in range(4): div = int(pow(2, i)) single_test( rank, world_size, halo_ex, C * div, Hp // div, W // div, half_halo, torch.float16, 1, True, num_steps, ) single_test( rank, world_size, halo_ex, C * div, Hp // div, W // div, half_halo, torch.float16, 2, True, num_steps, ) single_test( rank, world_size, halo_ex, C * div, Hp // div, W // div, half_halo, torch.float16, 3, True, num_steps, ) def W_split_tests(N, C, H, W, half_halo, rank, world_size, halo_ex, num_steps): Wr = 8 * world_size Wp = ((W + Wr - 1) // Wr) * 8 for i in range(4): div = int(pow(2, i)) single_test( rank, world_size, halo_ex, C * div, H // div, Wp // div, half_halo, torch.float16, 1, False, num_steps, ) single_test( rank, world_size, halo_ex, C * div, H // div, Wp // div, half_halo, torch.float16, 2, False, num_steps, ) single_test( rank, world_size, halo_ex, C * div, H // div, Wp // div, half_halo, torch.float16, 3, False, num_steps, ) def main(): # for this trivial example peer_rank == rank and peer_group_size == world_size torch.distributed.init_process_group("nccl") rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() torch.cuda.set_device(rank) peer_ranks = [i for i in range(world_size)] pool = PeerMemoryPool(0, 2 * 1024 * 1024, peer_ranks) num_steps = 100 half_halo = 1 halo_ex = PeerHaloExchanger1d(peer_ranks, rank, pool, half_halo) H_split_tests(1, 64, 336, 200, half_halo, rank, world_size, halo_ex, num_steps) W_split_tests(1, 64, 200, 336, half_halo, rank, world_size, halo_ex, num_steps) @unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") class TestPeerMemory(NcclDistributedTestBase): HALF_HALO = 1 NUM_STEPS = 100 @property def world_size(self) -> int: return min(torch.cuda.device_count(), 2) # TODO(crcrpar): Check if `world_size` being multiple of 2 is must. def _check_world_size_and_may_skip(self) -> None: if not (self.world_size >= 2 and self.world_size % 2 == 0): self.skipTest(f"world_size is expected to be a multiple of 2 but, {self.world_size}") def get_halo_excnahger_1d(self): peer_ranks = [i for i in range(self.world_size)] pool = PeerMemoryPool(64 * 1024, 2 * 1024 * 1024, peer_ranks) halo_exchanger_1d = PeerHaloExchanger1d(peer_ranks, self.rank, pool, TestPeerMemory.HALF_HALO) return halo_exchanger_1d def test_height_split(self): self._check_world_size_and_may_skip() H_split_tests( 1, 64, 336, 200, TestPeerMemory.HALF_HALO, self.rank, self.world_size, self.get_halo_excnahger_1d(), TestPeerMemory.NUM_STEPS, ) def test_width_split(self): self._check_world_size_and_may_skip() W_split_tests( 1, 64, 200, 336, TestPeerMemory.HALF_HALO, self.rank, self.world_size, self.get_halo_excnahger_1d(), TestPeerMemory.NUM_STEPS, ) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/apex/contrib/test/peer_memory/test_peer_halo_exchange_module.py
GeneSplice-main
GeneSplice/apex/apex/contrib/test/peer_memory/__init__.py
############################################################################### # Copyright (c) 2011-2021, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ############################################################################### import math import unittest import torch import numpy as np SKIP_TEST = None try: import fmhalib as mha except ImportError as e: SKIP_TEST = e def _get_device_properties(device = torch.device("cuda")): # type: (str or torch.device) -> Tuple[int, int] properties = torch.cuda.get_device_properties(device) return properties.major, properties.minor def py_mha(qkv, amask, b, s, h, d): qkv = qkv.view(b, s, h, 3, d) q = qkv[:, :, :, 0, :].permute(0,2,1,3) k = qkv[:, :, :, 1, :].permute(0,2,1,3) v = qkv[:, :, :, 2, :].permute(0,2,1,3) p = torch.matmul(q.float(), k.permute(0,1,3,2).float()) p_masked = p / math.sqrt(d) + (1.0 - amask) * -10000.0 s = torch.softmax(p_masked, -1).to(qkv.dtype) ctx = torch.matmul(s, v) ctx = ctx.permute(0,2,1,3).contiguous() ctx.retain_grad() return ctx @unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") @unittest.skipIf(not _get_device_properties() == (8, 0), "FMHA only supports sm80") class TestFMHA(unittest.TestCase): def run_test(self, s: int, b: int, zero_tensors: bool): print(f'Test s={s} b={b}, zero_tensors={zero_tensors}') torch.manual_seed(1234) torch.cuda.manual_seed(1234) dtype = torch.float16 device = torch.device('cuda') h = 16 d = 64 slens = [s] * b a = torch.tensor(np.array([0] + slens), dtype=torch.int32) amask = torch.ones(b,h,s,s, dtype=dtype, device=device) seqlens = torch.tensor(slens, dtype=torch.int32, device=device) cu_seqlens = torch.cumsum(a, 0).to(dtype=torch.int32, device=device) total = cu_seqlens[-1].item() qkv = torch.randn((b,s,h,3,d), device=device, dtype=dtype) qkv_vs = qkv.permute(0,1,3,2,4).contiguous().view(b*s, 3, h,d) qkv.requires_grad = True if b < 4: ctx, S_ = mha.fwd(qkv_vs, cu_seqlens, 0.0, s, True, True, zero_tensors, None) else: ctx, S_ = mha.fwd(qkv_vs, cu_seqlens, 0.0, s, True, False, zero_tensors, None) ctx = ctx.view(b,s,h,d) ctx_ref = py_mha(qkv, amask, b,s,h,d) self.assertTrue(torch.allclose(ctx_ref.float(), ctx.float(), atol=1e-3)) labels = torch.randn_like(ctx_ref) diff = ctx_ref - labels l = (diff * diff).sum() / b l.backward() dw = ctx_ref.grad.permute(0,2,1,3) dw2 = dw.permute(0,2,1,3).clone().detach().contiguous() if b < 4: dqkv2, _, _ = mha.bwd_nl(dw2, qkv_vs, S_, cu_seqlens, 0.0, s, zero_tensors) else: dqkv2, _ = mha.bwd(dw2, qkv_vs, S_, cu_seqlens, 0.0, s, zero_tensors) dqkv2 = dqkv2.permute(0,2,1,3).view(b,s, h,3,d) self.assertTrue(torch.allclose(qkv.grad.float(), dqkv2.float(), atol=1e-3)) def test_128(self): self.run_test(128, 32, False) self.run_test(128, 32, True) self.run_test(128, 56, False) self.run_test(128, 56, True) def test_256(self): self.run_test(256, 32, False) self.run_test(256, 32, True) self.run_test(256, 56, False) self.run_test(256, 56, True) def test_384(self): self.run_test(384, 32, False) self.run_test(384, 32, True) self.run_test(384, 56, False) self.run_test(384, 56, True) def test_512(self): self.run_test(512, 32, False) self.run_test(512, 32, True) self.run_test(512, 56, False) self.run_test(512, 56, True) self.run_test(512, 2, False) self.run_test(512, 2, True) self.run_test(512, 3, False) self.run_test(512, 3, True) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/apex/contrib/test/fmha/test_fmha.py
GeneSplice-main
GeneSplice/apex/apex/contrib/test/fmha/__init__.py
try: import torch import focal_loss_cuda from .focal_loss import focal_loss del torch del focal_loss_cuda del focal_loss except ImportError as err: print("apex was installed without --focal_loss flag, apex.contrib.focal_loss is not available")
GeneSplice-main
GeneSplice/apex/apex/contrib/focal_loss/__init__.py
import torch import focal_loss_cuda class FocalLoss(torch.autograd.Function): @staticmethod def forward( ctx, cls_output, cls_targets_at_level, num_positives_sum, num_real_classes, alpha, gamma, label_smoothing=0.0, ): loss, partial_grad = focal_loss_cuda.forward( cls_output, cls_targets_at_level, num_positives_sum, num_real_classes, alpha, gamma, label_smoothing, ) ctx.save_for_backward(partial_grad, num_positives_sum) return loss @staticmethod def backward(ctx, grad_loss): partial_grad, num_positives_sum = ctx.saved_tensors # The backward kernel is actually in-place to save memory space, # partial_grad and grad_input are the same tensor. grad_input = focal_loss_cuda.backward(grad_loss, partial_grad, num_positives_sum) return grad_input, None, None, None, None, None, None def focal_loss( cls_output: torch.Tensor, cls_targets_at_level: torch.Tensor, num_positive_sum: torch.Tensor, num_real_classes: int, alpha: float, gamma: float, label_smoothing: float = 0.0, ) -> torch.Tensor: """Fused focal loss function.""" return FocalLoss.apply( cls_output, cls_targets_at_level, num_positive_sum, num_real_classes, alpha, gamma, label_smoothing, )
GeneSplice-main
GeneSplice/apex/apex/contrib/focal_loss/focal_loss.py
import torch import xentropy_cuda class SoftmaxCrossEntropyLoss(torch.autograd.Function): @staticmethod def forward(ctx, logits, labels, smoothing=0.0, padding_idx=0, half_to_float=False): losses, max_log_sum_exp = xentropy_cuda.forward( logits, labels, smoothing, half_to_float) losses.masked_fill_(labels==padding_idx, 0) ctx.save_for_backward(logits, max_log_sum_exp, labels, torch.FloatTensor([smoothing]), torch.LongTensor([padding_idx])) return losses @staticmethod def backward(ctx, grad_loss): logits, max_log_sum_exp, labels, smoothing, padding_idx = ctx.saved_tensors if not grad_loss.is_contiguous(): grad_loss = grad_loss.contiguous() grad_loss.masked_fill_(labels==padding_idx.item(), 0) grad_logits = xentropy_cuda.backward( grad_loss.contiguous(), logits, max_log_sum_exp, labels, smoothing.item()) return grad_logits, None, None, None, None
GeneSplice-main
GeneSplice/apex/apex/contrib/xentropy/softmax_xentropy.py
from .softmax_xentropy import SoftmaxCrossEntropyLoss __all__ = [ "SoftmaxCrossEntropyLoss", ]
GeneSplice-main
GeneSplice/apex/apex/contrib/xentropy/__init__.py
from .layer_norm import FastLayerNorm
GeneSplice-main
GeneSplice/apex/apex/contrib/layer_norm/__init__.py
import torch from torch.nn import init from apex._autocast_utils import _cast_if_autocast_enabled import fast_layer_norm class FastLayerNormFN(torch.autograd.Function): @staticmethod def forward(ctx, x, gamma, beta, epsilon): x = x.contiguous() gamma = gamma.contiguous() beta = beta.contiguous() hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) ymat, mu, rsigma = fast_layer_norm.ln_fwd(xmat, gamma, beta, epsilon) ctx.save_for_backward(x, gamma, mu, rsigma) return ymat.view(x.shape) @staticmethod def backward(ctx, dy): # assert dy.is_contiguous() dy = dy.contiguous() # this happens! x, gamma, mu, rsigma = ctx.saved_tensors hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dymat = dy.view(xmat.shape) dxmat, dgamma, dbeta, _, _ = fast_layer_norm.ln_bwd(dymat, xmat, mu, rsigma, gamma) dx = dxmat.view(x.shape) return dx, dgamma, dbeta, None def _fast_layer_norm(x, weight, bias, epsilon): args = _cast_if_autocast_enabled(x, weight, bias, epsilon) with torch.cuda.amp.autocast(enabled=False): return FastLayerNormFN.apply(*args) class FastLayerNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-5): super().__init__() self.epsilon = eps self.weight = torch.nn.Parameter(torch.empty(hidden_size)) self.bias = torch.nn.Parameter(torch.empty(hidden_size)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, x): return _fast_layer_norm(x, self.weight, self.bias, self.epsilon)
GeneSplice-main
GeneSplice/apex/apex/contrib/layer_norm/layer_norm.py
import types import torch import importlib from apex.multi_tensor_apply import multi_tensor_applier class FusedAdam(torch.optim.Optimizer): """Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) use_mt (boolean, optional): use multi tensor apply for lower launch latency. (default: False) .. _Adam - A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction = True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt = False, weight_decay=0., max_grad_norm=0., amsgrad=False, use_mt=False, amp_scale_adjustment=1.0): global fused_adam_cuda fused_adam_cuda = importlib.import_module("fused_adam_cuda") self._use_multi_tensor = False if use_mt: if not multi_tensor_applier.available: print("Warning: multi_tensor_applier is unavailable") else: self._use_multi_tensor = True self._overflow_buf = torch.cuda.IntTensor([0]) self._amp_scale_adjustment = amp_scale_adjustment if amsgrad: raise RuntimeError('FusedAdam does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(FusedAdam, self).__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 def step(self, closure=None, grads=None, output_params=None, scale=1., grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if hasattr(self, "_amp_stash"): grads = self._amp_stash.grads output_params = self._amp_stash.output_params scale = self._amp_stash.scale*self._amp_scale_adjustment grad_norms = self._amp_stash.grad_norms if grads is None: grads_group = [None]*len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0])!=list: grads_group = [grads] else: grads_group = grads if output_params is None: output_params_group = [None]*len(self.param_groups) elif isinstance(output_params, types.GeneratorType): output_params_group = [output_params] elif type(output_params[0])!=list: output_params_group = [output_params] else: output_params_group = output_params if grad_norms is None: grad_norms = [None]*len(self.param_groups) for group, grads_this_group, output_params_this_group, grad_norm in zip(self.param_groups, grads_group, output_params_group, grad_norms): if grads_this_group is None: grads_this_group = [None]*len(group['params']) if output_params_this_group is None: output_params_this_group = [None]*len(group['params']) # compute combined scale factor for this group combined_scale = scale if group['max_grad_norm'] > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group['max_grad_norm'] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group['bias_correction'] else 0 if self._use_multi_tensor: if output_params: tensorlists = [[],[],[],[],[]] else: tensorlists = [[],[],[],[]] tensordevice = None for p, grad, output_param in zip(group['params'], grads_this_group, output_params_this_group): #note: p.grad should not ever be set for correct operation of mixed precision optimizer that sometimes sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError('FusedAdam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 out_p = torch.tensor([], dtype = torch.float) if output_param is None else output_param if self._use_multi_tensor: pl = [p.data, exp_avg, exp_avg_sq, grad] if output_param is not None: pl.append(out_p) for tl, t in zip(tensorlists, pl): tl.append(t) if tensordevice is None: tensordevice = p.device elif tensordevice != p.device: raise RuntimeError('FusedAdam does not support use_mt with tensors on multiple device') else: with torch.cuda.device(p.device): fused_adam_cuda.adam(p.data, out_p, exp_avg, exp_avg_sq, grad, group['lr'], beta1, beta2, group['eps'], combined_scale, state['step'], self.eps_mode, bias_correction, group['weight_decay']) if self._use_multi_tensor: with torch.cuda.device(tensordevice): multi_tensor_applier( fused_adam_cuda.adam_mt, self._overflow_buf, tensorlists, group['lr'], beta1, beta2, group['eps'], combined_scale, state['step'], self.eps_mode, bias_correction, group['weight_decay']) return loss
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/fused_adam.py
from .fp16_optimizer import FP16_Optimizer from .fused_adam import FusedAdam from .fused_lamb import FusedLAMB
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/__init__.py
import collections import contextlib import enum import inspect import io import itertools import threading from typing import List, Optional import torch from torch.distributed.distributed_c10d import _get_default_group from apex.multi_tensor_apply import multi_tensor_applier import amp_C import distributed_adam_cuda # Fallback to private functions if using PyTorch <1.13.0 try: from torch.distributed.distributed_c10d import get_global_rank except ImportError: from torch.distributed.distributed_c10d import _get_global_rank get_global_rank = _get_global_rank try: from torch.distributed.distributed_c10d import reduce_scatter_tensor except ImportError: from torch.distributed.distributed_c10d import _reduce_scatter_base reduce_scatter_tensor = _reduce_scatter_base try: from torch.distributed.distributed_c10d import all_gather_into_tensor except ImportError: from torch.distributed.distributed_c10d import _all_gather_base all_gather_into_tensor = _all_gather_base # Import context manager to coalesce NCCL calls # Note: Replace these backward compatibility shims once PyTorch # exposes a stable public API for coalescing communication. from torch.distributed.distributed_c10d import _coalescing_manager if 'device' not in inspect.signature(_coalescing_manager).parameters: # PyTorch <=1.13.1 does not have device arg _coalescing_manager_no_device_arg = _coalescing_manager @contextlib.contextmanager def _coalescing_manager(group, device, reqs): with _coalescing_manager_no_device_arg(group, reqs): yield if 'reqs' in inspect.signature(_coalescing_manager).parameters: # PyTorch <=2.0.1 handles synchronization externally to coalescing # manager _coalescing_manager_with_reqs_arg = _coalescing_manager class _CoalescingManager: def __init__(self): self.works: List[torch.distributed.Work] = [] def append(self, work: torch.distributed.Work): if work: self.works.append(work) def wait(self): for work in self.works: work.wait() @contextlib.contextmanager def _coalescing_manager( group: Optional[torch.distributed.ProcessGroup] = None, device: Optional[torch.device] = None, async_ops: bool = False, ): assert device is not None cm = _CoalescingManager() with _coalescing_manager_with_reqs_arg( group, device, cm.works, ): yield cm if not async_ops: cm.wait() def _coalescing_manager_append_work( cm: _CoalescingManager, work: torch.distributed.Work, ): """Add asynchronous request to coalescing manager""" cm.append(work) else: # PyTorch >2.0.1 handles synchronization within coalescing # manager def _coalescing_manager_append_work( cm: torch.distributed._CoalescingManager, work: torch.distributed.Work, ): """Dummy function for backward compatibility Coalescing manager already keeps track of asynchronous communication. """ pass # Import optional CUDA kernels _FOUND_DEPRECATED_FUSED_ADAM = False try: import fused_adam_cuda _FOUND_DEPRECATED_FUSED_ADAM = True except ImportError: import warnings warnings.warn( 'Could not find recommended CUDA kernels when importing ' '`DistributedFusedAdam`. ' 'For best performance, Apex should be installed with ' '`--deprecated_fused_adam`.' ) def _ceildiv(numer, denom): """Assumes arguments are positive integers""" return (numer + denom - 1) // denom def _round_to_multiple(number, multiple, round_up=True): """Assumes arguments are positive integers""" return (number+multiple-1 if round_up else number) // multiple * multiple def _devices_match(device1, device2): """Whether two PyTorch devices are equivalent""" device1 = torch.device(device1) device2 = torch.device(device2) if device1.type != device2.type: return False if device1.type == 'cuda': index1 = device1.index index2 = device2.index if index1 is None: index1 = torch.cuda.current_device() if index2 is None: index2 = torch.cuda.current_device() if index1 != index2: return False return True def _multi_tensor_copy( buffers_in, buffers_out, dummy_overflow_buf=None, ): """Copy between corresponding buffers Uses fused copy kernel if possible. """ # Group buffers by device and dtype buffer_groups = collections.defaultdict(list) for buf_in, buf_out in zip(buffers_in, buffers_out): if buf_in.data_ptr() == buf_out.data_ptr() or buf_in.numel() == 0: # Nothing to be done if input and output buffers are same # or have no entries continue if buf_in.dtype == buf_out.dtype: # Just copy bytes if dtypes are same buf_in = buf_in.view(torch.uint8) buf_out = buf_out.view(torch.uint8) key = (buf_in.is_cuda, buf_in.dtype, buf_out.is_cuda, buf_out.dtype) buffer_groups[key].append((buf_in, buf_out)) # Copy each group of buffers for key, buffers in buffer_groups.items(): # Check if buffers support fused kernel is_cuda_in, dtype_in, is_cuda_out, dtype_out = key supported_dtypes = (torch.float32, torch.float16) use_fused_kernel = ( (dtype_in in supported_dtypes and dtype_out in supported_dtypes) or (dtype_in == torch.uint8 and dtype_out == torch.uint8) ) use_fused_kernel = use_fused_kernel and is_cuda_in and is_cuda_out # Copy buffers if use_fused_kernel and _FOUND_DEPRECATED_FUSED_ADAM: if dummy_overflow_buf is None: dummy_overflow_buf = torch.zeros([1], dtype=torch.int32, device='cuda') multi_tensor_applier( fused_adam_cuda.maybe_cast_mt, dummy_overflow_buf, list(zip(*buffers)), ) else: for buf_in, buf_out in buffers: buf_out.copy_(buf_in) @contextlib.contextmanager def _disable_pre_forward_hook(param): """Prevent parameter from calling pre-forward hook""" hook_is_enabled = getattr( param, '_pre_forward_hook_is_enabled', False, ) if hook_is_enabled: param._pre_forward_hook_is_enabled = False try: yield finally: if hook_is_enabled: param._pre_forward_hook_is_enabled = True class DistributedFusedAdam(torch.optim.Optimizer): """Adam optimizer with ZeRO algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext --distributed_adam --deprecated_fused_adam``. This implements the ZeRO-2 algorithm, which distributes the optimizer state and gradients between parallel processes. In particular, the parameters are flattened, grouped into fixed-size buckets, and the optimizer state for each bucket is sharded over the parallel processes. Options are provided to overlap the gradient synchronization with the backward pass compute. Adam was proposed in `Adam: A Method for Stochastic Optimization`_, AdamW in `Decoupled Weight Decay Regularization`_, and ZeRO in `ZeRO: Memory Optimizations Toward Training Trillion Parameter Models`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) bias_correction (bool, optional): apply correction factor to moment estimates. (default: True) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) adam_w_mode (boolean, optional): Decouple weight decay regularization (also known as AdamW algorithm) (default: True) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False). This is not yet supported. dtype (torch.dtype, optional): datatype for optimizer state (default: torch.float32) grad_sync_dtype (torch.dtype, optional): datatype for gradient synchronization (default: same as dtype) param_sync_dtype (torch.dtype, optional): datatype for parameter synchronization (default: same as dtype) device (torch.device, optional): device for optimizer state (default: cuda). Currently only supports GPU with one GPU per process. process_group (torch.distributed.ProcessGroup, optional): parallel processes participating in optimizer (default: default group in torch.distributed). This group is interpreted as a 2D grid with dimensions distributed_size x redundant_size. distributed_process_group (torch.distributed.ProcessGroup, optional): parallel processes to distribute optimizer state over (default: same as process_group) redundant_process_group (torch.distributed.ProcessGroup, optional): parallel processes to replicate optimizer state over (default: group only containing calling process) average_grad_sync (bool, optional): whether to use average reduction for gradient synchronization rather than sum (default: True) overlap_grad_sync(boolean, optional): whether to overlap gradient synchronization with backward pass compute (default: True) overlap_param_sync(boolean, optional): whether to overlap parameter synchronization with forward pass compute (default: False). This is an experimental feature. bucket_cap_mb (float, optional): bucket size in megabytes (default: 100) pipeline_size (int, optional): number of buckets to process simultaneously in optimizer step (default: 2) contiguous_param_buffer (bool, optional): convert parameters into views into a large persistent buffer (default: False). This enables some performance optimizations (e.g. avoiding some memory copies), but may add memory overhead (e.g. if the memory allocator can't reuse the original parameter buffers). contiguous_grad_buffer (bool, optional): allocate gradient buckets out of a large persistent buffer (default: False). This allows individual parameter gradients to be accessed externally (see grad_buffer_view function). It enables some performance optimizations (e.g. avoiding some memory copies), but prevents some memory optimizations (e.g. the memory allocator can't reuse buffers for gradient buckets). store_params (bool, optional): store a distributed copy of the parameters as optimizer state (default: True). This may be desirable if the optimizer dtype has higher precision than the parameter dtype. store_param_remainders (bool, optional): if model is BF16 and optimizer is FP32, store bits required to reconstruct FP32 params (default: False). This is an experimental feature. .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _ZeRO\: Memory Optimizations Toward Training Trillion Parameter Models: https://arxiv.org/abs/1910.02054 """ class ParameterFragment: """Buffer ranges for a parameter fragment Describes corresponding regions in parameter buffer and parameter bucket. """ def __init__( self, param_group_id, param_id, bucket_id, param_range, bucket_range, in_local_shard, shard_range, shard_bucket_range, shard_param_range, ): # Parameter group index self.param_group_id = param_group_id # Parameter index within parameter group self.param_id = param_id # Bucket index self.bucket_id = bucket_id # Range within flattened parameter buffer self.param_range = param_range # Range within bucket self.bucket_range = bucket_range # Whether fragment is in local shard of bucket self.in_local_shard = in_local_shard # Range within local shard self.shard_range = shard_range # Range of local fragment shard within bucket self.shard_bucket_range = shard_bucket_range # Range of local fragment shard within parameter self.shard_param_range = shard_param_range class StateBucket: """Optimizer state for a bucket""" def __init__( self, bucket_size, shard_size, dtype, device, contiguous_buffer_offset=0, store_params=False, store_param_remainders=False, ): # Size of parameter bucket self.bucket_size = bucket_size # Size of local shard of parameter bucket self.shard_size = shard_size # Size of the filled region in the bucket self.filled_size = 0 # Offset to bucket in contiguous buffers self.contiguous_buffer_offset = contiguous_buffer_offset # Buffer ranges corresponding to parameter fragments self.fragments = [] # Local shard of parameters self.params_shard = None if store_params: self.params_shard = torch.zeros( [shard_size], dtype=dtype, device=device, ) # Local shard of parameter remainders self.param_remainders_shard = None if store_param_remainders: self.param_remainders_shard = torch.zeros( [shard_size], dtype=torch.int16, device=device, ) # Local shard of first moment estimate self.exp_avg_shard = torch.zeros( [shard_size], dtype=dtype, device=device, ) # Local shard of second moment estimate self.exp_avg_sq_shard = torch.zeros( [shard_size], dtype=dtype, device=device, ) class GradientStatus(enum.Enum): """Status of gradients within a bucket""" # Gradients are ready to use READY = enum.auto() # Bucket is partially filled with unreduced gradients PARTIALLY_FILLED = enum.auto() # Bucket is fully filled with unreduced gradients FULLY_FILLED = enum.auto() # Asynchronous reduction is in progress SYNCING = enum.auto() class GradientBucket: """Gradient buffers and state for a bucket""" def __init__(self): # Local shard of gradients self.grads_shard = None # Local contribution to gradients self.grads_bucket = None # Buffer for gradient reduce-scatter self.sync_grads_shard = None # Status of gradients self.status = DistributedFusedAdam.GradientStatus.READY # Request object for asynchronous communication self.sync_request = None # Params that have generated grads self.grads_generated = set() def sync_wait(self): """Wait for asynchronous communication to finish""" if self.sync_request is not None: self.sync_request.wait() self.sync_request = None class ParameterStatus(enum.Enum): """Status of parameters within a bucket""" # Parameters are sharded between processes SHARDED = enum.auto() # Asynchronous communication is in progress SYNCING = enum.auto() # Parameters are ready to use READY = enum.auto() class ParameterBucket: """Parameter buffers and state for a bucket""" def __init__(self): # Local shard of parameters self.params_shard = None # Gathered parameter values self.params_bucket = None # Status of parameters self.status = DistributedFusedAdam.ParameterStatus.SHARDED # Request object for asynchronous communication self.sync_request = None # Params that have been updated self.params_updated = set() def sync_wait(self): """Wait for asynchronous communication to finish""" if self.sync_request is not None: self.sync_request.wait() self.sync_request = None # Enable custom logic for AMP grad scaling _step_supports_amp_scaling = True _custom_amp_unscale_grads = True def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, adam_w_mode=True, weight_decay=0., amsgrad=False, dtype=torch.float32, grad_sync_dtype=None, param_sync_dtype=None, device='cuda', process_group=None, distributed_process_group=None, redundant_process_group=None, average_grad_sync=True, overlap_grad_sync=True, overlap_param_sync=False, bucket_cap_mb=100, pipeline_size=2, contiguous_param_buffer=False, contiguous_grad_buffer=False, store_params=True, store_param_remainders=False, ): defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults) # Adam options self.adam_w_mode = adam_w_mode if amsgrad: raise RuntimeError('DistributedFusedAdam does not support the AMSGrad variant.') # Datatype options if grad_sync_dtype is None: grad_sync_dtype = dtype if param_sync_dtype is None: param_sync_dtype = dtype supported_dtypes = (torch.float32, torch.float16, torch.bfloat16) if (dtype not in supported_dtypes or grad_sync_dtype not in supported_dtypes or param_sync_dtype not in supported_dtypes): raise RuntimeError( 'Unsupported dtypes for DistributedFusedAdam ' f'(dtype={dtype}, ' f'grad_sync_dtype={grad_sync_dtype}, ' f'param_sync_dtype={param_sync_dtype}))' ) self.dtype = dtype self.grad_sync_dtype = grad_sync_dtype self.param_sync_dtype = param_sync_dtype # Device options if not _devices_match(device, 'cuda'): raise RuntimeError( 'Invalid device for DistributedFusedAdam ' f'(device={device})' ) self.device = torch.device('cuda', torch.cuda.current_device()) # Process groups self.process_group = ( _get_default_group() if process_group is None else process_group ) self.distributed_process_group = ( self.process_group if distributed_process_group is None else distributed_process_group ) self.redundant_process_group = redundant_process_group self.process_group_size = torch.distributed.get_world_size(self.process_group) self.distributed_rank = torch.distributed.get_rank(self.distributed_process_group) self.distributed_size = torch.distributed.get_world_size(self.distributed_process_group) self.redundant_size = ( 1 if self.redundant_process_group is None else torch.distributed.get_world_size(self.redundant_process_group) ) if self.process_group_size != self.distributed_size * self.redundant_size: raise RuntimeError( 'Invalid process group configuration ' f'(process group size = {self.process_group_size}, ' f'distributed process group size = {self.distributed_size}, ' f'redundant process group size = {self.redundant_size})' ) self.process_group_root = get_global_rank(self.process_group, 0) # Use average reduction for grad sync self.average_grad_sync = average_grad_sync # Copy param grads to bucket as soon as available self.greedy_grad_copy = True # Synchronize grad buckets as soon as their grads are available self.overlap_grad_sync = overlap_grad_sync # Try synchronizing param buckets just before param is needed self.overlap_param_sync = overlap_param_sync # Number of buckets to synchronize at a time self.pipeline_size = pipeline_size # Store params or param remainders if store_param_remainders: if store_params: raise RuntimeError( 'Attempted to construct DistributedFusedAdam ' 'with store_params=True and store_param_remainders=True' ) if (self.dtype != torch.float32 or self.param_sync_dtype != torch.bfloat16): raise RuntimeError( 'DistributedFusedAdam requires ' 'BF16 params and FP32 optimizer state ' 'when storing parameter remainders ' f'(dtype={self.dtype}, ' f'param_sync_dtype={self.param_sync_dtype}))' ) self.store_params = store_params self.store_param_remainders = store_param_remainders # Determine bucket sizes dtype_size = torch.finfo(self.grad_sync_dtype).bits // 8 self.alignment = 128 // dtype_size bucket_size = 1024*1024*bucket_cap_mb / dtype_size shard_size = int(bucket_size / self.distributed_size) shard_size = _round_to_multiple(shard_size, self.alignment, round_up=False) shard_size = max(shard_size, self.alignment) self.default_shard_size = shard_size # Optimizer state self.state['buckets'] = [] self.state['step'] = 0 # Gradient state self._grads_buckets = collections.defaultdict(self.GradientBucket) # Param state self._params_buckets = collections.OrderedDict() # Whether to allocate contiguous buffer for parameters self.contiguous_param_buffer = contiguous_param_buffer # Whether to allocate contiguous buffer for gradients self.contiguous_grad_buffer = contiguous_grad_buffer # Contiguous buffer for parameters self._param_buffer = None # Contiguous buffer for gradients self._grad_buffer = None # Whether to allocate contiguous buffer for gradients self.contiguous_grad_buffer = contiguous_grad_buffer # Contiguous buffer for gradients self._grad_buffer = None # Side streams for optimizer step and communication self._pipeline_streams = [torch.cuda.Stream() for _ in range(self.pipeline_size+1)] # Scale by factor before optimizer step. Used for grad # clipping and gradient scaler. self._grad_scale = torch.full([], 1.0, dtype=torch.float32, device=self.device) # Norm of parameter gradients. Used for gradient clipping and # gradient scaler. self._grad_norm = None # Dummy flag for multi-tensor kernels # Note: Apex multi-tensor kernels have a noop_flag argument # that is intended to detect non-finite values. It shouldn't # have any effect with the kernels used in the optimizer, but # we still set it to zero out of an abundance of caution. self._dummy_overflow_buf = torch.zeros([1], dtype=torch.int32, device=self.device) # Check if collectives have no_copy option self._gather_no_copy = ( 'no_copy' in inspect.getfullargspec(torch.distributed.gather).args ) # Make sure parameter values are same across processes self._broadcast_params() # Lock for callbacks self._lock = threading.Lock() # Attach hooks for gradient synchronization self._register_post_backward_hooks() # Attach hooks for param synchronization if self.overlap_param_sync: self._register_pre_forward_hooks() def _broadcast_params(self): """Broadcast parameter values from root rank""" process_group = self.process_group with _coalescing_manager(process_group, self.device, async_ops=True) as cm: for param_group in self.param_groups: for param in param_group['params']: _coalescing_manager_append_work( cm, torch.distributed.broadcast( param, src=self.process_group_root, group=process_group, async_op=True, ) ) cm.wait() def _make_post_backward_hook(self, param, param_group_id, param_id): """Create callback function to call after param generates grad Lazily initialize parameter and try launching grad sync. """ def post_backward_hook(*unused): if getattr(param, '_pre_forward_hook_is_enabled', False): raise RuntimeError( 'A parameter called its post-backward hook ' 'before its pre-forward hook. ' 'Please manually interact with the parameter ' 'before the forward pass (e.g. by calling data_ptr) ' 'or run DistributedFusedAdam with overlap_param_sync=False.' ) with self._lock: need_to_initialize = 'fragments' not in self.state[param] if need_to_initialize: self._init_param_state(param, param_group_id, param_id) if self.greedy_grad_copy: self._grad_copy(param) if self.overlap_grad_sync: self._try_start_bucket_grad_sync( params=[param], ignore_last_bucket=need_to_initialize, ) return post_backward_hook def _register_post_backward_hooks(self): """Attach hooks for gradient synchronization""" self._grad_accs = [] for param_group_id, group in enumerate(self.param_groups): for param_id, param in enumerate(group['params']): if param.requires_grad: param_tmp = param.expand_as(param) grad_acc = param_tmp.grad_fn.next_functions[0][0] hook = self._make_post_backward_hook( param, param_group_id, param_id, ) grad_acc.register_hook(hook) self._grad_accs.append(grad_acc) def _make_pre_forward_hook(self, param, param_group_id, param_id): """Create callback function to call before param forward pass Make sure param has been synchronized and try launching next param sync. """ def pre_forward_hook(*unused): with self._lock: if 'fragments' not in self.state[param]: return self._param_copy(param) if self.overlap_param_sync: self._try_start_bucket_param_sync() return pre_forward_hook def _register_pre_forward_hooks(self): """Attach hooks for parameter synchronization If _pre_forward_hook_is_enabled is set in a parameter, then the callback will be called the first time any of its attributes are accessed. This is hackily done by monkey-patching the parameter class, so proceed with caution. """ for param_group_id, group in enumerate(self.param_groups): for param_id, param in enumerate(group['params']): # Monkey-patch parameter class cls = param.__class__ if not getattr(cls, '_has_pre_forward_hook', False): # Monkey-patch magic methods to call __getattribute__ special_funcs = [ '__abs__', '__add__', '__and__', '__bool__', '__complex__', '__contains__', '__deepcopy__', '__delitem__', '__div__', '__eq__', '__float__', '__floordiv__', '__ge__', '__getitem__', '__gt__', '__iadd__', '__iand__', '__idiv__', '__ifloordiv__', '__ilshift__', '__imod__', '__imul__', '__index__', '__int__', '__invert__', '__ior__', '__ipow__', '__irshift__', '__isub__', '__iter__', '__itruediv__', '__ixor__', '__le__', '__len__', '__long__', '__lshift__', '__lt__', '__matmul__', '__mod__', '__mul__', '__neg__', '__nonzero__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdiv__', '__reduce__', '__reduce_ex__', '__reversed__', '__rfloordiv__', '__rlshift__', '__rmatmul__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setitem__', '__sizeof__', '__sub__', '__torch_function__', '__truediv__', '__xor__', ] for func_name in special_funcs: def make_augmented_func(): base_func_name = f'_base_{func_name}' def augmented_func(self, *args, **kwargs): return getattr(self, base_func_name)(*args, **kwargs) return augmented_func setattr(cls, f'_base_{func_name}', getattr(cls, func_name)) setattr(cls, func_name, make_augmented_func()) # Monkey-patch __getattribute__ to call pre-forward hook def make_getattribute(): special_attrs = { '_pre_forward_hook_is_enabled', '_pre_forward_hook', '__del__', '__delattr__', '__dir__', '__getattr__', '__getattribute__', '__hash__', '__init__', '__new__', '__setattr__', } def getattribute_with_pre_forward_hook(self, name): """Variant of __getattribute__ that can call pre-forward hook""" if name not in special_attrs: if getattr(self, '_pre_forward_hook_is_enabled', False): self._pre_forward_hook_is_enabled = False self._pre_forward_hook() return object.__getattribute__(self, name) return getattribute_with_pre_forward_hook cls.__getattribute__ = make_getattribute() cls._has_pre_forward_hook = True # Register pre-forward callback param._pre_forward_hook_is_enabled = False param._pre_forward_hook = self._make_pre_forward_hook( param, param_group_id, param_id, ) def init_param_buffer(self): """Allocate contiguous buffer for param buckets This converts the parameters into views into the contiguous buffer. This enables some performance optimizations (e.g. avoiding some memory copies), but may add memory overhead (e.g. if the memory allocator can't reuse the original parameter buffers). To minimize memory overhead, this buffer should be initialized before the first training step. """ # Make sure all params are initialized self.contiguous_param_buffer = True self.init_params() # Construct param buffer if self.state['buckets']: buffer_size = max( bucket.contiguous_buffer_offset + bucket.bucket_size for bucket in self.state['buckets'] ) else: buffer_size = 0 self._param_buffer = torch.zeros( [buffer_size], dtype=self.param_sync_dtype, device=self.device, ) # Figure out corresponding positions in params and param buffer params = list(self.parameters()) param_flat_views = [] param_buffer_views = [] for i, param in enumerate(params): fragment = self.state[param]['fragments'][0] bucket_id = fragment.bucket_id param_size = param.numel() bucket_start, _ = fragment.bucket_range buffer_offset = self.state['buckets'][bucket_id].contiguous_buffer_offset buffer_start = buffer_offset + bucket_start buffer_end = buffer_start + param_size buffer_view = self._param_buffer[buffer_start:buffer_end].detach() if not _devices_match(buffer_view.device, param.device): raise RuntimeError( 'Attempted to change a parameter with device={param.device} ' f'into a buffer view with device={view_buffer.device}' ) if buffer_view.dtype != param.dtype: raise RuntimeError( f'Attempted to change a parameter with dtype={param.dtype} ' f'into a buffer view with dtype={view_buffer.dtype}' ) param_flat_views.append(param.detach().view(-1)) param_buffer_views.append(buffer_view) # Copy values into param buffer _multi_tensor_copy( param_flat_views, param_buffer_views, dummy_overflow_buf=self._dummy_overflow_buf, ) # Make all params a view into the param buffer for param, buffer_view in zip(params, param_buffer_views): param.data = buffer_view.view(param.size()) def _init_grad_buffer(self): """Allocate contiguous buffer for grad buckets""" self.contiguous_grad_buffer = True self.init_params() # Make sure all params are initialized if self.state['buckets']: buffer_size = max( bucket.contiguous_buffer_offset + bucket.bucket_size for bucket in self.state['buckets'] ) else: buffer_size = 0 self._grad_buffer = torch.zeros( [buffer_size], dtype=self.grad_sync_dtype, device=self.device, ) def parameters(self): """Returns an iterator over optimizer parameters""" return itertools.chain.from_iterable( group['params'] for group in self.param_groups ) def init_params(self, params=None): """Initialize optimizer state for parameters Ignores parameters that have already been initialized. Arguments: params (iterable, optional): parameters to initialize (default: all parameters) """ # Default cases if params is None: params = self.parameters() elif isinstance(params, torch.Tensor): params = [params] # Ignore parameters that have already been initialized params = [ param for param in params if 'fragments' not in self.state[param] ] if not params: return # Get indices corresponding to parameters id_map = dict() for param_group_id, group in enumerate(self.param_groups): for param_id, param in enumerate(group['params']): id_map[param] = (param_group_id, param_id) # Initialize parameters for param in params: if param in id_map: param_group_id, param_id = id_map[param] self._init_param_state(param, param_group_id, param_id) def init_params_bucket(self, params): """Initialize optimizer state for parameters in one effective bucket The buckets corresponding to the provided parameters are configured so they all perform communication together. Ignores parameters that have already been initialized. Arguments: params (iterable): parameters to initialize """ # Ignore parameters that have already been initialized if isinstance(params, torch.Tensor): params = [params] params = [ param for param in params if 'fragments' not in self.state[param] ] if not params: return # Get indices corresponding to parameters id_map = dict() for param_group_id, group in enumerate(self.param_groups): for param_id, param in enumerate(group['params']): id_map[param] = [param_group_id, param_id] param_ids = [tuple([param] + id_map[param]) for param in params] # Mark existings bucket as fully filled for bucket in self.state['buckets']: bucket.filled_size = bucket.bucket_size # Initialize optimizer state for parameters start_bucket_id = len(self.state['buckets']) self.init_params(params) end_bucket_id = len(self.state['buckets']) # Make sure all added buckets depend on provided params for bucket_id in range(start_bucket_id, end_bucket_id): bucket = self.state['buckets'][bucket_id] bucket_size = bucket.bucket_size bucket.filled_size = bucket_size ids_in_bucket = set( (fragment.param_group_id, fragment.param_id) for fragment in bucket.fragments ) for param, param_group_id, param_id in param_ids: if (param_group_id, param_id) not in ids_in_bucket: param_size = param.numel() fragment = self.ParameterFragment( param_group_id=param_group_id, param_id=param_id, bucket_id=bucket_id, param_range=(param_size, param_size), bucket_range=(bucket_size, bucket_size), in_local_shard=False, shard_range=(None, None), shard_bucket_range=(None, None), shard_param_range=(None, None), ) self.state[param]['fragments'].append(fragment) bucket.fragments.append(fragment) def _init_param_state( self, param, param_group_id, param_id, ): """Initialize optimizer state for a parameter""" # Return immediately if already initialized if 'fragments' in self.state[param]: return self.state[param]['fragments'] = [] # Make sure there is at least one bucket if not self.state['buckets']: shard_size = self.default_shard_size bucket_size = shard_size * self.distributed_size buffer_offset = 0 self.state['buckets'].append( self.StateBucket( bucket_size, shard_size, self.dtype, self.device, contiguous_buffer_offset=buffer_offset, store_params=self.store_params, store_param_remainders=self.store_param_remainders, ) ) # Split parameter values into fragments # Note: Each fragment resides within a bucket param_start = 0 param_size = param.numel() while param_start < param_size: # Get current bucket bucket_id = len(self.state['buckets']) - 1 bucket = self.state['buckets'][bucket_id] fragment_id = len(bucket.fragments) bucket_size = bucket.bucket_size shard_size = bucket.shard_size # Determine fragment position within bucket bucket_start = _round_to_multiple( bucket.filled_size, self.alignment, round_up=True, ) fragment_size = min(param_size-param_start, bucket_size-bucket_start) param_end = param_start + fragment_size bucket_end = bucket_start + fragment_size # Create new bucket if current one is full if fragment_size <= 0: shard_size = self.default_shard_size bucket_size = shard_size * self.distributed_size buffer_offset = bucket.contiguous_buffer_offset + bucket.bucket_size self.state['buckets'].append( self.StateBucket( bucket_size, shard_size, self.dtype, self.device, contiguous_buffer_offset=buffer_offset, store_params=self.store_params, store_param_remainders=self.store_param_remainders, ) ) continue # Fragment position within local shard shard_id = self.distributed_rank shard_start = bucket_start - shard_size*shard_id shard_end = bucket_end - shard_size*shard_id shard_start = min(max(shard_start, 0), shard_size) shard_end = min(max(shard_end, 0), shard_size) in_local_shard = shard_start < shard_end if in_local_shard: shard_bucket_start = shard_start + shard_size*shard_id shard_bucket_end = shard_bucket_start + shard_end - shard_start shard_param_start = shard_bucket_start - bucket_start + param_start shard_param_end = shard_param_start + shard_end - shard_start else: shard_start, shard_end = None, None shard_bucket_start, shard_bucket_end = None, None shard_param_start, shard_param_end = None, None # Record fragment info fragment = self.ParameterFragment( param_group_id=param_group_id, param_id=param_id, bucket_id=bucket_id, param_range=(param_start,param_end), bucket_range=(bucket_start,bucket_end), in_local_shard=in_local_shard, shard_range=(shard_start,shard_end), shard_bucket_range=(shard_bucket_start,shard_bucket_end), shard_param_range=(shard_param_start,shard_param_end), ) self.state[param]['fragments'].append(fragment) bucket.fragments.append(fragment) bucket.filled_size = bucket_end param_start = param_end # Initialize main param buffer if self.store_params: for fragment in self.state[param]['fragments']: if fragment.in_local_shard: bucket = self.state['buckets'][fragment.bucket_id] param_start, param_end = fragment.shard_param_range shard_start, shard_end = fragment.shard_range model_param_fragment = param.detach().view(-1)[param_start:param_end] main_param_fragment = bucket.params_shard[shard_start:shard_end] main_param_fragment.copy_(model_param_fragment) def zero_grad(self, set_to_none=False): """Clear parameter gradients""" # Reset bucket buffers self._grads_buckets.clear() # Construct views into contiguous grad buffer, if needed if self.contiguous_grad_buffer: if self._grad_buffer is None: self._init_grad_buffer() self._grad_buffer.zero_() for bucket_id, bucket in enumerate(self.state['buckets']): bucket_size = bucket.bucket_size buffer_start = bucket.contiguous_buffer_offset buffer_end = buffer_start + bucket_size grad_buffer = self._grad_buffer[buffer_start:buffer_end] self._grads_buckets[bucket_id].grads_bucket = grad_buffer # Reset param grads for param in self.parameters(): with _disable_pre_forward_hook(param): if set_to_none: param.grad = None elif (self.contiguous_grad_buffer and param.dtype == self.grad_sync_dtype and _devices_match(param.device, self.device)): param.grad = self.grad_buffer_view(param) elif param.grad is not None: param.grad.zero_() # Reset other state self._grad_scale = torch.full([], 1.0, dtype=torch.float32, device=self.device) self._grad_norm = None self._dummy_overflow_buf = torch.zeros([1], dtype=torch.int32, device=self.device) def _grad_copy(self, param): """Copy parameter gradients to buckets""" # Initialize parameter if needed if 'fragments' not in self.state[param]: for param_group_id, group in enumerate(self.param_groups): for param_id, param_ in enumerate(group['params']): if param == param_: self._init_param_state(param, param_group_id, param_id) if 'fragments' not in self.state[param]: raise RuntimeError( 'Could not initialize DistributedFusedAdam with parameter' ) # Copy param grad to buckets for fragment in self.state[param]['fragments']: # Get fragment position bucket_id = fragment.bucket_id bucket = self._grads_buckets[bucket_id] bucket_size = self.state['buckets'][bucket_id].bucket_size grad_start, grad_end = fragment.param_range bucket_start, bucket_end = fragment.bucket_range # Set reduction status if bucket.status == self.GradientStatus.SYNCING: self._finish_bucket_grad_sync() bucket.status = self.GradientStatus.PARTIALLY_FILLED # Allocate gradient buffer if needed if bucket.grads_bucket is None and self.contiguous_grad_buffer: if self._grad_buffer is None: self._init_grad_buffer() buffer_start = self.state['buckets'][bucket_id].contiguous_buffer_offset buffer_end = buffer_start + bucket_size grad_buffer = self._grad_buffer[buffer_start:buffer_end] if (bucket.grads_shard is None or bucket.grads_shard.data_ptr() != grad_buffer.data_ptr()): bucket.grads_bucket = grad_buffer bucket.grads_bucket.zero_() if bucket.grads_bucket is None: bucket.grads_bucket = torch.zeros( [bucket_size], dtype=self.grad_sync_dtype, device=self.device, ) # Copy param grad to bucket if param.grad is not None: grad_in = param.grad.detach().view(-1)[grad_start:grad_end] grad_out = bucket.grads_bucket[bucket_start:bucket_end] if grad_in.data_ptr() != grad_out.data_ptr(): grad_out.add_(grad_in) # Free param grad buffer param.grad = None def _param_copy(self, params): """Update parameters with values from parameter buckets""" # Get parameter fragments to be synchronized if isinstance(params, torch.Tensor): params = [params] fragments = [] for param in params: if 'fragments' in self.state[param]: fragments.extend( fragment for fragment in self.state[param]['fragments'] if fragment.bucket_id in self._params_buckets ) # Make sure all needed buckets have been synchronized buckets = collections.OrderedDict() for fragment in fragments: bucket_id = fragment.bucket_id bucket = self._params_buckets[bucket_id] buckets[bucket] = bucket.status if any(status != self.ParameterStatus.READY for bucket, status in buckets.items()): self._start_bucket_param_sync(buckets.keys()) self._finish_bucket_param_sync() # Copy values from bucket buffers to params params_in = [] params_out = [] for fragment in fragments: bucket_id = fragment.bucket_id param_group_id = fragment.param_group_id param_id = fragment.param_id bucket_start, bucket_end = fragment.bucket_range param_start, param_end = fragment.param_range if param_end > param_start: bucket = self._params_buckets[bucket_id] param = self.param_groups[param_group_id]['params'][param_id] params_in.append(bucket.params_bucket[bucket_start:bucket_end]) params_out.append(param.detach().view(-1)[param_start:param_end]) _multi_tensor_copy( params_in, params_out, dummy_overflow_buf=self._dummy_overflow_buf, ) # Delete buckets if possible for fragment in fragments: bucket_id = fragment.bucket_id bucket = self._params_buckets[bucket_id] bucket_fragments = self.state['buckets'][bucket_id].fragments param_group_id = fragment.param_group_id param_id = fragment.param_id param = self.param_groups[param_group_id]['params'][param_id] bucket.params_updated.add(param) if len(bucket.params_updated) == len(bucket_fragments): del self._params_buckets[bucket_id] def grad_buffer_view(self, param): """Construct view into grad buffer corresponding to param Assumes optimizer is using a contiguous grad buffer. """ # Initialize contiguous grad buffer if needed assert self.contiguous_grad_buffer if self._grad_buffer is None: self._init_grad_buffer() # Figure out corresponding position in grad buffer fragment = self.state[param]['fragments'][0] bucket_id = fragment.bucket_id param_size = param.numel() bucket_start, _ = fragment.bucket_range buffer_offset = self.state['buckets'][bucket_id].contiguous_buffer_offset buffer_start = buffer_offset + bucket_start buffer_end = buffer_start + param_size # Construct view into grad buffer flat_buffer = self._grad_buffer[buffer_start:buffer_end] return flat_buffer.detach().view(param.size()) def _force_bucket_grad_sync(self): """Ensure that all gradient buckets are synchronized""" # Synchronize all unsynchronized buckets Status = self.GradientStatus buckets = [] for bucket_id, bucket in sorted(self._grads_buckets.items()): if bucket.status not in (Status.READY, Status.SYNCING): buckets.append(bucket) if bucket.grads_bucket is None: bucket_size = self.state['buckets'][bucket_id].bucket_size bucket.grads_bucket = torch.zeros( [bucket_size], dtype=self.grad_sync_dtype, device=self.device, ) if buckets: self._start_bucket_grad_sync(buckets) self._finish_bucket_grad_sync() # Fill any unsynchronized gradients with zeros for bucket_id in range(len(self.state['buckets'])): bucket = self._grads_buckets[bucket_id] if bucket.grads_shard is None: shard_size = self.state['buckets'][bucket_id].shard_size bucket.grads_shard = torch.zeros( [shard_size], dtype=self.grad_sync_dtype, device=self.device, ) def _try_start_bucket_grad_sync( self, params=[], ignore_last_bucket=False, ): """Attempt to launch gradient synchronization Launches gradient synchronization if any bucket has receieved all its expected gradients. Gradient synchronization is asynchronous. Arguments: params (iterable): parameters that have had their gradients copied to buckets ignore_last_bucket (bool): avoid synchronizing last bucket until all gradients have been generated. This avoids excessive synchronization when initializing buckets in the first backward pass. """ # Register params that have generated grads for param in params: for fragment in self.state[param]['fragments']: bucket_id = fragment.bucket_id bucket = self._grads_buckets[bucket_id] bucket_fragments = self.state['buckets'][bucket_id].fragments bucket.grads_generated.add(param) if len(bucket.grads_generated) == len(bucket_fragments): bucket.status = self.GradientStatus.FULLY_FILLED if bucket.grads_bucket is None: bucket_size = self.state['buckets'][bucket_id].bucket_size bucket.grads_bucket = torch.zeros( [bucket_size], dtype=self.grad_sync_dtype, device=self.device, ) # Launch reductions if enough buckets are ready filled_buckets = [] for bucket_id, bucket in sorted(self._grads_buckets.items()): if ignore_last_bucket and bucket_id == len(self.state['buckets'])-1: continue if bucket.status == self.GradientStatus.FULLY_FILLED: filled_buckets.append(bucket) if filled_buckets: self._start_bucket_grad_sync(filled_buckets) def _start_bucket_grad_sync(self, buckets): """Synchronize gradient buckets Gradient synchronization is asynchronous. Involves reduce-scatter over distributed process group and allreduce over redundant process group. Assumes grad bucket buffers are already initialized. """ # Complete any outstanding grad syncs # Note: Not needed with contiguous grad buffer since there is # no memory benefit from eagerly freeing grad buffers. if not self.contiguous_grad_buffer: self._finish_bucket_grad_sync() # Reduction operation if self.average_grad_sync: reduce_op = torch.distributed.ReduceOp.AVG else: reduce_op = torch.distributed.ReduceOp.SUM # Initialize grad state and buffers for bucket in buckets: if bucket.status == self.GradientStatus.SYNCING: self._finish_bucket_grad_sync() bucket.status = self.GradientStatus.SYNCING bucket.grads_generated.clear() if self.distributed_size == 1: bucket.sync_grads_shard = bucket.grads_bucket else: bucket_size = bucket.grads_bucket.numel() shard_size = bucket_size // self.distributed_size bucket.sync_grads_shard = torch.empty( [shard_size], dtype=self.grad_sync_dtype, device=self.device, ) # Side stream for communication main_stream = torch.cuda.current_stream() comm_stream = self._pipeline_streams[-1] comm_stream.wait_stream(main_stream) # Reduce-scatter over distributed process group if self.distributed_size > 1: with torch.cuda.stream(comm_stream): for bucket in buckets: bucket.sync_wait() group = self.distributed_process_group with _coalescing_manager(group, self.device, async_ops=True) as cm: for bucket in buckets: _coalescing_manager_append_work( cm, reduce_scatter_tensor( bucket.sync_grads_shard, bucket.grads_bucket, op=reduce_op, group=group, async_op=True, ) ) cm.wait() # All-reduce over redundant process group if self.redundant_size > 1: with torch.cuda.stream(comm_stream): for bucket in buckets: bucket.sync_wait() group = self.redundant_process_group with _coalescing_manager(group, self.device, async_ops=True) as cm: for bucket in buckets: _coalescing_manager_append_work( cm, torch.distributed.all_reduce( bucket.sync_grads_shard, op=reduce_op, group=group, async_op=True, ) ) cm.wait() def _finish_bucket_grad_sync(self): """Wait for any gradient synchronizations that are in progress""" main_stream = torch.cuda.current_stream() comm_stream = self._pipeline_streams[-1] main_stream.wait_stream(comm_stream) for bucket_id, bucket in sorted(self._grads_buckets.items()): if bucket.status == self.GradientStatus.SYNCING: # Finish asynchronous communication bucket.sync_wait() # Accumulate gradient in local shard if bucket.grads_shard is None: bucket.grads_shard = bucket.sync_grads_shard else: bucket.grads_shard.add_(bucket.sync_grads_shard) bucket.grads_bucket = None bucket.sync_grads_shard = None # Reset status bucket.status = self.GradientStatus.READY # Cached gradient norm has been invalidated self._grad_norm = None def _try_start_bucket_param_sync( self, params=None, ): """Attempt to launch parameter synchronization Launches parameter synchronization for buckets corresponding to provided parameters, if needed. If parameters are not provided and no other synchronizations are in progress, attempts to find a parameter that still requires synchronization. Parameter synchronization is asynchronous. Arguments: params (iterable, optional): parameters to synchronize """ # Default behavior: only launch param sync if no other syncs # are in progress if params is None: params = [] if any(bucket.status == self.ParameterStatus.SYNCING for bucket in self._params_buckets.values()): return for bucket_id, bucket in self._params_buckets.items(): if bucket.status == self.ParameterStatus.SHARDED: fragment = self.state['buckets'][bucket_id].fragments[-1] param_group_id = fragment.param_group_id param_id = fragment.param_id param = self.param_groups[param_group_id]['params'][param_id] params.append(param) break # Find buckets corresponding to params bucket_ids = set() for param in params: bucket_ids.update( fragment.bucket_id for fragment in self.state[param]['fragments'] ) buckets = [ self._params_buckets[bucket_id] for bucket_id in sorted(bucket_ids) if bucket_id in self._params_buckets ] buckets = [ bucket for bucket in buckets if bucket.status == self.ParameterStatus.SHARDED ] # Launch param sync if needed if buckets: self._start_bucket_param_sync(buckets) def _start_bucket_param_sync(self, buckets): """Synchronize parameter buckets Parameter synchronization is asynchronous. Involves all-gather over distributed process group. Assumes param shard buffers are already initialized. """ # Complete any outstanding param syncs self._finish_bucket_param_sync() # Initialize param state and buffers buckets = [ bucket for bucket in buckets if bucket.status == self.ParameterStatus.SHARDED ] for bucket in buckets: bucket.status = self.ParameterStatus.SYNCING if self.distributed_size == 1: bucket.params_bucket = bucket.params_shard elif bucket.params_bucket is None: shard_size = bucket.params_shard.numel() bucket_size = shard_size * self.distributed_size bucket.params_bucket = torch.empty( [bucket_size], dtype=self.param_sync_dtype, device=self.device, ) # Side stream for communication main_stream = torch.cuda.current_stream() comm_stream = self._pipeline_streams[-1] comm_stream.wait_stream(main_stream) # All-gather over distributed process group if self.distributed_size > 1: with torch.cuda.stream(comm_stream): for bucket in buckets: bucket.sync_wait() group = self.distributed_process_group with _coalescing_manager(group, self.device, async_ops=True) as cm: for bucket in buckets: _coalescing_manager_append_work( cm, all_gather_into_tensor( bucket.params_bucket, bucket.params_shard, group=group, async_op=True, ) ) cm.wait() def _finish_bucket_param_sync(self): """Wait for any param synchronizations that are in progress""" main_stream = torch.cuda.current_stream() comm_stream = self._pipeline_streams[-1] main_stream.wait_stream(comm_stream) for bucket_id, bucket in self._params_buckets.items(): if bucket.status == self.ParameterStatus.SYNCING: bucket.sync_wait() bucket.params_shard = None bucket.status = self.ParameterStatus.READY @contextlib.contextmanager def no_sync(self, greedy_grad_copy=False): """Disable overlapped gradient synchronization Context manager that is similar to torch.nn.parallel.DistributedDataParallel.no_sync. The gradients can be synchronized by calling grad_sync or step. If overlapped gradient synchronization is enabled, gradients can also be synchronized by leaving the context and performing a backward pass. Arguments: greedy_grad_copy (bool, optional): copy parameter gradients to buckets as soon as they are generated (default: False) """ old_greedy_grad_copy = self.greedy_grad_copy old_overlap_grad_sync = self.overlap_grad_sync self.greedy_grad_copy = greedy_grad_copy self.overlap_grad_sync = False try: yield finally: self.greedy_grad_copy = old_greedy_grad_copy self.overlap_grad_sync = old_overlap_grad_sync def grad_sync(self): """Ensure that all gradients are synchronized""" for bucket in self.state['buckets']: for fragment in bucket.fragments: param_group_id = fragment.param_group_id param_id = fragment.param_id param = self.param_groups[param_group_id]['params'][param_id] if param.grad is not None: self._grad_copy(param) if not self.contiguous_grad_buffer: self._try_start_bucket_grad_sync( params=[param], ignore_last_bucket=False, ) self._force_bucket_grad_sync() def param_sync(self): """Ensure that all parameters are synchronized""" if self.contiguous_param_buffer: self._param_copy(self.parameters()) else: while self._params_buckets: bucket_id, bucket = next(iter((self._params_buckets.items()))) for fragment in reversed(self.state['buckets'][bucket_id].fragments): param_id = fragment.param_id param_group_id = fragment.param_group_id param = self.param_groups[param_group_id]['params'][param_id] self._param_copy(param) self._params_buckets.clear() def _local_grad_norm(self, parameters=None, norm_type=2.0): """Local contribution to parameter gradient norm Returns square of 2-norm. Other norms are not yet supported. If no parameters are provided, the norm is computed for all parameters in optimizer. Provided parameters are assumed to be in optimizer and to require gradients. """ norm_type = float(norm_type) assert norm_type == 2.0 # Make sure that gradients have been reduced self.grad_sync() # Check if provided parameters are subset of all parameters if parameters is not None: params_set = set(parameters) all_params_set = set() for bucket in self.state['buckets']: for fragment in bucket.fragments: param_group_id = fragment.param_group_id param_id = fragment.param_id all_params_set.add( self.param_groups[param_group_id]['params'][param_id] ) if not params_set.issubset(all_params_set): raise RuntimeError( 'Attempted to compute gradient norm for a parameter ' 'that is not managed by DistributedFusedAdam' ) if params_set == all_params_set: parameters = None if parameters is None: # Compute norm of all local gradients grad_norm_sq = multi_tensor_applier( amp_C.multi_tensor_l2norm, self._dummy_overflow_buf, [[bucket.grads_shard for bucket in self._grads_buckets.values()]], False, )[0] ** 2 else: # Compute norm of selected local gradients grads = [] for param in parameters: if 'fragments' not in self.state[param]: continue for fragment in self.state[param]['fragments']: if fragment.in_local_shard: bucket = self._grads_buckets[fragment.bucket_id] shard_start, shard_end = fragment.shard_range if shard_end > shard_start: grads.append(bucket.grads_shard[shard_start:shard_end]) if grads: grad_norm_sq = multi_tensor_applier( amp_C.multi_tensor_l2norm, self._dummy_overflow_buf, [grads], False, )[0] ** 2 else: grad_norm_sq = torch.zeros([1], dtype=self.dtype, device=self.device) grad_norm_sq = grad_norm_sq.detach() grad_norm_sq = grad_norm_sq.to(dtype=self.dtype, device=self.device) grad_norm_sq = grad_norm_sq.view([]) return grad_norm_sq def grad_norm(self, parameters=None, norm_type=2.0, force=False): """Gradient norm of parameters in optimizer The norm is computed over all gradients together, as if they were concatenated into a single vector. All provided parameters must be managed by optimizer. The computed value is cached to avoid redundant communication. Arguments: parameters (iterable, optional): an iterable of parameters in optimizer (default: all parameters in optimizer). norm_type (float or int, optional): type of the used p-norm (default: 2). Only 2-norm is currently supported. force (bool, optional): ignore cached value and force norm computation (default: False). """ if force or self._grad_norm is None: norm_type = float(norm_type) assert norm_type == 2.0 grad_norm_sq = self._local_grad_norm( parameters=parameters, norm_type=norm_type, ) torch.distributed.all_reduce( grad_norm_sq, op=torch.distributed.ReduceOp.SUM, group=self.distributed_process_group, ) self._grad_norm = grad_norm_sq.sqrt() grad_norm = self._grad_norm * self._grad_scale return grad_norm.detach() def clip_grad_norm(self, max_norm, parameters=None, norm_type=2.0): """Clips gradient norm of parameters in optimizer The norm is computed over all gradients together, as if they were concatenated into a single vector. The scaling is deferred until the optimizer step, which should be called immediately after this function. The computed grad norm is cached to avoid redundant communication. Arguments: max_norm (float or int): max norm of the gradients parameters (iterable, optional): an iterable of parameters in optimizer (default: all parameters in optimizer). norm_type (float or int, optional): type of the used p-norm (default: 2) """ assert max_norm > 0 total_norm = self.grad_norm(parameters=parameters, norm_type=norm_type) clip_coef = max_norm / (total_norm + 1e-6) clip_coef_clamped = torch.clamp(clip_coef, max=1.0) self._grad_scale *= clip_coef_clamped return total_norm def unscale_grads(self, inv_scale, *args): """Custom unscale function for use by AMP gradient scaler Overflow checking is deferred to optimization step. Arguments: inv_scale (torch.Tensor): factor to multiply gradients """ self._grad_scale *= inv_scale.view([]) return { self.device: torch.zeros(1, dtype=torch.float32, device=self.device) } def step(self, closure=None, *, grad_scaler=None): """Apply Adam optimizer step Arguments: closure (callable, optional): closure to recompute loss (default: None) grad_scaler (torch.cuda.amp.GradScaler, optional): gradient scaler (default: None) """ # Apply closure loss = None if closure is not None: loss = closure() # Make sure that parameters and gradients are synchronized self.param_sync() self.grad_sync() # Apply gradient scaler if provided # Note: We compute gradient norm to check for non-finite # values. This is more conservative and compute intensive than # directly checking, but it avoids extra communication if we # have already computed gradient norm e.g. for gradient # clipping. if grad_scaler is not None: grad_scaler_state = grad_scaler._per_optimizer_states[id(self)] GradScalerOptState = torch.cuda.amp.grad_scaler.OptState if grad_scaler_state['stage'] is GradScalerOptState.READY: assert grad_scaler._scale is not None self._grad_scale /= grad_scaler._scale.view([]) grad_norm = self.grad_norm() found_inf = torch.logical_not(torch.isfinite(grad_norm)) scaler_state = grad_scaler._per_optimizer_states[id(self)] scaler_state['found_inf_per_device'] = {found_inf.device: found_inf.float()} if found_inf.item(): return self._grad_scale = self._grad_scale.to(dtype=torch.float32, device=self.device) # Initialize param shard buffers for bucket_id in reversed(range(len(self.state['buckets']))): bucket = self.ParameterBucket() self._params_buckets[bucket_id] = bucket shard_size = self.state['buckets'][bucket_id].shard_size if self.contiguous_param_buffer: if self._param_buffer is None: self.init_param_buffer() bucket_size = self.state['buckets'][bucket_id].bucket_size buffer_start = self.state['buckets'][bucket_id].contiguous_buffer_offset buffer_end = buffer_start + bucket_size bucket.params_bucket = ( self._param_buffer[buffer_start:buffer_end] ) bucket_start = self.distributed_rank * shard_size bucket_end = bucket_start + shard_size bucket.params_shard = ( bucket.params_bucket[bucket_start:bucket_end] ) else: bucket.params_shard = torch.empty( [shard_size], dtype=self.param_sync_dtype, device=self.device, ) # Apply optimizer step and synchronize params self.state['step'] += 1 if self.distributed_size > 1 and self.overlap_param_sync and self.state['buckets']: # Local step and non-blocking param sync # Note: Overlap param sync of first buckets with optimizer # step of remaining buckets. # Get buckets containing "first" parameter fragment = self.state['buckets'][-1].fragments[-1] param_group_id = fragment.param_group_id param_id = fragment.param_id param = self.param_groups[param_group_id]['params'][param_id] first_bucket_ids = sorted( fragment.bucket_id for fragment in self.state[param]['fragments'] ) # Local step and launch param sync for first buckets self._local_step(first_bucket_ids) self._start_bucket_param_sync( self._params_buckets[bucket_id] for bucket_id in first_bucket_ids ) # Local step for remaining buckets first_bucket_ids = set(first_bucket_ids) self._local_step( bucket_id for bucket_id in range(len(self.state['buckets'])) if bucket_id not in first_bucket_ids ) # Enable pre-forward hook for param in self.parameters(): param._pre_forward_hook_is_enabled = True else: # Local step and blocking param sync self._local_step(list(range(len(self.state['buckets'])))) self.param_sync() return loss def _local_step(self, bucket_ids): """Apply optimizer step to local shard of parameter buckets Arguments: bucket_ids (iterable): bucket indices """ # Optimized implementation with BF16 params and 16-bit param # remainders if self.store_param_remainders: self._local_step_with_param_remainders(bucket_ids) return # Find param fragments for each bucket buffers = collections.defaultdict(list) # p_in, m, v, g, p_out for bucket_id in bucket_ids: # Optimizer state buffers for local shard fragments = self.state['buckets'][bucket_id].fragments exp_avg = self.state['buckets'][bucket_id].exp_avg_shard exp_avg_sq = self.state['buckets'][bucket_id].exp_avg_sq_shard grads = self._grads_buckets[bucket_id].grads_shard params_out = self._params_buckets[bucket_id].params_shard # Find param fragments in local shard for fragment in fragments: if fragment.in_local_shard: param_group_id = fragment.param_group_id shard_start, shard_end = fragment.shard_range if self.store_params: params_shard = self.state['buckets'][bucket_id].params_shard param_fragment = params_shard[shard_start:shard_end] else: param_id = fragment.param_id param = self.param_groups[param_group_id]['params'][param_id] param_start, param_end = fragment.shard_param_range param_fragment = param.detach().view(-1)[param_start:param_end] param_fragment = param_fragment.to(dtype=self.dtype, device=self.device) if shard_end > shard_start: buffers[param_group_id].append([ param_fragment, exp_avg[shard_start:shard_end], exp_avg_sq[shard_start:shard_end], grads[shard_start:shard_end], params_out[shard_start:shard_end], ]) # Apply optimizer step to each param group for group_id, group_buffers in buffers.items(): group = self.param_groups[group_id] beta1, beta2 = group['betas'] multi_tensor_applier( distributed_adam_cuda.multi_tensor_fused_adam, self._dummy_overflow_buf, list(zip(*group_buffers)), self._grad_scale, group['lr'], beta1, beta2, group['eps'], self.state['step'], 1 if self.adam_w_mode else 0, 1 if group['bias_correction'] else 0, group['weight_decay'], ) def _local_step_with_param_remainders(self, bucket_ids): """Apply optimizer step to local shard of parameter bucket This is an experimental implementation that expects store_params=False and store_param_remainders=True. The optimizer dtype must be FP32 and the params must all be BF16 and GPU. Arguments: bucket_ids (iterable): bucket indices """ # Find param fragments for each bucket buffers = collections.defaultdict(list) # p_in, p_rem, m, v, g, p_out for bucket_id in bucket_ids: # State buffers for local shard fragments = self.state['buckets'][bucket_id].fragments param_remainders_shard = self.state['buckets'][bucket_id].param_remainders_shard exp_avg = self.state['buckets'][bucket_id].exp_avg_shard exp_avg_sq = self.state['buckets'][bucket_id].exp_avg_sq_shard grads = self._grads_buckets[bucket_id].grads_shard params_out = self._params_buckets[bucket_id].params_shard # Find param fragments in local shard for fragment in fragments: if fragment.in_local_shard: param_group_id = fragment.param_group_id param_id = fragment.param_id param_start, param_end = fragment.shard_param_range shard_start, shard_end = fragment.shard_range param = self.param_groups[param_group_id]['params'][param_id] param_fragment = param.detach().view(-1)[param_start:param_end] param_fragment = param_fragment.to(dtype=torch.bfloat16, device=self.device) if shard_end > shard_start: buffers[param_group_id].append([ param_fragment, param_remainders_shard[shard_start:shard_end], exp_avg[shard_start:shard_end], exp_avg_sq[shard_start:shard_end], grads[shard_start:shard_end], params_out[shard_start:shard_end], ]) # Apply optimizer step to each param group for group_id, group_buffers in buffers.items(): group = self.param_groups[group_id] beta1, beta2 = group['betas'] multi_tensor_applier( distributed_adam_cuda.multi_tensor_fused_adam_with_param_remainders, self._dummy_overflow_buf, list(zip(*group_buffers)), self._grad_scale, group['lr'], beta1, beta2, group['eps'], self.state['step'], 1 if self.adam_w_mode else 0, 1 if group['bias_correction'] else 0, group['weight_decay'], ) def state_dict(self, gather_on_root=True): """Get dictionary containing optimizer state Default behavior is to perform communication so that the entire optimizer state is returned on the root rank in the process group. In this case, all ranks in the process group must enter this function and no value is returned on non-root ranks. Arguments: gather_on_root (bool, optional): Gather state from all ranks on the root rank (default: True) """ state_dict = super().state_dict() if not gather_on_root: return state_dict # Finish any asynchronous communication self.grad_sync() self.param_sync() # Export local state to byte string state_bytes = io.BytesIO() torch.save(state_dict, state_bytes) state_bytes.seek(0) state_bytes_view = state_bytes.getbuffer() # Get data sizes on all ranks local_state_size = len(state_bytes_view) state_sizes = [None] * self.distributed_size torch.distributed.all_gather_object( state_sizes, local_state_size, group=self.process_group, ) max_state_size = max(state_sizes) # Construct workspace buffers chunk_size = self.default_shard_size * torch.finfo(self.grad_sync_dtype).bits // 8 if self.distributed_rank == 0: gathered_state_bytes = [ torch.empty([size], dtype=torch.uint8, device='cpu') for size in state_sizes ] gathered_state_bytes[0].copy_( torch.frombuffer(state_bytes_view, dtype=torch.uint8) ) gathered_chunks_buffers = [ torch.empty( [chunk_size * self.distributed_size], dtype=torch.uint8, device=self.device, ) for _ in range(self.pipeline_size) ] else: chunk_buffers = [ torch.empty( [chunk_size], dtype=torch.uint8, device=self.device, ) for _ in range(self.pipeline_size) ] # Split data into chunks and gather on root rank # Note: Assuming we are using the NCCL backend, communication # must happen on the GPU. We split the data into fixed-size # chunks to limit GPU memory usage. # TODO: Avoid chunking with direct communication between CPUs main_stream = torch.cuda.current_stream() for stream in self._pipeline_streams: stream.wait_stream(main_stream) for stream_id, offset in enumerate(range(0, max_state_size, chunk_size)): stream_id %= self.pipeline_size stream = self._pipeline_streams[stream_id] with torch.cuda.stream(stream): # Buffers for chunk if self.distributed_rank == 0: gathered_chunks = [ gathered_chunks_buffers[stream_id][i*chunk_size:(i+1)*chunk_size] for i in range(self.distributed_size) ] else: chunk = chunk_buffers[stream_id] # Copy to GPU if self.distributed_rank != 0 and offset < local_state_size: local_chunk_size = min(chunk_size, local_state_size-offset) chunk[:local_chunk_size].copy_( torch.frombuffer( state_bytes_view, dtype=torch.uint8, count=local_chunk_size, offset=offset, ), non_blocking=True, ) # Gather on root # Note: Call in main stream to avoid memory pool # overheads from internal memory allocations in # gather. main_stream.wait_stream(stream) with torch.cuda.stream(main_stream): if self.distributed_rank == 0: if self._gather_no_copy: no_copy_kwarg = { 'no_copy': True } else: no_copy_kwarg = {} torch.distributed.gather( gathered_chunks[0], gathered_chunks, dst=self.process_group_root, group=self.process_group, **no_copy_kwarg, ) else: torch.distributed.gather( chunk, dst=self.process_group_root, group=self.process_group, ) stream.wait_stream(main_stream) # Copy back to CPU if self.distributed_rank == 0: for rank in range(1, self.distributed_size): rank_chunk_start = offset rank_chunk_end = min(offset + chunk_size, state_sizes[rank]) rank_chunk_size = rank_chunk_end - rank_chunk_start if rank_chunk_size > 0: src = gathered_chunks[rank][:rank_chunk_size] dst = gathered_state_bytes[rank][rank_chunk_start:rank_chunk_end] dst.copy_(src, non_blocking=True) # Synchronize GPU for stream in self._pipeline_streams: main_stream.wait_stream(stream) main_stream.synchronize() # Return gathered state data on root rank if self.distributed_rank == 0: return {'gathered_states': gathered_state_bytes} else: return None def load_state_dict(self, state_dict): """Load optimizer state""" # State dict contains state for all ranks if 'gathered_states' in state_dict: # Deallocate distributed optimizer state to reduce GPU # memory usage if 'buckets' in self.state: del self.state['buckets'] # Get state for current rank and parse byte string state_bytes = state_dict['gathered_states'][self.distributed_rank] state_bytes = io.BytesIO(state_bytes.numpy()) state_dict = torch.load(state_bytes) return super().load_state_dict(state_dict)
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/distributed_fused_adam.py
import torch from apex.multi_tensor_apply import multi_tensor_applier class FP16_Optimizer(object): """ :class:`FP16_Optimizer` A cutdown version of apex.fp16_utils.FP16_Optimizer. Designed only to wrap apex.contrib.optimizers.FusedAdam, FusedSGD. Refer to apex.fp16_utils documents for more information. Example:: model = torch.nn.Linear(D_in, D_out).cuda().half() optimizer = apex.contrib.optimizers.FusedSGD(model.parameters()) optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0) ... # loss.backward() becomes: optimizer.backward(loss) ... Example with dynamic loss scaling:: ... optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) # optional arg to control dynamic loss scaling behavior # dynamic_loss_args={'scale_window' : 500}) # Usually, dynamic_loss_args is not necessary. """ def __init__(self, init_optimizer, static_loss_scale=1.0, dynamic_loss_scale=False, dynamic_loss_args=None, verbose=True): print("\nThis fp16_optimizer is designed to only work with apex.contrib.optimizers.*") print("To update, use updated optimizers with AMP.") # The fused optimizer does all the work. We need this layer for two reason: # 1. maintain same user API from apex.fp16_utils # 2. keep common stuff here in case we need to add new fused optimizer later if not torch.cuda.is_available: raise SystemError("Cannot use fp16 without CUDA.") self.optimizer = init_optimizer self.fp16_groups = [] # model params self.fp32_groups = [] # master weights # iterate over param_groups for param_group in self.optimizer.param_groups: fp16_group = [] fp32_group = [] for p in param_group['params']: fp16_group.append(p) fp32_group.append(p.clone().float().detach()) self.fp16_groups.append(fp16_group) self.fp32_groups.append(fp32_group) param_group['params'] = fp32_group if multi_tensor_applier.available: import amp_C self.overflow_buf = torch.cuda.IntTensor([0]) self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm else: raise RuntimeError('FP16_Optimizer requires cuda extensions') # we may have a way of fusing dynamic scale. Do not support for now if dynamic_loss_scale: if dynamic_loss_args is not None: raise SystemError("Do not support dynamic loss scale args for now.") self.dynamic_loss_scale = True self.cur_scale = 2**16 self.cur_iter = 0 self.last_overflow_iter = -1 self.scale_factor = 2 self.scale_window = 1000 else: self.dynamic_loss_scale = False self.cur_iter = 0 self.cur_scale = static_loss_scale self.verbose = verbose def zero_grad(self, set_grads_to_None=True): """ Zero FP16 parameter grads. """ # FP32 grad should never exist. # For speed, set model fp16 grad to None by default for group in self.fp16_groups: for p in group: if set_grads_to_None: p.grad = None else: if p.grad is not None: p.grad.detach_() p.grad.zero_() def step(self, closure=None): """ Not supporting closure. """ fp16_grads = [] norm_groups = [] skip = False for group in self.fp16_groups: fp16_grad = [] for i, p in enumerate(group): fp16_grad.append(p.grad) fp16_grads.append(fp16_grad) # nan check self.overflow_buf.zero_() for fp16_grad in fp16_grads: if len(fp16_grad) > 0: norm, norm_per_tensor = multi_tensor_applier(self.multi_tensor_l2norm, self.overflow_buf, [fp16_grad], True) norm_groups.append(norm) if self.overflow_buf.item() != 0: skip = True if skip: self._update_scale(skip) return # norm is in fact norm*cur_scale self.optimizer.step(grads=fp16_grads, output_params=self.fp16_groups, scale=self.cur_scale, grad_norms=norm_groups) self._update_scale(False) return def backward(self, loss): """ :attr:`backward` performs the following steps: 1. fp32_loss = loss.float() 2. scaled_loss = fp32_loss*loss_scale 3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves """ scaled_loss = (loss.float()) * self.cur_scale scaled_loss.backward() def _update_scale(self, skip): if self.dynamic_loss_scale: if skip: if self.verbose: print("\nGrad overflow on iteration", self.cur_iter) print("Using dynamic loss scale of", self.cur_scale) self.cur_scale = max(self.cur_scale/self.scale_factor, 1) self.last_overflow_iter = self.cur_iter else: if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: self.cur_scale *= self.scale_factor else: if skip: print("\nGrad overflow on iteration", self.cur_iter) print("Using static loss scale of", self.cur_scale) self.cur_iter +=1 return # Promote state so it can be retrieved or set via "fp16_optimizer_instance.state" def _get_state(self): return self.optimizer.state def _set_state(self, value): self.optimizer.state = value state = property(_get_state, _set_state) # Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups" # (for example, to adjust the learning rate) def _get_param_groups(self): return self.optimizer.param_groups def _set_param_groups(self, value): self.optimizer.param_groups = value param_groups = property(_get_param_groups, _set_param_groups) def state_dict(self): """ Returns a dict containing the current state of this :class:`FP16_Optimizer` instance. This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict of the contained Pytorch optimizer. Example:: checkpoint = {} checkpoint['model'] = model.state_dict() checkpoint['optimizer'] = optimizer.state_dict() torch.save(checkpoint, "saved.pth") """ state_dict = {} state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale state_dict['cur_scale'] = self.cur_scale state_dict['cur_iter'] = self.cur_iter if state_dict['dynamic_loss_scale']: state_dict['last_overflow_iter'] = self.last_overflow_iter state_dict['scale_factor'] = self.scale_factor state_dict['scale_window'] = self.scale_window state_dict['optimizer_state_dict'] = self.optimizer.state_dict() state_dict['fp32_groups'] = self.fp32_groups return state_dict def load_state_dict(self, state_dict): """ Loads a state_dict created by an earlier call to state_dict(). If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``, whose parameters in turn came from ``model``, it is expected that the user will call ``model.load_state_dict()`` before ``fp16_optimizer_instance.load_state_dict()`` is called. Example:: model = torch.nn.Linear(D_in, D_out).cuda().half() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0) ... checkpoint = torch.load("saved.pth") model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) """ # I think it should actually be ok to reload the optimizer before the model. self.dynamic_loss_scale = state_dict['dynamic_loss_scale'] self.cur_scale = state_dict['cur_scale'] self.cur_iter = state_dict['cur_iter'] if state_dict['dynamic_loss_scale']: self.last_overflow_iter = state_dict['last_overflow_iter'] self.scale_factor = state_dict['scale_factor'] self.scale_window = state_dict['scale_window'] self.optimizer.load_state_dict(state_dict['optimizer_state_dict']) # At this point, the optimizer's references to the model's fp32 parameters are up to date. # The optimizer's hyperparameters and internal buffers are also up to date. # However, the fp32 master copies of the model's fp16 params stored by the optimizer are still # out of date. There are two options. # 1: Refresh the master params from the model's fp16 params. # This requires less storage but incurs precision loss. # 2: Save and restore the fp32 master copies separately. # We choose option 2. # # Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device # of their associated parameters, because it's possible those buffers might not exist yet in # the current optimizer instance. In our case, as long as the current FP16_Optimizer has been # constructed in the same way as the one whose state_dict we are loading, the same master params # are guaranteed to exist, so we can just copy_() from the saved master params. for current, saved in zip(self.fp32_groups, state_dict['fp32_groups']): for _current, _saved in zip(current, saved): _current.data.copy_(_saved.data)
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/fp16_optimizer.py
import torch import importlib import math from apex.multi_tensor_apply import multi_tensor_applier class FusedLAMB(torch.optim.Optimizer): """Implements LAMB algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--deprecated_fused_lamb" ./``. This version of fused LAMB implements 2 fusions. * Fusion of the LAMB update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.contrib.optimizers.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer:: opt = apex.contrib.optimizers.FusedLAMB(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedLAMB` may be used with or without Amp. If you wish to use :class:`FusedLAMB` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ NOT SUPPORTED now! (default: False) adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) grad_averaging (bool, optional): whether apply (1-beta2) to grad when calculating running averages of gradient. (default: True) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, amsgrad=False, adam_w_mode=True, grad_averaging=True, set_grad_none=True, max_grad_norm=1.0): if amsgrad: raise RuntimeError('FusedLAMB does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm) super(FusedLAMB, self).__init__(params, defaults) if multi_tensor_applier.available: import amp_C self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm self._dummy_overflow_buf = torch.cuda.IntTensor([0]) fused_lamb_cuda = importlib.import_module("fused_lamb_cuda") self.multi_tensor_lamb = fused_lamb_cuda.lamb else: raise RuntimeError('apex.contrib.optimizers.FusedLAMB requires cuda extensions') self.adam_w_mode = 1 if adam_w_mode else 0 self.set_grad_none = set_grad_none def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedLAMB, self).zero_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() # create separate grad lists for fp32 and fp16 params g_all_32, g_all_16 = [], [] for group in self.param_groups: for p in group['params']: if p.grad is None: continue if p.dtype == torch.float32: g_all_32.append(p.grad.data) elif p.dtype == torch.float16: g_all_16.append(p.grad.data) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') g_norm_32, g_norm_16 = 0.0, 0.0 # compute grad norm for two lists if len(g_all_32) > 0: g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0].item() if len(g_all_16) > 0: g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0].item() # blend two grad norms to get global grad norm global_grad_norm = math.sqrt(g_norm_32 * g_norm_32 + g_norm_16 * g_norm_16) max_grad_norm = self.defaults['max_grad_norm'] for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 # create lists for multi-tensor apply g_16, p_16, m_16, v_16 = [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError('FusedLAMB does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) v_16.append(state['exp_avg_sq']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) v_32.append(state['exp_avg_sq']) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') if(len(g_16) > 0): multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm, max_grad_norm) if(len(g_32) > 0): multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm, max_grad_norm) return loss
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/fused_lamb.py
import types import torch from torch.optim.optimizer import Optimizer, required from apex.multi_tensor_apply import multi_tensor_applier class FusedSGD(Optimizer): r"""Implements stochastic gradient descent (optionally with momentum). This version of fused SGD implements 2 fusions. * Fusion of the SGD update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.contrib.optimizers.FusedSGD` should be used without AMP. :class:`apex.contrib.optimizers.FusedSGD` only works in the case where all parameters require grad. Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) Example: model = ... model.half() optimizer = apex.contrib.optimizers.FusedSGD(model.parameters()) # wrap with FP16_Optimizer optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) optimizer.zero_grad() ... optimizer.backward(loss) optmizer.step() __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: v = \rho * v + g \\ p = p - lr * v where p, g, v and :math:`\rho` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: v = \rho * v + lr * g \\ p = p - v The Nesterov version is analogously modified. """ def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False, materialize_master_grads=True): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(FusedSGD, self).__init__(params, defaults) self.wd_after_momentum = wd_after_momentum if multi_tensor_applier.available: import amp_C # Skip buffer self._dummy_overflow_buf = torch.cuda.IntTensor([0]) self.multi_tensor_sgd = amp_C.multi_tensor_sgd else: raise RuntimeError('apex.contrib.optimizers.FusedSGD requires cuda extensions') def __setstate__(self, state): super(FusedSGD, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def get_momentums(self, params): momentums = [] first_run = True for p in params: param_state = self.state[p] # torch.optim.SGD initializes momentum in the main loop, we have # to do it here, and track whether or not we've done so, so that # momentum application can be skipped in the main kernel. if 'momentum_buffer' not in param_state: first_run = True buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) momentums.append(buf) else: first_run = False momentums.append(param_state['momentum_buffer']) return momentums, first_run def step(self, closure=None, grads=None, output_params=None, scale=1., grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output_params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ if hasattr(self, "_amp_stash"): raise RuntimeError('apex.contrib.optimizers.FusedSGD should not be used with AMP.') loss = None if closure is not None: loss = closure() if grads is None: raise RuntimeError('apex.contrib.optimizers.FusedSGD must be wrapped \ with apex.contrib.optimizers.FP16_Optimizer \ which provides grads.') # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0])!=list: grads_group = [grads] else: grads_group = grads if output_params is None: raise RuntimeError('apex.contrib.optimizers.FusedSGD must be wrapped \ with apex.contrib.optimizers.FP16_Optimizer \ which provides output_params.') elif isinstance(output_params, types.GeneratorType): output_params_group = [output_params] elif type(output_params[0])!=list: output_params_group = [output_params] else: output_params_group = output_params for group, grads_this_group, output_params_this_group in zip(self.param_groups, grads_group, output_params_group): if grads_this_group is None or output_params_this_group is None: raise RuntimeError('apex.contrib.optimizers.FusedSGD only works \ when all parameters require grad.') weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] lr = group['lr'] first_runs = [True, True] # output_params_this_group: original weights (either fp16 or fp32) # group['params']: master weights (fp32) # grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy # fp32, fp32, fp32, No fp32_grads = [g for (p, g) in zip(output_params_this_group, grads_this_group) if p.dtype == torch.float32] fp32_params = [p2 for (p1, p2) in zip(output_params_this_group, group['params']) if p1.dtype == torch.float32] fp32_momentums, first_runs[1] = self.get_momentums(fp32_params) fp32_set = [fp32_grads, fp32_params, fp32_momentums] # fp16, fp32, fp32, Yes fp16_grads = [g for (p, g) in zip(output_params_this_group, grads_this_group) if p.dtype == torch.float16] fp32_from_fp16_params = [p2 for (p1, p2) in zip(output_params_this_group, group['params']) if p1.dtype == torch.float16] fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params) fp16_params = [p1 for (p1, p2) in zip(output_params_this_group, group['params']) if p1.dtype == torch.float16] fp16_set = [fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_params] launch_sets = [fp16_set, fp32_set] for launch_set, first_run in zip(launch_sets, first_runs): assert len(launch_set[0]) == len(launch_set[1]) assert len(launch_set[0]) == len(launch_set[2]) if len(launch_set[0]) > 0: multi_tensor_applier( self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay, momentum, dampening, lr, nesterov, first_run, self.wd_after_momentum, 1.0/scale) return loss
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/fused_sgd.py
import os import math import inspect import torch import importlib import amp_C from apex.multi_tensor_apply import multi_tensor_applier import torch.distributed.distributed_c10d as c10d # Fallback to private fields if using older PyTorch version try: import torch.distributed.distributed_c10d.get_process_group_ranks except ImportError: def get_process_group_ranks(group): return list(c10d._pg_group_ranks[group].keys()) _make_nccl_premul_sum = getattr(torch.distributed, "_make_nccl_premul_sum", None) # Ref: https://github.com/pytorch/pytorch/pull/81272 if _make_nccl_premul_sum is None: if hasattr(torch.distributed, "make_nccl_premul_sum"): _make_nccl_premul_sum = torch.distributed.make_nccl_premul_sum class DistributedFusedLAMB(torch.optim.Optimizer): """Implements LAMB algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused LAMB implements 2 fusions. * Fusion of the LAMB update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedLAMB` may be used with or without Amp. If you wish to use :class:`FusedLAMB` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ NOT SUPPORTED now! (default: False) adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) grad_averaging (bool, optional): whether apply (1-beta2) to grad when calculating running averages of gradient. (default: True) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0 weight decay parameter (default: False) step_supports_amp_scaling(boolean, optional): whether to use customized gradient unscaling logic (default: True) .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ class AtomicCounter(object): def __init__(self): self.value = 0 self.order = [] import threading self._lock = threading.Lock() def add(self, idx): with self._lock: self.value += 1 self.order.append(idx) def __init__(self, params, lr=1e-3, bias_correction = True, grad_averaging=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0., max_grad_norm=0., adam_w_mode=True, use_nvlamb=False, step_supports_amp_scaling=True, overlap_reductions=True, dwu_group_size=0, dwu_num_blocks=4, dwu_num_chunks=4, dwu_num_rs_pg=1, dwu_num_ar_pg=4, dwu_num_ag_pg=0, fused_norm=False, e5m2_allgather=False, verbose=False, clip_after_ar=True, full_ar=False, set_param_views_to_flat_buffer=False, skip_allgather=False, fuse_scale=False, param_order=None, nccl_allgather_channels=0): defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm) super(DistributedFusedLAMB, self).__init__(params, defaults) global fused_adam_cuda, distributed_lamb_cuda fused_adam_cuda = importlib.import_module("fused_adam_cuda") distributed_lamb_cuda = importlib.import_module("distributed_lamb_cuda") self._overflow_buf = torch.cuda.IntTensor([0]) self._has_overflow = False self.multi_tensor_lamb_compute_update_term = distributed_lamb_cuda.multi_tensor_lamb_compute_update_term self.multi_tensor_lamb_update_weights = distributed_lamb_cuda.multi_tensor_lamb_update_weights import amp_C self.multi_tensor_l2norm = amp_C.multi_tensor_l2norm self._grad_averaging = grad_averaging self._adam_w_mode = 1 if adam_w_mode else 0 self._use_nvlamb = use_nvlamb self._step_supports_amp_scaling = step_supports_amp_scaling self._is_accumulation_step = False self._last_step = False self._overlap_reductions = overlap_reductions self._global_scale = None self._num_blocks = dwu_num_blocks self._num_chunks = dwu_num_chunks self._e5m2_allgather = e5m2_allgather self._verbose = verbose self._clip_after_ar = clip_after_ar self._full_ar = full_ar self._fuse_scale = fuse_scale self._L2_grad_norm = None self._set_flat_param_view = set_param_views_to_flat_buffer self._skip_ag = skip_allgather self._fused_norm = fused_norm if not clip_after_ar else False self._current_process_group = c10d._get_default_group() self._available_ranks = get_process_group_ranks(self._current_process_group) self._group_size = torch.cuda.device_count() if dwu_group_size <= 0 else dwu_group_size self._world_size = torch.distributed.get_world_size() self._num_groups = self._world_size // self._group_size self._rank_in_group = torch.distributed.get_rank() % self._group_size self._lr = torch.tensor(0.0, dtype=torch.float32, device='cuda') self._resume_from_checkpoint = False self._step = torch.cuda.IntTensor([0]) # Master weight, moment, gradient buffers self._fp32_p, self._fp32_m, self._fp32_v, self._fp16_p, self._fp16_g = None, None, None, None, None # Check if collectives have no_copy option self._reduce_scatter_no_copy = ( 'no_copy' in inspect.getfullargspec(torch.distributed.reduce_scatter).args ) self._all_gather_no_copy = ( 'no_copy' in inspect.getfullargspec(torch.distributed.all_gather).args ) if "reduce_scatter_tensor" not in dir(torch.distributed): torch.distributed.reduce_scatter_tensor = torch.distributed._reduce_scatter_base if "all_gather_into_tensor" not in dir(torch.distributed): torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base self._num_rs_pg = dwu_num_rs_pg self._num_ar_pg = dwu_num_ar_pg self._num_ag_pg = dwu_num_ag_pg if self._full_ar: # full all reduce, only need AR and AG groups # l2_grad_norm may be reduced within a node to limit from memory reads for group_i in range(self._num_groups): ranks = [group_i*self._group_size+j for j in range(self._group_size)] l2_grad_norm_pg = torch.distributed.new_group(ranks=ranks) if torch.distributed.get_rank() in ranks: self._l2_grad_norm_pg = l2_grad_norm_pg self._ar_pg = [] # consider all the ranks ranks = list(range(0, self._world_size)) for i in range(self._num_ar_pg): if self._verbose: print(f"creating new AR group {i}: {ranks}") grp = torch.distributed.new_group(ranks=ranks) if grp != torch.distributed.GroupMember.NON_GROUP_MEMBER: if self._verbose: print(f"group {i}: init barrier (device: {torch.cuda.current_device()})") torch.distributed.barrier(group=grp, device_ids=[torch.cuda.current_device()]) if self._verbose: print(f"created new AR group {i}: {ranks}") if torch.distributed.get_rank() in ranks: self._ar_pg.append(grp) self._ar_st = [torch.cuda.Stream() for _ in range(self._num_ar_pg)] if nccl_allgather_channels > 0: os.putenv('NCCL_MAX_NCHANNELS', str(nccl_allgather_channels)) if self._num_ag_pg == 0: self._ag_pg = self._ar_pg self._ag_st = self._ar_st self._num_ag_pg = self._num_ar_pg else: self._ag_pg = [] ranks = [] stride = torch.cuda.device_count() for i in range(self._num_groups): rs = list(range(i*stride, (i+1)*stride)) ranks.append(rs) for rs in ranks: for i in range(self._num_ag_pg): grp = torch.distributed.new_group(ranks=rs) if torch.distributed.get_rank() in rs: if self._verbose: print(f"creating AG group {i}: {rs}") self._ag_pg.append(grp) self._ag_st = [torch.cuda.Stream() for _ in range(self._num_ag_pg)] else: # reduce-scatter + all-reduce, need RS, AR, AG groups if self._num_groups > 1: self._ar_pg = [] for dev_i in range(self._group_size): ranks = [dev_i+j*self._group_size for j in range(self._num_groups)] for i in range(self._num_ar_pg): if self._verbose: print(f"creating new AR group {i}: {ranks}") grp = torch.distributed.new_group(ranks=ranks) if grp != torch.distributed.GroupMember.NON_GROUP_MEMBER: if self._verbose: print(f"group {i}: init barrier (device: {torch.cuda.current_device()})") torch.distributed.barrier(group=grp, device_ids=[torch.cuda.current_device()]) if self._verbose: print(f"created new AR group {i}: {ranks}") if torch.distributed.get_rank() in ranks: self._ar_pg.append(grp) self._ar_st = [torch.cuda.Stream() for _ in range(self._num_ar_pg)] rs_ranks = [] for group_i in range(self._num_groups): rs_ranks.append([group_i*self._group_size+j for j in range(self._group_size)]) self._rs_pg = [] for group_i in range(self._num_groups): ranks = rs_ranks[group_i] for i in range(self._num_rs_pg): grp = torch.distributed.new_group(ranks=ranks) if torch.distributed.get_rank() in ranks: self._rs_pg.append(grp) if self._verbose: print(f"creating RS group : {ranks}") l2_grad_norm_pg = torch.distributed.new_group(ranks=ranks) if torch.distributed.get_rank() in ranks: self._l2_grad_norm_pg = l2_grad_norm_pg self._rs_st = [torch.cuda.Stream() for _ in range(self._num_rs_pg)] if self._num_ag_pg == 0: self._ag_pg = self._rs_pg self._ag_st = self._rs_st self._num_ag_pg = self._num_rs_pg else: self._ag_pg = [] for group_i in range(self._num_groups): ranks = rs_ranks[group_i] for i in range(self._num_ag_pg): grp = torch.distributed.new_group(ranks=ranks) if torch.distributed.get_rank() in ranks: self._ag_pg.append(grp) if self._verbose: print(f"creating AG group : {ranks}") self._ag_st = [torch.cuda.Stream() for _ in range(self._num_ag_pg)] for ag_pg in self._ag_pg: torch.distributed.barrier(group=ag_pg) self._l2_grad_norm_st = torch.cuda.Stream() self._completion_st = torch.cuda.Stream() self._step.record_stream(self._completion_st) self._reductions_works = [None]*self._num_blocks self._allgather_works = [None]*self._num_blocks self._one = torch.cuda.IntTensor([1]) self._first_step = True self._lazy_init_stage1_done, self._lazy_init_stage2_done = False, False self._param_order = self.AtomicCounter() p_offset = 0 p_i = 0 self._model_params = [] self._grad_accs = [] self._group_properties = [] for group in self.param_groups: prev = None beta1, beta2 = group['betas'] beta3 = 1.0 - beta1 if self._grad_averaging else 1.0 bias_correction = 1 if group['bias_correction'] else 0 eps = group['eps'] weight_decay = group['weight_decay'] for p in group['params']: if not p.requires_grad: continue self._model_params.append(p) self._group_properties.append(( weight_decay, bias_correction, beta1, beta2, beta3, eps )) p_grads_size = p.numel() if self._set_flat_param_view: if param_order: # this is executed when param_order is specified by the user self._param_order.add(param_order[p]) else: self._param_order.add(p_i) p_offset += p_grads_size # Only enforce 128b alignment (64 * fp16) for non-consecutive parameters # RNN is one example of consecutive parameters: # (weight_ih, weight_hh, bias_ih, bias_hh) if prev is not None and (prev.data_ptr() + prev.numel() * prev.element_size() != p.data_ptr()): p_offset = ((p_offset + 63) // 64) * 64 prev = p p_i += 1 if param_order: self._param_order.order = torch.argsort(torch.tensor(self._param_order.order)).tolist() self._grads_generated = [False]*len(self._model_params) self._grads_fp16, self._grads_fp32 = [], [] if self._overlap_reductions: self._current_block = self._num_blocks self._net_total_param_size = p_offset self._total_param_size = p_offset dwu_min_page_size = 256 * self._num_blocks * self._num_chunks * self._group_size self._total_param_size = ((self._total_param_size + dwu_min_page_size - 1) // dwu_min_page_size) * dwu_min_page_size self._new_params = torch.zeros([self._total_param_size], dtype=torch.uint8 if self._e5m2_allgather else torch.float16, device='cuda') def _lazy_init_stage1(self): if self._lazy_init_stage1_done: return p_i = 0 #self._model_params = [] #self._grad_accs = [] #self._group_properties = [] for group in self.param_groups: for p in group['params']: torch.distributed.broadcast(p, 0) if not p.requires_grad: continue def wrapper(param, param_i): param_tmp = param.expand_as(param) grad_acc = param_tmp.grad_fn.next_functions[0][0] def allreduce_hook(*unused): if not self._set_flat_param_view: if self._first_step: # first time self._param_order.add(param_i) else: idx = self._param_order.order.index(param_i) self._do_overlapped_reduction(idx, param) else: if not self._first_step: idx = self._param_order.order.index(param_i) self._do_overlapped_reduction(idx, param) grad_acc.register_hook(allreduce_hook) self._grad_accs.append(grad_acc) wrapper(p, p_i) p_i += 1 self._block_size = self._total_param_size // self._num_blocks self._chunk_size = self._block_size // self._num_chunks self._shard_size = self._chunk_size // self._group_size self._flat_grads = torch.zeros([self._total_param_size], dtype=torch.float16, device='cuda') self._mega_shard_size = self._num_blocks * self._num_chunks * self._shard_size # initialize master weights, moments buffers if not loaded from checkpoint if self._fp32_p is None: self._fp32_p = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda') self._fp32_m = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda') self._fp32_v = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda') self._fp32_u = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda') # FIXME: Rethink fp16 label since it's either uint8 or fp16 self._fp16_p = torch.zeros([self._mega_shard_size], dtype=torch.uint8 if self._e5m2_allgather else torch.float16, device='cuda') self._fp16_g = torch.zeros([self._mega_shard_size], dtype=torch.float16, device='cuda') def _flat_split(p): def __blockify(p): return [p[block_id*self._block_size:(block_id+1)*self._block_size] for block_id in range(self._num_blocks)] def __chunkify(p): return [p[chunk_id*self._chunk_size:(chunk_id+1)*self._chunk_size] for chunk_id in range(self._num_chunks)] def __shardify(p): return [p[shard_id*self._shard_size:(shard_id+1)*self._shard_size] for shard_id in range(self._group_size)] list_of_blocks = __blockify(p) list_of_list_of_chunks = [__chunkify(block) for block in list_of_blocks] list_of_list_of_list_of_shards = [[__shardify(chunk) for chunk in chunks] for chunks in list_of_list_of_chunks] return list_of_blocks, list_of_list_of_chunks, list_of_list_of_list_of_shards # note(crcrpar): the function below doesn't seem to be used at all. # def _flat_split_no_shards(p): # def __blockify(p): # return [p[block_id*self._block_size:(block_id+1)*self._block_size] for block_id in range(self._num_blocks)] # def __chunkify(p): # return [p[chunk_id*self._chunk_size:(chunk_id+1)*self._chunk_size] for chunk_id in range(self._num_chunks)] # list_of_blocks = __blockify(self._flat_grads) # list_of_list_of_chunks = [__chunkify(block) for block in list_of_blocks] # return list_of_blocks, list_of_list_of_chunks def _full_packed_split(p): def __shardify(p): return [p[mega_shard*self._mega_shard_size:(mega_shard+1)*self._mega_shard_size] for mega_shard in range(self._group_size)] def __blockify(p): return [p[block_id*self._num_chunks*self._shard_size:(block_id+1)*self._num_chunks*self._shard_size] for block_id in range(self._num_blocks)] def __chunkify(p): return [p[chunk_id*self._shard_size:(chunk_id+1)*self._shard_size] for chunk_id in range(self._num_chunks)] list_of_mega_shards = __shardify(p) list_of_list_of_mega_blocks = [__blockify(mega_shard) for mega_shard in list_of_mega_shards] list_of_list_of_list_of_mega_chunks = [[__chunkify(mega_block) for mega_block in mega_blocks] for mega_blocks in list_of_list_of_mega_blocks] return list_of_mega_shards, list_of_list_of_mega_blocks, list_of_list_of_list_of_mega_chunks def _packed_split(p): def __packed_blockify(p): packed_block_size = self._num_chunks*self._shard_size return [p[block_id*packed_block_size:(block_id+1)*packed_block_size] for block_id in range(self._num_blocks)] def __packed_chunkify(p): # in the packed format, each chunk contains one shard, so packed_chunk_size == self._shard_size return [p[chunk_id*self._shard_size:(chunk_id+1)*self._shard_size] for chunk_id in range(self._num_chunks)] list_of_blocks = __packed_blockify(p) list_of_list_of_chunks = [__packed_chunkify(block) for block in list_of_blocks] return list_of_blocks, list_of_list_of_chunks def _split_assign(shards): packed_block_size = self._num_chunks*self._shard_size list_of_list_of_chunks=[] for block_id in range(self._num_blocks): list_of_chunks=[] for chunk_id in range(self._num_chunks): #self._fp16_g[block_id*packed_block_size+chunk_id*self._shard_size:block_id*packed_block_size+(chunk_id+1)*self._shard_size] = shards[block_id][chunk_id][self._rank_in_group] list_of_chunks.append( shards[block_id][chunk_id][self._rank_in_group]) list_of_list_of_chunks.append(list_of_chunks) return list_of_list_of_chunks self._new_params_mega_shards, self._new_params_mega_blocks, self._new_params_mega_chunks = _full_packed_split(self._new_params) # this splitting scheme is needed when allgather needs to be split into multiple chunks in a contiguous way self._new_params2_blocks, self._new_params2_chunks, self._new_params2_shards = _flat_split(self._new_params) self._fp32_p_blocks, self._fp32_p_chunks = _packed_split(self._fp32_p) self._fp32_m_blocks, self._fp32_m_chunks = _packed_split(self._fp32_m) self._fp32_v_blocks, self._fp32_v_chunks = _packed_split(self._fp32_v) self._fp32_u_blocks, self._fp32_u_chunks = _packed_split(self._fp32_u) self._fp16_p_blocks, self._fp16_p_chunks = _packed_split(self._fp16_p) if self._full_ar: # for gradient all-reduce self._flat_grads_blocks, self._flat_grads_chunks, self._flat_grads_shards = _flat_split(self._flat_grads) # for weight update self._fp16_g_chunks = _split_assign(self._flat_grads_shards) else: self._flat_grads_blocks, self._flat_grads_chunks, self._flat_grads_shards = _flat_split(self._flat_grads) self._fp16_g_blocks, self._fp16_g_chunks = _packed_split(self._fp16_g) self._lazy_init_stage1_done = True def _lazy_init_stage2(self): if self._lazy_init_stage2_done: return if not self._set_flat_param_view: # reversing is needed for overlapping allreduce and backprop, but currently not supported for flat param view self._param_order.order.reverse() # re-order model_params, grad_accs, group_properties lists self._model_params = [self._model_params[i] for i in self._param_order.order] self._grad_accs = [self._grad_accs[i] for i in self._param_order.order] self._group_properties = [self._group_properties[i] for i in self._param_order.order] def _get_flat_view(param): if param.is_contiguous(memory_format=torch.channels_last): K, C, H, W = param.shape pv = param.as_strided(size=(K,H,W,C), stride=(H*W*C, W*C, C, 1)) elif param.is_contiguous(memory_format=torch.channels_last_3d): K, C, D, H, W = param.shape pv = param.as_strided(size=(K,D,H,W,C), stride=(D*H*W*C, H*W*C, W*C, C, 1)) else: pv = param return pv.view(-1) # re-collect grads info (size, offset) after ordering prev = None p_offset = 0 self._grads_info = [] self._individual_flat_grads = [] for i, p in enumerate(self._model_params): p_grads_size = p.numel() self._grads_info.append({"param_grads_size":p_grads_size, "param_offset":p_offset}) self._individual_flat_grads.append(self._flat_grads[p_offset:p_offset+p_grads_size].view_as(p)) # for the first iteration self._do_overlapped_reduction(i, p) p_offset += p_grads_size # Only enforce 128b alignment (64 * fp16) for non-consecutive parameters # RNN is one example of consecutive parameters: # (weight_ih, weight_hh, bias_ih, bias_hh) if prev is not None and (prev.data_ptr() + prev.numel() * prev.element_size() != p.data_ptr()): p_offset = ((p_offset + 63) // 64) * 64 prev = p self._low_param_i = [0]*self._num_blocks for block_id in range(self._num_blocks-1,-1,-1): p_i = len(self._grads_info)-1 while p_i > 0 and self._grads_info[p_i]["param_offset"] > block_id*self._block_size: p_i -= 1 self._low_param_i[block_id] = p_i #print("self._low_param_i", self._low_param_i) # This paragraph does two things: # 1) Copy model parameters into master buffer # 2) Create tensor lists for unpacking new parameter tensor after all-gather self._packed_flat_to_model_params_fp16 = [] self._packed_flat_to_model_params_fp32 = [] self._model_params_num = len(self._model_params) self._contrib_tensor_list = [] self._contrib_min_param_i, self._contrib_max_param_i = -1, -1 self._contrib_update_frag_for_norm = [] self._contrib_model_param_for_norm_fp16 = [] self._contrib_model_param_for_norm_fp32 = [] self._contrib_model_param_for_norm_is_fp16 = [] self._model_param_is_contrib = [] self._contrib_group_properties = [] for shard_id in range(self._group_size): for block_id in range(self._num_blocks): for chunk_id in range(self._num_chunks): flat_shard_start = (((block_id * self._num_chunks + chunk_id) * self._group_size) + shard_id) * self._shard_size flat_shard_end = flat_shard_start + self._shard_size for param_i, (p, grads_info, group_props) in enumerate(zip(self._model_params, self._grads_info, self._group_properties)): flat_grad_start = grads_info["param_offset"] flat_grad_end = flat_grad_start + grads_info["param_grads_size"] clipped_start = (lambda a,b: a if a > b else b)(flat_grad_start, flat_shard_start) clipped_end = (lambda a,b: a if a < b else b)(flat_grad_end, flat_shard_end) if clipped_start < clipped_end: grad_offset = clipped_start - flat_grad_start grad_length = clipped_end - clipped_start shard_offset = clipped_start - flat_shard_start pf = _get_flat_view(p) model_param_fragment = pf[grad_offset:grad_offset+grad_length] new_param_packed_fragment = self._new_params_mega_chunks[shard_id][block_id][chunk_id][shard_offset:shard_offset+grad_length] if model_param_fragment.dtype == torch.float16: self._packed_flat_to_model_params_fp16.append( (new_param_packed_fragment, model_param_fragment) ) else: self._packed_flat_to_model_params_fp32.append( (new_param_packed_fragment, model_param_fragment) ) if shard_id == self._rank_in_group: self._model_param_is_contrib.append(param_i) # copy model parameters into master buffer master_param_fragment = self._fp32_p_chunks[block_id][chunk_id][shard_offset:shard_offset+grad_length] opti_state_m_fragment = self._fp32_m_chunks[block_id][chunk_id][shard_offset:shard_offset+grad_length] opti_state_v_fragment = self._fp32_v_chunks[block_id][chunk_id][shard_offset:shard_offset+grad_length] opti_state_u_fragment = self._fp32_u_chunks[block_id][chunk_id][shard_offset:shard_offset+grad_length] opti_state_g_fragment = self._fp16_g_chunks[block_id][chunk_id][shard_offset:shard_offset+grad_length] opti_state_p_fragment = self._fp16_p_chunks[block_id][chunk_id][shard_offset:shard_offset+grad_length] #print("model_param_fragment.size()=%s, new_param_packed_fragment.size()=%s, master_param_fragment.size()=%s" % (str(model_param_fragment.size()), str(new_param_packed_fragment.size()), str(master_param_fragment.size()))) if not self._resume_from_checkpoint: master_param_fragment.copy_(model_param_fragment) self._contrib_group_properties.append(group_props) self._contrib_tensor_list.append((master_param_fragment, opti_state_m_fragment, opti_state_v_fragment, opti_state_u_fragment, opti_state_g_fragment, opti_state_p_fragment)) # p, m, v, u, g, p_copy self._contrib_update_frag_for_norm.append(opti_state_u_fragment) if p.dtype == torch.float16: self._contrib_model_param_for_norm_fp16.append(p) else: self._contrib_model_param_for_norm_fp32.append(p) self._contrib_model_param_for_norm_is_fp16.append(True if p.dtype == torch.float16 else False) if self._contrib_min_param_i < 0: self._contrib_min_param_i = param_i self._contrib_max_param_i = param_i self._contrib_model_param_for_norm_num = len(self._contrib_model_param_for_norm_is_fp16) if len(self._contrib_model_param_for_norm_fp16) == 0: self._contrib_model_param_for_norm_fp16 = None if len(self._contrib_model_param_for_norm_fp32) == 0: self._contrib_model_param_for_norm_fp32 = None self._contrib_model_param_for_norm_is_fp32 = torch.tensor([not is_fp16 for is_fp16 in self._contrib_model_param_for_norm_is_fp16], dtype=torch.bool, device='cuda') self._contrib_model_param_for_norm_is_fp16 = torch.tensor([is_fp16 for is_fp16 in self._contrib_model_param_for_norm_is_fp16], dtype=torch.bool, device='cuda') self._offsets = torch.tensor(self._model_param_is_contrib, dtype=torch.int64, device='cuda') p, m, v, u, g, p_copy = list(zip(*self._contrib_tensor_list)) self._contrib_compute_update_term_tensor_list = [g, p, m, v, u] self._contrib_update_weights_tensor_list = [u, p, p_copy] math_type = self._fp32_u.dtype decay, bias_correction, beta1, beta2, beta3, epsilon = list(zip(*self._contrib_group_properties)) self._contrib_beta1 = torch.tensor(beta1, dtype=math_type, device='cuda') self._contrib_beta2 = torch.tensor(beta2, dtype=math_type, device='cuda') self._contrib_beta3 = torch.tensor(beta3, dtype=math_type, device='cuda') self._contrib_bias_correction = torch.tensor(bias_correction, dtype=torch.int, device='cuda') self._contrib_epsilon = torch.tensor(epsilon, dtype=math_type, device='cuda') self._contrib_weight_decay = torch.tensor(decay, dtype=math_type, device='cuda') self._packed_flat_to_model_params_fp16 = list(zip(*self._packed_flat_to_model_params_fp16)) if len(self._packed_flat_to_model_params_fp16) > 0 else None self._packed_flat_to_model_params_fp32 = list(zip(*self._packed_flat_to_model_params_fp32)) if len(self._packed_flat_to_model_params_fp32) > 0 else None self._lazy_init_stage2_done = True self.complete_reductions() self._first_step = False def set_is_accumulation_step(self, is_accumulation_step): self._is_accumulation_step = is_accumulation_step def set_last_step(self, last_step): self._last_step = last_step def _get_flush_block(self): flush_block = [] if self._current_block > 0 and self._grads_generated[self._low_param_i[self._current_block-1]]: num_grads = len(self._grads_generated) contiguous_idx = num_grads while contiguous_idx > 0 and self._grads_generated[contiguous_idx-1]: contiguous_idx -= 1 if contiguous_idx < num_grads and self._grads_info[contiguous_idx]["param_offset"] <= (self._current_block-1)*self._block_size: self._current_block -= 1 start = self._current_block * self._block_size end = (self._current_block+1) * self._block_size flush_block = [start, end] return flush_block def _full_all_reduce_scale(self, block_id, scale): works = [None]*self._num_chunks if self._clip_after_ar: for chunk_id in range(self._num_chunks): glob_chunk_id = block_id * self._num_chunks + chunk_id ar_stream = self._ar_st[glob_chunk_id%self._num_ar_pg] ar_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(ar_stream): works[chunk_id] = torch.distributed.all_reduce(self._flat_grads_chunks[block_id][chunk_id],group=self._ar_pg[glob_chunk_id%self._num_ar_pg],async_op=True,op=_make_nccl_premul_sum(scale)) else: glob_chunk_id = block_id ar_stream = self._ar_st[glob_chunk_id%self._num_ar_pg] ar_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(ar_stream): works0 = torch.distributed.all_reduce(self._flat_grads_blocks[block_id],group=self._ar_pg[glob_chunk_id%self._num_ar_pg],async_op=True,op=_make_nccl_premul_sum(scale)) for i in range(self._num_chunks): works[i]=works0 self._reductions_works[block_id] = works def _full_all_reduce(self, block_id): works = [None]*self._num_chunks for chunk_id in range(self._num_chunks): glob_chunk_id = block_id * self._num_chunks + chunk_id ar_stream = self._ar_st[glob_chunk_id%self._num_ar_pg] ar_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(ar_stream): works[chunk_id] = torch.distributed.all_reduce(self._flat_grads_chunks[block_id][chunk_id],group=self._ar_pg[glob_chunk_id%self._num_ar_pg],async_op=True) self._reductions_works[block_id] = works def _reduce_scatter_and_all_reduce_scale(self, block_id, scale): # Reduction within each node # Changes gradient format from [block * chunk * shard] to [shard * block * chunk] # The output format is the same as the fp32 master parameters works = [None]*self._num_chunks for chunk_id in range(self._num_chunks): glob_chunk_id = block_id * self._num_chunks + chunk_id rs_stream = self._rs_st[glob_chunk_id%self._num_rs_pg] rs_stream.wait_stream(torch.cuda.current_stream()) rs_stream.wait_stream(self._l2_grad_norm_st) with torch.cuda.stream(rs_stream): if self._reduce_scatter_no_copy: works[chunk_id] = torch.distributed.reduce_scatter( output=self._fp16_g_chunks[block_id][chunk_id], input_list=self._flat_grads_shards[block_id][chunk_id], group=self._rs_pg[glob_chunk_id%self._num_rs_pg], async_op=True, no_copy=True, op=_make_nccl_premul_sum(scale), ) else: works[chunk_id] = torch.distributed.reduce_scatter_tensor( output=self._fp16_g_chunks[block_id][chunk_id], input=self._flat_grads_chunks[block_id][chunk_id], group=self._rs_pg[glob_chunk_id%self._num_rs_pg], async_op=True, op=_make_nccl_premul_sum(scale), ) # Reduction across nodes for each rank if self._num_groups > 1: for chunk_id in range(self._num_chunks): glob_chunk_id = block_id * self._num_chunks + chunk_id ar_stream = self._ar_st[glob_chunk_id%self._num_ar_pg] with torch.cuda.stream(ar_stream): works[chunk_id].wait() works[chunk_id] = torch.distributed.all_reduce(self._fp16_g_chunks[block_id][chunk_id],group=self._ar_pg[glob_chunk_id%self._num_ar_pg],async_op=True) self._reductions_works[block_id] = works def _reduce_scatter_and_all_reduce(self, block_id): # Reduction within each node # Changes gradient format from [block * chunk * shard] to [shard * block * chunk] # The output format is the same as the fp32 master parameters works = [None]*self._num_chunks for chunk_id in range(self._num_chunks): glob_chunk_id = block_id * self._num_chunks + chunk_id rs_stream = self._rs_st[glob_chunk_id%self._num_rs_pg] rs_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(rs_stream): if self._reduce_scatter_no_copy: works[chunk_id] = torch.distributed.reduce_scatter( output=self._fp16_g_chunks[block_id][chunk_id], input_list=self._flat_grads_shards[block_id][chunk_id], group=self._rs_pg[glob_chunk_id%self._num_rs_pg], async_op=True, no_copy=True, ) else: works[chunk_id] = torch.distributed.reduce_scatter_tensor( output = self._fp16_g_chunks[block_id][chunk_id], input = self._flat_grads_chunks[block_id][chunk_id], group = self._rs_pg[glob_chunk_id%self._num_rs_pg], async_op = True, ) # Reduction across nodes for each rank if self._num_groups > 1: for chunk_id in range(self._num_chunks): glob_chunk_id = block_id * self._num_chunks + chunk_id ar_stream = self._ar_st[glob_chunk_id%self._num_ar_pg] with torch.cuda.stream(ar_stream): works[chunk_id].wait() works[chunk_id] = torch.distributed.all_reduce(self._fp16_g_chunks[block_id][chunk_id],group=self._ar_pg[glob_chunk_id%self._num_ar_pg],async_op=True) self._reductions_works[block_id] = works def _pipeline_block_reductions(self, block_id): if self._clip_after_ar: self._flatten_grad_mt(1.0/self._world_size) if self._full_ar: self._full_all_reduce(block_id) else: self._reduce_scatter_and_all_reduce(block_id) # Compute L2 grad norm if block_id == 0: with torch.cuda.stream(self._l2_grad_norm_st): for block_id in range(self._num_blocks): for chunk_id in range(self._num_chunks): self._reductions_works[block_id][chunk_id].wait() # Since the packed format is contiguous after reductions, only one norm is needed l2_grad_norm_sq = torch.empty([1], device='cuda') if self._full_ar: # this flattening of lists is to keep multi_tensor_apply function happy, it wants depth=1 for l2 norm computation flat_list = [item for sublist in self._fp16_g_chunks for item in sublist] l2_grad_norm_sq = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [flat_list], False)[0]**2 else: l2_grad_norm_sq = self._fp16_g.norm(dtype=torch.float32, p=2)**2 torch.distributed.all_reduce(l2_grad_norm_sq, group=self._l2_grad_norm_pg) self._L2_grad_norm = l2_grad_norm_sq.sqrt() else: # Copy model grads to flat grads buffer self._flatten_grad_mt(1.0) # Compute L2 grad norm self._l2_grad_norm_st.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self._l2_grad_norm_st): if not self._fused_norm: self._L2_grad_norm = self._flat_grads.norm(dtype=torch.float16, p=2).float() torch.cuda.current_stream().wait_stream(self._l2_grad_norm_st) # Apply clipping & pre-reduction scaling on grads loss_scale = self.global_scale max_grad_norm = loss_scale*self.defaults['max_grad_norm'] coeff = max_grad_norm /(1e-6+self.L2_grad_norm) coeff = (coeff>1) * self._one + (coeff<=1) * coeff tmp = torch.cat(((self._one), (coeff))) index = (coeff+1>coeff).int() scale = tmp.index_select(0, index).half()/self._world_size if not self._fuse_scale: self._flat_grads.mul_(scale) if self._full_ar: if self._fuse_scale: self._full_all_reduce_scale(block_id, scale) else: self._full_all_reduce(block_id) else: if self._fuse_scale: self._reduce_scatter_and_all_reduce_scale(block_id, scale) else: self._reduce_scatter_and_all_reduce(block_id) if block_id == 0: for block_id in range(self._num_blocks): for chunk_id in range(self._num_chunks): self._reductions_works[block_id][chunk_id].wait() def __compute_contrib_param_norm(self): if self._contrib_model_param_for_norm_fp16 is not None and self._contrib_model_param_for_norm_fp32 is not None: gnorm_fp16 = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [self._contrib_model_param_for_norm_fp16], True)[1] gnorm_fp32 = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [self._contrib_model_param_for_norm_fp32], True)[1] gnorm = torch.empty(size=[self._contrib_model_param_for_norm_num], dtype=torch.bool, device='cuda') gnorm.masked_scatter_(self._contrib_model_param_for_norm_is_fp16, gnorm_fp16) gnorm.masked_scatter_(self._contrib_model_param_for_norm_is_fp32, gnorm_fp32) elif self._contrib_model_param_for_norm_fp16 is not None: gnorm = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [self._contrib_model_param_for_norm_fp16], True)[1] elif self._contrib_model_param_for_norm_fp32 is not None: gnorm = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [self._contrib_model_param_for_norm_fp32], True)[1] return gnorm def __compute_contrib_update_norm(self): l2_norm = torch.zeros(size=[self._model_params_num], dtype=torch.float32, device='cuda') local_contrib_l2_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [self._contrib_update_frag_for_norm], True)[1] ** 2 l2_norm.scatter_(dim=0, index=self._offsets, src=local_contrib_l2_norm) torch.distributed.all_reduce(l2_norm, group=self._ag_pg[0]) l2_norm = torch.sqrt(l2_norm) return l2_norm def _pipeline_step(self): global_scale = self.global_scale # if clip before ar, set max_grad_norm to 0 max_grad_norm = self.defaults['max_grad_norm'] * self._clip_after_ar self._completion_st.wait_stream(self._l2_grad_norm_st) global_grad_norm = self.L2_grad_norm # check global_grad_norm and fill overflow_buf is_finite = (global_grad_norm + 1 > global_grad_norm).int() self._overflow_buf = self._one * (is_finite ^ self._one) # toggle between 0 and 1 if not self._clip_after_ar: torch.distributed.all_reduce(is_finite, op=torch.distributed.ReduceOp.MIN, group=self._current_process_group) torch.distributed.all_reduce(self._overflow_buf, op=torch.distributed.ReduceOp.MAX, group=self._current_process_group) # increment step counter if no overflow self._step += is_finite self._completion_st.wait_stream(torch.cuda.current_stream()) self._completion_st.wait_stream(self._l2_grad_norm_st) # Call step kernel once per step # Call all-gather once per step with torch.cuda.stream(self._completion_st): for block_id in range(self._num_blocks): for chunk_id in range(self._num_chunks): self._reductions_works[block_id][chunk_id].wait() param_norm = self.__compute_contrib_param_norm() multi_tensor_applier(self.multi_tensor_lamb_compute_update_term, self._overflow_buf, self._contrib_compute_update_term_tensor_list, # g, p, m, v, u self._contrib_beta1, self._contrib_beta2, self._contrib_beta3, self._contrib_bias_correction, self._step, self._contrib_epsilon, self._adam_w_mode, self._contrib_weight_decay, global_scale, global_grad_norm, max_grad_norm) upd_norm = self.__compute_contrib_update_norm() multi_tensor_applier(self.multi_tensor_lamb_update_weights, self._overflow_buf, self._contrib_update_weights_tensor_list, # u, p, p_copy param_norm, upd_norm, self._offsets, self._lr, self._contrib_weight_decay, global_grad_norm, self._use_nvlamb) if not self._skip_ag: # allgather chunking is currently not supported for clip after allreduce if not self._clip_after_ar: for block in range(self._num_blocks): for chunk in range(self._num_chunks): if self._all_gather_no_copy: torch.distributed.all_gather( tensor_list = self._new_params2_shards[block][chunk], tensor = self._fp16_p_chunks[block][chunk], group = self._ag_pg[0], no_copy = True, ) else: torch.distributed.all_gather_into_tensor( output_tensor = self._new_params2_blocks[block], input_tensor = self._fp16_p_chunks[block][chunk], group = self._ag_pg[0], ) else: if self._all_gather_no_copy: torch.distributed.all_gather( tensor_list = self._new_params_mega_shards, tensor = self._fp16_p, group = self._ag_pg[0], no_copy = True, ) else: torch.distributed.all_gather_into_tensor( output_tensor = self._new_params, input_tensor = self._fp16_p, group = self._ag_pg[0], ) def _flatten_grad_mt(self, scale): if len(self._grads_fp16) > 0: self._overflow_buf.zero_() if not self._fused_norm: multi_tensor_applier( amp_C.multi_tensor_scale, self._overflow_buf, list(zip(*self._grads_fp16)), scale) else: self._L2_grad_norm=multi_tensor_applier( amp_C.multi_tensor_l2norm_scale, self._overflow_buf, list(zip(*self._grads_fp16)), scale, False)[0].float() self._grads_fp16 = [] if len(self._grads_fp32) > 0: self._overflow_buf.zero_() if not self._fused_norm: multi_tensor_applier( amp_C.multi_tensor_scale, self._overflow_buf, list(zip(*self._grads_fp32)), scale) else: self._L2_grad_norm=multi_tensor_applier( amp_C.multi_tensor_l2norm_scale, self._overflow_buf, list(zip(*self._grads_fp32)), scale, False)[0].float() self._grads_fp32 = [] def _do_overlapped_reduction(self, param_i, param): if not self._is_accumulation_step: # handle overlapped reductions if param.dtype == torch.float16: self._grads_fp16.append( (param.grad, self._individual_flat_grads[param_i]) ) else: self._grads_fp32.append( (param.grad, self._individual_flat_grads[param_i]) ) self._grads_generated[param_i]=True if not self._first_step and not self._last_step: if self._overlap_reductions: flush_block = self._get_flush_block() while flush_block: block_id = flush_block[0] // self._block_size self._pipeline_block_reductions(block_id) flush_block = self._get_flush_block() def set_global_scale(self, global_scale): """Set global scale. """ self._global_scale = global_scale @property def global_scale(self): return self._global_scale @property def L2_grad_norm(self): torch.cuda.current_stream().wait_stream(self._l2_grad_norm_st) return self._L2_grad_norm def complete_reductions(self): """Complete reductions if full pipeline is not selected or overlap is not allowed. """ if self._last_step: # zero out gradients that have not been completed yet for param_i, grad_generated in enumerate(self._grads_generated): if not grad_generated: grad_info = self._grads_info[param_i] param_offset = grad_info["param_offset"] param_size = grad_info["param_grads_size"] self._flat_grads[param_offset:param_offset+param_size].zero_() self._grads_generated[param_i] = True if self._first_step or self._last_step or not self._overlap_reductions: # nothing done so far, run full pipeline after reductions for block_id in range(self._num_blocks-1,-1,-1): self._pipeline_block_reductions(block_id) torch.cuda.current_stream().wait_stream(self._l2_grad_norm_st) self._current_block = self._num_blocks self._grads_generated = [False]*len(self._grads_info) def step(self, closure=None, grad_scaler=None): loss = None if closure is not None: loss = closure() self._pipeline_step() if grad_scaler is not None: found_inf = self._overflow_buf.float() optimizer_state = grad_scaler._per_optimizer_states[id(self)] current_device = torch.device('cuda', torch.cuda.current_device()) optimizer_state["found_inf_per_device"][current_device] = found_inf self._completion_st.wait_stream(torch.cuda.current_stream()) if not self._set_flat_param_view: with torch.cuda.stream(self._completion_st): # Copy self._new_params to model params with torch.no_grad(): if self._packed_flat_to_model_params_fp16 is not None: multi_tensor_applier( fused_adam_cuda.maybe_cast_mt, self._overflow_buf, self._packed_flat_to_model_params_fp16) if self._packed_flat_to_model_params_fp32 is not None: multi_tensor_applier( fused_adam_cuda.maybe_cast_mt, self._overflow_buf, self._packed_flat_to_model_params_fp32) torch.cuda.current_stream().wait_stream(self._completion_st) self._reductions_works = [None]*self._num_blocks self._allgather_works = [None]*self._num_blocks return loss def state_dict(self): """ Returns a dict containing the current state of this :class:`DistributedFusedAdam` instance. Example:: checkpoint = {} checkpoint['model'] = model.state_dict() checkpoint['optimizer'] = optimizer.state_dict() torch.save(checkpoint, "saved.pth") """ # save step, master weights and first/second moments state_dict = {} state_dict['step'] = self._step state_dict['fp32_p'] = self._fp32_p state_dict['fp32_m'] = self._fp32_m state_dict['fp32_v'] = self._fp32_v return state_dict def load_state_dict(self, state_dict): """ Loads a state_dict created by an earlier call to state_dict(). If an DistributedFusedAdam instance was constructed from some ``init_optimizer``, whose parameters in turn came from ``model``, it is expected that the user will call ``model.load_state_dict()`` before ``optimizer.load_state_dict()`` is called. Example:: model = torch.nn.Linear(D_in, D_out).cuda().half() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0) ... checkpoint = torch.load("saved.pth") model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) """ # restore step, master weights and first/second moments self._step = state_dict['step'] self._fp32_p = state_dict['fp32_p'].to(device="cuda") self._fp32_m = state_dict['fp32_m'].to(device="cuda") self._fp32_v = state_dict['fp32_v'].to(device="cuda") self._resume_from_checkpoint = True
GeneSplice-main
GeneSplice/apex/apex/contrib/optimizers/distributed_fused_lamb.py
import torch import torch.distributed as dist from torch import nn import nccl_p2p_cuda as inc import peer_memory_cuda as pm # Communication free halo exchanger. # NB! This halo exchanger does not exchange halos with neighbors as it should, it merely swaps the inputs # NB! This is only useful for performance testing. # NB! Do not use for actual production runs class HaloExchanger(object): def __init__(self, ranks, rank_in_group): self.stream1 = torch.cuda.Stream() self.stream2 = torch.cuda.Stream() self.stream3 = torch.cuda.Stream() self.group_size = len(ranks) self.ranks = ranks self.rank_in_group = rank_in_group self.wrap_around_left_rank_in_group = (rank_in_group + self.group_size - 1) % self.group_size self.wrap_around_right_rank_in_group = (rank_in_group + 1) % self.group_size self.left_rank = ranks[rank_in_group-1] if rank_in_group > 0 else -1 self.left_zero = True if rank_in_group == 0 else False self.right_rank = ranks[rank_in_group+1] if rank_in_group < self.group_size - 1 else -1 self.right_zero = True if rank_in_group == self.group_size - 1 else False class HaloExchangerNoComm(HaloExchanger): def __init__(self, ranks, rank_in_group): super(HaloExchangerNoComm, self).__init__(ranks, rank_in_group) def left_right_halo_exchange(self, left_output_halo, right_output_halo, left_input_halo=None, right_input_halo=None): if left_input_halo is None: return right_output_halo, left_output_halo else: left_input_halo.copy_(right_output_halo) right_input_halo.copy_(left_output_halo) class HaloExchangerAllGather(HaloExchanger): def __init__(self, ranks, rank_in_group, comm): super(HaloExchangerAllGather, self).__init__(ranks, rank_in_group) # self.comm must be NCCL process_group created with torch.distributed.new_group(ranks=ranks) self.comm = comm def left_right_halo_exchange(self, left_output_halo, right_output_halo, left_input_halo=None, right_input_halo=None): N,Hh,W,C = list(left_output_halo.shape) send_halos = torch.empty((N,2*Hh,W,C),dtype=left_output_halo.dtype,device=left_output_halo.device) send_halos[:,:Hh,:,:].copy_(left_output_halo) send_halos[:,Hh:,:,:].copy_(right_output_halo) all_halos = torch.empty((N,2*Hh*self.group_size,W,C),dtype=left_output_halo.dtype,device=left_output_halo.device) all_halos = [all_halos[:,i*2*Hh:(i+1)*2*Hh,:,:] for i in range(self.group_size)] torch.distributed.all_gather(all_halos,send_halos,group=self.comm,no_copy=True) ag_left_input_halo = all_halos[self.wrap_around_left_rank_in_group][:,Hh:,:,:] ag_right_input_halo = all_halos[self.wrap_around_right_rank_in_group][:,:Hh,:,:] if left_input_halo is None: if self.left_zero: ag_left_input_halo.zero_() if self.right_zero: ag_right_input_halo.zero_() return ag_left_input_halo, ag_right_input_halo else: if self.left_zero: left_input_halo.zero_() else: left_input_halo.copy_(ag_left_input_halo) if self.right_zero: right_input_halo.zero_() else: right_input_halo.copy_(ag_right_input_halo) class HaloExchangerSendRecv(HaloExchanger): def __init__(self, ranks, rank_in_group): super(HaloExchangerSendRecv, self).__init__(ranks, rank_in_group) nccl_id = inc.get_unique_nccl_id(1).cuda() torch.distributed.broadcast(nccl_id, 0) nccl_id = nccl_id.cpu() print("%d :: nccl_id = %s" % (torch.distributed.get_rank(), str(nccl_id))) # Create another global nccl communicator in addition to the one created by torch.distributed.init_process_group("nccl") # This is unavoidable because the underlying NCCL communicator torch.distributed creates is a protected variable, hence # it cannot be accessed from another class. # TODO: Figure out a way to avoid creating a second global communicator assert(torch.distributed.get_rank() == self.ranks[self.rank_in_group]), "ranks[%d](%d) != torch.distributed.get_rank()(%d)" % (self.rank_in_group, self.ranks[self.rank_in_group], torch.distributed.get_rank()) self.handle = inc.init_nccl_comm(nccl_id, torch.distributed.get_rank(), torch.distributed.get_world_size()) def left_right_halo_exchange(self, left_output_halo, right_output_halo, left_input_halo=None, right_input_halo=None): if left_input_halo is None: left_input_halo, right_input_halo = inc.left_right_halo_exchange(self.handle, self.left_rank, self.right_rank , left_output_halo, right_output_halo) return left_input_halo, right_input_halo else: inc.left_right_halo_exchange_inplace(self.handle, self.left_rank, self.right_rank, left_output_halo, right_output_halo, left_input_halo, right_input_halo) class HaloExchangerPeer(HaloExchanger): def __init__(self, ranks, rank_in_group, peer_pool, explicit_nhwc, numSM=0): super(HaloExchangerPeer, self).__init__(ranks, rank_in_group) self.diagnostics = False self.explicit_nhwc = explicit_nhwc self.numSM = numSM self.peer_pool = peer_pool def _allocate_peer_tensor(self, halo): # Compute size in bytes # Note: Pad buffer so each CUDA block gets required buffer size size = 4 * halo.numel() * halo.element_size() size_per_block = 128 * 2 * 16 # 128 threads each require two 128b buffers size = (size + size_per_block - 1) // size_per_block * size_per_block # Construct dtype peer buffer with desired size shape = [1, 1, 1, size // halo.element_size()] return self.peer_pool.allocate_peer_tensors(shape, halo.dtype, False, True) def left_right_halo_exchange(self, left_output_halo, right_output_halo, left_input_halo=None, right_input_halo=None): inplace = False if left_input_halo is None and right_input_halo is None else True if not inplace: left_input_halo = torch.empty_like(right_output_halo) right_input_halo = torch.empty_like(left_output_halo) channels_last = left_output_halo.is_contiguous(memory_format=torch.channels_last) and not self.explicit_nhwc left_tx = self._allocate_peer_tensor(left_input_halo) right_tx = self._allocate_peer_tensor(right_input_halo) pm.push_pull_halos_1d( self.diagnostics, self.explicit_nhwc, self.numSM, self.rank_in_group, self.left_zero, left_output_halo, left_tx[self.rank_in_group], right_tx[self.wrap_around_left_rank_in_group], left_input_halo, self.right_zero, right_output_halo, right_tx[self.rank_in_group], left_tx[self.wrap_around_right_rank_in_group], right_input_halo, ) if not inplace: return left_input_halo, right_input_halo # Class that combines input volume with halos from neighbors (1d). class HaloPadder: def __init__(self, halo_ex): self.halo_ex = halo_ex self.stream1 = torch.cuda.Stream() self.stream2 = torch.cuda.Stream() def __call__(self, y, half_halo, explicit_nhwc, H_split): channels_last = not explicit_nhwc and y.is_contiguous(memory_format=torch.channels_last) if explicit_nhwc: N,H,W,C = list(y.shape) if H_split: padded_shape = [N,H+2*half_halo,W,C] ypad = torch.empty(shape=padded_shape, dtype=y.dtype, device=y.device, memory_format=torch.contiguous_format) yleft = ypad[:,:half_halo,:,:] ymid = ypad[:,half_halo:H+half_halo,:,:] yright = ypad[:,H+half_halo:H+2*half_halo,:,:] oleft = y[:,:half_halo,:,:] oright = y[:,H-half_halo:,:,:] else: padded_shape = [N,H,W+2*half_halo,C] ypad = torch.empty(shape=padded_shape, dtype=y.dtype, device=y.device, memory_format=torch.contiguous_format) yleft = ypad[:,:,:half_halo,:] ymid = ypad[:,:,half_halo:W+half_halo,:] yright = ypad[:,:,W+half_halo:W+2*half_halo,:] oleft = y[:,:,:half_halo,:] oright = y[:,:,W-half_halo:,:] else: N,C,H,W = list(y.shape) if H_split: padded_shape = [N,C,H+2*half_halo,W] ypad = torch.empty(shape=padded_shape, dtype=y.dtype, device=y.device, memory_format=torch.channels_last) yleft = ypad[:,:,:half_halo,:] ymid = ypad[:,:,half_halo:H+half_halo,:] yright = ypad[:,:,H+half_halo:H+2*half_halo,:] oleft = y[:,:,:half_halo,:] oright = y[:,:,H-half_halo:,:] else: padded_shape = [N,C,H,W+2*half_halo] ypad = torch.empty(shape=padded_shape, dtype=y.dtype, device=y.device, memory_format=torch.channels_last) yleft = ypad[:,:,:,:half_halo] ymid = ypad[:,:,:,half_halo:W+half_halo] yright = ypad[:,:,:,W+half_halo:W+2*half_halo] oleft = y[:,:,:,:half_halo] oright = y[:,:,:,W-half_halo:] with torch.cuda.stream(self.stream1): self.halo_ex(oleft, oright, yleft, yright) with torch.cuda.stream(self.stream2): ymid.copy_(y) return ypad def wait(self): current_stream = torch.cuda.current_stream() current_stream.wait_stream(self.stream1) current_stream.wait_stream(self.stream2)
GeneSplice-main
GeneSplice/apex/apex/contrib/bottleneck/halo_exchangers.py
from .bottleneck import Bottleneck, SpatialBottleneck from .halo_exchangers import HaloExchangerNoComm, HaloExchangerAllGather, HaloExchangerSendRecv, HaloExchangerPeer
GeneSplice-main
GeneSplice/apex/apex/contrib/bottleneck/__init__.py
import torch from bottleneck import Bottleneck torch.manual_seed(23337) # use True to print layerwise sum for all outputs in reference code path DEBUG = False#True for stride, o_channel in [(1,32), (1,128), (2,32)]: print("testing stride ==", stride, ", in_channel == 32 , out_channel ==", o_channel) a_ = torch.randn(17,32,28,28) a = a_.cuda().half().to(memory_format=torch.channels_last).requires_grad_() model = Bottleneck(32,8,o_channel,stride=stride).cuda().half().to(memory_format=torch.channels_last) # test model b = model(a) b.mean().backward() d_grad = a.grad.float() a.grad = None torch.cuda.synchronize() if DEBUG: print("[DEBUG] ref dx :", d_grad.sum().item()) # print wgrad. we don't need to reset since later cpp print before accumulation for i, w in enumerate(model.w_conv): print("[DEBUG] ref wgrad{} :".format(i+1), w.grad.sum().item()) wgrads = [] for w in model.w_conv: wgrads.append(w.grad.float()) model.use_cudnn = True model.zero_grad() c = model(a) c.mean().backward() torch.cuda.synchronize() print("comparing native and channels_last:") print("max error fprop:", (b-c).abs().max().item(), "max elem:", b.abs().max().item()) print("max error dgrad:", (d_grad-a.grad.float()).abs().max().item(), "max elem:", d_grad.abs().max().item()) for i, (w, wgrad) in enumerate(zip(model.w_conv, wgrads)): print("max error wgrad{}:".format(i+1), (wgrad - w.grad.float()).abs().max().item(), "max elem:", wgrad.abs().max().item()) nhwc_a = a_.permute(0,2,3,1).contiguous().cuda().half().requires_grad_() nhwc_model = Bottleneck(32,8,o_channel,stride=stride,explicit_nhwc=True, use_cudnn=True).cuda().half() for p,q in zip(model.parameters(), nhwc_model.parameters()): # model's storage is already in nhwc, we clone and assign to explicit nhwc model q.data.copy_(p.data.permute(0,2,3,1).contiguous()) for p,q in zip(model.buffers(), nhwc_model.buffers()): q.data.copy_(p.data) d = nhwc_model(nhwc_a) d.mean().backward() torch.cuda.synchronize() # reset reference to cudnn channels_last permute #c_s = c.storage().tolist() #d_s = d.storage().tolist() #print(max([x-y for x,y in zip(c_s,d_s)])) c = c.contiguous(memory_format=torch.contiguous_format).permute(0,2,3,1).contiguous() d_grad = a.grad.float().permute(0,2,3,1).contiguous() wgrads = [] for w in model.w_conv: wgrads.append(w.grad.float().permute(0,2,3,1).contiguous()) torch.cuda.synchronize() print("comparing nhwc and channels_last:") print("max error fprop:", (d-c).abs().max().item(), "max elem:", c.abs().max().item()) print("max error dgrad:", (d_grad-nhwc_a.grad.float()).abs().max().item(), "max elem:", d_grad.abs().max().item()) for i, (w, wgrad) in enumerate(zip(nhwc_model.w_conv, wgrads)): print("max error wgrad{}:".format(i+1), (wgrad - w.grad.float()).abs().max().item(), "max elem:", wgrad.abs().max().item())
GeneSplice-main
GeneSplice/apex/apex/contrib/bottleneck/test.py
import functools as func import torch import torch.distributed as dist from torch import nn from apex import check_cudnn_version_and_warn import fast_bottleneck import nccl_p2p_cuda as inc assert check_cudnn_version_and_warn(__name__, 8400) def kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'): weight_tensor_nchw = tensor nn.init.kaiming_uniform_(weight_tensor_nchw, a=a, mode=mode, nonlinearity=nonlinearity) def compute_scale_bias_one(nhwc, weight, bias, running_mean, running_var, w_scale, w_bias): scale = weight * running_var.rsqrt() bias = bias - running_mean * scale w_scale.copy_(scale) w_bias.copy_(bias) def compute_scale_bias_method(nhwc, args): for arg in args: # arg is tuple of (weight, bias, running_mean, running_var, w_scale, w_bias) compute_scale_bias_one(nhwc, *arg) class FrozenBatchNorm2d(torch.jit.ScriptModule): """ BatchNorm2d where the batch statistics and the affine parameters are fixed """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) @torch.jit.script_method def get_scale_bias(self, nhwc): # type: (bool) -> List[torch.Tensor] scale = self.weight * self.running_var.rsqrt() bias = self.bias - self.running_mean * scale if nhwc: scale = scale.reshape(1, 1, 1, -1) bias = bias.reshape(1, 1, 1, -1) else: scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) return scale, bias @torch.jit.script_method def forward(self, x): scale, bias = self.get_scale_bias(False) return x * scale + bias @torch.jit.script def drelu_dscale1(grad_o, output, scale1): relu_mask = (output>0) dx_relu = relu_mask * grad_o g1 = dx_relu * scale1 return g1, dx_relu @torch.jit.script def drelu_dscale2(grad_o, output, scale1, scale2): relu_mask = (output>0) dx_relu = relu_mask * grad_o g1 = dx_relu * scale1 g2 = dx_relu * scale2 return g1, g2 class BottleneckFunction(torch.autograd.Function): @staticmethod def forward(ctx, nhwc, stride_1x1, scale, bias, x, *conv): # TODO: clean up order of tensors args = [x, *conv[0:3], *scale[0:3], *bias[0:3]] ctx.downsample = len(conv) > 3 if ctx.downsample: args.append(conv[3]) args.append(scale[3]) args.append(bias[3]) # weight buffers are always in nhwc while shape can be nhwc or channels_last # here we pass in flag and let c++ handle it # alternatively, we can put all sizes into a fixed format and pass it in outputs = fast_bottleneck.forward(nhwc, stride_1x1, args) ctx.save_for_backward(*(args+outputs)) # save relu outputs for drelu ctx.nhwc = nhwc ctx.stride_1x1 = stride_1x1 return outputs[2] # backward relu is not exposed, MUL with mask used now # only support dgrad @staticmethod def backward(ctx, grad_o): outputs = ctx.saved_tensors[-3:] if ctx.downsample: grad_conv3, grad_conv4 = drelu_dscale2(grad_o, outputs[2], ctx.saved_tensors[6], ctx.saved_tensors[11]) else: grad_conv3, grad_conv4 = drelu_dscale1(grad_o, outputs[2], ctx.saved_tensors[6]) # create input vector for backward t_list = [*ctx.saved_tensors[0:10]] t_list.append(grad_conv3) t_list.append(grad_conv4) # outputs used for wgrad and generating drelu mask t_list.append(outputs[0]) t_list.append(outputs[1]) # in case there is downsample if ctx.downsample: t_list.append(ctx.saved_tensors[10]) grads = fast_bottleneck.backward(ctx.nhwc, ctx.stride_1x1, t_list) return (None, None, None, None, *grads) bottleneck_function = BottleneckFunction.apply def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class Bottleneck(torch.nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. # here we put it at 1x1 def __init__(self, in_channels, bottleneck_channels, out_channels, stride=1, groups=1, dilation=1, norm_func=None, use_cudnn=False, explicit_nhwc=False): super(Bottleneck, self).__init__() if groups != 1: raise RuntimeError('Only support groups == 1') if dilation != 1: raise RuntimeError('Only support dilation == 1') if norm_func == None: norm_func = FrozenBatchNorm2d else: raise RuntimeError('Only support frozen BN now.') if stride != 1 or in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels, stride), norm_func(out_channels), ) else: self.downsample = None # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(in_channels, bottleneck_channels, stride) self.conv2 = conv3x3(bottleneck_channels, bottleneck_channels) self.conv3 = conv1x1(bottleneck_channels, out_channels) self.relu = nn.ReLU(inplace=True) self.stride = stride self.bn1 = norm_func(bottleneck_channels) self.bn2 = norm_func(bottleneck_channels) self.bn3 = norm_func(out_channels) self.w_scale = None self.use_cudnn = use_cudnn # setup conv weights self.w_conv = [self.conv1.weight, self.conv2.weight, self.conv3.weight] if self.downsample is not None: self.w_conv.append(self.downsample[0].weight) # init weight in nchw format before possible transpose for w in self.w_conv: kaiming_uniform_(w, a=1) # TODO: prevent unsupported case usage # support cases # native cudnn # normal yes no # channel_last yes yes # explicit_nhwc no yes self.explicit_nhwc = explicit_nhwc if self.explicit_nhwc: for p in self.parameters(): with torch.no_grad(): p.data = p.data.permute(0,2,3,1).contiguous() return # Returns single callable that recomputes scale and bias for all frozen batch-norms. # This method must be called before cuda graphing. # The callable it returns can be called anytime. # Calling this method will prevent these from being computed every forward call. def get_scale_bias_callable(self): self.w_scale, self.w_bias, args = [], [], [] batch_norms = [self.bn1, self.bn2, self.bn3] if self.downsample is not None: batch_norms.append(self.downsample[1]) for bn in batch_norms: s = torch.empty_like(bn.weight) b = torch.empty_like(s) args.append( (bn.weight, bn.bias, bn.running_mean, bn.running_var, s, b) ) if self.explicit_nhwc: self.w_scale.append( s.reshape(1, 1, 1, -1) ) self.w_bias.append( b.reshape(1, 1, 1, -1) ) else: self.w_scale.append( s.reshape(1, -1, 1, 1) ) self.w_bias.append( b.reshape(1, -1, 1, 1) ) return func.partial(compute_scale_bias_method, self.explicit_nhwc, args) def forward(self, x): if self.use_cudnn: if self.w_scale is None: # calculate scale/bias from registered buffers # TODO: make this better s1, b1 = self.bn1.get_scale_bias(self.explicit_nhwc) s2, b2 = self.bn2.get_scale_bias(self.explicit_nhwc) s3, b3 = self.bn3.get_scale_bias(self.explicit_nhwc) w_scale = [s1, s2, s3] w_bias = [b1, b2, b3] if self.downsample is not None: s4, b4 = self.downsample[1].get_scale_bias(self.explicit_nhwc) w_scale.append(s4) w_bias.append(b4) out = bottleneck_function(self.explicit_nhwc, self.stride, w_scale, w_bias, x, *self.w_conv) else: out = bottleneck_function(self.explicit_nhwc, self.stride, self.w_scale, self.w_bias, x, *self.w_conv) return out if self.explicit_nhwc: raise RuntimeError('explicit nhwc with native ops is not supported.') # fallback to native ops identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class SpatialBottleneckFunction(torch.autograd.Function): @staticmethod def forward(ctx, spatial_group_size, spatial_group_rank, spatial_communicator, spatial_halo_exchanger, spatial_method, use_delay_kernel, explicit_nhwc, stride_1x1, scale, bias, thresholdTop, thresholdBottom, x, *conv): if spatial_group_size > 1: stream1 = spatial_halo_exchanger.stream1 stream2 = spatial_halo_exchanger.stream2 stream3 = spatial_halo_exchanger.stream3 # TODO: clean up order of tensors args = [x, *conv[0:3], *scale[0:3], *bias[0:3]] ctx.downsample = len(conv) > 3 if ctx.downsample: args.append(conv[3]) args.append(scale[3]) args.append(bias[3]) # weight buffers are always in explicit_nhwc while shape can be explicit_nhwc or channels_last # here we pass in flag and let c++ handle it # alternatively, we can put all sizes into a fixed format and pass it in outputs = fast_bottleneck.forward_init(explicit_nhwc, stride_1x1, args) fast_bottleneck.forward_out1(explicit_nhwc, stride_1x1, args, outputs) if spatial_group_size > 1: out1 = outputs[0] if explicit_nhwc: N,Hs,W,C = list(out1.shape) memory_format = torch.contiguous_format out1_pad = torch.empty([N,Hs+2,W,C], dtype=out1.dtype, device='cuda') else: N,C,Hs,W = list(out1.shape) memory_format = torch.channels_last if out1.is_contiguous(memory_format=torch.channels_last) else torch.contiguous_format out1_pad = torch.empty([N,C,Hs+2,W], dtype=out1.dtype, device='cuda', memory_format=memory_format) stream1.wait_stream(torch.cuda.current_stream()) if spatial_method != 2: stream3.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream1): if explicit_nhwc: top_out1_halo = out1_pad[:,:1,:,:] btm_out1_halo = out1_pad[:,Hs+1:Hs+2,:,:] spatial_halo_exchanger.left_right_halo_exchange(out1[:,:1,:,:], out1[:,Hs-1:,:,:], top_out1_halo, btm_out1_halo) else: top_out1_halo = out1_pad[:,:,:1,:] btm_out1_halo = out1_pad[:,:,Hs+1:Hs+2,:] spatial_halo_exchanger.left_right_halo_exchange(out1[:,:,:1,:], out1[:,:,Hs-1:,:], top_out1_halo, btm_out1_halo) if spatial_method == 1: # overlap mid convolution with halo transfer if spatial_group_rank < spatial_group_size-1: stream2.wait_stream(stream1) with torch.cuda.stream(stream2): if explicit_nhwc: btm_fat_halo = torch.empty((N,3,W,C),dtype=out1.dtype,device=out1.device) btm_fat_halo[:,0:2,:,:].copy_(out1[:,Hs-2:,:,:]) btm_fat_halo[:,2:,:,:].copy_(btm_out1_halo) else: btm_fat_halo = torch.empty((N,C,3,W),dtype=out1.dtype,device=out1.device) btm_fat_halo[:,:,0:2,:].copy_(out1[:,:,Hs-2:,:]) btm_fat_halo[:,:,2:,:].copy_(btm_out1_halo) btm_out2 = fast_bottleneck.forward_out2_halo(explicit_nhwc, btm_fat_halo, args) if spatial_group_rank > 0: with torch.cuda.stream(stream1): if explicit_nhwc: top_fat_halo = torch.empty((N,3,W,C),dtype=out1.dtype,device=out1.device) top_fat_halo[:,:1,:,:].copy_(top_out1_halo) top_fat_halo[:,1:3,:,:].copy_(out1[:,:2,:,:]) else: top_fat_halo = torch.empty((N,C,3,W),dtype=out1.dtype,device=out1.device) top_fat_halo[:,:,:1,:].copy_(top_out1_halo) top_fat_halo[:,:,1:3,:].copy_(out1[:,:,:2,:]) top_out2 = fast_bottleneck.forward_out2_halo(explicit_nhwc, top_fat_halo, args) if use_delay_kernel: inc.add_delay(10) elif spatial_method != 2 and spatial_method != 3: assert(False), "spatial_method must be 1, 2 or 3" if spatial_group_size <= 1: fast_bottleneck.forward_out2(explicit_nhwc, stride_1x1, args, outputs) elif spatial_method == 1: fast_bottleneck.forward_out2(explicit_nhwc, stride_1x1, args, outputs) with torch.cuda.stream(stream3): if explicit_nhwc: out1_pad[:,1:Hs+1,:,:].copy_(out1) else: out1_pad[:,:,1:Hs+1,:].copy_(out1) elif spatial_method == 2: # wait for halo transfer to finish before doing a full convolution of padded x if explicit_nhwc: out1_pad[:,1:Hs+1,:,:].copy_(out1) else: out1_pad[:,:,1:Hs+1,:].copy_(out1) torch.cuda.current_stream().wait_stream(stream1) fast_bottleneck.forward_out2_pad(explicit_nhwc, stride_1x1, args, outputs, out1_pad) elif spatial_method == 3: fast_bottleneck.forward_out2_mask(explicit_nhwc, stride_1x1, args, outputs, thresholdTop, thresholdBottom) with torch.cuda.stream(stream3): if explicit_nhwc: out1_pad[:,1:Hs+1,:,:].copy_(out1) else: out1_pad[:,:,1:Hs+1,:].copy_(out1) # compute halo cells for outputs[1] (out2) if spatial_group_size > 1: out2 = outputs[1] if explicit_nhwc: top_out2_halo = out2[:,:1,:,:] btm_out2_halo = out2[:,Hs-1:,:,:] else: top_out2_halo = out2[:,:,:1,:] btm_out2_halo = out2[:,:,Hs-1:,:] if spatial_method == 1: if spatial_group_rank > 0: torch.cuda.current_stream().wait_stream(stream1) top_out2_halo.copy_(top_out2) if spatial_group_rank < spatial_group_size-1: torch.cuda.current_stream().wait_stream(stream2) btm_out2_halo.copy_(btm_out2) elif spatial_method == 3: # Note # out2 halo correction cannot overlap with anything since it has # to wait for out2_mask to finish, but itself has to finish before # the first kernel of _forward_rest can launch. # At least we can overlap the two halo correction kernels. if spatial_group_rank < spatial_group_size-1: stream2.wait_stream(stream1) # wait for halo transfers to finish stream2.wait_stream(torch.cuda.current_stream()) # wait for *_out2_mask to finish with torch.cuda.stream(stream2): w1by3 = args[2][:,2:3,:,:].clone() btm_out1_halo = btm_out1_halo.clone() btm_out2 = fast_bottleneck.forward_out2_halo_corr(explicit_nhwc, btm_out1_halo, args, w1by3, btm_out2_halo.clone()) btm_out2_halo.copy_(btm_out2) if spatial_group_rank > 0: stream1.wait_stream(torch.cuda.current_stream()) # wait for *_out2_mask to finish with torch.cuda.stream(stream1): w1by3 = args[2][:,:1,:,:].clone() top_out1_halo = top_out1_halo.clone() top_out2 = fast_bottleneck.forward_out2_halo_corr(explicit_nhwc, top_out1_halo, args, w1by3, top_out2_halo.clone()) top_out2_halo.copy_(top_out2) if spatial_group_rank < spatial_group_size-1: torch.cuda.current_stream().wait_stream(stream2) if spatial_group_rank > 0: torch.cuda.current_stream().wait_stream(stream1) fast_bottleneck.forward_rest(explicit_nhwc, stride_1x1, args, outputs) # save halos for backward pass if spatial_group_size > 1: if spatial_method != 2: # make sure copy of mid-section of out1 into out1_pad is done before exiting torch.cuda.current_stream().wait_stream(stream3) ctx.save_for_backward(*(args+outputs+[out1_pad,])) else: ctx.save_for_backward(*(args+outputs)) # save relu outputs for drelu ctx.explicit_nhwc = explicit_nhwc ctx.stride_1x1 = stride_1x1 ctx.spatial_group_size = spatial_group_size if spatial_group_size > 1: ctx.spatial_group_rank = spatial_group_rank ctx.spatial_halo_exchanger = spatial_halo_exchanger ctx.spatial_method = spatial_method ctx.use_delay_kernel = use_delay_kernel ctx.thresholdTop = thresholdTop ctx.thresholdBottom = thresholdBottom ctx.stream1 = stream1 ctx.stream2 = stream2 ctx.stream3 = stream3 return outputs[2] # backward relu is not exposed, MUL with mask used now # only support dgrad @staticmethod def backward(ctx, grad_o): if ctx.spatial_group_size > 1: out1_pad = ctx.saved_tensors[-1] outputs = ctx.saved_tensors[-4:-1] else: outputs = ctx.saved_tensors[-3:] if ctx.downsample: grad_conv3, grad_conv4 = drelu_dscale2(grad_o, outputs[2], ctx.saved_tensors[6], ctx.saved_tensors[11]) else: grad_conv3, grad_conv4 = drelu_dscale1(grad_o, outputs[2], ctx.saved_tensors[6]) # create input vector for backward t_list = [*ctx.saved_tensors[0:10]] t_list.append(grad_conv3) t_list.append(grad_conv4) # outputs used for wgrad and generating drelu mask t_list.append(outputs[0]) t_list.append(outputs[1]) # in case there is downsample if ctx.downsample: t_list.append(ctx.saved_tensors[10]) grads = fast_bottleneck.backward_init(ctx.explicit_nhwc, ctx.stride_1x1, t_list) wgrad3_stream = torch.cuda.Stream() wgrad3_stream.wait_stream(torch.cuda.current_stream()) grad_out2 = fast_bottleneck.backward_grad_out2(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads) wgrad2_stream = torch.cuda.Stream() wgrad2_stream.wait_stream(torch.cuda.current_stream()) # do halo exchange of grad_out2 here # compute halo cells for grad_out1 if ctx.spatial_group_size > 1: if ctx.explicit_nhwc: N,Hs,W,C = list(grad_out2.shape) else: N,C,Hs,W = list(grad_out2.shape) relu1 = t_list[12] ctx.stream1.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(ctx.stream1): top_halo, btm_halo = ctx.spatial_halo_exchanger.left_right_halo_exchange(grad_out2[:,:1,:,:], grad_out2[:,Hs-1:,:,:]) # copy halos to send buffer if ctx.spatial_method == 1 or ctx.spatial_method == 2: # 1 -> halo recompute approach # 2 -> wait for concatenated halos, then do single conv on full input (not implemented yet for bprop) if ctx.spatial_group_rank < ctx.spatial_group_size-1: ctx.stream2.wait_stream(ctx.stream1) with torch.cuda.stream(ctx.stream2): if ctx.explicit_nhwc: btm_fat_halo = torch.empty((N,3,W,C),dtype=grad_out2.dtype,device=grad_out2.device) btm_fat_halo[:,:2,:,:].copy_(grad_out2[:,Hs-2:,:,:]) btm_fat_halo[:,2:,:,:].copy_(btm_halo) btm_fat_relu_halo = torch.empty((N,3,W,C),dtype=grad_out2.dtype,device=grad_out2.device) btm_fat_relu_halo[:,:2,:,:].copy_(relu1[:,Hs-2:,:,:]) btm_fat_relu_halo[:,2:,:,:].zero_() else: btm_fat_halo = torch.empty((N,C,3,W),dtype=grad_out2.dtype,device=grad_out2.device) btm_fat_halo[:,:,:2,:].copy_(grad_out2[:,:,Hs-2:,:]) btm_fat_halo[:,:,2:,:].copy_(btm_halo) btm_fat_relu_halo = torch.empty((N,C,3,W),dtype=grad_out2.dtype,device=grad_out2.device) btm_fat_relu_halo[:,:,:2,:].copy_(relu1[:,:,Hs-2:,:]) btm_fat_relu_halo[:,:,2:,:].zero_() btm_grad_out1_halo = fast_bottleneck.backward_grad_out1_halo(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, btm_fat_halo, btm_fat_relu_halo) if ctx.explicit_nhwc: btm_grad_out1_halo = btm_grad_out1_halo[:,1:2,:,:] else: btm_grad_out1_halo = btm_grad_out1_halo[:,:,1:2,:] if ctx.spatial_group_rank > 0: with torch.cuda.stream(ctx.stream1): if ctx.explicit_nhwc: top_fat_halo = torch.empty((N,3,W,C),dtype=grad_out2.dtype,device=grad_out2.device) top_fat_halo[:,:1,:,:].copy_(top_halo) top_fat_halo[:,1:,:,:].copy_(grad_out2[:,:2,:,:]) top_fat_relu_halo = torch.empty((N,3,W,C),dtype=grad_out2.dtype,device=grad_out2.device) top_fat_relu_halo[:,:1,:,:].zero_() top_fat_relu_halo[:,1:,:,:].copy_(relu1[:,:2,:,:]) else: top_fat_halo = torch.empty((N,C,3,W),dtype=grad_out2.dtype,device=grad_out2.device) top_fat_halo[:,:,:1,:].copy_(top_halo) top_fat_halo[:,:,1:,:].copy_(grad_out2[:,:,:2,:]) top_fat_relu_halo = torch.empty((N,C,3,W),dtype=grad_out2.dtype,device=grad_out2.device) top_fat_relu_halo[:,:,:1,:].zero_() top_fat_relu_halo[:,:,1:,:].copy_(relu1[:,:,:2,:]) top_grad_out1_halo = fast_bottleneck.backward_grad_out1_halo(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, top_fat_halo, top_fat_relu_halo) if ctx.explicit_nhwc: top_grad_out1_halo = top_grad_out1_halo[:,1:2,:,:] else: top_grad_out1_halo = top_grad_out1_halo[:,:,1:2,:] if ctx.use_delay_kernel: inc.add_delay(10) elif ctx.spatial_method != 3: assert(False), "spatial_method must be 1, 2 or 3" # compute grad_out1 for internal cells if ctx.spatial_group_size <= 1 or ctx.spatial_method == 1 or ctx.spatial_method == 2: grad_out1 = fast_bottleneck.backward_grad_out1(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, grad_out2) elif ctx.spatial_group_size > 1 and ctx.spatial_method == 3: grad_out1 = fast_bottleneck.backward_grad_out1_mask(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, grad_out2, ctx.thresholdTop, ctx.thresholdBottom) # apply halo cells to grad_out1 if ctx.spatial_group_size > 1: w = t_list[2] z = t_list[4] relu1 = t_list[12] #print("w.shape = %s, z.shape = %s, relu1.shape = %s" % (str(list(w.shape)), str(list(z.shape)), str(list(relu1.shape)))) if ctx.spatial_method == 1 or ctx.spatial_method == 2: if ctx.spatial_group_rank < ctx.spatial_group_size-1: torch.cuda.current_stream().wait_stream(ctx.stream2) if ctx.explicit_nhwc: grad_out1[:,Hs-1:,:,:].copy_(btm_grad_out1_halo) else: grad_out1[:,:,Hs-1:,:].copy_(btm_grad_out1_halo) #print("ctx.spatial_group_rank = %d, apply grad_out1 btm halo (grad_out1.shape = %s)" % (ctx.spatial_group_rank, str(list(grad_out1.shape)))) if ctx.spatial_group_rank > 0: torch.cuda.current_stream().wait_stream(ctx.stream1) if ctx.explicit_nhwc: grad_out1[:,:1,:,:].copy_(top_grad_out1_halo) else: grad_out1[:,:,:1,:].copy_(top_grad_out1_halo) #print("ctx.spatial_group_rank = %d, apply grad_out1 top halo (grad_out1.shape = %s)" % (ctx.spatial_group_rank, str(list(grad_out1.shape)))) elif ctx.spatial_method == 3: if ctx.spatial_group_rank < ctx.spatial_group_size-1: if ctx.explicit_nhwc: btm_relu_halo = relu1[:,Hs-1:,:,:].clone() btm_grad_out1 = grad_out1[:,Hs-1:,:,:] else: btm_relu_halo = relu1[:,:,Hs-1:,:].clone() btm_grad_out1 = grad_out1[:,:,Hs-1:,:] w1by3 = w[:,:1,:,:].clone() ctx.stream2.wait_stream(ctx.stream1) # wait for halo transfers to finish ctx.stream2.wait_stream(torch.cuda.current_stream()) # wait for backward_grad_out1_mask to finish before launching halo correction kernel with torch.cuda.stream(ctx.stream2): btm_grad_out1_halo = fast_bottleneck.backward_grad_out1_halo_corr(ctx.explicit_nhwc, ctx.stride_1x1, t_list, w1by3, grads, btm_halo, btm_relu_halo, btm_grad_out1.clone()) btm_grad_out1.copy_(btm_grad_out1_halo) if ctx.spatial_group_rank > 0: if ctx.explicit_nhwc: top_relu_halo = relu1[:,:1,:,:].clone() top_grad_out1 = grad_out1[:,:1,:,:] else: top_relu_halo = relu1[:,:,:1,:].clone() top_grad_out1 = grad_out1[:,:,:1,:] w1by3 = w[:,2:,:,:].clone() ctx.stream1.wait_stream(torch.cuda.current_stream()) # wait for backward_grad_out1_mask to finish before launching halo correction kernel with torch.cuda.stream(ctx.stream1): top_grad_out1_halo = fast_bottleneck.backward_grad_out1_halo_corr(ctx.explicit_nhwc, ctx.stride_1x1, t_list, w1by3, grads, top_halo, top_relu_halo, top_grad_out1.clone()) top_grad_out1.copy_(top_grad_out1_halo) if ctx.spatial_group_rank < ctx.spatial_group_size-1: torch.cuda.current_stream().wait_stream(ctx.stream2) # wait for halo correction to finish if ctx.spatial_group_rank > 0: torch.cuda.current_stream().wait_stream(ctx.stream1) wgrad1_stream = torch.cuda.Stream() wgrad1_stream.wait_stream(torch.cuda.current_stream()) fast_bottleneck.backward_rest(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, grad_out2, grad_out1) with torch.cuda.stream(wgrad3_stream): fast_bottleneck.backward_wgrad3(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads) with torch.cuda.stream(wgrad2_stream): if ctx.spatial_group_size > 1: fast_bottleneck.backward_wgrad2_pad(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, out1_pad, grad_out2) else: fast_bottleneck.backward_wgrad2(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, grad_out2) with torch.cuda.stream(wgrad1_stream): fast_bottleneck.backward_wgrad1(ctx.explicit_nhwc, ctx.stride_1x1, t_list, grads, grad_out1) torch.cuda.current_stream().wait_stream(wgrad3_stream) torch.cuda.current_stream().wait_stream(wgrad2_stream) torch.cuda.current_stream().wait_stream(wgrad1_stream) return (None, None, None, None, None, None, None, None, None, None, None, None, *grads) spatial_bottleneck_function = SpatialBottleneckFunction.apply class SpatialBottleneck(torch.nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. # here we put it at 1x1 def __init__(self, in_channels, bottleneck_channels, out_channels, stride=1, groups=1, dilation=1, norm_func=None, use_cudnn=False, explicit_nhwc=False, spatial_parallel_args=None): super(SpatialBottleneck, self).__init__() if groups != 1: raise RuntimeError('Only support groups == 1') if dilation != 1: raise RuntimeError('Only support dilation == 1') if norm_func == None: norm_func = FrozenBatchNorm2d else: raise RuntimeError('Only support frozen BN now.') if stride != 1 or in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels, stride), norm_func(out_channels), ) else: self.downsample = None # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(in_channels, bottleneck_channels, stride) self.conv2 = conv3x3(bottleneck_channels, bottleneck_channels) self.conv3 = conv1x1(bottleneck_channels, out_channels) self.relu = nn.ReLU(inplace=True) self.stride = stride self.bn1 = norm_func(bottleneck_channels) self.bn2 = norm_func(bottleneck_channels) self.bn3 = norm_func(out_channels) self.w_scale = None self.use_cudnn = use_cudnn # setup conv weights self.w_conv = [self.conv1.weight, self.conv2.weight, self.conv3.weight] if self.downsample is not None: self.w_conv.append(self.downsample[0].weight) # init weight in nchw format before possible transpose for w in self.w_conv: kaiming_uniform_(w, a=1) self.thresholdTop, self.thresholdBottom = None, None # TODO: prevent unsupported case usage # support cases # native cudnn # normal yes no # channel_last yes yes # explicit_nhwc no yes self.explicit_nhwc = explicit_nhwc if self.explicit_nhwc: for p in self.parameters(): with torch.no_grad(): p.data = p.data.permute(0,2,3,1).contiguous() # spatial communicator if spatial_parallel_args is None: self.spatial_parallel_args = (1, 0, None, None, 0, False) else: self.spatial_parallel_args = spatial_parallel_args return # Returns single callable that recomputes scale and bias for all frozen batch-norms. # This method must be called before cuda graphing. # The callable it returns can be called anytime. # Calling this method will prevent these from being computed every forward call. def get_scale_bias_callable(self): self.w_scale, self.w_bias, args = [], [], [] batch_norms = [self.bn1, self.bn2, self.bn3] if self.downsample is not None: batch_norms.append(self.downsample[1]) for bn in batch_norms: s = torch.empty_like(bn.weight) b = torch.empty_like(s) args.append( (bn.weight, bn.bias, bn.running_mean, bn.running_var, s, b) ) if self.explicit_nhwc: self.w_scale.append( s.reshape(1, 1, 1, -1) ) self.w_bias.append( b.reshape(1, 1, 1, -1) ) else: self.w_scale.append( s.reshape(1, -1, 1, 1) ) self.w_bias.append( b.reshape(1, -1, 1, 1) ) return func.partial(compute_scale_bias_method, self.explicit_nhwc, args) def forward(self, x): if self.use_cudnn: if self.thresholdTop is None: spatial_group_size, spatial_group_rank, _, _, _, _ = self.spatial_parallel_args if self.explicit_nhwc: N,H,W,C = list(x.shape) else: N,C,H,W = list(x.shape) self.thresholdTop = torch.tensor([1 if spatial_group_rank > 0 else 0], dtype=torch.int32, device='cuda') self.thresholdBottom = torch.tensor([H-2 if spatial_group_rank < spatial_group_size - 1 else H-1], dtype=torch.int32, device='cuda') if self.w_scale is None: # calculate scale/bias from registered buffers # TODO: make this better s1, b1 = self.bn1.get_scale_bias(self.explicit_nhwc) s2, b2 = self.bn2.get_scale_bias(self.explicit_nhwc) s3, b3 = self.bn3.get_scale_bias(self.explicit_nhwc) w_scale = [s1, s2, s3] w_bias = [b1, b2, b3] if self.downsample is not None: s4, b4 = self.downsample[1].get_scale_bias(self.explicit_nhwc) w_scale.append(s4) w_bias.append(b4) out = spatial_bottleneck_function(*self.spatial_parallel_args, self.explicit_nhwc, self.stride, w_scale, w_bias, self.thresholdTop, self.thresholdBottom, x, *self.w_conv) else: out = spatial_bottleneck_function(*self.spatial_parallel_args, self.explicit_nhwc, self.stride, self.w_scale, self.w_bias, self.thresholdTop, self.thresholdBottom, x, *self.w_conv) return out if self.explicit_nhwc: raise RuntimeError('explicit nhwc with native ops is not supported.') # fallback to native ops identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out
GeneSplice-main
GeneSplice/apex/apex/contrib/bottleneck/bottleneck.py
import pdb import torch from torch.autograd import gradcheck from apex import check_cudnn_version_and_warn import fused_conv_bias_relu check_cudnn_version_and_warn(__name__, 8400) class ConvBiasReLU_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, bias, padding, stride): outputs = fused_conv_bias_relu.forward([x, weight, bias], padding, stride) ctx.save_for_backward(x, weight, outputs[0]) ctx.padding = padding ctx.stride = stride return outputs[0] @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward(bwd_args, padding, stride) return grads[0], grads[1], grads[2], None, None class ConvBiasMaskReLU_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, bias, mask, padding, stride): outputs = fused_conv_bias_relu.forward_mask([x, weight, bias, mask], padding, stride) ctx.save_for_backward(x, weight, outputs[0]) ctx.padding = padding ctx.stride = stride return outputs[0] @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward(bwd_args, padding, stride) return grads[0], grads[1], grads[2], None, None, None class ConvBias_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, bias, padding, stride): outputs = fused_conv_bias_relu.forward_no_relu([x, weight, bias], padding, stride) ctx.save_for_backward(x, weight) ctx.padding = padding ctx.stride = stride return outputs[0] @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward_no_relu(bwd_args, padding, stride) return grads[0], grads[1], grads[2], None, None class ConvFrozenScaleBiasReLU_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, scale, bias, padding, stride): output = fused_conv_bias_relu.forward_cscale_cbias_relu([x, weight, scale, bias], padding, stride) ctx.save_for_backward(x, weight, scale, output) ctx.padding = padding ctx.stride = stride return output @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward_cscale_cbias_relu(bwd_args, padding, stride) return grads[0], grads[1], None, None, None, None ConvBiasReLU = ConvBiasReLU_.apply ConvBiasMaskReLU = ConvBiasMaskReLU_.apply ConvBias = ConvBias_.apply ConvFrozenScaleBiasReLU = ConvFrozenScaleBiasReLU_.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/conv_bias_relu/conv_bias_relu.py
from .conv_bias_relu import ConvBiasReLU, ConvBias, ConvBiasMaskReLU, ConvFrozenScaleBiasReLU
GeneSplice-main
GeneSplice/apex/apex/contrib/conv_bias_relu/__init__.py
import torch import fast_multihead_attn class FastEncdecAttnFunc(torch.autograd.Function): @staticmethod def forward( ctx, use_time_mask, is_training, heads, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, pad_mask, dropout_prob, ): heads_t = torch.tensor([heads]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) use_mask = pad_mask is not None ( input_lin_q_results, input_lin_kv_results, softmax_results, dropout_results, dropout_mask, matmul2_results, outputs, ) = fast_multihead_attn.encdec_multihead_attn_forward( use_mask, use_time_mask, is_training, heads, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, pad_mask if use_mask else null_tensor, dropout_prob, ) ctx.save_for_backward( heads_t, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_prob_t, ) return outputs.detach() @staticmethod def backward(ctx, output_grads): ( heads_t, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_prob_t, ) = ctx.saved_tensors ( input_q_grads, input_kv_grads, input_weight_q_grads, input_weight_kv_grads, output_weight_grads, ) = fast_multihead_attn.encdec_multihead_attn_backward( heads_t[0], output_grads, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_prob_t[0], ) return ( None, None, None, input_q_grads, input_kv_grads, input_weight_q_grads, input_weight_kv_grads, output_weight_grads, None, None, ) fast_encdec_attn_func = FastEncdecAttnFunc.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/fast_encdec_multihead_attn_func.py
import torch import fast_multihead_attn class MaskSoftmaxDropout(torch.autograd.Function): @staticmethod def forward(ctx, is_training, heads, inputs, pad_mask, mask_additive, dropout_prob): heads_t = torch.tensor([heads]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) use_mask = pad_mask is not None use_mask_t = torch.tensor([use_mask]) mask_additive_t = torch.tensor([mask_additive]) if mask_additive: dropout_results, dropout_mask, softmax_results = fast_multihead_attn.additive_mask_softmax_dropout_forward( use_mask, is_training, heads, inputs, pad_mask if use_mask else null_tensor, dropout_prob ) # fast_additive_mask_softmax_dropout.forward( \ else: dropout_results, dropout_mask, softmax_results = fast_multihead_attn.mask_softmax_dropout_forward( use_mask, is_training, heads, inputs, pad_mask if use_mask else null_tensor, dropout_prob ) # fast_mask_softmax_dropout.forward( \ ctx.save_for_backward( use_mask_t, heads_t, softmax_results, dropout_mask, pad_mask if use_mask else null_tensor, mask_additive_t, dropout_prob_t, ) return dropout_results.detach() @staticmethod def backward(ctx, output_grads): ( use_mask_t, heads_t, softmax_results, dropout_mask, pad_mask, mask_additive_t, dropout_prob_t, ) = ctx.saved_tensors if mask_additive_t[0]: input_grads = fast_multihead_attn.additive_mask_softmax_dropout_backward( use_mask_t[0], heads_t[0], output_grads, softmax_results, dropout_mask, dropout_prob_t[0] ) # fast_additive_mask_softmax_dropout.backward( \ else: input_grads = fast_multihead_attn.mask_softmax_dropout_backward( use_mask_t[0], heads_t[0], output_grads, softmax_results, dropout_mask, pad_mask, dropout_prob_t[0] ) # fast_mask_softmax_dropout.backward( \ return None, None, input_grads, None, None, None fast_mask_softmax_dropout_func = MaskSoftmaxDropout.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/mask_softmax_dropout_func.py
import torch import torch.nn.functional as F class SelfAttnFunc(torch.autograd.Function): @staticmethod def forward( ctx, use_time_mask, is_training, heads, scale, inputs, input_weights, output_weights, input_biases, output_biases, mask, is_additive_mask, dropout_prob, ): use_biases_t = torch.tensor([input_biases is not None]) heads_t = torch.tensor([heads]) scale_t = torch.tensor([scale]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) head_dim = inputs.size(2) // heads # Input Linear GEMM # input1: (activations) [seql_q, seqs, embed_dim(1024)] # input2: (weights) [embed_dim*3 (3072), embed_dim (1024)] (transpose [0,1]) # output: [seql_q, seqs, embed_dim*3] # GEMM: ( (seql_q*seqs) x embed_dim ) x ( embed_dim x embed_dim*3 ) = (seql_q*seqs x embed_dim*3) if use_biases_t[0]: input_lin_results = torch.addmm( input_biases, inputs.view(inputs.size(0) * inputs.size(1), inputs.size(2)), input_weights.transpose(0, 1), beta=1.0, alpha=1.0, ) else: input_lin_results = torch.mm( inputs.view(inputs.size(0) * inputs.size(1), inputs.size(2)), input_weights.transpose(0, 1) ) input_lin_results = input_lin_results.view(inputs.size(0), inputs.size(1), input_weights.size(0)) # Slice out q,k,v from one big Input Linear outuput (should only impact meta data, no copies!) # Sequences and heads are combined to make the batch of the Batched GEMM # input_lin_results: [seql_q, seqs, heads(16), 3, head_dim(64)] # input_lin_results: [seql_q, batches=seqs*heads, 3, head_dim] input_lin_results = input_lin_results.view(inputs.size(0), inputs.size(1) * heads, 3, head_dim) queries = input_lin_results[:, :, 0, :] keys = input_lin_results[:, :, 1, :] values = input_lin_results[:, :, 2, :] # Matmul1 Batched GEMMs # The output tensor is specified prior to the Batch GEMM because baddbmm requires its specification # baddbmm is used to apply the scale parameter via the Batched GEMM's alpha parameter instead of # a separate elementwise operation. # Input1: (Queries) [seql_q, seqs*heads, head_dim] tranpose(0,1) # Input2: (Keys) [seql_k, seqs*heads, head_dim] transpose(0,1) # output: [seqs*heads, seql_q, seql_k] # GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k ) matmul1_results = torch.empty( (queries.size(1), queries.size(0), keys.size(0)), dtype=queries.dtype, device=torch.device("cuda") ) matmul1_results = torch.baddbmm( matmul1_results, queries.transpose(0, 1), keys.transpose(0, 1).transpose(1, 2), out=matmul1_results, beta=0.0, alpha=scale_t[0], ) if mask is not None: # Self Attention Time Mask if use_time_mask: assert len(mask.size()) == 2, "Timing mask is not 2D!" assert mask.size(0) == mask.size(1), "Sequence length should match!" mask = mask.to(torch.bool) matmul1_results = matmul1_results.masked_fill_(mask, float("-inf")) # Key Padding Mask else: batches, seql_q, seql_k = matmul1_results.size() seqs = int(batches / heads) matmul1_results = matmul1_results.view(seqs, heads, seql_q, seql_k) if is_additive_mask: matmul1_results = matmul1_results + mask.unsqueeze(1).unsqueeze(2) else: mask = mask.to(torch.bool) matmul1_results = matmul1_results.masked_fill_(mask.unsqueeze(1).unsqueeze(2), float("-inf")) matmul1_results = matmul1_results.view(seqs * heads, seql_q, seql_k) softmax_results = F.softmax(matmul1_results, dim=-1) # Dropout - is not executed for inference if is_training: dropout_results, dropout_mask = torch._fused_dropout(softmax_results, p=(1.0 - dropout_prob_t[0])) else: dropout_results = softmax_results dropout_mask = null_tensor # Matmul2 Batched GEMMs # The output tensor specification is needed here to specify the non-standard output. # Given that pytorch cannot currently perform autograd with an output tensor specified, # this requires a backward pass specified. # Input1: from_softmax [seqs*heads, seql_q, seql_k] # Input2: (values) [seql_v, seqs*heads, head_dim] transpose(0,1) # Output: [seql_q, seqs*heads, head_dim] transpose(0,1) # GEMM: Per batch: ( seql_q x seql_k ) x ( seql_k x head_dim ) = (seql_q x head_dim) matmul2_results = torch.empty( (dropout_results.size(1), dropout_results.size(0), values.size(2)), dtype=dropout_results.dtype, device=torch.device("cuda"), ).transpose(1, 0) matmul2_results = torch.bmm(dropout_results, values.transpose(0, 1), out=matmul2_results) matmul2_results = ( matmul2_results.transpose(0, 1).contiguous().view(inputs.size(0), inputs.size(1), inputs.size(2)) ) # Output Linear GEMM # Input1: (activations) [seql_q, seqs, embed_dim=heads*head_dim] # Input2: (weights) [ embed_dim, embed_dim ] transpose(0,1) # Output: [ seql_q, seqs, embed_dim ] # GEMM: ( seql_q*seqs x embed_dim ) x ( embed_dim x embed_dim ) = ( seql_q*seqs x embed_dim ) if use_biases_t[0]: outputs = torch.addmm( output_biases, matmul2_results.view(inputs.size(0) * inputs.size(1), inputs.size(2)), output_weights.transpose(0, 1), beta=1.0, alpha=1.0, ) else: outputs = torch.mm( matmul2_results.view(inputs.size(0) * inputs.size(1), inputs.size(2)), output_weights.transpose(0, 1) ) outputs = outputs.view(inputs.size(0), inputs.size(1), output_weights.size(0)) ctx.save_for_backward( use_biases_t, heads_t, scale_t, matmul2_results, dropout_results, softmax_results, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t, ) return outputs.detach() @staticmethod def backward(ctx, output_grads): ( use_biases_t, heads_t, scale_t, matmul2_results, dropout_results, softmax_results, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t, ) = ctx.saved_tensors head_dim = inputs.size(2) // heads_t[0] # Slice out q,k,v from one big Input Linear outuput (should only impact meta data, no copies!) # Sequences and heads are combined to make the batch of the Batched GEMM # input_lin_results: [seql_q, seqs, heads(16), 3, head_dim(64)] # input_lin_results: [seql_q, batches=seqs*heads, 3, head_dim] input_lin_results = input_lin_results.view(inputs.size(0), inputs.size(1) * heads_t[0], 3, head_dim) queries = input_lin_results[:, :, 0, :] keys = input_lin_results[:, :, 1, :] values = input_lin_results[:, :, 2, :] # Slice out q,k,v from one big set of gradients entering the input linear's bprop (should only impact meta data, no copies!) # The gradients are identical in size to the Input Linear outputs. # The tensor is declared before hand to properly slice out query, key, and value grads. input_lin_results_grads = torch.empty_like(input_lin_results) queries_grads = input_lin_results_grads[:, :, 0, :] keys_grads = input_lin_results_grads[:, :, 1, :] values_grads = input_lin_results_grads[:, :, 2, :] # Output Linear GEMM - DGRAD # Input1: (data grads) [seql_q, seqs, embed_dim=heads*head_dim] # Input2: (weights) [ embed_dim, embed_dim ] # Output: [ seql_q, seqs, embed_dim ] # GEMM: ( seql_q*seqs x embed_dim ) x ( embed_dim x embed_dim ) = ( seql_q*seqs x embed_dim ) output_lin_grads = torch.mm( output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)), output_weights ) output_lin_grads = output_lin_grads.view(output_grads.size(0), output_grads.size(1), output_weights.size(1)) # Output Linear GEMM - WGRAD # Input1: (data grads) [seql_q*seqs, embed_dim=heads*head_dim] transpose(0,1) # Input2: (activations) [seql_q*seqs, embed_dim ] # Output: [ seql_q, seqs, embed_dim ] # GEMM: ( embed_dim x seql_q*seqs ) x ( seql_q*seqs x embed_dim ) = ( embed_dim x embed_dim ) output_weight_grads = torch.mm( output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)).transpose(0, 1), matmul2_results.view(matmul2_results.size(0) * matmul2_results.size(1), matmul2_results.size(2)), ) output_lin_grads = output_lin_grads.view(inputs.size(0), inputs.size(1) * heads_t[0], head_dim).transpose(0, 1) if use_biases_t[0]: output_bias_grads = torch.sum( output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)), 0 ) else: output_bias_grads = None # Matmul2 - DGRAD1 # Input1: (data grads) [seql_q, seqs*heads, head_dim] transpose(0,1) # Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1).transpose(1,2) # Output: [seqs*heads, seql_q, seql_k] # GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k ) matmul2_dgrad1 = torch.bmm(output_lin_grads, values.transpose(0, 1).transpose(1, 2)) # Matmul2 - DGRAD2 # Input1: (data grads) [seql_q, seqs*heads, head_dim] transpose(0,1) # Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1).transpose(1,2) # Output: [seqs*heads, seql_q, seql_k] # GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k ) values_grads = torch.bmm(dropout_results.transpose(1, 2), output_lin_grads, out=values_grads.transpose(0, 1)) # Mask and Scaling for Dropout (not a publically documented op) dropout_grads = torch._masked_scale(matmul2_dgrad1, dropout_mask, 1.0 / (1.0 - dropout_prob_t[0])) # Softmax Grad (not a publically documented op) softmax_grads = torch._softmax_backward_data(dropout_grads, softmax_results, -1, softmax_results.dtype) # Matmul1 - DGRAD1 # Input1: (data grads) [seqs*heads, seql_q, seql_k] # Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1) # Output: [seqs*heads, seql_q, head_dim] transpose(0,1) # GEMM: Per batch: ( seql_q x seql_k ) x ( seql_k x head_dim ) = ( seql_q x head_dim ) queries_grads = torch.baddbmm( queries_grads.transpose(0, 1), softmax_grads, keys.transpose(0, 1), out=queries_grads.transpose(0, 1), beta=0.0, alpha=scale_t[0], ) # Matmul1 - DGRAD2 # Input1: (data grads) [seqs*heads, seql_q, seql_k] transpose(1,2) # Input2: (activations) [seql_q, seqs*heads, head_dim] transpose(0,1) # Output: [seqs*heads, seql_k, head_dim] transpose(0,1) # GEMM: Per batch: ( seql_k x seql_q ) x ( seql_q x head_dim ) = ( seql_k x head_dim ) keys_grads = torch.baddbmm( keys_grads.transpose(0, 1), softmax_grads.transpose(1, 2), queries.transpose(0, 1), out=keys_grads.transpose(0, 1), beta=0.0, alpha=scale_t[0], ) # Input Linear GEMM - DGRAD # input1: (data grads) [seql_q, seqs, 3*embed_dim(3072)] # input2: (weights) [embed_dim*3 (3072), embed_dim (1024)] # output: [seql_q, seqs, embed_dim] # GEMM: ( (seql_q*seqs) x 3*embed_dim ) x ( 3*embed_dim x embed_dim ) = (seql_q*seqs x embed_dim) input_lin_results_grads = input_lin_results_grads.view( inputs.size(0) * inputs.size(1), heads_t[0] * 3 * head_dim ) input_grads = torch.mm(input_lin_results_grads, input_weights) input_grads = input_grads.view(inputs.size(0), inputs.size(1), inputs.size(2)) # Input Linear GEMM - WGRAD # input1: (data grads) [seql_q*seqs, 3*embed_dim(3072)] # input2: (activations) [seql_q*seqs, embed_dim(1024)] # output: [3*embed_dim, embed_dim] # GEMM: ( 3*embed_dim x seql_q*seqs ) x ( seql_q*seqs x embed_dim ) = (3*embed_dim x embed_dim) input_weight_grads = torch.mm( input_lin_results_grads.transpose(0, 1), inputs.view(inputs.size(0) * inputs.size(1), inputs.size(2)) ) if use_biases_t[0]: input_bias_grads = torch.sum(input_lin_results_grads, 0) else: input_bias_grads = None return ( None, None, None, None, input_grads, input_weight_grads, output_weight_grads, input_bias_grads, output_bias_grads, None, None, None, ) self_attn_func = SelfAttnFunc.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/self_multihead_attn_func.py
from .self_multihead_attn import SelfMultiheadAttn from .encdec_multihead_attn import EncdecMultiheadAttn from .mask_softmax_dropout_func import fast_mask_softmax_dropout_func
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/__init__.py
import math import torch from torch import nn from torch.nn import Parameter import torch.nn.functional as F from .self_multihead_attn_func import self_attn_func from .fast_self_multihead_attn_func import fast_self_attn_func from .fast_self_multihead_attn_norm_add_func import fast_self_attn_norm_add_func from apex.normalization.fused_layer_norm import FusedLayerNorm @torch.jit.script def jit_dropout_add(x, residual, prob, is_training): # type: (Tensor, Tensor, float, bool) -> Tensor out = F.dropout(x, p=prob, training=True) out = residual + out return out class SelfMultiheadAttn(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, dropout=0.0, bias=False, include_norm_add=False, impl="fast", separate_qkv_params=False, mask_additive=False, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.bias = bias self.include_norm_add = include_norm_add self.impl = impl self.scaling = self.head_dim ** -0.5 self.separate_qkv_params = separate_qkv_params self.mask_additive = mask_additive if mask_additive: assert self.include_norm_add == False, "additive mask not supported with layer norm" assert impl == "default" or ( impl == "fast" and bias ), "additive mask not supported for fast mode without bias" if separate_qkv_params: self.q_weight = Parameter(torch.empty(embed_dim, embed_dim)) self.k_weight = Parameter(torch.empty(embed_dim, embed_dim)) self.v_weight = Parameter(torch.empty(embed_dim, embed_dim)) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.out_proj_weight = Parameter(torch.empty(embed_dim, embed_dim)) if self.bias: if separate_qkv_params: self.q_bias = Parameter(torch.empty(embed_dim)) self.k_bias = Parameter(torch.empty(embed_dim)) self.v_bias = Parameter(torch.empty(embed_dim)) else: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) self.out_proj_bias = Parameter(torch.empty(embed_dim)) else: if separate_qkv_params: self.register_parameter("q_bias", None) self.register_parameter("k_bias", None) self.register_parameter("v_bias", None) self.q_bias = None self.k_bias = None self.v_bias = None else: self.register_parameter("in_proj_bias", None) self.in_proj_bias = None self.register_parameter("out_proj_bias", None) self.out_proj_bias = None if self.include_norm_add: if impl == "fast": self.lyr_nrm_gamma_weights = Parameter(torch.empty(embed_dim)) self.lyr_nrm_beta_weights = Parameter(torch.empty(embed_dim)) self.lyr_nrm = None else: self.register_parameter("lyr_norm_gamma_weights", None) self.register_parameter("lyr_norm_beta_weights", None) self.lyr_nrm_gamma_weights = None self.lyr_nrm_beta_weights = None self.lyr_nrm = FusedLayerNorm(embed_dim) self.reset_parameters() if self.include_norm_add: if impl == "fast": self.attn_func = fast_self_attn_norm_add_func elif impl == "default": self.attn_func = self_attn_func else: assert False, "Unsupported impl: {} !".format(impl) else: if impl == "fast": self.attn_func = fast_self_attn_func elif impl == "default": self.attn_func = self_attn_func else: assert False, "Unsupported impl: {} !".format(impl) def reset_parameters(self): if self.separate_qkv_params: nn.init.xavier_uniform_(self.q_weight) nn.init.xavier_uniform_(self.k_weight) nn.init.xavier_uniform_(self.v_weight) else: # in_proj_weight has shape [3 * hidden, hidden] but it should be # initialized like a [hidden, hidden] matrix. # sqrt(6 / (hidden + hidden)) / sqrt(6 / (3 * hidden + hidden)) = sqrt(2) # therefore xavier_uniform gain should be set to sqrt(2). nn.init.xavier_uniform_(self.in_proj_weight, gain=math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj_weight) if self.bias: if self.separate_qkv_params: nn.init.constant_(self.q_bias, 0.0) nn.init.constant_(self.k_bias, 0.0) nn.init.constant_(self.v_bias, 0.0) else: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj_bias, 0.0) if self.include_norm_add: if self.impl == "fast": nn.init.ones_(self.lyr_nrm_gamma_weights) nn.init.zeros_(self.lyr_nrm_beta_weights) else: self.lyr_nrm.reset_parameters() def forward(self, query, key, value, key_padding_mask=None, need_weights=False, attn_mask=None, is_training=True): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Future timesteps can be masked with the `mask_future_timesteps` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ if self.separate_qkv_params: input_weights = ( torch.cat( [ self.q_weight.view(self.num_heads, 1, self.head_dim, self.embed_dim), self.k_weight.view(self.num_heads, 1, self.head_dim, self.embed_dim), self.v_weight.view(self.num_heads, 1, self.head_dim, self.embed_dim), ], dim=1, ) .reshape(3 * self.embed_dim, self.embed_dim) .contiguous() ) else: input_weights = self.in_proj_weight if self.bias: if self.separate_qkv_params: input_bias = ( torch.cat( [ self.q_bias.view(self.num_heads, 1, self.head_dim), self.k_bias.view(self.num_heads, 1, self.head_dim), self.v_bias.view(self.num_heads, 1, self.head_dim), ], dim=1, ) .reshape(3 * self.embed_dim) .contiguous() ) else: input_bias = self.in_proj_bias else: input_bias = None if key_padding_mask is not None: assert attn_mask is None, "ERROR attn_mask and key_padding_mask should not be both defined!" mask = key_padding_mask elif attn_mask is not None: assert self.mask_additive == False, "additive mask not supported for time mask" mask = attn_mask else: mask = None if self.include_norm_add: if self.impl == "fast": outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, query, self.lyr_nrm_gamma_weights, self.lyr_nrm_beta_weights, input_weights, self.out_proj_weight, mask, self.dropout, ) else: lyr_nrm_results = self.lyr_nrm(query) outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, self.scaling, lyr_nrm_results, input_weights, self.out_proj_weight, input_bias, self.out_proj_bias, mask, self.mask_additive, self.dropout, ) if is_training: outputs = jit_dropout_add(outputs, query, self.dropout, is_training) else: outputs = outputs + query else: if self.impl == "fast": outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, query, input_weights, self.out_proj_weight, input_bias, self.out_proj_bias, mask, self.mask_additive, self.dropout, ) else: outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, self.scaling, query, input_weights, self.out_proj_weight, input_bias, self.out_proj_bias, mask, self.mask_additive, self.dropout, ) return outputs, None
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/self_multihead_attn.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch import fast_multihead_attn class FastEncdecAttnNormAddFunc(torch.autograd.Function): @staticmethod def forward( ctx, use_time_mask, is_training, heads, inputs_q, inputs_kv, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights_q, input_weights_kv, output_weights, pad_mask, dropout_prob, ): heads_t = torch.tensor([heads]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) use_mask = pad_mask is not None ( lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, input_lin_q_results, input_lin_kv_results, softmax_results, dropout_results, dropout_mask, matmul2_results, dropout_add_mask, outputs, ) = fast_multihead_attn.encdec_multihead_attn_norm_add_forward( use_mask, use_time_mask, is_training, heads, inputs_q, inputs_kv, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights_q, input_weights_kv, output_weights, pad_mask if use_mask else null_tensor, dropout_prob, ) ctx.save_for_backward( heads_t, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, inputs_q, inputs_kv, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_add_mask, dropout_prob_t, ) return outputs.detach() @staticmethod def backward(ctx, output_grads): ( heads_t, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, inputs_q, inputs_kv, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_add_mask, dropout_prob_t, ) = ctx.saved_tensors ( input_q_grads, input_kv_grads, lyr_nrm_gamma_grads, lyr_nrm_beta_grads, input_weight_q_grads, input_weight_kv_grads, output_weight_grads, ) = fast_multihead_attn.encdec_multihead_attn_norm_add_backward( heads_t[0], output_grads, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, inputs_q, inputs_kv, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_add_mask, dropout_prob_t[0], ) # import pdb; pdb.set_trace() return ( None, None, None, input_q_grads, input_kv_grads, lyr_nrm_gamma_grads, lyr_nrm_beta_grads, input_weight_q_grads, input_weight_kv_grads, output_weight_grads, None, None, ) fast_encdec_attn_norm_add_func = FastEncdecAttnNormAddFunc.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/fast_encdec_multihead_attn_norm_add_func.py
import torch import torch.nn.functional as F class EncdecAttnFunc(torch.autograd.Function): @staticmethod def forward( ctx, use_time_mask, is_training, heads, scale, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, input_biases_q, input_biases_kv, output_biases, mask, dropout_prob, ): use_biases_t = torch.tensor([input_biases_q is not None]) heads_t = torch.tensor([heads]) scale_t = torch.tensor([scale]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) head_dim = inputs_q.size(2) // heads # Input Linear GEMM Q # input1: (activations) [seql_q, seqs, embed_dim(1024)] # input2: (weights) [embed_dim (1024), embed_dim (1024)] (transpose [0,1]) # output: [seql_q, seqs, embed_dim] # GEMM: ( (seql_q*seqs) x embed_dim ) x ( embed_dim x embed_dim ) = (seql_q*seqs x embed_dim) if use_biases_t[0]: input_lin_q_results = torch.addmm( input_biases_q, inputs_q.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)), input_weights_q.transpose(0, 1), beta=1.0, alpha=1.0, ) else: input_lin_q_results = torch.mm( inputs_q.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)), input_weights_q.transpose(0, 1) ) input_lin_q_results = input_lin_q_results.view(inputs_q.size(0), inputs_q.size(1), input_weights_q.size(0)) # Input Linear GEMM KV # input1: (activations) [seql_k, seqs, embed_dim(1024)] # input2: (weights) [embed_dim*2 (2048), embed_dim (1024)] (transpose [0,1]) # output: [seql_k, seqs, embed_dim*2] # GEMM: ( (seql_k*seqs) x embed_dim ) x ( embed_dim x embed_dim*2 ) = (seql_k*seqs x embed_dim*2) if use_biases_t[0]: input_lin_kv_results = torch.addmm( input_biases_kv, inputs_kv.view(inputs_kv.size(0) * inputs_kv.size(1), inputs_kv.size(2)), input_weights_kv.transpose(0, 1), beta=1.0, alpha=1.0, ) else: input_lin_kv_results = torch.mm( inputs_kv.view(inputs_kv.size(0) * inputs_kv.size(1), inputs_kv.size(2)), input_weights_kv.transpose(0, 1), ) input_lin_kv_results = input_lin_kv_results.view(inputs_kv.size(0), inputs_kv.size(1), input_weights_kv.size(0)) # Slice out k,v from one big Input Linear outuput (should only impact meta data, no copies!) # Sequences and heads are combined to make the batch of the Batched GEMM # input_lin_kv_results: [seql_k, seqs, heads(16), 2, head_dim(64)] # input_lin_kv_results: [seql_k, batches=seqs*heads, 2, head_dim] queries = input_lin_q_results.view(inputs_q.size(0), inputs_q.size(1) * heads, head_dim) input_lin_kv_results = input_lin_kv_results.view(inputs_kv.size(0), inputs_kv.size(1) * heads, 2, head_dim) keys = input_lin_kv_results[:, :, 0, :] values = input_lin_kv_results[:, :, 1, :] # Matmul1 Batched GEMMs # The output tensor is specified prior to the Batch GEMM because baddbmm requires its specification # baddbmm is used to apply the scale parameter via the Batched GEMM's alpha parameter instead of # a separate elementwise operation. # Input1: (Queries) [seql_q, seqs*heads, head_dim] tranpose(0,1) # Input2: (Keys) [seql_k, seqs*heads, head_dim] transpose(0,1) # output: [seqs*heads, seql_q, seql_k] # GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k ) matmul1_results = torch.empty( (queries.size(1), queries.size(0), keys.size(0)), dtype=queries.dtype, device=torch.device("cuda") ) matmul1_results = torch.baddbmm( matmul1_results, queries.transpose(0, 1), keys.transpose(0, 1).transpose(1, 2), out=matmul1_results, beta=0.0, alpha=scale_t[0], ) if mask is not None: # Self Attention Time Mask if use_time_mask: assert len(mask.size()) == 2, "Timing mask is not 2D!" assert mask.size(0) == mask.size(1), "Sequence length should match!" mask = mask.to(torch.bool) matmul1_results = matmul1_results.masked_fill_(mask, float("-inf")) # Key Padding Mask else: batches, seql_q, seql_k = matmul1_results.size() seqs = int(batches / heads) matmul1_results = matmul1_results.view(seqs, heads, seql_q, seql_k) mask = mask.to(torch.bool) matmul1_results = matmul1_results.masked_fill_(mask.unsqueeze(1).unsqueeze(2), float("-inf")) matmul1_results = matmul1_results.view(seqs * heads, seql_q, seql_k) softmax_results = F.softmax(matmul1_results, dim=-1) # Dropout - is not executed for inference if is_training: dropout_results, dropout_mask = torch._fused_dropout(softmax_results, p=(1.0 - dropout_prob_t[0])) else: dropout_results = softmax_results dropout_mask = null_tensor # Matmul2 Batched GEMMs # The output tensor specification is needed here to specify the non-standard output. # Given that pytorch cannot currently perform autograd with an output tensor specified, # this requires a backward pass specified. # Input1: from_softmax [seqs*heads, seql_q, seql_k] # Input2: (values) [seql_v, seqs*heads, head_dim] transpose(0,1) # Output: [seql_q, seqs*heads, head_dim] transpose(0,1) # GEMM: Per batch: ( seql_q x seql_k ) x ( seql_k x head_dim ) = (seql_q x head_dim) matmul2_results = torch.empty( (dropout_results.size(1), dropout_results.size(0), values.size(2)), dtype=dropout_results.dtype, device=torch.device("cuda"), ).transpose(1, 0) matmul2_results = torch.bmm(dropout_results, values.transpose(0, 1), out=matmul2_results) matmul2_results = ( matmul2_results.transpose(0, 1).contiguous().view(inputs_q.size(0), inputs_q.size(1), inputs_q.size(2)) ) # Output Linear GEMM # Input1: (activations) [seql_q, seqs, embed_dim=heads*head_dim] # Input2: (weights) [ embed_dim, embed_dim ] transpose(0,1) # Output: [ seql_q, seqs, embed_dim ] # GEMM: ( seql_q*seqs x embed_dim ) x ( embed_dim x embed_dim ) = ( seql_q*seqs x embed_dim ) if use_biases_t[0]: outputs = torch.addmm( output_biases, matmul2_results.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)), output_weights.transpose(0, 1), beta=1.0, alpha=1.0, ) else: outputs = torch.mm( matmul2_results.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)), output_weights.transpose(0, 1), ) outputs = outputs.view(inputs_q.size(0), inputs_q.size(1), output_weights.size(0)) ctx.save_for_backward( use_biases_t, heads_t, scale_t, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_prob_t, ) return outputs.detach() @staticmethod def backward(ctx, output_grads): ( use_biases_t, heads_t, scale_t, matmul2_results, dropout_results, softmax_results, input_lin_q_results, input_lin_kv_results, inputs_q, inputs_kv, input_weights_q, input_weights_kv, output_weights, dropout_mask, dropout_prob_t, ) = ctx.saved_tensors head_dim = inputs_q.size(2) // heads_t[0] # Slice out k,v from one big Input Linear outuput (should only impact meta data, no copies!) # Sequences and heads are combined to make the batch of the Batched GEMM # input_lin_kv_results: [seql_k, seqs, heads(16), 2, head_dim(64)] # input_lin_kv_results: [seql_k, batches=seqs*heads, 2, head_dim] queries = input_lin_q_results.view(inputs_q.size(0), inputs_q.size(1) * heads_t[0], head_dim) input_lin_kv_results = input_lin_kv_results.view(inputs_kv.size(0), inputs_kv.size(1) * heads_t[0], 2, head_dim) keys = input_lin_kv_results[:, :, 0, :] values = input_lin_kv_results[:, :, 1, :] # Slice out k,v from one big set of gradients entering the input linear's bprop (should only impact meta data, no copies!) # The gradients are identical in size to the Input Linear outputs. # The tensor is declared before hand to properly slice out query, key, and value grads. input_lin_kv_results_grads = torch.empty_like(input_lin_kv_results) queries_grads = torch.empty_like(queries) keys_grads = input_lin_kv_results_grads[:, :, 0, :] values_grads = input_lin_kv_results_grads[:, :, 1, :] # Output Linear GEMM - DGRAD # Input1: (data grads) [seql_q, seqs, embed_dim=heads*head_dim] # Input2: (weights) [ embed_dim, embed_dim ] # Output: [ seql_q, seqs, embed_dim ] # GEMM: ( seql_q*seqs x embed_dim ) x ( embed_dim x embed_dim ) = ( seql_q*seqs x embed_dim ) output_lin_grads = torch.mm( output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)), output_weights ) output_lin_grads = output_lin_grads.view(output_grads.size(0), output_grads.size(1), output_weights.size(1)) # Output Linear GEMM - WGRAD # Input1: (data grads) [seql_q*seqs, embed_dim=heads*head_dim] transpose(0,1) # Input2: (activations) [seql_q*seqs, embed_dim ] # Output: [ seql_q, seqs, embed_dim ] # GEMM: ( embed_dim x seql_q*seqs ) x ( seql_q*seqs x embed_dim ) = ( embed_dim x embed_dim ) output_weight_grads = torch.mm( output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)).transpose(0, 1), matmul2_results.view(matmul2_results.size(0) * matmul2_results.size(1), matmul2_results.size(2)), ) output_lin_grads = output_lin_grads.view( output_grads.size(0), output_grads.size(1) * heads_t[0], head_dim ).transpose(0, 1) if use_biases_t[0]: output_bias_grads = torch.sum( output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)), 0 ) else: output_bias_grads = None # Matmul2 - DGRAD1 # Input1: (data grads) [seql_q, seqs*heads, head_dim] transpose(0,1) # Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1).transpose(1,2) # Output: [seqs*heads, seql_q, seql_k] # GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k ) matmul2_dgrad1 = torch.bmm(output_lin_grads, values.transpose(0, 1).transpose(1, 2)) # Matmul2 - DGRAD2 # Input1: (data grads) [seql_q, seqs*heads, head_dim] transpose(0,1) # Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1).transpose(1,2) # Output: [seqs*heads, seql_q, seql_k] # GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k ) values_grads = torch.bmm(dropout_results.transpose(1, 2), output_lin_grads, out=values_grads.transpose(0, 1)) # Mask and Scaling for Dropout (not a publically documented op) dropout_grads = torch._masked_scale(matmul2_dgrad1, dropout_mask, 1.0 / (1.0 - dropout_prob_t[0])) # Softmax Grad (not a publically documented op) softmax_grads = torch._softmax_backward_data(dropout_grads, softmax_results, -1, softmax_results.dtype) # Matmul1 - DGRAD1 # Input1: (data grads) [seqs*heads, seql_q, seql_k] # Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1) # Output: [seqs*heads, seql_q, head_dim] transpose(0,1) # GEMM: Per batch: ( seql_q x seql_k ) x ( seql_k x head_dim ) = ( seql_q x head_dim ) queries_grads = torch.baddbmm( queries_grads.transpose(0, 1), softmax_grads, keys.transpose(0, 1), out=queries_grads.transpose(0, 1), beta=0.0, alpha=scale_t[0], ) # Matmul1 - DGRAD2 # Input1: (data grads) [seqs*heads, seql_q, seql_k] transpose(1,2) # Input2: (activations) [seql_q, seqs*heads, head_dim] transpose(0,1) # Output: [seqs*heads, seql_k, head_dim] transpose(0,1) # GEMM: Per batch: ( seql_k x seql_q ) x ( seql_q x head_dim ) = ( seql_k x head_dim ) keys_grads = torch.baddbmm( keys_grads.transpose(0, 1), softmax_grads.transpose(1, 2), queries.transpose(0, 1), out=keys_grads.transpose(0, 1), beta=0.0, alpha=scale_t[0], ) # Input Q Linear GEMM - DGRAD # input1: (data grads) [seql_q, seqs, embed_dim(1024)] # input2: (weights) [embed_dim (1024), embed_dim (1024)] # output: [seql_q, seqs, embed_dim] # GEMM: ( (seql_q*seqs) x embed_dim ) x ( embed_dim x embed_dim ) = (seql_q*seqs x embed_dim) queries_grads = queries_grads.transpose(0, 1).view(inputs_q.size(0) * inputs_q.size(1), heads_t[0] * head_dim) input_q_grads = torch.mm(queries_grads, input_weights_q) input_q_grads = input_q_grads.view(inputs_q.size(0), inputs_q.size(1), inputs_q.size(2)) # Input KV Linear GEMM - DGRAD # input1: (data grads) [seql_k, seqs, 2*embed_dim(2048)] # input2: (weights) [embed_dim*2 (2048), embed_dim (1024)] # output: [seql_k, seqs, embed_dim] # GEMM: ( (seql_k*seqs) x 2*embed_dim ) x ( 2*embed_dim x embed_dim ) = (seql_k*seqs x embed_dim) input_lin_kv_results_grads = input_lin_kv_results_grads.view( inputs_kv.size(0) * inputs_kv.size(1), heads_t[0] * 2 * head_dim ) input_kv_grads = torch.mm(input_lin_kv_results_grads, input_weights_kv) input_kv_grads = input_kv_grads.view(inputs_kv.size(0), inputs_kv.size(1), inputs_kv.size(2)) # Input Q Linear GEMM - WGRAD # input1: (data grads) [seql_q*seqs, embed_dim(1024)] # input2: (activations) [seql_q*seqs, embed_dim(1024)] # output: [embed_dim, embed_dim] # GEMM: ( embed_dim x seql_q*seqs ) x ( seql_q*seqs x embed_dim ) = (embed_dim x embed_dim) input_weight_q_grads = torch.mm( queries_grads.transpose(0, 1), inputs_q.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)) ) # Input KV Linear GEMM - WGRAD # input1: (data grads) [seql_k*seqs, 2*embed_dim(2048)] # input2: (activations) [seql_k*seqs, embed_dim(1024)] # output: [2*embed_dim, embed_dim] # GEMM: ( 2*embed_dim x seql_k*seqs ) x ( seql_k*seqs x embed_dim ) = (2*embed_dim x embed_dim) input_weight_kv_grads = torch.mm( input_lin_kv_results_grads.transpose(0, 1), inputs_kv.view(inputs_kv.size(0) * inputs_kv.size(1), inputs_kv.size(2)), ) if use_biases_t[0]: input_bias_grads_q = torch.sum(queries_grads, 0) input_bias_grads_kv = torch.sum(input_lin_kv_results_grads, 0) else: input_bias_grads_q = None input_bias_grads_kv = None return ( None, None, None, None, input_q_grads, input_kv_grads, input_weight_q_grads, input_weight_kv_grads, output_weight_grads, input_bias_grads_q, input_bias_grads_kv, output_bias_grads, None, None, ) encdec_attn_func = EncdecAttnFunc.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/encdec_multihead_attn_func.py
import math import torch from torch import nn from torch.nn import Parameter import torch.nn.functional as F from .encdec_multihead_attn_func import encdec_attn_func from .fast_encdec_multihead_attn_func import fast_encdec_attn_func from .fast_encdec_multihead_attn_norm_add_func import fast_encdec_attn_norm_add_func from apex.normalization.fused_layer_norm import FusedLayerNorm @torch.jit.script def jit_dropout_add(x, residual, prob, is_training): # type: (Tensor, Tensor, float, bool) -> Tensor out = F.dropout(x, p=prob, training=True) out = residual + out return out class EncdecMultiheadAttn(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, dropout=0.0, bias=False, include_norm_add=False, impl="fast"): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.bias = bias self.include_norm_add = include_norm_add self.impl = impl self.scaling = self.head_dim ** -0.5 self.in_proj_weight_q = Parameter(torch.empty(embed_dim, embed_dim)) self.in_proj_weight_kv = Parameter(torch.empty(2 * embed_dim, embed_dim)) self.out_proj_weight = Parameter(torch.empty(embed_dim, embed_dim)) if self.bias: assert impl != "fast", "ERROR! The Fast implementation does not support biases!" self.in_proj_bias_q = Parameter(torch.empty(embed_dim)) self.in_proj_bias_kv = Parameter(torch.empty(2 * embed_dim)) self.out_proj_bias = Parameter(torch.empty(embed_dim)) else: self.register_parameter("in_proj_bias_q", None) self.register_parameter("in_proj_bias_kv", None) self.in_proj_bias_q = None self.in_proj_bias_kv = None self.out_proj_bias = None if self.include_norm_add: if impl == "fast": self.lyr_nrm_gamma_weights = Parameter(torch.empty(embed_dim)) self.lyr_nrm_beta_weights = Parameter(torch.empty(embed_dim)) self.lyr_nrm = None else: self.register_parameter("lyr_norm_gamma_weights", None) self.register_parameter("lyr_norm_beta_weights", None) self.lyr_nrm_gamma_weights = None self.lyr_nrm_beta_weights = None self.lyr_nrm = FusedLayerNorm(embed_dim) self.reset_parameters() if self.include_norm_add: if impl == "fast": self.attn_func = fast_encdec_attn_norm_add_func elif impl == "default": self.attn_func = encdec_attn_func else: assert False, "Unsupported impl: {} !".format(impl) else: if impl == "fast": self.attn_func = fast_encdec_attn_func elif impl == "default": self.attn_func = encdec_attn_func else: assert False, "Unsupported impl: {} !".format(impl) def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight_q) # in_proj_weight_kv has shape [2 * hidden, hidden] but it should be # initialized like a [hidden, hidden] matrix. # sqrt(6 / (hidden + hidden)) / sqrt(6 / (2 * hidden + hidden)) = sqrt(1.5) # therefore xavier_uniform gain should be set to sqrt(1.5). nn.init.xavier_uniform_(self.in_proj_weight_kv, gain=math.sqrt(1.5)) nn.init.xavier_uniform_(self.out_proj_weight) if self.bias: nn.init.constant_(self.in_proj_bias_q, 0.0) nn.init.constant_(self.in_proj_bias_kv, 0.0) nn.init.constant_(self.out_proj_bias, 0.0) if self.include_norm_add: if self.impl == "fast": nn.init.ones_(self.lyr_nrm_gamma_weights) nn.init.zeros_(self.lyr_nrm_beta_weights) else: self.lyr_nrm.reset_parameters() def forward(self, query, key, value, key_padding_mask=None, need_weights=False, attn_mask=None, is_training=True): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Future timesteps can be masked with the `mask_future_timesteps` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ if key_padding_mask is not None: assert attn_mask is None, "ERROR attn_mask and key_padding_mask should not be both defined!" mask = key_padding_mask elif attn_mask is not None: mask = attn_mask else: mask = None if self.include_norm_add: if self.impl == "fast": outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, query, key, self.lyr_nrm_gamma_weights, self.lyr_nrm_beta_weights, self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight, mask, self.dropout, ) else: lyr_nrm_results = self.lyr_nrm(query) outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, self.scaling, lyr_nrm_results, key, self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight, self.in_proj_bias_q, self.in_proj_bias_kv, self.out_proj_bias, mask, self.dropout, ) if is_training: outputs = jit_dropout_add(outputs, query, self.dropout, is_training) else: outputs = outputs + query else: if self.impl == "fast": outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, query, key, self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight, mask, self.dropout, ) else: outputs = self.attn_func( attn_mask is not None, is_training, self.num_heads, self.scaling, query, key, self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight, self.in_proj_bias_q, self.in_proj_bias_kv, self.out_proj_bias, mask, self.dropout, ) return outputs, None
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/encdec_multihead_attn.py
import torch import fast_multihead_attn class FastSelfAttnNormAddFunc(torch.autograd.Function): @staticmethod def forward( ctx, use_time_mask, is_training, heads, inputs, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights, output_weights, pad_mask, dropout_prob, ): heads_t = torch.tensor([heads]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) use_mask = pad_mask is not None ( lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, input_lin_results, softmax_results, dropout_results, dropout_mask, matmul2_results, dropout_add_mask, outputs, ) = fast_multihead_attn.self_attn_norm_add_forward( use_mask, use_time_mask, is_training, heads, inputs, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights, output_weights, pad_mask if use_mask else null_tensor, dropout_prob, ) # fast_self_multihead_attn_norm_add.forward( \ ctx.save_for_backward( heads_t, matmul2_results, dropout_results, softmax_results, input_lin_results, lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, inputs, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights, output_weights, dropout_mask, dropout_add_mask, dropout_prob_t, ) return outputs.detach() @staticmethod def backward(ctx, output_grads): ( heads_t, matmul2_results, dropout_results, softmax_results, input_lin_results, lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, inputs, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights, output_weights, dropout_mask, dropout_add_mask, dropout_prob_t, ) = ctx.saved_tensors ( input_grads, lyr_nrm_gamma_grads, lyr_nrm_beta_grads, input_weight_grads, output_weight_grads, ) = fast_multihead_attn.self_attn_norm_add_backward( heads_t[0], output_grads, matmul2_results, dropout_results, softmax_results, input_lin_results, lyr_nrm_results, lyr_nrm_mean, lyr_nrm_invvar, inputs, lyr_nrm_gamma_weights, lyr_nrm_beta_weights, input_weights, output_weights, dropout_mask, dropout_add_mask, dropout_prob_t[0], ) # fast_self_multihead_attn_norm_add.backward( \ return ( None, None, None, input_grads, lyr_nrm_gamma_grads, lyr_nrm_beta_grads, input_weight_grads, output_weight_grads, None, None, ) fast_self_attn_norm_add_func = FastSelfAttnNormAddFunc.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/fast_self_multihead_attn_norm_add_func.py
import torch import fast_multihead_attn class FastSelfAttnFunc(torch.autograd.Function): @staticmethod def forward( ctx, use_time_mask, is_training, heads, inputs, input_weights, output_weights, input_biases, output_biases, pad_mask, mask_additive, dropout_prob, ): use_biases_t = torch.tensor([input_biases is not None]) heads_t = torch.tensor([heads]) dropout_prob_t = torch.tensor([dropout_prob]) null_tensor = torch.tensor([]) use_mask = pad_mask is not None mask_additive_t = torch.tensor([mask_additive]) if use_biases_t[0]: if not mask_additive: ( input_lin_results, softmax_results, dropout_results, dropout_mask, matmul2_results, outputs, ) = fast_multihead_attn.self_attn_bias_forward( use_mask, use_time_mask, is_training, heads, inputs, input_weights, output_weights, input_biases, output_biases, pad_mask if use_mask else null_tensor, dropout_prob, ) # fast_self_multihead_attn_bias.forward() \ ctx.save_for_backward( use_biases_t, heads_t, matmul2_results, dropout_results, softmax_results, null_tensor, null_tensor, mask_additive_t, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t, ) else: ( input_lin_results, bmm1_results, dropout_results, dropout_mask, matmul2_results, outputs, ) = fast_multihead_attn.self_attn_bias_additive_mask_forward( use_mask, use_time_mask, is_training, heads, inputs, input_weights, output_weights, input_biases, output_biases, pad_mask if use_mask else null_tensor, dropout_prob, ) # fast_self_multihead_attn_bias_additive_mask.forward( \ ctx.save_for_backward( use_biases_t, heads_t, matmul2_results, dropout_results, null_tensor, bmm1_results, pad_mask, mask_additive_t, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t, ) else: ( input_lin_results, softmax_results, dropout_results, dropout_mask, matmul2_results, outputs, ) = fast_multihead_attn.self_attn_forward( use_mask, use_time_mask, is_training, heads, inputs, input_weights, output_weights, pad_mask if use_mask else null_tensor, dropout_prob, ) # fast_self_multihead_attn.forward( \ ctx.save_for_backward( use_biases_t, heads_t, matmul2_results, dropout_results, softmax_results, null_tensor, null_tensor, mask_additive_t, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t, ) return outputs.detach() @staticmethod def backward(ctx, output_grads): ( use_biases_t, heads_t, matmul2_results, dropout_results, softmax_results, bmm1_results, pad_mask, mask_additive_t, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t, ) = ctx.saved_tensors if use_biases_t[0]: if not mask_additive_t[0]: ( input_grads, input_weight_grads, output_weight_grads, input_bias_grads, output_bias_grads, ) = fast_multihead_attn.self_attn_bias_backward( heads_t[0], output_grads, matmul2_results, dropout_results, softmax_results, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t[0], ) # fast_self_multihead_attn_bias.backward( \ else: ( input_grads, input_weight_grads, output_weight_grads, input_bias_grads, output_bias_grads, ) = fast_multihead_attn.self_attn_bias_additive_mask_backward( heads_t[0], output_grads, matmul2_results, dropout_results, bmm1_results, pad_mask, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t[0], ) # fast_self_multihead_attn_bias_additive_mask.backward( \ else: input_bias_grads = None output_bias_grads = None input_grads, input_weight_grads, output_weight_grads = fast_multihead_attn.self_attn_backward( heads_t[0], output_grads, matmul2_results, dropout_results, softmax_results, input_lin_results, inputs, input_weights, output_weights, dropout_mask, dropout_prob_t[0], ) # fast_self_multihead_attn.backward( \ return ( None, None, None, input_grads, input_weight_grads, output_weight_grads, input_bias_grads, output_bias_grads, None, None, None, ) fast_self_attn_func = FastSelfAttnFunc.apply
GeneSplice-main
GeneSplice/apex/apex/contrib/multihead_attn/fast_self_multihead_attn_func.py
import torch import torch.nn.functional as F import argparse from apex.contrib.multihead_attn import SelfMultiheadAttn from apex.contrib.multihead_attn import EncdecMultiheadAttn parser = argparse.ArgumentParser(description='Multihead Attention Standalone Test') parser.add_argument('--seq-length', default=64, type=int, help='Sequence Length of Input') parser.add_argument('--num-seqs-start', default=10, type=int, help='Start Range of Number of Sequences') parser.add_argument('--num-seqs-stop', default=120, type=int, help='Stop Range of Number of Sequences') parser.add_argument('--num-seqs-inc', default=5, type=int, help='Range Increment of Number of Sequences') parser.add_argument('--trials', default=20, type=int, help='Number of Trials to Execute') parser.add_argument('--warmup-trials', default=5, type=int, help='Warmup Trials to discard') parser.add_argument('--layers', default=18, type=int, help='Attention Layers to Execute to Gain CPU/GPU Time Overlap') parser.add_argument('--hidden-dim', default=1024, type=int, help='Multihead Attention hidden dimension') parser.add_argument('--heads', default=16, type=int, help='Number of Multihead Attention heads') parser.add_argument('--encdec-attn', action='store_true', help='Use Encoder-Decoder Attention instead of Self Attention.') parser.add_argument('--norm-add', action='store_true', help='Include Layer Norm and Dropout-Add in Multihead Attention block.') parser.add_argument('--ref', action='store_true', help='Reference implementation in python pytorch.') parser.add_argument('--native', action='store_true', help='torch.nn.MultitheadAttention Version.') parser.add_argument('--fwd', action='store_true', help='Only execute Fwd Pass.') parser.add_argument('--biases', action='store_true', help='Execute multihead attention with Linear Biases.') args = parser.parse_args() if not torch.cuda.is_available(): raise NotImplementedError('Running on CPU is not supported') torch.cuda.set_device(0) torch.manual_seed(111) if torch.cuda.is_available(): torch.cuda.manual_seed_all(111) attn_layers = [] for idx in range(0, args.layers) : if args.encdec_attn : if args.ref : attn_layers.append(EncdecMultiheadAttn(args.hidden_dim, args.heads, dropout=0.1, bias=args.biases, include_norm_add=False, impl='default')) else : attn_layers.append(EncdecMultiheadAttn(args.hidden_dim, args.heads, dropout=0.1, bias=args.biases, include_norm_add=args.norm_add, impl='fast')) else : if args.native : attn_layers.append(torch.nn.MultiheadAttention(args.hidden_dim, args.heads, dropout=0.1, bias=args.biases)) elif args.ref : attn_layers.append(SelfMultiheadAttn(args.hidden_dim, args.heads, dropout=0.1, bias=args.biases, include_norm_add=args.norm_add, impl='default')) else : attn_layers.append(SelfMultiheadAttn(args.hidden_dim, args.heads, dropout=0.1, bias=args.biases, include_norm_add=args.norm_add, impl='fast')) attn_layers[idx].cuda() attn_layers[idx].half() if not args.native : attn_layers[idx].reset_parameters() start_evt_fwd = [] start_evt_bwd = [] stop_evt_bwd = [] for recorded_trial in range(0, args.trials) : start_evt_fwd.append(torch.cuda.Event(enable_timing=True)) start_evt_bwd.append(torch.cuda.Event(enable_timing=True)) stop_evt_bwd.append(torch.cuda.Event(enable_timing=True)) for sequences in range(args.num_seqs_start, args.num_seqs_stop + args.num_seqs_inc, args.num_seqs_inc) : inputs = torch.randn(args.seq_length, sequences, args.hidden_dim, dtype=torch.float16, device=torch.device("cuda")).requires_grad_(True) grads = torch.randn_like(inputs) for trial in range(0, args.trials + args.warmup_trials) : layer_inputs = inputs evt_idx = trial - args.warmup_trials if evt_idx >= 0 : start_evt_fwd[evt_idx].record() for lyr_idx in range(0, args.layers) : if args.native : outputs,_ = attn_layers[lyr_idx].forward(layer_inputs, layer_inputs, layer_inputs, key_padding_mask=None, need_weights=False, attn_mask=None) else : outputs,_ = attn_layers[lyr_idx].forward(layer_inputs, layer_inputs, layer_inputs, key_padding_mask=None, need_weights=False, attn_mask=None, is_training=True) layer_inputs = outputs if evt_idx >= 0 : start_evt_bwd[evt_idx].record() if not args.fwd : layer_inputs.backward(grads) if evt_idx >= 0 : stop_evt_bwd[evt_idx].record() torch.cuda.synchronize() elapsed_time_fwd = 0.0 elapsed_time_bwd = 0.0 for evt_idx in range(0, args.trials) : elapsed_time_fwd += start_evt_fwd[evt_idx].elapsed_time(start_evt_bwd[evt_idx]) elapsed_time_bwd += start_evt_bwd[evt_idx].elapsed_time(stop_evt_bwd[evt_idx]) print("[ {} Attn {} ]Total Tokens: {:4d} Sequences: {:3d} Sequence Length: {:3d} Fwd Time / Layer: {:.3f} ms Bwd Time / Layer: {:.3f} ms".format( 'Encdec' if args.encdec_attn else 'Self', \ 'Norm&Add' if args.norm_add else '', \ sequences*args.seq_length, \ sequences, \ args.seq_length, \ elapsed_time_fwd / ( args.trials * args.layers ), \ elapsed_time_bwd / ( args.trials * args.layers )))
GeneSplice-main
GeneSplice/apex/apex/contrib/examples/multihead_attn/perf_test_multihead_attn.py
import torch import torch.nn.functional as F import argparse from apex.contrib.multihead_attn import SelfMultiheadAttn from apex.contrib.multihead_attn import EncdecMultiheadAttn parser = argparse.ArgumentParser(description='Multihead Attention Standalone Test') parser.add_argument('--seq-length', default=64, type=int, help='Sequence Length of Input') parser.add_argument('--num-seqs-start', default=5, type=int, help='Start Range of Number of Sequences') parser.add_argument('--num-seqs-stop', default=80, type=int, help='Stop Range of Number of Sequences') parser.add_argument('--num-seqs-inc', default=5, type=int, help='Range Increment of Number of Sequences') parser.add_argument('--trials', default=20, type=int, help='Number of Trials to Execute') parser.add_argument('--warmup-trials', default=5, type=int, help='Warmup Trials to discard') parser.add_argument('--layers', default=18, type=int, help='Attention Layers to Execute to Gain CPU/GPU Time Overlap') parser.add_argument('--seed-start', default=1, type=int, help='Attention Layers to Execute to Gain CPU/GPU Time Overlap') parser.add_argument('--seed-end', default=100, type=int, help='Attention Layers to Execute to Gain CPU/GPU Time Overlap') parser.add_argument('--hidden-dim', default=1024, type=int, help='Multihead Attention hidden dimension') parser.add_argument('--heads', default=16, type=int, help='Number of Multihead Attention heads') parser.add_argument('--encdec-attn', action='store_true', help='Use Encoder-Decoder Attention instead of Self Attention.') parser.add_argument('--norm-add', action='store_true', help='Include Layer Norm and Dropout-Add in Multihead Attention block.') parser.add_argument('--ref', action='store_true', help='Reference implementation in python pytorch.') parser.add_argument('--native', action='store_true', help='torch.nn.MultitheadAttention Version.') parser.add_argument('--fwd', action='store_true', help='Only execute Fwd Pass.') parser.add_argument('--eval', action='store_true', help='Inference only, no backward pass.') args = parser.parse_args() assert args.seq_length % 64 == 0, "Sequence Length should be a multiple of 64!" if not torch.cuda.is_available(): raise NotImplementedError('Running on CPU is not supported') torch.cuda.set_device(0) dropout_prob = 0.1 for seed in range(args.seed_start, args.seed_end+1) : torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) ref_layer = None if args.encdec_attn : ref_layer = EncdecMultiheadAttn(args.hidden_dim, args.heads, dropout=dropout_prob, bias=False, include_norm_add=args.norm_add, impl='default') else : ref_layer = SelfMultiheadAttn(args.hidden_dim, args.heads, dropout=dropout_prob, bias=False, include_norm_add=args.norm_add, impl='default') ref_layer.cuda() ref_layer.half() ref_layer.reset_parameters() ref_inputs = torch.randn(args.seq_length, args.num_seqs_start, args.hidden_dim, dtype=torch.float16, device=torch.device("cuda")).requires_grad_(True) ref_inputs_kv = None if args.encdec_attn : ref_inputs_kv = torch.randn(args.seq_length, args.num_seqs_start, args.hidden_dim, dtype=torch.float16, device=torch.device("cuda")).requires_grad_(True) ref_grads = torch.randn_like(ref_inputs) ref_outputs,_ = ref_layer.forward(ref_inputs, ref_inputs_kv, ref_inputs_kv, key_padding_mask=None, need_weights=False, attn_mask=None, is_training=(not args.eval)) ref_outputs.backward(ref_grads) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) tst_layer = None if args.encdec_attn : tst_layer = EncdecMultiheadAttn(args.hidden_dim, args.heads, dropout=dropout_prob, bias=False, include_norm_add=args.norm_add, impl='fast') else: tst_layer = SelfMultiheadAttn(args.hidden_dim, args.heads, dropout=dropout_prob, bias=False, include_norm_add=args.norm_add, impl='fast') tst_layer.cuda() tst_layer.half() tst_layer.reset_parameters() tst_inputs = torch.randn(args.seq_length, args.num_seqs_start, args.hidden_dim, dtype=torch.float16, device=torch.device("cuda")).requires_grad_(True) tst_inputs_kv = None if args.encdec_attn : tst_inputs_kv = torch.randn(args.seq_length, args.num_seqs_start, args.hidden_dim, dtype=torch.float16, device=torch.device("cuda")).requires_grad_(True) assert torch.equal(ref_inputs,tst_inputs), "ERROR: Inputs are different!" tst_grads = torch.randn_like(tst_inputs) tst_outputs,_ = tst_layer.forward(tst_inputs, tst_inputs_kv, tst_inputs_kv, key_padding_mask=None, need_weights=False, attn_mask=None, is_training=(not args.eval)) tst_outputs.backward(tst_grads) fwd_close = torch.equal(ref_outputs, tst_outputs) bwd_close = torch.equal(ref_inputs.grad, tst_inputs.grad) diff_fwd = ref_outputs - tst_outputs diff_cnt_fwd = diff_fwd.ne(0.0).sum() diff_accum_fwd = diff_fwd.abs().sum() diff_bwd = ref_inputs.grad - tst_inputs.grad diff_cnt_bwd = diff_bwd.ne(0.0).sum() diff_accum_bwd = diff_bwd.abs().sum() print(">>> Seed: ", seed, fwd_close, diff_cnt_fwd.item(), diff_accum_fwd.item(), bwd_close, diff_cnt_bwd.item(), diff_accum_bwd.item())
GeneSplice-main
GeneSplice/apex/apex/contrib/examples/multihead_attn/func_test_multihead_attn.py
from .clip_grad import clip_grad_norm_
GeneSplice-main
GeneSplice/apex/apex/contrib/clip_grad/__init__.py
from typing import Union, Iterable import torch _kernel_import_succeeded = False try: import amp_C from apex.multi_tensor_apply import multi_tensor_applier _kernel_import_succeeded = True except ImportError: _kernel_import_succeeded = False _tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]] def clip_grad_norm_( parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0, error_if_nonfinite: bool = False) -> torch.Tensor: r"""Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. This is identical to torch.nn.utils.clip_grad_norm_, except it uses a fused CUDA kernel when computing the 2-norm of GPU tensors in float32 and float16. Args: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. error_if_nonfinite (bool): if True, an error is thrown if the total norm of the gradients from :attr:`parameters` is ``nan``, ``inf``, or ``-inf``. Default: False (will switch to True in the future) Returns: Total norm of the parameters (viewed as a single vector). """ if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] max_norm = float(max_norm) norm_type = float(norm_type) # Trivial case if len(parameters) == 0: return torch.tensor(0.) # Fallback implementation if not (_kernel_import_succeeded and norm_type == 2.0 and any(p.is_cuda for p in parameters)): return torch.nn.utils.clip_grad_norm_( parameters, max_norm, norm_type=norm_type, error_if_nonfinite = error_if_nonfinite, ) # Find fp32 and fp16 gradients on GPU device = next(p.device for p in parameters if p.is_cuda) grads_fp32, grads_fp16, grads_misc = [], [], [] for p in parameters: grad = p.grad.detach() if p.dtype == torch.float32 and p.device == device: grads_fp32.append(grad) elif p.dtype == torch.float16 and p.device == device: grads_fp16.append(grad) else: grads_misc.append(grad) # Compute gradient L2 norms norms = [] dummy_overflow_buf = torch.zeros([1], dtype=torch.int32, device=device) if grads_fp32: norms.append( multi_tensor_applier( amp_C.multi_tensor_l2norm, dummy_overflow_buf, [grads_fp32], False, )[0] ) if grads_fp16: norms.append( multi_tensor_applier( amp_C.multi_tensor_l2norm, dummy_overflow_buf, [grads_fp16], False, )[0], ) for g in grads_misc: norms.append(torch.linalg.norm(g).unsqueeze(0).to(device)) total_norm = torch.linalg.norm(torch.cat(norms)) # Check for non-finite values if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()): raise RuntimeError( f'The total norm of order {norm_type} for gradients from ' '`parameters` is non-finite, so it cannot be clipped. To disable ' 'this error and scale the gradients by the non-finite norm anyway, ' 'set `error_if_nonfinite=False`') # Scale gradients clip_coef = max_norm / (total_norm + 1e-6) clip_coef_clamped = torch.clamp(clip_coef, max=1.0) if grads_fp32: multi_tensor_applier( amp_C.multi_tensor_scale, dummy_overflow_buf, [grads_fp32, grads_fp32], clip_coef_clamped, ) if grads_fp16: multi_tensor_applier( amp_C.multi_tensor_scale, dummy_overflow_buf, [grads_fp16, grads_fp16], clip_coef_clamped, ) for g in grads_misc: g.mul_(clip_coef_clamped.to(g.device)) return total_norm
GeneSplice-main
GeneSplice/apex/apex/contrib/clip_grad/clip_grad.py
import torch import transducer_loss_cuda import transducer_joint_cuda class TransducerJoint(torch.nn.Module): """Transducer joint Detail of this loss function can be found in: Sequence Transduction with Recurrent Neural Networks Arguments: pack_output (bool, optional): whether to pack the output in a compact form with don't-care data being removed. (default: False) relu (bool, optional): apply ReLU to the output of the joint operation. Requires opt=1 (default: False) dropout (bool, optional): apply dropout to the output of the joint operation. Requires opt=1 (default: False) opt (int, optional): pick the optimization level in [0, 1]. opt=1 picks a tiled algorithm. (default: 1) fwd_tile_size (int, optional): tile size used in forward operation. This argument will be ignored if opt != 1. (default: 4) dropout_prob (float, optional): dropout probability. (default: 0.0) probe_mask (bool, optional): a flag used to probe the mask generated by ReLU and/or dropout operation. When this argument is set to True, the mask can be accessed through self.mask_probe. (default: false) """ def __init__(self, pack_output=False, relu=False, dropout=False, opt=1, fwd_tile_size=4, dropout_prob=0, probe_mask=False): super(TransducerJoint, self).__init__() self.pack_output = pack_output self.relu = relu self.dropout = dropout self.dropout_prob = dropout_prob self.opt = opt self.fwd_tile_size = fwd_tile_size self.dummy_batch_offset = torch.empty(0) masked = self.relu or self.dropout self.mask_probe = [] if masked and probe_mask else None if masked and opt != 1: raise NotImplementedError("ReLU and dropout fusion is only supported with opt=1") def forward(self, f, g, f_len, g_len, batch_offset=None, packed_batch=0): """Forward operation of transducer joint Arguments: f (tensor): transcription vector from encode block of shape (B, T, H). g (tensor): prediction vector form predict block of shape (B, U, H). f_len (tensor): length of transcription vector for each batch. g_len (tensor): length of prediction vector minus 1 for each batch. batch_offset (tensor, optional): tensor containing the offset of each batch in the results. For example, batch offset can be obtained from: batch_offset = torch.cumsum(f_len*g_len, dim=0) This argument is required if pack_output == True, and is ignored if pack_output == False. (default: None) packed_batch (int, optional): the batch size after packing. This argument is ignored if pack_output == False. (default: 0) """ my_batch_offset = batch_offset if self.pack_output else self.dummy_batch_offset if self.pack_output and (batch_offset is None or packed_batch == 0): raise Exception("Please specify batch_offset and packed_batch when packing is enabled") dropout = self.dropout and self.training # only dropout for training return TransducerJointFunc.apply(f, g, f_len, g_len, self.pack_output, self.relu, dropout, my_batch_offset, packed_batch, self.opt, self.fwd_tile_size, self.dropout_prob, self.mask_probe) class TransducerLoss(torch.nn.Module): """Transducer loss Detail of this loss function can be found in: Sequence Transduction with Recurrent Neural Networks Arguments: fuse_softmax_backward (bool, optional) whether to fuse the backward of transducer loss with softmax. (default: True) opt (int, optional): pick the optimization level in [0, 1]. opt=1 picks a more optimized algorithm. In some cases, opt=1 might fall back to opt=0. (default: 1) packed_input (bool, optional): whether to pack the output in a compact form with don't-care data being removed. (default: False) """ def __init__(self, fuse_softmax_backward=True, opt=1, packed_input=False): super(TransducerLoss, self).__init__() self.fuse_softmax_backward = fuse_softmax_backward self.opt = opt self.packed_input = packed_input self.dummy_batch_offset = torch.empty(0) def forward(self, x, label, f_len, y_len, blank_idx, batch_offset=None, max_f_len=None, debug_list=None): """Forward operation of transducer joint Arguments: x (tensor): input tensor to the loss function with a shape of (B, T, U, H). label (tensor): labels for the input data. f_len (tensor): lengths of the inputs in the time dimension for each batch. y_len (tensor): lengths of the labels for each batch. blank_idx (int): index for the null symbol. batch_offset (tensor, optional): tensor containing the offset of each batch in the input. For example, batch offset can be obtained from: batch_offset = torch.cumsum(f_len*(y_len+1), dim=0) This argument is required if packed_input == True, and is ignored if packed_input == False. (default: None) max_f_len (int, optional): maximum length of the input in the time dimension. For example, it can be obtained as max_f_len = max(f_len) This argument is required if packed_input == True, and is ignored if packed_input == False. (default: None) (default: None) debug_list (list, optional): when an empty list is supplied, Alpha and Beta generated in the forward operation will be attached to this list for debug purpose. (default: None) """ if self.packed_input: if batch_offset is None or max_f_len is None: raise Exception("Please specify batch_offset and max_f_len when packing is \ enabled") my_batch_offset = batch_offset my_max_f_len = max_f_len else: my_batch_offset = self.dummy_batch_offset my_max_f_len = x.size(1) return TransducerLossFunc.apply(x, label, f_len, y_len, my_batch_offset, my_max_f_len, blank_idx, self.fuse_softmax_backward, debug_list, self.opt, self.packed_input) class TransducerLossFunc(torch.autograd.Function): @staticmethod def forward(ctx, x, label, f_len, y_len, batch_offset, max_f_len, blank_idx, fuse_softmax_backward, debug_list, opt, packed_input): if fuse_softmax_backward == False: with torch.enable_grad(): x = torch.nn.functional.log_softmax(x, dim=-1) else: x = torch.nn.functional.log_softmax(x, dim=-1) alpha, beta, loss = transducer_loss_cuda.forward( x, label, f_len, y_len, batch_offset, max_f_len, blank_idx, opt, packed_input) if debug_list == []: debug_list += [alpha, beta] ctx.save_for_backward(x, alpha, beta, f_len, y_len, label, batch_offset) ctx.blank_idx = blank_idx ctx.fuse_softmax_backward = fuse_softmax_backward ctx.opt = opt ctx.packed_input = packed_input ctx.max_f_len = max_f_len return loss @staticmethod def backward(ctx, loss_grad): x, alpha, beta, f_len, y_len, label, batch_offset = ctx.saved_tensors x_grad = transducer_loss_cuda.backward( x, loss_grad, alpha, beta, f_len, y_len, label, batch_offset, ctx.max_f_len, ctx.blank_idx, ctx.opt, ctx.fuse_softmax_backward, ctx.packed_input) if ctx.fuse_softmax_backward == False: x_grad = x.backward(x_grad) return x_grad, None, None, None, None, None, None, None, None, None, None class TransducerJointFunc(torch.autograd.Function): @staticmethod def forward(ctx, f, g, f_len, g_len, pack_output, relu, dropout, batch_offset, packed_batch, opt, fwd_tile_size, dropout_prob, mask_probe): h = transducer_joint_cuda.forward(f, g, f_len, g_len, batch_offset, packed_batch, opt, pack_output, relu, dropout, dropout_prob, fwd_tile_size) masked = relu or dropout if masked: ctx.save_for_backward(h[1], f_len, g_len, batch_offset) if mask_probe is not None: mask_probe.append(h[1]) else: ctx.save_for_backward(f_len, g_len, batch_offset) ctx.pack_output = pack_output ctx.masked = relu or dropout ctx.max_f_len = f.size(1) ctx.max_g_len = g.size(1) ctx.scale = 1 / (1-dropout_prob) if dropout and dropout_prob != 1 else 1 return h[0] @staticmethod def backward(ctx, loss_grad): if ctx.masked: mask, f_len, g_len, batch_offset = ctx.saved_tensors inp = [loss_grad, mask] else: f_len, g_len, batch_offset = ctx.saved_tensors inp = [loss_grad] f_grad, g_grad = transducer_joint_cuda.backward( inp, f_len, g_len, batch_offset, ctx.max_f_len, ctx.max_g_len, ctx.pack_output, ctx.scale) return f_grad, g_grad, None, None, None, None, None, None, None, None, None, None, None, \ None, None, None
GeneSplice-main
GeneSplice/apex/apex/contrib/transducer/transducer.py
from .transducer import TransducerJoint from .transducer import TransducerLoss from . import _transducer_ref
GeneSplice-main
GeneSplice/apex/apex/contrib/transducer/__init__.py
import torch def transducer_loss_reference(x, label, f_len, y_len, blank_idx, loss_grad): def log_sum_exp(a, b): if (a >= b): return a + torch.log(1 + torch.exp(b-a)) else: return b + torch.log(1 + torch.exp(a-b)) def forward_alpha(x, label, f_len, y_len, blank_idx): B, T, U, V = x.size() acc_t = torch.float32 if x.dtype in [torch.float16, torch.float32] else x.dtype alpha = torch.zeros((B, T, U), dtype=acc_t, device=x.device) for b in range(B): alpha[b, 0, 0] = 0 for t in range(1, f_len[b]): alpha[b, t, 0] = alpha[b, t-1, 0] + x[b, t-1, 0, blank_idx] for u in range(1, y_len[b]+1): alpha[b, 0, u] = alpha[b, 0, u-1] + x[b, 0, u-1, label[b, u-1]] for t in range(1, f_len[b]): for u in range(1, y_len[b]+1): curr_ = alpha[b, t-1, u] + x[b, t-1, u, blank_idx] next_ = alpha[b, t, u-1] + x[b, t, u-1, label[b, u-1]] alpha[b, t, u] = log_sum_exp(curr_, next_) return alpha def forward_beta(x, label, f_len, y_len, blank_idx): B, T, U, V = x.shape acc_t = torch.float32 if x.dtype in [torch.float16, torch.float32] else x.dtype beta = torch.zeros((B, T, U), dtype=acc_t, device=x.device) for b in range(B): beta[b, f_len[b]-1, y_len[b]] = x[b, f_len[b]-1, y_len[b], blank_idx] for t in range(f_len[b]-2, -1, -1): beta[b, t, y_len[b]] = beta[b, t+1, y_len[b]] + x[b, t, y_len[b], blank_idx] for u in range(y_len[b]-1, -1, -1): beta[b, f_len[b]-1, u] = beta[b, f_len[b]-1, u+1] + x[b, f_len[b]-1, u, label[b, u]] for t in range(f_len[b]-2, -1, -1): for u in range(y_len[b]-1, -1, -1): curr_ = beta[b, t+1, u] + x[b, t, u, blank_idx] next_ = beta[b, t, u+1] + x[b, t, u, label[b, u]] beta[b, t, u] = log_sum_exp(curr_, next_) return beta def backward(x, label, f_len, y_len, alpha, beta, loss_grad, blank_idx): grad = torch.zeros_like(x) B, T, U, V = x.size() for b in range(B): common_factor = torch.log(loss_grad[b]) + alpha - beta[b, 0, 0] # next for u in range(y_len[b]): grad[b, :f_len[b], u, label[b, u]] = -torch.exp(common_factor[b, :f_len[b], u] + beta[b, :f_len[b], u+1] + x[b, :f_len[b], u, label[b, u]]) # current grad[b, :f_len[b]-1, :y_len[b]+1, blank_idx] \ = -torch.exp(common_factor[b, :f_len[b]-1, :y_len[b]+1] + beta[b, 1:f_len[b], :y_len[b]+1] + x[b, :f_len[b]-1, :y_len[b]+1, blank_idx]) grad[b, f_len[b]-1, y_len[b], blank_idx] = -torch.exp(common_factor[b, f_len[b]-1, y_len[b]] + x[b, f_len[b]-1, y_len[b], blank_idx]) return grad x_log = torch.nn.functional.log_softmax(x, dim=-1) alpha = forward_alpha(x_log, label, f_len, y_len, blank_idx) beta = forward_beta(x_log, label, f_len, y_len, blank_idx) grad = backward(x_log, label, f_len, y_len, alpha, beta, loss_grad, blank_idx) x_log.backward(grad) loss = -beta[:, 0, 0] loss = loss.to(x.dtype) return alpha, beta, x.grad, loss def transducer_joint_reference(f, g, h_grad, f_len, g_len, pack_output, relu, dropout, dropout_prob=0, mask=None): if dropout and mask == None: raise NotImplementedError("mask needs to supplied to test dropout.") B, T, H = f.size() U = g.size(1) f_expand = f.unsqueeze(dim=2) g_expand = g.unsqueeze(dim=1) h = f_expand + g_expand if relu: h = torch.nn.functional.relu(h) if dropout: h *= mask scale = 1/(1-dropout_prob) h *= scale h.backward(h_grad) if pack_output == False: # intentionally set don't-care region to -1 to test if transducer joint # write these regions to avoid NaN and inf for b in range(B): h[b, f_len[b]:] = -1 h[b, :, g_len[b]:] = -1 return h, f.grad, g.grad # packing list_to_pack = [] for b in range(B): list_to_pack.append(h[b, :f_len[b], :g_len[b], :].reshape(-1, H)) h_packed = torch.cat(list_to_pack) return h_packed, f.grad, g.grad
GeneSplice-main
GeneSplice/apex/apex/contrib/transducer/_transducer_ref.py
import torch from apex.contrib.peer_memory import PeerMemoryPool import peer_memory_cuda as pm class PeerHaloExchanger1d: def __init__(self, ranks, rank_in_group, peer_pool, half_halo): self.peer_group_size = len(ranks) self.ranks = ranks self.peer_rank = rank_in_group self.low_neighbor = (self.peer_rank + self.peer_group_size - 1) % self.peer_group_size self.high_neighbor = (self.peer_rank + 1) % self.peer_group_size self.low_zero = True if self.peer_rank == 0 else False self.high_zero = True if self.peer_rank == self.peer_group_size - 1 else False self.peer_pool = peer_pool self.half_halo = half_halo def _allocate_peer_tensor(self, halo): # Compute size in bytes # Note: Pad buffer so each CUDA block gets required buffer size size = 4 * halo.numel() * halo.element_size() size_per_block = 128 * 2 * 16 # 128 threads each require two 128b buffers size = (size + size_per_block - 1) // size_per_block * size_per_block # Construct dtype peer buffer with desired size shape = [1, 1, 1, size // halo.element_size()] return self.peer_pool.allocate_peer_tensors(shape, halo.dtype, False, True) def __call__(self, y, H_split=True, explicit_nhwc=False, numSM=0, diagnostics=False): channels_last = y.is_contiguous(memory_format=torch.channels_last) and not explicit_nhwc if H_split: if explicit_nhwc: _, Hs, _, _ = list(y.shape) H = Hs - 2*self.half_halo low_out_halo = y[:,self.half_halo:2*self.half_halo,:,:] low_tx = self._allocate_peer_tensor(low_out_halo) low_inp_halo = y[:,:self.half_halo,:,:] high_out_halo = y[:,H:H+self.half_halo,:,:] high_tx = self._allocate_peer_tensor(high_out_halo) high_inp_halo = y[:,H+self.half_halo:H+2*self.half_halo,:,:] else: _, _, Hs, _ = list(y.shape) H = Hs - 2*self.half_halo low_out_halo = y[:,:,self.half_halo:2*self.half_halo,:] low_tx = self._allocate_peer_tensor(low_out_halo) low_inp_halo = y[:,:,:self.half_halo,:] high_out_halo = y[:,:,H:H+self.half_halo,:] high_tx = self._allocate_peer_tensor(high_out_halo) high_inp_halo = y[:,:,H+self.half_halo:H+2*self.half_halo,:] else: if explicit_nhwc: _, _, Ws, _ = list(y.shape) W = Ws - 2*self.half_halo low_out_halo = y[:,:,self.half_halo:2*self.half_halo,:] low_tx = self._allocate_peer_tensor(low_out_halo) low_inp_halo = y[:,:,:self.half_halo,:] high_out_halo = y[:,:,W:W+self.half_halo,:] high_tx = self._allocate_peer_tensor(high_out_halo) high_inp_halo = y[:,:,W+self.half_halo:W+2*self.half_halo,:] else: _, _, _, Ws = list(y.shape) W = Ws - 2*self.half_halo low_out_halo = y[:,:,:,self.half_halo:2*self.half_halo] low_tx = self._allocate_peer_tensor(low_out_halo) low_inp_halo = y[:,:,:,:self.half_halo] high_out_halo = y[:,:,:,W:W+self.half_halo] high_tx = self._allocate_peer_tensor(high_out_halo) high_inp_halo = y[:,:,:,W+self.half_halo:W+2*self.half_halo] pm.push_pull_halos_1d( diagnostics, explicit_nhwc, numSM, self.peer_rank, self.low_zero, low_out_halo, low_tx[self.peer_rank], high_tx[self.low_neighbor], low_inp_halo, self.high_zero, high_out_halo, high_tx[self.peer_rank], low_tx[self.high_neighbor], high_inp_halo, )
GeneSplice-main
GeneSplice/apex/apex/contrib/peer_memory/peer_halo_exchanger_1d.py
from .peer_memory import PeerMemoryPool from .peer_halo_exchanger_1d import PeerHaloExchanger1d
GeneSplice-main
GeneSplice/apex/apex/contrib/peer_memory/__init__.py
import torch import numpy as np import peer_memory_cuda as pm class PeerMemoryPool(object): def __init__(self, static_size, dynamic_size, peer_ranks=None): rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() ngpus = min(torch.cuda.device_count(), world_size) peer_group_size = ngpus peer_group = rank // ngpus peer_rank_base = peer_group * ngpus peer_rank = rank - peer_rank_base if peer_ranks is None: peer_ranks = [i+peer_rank_base for i in range(peer_group_size)] peer_rank_start = peer_rank_base peer_rank_end = peer_rank_start + peer_group_size - 1 for pr in peer_ranks: assert(pr >= peer_rank_start and pr <= peer_rank_end), "%d :: peer_rank %d not on same node (ranks=[%d,%d])" % (rank, pr, peer_rank_start, peer_rank_end) self.alignment = 256 self.static_size = ((static_size + self.alignment - 1) // self.alignment) * self.alignment self.dynamic_size = ((dynamic_size + self.alignment - 1) // self.alignment) * self.alignment # allocate giant pool of device memory self.raw = pm.allocate_raw(self.static_size+self.dynamic_size) # exchange peer pointers with nccl raw_ipc = pm.get_raw_ipc_address(self.raw).cuda() peer_raw_ipcs = [torch.empty_like(raw_ipc) for _ in range(world_size)] torch.distributed.all_gather(peer_raw_ipcs, raw_ipc) peer_raw_ipcs = torch.stack(peer_raw_ipcs).cpu() # extract IPC pointers for ranks on same node peer_raw = pm.get_raw_peers(peer_raw_ipcs[peer_rank_base:peer_rank_base+ngpus], peer_rank, self.raw) self.peer_raw = [peer_raw[peer_rank-peer_rank_base] for peer_rank in peer_ranks] self.static_offset = 0 self.dynamic_offset = 0 self.peer_ranks = peer_ranks def __del__(self): pm.free_raw(self.raw) def reset(self): self.dynamic_offset = 0 def allocate_peer_tensors(self, shape, dtype, channels_last, dynamic): nels = np.prod(shape) if dtype == torch.float16: elem_size = 2 if dynamic: start = ((self.dynamic_offset + self.alignment - 1) // self.alignment) * self.alignment self.dynamic_offset = start + nels * elem_size assert(self.dynamic_offset < self.dynamic_size), "Dynamic peer memory pool exhausted" return [pm.blob_view_half(pr + self.static_size + start, shape, channels_last) for pr in self.peer_raw] else: start = ((self.static_offset + self.alignment - 1) // self.alignment) * self.alignment self.static_offset = start + nels * elem_size assert(self.static_offset < self.static_size), "Static peer memory pool exhausted" return [pm.blob_view_half(pr + start, shape, channels_last) for pr in self.peer_raw] if dtype == torch.float32: elem_size = 4 if dynamic: start = ((self.dynamic_offset + self.alignment - 1) // self.alignment) * self.alignment self.dynamic_offset = start + nels * elem_size assert(self.dynamic_offset < self.dynamic_size), "Dynamic peer memory pool exhausted" return [pm.blob_view_float(pr + self.static_size + start, shape, channels_last) for pr in self.peer_raw] else: start = ((self.static_offset + self.alignment - 1) // self.alignment) * self.alignment self.static_offset = start + nels * elem_size assert(self.static_offset < self.static_size), "Static peer memory pool exhausted" return [pm.blob_view_float(pr + start, shape, channels_last) for pr in self.peer_raw] if dtype == torch.int32: elem_size = 4 if dynamic: start = ((self.dynamic_offset + self.alignment - 1) // self.alignment) * self.alignment self.dynamic_offset = start + nels * elem_size assert(self.dynamic_offset < self.dynamic_size), "Dynamic peer memory pool exhausted" return [pm.blob_view_int(pr + self.static_size + start, shape, channels_last) for pr in self.peer_raw] else: start = ((self.static_offset + self.alignment - 1) // self.alignment) * self.alignment self.static_offset = start + nels * elem_size assert(self.static_offset < self.static_size), "Static peer memory pool exhausted" return [pm.blob_view_int(pr + start, shape, channels_last) for pr in self.peer_raw] else: assert(False), "dtype %s not supported" % (str(dtype))
GeneSplice-main
GeneSplice/apex/apex/contrib/peer_memory/peer_memory.py
############################################################################### # Copyright (c) 2011-2021, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ############################################################################### import torch import torch.nn.functional as F import fmhalib as mha class FMHAFun(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, p_dropout, max_s, is_training, zero_tensors): batch_size = cu_seqlens.numel() - 1 if batch_size < 4: max_s = 512 context, S_dmask = mha.fwd_nl(qkv, cu_seqlens, p_dropout, max_s, is_training, True, zero_tensors, None) else: context, S_dmask = mha.fwd(qkv, cu_seqlens, p_dropout, max_s, is_training, False, zero_tensors, None) ctx.save_for_backward(qkv, S_dmask) ctx.cu_seqlens = cu_seqlens ctx.p_dropout = p_dropout ctx.max_s = max_s ctx.zero_tensors = zero_tensors return context @staticmethod def backward(ctx, dout): qkv, S_dmask = ctx.saved_tensors batch_size = ctx.cu_seqlens.numel() - 1 if batch_size < 4: dqkv, dp, _ = mha.bwd_nl(dout, qkv, S_dmask, ctx.cu_seqlens, ctx.p_dropout, ctx.max_s, ctx.zero_tensors) else: dqkv, dp = mha.bwd(dout, qkv, S_dmask, ctx.cu_seqlens, ctx.p_dropout, ctx.max_s, ctx.zero_tensors) return dqkv, None, None, None, None, None class FMHA(torch.nn.Module): def __init__(self, config): super(FMHA, self).__init__() self.p_dropout = config.attention_probs_dropout_prob self.h = config.num_attention_heads self.hidden_size = config.hidden_size self.d = self.hidden_size // self.h assert self.d * self.h == self.hidden_size, "Invalid hidden size/num_heads" def forward(self, qkv, cu_seqlens, max_s, is_training=True, zero_tensors=False): ctx = FMHAFun.apply(qkv.view(-1, 3, self.h, self.d), cu_seqlens, self.p_dropout, max_s, is_training, zero_tensors) return ctx.view(-1, self.hidden_size)
GeneSplice-main
GeneSplice/apex/apex/contrib/fmha/fmha.py
from .fmha import FMHAFun
GeneSplice-main
GeneSplice/apex/apex/contrib/fmha/__init__.py
import torch from apex.multi_tensor_apply import multi_tensor_applier class FusedNovoGrad(torch.optim.Optimizer): """Implements NovoGrad algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused NovoGrad implements 2 fusions. * Fusion of the NovoGrad update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedNovoGrad`'s usage is identical to any Pytorch optimizer:: opt = apex.optimizers.FusedNovoGrad(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedNovoGrad` may be used with or without Amp. If you wish to use :class:`FusedNovoGrad` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedNovoGrad(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. It has been proposed in `Jasper: An End-to-End Convolutional Neural Acoustic Model`_. More info: https://nvidia.github.io/OpenSeq2Seq/html/optimizers.html#novograd Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ NOT SUPPORTED now! (default: False) reg_inside_moment (bool, optional): whether do regularization (norm and L2) in momentum calculation. True for include, False for not include and only do it on update term. (default: False) grad_averaging (bool, optional): whether apply (1-beta1) to grad when calculating running averages of gradient. (default: True) norm_type (int, optional): which norm to calculate for each layer. 2 for L2 norm, and 0 for infinite norm. These 2 are only supported type now. (default: 2) init_zero (bool, optional): whether init norm with 0 (start averaging on 1st step) or first step norm (start averaging on 2nd step). True for init with 0. (default: False) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) .. _Jasper - An End-to-End Convolutional Neural Acoustic Model: https://arxiv.org/abs/1904.03288 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0., amsgrad=False, reg_inside_moment=False, grad_averaging=True, norm_type=2, init_zero=False, set_grad_none=True): if amsgrad: raise RuntimeError('FusedNovoGrad does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, norm_type=norm_type, init_zero=init_zero) super(FusedNovoGrad, self).__init__(params, defaults) if multi_tensor_applier.available: import amp_C # Skip buffer # Creating the overflow buffer on the same device as the params tensors. self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) self.multi_tensor_novograd = amp_C.multi_tensor_novograd else: raise RuntimeError('apex.optimizers.FusedNovoGrad requires cuda extensions') self.moment_mode = 0 if reg_inside_moment else 1 self.set_grad_none = set_grad_none def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedNovoGrad, self).zero_grad() def load_state_dict(self, state_dict): super(FusedNovoGrad, self).load_state_dict(state_dict) # in case exp_avg_sq is not on the same device as params, move it there for group in self.param_groups: if len(group['params']) > 0: group['exp_avg_sq'][0] = group['exp_avg_sq'][0].to(group['params'][0].device) group['exp_avg_sq'][1] = group['exp_avg_sq'][1].to(group['params'][0].device) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 # create lists for multi-tensor apply g_16, p_16, m_16 = [], [], [] g_32, p_32, m_32 = [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError('FusedNovoGrad does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) else: raise RuntimeError('FusedNovoGrad only support fp16 and fp32.') # we store per weight norm as one tensor for one group/precision combination # different from optim.Adam, we store norm here(not ^2) so we can unify calculation for norm types if 'exp_avg_sq' not in group: group['exp_avg_sq'] = [None, None] if group['init_zero']: # Creating the following parameters on the same device as the params tensors. group['exp_avg_sq'][0] = torch.cuda.FloatTensor(len(g_16), device=self.param_groups[0]["params"][0].device).contiguous().fill_(0) group['exp_avg_sq'][1] = torch.cuda.FloatTensor(len(g_32), device=self.param_groups[0]["params"][0].device).contiguous().fill_(0) else: # init with first step norm, so first blend have no effect if group['norm_type'] == 0: v_16 = [torch.max(torch.abs(g.to(torch.float32))).item() for g in g_16] v_32 = [torch.max(torch.abs(g)).item() for g in g_32] elif group['norm_type'] == 2: v_16 = [torch.sum(torch.pow(g.to(torch.float32), 2)).sqrt().item() for g in g_16] v_32 = [torch.sum(torch.pow(g, 2)).sqrt().item() for g in g_32] else: raise RuntimeError('FusedNovoGrad only support l2/inf norm now.') # Creating the following parameters on the same device as the params tensors. group['exp_avg_sq'][0] = torch.cuda.FloatTensor(v_16, device=self.param_groups[0]["params"][0].device) group['exp_avg_sq'][1] = torch.cuda.FloatTensor(v_32, device=self.param_groups[0]["params"][0].device) else: assert(len(g_16) == group['exp_avg_sq'][0].numel()) assert(len(g_32) == group['exp_avg_sq'][1].numel()) if(len(g_16) > 0): multi_tensor_applier(self.multi_tensor_novograd, self._dummy_overflow_buf, [g_16, p_16, m_16], group['exp_avg_sq'][0], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.moment_mode, group['norm_type']) if(len(g_32) > 0): multi_tensor_applier(self.multi_tensor_novograd, self._dummy_overflow_buf, [g_32, p_32, m_32], group['exp_avg_sq'][1], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.moment_mode, group['norm_type']) return loss
GeneSplice-main
GeneSplice/apex/apex/optimizers/fused_novograd.py
import torch from apex.multi_tensor_apply import multi_tensor_applier class FusedAdam(torch.optim.Optimizer): """Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused Adam implements 2 fusions. * Fusion of the Adam update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``, or ``torch.optim.Adam`` with ``adam_w_mode=False``:: opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedAdam` may be used with or without Amp. If you wish to use :class:`FusedAdam` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. .. warning:: A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``. These additional arguments are now deprecated and unnecessary. Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) capturable (bool, optional): whether to use the version of the optimizer that can be used with CUDA Graphs. (default: False) master_weights (bool, optional): whether to maintain FP32 master weights in the optimizer with FP16 mixed precision training, currently can only be used with capturable set to True. (default: False) .. _Adam - A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, adam_w_mode=True, weight_decay=0., amsgrad=False, set_grad_none=True, capturable=False, master_weights=False): if amsgrad: raise RuntimeError('FusedAdam does not support the AMSGrad variant.') if master_weights and not capturable: raise RuntimeError('Master weights is currently only supported with the capturable version.') # If the optimizer is capturable then LR should be a tensor (on GPU) lr = torch.tensor(lr, dtype=torch.float32) if capturable else lr defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) super(FusedAdam, self).__init__(params, defaults) self.adam_w_mode = 1 if adam_w_mode else 0 self.set_grad_none = set_grad_none self.capturable = capturable self.master_weights = master_weights # Create full precision master weights self.param_groups_master = [] for i, pg in enumerate(self.param_groups): param_list = pg['params'] self.param_groups_master.append({ 'params': [ p.clone().detach().float() if self.master_weights else None for p in param_list ], }) if capturable: for idx, group in enumerate(self.param_groups): if len(group['params']) == 0: continue device = group['params'][0].device for item in ['lr']: self.param_groups[idx][item] = group[item].to(device=device) self._step_supports_amp_scaling = True if multi_tensor_applier.available: import amp_C # Skip buffer self._dummy_overflow_buf = torch.cuda.IntTensor([0]) self.multi_tensor_adam = amp_C.multi_tensor_adam self.multi_tensor_adam_capturable = amp_C.multi_tensor_adam_capturable self.multi_tensor_adam_capturable_master = amp_C.multi_tensor_adam_capturable_master else: raise RuntimeError('apex.optimizers.FusedAdam requires cuda extensions') def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedAdam, self).zero_grad() def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. """ if any(p is not None for p in [grads, output_params, scale, grad_norms]): raise RuntimeError('FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.') loss = None if closure is not None: loss = closure() for group, group_master in zip(self.param_groups, self.param_groups_master): if len(group['params']) == 0: continue device = group['params'][0].device bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 if not self.capturable else (self._dummy_overflow_buf != 1).to(torch.int) else: group['step'] = 1 if not self.capturable else torch.tensor([1], dtype=torch.int, device=device) # create lists for multi-tensor apply g_16, p_16, m_16, v_16 = [], [], [], [] g_bf, p_bf, m_bf, v_bf = [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] p_16_master = [] p_32_master = [] for p, p_master in zip(group['params'], group_master['params']): if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError('FusedAdam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data).float() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data).float() if p.dtype == torch.float16: if self.master_weights: p_16_master.append(p_master.data) g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) v_16.append(state['exp_avg_sq']) elif p.dtype == torch.bfloat16: g_bf.append(p.grad) p_bf.append(p) m_bf.append(state['exp_avg']) v_bf.append(state['exp_avg_sq']) elif p.dtype == torch.float32: if self.master_weights: p_32_master.append(p_master.data) g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) v_32.append(state['exp_avg_sq']) else: raise RuntimeError('FusedAdam only support fp16 and fp32.') # If the optimizer is capturable, then if there's a grad scaler it works # on the GPU + a different multi_tensor_applier should be called if self.capturable: # overflow check of gradients found_inf = ( grad_scaler._check_inf_per_device(self)[device] if grad_scaler is not None else torch.zeros((1,), device=device) ) self._dummy_overflow_buf.copy_(found_inf) # get unscale scale factor scale, inv_scale = None, None if grad_scaler: scale = grad_scaler._get_scale_async() inv_scale = scale.double().reciprocal().float() else: scale = torch.ones((1,), device=device) inv_scale = torch.ones((1,), device=device) if len(g_16) > 0: multi_tensor_applier(self.multi_tensor_adam_capturable_master if self.master_weights else self.multi_tensor_adam_capturable, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16, p_16_master] if self.master_weights else [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode, bias_correction, group['weight_decay'], inv_scale) if len(g_bf) > 0: multi_tensor_applier( self.multi_tensor_adam_capturable, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf], group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode, bias_correction, group['weight_decay'], inv_scale) if len(g_32) > 0: multi_tensor_applier(self.multi_tensor_adam_capturable_master if self.master_weights else self.multi_tensor_adam_capturable, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32, p_32_master] if self.master_weights else [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode, bias_correction, group['weight_decay'], inv_scale) else: if len(g_16) > 0: multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode, bias_correction, group['weight_decay']) if len(g_bf) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf], group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode, bias_correction, group['weight_decay']) if len(g_32) > 0: multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode, bias_correction, group['weight_decay']) return loss
GeneSplice-main
GeneSplice/apex/apex/optimizers/fused_adam.py
from .fused_sgd import FusedSGD from .fused_adam import FusedAdam from .fused_novograd import FusedNovoGrad from .fused_lamb import FusedLAMB from .fused_adagrad import FusedAdagrad from .fused_mixed_precision_lamb import FusedMixedPrecisionLamb
GeneSplice-main
GeneSplice/apex/apex/optimizers/__init__.py
import torch from apex.multi_tensor_apply import multi_tensor_applier class FusedAdagrad(torch.optim.Optimizer): """Implements Adagrad algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused Adagrad implements 2 fusions. * Fusion of the Adagrad update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedAdagrad`'s usage is identical to any ordinary Pytorch optimizer:: opt = apex.optimizers.FusedAdagrad(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedAdagrad` may be used with or without Amp. If you wish to use :class:`FusedAdagrad` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedAdagrad(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. It has been proposed in `Adaptive Subgradient Methods for Online Learning and Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-10) adagrad_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay (also known as AdamW) (default: False) .. _Adaptive Subgradient Methods for Online Learning and Stochastic Optimization: http://jmlr.org/papers/v12/duchi11a.html """ def __init__(self, params, lr=1e-2, eps=1e-10, weight_decay=0., set_grad_none=True, adagrad_w_mode=False): defaults = dict(lr=lr, eps=eps, weight_decay=weight_decay) super(FusedAdagrad, self).__init__(params, defaults) self.adagrad_w_mode = 1 if adagrad_w_mode else 0 self.set_grad_none = set_grad_none if multi_tensor_applier.available: import amp_C # Skip buffer self._dummy_overflow_buf = torch.cuda.IntTensor([0]) self.multi_tensor_adagrad = amp_C.multi_tensor_adagrad else: raise RuntimeError('apex.optimizers.FusedAdagrad requires cuda extensions') def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedAdagrad, self).zero_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: # create lists for multi-tensor apply g_16, p_16, h_16 = [], [], [] g_32, p_32, h_32 = [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError('FusedAdagrad does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['sum'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) h_16.append(state['sum']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) h_32.append(state['sum']) else: raise RuntimeError('FusedAdagrad only support fp16 and fp32.') if(len(g_16) > 0): multi_tensor_applier(self.multi_tensor_adagrad, self._dummy_overflow_buf, [g_16, p_16, h_16], group['lr'], group['eps'], self.adagrad_w_mode, group['weight_decay']) if(len(g_32) > 0): multi_tensor_applier(self.multi_tensor_adagrad, self._dummy_overflow_buf, [g_32, p_32, h_32], group['lr'], group['eps'], self.adagrad_w_mode, group['weight_decay']) return loss
GeneSplice-main
GeneSplice/apex/apex/optimizers/fused_adagrad.py
import torch from copy import deepcopy from itertools import chain from collections import defaultdict, abc as container_abcs from apex.multi_tensor_apply import multi_tensor_applier class FusedMixedPrecisionLamb(torch.optim.Optimizer): def __init__(self, params, lr=1e-3, step=0, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, amsgrad=False, adam_w_mode=True, grad_averaging=True, max_grad_norm=1.0, use_nvlamb=False, reduced_precision_dtype=None): if amsgrad: raise RuntimeError('FusedLAMB does not support the AMSGrad variant.') # init defaults defaults = dict(lr=torch.tensor(lr, dtype=torch.float32), step=torch.tensor([step], dtype=torch.int), bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm) # init base module super(FusedMixedPrecisionLamb, self).__init__(params, defaults) # The learning rate (lr) and optimizer step (step) should be located on device # in order to faciliated device sync free execution device = self.param_groups[0]['params'][0].device tensor_state = ['lr', 'step'] for idx,group in enumerate(self.param_groups): for item in tensor_state: self.param_groups[idx][item] = group[item].to(device=device) if multi_tensor_applier.available: import amp_C self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm_mp # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=device) self.multi_tensor_lamb = amp_C.multi_tensor_lamb_mp else: raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') # Mixed Precision support self.reduced_precision_dtype = reduced_precision_dtype self.param_groups_full_precision = [] self._step_supports_amp_scaling = True self.adam_w_mode = 1 if adam_w_mode else 0 self.use_nvlamb = use_nvlamb # This method is overridden from the parent class because there is not a way to override # the nested function cast() that copies a saved piece of state to the device without # redundantly doing the copy. def load_state_dict(self, state_dict): r"""Loads the optimizer state. Args: state_dict (dict): optimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict['param_groups'] if len(groups) != len(saved_groups): raise ValueError("loaded state dict has a different number of " "parameter groups") param_lens = (len(g['params']) for g in groups) saved_lens = (len(g['params']) for g in saved_groups) if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError("loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group") # Update the state id_map = {old_id: p for old_id, p in zip(chain.from_iterable((g['params'] for g in saved_groups)), chain.from_iterable((g['params'] for g in groups)))} def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # The original version casted the saved value to the params dtype # This doesn't work for mixed precision Lamb where the momentum and # velocity are expected to be in full precision while the params are # in reduced precision value = value.to(value.device) return value elif isinstance(value, dict): return {k: cast(param, v) for k, v in value.items()} elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict['state'].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group['params'] = group['params'] return new_group param_groups = [ update_group(g, ng) for g, ng in zip(groups, saved_groups)] self.__setstate__({'state': state, 'param_groups': param_groups}) def _setup_full_precision_params(self): for i, pg in enumerate(self.param_groups): param_list = pg['params'] self.param_groups_full_precision.append({ 'params': [ p.clone().detach().to(dtype=torch.float32) if (self.reduced_precision_dtype is not None) and (p.dtype == self.reduced_precision_dtype) else None for p in param_list ], }) # add_param_groups() is overridden because default items can be tensors. The # parent version does not clone the default item, so two param groups can # accidentally point to the same default item value where they can differ # given they are in separate groups. def add_param_group(self, param_group): super().add_param_group(param_group) for name, default in self.defaults.items(): if isinstance(default, torch.Tensor): self.param_groups[len(self.param_groups) - 1][name] = default.clone() @torch.no_grad() def step(self, closure=None, grad_scaler=None): loss = None if closure is not None: loss = closure() # The full precision params are set up in the first step of the optimizer # instead of in the constructor because the full precision params will get out # out of sync with the model params if DDP syncs the model params across devices # after the optimizer is constructed. if len(self.param_groups_full_precision) == 0 : self._setup_full_precision_params() # create separate grad lists for params grad_list = [] for gid,group in enumerate(self.param_groups): for pid,p in enumerate(group['params']): assert group['params'][0].dtype == p.dtype, \ "Error: Parameters are not of the identical type: {} != {}".format( group['params'][0].dtype, p.dtype) if p.grad is None: continue grad_list.append(p.grad) # Overflow check of gradients device = self.param_groups[0]["params"][0].device found_inf = ( grad_scaler._check_inf_per_device(self)[device] if grad_scaler is not None else torch.zeros((1,), device=device) ) self._dummy_overflow_buf.copy_(found_inf) # Get unscale scale factor scale, inv_scale = None, None if grad_scaler: scale = grad_scaler._get_scale_async() inv_scale = scale.double().reciprocal().float() else: scale = torch.ones((1,), device=device) inv_scale = torch.ones((1,), device=device) # grad_norm is of scaled gradients. # So, multiply `max_grad_norm` by scale. max_grad_norm = self.defaults['max_grad_norm'] * scale grad_norm = multi_tensor_applier( self.multi_tensor_l2norm, self._dummy_overflow_buf, [grad_list], False, )[0] # Run LAMB optimization math for gid, (group, group_full) in enumerate(zip(self.param_groups, self.param_groups_full_precision)): bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel group['step'] += (self._dummy_overflow_buf != 1).to(torch.int) state_lists = [ [], # (0) grads [], # (1) params [], # (2) momentum state [], # (3) velocity state ] if self.reduced_precision_dtype is not None: state_lists.append([]) # (4) params reduced_dtype for p, p_full in zip(group['params'], group_full['params']): if p.grad is None: continue assert not p.grad.is_sparse state = self.state[p] # State initialization if len(state) == 0: dtype = p.dtype if self.reduced_precision_dtype is not None and p.dtype == self.reduced_precision_dtype : dtype = torch.float32 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, dtype=dtype) # Exponential moving average of gradient values state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=dtype) if self.reduced_precision_dtype is not None : state_lists[0].append(p.grad.data) state_lists[1].append(p_full.data) state_lists[2].append(state['exp_avg']) state_lists[3].append(state['exp_avg_sq']) state_lists[4].append(p.data) else : state_lists[0].append(p.grad.data) state_lists[1].append(p.data) state_lists[2].append(state['exp_avg']) state_lists[3].append(state['exp_avg_sq']) multi_tensor_applier( self.multi_tensor_lamb, self._dummy_overflow_buf, state_lists, group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, grad_norm, max_grad_norm, self.use_nvlamb, found_inf, inv_scale) return loss
GeneSplice-main
GeneSplice/apex/apex/optimizers/fused_mixed_precision_lamb.py
import torch from apex.multi_tensor_apply import multi_tensor_applier class FusedLAMB(torch.optim.Optimizer): """Implements LAMB algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused LAMB implements 2 fusions. * Fusion of the LAMB update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedLAMB` may be used with or without Amp. If you wish to use :class:`FusedLAMB` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ NOT SUPPORTED now! (default: False) adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) grad_averaging (bool, optional): whether apply (1-beta2) to grad when calculating running averages of gradient. (default: True) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0 weight decay parameter (default: False) .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, amsgrad=False, adam_w_mode=True, grad_averaging=True, set_grad_none=True, max_grad_norm=1.0, use_nvlamb=False): if amsgrad: raise RuntimeError('FusedLAMB does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm) super(FusedLAMB, self).__init__(params, defaults) if multi_tensor_applier.available: import amp_C self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) self.multi_tensor_lamb = amp_C.multi_tensor_lamb else: raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') self.adam_w_mode = 1 if adam_w_mode else 0 self.set_grad_none = set_grad_none self.use_nvlamb = use_nvlamb def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedLAMB, self).zero_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() # create separate grad lists for fp32 and fp16 params g_all_32, g_all_16 = [], [] for group in self.param_groups: for p in group['params']: if p.grad is None: continue if p.dtype == torch.float32: g_all_32.append(p.grad.data) elif p.dtype == torch.float16: g_all_16.append(p.grad.data) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') device = self.param_groups[0]["params"][0].device g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device) # compute grad norm for two lists if len(g_all_32) > 0: g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0] if len(g_all_16) > 0: g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0] # blend two grad norms to get global grad norm global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False)[0] max_grad_norm = self.defaults['max_grad_norm'] for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 # create lists for multi-tensor apply g_16, p_16, m_16, v_16 = [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError('FusedLAMB does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) v_16.append(state['exp_avg_sq']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) v_32.append(state['exp_avg_sq']) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') if(len(g_16) > 0): multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm, max_grad_norm, self.use_nvlamb) if(len(g_32) > 0): multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm, max_grad_norm, self.use_nvlamb) return loss
GeneSplice-main
GeneSplice/apex/apex/optimizers/fused_lamb.py
import torch from torch.optim.optimizer import Optimizer, required from apex.multi_tensor_apply import multi_tensor_applier class FusedSGD(Optimizer): r"""Implements stochastic gradient descent (optionally with momentum). Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused SGD implements 2 fusions. * Fusion of the SGD update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``:: opt = apex.optimizers.FusedSGD(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedSGD` may be used with or without Amp. If you wish to use :class:`FusedSGD` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedSGD(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: v = \rho * v + g \\ p = p - lr * v where p, g, v and :math:`\rho` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: v = \rho * v + lr * g \\ p = p - v The Nesterov version is analogously modified. """ def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False, materialize_master_grads=True, set_grad_none=False): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(FusedSGD, self).__init__(params, defaults) self.wd_after_momentum = wd_after_momentum self.materialize_master_grads = materialize_master_grads self.most_recent_scale = 1.0 self.scale_set_by_backward = False self.set_grad_none = set_grad_none if multi_tensor_applier.available: import amp_C # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) self.multi_tensor_sgd = amp_C.multi_tensor_sgd else: raise RuntimeError('apex.optimizers.FusedSGD requires cuda extensions') def __setstate__(self, state): super(FusedSGD, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedSGD, self).zero_grad() def get_momentums(self, params): momentums = [] first_run = True for p in params: param_state = self.state[p] # torch.optim.SGD initializes momentum in the main loop, we have # to do it here, and track whether or not we've done so, so that # momentum application can be skipped in the main kernel. if 'momentum_buffer' not in param_state: first_run = True buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) momentums.append(buf) else: first_run = False momentums.append(param_state['momentum_buffer']) return momentums, first_run def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() explicit_master_params = (hasattr(self, "_amp_stash") and hasattr(self._amp_stash, "fp32_from_fp16_groups")) for gid, group in enumerate(self.param_groups): weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] # For each group, there are 3 possible combinations we need to consider: # grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy # 1. fp16, fp16, fp16, No # 2. fp32, fp32, fp32, No # 3. fp16, fp32, fp32, Yes first_runs = [True, True] # I think a bit of code divergence in exchange for naming clarity is worthwhile if explicit_master_params: stash = self._amp_stash fp32_params = [p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None] fp32_grads = [p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None] fp32_momentums, first_runs[1] = self.get_momentums(fp32_params) if self.materialize_master_grads: fp16_model_params = [p for i, p in enumerate( stash.fp16_groups[gid]) if stash.fp32_from_fp16_groups[gid][i].grad is not None] fp32_from_fp16_grads = [p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None] fp32_from_fp16_params = [p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None] fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params) fp16_set = [fp32_from_fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params] else: fp16_model_params = [p for p in stash.fp16_groups[gid] if p.grad is not None] fp16_model_grads = [p.grad for p in stash.fp16_groups[gid] if p.grad is not None] fp32_from_fp16_params = [p for i, p in enumerate( stash.fp32_from_fp16_groups[gid]) if stash.fp16_groups[gid][i].grad is not None] fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params) fp16_set = [fp16_model_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params] launch_sets= [fp16_set, [fp32_grads, fp32_params, fp32_momentums]] else: fp16_params = [p for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)] fp16_grads = [p.grad for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)] fp16_momentums, first_runs[0] = self.get_momentums(fp16_params) fp32_params = [p for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)] fp32_grads = [p.grad for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)] fp32_momentums, first_runs[1] = self.get_momentums(fp32_params) launch_sets = [[fp16_grads, fp16_params, fp16_momentums], [fp32_grads, fp32_params, fp32_momentums]] for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)): assert len(launch_set[0]) == len(launch_set[1]) assert len(launch_set[0]) == len(launch_set[2]) if len(launch_set[0]) > 0: multi_tensor_applier( self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay, momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0/self.most_recent_scale) self.most_recent_scale = 1.0 self.scale_set_by_backward = False return loss
GeneSplice-main
GeneSplice/apex/apex/optimizers/fused_sgd.py
import types from ..fp16_utils import master_params_to_model_params from ..multi_tensor_apply import multi_tensor_applier from ._amp_state import maybe_print import torch from ..optimizers import FusedSGD class AmpOptimizerState(object): def __init__(self): pass def _master_params_to_model_params(self): stash = self._amp_stash if multi_tensor_applier.available: if len(stash.all_fp16_params) > 0: multi_tensor_applier( stash.multi_tensor_scale, stash.dummy_overflow_buf, [stash.all_fp32_from_fp16_params, stash.all_fp16_params], 1.0) else: for fp16_group, fp32_from_fp16_group in zip(stash.fp16_groups, stash.fp32_from_fp16_groups): master_params_to_model_params(fp16_group, fp32_from_fp16_group) def lazy_init_with_master_weights(self): stash = self._amp_stash stash.fp16_groups = [] stash.fp32_from_fp16_groups = [] stash.fp32_from_fp32_groups = [] for i, param_group in enumerate(self.param_groups): # maybe_print("FP16_Optimizer processing param group {}:".format(i)) fp16_params_this_group = [] fp32_params_this_group = [] fp32_from_fp16_params_this_group = [] for i, param in enumerate(param_group['params']): if param.requires_grad: if param.type() == 'torch.cuda.HalfTensor': # maybe_print("FP16_Optimizer received torch.cuda.HalfTensor with {}" # .format(param.size())) fp16_params_this_group.append(param) master_param = param.detach().clone().float() master_param.requires_grad = True param_group['params'][i] = master_param fp32_from_fp16_params_this_group.append(master_param) # Reset existing state dict key to the new master param. # We still need to recast per-param state tensors, if any, to FP32. if param in self.state: self.state[master_param] = self.state.pop(param) elif param.type() == 'torch.cuda.FloatTensor': # maybe_print("FP16_Optimizer received torch.cuda.FloatTensor with {}" # .format(param.size())) fp32_params_this_group.append(param) param_group['params'][i] = param else: raise TypeError("Optimizer's parameters must be either " "torch.cuda.FloatTensor or torch.cuda.HalfTensor. " "Received {}".format(param.type())) stash.fp16_groups.append(fp16_params_this_group) stash.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group) stash.fp32_from_fp32_groups.append(fp32_params_this_group) stash.all_fp16_params = [] for group in stash.fp16_groups: stash.all_fp16_params += group stash.all_fp32_from_fp16_params = [] for group in stash.fp32_from_fp16_groups: stash.all_fp32_from_fp16_params += group stash.all_fp32_from_fp32_params = [] for group in stash.fp32_from_fp32_groups: stash.all_fp32_from_fp32_params += group # all_fp16_grad_stash is only needed for fused optimizers. stash.all_fp16_grad_stash = [None for _ in stash.all_fp16_params] # stash.all_fp32_from_fp16_grad_stash = [None for _ in stash.all_fp32_from_fp16_params] stash.all_fp32_from_fp32_grad_stash = [None for _ in stash.all_fp32_from_fp32_params] for param in stash.all_fp32_from_fp16_params: param.grad = None for param in stash.all_fp32_from_fp32_params: param.grad = None # Leverage state_dict() and load_state_dict() to recast preexisting per-param state tensors self.load_state_dict(self.state_dict()) def post_backward_models_are_masters(scaler, params, stashed_grads, scale_override=None): grads_have_scale, stashed_have_scale, out_scale = scaler.loss_scale(), 1.0, 1.0 # not much to do if scale == 1.0 and static scaling if scaler.loss_scale() == 1.0 and not scaler.dynamic: # Clear the stash. for i in range(len(stashed_grads)): stashed_grads[i] = None return if scale_override is not None: grads_have_scale, stashed_have_scale, out_scale = scale_override # This is a lot of python overhead... grads_needing_unscale = [] grads_needing_unscale_with_stash = [] stashed = [] for param, stashed_grad in zip(params, stashed_grads): if param.grad is None and stashed_grad is not None: param.grad = stashed_grad elif param.grad is not None and stashed_grad is None: grads_needing_unscale.append(param.grad) elif param.grad is not None and stashed_grad is not None: grads_needing_unscale_with_stash.append(param.grad) stashed.append(stashed_grad) else: # param.grad is None and stashed_grad is None continue # unscale() implements grads*(1/scale), so "scale" should be grads_have_scale/out_scale. if len(grads_needing_unscale) > 0: scaler.unscale( grads_needing_unscale, grads_needing_unscale, None, # unused_scale, currently present to avoid API breakage elsewhere models_are_masters=True, scale_override=grads_have_scale/out_scale) if len(grads_needing_unscale_with_stash) > 0: scaler.unscale_with_stashed( grads_needing_unscale_with_stash, stashed, grads_needing_unscale_with_stash, scale_override=(grads_have_scale, stashed_have_scale, out_scale)) # Clear the stash. for i in range(len(stashed_grads)): stashed_grads[i] = None def prepare_backward_with_master_weights(self): stash = self._amp_stash self._amp_lazy_init() for i, param in enumerate(stash.all_fp16_params): # Set up to leverage grad copy elision. # This may behave differently from an unpatched optimizer if zero_grad is used and the param is unused. param.grad = None # for i, param in enumerate(stash.all_fp32_from_fp16_params): # stash.all_fp32_from_fp16_grad_stash[i] = param.grad for i, param in enumerate(stash.all_fp32_from_fp32_params): stash.all_fp32_from_fp32_grad_stash[i] = param.grad # Set up to leverage grad copy elision: param.grad = None def post_backward_with_master_weights(self, scaler): stash = self._amp_stash self._amp_lazy_init() # This is a lot of python overhead... fp16_grads_needing_unscale = [] new_fp32_grads = [] fp16_grads_needing_unscale_with_stash = [] preexisting_fp32_grads = [] for fp16_param, fp32_param in zip(stash.all_fp16_params, stash.all_fp32_from_fp16_params): if fp16_param.grad is None and fp32_param.grad is not None: continue elif fp16_param.grad is not None and fp32_param.grad is None: fp32_param.grad = torch.empty_like(fp32_param) fp16_grads_needing_unscale.append(fp16_param.grad) new_fp32_grads.append(fp32_param.grad) elif fp16_param.grad is not None and fp32_param.grad is not None: fp16_grads_needing_unscale_with_stash.append(fp16_param.grad) preexisting_fp32_grads.append(fp32_param.grad) else: # fp16_param.grad is None and fp32_param.grad is None: continue if len(fp16_grads_needing_unscale) > 0: scaler.unscale( fp16_grads_needing_unscale, new_fp32_grads, scaler.loss_scale(), models_are_masters=False) if len(fp16_grads_needing_unscale_with_stash) > 0: scaler.unscale_with_stashed( fp16_grads_needing_unscale_with_stash, preexisting_fp32_grads, preexisting_fp32_grads) # fp32 params can be treated as they would be in the "no_master_weights" case. post_backward_models_are_masters( scaler, stash.all_fp32_from_fp32_params, stash.all_fp32_from_fp32_grad_stash) def lazy_init_no_master_weights(self): stash = self._amp_stash stash.all_fp16_params = [] stash.all_fp32_params = [] for i, param_group in enumerate(self.param_groups): for i, param in enumerate(param_group['params']): if param.type() == 'torch.cuda.HalfTensor': stash.all_fp16_params.append(param) elif param.type() == 'torch.cuda.FloatTensor': stash.all_fp32_params.append(param) else: raise TypeError("Optimizer's parameters must be either " "torch.cuda.FloatTensor or torch.cuda.HalfTensor. " "Received {}".format(param.type())) stash.all_fp16_grad_stash = [None for _ in stash.all_fp16_params] stash.all_fp32_grad_stash = [None for _ in stash.all_fp32_params] def prepare_backward_no_master_weights(self): stash = self._amp_stash self._amp_lazy_init() for i, param in enumerate(stash.all_fp16_params): stash.all_fp16_grad_stash[i] = param.grad # Set up to leverage grad copy elision: param.grad = None for i, param in enumerate(stash.all_fp32_params): stash.all_fp32_grad_stash[i] = param.grad # Set up to leverage grad copy elision: param.grad = None def post_backward_no_master_weights(self, scaler): stash = self._amp_stash self._amp_lazy_init() split_types = ((stash.all_fp16_params, stash.all_fp16_grad_stash), (stash.all_fp32_params, stash.all_fp32_grad_stash)) for params, stashed_grads in split_types: post_backward_models_are_masters(scaler, params, stashed_grads) ##################################################################################### # FusedSGD versions ##################################################################################### # FusedSGD never explicitly materializes the fp32 gradients for "fp32 from fp16" master params # outside the kernel, so we must accumulate directly into the model grads. def prepare_backward_with_master_weights_FusedSGD(self): if self.materialize_master_grads: prepare_backward_with_master_weights(self) else: stash = self._amp_stash self._amp_lazy_init() for i, param in enumerate(stash.all_fp16_params): stash.all_fp16_grad_stash[i] = param.grad # Set up to leverage grad copy elision: param.grad = None for i, param in enumerate(stash.all_fp32_from_fp32_params): stash.all_fp32_from_fp32_grad_stash[i] = param.grad # Set up to leverage grad copy elision: param.grad = None def post_backward_with_master_weights_FusedSGD(self, scaler): if self.materialize_master_grads: post_backward_with_master_weights(self, scaler) else: stash = self._amp_stash self._amp_lazy_init() grads_have_scale = scaler.loss_scale() stashed_have_scale = self.most_recent_scale out_scale = grads_have_scale if self.scale_set_by_backward: out_scale = min(grads_have_scale, self.most_recent_scale) split_types = ((stash.all_fp16_params, stash.all_fp16_grad_stash), (stash.all_fp32_from_fp32_params, stash.all_fp32_from_fp32_grad_stash)) # unscale_with_stashed() implements grads*1/scale + stashed_grads*1. # stashed_grads are scaled by self.most_recent_scale. for params, stashed_grads in split_types: post_backward_models_are_masters(scaler, params, stashed_grads, (grads_have_scale, stashed_have_scale, out_scale)) self.most_recent_scale = out_scale self.scale_set_by_backward = True def prepare_backward_no_master_weights_FusedSGD(self): prepare_backward_no_master_weights(self) def post_backward_no_master_weights_FusedSGD(self, scaler): post_backward_no_master_weights(self, scaler) def _amp_lazy_init(self): stash = self._amp_stash if not stash.lazy_init_called: self._lazy_init_maybe_master_weights() stash.lazy_init_called = True def _process_optimizer(optimizer, properties): if hasattr(optimizer, "_amp_stash"): raise RuntimeError("A given optimizer should only be passed through amp.initialize once.") else: optimizer._amp_stash = AmpOptimizerState() optimizer._amp_stash.lazy_init_called = False optimizer._amp_stash.already_patched = False optimizer._amp_stash.params_have_scaled_gradients = False for name in ("_lazy_init_maybe_master_weights", "_master_params_to_model_params", "_prepare_amp_backward", "_post_amp_backward", "_amp_lazy_init"): if hasattr(optimizer, name): raise RuntimeError("Incoming optimizer already has {} defined.".format(name)) # TODO: Centralize exposure and import error checking for the C backend. if multi_tensor_applier.available: import amp_C optimizer._amp_stash.multi_tensor_scale = amp_C.multi_tensor_scale optimizer._amp_stash.multi_tensor_l2norm = amp_C.multi_tensor_l2norm optimizer._amp_stash.dummy_overflow_buf = torch.cuda.IntTensor([0]); if properties.master_weights: optimizer._lazy_init_maybe_master_weights = types.MethodType( lazy_init_with_master_weights, optimizer) optimizer._master_params_to_model_params = types.MethodType( _master_params_to_model_params, optimizer) old_step = optimizer.step def new_step(self, closure=None): if closure is not None: raise RuntimeError("Currently, Amp does not support closure use with optimizers.") retval = old_step() if not isinstance(self, FusedSGD): self._master_params_to_model_params() # Clear the master grads that wouldn't be zeroed by model.zero_grad() for param in self._amp_stash.all_fp32_from_fp16_params: param.grad = None return retval optimizer.step = types.MethodType(new_step, optimizer) old_zero_grad = optimizer.zero_grad def new_zero_grad(self): stash = self._amp_stash self._amp_lazy_init() # Zero the model grads. for param in stash.all_fp16_params: if param.grad is not None: param.grad.detach_() param.grad.zero_() for param in stash.all_fp32_from_fp32_params: if param.grad is not None: param.grad.detach_() param.grad.zero_() # Clear the master grads that are independent of model grads for param in self._amp_stash.all_fp32_from_fp16_params: param.grad = None optimizer.zero_grad = types.MethodType(new_zero_grad, optimizer) if isinstance(optimizer, FusedSGD): optimizer._prepare_amp_backward = types.MethodType( prepare_backward_with_master_weights_FusedSGD, optimizer) optimizer._post_amp_backward = types.MethodType( post_backward_with_master_weights_FusedSGD, optimizer) else: optimizer._prepare_amp_backward = types.MethodType( prepare_backward_with_master_weights, optimizer) optimizer._post_amp_backward = types.MethodType( post_backward_with_master_weights, optimizer) else: optimizer._lazy_init_maybe_master_weights = types.MethodType( lazy_init_no_master_weights, optimizer) if isinstance(optimizer, FusedSGD): optimizer._prepare_amp_backward = types.MethodType( prepare_backward_no_master_weights_FusedSGD, optimizer) optimizer._post_amp_backward = types.MethodType( post_backward_no_master_weights_FusedSGD, optimizer) else: optimizer._prepare_amp_backward = types.MethodType( prepare_backward_no_master_weights, optimizer) optimizer._post_amp_backward = types.MethodType( post_backward_no_master_weights, optimizer) optimizer._amp_lazy_init = types.MethodType(_amp_lazy_init, optimizer) old_add_param_group = optimizer.add_param_group def new_add_param_group(self, new_group): stash = self._amp_stash if not stash.lazy_init_called: self._lazy_init_maybe_master_weights() stash.lazy_init_called = True assert isinstance(new_group, dict), "param group must be a dict" new_params = new_group['params'] if isinstance(new_params, torch.Tensor): new_group['params'] = [new_params] elif isinstance(new_params, set): raise TypeError('optimizer parameters need to be organized in ordered collections, but ' 'the ordering of tensors in sets will change between runs. Please use a list instead.') else: new_group['params'] = list(new_params) if properties.master_weights: # Mutate new_group in-place to use FP32 master params fp16_params_this_group = [] fp32_params_this_group = [] fp32_from_fp16_params_this_group = [] for i, param in enumerate(new_group['params']): if param.requires_grad: if param.type() == 'torch.cuda.HalfTensor': fp16_params_this_group.append(param) master_param = param.detach().clone().float() master_param.requires_grad = True new_group['params'][i] = master_param fp32_from_fp16_params_this_group.append(master_param) elif param.type() == 'torch.cuda.FloatTensor': fp32_params_this_group.append(param) new_group['params'][i] = param else: raise TypeError("Optimizer's parameters must be either " "torch.cuda.FloatTensor or torch.cuda.HalfTensor. " "Received {}".format(param.type())) stash.fp16_groups.append(fp16_params_this_group) stash.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group) stash.fp32_from_fp32_groups.append(fp32_params_this_group) stash.all_fp16_params += fp16_params_this_group stash.all_fp32_from_fp16_params += fp32_from_fp16_params_this_group stash.all_fp32_from_fp32_params += fp32_params_this_group # stash.all_fp32_from_fp16_grad_stash = [None for _ in stash.all_fp32_from_fp16_params] stash.all_fp32_from_fp32_grad_stash += [None for _ in fp32_params_this_group] # It should be ok to let params be added with existing .grad attributes. # for param in fp16_params_this_group: # param.grad = None # for param in fp32_from_fp16_params_this_group: # param.grad = None # for param in stash.fp32_params_this_group: # param.grad = None else: for param in new_group['params']: if param.type() == 'torch.cuda.HalfTensor': stash.all_fp16_params.append(param) stash.all_fp16_grad_stash.append(None) elif param.type() == 'torch.cuda.FloatTensor': stash.all_fp32_params.append(param) stash.all_fp32_grad_stash.append(None) else: raise TypeError("Optimizer's parameters must be either " "torch.cuda.FloatTensor or torch.cuda.HalfTensor. " "Received {}".format(param.type())) old_add_param_group(new_group) optimizer.add_param_group = types.MethodType(new_add_param_group, optimizer) return optimizer
GeneSplice-main
GeneSplice/apex/apex/amp/_process_optimizer.py
import torch # True for post-0.4, when Variables/Tensors merged. def variable_is_tensor(): v = torch.autograd.Variable() return isinstance(v, torch.Tensor) def tensor_is_variable(): x = torch.Tensor() return type(x) == torch.autograd.Variable # False for post-0.4 def tensor_is_float_tensor(): x = torch.Tensor() return type(x) == torch.FloatTensor # Akin to `torch.is_tensor`, but returns True for Variable # objects in pre-0.4. def is_tensor_like(x): return torch.is_tensor(x) or isinstance(x, torch.autograd.Variable) # Wraps `torch.is_floating_point` if present, otherwise checks # the suffix of `x.type()`. def is_floating_point(x): if hasattr(torch, 'is_floating_point'): return torch.is_floating_point(x) try: torch_type = x.type() return torch_type.endswith('FloatTensor') or \ torch_type.endswith('HalfTensor') or \ torch_type.endswith('DoubleTensor') except AttributeError: return False def scalar_python_val(x): if hasattr(x, 'item'): return x.item() else: if isinstance(x, torch.autograd.Variable): return x.data[0] else: return x[0] # Accounts for the possibility that some ops may be removed from a namespace. def filter_attrs(module, attrs): return list(attrname for attrname in attrs if hasattr(module, attrname))
GeneSplice-main
GeneSplice/apex/apex/amp/compat.py
import contextlib import warnings import sys import torch from . import utils from .opt import OptimWrapper from .scaler import LossScaler from ._amp_state import _amp_state, master_params, maybe_print if torch.distributed.is_available(): from ..parallel.LARC import LARC # There's no reason to expose the notion of a "handle". Everything can happen through amp.* calls. @contextlib.contextmanager def scale_loss(loss, optimizers, loss_id=0, model=None, delay_unscale=False, delay_overflow_check=False): """ On context manager entrance, creates ``scaled_loss = (loss.float())*current loss scale``. ``scaled_loss`` is yielded so that the user can call ``scaled_loss.backward()``:: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() On context manager exit (if ``delay_unscale=False``), the gradients are checked for infs/NaNs and unscaled, so that ``optimizer.step()`` can be called. .. note:: If Amp is using explicit FP32 master params (which is the default for ``opt_level=O2``, and can also be manually enabled by supplying ``master_weights=True`` to ``amp.initialize``) any FP16 gradients are copied to FP32 master gradients before being unscaled. ``optimizer.step()`` will then apply the unscaled master gradients to the master params. .. warning:: If Amp is using explicit FP32 master params, only the FP32 master gradients will be unscaled. The direct ``.grad`` attributes of any FP16 model params will remain scaled after context manager exit. This subtlety affects gradient clipping. See "Gradient clipping" under `Advanced Amp Usage`_ for best practices. Args: loss(Tensor): Typically a scalar Tensor. The ``scaled_loss`` that the context manager yields is simply ``loss.float()*loss_scale``, so in principle ``loss`` could have more than one element, as long as you call ``backward()`` on ``scaled_loss`` appropriately within the context manager body. optimizers: All optimizer(s) for which the current backward pass is creating gradients. Must be an optimizer or list of optimizers returned from an earlier call to ``amp.initialize``. For example use with multiple optimizers, see "Multiple models/optimizers/losses" under `Advanced Amp Usage`_. loss_id(int, optional, default=0): When used in conjunction with the ``num_losses`` argument to ``amp.initialize``, enables Amp to use a different loss scale per loss. ``loss_id`` must be an integer between 0 and ``num_losses`` that tells Amp which loss is being used for the current backward pass. See "Multiple models/optimizers/losses" under `Advanced Amp Usage`_ for examples. If ``loss_id`` is left unspecified, Amp will use the default global loss scaler for this backward pass. model(torch.nn.Module, optional, default=None): Currently unused, reserved to enable future optimizations. delay_unscale(bool, optional, default=False): ``delay_unscale`` is never necessary, and the default value of ``False`` is strongly recommended. If ``True``, Amp will not unscale the gradients or perform model->master gradient copies on context manager exit. ``delay_unscale=True`` is a minor ninja performance optimization and can result in weird gotchas (especially with multiple models/optimizers/losses), so only use it if you know what you're doing. "Gradient accumulation across iterations" under `Advanced Amp Usage`_ illustrates a situation where this CAN (but does not need to) be used. .. warning:: If ``delay_unscale`` is ``True`` for a given backward pass, ``optimizer.step()`` cannot be called yet after context manager exit, and must wait for another, later backward context manager invocation with ``delay_unscale`` left to False. .. _`Advanced Amp Usage`: https://nvidia.github.io/apex/advanced.html """ if not hasattr(_amp_state, "opt_properties"): raise RuntimeError("Invoked 'with amp.scale_loss`, but internal Amp state has not been initialized. " "model, optimizer = amp.initialize(model, optimizer, opt_level=...) must be called " "before `with amp.scale_loss`.") if not _amp_state.opt_properties.enabled: yield loss return if isinstance(optimizers, torch.optim.Optimizer) or ('LARC' in globals() and isinstance(optimizers, LARC)): optimizers = [optimizers] loss_scaler = _amp_state.loss_scalers[loss_id] loss_scale = loss_scaler.loss_scale() if ((not _amp_state.opt_properties.master_weights) and (not loss_scaler.dynamic) and loss_scale == 1.0): yield loss.float() # Needing to drop the cache here as well is an ugly gotcha. # But for now I think it's necessary to short-circuit. # Probably ok to skip this if not delay_unscale if _amp_state.opt_properties.patch_torch_functions: _amp_state.handle._clear_cache() return if not delay_unscale: if isinstance(optimizers, list): for optimizer in optimizers: if not optimizer._amp_stash.params_have_scaled_gradients: optimizer._prepare_amp_backward() yield (loss.float())*loss_scale if delay_unscale: for optimizer in optimizers: optimizer._amp_stash.params_have_scaled_gradients = True else: # FusedSGD may take care of unscaling as part of their step() methods. # if not isinstance(optimizers, FP16_Optimizer_for_fused): loss_scaler.clear_overflow_state() for optimizer in optimizers: optimizer._post_amp_backward(loss_scaler) optimizer._amp_stash.params_have_scaled_gradients = False # For future fused optimizers that enable sync-free dynamic loss scaling, # should_skip will always be False. should_skip = False if delay_overflow_check else loss_scaler.update_scale() if should_skip: for optimizer in optimizers: if not optimizer._amp_stash.already_patched: # Close on loss_scaler and loss_id as well, to be safe. Probably not # necessary because amp.scale_loss is already creating a temporary scope. def patch_step(opt, loss_scaler, loss_id): opt_step = opt.step def skip_step(closure=None): if closure is not None: raise RuntimeError("Currently, Amp does not support closure use with optimizers.") maybe_print(("Gradient overflow. Skipping step, loss scaler " + "{} reducing loss scale to {}").format(loss_id, loss_scaler.loss_scale())) # TODO: I don't like the special casing for different optimizer implementations. # Maybe skip should delegate to a method owned by the optimizers themselves. if hasattr(opt._amp_stash, "all_fp32_from_fp16_params"): # Clear the master grads that wouldn't be zeroed by model.zero_grad() for param in opt._amp_stash.all_fp32_from_fp16_params: param.grad = None if hasattr(opt, "most_recent_scale"): opt.most_recent_scale = 1.0 opt.scale_set_by_backward = False opt.step = opt_step opt._amp_stash.already_patched = False return skip_step optimizer.step = patch_step(optimizer, loss_scaler, loss_id) optimizer._amp_stash.already_patched = True # Probably ok to skip this if not delay_unscale if _amp_state.opt_properties.patch_torch_functions: _amp_state.handle._clear_cache() # Free function version of AmpHandle.disable_casts, another step on the # path to removing the concept of "AmpHandle" @contextlib.contextmanager def disable_casts(): _amp_state.handle._is_active = False yield _amp_state.handle._is_active = True class AmpHandle(object): def __init__(self, loss_scale="dynamic", enable_caching=True, verbose=False): self._enable_caching = enable_caching self._verbose = verbose self._cache = dict() self._default_scaler = LossScaler(loss_scale) self._is_active = True self._all_wrappers = [] def is_active(self): return self._is_active @contextlib.contextmanager def _disable_casts(self): self._is_active = False yield self._is_active = True def wrap_optimizer(self, optimizer, num_loss=1): self._default_scaler = None return OptimWrapper(optimizer, self, num_loss) @contextlib.contextmanager def scale_loss(self, loss, optimizer): raise RuntimeError("The old Amp API is no longer supported. Please move to the new API, " "documented here: https://nvidia.github.io/apex/amp.html. Transition guide: " "https://nvidia.github.io/apex/amp.html#transition-guide-for-old-api-users") if not self.is_active(): yield loss return if self._default_scaler is None: raise RuntimeError( 'After calling `handle.wrap_optimizer()`, you must explicitly ' + 'use `optimizer.scale_loss(loss)`.') # TODO: this code block is duplicated here and `opt.py`. Unify. loss_scale = self._default_scaler.loss_scale() yield loss * loss_scale self._default_scaler.clear_overflow_state() self._default_scaler.unscale( master_params(optimizer), master_params(optimizer), loss_scale) should_skip = self._default_scaler.update_scale() if should_skip: optimizer_step = optimizer.step def skip_step(): maybe_print('Gradient overflow, skipping update') optimizer.step = optimizer_step optimizer.step = skip_step self._clear_cache() def _clear_cache(self): self._cache.clear() # Experimental support for saving / restoring uncasted versions of functions def _save_func(self, mod, fn, func): self._all_wrappers.append((mod, fn, func)) def _deactivate(self): for mod, fn, func in self._all_wrappers: utils.set_func(mod, fn, func) self._all_wrappers = [] @property def has_cache(self): return self._enable_caching @property def cache(self): return self._cache def remove_cache(self, param): if self.has_cache and param in self.cache: del self.cache[param] @property def verbose(self): return self._verbose class NoOpHandle(object): def is_active(self): return False @contextlib.contextmanager def _disable_casts(self): yield def wrap_optimizer(self, optimizer, num_loss=1): return OptimWrapper(optimizer, self, num_loss) @contextlib.contextmanager def scale_loss(self, loss, optimizer): yield loss @property def has_cache(self): return False @property def verbose(self): return False def _clear_cache(self): pass def _deactivate(self): pass
GeneSplice-main
GeneSplice/apex/apex/amp/handle.py
import collections.abc as container_abcs from types import MethodType import functools import sys import warnings import numpy as np import torch from ._amp_state import _amp_state, warn_or_err from .handle import disable_casts from .scaler import LossScaler from ._process_optimizer import _process_optimizer from apex.fp16_utils import convert_network from ..fp16_utils import FP16_Optimizer as FP16_Optimizer_general from ..contrib.optimizers import FP16_Optimizer as FP16_Optimizer_for_fused if torch.distributed.is_available(): from ..parallel import DistributedDataParallel as apex_DDP from ..parallel.LARC import LARC def to_type(dtype, t): if isinstance(t, torch.Tensor): if not t.is_cuda: # This should not be a hard error, since it may be legitimate. warnings.warn("An input tensor was not cuda.") # GANs require this. # if t.requires_grad: # warn_or_err("input data requires grad. Since input data is not a model parameter,\n" # "its gradients will not be properly allreduced by DDP.") if t.is_floating_point(): return t.to(dtype) return t else: # Trust the user's custom batch type, that's all I can do here. return t.to(dtype) # Modified from torch.optim.optimizer.py. This is a bit more general than casted_args in utils.py. def applier(value, fn): if isinstance(value, torch.Tensor): return fn(value) elif isinstance(value, str): return value elif isinstance(value, np.ndarray): return value elif hasattr(value, "to"): # Allow handling of custom batch classes return fn(value) elif isinstance(value, container_abcs.Mapping): return {applier(k, fn) : applier(v, fn) for k, v in value.items()} elif isinstance(value, container_abcs.Iterable): return type(value)(applier(v, fn) for v in value) else: # Do I want this to fire off even if someone chooses to pass something ordinary like # an int or float? May be more annoying than it's worth. # print("Warning: unrecognized type in applier. If your input data is a custom class, " # "provide it with a .to(dtype) method which converts its floating-point Tensors to dtype. " # "Amp will check for your custom to() and invoke it to cast the batch's " # "floating-point Tensors to the appropriate type. " # "Also, if your data is a custom class, it is your responsibility to ensure that " # "any Tensors you want to be cuda are already cuda." return value def check_models(models): for model in models: parallel_type = None if isinstance(model, torch.nn.parallel.DistributedDataParallel): parallel_type = "torch.nn.parallel.DistributedDataParallel" if ('apex_DDP' in sys.modules) and isinstance(model, apex_DDP): parallel_type = "apex.parallel.DistributedDataParallel" if isinstance(model, torch.nn.parallel.DataParallel): parallel_type = "torch.nn.parallel.DataParallel" if parallel_type is not None: raise RuntimeError("Incoming model is an instance of {}. ".format(parallel_type) + "Parallel wrappers should only be applied to the model(s) AFTER \n" "the model(s) have been returned from amp.initialize.") def check_params_fp32(models): for model in models: for name, param in model.named_parameters(): if param.is_floating_point(): if 'Half' in param.type(): warn_or_err("Found param {} with type {}, expected torch.cuda.FloatTensor.\n" "When using amp.initialize, you do not need to call .half() on your model\n" "before passing it, no matter what optimization level you choose.".format( name, param.type())) elif not param.is_cuda: warn_or_err("Found param {} with type {}, expected torch.cuda.FloatTensor.\n" "When using amp.initialize, you need to provide a model with parameters\n" "located on a CUDA device before passing it no matter what optimization level\n" "you chose. Use model.to('cuda') to use the default device.".format( name, param.type())) # Backward compatibility for PyTorch 0.4 if hasattr(model, 'named_buffers'): buf_iter = model.named_buffers() else: buf_iter = model._buffers for obj in buf_iter: if type(obj)==tuple: name, buf = obj else: name, buf = obj, buf_iter[obj] if buf.is_floating_point(): if 'Half' in buf.type(): warn_or_err("Found buffer {} with type {}, expected torch.cuda.FloatTensor.\n" "When using amp.initialize, you do not need to call .half() on your model\n" "before passing it, no matter what optimization level you choose.".format( name, buf.type())) elif not buf.is_cuda: warn_or_err("Found buffer {} with type {}, expected torch.cuda.FloatTensor.\n" "When using amp.initialize, you need to provide a model with buffers\n" "located on a CUDA device before passing it no matter what optimization level\n" "you chose. Use model.to('cuda') to use the default device.".format( name, buf.type())) def check_optimizers(optimizers): for optim in optimizers: bad_optim_type = None if isinstance(optim, FP16_Optimizer_general): bad_optim_type = "apex.fp16_utils.FP16_Optimizer" if isinstance(optim, FP16_Optimizer_for_fused): bad_optim_type = "apex.optimizers.FP16_Optimizer" if bad_optim_type is not None: raise RuntimeError("An incoming optimizer is an instance of {}. ".format(bad_optim_type) + "The optimizer(s) passed to amp.initialize() must be bare \n" "instances of either ordinary Pytorch optimizers, or Apex fused \n" "optimizers.\n") class O2StateDictHook(object): def __init__(self, fn): self.fn = fn def __call__(self, module, state_dict, prefix, local_metadata): for key in state_dict: param = state_dict[key] if 'Half' in param.type(): param = param.to(torch.float32) state_dict[key] = param def _initialize(models, optimizers, properties, num_losses=1, cast_model_outputs=None): from .amp import init as amp_init optimizers_was_list = False if isinstance(optimizers, torch.optim.Optimizer) or ('LARC' in globals() and isinstance(optimizers, LARC)): optimizers = [optimizers] elif optimizers is None: optimizers = [] elif isinstance(optimizers, list): optimizers_was_list = True check_optimizers(optimizers) else: check_optimizers([optimizers]) raise TypeError("optimizers must be either a single optimizer or a list of optimizers.") if isinstance(models, torch.nn.Module): models_was_list = False models = [models] elif isinstance(models, list): models_was_list = True else: raise TypeError("models must be either a single model or a list of models.") check_models(models) if not _amp_state.allow_incoming_model_not_fp32: check_params_fp32(models) # In the future, when FP16_Optimizer can be deprecated and master weights can # become an attribute, remember to stash master weights before casting the model. if properties.cast_model_type: if properties.keep_batchnorm_fp32: for model in models: convert_network(model, properties.cast_model_type) else: for model in models: model.to(properties.cast_model_type) input_caster = functools.partial(to_type, properties.cast_model_type) if cast_model_outputs is not None: output_caster = functools.partial(to_type, cast_model_outputs) else: output_caster = functools.partial(to_type, torch.float32) for model in models: # Patch the forward method to cast incoming data to the correct type, and # outgoing data to float32, so "the user never needs to call .half()." # I like writing things explicitly more than decorators. def patch_forward(old_fwd): def new_fwd(*args, **kwargs): output = old_fwd(*applier(args, input_caster), **applier(kwargs, input_caster)) return applier(output, output_caster) return new_fwd model.forward = patch_forward(model.forward) # State dict trick to recast any preexisting per-param state tensors for optimizer in optimizers: optimizer.load_state_dict(optimizer.state_dict()) # patch model.state_dict() to return float32 params for model in models: for module in model.modules(): module._register_state_dict_hook(O2StateDictHook(functools.partial(to_type, torch.float32))) elif cast_model_outputs is not None: output_caster = functools.partial(to_type, cast_model_outputs) for model in models: def patch_forward(old_fwd): def new_fwd(*args, **kwargs): output = old_fwd(*args, **kwargs) return applier(output, output_caster) return new_fwd model.forward = patch_forward(model.forward) for i, optimizer in enumerate(optimizers): optimizers[i] = _process_optimizer(optimizer, properties) _amp_state.loss_scalers = [] for _ in range(num_losses): _amp_state.loss_scalers.append(LossScaler(properties.loss_scale, min_loss_scale=_amp_state.min_loss_scale, max_loss_scale=_amp_state.max_loss_scale)) if properties.patch_torch_functions: # handle is unused here. It's accessible later through a global value anyway. handle = amp_init(loss_scale=properties.loss_scale, verbose=(_amp_state.verbosity == 2)) for optimizer in optimizers: # Disable Amp casting for the optimizer step, because it should only be # applied to FP32 master params anyway. def patch_step(old_step): def new_step(self, *args, **kwargs): with disable_casts(): output = old_step(*args, **kwargs) return output return new_step optimizer.step = MethodType(patch_step(optimizer.step), optimizer) if optimizers_was_list: if models_was_list: return models, optimizers else: return models[0], optimizers else: if models_was_list: if len(optimizers) == 0: return models else: return models, optimizers[0] else: if len(optimizers) == 0: return models[0] else: return models[0], optimizers[0]
GeneSplice-main
GeneSplice/apex/apex/amp/_initialize.py
import functools import itertools import torch from . import compat, rnn_compat, utils, wrap from .handle import AmpHandle, NoOpHandle from .lists import functional_overrides, torch_overrides, tensor_overrides from ._amp_state import _amp_state from .frontend import * _DECORATOR_HANDLE = None _USER_CAST_REGISTRY = set() _USER_PROMOTE_REGISTRY = set() def _decorator_helper(orig_fn, cast_fn, wrap_fn): def wrapper(*args, **kwargs): handle = _DECORATOR_HANDLE if handle is None or not handle.is_active(): return orig_fn(*args, **kwargs) inner_cast_fn = utils.verbosify(cast_fn, orig_fn.__name__, handle.verbose) return wrap_fn(orig_fn, inner_cast_fn, handle)(*args, **kwargs) return wrapper # Decorator form def half_function(fn): from apex import deprecated_warning deprecated_warning("apex.amp is deprecated and will be removed by the end of February 2023. Use [PyTorch AMP](https://pytorch.org/docs/stable/amp.html)") wrap_fn = functools.partial(wrap.make_cast_wrapper, try_caching=True) return _decorator_helper(fn, utils.maybe_half, wrap_fn) def float_function(fn): from apex import deprecated_warning deprecated_warning("apex.amp is deprecated and will be removed by the end of February 2023. Use [PyTorch AMP](https://pytorch.org/docs/stable/amp.html)") wrap_fn = functools.partial(wrap.make_cast_wrapper, try_caching=False) return _decorator_helper(fn, utils.maybe_float, wrap_fn) def promote_function(fn): from apex import deprecated_warning deprecated_warning("apex.amp is deprecated and will be removed by the end of February 2023. Use [PyTorch AMP](https://pytorch.org/docs/stable/amp.html)") wrap_fn = functools.partial(wrap.make_promote_wrapper) return _decorator_helper(fn, utils.maybe_float, wrap_fn) # Registry form def register_half_function(module, name): if not hasattr(module, name): raise ValueError('No function named {} in module {}.'.format( name, module)) _USER_CAST_REGISTRY.add((module, name, utils.maybe_half)) def register_float_function(module, name): if not hasattr(module, name): raise ValueError('No function named {} in module {}.'.format( name, module)) _USER_CAST_REGISTRY.add((module, name, utils.maybe_float)) def register_promote_function(module, name): if not hasattr(module, name): raise ValueError('No function named {} in module {}.'.format( name, module)) _USER_PROMOTE_REGISTRY.add((module, name)) # Top-level function to insert _all_ the hooks. def init(enabled=True, loss_scale="dynamic", enable_caching=True, verbose=False, allow_banned=False): global _DECORATOR_HANDLE if not enabled: handle = NoOpHandle() _DECORATOR_HANDLE = handle return handle handle = AmpHandle(loss_scale, enable_caching, verbose) # 0) Force-{fp16, fp32} for user-annotated functions for mod, fn, cast_fn in _USER_CAST_REGISTRY: try_caching = (cast_fn == utils.maybe_half) wrap.cached_cast(mod, fn, cast_fn, handle, try_caching, verbose) _USER_CAST_REGISTRY.clear() # 0.5) Force-promote for user-annotated functions for mod, fn in _USER_PROMOTE_REGISTRY: wrap.promote(mod, fn, handle, verbose) _USER_PROMOTE_REGISTRY.clear() # 1) Force-{fp16, fp32} on white- / black-list functions override_modules = [functional_overrides, torch_overrides, tensor_overrides] cast_table = [('FP16_FUNCS', utils.maybe_half), ('FP32_FUNCS', utils.maybe_float)] for module, (list_name, cast_fn) in itertools.product(override_modules, cast_table): for fn in getattr(module, list_name): try_caching = (cast_fn == utils.maybe_half) wrap.cached_cast(module.MODULE, fn, cast_fn, handle, try_caching, verbose) # 1.5) Pre-0.4, put the blacklist methods on HalfTensor and whitelist # methods on FloatTensor, since they're distinct types. if compat.tensor_is_float_tensor(): for fn in tensor_overrides.FP16_FUNCS: wrap.cached_cast(torch.cuda.FloatTensor, fn, utils.maybe_half, handle, try_caching=True, verbose=verbose) for fn in tensor_overrides.FP32_FUNCS: wrap.cached_cast(torch.cuda.HalfTensor, fn, utils.maybe_float, handle, try_caching=False, verbose=verbose) # 2) Enable type-promotion on multi-arg functions and methods. # NB: special handling for sequence fns (e.g. `torch.cat`). promote_modules = [torch_overrides, tensor_overrides] promote_table = [('CASTS', wrap.promote), ('SEQUENCE_CASTS', wrap.sequence_promote)] for promote_mod, (list_name, promote_fn) in itertools.product(promote_modules, promote_table): for fn in getattr(promote_mod, list_name): promote_fn(promote_mod.MODULE, fn, handle, verbose) # 2.5) Pre-0.4, add blacklist methods directly to HalfTensor and FloatTensor types if compat.tensor_is_float_tensor(): for cls, (list_name, promote_fn) in itertools.product([torch.cuda.FloatTensor, torch.cuda.HalfTensor], promote_table): for fn in getattr(tensor_overrides, list_name): promote_fn(cls, fn, handle, verbose) # 3) For any in-place version of a blacklist function, error if any input is fp16. # NB: this is overly conservative. for fn in utils.as_inplace(torch_overrides.FP32_FUNCS): wrap.err_if_any_half(torch_overrides.MODULE, fn, handle) # 3.5) For any in-place blacklist method, error if called on fp16 tensor for fn in utils.as_inplace(tensor_overrides.FP32_FUNCS): wrap.err_if_arg0_half(tensor_overrides.MODULE, fn, handle, verbose) if compat.tensor_is_float_tensor(): wrap.err_if_arg0_half(torch.cuda.HalfTensor, fn, handle, verbose) # 4) For other in-place methods, match the type of self tensor for fn in utils.as_inplace(itertools.chain( tensor_overrides.FP16_FUNCS, tensor_overrides.CASTS)): wrap.promote_match_arg0(tensor_overrides.MODULE, fn, handle, verbose) if compat.tensor_is_float_tensor(): wrap.promote_match_arg0(torch.cuda.HalfTensor, fn, handle, verbose) wrap.promote_match_arg0(torch.cuda.FloatTensor, fn, handle, verbose) # 5) RNNs + RNN cells are whitelisted specially if rnn_compat.has_old_rnns(): wrap.rnn_cast(torch.nn.backends.thnn.backend, 'RNN', handle, verbose) if not rnn_compat.has_old_rnns(): # Patch in our own indirection of `_VF` in modules/rnn s.t. it is mutable. torch.nn.modules.rnn._VF = rnn_compat.VariableFunctionsShim() # Wrap all the rnns for x in rnn_compat.RNN_NAMES: wrap.new_rnn_cast(x.upper(), handle, verbose) # Wrap all the RNN cells rnn_compat.whitelist_rnn_cells(handle, verbose) # 6) Place error+print message on banned functions. # Or, if allow_banned, then cast to FP32. for fn, err_msg in functional_overrides.BANNED_FUNCS: if allow_banned: wrap.cached_cast(functional_overrides.MODULE, fn, utils.maybe_float, handle, try_caching=True, verbose=verbose) else: wrap.err_if_any_half(functional_overrides.MODULE, fn, handle, err_msg) _DECORATOR_HANDLE = handle _amp_state.handle = handle return handle
GeneSplice-main
GeneSplice/apex/apex/amp/amp.py
from collections import OrderedDict import torch from ._initialize import _initialize from ._amp_state import _amp_state, warn_or_err, maybe_print class Properties(object): """ This class has two purposes: to establish a set of default properties, and to route setting of these attributes through __setattr__ so that (in theory) they can be checked for consistency with other existing args. """ def __init__(self): self.options = { "enabled" : False, "opt_level" : None, "cast_model_type" : None, "patch_torch_functions" : False, "keep_batchnorm_fp32" : None, "master_weights" : None, "loss_scale" : 1.0, # Reserved for future functionality # "fused_optimizer" : False, # "enable_ddp_interop" : False, } """ This function allows updating several options at a time without routing through __setattr__ checks, to avoid "you can't get there from here" scenarios. Currently not intended to be exposed; users are expected to select an opt_level and apply consistent modifications. """ def _update_options_dict(self, new_options): for k, v in new_options: if k in self.options: self.options[k] = v else: raise ValueError("Tried to set unexpected option {}".format(k)) """ The members of "options" are not direct attributes of self, so access attempts will roll down to __getattr__. This borrows from the logic in torch.nn.Module. """ def __getattr__(self, name): if "options" in self.__dict__: options = self.__dict__["options"] if name in options: return options[name] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, name)) def __setattr__(self, name, value): if "options" in self.__dict__: if name in self.options: # print("setting {} {}".format(name, value)) if name == "cast_model_type": if self.opt_level == "O1" and value is not None: if value is not False: if value is not torch.float32: warn_or_err("O1 inserts casts around Torch functions rather than " "model weights, so with O1, the model weights themselves " "should remain FP32. If you wish to cast the model to a " "different type, use opt_level='O2' or 'O3'. " + "cast_model_type was {}".format(value)) self.options[name] = value elif name == "patch_torch_functions": if self.opt_level != "O1" and value: warn_or_err("Currently, patch_torch_functions=True should only be set by " "selecting opt_level='O1'.") self.options[name] = value elif name == "keep_batchnorm_fp32": if self.opt_level == "O1" and value is not None: warn_or_err("With opt_level O1, batchnorm functions are automatically patched " "to run in FP32, so keep_batchnorm_fp32 should be None." + " keep_batchnorm_fp32 was {}".format(value)) if value == "False": self.options[name] = False elif value == "True": self.options[name] = True else: assert (value is True or value is False or value is None),\ "keep_batchnorm_fp32 must be a boolean, the string 'True' or 'False', "\ "or None, found keep_batchnorm_fp32={}".format(value) self.options[name] = value elif name == "master_weights": if self.opt_level == "O1" and value is not None: warn_or_err("It doesn't make sense to use master_weights with O1. " "With O1, your model weights themselves should be FP32.") self.options[name] = value elif name == "loss_scale": if value == "dynamic": self.options[name] = value else: self.options[name] = float(value) else: self.options[name] = value else: super(Properties, self).__setattr__(name, value) """ O0-O3 are convenience wrappers to establish defaults for typically used mixed precision options. """ class O3: brief = "O3: Pure FP16 training." more = "Calls .half() on your model, converting the entire model to FP16.\n"\ "A casting operation is also inserted to cast incoming Tensors to FP16,\n"\ "so you don't need to change your data pipeline.\n"\ "This mode is useful for establishing a performance ceiling.\n"\ "It's also possible training may 'just work' in this mode.\n"\ "If not, try other optimization levels." def __call__(self, properties): properties.enabled = True properties.opt_level = "O3" properties.cast_model_type = torch.float16 properties.patch_torch_functions = False properties.keep_batchnorm_fp32 = False properties.master_weights = False properties.loss_scale = 1.0 # properties.fused_optimizer = False # properties.enable_ddp_interop = False return properties # modified in place so this isn't really necessary class O2: brief = "O2: FP16 training with FP32 batchnorm and FP32 master weights.\n" more = "Calls .half() on your model, converting the entire model (except for batchnorms)\n"\ "to FP16. Batchnorms are retained in FP32 for additional stability.\n"\ "The forward pass is patched to cast incoming Tensors to FP16, so you don't need to change\n"\ "your data pipeline.\n"\ "O2 creates FP32 master weights outside the model and patches any optimizers to update\n"\ "these master weights, then copy the master weights into the FP16 model weights.\n"\ "Master weights can also improve convergence and stability." def __call__(self, properties): properties.enabled = True properties.opt_level = "O2" properties.cast_model_type = torch.float16 properties.patch_torch_functions = False properties.keep_batchnorm_fp32 = True properties.master_weights = True properties.loss_scale = "dynamic" # properties.fused_optimizer = False # properties.enable_ddp_interop = False return properties # modified in place so this isn't really necessary class O1: brief = "O1: Insert automatic casts around Pytorch functions and Tensor methods.\n" more = "The type of your model's weights is not altered. However, internally,\n"\ "Pytorch functions are patched to cast any Tensor Core-friendly ops to FP16 for speed,\n"\ "while operations that might benefit from the additional stability of FP32 are patched\n"\ "to cast their inputs to fp32.\n"\ "O1 is the safest way to try mixed precision training, and is recommended when\n"\ "trying mixed precision training for the first time." def __call__(self, properties): properties.enabled = True properties.opt_level = "O1" properties.cast_model_type = None properties.patch_torch_functions = True properties.keep_batchnorm_fp32 = None properties.master_weights = None properties.loss_scale = "dynamic" # properties.fused_optimizer = False # properties.enable_ddp_interop = False return properties # modified in place so this isn't really necessary class O0: brief = "O0: Pure FP32 training.\n" more = "Your models are checked to make sure parameters are FP32, but otherwise the\n"\ "types of weights and internal Pytorch operations are not altered. This mode disables any\n"\ "FP16 arithmetic, although other optimizations like DDP interop may still be requested.\n" def __call__(self, properties): properties.enabled = True properties.opt_level = "O0" properties.cast_model_type = torch.float32 properties.patch_torch_functions = False properties.keep_batchnorm_fp32 = None properties.master_weights = False properties.loss_scale = 1.0 # properties.fused_optimizer = False # properties.enable_ddp_interop = False return properties # modified in place so this isn't really necessary opt_levels = {"O3": O3(), "O2": O2(), "O1": O1(), "O0": O0()} # allow user to directly pass Properties struct as well? def initialize( models, optimizers=None, enabled=True, opt_level="O1", cast_model_type=None, patch_torch_functions=None, keep_batchnorm_fp32=None, master_weights=None, loss_scale=None, cast_model_outputs=None, num_losses=1, verbosity=1, min_loss_scale=None, max_loss_scale=2.**24 ): """ Initialize your models, optimizers, and the Torch tensor and functional namespace according to the chosen ``opt_level`` and overridden properties, if any. ``amp.initialize`` should be called **after** you have finished constructing your model(s) and optimizer(s), but **before** you send your model through any DistributedDataParallel wrapper. See `Distributed training`_ in the Imagenet example. Currently, ``amp.initialize`` should only be called **once**, although it can process an arbitrary number of models and optimizers (see the corresponding `Advanced Amp Usage topic`_). If you think your use case requires ``amp.initialize`` to be called more than once, `let us know`_. Any property keyword argument that is not ``None`` will be interpreted as a manual override. To prevent having to rewrite anything else in your script, name the returned models/optimizers to replace the passed models/optimizers, as in the code sample below. Args: models (torch.nn.Module or list of torch.nn.Modules): Models to modify/cast. optimizers (optional, torch.optim.Optimizer or list of torch.optim.Optimizers): Optimizers to modify/cast. REQUIRED for training, optional for inference. enabled (bool, optional, default=True): If False, renders all Amp calls no-ops, so your script should run as if Amp were not present. opt_level (str, optional, default="O1"): Pure or mixed precision optimization level. Accepted values are "O0", "O1", "O2", and "O3", explained in detail above. cast_model_type (``torch.dtype``, optional, default=None): Optional property override, see above. patch_torch_functions (bool, optional, default=None): Optional property override. keep_batchnorm_fp32 (bool or str, optional, default=None): Optional property override. If passed as a string, must be the string "True" or "False". master_weights (bool, optional, default=None): Optional property override. loss_scale (float or str, optional, default=None): Optional property override. If passed as a string, must be a string representing a number, e.g., "128.0", or the string "dynamic". cast_model_outputs (torch.dtype, optional, default=None): Option to ensure that the outputs of your model(s) are always cast to a particular type regardless of ``opt_level``. num_losses (int, optional, default=1): Option to tell Amp in advance how many losses/backward passes you plan to use. When used in conjunction with the ``loss_id`` argument to ``amp.scale_loss``, enables Amp to use a different loss scale per loss/backward pass, which can improve stability. See "Multiple models/optimizers/losses" under `Advanced Amp Usage`_ for examples. If ``num_losses`` is left to 1, Amp will still support multiple losses/backward passes, but use a single global loss scale for all of them. verbosity (int, default=1): Set to 0 to suppress Amp-related output. min_loss_scale (float, default=None): Sets a floor for the loss scale values that can be chosen by dynamic loss scaling. The default value of None means that no floor is imposed. If dynamic loss scaling is not used, `min_loss_scale` is ignored. max_loss_scale (float, default=2.**24): Sets a ceiling for the loss scale values that can be chosen by dynamic loss scaling. If dynamic loss scaling is not used, `max_loss_scale` is ignored. Returns: Model(s) and optimizer(s) modified according to the ``opt_level``. If either the ``models`` or ``optimizers`` args were lists, the corresponding return value will also be a list. Permissible invocations:: model, optim = amp.initialize(model, optim,...) model, [optim1, optim2] = amp.initialize(model, [optim1, optim2],...) [model1, model2], optim = amp.initialize([model1, model2], optim,...) [model1, model2], [optim1, optim2] = amp.initialize([model1, model2], [optim1, optim2],...) # This is not an exhaustive list of the cross product of options that are possible, # just a set of examples. model, optim = amp.initialize(model, optim, opt_level="O0") model, optim = amp.initialize(model, optim, opt_level="O0", loss_scale="dynamic"|128.0|"128.0") model, optim = amp.initialize(model, optim, opt_level="O1") # uses "loss_scale="dynamic" default model, optim = amp.initialize(model, optim, opt_level="O1", loss_scale=128.0|"128.0") model, optim = amp.initialize(model, optim, opt_level="O2") # uses "loss_scale="dynamic" default model, optim = amp.initialize(model, optim, opt_level="O2", loss_scale=128.0|"128.0") model, optim = amp.initialize(model, optim, opt_level="O2", keep_batchnorm_fp32=True|False|"True"|"False") model, optim = amp.initialize(model, optim, opt_level="O3") # uses loss_scale=1.0 default model, optim = amp.initialize(model, optim, opt_level="O3", loss_scale="dynamic"|128.0|"128.0") model, optim = amp.initialize(model, optim, opt_level="O3", keep_batchnorm_fp32=True|False|"True"|"False") The `Imagenet example`_ demonstrates live use of various opt_levels and overrides. .. _`Distributed training`: https://github.com/NVIDIA/apex/tree/master/examples/imagenet#distributed-training .. _`Imagenet example`: https://github.com/NVIDIA/apex/tree/master/examples/imagenet .. _`Advanced Amp Usage`: https://nvidia.github.io/apex/advanced.html .. _`Advanced Amp Usage topic`: https://nvidia.github.io/apex/advanced.html#multiple-models-optimizers-losses .. _`let us know`: https://github.com/NVIDIA/apex/issues """ from apex import deprecated_warning deprecated_warning("apex.amp is deprecated and will be removed by the end of February 2023. Use [PyTorch AMP](https://pytorch.org/docs/stable/amp.html)") _amp_state.opt_properties = Properties() _amp_state.verbosity = verbosity if not enabled: if optimizers is None: return models else: return models, optimizers if not torch.backends.cudnn.enabled: raise RuntimeError( "Amp requires torch.backends.cudnn.enabled = True") if opt_level not in opt_levels: raise RuntimeError( "Unexpected optimization level {}. ".format(opt_level) + "Options are 'O0', 'O1', 'O2', 'O3'. Note that in `O0`, `O1`, etc., the prefix O is the letter O, " + "not the number zero.") else: _amp_state.opt_properties = opt_levels[opt_level](_amp_state.opt_properties) maybe_print("Selected optimization level {}".format(opt_levels[opt_level].brief), True) maybe_print("Defaults for this optimization level are:", True) for k, v in _amp_state.opt_properties.options.items(): maybe_print("{:22} : {}".format(k, v), True) _amp_state.min_loss_scale = min_loss_scale _amp_state.max_loss_scale = max_loss_scale maybe_print("Processing user overrides (additional kwargs that are not None)...", True) # I chose to have the keyword arguments listed directly in the argument list, # instead of **kwargs, so I can't use kwargs.items() here. if enabled is not None: _amp_state.opt_properties.enabled = enabled if opt_level is not None: _amp_state.opt_properties.opt_level = opt_level if cast_model_type is not None: _amp_state.opt_properties.cast_model_type = cast_model_type if patch_torch_functions is not None: _amp_state.opt_properties.patch_torch_functions = patch_torch_functions if keep_batchnorm_fp32 is not None: _amp_state.opt_properties.keep_batchnorm_fp32 = keep_batchnorm_fp32 if master_weights is not None: _amp_state.opt_properties.master_weights = master_weights if loss_scale is not None: _amp_state.opt_properties.loss_scale = loss_scale maybe_print("After processing overrides, optimization options are:", True) for k, v in _amp_state.opt_properties.options.items(): maybe_print("{:22} : {}".format(k, v), True) return _initialize(models, optimizers, _amp_state.opt_properties, num_losses, cast_model_outputs) def state_dict(destination=None): if destination is None: destination = OrderedDict() for idx, loss_scaler in enumerate(_amp_state.loss_scalers): destination['loss_scaler%d' % idx] = { 'loss_scale': loss_scaler.loss_scale(), 'unskipped': loss_scaler._unskipped, } return destination def load_state_dict(state_dict): # Check if state_dict containes the same number of loss_scalers as current setup if len(state_dict) != len(_amp_state.loss_scalers): print('Warning: state_dict contains {} entries, while {} loss_scalers are used'.format( len(state_dict), len(_amp_state.loss_scalers))) state_dict = state_dict.copy() nb_loss_scalers = len(_amp_state.loss_scalers) unexpected_keys = [] # Initialize idx outside, since unexpected_keys will increase it if enumerate is used idx = 0 for key in state_dict: if 'loss_scaler' not in key: unexpected_keys.append(key) else: if idx > (nb_loss_scalers - 1): print('Skipping loss_scaler[{}], since num_losses was set to {}'.format( idx, nb_loss_scalers)) break _amp_state.loss_scalers[idx]._loss_scale = state_dict[key]['loss_scale'] _amp_state.loss_scalers[idx]._unskipped = state_dict[key]['unskipped'] idx += 1 if len(unexpected_keys) > 0: raise RuntimeError( 'Error(s) in loading state_dict. Unexpected key(s) in state_dict: {}. '.format( ', '.join('"{}"'.format(k) for k in unexpected_keys))) # TODO: is this necessary/useful? # def check_option_consistency(enabled=True, # opt_level=None, # cast_model_type=None, # patch_torch_functions=None, # keep_batchnorm_fp32=None, # master_weights=None, # loss_scale=None, # enable_ddp_interop=None, # hard_override=False): # """ # Utility function that enables users to quickly check if the option combination they intend # to use is permitted. ``check_option_consistency`` does not require models or optimizers # to be constructed, and can be called at any point in the script. ``check_option_consistency`` # is totally self-contained; it does not set any amp global state or affect anything outside # of itself. # """ # # if not enabled: # return # # if opt_level not in opt_levels: # raise RuntimeError("Unexpected optimization level. Options are 'O0', 'O1', 'O2', 'O3'.") # else: # opt_properties = opt_levels[opt_level](Properties()) # print("Selected optimization level {}", opt_levels[opt_level].brief) # print("Defaults for this optimization level are:") # for k, v in opt_properties.options: # print("{:22} : {}".format(k, v)) # # print("Processing user overrides (additional kwargs that are not None)...") # for k, v in kwargs: # if k not in _amp_state.opt_properties.options: # raise RuntimeError("Unexpected kwarg {}".format(k)) # if v is not None: # setattr(opt_properties, k, v) # # print("After processing overrides, optimization options are:") # for k, v in opt_properties.options: # print("{:22} : {}".format(k, v))
GeneSplice-main
GeneSplice/apex/apex/amp/frontend.py
from .amp import init, half_function, float_function, promote_function,\ register_half_function, register_float_function, register_promote_function from .handle import scale_loss, disable_casts from .frontend import initialize, state_dict, load_state_dict from ._amp_state import master_params, _amp_state
GeneSplice-main
GeneSplice/apex/apex/amp/__init__.py
import torch from ..multi_tensor_apply import multi_tensor_applier from ._amp_state import _amp_state, master_params, maybe_print from itertools import product def scale_check_overflow_python(model_grad, master_grad, scale, check_overflow=False): # Exception handling for 18.04 compatibility if check_overflow: cpu_sum = float(model_grad.float().sum()) if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum: return True if master_grad is not model_grad: # copy_ probably internally short-circuits this master_grad.copy_(model_grad) if scale != 1.0: master_grad.mul_(scale) return False def axpby_check_overflow_python(model_grad, stashed_grad, master_grad, a, b, check_overflow=False): # Exception handling for 18.04 compatibility if check_overflow: cpu_sum = float(model_grad.float().sum()) if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum: return True # if master_grad is not model_grad: # copy_ probably internally short-circuits this # master_grad.copy_(model_grad) assert stashed_grad.dtype == master_grad.dtype converted_model_grad = model_grad.data.to(master_grad.dtype) master_grad.data = a*converted_model_grad.data + b*stashed_grad.data return False class LossScaler(object): warned_no_fused_kernel = False warned_unscaling_non_fp32_grad = False has_fused_kernel = False def __init__(self, loss_scale, init_scale=2.**16, scale_factor=2., scale_window=2000, min_loss_scale=None, max_loss_scale=2.**24): if loss_scale == "dynamic": self.dynamic = True self._loss_scale = min(max_loss_scale, init_scale) else: self.dynamic = False self._loss_scale = loss_scale self._max_loss_scale = max_loss_scale self._min_loss_scale = min_loss_scale self._scale_seq_len = scale_window self._unskipped = 0 self._has_overflow = False self._overflow_buf = torch.cuda.IntTensor([0]) if multi_tensor_applier.available: import amp_C LossScaler.has_fused_kernel = multi_tensor_applier.available LossScaler.multi_tensor_scale_cuda = amp_C.multi_tensor_scale LossScaler.multi_tensor_axpby_cuda = amp_C.multi_tensor_axpby else: if not LossScaler.warned_no_fused_kernel: maybe_print( "Warning: multi_tensor_applier fused unscale kernel is unavailable, " "possibly because apex was installed without --cuda_ext --cpp_ext. " "Using Python fallback. Original ImportError was: " + repr(multi_tensor_applier.import_err), True) LossScaler.has_fused_kernel = False LossScaler.warned_no_fused_kernel = True def loss_scale(self): return self._loss_scale def unscale_python(self, model_grads, master_grads, scale): for model, master in zip(model_grads, master_grads): if model is not None: if not LossScaler.warned_unscaling_non_fp32_grad: if master.dtype != torch.float32: maybe_print( "Attempting to unscale a grad with type {} ".format(master.type()) + "Unscaling non-fp32 grads may indicate an error. " "When using Amp, you don't need to call .half() on your model.") LossScaler.warned_unscaling_non_fp32_grad = True self._has_overflow = scale_check_overflow_python(model, master, 1./scale, self.dynamic) if self._has_overflow and self.dynamic: break # unused_scale keeps some of the old API alive for hopefully a short time. def unscale(self, model_grads, master_grads, unused_scale, models_are_masters=False, scale_override=None): if self._has_overflow: return scale = self._loss_scale if scale_override is not None: scale = scale_override if scale == 1.0 and models_are_masters and not self.dynamic: return if LossScaler.has_fused_kernel: # if (not LossScaler.warned_unscaling_non_fp32_grad # and master_grads[0].dtype == torch.float16): # print("Warning: unscaling grads that are not FP32. " # "Unscaling non-fp32 grads may indicate an error. " # "When using Amp, you don't need to call .half() on your model.") # # Setting this to True unconditionally allows the possibility of an escape # # if never-before-seen non-fp32 grads are created in some later iteration. # LossScaler.warned_unscaling_non_fp32_grad = True multi_tensor_applier(LossScaler.multi_tensor_scale_cuda, self._overflow_buf, [model_grads, master_grads], 1./scale) else: self.unscale_python(model_grads, master_grads, scale) # Defer to update_scale # If the fused kernel is available, we only need one D2H memcopy and sync. # if LossScaler.has_fused_kernel and self.dynamic and not self._has_overflow: # self._has_overflow = self._overflow_buf.item() def unscale_with_stashed_python(self, model_grads, stashed_master_grads, master_grads, a, b): for model, stashed, master in zip(model_grads, stashed_master_grads, master_grads): if model is None and stashed is None: continue else: if not LossScaler.warned_unscaling_non_fp32_grad: if master.dtype != torch.float32: maybe_print( "Attempting to unscale a grad with type {} ".format(master.type()) + "Unscaling non-fp32 grads may indicate an error. " "When using Amp, you don't need to call .half() on your model.") LossScaler.warned_unscaling_non_fp32_grad = True self._has_overflow = axpby_check_overflow_python(model, stashed, master, a, b, self.dynamic) if self._has_overflow and self.dynamic: break def unscale_with_stashed(self, model_grads, stashed_master_grads, master_grads, scale_override=None): if self._has_overflow: return grads_have_scale, stashed_have_scale, out_scale = self._loss_scale, 1.0, 1.0 if scale_override is not None: grads_have_scale, stashed_have_scale, out_scale = scale_override if LossScaler.has_fused_kernel: if (not LossScaler.warned_unscaling_non_fp32_grad and master_grads[0].dtype == torch.float16): print("Warning: unscaling grads that are not FP32. " "Unscaling non-fp32 grads may indicate an error. " "When using Amp, you don't need to call .half() on your model.") # Setting this to True unconditionally allows the possibility of an escape # if never-before-seen non-fp32 grads are created in some later iteration. LossScaler.warned_unscaling_non_fp32_grad = True multi_tensor_applier(LossScaler.multi_tensor_axpby_cuda, self._overflow_buf, [model_grads, stashed_master_grads, master_grads], out_scale/grads_have_scale, # 1./scale, out_scale/stashed_have_scale, # 1.0, 0) # check only arg 0, aka the incoming model grads, for infs else: self.unscale_with_stashed_python(model_grads, stashed_master_grads, master_grads, out_scale/grads_have_scale, out_scale/stashed_have_scale) # Defer to update_scale # If the fused kernel is available, we only need one D2H memcopy and sync. # if LossScaler.has_fused_kernel and self.dynamic and not self._has_overflow: # self._has_overflow = self._overflow_buf.item() def clear_overflow_state(self): self._has_overflow = False if self.has_fused_kernel: self._overflow_buf.zero_() # Separate so unscale() can be called more that once before updating. def update_scale(self): # If the fused kernel is available, we only need one D2H memcopy and sync. if LossScaler.has_fused_kernel and self.dynamic and not self._has_overflow: self._has_overflow = self._overflow_buf.item() if self._has_overflow and self.dynamic: should_skip = True if(self._min_loss_scale): self._loss_scale = max(self._min_loss_scale, self._loss_scale/2.) else: self._loss_scale = self._loss_scale/2. self._unskipped = 0 else: should_skip = False self._unskipped += 1 if self._unskipped == self._scale_seq_len and self.dynamic: self._loss_scale = min(self._max_loss_scale, self._loss_scale*2.) self._unskipped = 0 return should_skip
GeneSplice-main
GeneSplice/apex/apex/amp/scaler.py
VERSION = (0, 1, 0) __version__ = '.'.join(map(str, VERSION))
GeneSplice-main
GeneSplice/apex/apex/amp/__version__.py
import contextlib import warnings from .scaler import LossScaler, master_params from ._amp_state import maybe_print import numpy as np class OptimWrapper(object): def __init__(self, optimizer, amp_handle, num_loss): self._optimizer = optimizer self._amp_handle = amp_handle self._num_loss = num_loss self._loss_idx = 0 self._skip_next = [False] * num_loss self._loss_scaler = [LossScaler('dynamic') for _ in range(num_loss)] @contextlib.contextmanager def scale_loss(self, loss): if not self._amp_handle.is_active(): yield loss return # When there are multiple losses per-optimizer, we need # to save out current grad accumulation, since we won't be # able to unscale this particulare loss once the grads are # all mixed together. cached_grads = [] if self._loss_idx > 0: for p in master_params(self._optimizer): if p.grad is not None: cached_grads.append(p.grad.data.detach().clone()) else: cached_grads.append(None) self._optimizer.zero_grad() loss_scale = self._cur_loss_scaler().loss_scale() yield loss * loss_scale self._cur_loss_scaler().clear_overflow_state() self._cur_loss_scaler().unscale( master_params(self._optimizer), master_params(self._optimizer), loss_scale) self._skip_next[self._loss_idx] = self._cur_loss_scaler().update_scale() self._loss_idx += 1 if len(cached_grads) > 0: for p, cached_grad in zip(master_params(self._optimizer), cached_grads): if cached_grad is not None: p.grad.data.add_(cached_grad) cached_grads = [] def _cur_loss_scaler(self): assert 0 <= self._loss_idx < self._num_loss return self._loss_scaler[self._loss_idx] def step(self, closure=None): if not self._amp_handle.is_active(): return self._optimizer.step(closure=closure) self._loss_idx = 0 for group in self._optimizer.param_groups: for p in group['params']: self._amp_handle.remove_cache(p) if closure is not None: raise NotImplementedError( 'The `closure` argument is unsupported by the amp ' + 'optimizer wrapper.') if any(self._skip_next): maybe_print('Gradient overflow, skipping update') self._skip_next = [False] * self._num_loss else: return self._optimizer.step(closure=closure) # Forward any attribute lookups def __getattr__(self, attr): return getattr(self._optimizer, attr) # Forward all torch.optim.Optimizer methods def __getstate__(self): return self._optimizer.__getstate__() def __setstate__(self): return self._optimizer.__setstate__() def __repr__(self): return self._optimizer.__repr__() def state_dict(self): return self._optimizer.state_dict() def load_state_dict(self, state_dict): return self._optimizer.load_state_dict(state_dict) def zero_grad(self): return self._optimizer.zero_grad() def add_param_group(self, param_group): return self._optimizer.add_param_group(param_group)
GeneSplice-main
GeneSplice/apex/apex/amp/opt.py
# This is a "header object" that allows different amp modules to communicate. # I'm a C++ guy, not a python guy. I decided this approach because it seemed most C++-like. # But apparently it's ok: # http://effbot.org/pyfaq/how-do-i-share-global-variables-across-modules.htm import torch class AmpState(object): def __init__(self): self.hard_override=False self.allow_incoming_model_not_fp32 = False self.verbosity=1 # Attribute stash. Could also just stash things as global module attributes. _amp_state = AmpState() def warn_or_err(msg): if _amp_state.hard_override: print("Warning: " + msg) else: raise RuntimeError(msg) # I'm not sure if allowing hard_override is a good idea. # + " If you're sure you know what you're doing, supply " + # "hard_override=True to amp.initialize.") def maybe_print(msg, rank0=False): distributed = torch.distributed.is_available() and \ torch.distributed.is_initialized() and \ torch.distributed.get_world_size() > 1 if _amp_state.verbosity > 0: if rank0: if distributed: if torch.distributed.get_rank() == 0: print(msg) else: print(msg) else: print(msg) # def iter_params(param_groups): # for group in param_groups: # for p in group['params']: # yield p def master_params(optimizer): """ Generator expression that iterates over the params owned by ``optimizer``. Args: optimizer: An optimizer previously returned from ``amp.initialize``. """ for group in optimizer.param_groups: for p in group['params']: yield p
GeneSplice-main
GeneSplice/apex/apex/amp/_amp_state.py
from . import compat import functools import itertools import torch def is_cuda_enabled(): return torch.version.cuda is not None def get_cuda_version(): return tuple(int(x) for x in torch.version.cuda.split('.')) def is_fp_tensor(x): if is_nested(x): # Fast-fail version of all(is_fp_tensor) for y in x: if not is_fp_tensor(y): return False return True return compat.is_tensor_like(x) and compat.is_floating_point(x) def is_nested(x): return isinstance(x, tuple) or isinstance(x, list) def should_cache(x): if is_nested(x): # Fast-fail version of all(should_cache) for y in x: if not should_cache(y): return False return True return isinstance(x, torch.nn.parameter.Parameter) and \ type_string(x) == 'FloatTensor' def collect_fp_tensor_types(args, kwargs): def collect_types(x, types): if is_nested(x): for y in x: collect_types(y, types) else: types.add(type_string(x)) all_args = itertools.chain(args, kwargs.values()) types = set() for x in all_args: if is_fp_tensor(x): collect_types(x, types) return types def type_string(x): return x.type().split('.')[-1] def maybe_half(x, name='', verbose=False): if is_nested(x): return type(x)([maybe_half(y) for y in x]) if not x.is_cuda or type_string(x) == 'HalfTensor': return x else: if verbose: print('Float->Half ({})'.format(name)) return x.half() def maybe_float(x, name='', verbose=False): if is_nested(x): return type(x)([maybe_float(y) for y in x]) if not x.is_cuda or type_string(x) == 'FloatTensor': return x else: if verbose: print('Half->Float ({})'.format(name)) return x.float() # NB: returneds casted `args`, mutates `kwargs` in-place def casted_args(cast_fn, args, kwargs): new_args = [] for x in args: if is_fp_tensor(x): new_args.append(cast_fn(x)) else: new_args.append(x) for k in kwargs: val = kwargs[k] if is_fp_tensor(val): kwargs[k] = cast_fn(val) return new_args def cached_cast(cast_fn, x, cache): if is_nested(x): return type(x)([cached_cast(y) for y in x]) if x in cache: cached_x = cache[x] if x.requires_grad and cached_x.requires_grad: # Make sure x is actually cached_x's autograd parent. if cached_x.grad_fn.next_functions[1][0].variable is not x: raise RuntimeError("x and cache[x] both require grad, but x is not " "cache[x]'s parent. This is likely an error.") # During eval, it's possible to end up caching casted weights with # requires_grad=False. On the next training iter, if cached_x is found # and reused from the cache, it will not actually have x as its parent. # Therefore, we choose to invalidate the cache (and force refreshing the cast) # if x.requires_grad and cached_x.requires_grad do not match. # # During eval (i.e. running under with torch.no_grad()) the invalidation # check would cause the cached value to be dropped every time, because # cached_x would always be created with requires_grad=False, while x would # still have requires_grad=True. This would render the cache effectively # useless during eval. Therefore, if we are running under the no_grad() # context manager (torch.is_grad_enabled=False) we elide the invalidation # check, and use the cached value even though its requires_grad flag doesn't # match. During eval, we don't care that there's no autograd-graph # connection between x and cached_x. if torch.is_grad_enabled() and x.requires_grad != cached_x.requires_grad: del cache[x] else: return cached_x casted_x = cast_fn(x) cache[x] = casted_x return casted_x def verbosify(cast_fn, fn_name, verbose): if verbose: return functools.partial(cast_fn, name=fn_name, verbose=verbose) else: return cast_fn def as_inplace(fns): for x in fns: yield x + '_' def has_func(mod, fn): if isinstance(mod, dict): return fn in mod else: return hasattr(mod, fn) def get_func(mod, fn): if isinstance(mod, dict): return mod[fn] else: return getattr(mod, fn) def set_func(mod, fn, new_fn): if isinstance(mod, dict): mod[fn] = new_fn else: setattr(mod, fn, new_fn) def set_func_save(handle, mod, fn, new_fn): cur_fn = get_func(mod, fn) handle._save_func(mod, fn, cur_fn) set_func(mod, fn, new_fn) # A couple problems get solved here: # - The flat_weight buffer is disconnected from autograd graph, # so the fp16 weights need to be derived from the input weights # to this forward call, not the flat buffer. # - The ordering of weights in the flat buffer is...idiosyncratic. # First problem is solved with combination of set_ (to set up # correct storage) and copy_ (so the fp16 weight derives from the # fp32 one in autograd. # Second is solved by doing ptr arithmetic on the fp32 weights # to derive the correct offset. # # TODO: maybe this should actually use # `torch._cudnn_rnn_flatten_weight`? But then I need to call # on first iter and cache the right offsets. Ugh. def synthesize_flattened_rnn_weights(fp32_weights, fp16_flat_tensor, rnn_fn='', verbose=False): fp16_weights = [] fp32_base_ptr = fp32_weights[0][0].data_ptr() for layer_weights in fp32_weights: fp16_layer_weights = [] for w_fp32 in layer_weights: w_fp16 = w_fp32.new().half() offset = (w_fp32.data_ptr() - fp32_base_ptr) // w_fp32.element_size() w_fp16.set_(fp16_flat_tensor.storage(), offset, w_fp32.shape) w_fp16.copy_(w_fp32) if verbose: print('Float->Half ({})'.format(rnn_fn)) fp16_layer_weights.append(w_fp16) fp16_weights.append(fp16_layer_weights) return fp16_weights # Roughly same as above, just the `fp32_weights` aren't nested. # Code kept separate for readability. def new_synthesize_flattened_rnn_weights(fp32_weights, fp16_flat_tensor, rnn_fn='', verbose=False): fp16_weights = [] fp32_base_ptr = fp32_weights[0].data_ptr() for w_fp32 in fp32_weights: w_fp16 = w_fp32.new().half() offset = (w_fp32.data_ptr() - fp32_base_ptr) // w_fp32.element_size() w_fp16.set_(fp16_flat_tensor.storage(), offset, w_fp32.shape) w_fp16.copy_(w_fp32) if verbose: print('Float->Half ({})'.format(rnn_fn)) fp16_weights.append(w_fp16) return fp16_weights
GeneSplice-main
GeneSplice/apex/apex/amp/utils.py
from . import compat from . import utils from ._amp_state import _amp_state from . import rnn_compat import functools import torch def make_cast_wrapper(orig_fn, cast_fn, handle, try_caching=False): @functools.wraps(orig_fn) def wrapper(*args, **kwargs): if not handle.is_active(): return orig_fn(*args, **kwargs) if try_caching and handle.has_cache: args = list(args) for i in range(len(args)): if utils.should_cache(args[i]): args[i] = utils.cached_cast(cast_fn, args[i], handle.cache) for k in kwargs: if utils.should_cache(kwargs[k]): kwargs[k] = utils.cached_cast(cast_fn, kwargs[k], handle.cache) new_args = utils.casted_args(cast_fn, args, kwargs) return orig_fn(*new_args, **kwargs) return wrapper def cached_cast(mod, fn, cast_fn, handle, try_caching=False, verbose=False): if not utils.has_func(mod, fn): return orig_fn = utils.get_func(mod, fn) cast_fn = utils.verbosify(cast_fn, fn, verbose) wrapper = make_cast_wrapper(orig_fn, cast_fn, handle, try_caching) utils.set_func_save(handle, mod, fn, wrapper) # `handle` arg is unused, but simplifies API to make `make_cast_wrapper` # Annoyingly, make_promote_wrapper still uses the global handle. Once everyone # is on the new API and I am free to get rid of handle, I can clean this up. def make_promote_wrapper(orig_fn, cast_fn, handle=None): @functools.wraps(orig_fn) def wrapper(*args, **kwargs): if not _amp_state.handle.is_active(): return orig_fn(*args, **kwargs) types = utils.collect_fp_tensor_types(args, kwargs) if len(types) <= 1: return orig_fn(*args, **kwargs) elif len(types) == 2 and types == set(['HalfTensor', 'FloatTensor']): new_args = utils.casted_args(cast_fn, args, kwargs) return orig_fn(*new_args, **kwargs) else: raise NotImplementedError('Do not know how to handle ' + 'these types to promote: {}' .format(types)) return wrapper def promote(mod, fn, handle, verbose=False): orig_fn = utils.get_func(mod, fn) maybe_float = utils.verbosify(utils.maybe_float, fn, verbose) wrapper = make_promote_wrapper(orig_fn, maybe_float) utils.set_func_save(handle, mod, fn, wrapper) def sequence_promote(mod, fn, handle, verbose=False): orig_fn = utils.get_func(mod, fn) maybe_float = utils.verbosify(utils.maybe_float, fn, verbose) @functools.wraps(orig_fn) def wrapper(seq, *args, **kwargs): if not _amp_state.handle.is_active(): return orig_fn(seq, *args, **kwargs) types = set([utils.type_string(x) for x in seq]) if len(types) <= 1: return orig_fn(seq, *args, **kwargs) elif types == set(['HalfTensor', 'FloatTensor']): cast_seq = utils.casted_args(maybe_float, seq, {}) return orig_fn(cast_seq, *args, **kwargs) else: # TODO: other mixed-type cases aren't due to amp. # Just pass through? return orig_fn(seq, *args, **kwargs) utils.set_func_save(handle, mod, fn, wrapper) def promote_match_arg0(mod, fn, handle, verbose=False): if not utils.has_func(mod, fn): return orig_fn = utils.get_func(mod, fn) @functools.wraps(orig_fn) def wrapper(arg0, *args, **kwargs): assert compat.is_tensor_like(arg0) if not _amp_state.handle.is_active(): return orig_fn(arg0, *args, **kwargs) if utils.type_string(arg0) == 'HalfTensor': cast_fn = utils.maybe_half elif utils.type_string(arg0) == 'FloatTensor': cast_fn = utils.maybe_float else: return orig_fn(arg0, *args, **kwargs) cast_fn = utils.verbosify(cast_fn, fn, verbose) new_args = utils.casted_args(cast_fn, args, kwargs) return orig_fn(arg0, *new_args, **kwargs) utils.set_func_save(handle, mod, fn, wrapper) def err_if_any_half(mod, fn, handle, custom_err_msg=None): if not utils.has_func(mod, fn): return orig_fn = utils.get_func(mod, fn) @functools.wraps(orig_fn) def wrapper(*args, **kwargs): types = utils.collect_fp_tensor_types(args, kwargs) if 'HalfTensor' in types: if custom_err_msg: raise NotImplementedError(custom_err_msg) else: raise NotImplementedError('Cannot call in-place function ' + '{} with fp16 arguments.'.format(fn)) else: return orig_fn(*args, **kwargs) utils.set_func_save(handle, mod, fn, wrapper) def err_if_arg0_half(mod, fn, handle, verbose=False): if not utils.has_func(mod, fn): return orig_fn = utils.get_func(mod, fn) @functools.wraps(orig_fn) def wrapper(arg0, *args, **kwargs): assert compat.is_tensor_like(arg0) if utils.type_string(arg0) == 'HalfTensor': raise NotImplementedError('Cannot call in-place method ' + '{} on fp16 Tensors.'.format(fn)) else: cast_fn = utils.verbosify(utils.maybe_float, fn, verbose) new_args = utils.casted_args(cast_fn, args, kwargs) return orig_fn(arg0, *new_args, **kwargs) utils.set_func_save(handle, mod, fn, wrapper) # Current RNN approach: # - Wrap top-level `RNN` function in thnn backend # - Will call into either CudnnRNN or AutogradRNN # - Each of these are factory functions that return a per-iter # `forward` function # - We interpose on the factory function to: # 1) Interpose on the actual forward function and put in casts # 2) Insert an fp16 `flat_weight` if necessary def rnn_cast(backend, fn, handle, verbose=False): orig_rnn = utils.get_func(backend, fn) @functools.wraps(orig_rnn) def rnn_wrapper(*args, **kwargs): flat_weight = kwargs.get('flat_weight') if flat_weight is not None: # We replace `flat_weight` with an uninitialized fp16 # Tensor. The "actual" weight tensors (provided in `forward`), # will then be set up as ptrs into the buffer and have the # corresponding fp32 values copied in. # We need to call `copy` on the "actual" weights so that the # autograd graph correctly backprops from the wgrads computed # inside cuDNN (on fp16 weights) into the fp32 weights. assert utils.type_string(flat_weight) == 'FloatTensor' if compat.tensor_is_float_tensor() or compat.tensor_is_variable(): # Pre-0.4. A little slower, since it zeros out memory. flat_weight_fp16 = flat_weight.new().half().resize_(flat_weight.shape) else: flat_weight_fp16 = torch.empty_like(flat_weight, dtype=torch.float16) kwargs['flat_weight'] = flat_weight_fp16 else: flat_weight_fp16 = None forward = orig_rnn(*args, **kwargs) @functools.wraps(forward) def fwd_wrapper(*fargs, **fkwargs): assert len(fargs) == 3 or len(fargs) == 4 inputs, weights, hiddens = fargs[:3] assert utils.is_fp_tensor(inputs) assert isinstance(weights, list) cast_fn = utils.verbosify(utils.maybe_half, fn, verbose) new_args = [] # 0) Inputs new_args.append(cast_fn(inputs)) # 1) Weights if flat_weight_fp16 is not None: fp16_weights = utils.synthesize_flattened_rnn_weights( weights, flat_weight_fp16, fn, verbose) else: fp16_weights = [[cast_fn(w) for w in layer] for layer in weights] new_args.append(fp16_weights) # 2) Inputs: either a tuple (for LSTM) or single tensor if isinstance(hiddens, tuple): new_args.append(tuple(cast_fn(x) for x in hiddens)) elif utils.is_fp_tensor(hiddens): new_args.append(cast_fn(hiddens)) else: # Hiddens can, in principle, be `None` -- pass through new_args.append(hiddens) # 3) Batch sizes (0.4 or later only) if len(fargs) == 4: new_args.append(fargs[3]) return forward(*new_args, **fkwargs) return fwd_wrapper utils.set_func_save(handle, backend, fn, rnn_wrapper) def new_rnn_cast(fn, handle, verbose=False): # Forward+backward compatibility around https://github.com/pytorch/pytorch/pull/15744 # For rnn backend calls that route through _rnn_impls, we must patch the ref # that _rnn_impls stashed. For rnn backend calls that directly invoke # _VF.<backend>, e.g. _VF.lstm, we can patch onto VariableFunctionsShim, # which in turn has patched the ref named "_VF" in torch.nn.modules.rnn. if utils.has_func(torch.nn.modules.rnn._rnn_impls, fn): mod = torch.nn.modules.rnn._rnn_impls else: mod = torch.nn.modules.rnn._VF assert isinstance(mod, rnn_compat.VariableFunctionsShim) fn = fn.lower() orig_fn = utils.get_func(mod, fn) cast_fn = utils.verbosify(utils.maybe_half, fn, verbose) @functools.wraps(orig_fn) def wrapper(*args, **kwargs): # Exact call signature from modules/rnn.py assert len(args) == 9 assert len(kwargs) == 0 if not _amp_state.handle.is_active(): return orig_fn(*args, **kwargs) if isinstance(args[6], bool): params_idx = 2 # Not PackedSequence case else: params_idx = 3 # PackedSequence case new_args = [] for i, arg in enumerate(args): if i == params_idx: num_params = sum([x.numel() for x in arg]) fp16_weight_buf = args[0].new_empty((num_params,), dtype=torch.half) casted_weights = utils.new_synthesize_flattened_rnn_weights( arg, fp16_weight_buf, fn, verbose) new_args.append(casted_weights) elif utils.is_fp_tensor(arg): new_args.append(cast_fn(arg)) else: new_args.append(arg) return orig_fn(*new_args) utils.set_func_save(handle, mod, fn, wrapper) def disable_casts(mod, fn, handle): if not utils.has_func(mod, fn): return orig_fn = utils.get_func(mod, fn) @functools.wraps(orig_fn) def wrapper(*args, **kwargs): with handle._disable_casts(): return orig_fn(*args, **kwargs) utils.set_func_save(handle, mod, fn, wrapper)
GeneSplice-main
GeneSplice/apex/apex/amp/wrap.py
from . import utils, wrap import torch _VF = torch._C._VariableFunctions RNN_NAMES = ['rnn_relu', 'rnn_tanh', 'gru', 'lstm'] def _gen_VF_wrapper(name): def wrapper(*args, **kwargs): return getattr(_VF, name)(*args, **kwargs) return wrapper # Some python magic to generate an object that has the rnn cell functions # defined on it, all of which call into corresponding _VF version. # Intended to patch torch.nn.modules.rnn._VF (aka, the ref named "_VF" # imported at module scope within torch.nn.modules.rnn). This should # not affect third-party importers of _VF.py. class VariableFunctionsShim(object): def __init__(self): for name in RNN_NAMES: for suffix in ['', '_cell']: fn_name = name + suffix setattr(self, fn_name, _gen_VF_wrapper(fn_name)) def has_old_rnns(): try: torch.nn.backends.thnn.backend.LSTMCell return True except: return False def whitelist_rnn_cells(handle, verbose): # Different module + function names in old/new RNN cases if has_old_rnns(): fn_names = ['RNNReLUCell', 'RNNTanhCell', 'LSTMCell', 'GRUCell'] mod = torch.nn.backends.thnn.backend else: fn_names = [x + '_cell' for x in RNN_NAMES] mod = torch.nn.modules.rnn._VF assert isinstance(mod, VariableFunctionsShim) # Insert casts on cell functions for fn in fn_names: wrap.cached_cast(mod, fn, utils.maybe_half, handle, try_caching=True, verbose=verbose) if has_old_rnns(): # Special handling of `backward` for fused gru / lstm: # The `backward` method calls Tensor.sum() (blacklist) internally, # and then the resulting grad_input has the wrong type. # TODO: where else is this a problem? for rnn_type in ['GRUFused', 'LSTMFused']: mod = getattr(torch.nn._functions.thnn.rnnFusedPointwise, rnn_type) wrap.disable_casts(mod, 'backward', handle)
GeneSplice-main
GeneSplice/apex/apex/amp/rnn_compat.py
GeneSplice-main
GeneSplice/apex/apex/amp/lists/__init__.py
import torch from .. import utils MODULE = torch FP16_FUNCS = [ # Low level functions wrapped by torch.nn layers. # The wrapper layers contain the weights which are then passed in as a parameter # to these functions. 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d', 'conv_tbc', 'prelu', # BLAS 'addmm', 'addmv', 'addr', 'matmul', 'mm', 'mv', ] FP32_FUNCS = [ # Pointwise 'acos', 'asin', 'cosh', 'erfinv', 'exp', 'expm1', 'log', 'log10', 'log2', 'reciprocal', 'rsqrt', 'sinh', 'tan', # Other math 'pow', # Reduction 'cumprod', 'cumsum', 'dist', # 'mean', 'norm', 'prod', 'std', 'sum', 'var', # Misc 'renorm' ] version_strings = torch.__version__.split('.') version_major = version_strings[0] version_minor = version_strings[1] version_num = float(version_major + "." + version_minor) # Before torch 1.1, mean must be blacklisted. if version_num < 1.1: FP32_FUNCS.append('mean') # Before CUDA 9.1, batched matmul was missing fast FP16 kernels. We # check the CUDA version -- if at least 9.1, then put the bmm # functions on the fp16 list. Otherwise, put them on the fp32 list. _bmms = ['addbmm', 'baddbmm', 'bmm'] if utils.is_cuda_enabled(): # workaround https://github.com/facebookresearch/maskrcnn-benchmark/issues/802 if utils.get_cuda_version() >= (9, 1, 0): FP16_FUNCS.extend(_bmms) else: FP32_FUNCS.extend(_bmms) # Multi-tensor fns that may need type promotion CASTS = [ # Multi-tensor math 'addcdiv', 'addcmul', 'atan2', 'cross', 'bilinear', 'dot', # Element-wise _or_ tensor-wise math 'add', 'div', 'mul', # Comparison 'eq', 'equal', 'ge', 'gt', 'le', 'lt', 'ne' ] # Functions that take sequence arguments. We need to inspect the whole # sequence and cast to the widest type. SEQUENCE_CASTS = [ 'cat', 'stack' ]
GeneSplice-main
GeneSplice/apex/apex/amp/lists/torch_overrides.py
# TODO: think about the following two. They do weird things. # - torch.nn.utils.clip_grad (but it should always be fp32 anyway) # - torch.nn.utils.weight_norm # Notes: # F.instance_norm uses batch_norm internally. Which correctly handles # fp16 in/out with fp32 weights. So we shouldn't do anything for # either of these. # F.normalize calls `input.norm()` internally, so it's redundant, but # kept here in case impl. changes. # F.cosine_similarity is same: calls `x.norm()` internally. import torch.nn.functional MODULE = torch.nn.functional FP16_FUNCS = [ 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d', 'conv_tbc', # Undocumented / maybe new? 'linear', ] FP32_FUNCS = [ # Interpolation/Upsampling TODO: Remove for 1.2 'interpolate', 'grid_sample', # Pointwise 'softplus', 'softmin', 'log_softmax', 'softmax', 'gelu', # Normalization 'layer_norm', 'group_norm', 'local_response_norm', 'normalize', 'cosine_similarity', # Loss functions # TODO: which of these can be fp16? 'poisson_nll_loss', 'cosine_embedding_loss', 'cross_entropy', 'hinge_embedding_loss', 'kl_div', 'l1_loss', 'mse_loss', 'margin_ranking_loss', 'multilabel_margin_loss', 'multilabel_soft_margin_loss', 'multi_margin_loss', 'nll_loss', 'binary_cross_entropy_with_logits', 'smooth_l1_loss', 'soft_margin_loss', 'triplet_margin_loss', 'ctc_loss' ] BANNED_FUNCS = [ ('binary_cross_entropy', ("\namp does not work out-of-the-box with `F.binary_cross_entropy` or `torch.nn.BCELoss.` " "It requires that the output of the previous function be already a FloatTensor. \n\n" "Most models have a Sigmoid right before BCELoss. In that case, you can use\n" " torch.nn.BCEWithLogitsLoss\nto combine Sigmoid+BCELoss into a single layer " "that is compatible with amp.\nAnother option is to add\n" " amp.register_float_function(torch, 'sigmoid')\nbefore calling `amp.init()`.\n" "If you _really_ know what you are doing, you can disable this warning by passing " "allow_banned=True to `amp.init()`.")) ]
GeneSplice-main
GeneSplice/apex/apex/amp/lists/functional_overrides.py
from .. import compat from . import torch_overrides import importlib import torch # if compat.variable_is_tensor() and not compat.tensor_is_variable(): MODULE = torch.Tensor # else: # MODULE = torch.autograd.Variable FP16_FUNCS = compat.filter_attrs(MODULE, [ '__matmul__', ]) FP32_FUNCS = compat.filter_attrs(MODULE, [ '__ipow__', '__pow__', '__rpow__', # Cast to fp32 before transfer to CPU 'cpu', ]) CASTS = compat.filter_attrs(MODULE, [ '__add__', '__div__', '__eq__', '__ge__', '__gt__', '__iadd__', '__idiv__', '__imul__', '__isub__', '__itruediv__', '__le__', '__lt__', '__mul__', '__ne__', '__radd__', '__rdiv__', '__rmul__', '__rsub__', '__rtruediv__', '__sub__', '__truediv__', ]) # None of these, but here to make code cleaner. SEQUENCE_CASTS = [] # We need to grab all the methods from torch_overrides and add them to # the Tensor lists as well, as almost all methods are duplicated # between `torch` and `torch.Tensor` (and check with `hasattr`, # because a few random ones aren't defined on Tensor) _self_mod = importlib.import_module(__name__) for attrname in ['FP16_FUNCS', 'FP32_FUNCS', 'CASTS', 'SEQUENCE_CASTS']: lst = getattr(_self_mod, attrname) for fn in getattr(torch_overrides, attrname): if hasattr(MODULE, fn): lst.append(fn)
GeneSplice-main
GeneSplice/apex/apex/amp/lists/tensor_overrides.py
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import math def is_iterable(maybe_iterable): return isinstance(maybe_iterable, list) or isinstance(maybe_iterable, tuple) def flatten_list(tens_list): """ flatten_list """ if not is_iterable(tens_list): return tens_list return torch.cat(tens_list, dim=0).view(len(tens_list), *tens_list[0].size() ) #These modules always assumes batch_first class bidirectionalRNN(nn.Module): """ bidirectionalRNN """ def __init__(self, inputRNN, num_layers=1, dropout = 0): super(bidirectionalRNN, self).__init__() self.dropout = dropout self.fwd = stackedRNN(inputRNN, num_layers=num_layers, dropout = dropout) self.bckwrd = stackedRNN(inputRNN.new_like(), num_layers=num_layers, dropout = dropout) self.rnns = nn.ModuleList([self.fwd, self.bckwrd]) #collect hidden option will return all hidden/cell states from entire RNN def forward(self, input, collect_hidden=False): """ forward() """ seq_len = input.size(0) bsz = input.size(1) fwd_out, fwd_hiddens = list(self.fwd(input, collect_hidden = collect_hidden)) bckwrd_out, bckwrd_hiddens = list(self.bckwrd(input, reverse=True, collect_hidden = collect_hidden)) output = torch.cat( [fwd_out, bckwrd_out], -1 ) hiddens = tuple( torch.cat(hidden, -1) for hidden in zip( fwd_hiddens, bckwrd_hiddens) ) return output, hiddens def reset_parameters(self): """ reset_parameters() """ for rnn in self.rnns: rnn.reset_parameters() def init_hidden(self, bsz): """ init_hidden() """ for rnn in self.rnns: rnn.init_hidden(bsz) def detach_hidden(self): """ detach_hidden() """ for rnn in self.rnns: rnn.detachHidden() def reset_hidden(self, bsz): """ reset_hidden() """ for rnn in self.rnns: rnn.reset_hidden(bsz) def init_inference(self, bsz): """ init_inference() """ for rnn in self.rnns: rnn.init_inference(bsz) #assumes hidden_state[0] of inputRNN is output hidden state #constructor either takes an RNNCell or list of RNN layers class stackedRNN(nn.Module): """ stackedRNN """ def __init__(self, inputRNN, num_layers=1, dropout=0): super(stackedRNN, self).__init__() self.dropout = dropout if isinstance(inputRNN, RNNCell): self.rnns = [inputRNN] for i in range(num_layers-1): self.rnns.append(inputRNN.new_like(inputRNN.output_size)) elif isinstance(inputRNN, list): assert len(inputRNN) == num_layers, "RNN list length must be equal to num_layers" self.rnns=inputRNN else: raise RuntimeError() self.nLayers = len(self.rnns) self.rnns = nn.ModuleList(self.rnns) ''' Returns output as hidden_state[0] Tensor([sequence steps][batch size][features]) If collect hidden will also return Tuple( [n_hidden_states][sequence steps] Tensor([layer][batch size][features]) ) If not collect hidden will also return Tuple( [n_hidden_states] Tensor([layer][batch size][features]) ''' def forward(self, input, collect_hidden=False, reverse=False): """ forward() """ seq_len = input.size(0) bsz = input.size(1) inp_iter = reversed(range(seq_len)) if reverse else range(seq_len) hidden_states = [[] for i in range(self.nLayers)] outputs = [] for seq in inp_iter: for layer in range(self.nLayers): if layer == 0: prev_out = input[seq] outs = self.rnns[layer](prev_out) if collect_hidden: hidden_states[layer].append(outs) elif seq == seq_len-1: hidden_states[layer].append(outs) prev_out = outs[0] outputs.append(prev_out) if reverse: outputs = list(reversed(outputs)) ''' At this point outputs is in format: list( [seq_length] x Tensor([bsz][features]) ) need to convert it to: list( Tensor([seq_length][bsz][features]) ) ''' output = flatten_list(outputs) ''' hidden_states at this point is in format: list( [layer][seq_length][hidden_states] x Tensor([bsz][features]) ) need to convert it to: For not collect hidden: list( [hidden_states] x Tensor([layer][bsz][features]) ) For collect hidden: list( [hidden_states][seq_length] x Tensor([layer][bsz][features]) ) ''' if not collect_hidden: seq_len = 1 n_hid = self.rnns[0].n_hidden_states new_hidden = [ [ [ None for k in range(self.nLayers)] for j in range(seq_len) ] for i in range(n_hid) ] for i in range(n_hid): for j in range(seq_len): for k in range(self.nLayers): new_hidden[i][j][k] = hidden_states[k][j][i] hidden_states = new_hidden #Now in format list( [hidden_states][seq_length][layer] x Tensor([bsz][features]) ) #Reverse seq_length if reverse if reverse: hidden_states = list( list(reversed(list(entry))) for entry in hidden_states) #flatten layer dimension into tensor hiddens = list( list( flatten_list(seq) for seq in hidden ) for hidden in hidden_states ) #Now in format list( [hidden_states][seq_length] x Tensor([layer][bsz][features]) ) #Remove seq_length dimension if not collect_hidden if not collect_hidden: hidden_states = list( entry[0] for entry in hidden_states) return output, hidden_states def reset_parameters(self): """ reset_parameters() """ for rnn in self.rnns: rnn.reset_parameters() def init_hidden(self, bsz): """ init_hidden() """ for rnn in self.rnns: rnn.init_hidden(bsz) def detach_hidden(self): """ detach_hidden() """ for rnn in self.rnns: rnn.detach_hidden() def reset_hidden(self, bsz): """ reset_hidden() """ for rnn in self.rnns: rnn.reset_hidden(bsz) def init_inference(self, bsz): """ init_inference() """ for rnn in self.rnns: rnn.init_inference(bsz) class RNNCell(nn.Module): """ RNNCell gate_multiplier is related to the architecture you're working with For LSTM-like it will be 4 and GRU-like will be 3. Always assumes input is NOT batch_first. Output size that's not hidden size will use output projection Hidden_states is number of hidden states that are needed for cell if one will go directly to cell as tensor, if more will go as list """ def __init__(self, gate_multiplier, input_size, hidden_size, cell, n_hidden_states = 2, bias = False, output_size = None): super(RNNCell, self).__init__() self.gate_multiplier = gate_multiplier self.input_size = input_size self.hidden_size = hidden_size self.cell = cell self.bias = bias self.output_size = output_size if output_size is None: self.output_size = hidden_size self.gate_size = gate_multiplier * self.hidden_size self.n_hidden_states = n_hidden_states self.w_ih = nn.Parameter(torch.empty(self.gate_size, self.input_size)) self.w_hh = nn.Parameter(torch.empty(self.gate_size, self.output_size)) #Check if there's recurrent projection if(self.output_size != self.hidden_size): self.w_ho = nn.Parameter(torch.empty(self.output_size, self.hidden_size)) self.b_ih = self.b_hh = None if self.bias: self.b_ih = nn.Parameter(torch.empty(self.gate_size)) self.b_hh = nn.Parameter(torch.empty(self.gate_size)) #hidden states for forward self.hidden = [ None for states in range(self.n_hidden_states)] self.reset_parameters() def new_like(self, new_input_size=None): """ new_like() """ if new_input_size is None: new_input_size = self.input_size return type(self)(self.gate_multiplier, new_input_size, self.hidden_size, self.cell, self.n_hidden_states, self.bias, self.output_size) #Use xavier where we can (weights), otherwise use uniform (bias) def reset_parameters(self, gain=1): """ reset_parameters() """ stdev = 1.0 / math.sqrt(self.hidden_size) for param in self.parameters(): param.data.uniform_(-stdev, stdev) ''' Xavier reset: def reset_parameters(self, gain=1): stdv = 1.0 / math.sqrt(self.gate_size) for param in self.parameters(): if (param.dim() > 1): torch.nn.init.xavier_normal(param, gain) else: param.data.uniform_(-stdv, stdv) ''' def init_hidden(self, bsz): """ init_hidden() """ for param in self.parameters(): if param is not None: a_param = param break for i, _ in enumerate(self.hidden): if(self.hidden[i] is None or self.hidden[i].data.size()[0] != bsz): if i==0: hidden_size = self.output_size else: hidden_size = self.hidden_size tens = a_param.data.new(bsz, hidden_size).zero_() self.hidden[i] = Variable(tens, requires_grad=False) def reset_hidden(self, bsz): """ reset_hidden() """ for i, _ in enumerate(self.hidden): self.hidden[i] = None self.init_hidden(bsz) def detach_hidden(self): """ detach_hidden() """ for i, _ in enumerate(self.hidden): if self.hidden[i] is None: raise RuntimeError("Must initialize hidden state before you can detach it") for i, _ in enumerate(self.hidden): self.hidden[i] = self.hidden[i].detach() def forward(self, input): """ forward() if not inited or bsz has changed this will create hidden states """ self.init_hidden(input.size()[0]) hidden_state = self.hidden[0] if self.n_hidden_states == 1 else self.hidden self.hidden = self.cell(input, hidden_state, self.w_ih, self.w_hh, b_ih=self.b_ih, b_hh=self.b_hh) if(self.n_hidden_states > 1): self.hidden = list(self.hidden) else: self.hidden=[self.hidden] if self.output_size != self.hidden_size: self.hidden[0] = F.linear(self.hidden[0], self.w_ho) return tuple(self.hidden)
GeneSplice-main
GeneSplice/apex/apex/RNN/RNNBackend.py
import torch from torch.nn._functions.rnn import LSTMCell, RNNReLUCell, RNNTanhCell, GRUCell from apex import deprecated_warning from .RNNBackend import bidirectionalRNN, stackedRNN, RNNCell from .cells import mLSTMRNNCell, mLSTMCell def toRNNBackend(inputRNN, num_layers, bidirectional=False, dropout = 0): """ :class:`toRNNBackend` """ deprecated_warning("`apex.RNN` is deprecated and will be removed by the end of February 2023.") if bidirectional: return bidirectionalRNN(inputRNN, num_layers, dropout = dropout) else: return stackedRNN(inputRNN, num_layers, dropout = dropout) def LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, bidirectional=False, output_size = None): """ :class:`LSTM` """ inputRNN = RNNCell(4, input_size, hidden_size, LSTMCell, 2, bias, output_size) return toRNNBackend(inputRNN, num_layers, bidirectional, dropout=dropout) def GRU(input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, bidirectional=False, output_size = None): """ :class:`GRU` """ inputRNN = RNNCell(3, input_size, hidden_size, GRUCell, 1, bias, output_size) return toRNNBackend(inputRNN, num_layers, bidirectional, dropout=dropout) def ReLU(input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, bidirectional=False, output_size = None): """ :class:`ReLU` """ inputRNN = RNNCell(1, input_size, hidden_size, RNNReLUCell, 1, bias, output_size) return toRNNBackend(inputRNN, num_layers, bidirectional, dropout=dropout) def Tanh(input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, bidirectional=False, output_size = None): """ :class:`Tanh` """ inputRNN = RNNCell(1, input_size, hidden_size, RNNTanhCell, 1, bias, output_size) return toRNNBackend(inputRNN, num_layers, bidirectional, dropout=dropout) def mLSTM(input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, bidirectional=False, output_size = None): """ :class:`mLSTM` """ inputRNN = mLSTMRNNCell(input_size, hidden_size, bias=bias, output_size=output_size) return toRNNBackend(inputRNN, num_layers, bidirectional, dropout=dropout)
GeneSplice-main
GeneSplice/apex/apex/RNN/models.py
from .models import LSTM, GRU, ReLU, Tanh, mLSTM __all__ = ['models']
GeneSplice-main
GeneSplice/apex/apex/RNN/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from .RNNBackend import RNNCell from torch.nn._functions.thnn import rnnFusedPointwise as fusedBackend import math class mLSTMRNNCell(RNNCell): """ mLSTMRNNCell """ def __init__(self, input_size, hidden_size, bias = False, output_size = None): gate_multiplier = 4 super(mLSTMRNNCell, self).__init__(gate_multiplier, input_size, hidden_size, mLSTMCell, n_hidden_states = 2, bias = bias, output_size = output_size) self.w_mih = nn.Parameter(torch.empty(self.output_size, self.input_size)) self.w_mhh = nn.Parameter(torch.empty(self.output_size, self.output_size)) self.reset_parameters() def forward(self, input): """ mLSTMRNNCell.forward() """ #if not inited or bsz has changed this will create hidden states self.init_hidden(input.size()[0]) hidden_state = self.hidden[0] if self.n_hidden_states == 1 else self.hidden self.hidden = list( self.cell(input, hidden_state, self.w_ih, self.w_hh, self.w_mih, self.w_mhh, b_ih=self.b_ih, b_hh=self.b_hh) ) if self.output_size != self.hidden_size: self.hidden[0] = F.linear(self.hidden[0], self.w_ho) return tuple(self.hidden) def new_like(self, new_input_size=None): if new_input_size is None: new_input_size = self.input_size return type(self)( new_input_size, self.hidden_size, self.bias, self.output_size) def mLSTMCell(input, hidden, w_ih, w_hh, w_mih, w_mhh, b_ih=None, b_hh=None): """ mLSTMCell """ if input.is_cuda: igates = F.linear(input, w_ih) m = F.linear(input, w_mih) * F.linear(hidden[0], w_mhh) hgates = F.linear(m, w_hh) state = fusedBackend.LSTMFused.apply return state(igates, hgates, hidden[1], b_ih, b_hh) hx, cx = hidden m = F.linear(input, w_mih) * F.linear(hidden[0], w_mhh) gates = F.linear(input, w_ih, b_ih) + F.linear(m, w_hh, b_hh) ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) ingate = F.sigmoid(ingate) forgetgate = F.sigmoid(forgetgate) cellgate = F.tanh(cellgate) outgate = F.sigmoid(outgate) cy = (forgetgate * cx) + (ingate * cellgate) hy = outgate * F.tanh(cy) return hy, cy
GeneSplice-main
GeneSplice/apex/apex/RNN/cells.py
from .mlp import *
GeneSplice-main
GeneSplice/apex/apex/mlp/__init__.py
from copy import copy import math import torch from torch import nn from apex._autocast_utils import _cast_if_autocast_enabled import mlp_cuda class MlpFunction(torch.autograd.Function): @staticmethod def forward(ctx, bias, activation, *args): output = mlp_cuda.forward(bias, activation, args) ctx.save_for_backward(*args) ctx.outputs = output ctx.bias = bias ctx.activation = activation return output[0] @staticmethod def backward(ctx, grad_o): grads = mlp_cuda.backward(ctx.bias, ctx.activation, grad_o, ctx.outputs, ctx.saved_tensors) del ctx.outputs return (None, None, *grads) def mlp_function(bias, activation, *args): autocast_args = _cast_if_autocast_enabled(bias, activation, *args) return MlpFunction.apply(*autocast_args) class MLP(torch.nn.Module): """Launch MLP in C++ Args: mlp_sizes (list of int): MLP sizes. Example: [1024,1024,1024] will create 2 MLP layers with shape 1024x1024 bias (bool): Default True: relu (bool): Default True """ def __init__(self, mlp_sizes, bias=True, activation='relu'): super().__init__() self.num_layers = len(mlp_sizes) - 1 self.mlp_sizes = copy(mlp_sizes) self.bias = 1 if bias else 0 if activation == 'none': self.activation = 0 elif activation == 'relu': self.activation = 1 elif activation == 'sigmoid': self.activation = 2 else: raise TypeError("activation must be relu or none.") self.weights = [] self.biases = [] for i in range(self.num_layers): w = torch.nn.Parameter(torch.empty(mlp_sizes[i+1], mlp_sizes[i])) self.weights.append(w) name = 'weight_{}'.format(i) setattr(self, name, w) if self.bias: b = torch.nn.Parameter(torch.empty(mlp_sizes[i+1])) self.biases.append(b) name = 'bias_{}'.format(i) setattr(self, name, b) self.reset_parameters() def reset_parameters(self): for weight in self.weights: dimsum = weight.size(0) + weight.size(1) std = math.sqrt(2. / float(dimsum)) nn.init.normal_(weight, 0., std) if self.bias: for bias in self.biases: std = math.sqrt(1. / float(bias.size(0))) nn.init.normal_(bias, 0., std) def forward(self, input): return mlp_function(self.bias, self.activation, input, *self.weights, *self.biases) def extra_repr(self): s = F"MLP sizes: {self.mlp_sizes}, Bias={self.bias}, activation={self.activation}" return s
GeneSplice-main
GeneSplice/apex/apex/mlp/mlp.py
import torch import torch.distributed as dist from torch.nn import Parameter from torch.nn import Module from apex.parallel import DistributedDataParallel as DDP import argparse import os parser = argparse.ArgumentParser(description='allreduce hook example') parser.add_argument("--local_rank", default=0, type=int) args = parser.parse_args() args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: args.gpu = args.local_rank % torch.cuda.device_count() torch.cuda.set_device(args.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() torch.set_printoptions(precision=10) torch.manual_seed(args.local_rank) class Model(Module): def __init__(self): super(Model, self).__init__() self.a = Parameter(torch.cuda.FloatTensor(4096*4096).fill_(1.0)) self.b = Parameter(torch.cuda.FloatTensor(4096*4096).fill_(2.0)) def forward(self, input): return (input*self.a)*self.b model = Model() # model = DDP(model, message_size=1, gradient_predivide_factor=8.0) # model = DDP(model, delay_allreduce=True) # model = DDP(model, message_size=1, allreduce_trigger_params=[model.b]) model = DDP(model, message_size=1, allreduce_trigger_params=[model.b], num_allreduce_streams=3) x = torch.cuda.FloatTensor(4096*4096) passed = True torch.cuda.cudart().cudaProfilerStart() for i in range(10): x.fill_(i + args.local_rank) # fill x with new values every iteration for sanity model.zero_grad() out = model(x) loss = out.sum() # torch.cuda.nvtx.range_push("backward") loss.backward() # torch.cuda.nvtx.range_pop() # torch.cuda.nvtx.range_push("synchronize() + info") # torch.cuda.synchronize() print("i = {}".format(i)) def info(name, param, val): expected = val*4096*4096*(2.*i+1)/2. actual = param.grad.data.sum().item() print(name+": grad.data_ptr() = {}, expected sum {}, got {}".format( param.grad.data_ptr(), expected, actual)) return (expected == actual) if not info("model.a", model.module.a, 2.): passed = False if not info("model.b", model.module.b, 1.): passed = False # torch.cuda.nvtx.range_pop() torch.cuda.cudart().cudaProfilerStop() print("passed = ", passed)
GeneSplice-main
GeneSplice/apex/tests/distributed/DDP/ddp_race_condition_test.py
import torch import argparse import os from apex import amp # FOR DISTRIBUTED: (can also use torch.nn.parallel.DistributedDataParallel instead) from apex.parallel import DistributedDataParallel parser = argparse.ArgumentParser() # FOR DISTRIBUTED: Parse for the local_rank argument, which will be supplied # automatically by torch.distributed.launch. parser.add_argument("--local_rank", default=0, type=int) args = parser.parse_args() # FOR DISTRIBUTED: If we are running under torch.distributed.launch, # the 'WORLD_SIZE' environment variable will also be set automatically. args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: # FOR DISTRIBUTED: Set the device according to local_rank. torch.cuda.set_device(args.local_rank) # FOR DISTRIBUTED: Initialize the backend. torch.distributed.launch will provide # environment variables, and requires that you use init_method=`env://`. torch.distributed.init_process_group(backend='nccl', init_method='env://') torch.manual_seed(torch.distributed.get_rank()) torch.backends.cudnn.benchmark = True N, D_in, D_out = 64, 1024, 16 # Each process receives its own batch of "fake input data" and "fake target data." # The "training loop" in each process just uses this fake batch over and over. # https://github.com/NVIDIA/apex/tree/master/examples/imagenet provides a more realistic # example of distributed data sampling for both training and validation. x = torch.randn(N, D_in, device='cuda') y = torch.randn(N, D_out, device='cuda') model = torch.nn.Linear(D_in, D_out).cuda() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) model, optimizer = amp.initialize(model, optimizer, opt_level="O2") if args.distributed: # FOR DISTRIBUTED: After amp.initialize, wrap the model with # apex.parallel.DistributedDataParallel. model = DistributedDataParallel(model) # torch.nn.parallel.DistributedDataParallel is also fine, with some added args: # model = torch.nn.parallel.DistributedDataParallel(model, # device_ids=[args.local_rank], # output_device=args.local_rank) loss_fn = torch.nn.MSELoss() for t in range(500): optimizer.zero_grad() y_pred = model(x) loss = loss_fn(y_pred, y) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() if args.local_rank == 0: print("final loss = ", loss) torch.save(list(model.parameters()), "rank{}model.pth".format(torch.distributed.get_rank())) torch.save(list(amp.master_params(optimizer)), "rank{}master.pth".format(torch.distributed.get_rank()))
GeneSplice-main
GeneSplice/apex/tests/distributed/amp_master_params/amp_master_params.py
import torch model_params_rank0 = torch.load("rank0model.pth", map_location = lambda storage, loc: storage.cuda(0)) model_params_rank1 = torch.load("rank1model.pth", map_location = lambda storage, loc: storage.cuda(0)) master_params_rank0 = torch.load("rank0master.pth", map_location = lambda storage, loc: storage.cuda(0)) master_params_rank1 = torch.load("rank1master.pth", map_location = lambda storage, loc: storage.cuda(0)) for model_rank0, model_rank1, master_rank0, master_rank1 in zip( model_params_rank0, model_params_rank1, master_params_rank0, master_params_rank1): assert torch.allclose(model_rank0, model_rank1), "Model param mismatch" assert torch.allclose(master_rank0, master_rank1), "Master param mismatch" # Some debugging/investigation assistance code: # maxval, maxind = torch.max(((torch.abs(model_rank0).float())/torch.abs(master_rank0)).view(-1), 0) # offending_val_half = model_rank0.view(-1)[maxind.item()] # offending_val_float = master_rank0.view(-1)[maxind.item()] # print(maxval.item(), maxind.item(), offending_val_half.item(), offending_val_float.item(), # offending_val_float.half().item()) # rtol needs to be > 2^-11 because of denormals... assert torch.allclose(model_rank0, master_rank0.half(), rtol=.005), "Model-master mismatch" print("OK: Model and master params match across ranks.")
GeneSplice-main
GeneSplice/apex/tests/distributed/amp_master_params/compare.py
import torch import apex model = apex.parallel.SyncBatchNorm(4).cuda() model.weight.data.uniform_() model.bias.data.uniform_() data = torch.rand((8,4)).cuda() model_ref = torch.nn.BatchNorm1d(4).cuda() model_ref.load_state_dict(model.state_dict()) data_ref = data.clone() output = model(data) output_ref = model_ref(data_ref) assert(output.allclose(output_ref)) assert(model.running_mean.allclose(model_ref.running_mean)) assert(model.running_var.allclose(model_ref.running_var))
GeneSplice-main
GeneSplice/apex/tests/distributed/synced_batchnorm/test_batchnorm1d.py
import torch import numpy as np import apex import syncbn import os import argparse import torch.optim as optim def compare(desc, inp1, inp2, error): a = inp1.clone().detach().cpu().numpy() b = inp2.clone().detach().cpu().numpy() close = np.allclose(a,b, error, error) if not close: print(desc, close) z = a - b index = (np.abs(z) >= error + error * np.abs(b)).nonzero() print("dif : ", z[index]) print("inp1 : ", a[index]) print("inp2 : ", b[index]) return close feature_size = 10 space_size = 40 batch_size = 32 from apex.parallel import DistributedDataParallel as DDP parser = argparse.ArgumentParser() parser.add_argument("--local_rank", default=0, type=int) parser.add_argument("--fp16", action='store_true', default=False) parser.add_argument("--fp64", action='store_true', default=False) args = parser.parse_args() args.world_size = int(os.environ['WORLD_SIZE']) torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') start = args.local_rank * batch_size//args.world_size finish = (args.local_rank + 1) * batch_size//args.world_size error = 1e-5 dtype = np.float32 if args.fp16: error = 1e-3 dtype = np.float16 elif args.fp64: error = 1e-8 dtype = np.float64 np.random.seed(18) inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) weight = np.random.randn(feature_size).astype(dtype) bias = np.random.randn(feature_size).astype(dtype) type_tensor = torch.cuda.FloatTensor if args.fp16: type_tensor = torch.cuda.HalfTensor if args.fp64: type_tensor = torch.cuda.DoubleTensor ref_tensor = torch.cuda.DoubleTensor inp_t = type_tensor(inp) weight_t = type_tensor(weight) bias_t = type_tensor(bias) inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1)) inp2_r = ref_tensor(inp) weight_r = ref_tensor(weight).view(-1, 1, 1) bias_r = ref_tensor(bias).view(-1, 1, 1) grad_output_t = type_tensor(grad) m = inp_r.mean(1) b_v = inp_r.var(1, unbiased=False) unb_v = inp_r.var(1, unbiased=True) eps = 1e-5 mean, var_biased = syncbn.welford_mean_var(inp_t) inv_std = 1.0 / torch.sqrt(var_biased + eps) bn = torch.nn.BatchNorm2d(feature_size).cuda() bn.momentum = 1.0 bn.weight.data = weight_t.clone() bn.bias.data = bias_t.clone() if args.fp16: bn.half() if args.fp64: bn.double() inp_bn = inp_t.clone().requires_grad_() grad_bn = grad_output_t.clone().detach() out_bn = bn(inp_bn) out_bn.backward(grad_bn) # compensating the averaging over processes done by DDP # in order to produce mathematically equivalent result # https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368 for param in bn.parameters(): param.grad = param.grad / args.world_size bn_opt = optim.SGD(bn.parameters(), lr=1.0) sbn = apex.parallel.SyncBatchNorm(feature_size).cuda() sbn.momentum = 1.0 sbn.weight.data = weight_t.clone() sbn.bias.data = bias_t.clone() if args.fp16: sbn.half() if args.fp64: sbn.double() sbn = DDP(sbn) sbn_opt = optim.SGD(sbn.parameters(), lr=1.0) inp_sbn = inp_t.clone().requires_grad_() grad_sbn = grad_output_t.clone().detach() out_sbn = sbn(inp_sbn[start:finish]) out_sbn.backward(grad_sbn[start:finish]) count = [ space_size**2 * ( (i+1) * batch_size // args.world_size - i * batch_size // args.world_size ) for i in range(0, args.world_size)] count = torch.cuda.IntTensor(count) print("--- count : " , count) sbn_result = True bn_result = True if args.local_rank == 0: sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t) out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r if args.local_rank == 0: sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result compare("comparing bn output: ", out_bn, out_r, error) grad_output_t = type_tensor(grad) grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1)) grad_output2_r = ref_tensor(grad) grad_bias_r = grad_output_r.sum(1) grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) sum_dy_r = grad_output_r.sum(1) mean_dy_r = grad_output_r.mean(1) mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1) sum_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1) sum_dy, sum_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t) grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, sum_dy, sum_dy_xmu, count) if args.local_rank == 0: sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result sbn_result = compare("comparing sum_dy grad: ", sum_dy, sum_dy_r, error) and sbn_result sbn_result = compare("comparing sum_dy_xmu grad: ", sum_dy_xmu, sum_dy_xmu_r, error) and sbn_result sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error) if args.local_rank == 0: sbn_result = compare("comparing running_mean: ", bn.running_mean.data, sbn.module.running_mean.data, error) and sbn_result sbn_result = compare("comparing running_variance: ", bn.running_var.data, sbn.module.running_var.data, error) and sbn_result # execute by both compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result bn_opt.step() sbn_opt.step() if args.local_rank == 0: compare("comparing bn vs sbn bias: ", bn.bias, sbn.module.bias, error) compare("comparing bn vs sbn weight: ", bn.weight, sbn.module.weight, error) if sbn_result: print("====SBN two gpu passed tests") else: print("*SBN two gpu failed*")
GeneSplice-main
GeneSplice/apex/tests/distributed/synced_batchnorm/two_gpu_unit_test.py
import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from apex.parallel import SyncBatchNorm as ApexSyncBatchNorm import argparse import os import numpy as np var_batch = 16 def compare(desc, inp1, inp2, error= 1e-5): a = inp1.clone().detach().cpu().numpy() b = inp2.clone().detach().cpu().numpy() close = np.allclose(a,b, error, error) if not close: print(desc, close) z = a - b index = (np.abs(z) >= error + error * np.abs(b)).nonzero() print("dif : ", z[index]) print("inp1 : ", a[index]) print("inp2 : ", b[index]) return close parser = argparse.ArgumentParser() parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--apex', action='store_true') args = parser.parse_args() torch.manual_seed(2809) # Setup DDP torch.cuda.set_device(args.local_rank) device = torch.device('cuda:{}'.format(args.local_rank)) torch.distributed.init_process_group( 'nccl', init_method='env://', rank=args.local_rank, ) # Setup model if args.apex: model = nn.Sequential( nn.Conv2d(3, 6, 3, 1, 1), ApexSyncBatchNorm(6) ) else: model = nn.Sequential( nn.Conv2d(3, 6, 3, 1, 1), nn.SyncBatchNorm(6) ) # Setup reference model model_reference = nn.Sequential( nn.Conv2d(3, 6, 3, 1, 1), nn.BatchNorm2d(6) ) with torch.no_grad(): model_reference[0].weight.copy_(model[0].weight) model_reference[0].bias.copy_(model[0].bias) model_reference.to(device) model = model.to(device) model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank) global_batch_size = var_batch + 8 # Create random data if args.local_rank == 0: data = torch.randn(var_batch, 3, 8, 8, device=device, dtype=torch.float) * 50.0 grad = torch.randint(0, 10, (var_batch, 6, 8, 8), device=device, dtype=torch.float) / 10.0 else: data = torch.randn(8, 3, 8, 8, device=device) grad = torch.randint(0, 10, (8, 6, 8, 8), device=device, dtype=torch.float) / 10.0 data.requires_grad_() data.retain_grad = True weighted_gradient = True # DDP forward/backward output = model(data) if weighted_gradient: output.backward(grad * 2 / global_batch_size) else: output.backward(grad / output.size(0)) d_list = [torch.randn(8, 3, 8, 8, device=device) for i in range(int(os.environ['WORLD_SIZE']))] y_list = [torch.randn(8, 6, 8, 8, device=device) for i in range(int(os.environ['WORLD_SIZE']))] dgrad_list = [torch.randn(8, 3, 8, 8, device=device) for i in range(int(os.environ['WORLD_SIZE']))] grad_list = [torch.randn(8, 6, 8, 8, device=device) for i in range(int(os.environ['WORLD_SIZE']))] if args.local_rank == 0: # placeholder, these random data will later be discarded. torch.distributed.all_gather(d_list, torch.randn(8, 3, 8, 8, device=device)) torch.distributed.all_gather(y_list, torch.randn(8, 6, 8, 8, device=device)) torch.distributed.all_gather(dgrad_list, torch.randn(8, 3, 8, 8, device=device)) torch.distributed.all_gather(grad_list, torch.randn(8, 6, 8, 8, device=device)) else: torch.distributed.all_gather(d_list, data) torch.distributed.all_gather(y_list, output) torch.distributed.all_gather(dgrad_list, data.grad) torch.distributed.all_gather(grad_list, grad) torch.distributed.barrier() if args.local_rank == 0: ref_tensor = d_list[1:] ref_tensor.insert(0, data) assert(ref_tensor[0].equal(data)) ref_tensor = torch.cat(ref_tensor, 0) ref_tensor = ref_tensor.detach() ref_tensor.requires_grad_() ref_tensor.retain_grad() # Reference forward/backward output_reference = model_reference(ref_tensor) grad_tensor = grad_list[1:] grad_tensor.insert(0, grad) assert(grad_tensor[0].equal(grad)) grad_tensor = torch.cat(grad_tensor, 0) if weighted_gradient: output_reference.backward(grad_tensor / output_reference.size(0)) else: output_reference.backward(grad_tensor / output_reference.size(0)) dgrad_tensor = dgrad_list[1:] dgrad_tensor.insert(0, data.grad) dgrad_tensor = torch.cat(dgrad_tensor, 0) # check output output_tensor = y_list[1:] output_tensor.insert(0, output) output_tensor = torch.cat(output_tensor, 0) passed = True passed = passed and compare("check output", output_tensor, output_reference) # check stats passed = passed and compare("check running mean failed", model_reference[1].running_mean, model.module[1].running_mean) passed = passed and compare("check running var failed", model_reference[1].running_var, model.module[1].running_var) passed = passed and compare("bn wgrad check failed!", model_reference[1].weight.grad, model.module[1].weight.grad, 1e-6) passed = passed and compare("conv wgrad check failed!", model_reference[0].weight.grad, model.module[0].weight.grad) # can't really compare dgrad directly, as we need to scale it to account for # DDP # passed = passed and compare("dgrad check failed!", ref_tensor.grad, dgrad_tensor) if passed: print("====SBN two gpu with different batches test passed") else: assert("*failed two gpu with different batches tests*")
GeneSplice-main
GeneSplice/apex/tests/distributed/synced_batchnorm/two_gpu_test_different_batch_size.py
import torch import numpy as np import apex if True: print("using setup tools") import syncbn else: print("using jit") from torch.utils.cpp_extension import load syncbn = load(name='syncbn', sources=['../../csrc/syncbn.cpp', '../../csrc/welford.cu']) def compare(desc, inp1, inp2, error): a = inp1.clone().detach().cpu().numpy() b = inp2.clone().detach().cpu().numpy() close = np.allclose(a,b, error, error) if not close: print(desc, close) z = a - b index = (np.abs(z) >= error + error * np.abs(b)).nonzero() print("dif : ", z[index]) print("inp1 : ", a[index]) print("inp2 : ", b[index]) return close feature_size = 10 space_size = 16 batch_size = 5 error = 1e-5 np.random.seed(1) dtype = np.float32 inp = (np.random.randn(batch_size, feature_size, space_size, space_size)).astype(dtype) grad = (np.random.randn(batch_size, feature_size, space_size, space_size)).astype(dtype) weight = (np.random.randn(feature_size)).astype(dtype) bias = (np.random.randn(feature_size)).astype(dtype) count = torch.cuda.IntTensor([batch_size*space_size**2]) type_tensor = torch.cuda.FloatTensor ref_tensor = torch.cuda.DoubleTensor inp_t = type_tensor(inp) weight_t = type_tensor(weight) bias_t = type_tensor(bias) inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1)) inp2_r = ref_tensor(inp) weight_r = ref_tensor(weight).view(-1, 1, 1) bias_r = ref_tensor(bias).view(-1, 1, 1) grad_output_t = type_tensor(grad) m = inp_r.mean(1) b_v = inp_r.var(1, unbiased=False) unb_v = inp_r.var(1, unbiased=True) eps = 1e-5 #mean, var, var_biased = syncbn.welford_mean_var(inp_t) mean, var_biased = syncbn.welford_mean_var(inp_t) inv_std = 1.0 / torch.sqrt(var_biased + eps) bn = torch.nn.BatchNorm2d(feature_size).cuda() bn.momentum = 1.0 bn.weight.data = weight_t.clone() bn.bias.data = bias_t.clone() inp_bn = inp_t.clone().requires_grad_() grad_bn = grad_output_t.clone().detach() out_bn = bn(inp_bn) out_bn.backward(grad_bn) sbn = apex.parallel.SyncBatchNorm(feature_size).cuda() sbn.momentum = 1.0 sbn.weight.data = weight_t.clone() sbn.bias.data = bias_t.clone() inp_sbn = inp_t.clone().requires_grad_() grad_sbn = grad_output_t.clone().detach() out_sbn = sbn(inp_sbn) out_sbn.backward(grad_sbn) sbn_c_last = apex.parallel.SyncBatchNorm(feature_size, channel_last=True).cuda() sbn_c_last.momentum = 1.0 sbn_c_last.weight.data = weight_t.clone() sbn_c_last.bias.data = bias_t.clone() inp_sbn_c_last = inp_t.clone().transpose(-1, 1).contiguous().requires_grad_() grad_sbn_c_last = grad_output_t.clone().transpose(-1, 1).contiguous().detach() out_sbn_c_last = sbn_c_last(inp_sbn_c_last) out_sbn_c_last.backward(grad_sbn_c_last) sbn_result = True sbn_result_c_last = True bn_result = True sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result #sbn_result = compare("comparing variance: ", var, unb_v, error) and sbn_result sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t) out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result compare("comparing bn output: ", out_bn, out_r, error) grad_output_t = type_tensor(grad) grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1)) grad_output2_r = ref_tensor(grad) grad_bias_r = grad_output_r.sum(1) grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) sum_dy_r = grad_output_r.sum(1) mean_dy_r = grad_output_r.mean(1) sum_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1) grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1) sum_dy, sum_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t) grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, sum_dy, sum_dy_xmu, count) sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result sbn_result = compare("comparing sum_dy grad: ", sum_dy, sum_dy_r, error) and sbn_result sbn_result = compare("comparing sum_dy_xmu grad: ", sum_dy_xmu, sum_dy_xmu_r, error) and sbn_result sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error) sbn_result = compare("comparing sbn input grad: ", inp_sbn.grad, grad_input_r, error) and sbn_result compare("comparing bn/sbn output: ", out_bn, out_sbn, error) sbn_result = compare("comparing running_mean: ", bn.running_mean.data, sbn.running_mean.data, error) and sbn_result sbn_result = compare("comparing running_variance: ", bn.running_var.data, sbn.running_var.data, error) and sbn_result compare("comparing grad_input: ", inp_bn.grad, inp_sbn.grad, error) compare("comparing grad_bias: ", bn.bias.grad, sbn.bias.grad, error) compare("comparing grad_bias bn to ref: ", bn.bias.grad, grad_bias_r, error) sbn_result = compare("comparing grad_bias sbn to ref: ", sbn.bias.grad, grad_bias_r, error) and sbn_result compare("comparing grad_weight: ", bn.weight.grad, sbn.weight.grad, error) compare("comparing grad_weight bn to ref: ", bn.weight.grad, grad_weight_r, error) sbn_result = compare("comparing grad_weight sbn to ref: ", sbn.weight.grad, grad_weight_r, error) and sbn_result compare("comparing channel last bn/sbn output: ", out_bn, out_sbn_c_last.transpose(-1, 1).contiguous(), error) sbn_result_c_last = compare("comparing channel last running_mean: ", bn.running_mean.data, sbn_c_last.running_mean.data, error) and sbn_result_c_last sbn_result_c_last = compare("comparing channel last running_variance: ", bn.running_var.data, sbn_c_last.running_var.data, error) and sbn_result_c_last compare("comparing channel last grad_input: ", inp_bn.grad, inp_sbn_c_last.grad.transpose(-1, 1).contiguous(), error) compare("comparing channel last grad_bias: ", bn.bias.grad, sbn_c_last.bias.grad, error) sbn_result_c_last = compare("comparing channel last grad_bias sbn to ref: ", sbn_c_last.bias.grad, grad_bias_r, error) and sbn_result_c_last compare("comparing channel last grad_weight: ", bn.weight.grad, sbn_c_last.weight.grad, error) sbn_result_c_last = compare("comparing channel last grad_weight sbn to ref: ", sbn_c_last.weight.grad, grad_weight_r, error) and sbn_result_c_last if sbn_result: print("====SBN single gpu passed tests") else: print("*SBN single gpu failed*") if sbn_result_c_last: print("====SBN channel last single gpu passed tests") else: print("*SBN channel last single gpu failed*")
GeneSplice-main
GeneSplice/apex/tests/distributed/synced_batchnorm/single_gpu_unit_test.py
import torch import numpy as np import apex import syncbn import os import argparse import torch.optim as optim def compare(desc, inp1, inp2, error): a = inp1.clone().detach().cpu().numpy() b = inp2.clone().detach().cpu().numpy() close = np.allclose(a,b, error, error) if not close: print(desc, close) z = a - b index = (np.abs(z) >= error + error * np.abs(b)).nonzero() print("dif : ", z[index]) print("inp1 : ", a[index]) print("inp2 : ", b[index]) return close feature_size = 10 space_size = 40 batch_size = 32 from apex.parallel import DistributedDataParallel as DDP parser = argparse.ArgumentParser() parser.add_argument("--local_rank", default=0, type=int) parser.add_argument("--fp16", action='store_true', default=False) parser.add_argument("--fp64", action='store_true', default=False) parser.add_argument("--group_size", default=0, type=int) args = parser.parse_args() try: args.world_size = int(os.environ['WORLD_SIZE']) except: print("This is a multi-gpu test. To run it please use 'python -m torch.distributed.launch --nproc_per_node=<num gpus> test_groups.py <more options>'") exit(1) torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') start = (args.local_rank%args.group_size) * batch_size//args.group_size finish = (args.local_rank%args.group_size + 1) * batch_size//args.group_size error = 1e-5 dtype = np.float32 if args.fp16: error = 1e-3 dtype = np.float16 elif args.fp64: error = 1e-8 dtype = np.float64 np.random.seed(18 + args.local_rank//args.group_size) inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) weight = np.random.randn(feature_size).astype(dtype) bias = np.random.randn(feature_size).astype(dtype) type_tensor = torch.cuda.FloatTensor if args.fp16: type_tensor = torch.cuda.HalfTensor if args.fp64: type_tensor = torch.cuda.DoubleTensor ref_tensor = torch.cuda.DoubleTensor inp_t = type_tensor(inp) weight_t = type_tensor(weight) bias_t = type_tensor(bias) inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1)) inp2_r = ref_tensor(inp) weight_r = ref_tensor(weight).view(-1, 1, 1) bias_r = ref_tensor(bias).view(-1, 1, 1) grad_output_t = type_tensor(grad) m = inp_r.mean(1) b_v = inp_r.var(1, unbiased=False) unb_v = inp_r.var(1, unbiased=True) eps = 1e-5 mean, var_biased = syncbn.welford_mean_var(inp_t) inv_std = 1.0 / torch.sqrt(var_biased + eps) bn = torch.nn.BatchNorm2d(feature_size).cuda() bn.momentum = 1.0 bn.weight.data = weight_t.clone() bn.bias.data = bias_t.clone() if args.fp16: bn.half() if args.fp64: bn.double() bn = DDP(bn) inp_bn = inp_t.clone().requires_grad_() grad_bn = grad_output_t.clone().detach() out_bn = bn(inp_bn) out_bn.backward(grad_bn) # compensating the averaging over processes done by DDP # in order to produce mathematically equivalent result # https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368 for param in bn.parameters(): param.grad = param.grad / args.group_size bn_opt = optim.SGD(bn.parameters(), lr=1.0) sbn = apex.parallel.SyncBatchNorm(feature_size, process_group=apex.parallel.create_syncbn_process_group(args.group_size)).cuda() sbn.momentum = 1.0 sbn.weight.data = weight_t.clone() sbn.bias.data = bias_t.clone() if args.fp16: sbn.half() if args.fp64: sbn.double() sbn = DDP(sbn) sbn_opt = optim.SGD(sbn.parameters(), lr=1.0) inp_sbn = inp_t.clone().requires_grad_() grad_sbn = grad_output_t.clone().detach() out_sbn = sbn(inp_sbn[start:finish]) out_sbn.backward(grad_sbn[start:finish]) sbn_result = True bn_result = True if args.local_rank == 0: sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t) out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r if args.local_rank == 0: sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result compare("comparing bn output: ", out_bn, out_r, error) grad_output_t = type_tensor(grad) grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1)) grad_output2_r = ref_tensor(grad) grad_bias_r = grad_output_r.sum(1) grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) mean_dy_r = grad_output_r.mean(1) mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1) grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1) mean_dy, mean_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t) grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, mean_dy, mean_dy_xmu) if args.local_rank == 0: sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result sbn_result = compare("comparing mean_dy grad: ", mean_dy, mean_dy_r, error) and sbn_result sbn_result = compare("comparing mean_dy_xmu grad: ", mean_dy_xmu, mean_dy_xmu_r, error) and sbn_result sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error) if args.local_rank == 0: sbn_result = compare("comparing running_mean: ", bn.module.running_mean.data, sbn.module.running_mean.data, error) and sbn_result sbn_result = compare("comparing running_variance: ", bn.module.running_var.data, sbn.module.running_var.data, error) and sbn_result # execute by both compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result bn_opt.step() sbn_opt.step() if args.local_rank == 0: compare("comparing bn vs sbn bias: ", bn.module.bias, sbn.module.bias, error) compare("comparing bn vs sbn weight: ", bn.module.weight, sbn.module.weight, error) if sbn_result: print("====SBN group test passed") else: print("*SBN group test failed*")
GeneSplice-main
GeneSplice/apex/tests/distributed/synced_batchnorm/test_groups.py
import torch import numpy as np import apex def compare(desc, inp1, inp2, error): a = inp1.clone().detach().cpu().numpy() b = inp2.clone().detach().cpu().numpy() close = np.allclose(a,b, error, error) if not close: print(desc, close) z = a - b index = (np.abs(z) >= error + error * np.abs(b)).nonzero() print("dif : ", z[index]) print("inp1 : ", a[index]) print("inp2 : ", b[index]) return close feature_size = 10 space_size = 16 batch_size = 5 error = 1e-5 np.random.seed(1) dtype = np.float32 inp = (np.random.randn(batch_size, feature_size, space_size, space_size)).astype(dtype) grad = (np.random.randn(batch_size, feature_size, space_size, space_size)).astype(dtype) weight = (np.random.randn(feature_size)).astype(dtype) bias = (np.random.randn(feature_size)).astype(dtype) type_tensor = torch.cuda.FloatTensor ref_tensor = torch.cuda.DoubleTensor inp_t = type_tensor(inp) weight_t = type_tensor(weight) bias_t = type_tensor(bias) inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1)) inp2_r = ref_tensor(inp) weight_r = ref_tensor(weight).view(-1, 1, 1) bias_r = ref_tensor(bias).view(-1, 1, 1) grad_output_t = type_tensor(grad) m = inp_r.mean(1) b_v = inp_r.var(1, unbiased=False) unb_v = inp_r.var(1, unbiased=True) eps = 1e-5 bn = torch.nn.BatchNorm2d(feature_size).cuda() bn.momentum = 1.0 bn.weight.data = weight_t.clone() bn.bias.data = bias_t.clone() inp_bn = inp_t.clone().requires_grad_() grad_bn = grad_output_t.clone().detach() out_bn = bn(inp_bn) out_bn.backward(grad_bn) from apex.parallel.sync_batchnorm import SyncBatchNorm sbn = SyncBatchNorm(feature_size).cuda() sbn.momentum = 1.0 sbn.weight.data = weight_t.clone() sbn.bias.data = bias_t.clone() inp_sbn = inp_t.clone().requires_grad_() grad_sbn = grad_output_t.clone().detach() out_sbn = sbn(inp_sbn) out_sbn.backward(grad_sbn) sbn_result = True sbn_result_c_last = True bn_result = True out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r compare("comparing bn output: ", out_bn, out_r, error) grad_output_t = type_tensor(grad) grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1)) grad_output2_r = ref_tensor(grad) grad_bias_r = grad_output_r.sum(1) grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) mean_dy_r = grad_output_r.mean(1) mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1) grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1) compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error) sbn_result = compare("comparing sbn input grad: ", inp_sbn.grad, grad_input_r, error) and sbn_result compare("comparing bn/sbn output: ", out_bn, out_sbn, error) sbn_result = compare("comparing running_mean: ", bn.running_mean.data, sbn.running_mean.data, error) and sbn_result sbn_result = compare("comparing running_variance: ", bn.running_var.data, sbn.running_var.data, error) and sbn_result compare("comparing grad_input: ", inp_bn.grad, inp_sbn.grad, error) compare("comparing grad_bias: ", bn.bias.grad, sbn.bias.grad, error) compare("comparing grad_bias bn to ref: ", bn.bias.grad, grad_bias_r, error) sbn_result = compare("comparing grad_bias sbn to ref: ", sbn.bias.grad, grad_bias_r, error) and sbn_result compare("comparing grad_weight: ", bn.weight.grad, sbn.weight.grad, error) compare("comparing grad_weight bn to ref: ", bn.weight.grad, grad_weight_r, error) sbn_result = compare("comparing grad_weight sbn to ref: ", sbn.weight.grad, grad_weight_r, error) and sbn_result if sbn_result: print("====SBN single gpu passed tests") else: print("*SBN single gpu failed*")
GeneSplice-main
GeneSplice/apex/tests/distributed/synced_batchnorm/python_single_gpu_unit_test.py
"""L0 Tests Runner. How to run this script? 1. Run all the tests: `python /path/to/apex/tests/L0/run_test.py` If you want an xml report, pass `--xml-report`, i.e. `python /path/to/apex/tests/L0/run_test.py --xml-report` and the file is created in `/path/to/apex/tests/L0`. 2. Run one of the tests (e.g. fused layer norm): `python /path/to/apex/tests/L0/run_test.py --include run_fused_layer_norm` 3. Run two or more of the tests (e.g. optimizers and fused layer norm): `python /path/to/apex/tests/L0/run_test.py --include run_optimizers run_fused_layer_norm` """ import argparse import os import unittest import sys TEST_ROOT = os.path.dirname(os.path.abspath(__file__)) TEST_DIRS = [ "run_amp", "run_deprecated", "run_fp16util", "run_optimizers", "run_fused_layer_norm", "run_mlp", "run_transformer", ] DEFAULT_TEST_DIRS = [ "run_optimizers", "run_fused_layer_norm", "run_mlp", "run_transformer", ] def parse_args(): parser = argparse.ArgumentParser( description="L0 test runner", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--include", nargs="+", choices=TEST_DIRS, default=DEFAULT_TEST_DIRS, help="select a set of tests to run (defaults to ALL tests).", ) parser.add_argument( "--xml-report", default=None, action="store_true", help="[deprecated] pass this argument to get a junit xml report. Use `--xml-dir`. (requires `xmlrunner`)", ) parser.add_argument( "--xml-dir", default=None, type=str, help="Directory to save junit test reports. (requires `xmlrunner`)", ) args, _ = parser.parse_known_args() return args def main(args: argparse.Namespace) -> None: test_runner_kwargs = {"verbosity": 2} Runner = unittest.TextTestRunner xml_dir = None if (args.xml_report is not None) or (args.xml_dir is not None): if args.xml_report is not None: import warnings warnings.warn("The option of `--xml-report` is deprecated", FutureWarning) import xmlrunner from datetime import date # NOQA Runner = xmlrunner.XMLTestRunner if args.xml_report: xml_dir = os.path.abspath(os.path.dirname(__file__)) else: xml_dir = os.path.abspath(args.xml_dir) if not os.path.exists(xml_dir): os.makedirs(xml_dir) errcode = 0 for test_dir in args.include: if xml_dir is not None: xml_output = os.path.join( xml_dir, f"""TEST_{test_dir}_{date.today().strftime("%y%m%d")}""", ) if not os.path.exists(xml_output): os.makedirs(xml_output) test_runner_kwargs["output"] = xml_output runner = Runner(**test_runner_kwargs) test_dir = os.path.join(TEST_ROOT, test_dir) suite = unittest.TestLoader().discover(test_dir) print("\nExecuting tests from " + test_dir) result = runner.run(suite) if not result.wasSuccessful(): errcode = 1 sys.exit(errcode) if __name__ == '__main__': args = parse_args() main(args)
GeneSplice-main
GeneSplice/apex/tests/L0/run_test.py
import torch from apex.normalization import FusedLayerNorm from apex.normalization import FusedRMSNorm from apex.normalization import MixedFusedLayerNorm from apex.normalization import MixedFusedRMSNorm from torch.testing._internal import common_utils from torch.testing._internal.common_device_type import instantiate_device_type_tests from itertools import product def _prep_inputs(batch_size, normalized_shape, dtype): shape = (batch_size, *normalized_shape) fused = torch.randn(shape).cuda().requires_grad_(True) with torch.no_grad(): native = fused.clone().to(dtype).requires_grad_(True) return native, fused autocast_dtypes = (torch.half, torch.bfloat16) if torch.cuda.is_bf16_supported() else (torch.half,) class TestFusedLayerNorm(common_utils.TestCase): def _test_fused_layer_norm( self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype, fwd_thresholds=dict(rtol=None, atol=None), bwd_thresholds=dict(rtol=None, atol=None) ): normalized_shape = [32, 16] if not mixed_fused: module_cpu_ = FusedLayerNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine).cpu() module_cuda_ = FusedLayerNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine).to(device="cuda", dtype=dtype) else: assert elementwise_affine module_cpu_ = MixedFusedLayerNorm( normalized_shape=normalized_shape).cpu() module_cuda_ = MixedFusedLayerNorm( normalized_shape=normalized_shape).to(device="cuda", dtype=dtype) torch.cuda.manual_seed(42) if contiguous: input_shape = [batch_size] + normalized_shape input_ = torch.randn(input_shape, device="cpu").requires_grad_(True) input_cuda_ = input_.to(device="cuda", dtype=dtype).detach().requires_grad_(True) self.assertTrue(input_.is_contiguous()) self.assertTrue(input_cuda_.is_contiguous()) else: input_shape = [batch_size] + normalized_shape input_shape = [batch_size * 3] + [normalized_shape[0] * 5, normalized_shape[1] * 3] input_src_ = torch.randn(input_shape, device="cpu") input_ = input_src_[::3, ::5, ::3].detach().requires_grad_(True) input_cuda_ = input_src_.to(device="cuda", dtype=dtype)[::3, ::5, ::3].detach().requires_grad_(True) # make sure that tensors are NOT contiguous. self.assertFalse(input_.is_contiguous()) self.assertFalse(input_cuda_.is_contiguous()) out_cpu_ = module_cpu_(input_) gO = torch.rand_like(out_cpu_) out_cpu_.backward(gO) out_cuda_ = module_cuda_(input_cuda_) gO = gO.to(device="cuda", dtype=dtype) out_cuda_.backward(gO) self.assertFalse(out_cpu_.is_cuda) self.assertTrue(out_cuda_.is_cuda) torch.testing.assert_close( out_cpu_.to(device="cuda", dtype=dtype), out_cuda_, **fwd_thresholds) torch.testing.assert_close( input_.grad.to(device="cuda", dtype=dtype), input_cuda_.grad, **bwd_thresholds) def _test_fused_rms_norm( self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype, fwd_thresholds=dict(rtol=None, atol=None), bwd_thresholds=dict(rtol=None, atol=None) ): normalized_shape = [32, 16] if not mixed_fused: module_cpu_ = FusedRMSNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine).cpu() module_cuda_ = FusedRMSNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine).to(device="cuda", dtype=dtype) else: assert elementwise_affine module_cpu_ = MixedFusedRMSNorm( normalized_shape=normalized_shape).cpu() module_cuda_ = MixedFusedRMSNorm( normalized_shape=normalized_shape).to(device="cuda", dtype=dtype) torch.cuda.manual_seed(42) if contiguous: input_shape = [batch_size] + normalized_shape input_ = torch.randn(input_shape, device="cpu").requires_grad_(True) input_cuda_ = input_.to(device="cuda", dtype=dtype).detach().requires_grad_(True) self.assertTrue(input_.is_contiguous()) self.assertTrue(input_cuda_.is_contiguous()) else: input_shape = [batch_size] + normalized_shape input_shape = [batch_size * 3] + [normalized_shape[0] * 5, normalized_shape[1] * 3] input_src_ = torch.randn(input_shape, device="cpu") input_ = input_src_[::3, ::5, ::3].detach().requires_grad_(True) input_cuda_ = input_src_.to(device="cuda", dtype=dtype)[::3, ::5, ::3].detach().requires_grad_(True) # make sure that tensors are NOT contiguous. self.assertFalse(input_.is_contiguous()) self.assertFalse(input_cuda_.is_contiguous()) out_cpu_ = module_cpu_(input_) gO = torch.rand_like(out_cpu_) out_cpu_.backward(gO) out_cuda_ = module_cuda_(input_cuda_) torch.testing.assert_close( out_cpu_.to(device="cuda", dtype=dtype), out_cuda_.clone().detach(), **fwd_thresholds) gO = gO.to(device="cuda", dtype=dtype) out_cuda_.backward(gO) self.assertFalse(out_cpu_.is_cuda) self.assertTrue(out_cuda_.is_cuda) torch.testing.assert_close( input_.grad.to(device="cuda", dtype=dtype), input_cuda_.grad, **bwd_thresholds) if elementwise_affine: torch.testing.assert_close(module_cpu_.weight.grad.to(device="cuda", dtype=dtype), module_cuda_.weight.grad, **bwd_thresholds) # layer norm tests @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16, 65536), (True, False), (False,), (False,), (torch.float,))) ) def test_layer_norm_regular(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_layer_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16, 65536), (True, False), (True,), (False,), (torch.float,))) ) def test_layer_norm_elemwise(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_layer_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16, 65536), (True, False), (True,), (True,), (torch.float,))) ) def test_layer_norm_mixed(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_layer_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16,), (True, False), (True,), (False,), (torch.half,))) ) def test_layer_norm_half(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_layer_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype, fwd_thresholds=dict(rtol=1e-3, atol=1e-3), bwd_thresholds=dict(rtol=1e-3, atol=1e-3)) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16,), (True, False), (True,), (False,), (torch.bfloat16,))) ) def test_layer_norm_bfloat16(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_layer_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype, fwd_thresholds=dict(rtol=1.6e-2, atol=3e-4), bwd_thresholds=dict(rtol=1.6e-2, atol=3e-3)) # rms norm tests @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16, 65536), (True, False), (False,), (False,), (torch.float,))) ) def test_rms_norm_regular(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_rms_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16, 65536), (True, False), (True,), (False,), (torch.float,))) ) def test_rms_norm_elemwise(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_rms_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype, bwd_thresholds=dict(rtol=2e-3, atol=2e-4)) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16, 65536), (True, False), (True,), (True,), (torch.float,))) ) def test_rms_norm_mixed(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_rms_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype, bwd_thresholds=dict(rtol=2e-3, atol=2e-4)) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16,), (True, False), (True,), (False,), (torch.half,))) ) def test_rms_norm_half(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_rms_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype, bwd_thresholds = dict(rtol=1.6e-2, atol=3e-3)) @common_utils.parametrize( "batch_size, contiguous, elementwise_affine, mixed_fused, dtype", list(product((16,), (True, False), (True,), (False,), (torch.bfloat16,))) ) def test_rms_norm_bfloat16(self, batch_size, contiguous, elementwise_affine, mixed_fused, dtype): self._test_fused_rms_norm(batch_size, contiguous, elementwise_affine, mixed_fused, dtype, fwd_thresholds=dict(rtol=1.6e-2, atol=3e-4), bwd_thresholds=dict(rtol=1.6e-2, atol=3e-2)) @common_utils.parametrize( "dtype, elementwise_affine", list(product(autocast_dtypes, (True, False))) ) def test_autocast_fused_layer_norm(self, dtype, elementwise_affine): bf16_fwd_thresholds = dict(rtol=1.6e-2, atol=3e-4) bf16_bwd_thresholds = dict(rtol=1.6e-2, atol=3e-3) batch_size = 16 normalized_shape = [32, 16] native = torch.nn.LayerNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine ).to(device="cuda", dtype=dtype) fused = FusedLayerNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine ).cuda() native_x, fused_x = _prep_inputs(batch_size, normalized_shape, dtype) expected = native(native_x) with torch.cuda.amp.autocast(dtype=dtype): actual = fused(fused_x) tols = {'rtol': None, 'atol': None} if dtype == torch.half else bf16_fwd_thresholds # original tests used torch.testing.assert_allclose, which disables dtype checking by default. # link to issue here: https://github.com/pytorch/pytorch/issues/61844 torch.testing.assert_close(actual, expected, **tols, check_dtype=False) g_native = torch.rand_like(expected) with torch.no_grad(): g_fused = g_native.clone() expected.backward(g_native) actual.backward(g_fused) tols = {'rtol': None, 'atol': None} if dtype == torch.half else bf16_bwd_thresholds torch.testing.assert_close(native_x.grad, fused_x.grad, **tols, check_dtype=False) @common_utils.parametrize( "dtype, elementwise_affine", list(product(autocast_dtypes, (True, False))) ) def test_autocast_fused_rms_norm(self, dtype, elementwise_affine): bf16_fwd_thresholds = dict(rtol=1.6e-2, atol=3e-4) bf16_bwd_thresholds = dict(rtol=1.6e-2, atol=3e-3) batch_size = 16 normalized_shape = [32, 16] native = FusedRMSNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine ).to(dtype=dtype) fused = FusedRMSNorm( normalized_shape=normalized_shape, elementwise_affine=elementwise_affine ).cuda() native_x, fused_x = _prep_inputs(batch_size, normalized_shape, dtype) expected = native(native_x.cpu()) with torch.cuda.amp.autocast(dtype=dtype): actual = fused(fused_x) tols = {'rtol': None, 'atol': None} if dtype == torch.half else bf16_fwd_thresholds torch.testing.assert_close(actual, expected.detach().clone().cuda(), **tols, check_dtype=False) g_native = torch.rand_like(expected) with torch.no_grad(): g_fused = g_native.detach().clone().cuda() expected.backward(g_native) actual.backward(g_fused) tols = {'rtol': 1e-3, 'atol': 1e-3} if dtype == torch.half else bf16_bwd_thresholds torch.testing.assert_close(native_x.grad.cuda(), fused_x.grad, **tols, check_dtype=False) def _verify_export(self, fused, fused_x): # check that export() is working onnx_str = torch.onnx.export_to_pretty_string(fused, (fused_x,), input_names=['x_in'], ) assert 'x_in' in onnx_str assert 'ReduceMean' in onnx_str def test_rms_export(self): batch_size = 16 normalized_shape = [32, 16] fused = FusedRMSNorm( normalized_shape=normalized_shape, elementwise_affine=True ).cuda() fused_m = MixedFusedRMSNorm( normalized_shape=normalized_shape, elementwise_affine=True ).cuda() native_x, fused_x = _prep_inputs(batch_size, normalized_shape, torch.float32) self._verify_export(fused, fused_x) self._verify_export(fused_m, fused_x) def test_layer_norm_export(self): batch_size = 16 normalized_shape = [32, 16] fused = FusedLayerNorm( normalized_shape=normalized_shape, elementwise_affine=True ).cuda() fused_m = MixedFusedLayerNorm( normalized_shape=normalized_shape, elementwise_affine=True ).cuda() native_x, fused_x = _prep_inputs(batch_size, normalized_shape, torch.float32) self._verify_export(fused, fused_x) self._verify_export(fused_m, fused_x) instantiate_device_type_tests(TestFusedLayerNorm, globals(), only_for=("cuda",)) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_fused_layer_norm/test_fused_layer_norm.py
import unittest import os import torch from torch.optim import Optimizer import apex from apex.multi_tensor_apply import multi_tensor_applier from itertools import product class RefLAMB(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-6) weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01) .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(RefLAMB, self).__init__(params, defaults) if multi_tensor_applier.available: import amp_C self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) self.multi_tensor_lamb = amp_C.multi_tensor_lamb else: raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() # create separate grad lists for fp32 and fp16 params g_all_32, g_all_16 = [], [] for group in self.param_groups: for p in group['params']: if p.grad is None: continue if p.dtype == torch.float32: g_all_32.append(p.grad.data) elif p.dtype == torch.float16: g_all_16.append(p.grad.data) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') device = self.param_groups[0]["params"][0].device g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device) # compute grad norm for two lists if len(g_all_32) > 0: g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0] if len(g_all_16) > 0: g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0] # blend two grad norms to get global grad norm global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False)[0] max_grad_norm = 1.0 clipped_ratio = max_grad_norm / max(global_grad_norm, max_grad_norm) for group in self.param_groups: for p in group['params']: if p.grad is None: continue p.grad.data *= clipped_ratio grad = p.grad.data if grad.is_sparse: raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['v'] = torch.zeros_like(p.data) m_t, v_t = state['m'], state['v'] beta1, beta2 = group['betas'] state['step'] += 1 # m_t = beta1 * m + (1 - beta1) * g_t m_t.mul_(beta1).add_(grad, alpha=1-beta1) # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) v_t.mul_(beta2).addcmul_(grad, grad, value=1-beta2) # Debiasing m_t_hat = m_t / (1.0 - beta1 ** state['step']) v_t_hat = v_t / (1.0 - beta2 ** state['step']) update = m_t_hat / v_t_hat.sqrt().add(group['eps']) if group['weight_decay'] != 0: update.add_(p.data, alpha=group['weight_decay']) trust_ratio = 1.0 w_norm = p.data.pow(2).sum().sqrt() g_norm = update.pow(2).sum().sqrt() if w_norm > 0 and g_norm > 0: trust_ratio = w_norm / g_norm state['w_norm'] = w_norm state['g_norm'] = g_norm state['trust_ratio'] = trust_ratio step_size = group['lr'] p.data.add_(update, alpha=-step_size*trust_ratio) return loss class TestLamb(unittest.TestCase): def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7): self.max_abs_diff = max_abs_diff self.max_rel_diff = max_rel_diff self.iters = iters torch.cuda.manual_seed(9876) def tearDown(self): pass def gen_param_optim(self, tensors, lamb_option): ref_param = [] tst_param = [] for tensor in tensors: ref_param.append(torch.nn.Parameter(tensor.clone())) tst_param.append(torch.nn.Parameter(tensor.clone())) ref_optim = self.ref_optim(ref_param, **lamb_option) tst_optim = self.tst_optim(tst_param, use_nvlamb=True, **lamb_option) return (ref_param, tst_param, ref_optim, tst_optim) def gen_grad(self, ref_param, tst_param): for p_ref, p_tst in zip(ref_param, tst_param): p_ref.grad = torch.rand_like(p_ref) p_tst.grad = p_ref.grad def gen_mixed_grad(self, ref_param, tst_param, scale=1.0): half_grads = [] for p_ref, _ in zip(ref_param, tst_param): half_grads.append(torch.rand_like(p_ref).half()) p_ref.grad = half_grads[-1].float() / scale return half_grads def get_max_diff(self, ref_param, tst_param): max_abs_diff = max_rel_diff = 0 for p_ref, p_tst in zip(ref_param, tst_param): max_abs_diff_p = (p_ref - p_tst).abs().max().item() max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item() if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p return max_abs_diff, max_rel_diff def gen_single_type_test(self, param_type=torch.float, device="cuda"): nelem = 278011 tensor = torch.rand(nelem, dtype=param_type, device=device) weight_decay = [0, 0.01] for wd in weight_decay: lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], lamb_option) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() torch.cuda.synchronize() tst_optim.step() torch.cuda.synchronize() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) class TestFusedLAMB(TestLamb): def __init__(self, *args, **kwargs): super(TestLamb, self).__init__(*args, **kwargs) self.ref_optim = RefLAMB self.tst_optim = apex.optimizers.FusedLAMB def test_float(self): self.gen_single_type_test(param_type=torch.float) @unittest.skip("PyTorch optimizer is not numerically correct for fp16") def test_half(self): self.gen_single_type_test(param_type=torch.float16) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_device(self): devices = ("cuda:0", "cuda:1") for current_dev, tensor_dev in product(devices, devices): with torch.cuda.device(current_dev): self.gen_single_type_test(param_type=torch.float, device=tensor_dev) def test_multi_params(self): sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] weight_decay = [0, 0.01] for wd in weight_decay: lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} tensors = [] for size in sizes: tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim(tensors, lamb_option) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) def test_lamb_option(self): nelem = 1 tensor = torch.rand(nelem, dtype=torch.float, device='cuda') weight_decay = [0, 0.01] for wd in weight_decay: lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd} ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], lamb_option) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) class TestFusedMixedPrecisionLamb(TestLamb): def __init__(self, *args, **kwargs): super(TestLamb, self).__init__(*args, **kwargs) self.ref_optim = RefLAMB self.tst_optim = apex.optimizers.FusedMixedPrecisionLamb def test_float(self): self.gen_single_type_test(param_type=torch.float) @unittest.skip("PyTorch optimizer is not numerically correct for fp16") def test_half(self): self.gen_single_type_test(param_type=torch.float16) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_device(self): devices = ("cuda:0", "cuda:1") for current_dev, tensor_dev in product(devices, devices): with torch.cuda.device(current_dev): self.gen_single_type_test(param_type=torch.float, device=tensor_dev) def test_multi_params(self): sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] weight_decay = [0, 0.01] for wd in weight_decay: lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} tensors = [] for size in sizes: tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim(tensors, lamb_option) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) def test_lamb_option(self): nelem = 1 tensor = torch.rand(nelem, dtype=torch.float, device='cuda') weight_decay = [0, 0.01] for wd in weight_decay: lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd} ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], lamb_option) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) if __name__ == '__main__': script_path = os.path.dirname(os.path.realpath(__file__)) unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_optimizers/test_lamb.py
GeneSplice-main
GeneSplice/apex/tests/L0/run_optimizers/__init__.py
import copy import math import random import unittest import torch import torch.nn.functional as F from torch import nn try: import apex except ImportError as e: HAS_APEX = False else: HAS_APEX = True class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(6, 16, 5) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(256, 120) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(120, 84) self.relu4 = nn.ReLU() self.fc3 = nn.Linear(84, 10) self.relu5 = nn.ReLU() def forward(self, x): y = self.conv1(x) y = self.relu1(y) y = self.pool1(y) y = self.conv2(y) y = self.relu2(y) y = self.pool2(y) y = y.reshape(y.shape[0], -1) y = self.fc1(y) y = self.relu3(y) y = self.fc2(y) y = self.relu4(y) y = self.fc3(y) y = self.relu5(y) return y @unittest.skipIf(not HAS_APEX, "`apex` is not found.") class AdamTest(unittest.TestCase): def setUp(self, seed=0): super().setUp() torch.manual_seed(seed) self.model = Model().cuda() self.model_ = Model().cuda() self.model_.load_state_dict(copy.deepcopy(self.model.state_dict())) self.lr = 0.00001 params = [p for p in self.model.parameters() if p.requires_grad] self.optimizer = torch.optim.Adam(params, lr=self.lr) def testGradScaler(self): params_ = [p for p in self.model_.parameters() if p.requires_grad] optimizer_ = apex.optimizers.FusedAdam(params_, lr=self.lr, capturable=False) scaler = torch.cuda.amp.GradScaler(enabled=True) scaler_ = torch.cuda.amp.GradScaler(enabled=True) for i in range(100): x = torch.rand([32, 1, 28, 28]).cuda().to(memory_format=torch.channels_last) x_ = x.clone() gt = torch.rand([32, 10]).cuda() gt_ = gt.clone() # Reference with torch.cuda.amp.autocast(enabled=True): y = self.model(x) loss = ((gt - y) ** 2).mean() scaler.scale(loss).backward() scaler.step(self.optimizer) scaler.update() # DUT with torch.cuda.amp.autocast(enabled=True): y = self.model_(x) loss_ = ((gt_ - y) ** 2).mean() scaler_.scale(loss_).backward() scaler_.step(optimizer_) scaler_.update() for module in zip(self.model.modules(), self.model_.modules()): m = module[0] m_ = module[1] if isinstance(m, nn.Conv2d) or isinstance(m_, nn.Linear): torch.testing.assert_close(m.weight, m_.weight, atol=1e-3, rtol=1e-3, equal_nan=True) torch.testing.assert_close(m.weight.grad, m_.weight.grad, atol=1e-3, rtol=1e-3, equal_nan=True) # Init for next iteration self.optimizer.zero_grad() optimizer_.zero_grad() self.model_.load_state_dict(copy.deepcopy(self.model.state_dict())) def testGradScalerCapturable(self): params_ = [p for p in self.model_.parameters() if p.requires_grad] optimizer_ = apex.optimizers.FusedAdam(params_, lr=self.lr, capturable=True) scaler = torch.cuda.amp.GradScaler(enabled=True) scaler_ = torch.cuda.amp.GradScaler(enabled=True) for i in range(100): x = torch.rand([32, 1, 28, 28]).cuda().to(memory_format=torch.channels_last) x_ = x.clone() gt = torch.rand([32, 10]).cuda() gt_ = gt.clone() # Reference with torch.cuda.amp.autocast(enabled=True): y = self.model(x) loss = ((gt - y) ** 2).mean() scaler.scale(loss).backward() scaler.step(self.optimizer) scaler.update() # DUT with torch.cuda.amp.autocast(enabled=True): y = self.model_(x) loss_ = ((gt_ - y) ** 2).mean() scaler_.scale(loss_).backward() scaler_.step(optimizer_) scaler_.update() for module in zip(self.model.modules(), self.model_.modules()): m = module[0] m_ = module[1] if isinstance(m, nn.Conv2d) or isinstance(m_, nn.Linear): torch.testing.assert_close(m.weight, m_.weight, atol=1e-3, rtol=1e-3, equal_nan=True) torch.testing.assert_close(m.weight.grad, m_.weight.grad, atol=1e-3, rtol=1e-3, equal_nan=True) # Init for next iteration self.optimizer.zero_grad() optimizer_.zero_grad() self.model_.load_state_dict(copy.deepcopy(self.model.state_dict())) def testGradScalerCapturableMaster(self): # Cast conv layers to FP16 for m in self.model_.modules(): if m.__class__ in [torch.nn.Conv2d]: m.half() params_ = [p for p in self.model_.parameters() if p.requires_grad] optimizer_ = apex.optimizers.FusedAdam(params_, lr=self.lr, capturable=True, master_weights=True) scaler = torch.cuda.amp.GradScaler(enabled=True) scaler_ = torch.cuda.amp.GradScaler(enabled=True) for i in range(100): x = torch.rand([32, 1, 28, 28]).cuda().to(memory_format=torch.channels_last) x_ = x.clone() gt = torch.rand([32, 10]).cuda() gt_ = gt.clone() # Reference with torch.cuda.amp.autocast(enabled=True): y = self.model(x) loss = ((gt - y) ** 2).mean() scaler.scale(loss).backward() scaler.step(self.optimizer) scaler.update() # DUT with torch.cuda.amp.autocast(enabled=True): y = self.model_(x) loss_ = ((gt_ - y) ** 2).mean() scaler_.scale(loss_).backward() scaler_.step(optimizer_) scaler_.update() for module in zip(self.model.modules(), self.model_.modules()): m = module[0] m_ = module[1] if isinstance(m, nn.Conv2d) or isinstance(m_, nn.Linear): torch.testing.assert_close(m.weight, m_.weight.float(), atol=1e-3, rtol=1e-3, equal_nan=True) torch.testing.assert_close(m.weight.grad, m_.weight.grad.float(), atol=1e-3, rtol=1e-3, equal_nan=True) # Init for next iteration self.optimizer.zero_grad() optimizer_.zero_grad() self.model_.load_state_dict(copy.deepcopy(self.model.state_dict())) def testNative(self): params_ = [p for p in self.model_.parameters() if p.requires_grad] optimizer_ = apex.optimizers.FusedAdam(params_, lr=self.lr, capturable=False) for i in range(100): x = torch.rand([32, 1, 28, 28]).cuda().to(memory_format=torch.channels_last) x_ = x.clone() gt = torch.rand([32, 10]).cuda() gt_ = gt.clone() # Reference y = self.model(x) loss = ((gt - y) ** 2).mean() loss.backward() self.optimizer.step() # DUT y = self.model_(x) loss_ = ((gt_ - y) ** 2).mean() loss_.backward() optimizer_.step() for module in zip(self.model.modules(), self.model_.modules()): m = module[0] m_ = module[1] if isinstance(m, nn.Conv2d) or isinstance(m_, nn.Linear): torch.testing.assert_close(m.weight, m_.weight, atol=1e-3, rtol=1e-3, equal_nan=True) torch.testing.assert_close(m.weight.grad, m_.weight.grad, atol=1e-3, rtol=1e-3, equal_nan=True) # Init for next iteration self.optimizer.zero_grad() optimizer_.zero_grad() self.model_.load_state_dict(copy.deepcopy(self.model.state_dict())) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_optimizers/test_adam.py
from itertools import product import random import unittest import torch import apex class TestFusedOptimizer(unittest.TestCase): def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7): self.max_abs_diff = max_abs_diff self.max_rel_diff = max_rel_diff self.iters = iters torch.manual_seed(9876) def tearDown(self): pass def gen_param_optim(self, tensors, options, tst_options=None): # Adding this to make backward compatible with existing tests. Just in # case "tst_options" are not provided, it gets a copy of options # which contains the parameters for the reference optimizer if tst_options == None: tst_options = options ref_param = [] tst_param = [] for tensor in tensors: ref_param.append(torch.nn.Parameter(tensor.clone())) tst_param.append(torch.nn.Parameter(tensor.clone())) ref_optim = self.ref_optim(ref_param, **options) tst_optim = self.fused_optim(tst_param, **tst_options) return (ref_param, tst_param, ref_optim, tst_optim) def gen_grad(self, ref_param, tst_param): for p_ref, p_tst in zip(ref_param, tst_param): p_ref.grad = torch.rand_like(p_ref) p_tst.grad = p_ref.grad def gen_mixed_grad(self, ref_param, tst_param, scale=1.0): half_grads = [] for p_ref, p_tst in zip(ref_param, tst_param): half_grads.append(torch.rand_like(p_ref).half()) p_ref.grad = half_grads[-1].float() / scale return half_grads def get_max_diff(self, ref_param, tst_param): max_abs_diff = max_rel_diff = 0 for p_ref, p_tst in zip(ref_param, tst_param): max_abs_diff_p = (p_ref - p_tst).abs().max().item() max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item() if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p return max_abs_diff, max_rel_diff def gen_single_type_test(self, param_type=torch.float, device='cuda', *, skip_assert: bool = False): nelem = 278011 # Some ref and test optimizers may require different set of options. # This is a quick workaround to add that functionality while making # minimum changes in existing code. # If there is no "tst_options" field provided, safe to initialize # the test optimizer with the parameters of reference optimizer. if not hasattr(self, 'tst_options'): self.tst_options = self.options tensor = torch.rand(nelem, dtype=param_type, device=device) ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], self.options, self.tst_options) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() if skip_assert: return max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) class TestFusedAdam(TestFusedOptimizer): def setUp(self): super().setUp() self.options = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay': 0, 'amsgrad': False} self.ref_optim = torch.optim.Adam self.fused_optim = apex.optimizers.FusedAdam def test_float(self): self.gen_single_type_test(param_type=torch.float) # NOTE(mkozuki): Current threshold values look too small for BFloat16. # TODO(mkozuki): Refactor `TestFusedOptimizer` def test_half(self): self.gen_single_type_test(param_type=torch.float16, skip_assert=True) def test_bfloat16(self): self.gen_single_type_test(param_type=torch.bfloat16, skip_assert=True) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_device(self): devices = ("cuda:0", "cuda:1") for current_dev, tensor_dev in product(devices, devices): with torch.cuda.device(current_dev): self.gen_single_type_test(param_type=torch.float, device=tensor_dev) @unittest.skip('Disable until 8/1/2019 adam/adamw upstream picked') def test_multi_params(self): sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] tensors = [] for size in sizes: tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim(tensors, self.options) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) @unittest.skip('No longer support fuse scaling') def test_scale(self): nelem = 278011 tensor = torch.rand(nelem, dtype=torch.float, device='cuda') ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], self.options) for i in range(self.iters): scale = random.random() * 1000 half_grads = self.gen_mixed_grad(ref_param, tst_param, scale) ref_optim.step() tst_optim.step(grads=half_grads, scale=scale) max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) @unittest.skip('No longer support output fp16 param') def test_fp16_output(self): nelem = 278011 tensor = torch.rand(nelem, dtype=torch.float, device='cuda') ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], self.options) fp16_param = torch.nn.Parameter(tensor.clone().half()) for i in range(self.iters): half_grads = self.gen_mixed_grad(ref_param, tst_param) ref_optim.step() tst_optim.step(grads=half_grads, output_params=[fp16_param]) max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) max_abs_diff, max_rel_diff = self.get_max_diff(tst_param, \ [fp16_param.float()]) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) def test_adam_option(self): nelem = 1 adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':0, 'amsgrad':False} tensor = torch.rand(nelem, dtype=torch.float, device='cuda') ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], adam_option) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) def test_frozen_model(self): nelem = 1 adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':0, 'amsgrad':False} tensor = torch.rand(nelem, dtype=torch.float, device='cuda') ref_param, tst_param, ref_optim, tst_optim = \ self.gen_param_optim([tensor], adam_option) #Add an empty param group which may occur for pipeline parallel p-tuning tst_optim.add_param_group({"params": []}) for i in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) class TestFusedAdagrad(TestFusedOptimizer): def __init__(self, *args, **kwargs): super(TestFusedAdagrad, self).__init__(*args, **kwargs) self.options = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 1.0e-5} self.ref_optim = torch.optim.Adagrad self.fused_optim = apex.optimizers.FusedAdagrad def test_float(self): self.gen_single_type_test(param_type=torch.float) @unittest.skip("PyTorch optimizer is not numerically correct for fp16") def test_half(self): self.gen_single_type_test(param_type=torch.float16) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_device(self): devices = ("cuda:0", "cuda:1") for current_dev, tensor_dev in product(devices, devices): with torch.cuda.device(current_dev): self.gen_single_type_test(param_type=torch.float, device=tensor_dev) def test_multi_params(self): sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0} tensors = [] for size in sizes: tensors.append(torch.rand(size, dtype=torch.float, device="cuda")) ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( tensors, adagrad_option ) for _ in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_params_different_devices_throws(self): sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0} tensors = [] for i, size in enumerate(sizes): tensors.append(torch.rand(size, dtype=torch.float, device="cuda:"+str(i % 2))) ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( tensors, adagrad_option ) self.gen_grad(ref_param, tst_param) with self.assertRaisesRegex(RuntimeError, "not on the same device"): tst_optim.step() def test_adagrad_option(self): nelem = 1 adagrad_option = {"lr": 0.01, "eps": 3e-06, "weight_decay": 0} tensor = torch.rand(nelem, dtype=torch.float, device="cuda") ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( [tensor], adagrad_option ) for _ in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) class TestFusedSGD(TestFusedOptimizer): def __init__(self, *args, **kwargs): super(TestFusedSGD, self).__init__(*args, **kwargs) self.options = {"lr": .25, "momentum": .125} self.ref_optim = torch.optim.SGD self.fused_optim = apex.optimizers.FusedSGD def test_float(self): self.gen_single_type_test(param_type=torch.float) def test_half(self): self.gen_single_type_test(param_type=torch.float16) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_device(self): devices = ("cuda:0", "cuda:1") for current_dev, tensor_dev in product(devices, devices): with torch.cuda.device(current_dev): self.gen_single_type_test(param_type=torch.float, device=tensor_dev) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_optimizers/test_fused_optimizer.py
import torch from torch.optim import Optimizer import math import apex import unittest from test_fused_optimizer import TestFusedOptimizer from itertools import product class Novograd(Optimizer): """ Implements Novograd algorithm. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.95, 0)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) grad_averaging: gradient averaging amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) """ def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8, weight_decay=0, grad_averaging=False, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad) super(Novograd, self).__init__(params, defaults) def __setstate__(self, state): super(Novograd, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Sparse gradients are not supported.') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 norm = torch.sum(torch.pow(grad, 2)) if exp_avg_sq == 0: exp_avg_sq.copy_(norm) else: exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) grad.div_(denom) if group['weight_decay'] != 0: grad.add_(p.data, alpha=group['weight_decay']) if group['grad_averaging']: grad.mul_(1 - beta1) exp_avg.mul_(beta1).add_(grad) p.data.add_(exp_avg, alpha=-group['lr']) return loss class TestFusedNovoGrad(TestFusedOptimizer): def __init__(self, *args, **kwargs): super(TestFusedNovoGrad, self).__init__(*args, **kwargs) # The options for NovoGrad and FusedNovoGrad are very specific if they # are expected to behave the same. self.options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8, 'weight_decay':0, 'grad_averaging':False, 'amsgrad':False} self.tst_options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8, 'weight_decay':0, 'grad_averaging':False, 'amsgrad':False, 'bias_correction':False, 'reg_inside_moment':True, 'norm_type':2, 'init_zero':False, 'set_grad_none':True} self.ref_optim = Novograd self.fused_optim = apex.optimizers.FusedNovoGrad def test_float(self): self.gen_single_type_test(param_type=torch.float) def test_half(self): self.gen_single_type_test(param_type=torch.float16) @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") def test_multi_device(self): devices = ("cuda:1", "cuda:0") for current_dev, tensor_dev in product(devices, devices): with torch.cuda.device(current_dev): torch.cuda.synchronize() self.gen_single_type_test(param_type=torch.float, device=tensor_dev) def test_multi_params(self): sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] tensors = [] for size in sizes: tensors.append(torch.rand(size, dtype=torch.float, device="cuda")) ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( tensors, self.options, self.tst_options ) for _ in range(self.iters): self.gen_grad(ref_param, tst_param) ref_optim.step() tst_optim.step() max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) self.assertLessEqual(max_abs_diff, self.max_abs_diff) self.assertLessEqual(max_rel_diff, self.max_rel_diff) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_optimizers/test_fused_novograd.py
import logging import unittest import torch from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer.pipeline_parallel import p2p_communication from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("apex").setLevel(logging.DEBUG) # [P2P Ops Involved in Pipeline Model Parallel forward/backward] # **forward_backward_pipelining_without_interleaving** # - send_forward / recv_forward # - send_backward / recv_backward # - send_forward_recv_backward # - send_backward_recv_forward # **forward_backward_pipelining_with_interleaving** # - send_backward_recv_backward # - recv_backward # - recv_forward # - send_forward_backward_recv_forward_backward # - send_forward_recv_forward class P2PCommTestBase: numel = 4 shape = (2, 2) dtype = torch.float32 @property def world_size(self): return min(2, torch.cuda.device_count()) def _init_model_parallel(self): parallel_state.initialize_model_parallel( tensor_model_parallel_size_=1, pipeline_model_parallel_size_=self.world_size, virtual_pipeline_model_parallel_size_=None, ) def create_tensor(self, value: int = None): return torch.tensor( [value] * self.numel).view(self.shape).to(device="cuda", dtype=self.dtype) # Brief: Simulate warm-up. # Brief: test `recv_forward` & `send_forward`. def test_no_interleaving_warmup(self): self.assertEqual(self.world_size, 2) self._init_model_parallel() input_tensor = None if parallel_state.is_pipeline_first_stage(): tensor = self.create_tensor(self.rank) print(tensor) p2p_communication.send_forward(output_tensor=tensor, tensor_shape=self.shape, dtype=self.dtype) else: input_tensor = p2p_communication.recv_forward(tensor_shape=self.shape, dtype=self.dtype) if parallel_state.is_pipeline_first_stage(): self.assertIsNone(input_tensor) else: expected_input_tensor = self.create_tensor(self.rank - 1) self.assertEqual(input_tensor, expected_input_tensor) # Brief: test `send_forward`, `send_forward_recv_forward`, and `recv_forward`. def test_send_forward_recv_forward(self): self._init_model_parallel() prev_tensor = None tensor = self.create_tensor(self.rank) if parallel_state.is_pipeline_first_stage(): p2p_communication.send_forward(output_tensor=tensor, tensor_shape=self.shape, dtype=self.dtype) elif parallel_state.is_pipeline_last_stage(): prev_tensor = p2p_communication.recv_forward(tensor_shape=self.shape, dtype=self.dtype) else: prev_tensor = p2p_communication.send_forward_recv_forward( output_tensor=tensor, recv_prev=True, tensor_shape=self.shape, dtype=self.dtype, ) if parallel_state.is_pipeline_first_stage(): self.assertIsNone(prev_tensor) else: expected_prev_tensor = self.create_tensor(self.rank - 1) self.assertEqual(prev_tensor, expected_prev_tensor) # Brief: test `send_backward`, `send_backward_recv_backward`, and `recv_backward`. def test_send_backward_recv_backward(self): self._init_model_parallel() tensor = self.create_tensor(self.rank) next_tensor = None if parallel_state.is_pipeline_first_stage(): next_tensor = p2p_communication.recv_backward(tensor_shape=self.shape, dtype=self.dtype) elif parallel_state.is_pipeline_last_stage(): p2p_communication.send_backward(input_tensor_grad=tensor, tensor_shape=self.shape, dtype=self.dtype) else: next_tensor = p2p_communication.send_backward_recv_backward( input_tensor_grad=tensor, recv_next=True, tensor_shape=self.shape, dtype=self.dtype, ) if parallel_state.is_pipeline_last_stage(): self.assertIsNone(next_tensor) else: expected_next_tensor = self.create_tensor(self.rank + 1) self.assertEqual(next_tensor, expected_next_tensor) # n.b.(mkozuki): Intentionally skip NCCL backend tests as I trust pytorch/pytorch repo. class UccP2PCommTest(P2PCommTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_p2p_comm.py
import subprocess import os from apex.transformer.testing.commons import TEST_SUCCESS_MESSAGE def run_gpt(cmd): args = list(cmd.split(" ")) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) outs, errs = p.communicate() outs = list(str((outs).decode("utf-8")).splitlines()) success = False runtime = 0 num_params = 0 for out in outs: out = str(out) if "Average Iteration Time:" in str(out): slicey = out[out.find(":") + 2 :] try: runtime = float(slicey) except: print(slicey) quit() if "Number of Parameters:" in str(out): slicey = out[out.find(":") + 2 :] try: num_params = int(slicey) except: print(slicey) quit() if str(out) == str(TEST_SUCCESS_MESSAGE): success = True return runtime, round(float(int(num_params)) / 10.0 ** 9, 3), success, errs def plot(runtimes): import matplotlib.pyplot as plt for distributed_setting in runtimes.keys(): plt.scatter( runtimes[distributed_setting].keys(), runtimes[distributed_setting].values(), label=distributed_setting, ) plt.legend() plt.xlabel("Parameters (Billions)") plt.ylabel("Training Iteration time (s)") plt.title(str("GPT Scaling w/ Offloading")) plt.savefig("offload_gpt_scaling.png") plt.close() if not os.path.exists("/my_workspace/"): os.system("mkdir /my_workspace/") os.system("cp *.png /my_workspace/") def main(): runtimes = {} nlist = ( list(range(2000, 10000, 2000)) + list(range(10000, 50000, 5000)) + list(range(50000, 100000, 10000)) ) print("N-List:", nlist) for data_parr, tens_parr, pipe_parr in [(8, 1, 1), (4, 2, 1), (2, 1, 4), (1, 2, 4)]: for offload in [True, False]: dist_setting = ( "ddp=" + str(data_parr) + ", tensor_parr=" + str(tens_parr) + ", pipe_parr=" + str(pipe_parr) + ", offload=" + str(offload) ) runtimes[dist_setting] = {} print("Beginning Testing for", dist_setting) for n in nlist: cmd = "python3 -m torch.distributed.launch --nproc_per_node=8 run_gpt_minimal_test.py" cmd += ( " --micro-batch-size 1 --num-layers " + str(n) + " --hidden-size 128 --num-attention-heads 16" ) cmd += ( " --max-position-embeddings 128 --seq-length 128 --tensor-model-parallel-size " + str(tens_parr) ) cmd += ( " --pipeline-model-parallel-size " + str(pipe_parr) + (" --cpu-offload" if offload else "") ) print(cmd) runtime, bill_params, success, errs = run_gpt(cmd) if success: runtimes[dist_setting][bill_params] = runtime print( str(runtime) + "s per training iter for", str(bill_params) + "B parameter GPT-2", ) if n >= 10000: plot(runtimes) else: print("GPT-2 w/", n, "layers failed using", dist_setting) print("Moving on to the next distributed setting...") print("#" * (25)) print() plot(runtimes) break print(runtimes) plot(runtimes) if __name__ == "__main__": main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/gpt_scaling_test.py
from typing import Tuple, List import torch import unittest from apex.transformer import parallel_state from apex.transformer.pipeline_parallel.utils import get_num_microbatches from apex.transformer.pipeline_parallel.schedules.common import ( _get_params_for_weight_decay_optimization, build_model ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_with_interleaving import ( _forward_backward_pipelining_with_interleaving, ) from apex.transformer.pipeline_parallel.utils import ( setup_microbatch_calculator, _reconfigure_microbatch_calculator, update_num_microbatches ) from apex.transformer.testing import global_vars from apex.transformer.testing.commons import ( print_separator, fwd_step_func, model_provider_func ) from apex.transformer.log_util import get_transformer_logger from apex.transformer._data import MegatronPretrainingRandomSampler, MegatronPretrainingSampler from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from torch.testing._internal import common_utils # note(mkozuki): To see warmup, steady, cooldown iterations, uncomment the line below # set_logging_level("INFO") _logger = get_transformer_logger("pipeline_parallel_test") # note(mkozuki): To see if local batch size increases, uncomment the line below # _logger.setLevel("INFO") NUM_ITERATIONS = 20 NUM_SAMPLES = 16384 // 2 HIDDEN_SIZE = 16 def Dataset(num_samples: int) -> List[Tuple[torch.Tensor, torch.Tensor]]: return [ ( torch.randn(HIDDEN_SIZE, HIDDEN_SIZE), torch.randn(HIDDEN_SIZE // 2, HIDDEN_SIZE // 2), ) for _ in range(num_samples) ] # Run forward & backward with dynamic batch size. def run_interleaved_with_dynamic_batch_size( pipeline_model_parallel_size: int, forward_only: bool, BatchSamplerCls, ) -> None: args = global_vars.get_args() _reconfigure_microbatch_calculator( args.rank, args.rampup_batch_size, args.global_batch_size, args.micro_batch_size, 1, # args.data_parallel_size, ) virtual_pipeline_model_parallel_size = 2 # NOTE (mkozuki): `virtual_pipeline_model_parallel_size` is a requisite for the interleaving scheduling # In megatron, `args.virtual_pipeline_model_parallel_size` is computed in megatron/arguments.py and # used ubiquitously but this test uses custom model so it's safe to abuse. parallel_state.initialize_model_parallel( 1, pipeline_model_parallel_size, virtual_pipeline_model_parallel_size ) pipeline_model_parallel_size = ( parallel_state.get_pipeline_model_parallel_world_size() ) print_separator( f"BatchSamplerCls: {BatchSamplerCls.__name__}, forward_only: {forward_only}" ) model = build_model( model_provider_func, wrap_with_ddp=True, virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size, hidden_size=HIDDEN_SIZE, ) assert isinstance(model, list) assert len(model) == virtual_pipeline_model_parallel_size optimizer = torch.optim.Adam( _get_params_for_weight_decay_optimization(model)) initial_local_minibatch_size = get_num_microbatches() * args.micro_batch_size dataset = Dataset(NUM_SAMPLES) data_loader = torch.utils.data.DataLoader( dataset, batch_sampler=BatchSamplerCls( NUM_SAMPLES, 0, initial_local_minibatch_size, parallel_state.get_data_parallel_rank(), parallel_state.get_data_parallel_world_size(), ), ) data_iter = iter(data_loader) def get_num_samples(batch): if isinstance(batch, torch.Tensor): return len(batch) assert isinstance(batch, (list, tuple)) return [get_num_samples(b) for b in batch] tensor_shape = [args.micro_batch_size, HIDDEN_SIZE, HIDDEN_SIZE] consumed_samples = 0 for i in range(NUM_ITERATIONS): update_num_microbatches(consumed_samples, consistency_check=False) local_batch_size = get_num_microbatches() * args.micro_batch_size data_iter._index_sampler.local_minibatch_size = local_batch_size local_mini_batch = next(data_iter) _logger.info( f"iter: {i} / {NUM_ITERATIONS} " f"local batchsize: {get_num_samples(local_mini_batch)} " f"consumed_samples: {consumed_samples} / {NUM_SAMPLES}" ) _forward_backward_pipelining_with_interleaving( fwd_step_func, local_mini_batch, model, forward_only=forward_only, tensor_shape=tensor_shape, ) consumed_samples += ( parallel_state.get_data_parallel_world_size() * get_num_microbatches() * args.micro_batch_size ) if not forward_only: for m in model: for p in m.parameters(): if p.grad is None: raise RuntimeError("grad not found") else: optimizer.zero_grad(set_to_none=True) torch.cuda.synchronize() class DynamicBatchsizeTestBase: @unittest.skipUnless(torch.cuda.device_count() > 2, "requires at least 3 gpus") def test_dynamic_batchsize(self): n_tests = 0 failures = [] override_args = { "micro_batch_size": 2, "num_layers": 16, "hidden_size": 256, "num_attention_heads": 8, "max_position_embeddings": 512, "seq_length": 512, "global_batch_size": 128, "use_cpu_initialization": True, "world_size": self.world_size, "rank": self.rank, } global_vars.set_global_variables( args_defaults={"global_batch_size": 512, "rampup_batch_size": [64, 64, 1000], }, ignore_unknown_args=True, override_args=override_args, ) args = global_vars.get_args() setup_microbatch_calculator( args.rank, args.rampup_batch_size, args.global_batch_size, args.micro_batch_size, 1, # args.data_parallel_size, ) for BatchSamplerCls in ( MegatronPretrainingSampler, MegatronPretrainingRandomSampler, ): for forward_only in (False, True): n_tests += 1 pipeline_model_parallel_size = self.world_size try: run_interleaved_with_dynamic_batch_size( pipeline_model_parallel_size, forward_only, BatchSamplerCls, ) except Exception as e: msg = ( f"\tforward_only: {forward_only}\n" f"pipeline rank: {parallel_state.get_pipeline_model_parallel_rank()}, " f"virtual pipeline rank: {parallel_state.get_virtual_pipeline_model_parallel_rank()}\n" f"{str(e)}" ) raise RuntimeError(msg) finally: parallel_state.destroy_model_parallel() if failures: print_separator("TEST FAILED:") print("\n".join(failures)) msg = f"{len(failures)} / {n_tests} cases failed" raise RuntimeError(msg) else: if torch.distributed.get_rank() == 0: print_separator("TEST RESULT: ### PASS!") class NcclDynamicBatchsizeTest(DynamicBatchsizeTestBase, NcclDistributedTestBase): pass # TODO: (Fuzzkatt) UCC still doesn't work with fwd_bwd_pipelining_with_interleaving if __name__ == "__main__": torch.backends.cuda.matmul.allow_tf32 = False common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_dynamic_batchsize.py
"""Test for fused softmax functions. Ref: https://github.com/NVIDIA/Megatron-LM/blob/40becfc96c4144985458ac0e0fae45dbb111fbd2/megatron/fused_kernels/tests/test_fused_kernels.py """ # NOQA import itertools import torch from torch.testing._internal import common_utils from apex.transformer import AttnMaskType from apex.transformer.functional import FusedScaleMaskSoftmax def attention_mask_func(attention_scores, attention_mask): return attention_scores.masked_fill(attention_mask, -10000.0) def forward_torch_softmax(input, mask, scale): input = input * scale mask_output = attention_mask_func(input, mask) if mask is not None else input probs = torch.nn.Softmax(dim=-1)(mask_output) all_k_masked = mask.all(axis=-1) zero_attention_mask = (1.0 - all_k_masked.float())[:, :, :, None] probs = probs * zero_attention_mask return probs autocast_dtypes = ( (torch.half, torch.bfloat16) if torch.cuda.is_bf16_supported() else (torch.half,) ) class TestFusedScaleMaskSoftmax(common_utils.TestCase): def _setup_fused_softmax( self, input_in_fp16, input_in_bf16, scale=None, softmax_in_fp32=False, attn_mask_type=AttnMaskType.padding, ): fused_fn = FusedScaleMaskSoftmax( input_in_fp16=input_in_fp16, input_in_bf16=input_in_bf16, mask_func=attention_mask_func, scale=scale, softmax_in_fp32=softmax_in_fp32, attn_mask_type=attn_mask_type, scaled_masked_softmax_fusion=True, ) torch_fn = FusedScaleMaskSoftmax( input_in_fp16=input_in_fp16, input_in_bf16=input_in_bf16, mask_func=attention_mask_func, scale=scale, softmax_in_fp32=softmax_in_fp32, attn_mask_type=attn_mask_type, scaled_masked_softmax_fusion=False, ) return fused_fn, torch_fn def tearDown(self) -> None: torch.cuda.empty_cache() super().tearDown() def test_fused_scale_mask_softmax(self): """ attention_scores.shape = [4, 12, 24, 24] mask.shape = [4, 1, 24, 24] """ for (dtype, scale, softmax_in_fp32, shape) in itertools.product( (torch.half, torch.bfloat16), (None, 2.0), (False, True), ((4, 12, 24, 24), (32, 12, 4, 214)) ): msg = f"{dtype}-{scale}-{softmax_in_fp32}" input_in_fp16 = dtype == torch.half input_in_bf16 = dtype == torch.bfloat16 if not (scale is None or softmax_in_fp32): with self.assertRaises(RuntimeError, msg=msg): self._setup_fused_softmax( input_in_fp16, input_in_bf16, scale, softmax_in_fp32, AttnMaskType.padding, ) return fused_fn, torch_fn = self._setup_fused_softmax( input_in_fp16, input_in_bf16, scale, softmax_in_fp32, AttnMaskType.padding, ) attention_scores_0 = ( torch.randn(shape) .to(device="cuda", dtype=dtype) .requires_grad_(True) ) with torch.no_grad(): attention_scores_1 = attention_scores_0.clone().requires_grad_(True) mask_shape = (shape[0],) + (1,) + shape[2:] mask = torch.randint(0, 2, mask_shape, device="cuda").bool() expected = fused_fn(attention_scores_0, mask) actual = torch_fn(attention_scores_1, mask) self.assertEqual(actual, expected, msg=msg) g0 = torch.rand_like(actual) with torch.no_grad(): g1 = g0.clone() expected.backward(g0) actual.backward(g1) def test_autocast_fused_scale_mask_softmax(self): for dtype in autocast_dtypes: msg = f"dtype: {dtype}" input_in_fp16 = dtype == torch.half input_in_bf16 = dtype == torch.bfloat16 fused_fn, torch_fn = self._setup_fused_softmax( input_in_fp16, input_in_bf16, attn_mask_type=AttnMaskType.padding ) attention_scores_0 = ( torch.randn((4, 12, 24, 24)).cuda().requires_grad_(True) ) with torch.no_grad(): attention_scores_1 = ( attention_scores_0.clone().to(dtype).requires_grad_(True) ) mask = torch.randint(0, 2, (4, 1, 24, 24)).bool().cuda() expected = torch_fn(attention_scores_1, mask) with torch.cuda.amp.autocast(dtype=dtype): actual = fused_fn(attention_scores_0, mask) self.assertEqual(actual.dtype, dtype, msg=msg) self.assertEqual(actual, expected, msg=msg) g0 = torch.rand_like(actual) with torch.no_grad(): g1 = g0.clone() expected.backward(g0) actual.backward(g1) def test_fused_scale_softmax(self): """ attention_scores.shape = [4, 12, 24, 24] mask = None """ for (dtype, scale, softmax_in_fp32, shape) in itertools.product( (torch.half, torch.bfloat16), (None, 2.0), (False, True), ((4, 12, 24, 24), (32, 12, 4, 214)) ): msg = f"{dtype}-{scale}-{softmax_in_fp32}" input_in_fp16 = dtype == torch.half input_in_bf16 = dtype == torch.bfloat16 if not (scale is None or softmax_in_fp32): with self.assertRaises(RuntimeError, msg=msg): self._setup_fused_softmax( input_in_fp16, input_in_bf16, scale, softmax_in_fp32, AttnMaskType.padding, ) return fused_fn, torch_fn = self._setup_fused_softmax( input_in_fp16, input_in_bf16, scale, softmax_in_fp32, AttnMaskType.padding, ) attention_scores_0 = ( torch.randn(shape) .to(device="cuda", dtype=dtype) .requires_grad_(True) ) with torch.no_grad(): attention_scores_1 = attention_scores_0.clone().requires_grad_(True) mask = None expected = fused_fn(attention_scores_0, mask) actual = torch_fn(attention_scores_1, mask) self.assertEqual(actual, expected, msg=msg) g0 = torch.rand_like(actual) with torch.no_grad(): g1 = g0.clone() expected.backward(g0) actual.backward(g1) def test_autocast_fused_scale_softmax(self): for dtype in autocast_dtypes: msg = f"dtype: {dtype}" input_in_fp16 = dtype == torch.half input_in_bf16 = dtype == torch.bfloat16 fused_fn, torch_fn = self._setup_fused_softmax( input_in_fp16, input_in_bf16, attn_mask_type=AttnMaskType.padding ) attention_scores_0 = ( torch.randn((4, 12, 24, 24)).cuda().requires_grad_(True) ) with torch.no_grad(): attention_scores_1 = ( attention_scores_0.clone().to(dtype).requires_grad_(True) ) mask = None expected = torch_fn(attention_scores_1, mask) with torch.cuda.amp.autocast(dtype=dtype): actual = fused_fn(attention_scores_0, mask) self.assertEqual(actual.dtype, dtype, msg=msg) self.assertEqual(actual, expected, msg=msg) g0 = torch.rand_like(actual) with torch.no_grad(): g1 = g0.clone() expected.backward(g0) actual.backward(g1) def test_fused_upper_triangle_mask_softmax(self): """ attn_weights.shape: [4, 12, 24, 24] total_mask.shape: [4, 1, 24, 24] total_mask[0, 0], a 24x24 matrix is like a lower triangular matrix, but upper elements are True and lower elements and diagonal are False. """ for (dtype, scale, softmax_in_fp32) in itertools.product( (torch.half, torch.bfloat16), (None, 2.0), (False, True), ): msg = f"{dtype}-{scale}-{softmax_in_fp32}" input_in_fp16 = dtype == torch.half input_in_bf16 = dtype == torch.bfloat16 if not (scale is None or softmax_in_fp32): with self.assertRaises(RuntimeError, msg=msg): self._setup_fused_softmax( input_in_fp16, input_in_bf16, scale, softmax_in_fp32, AttnMaskType.causal, ) return fused_fn, torch_fn = self._setup_fused_softmax( input_in_fp16, input_in_bf16, scale, softmax_in_fp32, AttnMaskType.causal, ) attn_weights_0 = ( torch.randn((4, 12, 24, 24)) .to(device="cuda", dtype=dtype) .requires_grad_(True) ) with torch.no_grad(): attn_weights_1 = attn_weights_0.clone().requires_grad_(True) total_mask = ( ~(torch.tril(torch.randn((24, 24), device="cuda")).bool()) .unsqueeze(0) .unsqueeze(0) ) total_mask = total_mask.repeat((4, 1, 1, 1)) expected = fused_fn(attn_weights_0, total_mask) actual = torch_fn(attn_weights_1, total_mask) self.assertEqual(actual, expected, msg=msg) g0 = torch.randn_like(actual) with torch.no_grad(): g1 = g0.clone() actual.backward(g0) expected.backward(g1) def test_autocast_fused_upper_triangle_mask_softmax(self): for dtype in autocast_dtypes: msg = f"dtype: {dtype}" input_in_fp16 = dtype == torch.half input_in_bf16 = dtype == torch.bfloat16 fused_fn, torch_fn = self._setup_fused_softmax( input_in_fp16, input_in_bf16, attn_mask_type=AttnMaskType.causal ) attn_weights_0 = ( torch.randn((4, 12, 24, 24)).cuda().requires_grad_(True) ) with torch.no_grad(): attn_weights_1 = ( attn_weights_0.clone().to(dtype).requires_grad_(True) ) total_mask = ( ~(torch.tril(torch.randn((24, 24), device="cuda")).bool()) .unsqueeze(0) .unsqueeze(0) ) with torch.cuda.amp.autocast(dtype=dtype): actual = fused_fn(attn_weights_0, total_mask) self.assertEqual(actual.dtype, dtype, msg=msg) expected = torch_fn(attn_weights_1, total_mask) self.assertEqual(actual, expected, msg=msg) g0 = torch.randn_like(actual) with torch.no_grad(): g1 = g0.clone() actual.backward(g0) expected.backward(g1) class TestGenericFusedSoftmaxKernel(common_utils.TestCase): def setUp(self): super().setUp() self.batch = 2 self.attn = 16 self.scale_t = 1.0 self.dtype = torch.float16 self.device = torch.cuda.current_device() self.thresh = {"atol": 1e-3, "rtol": 1e-3} qlen = [1, 2] klen = [1, 2, 3, 4, 5, 8, 10, 11, 13, 128, 256, 1200, 1234] available_cuda_mem = torch.cuda.memory.mem_get_info(self.device)[0] / (1024 ** 3) if available_cuda_mem > 40: qlen.extend([1234, 2322, 2348]) klen.extend([2048, 3123, 4096, 4128, 7234, 8192]) self.q_k_lens = itertools.product(qlen, klen) def tearDown(self) -> None: torch.cuda.empty_cache() super().tearDown() def test_forward(self, allmasked: bool=False): import generic_scaled_masked_softmax_cuda for qlen, klen in self.q_k_lens: inputs = torch.normal(0, 2, (self.batch, self.attn, qlen, klen), dtype=self.dtype, device=self.device) masks = ( torch.randint(0, 2, (self.batch, 1, qlen, klen), dtype=torch.bool, device=self.device) if not allmasked else torch.ones((self.batch, 1, qlen, klen), dtype=torch.bool, device=self.device) ) softmax_results = generic_scaled_masked_softmax_cuda.forward(inputs, masks, self.scale_t) softmax_results_torch = forward_torch_softmax(inputs, masks, self.scale_t) self.assertEqual( softmax_results_torch.to(self.dtype), softmax_results, **self.thresh, msg=f"(q, k) = ({qlen, klen})") def test_backward(self, allmasked: bool=False): import generic_scaled_masked_softmax_cuda for qlen, klen in self.q_k_lens: inputs = torch.normal(0, 2, (self.batch, self.attn, qlen, klen), dtype=self.dtype, device=self.device) backward = torch.rand_like(inputs, dtype=torch.float16, device=self.device) masks = ( torch.randint(0, 2, (self.batch, 1, qlen, klen), dtype=torch.bool, device=self.device) if not allmasked else torch.ones((self.batch, 1, qlen, klen), dtype=torch.bool, device=self.device) ) softmax_results = generic_scaled_masked_softmax_cuda.forward(inputs, masks, self.scale_t) back_grad = generic_scaled_masked_softmax_cuda.backward(backward, softmax_results, self.scale_t) inputs.requires_grad = True softmax_results_torch = forward_torch_softmax(inputs, masks, self.scale_t) softmax_results_torch.backward(backward) self.assertEqual(back_grad, inputs.grad, **self.thresh, msg=f"(q, k) = ({qlen, klen})") def test_allmasked(self): self.test_forward(True) def test_allmask_backward(self): self.test_backward(True) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_fused_softmax.py
import logging from typing import Tuple import torch import torch.nn.functional as F from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer import tensor_parallel from apex.transformer.tensor_parallel import cross_entropy from apex.transformer.testing.commons import set_random_seed, IdentityLayer from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("apex").setLevel(logging.WARNING) def torch_cross_entropy( batch_size: int, seq_length: int, vocab_size: int, logits_scale: float, seed: int, label_smoothing: float = 0.0 ) -> Tuple[torch.Tensor, torch.Tensor]: set_random_seed(seed) identity = IdentityLayer( (batch_size, seq_length, vocab_size), scale=logits_scale ).cuda() logits = identity() target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size) loss = ( F.cross_entropy( logits.view(-1, logits.size()[-1]), target.view(-1), reduction="none", label_smoothing=label_smoothing ) .view_as(target) .mean() ) loss.backward() return loss, identity.weight.grad def tensor_sharded_cross_entropy( batch_size, seq_length, vocab_size, logits_scale, seed, label_smoothing=0.0 ): set_random_seed(seed) identity = IdentityLayer( (batch_size, seq_length, vocab_size), scale=logits_scale ).cuda() logits = identity() logits_parallel = tensor_parallel.scatter_to_tensor_model_parallel_region(logits) target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size) logits_parallel_ = logits_parallel.clone().detach() loss = cross_entropy.vocab_parallel_cross_entropy(logits_parallel, target, label_smoothing=label_smoothing).mean() loss.backward() # check for mutation assert torch.equal(logits_parallel_, logits_parallel) return loss, identity.weight.grad class VocabParallelCrossEntropyTestBase: def test_cross_entropy(self): batch_size, sequence_length, vocab_size_per_partition = 13, 17, 11 logits_scale = 1000.0 seed = 1234 for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, ) vocab_size = vocab_size_per_partition * tensor_model_parallel_world_size loss_torch, grad_torch = torch_cross_entropy( batch_size, sequence_length, vocab_size, logits_scale, seed ) ( loss_tensor_parallel, grad_tensor_parallel, ) = tensor_sharded_cross_entropy( batch_size, sequence_length, vocab_size, logits_scale, seed ) self.assertEqual( loss_torch, loss_tensor_parallel, msg=f"tensor_model_parallel_size: {tensor_model_parallel_world_size}", ) self.assertEqual( grad_torch, grad_tensor_parallel, msg=f"tensor_model_parallel_size: {tensor_model_parallel_world_size}", ) parallel_state.destroy_model_parallel() class NcclVocabParallelCrossEntropyTest(VocabParallelCrossEntropyTestBase, NcclDistributedTestBase): pass class UccVocabParallelCrossEntropyTest(VocabParallelCrossEntropyTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_cross_entropy.py