python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
from functools import partial from typing import List import time import torch import unittest from apex.transformer._ucc_util import HAS_UCC from apex.transformer import parallel_state from apex.transformer.enums import ModelType from apex.transformer.tensor_parallel import model_parallel_cuda_manual_seed from apex.transformer.pipeline_parallel.utils import ( average_losses_across_data_parallel_group, unwrap_model, setup_microbatch_calculator, get_ltor_masks_and_position_ids ) from apex.transformer.pipeline_parallel.schedules.common import ( _get_params_for_weight_decay_optimization, build_model ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_without_interleaving import ( forward_backward_pipelining_without_interleaving, ) from apex.transformer.testing.standalone_gpt import gpt_model_provider from apex.transformer.testing import global_vars from apex.transformer.testing.distributed_test_base import UccDistributedTestBase, NcclDistributedTestBase from torch.testing._internal import common_utils from torch.testing._internal.common_device_type import instantiate_device_type_tests class GptTestBase: def _download_fancy_data(self): text = """ An original sentence not subject to any license restrictions, copyright, or royalty payments. Nothing to see here. Commercial or non-commercial use. Research or non-research purposes. The quick brown fox jumps over the lazy dog. Lorem ipsum. """ text = text * 1024 encoded = text.encode("ascii", "replace") ints = [int(encoded[i]) for i in range(len(encoded))] return torch.tensor(ints) # build a batch given sequence_len and batch size def _generate_fancy_data_labels(self, sequence_len, batch_size): temps = list() for i in range(batch_size): if self.inds is None or self.data_idx >= len(self.inds): # hack as use of RNG will fall out of sync due to pipelines being different model_parallel_cuda_manual_seed(self.MANUAL_SEED) self.inds = torch.randperm(effective_length, device="cuda") self.MANUAL_SEED += 1 self.data_idx = 0 data_idx_ = self.data_idx offset = self.inds[data_idx_] self.data_idx += 1 curr = fancy_data[offset: offset + sequence_len + 1].clone().detach() temps.append(curr) temp = torch.stack(temps, dim=0).cuda() return temp def _get_batch(self, int_tensors: List[torch.Tensor]): data = int_tensors[0] # Unpack. tokens_ = data.long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and position ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, self.N_VOCAB, # tokenizer.eod, False, # args.reset_position_ids, False, # args.reset_attention_mask, False, # args.eod_mask_loss, ) return tokens, labels, loss_mask, attention_mask, position_ids # Ref: https://github.com/NVIDIA/Megatron-LM/blob/b31e1296354e979722627a6c4dedafe19b51fa97/pretrain_gpt.py#L75 def _loss_func(self, loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # Reduce loss for logging. averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {"lm loss": averaged_loss[0]} # Ref: https://github.com/NVIDIA/Megatron-LM/blob/b31e1296354e979722627a6c4dedafe19b51fa97/pretrain_gpt.py#L86 def _fwd_step_func(self, batch, model): """Forward step.""" tokens, labels, loss_mask, attention_mask, position_ids = self._get_batch( batch) output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(self._loss_func, loss_mask) def _train(self, model, optim, pipeline_model_parallel_size, async_comm): args = global_vars.get_args() fwd_bwd_func = forward_backward_pipelining_without_interleaving tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size) runtime = 0 # training loop for i in range(3): since = time.time() if torch.distributed.get_rank() == 0: print("begin iter", i) batch = [ self._generate_fancy_data_labels( args.seq_length, args.global_batch_size) for _ in range(pipeline_model_parallel_size) ] if torch.distributed.get_rank() == 0: print("finished making batch...") optim.zero_grad() fwd_bwd_func( self._fwd_step_func, batch, model, forward_only=False, tensor_shape=tensor_shape, async_comm=async_comm, sequence_parallel_enabled=args.sequence_parallel, ) if torch.distributed.get_rank() == 0: print("finished forward step") # All-reduce layernorm parameters across model parallel nodes # when sequence parallelism is used if parallel_state.get_tensor_model_parallel_world_size() > 1 and global_vars.get_args().sequence_parallel: for model_module in model: unwrapped_model = unwrap_model(model_module) for param in unwrapped_model.parameters(): if getattr(param, 'sequence_parallel_enabled', False): grad = param.grad torch.distributed.all_reduce( grad, group=parallel_state.get_tensor_model_parallel_group()) optim.step() if torch.distributed.get_rank() == 0: print("finished iter", i) runtime += time.time() - since return runtime / 3.0 @unittest.skipUnless(torch.cuda.device_count() > 2, "requires at least 3 gpus") def test_gpt(self): self.MANUAL_SEED = 42 self.inds = None self.data_idx = 0 self.N_VOCAB = 128 init = True tensor_model_parallel_size = 2 if self.world_size % 2 == 0 and self.world_size >= 4 else 1 pipeline_model_parallel_size = self.world_size // tensor_model_parallel_size override_args = { "micro_batch_size": 2, "num_layers": 16, "hidden_size": 256, "num_attention_heads": 8, "max_position_embeddings": 512, "seq_length": 512, "global_batch_size": 128, "pipeline_model_parallel_size": pipeline_model_parallel_size, "tensor_model_parallel_size": tensor_model_parallel_size, "world_size": self.world_size, "rank": self.rank, } global_vars.set_global_variables(override_args=override_args, ignore_unknown_args=True) args = global_vars.get_args() for async_comm in (False,) if args.sequence_parallel else (False, True): global fancy_data global effective_length if init: init = False fancy_data = self._download_fancy_data() args = global_vars.get_args() args.model_type = ModelType.encoder_or_decoder effective_length = fancy_data.size(0) // args.seq_length effective_length = fancy_data.size(0) - args.seq_length args.padded_vocab_size = 128 setup_microbatch_calculator( args.rank, args.rampup_batch_size, args.global_batch_size, args.micro_batch_size, args.data_parallel_size, ) print(args.tensor_model_parallel_size, "MODEL PARALLEL SIZE") parallel_state.initialize_model_parallel( tensor_model_parallel_size_=args.tensor_model_parallel_size, pipeline_model_parallel_size_=args.pipeline_model_parallel_size, default_backend="nccl", p2p_backend=self.DISTRIBUTED_BACKEND, ) model_parallel_cuda_manual_seed(0) model = build_model( gpt_model_provider, wrap_with_ddp=parallel_state.get_data_parallel_world_size() > 1, virtual_pipeline_model_parallel_size=None, cpu_offload=args.cpu_offload, ) assert isinstance(model, list), model _param_groups = _get_params_for_weight_decay_optimization(model) optim = torch.optim.Adam(_param_groups) runtime = self._train( model, optim, args.pipeline_model_parallel_size, async_comm) parallel_state.destroy_model_parallel() torch.cuda.synchronize() class NcclGptTest(GptTestBase, NcclDistributedTestBase): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) @unittest.skipUnless(HAS_UCC, "requires pytorch to be built with native ucc") class UccGptTest(GptTestBase, UccDistributedTestBase): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_gpt_minimal.py
import torch from torch.testing._internal import common_utils from torch.utils.data import Dataset from torch.utils.data import DataLoader from apex.transformer.pipeline_parallel.utils import _split_batch_into_microbatch as split_batch_into_microbatch class MyIterableDataset(Dataset): def __init__(self, start, end): super().__init__() assert end > start, "this example code only works with end >= start" self.start = start self.end = end self.samples = list(range(self.start, self.end)) def __iter__(self): return iter(range(self.start, self.end)) def __getitem__(self, index): return self.samples[index] class MegatronPretrainingRandomSampler: def __init__(self, total_samples, consumed_samples, micro_batch_size, data_parallel_rank, data_parallel_size): # Keep a copy of input params for later use. self.total_samples = total_samples self.consumed_samples = consumed_samples self.micro_batch_size = micro_batch_size self.data_parallel_rank = data_parallel_rank self.data_parallel_size = data_parallel_size self.micro_batch_times_data_parallel_size = \ self.micro_batch_size * data_parallel_size self.last_batch_size = \ self.total_samples % self.micro_batch_times_data_parallel_size # Sanity checks. assert self.total_samples > 0, \ 'no sample to consume: {}'.format(self.total_samples) assert self.micro_batch_size > 0 assert data_parallel_size > 0 assert self.data_parallel_rank < data_parallel_size, \ 'data_parallel_rank should be smaller than data size: {}, ' \ '{}'.format(self.data_parallel_rank, data_parallel_size) def __len__(self): return self.total_samples def __iter__(self): active_total_samples = self.total_samples - self.last_batch_size self.epoch = self.consumed_samples // active_total_samples current_epoch_samples = self.consumed_samples % active_total_samples assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0 # data sharding and random sampling bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) * self.micro_batch_size bucket_offset = current_epoch_samples // self.data_parallel_size start_idx = self.data_parallel_rank * bucket_size g = torch.Generator() g.manual_seed(self.epoch) random_idx = torch.randperm(bucket_size, generator=g).tolist() idx_range = [start_idx + x for x in random_idx[bucket_offset:]] batch = [] # Last batch if not complete will be dropped. for idx in idx_range: batch.append(idx) if len(batch) == self.micro_batch_size: self.consumed_samples += self.micro_batch_times_data_parallel_size yield batch batch = [] # Samples 8 tensors in total. # First sample 4 tensors twice, then sample 2 tensors fourth. class TestBatchSamplerBehavior(common_utils.TestCase): def tearDown(self) -> None: torch.cuda.empty_cache() super().tearDown() def test_batch_sampler_behavior(self): dataset = MyIterableDataset(0, 100) for num_workers in (1, 2, 4): torch.manual_seed(42) loader = DataLoader(dataset, batch_sampler=MegatronPretrainingRandomSampler(100, 0, 4, 0, 1), num_workers=num_workers) samples = [] for i, batch in enumerate(loader): samples.append(batch) if i == 2 - 1: break torch.manual_seed(42) loader = DataLoader(dataset, batch_sampler=MegatronPretrainingRandomSampler(100, 0, 2, 0, 1), num_workers=num_workers) samples2 = [] for i, batch in enumerate(loader): samples2.append(batch) if i == 4 - 1: break self.assertEqual(torch.cat(samples), torch.cat(samples2), msg=f"num_workers={num_workers}") def test_split_batch(self): class MyIterableDataset(Dataset): def __init__(self, start, end): super().__init__() assert end > start, "this example code only works with end >= start" self.start = start self.end = end self.samples = list(range(self.start, self.end)) def __len__(self): return self.end - self.start def __iter__(self): return iter(range(self.start, self.end)) def __getitem__(self, index): return (torch.tensor([index, index]), torch.tensor([index // 2, index // 2])) dataset = MyIterableDataset(0, 100) torch.manual_seed(42) global_batch_size = 16 loader = DataLoader(dataset, batch_sampler=MegatronPretrainingRandomSampler(100, 0, global_batch_size, 0, 1), num_workers=2) batch = next(iter(loader)) for _micro_batch_size in (1, 2, 4, 8): microbatches = list(split_batch_into_microbatch( batch, _micro_batch_size=_micro_batch_size, _global_batch_size=global_batch_size, )) self.assertEqual(len(microbatches), global_batch_size // _micro_batch_size) self.assertEqual(len(microbatches[0][0]), _micro_batch_size) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_batch_sampler.py
import logging import unittest import typing import torch import torch.nn as nn from torch.testing._internal import common_utils from apex.transformer import parallel_state from apex.transformer.tensor_parallel import layers from apex.transformer.testing.commons import set_random_seed from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("torch").setLevel(logging.WARNING) logging.getLogger("apex").setLevel(logging.WARNING) # N.B.(mkozuki): Disable TF32 matrix multiply. # Matrices used in this test are so small that TF32 matmul # can be less precise so that `self.assertEqual` raises. torch.backends.cuda.matmul.allow_tf32 = False class TensorParallelLayerTestBase: BATCH_SIZE: int = 8 SEQUENCE_LENGTH: int = 128 VOCAB_SIZE: int = 1024 HIDDEN_SIZE: int = 256 INPUT_SIZE_COEFF: int = 256 OUTPUT_SIZE_COEFF: int = 256 SEED: int = 123456 @property def tensor_shape(self) -> typing.Sequence[int]: return [self.SEQUENCE_LENGTH, self.BATCH_SIZE, self.HIDDEN_SIZE] @torch.no_grad() @unittest.skipIf(torch.cuda.device_count() < 2, "Requires >=2 GPUs") def test_all_gather_parity(self) -> None: if self.DISTRIBUTED_BACKEND == "ucc": self.skipTest("torch_ucc does NOT support `torch.distributed._all_gather_base` as of 2022/06/15") from torch.distributed.distributed_c10d import all_gather, _all_gather_base # NOQA for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, ) tensor_model_parallel_rank = parallel_state.get_tensor_model_parallel_rank() cur_tensor_model_device = torch.device(f"cuda:{tensor_model_parallel_rank}") with torch.no_grad(): tensor = tensor_model_parallel_rank * torch.ones( self.tensor_shape, dtype=torch.float32, device=cur_tensor_model_device) numel = tensor.numel() numel_gathered = tensor_model_parallel_world_size * numel gathered = torch.empty( torch.Size((numel_gathered,)), device=cur_tensor_model_device, dtype=torch.float32, requires_grad=False, ) chunks = [ gathered[i * numel : (i + 1) * numel] for i in range(tensor_model_parallel_world_size) ] all_gather(chunks, tensor, group=parallel_state.get_tensor_model_parallel_group()) gathered_for_base = torch.empty( torch.Size((numel_gathered,)), device=cur_tensor_model_device, dtype=torch.float32, requires_grad=False, ) _all_gather_base( gathered_for_base, tensor, group=parallel_state.get_tensor_model_parallel_group(), ) msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" self.assertEqual(gathered, gathered_for_base, msg=msg) parallel_state.destroy_model_parallel() @torch.no_grad() @unittest.skipIf(torch.cuda.device_count() < 2, "Requires >=2 GPUs") def test_reduce_scatter_parity(self) -> None: if self.DISTRIBUTED_BACKEND == "ucc": self.skipTest("torch_ucc does NOT support `torch.distributed._reduce_scatter_base` as of 2022/06/15") from torch.distributed.distributed_c10d import reduce_scatter, _reduce_scatter_base # NOQA for tensor_model_parallel_world_size in range(2, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, ) tensor_model_parallel_rank = parallel_state.get_tensor_model_parallel_rank() cur_tensor_model_device = torch.device(f"cuda:{tensor_model_parallel_rank}") with torch.no_grad(): input = torch.cat([ i * torch.ones(self.tensor_shape, dtype=torch.float32, device=cur_tensor_model_device) for i in range(tensor_model_parallel_world_size) ]) input_list = [t.clone() for t in input.chunk(tensor_model_parallel_world_size)] output = torch.empty( self.tensor_shape, device=cur_tensor_model_device, dtype=torch.float32, requires_grad=False, ) reduce_scatter( output, input_list, group=parallel_state.get_tensor_model_parallel_group(), ) output_for_base = torch.empty( self.tensor_shape, device=cur_tensor_model_device, dtype=torch.float32, requires_grad=False, ) _reduce_scatter_base( output_for_base, input, group=parallel_state.get_tensor_model_parallel_group(), ) msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" self.assertEqual(output, output_for_base, msg=msg) self.assertEqual(input, torch.cat(input_list), msg=msg) parallel_state.destroy_model_parallel() def test_parallel_embedding(self) -> None: for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, ) set_random_seed(self.SEED + 1) input_tensor = torch.randint( 0, self.VOCAB_SIZE, ( self.BATCH_SIZE, self.SEQUENCE_LENGTH, ), device="cuda", ) loss_weight = torch.randn( ( self.BATCH_SIZE, self.SEQUENCE_LENGTH, self.HIDDEN_SIZE, ), device="cuda", ) set_random_seed(self.SEED) embedding_torch = nn.Embedding( self.VOCAB_SIZE, self.HIDDEN_SIZE, ).cuda() output_torch = embedding_torch(input_tensor) loss_torch = torch.mul(output_torch, loss_weight).sum() loss_torch.backward() # N.B.(mkozuki): With affine weight initialization on GPU, # it's super difficult to keep the consistency with nn.Embedding. # Thus, turning on `use_cpu_initialization`. set_random_seed(self.SEED) embedding_vocab_parallel = layers.VocabParallelEmbedding( self.VOCAB_SIZE, self.HIDDEN_SIZE, init_method=nn.init.normal_, use_cpu_initialization=True, ).cuda() output_vocab_parallel = embedding_vocab_parallel(input_tensor) loss_vocab_parallel = torch.mul( output_vocab_parallel, loss_weight ).sum() loss_vocab_parallel.backward() msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" self.assertEqual(output_torch, output_vocab_parallel, msg=msg) self.assertEqual(loss_torch, loss_vocab_parallel, msg=msg) splitted_weight_torch = torch.split( embedding_torch.weight.grad, self.VOCAB_SIZE // tensor_model_parallel_world_size, 0, )[parallel_state.get_tensor_model_parallel_rank()] self.assertEqual( splitted_weight_torch, embedding_vocab_parallel.weight.grad, msg=msg, ) parallel_state.destroy_model_parallel() def _affine_weight_init_test_impl( self, init_device: str, is_column_parallel: bool ) -> None: dim = int(not is_column_parallel) for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size ) input_size: int = self.INPUT_SIZE_COEFF * tensor_model_parallel_world_size output_size: int = self.OUTPUT_SIZE_COEFF * tensor_model_parallel_world_size weight_shape = ( (self.OUTPUT_SIZE_COEFF, input_size) if is_column_parallel else (output_size, self.INPUT_SIZE_COEFF) ) weight = torch.empty(weight_shape) set_random_seed(self.SEED) sharding_dim_size = ( self.OUTPUT_SIZE_COEFF if is_column_parallel else self.INPUT_SIZE_COEFF ) if init_device == "cpu": layers._initialize_affine_weight_cpu( weight, output_size, input_size, sharding_dim_size, dim, nn.init.normal_, params_dtype=torch.float32, ) else: layers._initialize_affine_weight_gpu( weight, torch.nn.init.normal_, dim ) # Target set_random_seed(self.SEED) if init_device == "cpu": main_weight = torch.empty(output_size, input_size) nn.init.normal_(main_weight) curr_weight = torch.split(main_weight, sharding_dim_size, dim=dim)[ parallel_state.get_tensor_model_parallel_rank() ] else: curr_weight = torch.empty(*weight_shape) nn.init.normal_(curr_weight) self.assertEqual( curr_weight, weight, msg=f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}") parallel_state.destroy_model_parallel() def test_affine_weight_init_column_parallel_cpu(self) -> None: self._affine_weight_init_test_impl(init_device="cpu", is_column_parallel=True) def test_affine_weight_init_column_parallel_gpu(self) -> None: self._affine_weight_init_test_impl(init_device="gpu", is_column_parallel=True) def test_affine_weight_init_row_parallel_cpu(self) -> None: self._affine_weight_init_test_impl(init_device="cpu", is_column_parallel=False) def test_affine_weight_init_row_parallel_gpu(self) -> None: self._affine_weight_init_test_impl(init_device="gpu", is_column_parallel=False) def test_row_parallel_linear(self) -> None: self._row_parallel_linear_test_impl(False, False, False) def test_row_parallel_linear_gradient_accumulation_fusion(self) -> None: self._row_parallel_linear_test_impl(True, False, False) def test_row_parallel_linear_gradient_accumulation_fusion_in_fp16(self) -> None: self._row_parallel_linear_test_impl(True, True, False) # fails on native ucc and torch ucc: ucc does not support reduce scatter @unittest.skipIf(torch.cuda.device_count() < 2, "Sequence Parallel requires >=2 GPUs") def test_row_parallel_linear_sequence_parallel(self) -> None: self._row_parallel_linear_test_impl(False, False, True) # TODO(mkozuki): Merge this with `_column_parallel_linear_test_impl` # Note that `input_is_parallel` is unique to `RowParallelLinear` which could make the merge complicated. def _row_parallel_linear_test_impl( self, gradient_accumulation_fusion: bool, accumulation_in_fp16: bool, sequence_parallel_enabled: bool, ) -> None: tensor_shape = ( self.SEQUENCE_LENGTH, self.BATCH_SIZE, self.HIDDEN_SIZE, ) for tensor_model_parallel_world_size in range( 1 + int(sequence_parallel_enabled), self.world_size + 1 ): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, ) set_random_seed(self.SEED) linear = layers.RowParallelLinear( self.HIDDEN_SIZE, self.HIDDEN_SIZE, keep_master_weight_for_test=True, params_dtype=torch.float32, use_cpu_initialization=True, gradient_accumulation_fusion=gradient_accumulation_fusion, accumulation_in_fp16=accumulation_in_fp16, sequence_parallel_enabled=sequence_parallel_enabled, # n.b.(mkozuki): RowParallelLinear is constructed with `input_is_parallel=True` # by default, e.g. https://github.com/NVIDIA/NeMo/blob/782b4e1652aaa43c8be390d9\ # db0dc89544afa080/nemo/collections/nlp/modules/common/megatron/transformer.py#L204 input_is_parallel=True, ).cuda() if accumulation_in_fp16: linear = linear.half() # Simulate the situation where fusion of weight grad calculation and gradient accumulation is enabled. if gradient_accumulation_fusion: with torch.no_grad(): linear.weight.main_grad = torch.zeros_like(linear.weight) msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" with torch.no_grad(): orig_input_tensor = torch.randn(tensor_shape, requires_grad=True, device="cuda") orig_loss_weight = torch.randn(tensor_shape, device="cuda") input_tensor = orig_input_tensor.chunk( chunks=tensor_model_parallel_world_size, dim=2, )[parallel_state.get_tensor_model_parallel_rank()].contiguous() if sequence_parallel_enabled: loss_weight = orig_loss_weight.chunk( chunks=tensor_model_parallel_world_size, dim=0, )[parallel_state.get_tensor_model_parallel_rank()] else: loss_weight = orig_loss_weight if accumulation_in_fp16: orig_input_tensor = orig_input_tensor.half() input_tensor = input_tensor.half() loss_weight = loss_weight.half() input_tensor.requires_grad_() output, _ = linear(input_tensor) loss = torch.mul(output, loss_weight).sum() loss.backward() self.assertIsNotNone(input_tensor.grad, msg=msg) ref_linear = nn.Linear( in_features=self.HIDDEN_SIZE, out_features=self.HIDDEN_SIZE, bias=False, device="cuda", ) with torch.no_grad(): dldy = orig_loss_weight.clone() x = orig_input_tensor.clone() ref_linear.weight.copy_(linear.master_weight) if accumulation_in_fp16: ref_linear = ref_linear.half() x.requires_grad_() expected_output = ref_linear(x) expected_loss = torch.mul(expected_output, dldy).sum() expected_loss.backward() if not accumulation_in_fp16: if sequence_parallel_enabled: self.assertEqual( x=output, y=expected_output.chunk( chunks=tensor_model_parallel_world_size, dim=0, )[parallel_state.get_tensor_model_parallel_rank()], msg=msg, ) else: self.assertEqual( x=output, y=expected_output, msg=msg, ) grad_attr_name = "main_grad" if gradient_accumulation_fusion else "grad" # NOTE(mkozuki): Numerical errors seems to be enlarged by tensor model parallel. if tensor_model_parallel_world_size == 1: self.assertEqual( x=getattr(linear.weight, grad_attr_name), y=ref_linear.weight.grad.chunk( chunks=tensor_model_parallel_world_size, dim=0, )[parallel_state.get_tensor_model_parallel_rank()], msg=msg, ) parallel_state.destroy_model_parallel() def test_column_parallel_linear(self): self._column_parallel_linear_test_impl(False, False, False, False) def test_column_parallel_linear_async(self): self._column_parallel_linear_test_impl(True, False, False, False) def test_column_parallel_linear_gradient_accumulation_fusion(self): self._column_parallel_linear_test_impl(False, True, False, False) def test_column_parallel_linear_gradient_accumulation_fusion_in_fp16(self): self._column_parallel_linear_test_impl(False, True, True, False) def test_column_parallel_linear_sequence_parallel(self): if self.DISTRIBUTED_BACKEND == "ucc": self.skipTest("Backward's reduce_scatter fails. as of 2022/06/15") self._column_parallel_linear_test_impl(False, False, False, True) @unittest.skipIf(torch.cuda.device_count() < 2, "Sequence Parallel requires >= 2 GPUs") def test_column_parallel_linear_exception(self): with self.assertRaisesRegex( RuntimeError, "`async_tensor_model_parallel_allreduce` and `sequence_parallel_enabled` cannot be enabled at the same time.", ): self._column_parallel_linear_test_impl(True, False, False, True) def _column_parallel_linear_test_impl( self, async_tensor_model_parallel_allreduce: bool, gradient_accumulation_fusion: bool, accumulation_in_fp16: bool, sequence_parallel_enabled: bool, ): for tensor_model_parallel_world_size in range(1, self.world_size + 1): if async_tensor_model_parallel_allreduce and sequence_parallel_enabled: if tensor_model_parallel_world_size == 1: continue if self.world_size % tensor_model_parallel_world_size: continue msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, ) input_tensor_shape = self.tensor_shape expected_output_shape = self.tensor_shape # When sequence parallel, `gather_output` is disabled, i.e., # output of matmul isn't gathered in dimension of feature/hidden (last dim). if sequence_parallel_enabled: expected_output_shape[-1] //= tensor_model_parallel_world_size # tensor's shape is [sequence length, batch size, hidden size] set_random_seed(self.SEED) linear = layers.ColumnParallelLinear( self.HIDDEN_SIZE, self.HIDDEN_SIZE, bias=False, keep_master_weight_for_test=True, params_dtype=torch.float32, use_cpu_initialization=True, gather_output=not sequence_parallel_enabled, no_async_tensor_model_parallel_allreduce=not async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, accumulation_in_fp16=accumulation_in_fp16, sequence_parallel_enabled=sequence_parallel_enabled, ).cuda() if accumulation_in_fp16: linear = linear.half() # Simulate the situation where fusion of weight grad calculation and gradient accumulation happens. if gradient_accumulation_fusion: with torch.no_grad(): linear.weight.main_grad = torch.zeros_like(linear.weight) orig_input_tensor = torch.randn(input_tensor_shape, device="cuda", requires_grad=True) if accumulation_in_fp16: orig_input_tensor = orig_input_tensor.half() if sequence_parallel_enabled: input_tensor = list( orig_input_tensor.chunk(tensor_model_parallel_world_size, dim=0) )[parallel_state.get_tensor_model_parallel_rank()] else: input_tensor = orig_input_tensor output, _ = linear(input_tensor) # The order of dimension is expected to be (sequence, batch, hidden) self.assertEqual(output.shape, expected_output_shape, msg=msg) orig_loss_weight = torch.randn(input_tensor_shape, device="cuda") if accumulation_in_fp16: orig_loss_weight = orig_loss_weight.half() if sequence_parallel_enabled: loss_weight = orig_loss_weight.chunk( tensor_model_parallel_world_size, dim=2, )[parallel_state.get_tensor_model_parallel_rank()] else: loss_weight = orig_loss_weight loss = torch.mul(output, loss_weight).sum() loss.backward() with torch.no_grad(): dldy = orig_loss_weight.clone() x = orig_input_tensor.clone() ref_linear = nn.Linear( in_features=self.HIDDEN_SIZE, out_features=self.HIDDEN_SIZE, bias=False, device="cuda", ) if accumulation_in_fp16: ref_linear = ref_linear.half() # NOTE(mkozuki): `master_weight` is available because `keep_master_weight_for_test` is set. ref_linear.weight.copy_(linear.master_weight) x.requires_grad_() expected_output = ref_linear(x) if sequence_parallel_enabled: chunk = expected_output.chunk( tensor_model_parallel_world_size, dim=2, )[parallel_state.get_tensor_model_parallel_rank()] self.assertEqual( x=output, y=chunk, msg=msg, ) else: self.assertEqual( x=output, y=expected_output, msg=msg, ) expected_loss = torch.mul(expected_output, dldy).sum() expected_loss.backward() grad_attr_name = "main_grad" if gradient_accumulation_fusion else "grad" # NOTE(mkozuki): Numerical errors seems to be enlarged by tensor model parallel. if tensor_model_parallel_world_size == 1: self.assertEqual( x=getattr(linear.weight, grad_attr_name), y=ref_linear.weight.grad.chunk( chunks=tensor_model_parallel_world_size, dim=0, )[parallel_state.get_tensor_model_parallel_rank()], msg=msg, ) parallel_state.destroy_model_parallel() class NcclTensorParallelLayerTest(TensorParallelLayerTestBase, NcclDistributedTestBase): pass class UccTensorParallelLayerTest(TensorParallelLayerTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_layers.py
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/__init__.py
import logging from typing import List, Optional from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer.pipeline_parallel.utils import ( _reconfigure_microbatch_calculator, get_micro_batch_size, get_num_microbatches, get_current_global_batch_size, update_num_microbatches, ) from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("apex").setLevel(logging.WARNING) class MicrobatchCalculatorTestBase: GLOBAL_BATCH_SIZE: int = 1024 MICRO_BATCH_SIZE: int = 1 def _test(self, rampup_batch_size: Optional[List[int]]) -> None: for data_parallel_size in range(1, self.world_size + 1): expected_global_batch_size = self.GLOBAL_BATCH_SIZE expected_micro_batch_size = self.MICRO_BATCH_SIZE if rampup_batch_size: expected_global_batch_size = rampup_batch_size[0] num_consumed_samples = 0 step_of_global_batch_size = rampup_batch_size[1] threshold = rampup_batch_size[2] if data_parallel_size > 1 and data_parallel_size % 2 != 0: continue if self.world_size % data_parallel_size != 0: continue msg = f"data_parallel_size: {data_parallel_size}" parallel_state.initialize_model_parallel( tensor_model_parallel_size_=self.world_size // data_parallel_size, pipeline_model_parallel_size_=1, ) self.assertEqual(data_parallel_size, parallel_state.get_data_parallel_world_size(), msg=msg) _reconfigure_microbatch_calculator( self.rank, rampup_batch_size, self.GLOBAL_BATCH_SIZE, self.MICRO_BATCH_SIZE, data_parallel_size, ) self.assertEqual(get_micro_batch_size(), expected_micro_batch_size, msg=msg) self.assertEqual(get_num_microbatches(), expected_global_batch_size / expected_micro_batch_size / data_parallel_size, msg=msg) current_global_batch_size = get_current_global_batch_size() self.assertEqual(current_global_batch_size, expected_global_batch_size, msg=msg) # Make sure `global_batch_size` equals to the final global batch size after # certain number of updates. if rampup_batch_size: update_num_microbatches(current_global_batch_size) for i in range(100): current_global_batch_size = get_current_global_batch_size() update_num_microbatches(current_global_batch_size) current_global_batch_size = get_current_global_batch_size() self.assertEqual(get_current_global_batch_size(), self.GLOBAL_BATCH_SIZE, msg=msg) parallel_state.destroy_model_parallel() def test_constant_microbatch_calculator(self): self._test(rampup_batch_size=None) def test_dynamic_microbatch_calculator(self): self._test(rampup_batch_size=[256, 128, 500]) class NcclMicrobatchCalculatorTest(MicrobatchCalculatorTestBase, NcclDistributedTestBase): pass class UccMicrobatchCalculatorTest(MicrobatchCalculatorTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_microbatches.py
import logging import torch.testing from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer.tensor_parallel import data as data_utils from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("torch").setLevel(logging.WARNING) class BroadcastDataTestBase: def test_broadcast_data(self): tensor_model_parallel_world_size: int = self.world_size // ( 1 + self.world_size > 1 ) parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size ) target_key_size = { "key1": [7, 11], "key2": [8, 2, 1], "key3": [13], "key4": [5, 1, 2], "key5": [5, 12], } keys = [k for k in target_key_size] data = {} data_t = {} with torch.no_grad(): for key in target_key_size: data[key] = torch.randint(0, 1000, size=target_key_size[key]) data_t[key] = data[key].clone() # "key_x" is supposed to be ignored. data["key_x"] = torch.rand(5) data_t["key_x"] = data["key_x"].clone() if parallel_state.get_tensor_model_parallel_rank() != 0: data = None data_utils._check_data_types(keys, data_t, torch.int64) key_size, _, _ = data_utils._build_key_size_numel_dictionaries(keys, data) for key in keys: self.assertEqual(target_key_size[key], key_size[key]) broadcasted_data = data_utils.broadcast_data(keys, data, torch.int64) for key in keys: self.assertEqual(broadcasted_data[key], data_t[key].cuda()) parallel_state.destroy_model_parallel() class NcclBroadcastDataTest(BroadcastDataTestBase, NcclDistributedTestBase): pass class UccBroadcastDataTest(BroadcastDataTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_data.py
import torch import unittest from apex.transformer.testing import global_vars from apex.transformer.testing.standalone_bert import bert_model_provider from apex.transformer.pipeline_parallel.schedules.common import ( _get_params_for_weight_decay_optimization, build_model ) from apex.transformer.pipeline_parallel.schedules import get_forward_backward_func from apex.transformer.pipeline_parallel.utils import ( average_losses_across_data_parallel_group, unwrap_model, setup_microbatch_calculator ) from apex.transformer.log_util import set_logging_level from apex.transformer import tensor_parallel, parallel_state from apex.transformer.enums import ModelType from apex.transformer._ucc_util import HAS_UCC from apex.transformer.testing.distributed_test_base import UccDistributedTestBase, NcclDistributedTestBase import logging from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) logging.getLogger("apex").setLevel(logging.WARNING) set_logging_level("WARNING") class BertTestBase: def _download_fancy_data(self): text = """ An original sentence not subject to any license restrictions, copyright, or royalty payments. Nothing to see here. Commercial or non-commercial use. Research or non-research purposes. The quick brown fox jumps over the lazy dog. Lorem ipsum. """ text = text * 1024 encoded = text.encode("ascii", "replace") ints = [int(encoded[i]) for i in range(len(encoded))] return torch.tensor(ints) # build a batch given sequence_len and batch size def _generate_fancy_data_labels(self, sequence_len, batch_size): temps = [] for i in range(batch_size): if self.inds is None or self.data_idx >= len(self.inds): # hack as use of RNG will fall out of sync due to pipelines being different torch.manual_seed(self.MANUAL_SEED) self.inds = torch.randperm( self.effective_length, device="cuda") self.masks = ( torch.rand( len(self.inds) // batch_size + 1, batch_size, sequence_len, device="cuda" ) >= self.MASK_PROB ).long() self.MANUAL_SEED += 1 self.data_idx = 0 if self.rank == 0: print("new epoch", len(self.inds)) print("my start", self.inds[0:5]) print("masks_checksum:", torch.sum(self.masks)) if self.EASY_MODE: data_idx_ = self.data_idx % self.EASY_MODE_SIZ else: data_idx_ = self.data_idx offset = self.inds[data_idx_] # * SEQUENCE_LEN self.data_idx += 1 curr = self.fancy_data[offset: offset + sequence_len].clone().detach() temps.append(curr) temp = torch.stack(temps, dim=0).cuda() mask = self.masks[self.data_idx // batch_size] mask_not = torch.logical_not(mask).long() data = mask * temp + mask_not * 124 label = temp if parallel_state.get_tensor_model_parallel_rank() == 0: data_dict = {"text": data, "label": label, "mask_not": mask_not} else: data_dict = None keys = ["text", "label", "mask_not"] broadcasted_data = tensor_parallel.broadcast_data( keys, data_dict, torch.long) return ( broadcasted_data["text"].long(), broadcasted_data["label"].long(), broadcasted_data["mask_not"], ) def _fwd_step_func(self, batch, model): data, label, loss_mask = batch y = model(data, torch.ones_like(data), lm_labels=label) def loss_func(output_tensor): output_tensor, _ = output_tensor lm_loss_ = output_tensor.float() lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() averaged_loss = average_losses_across_data_parallel_group([ lm_loss]) if self.data_idx >= 1536: # NOTE (patwang): Loss cutoff might be excessively high but roughly one in five # unlucky random seeds do cause loss to spike to just under 8.0 self.assertLess(averaged_loss, 8.0) return lm_loss, {"avg": averaged_loss} return y, loss_func def _train( self, model, optim, virtual_pipeline_model_parallel_size, pipeline_model_parallel_size, async_comm ): args = global_vars.get_args() sequence_len = args.seq_length micro_batch_size = args.micro_batch_size hidden_size = args.hidden_size global_batch_size = args.global_batch_size forward_backward_func = get_forward_backward_func( virtual_pipeline_model_parallel_size, pipeline_model_parallel_size ) tensor_shape = (sequence_len, micro_batch_size, hidden_size) for _ in range(16): batch = self._generate_fancy_data_labels( sequence_len, global_batch_size) optim.zero_grad() forward_backward_func( self._fwd_step_func, batch, model, forward_only=False, tensor_shape=tensor_shape, async_comm=async_comm, sequence_parallel_enabled=args.sequence_parallel, ) # All-reduce layernorm parameters across model parallel nodes # when sequence parallelism is used if parallel_state.get_tensor_model_parallel_world_size() > 1 and args.sequence_parallel: for model_module in model: unwrapped_model = unwrap_model(model_module) for param in unwrapped_model.parameters(): if getattr(param, 'sequence_parallel_enabled', False): grad = param.grad torch.distributed.all_reduce( grad, group=parallel_state.get_tensor_model_parallel_group()) optim.step() @unittest.skipUnless(torch.cuda.device_count() > 2, "requires at least 3 gpus") def test_bert_without_interleaving(self): self._test_bert(virtual_pipeline_model_parallel_size=None) @unittest.skipUnless(torch.cuda.device_count() > 2, "requires at least 3 gpus") def test_bert_with_interleaving(self): if self.DISTRIBUTED_BACKEND == 'ucc': self.skipTest('skip interleaving with ucc') self._test_bert(virtual_pipeline_model_parallel_size=2) def _test_bert(self, virtual_pipeline_model_parallel_size): self.MANUAL_SEED = 42 self.inds = None self.masks = None self.data_idx = 0 self.MASK_PROB = 0.1 self.EASY_MODE = False self.EASY_MODE_SIZ = 32 tensor_model_parallel_size = 2 if self.world_size % 2 == 0 and self.world_size > 4 else 1 pipeline_model_parallel_size = self.world_size // tensor_model_parallel_size override_args = { "micro_batch_size": 2, "num_layers": 16, "hidden_size": 256, "num_attention_heads": 8, "max_position_embeddings": 512, "seq_length": 512, "global_batch_size": 128, "pipeline_model_parallel_size": pipeline_model_parallel_size, "tensor_model_parallel_size": tensor_model_parallel_size, "bert_binary_head": False, "world_size": self.world_size, "rank": self.rank, } global_vars.set_global_variables(override_args=override_args, ignore_unknown_args=True) args = global_vars.get_args() self.fancy_data = self._download_fancy_data() self.effective_length = self.fancy_data.size(0) // args.seq_length self.effective_length = self.fancy_data.size(0) - args.seq_length if self.rank == 0: print( f'testing backend: {self.DISTRIBUTED_BACKEND} with virtual_pipeline_model_parallel_size: {virtual_pipeline_model_parallel_size}') async_comm = not args.sequence_parallel and virtual_pipeline_model_parallel_size is None self.data_idx = 0 args.padded_vocab_size = 128 # needed in standalone gpt args.model_type = ModelType.encoder_or_decoder setup_microbatch_calculator( args.rank, args.rampup_batch_size, args.global_batch_size, args.micro_batch_size, args.data_parallel_size, ) parallel_state.initialize_model_parallel( args.tensor_model_parallel_size, args.pipeline_model_parallel_size, virtual_pipeline_model_parallel_size, default_backend="nccl", p2p_backend=self.DISTRIBUTED_BACKEND, ) tensor_parallel.random.model_parallel_cuda_manual_seed(0) model = build_model( bert_model_provider, wrap_with_ddp=parallel_state.get_data_parallel_world_size() > 1, virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size, cpu_offload=args.cpu_offload, ) assert isinstance(model, list) assert len(model) == ( 1 if virtual_pipeline_model_parallel_size is None else virtual_pipeline_model_parallel_size ) _param_groups = _get_params_for_weight_decay_optimization(model) optim = torch.optim.Adam(_param_groups) self._train( model, optim, virtual_pipeline_model_parallel_size, args.pipeline_model_parallel_size, async_comm, ) torch.cuda.synchronize() class NcclBertTest(BertTestBase, NcclDistributedTestBase): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) @unittest.skipUnless(HAS_UCC, "requires pytorch to be built with native ucc") class UccBertTest(BertTestBase, UccDistributedTestBase): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_bert_minimal.py
import logging import torch from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer.tensor_parallel import utils from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase logging.getLogger("apex").setLevel(logging.WARNING) class TransformerUtilsTest(NcclDistributedTestBase): def test_split_tensor_along_last_dim(self): for tensor_model_paralell_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_paralell_world_size > 0: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_paralell_world_size ) device = "cpu" input_tensor = torch.randn((100, 100, 100), device=device) splits = utils.split_tensor_along_last_dim(input_tensor, 10) last_dim_shapes = torch.tensor( [int(split.size()[-1]) for split in splits] ) self.assertTrue( torch.equal(last_dim_shapes, torch.full((10,), 10),), msg=f"tensor_model_paralell_world_size: {tensor_model_paralell_world_size}", ) parallel_state.destroy_model_parallel() if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_transformer_utils.py
import logging import os from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("apex").setLevel(logging.WARNING) os.environ["BACKEND"] = "NCCL" DATA_PARALLEL_WORLD_SIZE: int = 1 def calc_expected_tensor_model_paralell_rank( rank: int, tensor_model_parallel_world_size: int, ) -> int: return rank % tensor_model_parallel_world_size class ParallelStateTestBase: def test_initialize_model_parallel(self) -> None: self.assertFalse(parallel_state.model_parallel_is_initialized()) for tensor_model_parallel_world_size in range(1, self.world_size + 1): msg = f"tensor_model_parallel_world_siz: {tensor_model_parallel_world_size}" if self.world_size % tensor_model_parallel_world_size: continue pipeline_model_parallel_world_size = ( self.world_size // tensor_model_parallel_world_size ) parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, ) self.assertEqual( tensor_model_parallel_world_size, parallel_state.get_tensor_model_parallel_world_size(), msg=msg, ) expected_tensor_model_parallel_rank = calc_expected_tensor_model_paralell_rank( self.rank, tensor_model_parallel_world_size ) self.assertEqual( expected_tensor_model_parallel_rank, parallel_state.get_tensor_model_parallel_rank(), msg=msg, ) expected_tensor_model_parallel_src_rank = ( self.rank // tensor_model_parallel_world_size ) * tensor_model_parallel_world_size self.assertEqual( expected_tensor_model_parallel_src_rank, parallel_state.get_tensor_model_parallel_src_rank(), msg=msg, ) parallel_state.destroy_model_parallel() self.assertFalse(parallel_state.model_parallel_is_initialized(), msg=msg) def test_initialize_model_parallel_with_virtual_and_split(self) -> None: if self.world_size < 4: self.skipTest("requires >= 4 GPUs") self.assertFalse(parallel_state.model_parallel_is_initialized()) tensor_model_parallel_world_size = 1 + int(self.world_size > 4) pipeline_model_parallel_world_size = ( self.world_size // tensor_model_parallel_world_size ) virtual_pipeline_model_parallel_world_size = 2 pipeline_model_parallel_split_rank = pipeline_model_parallel_world_size // 2 parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_world_size, pipeline_model_parallel_split_rank_=pipeline_model_parallel_split_rank, ) self.assertEqual( calc_expected_tensor_model_paralell_rank( self.rank, tensor_model_parallel_world_size ), parallel_state.get_tensor_model_parallel_rank(), ) self.assertEqual( pipeline_model_parallel_world_size, parallel_state.get_pipeline_model_parallel_world_size(), ) self.assertEqual( virtual_pipeline_model_parallel_world_size, parallel_state.get_virtual_pipeline_model_parallel_world_size(), ) expected_pipeline_rank = ( self.rank - (self.rank % tensor_model_parallel_world_size) ) % pipeline_model_parallel_world_size self.assertEqual( expected_pipeline_rank, parallel_state.get_pipeline_model_parallel_rank(), ) # virtual pipeline model parallel rank is lazily set, i.e., right after the call of # `initialize_model_parallel`, it's set to 0. self.assertEqual( 0, parallel_state.get_virtual_pipeline_model_parallel_rank(), ) self.assertEqual( pipeline_model_parallel_split_rank, parallel_state.get_pipeline_model_parallel_split_rank(), ) fake_split_rank = 77 parallel_state.set_pipeline_model_parallel_split_rank(fake_split_rank) self.assertEqual( fake_split_rank, parallel_state.get_pipeline_model_parallel_split_rank() ) # relative position embedding groups check self.assertEqual( expected_pipeline_rank < pipeline_model_parallel_split_rank, parallel_state.is_rank_in_encoder_relative_position_embedding_group(), ) self.assertEqual( expected_pipeline_rank >= pipeline_model_parallel_split_rank, parallel_state.is_rank_in_decoder_relative_position_embedding_group(), ) parallel_state.destroy_model_parallel() def test_initialize_model_parallel_decoder_only(self) -> None: """Initialize model parallelism for decoder-only Transformers like GPT-3""" self.assertFalse(parallel_state.model_parallel_is_initialized()) for tensor_model_parallel_world_size in range(1, self.world_size + 1): msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" if self.world_size % tensor_model_parallel_world_size: continue pipeline_model_parallel_world_size = ( self.world_size // tensor_model_parallel_world_size ) parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, pipeline_model_parallel_split_rank_=0, ) self.assertEqual( tensor_model_parallel_world_size, parallel_state.get_tensor_model_parallel_world_size(), msg=msg, ) expected_tensor_model_parallel_rank = calc_expected_tensor_model_paralell_rank( self.rank, tensor_model_parallel_world_size ) self.assertEqual( expected_tensor_model_parallel_rank, parallel_state.get_tensor_model_parallel_rank(), msg=msg, ) expected_tensor_model_parallel_src_rank = ( self.rank // tensor_model_parallel_world_size ) * tensor_model_parallel_world_size self.assertEqual( expected_tensor_model_parallel_src_rank, parallel_state.get_tensor_model_parallel_src_rank(), msg=msg, ) parallel_state.destroy_model_parallel() self.assertFalse(parallel_state.model_parallel_is_initialized(), msg=msg) class NcclParallelStateTest(ParallelStateTestBase, NcclDistributedTestBase): pass class UccParallelStateTest(ParallelStateTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_parallel_state.py
import contextlib import logging import itertools import os from datetime import datetime from packaging.version import parse, Version import re from typing import Optional, Tuple, List import unittest import torch from torch.testing._internal import common_utils from apex._autocast_utils import _get_autocast_dtypes from apex.transformer import parallel_state from apex.transformer.enums import ModelType from apex.transformer.pipeline_parallel import utils as pp_utils from apex.transformer.pipeline_parallel.schedules.common import ( FwdStepFunc, build_model, _get_params_for_weight_decay_optimization, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_no_pipelining import ( forward_backward_no_pipelining, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_with_interleaving import ( _forward_backward_pipelining_with_interleaving, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_without_interleaving import ( forward_backward_pipelining_without_interleaving, ) from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase from apex.transformer.testing.distributed_test_base import HAS_TORCH_UCC_COMPAT_NVIDIA_DRIVER from apex.transformer.testing import commons as testing_utils from apex.transformer._ucc_util import HAS_UCC logging.getLogger("torch").setLevel(logging.WARNING) logging.getLogger("apex").setLevel(logging.WARNING) weight_coeff = 1024 # Guard for https://github.com/pytorch/pytorch/pull/82450 def get_nvidia_pytorch_version(): ver = os.getenv("NVIDIA_PYTORCH_VERSION", "22.08") if "master" in ver: ver = datetime.today().strftime("%y.%m") elif "update_for_" in ver: ver = ver.replace("update_for_", "") return ver CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV = False ngc_container_2209, pytorch_113 = Version("22.09"), Version("1.13") if parse(torch.__version__) >= pytorch_113: CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV = True elif parse(get_nvidia_pytorch_version()) >= ngc_container_2209: CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV = True else: CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV = False def get_init_weights_func(offset: int = 0): @torch.no_grad() def init_weights(m): rank = parallel_state.get_pipeline_model_parallel_rank() if isinstance(m, torch.nn.Linear): m.weight.fill_((rank + offset + 1.0) / weight_coeff) m.bias.fill_(1.0) return init_weights def get_dtype_for_comparison(): if(torch.cuda.get_device_capability() >= (8, 0)): return torch.float64 return torch.float32 def get_target_loss_and_model(global_batch_shape: tuple, hidden_size: int, total_layers: int) -> Tuple[torch.Tensor, List[torch.Tensor]]: model = [] dtype = get_dtype_for_comparison() data = torch.ones(global_batch_shape, dtype=dtype) for i in range(total_layers): w = torch.ones((hidden_size, hidden_size), dtype=dtype) * (i + 1.0) / weight_coeff b = torch.ones(hidden_size, dtype=dtype) w.requires_grad_() b.requires_grad_() # don't need to care about transpose semantics as all values are the same data = torch.matmul(w, data) + b model.append([w, b]) loss = data.sum() / global_batch_shape[0] loss.backward() return loss, model def _get_default_world_sizes_model_parallel_world_size(pipeline_model_parallel_world_size: Optional[int] = None ) -> Tuple[int, int, int]: # TODO: revisit if we can fold this into the class for skip logic / avoid duplication # of world size computation world_size = torch.cuda.device_count() tensor_model_parallel_world_size = 1 data_parallel_size = 1 + (world_size >= 8 and world_size % 2 == 0) if pipeline_model_parallel_world_size is None: pipeline_model_parallel_world_size = world_size // (tensor_model_parallel_world_size * data_parallel_size) else: data_parallel_size = world_size // (tensor_model_parallel_world_size * pipeline_model_parallel_world_size) return tensor_model_parallel_world_size, data_parallel_size, pipeline_model_parallel_world_size class PipelineParallelForwardBackwardTestBase: GLOBAL_BATCH_SIZE = 16 MICRO_BATCH_SIZE = 2 HIDDEN_SIZE = 32 deallocate_options = (True, False) # If :obj:`None`, (torch.float32, torch.float16, torch.bfloat16) are dtype options on Ampere. # You can limit the options by overriding the following `dtypes`. dtypes = None def _forward_backward_test_impl( self, forward_only: bool, fwd_bwd_func: FwdStepFunc, pipeline_model_parallel_world_size: Optional[int], virtual_pipeline_model_parallel_size: Optional[int], async_comm: bool = False, *, default_backend: Optional[str] = None, p2p_backend: Optional[str] = None, sync_batch_comm: bool = True, ) -> None: if fwd_bwd_func == _forward_backward_pipelining_with_interleaving: self.assertIsNotNone(virtual_pipeline_model_parallel_size) self.assertGreater(virtual_pipeline_model_parallel_size, 1) dtype_options = self.dtypes or [torch.float32, torch.double] + _get_autocast_dtypes() for dtype, deallocate_pipeline_outputs in itertools.product( dtype_options, self.deallocate_options, ): grad_scaler = ( torch.cuda.amp.GradScaler(init_scale=4.0) if dtype == torch.half else None ) (tensor_model_parallel_world_size, data_parallel_size, pipeline_model_parallel_world_size) = _get_default_world_sizes_model_parallel_world_size(pipeline_model_parallel_world_size) parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_size, default_backend=default_backend, p2p_backend=p2p_backend, ) pp_utils._reconfigure_microbatch_calculator( rank=parallel_state.get_tensor_model_parallel_rank(), rampup_batch_size=None, global_batch_size=self.GLOBAL_BATCH_SIZE, micro_batch_size=self.MICRO_BATCH_SIZE, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) global_batch_shape = ( self.GLOBAL_BATCH_SIZE // parallel_state.get_data_parallel_world_size(), self.HIDDEN_SIZE, self.HIDDEN_SIZE, ) batch = None if parallel_state.is_pipeline_first_stage(): batch = (torch.ones(global_batch_shape, dtype=dtype).cuda(), ) model = build_model( testing_utils.model_provider_func, # Use DDP only when it's better to have wrap_with_ddp=data_parallel_size > 1, virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size, hidden_size=self.HIDDEN_SIZE, ) offset = pipeline_model_parallel_world_size if virtual_pipeline_model_parallel_size is not None else 0 for idx, model_module in enumerate(model): model_module = model_module.to(dtype) model_module.apply(get_init_weights_func(idx*offset)) _param_groups = _get_params_for_weight_decay_optimization(model) optimizer = torch.optim.Adam(_param_groups, lr=1e-3) pp_utils.update_num_microbatches(0) loss = fwd_bwd_func( testing_utils.fwd_step_func, batch, model, forward_only=forward_only, # `tensor_shape` is the shape of micro batch. tensor_shape=( self.MICRO_BATCH_SIZE, self.HIDDEN_SIZE, self.HIDDEN_SIZE, ), dtype=dtype, async_comm=async_comm, grad_scaler=grad_scaler, deallocate_pipeline_output=deallocate_pipeline_outputs, sync_batch_comm=sync_batch_comm, ) if dtype == get_dtype_for_comparison(): torch.cuda.synchronize() hidden_size = self.HIDDEN_SIZE microbatch_size = self.MICRO_BATCH_SIZE total_layers = pipeline_model_parallel_world_size if virtual_pipeline_model_parallel_size is not None: total_layers *= virtual_pipeline_model_parallel_size target_loss, target_model = get_target_loss_and_model(global_batch_shape, hidden_size, total_layers) for loss_item in loss: x = loss_item['avg'] self.assertEqual(x.item() / microbatch_size, target_loss.item()) if not forward_only: for vm_id, model_module in enumerate(model): params = list(model_module.parameters()) rank = params[0].get_device() offset = pipeline_model_parallel_world_size param_id = rank // data_parallel_size + vm_id * offset target_params = target_model[param_id] self.assertEqual(params[0].cpu(), target_params[0]) self.assertEqual(params[1].cpu(), target_params[1]) self.assertEqual(params[0].grad.cpu() / microbatch_size, target_params[0].grad) self.assertEqual(params[1].grad.cpu() / microbatch_size, target_params[1].grad) if not forward_only: for m in model: for p in m.parameters(): self.assertIsNotNone(p.grad) optimizer.step() optimizer.zero_grad(set_to_none=True) parallel_state.destroy_model_parallel() def test_learning_no_pipelining(self): self._forward_backward_test_impl(False, forward_backward_no_pipelining, 1, None) def test_inference_no_pipelining(self): self._forward_backward_test_impl(True, forward_backward_no_pipelining, 1, None) def test_learning_pipelining_without_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( False, forward_backward_pipelining_without_interleaving, None, None, sync_batch_comm=sync_batch_comm, ) def test_inference_pipelining_without_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( True, forward_backward_pipelining_without_interleaving, None, None, sync_batch_comm=sync_batch_comm, ) def test_learning_async_pipelining_without_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( False, forward_backward_pipelining_without_interleaving, None, None, async_comm=True, sync_batch_comm=sync_batch_comm, ) def test_inference_async_pipelining_without_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( True, forward_backward_pipelining_without_interleaving, None, None, async_comm=True, sync_batch_comm=sync_batch_comm, ) # fails on native ucc: times out @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_learning_pipelining_with_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( False, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2, sync_batch_comm=sync_batch_comm, ) # fails on native ucc: times out @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_inference_pipelining_with_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( True, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2, sync_batch_comm=sync_batch_comm, ) # fails on native ucc: times out @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_learning_async_pipelining_with_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( False, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2, async_comm=True, sync_batch_comm=sync_batch_comm, ) # fails on native ucc: times out @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_inference_async_pipelining_with_interleaving(self, sync_batch_comm: bool = True): self._forward_backward_test_impl( True, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2, async_comm=True, sync_batch_comm=sync_batch_comm, ) class NcclPipelineParallelForwardBackwardTest(NcclDistributedTestBase, PipelineParallelForwardBackwardTestBase): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) def _run_hybrid_distributed_backend(self, forward_only: bool) -> None: self._forward_backward_test_impl( forward_only, forward_backward_pipelining_without_interleaving, None, None, default_backend="nccl", p2p_backend="ucc", ) @unittest.skipUnless(HAS_TORCH_UCC_COMPAT_NVIDIA_DRIVER, "Needs driver >= 470.42.01") def _test_hybrid_backends(self, forward_only: bool) -> None: if HAS_UCC: self._run_hybrid_distributed_backend(forward_only) else: with self.assertRaisesRegex( ImportError, re.escape("UCC backend requires pytorch source build with UCC installed and enabled"), ): self._run_hybrid_distributed_backend(forward_only) def test_learning_pipelining_without_interleaving_ucc_for_p2p(self): self._test_hybrid_backends(False) def test_inference_pipelining_without_interleaving_ucc_for_p2p(self): self._test_hybrid_backends(True) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_learning_pipelining_without_interleaving_skyp_sync_after_batch_isend_irecv(self): self.test_learning_pipelining_without_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_inference_pipelining_without_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_inference_pipelining_without_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_learning_async_pipelining_without_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_learning_async_pipelining_without_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_inference_async_pipelining_without_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_inference_async_pipelining_without_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_learning_pipelining_with_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_learning_pipelining_with_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_inference_pipelining_with_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_inference_pipelining_with_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_learning_async_pipelining_with_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_learning_async_pipelining_with_interleaving(sync_batch_comm=False) @unittest.skipUnless(CAN_SKIP_SYNC_AFTER_BATCH_ISEND_IRECV, "Requires https://github.com/pytorch/pytorch/pull/82450") def test_inference_async_pipelining_with_interleaving_skip_sync_after_batch_isend_irecv(self): self.test_inference_async_pipelining_with_interleaving(sync_batch_comm=False) # n.b.(mkozuki): pipeline parallel w/o interleaving with UCX_TLS=tcp,sm fails. class UccPipelineParallelForwardBackwardTest(UccDistributedTestBase, PipelineParallelForwardBackwardTestBase): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) deallocate_options = (False,) dtypes = (torch.float32,) # Sanity checking the functionality of `forward_backward_pipelining_without_interleaving` with # `model_type=ModelType.encoder_and_decoder` which is used for pipeline training of transformer # models such as T5. @unittest.skipIf(torch.cuda.device_count() < 4, "Requires >= 4 GPUs") class NcclPipelineParallelWithToyParallelMLP(NcclDistributedTestBase): GLOBAL_BATCH_SIZE: int = 16 MICRO_BATCH_SIZE: int = 2 HIDDEN_SIZE: int = 64 # TODO(mkozuki): Change `DECODER_SEQUENCE_LENGTH` to a value different from `ENCODER_SEQUENCE_LENGTH`. # To test forward_backward_pipelining_without_interleaving with `model_type=ModelType.encoder_and_decoder`, # `decoder_seq_length` is necessary and ideally should be different from `encoder_sequence_length` # but my laziness let me use the same value. # Note that you may have to either update `MyModel` def or define another `MyModel`. # to support different `DECODER_SEQUENCE_LENGTH`. ENCODER_SEQUENCE_LENGTH: int = 32 DECODER_SEQUENCE_LENGTH: int = 32 @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) # TODO(mkozuki): Set `tensor_model_parallel>1` for encoder_and_decoder as well if there's enough GPUs # in order to let `sequence_parallel_enabled` have an effect on tensor shape logic. def _forward_backward_test_impl( self, *, forward_only: bool, sequence_parallel_enabled: bool, model_type: ModelType, dtype: torch.dtype = torch.float32, ) -> None: # N.B.(mkozuki): It might be better to set `tensor_model_parallel_size` to >1 # if `self.world_size > 5`. Otherwise, `pipeline_model_parallel_split_rank` # can be 1, which can be too far real usecase. tensor_model_parallel_size = 1 + int(self.world_size >= 4) pipeline_model_parallel_world_size = self.world_size // tensor_model_parallel_size if model_type == ModelType.encoder_and_decoder: pipeline_model_parallel_split_rank = pipeline_model_parallel_world_size // 2 else: pipeline_model_parallel_split_rank = None parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, virtual_pipeline_model_parallel_size_=None, pipeline_model_parallel_split_rank_=pipeline_model_parallel_split_rank, ) testing_utils.set_random_seed(567) pp_utils._reconfigure_microbatch_calculator( rank=parallel_state.get_tensor_model_parallel_rank(), rampup_batch_size=None, global_batch_size=self.GLOBAL_BATCH_SIZE, micro_batch_size=self.MICRO_BATCH_SIZE, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # TODO(mkozuki): Call `build_model` with `model_type`. model = build_model( testing_utils.mlp_provider_func, wrap_with_ddp=False, virtual_pipeline_model_parallel_size=None, hidden_size=self.HIDDEN_SIZE, sequence_parallel_enabled=sequence_parallel_enabled, ) model = [m.to(dtype=dtype) for m in model] if parallel_state.is_pipeline_first_stage(): batch: Tuple[torch.Tensor] = ( torch.ones( (self.GLOBAL_BATCH_SIZE, self.ENCODER_SEQUENCE_LENGTH, self.HIDDEN_SIZE), dtype=dtype, device="cuda", ), ) else: batch = None forward_backward_pipelining_without_interleaving( forward_step_func=testing_utils.ToyParallelMLPFwdBwdStepFunc( sequence_parallel_enabled=sequence_parallel_enabled, ), batch=batch, model=model, forward_only=forward_only, tensor_shape=( self.ENCODER_SEQUENCE_LENGTH, self.MICRO_BATCH_SIZE, self.HIDDEN_SIZE, ), model_type=model_type, decoder_sequence_length=self.DECODER_SEQUENCE_LENGTH, async_comm=False, grad_scaler=None, deallocate_pipeline_outputs=False, dtype=dtype, sequence_parallel_enabled=sequence_parallel_enabled, ) def test_pipelining_without_interleaving_encoder_and_decoder(self) -> None: self._forward_backward_test_impl(forward_only=False, sequence_parallel_enabled=False, model_type=ModelType.encoder_and_decoder) def test_pipelining_without_interleaving_inferenc_encoder_and_decoder(self) -> None: self._forward_backward_test_impl(forward_only=True, sequence_parallel_enabled=False, model_type=ModelType.encoder_and_decoder) def test_pipelining_without_interleaving_sequence_paralle_encoder_and_decoder(self) -> None: self._forward_backward_test_impl(forward_only=False, sequence_parallel_enabled=True, model_type=ModelType.encoder_and_decoder) def test_pipelining_without_interleaving_inference_sequence_paralle_encoder_and_decoder(self) -> None: self._forward_backward_test_impl(forward_only=True, sequence_parallel_enabled=True, model_type=ModelType.encoder_and_decoder) def test_pipelining_without_interleaving_encoder_or_decoder(self) -> None: self._forward_backward_test_impl(forward_only=False, sequence_parallel_enabled=False, model_type=ModelType.encoder_or_decoder) def test_pipelining_without_interleaving_sequence_parallel_encoder_or_decoder(self) -> None: self._forward_backward_test_impl(forward_only=False, sequence_parallel_enabled=True, model_type=ModelType.encoder_or_decoder) def test_pipelining_without_interleaving_sequence_parallel_encoder_or_decoder_half(self) -> None: self._forward_backward_test_impl(forward_only=False, sequence_parallel_enabled=True, model_type=ModelType.encoder_or_decoder, dtype=torch.half) class NcclPipelineParallelWithCustomSyncContextHandler(NcclDistributedTestBase): GLOBAL_BATCH_SIZE = 32 MICRO_BATCH_SIZE = 1 HIDDEN_SIZE = 1 @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) @unittest.skipIf(torch.cuda.device_count() < 2 or torch.cuda.device_count() % 2 != 0, "Requires >= 2 GPUs") def test_pipelining_without_interleaving_with_custom_sync_context_handler(self) -> None: # Parallel configuration world_size = torch.cuda.device_count() tensor_model_parallel_world_size = 1 data_parallel_size = 2 if world_size > 2 else 1 pipeline_model_parallel_world_size = world_size // data_parallel_size # Initialize pipeline parallelism parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, ) pp_utils._reconfigure_microbatch_calculator( rank=parallel_state.get_tensor_model_parallel_rank(), rampup_batch_size=None, global_batch_size=self.GLOBAL_BATCH_SIZE, micro_batch_size=self.MICRO_BATCH_SIZE, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) pp_utils.update_num_microbatches(0) # Construct synthetic data dtype = get_dtype_for_comparison() hidden_size = self.HIDDEN_SIZE microbatch_size = self.MICRO_BATCH_SIZE global_batch_shape = ( self.GLOBAL_BATCH_SIZE // parallel_state.get_data_parallel_world_size(), hidden_size, hidden_size, ) batch = None if parallel_state.is_pipeline_first_stage(): batch = (torch.ones(global_batch_shape, dtype=dtype).cuda(), ) # Construct model model = build_model( testing_utils.model_provider_func, wrap_with_ddp=True, hidden_size=hidden_size, )[0] model = model.to(dtype) model.module.apply(get_init_weights_func(0)) # Construct context that destroys all grads on exit has_entered_grad_sync_context = False has_exited_grad_sync_context = False has_called_grad_sync_func = False @contextlib.contextmanager def custom_grad_sync_context(): try: nonlocal has_entered_grad_sync_context has_entered_grad_sync_context = True yield finally: nonlocal has_exited_grad_sync_context has_exited_grad_sync_context = True for param in model.parameters(): param.grad = None def custom_grad_sync_func(): nonlocal has_called_grad_sync_func has_called_grad_sync_func = True # Training step with pipeline parallelism loss = forward_backward_pipelining_without_interleaving( testing_utils.fwd_step_func, batch, model, forward_only=False, tensor_shape=(microbatch_size, hidden_size, hidden_size), dtype=dtype, async_comm=False, grad_scaler=None, deallocate_pipeline_outputs=False, sequence_parallel_enabled=False, custom_sync_context_handler=custom_grad_sync_context, custom_grad_sync_func=custom_grad_sync_func, ) torch.cuda.synchronize() # Check if model has initialized gradients has_any_grads = any(param.grad is not None for param in model.parameters()) has_all_grads = all(param.grad is not None for param in model.parameters()) # Check context behavior self.assertTrue(has_entered_grad_sync_context, 'Has not entered custom sync context') self.assertTrue(has_exited_grad_sync_context, 'Has not exited custom sync context') self.assertEqual( has_any_grads, has_all_grads, 'Expected gradients to all be uninitialized or all be initialized', ) self.assertEqual( has_all_grads, parallel_state.is_pipeline_first_stage(), 'Expected gradients to be initialized only in first pipeline stage', ) # Clean up parallel_state.destroy_model_parallel() @unittest.skipIf(torch.cuda.device_count() < 4 or torch.cuda.device_count() % 2 != 0, "Requires >= 4 GPUs") def test_pipelining_with_interleaving_with_custom_sync_context_handler(self) -> None: # Parallel configuration world_size = torch.cuda.device_count() tensor_model_parallel_world_size = 1 data_parallel_size = 2 if world_size > 4 else 1 pipeline_model_parallel_world_size = world_size // data_parallel_size virtual_pipeline_model_parallel_size = 2 # Initialize pipeline parallelism parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_size, ) pp_utils._reconfigure_microbatch_calculator( rank=parallel_state.get_tensor_model_parallel_rank(), rampup_batch_size=None, global_batch_size=self.GLOBAL_BATCH_SIZE, micro_batch_size=self.MICRO_BATCH_SIZE, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) pp_utils.update_num_microbatches(0) # Construct synthetic data dtype = get_dtype_for_comparison() hidden_size = self.HIDDEN_SIZE microbatch_size = self.MICRO_BATCH_SIZE global_batch_shape = ( self.GLOBAL_BATCH_SIZE // parallel_state.get_data_parallel_world_size(), hidden_size, hidden_size, ) batch = None if parallel_state.is_pipeline_first_stage(): batch = (torch.ones(global_batch_shape, dtype=dtype).cuda(), ) # Construct model model = build_model( testing_utils.model_provider_func, wrap_with_ddp=True, virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size, hidden_size=hidden_size, ) for module in model: module.to(dtype) module.module.apply(get_init_weights_func(0)) # Construct context that keeps track whenever entered/exited grad_sync_context_enter_count = 0 grad_sync_context_exit_count = 0 @contextlib.contextmanager def custom_grad_sync_context(): try: nonlocal grad_sync_context_enter_count grad_sync_context_enter_count += 1 yield finally: nonlocal grad_sync_context_exit_count grad_sync_context_exit_count += 1 for module in model: for param in module.parameters(): param.grad = None # Training step with pipeline parallelism loss = _forward_backward_pipelining_with_interleaving( testing_utils.fwd_step_func, batch, model, forward_only=False, tensor_shape=(microbatch_size, hidden_size, hidden_size), dtype=dtype, async_comm=False, grad_scaler=None, deallocate_pipeline_outputs=False, sequence_parallel_enabled=False, custom_sync_context_handler=custom_grad_sync_context, ) torch.cuda.synchronize() # Check context behavior self.assertTrue( grad_sync_context_enter_count > 0, 'Has not entered custom sync context', ) self.assertEqual( grad_sync_context_enter_count, grad_sync_context_exit_count, 'Has not entered and exited custom sync context ' 'the same number of times', ) self.assertEqual( grad_sync_context_exit_count, virtual_pipeline_model_parallel_size + 1, 'Expected to exit custom sync context once per model chunk ' 'and once at the function end', ) # Clean up parallel_state.destroy_model_parallel() if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_pipeline_parallel_fwd_bwd.py
import logging import torch from torch.testing._internal import common_utils from apex.transformer import parallel_state from apex.transformer.tensor_parallel import mappings from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("torch").setLevel(logging.WARNING) logging.getLogger("apex").setLevel(logging.WARNING) class MappingTestBase: def test_reduce(self): for tensor_model_paralell_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_paralell_world_size > 0: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_paralell_world_size ) t = torch.full((10, 10, 10, 10), 50, device=f"cuda:{self.rank}") expected = torch.full( (10, 10, 10, 10), 50 * tensor_model_paralell_world_size, device=f"cuda:{self.rank}", ) self.assertTrue( torch.equal(mappings._reduce(t), expected), msg=f"tensor_model_paralell_world_size: {tensor_model_paralell_world_size}", ) parallel_state.destroy_model_parallel() def test_split(self): for tensor_model_paralell_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_paralell_world_size > 0: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_paralell_world_size ) tensors = [ torch.randn(10, 1) for _ in range(tensor_model_paralell_world_size) ] x = torch.cat(tensors, 1) out = mappings._split_along_last_dim(x) self.assertTrue( torch.equal( out, tensors[parallel_state.get_tensor_model_parallel_rank()] ), msg=f"tensor_model_paralell_world_size: {tensor_model_paralell_world_size}" ) parallel_state.destroy_model_parallel() def test_gather(self): for tensor_model_paralell_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_paralell_world_size > 0: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_paralell_world_size ) device = f"cuda:{self.rank}" gathered = mappings._gather_along_last_dim( torch.tensor( [parallel_state.get_tensor_model_parallel_rank()], device=device ) ) expected = torch.tensor( [rank for rank in range(tensor_model_paralell_world_size)], device=device, ) self.assertTrue( torch.equal(gathered, expected), msg=f"tensor_model_paralell_world_size: {tensor_model_paralell_world_size}", ) parallel_state.destroy_model_parallel() class NcclMappingTest(MappingTestBase, NcclDistributedTestBase): pass class UccMappingTest(MappingTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_mapping.py
import logging import torch from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer import tensor_parallel from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("apex").setLevel(logging.WARNING) class TransformerRandomTestBase: def test_set_cuda_rng_state(self): for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size ) size, seed = 123, 1234 torch.cuda.manual_seed(seed) tensor = torch.cuda.FloatTensor(size) rng_state = torch.cuda.get_rng_state() rng_state_clone = rng_state.clone() for _ in range(5): torch.randn(size, out=tensor) result_1 = tensor.clone() self.assertEqual(rng_state.sub(rng_state_clone).max(), 0, msg=msg) self.assertGreater( torch.cuda.get_rng_state().sub(rng_state_clone).max(), 0, msg=msg, ) new_rng_state = torch.cuda.get_rng_state() self.assertGreater(new_rng_state.sub(rng_state).max(), 0, msg=msg) tensor_parallel.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) tensor_parallel.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) result_2 = tensor.clone() self.assertEqual(result_2, result_1, msg=msg) self.assertEqual(rng_state.sub(rng_state_clone).max(), 0, msg=msg) parallel_state.destroy_model_parallel() def test_cuda_rng_tracker(self): for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size ) seed_1, seed_2, size = 1234, 4321, [12, 21] tensor = torch.cuda.FloatTensor(size) torch.cuda.manual_seed(seed_1) torch.randn(size, out=tensor) target_11 = tensor.clone() torch.randn(size, out=tensor) target_12 = tensor.clone() torch.cuda.manual_seed(seed_2) torch.randn(size, out=tensor) targt_21 = tensor.clone() torch.randn(size, out=tensor) target_22 = tensor.clone() torch.cuda.manual_seed(seed_1) tensor_parallel.random.get_cuda_rng_tracker().add("test", seed_2) torch.randn(size, out=tensor) result_11 = tensor.clone() with tensor_parallel.random.get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_21 = tensor.clone() torch.randn(size, out=tensor) result_12 = tensor.clone() with tensor_parallel.random.get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_22 = tensor.clone() self.assertEqual(target_11, result_11, msg=msg) self.assertEqual(target_12, result_12, msg=msg) self.assertEqual(targt_21, result_21, msg=msg) self.assertEqual(target_22, result_22, msg=msg) self.assertNotEqual(result_11, result_21, msg=msg) self.assertNotEqual(result_21, result_22, msg=msg) tensor_parallel.random.get_cuda_rng_tracker().reset() parallel_state.destroy_model_parallel() class NcclTransformerRandomTest(TransformerRandomTestBase, NcclDistributedTestBase): pass class UccTransformerRandomTest(TransformerRandomTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_transformer/test_random.py
import unittest import functools as ft import itertools as it from apex import amp from apex.amp import _amp_state import torch from torch import nn import torch.nn.functional as F from torch.nn import Parameter from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT class MyModel(torch.nn.Module): def __init__(self, unique): super(MyModel, self).__init__() self.weight0 = Parameter(unique + torch.arange(2, device='cuda', dtype=torch.float32)) self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=torch.float16)) @staticmethod def ops(input, weight0, weight1): return ((input*(weight0.float()))*(weight1.float())).sum() def forward(self, input): return self.ops(input, self.weight0, self.weight1) # Abandon all hope, ye who enter here. # This is hands down the ugliest code I have ever written, but it succeeds in testing # multiple models/optimizers/losses fairly thoroughly. Many of the different test cases # require slightly divergent code in a way that seems near-impossible to genericize into a simple # cross product or nested loops. class TestMultipleModelsOptimizersLosses(unittest.TestCase): def setUp(self): self.x = torch.ones((2), device='cuda', dtype=torch.float32) common_init(self) def tearDown(self): pass def test_2models2losses1optimizer(self): model0 = MyModel(1) model1 = MyModel(2) optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.125) reference_grads = [] for i in range(2): optimizer.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) loss0.backward() loss1.backward() reference_grads.append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) optimizer.step() final_params = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (True, False): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 else: iters = 2 model0 = MyModel(1) model1 = MyModel(2) models = [model0, model1] optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.125) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1], optimizer = amp.initialize( [model0, model1], optimizer, opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) with amp.scale_loss(loss0, optimizer, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if inject_inf_loc == "fp32": model0.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model0.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, optimizer, loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if inject_inf_loc == "fp32": model1.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model1.weight1.grad[0] = float('inf') if i != inject_inf: for param, reference_grad in zip(amp.master_params(optimizer), reference_grads[unskipped]): self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float())) unskipped += 1 optimizer.step() model_params = [p for p in model0.parameters()] + [p for p in model1.parameters()] for model, master, reference in zip( model_params, amp.master_params(optimizer), final_params): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() def test_3models2losses1optimizer(self): model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}, {'params' : model2.parameters(), 'lr' : 0.125}], momentum=0.125) reference_grads = [] for i in range(2): optimizer.zero_grad() loss0 = model0(self.x) + model2(self.x) loss1 = model1(self.x) + model2(self.x) loss0.backward() loss1.backward() reference_grads.append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()] + [param.grad.data.clone() for param in model2.parameters()]) optimizer.step() final_params = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] + \ [param.data.clone() for param in model2.parameters()] for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (True, False): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 if which_backward == 0: which_models = (0, 2) elif which_backward == 1: which_models = (1, 2) else: iters = 2 which_models = (None,) for which_model in which_models: model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) models = [model0, model1, model2] optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}, {'params' : model2.parameters(), 'lr' : 0.125}], momentum=0.125) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1, model2], optimizer = amp.initialize( [model0, model1, model2], optimizer, opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer.zero_grad() # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} which_model {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, which_model, use_multiple_loss_scalers)) loss0 = model0(self.x) + model2(self.x) loss1 = model1(self.x) + model2(self.x) with amp.scale_loss(loss0, optimizer, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if which_model == 0: inj_model = model0 elif which_model == 2: inj_model = model2 else: raise RuntimeError(which_model + " invalid for loss 0") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, optimizer, loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if which_model == 1: inj_model = model1 elif which_model == 2: inj_model = model2 else: raise RuntimeError(which_model + " invalid for loss 1 ") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') if i != inject_inf: for param, reference_grad in zip(amp.master_params(optimizer), reference_grads[unskipped]): self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float())) unskipped += 1 optimizer.step() model_params = [p for p in model0.parameters()] + \ [p for p in model1.parameters()] + \ [p for p in model2.parameters()] for model, master, reference in zip( model_params, amp.master_params(optimizer), final_params): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() def test_2models2losses2optimizers(self): model0 = MyModel(1) model1 = MyModel(2) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.25) # Don't do it like this: reference_grads = [[]]*5 # because then it creates a list of 5 references to the same "[]" and appending # to any of them effectively makes you append to all of them, which multiplies # the resulting size of reference_grads by 5x and needless to say makes the test fail. reference_grads = [[], [], [], [], []] final_params = [None, None, None, None, None] for i in range(2): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) loss0.backward() loss1.backward() reference_grads[0].append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) optimizer0.step() optimizer1.step() final_params[0] = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] def what_got_skipped(which_iter, which_backward): if which_iter == 0 and which_backward == 0: return 1 if which_iter == 0 and which_backward == 1: return 2 if which_iter == 1 and which_backward == 0: return 3 if which_iter == 1 and which_backward == 1: return 4 return 0 for which_iter in (0,1): for which_backward in (0,1): model0 = MyModel(1) model1 = MyModel(2) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.25) for i in range(3): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) loss0.backward() loss1.backward() if i != which_iter: reference_grads[what_got_skipped(which_iter, which_backward)].append( [param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) if i == which_iter: if which_backward == 0: optimizer1.step() else: optimizer0.step() else: optimizer0.step() optimizer1.step() final_params[what_got_skipped(which_iter, which_backward)] = \ [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (True, False): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 else: iters = 2 model0 = MyModel(1) model1 = MyModel(2) models = [model0, model1] optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.25) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1], [optimizer0, optimizer1] = amp.initialize( [model0, model1], [optimizer0, optimizer1], opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) with amp.scale_loss(loss0, optimizer0, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if inject_inf_loc == "fp32": model0.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model0.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, optimizer1, loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if inject_inf_loc == "fp32": model1.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model1.weight1.grad[0] = float('inf') # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers)) if i != inject_inf: master_params = list(amp.master_params(optimizer0)) + \ list(amp.master_params(optimizer1)) for param, reference_grad in zip(master_params, reference_grads[what_got_skipped(inject_inf, which_backward)][unskipped]): self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float())) unskipped += 1 optimizer0.step() optimizer1.step() model_params = [p for p in model0.parameters()] + [p for p in model1.parameters()] master_params = [p for p in amp.master_params(optimizer0)] + \ [p for p in amp.master_params(optimizer1)] for model, master, reference in zip( model_params, master_params, final_params[what_got_skipped(inject_inf, which_backward)]): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() def test_3models2losses2optimizers(self): model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 1.0}], momentum=0.5) optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}], momentum=0.25) # Again, can't do this: reference_grads = [[]]*9 reference_grads = [[], [], [], [], [], [], [], [], []] final_params = [None, None, None, None, None, None, None, None, None] for i in range(2): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) + model1(self.x) loss1 = model2(self.x) + model1(self.x) loss0.backward() loss1.backward() reference_grads[0].append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) optimizer0.step() optimizer1.step() final_params[0] = \ [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] + \ [param.data.clone() for param in model2.parameters()] def what_got_skipped(which_iter, which_backward, which_model): if which_iter == 0: if which_backward == 0: if which_model == 0: return 1 if which_model == 1: return 2 if which_backward == 1: if which_model == 2: return 3 if which_model == 1: return 4 if which_iter == 1: if which_backward == 0: if which_model == 0: return 5 if which_model == 1: return 6 if which_backward == 1: if which_model == 2: return 7 if which_model == 1: return 8 return 0 for which_iter in (0,1): for which_backward in (0,1): if which_backward == 0: which_models = (0,1) if which_backward == 1: which_models = (2,1) for which_model in which_models: model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 1.0}], momentum=0.5) optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}], momentum=0.25) for i in range(3): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) + model1(self.x) loss1 = model2(self.x) + model1(self.x) loss0.backward() loss1.backward() if i != which_iter: reference_grads[what_got_skipped(which_iter, which_backward, which_model)].append( [param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) if i == which_iter: if which_backward == 0: # if which_model == 0: optimizer1.step() # if which_model == 1: # optimizer1.step() if which_backward == 1: # if which_model == 2: # optimizer0.step() # if which_model == 1: continue else: optimizer0.step() optimizer1.step() final_params[what_got_skipped(which_iter, which_backward, which_model)] = \ [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] + \ [param.data.clone() for param in model2.parameters()] for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (True, False): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 if which_backward == 0: which_models = (0, 1) elif which_backward == 1: which_models = (2, 1) else: iters = 2 which_models = (None,) for which_model in which_models: model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) models = [model0, model1, model2] optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 1.0}], momentum=0.5) optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}], momentum=0.25) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1, model2], [optimizer0, optimizer1] = amp.initialize( [model0, model1, model2], [optimizer0, optimizer1], opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) + model1(self.x) loss1 = model2(self.x) + model1(self.x) with amp.scale_loss(loss0, optimizer0, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if which_model == 0: inj_model = model0 elif which_model == 1: inj_model = model1 else: raise RuntimeError(which_model + " invalid for loss 0") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, [optimizer0, optimizer1], loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if which_model == 2: inj_model = model2 elif which_model == 1: inj_model = model1 else: raise RuntimeError(which_model + " invalid for loss 1 ") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') if i != inject_inf: master_params = list(amp.master_params(optimizer0)) + \ list(amp.master_params(optimizer1)) for param, reference_grad in zip(master_params, reference_grads[what_got_skipped(inject_inf, which_backward, which_model)][unskipped]): self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float())) unskipped += 1 optimizer0.step() optimizer1.step() model_params = [p for p in model0.parameters()] + \ [p for p in model1.parameters()] + \ [p for p in model2.parameters()] master_params = [p for p in amp.master_params(optimizer0)] + \ [p for p in amp.master_params(optimizer1)] # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {} which_model {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers, which_model)) for model, master, reference in zip( model_params, master_params, final_params[what_got_skipped(inject_inf, which_backward, which_model)]): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_multiple_models_optimizers_losses.py
import unittest import functools as ft import itertools as it from apex import amp import torch from torch import nn import torch.nn.functional as F from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT try: import amp_C from amp_C import multi_tensor_l2norm from apex.multi_tensor_apply import MultiTensorApply disabled = False except ImportError as err: print("amp_C fused kernels unavailable, disabling TestMultiTensorApply. ImportError was ", err) disabled = True class TestMultiTensorL2Norm(unittest.TestCase): def setUp(self): common_init(self) self.val = 4.0 self.overflow_buf = torch.cuda.IntTensor(1).zero_() def tearDown(self): pass # The tensor creation here is written for convenience, not speed. def l2norm(self, sizea, sizeb, applier, repeat_tensors, in_type, per_tensor): self.overflow_buf.zero_() a = torch.cuda.FloatTensor(sizea).fill_(self.val) b = torch.cuda.FloatTensor(sizeb).fill_(self.val) in_list = [] for i in range(repeat_tensors): in_list += [a.clone().to(in_type), b.clone().to(in_type)] if per_tensor: norm, norm_per_tensor = applier(multi_tensor_l2norm, self.overflow_buf, [in_list], True) normab = torch.cat((a.norm().view(1), b.norm().view(1))) norm_per_tensor = norm_per_tensor.view(-1, 2) else: norm, _ = applier(multi_tensor_l2norm, self.overflow_buf, [in_list], True) reference = torch.cuda.FloatTensor((sizea + sizeb)*repeat_tensors).fill_(self.val).norm() self.assertTrue(torch.allclose(norm, reference)) if per_tensor: self.assertTrue(torch.allclose(norm_per_tensor, normab)) self.assertTrue(self.overflow_buf.item() == 0) @unittest.skipIf(disabled, "amp_C is unavailable") def test_fuzz(self): input_size_pairs = ( (7777*77, 555*555), (777, 555), (555, 2048*32+1), (2048*32+1, 555), (555, 2048*32), (2048*32, 555), (33333, 555), (555, 33333)) appliers = ( MultiTensorApply(2048*32), MultiTensorApply(333), MultiTensorApply(33333)) repeat_tensors = ( 1, 55) for sizea, sizeb in input_size_pairs: for applier in appliers: for repeat in repeat_tensors: for in_type in (torch.float32, torch.float16): for per_tensor in (False, True): self.l2norm(sizea, sizeb, applier, repeat, in_type, per_tensor) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_multi_tensor_l2norm.py
import unittest import functools as ft import itertools as it from apex import amp from apex.amp import _amp_state import torch from torch import nn import torch.nn.functional as F from torch.nn import Parameter from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT try: import amp_C disabled = False from apex.optimizers import FusedSGD as FusedSGD except ImportError as err: print("amp_C fused kernels unavailable, disabling TestMultiTensorApply. ImportError was ", err) disabled = True class MyModel(torch.nn.Module): def __init__(self, unique): super(MyModel, self).__init__() self.weight0 = Parameter(unique + torch.arange(2, device='cuda', dtype=torch.float32)) self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=torch.float16)) @staticmethod def ops(input, weight0, weight1): return ((input*(weight0.float()))*(weight1.float())).sum() def forward(self, input): return self.ops(input, self.weight0, self.weight1) # Abandon all hope, ye who enter here. # This is hands down the ugliest code I have ever written, but it succeeds in testing # multiple models/optimizers/losses fairly thoroughly. Many of the different test cases # require slightly divergent code in a way that seems near-impossible to genericize into a simple # cross product or nested loops. class TestMultipleModelsOptimizersLosses(unittest.TestCase): def setUp(self): self.x = torch.ones((2), device='cuda', dtype=torch.float32) common_init(self) def tearDown(self): pass @unittest.skipIf(disabled, "amp_C is unavailable") def test_2models2losses1optimizer(self): model0 = MyModel(1) model1 = MyModel(2) optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.125) reference_grads = [] for i in range(2): optimizer.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) loss0.backward() loss1.backward() reference_grads.append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) optimizer.step() final_params = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] for materialize_master_grads in (False, True): for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (False, True): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 else: iters = 2 model0 = MyModel(1) model1 = MyModel(2) models = [model0, model1] optimizer = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.125, materialize_master_grads=materialize_master_grads) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1], optimizer = amp.initialize( [model0, model1], optimizer, opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) with amp.scale_loss(loss0, optimizer, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if inject_inf_loc == "fp32": model0.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model0.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, optimizer, loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if inject_inf_loc == "fp32": model1.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model1.weight1.grad[0] = float('inf') if i != inject_inf: master_params = amp.master_params(optimizer) for param, reference_grad in zip(master_params, reference_grads[unskipped]): if opt_level == "O2" and not materialize_master_grads: continue else: self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float()), "opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers)) unskipped += 1 optimizer.step() model_params = [p for p in model0.parameters()] + [p for p in model1.parameters()] for model, master, reference in zip( model_params, amp.master_params(optimizer), final_params): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() @unittest.skipIf(disabled, "amp_C is unavailable") def test_3models2losses1optimizer(self): model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}, {'params' : model2.parameters(), 'lr' : 0.125}], momentum=0.125) reference_grads = [] for i in range(2): optimizer.zero_grad() loss0 = model0(self.x) + model2(self.x) loss1 = model1(self.x) + model2(self.x) loss0.backward() loss1.backward() reference_grads.append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()] + [param.grad.data.clone() for param in model2.parameters()]) optimizer.step() final_params = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] + \ [param.data.clone() for param in model2.parameters()] for materialize_master_grads in (False, True): for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (False, True): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 if which_backward == 0: which_models = (0, 2) elif which_backward == 1: which_models = (1, 2) else: iters = 2 which_models = (None,) for which_model in which_models: model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) models = [model0, model1, model2] optimizer = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 0.5}, {'params' : model2.parameters(), 'lr' : 0.125}], momentum=0.125, materialize_master_grads=materialize_master_grads) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1, model2], optimizer = amp.initialize( [model0, model1, model2], optimizer, opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer.zero_grad() loss0 = model0(self.x) + model2(self.x) loss1 = model1(self.x) + model2(self.x) with amp.scale_loss(loss0, optimizer, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if which_model == 0: inj_model = model0 elif which_model == 2: inj_model = model2 else: raise RuntimeError(which_model + " invalid for loss 0") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, optimizer, loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if which_model == 1: inj_model = model1 elif which_model == 2: inj_model = model2 else: raise RuntimeError(which_model + " invalid for loss 1 ") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') if i != inject_inf: master_params = amp.master_params(optimizer) for param, reference_grad in zip(master_params, reference_grads[unskipped]): if opt_level == "O2" and not materialize_master_grads: continue else: self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float()), "opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} which_model {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, which_model, use_multiple_loss_scalers)) unskipped += 1 optimizer.step() model_params = [p for p in model0.parameters()] + \ [p for p in model1.parameters()] + \ [p for p in model2.parameters()] for model, master, reference in zip( model_params, amp.master_params(optimizer), final_params): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() @unittest.skipIf(disabled, "amp_C is unavailable") def test_2models2losses2optimizers(self): model0 = MyModel(1) model1 = MyModel(2) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.25) # Don't do it like this: reference_grads = [[]]*5 # because then it creates a list of 5 references to the same "[]" and appending # to any of them effectively makes you append to all of them, which multiplies # the resulting size of reference_grads by 5x and needless to say makes the test fail. reference_grads = [[], [], [], [], []] final_params = [None, None, None, None, None] for i in range(2): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) loss0.backward() loss1.backward() reference_grads[0].append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) optimizer0.step() optimizer1.step() final_params[0] = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] def what_got_skipped(which_iter, which_backward): if which_iter == 0 and which_backward == 0: return 1 if which_iter == 0 and which_backward == 1: return 2 if which_iter == 1 and which_backward == 0: return 3 if which_iter == 1 and which_backward == 1: return 4 return 0 for which_iter in (0,1): for which_backward in (0,1): model0 = MyModel(1) model1 = MyModel(2) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.25) for i in range(3): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) loss0.backward() loss1.backward() if i != which_iter: reference_grads[what_got_skipped(which_iter, which_backward)].append( [param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) if i == which_iter: if which_backward == 0: optimizer1.step() else: optimizer0.step() else: optimizer0.step() optimizer1.step() final_params[what_got_skipped(which_iter, which_backward)] = \ [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] for materialize_master_grads in (False, True): for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (False, True): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 else: iters = 2 model0 = MyModel(1) model1 = MyModel(2) models = [model0, model1] optimizer0 = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125, materialize_master_grads=materialize_master_grads) optimizer1 = FusedSGD([{'params' : model1.parameters(), 'lr' : 0.5}], momentum=0.25, materialize_master_grads=materialize_master_grads) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1], [optimizer0, optimizer1] = amp.initialize( [model0, model1], [optimizer0, optimizer1], opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) loss1 = model1(self.x) with amp.scale_loss(loss0, optimizer0, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if inject_inf_loc == "fp32": model0.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model0.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, optimizer1, loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if inject_inf_loc == "fp32": model1.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": model1.weight1.grad[0] = float('inf') # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers)) if i != inject_inf: master_params = list(amp.master_params(optimizer0)) + \ list(amp.master_params(optimizer1)) for param, reference_grad in zip(master_params, reference_grads[what_got_skipped(inject_inf, which_backward)][unskipped]): if opt_level == "O2" and not materialize_master_grads: continue else: self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float())) unskipped += 1 optimizer0.step() optimizer1.step() model_params = [p for p in model0.parameters()] + [p for p in model1.parameters()] master_params = [p for p in amp.master_params(optimizer0)] + \ [p for p in amp.master_params(optimizer1)] for model, master, reference in zip( model_params, master_params, final_params[what_got_skipped(inject_inf, which_backward)]): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() @unittest.skipIf(disabled, "amp_C is unavailable") def test_3models2losses2optimizers(self): model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 1.0}], momentum=0.5) optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}], momentum=0.25) # Again, can't do this: reference_grads = [[]]*9 reference_grads = [[], [], [], [], [], [], [], [], []] final_params = [None, None, None, None, None, None, None, None, None] for i in range(2): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) + model1(self.x) loss1 = model2(self.x) + model1(self.x) loss0.backward() loss1.backward() reference_grads[0].append([param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) optimizer0.step() optimizer1.step() final_params[0] = \ [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] + \ [param.data.clone() for param in model2.parameters()] def what_got_skipped(which_iter, which_backward, which_model): if which_iter == 0: if which_backward == 0: if which_model == 0: return 1 if which_model == 1: return 2 if which_backward == 1: if which_model == 2: return 3 if which_model == 1: return 4 if which_iter == 1: if which_backward == 0: if which_model == 0: return 5 if which_model == 1: return 6 if which_backward == 1: if which_model == 2: return 7 if which_model == 1: return 8 return 0 for which_iter in (0,1): for which_backward in (0,1): if which_backward == 0: which_models = (0,1) if which_backward == 1: which_models = (2,1) for which_model in which_models: model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 1.0}], momentum=0.5) optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}], momentum=0.25) for i in range(3): optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) + model1(self.x) loss1 = model2(self.x) + model1(self.x) loss0.backward() loss1.backward() if i != which_iter: reference_grads[what_got_skipped(which_iter, which_backward, which_model)].append( [param.grad.data.clone() for param in model0.parameters()] + [param.grad.data.clone() for param in model1.parameters()]) if i == which_iter: if which_backward == 0: # if which_model == 0: optimizer1.step() # if which_model == 1: # optimizer1.step() if which_backward == 1: # if which_model == 2: # optimizer0.step() # if which_model == 1: continue else: optimizer0.step() optimizer1.step() final_params[what_got_skipped(which_iter, which_backward, which_model)] = \ [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] + \ [param.data.clone() for param in model2.parameters()] for materialize_master_grads in (False, True): for opt_level in ("O0", "O1", "O2", "O3"): for how_to_zero in ("none", "model", "optimizer"): for use_multiple_loss_scalers in (False, True): if opt_level == "O1" or opt_level == "O2": inject_inf_iters = (-1, 0, 1) else: inject_inf_iters = (-1,) for inject_inf in inject_inf_iters: if inject_inf >= 0: inject_inf_locs = ("fp16", "fp32") which_backwards = (0, 1) else: inject_inf_locs = ("fdsa",) which_backwards = (None,) for inject_inf_loc in inject_inf_locs: for which_backward in which_backwards: if use_multiple_loss_scalers: num_losses = 2 loss_ids = [0, 1] else: num_losses = 1 loss_ids = [0, 0] if inject_inf >= 0: iters = 3 if which_backward == 0: which_models = (0, 1) elif which_backward == 1: which_models = (2, 1) else: iters = 2 which_models = (None,) for which_model in which_models: model0 = MyModel(1) model1 = MyModel(2) model2 = MyModel(3) models = [model0, model1, model2] optimizer0 = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25}, {'params' : model1.parameters(), 'lr' : 1.0}], momentum=0.5, materialize_master_grads=materialize_master_grads) optimizer1 = FusedSGD([{'params' : model2.parameters(), 'lr' : 0.5}], momentum=0.25, materialize_master_grads=materialize_master_grads) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1, model2], [optimizer0, optimizer1] = amp.initialize( [model0, model1, model2], [optimizer0, optimizer1], opt_level=opt_level, verbosity=0, cast_model_type=False, num_losses=num_losses) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 if use_multiple_loss_scalers: _amp_state.loss_scalers[1]._loss_scale = 16.0 unskipped = 0 for i in range(iters): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() else: optimizer0.zero_grad() optimizer1.zero_grad() loss0 = model0(self.x) + model1(self.x) loss1 = model2(self.x) + model1(self.x) with amp.scale_loss(loss0, optimizer0, loss_id=loss_ids[0]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 0: if which_model == 0: inj_model = model0 elif which_model == 1: inj_model = model1 else: raise RuntimeError(which_model + " invalid for loss 0") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') with amp.scale_loss(loss1, [optimizer0, optimizer1], loss_id=loss_ids[1]) as scaled_loss: scaled_loss.backward() if i == inject_inf and which_backward == 1: if which_model == 2: inj_model = model2 elif which_model == 1: inj_model = model1 else: raise RuntimeError(which_model + " invalid for loss 1 ") if inject_inf_loc == "fp32": inj_model.weight0.grad[0] = float('inf') elif inject_inf_loc == "fp16": inj_model.weight1.grad[0] = float('inf') if i != inject_inf: master_params = list(amp.master_params(optimizer0)) + \ list(amp.master_params(optimizer1)) for param, reference_grad in zip(master_params, reference_grads[what_got_skipped(inject_inf, which_backward, which_model)][unskipped]): if opt_level == "O2" and not materialize_master_grads: continue else: self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float())) unskipped += 1 optimizer0.step() optimizer1.step() model_params = [p for p in model0.parameters()] + \ [p for p in model1.parameters()] + \ [p for p in model2.parameters()] master_params = [p for p in amp.master_params(optimizer0)] + \ [p for p in amp.master_params(optimizer1)] # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {} which_model {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers, which_model)) for model, master, reference in zip( model_params, master_params, final_params[what_got_skipped(inject_inf, which_backward, which_model)]): self.assertTrue(torch.allclose(model, reference)) self.assertTrue(torch.allclose(model, master.to(model.dtype))) if opt_level == "O1": _amp_state.handle._deactivate() if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_fused_sgd.py
import unittest import functools as ft import itertools as it from apex import amp from apex.amp import _amp_state import torch from torch import nn import torch.nn.functional as F from torch.nn import Parameter from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT class MyModel(torch.nn.Module): def __init__(self, unique): super(MyModel, self).__init__() self.weight0 = Parameter(unique + torch.arange(2, device='cuda', dtype=torch.float32)) self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=torch.float16)) @staticmethod def ops(input, weight0, weight1): return ((input*(weight0.float()))*(weight1.float())).sum() def forward(self, input): return self.ops(input, self.weight0, self.weight1) # Abandon all hope, ye who enter here. class TestAddParamGroup(unittest.TestCase): def setUp(self): self.x = torch.ones((2), device='cuda', dtype=torch.float32) common_init(self) def tearDown(self): pass def zero_grad(self, models, optimizer, how_to_zero): if how_to_zero == "none": for model in models: for param in model.parameters(): param.grad = None elif how_to_zero == "model": for model in models: model.zero_grad() elif how_to_zero == "optimizer": optimizer.zero_grad() def test_add_param_group(self): for opt_level in ("O0", "O1", "O2", "O3"): for zero_before_add in (True, False): for try_accumulation in (True, False): model0 = MyModel(1) model1 = MyModel(2) optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) optimizer.zero_grad() loss = model0(self.x) loss.backward() optimizer.step() if zero_before_add: optimizer.zero_grad() optimizer.add_param_group({'params' : model1.parameters(), 'lr' : 0.5}) if not zero_before_add: optimizer.zero_grad() loss = model0(self.x) + model1(self.x) loss.backward(retain_graph=try_accumulation) if try_accumulation: loss.backward() optimizer.step() # Once more to make sure the new params pick up momemtums properly optimizer.zero_grad() loss = model0(self.x) + model1(self.x) loss.backward(retain_graph=try_accumulation) if try_accumulation: loss.backward() optimizer.step() reference_params = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] for how_to_zero in "none", "model", "optimizer": model0 = MyModel(1) model1 = MyModel(2) optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}], momentum=0.125) _amp_state.allow_incoming_model_not_fp32 = True [model0, model1], optimizer = amp.initialize([model0, model1], optimizer, opt_level=opt_level, verbosity=0, cast_model_type=False) _amp_state.allow_incoming_model_not_fp32 = False _amp_state.loss_scalers[0]._loss_scale = 4.0 self.zero_grad([model0, model1], optimizer, how_to_zero) loss = model0(self.x) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() if zero_before_add: self.zero_grad([model0, model1], optimizer, how_to_zero) optimizer.add_param_group({'params' : model1.parameters(), 'lr' : 0.5}) if not zero_before_add: self.zero_grad([model0, model1], optimizer, how_to_zero) loss = model0(self.x) + model1(self.x) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward(retain_graph=try_accumulation) if try_accumulation: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() # Once more to make sure the new params pick up momentums properly self.zero_grad([model0, model1], optimizer, how_to_zero) loss = model0(self.x) + model1(self.x) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward(retain_graph=try_accumulation) if try_accumulation: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() final_params = [param.data.clone() for param in model0.parameters()] + \ [param.data.clone() for param in model1.parameters()] for reference, final in zip(reference_params, final_params): self.assertTrue(torch.allclose(reference.to(final.dtype), final), "opt_level = {}, how_to_zero = {}, zero_before_add = {}".format( opt_level, how_to_zero, zero_before_add)) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_add_param_group.py
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/__init__.py
import unittest import itertools as it from apex import amp import torch from torch import nn import torch.nn.functional as F from utils import common_init, HALF, FLOAT, DTYPES class TestPromotion(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def run_binary_promote_test(self, fns, input_shape, x_inplace=False): type_pairs = it.product(DTYPES, DTYPES) for fn, (xtype, ytype) in it.product(fns, type_pairs): x = torch.randn(input_shape, dtype=xtype).requires_grad_() x_leaf = x if x_inplace: # We need a non-leaf to call in place on x = x.clone() y = torch.randn(input_shape, dtype=ytype) out = fn(x, y) if x_inplace: # In place: always match xtype self.assertEqual(out.type(), x.type()) else: # Out of place: match widest type if xtype == torch.float or ytype == torch.float: self.assertEqual(out.type(), FLOAT) else: self.assertEqual(out.type(), HALF) out.float().sum().backward() self.assertEqual(x_leaf.grad.dtype, xtype) def test_atan2_matches_widest(self): fns = [lambda x, y : torch.atan2(x, y), lambda x, y : x.atan2(y)] self.run_binary_promote_test(fns, (self.b,)) def test_mul_matches_widest(self): fns = [lambda x, y : torch.mul(x, y), lambda x, y: x.mul(y)] self.run_binary_promote_test(fns, (self.b,)) def test_cat_matches_widest(self): shape = self.b ys = [torch.randn(shape, dtype=torch.half) for _ in range(5)] x_float = torch.randn(shape) out = torch.cat(ys + [x_float]) self.assertEqual(out.type(), FLOAT) x_half = torch.randn(shape, dtype=torch.half) out = torch.cat(ys + [x_half]) self.assertEqual(out.type(), HALF) def test_inplace_exp_is_error_for_half(self): xs = torch.randn(self.b) xs.exp_() self.assertEqual(xs.type(), FLOAT) xs = torch.randn(self.b, dtype=torch.half) with self.assertRaises(NotImplementedError): xs.exp_() def test_inplace_add_matches_self(self): fn = lambda x, y: x.add_(y) self.run_binary_promote_test([fn], (self.b,), x_inplace=True) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_promotion.py
import unittest import functools as ft import itertools as it from apex import amp import torch from torch import nn import torch.nn.functional as F from math import floor from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT try: import amp_C from amp_C import multi_tensor_axpby from apex.multi_tensor_apply import MultiTensorApply disabled = False except ImportError as err: print("amp_C fused kernels unavailable, disabling TestMultiTensorApply. ImportError was ", err) disabled = True TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) try_nhwc = (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4) class TestMultiTensorAxpby(unittest.TestCase): def setUp(self): common_init(self) self.a = 2.0 self.b = 8.0 self.xval = 4.0 self.yval = 16.0 self.overflow_buf = torch.cuda.IntTensor(1).zero_() self.ref = torch.full((1,), 136.0, device="cuda", dtype=torch.float32) def tearDown(self): pass # The tensor creation here is written for convenience, not speed. def axpby(self, sizea, sizeb, applier, repeat_tensors, x_type, y_type, out_type, inplace=False, nhwc=False): self.overflow_buf.zero_() sizea = sizea if isinstance(sizea, tuple) else (sizea,) sizeb = sizeb if isinstance(sizeb, tuple) else (sizeb,) t1 = torch.full(sizea, 1.0, device="cuda", dtype=torch.float32) t2 = torch.full(sizeb, 1.0, device="cuda", dtype=torch.float32) def to_fmt(t, tp): if nhwc: return t.clone().to(tp, memory_format=torch.channels_last) else: return t.clone().to(tp) y_list = [] for i in range(repeat_tensors): y_list += [to_fmt(t1, y_type)*self.yval, to_fmt(t2, y_type)*self.yval] x_list = [to_fmt(x, x_type)*(self.xval/self.yval) for x in y_list] if inplace: out_list = y_list else: out_list = [to_fmt(out, out_type)*3.0 for out in y_list] applier(multi_tensor_axpby, self.overflow_buf, [x_list, y_list, out_list], self.a, self.b, -1) self.assertTrue(all([torch.allclose(out, self.ref.to(out_type)) for out in out_list]), msg="{} {} {} {} {} {} {}".format(sizea, sizeb, repeat_tensors, x_type, y_type, out_type, inplace)) self.assertTrue(self.overflow_buf.item() == 0, msg="{} {} {} {} {} {} {}".format(sizea, sizeb, repeat_tensors, x_type, y_type, out_type, inplace)) # def find_inf(self, sizea, sizeb, applier, repeat_tensors, in_type, out_type, t, ind, val, inplace=False): # self.overflow_buf.zero_() # a = torch.cuda.FloatTensor(sizea).fill_(self.scale) # b = torch.cuda.FloatTensor(sizeb).fill_(self.scale) # out_list = [] # for i in range(repeat_tensors): # out_list += [a.clone().to(out_type), b.clone().to(out_type)] # if inplace: # in_list = out_list # else: # in_list = [out.clone().to(in_type) for out in out_list] # applier(multi_tensor_scale, self.overflow_buf, [in_list, out_list], 1./self.scale) # self.overflow_buf.zero_() # in_list[t][ind] = val # applier(multi_tensor_scale, self.overflow_buf, [in_list, out_list], 1./self.scale) # self.assertTrue(self.overflow_buf.item()) @unittest.skipIf(disabled, "amp_C is unavailable") def test_fuzz(self): input_size_pairs = ( (7777*77, 555*555), (777, 555), (555, 2048*32+1), (2048*32+1, 555), (555, 2048*32), (2048*32, 555), (33333, 555), (555, 33333)) appliers = ( MultiTensorApply(2048*32), MultiTensorApply(333), MultiTensorApply(33333)) repeat_tensors = ( 1, 55) for sizea, sizeb in input_size_pairs: for applier in appliers: for repeat in repeat_tensors: for x_type in (torch.float32, torch.float16): for y_type in (torch.float32, torch.float16): for out_type in (torch.float32, torch.float16): for inplace in (True, False): if inplace is True and (y_type is not out_type): continue else: self.axpby(sizea, sizeb, applier, repeat, x_type, y_type, out_type, inplace=inplace) # self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, # 0, 0, float('nan'), inplace=inplace) # self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, # 2*repeat-1, sizeb-1, float('inf'), inplace=inplace) # self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, # 2*(repeat//2), sizea//2, float('inf'), inplace=inplace) @unittest.skipIf(disabled, "amp_C is unavailable") @unittest.skipIf(not try_nhwc, "torch version is 1.4 or earlier, may not support nhwc") def test_fuzz_nhwc(self): input_size_pairs = ( ((7, 77, 7, 77), (5, 55, 5, 55)), ((1, 1, 777, 1), (1, 1, 555, 1)), ((5, 47, 5, 55), (1, 1, 1, 2048*32 + 1)), ((1, 1, 1, 2048*32 + 1), (55, 47, 5, 55)), ((555, 1, 1, 1), (32, 8, 32, 8)), ((32, 8, 32, 8), (55, 47, 5, 55)), ((1, 1, 33333, 1), (55, 47, 55, 5)), ((55, 47, 55, 5), (1, 1, 33333, 1))) appliers = ( MultiTensorApply(2048*32), MultiTensorApply(333), MultiTensorApply(33333)) repeat_tensors = ( 1, 55) for sizea, sizeb in input_size_pairs: for applier in appliers: for repeat in repeat_tensors: for x_type in (torch.float32, torch.float16): for y_type in (torch.float32, torch.float16): for out_type in (torch.float32, torch.float16): for inplace in (True, False): if inplace is True and (y_type is not out_type): continue else: self.axpby(sizea, sizeb, applier, repeat, x_type, y_type, out_type, inplace=inplace, nhwc=True) # self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, # 0, 0, float('nan'), inplace=inplace) # self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, # 2*repeat-1, sizeb-1, float('inf'), inplace=inplace) # self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, # 2*(repeat//2), sizea//2, float('inf'), inplace=inplace) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_multi_tensor_axpby.py
import torch HALF = 'torch.cuda.HalfTensor' FLOAT = 'torch.cuda.FloatTensor' DTYPES = [torch.half, torch.float] ALWAYS_HALF = {torch.float: HALF, torch.half: HALF} ALWAYS_FLOAT = {torch.float: FLOAT, torch.half: FLOAT} MATCH_INPUT = {torch.float: FLOAT, torch.half: HALF} def common_init(test_case): test_case.h = 64 test_case.b = 16 test_case.c = 16 test_case.k = 3 test_case.t = 10 torch.set_default_tensor_type(torch.cuda.FloatTensor)
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/utils.py
import unittest from apex import amp import random import torch from torch import nn from utils import common_init, HALF class TestRnnCells(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def run_cell_test(self, cell, state_tuple=False): shape = (self.b, self.h) for typ in [torch.float, torch.half]: xs = [torch.randn(shape, dtype=typ).requires_grad_() for _ in range(self.t)] hidden_fn = lambda: torch.zeros(shape, dtype=typ) if state_tuple: hidden = (hidden_fn(), hidden_fn()) else: hidden = hidden_fn() outputs = [] for i in range(self.t): hidden = cell(xs[i], hidden) if state_tuple: output = hidden[0] else: output = hidden outputs.append(output) for y in outputs: self.assertEqual(y.type(), HALF) outputs[-1].float().sum().backward() for i, x in enumerate(xs): self.assertEqual(x.grad.dtype, x.dtype) def test_rnn_cell_is_half(self): cell = nn.RNNCell(self.h, self.h) self.run_cell_test(cell) def test_gru_cell_is_half(self): cell = nn.GRUCell(self.h, self.h) self.run_cell_test(cell) def test_lstm_cell_is_half(self): cell = nn.LSTMCell(self.h, self.h) self.run_cell_test(cell, state_tuple=True) class TestRnns(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def run_rnn_test(self, rnn, layers, bidir, state_tuple=False): for typ in [torch.float, torch.half]: x = torch.randn((self.t, self.b, self.h), dtype=typ).requires_grad_() hidden_fn = lambda: torch.zeros((layers + (layers * bidir), self.b, self.h), dtype=typ) if state_tuple: hidden = (hidden_fn(), hidden_fn()) else: hidden = hidden_fn() output, _ = rnn(x, hidden) self.assertEqual(output.type(), HALF) output[-1, :, :].float().sum().backward() self.assertEqual(x.grad.dtype, x.dtype) def test_rnn_is_half(self): configs = [(1, False), (2, False), (2, True)] for layers, bidir in configs: rnn = nn.RNN(input_size=self.h, hidden_size=self.h, num_layers=layers, nonlinearity='relu', bidirectional=bidir) self.run_rnn_test(rnn, layers, bidir) def test_gru_is_half(self): configs = [(1, False), (2, False), (2, True)] for layers, bidir in configs: rnn = nn.GRU(input_size=self.h, hidden_size=self.h, num_layers=layers, bidirectional=bidir) self.run_rnn_test(rnn, layers, bidir) def test_lstm_is_half(self): configs = [(1, False), (2, False), (2, True)] for layers, bidir in configs: rnn = nn.LSTM(input_size=self.h, hidden_size=self.h, num_layers=layers, bidirectional=bidir) self.run_rnn_test(rnn, layers, bidir, state_tuple=True) def test_rnn_packed_sequence(self): num_layers = 2 rnn = nn.RNN(input_size=self.h, hidden_size=self.h, num_layers=num_layers) for typ in [torch.float, torch.half]: x = torch.randn((self.t, self.b, self.h), dtype=typ).requires_grad_() lens = sorted([random.randint(self.t // 2, self.t) for _ in range(self.b)], reverse=True) # `pack_padded_sequence` breaks if default tensor type is non-CPU torch.set_default_tensor_type(torch.FloatTensor) lens = torch.tensor(lens, dtype=torch.int64, device=torch.device('cpu')) packed_seq = nn.utils.rnn.pack_padded_sequence(x, lens) torch.set_default_tensor_type(torch.cuda.FloatTensor) hidden = torch.zeros((num_layers, self.b, self.h), dtype=typ) output, _ = rnn(packed_seq, hidden) self.assertEqual(output.data.type(), HALF) output.data.float().sum().backward() self.assertEqual(x.grad.dtype, x.dtype) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_rnn.py
import unittest import functools as ft import itertools as it from apex import amp import torch from torch import nn import torch.nn.functional as F from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT try: import amp_C from amp_C import multi_tensor_scale from apex.multi_tensor_apply import MultiTensorApply disabled = False except ImportError as err: print("amp_C fused kernels unavailable, disabling TestMultiTensorApply. ImportError was ", err) disabled = True class TestMultiTensorScale(unittest.TestCase): def setUp(self): common_init(self) self.scale = 4.0 self.overflow_buf = torch.cuda.IntTensor(1).zero_() self.ref = torch.cuda.FloatTensor([1.0]) def tearDown(self): pass # The tensor creation here is written for convenience, not speed. def downscale(self, sizea, sizeb, applier, repeat_tensors, in_type, out_type, inplace=False): self.overflow_buf.zero_() a = torch.cuda.FloatTensor(sizea).fill_(self.scale) b = torch.cuda.FloatTensor(sizeb).fill_(self.scale) out_list = [] for i in range(repeat_tensors): out_list += [a.clone().to(out_type), b.clone().to(out_type)] if inplace: in_list = out_list else: in_list = [out.clone().to(in_type) for out in out_list] applier(multi_tensor_scale, self.overflow_buf, [in_list, out_list], 1./self.scale) self.assertTrue(all([torch.allclose(out, self.ref.to(out_type)) for out in out_list])) self.assertTrue(self.overflow_buf.item() == 0) def find_inf(self, sizea, sizeb, applier, repeat_tensors, in_type, out_type, t, ind, val, inplace=False): self.overflow_buf.zero_() a = torch.cuda.FloatTensor(sizea).fill_(self.scale) b = torch.cuda.FloatTensor(sizeb).fill_(self.scale) out_list = [] for i in range(repeat_tensors): out_list += [a.clone().to(out_type), b.clone().to(out_type)] if inplace: in_list = out_list else: in_list = [out.clone().to(in_type) for out in out_list] applier(multi_tensor_scale, self.overflow_buf, [in_list, out_list], 1./self.scale) self.overflow_buf.zero_() in_list[t][ind] = val applier(multi_tensor_scale, self.overflow_buf, [in_list, out_list], 1./self.scale) self.assertTrue(self.overflow_buf.item()) # Currently, the fused kernel gives a hard error if you attempt to downscale # into fp16 output, which imo is the desired behavior. Maybe someday we # will learn otherwise. # @unittest.skipIf(disabled, "amp_C is unavailable") # def test_fp16_to_fp16(self): # self.downscale(self.fp16, self.fp16, self.fp16_ref) # # @unittest.skipIf(disabled, "amp_C is unavailable") # def test_fp32_to_fp16(self): # self.downscale(self.fp32, self.fp16, self.fp16_ref) @unittest.skipIf(disabled, "amp_C is unavailable") def test_fuzz(self): input_size_pairs = ( (7777*77, 555*555), (777, 555), (555, 2048*32+1), (2048*32+1, 555), (555, 2048*32), (2048*32, 555), (33333, 555), (555, 33333)) appliers = ( MultiTensorApply(2048*32), MultiTensorApply(333), MultiTensorApply(33333)) repeat_tensors = ( 1, 55) for sizea, sizeb in input_size_pairs: for applier in appliers: for repeat in repeat_tensors: for in_type in (torch.float32, torch.float16): for out_type in (torch.float32, torch.float16): for inplace in (True, False): if inplace is True and (out_type is not in_type): continue else: self.downscale(sizea, sizeb, applier, repeat, in_type, out_type, inplace=inplace) self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, 0, 0, float('nan'), inplace=inplace) self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, 2*repeat-1, sizeb-1, float('inf'), inplace=inplace) self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type, 2*(repeat//2), sizea//2, float('inf'), inplace=inplace) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_multi_tensor_scale.py
import unittest import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from apex import amp from utils import common_init, FLOAT class MyModel(torch.nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(3, 6, 3, 1, 1) self.bn1 = nn.BatchNorm2d(6) self.param = nn.Parameter(torch.randn(1)) def forward(self, x): x = x * self.param x = F.relu(self.conv1(x)) x = self.bn1(x) return x class TestCheckpointing(unittest.TestCase): def setUp(self): self.initial_lr = 1e-3 self.test_opt_levels = ("O0", "O1", "O2", "O3") def seed(self): torch.manual_seed(2809) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def check_state_dict_fp32(self, state_dict): for key in state_dict: if 'num_batches_tracked' in key: continue param = state_dict[key] self.assertEqual(param.type(), FLOAT, 'Parameter in state_dict not FLOAT') def train_step(self, model, optimizer, data, loss_ids): optimizer.zero_grad() output = model(data) # Call backward for num_losses-1 for idx in loss_ids: loss = output.mean() with amp.scale_loss(loss, optimizer, loss_id=idx) as scaled_loss: scaled_loss.backward(retain_graph=True) optimizer.step() return output def compare_models(self, modelA, modelB, test_setup=''): state_dictA = modelA.state_dict() state_dictB = modelB.state_dict() self.assertEqual(len(state_dictA), len(state_dictB), 'state_dicts have different lengths' + test_setup) for key in state_dictA: paramA = state_dictA[key] paramB = state_dictB[key] self.assertTrue((paramA==paramB).all(), msg='Parameters in state_dices not equal.' + 'key: {}\nparam: {}\nrestored: {}\ndiff: {} for {}'.format( key, paramA, paramB, paramA - paramB, test_setup)) def test_restoring(self): nb_epochs = 10 nb_epochs_restore = nb_epochs // 2 for opt_level in self.test_opt_levels: for res_opt_level in self.test_opt_levels: for amp_before_load in [True, False]: for num_losses in range(1, 3): test_setup = ('#' * 75 + '\n' + \ f'opt_level {opt_level}\n' + \ f'restore_opt_level {res_opt_level}\n' + \ f'amp_before_load {amp_before_load}\n' + \ f'num_losses {num_losses}\n') self.seed() # Create reference model model = MyModel().to('cuda') optimizer = optim.SGD(model.parameters(), lr=self.initial_lr) # Initialize with num_losses*2 for the original model and the restored one model, optimizer = amp.initialize( model, optimizer, opt_level=opt_level, num_losses=num_losses*2, verbosity=0) # Compare training behavior for same restore option # We cannot really generalize it, since a saved model in O0 # would introduce a skipped step in O1, which will raise an error if opt_level == res_opt_level: # train for nb_epochs and restore after nb_epochs_restore for epoch in range(nb_epochs): x = torch.randn(16, 3, 24, 24, device='cuda') output = self.train_step( model, optimizer, x, range(num_losses)) # Initialize model one step before comparing. # Otherwise the batchnorm layers will be updated # additionally in restore_model if epoch == (nb_epochs_restore - 1): # Load model and optimizer checkpoint = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'amp': amp.state_dict() } # Check state_dict for FP32 tensors self.check_state_dict_fp32(checkpoint['model']) # Restore model restore_model = MyModel().to('cuda') restore_optimizer = optim.SGD( restore_model.parameters(), lr=self.initial_lr) if amp_before_load: restore_model, restore_optimizer = amp.initialize( restore_model, restore_optimizer, opt_level=res_opt_level, num_losses=num_losses*2, verbosity=0) restore_model.load_state_dict(checkpoint['model']) restore_optimizer.load_state_dict(checkpoint['optimizer']) # FIXME: We cannot test the amp.state_dict in the same script # amp.load_state_dict(checkpoint['amp']) if not amp_before_load: restore_model, restore_optimizer = amp.initialize( restore_model, restore_optimizer, opt_level=res_opt_level, num_losses=num_losses*2, verbosity=0) elif epoch >= nb_epochs_restore: restore_output = self.train_step( restore_model, restore_optimizer, x, range(num_losses, num_losses*2)) self.assertTrue( torch.allclose(output.float(), restore_output.float()), 'Output of reference and restored models differ for ' + test_setup) self.compare_models(model, restore_model, test_setup) # if opt_level != res_opt_level else: # skip tests for different opt_levels continue def test_loss_scale_decrease(self): num_losses = 3 nb_decrease_loss_scales = [0, 1, 2] for opt_level in self.test_opt_levels: #print('#' * 75 + f'\n opt_level {opt_level}\n') # Create new tmp copy for this run nb_decrease_loss_scales_tmp = list(nb_decrease_loss_scales) model = MyModel().to('cuda') optimizer = optim.SGD(model.parameters(), lr=self.initial_lr) model, optimizer = amp.initialize( model, optimizer, opt_level=opt_level, num_losses=num_losses, verbosity=0) if amp._amp_state.opt_properties.loss_scale != 'dynamic': #print('Static loss scale set. Skipping opt_level.') continue # force to skip some updates to decrease the loss_scale initial_loss_scales = [] for idx in range(num_losses): initial_loss_scales.append( amp._amp_state.loss_scalers[idx].loss_scale()) for _ in range(len(nb_decrease_loss_scales)): x = torch.randn(16, 3, 24, 24, device='cuda') for idx in range(num_losses): while nb_decrease_loss_scales_tmp[idx] > 0: optimizer.zero_grad() output = model(x * 2**17) loss = output.mean() with amp.scale_loss(loss, optimizer, loss_id=idx) as scaled_loss: scaled_loss.backward(retain_graph=True) optimizer.step() nb_decrease_loss_scales_tmp[idx] -= 1 # Check loss scales afterwards updated_loss_scales = [] for idx in range(num_losses): updated_loss_scales.append( amp._amp_state.loss_scalers[idx].loss_scale()) for factor, update_ls, init_ls in zip(nb_decrease_loss_scales, updated_loss_scales, initial_loss_scales): self.assertEqual(update_ls, init_ls / 2**factor) # Check state dict amp_state_dict = amp.state_dict() for scaler_idx, factor, init_ls in zip(amp_state_dict, nb_decrease_loss_scales, initial_loss_scales): scaler = amp_state_dict[scaler_idx] self.assertEqual(scaler['loss_scale'], init_ls / 2**factor) unskipped_target = 0 self.assertEqual(scaler['unskipped'], unskipped_target) def test_state_dict(self): for opt_level in self.test_opt_levels: # Skip O3 if opt_level == 'O3': continue model = MyModel().to('cuda') optimizer = optim.Adam(model.parameters(), lr=1e-3) model, optimizer = amp.initialize( model, optimizer, opt_level=opt_level, verbosity=0) # Export state_dict and check for Half state_dict = model.state_dict() for key in state_dict: self.assertFalse('Half' in state_dict[key].type()) # Check, if model is still trainable # Create dummy data data = torch.randn(10, 3, 4, 4, device='cuda') target = torch.randn(10, 6, 4, 4, device='cuda') # Get initnial loss optimizer.zero_grad() output = model(data) loss = F.mse_loss(output, target) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() last_loss = loss.item() # train for some epochs for epoch in range(10): optimizer.zero_grad() output = model(data) loss = F.mse_loss(output, target) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() self.assertTrue(loss.item() < last_loss) last_loss = loss.item() if __name__=='__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_checkpointing.py
import unittest import functools as ft import itertools as it from apex import amp from apex.amp import _amp_state import torch from torch import nn import torch.nn.functional as F from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT def get_reference_grad(i, w, ops): # Creating new tensors ensures, among other things, that the new tensors are not in the cache. # In fact, they are guaranteed not to use the cache because they are not torch.nn.Parameters. fp32_i = i.detach().clone().float() fp32_w = w.detach().clone().float().requires_grad_() loss = ops(fp32_i, fp32_w) loss.backward() return fp32_w.grad class WhitelistModule(torch.nn.Module): def __init__(self, dtype): super(WhitelistModule, self).__init__() self.weight = torch.nn.Parameter(torch.arange(8*8, device='cuda', dtype=dtype).view(8,8)) @staticmethod def ops(input, weight): return (input.mm(weight)).mm(weight).sum() def forward(self, input): return self.ops(input, self.weight) class BlacklistModule(torch.nn.Module): def __init__(self, dtype): super(BlacklistModule, self).__init__() self.weight = torch.nn.Parameter(torch.arange(2*8, device='cuda', dtype=dtype).view(2,8)) @staticmethod def ops(input, weight): return (input + torch.pow(weight, 2) + torch.pow(weight, 2)).sum() def forward(self, input): return self.ops(input, self.weight) class PromoteModule(torch.nn.Module): def __init__(self, dtype): super(PromoteModule, self).__init__() self.weight = torch.nn.Parameter(torch.arange(2*8, device='cuda', dtype=dtype).view(2,8)) @staticmethod def ops(input, weight): return ((input*weight)*weight).sum() def forward(self, input): return self.ops(input, self.weight) class TestCache(unittest.TestCase): def setUp(self): self.x = torch.ones((2, 8), device='cuda', dtype=torch.float32) common_init(self) def tearDown(self): pass def train_eval_train_test(self, module, t): model = module(t).cuda() optimizer = torch.optim.SGD(model.parameters(), lr=1.0) _amp_state.allow_incoming_model_not_fp32 = True model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0) _amp_state.allow_incoming_model_not_fp32 = False def training_step(): for param in model.parameters(): param.grad = None loss = model(self.x).sum() _amp_state.loss_scalers[0]._loss_scale = 4.0 with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() self.assertEqual(len([p.grad for p in model.parameters() if p.grad is not None]), 1) self.assertEqual(model.weight.grad.type(), model.weight.type()) reference_grad = get_reference_grad(self.x, model.weight, model.ops) # Currently there's no difference in the allclose calls, so no need for branching, # but I'm keeping this in case we want different tolerances for fp16 and fp32 checks. if model.weight.grad.type() == "torch.cuda.HalfTensor": self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad)) elif model.weight.grad.type() == "torch.cuda.FloatTensor": self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad)) else: raise RuntimeError("model.weight.grad.type = {}".format(model.weight.grad.type())) model.weight.data -= 1. # Simulates first epoch training_step() # Simulates eval with torch.no_grad(): loss = model(self.x).sum() # Simulates resuming training after eval training_step() _amp_state.handle._deactivate() # I could easily have these as a set of for loops in a single test, # instead of going for granularity. def test_whitelist_module_fp16_weight(self): self.train_eval_train_test(WhitelistModule, torch.float16) def test_whitelist_module_fp32_weight(self): self.train_eval_train_test(WhitelistModule, torch.float32) def test_blacklist_module_fp16_weight(self): self.train_eval_train_test(BlacklistModule, torch.float16) def test_blacklist_module_fp32_weight(self): self.train_eval_train_test(BlacklistModule, torch.float32) def test_promote_module_fp16_weight(self): self.train_eval_train_test(PromoteModule, torch.float16) def test_promote_module_fp32_weight(self): self.train_eval_train_test(PromoteModule, torch.float32) if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_cache.py
import unittest import torch from torch import nn from torch.nn import Parameter from apex import amp from apex.parallel.LARC import LARC from utils import common_init class MyModel(torch.nn.Module): def __init__(self, unique): super(MyModel, self).__init__() self.weight0 = Parameter( unique + torch.arange(2, device="cuda", dtype=torch.float32) ) def forward(self, input): return (input * self.weight0).sum() class TestLARC(unittest.TestCase): def setUp(self): self.x = torch.ones((2), device="cuda", dtype=torch.float32) common_init(self) def tearDown(self): pass def test_larc_mixed_precision(self): for opt_level in ["O0", "O1", "O2", "O3"]: model = MyModel(1) optimizer = LARC( torch.optim.SGD( [{"params": model.parameters(), "lr": 0.25}], momentum=0.125 ) ) model, optimizer = amp.initialize( model, optimizer, opt_level=opt_level, verbosity=0 ) optimizer.zero_grad() loss = model(self.x) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() if __name__ == "__main__": unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_larc.py
import unittest import functools as ft import itertools as it from apex import amp import torch from torch import nn import torch.nn.functional as F from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT def run_layer_test(test_case, fns, expected, input_shape, test_backward=True): for fn, typ in it.product(fns, expected.keys()): x = torch.randn(input_shape, dtype=typ).requires_grad_() y = fn(x) test_case.assertEqual(y.type(), expected[typ]) if test_backward: y.float().sum().backward() test_case.assertEqual(x.grad.type(), MATCH_INPUT[typ]) class TestBasicCasts(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def test_linear_is_half(self): m = nn.Linear(self.h, self.h) f = ft.partial(F.linear, weight=m.weight, bias=m.bias) run_layer_test(self, [m, f], ALWAYS_HALF, (self.b, self.h)) def test_conv2d_is_half(self): m = nn.Conv2d(self.c, self.c, self.k) f = ft.partial(F.conv2d, weight=m.weight, bias=m.bias) run_layer_test(self, [m, f], ALWAYS_HALF, (self.b, self.c, self.h, self.h)) def test_softmax_is_float(self): m = nn.Softmax(dim=1) f = ft.partial(F.softmax, dim=1) run_layer_test(self, [m, f], ALWAYS_FLOAT, (self.b, self.h)) def test_group_norm_is_float(self): m = nn.GroupNorm(num_groups=4, num_channels=self.c) run_layer_test(self, [m], ALWAYS_FLOAT, (self.b, self.c, self.h, self.h)) def test_mse_loss_is_float(self): shape = (self.b, self.h) target = torch.randn(shape) mod = nn.MSELoss() m = lambda x: mod(x, target) f = ft.partial(F.mse_loss, target=target) run_layer_test(self, [m], ALWAYS_FLOAT, shape) def test_relu_is_match(self): run_layer_test(self, [nn.ReLU(), F.relu], MATCH_INPUT, (self.b, self.h)) def test_batch_norm_is_match(self): m = nn.BatchNorm2d(num_features=self.c) f = ft.partial(F.batch_norm, running_mean=m.running_mean, running_var=m.running_var, weight=m.weight, bias=m.bias, training=True) run_layer_test(self, [m], MATCH_INPUT, (self.b, self.c, self.h, self.h)) # Test forward-only for BN inference m.eval() f = ft.partial(F.batch_norm, running_mean=m.running_mean, running_var=m.running_var, weight=m.weight, bias=m.bias, training=False) run_layer_test(self, [m, f], MATCH_INPUT, (self.b, self.c, self.h, self.h), test_backward=False) class TestBannedMethods(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def bce_common(self, assertion): shape = (self.b, self.h) target = torch.rand(shape) mod = nn.BCELoss() m = lambda x: mod(x, target) f = ft.partial(F.binary_cross_entropy, target=target) for fn in [m, f]: x = torch.rand(shape, dtype=torch.half) assertion(fn, x) def test_bce_raises_by_default(self): assertion = lambda fn, x: self.assertRaises(NotImplementedError, fn, x) self.bce_common(assertion) def test_bce_is_float_with_allow_banned(self): self.handle._deactivate() self.handle = amp.init(enabled=True, allow_banned=True) assertion = lambda fn, x: self.assertEqual(fn(x).type(), FLOAT) self.bce_common(assertion) class TestTensorCasts(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def test_matmul_method_is_half(self): other = torch.randn(self.h, self.h) lhs = lambda x: x.matmul(other) rhs = lambda x: other.matmul(x) run_layer_test(self, [lhs, rhs], ALWAYS_HALF, (self.h, self.h)) def test_matmul_op_is_half(self): other = torch.randn(self.h, self.h) lhs = lambda x: x @ other rhs = lambda x: other @ x run_layer_test(self, [lhs, rhs], ALWAYS_HALF, (self.h, self.h)) def test_pow_method_is_float(self): fn = lambda x: x.pow(2.) run_layer_test(self, [fn], ALWAYS_FLOAT, (self.b, self.h)) def test_pow_op_is_float(self): fn = lambda x: x ** 2. run_layer_test(self, [fn], ALWAYS_FLOAT, (self.b, self.h)) def test_cpu_is_float(self): fn = lambda x: x.cpu() always_cpu_float = {torch.float: 'torch.FloatTensor', torch.half: 'torch.FloatTensor'} run_layer_test(self, [fn], always_cpu_float, (self.b, self.h)) def test_sum_is_float(self): fn = lambda x: x.sum() run_layer_test(self, [fn], ALWAYS_FLOAT, (self.b, self.h)) # TODO: maybe more tests on disabled casting? if __name__ == '__main__': unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_amp/test_basic_casts.py
import unittest import torch import torch.nn as nn from apex.fp16_utils import FP16Model class DummyBlock(nn.Module): def __init__(self): super(DummyBlock, self).__init__() self.conv = nn.Conv2d(10, 10, 2) self.bn = nn.BatchNorm2d(10, affine=True) def forward(self, x): return self.conv(self.bn(x)) class DummyNet(nn.Module): def __init__(self): super(DummyNet, self).__init__() self.conv1 = nn.Conv2d(3, 10, 2) self.bn1 = nn.BatchNorm2d(10, affine=False) self.db1 = DummyBlock() self.db2 = DummyBlock() def forward(self, x): out = x out = self.conv1(out) out = self.bn1(out) out = self.db1(out) out = self.db2(out) return out class DummyNetWrapper(nn.Module): def __init__(self): super(DummyNetWrapper, self).__init__() self.bn = nn.BatchNorm2d(3, affine=True) self.dn = DummyNet() def forward(self, x): return self.dn(self.bn(x)) class TestFP16Model(unittest.TestCase): def setUp(self): self.N = 64 self.C_in = 3 self.H_in = 16 self.W_in = 32 self.in_tensor = torch.randn((self.N, self.C_in, self.H_in, self.W_in)).cuda() self.orig_model = DummyNetWrapper().cuda() self.fp16_model = FP16Model(self.orig_model) def test_params_and_buffers(self): exempted_modules = [ self.fp16_model.network.bn, self.fp16_model.network.dn.db1.bn, self.fp16_model.network.dn.db2.bn, ] for m in self.fp16_model.modules(): expected_dtype = torch.float if (m in exempted_modules) else torch.half for p in m.parameters(recurse=False): assert p.dtype == expected_dtype for b in m.buffers(recurse=False): assert b.dtype in (expected_dtype, torch.int64) def test_output_is_half(self): out_tensor = self.fp16_model(self.in_tensor) assert out_tensor.dtype == torch.half
GeneSplice-main
GeneSplice/apex/tests/L0/run_fp16util/test_fp16util.py
GeneSplice-main
GeneSplice/apex/tests/L0/run_fp16util/__init__.py
import unittest import torch import apex from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase def init_model_and_optimizer(): model = torch.nn.Linear(1, 1, bias=False).cuda() optimizer = torch.optim.SGD(model.parameters(), 1.0) return model, optimizer @unittest.skipUnless(torch.cuda.is_available(), "") class TestDeprecatedWarning(unittest.TestCase): def test_amp(self): model, optimizer = init_model_and_optimizer() with self.assertWarns(apex.DeprecatedFeatureWarning): _ = apex.amp.initialize(model, optimizer) def test_fp16_model(self): model, _ = init_model_and_optimizer() with self.assertWarns(apex.DeprecatedFeatureWarning): _ = apex.fp16_utils.FP16Model(model) def test_fp16_optimizer(self): _, optimizer = init_model_and_optimizer() with self.assertWarns(apex.DeprecatedFeatureWarning): _ = apex.fp16_utils.FP16_Optimizer(optimizer) def test_fp16_loss_scaler(self): with self.assertWarns(apex.DeprecatedFeatureWarning): apex.fp16_utils.LossScaler() class TestParallel(NcclDistributedTestBase): @property def world_size(self): return min(torch.cuda.device_count(), 2) def test_distributed_data_parallel(self): model, _ = init_model_and_optimizer() with self.assertWarns(apex.DeprecatedFeatureWarning): _ = apex.parallel.DistributedDataParallel(model) def test_convert_syncbn_model(self): model, _ = init_model_and_optimizer() with self.assertWarns(apex.DeprecatedFeatureWarning): _ = apex.parallel.convert_syncbn_model(model) if __name__ == "__main__": unittest.main()
GeneSplice-main
GeneSplice/apex/tests/L0/run_deprecated/test_deprecated_warning.py
"""Tests for c++ MLP""" from itertools import product from time import time import torch from torch import nn from torch.testing._internal import common_utils from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_device_type import onlyCUDA from apex.mlp import MLP batch_size = 1024 mlp_sizes = [480, 1024, 1024, 512, 256, 1] num_iters = 10 # note(crcrpar): On Ampere, this test should be run without TF32 enabled. class TestMLP(common_utils.TestCase): def test_creation(self): MLP(mlp_sizes) def test_numeric(self): mlp = MLP(mlp_sizes).cuda() mlp_layers = [] for i in range(mlp.num_layers): linear = nn.Linear(mlp_sizes[i], mlp_sizes[i + 1]) with torch.no_grad(): mlp.weights[i].copy_(linear.weight) mlp.biases[i].copy_(linear.bias) mlp_layers.append(linear) mlp_layers.append(nn.ReLU()) ref_mlp = nn.Sequential(*mlp_layers).cuda() test_input = ( torch.empty(batch_size, mlp_sizes[0], device="cuda") .uniform_(-1.0, 1.0) .requires_grad_() ) ref_input = test_input.clone().detach().requires_grad_() mlp_out = mlp(test_input) ref_out = ref_mlp(ref_input) self.assertEqual(mlp_out, ref_out) # Use mean value as scalar loss. Multiply 10 to make it big enough not zero out mlp_out.mean().mul(10.0).backward() ref_out.mean().mul(10.0).backward() self.assertEqual(test_input.grad, ref_input.grad) self.assertEqual(mlp.biases[0].grad, ref_mlp[0].bias.grad) def _test_mlp_impl(self, use_activation: str, bias: bool, enable_autocast: bool): mlp = MLP(mlp_sizes, bias=bias, activation=use_activation).cuda() mlp_layers = [] for i in range(mlp.num_layers): linear = nn.Linear(mlp_sizes[i], mlp_sizes[i + 1], bias=bias) with torch.no_grad(): mlp.weights[i].copy_(linear.weight) if bias: mlp.biases[i].copy_(linear.bias) mlp_layers.append(linear) if use_activation == "relu": mlp_layers.append(nn.ReLU()) if use_activation == "sigmoid": mlp_layers.append(nn.Sigmoid()) ref_mlp = nn.Sequential(*mlp_layers).cuda() test_input = ( torch.empty(batch_size, mlp_sizes[0], device="cuda") .uniform_(-1.0, 1.0) .requires_grad_() ) ref_input = test_input.clone().detach().requires_grad_() with torch.cuda.amp.autocast_mode.autocast(enabled=enable_autocast): mlp_out = mlp(test_input) mlp_loss = mlp_out.mean().mul(10.0) # Use mean value as scalar loss. Multiply 10 to make it big enough not zero out ref_out = ref_mlp(ref_input) ref_loss = ref_out.mean().mul(10.0) mlp_loss.backward() ref_loss.backward() if enable_autocast: self.assertEqual(mlp_out.dtype, torch.float16) self.assertEqual(ref_out.dtype, torch.float16) else: self.assertEqual(mlp_out, ref_out) self.assertEqual(test_input.grad, ref_input.grad) self.assertEqual(mlp.weights[0].grad, ref_mlp[0].weight.grad) @common_utils.parametrize( "use_activation,bias", list(product(("none", "relu", "sigmoid"), (True, False))), ) def test_mlp(self, use_activation: str, bias: bool): self._test_mlp_impl(use_activation, bias, enable_autocast=False) @common_utils.parametrize( "use_activation,bias", list(product(("none", "relu", "sigmoid"), (True, False))), ) def test_mlp_autocast_fp16(self, use_activation: str, bias: bool): self._test_mlp_impl(use_activation, bias, enable_autocast=True) def test_no_grad(self): mlp = MLP(mlp_sizes).cuda() mlp_layers = [] for i in range(mlp.num_layers): linear = nn.Linear(mlp_sizes[i], mlp_sizes[i + 1]) with torch.no_grad(): mlp.weights[i].copy_(linear.weight) mlp.biases[i].copy_(linear.bias) mlp_layers.append(linear) mlp_layers.append(nn.ReLU(inplace=True)) ref_mlp = nn.Sequential(*mlp_layers).cuda() test_input = torch.empty(batch_size, mlp_sizes[0], device="cuda").uniform_(-1.0, 1.0) ref_input = test_input.clone().detach() mlp_out = mlp(test_input) ref_out = ref_mlp(ref_input) self.assertEqual(mlp_out, ref_out) # Use mean value as scalar loss. Multiply 10 to make it big enough not zero out mlp_out.mean().mul(10.0).backward() ref_out.mean().mul(10.0).backward() self.assertEqual(mlp.weights[0].grad, ref_mlp[0].weight.grad) def test_performance_half(self): mlp = MLP(mlp_sizes).cuda().half() mlp_layers = [] for i in range(mlp.num_layers): linear = nn.Linear(mlp_sizes[i], mlp_sizes[i + 1]) mlp.weights[i].data.copy_(linear.weight) mlp.biases[i].data.copy_(linear.bias) mlp_layers.append(linear) mlp_layers.append(nn.ReLU(inplace=True)) ref_mlp = nn.Sequential(*mlp_layers).cuda().half() test_input = ( torch.empty(batch_size, mlp_sizes[0], device="cuda", dtype=torch.half) .fill_(10.0) .requires_grad_() ) ref_input = ( torch.empty(batch_size, mlp_sizes[0], device="cuda", dtype=torch.half) .fill_(10.0) .requires_grad_() ) # Warm up GPU for _ in range(100): ref_out = ref_mlp(ref_input) ref_loss = ref_out.mean() ref_mlp.zero_grad() ref_loss.backward() mlp_out = mlp(test_input) test_loss = mlp_out.mean() mlp.zero_grad() test_loss.backward() torch.cuda.profiler.start() torch.cuda.synchronize() start_time = time() for _ in range(num_iters): ref_out = ref_mlp(ref_input) ref_loss = ref_out.mean() ref_mlp.zero_grad() ref_loss.backward() torch.cuda.synchronize() stop_time = time() ref_time = (stop_time - start_time) * 1000.0 / num_iters print(f"\nPytorch MLP time {ref_time:.4f} ms") torch.cuda.synchronize() start_time = time() for _ in range(num_iters): mlp_out = mlp(test_input) test_loss = mlp_out.mean() mlp.zero_grad() test_loss.backward() torch.cuda.synchronize() stop_time = time() actual_time = (stop_time - start_time) * 1000.0 / num_iters print(f"C++ MLP time {actual_time:.4f} ms") torch.cuda.profiler.stop() self.assertLessEqual( actual_time, ref_time, msg=f"Custom extension took {actual_time:.4f} while PyTorch took {ref_time:.4f}", ) instantiate_device_type_tests(TestMLP, globals(), only_for=("cuda",)) if __name__ == "__main__": common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L0/run_mlp/test_mlp.py
import os import logging import itertools from typing import Optional, Tuple, List import unittest import torch from torch.testing._internal import common_utils from torch.testing._internal import common_cuda from torch.testing._internal import common_distributed from apex._autocast_utils import _get_autocast_dtypes from apex.transformer import parallel_state from apex.transformer.pipeline_parallel import utils as pp_utils from apex.transformer.pipeline_parallel.schedules.common import ( FwdStepFunc, build_model, _get_params_for_weight_decay_optimization, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_no_pipelining import ( forward_backward_no_pipelining, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_with_interleaving import ( _forward_backward_pipelining_with_interleaving, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_without_interleaving import ( forward_backward_pipelining_without_interleaving, ) from apex.transformer.testing.distributed_test_base import UccDistributedTestBase from apex.transformer.testing import commons as testing_utils logging.getLogger("torch").setLevel(logging.WARNING) logging.getLogger("apex").setLevel(logging.WARNING) def _get_default_world_sizes_model_parallel_world_size(pipeline_model_parallel_world_size: Optional[int] = None ) -> Tuple[int, int, int]: # TODO: revisit if we can fold this into the class for skip logic / avoid duplication # of world size computation world_size = torch.cuda.device_count() tensor_model_parallel_world_size = 1 data_parallel_size = 1 + (world_size >= 8 and world_size % 2 == 0) if pipeline_model_parallel_world_size is None: pipeline_model_parallel_world_size = world_size // (tensor_model_parallel_world_size * data_parallel_size) else: data_parallel_size = world_size // (tensor_model_parallel_world_size * pipeline_model_parallel_world_size) return tensor_model_parallel_world_size, data_parallel_size, pipeline_model_parallel_world_size class UccPipelineParallelForwardBackwardProf(UccDistributedTestBase): # The purpose of this class is to test and confirm asynchronous communication via profiling. # Having that in mind, it is safe to skip all the numerical checks. # For unit testing with numerical checks please refer to `tests/L0/run_transformer/test_pipeline_parallel_fwd_bwd.py`. def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.GLOBAL_BATCH_SIZE = 1024 self.MICRO_BATCH_SIZE = 64 self.HIDDEN_SIZE = 256 self.NUM_FWD_BWD_ITERATIONS = 4 self.deallocate_options = (False,) self.dtypes = (torch.float32,) @property def world_size(self) -> int: return min(torch.cuda.device_count(), 8) def _forward_backward_test_impl( self, forward_only: bool, fwd_bwd_func: FwdStepFunc, pipeline_model_parallel_world_size: Optional[int], virtual_pipeline_model_parallel_size: Optional[int], async_comm: bool = False, *, default_backend: Optional[str] = None, p2p_backend: Optional[str] = None, ) -> None: if fwd_bwd_func == _forward_backward_pipelining_with_interleaving: self.assertIsNotNone(virtual_pipeline_model_parallel_size) self.assertGreater(virtual_pipeline_model_parallel_size, 1) dtype_options = self.dtypes or [torch.float32, torch.double] + _get_autocast_dtypes() for dtype, deallocate_pipeline_outputs in itertools.product( dtype_options, self.deallocate_options, ): grad_scaler = ( torch.cuda.amp.GradScaler(init_scale=4.0) if dtype == torch.half else None ) (tensor_model_parallel_world_size, data_parallel_size, pipeline_model_parallel_world_size) = _get_default_world_sizes_model_parallel_world_size(pipeline_model_parallel_world_size) parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size, pipeline_model_parallel_size_=pipeline_model_parallel_world_size, virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_size, default_backend=default_backend, p2p_backend=p2p_backend, ) pp_utils._reconfigure_microbatch_calculator( rank=parallel_state.get_tensor_model_parallel_rank(), rampup_batch_size=None, global_batch_size=self.GLOBAL_BATCH_SIZE, micro_batch_size=self.MICRO_BATCH_SIZE, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) global_batch_shape = ( self.GLOBAL_BATCH_SIZE // parallel_state.get_data_parallel_world_size(), self.HIDDEN_SIZE, self.HIDDEN_SIZE, ) batch = None if parallel_state.is_pipeline_first_stage(): batch = (torch.ones(global_batch_shape, dtype=dtype).cuda(), ) model = build_model( testing_utils.model_provider_func, # Use DDP only when it's better to have wrap_with_ddp=data_parallel_size > 1, virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size, hidden_size=self.HIDDEN_SIZE, ) offset = pipeline_model_parallel_world_size if virtual_pipeline_model_parallel_size is not None else 0 for idx, model_module in enumerate(model): model_module = model_module.to(dtype) _param_groups = _get_params_for_weight_decay_optimization(model) optimizer = torch.optim.Adam(_param_groups, lr=1e-3) pp_utils.update_num_microbatches(0) for _ in range(self.NUM_FWD_BWD_ITERATIONS): loss = fwd_bwd_func( testing_utils.fwd_step_func, batch, model, forward_only=forward_only, # `tensor_shape` is the shape of micro batch. tensor_shape=( self.MICRO_BATCH_SIZE, self.HIDDEN_SIZE, self.HIDDEN_SIZE, ), dtype=dtype, async_comm=async_comm, grad_scaler=grad_scaler, deallocate_pipeline_output=deallocate_pipeline_outputs, ) parallel_state.destroy_model_parallel() def test_learning_no_pipelining(self): self._forward_backward_test_impl(False, forward_backward_no_pipelining, 1, None) def test_inference_no_pipelining(self): self._forward_backward_test_impl(True, forward_backward_no_pipelining, 1, None) def test_learning_pipelining_without_interleaving(self): self._forward_backward_test_impl( False, forward_backward_pipelining_without_interleaving, None, None ) def test_inference_pipelining_without_interleaving(self): self._forward_backward_test_impl( True, forward_backward_pipelining_without_interleaving, None, None ) def test_learning_async_pipelining_without_interleaving(self): self._forward_backward_test_impl( False, forward_backward_pipelining_without_interleaving, None, None, async_comm=True ) def test_inference_async_pipelining_without_interleaving(self): self._forward_backward_test_impl( True, forward_backward_pipelining_without_interleaving, None, None, async_comm=True ) @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_learning_pipelining_with_interleaving(self): self._forward_backward_test_impl( False, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2 ) @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_inference_pipelining_with_interleaving(self): self._forward_backward_test_impl( True, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2 ) @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_learning_async_pipelining_with_interleaving(self): self._forward_backward_test_impl( False, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2, async_comm=True ) @unittest.skipUnless(_get_default_world_sizes_model_parallel_world_size()[-1] > 2, "Interleaved schedule requires pipeline_model_parallel_world_size > 2") def test_inference_async_pipelining_with_interleaving(self): self._forward_backward_test_impl( True, _forward_backward_pipelining_with_interleaving, None, virtual_pipeline_model_parallel_size=2, async_comm=True ) if __name__ == "__main__": os.environ["UCC_TLS"] = "ucp,cuda" common_distributed.TIMEOUT_DEFAULT = 500 common_utils.run_tests()
GeneSplice-main
GeneSplice/apex/tests/L1/transformer/pipeline_parallel_fwd_bwd_ucc_async.py
import argparse import os import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import numpy as np try: from apex.parallel import DistributedDataParallel as DDP from apex.fp16_utils import * from apex import amp, optimizers from apex.multi_tensor_apply import multi_tensor_applier except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.") model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size per process (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='Initial learning rate. Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256. A warmup schedule will also be applied over the first 5 epochs.') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--prof', dest='prof', action='store_true', help='Only run 10 iterations for profiling.') parser.add_argument('--deterministic', action='store_true') parser.add_argument("--local_rank", default=0, type=int) parser.add_argument('--sync_bn', action='store_true', help='enabling apex sync BN.') parser.add_argument('--has-ext', action='store_true') parser.add_argument('--opt-level', type=str) parser.add_argument('--keep-batchnorm-fp32', type=str, default=None) parser.add_argument('--loss-scale', type=str, default=None) parser.add_argument('--fused-adam', action='store_true') parser.add_argument('--prints-to-process', type=int, default=10) cudnn.benchmark = True def fast_collate(batch): imgs = [img[0] for img in batch] targets = torch.tensor([target[1] for target in batch], dtype=torch.int64) w = imgs[0].size[0] h = imgs[0].size[1] tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 ) for i, img in enumerate(imgs): nump_array = np.asarray(img, dtype=np.uint8) if(nump_array.ndim < 3): nump_array = np.expand_dims(nump_array, axis=-1) nump_array = np.rollaxis(nump_array, 2) tensor[i] += torch.from_numpy(nump_array) return tensor, targets best_prec1 = 0 args = parser.parse_args() # Let multi_tensor_applier be the canary in the coalmine # that verifies if the backend is what we think it is assert multi_tensor_applier.available == args.has_ext print("opt_level = {}".format(args.opt_level)) print("keep_batchnorm_fp32 = {}".format(args.keep_batchnorm_fp32), type(args.keep_batchnorm_fp32)) print("loss_scale = {}".format(args.loss_scale), type(args.loss_scale)) print("\nCUDNN VERSION: {}\n".format(torch.backends.cudnn.version())) if args.deterministic: cudnn.benchmark = False cudnn.deterministic = True torch.manual_seed(args.local_rank) torch.set_printoptions(precision=10) def main(): global best_prec1, args args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 args.gpu = 0 args.world_size = 1 if args.distributed: args.gpu = args.local_rank % torch.cuda.device_count() torch.cuda.set_device(args.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled." # create model if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() if args.sync_bn: import apex print("using apex synced BN") model = apex.parallel.convert_syncbn_model(model) model = model.cuda() # Scale learning rate based on global batch size args.lr = args.lr*float(args.batch_size*args.world_size)/256. if args.fused_adam: optimizer = optimizers.FusedAdam(model.parameters()) else: optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) model, optimizer = amp.initialize( model, optimizer, # enabled=False, opt_level=args.opt_level, keep_batchnorm_fp32=args.keep_batchnorm_fp32, loss_scale=args.loss_scale ) if args.distributed: # By default, apex.parallel.DistributedDataParallel overlaps communication with # computation in the backward pass. # model = DDP(model) # delay_allreduce delays all communication to the end of the backward pass. model = DDP(model, delay_allreduce=True) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() # Optionally resume from a checkpoint if args.resume: # Use a local scope to avoid dangling references def resume(): if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu)) args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) resume() # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') if(args.arch == "inception_v3"): crop_size = 299 val_size = 320 # I chose this value arbitrarily, we can adjust. else: crop_size = 224 val_size = 256 train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(crop_size), transforms.RandomHorizontalFlip(), # transforms.ToTensor(), Too slow # normalize, ])) val_dataset = datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(val_size), transforms.CenterCrop(crop_size), ])) train_sampler = None val_sampler = None if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, sampler=val_sampler, collate_fn=fast_collate) if args.evaluate: validate(val_loader, model, criterion) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) # train for one epoch train(train_loader, model, criterion, optimizer, epoch) if args.prof: break # evaluate on validation set prec1 = validate(val_loader, model, criterion) # remember best prec@1 and save checkpoint if args.local_rank == 0: is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer' : optimizer.state_dict(), }, is_best) class data_prefetcher(): def __init__(self, loader): self.loader = iter(loader) self.stream = torch.cuda.Stream() self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1) self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.mean = self.mean.half() # self.std = self.std.half() self.preload() def preload(self): try: self.next_input, self.next_target = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return with torch.cuda.stream(self.stream): self.next_input = self.next_input.cuda(non_blocking=True) self.next_target = self.next_target.cuda(non_blocking=True) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.next_input = self.next_input.half() # else: self.next_input = self.next_input.float() self.next_input = self.next_input.sub_(self.mean).div_(self.std) def next(self): torch.cuda.current_stream().wait_stream(self.stream) input = self.next_input target = self.next_target self.preload() return input, target def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() end = time.time() run_info_dict = {"Iteration" : [], "Loss" : [], "Speed" : []} prefetcher = data_prefetcher(train_loader) input, target = prefetcher.next() i = -1 while input is not None: i += 1 # No learning rate warmup for this test, to expose bitwise inaccuracies more quickly # adjust_learning_rate(optimizer, epoch, i, len(train_loader)) if args.prof: if i > 10: break # measure data loading time data_time.update(time.time() - end) # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data) prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) else: reduced_loss = loss.data losses.update(to_python_float(reduced_loss), input.size(0)) top1.update(to_python_float(prec1), input.size(0)) top5.update(to_python_float(prec5), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() # for param in model.parameters(): # print(param.data.double().sum().item(), param.grad.data.double().sum().item()) # torch.cuda.synchronize() torch.cuda.nvtx.range_push("step") optimizer.step() torch.cuda.nvtx.range_pop() torch.cuda.synchronize() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # If you decide to refactor this test, like examples/imagenet, to sample the loss every # print_freq iterations, make sure to move this prefetching below the accuracy calculation. input, target = prefetcher.next() if i % args.print_freq == 0 and i > 1: if args.local_rank == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Speed {3:.3f} ({4:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.10f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(train_loader), args.world_size * args.batch_size / batch_time.val, args.world_size * args.batch_size / batch_time.avg, batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5)) run_info_dict["Iteration"].append(i) run_info_dict["Loss"].append(losses.val) run_info_dict["Speed"].append(args.world_size * args.batch_size / batch_time.val) if len(run_info_dict["Loss"]) == args.prints_to_process: if args.local_rank == 0: torch.save(run_info_dict, str(args.has_ext) + "_" + str(args.opt_level) + "_" + str(args.loss_scale) + "_" + str(args.keep_batchnorm_fp32) + "_" + str(args.fused_adam)) quit() def validate(val_loader, model, criterion): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() prefetcher = data_prefetcher(val_loader) input, target = prefetcher.next() i = -1 while input is not None: i += 1 # compute output with torch.no_grad(): output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data) prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) else: reduced_loss = loss.data losses.update(to_python_float(reduced_loss), input.size(0)) top1.update(to_python_float(prec1), input.size(0)) top5.update(to_python_float(prec5), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if args.local_rank == 0 and i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Speed {2:.3f} ({3:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), args.world_size * args.batch_size / batch_time.val, args.world_size * args.batch_size / batch_time.avg, batch_time=batch_time, loss=losses, top1=top1, top5=top5)) input, target = prefetcher.next() print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, step, len_epoch): """LR schedule that should yield 76% converged accuracy with batch size 256""" factor = epoch // 30 if epoch >= 80: factor = factor + 1 lr = args.lr*(0.1**factor) """Warmup""" if epoch < 5: lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch) # if(args.local_rank == 0): # print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def reduce_tensor(tensor): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= args.world_size return rt if __name__ == '__main__': main()
GeneSplice-main
GeneSplice/apex/tests/L1/common/main_amp.py
import argparse import torch parser = argparse.ArgumentParser(description='Compare') parser.add_argument('--opt-level', type=str) parser.add_argument('--keep-batchnorm-fp32', type=str, default=None) parser.add_argument('--loss-scale', type=str, default=None) parser.add_argument('--fused-adam', action='store_true') parser.add_argument('--use_baseline', action='store_true') args = parser.parse_args() base_file = str(args.opt_level) + "_" +\ str(args.loss_scale) + "_" +\ str(args.keep_batchnorm_fp32) + "_" +\ str(args.fused_adam) file_e = "True_" + base_file file_p = "False_" + base_file if args.use_baseline: file_b = "baselines/True_" + base_file dict_e = torch.load(file_e) dict_p = torch.load(file_p) if args.use_baseline: dict_b = torch.load(file_b) torch.set_printoptions(precision=10) print(file_e) print(file_p) if args.use_baseline: print(file_b) # ugly duplication here... if not args.use_baseline: for n, (i_e, i_p) in enumerate(zip(dict_e["Iteration"], dict_p["Iteration"])): assert i_e == i_p, "i_e = {}, i_p = {}".format(i_e, i_p) loss_e = dict_e["Loss"][n] loss_p = dict_p["Loss"][n] assert loss_e == loss_p, "Iteration {}, loss_e = {}, loss_p = {}".format(i_e, loss_e, loss_p) print("{:4} {:15.10f} {:15.10f} {:15.10f} {:15.10f}".format( i_e, loss_e, loss_p, dict_e["Speed"][n], dict_p["Speed"][n])) else: for n, (i_e, i_p) in enumerate(zip(dict_e["Iteration"], dict_p["Iteration"])): assert i_e == i_p, "i_e = {}, i_p = {}".format(i_e, i_p) loss_e = dict_e["Loss"][n] loss_p = dict_p["Loss"][n] loss_b = dict_b["Loss"][n] assert loss_e == loss_p, "Iteration {}, loss_e = {}, loss_p = {}".format(i_e, loss_e, loss_p) assert loss_e == loss_b, "Iteration {}, loss_e = {}, loss_b = {}".format(i_e, loss_e, loss_b) print("{:4} {:15.10f} {:15.10f} {:15.10f} {:15.10f} {:15.10f} {:15.10f}".format( i_e, loss_b, loss_e, loss_p, dict_b["Speed"][n], dict_e["Speed"][n], dict_p["Speed"][n]))
GeneSplice-main
GeneSplice/apex/tests/L1/common/compare.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # PyTorch documentation build configuration file, created by # sphinx-quickstart on Fri Dec 23 13:31:47 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('.')) # sys.path.insert(0, os.path.abspath('../../apex/parallel/')) import apex # import multiproc import sphinx_rtd_theme # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.extlinks', ] napoleon_use_ivar = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Apex' copyright = '2018' author = 'Christian Sarofeen, Natalia Gimelshein, Michael Carilli, Raul Puri' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # TODO: change to [:2] at v1.0 # version = 'master (' + torch.__version__ + ' )' version = '0.1' # The full version, including alpha/beta/rc tags. # TODO: verify this works as expected release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'collapse_navigation': False, 'display_version': True, 'logo_only': True, } # html_logo = '_static/img/nv-pytorch2.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # html_style_path = 'css/pytorch_theme.css' html_context = { 'css_files': [ 'https://fonts.googleapis.com/css?family=Lato', '_static/css/pytorch_theme.css' ], } # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'PyTorchdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'apex.tex', 'Apex Documentation', 'Torch Contributors', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'Apex', 'Apex Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Apex', 'Apex Documentation', author, 'Apex', 'One line description of project.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('https://docs.python.org/', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), } # -- A patch that prevents Sphinx from cross-referencing ivar tags ------- # See http://stackoverflow.com/a/41184353/3343043 from docutils import nodes from sphinx.util.docfields import TypedField from sphinx import addnodes def patched_make_field(self, types, domain, items, **kw): # `kw` catches `env=None` needed for newer sphinx while maintaining # backwards compatibility when passed along further down! # type: (List, unicode, Tuple) -> nodes.field def handle_item(fieldarg, content): par = nodes.paragraph() par += addnodes.literal_strong('', fieldarg) # Patch: this line added # par.extend(self.make_xrefs(self.rolename, domain, fieldarg, # addnodes.literal_strong)) if fieldarg in types: par += nodes.Text(' (') # NOTE: using .pop() here to prevent a single type node to be # inserted twice into the doctree, which leads to # inconsistencies later when references are resolved fieldtype = types.pop(fieldarg) if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text): typename = u''.join(n.astext() for n in fieldtype) typename = typename.replace('int', 'python:int') typename = typename.replace('long', 'python:long') typename = typename.replace('float', 'python:float') typename = typename.replace('type', 'python:type') par.extend(self.make_xrefs(self.typerolename, domain, typename, addnodes.literal_emphasis, **kw)) else: par += fieldtype par += nodes.Text(')') par += nodes.Text(' -- ') par += content return par fieldname = nodes.field_name('', self.label) if len(items) == 1 and self.can_collapse: fieldarg, content = items[0] bodynode = handle_item(fieldarg, content) else: bodynode = self.list_type() for fieldarg, content in items: bodynode += nodes.list_item('', handle_item(fieldarg, content)) fieldbody = nodes.field_body('', bodynode) return nodes.field('', fieldname, fieldbody) TypedField.make_field = patched_make_field
GeneSplice-main
GeneSplice/apex/docs/source/conf.py
from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.") parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='cifar10', help='cifar10 | lsun | mnist |imagenet | folder | lfw | fake') parser.add_argument('--dataroot', default='./', help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=64, help='input batch size') parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints') parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('--classes', default='bedroom', help='comma separated list of classes for the lsun data set') parser.add_argument('--opt_level', default='O1', help='amp opt_level, default="O1"') opt = parser.parse_args() print(opt) try: os.makedirs(opt.outf) except OSError: pass if opt.manualSeed is None: opt.manualSeed = 2809 print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if opt.dataset in ['imagenet', 'folder', 'lfw']: # folder dataset dataset = dset.ImageFolder(root=opt.dataroot, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) nc=3 elif opt.dataset == 'lsun': classes = [ c + '_train' for c in opt.classes.split(',')] dataset = dset.LSUN(root=opt.dataroot, classes=classes, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) nc=3 elif opt.dataset == 'cifar10': dataset = dset.CIFAR10(root=opt.dataroot, download=True, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) nc=3 elif opt.dataset == 'mnist': dataset = dset.MNIST(root=opt.dataroot, download=True, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ])) nc=1 elif opt.dataset == 'fake': dataset = dset.FakeData(image_size=(3, opt.imageSize, opt.imageSize), transform=transforms.ToTensor()) nc=3 assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) device = torch.device("cuda:0") ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), # state size. (ngf) x 32 x 32 nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False), nn.Tanh() # state size. (nc) x 64 x 64 ) def forward(self, input): if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output netG = Generator(ngpu).to(device) netG.apply(weights_init) if opt.netG != '': netG.load_state_dict(torch.load(opt.netG)) print(netG) class Discriminator(nn.Module): def __init__(self, ngpu): super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is (nc) x 64 x 64 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 16 x 16 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 8 x 8 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*8) x 4 x 4 nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), ) def forward(self, input): if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output.view(-1, 1).squeeze(1) netD = Discriminator(ngpu).to(device) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) criterion = nn.BCEWithLogitsLoss() fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device) real_label = 1 fake_label = 0 # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) [netD, netG], [optimizerD, optimizerG] = amp.initialize( [netD, netG], [optimizerD, optimizerG], opt_level=opt.opt_level, num_losses=3) for epoch in range(opt.niter): for i, data in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real netD.zero_grad() real_cpu = data[0].to(device) batch_size = real_cpu.size(0) label = torch.full((batch_size,), real_label, device=device) output = netD(real_cpu) errD_real = criterion(output, label) with amp.scale_loss(errD_real, optimizerD, loss_id=0) as errD_real_scaled: errD_real_scaled.backward() D_x = output.mean().item() # train with fake noise = torch.randn(batch_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()) errD_fake = criterion(output, label) with amp.scale_loss(errD_fake, optimizerD, loss_id=1) as errD_fake_scaled: errD_fake_scaled.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() ############################ # (2) Update G network: maximize log(D(G(z))) ########################### netG.zero_grad() label.fill_(real_label) # fake labels are real for generator cost output = netD(fake) errG = criterion(output, label) with amp.scale_loss(errG, optimizerG, loss_id=2) as errG_scaled: errG_scaled.backward() D_G_z2 = output.mean().item() optimizerG.step() print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' % (epoch, opt.niter, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if i % 100 == 0: vutils.save_image(real_cpu, '%s/real_samples.png' % opt.outf, normalize=True) fake = netG(fixed_noise) vutils.save_image(fake.detach(), '%s/amp_fake_samples_epoch_%03d.png' % (opt.outf, epoch), normalize=True) # do checkpointing torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch))
GeneSplice-main
GeneSplice/apex/examples/dcgan/main_amp.py
import torch import argparse import os from apex import amp # FOR DISTRIBUTED: (can also use torch.nn.parallel.DistributedDataParallel instead) from apex.parallel import DistributedDataParallel parser = argparse.ArgumentParser() # FOR DISTRIBUTED: Parse for the local_rank argument, which will be supplied # automatically by torch.distributed.launch. parser.add_argument("--local_rank", default=0, type=int) args = parser.parse_args() # FOR DISTRIBUTED: If we are running under torch.distributed.launch, # the 'WORLD_SIZE' environment variable will also be set automatically. args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: # FOR DISTRIBUTED: Set the device according to local_rank. torch.cuda.set_device(args.local_rank) # FOR DISTRIBUTED: Initialize the backend. torch.distributed.launch will provide # environment variables, and requires that you use init_method=`env://`. torch.distributed.init_process_group(backend='nccl', init_method='env://') torch.backends.cudnn.benchmark = True N, D_in, D_out = 64, 1024, 16 # Each process receives its own batch of "fake input data" and "fake target data." # The "training loop" in each process just uses this fake batch over and over. # https://github.com/NVIDIA/apex/tree/master/examples/imagenet provides a more realistic # example of distributed data sampling for both training and validation. x = torch.randn(N, D_in, device='cuda') y = torch.randn(N, D_out, device='cuda') model = torch.nn.Linear(D_in, D_out).cuda() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) model, optimizer = amp.initialize(model, optimizer, opt_level="O1") if args.distributed: # FOR DISTRIBUTED: After amp.initialize, wrap the model with # apex.parallel.DistributedDataParallel. model = DistributedDataParallel(model) # torch.nn.parallel.DistributedDataParallel is also fine, with some added args: # model = torch.nn.parallel.DistributedDataParallel(model, # device_ids=[args.local_rank], # output_device=args.local_rank) loss_fn = torch.nn.MSELoss() for t in range(500): optimizer.zero_grad() y_pred = model(x) loss = loss_fn(y_pred, y) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() if args.local_rank == 0: print("final loss = ", loss)
GeneSplice-main
GeneSplice/apex/examples/simple/distributed/distributed_data_parallel.py
import argparse import os import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import numpy as np try: from apex.parallel import DistributedDataParallel as DDP from apex.fp16_utils import * from apex import amp, optimizers from apex.multi_tensor_apply import multi_tensor_applier except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.") def fast_collate(batch, memory_format): imgs = [img[0] for img in batch] targets = torch.tensor([target[1] for target in batch], dtype=torch.int64) w = imgs[0].size[0] h = imgs[0].size[1] tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8).contiguous(memory_format=memory_format) for i, img in enumerate(imgs): nump_array = np.asarray(img, dtype=np.uint8) if(nump_array.ndim < 3): nump_array = np.expand_dims(nump_array, axis=-1) nump_array = np.rollaxis(nump_array, 2) tensor[i] += torch.from_numpy(nump_array) return tensor, targets def parse(): model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size per process (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='Initial learning rate. Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256. A warmup schedule will also be applied over the first 5 epochs.') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--prof', default=-1, type=int, help='Only run 10 iterations for profiling.') parser.add_argument('--deterministic', action='store_true') parser.add_argument("--local_rank", default=os.getenv('LOCAL_RANK', 0), type=int) parser.add_argument('--sync_bn', action='store_true', help='enabling apex sync BN.') parser.add_argument('--opt-level', type=str) parser.add_argument('--keep-batchnorm-fp32', type=str, default=None) parser.add_argument('--loss-scale', type=str, default=None) parser.add_argument('--channels-last', type=bool, default=False) args = parser.parse_args() return args def main(): global best_prec1, args args = parse() print("opt_level = {}".format(args.opt_level)) print("keep_batchnorm_fp32 = {}".format(args.keep_batchnorm_fp32), type(args.keep_batchnorm_fp32)) print("loss_scale = {}".format(args.loss_scale), type(args.loss_scale)) print("\nCUDNN VERSION: {}\n".format(torch.backends.cudnn.version())) cudnn.benchmark = True best_prec1 = 0 if args.deterministic: cudnn.benchmark = False cudnn.deterministic = True torch.manual_seed(args.local_rank) torch.set_printoptions(precision=10) args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 args.gpu = 0 args.world_size = 1 if args.distributed: args.gpu = args.local_rank torch.cuda.set_device(args.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled." if args.channels_last: memory_format = torch.channels_last else: memory_format = torch.contiguous_format # create model if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() if args.sync_bn: import apex print("using apex synced BN") model = apex.parallel.convert_syncbn_model(model) model = model.cuda().to(memory_format=memory_format) # Scale learning rate based on global batch size args.lr = args.lr*float(args.batch_size*args.world_size)/256. optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # Initialize Amp. Amp accepts either values or strings for the optional override arguments, # for convenient interoperation with argparse. model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level, keep_batchnorm_fp32=args.keep_batchnorm_fp32, loss_scale=args.loss_scale ) # For distributed training, wrap the model with apex.parallel.DistributedDataParallel. # This must be done AFTER the call to amp.initialize. If model = DDP(model) is called # before model, ... = amp.initialize(model, ...), the call to amp.initialize may alter # the types of model's parameters in a way that disrupts or destroys DDP's allreduce hooks. if args.distributed: # By default, apex.parallel.DistributedDataParallel overlaps communication with # computation in the backward pass. # model = DDP(model) # delay_allreduce delays all communication to the end of the backward pass. model = DDP(model, delay_allreduce=True) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() # Optionally resume from a checkpoint if args.resume: # Use a local scope to avoid dangling references def resume(): if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu)) args.start_epoch = checkpoint['epoch'] global best_prec1 best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) resume() # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') if(args.arch == "inception_v3"): raise RuntimeError("Currently, inception_v3 is not supported by this example.") # crop_size = 299 # val_size = 320 # I chose this value arbitrarily, we can adjust. else: crop_size = 224 val_size = 256 train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(crop_size), transforms.RandomHorizontalFlip(), # transforms.ToTensor(), Too slow # normalize, ])) val_dataset = datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(val_size), transforms.CenterCrop(crop_size), ])) train_sampler = None val_sampler = None if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset) collate_fn = lambda b: fast_collate(b, memory_format) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=collate_fn) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, sampler=val_sampler, collate_fn=collate_fn) if args.evaluate: validate(val_loader, model, criterion) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) # train for one epoch train(train_loader, model, criterion, optimizer, epoch) # evaluate on validation set prec1 = validate(val_loader, model, criterion) # remember best prec@1 and save checkpoint if args.local_rank == 0: is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer' : optimizer.state_dict(), }, is_best) class data_prefetcher(): def __init__(self, loader): self.loader = iter(loader) self.stream = torch.cuda.Stream() self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1) self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.mean = self.mean.half() # self.std = self.std.half() self.preload() def preload(self): try: self.next_input, self.next_target = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return # if record_stream() doesn't work, another option is to make sure device inputs are created # on the main stream. # self.next_input_gpu = torch.empty_like(self.next_input, device='cuda') # self.next_target_gpu = torch.empty_like(self.next_target, device='cuda') # Need to make sure the memory allocated for next_* is not still in use by the main stream # at the time we start copying to next_*: # self.stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream): self.next_input = self.next_input.cuda(non_blocking=True) self.next_target = self.next_target.cuda(non_blocking=True) # more code for the alternative if record_stream() doesn't work: # copy_ will record the use of the pinned source tensor in this side stream. # self.next_input_gpu.copy_(self.next_input, non_blocking=True) # self.next_target_gpu.copy_(self.next_target, non_blocking=True) # self.next_input = self.next_input_gpu # self.next_target = self.next_target_gpu # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.next_input = self.next_input.half() # else: self.next_input = self.next_input.float() self.next_input = self.next_input.sub_(self.mean).div_(self.std) def next(self): torch.cuda.current_stream().wait_stream(self.stream) input = self.next_input target = self.next_target if input is not None: input.record_stream(torch.cuda.current_stream()) if target is not None: target.record_stream(torch.cuda.current_stream()) self.preload() return input, target def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() end = time.time() prefetcher = data_prefetcher(train_loader) input, target = prefetcher.next() i = 0 while input is not None: i += 1 if args.prof >= 0 and i == args.prof: print("Profiling begun at iteration {}".format(i)) torch.cuda.cudart().cudaProfilerStart() if args.prof >= 0: torch.cuda.nvtx.range_push("Body of iteration {}".format(i)) adjust_learning_rate(optimizer, epoch, i, len(train_loader)) # compute output if args.prof >= 0: torch.cuda.nvtx.range_push("forward") output = model(input) if args.prof >= 0: torch.cuda.nvtx.range_pop() loss = criterion(output, target) # compute gradient and do SGD step optimizer.zero_grad() if args.prof >= 0: torch.cuda.nvtx.range_push("backward") with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() if args.prof >= 0: torch.cuda.nvtx.range_pop() # for param in model.parameters(): # print(param.data.double().sum().item(), param.grad.data.double().sum().item()) if args.prof >= 0: torch.cuda.nvtx.range_push("optimizer.step()") optimizer.step() if args.prof >= 0: torch.cuda.nvtx.range_pop() if i%args.print_freq == 0: # Every print_freq iterations, check the loss, accuracy, and speed. # For best performance, it doesn't make sense to print these metrics every # iteration, since they incur an allreduce and some host<->device syncs. # Measure accuracy prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) # Average loss and accuracy across processes for logging if args.distributed: reduced_loss = reduce_tensor(loss.data) prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) else: reduced_loss = loss.data # to_python_float incurs a host<->device sync losses.update(to_python_float(reduced_loss), input.size(0)) top1.update(to_python_float(prec1), input.size(0)) top5.update(to_python_float(prec5), input.size(0)) torch.cuda.synchronize() batch_time.update((time.time() - end)/args.print_freq) end = time.time() if args.local_rank == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Speed {3:.3f} ({4:.3f})\t' 'Loss {loss.val:.10f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(train_loader), args.world_size*args.batch_size/batch_time.val, args.world_size*args.batch_size/batch_time.avg, batch_time=batch_time, loss=losses, top1=top1, top5=top5)) if args.prof >= 0: torch.cuda.nvtx.range_push("prefetcher.next()") input, target = prefetcher.next() if args.prof >= 0: torch.cuda.nvtx.range_pop() # Pop range "Body of iteration {}".format(i) if args.prof >= 0: torch.cuda.nvtx.range_pop() if args.prof >= 0 and i == args.prof + 10: print("Profiling ended at iteration {}".format(i)) torch.cuda.cudart().cudaProfilerStop() quit() def validate(val_loader, model, criterion): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() prefetcher = data_prefetcher(val_loader) input, target = prefetcher.next() i = 0 while input is not None: i += 1 # compute output with torch.no_grad(): output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data) prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) else: reduced_loss = loss.data losses.update(to_python_float(reduced_loss), input.size(0)) top1.update(to_python_float(prec1), input.size(0)) top5.update(to_python_float(prec5), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() # TODO: Change timings to mirror train(). if args.local_rank == 0 and i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Speed {2:.3f} ({3:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), args.world_size * args.batch_size / batch_time.val, args.world_size * args.batch_size / batch_time.avg, batch_time=batch_time, loss=losses, top1=top1, top5=top5)) input, target = prefetcher.next() print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, step, len_epoch): """LR schedule that should yield 76% converged accuracy with batch size 256""" factor = epoch // 30 if epoch >= 80: factor = factor + 1 lr = args.lr*(0.1**factor) """Warmup""" if epoch < 5: lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch) # if(args.local_rank == 0): # print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def reduce_tensor(tensor): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= args.world_size return rt if __name__ == '__main__': main()
GeneSplice-main
GeneSplice/apex/examples/imagenet/main_amp.py
import logging import math from typing import Callable, Optional, Tuple import torch from torch.optim.optimizer import Optimizer log = logging.getLogger(__name__) class DecoupledLionW(Optimizer): """ DecoupledLionW is an optimizer designed to improve training performance and convergence for deep learning models. It is an extension of the Lion optimizer, incorporating decoupled weight decay and a momentum-based update rule. The optimizer utilizes the Adam-like update rule, where the weight decay is applied separately from the gradient update. The update rule consists of three steps: weight decay, momentum update, and momentum decay. Weight decay reduces the magnitude of the model's weights, preventing overfitting and improving generalization. The momentum update is an interpolation between the current gradient and the previous momentum state, allowing for faster convergence and smoother optimization. Momentum decay gradually reduces the momentum term over time, preventing it from becoming too large and destabilizing the optimization process. The optimizer supports both single-node and multi-node distributed training, enabling efficient training on parallel computing environments. It provides various metric functions to track the optimization process, such as L2 norm of moments, parameters, updates, and gradients, as well as cosine similarity between updates and gradients. The optimizer allows reporting per-parameter metrics to analyze the behavior of individual model parameters during training. """ metric_functions = { 'l2_norm/moment': lambda param, optim_state, step_tensor: torch.linalg.vector_norm(optim_state['exp_avg']), 'l2_norm/param': lambda param, optim_state, step_tensor: torch.linalg.vector_norm(param.data), 'l2_norm/update': lambda param, optim_state, step_tensor: torch.linalg.vector_norm(step_tensor), 'l2_norm/grad': lambda param, optim_state, step_tensor: torch.linalg.vector_norm(param.grad), 'cosine/update_grad': lambda param, optim_state, step_tensor: torch.nn.functional.cosine_similarity(param.grad.flatten(), step_tensor.flatten(), dim=0), 'cosine/moment_grad': lambda param, optim_state, step_tensor: torch.nn.functional.cosine_similarity(param.grad.flatten(), optim_state['exp_avg'].flatten(), dim=0), } def __init__( self, params, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, ): if lr <= 0.: raise Exception(f'Invalid LR: {lr}. LR must be > 0') if not all([0. <= beta <= 1. for beta in betas]): raise Exception(f'Invalid beta values: {betas}. All betas must be between 0 and 1.') if weight_decay >= 1e-3: log.warning(f'You are using a high value of `weight_decay={weight_decay}` for the `DecoupledLionW` optimizer. Are you sure you want to do this? Your model\'s weights will be multiplied by {1.0 - weight_decay} on every step!') defaults = {'lr': lr, 'betas': betas, 'weight_decay': weight_decay} super().__init__(params, defaults) for group in self.param_groups: group['initial_lr'] = group['lr'] @staticmethod def lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) -> None: if wd != 0: decay_factor = (lr / initial_lr) if initial_lr else 1.0 p.data.mul_(1 - decay_factor * wd) update = exp_avg.lerp(grad, 1 - beta1).sign_() p.add_(update, alpha=-lr) exp_avg.lerp_(grad, 1 - beta2) @torch.no_grad() def step(self, closure: Optional[Callable] = None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in filter(lambda p: p.grad is not None and p.requires_grad, group['params']): grad, lr, initial_lr, wd, beta1, beta2, state = p.grad, group['lr'], group['initial_lr'], group['weight_decay'], *group['betas'], self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) exp_avg = state['exp_avg'] self.lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) return loss def pre_reduce_metrics(self, optimizer_metrics): metrics = optimizer_metrics.keys() metrics = sorted(metrics, key=lambda metric: 0 if 'l2_norm' in metric else 1) for metric in metrics: if metric.startswith('l2_norm'): optimizer_metrics[metric] = optimizer_metrics[metric]**2 elif metric.startswith('cosine'): _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) A_rank_subset_norm = math.sqrt(optimizer_metrics[f'l2_norm/{A}/{layer}']) B_rank_subset_norm = math.sqrt(optimizer_metrics[f'l2_norm/{B}/{layer}']) optimizer_metrics[metric] *= A_rank_subset_norm * B_rank_subset_norm return optimizer_metrics def report_per_parameter_metrics(self, param: torch.Tensor, name: str, optimizer_metrics: dict): lr = self.param_groups[0]['lr'] weight_decay = self.param_groups[0]['weight_decay'] initial_lr = self.param_groups[0]['initial_lr'] beta1, _ = self.param_groups[0]['betas'] if param in self.state: param_optim_state = self.state[param] step_tensor = param_optim_state['exp_avg'].clone().lerp_(param.grad, 1 - beta1).sign_().mul_(lr) decay_factor = (lr / initial_lr) if initial_lr else 1.0 step_tensor.add_(param, alpha=-weight_decay * decay_factor) for metric in self.metric_functions: optimizer_metrics[f'{metric}/{name}'] = self.metric_functions[metric](param, param_optim_state, step_tensor) return optimizer_metrics
DecoupledLionW-main
lion.py
from setuptools import setup, find_packages setup( name = 'decoupledLionW', packages = find_packages(exclude=[]), version = '0.1.2', license='MIT', description = 'Lion Optimizer - Pytorch', author = 'Kye Gomez', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/kyegomez/DecoupledLionW', keywords = [ 'artificial intelligence', 'deep learning', 'optimizers' ], install_requires=[ 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
DecoupledLionW-main
setup.py
OpenBioMed-main
open_biomed/__init__.py
OpenBioMed-main
open_biomed/tasks/__init__.py
import logging logger = logging.getLogger(__name__) import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json import math from tqdm import tqdm import torch from torch.autograd import Variable from torch.utils.data import DataLoader from utils import EarlyStopping, AverageMeter, MolCollator, ToDevice, recall_at_k from utils.optimizers import BertAdam from datasets.mtr_dataset import SUPPORTED_MTR_DATASETS from models.multimodal import KVPLM, MolBERT, BioMedGPTCLIP, MoMu, MolFM, DrugFM from models.task_model.mtr_model import MTRModel SUPPORTED_MTR_MODEL = { "scibert": MolBERT, "kv-plm": KVPLM, "kv-plm*": KVPLM, "momu": MoMu, "molfm": MolFM, "drugfm": DrugFM, "biomedgpt": BioMedGPTCLIP, "combined": MTRModel } def similarity(logits1, logits2): if len(logits1.shape) >= 2: sim = logits1 @ logits2.transpose(0, 1) sim, _ = torch.max(sim, dim=0) else: sim = torch.cosine_similarity(logits1, logits2) return sim def contrastive_loss(logits_structure, logits_text, margin, device): if len(logits_structure.shape) <= 2: scores = torch.cosine_similarity( logits_structure.unsqueeze(1).expand(logits_structure.shape[0], logits_structure.shape[0], logits_structure.shape[1]), logits_text.unsqueeze(0).expand(logits_text.shape[0], logits_text.shape[0], logits_text.shape[1]), dim=-1 ) else: scores = torch.matmul(logits_structure.unsqueeze(1), logits_text.unsqueeze(-1)).squeeze() scores, _ = scores.max(dim=-1) #print(scores) diagonal = scores.diag().view(logits_text.size(0), 1) d1 = diagonal.expand_as(scores) d2 = diagonal.t().expand_as(scores) cost_s2t = (margin + scores - d1).clamp(min=0) cost_t2s = (margin + scores - d2).clamp(min=0) # clear diagonals mask = torch.eye(scores.size(0)) > .5 I = Variable(mask) if torch.cuda.is_available(): I = I.to(device) cost_s2t = cost_s2t.masked_fill_(I, 0) cost_t2s = cost_t2s.masked_fill_(I, 0) # keep the maximum violating negative for each query #if self.max_violation: cost_s2t = cost_s2t.max(1)[0] cost_t2s = cost_t2s.max(0)[0] return cost_s2t.sum() + cost_t2s.sum() def train_mtr(train_dataset, val_dataset, model, collator, args): train_loader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collator) loss_fn = contrastive_loss params = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in params if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 },{ 'params': [p for n, p in params if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] #optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.lr) optimizer = BertAdam( optimizer_grouped_parameters, weight_decay=0, lr=args.lr, warmup=args.warmup, t_total=len(train_loader) * args.epochs, ) stopper = EarlyStopping(mode="higher", patience=args.patience, filename=args.output_path) running_loss = AverageMeter() for epoch in range(args.epochs): logger.info("========Epoch %d========" % (epoch + 1)) logger.info("Training...") model.train() running_loss.reset() step = 0 for mol in tqdm(train_loader): mol = ToDevice(mol, args.device) mol_rep = model.encode_mol(mol["structure"]) if hasattr(model, "structure_proj_head"): mol_rep = model.structure_proj_head(mol_rep) text_rep = model.encode_text(mol["text"]) loss = loss_fn(mol_rep, text_rep, margin=args.margin, device=args.device) if hasattr(model, "calculate_matching_loss"): matching_loss = model.calculate_matching_loss(mol["structure"], mol["text"]) loss += matching_loss loss.backward() optimizer.step() optimizer.zero_grad() running_loss.update(loss.detach().cpu().item()) step += 1 if step % args.log_every == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() val_metrics = val_mtr(val_dataset, model, collator, False, args) logger.info(", ".join(["val %s: %.4lf" % (k, val_metrics[k]) for k in val_metrics])) if stopper.step((val_metrics["mrr_d2t"] + val_metrics["mrr_t2d"]), model): break model.load_state_dict(torch.load(args.output_path)["model_state_dict"]) return model def rerank(dataset, model, index_structure, index_text, score, alpha, collator, device): mini_batch = [] for i in index_structure: for j in index_text: mini_batch.append({ "structure": dataset[i]["structure"], "text": dataset[j]["text"], }) mini_batch = ToDevice(collator(mini_batch), device) #print(index_structure, index_text, score, model.predict_similarity_score(mini_batch).squeeze()) score = score.to(device) * alpha + model.predict_similarity_score(mini_batch).squeeze() * (1 - alpha) _, new_idx = torch.sort(score, descending=True) if len(index_structure) > 1: return torch.LongTensor([index_structure[i] for i in new_idx.detach().cpu().tolist()]) else: return torch.LongTensor([index_text[i] for i in new_idx.detach().cpu().tolist()]) def val_mtr(val_dataset, model, collator, apply_rerank, args): val_loader = DataLoader(val_dataset, batch_size=args.val_batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) model.eval() mol_rep_total, text_rep_total = [], [] n_samples = 0 with torch.no_grad(): for mol in tqdm(val_loader): mol = ToDevice(mol, args.device) mol_rep = model.encode_mol(mol["structure"]) if hasattr(model, "structure_proj_head"): mol_rep = model.structure_proj_head(mol_rep) text_rep = model.encode_text(mol["text"]) mol_rep_total.append(mol_rep) text_rep_total.append(text_rep) n_samples += mol_rep.shape[0] mol_rep = torch.cat(mol_rep_total, dim=0) text_rep = torch.cat(text_rep_total, dim=0) score = torch.zeros(n_samples, n_samples) mrr_m2t, mrr_t2m = 0, 0 rec_m2t, rec_t2m = [0, 0, 0], [0, 0, 0] logger.info("Calculating cosine similarity...") for i in tqdm(range(n_samples)): score[i] = similarity(mol_rep[i], text_rep) if hasattr(model, "predict_similarity_score") and apply_rerank: logger.info("Reranking...") for i in tqdm(range(n_samples)): _, idx = torch.sort(score[i, :], descending=True) idx = idx.detach().cpu() if hasattr(model, "predict_similarity_score") and apply_rerank: idx = torch.cat(( rerank(val_dataset, model, [i], idx[:args.rerank_num].tolist(), score[i, idx[:args.rerank_num]], args.alpha_m2t, collator, args.device), idx[args.rerank_num:] ), dim=0) for j, k in enumerate([1, 5, 10]): rec_m2t[j] += recall_at_k(idx, i, k) mrr_m2t += 1.0 / ((idx == i).nonzero(as_tuple=True)[0].item() + 1) _, idx = torch.sort(score[:, i], descending=True) idx = idx.detach().cpu() if hasattr(model, "predict_similarity_score") and apply_rerank: idx = torch.cat(( rerank(val_dataset, model, idx[:args.rerank_num].tolist(), [i], score[idx[:args.rerank_num], i], args.alpha_t2m, collator, args.device), idx[args.rerank_num:] ), dim=0) for j, k in enumerate([1, 5, 10]): rec_t2m[j] += recall_at_k(idx, i, k) mrr_t2m += 1.0 / ((idx == i).nonzero(as_tuple=True)[0].item() + 1) result = { "mrr_d2t": mrr_m2t / n_samples, "mrr_t2d": mrr_t2m / n_samples, } for idx, k in enumerate([1, 5, 10]): result["rec@%d_d2t" % k] = rec_m2t[idx] / n_samples result["rec@%d_t2d" % k] = rec_t2m[idx] / n_samples return result def main(args, config): dataset = SUPPORTED_MTR_DATASETS[args.dataset](args.dataset_path, config["data"], args.dataset_mode, args.filter, args.filter_path) train_dataset = dataset.index_select(dataset.train_index) val_dataset = dataset.index_select(dataset.val_index) test_dataset = dataset.index_select(dataset.test_index) val_dataset.set_test() test_dataset.set_test() collator = MolCollator(config["data"]["mol"]) model = SUPPORTED_MTR_MODEL[config["model"]](config["network"]) if args.init_checkpoint != "None": ckpt = torch.load(args.init_checkpoint, map_location="cpu") if args.param_key != "None": ckpt = ckpt[args.param_key] to_add = [] to_remove = [] for name in ckpt: if "graph_" in name: key_orig = name.replace("graph_", "structure_") to_add.append((key_orig, ckpt[name])) to_remove.append(name) for elem in to_add: ckpt[elem[0]] = elem[1] for key in to_remove: del ckpt[key] model.load_state_dict(ckpt) model = model.to(args.device) if args.mode == "zero_shot": model.eval() result = val_mtr(test_dataset, model, collator, args.rerank, args) print(result) elif args.mode == "train": train_mtr(train_dataset, val_dataset, model, collator, args) result = val_mtr(test_dataset, model, collator, args.rerank, args) print(result) def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--mode", type=str, default="zero_shot") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='PCdes') parser.add_argument("--dataset_path", type=str, default='../datasets/mtr/PCdes/') parser.add_argument("--dataset_mode", type=str, default="paragraph") parser.add_argument("--filter", action="store_true") parser.add_argument("--filter_path", type=str, default="") parser.add_argument("--init_checkpoint", type=str, default="None") parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/finetune.pth") parser.add_argument("--param_key", type=str, default="None") parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--weight_decay", type=float, default=0) parser.add_argument("--lr", type=float, default=5e-5) parser.add_argument("--warmup", type=float, default=0.03) parser.add_argument("--train_batch_size", type=int, default=32) parser.add_argument("--val_batch_size", type=int, default=64) parser.add_argument("--epochs", type=int, default=30) parser.add_argument("--patience", type=int, default=10) parser.add_argument("--log_every", type=int, default=50) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--margin", type=float, default=0.2) rerank_group = parser.add_mutually_exclusive_group(required=False) rerank_group.add_argument("--rerank", action="store_true") rerank_group.add_argument("--no_rerank", action="store_false") parser.set_defaults(rerank=False) parser.add_argument("--rerank_num", type=int, default=32) parser.add_argument("--alpha_m2t", type=float, default=0.8) parser.add_argument("--alpha_t2m", type=float, default=0.8) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() config = json.load(open(args.config_path, "r")) if args.dataset_mode == "sentence": config["data"]["mol"]["featurizer"]["text"]["name"] = "TransformerSentenceTokenizer" config["data"]["mol"]["featurizer"]["text"]["min_sentence_length"] = 5 main(args, config)
OpenBioMed-main
open_biomed/tasks/multi_modal_task/mtr.py
import logging logger = logging.getLogger(__name__) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json from tqdm import tqdm import numpy as np import torch from torch.utils.data import DataLoader from rdkit import Chem, RDLogger, DataStructs from rdkit.Chem import AllChem, MACCSkeys RDLogger.DisableLog('rdApp.*') from nltk.translate.bleu_score import corpus_bleu from Levenshtein import distance as lev from datasets.molcap_dataset import SUPPORTED_MOLCAP_DATASET from models.multimodal.text2mol import Text2MolMLP from models.task_model.text2smi_model import Text2SMILESModel from utils import AverageMeter, ToDevice, MolCollator def train_text2smi(train_loader, val_loader, test_loader, test_dataset, model, args, device): requires_grad = [] for k, v in model.named_parameters(): if v.requires_grad: requires_grad.append(k) logger.debug("parameters requires grad: %s" % (" ".join(requires_grad))) optimizer = torch.optim.Adam([p for p in model.parameters() if p.requires_grad], lr=args.lr, weight_decay=args.weight_decay) running_loss = AverageMeter() step = 0 for epoch in range(args.epochs): logger.info("========Epoch %d========" % (epoch + 1)) logger.info("Training...") #model.train() for mol in train_loader: mol = ToDevice(mol, device) loss = model(mol) optimizer.zero_grad() loss.backward() optimizer.step() running_loss.update(loss.detach().cpu().item()) step += 1 if step % args.logging_steps == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() val_text2smi(val_loader, model, device) if (epoch + 1) % 10 == 0: torch.save({'model_state_dict': model.state_dict()}, os.path.join(args.output_path, "checkpoint_" + str(epoch) + ".pth")) print(test_text2smi(test_dataset, test_loader, model, args, device)) return model def val_text2smi(val_loader, model, device): model.eval() val_loss = 0 logger.info("Validating...") with torch.no_grad(): for mol in val_loader: mol = ToDevice(mol, device) loss = model(mol) val_loss += loss.detach().cpu().item() logger.info("validation loss %.4lf" % (val_loss / len(val_loader))) return val_loss / len(val_loader) def test_text2smi(test_dataset, test_loader, model, args, device): model.eval() outputs = [] gts = test_dataset.smiles logger.info("Testing...") for i, mol in enumerate(tqdm(test_loader)): mol = ToDevice(mol, device) output = model.decode(mol, num_beams=5, max_length=512) outputs += output if i <= 3: for j in range(5): logger.info("Generated: %s" % outputs[-j]) logger.info("Ground truth: %s" % gts[len(outputs) - j]) logger.info("------------------------------------------------------") N = len(outputs) output_tokens = [] gt_tokens = [] levs = [] maccs_sim, rdk_sim, morgan_sim = [], [], [] n_bad_mols = 0 n_exact = 0 with open(args.smi_save_path, "w") as f: f.write("text\tground truth\toutput\n") for i in range(N): output_tokens.append([c for c in outputs[i]]) gt_tokens.append([[c for c in gts[i]]]) try: mol_output = Chem.MolFromSmiles(outputs[i]) mol_gt = Chem.MolFromSmiles(gts[i]) if Chem.MolToInchi(mol_output) == Chem.MolToInchi(mol_gt): n_exact += 1 maccs_sim.append(DataStructs.FingerprintSimilarity(MACCSkeys.GenMACCSKeys(mol_output), MACCSkeys.GenMACCSKeys(mol_gt), metric=DataStructs.TanimotoSimilarity)) rdk_sim.append(DataStructs.FingerprintSimilarity(Chem.RDKFingerprint(mol_output), Chem.RDKFingerprint(mol_gt), metric=DataStructs.TanimotoSimilarity)) morgan_sim.append(DataStructs.TanimotoSimilarity(AllChem.GetMorganFingerprint(mol_output, 2), AllChem.GetMorganFingerprint(mol_gt, 2))) except: n_bad_mols += 1 levs.append(lev(outputs[i], gts[i])) f.write("%s\t%s\t%s\n" % (test_dataset.texts[i], gts[i], outputs[i])) bleu = corpus_bleu(gt_tokens, output_tokens) return { "BLEU": bleu, "Levenshtein": np.mean(levs), "Valid": 1 - n_bad_mols * 1.0 / N, "Exact": n_exact * 1.0 / N, "MACCS FTS": np.mean(maccs_sim), "RDKit FTS": np.mean(rdk_sim), "Morgan FTS": np.mean(morgan_sim), } def test_text2mol(args): text2mol = Text2MolMLP( ninp=768, nhid=600, nout=300, model_name_or_path=args.text2mol_bert_path, cid2smiles_path=None, cid2vec_path=None, mol2vec_output_path=os.path.join(args.text2mol_data_path, "tmp.csv") ) text2mol.load_state_dict(torch.load(args.text2mol_ckpt_path)) device = torch.device(args.device) text2mol.to(device) logger.info("Calculating Text2Mol Metric...") text2mol_scores = [] bad_smiles = 0 with open(args.smi_save_path, "r") as f: for i, line in enumerate(f.readlines()): if i == 0: continue line = line.rstrip("\n").split("\t") try: smi = Chem.MolToSmiles(Chem.MolFromSmiles(line[2])) if smi in text2mol.smiles2vec: text2mol_scores.append(text2mol(smi, line[0], device).detach().cpu().item()) except: bad_smiles += 1 logger.info("Bad SMILES: %d" % (bad_smiles)) return np.mean(text2mol_scores) def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='chebi-20') parser.add_argument("--dataset_path", type=str, default='../datasets/molcap/chebi-20') parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/text2smi/") parser.add_argument("--smi_save_path", type=str, default="../assets/outputs.txt") parser.add_argument("--mode", type=str, default="train") parser.add_argument("--epochs", type=int, default=10) parser.add_argument("--num_workers", type=int, default=1) parser.add_argument("--patience", type=int, default=3) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--weight_decay", type=float, default=0) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--logging_steps", type=int, default=300) parser.add_argument("--text2mol_bert_path", type=str, default="") parser.add_argument("--text2mol_data_path", type=str, default="") parser.add_argument("--text2mol_ckpt_path", type=str, default="") if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() config = json.load(open(args.config_path)) device = torch.device(args.device) if args.mode == "test_text2mol": print("Text2Mol:", test_text2mol(args)) exit(0) # load dataset train_dataset = SUPPORTED_MOLCAP_DATASET[args.dataset](args.dataset_path, config["data"]["mol"], split="train") val_dataset = SUPPORTED_MOLCAP_DATASET[args.dataset](args.dataset_path, config["data"]["mol"], split="validation") test_dataset = SUPPORTED_MOLCAP_DATASET[args.dataset](args.dataset_path, config["data"]["mol"], split="test") collator = MolCollator(config["data"]["mol"]) train_dataloader = DataLoader(train_dataset, args.batch_size, shuffle=True, collate_fn=collator, num_workers=args.num_workers) val_dataloader = DataLoader(val_dataset, args.batch_size, shuffle=False, collate_fn=collator, num_workers=args.num_workers) test_dataloader = DataLoader(test_dataset, args.batch_size, shuffle=False, collate_fn=collator, num_workers=args.num_workers) # load model model = Text2SMILESModel(config["network"]) model = model.to(device) if args.mode == "train": train_text2smi(train_dataloader, val_dataloader, test_dataloader, test_dataset, model, args, device) elif args.mode == "test": if os.path.exists(args.output_path): state_dict = torch.load(args.output_path, map_location=device)["model_state_dict"] model.load_state_dict(state_dict) results = test_text2smi(test_dataset, test_dataloader, model, args, device) print(results) elif args.mode == "traintest": train_text2smi(train_dataloader, val_dataloader, test_dataloader, test_dataset, model, args, device) results = test_text2smi(test_dataset, test_dataloader, model, args, device) print(results)
OpenBioMed-main
open_biomed/tasks/multi_modal_task/text2smigen.py
import logging logger = logging.getLogger(__name__) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json from tqdm import tqdm import numpy as np import torch from torch.utils.data import DataLoader from transformers import BertTokenizerFast from datasets.molqa_dataset import SUPPORTED_MOLQA_DATASET from models.task_model.molqa_model import SUPPORTED_MOLQA_MODELS from utils import AverageMeter, ToDevice, MolQACollator def normalize_text(s, rm_punc=True): """Removing articles and punctuation, and standardizing whitespace are all typical text processing steps.""" import string, re def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() if rm_punc: s = remove_punc(lower(s)) else: s = lower(s) return white_space_fix(remove_articles(s)) def train_molqa(train_loader, test_loader, test_dataset, model, args, device): optimizer_grouped_parameters = [p for n, p in list(model.named_parameters()) if not "mol_encoder" in n and not "mol_proj" in n] optimizer = torch.optim.Adam([p for p in model.parameters()], lr=args.lr, weight_decay=args.weight_decay) #optimizer1 = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, weight_decay=args.weight_decay) #optimizer2 = torch.optim.Adam([p for p in model.mol_encoder.parameters()] + [p for p in model.mol_proj.parameters()], lr=args.lr*10, weight_decay=args.weight_decay) running_loss = AverageMeter() step = 0 for epoch in range(args.epochs): logger.info("========Epoch %d========" % (epoch + 1)) logger.info("Training...") model.train() for mol, question, answer in train_loader: mol = ToDevice(mol, device) question = ToDevice(question, device) answer = ToDevice(answer, device) loss = model(mol, question, answer) optimizer.zero_grad() loss.backward() optimizer.step() running_loss.update(loss.detach().cpu().item()) step += 1 if step % args.logging_steps == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() if (epoch + 1) % 10 == 0: torch.save({'model_state_dict': model.state_dict()}, os.path.join(args.output_path, "checkpoint_" + str(epoch) + ".pth")) print(test_molqa(test_loader, model, args, device)) return model def test_molqa(test_loader, model, args, device): model.eval() exact, f1 = [], [] logger.info("Testing...") with torch.no_grad(): for i, (mol, question, answer) in enumerate(tqdm(test_loader)): mol = ToDevice(mol, device) question = ToDevice(question, device) output = model.generate(mol, question, num_beams=5, max_length=512) if i <= 3: logger.info("Outputs: %s" % output) logger.info("Ground truth: %s" % answer) logger.info("------------------------------------------------------") for j in range(len(output)): y_true = normalize_text(answer[j], rm_punc=True) y_pred = normalize_text(output[j], rm_punc=True) exact.append(int(y_true == y_pred)) y_true = y_true.split() y_pred = y_pred.split() common_tokens = set(y_true) & set(y_pred) if len(common_tokens) == 0: f1.append(0) else: precision = len(common_tokens) / len(y_pred) recall = len(common_tokens) / len(y_true) f1.append(2 * precision * recall / (precision + recall)) return { "exact": np.mean(exact), "f1": np.mean(f1), } def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='chembl-qa') parser.add_argument("--dataset_path", type=str, default='./datasets/molqa/ChEMBL') parser.add_argument("--init_checkpoint", type=str, default='None') parser.add_argument("--param_key", type=str, default="None") parser.add_argument("--output_path", type=str, default='./ckpts/finetune_ckpts/molqa/molt5') parser.add_argument("--mode", type=str, default="train") parser.add_argument("--epochs", type=int, default=10) parser.add_argument("--num_workers", type=int, default=1) parser.add_argument("--patience", type=int, default=3) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--weight_decay", type=float, default=0.0) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--logging_steps", type=int, default=300) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() config = json.load(open(args.config_path)) device = torch.device(args.device) # load dataset train_dataset = SUPPORTED_MOLQA_DATASET[args.dataset](args.dataset_path, config["data"], split="train") test_dataset = SUPPORTED_MOLQA_DATASET[args.dataset](args.dataset_path, config["data"], split="test") train_collator = MolQACollator(config["data"], collate_outputs=True) test_collator = MolQACollator(config["data"], collate_outputs=False) train_dataloader = DataLoader(train_dataset, args.batch_size, shuffle=True, collate_fn=train_collator, num_workers=args.num_workers) test_dataloader = DataLoader(test_dataset, args.batch_size, shuffle=False, collate_fn=test_collator, num_workers=args.num_workers) # load model model = SUPPORTED_MOLQA_MODELS[config["network"]["type"]](config["network"]) if args.init_checkpoint != "None": state_dict = torch.load(args.init_checkpoint) if args.param_key != "None": state_dict = state_dict[args.param_key] model.load_state_dict(state_dict) model = model.to(device) if args.mode == "train": train_molqa(train_dataloader, test_dataloader, test_dataset, model, args, device) elif args.mode == "test": if os.path.exists(args.output_path): state_dict = torch.load(args.output_path, map_location=device)["model_state_dict"] model.load_state_dict(state_dict) results = test_molqa(test_dataloader, model, args, device) print(results) elif args.mode == "traintest": train_molqa(train_dataloader, test_dataloader, test_dataset, model, args, device) results = test_molqa(test_dataloader, model, args, device) print(results)
OpenBioMed-main
open_biomed/tasks/multi_modal_task/molqa.py
""" import logging logger = logging.getLogger(__name__) import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json import math import numpy as np import pickle from rdkit import Chem from rdkit.Chem import Draw, Descriptors import torch import torch.nn.functional as F from datasets.text2mol_dataset import SUPPORTED_TEXT2MOLGEN_DATASET from feature.mol_featurizer import SUPPORTED_MOL_FEATURIZER, MolGGNNFeaturizer from models.multimodal import MoMu, MolFM from models.molecule.moflow import MoFlow, construct_mol, check_validity from utils import AverageMeter, ToDevice atomic_num_list = [6, 7, 8, 9, 15, 16, 17, 35, 53, 0] SUPPORTED_DRUG_ENCODER = { "MoMu": MoMu, "MolFM": MolFM } SUPPORTED_DRUG_DECODER = { "MoFlow": MoFlow, "MolT5": None } def generate_mol(z, decoder, featurizer, device): adj, x = decoder.decode(z) mol = construct_mol(x.detach().cpu().numpy(), adj.detach().cpu().numpy(), atomic_num_list) if featurizer is not None: mol = featurizer(mol).to(device) atoms = torch.argmax(x, dim=1) x = x[atoms != len(atomic_num_list) - 1] x = x.softmax(dim=1) return mol, x def optimize_z(z, anchor, text_feat, encoder, decoder, structure_featurizer, args, device): optimizer = torch.optim.Adam([z.requires_grad_()], lr=0.01) schedular = torch.optim.lr_scheduler.StepLR(optimizer, args.optimize_steps, gamma=0.1) running_loss_text = AverageMeter() running_loss_anchor = AverageMeter() for i in range(args.optimize_steps): mol, x = generate_mol(z, decoder, structure_featurizer, device) if (x.shape[0] < 1) or (x.shape[1] < 5) or (mol.x.shape[0] < 1) or (mol.x.shape[1] < 2): logger.warn("x shape: ", x.shape, "mol.x shape: ", mol.x.shape[0], "Too small, exited") break mol_feat = encoder.encode_structure_with_prob(mol, x, atomic_num_list, device) mol_feat = F.normalize(mol_feat, dim=1) loss = - mol_feat @ text_feat.t() / 0.1 running_loss_text.update(loss.detach().cpu().item()) if torch.isnan(loss): logger.warn("loss is nan, exited") break optimizer.zero_grad() loss.backward() optimizer.step() schedular.step() if i % args.logging_steps == 0: logger.info("Steps=%d Loss1=%.4lf Loss2=%.4lf" % (i, running_loss_text.get_average(), running_loss_anchor.get_average())) running_loss_text.reset() running_loss_anchor.reset() return z def stop_gradient(model): for key, params in model.named_parameters(): params.requires_grad = False def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--technique", type=str, default="z_optimize") parser.add_argument("--encoder_config_path", type=str, default="") parser.add_argument("--init_encoder_checkpoint", type=str, default="None") parser.add_argument("--encoder_param_key", type=str, default="None") parser.add_argument("--decoder_config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='AttrPrompt') parser.add_argument("--dataset_path", type=str, default='../datasets/molgen/attr_prompt') def add_z_optimize_arguments(parser): parser.add_argument("--rounds_per_text", type=int, default=60) parser.add_argument("--optimize_steps", type=int, default=500) parser.add_argument("--logging_steps", type=int, default=20) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--lambd", type=float, default=1.0) parser.add_argument("--evaluate", action="store_true") parser.add_argument("--save_fig", action="store_true") parser.add_argument("--save_path", type=str, default="../tmps/molgen/") if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() add_arguments(parser) args, _ = parser.parse_known_args() if args.technique == "z_optimize": add_z_optimize_arguments(parser) args = parser.parse_args() encoder_config = json.load(open(args.encoder_config_path, "r")) decoder_config = json.load(open(args.decoder_config_path, "r")) # load dataset dataset = SUPPORTED_TEXT2MOLGEN_DATASET[args.dataset](args.dataset_path, encoder_config["data"]["drug"]) # load featurizer feat_config = encoder_config["data"]["drug"]["featurizer"]["structure"] structure_featurizer = SUPPORTED_MOL_FEATURIZER[feat_config["name"]](feat_config) # load encoder device = torch.device(args.device) encoder = SUPPORTED_DRUG_ENCODER[encoder_config["model"]](encoder_config["network"]) if args.init_encoder_checkpoint != "None": ckpt = torch.load(args.init_encoder_checkpoint, map_location="cpu") if args.encoder_param_key != "None": ckpt = ckpt[args.encoder_param_key] encoder.load_state_dict(ckpt) # load decoder decoder = SUPPORTED_DRUG_DECODER[decoder_config["model"]](decoder_config["network"]) if args.technique == "z_optimize": anchor = Chem.MolFromSmiles("COC(=O)C1=C(C)N(C)C(C)=C(C(=O)OC)C1c1ccc(Cl)cc1") print("anchor: COC(=O)C1=C(C)N(C)C(C)=C(C(=O)OC)C1c1ccc(Cl)cc1 log_p:", Descriptors.MolLogP(anchor), "TPSA:", Descriptors.TPSA(anchor)) img = Draw.MolsToGridImage([anchor], legends=['COC(=O)C1=C(C)N(C)C(C)=C(C(=O)OC)C1c1ccc(Cl)cc1'], molsPerRow=1, subImgSize=(300, 300)) img.save(os.path.join(args.save_path, 'anchor.png')) #anchor = None featurizer = MolGGNNFeaturizer({"max_n_atoms": 38, "atomic_num_list": atomic_num_list}) x, adj, normalized_adj = featurizer(anchor) z_dim = decoder.a_size + decoder.b_size mean = torch.zeros(1, z_dim) std = torch.ones(1, z_dim) * math.sqrt(math.exp(decoder.ln_var.item())) * args.temperature encoder.eval() decoder.eval() stop_gradient(encoder) stop_gradient(decoder) encoder.to(device) decoder.to(device) with torch.no_grad(): x = x.unsqueeze(0).to(device) adj = adj.unsqueeze(0).to(device) normalized_adj = normalized_adj.unsqueeze(0).to(device) z_init, _ = decoder(adj, x, normalized_adj) z_init = torch.cat((z_init[0].view(1, -1), z_init[1].view(1, -1)), dim=1) mean = z_init.detach().cpu() mols = {} for i, text in enumerate(dataset.texts): text = {k: torch.tensor([v]).to(device) for k, v in text.items()} text_feat = F.normalize(encoder.encode_text(text), dim=-1) all_adj, all_x = [], [] valid_ratio, unique_ratio = [], [] for j in range(args.rounds_per_text): z = torch.normal(mean, std).to(device) z.requires_grad_(True) z = optimize_z(z, anchor, text_feat, encoder, decoder, structure_featurizer, args, device) adj, x = decoder.decode(z) all_adj.append(adj.detach().cpu().numpy()) all_x.append(x.detach().cpu().numpy()) result = check_validity(all_adj, all_x, atomic_num_list) valid_ratio.append(result["valid_ratio"]) unique_ratio.append(result["unique_ratio"]) mols[i] = result["valid_smiles"] if args.save_fig: os.makedirs(os.path.join(args.save_path, "text-" + str(i)), exist_ok=True) for j, mol in enumerate(result["valid_mols"]): save_path = os.path.join(args.save_path, "text-" + str(i), "mol-" + str(j) + ".png") img = Draw.MolsToGridImage([mol], legends=[result['valid_smiles'][j]], molsPerRow=1, subImgSize=(300, 300)) img.save(save_path) if args.evaluate: for smi in result["valid_smiles"]: mol = Chem.MolFromSmiles(smi) logger.info("smi: %s, log_p: %.4lf, tPSA: %.4lf" % (smi, Descriptors.MolLogP(mol), Descriptors.TPSA(mol))) pickle.dump(mols, open(os.path.join(args.save_path, "smiles.pkl"), "wb")) logger.info("Valid ratio %.4lf±%.4lf" % (np.mean(valid_ratio), np.std(valid_ratio))) logger.info("Unique ratio %.4lf±%.4lf" % (np.mean(unique_ratio), np.std(unique_ratio))) elif args.technique == "adapt": pass """
OpenBioMed-main
open_biomed/tasks/multi_modal_task/moledit.py
import logging logger = logging.getLogger(__name__) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json from tqdm import tqdm import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from transformers import BertTokenizerFast from nltk.translate.bleu_score import corpus_bleu from nltk.translate.meteor_score import meteor_score from rouge_score import rouge_scorer from datasets.molcap_dataset import SUPPORTED_MOLCAP_DATASET from models.multimodal.text2mol import Text2MolMLP from models.task_model.molcap_model import MolCapModel, GraphEnhancedMolCapModel from utils import AverageMeter, ToDevice, MolCollator def train_molcap(train_loader, val_loader, test_loader, test_dataset, model, args, device): requires_grad = [] for k, v in model.named_parameters(): if v.requires_grad: requires_grad.append(k) logger.debug("parameters requires grad: %s" % (" ".join(requires_grad))) optimizer = torch.optim.Adam([p for p in model.parameters() if p.requires_grad], lr=args.lr, weight_decay=args.weight_decay) running_loss = AverageMeter() step = 0 for epoch in range(args.epochs): logger.info("========Epoch %d========" % (epoch + 1)) logger.info("Training...") #model.train() for mol in train_loader: mol = ToDevice(mol, device) loss = model(mol) optimizer.zero_grad() loss.backward() optimizer.step() running_loss.update(loss.detach().cpu().item()) step += 1 if step % args.logging_steps == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() val_molcap(val_loader, model, device) if (epoch + 1) % 10 == 0: torch.save({'model_state_dict': model.state_dict()}, os.path.join(args.output_path, "checkpoint_" + str(epoch) + ".pth")) print(test_molcap(test_dataset, test_loader, model, args, device)) return model def val_molcap(val_loader, model, device): model.eval() val_loss = 0 logger.info("Validating...") with torch.no_grad(): for mol in val_loader: mol = ToDevice(mol, device) loss = model(mol) val_loss += loss.detach().cpu().item() logger.info("validation loss %.4lf" % (val_loss / len(val_loader))) return val_loss / len(val_loader) def test_molcap(test_dataset, test_loader, model, args, device): model.eval() outputs = [] gts = test_dataset.texts logger.info("Testing...") with torch.no_grad(): for i, mol in enumerate(tqdm(test_loader)): mol = ToDevice(mol, device) output = model.decode(mol, num_beams=5, max_length=512) outputs += output if i <= 3: for j in range(5): logger.info("Generated: %s" % outputs[-j]) logger.info("Ground truth: %s" % gts[len(outputs) - j]) logger.info("------------------------------------------------------") tokenizer = BertTokenizerFast.from_pretrained(args.text2mol_bert_path) output_tokens = [] gt_tokens = [] meteor_scores = [] rouge_scores = [] text2mol_scores = [] scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL']) text2mol = Text2MolMLP( ninp=768, nhid=600, nout=300, model_name_or_path=args.text2mol_bert_path, cid2smiles_path=os.path.join(args.text2mol_data_path, "cid_to_smiles.pkl"), cid2vec_path=os.path.join(args.text2mol_data_path, "test.txt") ) text2mol.load_state_dict(torch.load(args.text2mol_ckpt_path), strict=False) device = torch.device(args.device) text2mol.to(device) with open(args.caption_save_path, "w") as f: f.write("SMILES\tground truth\toutput\n") for i in range(len(outputs)): output_tokens.append(tokenizer.tokenize(outputs[i], truncation=True, max_length=512, padding='max_length')) output_tokens[i] = list(filter(('[PAD]').__ne__, output_tokens[i])) output_tokens[i] = list(filter(('[CLS]').__ne__, output_tokens[i])) output_tokens[i] = list(filter(('[SEP]').__ne__, output_tokens[i])) gt_tokens.append(tokenizer.tokenize(gts[i], truncation=True, max_length=512, padding='max_length')) gt_tokens[i] = list(filter(('[PAD]').__ne__, gt_tokens[i])) gt_tokens[i] = list(filter(('[CLS]').__ne__, gt_tokens[i])) gt_tokens[i] = [list(filter(('[SEP]').__ne__, gt_tokens[i]))] meteor_scores.append(meteor_score(gt_tokens[i], output_tokens[i])) rouge_scores.append(scorer.score(outputs[i], gts[i])) text2mol_scores.append(text2mol(test_dataset.smiles[i], outputs[i], device).detach().cpu().item()) f.write(test_dataset.smiles[i] + '\t' + gts[i] + '\t' + outputs[i] + '\n') bleu2 = corpus_bleu(gt_tokens, output_tokens, weights=(0.5, 0.5)) bleu4 = corpus_bleu(gt_tokens, output_tokens, weights=(0.25, 0.25, 0.25, 0.25)) return { "BLEU-2": bleu2, "BLEU-4": bleu4, "Meteor": np.mean(meteor_scores), "ROUGE-1": np.mean([rs['rouge1'].fmeasure for rs in rouge_scores]), "ROUGE-2": np.mean([rs['rouge2'].fmeasure for rs in rouge_scores]), "ROUGE-L": np.mean([rs['rougeL'].fmeasure for rs in rouge_scores]), "Text2Mol": np.mean(text2mol_scores) } def test_molcap_from_file(file, args, device): tokenizer = BertTokenizerFast.from_pretrained(args.text2mol_bert_path) output_tokens = [] gt_tokens = [] meteor_scores = [] rouge_scores = [] text2mol_scores = [] scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL']) text2mol = Text2MolMLP( ninp=768, nhid=600, nout=300, model_name_or_path=args.text2mol_bert_path, cid2smiles_path=os.path.join(args.text2mol_data_path, "cid_to_smiles.pkl"), cid2vec_path=os.path.join(args.text2mol_data_path, "test.txt") ) text2mol.load_state_dict(torch.load(args.text2mol_ckpt_path), strict=False) device = torch.device(args.device) text2mol.to(device) with open(file, "r") as f: f.readline() for i, line in enumerate(f.readlines()): line = line.rstrip("\n").split("\t") print(i, line[0]) output_tokens.append(tokenizer.tokenize(line[1], truncation=True, max_length=512, padding='max_length')) output_tokens[i] = list(filter(('[PAD]').__ne__, output_tokens[i])) output_tokens[i] = list(filter(('[CLS]').__ne__, output_tokens[i])) output_tokens[i] = list(filter(('[SEP]').__ne__, output_tokens[i])) gt_tokens.append(tokenizer.tokenize(line[2], truncation=True, max_length=512, padding='max_length')) gt_tokens[i] = list(filter(('[PAD]').__ne__, gt_tokens[i])) gt_tokens[i] = list(filter(('[CLS]').__ne__, gt_tokens[i])) gt_tokens[i] = [list(filter(('[SEP]').__ne__, gt_tokens[i]))] meteor_scores.append(meteor_score(gt_tokens[i], output_tokens[i])) rouge_scores.append(scorer.score(line[1], line[2])) text2mol_scores.append(text2mol(line[0], line[1], device).detach().cpu().item()) bleu2 = corpus_bleu(gt_tokens, output_tokens, weights=(0.5, 0.5)) bleu4 = corpus_bleu(gt_tokens, output_tokens, weights=(0.25, 0.25, 0.25, 0.25)) return { "BLEU-2": bleu2, "BLEU-4": bleu4, "Meteor": np.mean(meteor_scores), "ROUGE-1": np.mean([rs['rouge1'].fmeasure for rs in rouge_scores]), "ROUGE-2": np.mean([rs['rouge2'].fmeasure for rs in rouge_scores]), "ROUGE-L": np.mean([rs['rougeL'].fmeasure for rs in rouge_scores]), "Text2Mol": np.mean(text2mol_scores) } def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='chebi-20') parser.add_argument("--dataset_path", type=str, default='../datasets/molcap/chebi-20') parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/caption.pth") parser.add_argument("--caption_save_path", type=str, default="../assets/outputs.txt") parser.add_argument("--mode", type=str, default="train") parser.add_argument("--epochs", type=int, default=10) parser.add_argument("--num_workers", type=int, default=1) parser.add_argument("--patience", type=int, default=3) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--weight_decay", type=float, default=0) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--logging_steps", type=int, default=300) parser.add_argument("--text2mol_bert_path", type=str, default="../ckpts/text_ckpts/scibert_scivocab_uncased/") parser.add_argument("--text2mol_data_path", type=str, default="../assets/molcap/text2mol_data/") parser.add_argument("--text2mol_ckpt_path", type=str, default="../ckpts/fusion_ckpts/text2mol/test_outputfinal_weights.320.pt") if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() device = torch.device(args.device) if args.mode == "test_from_file": results = test_molcap_from_file(args.caption_save_path, args, device) print(results) exit(0) config = json.load(open(args.config_path)) # load dataset train_dataset = SUPPORTED_MOLCAP_DATASET[args.dataset](args.dataset_path, config["data"]["mol"], split="train") val_dataset = SUPPORTED_MOLCAP_DATASET[args.dataset](args.dataset_path, config["data"]["mol"], split="validation") test_dataset = SUPPORTED_MOLCAP_DATASET[args.dataset](args.dataset_path, config["data"]["mol"], split="test") collator = MolCollator(config["data"]["mol"]) train_dataloader = DataLoader(train_dataset, args.batch_size, shuffle=True, collate_fn=collator, num_workers=args.num_workers) val_dataloader = DataLoader(val_dataset, args.batch_size, shuffle=False, collate_fn=collator, num_workers=args.num_workers) test_dataloader = DataLoader(test_dataset, args.batch_size, shuffle=False, collate_fn=collator, num_workers=args.num_workers) # load model if config["data"]["mol"]["featurizer"]["structure"]["name"] == "MultiScale": model = GraphEnhancedMolCapModel(config["network"]) else: model = MolCapModel(config["network"]) model = model.to(device) if args.mode == "train": train_molcap(train_dataloader, val_dataloader, test_dataloader, test_dataset, model, args, device) elif args.mode == "test": if os.path.exists(args.output_path): state_dict = torch.load(args.output_path, map_location=device)["model_state_dict"] model.load_state_dict(state_dict) results = test_molcap(test_dataset, test_dataloader, model, args, device) print(results) elif args.mode == "traintest": train_molcap(train_dataloader, val_dataloader, test_dataloader, test_dataset, model, args, device) results = test_molcap(test_dataset, test_dataloader, model, args, device) print(results)
OpenBioMed-main
open_biomed/tasks/multi_modal_task/molcap.py
import logging logger = logging.getLogger(__name__) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import random import argparse import json import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from datasets.ppi_dataset import SUPPORTED_PPI_DATASETS from models.task_model.ppi_model import PPISeqModel, PPIGraphModel from utils import PPICollator, AverageMeter, EarlyStopping, ToDevice from utils.metrics import multilabel_f1 def train_ppi(train_loader, train_network, val_loader, val_network, model, args, device): optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) loss_fn = nn.BCEWithLogitsLoss() running_loss = AverageMeter() stopper = EarlyStopping(mode='higher', patience=args.patience, filename=args.output_path) for epoch in range(args.epochs): logger.info("Epoch %d" % (epoch)) logger.info("Training...") model.train() step = 0 for prot1, prot2, label in train_loader: prot1 = ToDevice(prot1, device) prot2 = ToDevice(prot2, device) label = label.to(device) if train_network is not None: pred = model(prot1, prot2, train_network) else: pred = model(prot1, prot2) loss = loss_fn(pred, label) loss.backward() running_loss.update(loss.item(), label.size(0)) step += 1 optimizer.step() optimizer.zero_grad() if step % args.logging_steps == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() if val_loader is not None: results = eval_ppi(val_loader, val_network, model, args, device) logger.info(", ".join(["%s: %.4lf" % (k, v) for k, v in results.items()])) if stopper.step(results["F1"], model): break if val_loader is not None: model.load_state_dict(torch.load(args.output_path)["model_state_dict"]) return model def eval_ppi(val_loader, val_network, model, args, device): model.eval() logger.info("Validating...") loss_fn = nn.BCEWithLogitsLoss() all_loss = 0 all_preds = [] all_labels = [] with torch.no_grad(): for prot1, prot2, label in val_loader: prot1 = ToDevice(prot1, device) prot2 = ToDevice(prot2, device) label = label.to(device) if val_network is not None: pred = model(prot1, prot2, val_network) else: pred = model(prot1, prot2) all_loss += loss_fn(pred, label).item() pred = torch.sigmoid(pred) > 0.5 all_preds.append(np.array(pred.detach().cpu(), dtype=float)) all_labels.append(np.array(label.detach().cpu())) all_preds = np.concatenate(all_preds, axis=0) all_labels = np.concatenate(all_labels, axis=0) f1, precision, recall = multilabel_f1(all_preds, all_labels) results = { "F1": f1, "Precision": precision, "Recall": recall, } return results def main(args, config): # configure seed random.seed(42) np.random.seed(args.seed) torch.manual_seed(args.seed) args.graph_ppi = config["model"].startswith("gnn_ppi") dataset = SUPPORTED_PPI_DATASETS[args.dataset](args.dataset_path, config["data"]["protein"], directed=False, make_network=args.graph_ppi, split=args.split_strategy) if args.mode == "train": train_dataset = dataset.index_select(dataset.train_indexes, split="train") test_dataset = dataset.index_select(dataset.test_indexes, split="test") logger.info("Num train: %d, Num test: %d" % (len(train_dataset), len(test_dataset))) collator = PPICollator(config["data"]["protein"], args.graph_ppi) train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collator) test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) device = torch.device(args.device) if not args.graph_ppi: model = PPISeqModel(config["network"], train_dataset.num_classes) train_network = None test_network = None else: model = PPIGraphModel(config["network"], train_dataset.num_classes) train_network = train_dataset.network.to(device) test_network = test_dataset.network.to(device) if args.init_checkpoint != "None": ckpt = torch.load(args.init_checkpoint) if args.param_key != "None": ckpt = ckpt[args.param_key] model.load_state_dict(ckpt) model = model.to(device) model = train_ppi(train_loader, train_network, test_loader, test_network, model, args, device) results = eval_ppi(test_loader, test_network, model, args, device) logger.info(", ".join(["%s: %.4lf" % (k, v) for k, v in results.items()])) def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--mode", type=str, default="train") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default="SHS27k") parser.add_argument("--dataset_path", type=str, default="../datasets/ppi/SHS27k/") parser.add_argument("--split_strategy", type=str, default="random") parser.add_argument("--init_checkpoint", type=str, default="None") parser.add_argument("--param_key", type=str, default="None") parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/ppi/finetune.pth") parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--weight_decay", type=float, default=1e-5) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--batch_size", type=int, default=512) parser.add_argument("--epochs", type=int, default=100) parser.add_argument("--patience", type=int, default=10) parser.add_argument("--logging_steps", type=int, default=50) parser.add_argument("--seed", type=int, default=42) return parser if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() parser = add_arguments(parser) args = parser.parse_args() config = json.load(open(args.config_path, "r")) main(args, config)
OpenBioMed-main
open_biomed/tasks/prot_task/ppi.py
import logging logger = logging.getLogger(__name__) import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json from tqdm import tqdm import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from sklearn.metrics import accuracy_score, f1_score from datasets.ctc_dataset import SUPPORTED_CTC_DATASETS # from models.ctc_model import CTCModel # from datasets.ctc_dataset import SUPPORTED_CTC_DATASETS from models.task_model.ctc_model import CTCModel from utils import EarlyStopping, AverageMeter, seed_all, ToDevice from utils.distributed_utils import init_distributed_mode, get_rank, is_main_process, concat_reduce from utils.schedulars import CosineAnnealingWarmupRestarts def add_arguments(parser): parser.add_argument("--mode", type=str, default="train") parser.add_argument("--device", type=int, default=0) parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='zheng68k') parser.add_argument("--dataset_path", type=str, default='../datasets/ctc/zheng68k/') parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/ctc/finetune.pth") parser.add_argument("--distributed", action="store_true") parser.add_argument('--world_size', type=int, default=1, help='number of distributed processes') parser.add_argument('--local_rank', type=int, default=0, help='local rank') parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--batch_size", type=int, default=3) parser.add_argument("--gradient_accumulation_steps", type=int, default=1) parser.add_argument("--epochs", type=int, default=100) parser.add_argument("--patience", type=int, default=10) parser.add_argument("--logging_steps", type=int, default=1000) parser.add_argument("--unassign_threshold", type=float, default=0.0) parser.add_argument("--seed", type=int, default=42) return parser def train_ctc(train_loader, val_loader, model, device, args): class_num = np.unique(train_loader.dataset.labels, return_counts=True)[1].tolist() class_weight = torch.tensor([(1 - (x / sum(class_num))) ** 2 for x in class_num]).to(device) loss_fn = nn.CrossEntropyLoss(weight = class_weight) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # schedular = CosineAnnealingWarmupRestarts( # optimizer, # first_cycle_steps=15, # cycle_mult=2, # max_lr=args.lr, # min_lr=1e-6, # warmup_steps=5, # gamma=0.9 # ) stopper = EarlyStopping(mode="higher", patience=args.patience, filename=args.output_path) running_loss = AverageMeter(distributed=args.distributed, local_rank=args.local_rank, dest_device=0, world_size=args.world_size) running_acc = AverageMeter(distributed=args.distributed, local_rank=args.local_rank, dest_device=0, world_size=args.world_size) for epoch in range(args.epochs): logger.info("========Epoch %d========" % (epoch + 1)) model.train() if args.distributed: train_loader.sampler.set_epoch(epoch) running_loss.reset() running_acc.reset() for step, (cell, label) in enumerate(tqdm(train_loader)): cell, label = ToDevice(cell, device), label.to(device) logits = model(cell) loss = loss_fn(logits, label) loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_(model.parameters(), int(1e6)) optimizer.step() optimizer.zero_grad() pred = nn.Softmax(dim=-1)(logits).argmax(dim=-1) correct = torch.eq(pred, label).sum(dim=-1).item() running_loss.update(loss.item()) running_acc.update(correct / args.batch_size) if (step + 1) * args.world_size % args.logging_steps == 0: if args.distributed: dist.barrier() logger.info("Steps=%d Training Loss=%.4lf, Acc=%.4lf" % ( step, running_loss.get_average(), running_acc.get_average() )) running_loss.reset() running_acc.reset() if args.distributed: dist.barrier() # schedular.step() results = val_ctc(val_loader, model, device, args) logger.info(", ".join(["%s: %.4lf" % (k, v) for k, v in results.items()])) if args.distributed: model_without_ddp = model.module else: model_without_ddp = model if stopper.step((results["Accuracy"]), model_without_ddp): break model.load_state_dict(torch.load(args.output_path)["model_state_dict"]) return model def val_ctc(val_loader, model, device, args): with torch.no_grad(): model.eval() all_preds, all_y = [], [] for cell, label in tqdm(val_loader): cell= ToDevice(cell, device) logits = model(cell) pred = nn.Softmax(dim=-1)(logits).argmax(dim=-1).detach().cpu() # pred[np.amax(np.array(pred), axis=-1) < args.unassign_threshold] = -1 all_preds.append(pred) all_y.append(label) if args.distributed: dist.barrier() all_preds = concat_reduce(all_preds, len(val_loader.dataset), args.world_size) all_y = concat_reduce(all_y, len(val_loader.dataset), args.world_size) else: all_preds = torch.cat(all_preds, dim=0) all_y = torch.cat(all_y, dim=0) for i in range(20): print(all_preds[i].item(), all_y[i].item()) return { "Accuracy": accuracy_score(all_preds, all_y), "F1 Score": f1_score(all_preds, all_y, average='macro'), } def main(args, config): # prepare dataset dataset = SUPPORTED_CTC_DATASETS[args.dataset](args.dataset_path, config["data"], args.seed) train_dataset = dataset.index_select(dataset.train_index) val_dataset = dataset.index_select(dataset.val_index) if args.distributed: train_loader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=DistributedSampler(train_dataset, shuffle=True)) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, sampler=DistributedSampler(val_dataset, shuffle=False)) else: train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) # prepare model device = torch.device(args.device) model = CTCModel(config["network"], dataset.num_classes) model.to(device) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.device]) seed_all(args.seed) if args.mode == "train": train_ctc(train_loader, val_loader, model, device, args) results = val_ctc(val_loader, model, device, args) print(results) elif args.mode == "test": results = val_ctc(val_loader, model, device, args) print(results) if __name__ == "__main__": parser = argparse.ArgumentParser() parser = add_arguments(parser) args = parser.parse_args() init_distributed_mode(args) # Print INFO on main process and DEBUG and logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process() else logging.WARN, ) config = json.load(open(args.config_path, "r")) main(args, config)
OpenBioMed-main
open_biomed/tasks/cell_task/ctc.py
import logging logger = logging.getLogger(__name__) import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import copy import math import numpy as np import json from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error from scipy.stats import pearsonr from datasets.drp_dataset import SUPPORTED_DRP_DATASET, TCGA # from models.drp_model import TGDRP # from datasets.drp_dataset import SUPPORTED_DRP_DATASET, TCGA from models.task_model.drp_model import TGDRP from utils import EarlyStopping, AverageMeter, seed_all, roc_auc, metrics_average from utils.collators import DRPCollator SUPPORTED_DRP_MODEL = { "TGDRP": TGDRP, } def train_drp(train_loader, val_loader, model, args): if args.task == "classification": loss_fn = nn.BCEWithLogitsLoss() metric = "roc_auc" mode = "higher" elif args.task == "regression": loss_fn = nn.MSELoss() metric = "rmse" mode = "lower" optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) stopper = EarlyStopping(mode=mode, patience=args.patience) running_loss = AverageMeter() for i in range(args.epochs): logger.info("========Epoch %d========" % (i + 1)) logger.info("Training...") model.train() step_loss = 0 running_loss.reset() t = tqdm(train_loader, desc="Loss=%.4lf" % (step_loss)) for drug, cell, label in t: if isinstance(cell, list): drug, cell, label = drug.to(args.device), [feat.to(args.device) for feat in cell], label.to(args.device) else: drug, cell, label = drug.to(args.device), cell.to(args.device), label.to(args.device) pred = model(drug, cell) loss = loss_fn(pred, label.view(-1, 1).float()) optimizer.zero_grad() loss.backward() optimizer.step() step_loss = loss.item() running_loss.update(step_loss) t.set_description("Loss=%.4lf" % (step_loss)) del drug, cell, label logger.info("Average training loss %.4lf" % (running_loss.get_average())) val_metrics = val_drp(val_loader, model, args) if stopper.step(val_metrics[metric], model): break return model def val_drp(val_loader, model, args): model.eval() y_true, y_pred = [], [] logger.info("Validating...") for drug, cell, label in tqdm(val_loader): torch.cuda.empty_cache() if isinstance(cell, list): drug, cell, label = drug.to(args.device), [feat.to(args.device) for feat in cell], label.to(args.device) else: drug, cell, label = drug.to(args.device), cell.to(args.device), label.to(args.device) with torch.no_grad(): pred = model(drug, cell) y_true.append(label.view(-1, 1).detach().cpu()) y_pred.append(pred.detach().cpu()) y_true = torch.cat(y_true, dim=0).numpy().flatten() y_pred = torch.cat(y_pred, dim=0).numpy().flatten() if args.task == "classification": results = { "roc_auc": roc_auc(y_true, y_pred) } elif args.task == "regression": results = { "rmse": math.sqrt(mean_squared_error(y_true, y_pred)), "mae": mean_absolute_error(y_true, y_pred), "r2": r2_score(y_true, y_pred), "pearson": pearsonr(y_true, y_pred)[0] } logger.info(" ".join(["%s: %.4lf" % (key, results[key]) for key in results])) return results def main(args, config): # set random seed seed_all(args.seed) # build dataset dataset = SUPPORTED_DRP_DATASET[args.dataset](args.dataset_path, config["data"], task=args.task) collate_fn = DRPCollator(config["data"]) # build model model = SUPPORTED_DRP_MODEL[config["model"]](config["network"]) if config["model"] in ["TGSA", "TGDRP"]: if config["data"]["cell"]["featurizer"]["name"] == "TGSA": model.cluster_predefine = {i: j.to(args.device) for i, j in dataset.predefined_cluster.items()} model._build() model = model.to(args.device) if args.init_checkpoint != '': ckpt = torch.load(args.weight_path) if args.param_key != '': ckpt = ckpt[args.param_key] model.load_state_dict(ckpt) if args.mode == "train": train_dataset = dataset.index_select(dataset.train_indexes) val_dataset = dataset.index_select(dataset.val_indexes) test_dataset = dataset.index_select(dataset.test_indexes) logger.info("# Samples: Train - %d, Val - %d, Test - %d" % (len(train_dataset), len(val_dataset), len(test_dataset))) train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=4, collate_fn=collate_fn) val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn) test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn) model = train_drp(train_loader, val_loader, model, args) val_drp(test_loader, model, args) elif args.mode == "test": val_dataset = dataset.index_select(dataset.val_indexes) test_dataset = dataset.index_select(dataset.test_indexes) val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn) test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn) model.load_state_dict(torch.load(args.weight_path, map_location=args.device)['model_state_dict']) val_drp(val_loader, model, args) val_drp(test_loader, model, args) elif args.mode == "zero_shot_transfer": nfolds = config["data"]["split"]["nfolds"] all_patients = ["BRCA_28", "CESC_24", "COAD_8", "GBM_69", "HNSC_45", "KIRC_47", "LUAD_23", "LUSC_20", "PAAD_55", "READ_8", "SARC_30", "SKCM_56", "STAD_30"] results = {x: [] for x in all_patients} for fold in range(nfolds): train_fold = list(range(fold)) + list(range(fold + 1, nfolds)) train_dataset = dataset.index_select(np.concatenate([dataset.fold_indexes[i] for i in train_fold], axis=0)) val_dataset = dataset.index_select(dataset.fold_indexes[fold]) train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=4, collate_fn=collate_fn) val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn) fold_model = copy.deepcopy(model) fold_model = train_drp(train_loader, val_loader, fold_model, args) val_drp(val_loader, model, args) for patient in all_patients: test_dataset = TCGA(args.transfer_dataset_path, config["data"], subset=patient) test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, collate_fn=collate_fn) results[patient].append(val_drp(test_loader, model, args)) for patient in all_patients: mean, std = metrics_average(results[patient])["roc_auc"] print("roc_auc on TCGA-%s: %.4lf±%.4lf" % (patient, mean, std)) def add_arguments(parser): parser.add_argument('--seed', type=int, default=42, help='seed') parser.add_argument('--device', type=str, default='cuda:0', help='device') parser.add_argument('--task', type=str, default='regression', help='task type: classification or regression') parser.add_argument('--dataset', type=str, default='GDSC', help='dataset') parser.add_argument("--dataset_path", type=str, default='../datasets/drp/GDSC/', help='path to the dataset') parser.add_argument('--config_path', type=str, help='path to the configuration file') parser.add_argument('--batch_size', type=int, default=128, help='batch size (default: 128)') parser.add_argument('--num_workers', type=int, default=4, help='number of workers (default: 4)') parser.add_argument('--lr', type=float, default=0.0001, help='learning rate') parser.add_argument('--weight_decay', type=float, default=0, help='weight decay') parser.add_argument('--epochs', type=int, default=300, help='maximum number of epochs (default: 300)') parser.add_argument('--patience', type=int, default=10, help='patience for earlystopping (default: 10)') parser.add_argument('--setup', type=str, default='known', help='experimental setup') parser.add_argument('--init_checkpoint', type=str, default='', help='filepath for pretrained weights') parser.add_argument('--param_key', type=str, default='', help='the key to obtain model state dict') parser.add_argument('--mode', type=str, default='test', help='train, test or zero-shot transfer') # arguments for zero-shot transfer parser.add_argument("--transfer_dataset_path", type=str, default='../datasets/drp/tcga', help='path to the transfer dataset') if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() config = json.load(open(args.config_path, "r")) main(args, config)
OpenBioMed-main
open_biomed/tasks/mol_task/drp.py
import logging logger = logging.getLogger(__name__) import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import random import argparse import json import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from datasets.dti_dataset import SUPPORTED_DTI_DATASETS # from models.dti_model import DTIModel, DeepEIK4DTI # from datasets.dti_dataset import SUPPORTED_DTI_DATASETS from models.task_model.dti_model import DTIModel, DeepEIK4DTI from utils import DTICollator, AverageMeter, EarlyStopping, ToDevice, metrics_average from utils.metrics import roc_auc, pr_auc, concordance_index, rm2_index from sklearn.metrics import f1_score, precision_score, recall_score, mean_squared_error from scipy.stats import pearsonr, spearmanr def train_dti(train_loader, val_loader, model, args, device): optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) if args.task == "classification": loss_fn = nn.CrossEntropyLoss() stop_mode = 'higher' key = "ROC_AUC" elif args.task == "regression": loss_fn = nn.MSELoss() stop_mode = 'lower' key = "MSE" running_loss = AverageMeter() stopper = EarlyStopping(mode=stop_mode, patience=args.patience, filename=args.output_path) for epoch in range(args.epochs): logger.info("Epoch %d" % (epoch)) logger.info("Training...") model.train() step = 0 for mol, prot, label in train_loader: mol = ToDevice(mol, device) prot = ToDevice(prot, device) label = label.to(device) pred = model(mol, prot) loss = loss_fn(pred, label) loss.backward() running_loss.update(loss.item(), label.size(0)) step += 1 #if step % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() if step % args.logging_steps == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() if args.eval_train_epochs > 0 and epoch % args.eval_train_epochs == 0: eval_dti("train", train_loader, model, args, device) if val_loader is not None: results = eval_dti("valid", val_loader, model, args, device) logger.info(", ".join(["%s: %.4lf" % (k, v) for k, v in results.items()])) if stopper.step(results[key], model): break if val_loader is not None: model.load_state_dict(torch.load(args.output_path)["model_state_dict"]) return model def eval_dti(split, val_loader, model, args, device): model.eval() logger.info("Validating...") if args.task == "classification": loss_fn = nn.CrossEntropyLoss() elif args.task == "regression": loss_fn = nn.MSELoss() all_loss = 0 all_preds = [] all_labels = [] for mol, prot, label in val_loader: mol = ToDevice(mol, device) prot = ToDevice(prot, device) label = label.to(device) pred = model(mol, prot) if args.task == "classification" and len(pred.shape) < 2: pred = pred.unsqueeze(0) all_loss += loss_fn(pred, label).item() if args.task == "classification": pred = F.softmax(pred, dim=-1)[:, 1] all_preds.append(np.array(pred.detach().cpu())) all_labels.append(np.array(label.detach().cpu())) logger.info("Average %s loss: %.4lf" % (split, all_loss / len(val_loader))) all_preds = np.concatenate(all_preds, axis=0) all_labels = np.concatenate(all_labels, axis=0) if args.task == "classification": outputs = np.array([1 if x >= 0.5 else 0 for x in all_preds]) results = { "ROC_AUC": roc_auc(all_labels, all_preds), "PR_AUC": pr_auc(all_labels, all_preds), "F1": f1_score(all_labels, outputs), "Precision": precision_score(all_labels, outputs), "Recall": recall_score(all_labels, outputs), } elif args.task == "regression": results = { "MSE": mean_squared_error(all_labels, all_preds), "Pearson": pearsonr(all_labels, all_preds)[0], "Spearman": spearmanr(all_labels, all_preds)[0], "CI": concordance_index(all_labels, all_preds), "r_m^2": rm2_index(all_labels, all_preds) } return results def main(args, config): # configure seed random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # prepare dataset if args.dataset in ['yamanishi08', 'bmkg-dti']: args.task = "classification" pred_dim = 2 else: args.task = "regression" pred_dim = 1 dataset = SUPPORTED_DTI_DATASETS[args.dataset](args.dataset_path, config["data"], args.split_strategy) if args.mode == "train": train_dataset = dataset.index_select(dataset.train_index) if len(dataset.val_index) > 0: val_dataset = dataset.index_select(dataset.val_index) else: val_dataset = None test_dataset = dataset.index_select(dataset.test_index) train_dataset._build( test_dataset.pair_index, None if "kg" not in config["data"]["mol"]["modality"] else os.path.join(config["data"]["mol"]["featurizer"]["kg"]["save_path"], "dti-" + args.dataset + ".pkl") ) if val_dataset is not None: val_dataset._build( test_dataset.pair_index, None if "kg" not in config["data"]["mol"]["modality"] else os.path.join(config["data"]["mol"]["featurizer"]["kg"]["save_path"], "dti-" + args.dataset + ".pkl") ) test_dataset._build( test_dataset.pair_index, None if "kg" not in config["data"]["mol"]["modality"] else os.path.join(config["data"]["mol"]["featurizer"]["kg"]["save_path"], "dti-" + args.dataset + ".pkl") ) collator = DTICollator(config["data"]) train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collator) if val_dataset is not None: val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) else: val_loader = None test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) if len(config["data"]["mol"]["modality"]) > 1: model = DeepEIK4DTI(config["network"], pred_dim) else: model = DTIModel(config["network"], pred_dim) if args.init_checkpoint != "None": ckpt = torch.load(args.init_checkpoint) if args.param_key != "None": ckpt = ckpt[args.param_key] model.load_state_dict(ckpt) device = torch.device(args.device) model = model.to(device) model = train_dti(train_loader, test_loader, model, args, device) results = eval_dti("test", test_loader, model, args, device) logger.info(", ".join(["%s: %.4lf" % (k, v) for k, v in results.items()])) elif args.mode == "kfold": results = [] for i in range(dataset.nfolds): logger.info("Fold %d", i) train_dataset = dataset.index_select(dataset.folds[i]["train"]) test_dataset = dataset.index_select(dataset.folds[i]["test"]) train_dataset._build( test_dataset.pair_index, None if "kg" not in config["data"]["mol"]["modality"] else os.path.join(config["data"]["mol"]["featurizer"]["kg"]["save_path"], "dti-" + args.dataset + "-" + args.split_strategy + "-fold" + str(i) + ".pkl") ) test_dataset._build( test_dataset.pair_index, None if "kg" not in config["data"]["mol"]["modality"] else os.path.join(config["data"]["mol"]["featurizer"]["kg"]["save_path"], "dti-" + args.dataset + "-" + args.split_strategy + "-fold" + str(i) + ".pkl") ) collator = DTICollator(config["data"]) train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collator) test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) # prepare model if len(config["data"]["mol"]["modality"]) > 1: model = DeepEIK4DTI(config["network"], pred_dim) else: model = DTIModel(config["network"], pred_dim) #print(model) if args.init_checkpoint != "None": ckpt = torch.load(args.init_checkpoint) if args.param_key != "None": ckpt = ckpt[args.param_key] model.load_state_dict(ckpt) device = torch.device(args.device) model = model.to(device) model = train_dti(train_loader, test_loader, model, args, device) results.append(eval_dti("test", test_loader, model, args, device)) results = metrics_average(results) for key in results: print("%s: %.4lf±%.4lf" % (key, results[key][0], results[key][1])) def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--mode", type=str, default="train") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default="Yamanishi08") parser.add_argument("--dataset_path", type=str, default="../datasets/dti/Yamanishi08/") parser.add_argument("--split_strategy", type=str, default="random") parser.add_argument("--init_checkpoint", type=str, default="None") parser.add_argument("--param_key", type=str, default="None") parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/dp/finetune.pth") parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--weight_decay", type=float, default=1e-5) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--batch_size", type=int, default=128) parser.add_argument("--gradient_accumulation_steps", type=int, default=1) parser.add_argument("--epochs", type=int, default=100) parser.add_argument("--patience", type=int, default=10) parser.add_argument("--logging_steps", type=int, default=50) parser.add_argument("--eval_train_epochs", type=int, default=-1) parser.add_argument("--seed", type=int, default=42) return parser if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() parser = add_arguments(parser) args = parser.parse_args() output_dir = os.path.dirname(args.output_path) if not os.path.exists(output_dir): os.makedirs(output_dir) config = json.load(open(args.config_path, "r")) main(args, config)
OpenBioMed-main
open_biomed/tasks/mol_task/dti.py
import logging logger = logging.getLogger(__name__) import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import argparse import json from tqdm import tqdm import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from sklearn.metrics import mean_absolute_error, mean_squared_error, roc_auc_score from datasets.dp_dataset import SUPPORTED_DP_DATASETS, Task from utils import DPCollator, roc_auc, EarlyStopping, AverageMeter, ToDevice from models.task_model.dp_model import DPModel, DeepEIK4DP def add_arguments(parser): parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--mode", type=str, default="train") parser.add_argument("--config_path", type=str, default="") parser.add_argument('--dataset', type=str, default='MoleculeNet') parser.add_argument("--dataset_path", type=str, default='../datasets/dp/MoleculeNet/') parser.add_argument("--dataset_name", type=str, default='BBBP') parser.add_argument("--init_checkpoint", type=str, default="") parser.add_argument("--param_key", type=str, default="None") parser.add_argument("--output_path", type=str, default="../ckpts/finetune_ckpts/dp/finetune.pth") parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--weight_decay", type=float, default=1e-5) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--epochs", type=int, default=100) parser.add_argument("--patience", type=int, default=10) parser.add_argument("--logging_steps", type=int, default=50) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--dropout", type=float, default=0.0) parser.add_argument("--classfy_type", type=str, default="multi") return parser def get_num_task(dataset): dataset = dataset.lower() """ used in molecule_finetune.py """ if dataset == 'tox21': return 12 elif dataset in ['hiv', 'bace', 'bbbp', 'donor']: return 1 elif dataset == 'pcba': return 92 elif dataset == 'muv': return 17 elif dataset == 'toxcast': return 617 elif dataset == 'sider': return 27 elif dataset == 'clintox': return 2 raise ValueError('Invalid dataset name.') def eval(model, device, loader): model.eval() y_true = [] y_scores = [] for step, batch in enumerate(tqdm(loader, desc="Iteration")): batch = batch.to(device) with torch.no_grad(): pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch) y_true.append(batch.y.view(pred.shape)) y_scores.append(pred) y_true = torch.cat(y_true, dim=0).cpu().numpy() y_scores = torch.cat(y_scores, dim=0).cpu().numpy() roc_list = [] for i in range(y_true.shape[1]): # AUC is only defined when there is at least one positive data. if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == -1) > 0: is_valid = y_true[:, i]**2 > 0 roc_list.append(roc_auc_score( (y_true[is_valid, i] + 1)/2, y_scores[is_valid, i])) if len(roc_list) < y_true.shape[1]: print("Some target is missing!") print("Missing ratio: %f" % (1 - float(len(roc_list))/y_true.shape[1])) return sum(roc_list)/len(roc_list) # y_true.shape[1] def get_metric(task, name): if task == Task.CLASSFICATION: metric_name = "roc_auc" metric = roc_auc elif task == Task.REGRESSION: if name in ["qm7", "qm8", "qm9"]: metric_name = "MAE" metric = mean_absolute_error else: metric_name = "MSE" metric = mean_squared_error return metric_name, metric def train_dp(train_loader, val_loader, test_loader, model, task, args): device = torch.device(args.device) if task == Task.CLASSFICATION: loss_fn = nn.BCEWithLogitsLoss(reduction="none") mode = "higher" elif task == Task.REGRESSION: if args.dataset_name in ["qm7", "qm8", "qm9"]: loss_fn = nn.L1Loss() mode = "lower" else: loss_fn = nn.MSELoss() mode = "lower" optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay) stopper = EarlyStopping( mode=mode, patience=args.patience, filename=args.output_path) metric_name, _ = get_metric(task, args.dataset_name) running_loss = AverageMeter() for epoch in range(args.epochs): logger.info("========Epoch %d========" % (epoch + 1)) model.train() running_loss.reset() for step, (drug, label) in enumerate(train_loader): drug = ToDevice(drug, device) pred = model(drug) y = label.view(pred.shape).to(torch.float64).to(device) is_valid = y**2 > 0 # Loss matrix loss_mat = loss_fn(pred.double(), (y+1)/2) # loss matrix after removing null target loss_mat = torch.where(is_valid, loss_mat, torch.zeros( loss_mat.shape).to(loss_mat.device).to(loss_mat.dtype)) optimizer.zero_grad() loss = torch.sum(loss_mat)/torch.sum(is_valid) loss.backward() optimizer.step() running_loss.update(loss.detach().cpu().item()) if (step + 1) % args.logging_steps == 0: logger.info("Steps=%d Training Loss=%.4lf" % (step, running_loss.get_average())) running_loss.reset() val_metrics = val_dp(val_loader, model, task, args) test_metrics = val_dp(test_loader, model, task, args) logger.info("%s val %s=%.4lf" % (args.dataset_name, metric_name, val_metrics[metric_name])) logger.info("%s test %s=%.4lf" % (args.dataset_name, metric_name, test_metrics[metric_name])) if stopper.step((val_metrics[metric_name]), model): break model.load_state_dict(torch.load(args.output_path)["model_state_dict"]) return model, epoch def val_dp(val_loader, model, task, args): device = torch.device(args.device) metric_name, metric = get_metric(task, args.dataset_name) model.eval() all_preds, y_true = [], [] for drug, label in val_loader: drug = ToDevice(drug, device) pred = model(drug).detach().cpu() label = label.view(pred.shape) all_preds.append(pred) y_true.append(label) all_preds = torch.cat(all_preds, dim=0).cpu().numpy() y_true = torch.cat(y_true, dim=0).cpu().numpy() roc_list = [] for i in range(y_true.shape[1]): # AUC is only defined when there is at least one positive data. if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == -1) > 0: is_valid = y_true[:, i]**2 > 0 roc_list.append(roc_auc_score( (y_true[is_valid, i] + 1)/2, all_preds[is_valid, i])) if len(roc_list) < y_true.shape[1]: print("Some target is missing!") print("Missing ratio: %f" % (1 - float(len(roc_list))/y_true.shape[1])) return {metric_name: sum(roc_list)/len(roc_list)} # y_true.shape[1] # return {metric_name: metric(all_y, all_preds)} def main(args, config): # prepare dataset dataset = SUPPORTED_DP_DATASETS[args.dataset]( args.dataset_path, config["data"], args.dataset_name, 2) task = dataset.task train_dataset = dataset.index_select(dataset.train_index) val_dataset = dataset.index_select(dataset.val_index) test_dataset = dataset.index_select(dataset.test_index) # _build save_path = "" if len(config["data"]["mol"]["modality"]) > 1 and "kg" in config["data"]["mol"]["featurizer"]: save_path = os.path.join( config["data"]["mol"]["featurizer"]["kg"]["save_path"], "dp-" + args.dataset + "_val.pkl") train_dataset._build(save_path) val_dataset._build(save_path) test_dataset._build(save_path) collator = DPCollator(config["data"]["mol"]) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collator) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collator) # prepare model task_num = get_num_task(args.dataset_name) if len(config["data"]["mol"]["modality"]) > 1 and config["model"] != "molalbef": model = DeepEIK4DP(config["network"], task_num) else: model = DPModel(config, task_num) if args.init_checkpoint != "": ckpt = torch.load(args.init_checkpoint) if args.param_key != "": ckpt = ckpt[args.param_key] model.load_state_dict(ckpt) device = torch.device(args.device) model = model.to(device) # configure metric metric_name, _ = get_metric(task, args.dataset_name) # TODO: support two and multiple classification if args.mode == "train": model, epoch = train_dp(train_loader, val_loader, test_loader, model, task, args) results = val_dp(test_loader, model, task, args) logger.info("%s test %s=%.4lf" % (args.dataset_name, metric_name, results[metric_name])) elif args.mode == "test": results = val_dp(test_loader, model, task, args) logger.info("%s test %s=%.4lf" % (args.dataset_name, metric_name, results[metric_name])) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) parser = argparse.ArgumentParser() parser = add_arguments(parser) args = parser.parse_args() config = json.load(open(args.config_path, "r")) # config['network']['structure']['drop_ratio'] = args.dropout # set seed random.seed(args.seed) # np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) main(args, config)
OpenBioMed-main
open_biomed/tasks/mol_task/dp.py
OpenBioMed-main
open_biomed/tasks/mol_task/__init__.py
import logging logger = logging.getLogger(__name__) from abc import ABC, abstractmethod import os import csv import torch from torch.utils.data import Dataset from feature.mol_featurizer import MolMultiModalFeaturizer from feature.text_featurizer import TextTransformerTokFeaturizer from utils.mol_utils import valid_smiles class MolCapDataset(Dataset, ABC): def __init__(self, path, config): super(MolCapDataset, self).__init__() self.path = path self.config = config self._load_data() self._featurize() @abstractmethod def _load_data(self): raise NotImplementedError def _featurize(self): featurizer = MolMultiModalFeaturizer(self.config) featurizer.set_mol2text_dict(self.smi2text) self.mols = [featurizer(smi) for smi in self.smiles] if "additional_text" in self.config["modality"]: featurizer = TextTransformerTokFeaturizer(self.config["featurizer"]["additional_text"]) for i, smi in enumerate(self.smiles): self.mols[i]["additional_text"] = featurizer(self.smi2addtext[smi]) def __getitem__(self, index): return self.mols[index] def __len__(self): return len(self.smiles) class CheBI_20(MolCapDataset): def __init__(self, path, config, split): self.split = split super(CheBI_20, self).__init__(path, config) def _load_data(self): self.smiles = [] self.texts = [] with open(os.path.join(self.path, self.split + ".txt")) as f: reader = csv.DictReader(f, delimiter='\t', quoting=csv.QUOTE_NONE) for line in reader: if valid_smiles(line["SMILES"]): self.smiles.append(line["SMILES"]) self.texts.append(line["description"]) else: logger.warn("Failed to generate 2D Graph for %s" % (line["SMILES"])) self.smi2text = dict(zip(self.smiles, self.texts)) logger.info("Split: %s, Num Samples: %d" % (self.split, len(self))) if "additional_text" in self.config["modality"]: self.smi2addtext = {} with open(os.path.join(self.path, "molt5-captions-" + self.split + ".txt")) as f: reader = csv.DictReader(f, delimiter='\t', quoting=csv.QUOTE_NONE) for line in reader: self.smi2addtext[line["SMILES"]] = line["output"] SUPPORTED_MOLCAP_DATASET = { "chebi-20": CheBI_20 }
OpenBioMed-main
open_biomed/datasets/molcap_dataset.py
from abc import ABC, abstractmethod import logging logger = logging.getLogger(__name__) import copy import numpy as np import json import os.path as osp from tqdm import tqdm import torch from torch.utils.data import Dataset from torch_geometric.data import Data from feature.protein_featurizer import SUPPORTED_PROTEIN_FEATURIZER, ProteinMultiModalFeaturizer from utils.kg_utils import subgraph_sample class PPIDataset(Dataset, ABC): def __init__(self, path, config, directed=False, make_network=False, split='random'): super(PPIDataset, self).__init__() self.path = path self.config = config self.directed = directed self.make_network = make_network self._load_proteins() self._load_ppis() self._featurize() self._train_test_split(strategy=split) @abstractmethod def _load_proteins(self, path): raise NotImplementedError @abstractmethod def _load_ppis(self): raise NotImplementedError def _featurize(self): logger.info("Featurizing...") if len(self.config["modality"]) > 1: featurizer = ProteinMultiModalFeaturizer(self.config["featurizer"]) else: featurizer = SUPPORTED_PROTEIN_FEATURIZER[self.config["featurizer"]["structure"]["name"]](self.config["featurizer"]["structure"]) self.proteins = [featurizer(protein) for protein in tqdm(self.proteins)] self.labels = torch.tensor(self.labels, dtype=torch.float) @abstractmethod def _train_test_split(self, strategy='random'): raise NotImplementedError def index_select(self, indexes, split='train'): new_dataset = copy.deepcopy(self) new_dataset.pair_index = [self.pair_index[i] for i in indexes] new_dataset.labels = [self.labels[i] for i in indexes] if self.make_network: if split == 'train': # inductive setting, remove edges in the test set during training new_dataset.network = Data( x=torch.stack(self.proteins), edge_index=torch.tensor(np.array(new_dataset.pair_index).T, dtype=torch.long) ) else: new_dataset.network = Data( x=torch.stack(self.proteins), edge_index=torch.tensor(np.array(self.pair_index).T, dtype=torch.long) ) return new_dataset def __len__(self): return len(self.labels) def __getitem__(self, idx): if not self.make_network: return self.proteins[self.pair_index[idx][0]], self.proteins[self.pair_index[idx][1]], self.labels[idx] else: return self.pair_index[idx][0], self.pair_index[idx][1], self.labels[idx] class STRINGDataset(PPIDataset): def __init__(self, path, config, directed=False, make_network=False, split='bfs'): super(STRINGDataset, self).__init__(path, config, directed, make_network, split) self.num_classes = 7 def _load_proteins(self): self.proteins = [] self.protname2id = {} with open(osp.join(self.path, "sequences.tsv")) as f: for i, line in enumerate(f.readlines()): line = line.rstrip("\n").split("\t") self.protname2id[line[0]] = i self.proteins.append(line[1]) logger.info("Num proteins: %d" % (len(self.proteins))) def _load_ppis(self): ppi_dict = {} class_map = {'reaction': 0, 'binding': 1, 'ptmod': 2, 'activation': 3, 'inhibition': 4, 'catalysis': 5, 'expression': 6} with open(osp.join(self.path, "interactions.txt")) as f: for i, line in enumerate(f.readlines()): if i == 0: continue line = line.rstrip("\t").split("\t") prot1, prot2 = self.protname2id[line[0]], self.protname2id[line[1]] if not self.directed and prot1 > prot2: t = prot1 prot1 = prot2 prot2 = t if (prot1, prot2) not in ppi_dict: ppi_dict[(prot1, prot2)] = [0] * 7 ppi_dict[(prot1, prot2)][class_map[line[2]]] = 1 self.pair_index = [] self.labels = [] for prot_pair in ppi_dict: self.pair_index.append(list(prot_pair)) self.labels.append(ppi_dict[prot_pair]) if not self.directed: self.pair_index.append([prot_pair[1], prot_pair[0]]) self.labels.append(ppi_dict[prot_pair]) logger.info("Num ppis: %d" % (len(self.labels))) def _train_test_split(self, strategy='bfs', test_ratio=0.2, random_new=False): if random_new or not osp.exists(osp.join(self.path, "split.json")): self.test_indexes = subgraph_sample(len(self.proteins), self.pair_index, strategy, int(len(self.pair_index) * test_ratio), directed=False) self.train_indexes = [] for i in range(len(self.pair_index)): if i not in self.test_indexes: self.train_indexes.append(i) json.dump({ "train": self.train_indexes, "test": self.test_indexes }, open(osp.join(self.path, "split_%s.json" % (strategy)), "w")) else: split = json.load(open(osp.join(self.path, "split_%s.json" % (strategy)), "r")) self.train_indexes = split["train"] self.test_indexes = split["test"] SUPPORTED_PPI_DATASETS = { "SHS27k": STRINGDataset, "SHS148k": STRINGDataset, "STRING": STRINGDataset, }
OpenBioMed-main
open_biomed/datasets/ppi_dataset.py
import logging logger = logging.getLogger(__name__) from abc import ABC, abstractmethod import os import csv import json import torch from torch.utils.data import Dataset from feature.mol_featurizer import SUPPORTED_MOL_FEATURIZER from feature.text_featurizer import SUPPORTED_TEXT_FEATURIZER from utils.mol_utils import valid_smiles class MolQADataset(Dataset, ABC): def __init__(self, path, config): super(MolQADataset, self).__init__() self.path = path self.config = config self._load_data() self._featurize(True if self.split == "train" else False) @abstractmethod def _load_data(self): raise NotImplementedError def _featurize(self, featurize_output=True): featurizer = SUPPORTED_MOL_FEATURIZER[self.config["mol"]["featurizer"]["structure"]["name"]](self.config["mol"]["featurizer"]["structure"]) self.mols = [featurizer(smi) for smi in self.smiles] featurizer = SUPPORTED_TEXT_FEATURIZER[self.config["text"]["question"]["featurizer"]["name"]](self.config["text"]["question"]["featurizer"]) self.questions = [featurizer(text) for text in self.questions] if featurize_output: featurizer = SUPPORTED_TEXT_FEATURIZER[self.config["text"]["answer"]["featurizer"]["name"]](self.config["text"]["answer"]["featurizer"]) self.answers = [featurizer(text) for text in self.answers] def __getitem__(self, index): return self.mols[index], self.questions[index], self.answers[index] def __len__(self): return len(self.smiles) class ChEMBLQA(MolQADataset): def __init__(self, path, config, split): self.split = split super(ChEMBLQA, self).__init__(path, config) def _load_data(self): self.smiles = [] self.questions = [] self.answers = [] self.num_mols = 0 data = json.load(open(os.path.join(self.path, "ChEMBL_QA_" + self.split + ".json"), "r")) for smi in data: if valid_smiles(smi): self.num_mols += 1 for question in data[smi]: self.smiles.append(smi) self.questions.append(question[0]) self.answers.append(str(question[1])) else: logger.debug("Failed to generate 2D Graph for %s" % (smi)) self.smi2text = dict(zip(self.smiles, self.questions)) logger.info("Split: %s, Num Molecules: %d, Num Questions: %d" % (self.split, self.num_mols, len(self))) class BioMedQA(MolQADataset): def __init__(self, path, config): super(BioMedQA).__init__(path, config) SUPPORTED_MOLQA_DATASET = { "chembl-qa": ChEMBLQA }
OpenBioMed-main
open_biomed/datasets/molqa_dataset.py
OpenBioMed-main
open_biomed/datasets/__init__.py
""" Dataset for Molecule-Text Retrieval """ from abc import ABC, abstractmethod import logging logger = logging.getLogger(__name__) import os import os.path as osp import copy import random import rdkit.Chem as Chem from rdkit import RDLogger RDLogger.DisableLog("rdApp.*") import numpy as np import torch from torch.utils.data import Dataset from feature.mol_featurizer import MolMultiModalFeaturizer from utils.split_utils import scaffold_split class MTRDataset(Dataset, ABC): def __init__(self, path, config): super(MTRDataset, self).__init__() self.path = path self.config = config self._load_data() self._featurize() @abstractmethod def _load_data(self): raise NotImplementedError def _featurize(self): # featurize mol with paired text featurizer = MolMultiModalFeaturizer(self.config["mol"]) featurizer.set_mol2text_dict(self.mol2text) self.mols = [featurizer(mol) for mol in self.mols] def index_select(self, indexes): new_dataset = copy.copy(self) new_dataset.mols = [new_dataset.mols[i] for i in indexes] return new_dataset def __len__(self): return len(self.mols) def set_test(self): self.test = True if self.mode == "sentence": rnd = 42 self.pseudorandom = [] for i in range(len(self)): self.pseudorandom.append(rnd) rnd = rnd * 16807 % ((1 << 31) - 1) def __getitem__(self, index): if self.mode == "sentence": if not self.test: ind = random.randint(0, len(self.mols[index]["text"]) - 1) else: ind = self.pseudorandom[index] % len(self.mols[index]["text"]) return { "structure": self.mols[index]["structure"], "text": self.mols[index]["text"][ind], } else: return self.mols[index] class PCdes(MTRDataset): def __init__(self, path, config, mode='paragraph', filter=True, filter_path=""): self.filter = filter self.filter_path = filter_path self.test = False self.mode = mode super(PCdes, self).__init__(path, config) self._train_test_split() def _load_data(self): with open(osp.join(self.path, "align_smiles.txt"), "r") as f: mols = f.readlines() with open(osp.join(self.path, "align_des_filt3.txt"), "r") as f: texts = f.readlines()[:len(mols)] if self.filter: with open(self.filter_path, "r") as f: filter_mols = [] for line in f.readlines(): mol = line.rstrip("\n").split("\t")[1] mol = Chem.MolFromSmiles(mol) if mol is not None: filter_mols.append(Chem.MolToSmiles(mol, isomericSmiles=True)) self.mols = [] self.texts = [] for i, mol in enumerate(mols): try: mol = Chem.MolFromSmiles(mol.strip("\n")) smi_orig = Chem.MolToSmiles(mol, isomericSmiles=False) smi = Chem.MolToSmiles(mol, isomericSmiles=True) if mol is not None and not smi in filter_mols: self.mols.append(smi_orig) self.texts.append(texts[i].strip("\n")) except: logger.debug("fail to generate 2D graph, data removed") self.smiles = self.mols self.mol2text = dict(zip(self.mols, self.texts)) logger.info("Num Samples: %d" % len(self)) def _train_test_split(self): self.train_index, self.val_index, self.test_index = scaffold_split(self, 0.1, 0.2) class PubChem15K(MTRDataset): def __init__(self, path, config, mode, filter, filter_path): self.mode = mode self.test = False super(PubChem15K, self).__init__(path, config) self._train_test_split() def _load_data(self): random.seed(42) self.mols, self.texts = [], [] with open(os.path.join(self.path, "pair.txt")) as f: for line in f.readlines(): line = line.rstrip("\n").split("\t") text_name, smi = line[0], line[1] try: mol = Chem.MolFromSmiles(smi) if mol is not None: self.mols.append(smi) text_list = [] count = 0 for line in open(os.path.join(self.path, "text", "text_" + text_name + ".txt"), 'r', encoding='utf-8'): count += 1 text_list.append(line) if count > 500: break #text = random.sample(text_list, 1)[0] text = text_list[0] if len(text) > 256: text = text[:256] self.texts.append(text) except: continue if len(self.mols) >= 480: break self.mol2text = dict(zip(self.mols, self.texts)) def _train_test_split(self): self.train_index = np.arange(0, 480) self.val_index = np.arange(0, 480) self.test_index = np.arange(0, 480) SUPPORTED_MTR_DATASETS = { "PCdes": PCdes, "PubChem15K": PubChem15K, }
OpenBioMed-main
open_biomed/datasets/mtr_dataset.py
from abc import ABC, abstractmethod import logging logger = logging.getLogger(__name__) import os import copy import scanpy import numpy as np from sklearn.model_selection import StratifiedShuffleSplit import torch from torch.utils.data import Dataset from feature.cell_featurizer import SUPPORTED_CELL_FEATURIZER class CTCDataset(Dataset, ABC): def __init__(self, path, config, seed): super(CTCDataset, self).__init__() self.config = config self.path = path self.seed = seed self._load_data() self._featurize() @abstractmethod def _load_data(self): raise NotImplementedError def _featurize(self): feat_config = self.config["cell"]["featurizer"]["structure"] featurizer = SUPPORTED_CELL_FEATURIZER[feat_config["name"]](feat_config) self.cells = [featurizer(cell) for cell in self.cells] def index_select(self, indexes): new_dataset = copy.copy(self) new_dataset.cells = [self.cells[i] for i in indexes] new_dataset.labels = [self.labels[i] for i in indexes] return new_dataset def __len__(self): return len(self.labels) def __getitem__(self, index): return self.cells[index], self.labels[index] class Zheng68k(CTCDataset): def __init__(self, path, config, seed): super(Zheng68k, self).__init__(path, config, seed) self._train_test_split(seed) def _load_data(self): data = scanpy.read_h5ad(os.path.join(self.path, "Zheng68K.h5ad")) self.cells = data.X self.label_dict, self.labels = np.unique(np.array(data.obs['celltype']), return_inverse=True) self.num_classes = self.label_dict.shape[0] def _train_test_split(self, seed): split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=seed).split(self.cells, self.labels) for train_index, val_index in split: self.train_index = train_index self.val_index = val_index class Baron(CTCDataset): def __init__(self, path, config, seed): super(Baron, self).__init__(path, config, seed) self._train_test_split(seed) def _load_data(self): data = scanpy.read_h5ad(os.path.join(self.path, "Baron.h5ad")) self.cells = data.X self.label_dict, self.labels = np.unique(np.array(data.obs['celltype']), return_inverse=True) self.num_classes = self.label_dict.shape[0] def _train_test_split(self, seed): split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=seed).split(self.cells, self.labels) for train_index, val_index in split: self.train_index = train_index self.val_index = val_index SUPPORTED_CTC_DATASETS = { "zheng68k": Zheng68k, "baron": Baron }
OpenBioMed-main
open_biomed/datasets/ctc_dataset.py
from abc import ABC, abstractmethod import torch from torch.utils.data import Dataset from feature.text_featurizer import SUPPORTED_TEXT_FEATURIZER class Text2MolGenDataset(Dataset, ABC): def __init__(self, path, config): super(Text2MolGenDataset, self).__init__() self.path = path self.config = config self._load_data() self._featurize() @abstractmethod def _load_data(self): raise NotImplementedError def _featurize(self): feat_config = self.config["featurizer"]["text"] featurizer = SUPPORTED_TEXT_FEATURIZER[feat_config["name"]](feat_config) self.texts = [featurizer(text) for text in self.texts] class PromptGenDataset(Text2MolGenDataset): def __init__(self, path, config): super().__init__(path, config) def _load_data(self): self.texts = [ 'The molecule is soluable in water.', 'The molecule is not soluable in water.', 'The molecule has high permeability.', 'The molecule has low permeability.', 'The molecule is like Felodipine.', 'The molecule is like Lercanidipine.' ] """ self.texts = [ 'The molecule is beautiful.', 'The molecule is versatile.', 'The molecule is strange.', 'fluorescent molecules', 'The molecule contains hydroxyl and carboxyl groups, which can be thermally decomposed to generate ammonia gas, and the oxygen content in the molecule is not less than 20%.', 'The molecule has high water solubility and barrier permeability with low toxicity.', 'molecules containing nucleophilic groups', 'molecules containing electrophilic groups', 'molecules containing hydrophilic groups', 'molecules containing lipophilic groups' ] """ self.smiles = None class CheBI20(Text2MolGenDataset): def __init__(self, path, config): super().__init__(path, config) def _load_data(self): pass SUPPORTED_TEXT2MOLGEN_DATASET = { "prompt": PromptGenDataset, "CheBI-20": CheBI20 }
OpenBioMed-main
open_biomed/datasets/text2mol_dataset.py
from abc import ABC, abstractmethod import logging logger = logging.getLogger(__name__) import copy import pickle import json import random import numpy as np import pandas as pd import os.path as osp import torch from torch.utils.data import Dataset from torch_geometric.data import Batch from feature.mol_featurizer import SUPPORTED_MOL_FEATURIZER, MolMultiModalFeaturizer from feature.cell_featurizer import SUPPORTED_CELL_FEATURIZER from utils.cell_utils import SUPPORTED_GENE_SELECTOR class DRPDataset(Dataset, ABC): def __init__(self, path, config, task="regression"): super(DRPDataset, self).__init__() self.path = path self.config = config self.task = task self.gene_selector = SUPPORTED_GENE_SELECTOR[config["cell"]["gene_selector"]]() self._load_data() self._featurize() @abstractmethod def _load_data(self): raise NotImplementedError def _featurize(self): # featurize drug if len(self.config["mol"]["modality"]) > 1: featurizer = MolMultiModalFeaturizer(self.config["mol"]) else: featurizer = SUPPORTED_MOL_FEATURIZER[self.config["mol"]["featurizer"]["structure"]["name"]](self.config["mol"]["featurizer"]["structure"]) for key in self.drug_dict: smi = self.drug_dict[key] self.drug_dict[key] = featurizer(smi) # featurize cell featurizer = SUPPORTED_CELL_FEATURIZER[self.config["cell"]["featurizer"]["name"]](self.config["cell"]["featurizer"]) self.cell_dict = featurizer(self.cell_dict) if self.config["cell"]["featurizer"]["name"] == "TGSA": self.predefined_cluster = featurizer.predefined_cluster # convert labels to tensor if self.task == "regression": self.IC = torch.FloatTensor(self.IC) if self.task == "classification": self.response = torch.FloatTensor(self.response) def _train_test_split(self): N = len(self) if self.config["split"]["type"] == "random": train_ratio, val_ratio = self.config["split"]["train"], self.config["split"]["val"] indexes = np.random.permutation(N) self.train_indexes = indexes[:int(N * train_ratio)] self.val_indexes = indexes[int(N * train_ratio): int(N * (train_ratio + val_ratio))] self.test_indexes = indexes[int(N * (train_ratio + val_ratio)):] elif self.config["split"]["type"] == "kfold": nfolds = self.config["split"]["nfolds"] indexes = np.random.permutation(N) self.fold_indexes = [indexes[int(N * k / nfolds): int(N * (k + 1) / nfolds)] for k in range(nfolds)] elif self.config["split"]["type"] == "cell": train_ratio, val_ratio = self.config["split"]["train"], self.config["split"]["val"] cells = list(set(self.cell_dict.keys())) random.shuffle(cells) cell_num = len(cells) train_cells = cells[:int(cell_num * train_ratio)] val_cells = cells[int(cell_num * train_ratio): int(cell_num * (train_ratio + val_ratio))] test_cells = cells[int(cell_num * (train_ratio + val_ratio)):] self.train_indexes, self.val_indexes, self.test_indexes = [], [], [] for i in range(N): if self.cell_index[i] in val_cells: self.val_indexes.append(i) elif self.cell_index[i] in test_cells: self.test_indexes.append(i) else: self.train_indexes.append(i) self.train_indexes, self.val_indexes, self.test_indexes = np.array(self.train_indexes), np.array(self.val_indexes), np.array(self.test_indexes) def index_select(self, indexes): new_dataset = copy.copy(self) new_dataset.drug_index = new_dataset.drug_index[indexes] new_dataset.cell_index = new_dataset.cell_index[indexes] if self.task == "regression": new_dataset.IC = new_dataset.IC[indexes] if self.task == "classification": new_dataset.response = new_dataset.response[indexes] return new_dataset def __getitem__(self, index): return self.drug_dict[self.drug_index[index]], self.cell_dict[self.cell_index[index]], self.IC[index] if self.task == "regression" else self.response[index] def __len__(self): return len(self.IC) if self.task == "regression" else len(self.response) class GDSC(DRPDataset): def __init__(self, path, config, task="regression"): super(GDSC, self).__init__(path, config, task) self._train_test_split() def _load_data(self): # load drug information data_drug = np.loadtxt(osp.join(self.path, "GDSC_MolAnnotation.csv"), dtype=str, delimiter=',', comments='?', skiprows=1) self.drug_dict = dict([ (data_drug[i][0], data_drug[i][2]) for i in range(data_drug.shape[0]) ]) # load cell-line information save_path = osp.join(self.path, "celldict_%s_%s.pkl" % ("-".join(self.config["cell"]["gene_feature"]), "-".join([str(v) for v in self.config["cell"]["featurizer"].values()]))) if osp.exists(save_path): self.cell_dict = pickle.load(open(save_path, "rb")) else: self.cell_dict = {} for feat in self.config["cell"]["gene_feature"]: data_cell = np.loadtxt(osp.join(self.path, "GDSC_%s.csv" % (feat)), dtype=str, delimiter=',') gene_names = data_cell[0][1:] # select genes strongly related to tumor expression selected_idx = [0] + self.gene_selector(gene_names) data_cell = data_cell[1:, selected_idx] for cell in data_cell: if cell[0] not in self.cell_dict: self.cell_dict[cell[0]] = cell[1:].reshape(-1, 1).astype(np.float) else: self.cell_dict[cell[0]] = np.concatenate((self.cell_dict[cell[0]], cell[1:].reshape(-1, 1).astype(np.float)), axis=1) pickle.dump(self.cell_dict, open(save_path, "wb")) # load drug-cell response information data_IC50 = pd.read_csv(osp.join(self.path, "GDSC_DR.csv")) self.drug_index = data_IC50["MOL_NAME"].to_numpy() self.cell_index = data_IC50["cell_tissue"].to_numpy() self.IC = data_IC50["LN_IC50"].astype(np.float) resp2val = {'R': 1, 'S': 0} self.response = np.array([resp2val[x] for x in data_IC50["BinaryResponse"]]) class TCGA(DRPDataset): def __init__(self, path, config, subset="BRCA_28"): self.subset = subset super(TCGA, self).__init__(path, config, task="classification") def _load_data(self): # load cell-line data feat2file = {"EXP": "xena_gex", "MUT": "xena_mutation"} save_path = osp.join(self.path, "celldict_%s_%s.pkl" % ("-".join(self.config["cell"]["gene_feature"]), "-".join([str(v) for v in self.config["cell"]["featurizer"].values()]))) if osp.exists(save_path): self.cell_dict = pickle.load(open(save_path, "rb")) else: self.cell_dict = {} for feat in self.config["cell"]["gene_feature"]: data_cell = np.loadtxt(osp.join(self.path, feat2file[feat] + ".csv"), dtype=str, delimiter=',') gene_names = data_cell[0][1:] selected_idx = [0] + self.gene_selector(gene_names) data_cell = data_cell[1:, selected_idx] cur_cell_feat = {} for cell in data_cell: cell_name = cell[0][:12] if cell_name not in self.cell_dict: cur_cell_feat[cell_name] = cell[1:].reshape(-1, 1).astype(np.float) else: cur_cell_feat[cell_name] = np.concatenate((cur_cell_feat[cell_name], cell[1:].reshape(-1, 1).astype(np.float)), axis=1) for key in cur_cell_feat: value = np.mean(cur_cell_feat[key], axis=1).reshape(-1, 1) if key not in self.cell_dict: self.cell_dict[key] = value else: self.cell_dict[key] = np.concatenate((self.cell_dict[key], value), axis=1) pickle.dump(self.cell_dict, open(save_path, "wb")) # load drug and its response data df = pd.read_csv(osp.join(self.path, "tcga_clinical_data", self.subset + ".csv")) drugs = df["smiles"].unique() self.drug_dict = dict(zip(drugs, drugs)) self.drug_index = df["smiles"].to_numpy() self.cell_index = df["bcr_patient_barcode"].to_numpy() self.response = df["label"].to_numpy().astype(np.float) class GDSC2(DRPDataset): def __init__(self, path, config, task="regression"): super(GDSC2, self).__init__(path, config, task) self._train_test_split() def _load_data(self): pertid_ach_smiles_ic50s = json.load(open(osp.join(self.path, "gdsc.json"))) self.drug_index = [i[2] for i in pertid_ach_smiles_ic50s] self.drug_dict = {} for smiles in set(self.drug_index): self.drug_dict[smiles] = smiles self.drug_index = np.array(self.drug_index) self.cell_index = [i[1] for i in pertid_ach_smiles_ic50s] self.cell_index = np.array(self.cell_index) self.IC = [float(i[-1]) for i in pertid_ach_smiles_ic50s] if 'lnIC' in self.config and self.config['lnIC']: self.IC = [np.log(ic) for ic in self.IC] self.IC = np.array(self.IC) self.response = np.zeros_like(self.IC) if 'ach2vec' in self.config['cell']: self.cell_dict = json.load(open(osp.join(self.path, self.config['cell']['ach2vec']))) else: self.cell_dict = json.load(open(osp.join(self.path, "ach2gene.json"))) for k in self.cell_dict: self.cell_dict[k] = np.array(self.cell_dict[k]) SUPPORTED_DRP_DATASET = { "GDSC": GDSC, "TCGA": TCGA, "GDSC2": GDSC2 }
OpenBioMed-main
open_biomed/datasets/drp_dataset.py
from abc import ABC, abstractmethod import logging logger = logging.getLogger(__name__) import copy from enum import Enum import numpy as np import pandas as pd import os from rdkit import Chem import os import sys import torch from torch.utils.data import Dataset from rdkit.Chem import AllChem, Descriptors from feature.mol_featurizer import SUPPORTED_MOL_FEATURIZER, MolMultiModalFeaturizer from utils.kg_utils import SUPPORTED_KG, embed from utils.split_utils import random_split, scaffold_split from utils import Normalizer sys.path.insert(0, os.path.dirname(__file__)) def _load_bbbp_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] preprocessed_rdkit_mol_objs_list = [m if m is not None else None for m in rdkit_mol_objs_list] preprocessed_smiles_list = [AllChem.MolToSmiles(m) if m is not None else None for m in preprocessed_rdkit_mol_objs_list] labels = input_df['p_np'] # convert 0 to -1 labels = labels.replace(0, -1) # there are no nans assert len(smiles_list) == len(preprocessed_rdkit_mol_objs_list) assert len(smiles_list) == len(preprocessed_smiles_list) assert len(smiles_list) == len(labels) return preprocessed_smiles_list, \ preprocessed_rdkit_mol_objs_list, labels.values def _load_clintox_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] preprocessed_rdkit_mol_objs_list = [m if m is not None else None for m in rdkit_mol_objs_list] preprocessed_smiles_list = [AllChem.MolToSmiles(m) if m is not None else None for m in preprocessed_rdkit_mol_objs_list] tasks = ['FDA_APPROVED', 'CT_TOX'] labels = input_df[tasks] # convert 0 to -1 labels = labels.replace(0, -1) # there are no nans assert len(smiles_list) == len(preprocessed_rdkit_mol_objs_list) assert len(smiles_list) == len(preprocessed_smiles_list) assert len(smiles_list) == len(labels) return preprocessed_smiles_list, \ preprocessed_rdkit_mol_objs_list, labels.values # input_path = 'dataset/clintox/raw/clintox.csv' # smiles_list, rdkit_mol_objs_list, labels = _load_clintox_dataset(input_path) def _load_esol_dataset(input_path): # NB: some examples have multiple species input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['measured log solubility in mols per litre'] assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values # input_path = 'dataset/esol/raw/delaney-processed.csv' # smiles_list, rdkit_mol_objs_list, labels = _load_esol_dataset(input_path) def _load_freesolv_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['expt'] assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_lipophilicity_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['exp'] assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_malaria_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['activity'] assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_cep_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['PCE'] assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_muv_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] tasks = ['MUV-466', 'MUV-548', 'MUV-600', 'MUV-644', 'MUV-652', 'MUV-689', 'MUV-692', 'MUV-712', 'MUV-713', 'MUV-733', 'MUV-737', 'MUV-810', 'MUV-832', 'MUV-846', 'MUV-852', 'MUV-858', 'MUV-859'] labels = input_df[tasks] # convert 0 to -1 labels = labels.replace(0, -1) # convert nan to 0 labels = labels.fillna(0) assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def check_columns(df, tasks, N): bad_tasks = [] total_missing_count = 0 for task in tasks: value_list = df[task] pos_count = sum(value_list == 1) neg_count = sum(value_list == -1) missing_count = sum(value_list == 0) total_missing_count += missing_count pos_ratio = 100. * pos_count / (pos_count + neg_count) missing_ratio = 100. * missing_count / N assert pos_count + neg_count + missing_count == N if missing_ratio >= 50: bad_tasks.append(task) print('task {}\t\tpos_ratio: {:.5f}\tmissing ratio: {:.5f}'.format(task, pos_ratio, missing_ratio)) print('total missing ratio: {:.5f}'.format(100. * total_missing_count / len(tasks) / N)) return bad_tasks def check_rows(labels, N): from collections import defaultdict p, n, m = defaultdict(int), defaultdict(int), defaultdict(int) bad_count = 0 for i in range(N): value_list = labels[i] pos_count = sum(value_list == 1) neg_count = sum(value_list == -1) missing_count = sum(value_list == 0) p[pos_count] += 1 n[neg_count] += 1 m[missing_count] += 1 if pos_count + neg_count == 0: bad_count += 1 print('bad_count\t', bad_count) print('pos\t', p) print('neg\t', n) print('missing\t', m) return def _load_pcba_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') tasks = list(input_df.columns)[:-2] N = input_df.shape[0] temp_df = input_df[tasks] temp_df = temp_df.replace(0, -1) temp_df = temp_df.fillna(0) bad_tasks = check_columns(temp_df, tasks, N) for task in bad_tasks: tasks.remove(task) print('good tasks\t', len(tasks)) labels = input_df[tasks] labels = labels.replace(0, -1) labels = labels.fillna(0) labels = labels.values print(labels.shape) # 439863, 92 check_rows(labels, N) input_df.dropna(subset=tasks, how='all', inplace=True) # convert 0 to -1 input_df = input_df.replace(0, -1) # convert nan to 0 input_df = input_df.fillna(0) labels = input_df[tasks].values print(input_df.shape) # 435685, 92 N = input_df.shape[0] check_rows(labels, N) smiles_list = input_df['smiles'].tolist() rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels def _load_sider_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] tasks = ['Hepatobiliary disorders', 'Metabolism and nutrition disorders', 'Product issues', 'Eye disorders', 'Investigations', 'Musculoskeletal and connective tissue disorders', 'Gastrointestinal disorders', 'Social circumstances', 'Immune system disorders', 'Reproductive system and breast disorders', 'Neoplasms benign, malignant and unspecified (incl cysts and polyps)', 'General disorders and administration site conditions', 'Endocrine disorders', 'Surgical and medical procedures', 'Vascular disorders', 'Blood and lymphatic system disorders', 'Skin and subcutaneous tissue disorders', 'Congenital, familial and genetic disorders', 'Infections and infestations', 'Respiratory, thoracic and mediastinal disorders', 'Psychiatric disorders', 'Renal and urinary disorders', 'Pregnancy, puerperium and perinatal conditions', 'Ear and labyrinth disorders', 'Cardiac disorders', 'Nervous system disorders', 'Injury, poisoning and procedural complications'] labels = input_df[tasks] # convert 0 to -1 labels = labels.replace(0, -1) assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_toxcast_dataset(input_path): # NB: some examples have multiple species, some example smiles are invalid input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] # Some smiles could not be successfully converted # to rdkit mol object so them to None preprocessed_rdkit_mol_objs_list = [m if m is not None else None for m in rdkit_mol_objs_list] preprocessed_smiles_list = [AllChem.MolToSmiles(m) if m is not None else None for m in preprocessed_rdkit_mol_objs_list] tasks = list(input_df.columns)[1:] labels = input_df[tasks] # convert 0 to -1 labels = labels.replace(0, -1) # convert nan to 0 labels = labels.fillna(0) assert len(smiles_list) == len(preprocessed_rdkit_mol_objs_list) assert len(smiles_list) == len(preprocessed_smiles_list) assert len(smiles_list) == len(labels) return preprocessed_smiles_list, \ preprocessed_rdkit_mol_objs_list, labels.values # root_path = 'dataset/chembl_with_labels' def check_smiles_validity(smiles): try: m = Chem.MolFromSmiles(smiles) if m: return True else: return False except: return False def split_rdkit_mol_obj(mol): """ Split rdkit mol object containing multiple species or one species into a list of mol objects or a list containing a single object respectively """ smiles = AllChem.MolToSmiles(mol, isomericSmiles=True) smiles_list = smiles.split('.') mol_species_list = [] for s in smiles_list: if check_smiles_validity(s): mol_species_list.append(AllChem.MolFromSmiles(s)) return mol_species_list def get_largest_mol(mol_list): """ Given a list of rdkit mol objects, returns mol object containing the largest num of atoms. If multiple containing largest num of atoms, picks the first one """ num_atoms_list = [len(m.GetAtoms()) for m in mol_list] largest_mol_idx = num_atoms_list.index(max(num_atoms_list)) return mol_list[largest_mol_idx] def _load_tox21_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] tasks = ['NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase', 'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53'] labels = input_df[tasks] # convert 0 to -1 labels = labels.replace(0, -1) # convert nan to 0 labels = labels.fillna(0) assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_hiv_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['smiles'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['HIV_active'] # convert 0 to -1 labels = labels.replace(0, -1) # there are no nans assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) return smiles_list, rdkit_mol_objs_list, labels.values def _load_bace_dataset(input_path): input_df = pd.read_csv(input_path, sep=',') smiles_list = input_df['mol'] rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list] labels = input_df['Class'] # convert 0 to -1 labels = labels.replace(0, -1) # there are no nans folds = input_df['Model'] folds = folds.replace('Train', 0) # 0 -> train folds = folds.replace('Valid', 1) # 1 -> valid folds = folds.replace('Test', 2) # 2 -> test assert len(smiles_list) == len(rdkit_mol_objs_list) assert len(smiles_list) == len(labels) assert len(smiles_list) == len(folds) # return smiles_list, rdkit_mol_objs_list, folds.values, labels.values return smiles_list, rdkit_mol_objs_list, labels.values datasetname2function = { "bbbp": _load_bbbp_dataset, "clintox": _load_clintox_dataset, "tox21": _load_tox21_dataset, "toxcast": _load_toxcast_dataset, "sider": _load_sider_dataset, "hiv": _load_hiv_dataset, "bace": _load_bace_dataset, "muv": _load_muv_dataset, "freesolv": _load_freesolv_dataset, "esol": _load_esol_dataset, "lipophilicity": _load_lipophilicity_dataset, } class Task(Enum): CLASSFICATION = 0 REGRESSION = 1 class DPDataset(Dataset, ABC): def __init__(self, path, config, in_memory=True): super(DPDataset, self).__init__() self.path = path self.config = config self.in_memory = in_memory self._load_data() # self._featurize() @abstractmethod def _load_data(self, path): raise NotImplementedError def _featurize(self): logger.info("Featurizing...") # self.featurized_drugs: 如果是多模态就是一个dict, 如果是structure单模态就是list[Data()] self.featurized_drugs = [self.drug_featurizer(drug) for drug in self.drugs] self.labels = [torch.tensor(label) for label in self.labels] def _build(self, save_path=""): if len(self.config["mol"]["modality"]) > 1 and save_path: kg_config = self.config["mol"]["featurizer"]["kg"] self.kg = SUPPORTED_KG[kg_config["kg_name"]](kg_config["kg_path"]) self.drug2kg, self.drug2text, _, _ = self.kg.link(self) # TODO: dp use TransE, don't need filter_out? filter_out = [] """ for i_drug in data_index: smi = self.smiles[i_drug] #if smi in self.drug2kg: # filter_out.append((self.drug2kg[smi], self.protein2kg[protein])) """ # embed once for consistency try: kge = embed(self.kg, 'ProNE', filter_out=filter_out, dim=kg_config["embed_dim"], save=True, save_path=save_path) except Exception as e: kge = None self.config["mol"]["featurizer"]["kg"]["kge"] = kge self._configure_featurizer() # featurize all data pairs in one pass for training efficency if self.in_memory: self._featurize() def _configure_featurizer(self): if len(self.config["mol"]["modality"]) > 1: self.drug_featurizer = MolMultiModalFeaturizer(self.config["mol"]) self.drug_featurizer.set_drug2kgid_dict(self.drug2kg) self.drug_featurizer.set_drug2text_dict(self.drug2text) else: drug_feat_config = self.config["mol"]["featurizer"]["structure"] self.drug_featurizer = SUPPORTED_MOL_FEATURIZER[drug_feat_config["name"]](drug_feat_config) def index_select(self, indexes): new_dataset = copy.copy(self) new_dataset.drugs = [new_dataset.drugs[i] for i in indexes] new_dataset.labels = [new_dataset.labels[i] for i in indexes] return new_dataset def __getitem__(self, index): if not self.in_memory: drug, label = self.drugs[index], self.labels[index] return self.drug_featurizer(drug), label else: return self.featurized_drugs[index], self.labels[index] def __len__(self): return len(self.drugs) class MoleculeNetDataset(DPDataset): name2target = { "BBBP": ["p_np"], "Tox21": ["NR-AR", "NR-AR-LBD", "NR-AhR", "NR-Aromatase", "NR-ER", "NR-ER-LBD", "NR-PPAR-gamma", "SR-ARE", "SR-ATAD5", "SR-HSE", "SR-MMP", "SR-p53"], "ClinTox": ["CT_TOX", "FDA_APPROVED"], "HIV": ["HIV_active"], "Bace": ["class"], "SIDER": ["Hepatobiliary disorders", "Metabolism and nutrition disorders", "Product issues", "Eye disorders", "Investigations", "Musculoskeletal and connective tissue disorders", "Gastrointestinal disorders", "Social circumstances", "Immune system disorders", "Reproductive system and breast disorders", "Neoplasms benign, malignant and unspecified (incl cysts and polyps)", "General disorders and administration site conditions", "Endocrine disorders", "Surgical and medical procedures", "Vascular disorders", "Blood and lymphatic system disorders", "Skin and subcutaneous tissue disorders", "Congenital, familial and genetic disorders", "Infections and infestations", "Respiratory, thoracic and mediastinal disorders", "Psychiatric disorders", "Renal and urinary disorders", "Pregnancy, puerperium and perinatal conditions", "Ear and labyrinth disorders", "Cardiac disorders", "Nervous system disorders", "Injury, poisoning and procedural complications"], "MUV": ['MUV-692', 'MUV-689', 'MUV-846', 'MUV-859', 'MUV-644', 'MUV-548', 'MUV-852', 'MUV-600', 'MUV-810', 'MUV-712', 'MUV-737', 'MUV-858', 'MUV-713', 'MUV-733', 'MUV-652', 'MUV-466', 'MUV-832'], "Toxcast": [""], # 617 "FreeSolv": ["expt"], "ESOL": ["measured log solubility in mols per litre"], "Lipo": ["exp"], "qm7": ["u0_atom"], "qm8": ["E1-CC2", "E2-CC2", "f1-CC2", "f2-CC2", "E1-PBE0", "E2-PBE0", "f1-PBE0", "f2-PBE0", "E1-CAM", "E2-CAM", "f1-CAM","f2-CAM"], "qm9": ['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'cv'] } name2task = { "BBBP": Task.CLASSFICATION, "Tox21": Task.CLASSFICATION, "ClinTox": Task.CLASSFICATION, "HIV": Task.CLASSFICATION, "Bace": Task.CLASSFICATION, "SIDER": Task.CLASSFICATION, "MUV": Task.CLASSFICATION, "Toxcast": Task.CLASSFICATION, "FreeSolv": Task.REGRESSION, "ESOL": Task.REGRESSION, "Lipo": Task.REGRESSION, "qm7": Task.REGRESSION, "qm8": Task.REGRESSION, "qm9": Task.REGRESSION } def __init__(self, path, config, name="BBBP", label_type=1): if name not in self.name2target: raise ValueError("%s is not a valid moleculenet task!" % name) file_name = os.listdir(os.path.join(path, name.lower(), "raw"))[0] assert file_name[-4:] == ".csv" path = os.path.join(path, name.lower(), "raw", file_name) self.name = name self.targets = self.name2target[name] # TODO: del: no use self.task = self.name2task[name] # TODO: del label_type self.label_type = label_type super(MoleculeNetDataset, self).__init__(path, config) self._train_test_split() self._normalize() def _load_data(self): smiles_list, rdkit_mol_objs, labels = datasetname2function[self.name.lower()](self.path) if labels.ndim == 1: labels = np.expand_dims(labels, axis=1) self.smiles, self.drugs, self.labels = [], [], [] for i in range(len(smiles_list)): rdkit_mol = rdkit_mol_objs[i] if rdkit_mol is None: continue # TODO: drugs and smiles are all get from AllChem.MolFromSmiles() self.smiles.append(smiles_list[i]) self.drugs.append(smiles_list[i]) # self.drugs.append(rdkit_mol[i]) self.labels.append(labels[i]) def _train_test_split(self, strategy="scaffold"): if strategy == "random": self.train_index, self.val_index, self.test_index = random_split(len(self), 0.1, 0.1) elif strategy == "scaffold": self.train_index, self.val_index, self.test_index = scaffold_split(self, 0.1, 0.1, is_standard=True) def _normalize(self): if self.name in ["qm7", "qm9"]: self.normalizer = [] for i in range(len(self.targets)): self.normalizer.append(Normalizer(self.labels[:, i])) self.labels[:, i] = self.normalizer[i].norm(self.labels[:, i]) else: # TODO: self.normalizer = [None] * len(self.targets) SUPPORTED_DP_DATASETS = { "MoleculeNet": MoleculeNetDataset }
OpenBioMed-main
open_biomed/datasets/dp_dataset.py
from abc import ABC, abstractmethod import logging logger = logging.getLogger(__name__) import copy import numpy as np import pandas as pd import pickle import os import json from tqdm import tqdm from collections import OrderedDict import torch from torch.utils.data import Dataset from feature.mol_featurizer import SUPPORTED_MOL_FEATURIZER, MolMultiModalFeaturizer from feature.protein_featurizer import SUPPORTED_PROTEIN_FEATURIZER, ProteinMultiModalFeaturizer from utils.mol_utils import can_smiles from utils.kg_utils import SUPPORTED_KG, embed from utils.split_utils import kfold_split, cold_drug_split, cold_protein_split, cold_cluster_split class DTIDataset(Dataset, ABC): def __init__(self, path, config, split_strategy, in_memory=True): super(DTIDataset, self).__init__() self.path = path self.config = config self.split_strategy = split_strategy self.in_memory = in_memory self._load_data() self._train_test_split() @abstractmethod def _load_data(self): raise NotImplementedError @abstractmethod def _train_test_split(self): raise NotImplementedError def _build(self, eval_pair_index, save_path): # build after train / test datasets are determined for filtering out edges if len(self.config["mol"]["modality"]) > 1: kg_config = self.config["mol"]["featurizer"]["kg"] self.kg = SUPPORTED_KG[kg_config["kg_name"]](kg_config["kg_path"]) self.drug2kg, self.drug2text, self.protein2kg, self.protein2text = self.kg.link(self) self.concat_text_first = self.config["concat_text_first"] filter_out = [] for i_drug, i_protein in eval_pair_index: smi = self.smiles[i_drug] protein = self.proteins[i_protein] if smi in self.drug2kg and protein in self.protein2kg: filter_out.append((self.drug2kg[smi], self.protein2kg[protein])) # embed once for consistency kge = embed(self.kg, 'ProNE', filter_out=filter_out, dim=kg_config["embed_dim"], save=True, save_path=save_path) self.config["mol"]["featurizer"]["kg"]["kge"] = kge self.config["protein"]["featurizer"]["kg"]["kge"] = kge else: self.concat_text_first = False self._configure_featurizer() # featurize all data pairs in one pass for training efficency if self.in_memory: self._featurize() def index_select(self, indexes): new_dataset = copy.copy(self) new_dataset.pair_index = [self.pair_index[i] for i in indexes] new_dataset.labels = [self.labels[i] for i in indexes] return new_dataset def _configure_featurizer(self): if len(self.config["mol"]["modality"]) > 1: self.drug_featurizer = MolMultiModalFeaturizer(self.config["mol"]) self.protein_featurizer = ProteinMultiModalFeaturizer(self.config["protein"]) self.drug_featurizer.set_drug2kgid_dict(self.drug2kg) self.protein_featurizer.set_protein2kgid_dict(self.protein2kg) if not self.concat_text_first: self.drug_featurizer.set_drug2text_dict(self.drug2text) self.protein_featurizer.set_protein2text_dict(self.protein2text) else: drug_feat_config = self.config["mol"]["featurizer"]["structure"] self.drug_featurizer = SUPPORTED_MOL_FEATURIZER[drug_feat_config["name"]](drug_feat_config) protein_feat_config = self.config["protein"]["featurizer"]["structure"] self.protein_featurizer = SUPPORTED_PROTEIN_FEATURIZER[protein_feat_config["name"]](protein_feat_config) def _featurize(self): logger.info("Featurizing...") self.featurized_drugs = [] self.featurized_proteins = [] for i_drug, i_protein in tqdm(self.pair_index): drug, protein = self.smiles[i_drug], self.proteins[i_protein] if len(self.config["mol"]["modality"]) > 1 and self.concat_text_first: processed_drug = self.drug_featurizer(drug, skip=["text"]) processed_protein = self.protein_featurizer(protein) processed_drug["text"] = self.drug_featurizer["text"](self.drug2text[drug] + " [SEP] " + self.protein2text[protein]) else: processed_drug = self.drug_featurizer(drug) processed_protein = self.protein_featurizer(protein) self.featurized_drugs.append(processed_drug) self.featurized_proteins.append(processed_protein) def __getitem__(self, index): if not self.in_memory: drug, protein, label = self.smiles[self.pair_index[index][0]], self.proteins[self.pair_index[index][1]], self.labels[index] processed_drug = self.drug_featurizer(drug) processed_protein = self.protein_featurizer(protein) if self.concat_text_first: processed_drug["text"] = self.drug_featurizer["text"](self.drug2text[drug] + " [SEP] " + self.protein2text[protein]) return processed_drug, processed_protein, label else: return self.featurized_drugs[index], self.featurized_proteins[index], self.labels[index] def __len__(self): return len(self.pair_index) class DTIClassificationDataset(DTIDataset): def __init__(self, path, config, split_strategy): super(DTIClassificationDataset, self).__init__(path, config, split_strategy) def _train_test_split(self): if self.split_strategy in ["warm", "cold_drug", "cold_protein"]: self.nfolds = 5 if self.split_strategy == "warm": folds = kfold_split(len(self), 5) elif self.split_strategy == "cold_drug": folds = cold_drug_split(self, 5) else: folds = cold_protein_split(self, 5) self.folds = [] for i in range(5): self.folds.append({ "train": np.concatenate(folds[:i] + folds[i + 1:], axis=0).tolist(), "test": folds[i] }) elif self.split_strategy == "cold_cluster": self.nfolds = 9 self.folds = cold_cluster_split(self, 3) class Yamanishi08(DTIClassificationDataset): def __init__(self, path, config, split_strategy): super(Yamanishi08, self).__init__(path, config, split_strategy) def _load_data(self): data = json.load(open(os.path.join(self.path, "drug.json"))) self.smiles = [data[item]["SMILES"] for item in data] drugsmi2index = dict(zip(self.smiles, range(len(self.smiles)))) data = json.load(open(os.path.join(self.path, "protein.json"))) self.proteins = [data[item]["sequence"] for item in data] proteinseq2index = dict(zip(self.proteins, range(len(self.proteins)))) df = pd.read_csv(os.path.join(self.path, "data.csv")) self.pair_index, self.labels = [], [] for row in df.iterrows(): row = row[1] self.pair_index.append((drugsmi2index[row["compound_iso_smiles"]], proteinseq2index[row["target_sequence"]])) self.labels.append(int(row["affinity"])) logger.info("Yamanishi08's dataset, total %d samples" % (len(self))) class BMKG_DTI(DTIClassificationDataset): def __init__(self, path, config, split_strategy): super(BMKG_DTI, self).__init__(path, config, split_strategy) def _load_data(self): data = json.load(open(os.path.join(self.path, "drug.json"))) self.smiles = [data[item]["SMILES"] for item in data] drugid2index = dict(zip(data.keys(), range(len(self.smiles)))) data = json.load(open(os.path.join(self.path, "protein.json"))) self.proteins = [data[item]["sequence"] for item in data] proteinid2index = dict(zip(data.keys(), range(len(self.proteins)))) df = pd.read_csv(os.path.join(self.path, "data.csv")) self.pair_index, self.labels = [], [] for row in df.iterrows(): row = row[1] self.pair_index.append((drugid2index[row["drug_id"]], proteinid2index[str(row["protein_id"])])) self.labels.append(int(row["affinity"])) class DTIRegressionDataset(DTIDataset): def __init__(self, path, config, split_strategy): super(DTIRegressionDataset, self).__init__(path, config, split_strategy) class Davis_KIBA(DTIRegressionDataset): def __init__(self, path, config, split_strategy): self.is_davis = "davis" in path super(Davis_KIBA, self).__init__(path, config, split_strategy) def _load_data(self): Y = pickle.load(open(os.path.join(self.path, "Y"), "rb"), encoding='latin1') label_row_inds, label_col_inds = np.where(np.isnan(Y) == False) can_smis_dict = json.load(open(os.path.join(self.path, "ligands_can.txt")), object_pairs_hook=OrderedDict) can_smis = list(can_smis_dict.values()) self.smiles = [can_smiles(smi) for smi in can_smis] proteins_dic = json.load(open(os.path.join(self.path, "proteins.txt")), object_pairs_hook=OrderedDict) self.proteins = list(proteins_dic.values()) # data: self.pair_index = [] self.labels = [] train_folds = json.load(open(os.path.join(self.path, "folds/train_fold_setting1.txt"))) for fold in train_folds: for i in fold: self.pair_index.append((label_row_inds[i], label_col_inds[i])) self.labels.append(Y[label_row_inds[i], label_col_inds[i]]) self.train_index = list(range(len(self.labels))) test_fold = json.load(open(os.path.join(self.path, "folds/test_fold_setting1.txt"))) for i in test_fold: self.pair_index.append((label_row_inds[i], label_col_inds[i])) self.labels.append(Y[label_row_inds[i], label_col_inds[i]]) self.test_index = list(range(len(self.train_index), len(self.labels))) if self.is_davis: self.labels = [-float(np.log10(y / 1e9)) for y in self.labels] logger.info("%s dataset, %d samples" % ("davis" if self.is_davis else "kiba", len(self))) def _train_test_split(self): self.val_index = [] SUPPORTED_DTI_DATASETS = { "yamanishi08": Yamanishi08, "bmkg-dti": BMKG_DTI, "davis": Davis_KIBA, "kiba": Davis_KIBA }
OpenBioMed-main
open_biomed/datasets/dti_dataset.py
import numpy as np import sklearn.metrics as metrics def roc_auc(y_true, y_pred): fpr, tpr, _ = metrics.roc_curve(y_true, y_pred) roc_auc = metrics.auc(fpr, tpr) return roc_auc def pr_auc(y_true, y_pred): precision, recall, _ = metrics.precision_recall_curve(y_true, y_pred) pr_auc = metrics.auc(recall, precision) return pr_auc def multilabel_f1(y_true, y_pred): TP, FP, TN, FN = 0, 0, 0, 0 for i in range(y_true.shape[0]): for j in range(y_true.shape[1]): if y_true[i][j] == y_pred[i][j]: if y_true[i][j] == 1: TP += 1 else: TN += 1 elif y_true[i][j] == 1: FN += 1 else: FP += 1 precision = 1.0 * TP / (TP + FP + 1e-10) recall = 1.0 * TP / (TP + FN + 1e-10) f1 = 2 * precision * recall / (precision + recall + 1e-10) return f1, precision, recall def get_k(y_obs, y_pred): y_obs = np.array(y_obs) y_pred = np.array(y_pred) return sum(y_obs * y_pred) / float(sum(y_pred * y_pred)) def rm2_index(ys_orig, ys_line): r2 = r_squared_error(ys_orig, ys_line) r02 = squared_error_zero(ys_orig, ys_line) return r2 * (1 - np.sqrt(np.absolute((r2 * r2)-(r02 * r02)))) def concordance_index(gt, pred): gt_mask = gt.reshape((1, -1)) > gt.reshape((-1, 1)) diff = pred.reshape((1, -1)) - pred.reshape((-1, 1)) h_one = (diff > 0) h_half = (diff == 0) CI = np.sum(gt_mask * h_one * 1.0 + gt_mask * h_half * 0.5) / np.sum(gt_mask) return CI def r_squared_error(y_obs, y_pred): y_obs = np.array(y_obs) y_pred = np.array(y_pred) y_obs_mean = [np.mean(y_obs) for y in y_obs] y_pred_mean = [np.mean(y_pred) for y in y_pred] mult = sum((y_pred - y_pred_mean) * (y_obs - y_obs_mean)) mult = mult * mult y_obs_sq = sum((y_obs - y_obs_mean)*(y_obs - y_obs_mean)) y_pred_sq = sum((y_pred - y_pred_mean) * (y_pred - y_pred_mean) ) return mult / float(y_obs_sq * y_pred_sq) def squared_error_zero(y_obs, y_pred): k = get_k(y_obs, y_pred) y_obs = np.array(y_obs) y_pred = np.array(y_pred) y_obs_mean = [np.mean(y_obs) for y in y_obs] upp = sum((y_obs - (k * y_pred)) * (y_obs - (k * y_pred))) down= sum((y_obs - y_obs_mean)*(y_obs - y_obs_mean)) return 1 - (upp / float(down)) def recall_at_k(sorted, index, k): for i in range(min(len(sorted), k)): if sorted[i] == index: return 1 return 0 def metrics_average(results): metrics = {key: [] for key in results[0]} for result in results: for key in result: metrics[key].append(result[key]) for key in metrics: metrics[key] = (np.mean(metrics[key]), np.std(metrics[key])) return metrics
OpenBioMed-main
open_biomed/utils/metrics.py
import logging logger = logging.getLogger(__name__) import math import numpy as np from rdkit import Chem from rdkit.Chem.Scaffolds.MurckoScaffold import MurckoScaffoldSmiles import json import collections from utils.cluster import cluster_with_sim_matrix, merge_cluster from utils.prot_utils import get_normalized_ctd def random_split(n, r_val, r_test): r_train = 1 - r_val - r_test perm = np.random.permutation(n) train_cutoff = r_train * n val_cutoff = (r_train + r_val) * n return perm[:train_cutoff], perm[train_cutoff : val_cutoff], perm[val_cutoff:] def kfold_split(n, k): perm = np.random.permutation(n) return [perm[i * n // k: (i + 1) * n // k] for i in range(k)] def _generate_scaffold(smiles, include_chirality=False, is_standard=False): if is_standard: scaffold = MurckoScaffoldSmiles(smiles=smiles, includeChirality=True) else: mol = Chem.MolFromSmiles(smiles) scaffold = MurckoScaffoldSmiles(mol=mol, includeChirality=include_chirality) return scaffold def generate_scaffolds(dataset, log_every_n=1000, sort=True, is_standard=False): scaffolds = {} data_len = len(dataset) logger.info("About to generate scaffolds") for ind, smiles in enumerate(dataset.smiles): if log_every_n > 0 and ind % log_every_n == 0: logger.info("Generating scaffold %d/%d" % (ind, data_len)) scaffold = _generate_scaffold(smiles, is_standard=is_standard) if scaffold not in scaffolds: scaffolds[scaffold] = [ind] else: scaffolds[scaffold].append(ind) if sort: # Sort from largest to smallest scaffold sets scaffolds = {key: sorted(value) for key, value in scaffolds.items()} scaffold_sets = [ scaffold_set for (scaffold, scaffold_set) in sorted( scaffolds.items(), key=lambda x: (len(x[1]), x[1][0]), reverse=True ) ] else: scaffold_sets = [value for key, value in scaffolds.items()] # TODO: DEBUG """ scaffold_index = collections.OrderedDict() for i, value in enumerate(scaffold_sets): scaffold_index[i] = str(value) scaffold_index = json.dumps(scaffold_index) with open("scaffold_set_2.json","w") as f: f.write(scaffold_index) """ return scaffold_sets def scaffold_split(dataset, r_val, r_test, log_every_n=1000, is_standard=False): r_train = 1.0 - r_val - r_test scaffold_sets = generate_scaffolds(dataset, log_every_n, is_standard=is_standard) train_cutoff = r_train * len(dataset) valid_cutoff = (r_train + r_val) * len(dataset) train_inds = [] valid_inds = [] test_inds = [] logger.info("About to sort in scaffold sets") for scaffold_set in scaffold_sets: if len(train_inds) + len(scaffold_set) > train_cutoff: if len(train_inds) + len(valid_inds) + len(scaffold_set) > valid_cutoff: test_inds += scaffold_set else: valid_inds += scaffold_set else: train_inds += scaffold_set return train_inds, valid_inds, test_inds def cold_drug_split(dataset, nfolds): scaffold_sets = generate_scaffolds(dataset, -1, sort=False) n_cutoff = len(dataset.pair_index) // nfolds drug_pair_index = {} for i, (i_drug, i_prot) in enumerate(dataset.pair_index): if i_drug not in drug_pair_index: drug_pair_index[i_drug] = [i] else: drug_pair_index[i_drug].append(i) folds = [[] for i in range(nfolds)] cur = 0 for scaffold_set in scaffold_sets: pair_in_scaffold_set = [] for i_drug in scaffold_set: pair_in_scaffold_set += drug_pair_index[i_drug] if cur != nfolds - 1 and len(folds[cur]) + len(pair_in_scaffold_set) >= n_cutoff: if len(folds[cur]) + len(pair_in_scaffold_set) - n_cutoff > n_cutoff - len(folds[cur]): cur += 1 folds[cur] += pair_in_scaffold_set else: folds[cur] += pair_in_scaffold_set cur += 1 else: folds[cur] += pair_in_scaffold_set return folds def cold_protein_split(dataset, nfolds): ctds = get_normalized_ctd(dataset.proteins) prot_sim = ctds @ ctds.T clusters = cluster_with_sim_matrix(prot_sim, 0.3) prot_pair_index = {} for i, (i_drug, i_prot) in enumerate(dataset.pair_index): if i_prot not in prot_pair_index: prot_pair_index[i_prot] = [i] else: prot_pair_index[i_prot].append(i) n_cutoff = len(dataset.pair_index) // nfolds folds = [[] for i in range(nfolds)] cur = 0 for cluster in clusters: pair_in_cluster = [] for i_protein in cluster: if i_protein in prot_pair_index: pair_in_cluster += prot_pair_index[i_protein] if cur != nfolds - 1 and len(folds[cur]) + len(pair_in_cluster) >= n_cutoff: if len(folds[cur]) + len(pair_in_cluster) - n_cutoff > n_cutoff - len(folds[cur]): cur += 1 folds[cur] += pair_in_cluster else: folds[cur] += pair_in_cluster cur += 1 else: folds[cur] += pair_in_cluster return folds def cold_cluster_split(dataset, ngrids): drug_clusters = generate_scaffolds(dataset, -1) drug_clusters = merge_cluster(drug_clusters, ngrids) ctds = get_normalized_ctd(dataset.proteins) prot_sim = ctds @ ctds.T prot_clusters = cluster_with_sim_matrix(prot_sim, 0.3) prot_clusters = merge_cluster(prot_clusters, ngrids) pair_in_grid = [] for i in range(ngrids): pair_in_grid.append([]) for j in range(ngrids): pair_in_grid[i].append([]) for k, (i_drug, i_prot) in enumerate(dataset.pair_index): if i_drug in drug_clusters[i] and i_prot in prot_clusters[j]: pair_in_grid[i][j].append(k) folds = [] for i in range(ngrids): for j in range(ngrids): folds.append({"test": pair_in_grid[i][j]}) train = [] for k in range(ngrids): if k != i: for l in range(ngrids): if l != j: train += pair_in_grid[k][l] folds[-1]["train"] = train return folds
OpenBioMed-main
open_biomed/utils/split_utils.py
import numpy as np from tqdm import tqdm def to_clu_sparse(data): s = "%d %d %d" % (data.shape[0], data.shape[1], np.sum(data)) s_row = [""] * data.shape[0] non_zero_row, non_zero_col = np.where(data > 0) for i in tqdm(range(len(non_zero_row))): s_row[non_zero_row[i]] += " %d %f" % (non_zero_col[i] + 1, data[non_zero_row[i], non_zero_col[i]]) return "\n".join([s] + s_row)
OpenBioMed-main
open_biomed/utils/matrix_utils.py
import math import torch from torch.optim.lr_scheduler import _LRScheduler class CosineAnnealingWarmupRestarts(_LRScheduler): """ optimizer (Optimizer): Wrapped optimizer. first_cycle_steps (int): First cycle step size. cycle_mult(float): Cycle steps magnification. Default: -1. max_lr(float): First cycle's max learning rate. Default: 0.1. min_lr(float): Min learning rate. Default: 0.001. warmup_steps(int): Linear warmup step size. Default: 0. gamma(float): Decrease rate of max learning rate by cycle. Default: 1. last_epoch (int): The index of last epoch. Default: -1. """ def __init__( self, optimizer : torch.optim.Optimizer, first_cycle_steps : int, cycle_mult : float = 1., max_lr : float = 0.1, min_lr : float = 0.001, warmup_steps : int = 0, gamma : float = 1., last_epoch : int = -1 ): assert warmup_steps < first_cycle_steps self.first_cycle_steps = first_cycle_steps # first cycle step size self.cycle_mult = cycle_mult # cycle steps magnification self.base_max_lr = max_lr # first max learning rate self.max_lr = max_lr # max learning rate in the current cycle self.min_lr = min_lr # min learning rate self.warmup_steps = warmup_steps # warmup step size self.gamma = gamma # decrease rate of max learning rate by cycle self.cur_cycle_steps = first_cycle_steps # first cycle step size self.cycle = 0 # cycle count self.step_in_cycle = last_epoch # step size of the current cycle super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch) # set learning rate min_lr self.init_lr() def init_lr(self): self.base_lrs = [] for param_group in self.optimizer.param_groups: param_group['lr'] = self.min_lr self.base_lrs.append(self.min_lr) def get_lr(self): if self.step_in_cycle == -1: return self.base_lrs elif self.step_in_cycle < self.warmup_steps: return [(self.max_lr - base_lr)*self.step_in_cycle / self.warmup_steps + base_lr for base_lr in self.base_lrs] else: return [base_lr + (self.max_lr - base_lr) \ * (1 + math.cos(math.pi * (self.step_in_cycle-self.warmup_steps) \ / (self.cur_cycle_steps - self.warmup_steps))) / 2 for base_lr in self.base_lrs] def step(self, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.step_in_cycle = self.step_in_cycle + 1 if self.step_in_cycle >= self.cur_cycle_steps: self.cycle += 1 self.step_in_cycle = self.step_in_cycle - self.cur_cycle_steps self.cur_cycle_steps = int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult) + self.warmup_steps else: if epoch >= self.first_cycle_steps: if self.cycle_mult == 1.: self.step_in_cycle = epoch % self.first_cycle_steps self.cycle = epoch // self.first_cycle_steps else: n = int(math.log((epoch / self.first_cycle_steps * (self.cycle_mult - 1) + 1), self.cycle_mult)) self.cycle = n self.step_in_cycle = epoch - int(self.first_cycle_steps * (self.cycle_mult ** n - 1) / (self.cycle_mult - 1)) self.cur_cycle_steps = self.first_cycle_steps * self.cycle_mult ** (n) else: self.cur_cycle_steps = self.first_cycle_steps self.step_in_cycle = epoch self.max_lr = self.base_max_lr * (self.gamma**self.cycle) self.last_epoch = math.floor(epoch) for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr
OpenBioMed-main
open_biomed/utils/schedulars.py
#import os #import sys #sys.path.append(os.path.dirname(__file__)) import os import numpy as np import random import torch import datetime from utils.distributed_utils import * from utils.metrics import * from utils.mol_utils import * from utils.cell_utils import * from utils.kg_utils import * from utils.matrix_utils import * from utils.collators import * class BestMeter(object): """Computes and stores the best value""" def __init__(self, best_type): self.best_type = best_type self.count = 0 self.reset() def reset(self): if self.best_type == 'min': self.best = float('inf') else: self.best = -float('inf') def update(self, best): self.best = best self.count = 0 def get_best(self): return self.best def counter(self): self.count += 1 return self.count class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, distributed=False, local_rank=0, dest_device=0, world_size=1): self.reset() self.distributed = distributed self.local_rank = local_rank self.dest_device = dest_device self.world_size = world_size def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n def get_average(self): self.avg = self.sum / (self.count + 1e-12) if self.distributed: return mean_reduce(self.avg) return self.avg class EarlyStopping(object): """ Parameters ---------- mode : str * 'higher': Higher metric suggests a better model * 'lower': Lower metric suggests a better model If ``metric`` is not None, then mode will be determined automatically from that. patience : int The early stopping will happen if we do not observe performance improvement for ``patience`` consecutive epochs. filename : str or None Filename for storing the model checkpoint. If not specified, we will automatically generate a file starting with ``early_stop`` based on the current time. metric : str or None A metric name that can be used to identify if a higher value is better, or vice versa. Default to None. Valid options include: ``'r2'``, ``'mae'``, ``'rmse'``, ``'roc_auc_score'``. """ def __init__(self, mode='higher', patience=10, filename=None, metric=None): if filename is None: dt = datetime.datetime.now() folder = os.path.join(os.getcwd(), 'results') if not os.path.exists(folder): os.makedirs(folder) filename = os.path.join(folder, 'early_stop_{}_{:02d}-{:02d}-{:02d}.pth'.format( dt.date(), dt.hour, dt.minute, dt.second)) if metric is not None: assert metric in ['r2', 'mae', 'rmse', 'roc_auc_score', 'pr_auc_score'], \ "Expect metric to be 'r2' or 'mae' or " \ "'rmse' or 'roc_auc_score', got {}".format(metric) if metric in ['r2', 'roc_auc_score', 'pr_auc_score']: print('For metric {}, the higher the better'.format(metric)) mode = 'higher' if metric in ['mae', 'rmse']: print('For metric {}, the lower the better'.format(metric)) mode = 'lower' assert mode in ['higher', 'lower'] self.mode = mode if self.mode == 'higher': self._check = self._check_higher else: self._check = self._check_lower self.patience = patience self.counter = 0 self.filename = filename self.best_score = None self.early_stop = False def _check_higher(self, score, prev_best_score): """Check if the new score is higher than the previous best score. Parameters ---------- score : float New score. prev_best_score : float Previous best score. Returns ------- bool Whether the new score is higher than the previous best score. """ return score > prev_best_score def _check_lower(self, score, prev_best_score): """Check if the new score is lower than the previous best score. Parameters ---------- score : float New score. prev_best_score : float Previous best score. Returns ------- bool Whether the new score is lower than the previous best score. """ return score < prev_best_score def step(self, score, model): """Update based on a new score. The new score is typically model performance on the validation set for a new epoch. Parameters ---------- score : float New score. model : nn.Module Model instance. Returns ------- bool Whether an early stop should be performed. """ if self.best_score is None: self.best_score = score self.save_checkpoint(model) elif self._check(score, self.best_score): self.best_score = score self.save_checkpoint(model) self.counter = 0 else: self.counter += 1 print( f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True return self.early_stop def save_checkpoint(self, model): '''Saves model when the metric on the validation set gets improved. Parameters ---------- model : nn.Module Model instance. ''' torch.save({'model_state_dict': model.state_dict()}, self.filename) def load_checkpoint(self, model): '''Load the latest checkpoint Parameters ---------- model : nn.Module Model instance. ''' model.load_state_dict(torch.load(self.filename)['model_state_dict']) class Normalizer(object): """Normalize a Tensor and restore it later. """ def __init__(self, tensor): """tensor is taken as a sample to calculate the mean and std""" self.mean = torch.mean(tensor) self.std = torch.std(tensor) def norm(self, tensor): return (tensor - self.mean) / self.std def denorm(self, normed_tensor): return normed_tensor * self.std + self.mean def state_dict(self): return {'mean': self.mean, 'std': self.std} def load_state_dict(self, state_dict): self.mean = state_dict['mean'] self.std = state_dict['std'] def normalize(x): return (x - x.min()) / (x.max() - x.min()) def save_checkpoint(model, model_dir, epoch, val_loss, val_acc): model_path = os.path.join(model_dir, 'epoch:%d-val_loss:%.3f-val_acc:%.3f.model' % (epoch, val_loss, val_acc)) torch.save(model, model_path) def load_checkpoint(model_path): return torch.load(model_path) def save_model_dict(model, model_dir, msg): model_path = os.path.join(model_dir, msg + '.pt') torch.save(model.state_dict(), model_path) print("model has been saved to %s." % (model_path)) def load_model_dict(model, ckpt): model.load_state_dict(torch.load(ckpt)) def cycle(iterable): while True: for x in iterable: yield x def seed_all(seed_value, cuda_deterministic=False): random.seed(seed_value) os.environ['PYTHONHASHSEED'] = str(seed_value) np.random.seed(seed_value) torch.manual_seed(seed_value) if torch.cuda.is_available(): torch.cuda.manual_seed(seed_value) torch.cuda.manual_seed_all(seed_value) # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html if cuda_deterministic: # slower, more reproducible torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False else: # faster, less reproducible torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True def fix_path_in_config(config, abs_path): if isinstance(config, list): for i in range(len(config)): if isinstance(config[i], str): if config[i].startswith("./"): config[i] = abs_path + config[i][1:] elif isinstance(config[i], list) or isinstance(config[i], dict): fix_path_in_config(config[i], abs_path) else: for elem in config: if isinstance(config[elem], str): if config[elem].startswith("./"): config[elem] = abs_path + config[elem][1:] elif isinstance(config[elem], list) or isinstance(config[elem], dict): fix_path_in_config(config[elem], abs_path)
OpenBioMed-main
open_biomed/utils/__init__.py
import math import torch from torch.optim import Optimizer from torch.optim.optimizer import required from torch.nn.utils import clip_grad_norm_ def warmup_cosine(x, warmup=0.002): if x < warmup: return x/warmup return 0.5 * (1.0 + torch.cos(math.pi * x)) def warmup_constant(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return max((x - 1. )/ (warmup - 1.), 0.) def warmup_poly(x, warmup=0.002, degree=0.5): if x < warmup: return x/warmup return (1.0 - x)**degree SCHEDULES = { 'warmup_cosine':warmup_cosine, 'warmup_constant':warmup_constant, 'warmup_linear':warmup_linear, 'warmup_poly':warmup_poly, } class BertAdam(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 return loss
OpenBioMed-main
open_biomed/utils/optimizers.py
from feature.mol_featurizer import SUPPORTED_MOL_FEATURIZER, MolMultiModalFeaturizer from feature.protein_featurizer import SUPPORTED_PROTEIN_FEATURIZER, ProteinMultiModalFeaturizer from feature.cell_featurizer import SUPPORTED_CELL_FEATURIZER from feature.text_featurizer import SUPPORTED_TEXT_FEATURIZER from utils.collators import MolCollator, ProteinCollator, CellCollator, TextCollator entity_featurizer_map = { "molecule": (SUPPORTED_MOL_FEATURIZER, MolMultiModalFeaturizer), "protein": (SUPPORTED_PROTEIN_FEATURIZER, ProteinMultiModalFeaturizer), "cell": (SUPPORTED_CELL_FEATURIZER, None), "text": (SUPPORTED_TEXT_FEATURIZER, None), } entity_collator_map = { "molecule": MolCollator, "protein": ProteinCollator, "cell": CellCollator, "text": TextCollator } class DataProcessorFast(object): def __init__(self, entity_type, config): self.entity_type = entity_type self.config = config assert self.entity_type in entity_featurizer_map # configure featurizer feat = entity_featurizer_map[self.entity_type] if entity_type in ["molecule", "protein"]: if len(self.config["modality"]) > 1: if feat[1] is None: raise NotImplementedError("Multi-Modal featurizer for %s is not implemented!" % (self.entity_type)) self.featurizer = feat[1](config) else: feat_config = self.config["featurizer"][self.config["modality"][0]] if feat_config["name"] not in feat[0]: raise NotImplementedError("Featurizer %s for %s is not implemented!" % (feat_config["name"], self.entity_type)) self.featurizer = feat[0][feat_config["name"]](feat_config) else: self.featurizer = feat[0][config["name"]](config) # configure collator self.collator = entity_collator_map[self.entity_type](self.config) def __call__(self, obj): if not isinstance(obj, list): obj = [self.featurizer(obj)] else: obj = [self.featurizer(x) for x in obj] return self.collator(obj)
OpenBioMed-main
open_biomed/utils/data_utils.py
import logging logger = logging.getLogger(__name__) from abc import ABC, abstractmethod import os import json import pandas as pd import numpy as np import pickle from tqdm import tqdm import random import torch from rdkit import Chem from utils.cell_utils import load_hugo2ncbi class KG(object): def __init__(self): super(KG, self).__init__() @abstractmethod def __str__(self): raise NotImplementedError @abstractmethod def link(self, dataset): raise NotImplementedError class BMKG(KG): def __init__(self, path): super(BMKG, self).__init__() self.drugs = json.load(open(os.path.join(path, "drug.json"), "r")) self.smi2drugid = {} for key in self.drugs: mol = Chem.MolFromSmiles(self.drugs[key]["SMILES"]) if mol is not None: smi = Chem.MolToSmiles(mol, isomericSmiles=True) self.smi2drugid[smi] = key self.proteins = json.load(open(os.path.join(path, "protein.json"), "r")) self.seq2proteinid = {} for key in self.proteins: self.seq2proteinid[self.proteins[key]["sequence"]] = key self.edges = pd.read_csv(os.path.join(path, "links.csv"), dtype=str).values.tolist() def link(self, dataset): link_drug, link_protein = 0, 0 drug2kg, drug2text = {}, {} for smi in dataset.smiles: iso_smi = Chem.MolToSmiles(Chem.MolFromSmiles(smi), isomericSmiles=True) if iso_smi in self.smi2drugid: link_drug += 1 drug2kg[smi] = self.smi2drugid[iso_smi] drug2text[smi] = self.drugs[self.smi2drugid[iso_smi]]["text"].lower() else: drug2kg[smi] = None drug2text[smi] = "" protein2kg, protein2text = {}, {} for seq in dataset.proteins: if seq in self.seq2proteinid: link_protein += 1 protein2kg[seq] = self.seq2proteinid[seq] protein2text[seq] = self.proteins[self.seq2proteinid[seq]]["text"].lower() else: protein2kg[seq] = None protein2text[seq] = "" logger.info("Linked drug %d/%d" % (link_drug, len(dataset.smiles))) logger.info("Linked protein %d/%d" % (link_protein, len(dataset.proteins))) return drug2kg, drug2text, protein2kg, protein2text class BMKGv2(KG): def __init__(self, path): super(BMKGv2, self).__init__() self.kg = pickle.load(open(path, "rb")) self.adj = {} for triplet in self.kg["triplets"]: if triplet[0] not in self.adj: self.adj[triplet[0]] = [triplet] else: self.adj[triplet[0]].append(triplet) if triplet[2] not in self.adj: self.adj[triplet[2]] = [triplet] else: self.adj[triplet[2]].append(triplet) class STRING(KG): def __init__(self, path, thresh=0.95): super(STRING, self).__init__() self.thresh = thresh _, self.hugo2ncbi = load_hugo2ncbi() self._load_proteins(path) self._load_edges(path) def _load_proteins(self, path): # self.proteins: Dict # Key: ensp id # Value: kg_id - index in the knowledge graph # name - preferred name in HUGO # sequence - amino acid sequence # text - description self.proteins = {} self.ncbi2ensp = {} df = pd.read_csv(os.path.join(path, "9606.protein.info.v11.0.txt"), sep='\t') for index, protein in df.iterrows(): self.proteins[protein['protein_external_id']] = { "kg_id": index, "name": protein['preferred_name'], "text": protein['annotation'] } self.ncbi2ensp[protein['preferred_name']] = protein['protein_external_id'] # protein sequence with open(os.path.join(path, "9606.protein.sequences.v11.0.fa"), 'r') as f: id, buf = None, '' for line in f.readlines(): if line.startswith('>'): if id is not None: self.proteins[id]["sequence"] = buf id = line.lstrip('>').rstrip("\n") buf = '' else: buf = buf + line.rstrip("\n") def _load_edges(self, path): edges = pd.read_csv(os.path.join(path, "9606.protein.links.v11.0.txt"), sep=' ') selected_edges = edges['combined_score'] > (self.thresh * 1000) self.edges = edges[selected_edges][["protein1", "protein2"]].values.tolist() for i in range(len(self.edges)): self.edges[i][0] = self.proteins[self.edges[i][0]]["kg_id"] self.edges[i][1] = self.proteins[self.edges[i][1]]["kg_id"] def node_subgraph(self, node_idx, format="hugo"): if format == "hugo": node_idx = [self.hugo2ncbi[x] for x in node_idx] node_idx = [self.ncbi2ensp[x] if x in self.ncbi2ensp else x for x in node_idx] ensp2subgraphid = dict(zip(node_idx, range(len(node_idx)))) names_ensp = list(self.proteins.keys()) edge_index = [] for i in self.edges: p0, p1 = names_ensp[i[0]], names_ensp[i[1]] if p0 in node_idx and p1 in node_idx: edge_index.append((ensp2subgraphid[p0], ensp2subgraphid[p1])) edge_index.append((ensp2subgraphid[p1], ensp2subgraphid[p0])) edge_index = list(set(edge_index)) return np.array(edge_index, dtype=np.int64).T def __str__(self): return "Collected from string v11.0 database, totally %d proteins and %d edges" % (len(self.proteins), len(self.edges)) SUPPORTED_KG = {"BMKG": BMKG, "STRING": STRING} def subgraph_sample(num_nodes, edge_index, strategy, num_samples, directed=False): ### Inputs: # edge_index: edge index # strategy: sampling strategy, e.g. bfs ### Output: # indexes of sampled edges adj = [] for i in range(num_nodes): adj.append([]) for i, edge in enumerate(edge_index): adj[edge[0]].append(i) node_queue = [] visited = [0] * num_nodes selected_edges = [] random_node = random.randint(0, num_nodes - 1) while len(adj[random_node]) > 5: random_node = random.randint(0, num_nodes - 1) node_queue.append(random_node) visited[random_node] = 1 def dfs(u): visited[u] = 1 for i in adj[u]: if i not in selected_edges: selected_edges.append(i) selected_edges.append(i ^ 1) if len(selected_edges) >= num_samples: return for i in adj[u]: v = edge_index[i][1] if visited[v]: continue dfs(v) if len(selected_edges) >= num_samples: return if strategy == 'dfs': dfs(random_node) else: while len(selected_edges) < num_samples: u = node_queue.pop(0) for i in adj[u]: v = edge_index[i][1] if i not in selected_edges: selected_edges.append(i) selected_edges.append(i ^ 1) if not visited[v]: visited[v] = 1 node_queue.append(v) return selected_edges def embed(graph, model='ProNE', filter_out={}, dim=256, save=True, save_path=''): ### Inputs: # G: object of KG # model: network embedding model, e.g. ProNE ### Outputs: # emb: numpy array, |G| * dim if save and os.path.exists(save_path): logger.info("Load KGE from saved file.") return pickle.load(open(save_path, "rb")) from cogdl.data import Adjacency from cogdl.models.emb.prone import ProNE name2id = {} cnt = 0 filtered = 0 row = [] col = [] for h, t, r in graph.edges: if (h, t) in filter_out: filtered += 1 continue if h not in name2id: cnt += 1 name2id[h] = cnt if t not in name2id: cnt += 1 name2id[t] = cnt row.append(name2id[h]) col.append(name2id[t]) logger.info("Filtered out %d edges in val/test set" % (filtered)) row = torch.tensor(row) col = torch.tensor(col) graph = Adjacency(row, col) emb_model = ProNE(dim, 5, 0.2, 0.5) logger.info("Generating KGE...") emb = emb_model(graph) kg_emb = {} for key in name2id: kg_emb[key] = emb[name2id[key]] if save: pickle.dump(kg_emb, open(save_path, "wb")) return kg_emb def bfs(graph, node_id, max_depth): ### Inputs: # G: object of KG # node_id: the id of the starting node # max_depth: the max number of steps to go ### Outputs: # dist: a list, dist[i] is the list of i-hop neighbors pass
OpenBioMed-main
open_biomed/utils/kg_utils.py
import logging logger = logging.getLogger(__name__) from abc import ABC, abstractmethod import numpy as np def load_hugo2ncbi(): ncbi2hugo = {} hugo2ncbi = {} try: with open("../assets/drp/enterez_NCBI_to_hugo_gene_symbol_march_2019.txt", "r") as f: for line in f.readlines(): line = line.strip("\n").split("\t") if len(line) > 1: ncbi2hugo[line[0]] = line[1] hugo2ncbi[line[1]] = line[0] except: logger.warn("NCBI2hugo gene not found") return ncbi2hugo, hugo2ncbi class GeneSelector(ABC): def __init__(self): super(GeneSelector, self).__init__() @abstractmethod def __call__(self, genes, format="NCBI"): raise NotImplementedError class TGSAGeneSelector(GeneSelector): def __init__(self): super(TGSAGeneSelector, self).__init__() self.ncbi2hugo, self.hugo2ncbi = load_hugo2ncbi() self.selected_index_hugo = [] with open("../assets/drp/selected_genes.txt", "r") as f: line = f.readline().strip("\n").split(",") for index in line: self.selected_index_hugo.append(index.lstrip('(').rstrip(')')) def __call__(self, genes, format="NCBI"): if format == "NCBI": genename2id = dict(zip(genes, range(len(genes)))) return [genename2id[self.hugo2ncbi[x]] for x in self.selected_index_hugo] SUPPORTED_GENE_SELECTOR = { "TGSA": TGSAGeneSelector, }
OpenBioMed-main
open_biomed/utils/cell_utils.py
import logging logger = logging.getLogger(__name__) import numpy as np class UFS(object): def __init__(self, n): self.fa = list(range(n)) def merge(self, x, y): self.fa[x] = self.find(y) def find(self, x): self.fa[x] = self.find(self.fa[x]) if self.fa[x] != x else x return self.fa[x] def cluster_with_sim_matrix(sim_matrix, threshold): n = len(sim_matrix) e = [] f = UFS(n) for i in range(n): for j in range(n): x, y = f.find(i), f.find(j) if x != y and sim_matrix[x][y] > threshold: f.merge(x, y) for k in range(n): sim_matrix[y][k] = min(sim_matrix[y][k], sim_matrix[x][k]) clusters = [[] for i in range(n)] for i in range(n): clusters[f.find(i)].append(i) return clusters def merge_cluster(clusters, n_cluster): merged_clusters = [[] for i in range(n_cluster)] n_cutoff = np.sum([len(cluster) for cluster in clusters]) // n_cluster perm = np.random.permutation(len(clusters)) cur = 0 for i in perm: if cur < n_cluster - 1 and len(merged_clusters[cur]) + len(clusters[i]) > n_cutoff: if len(merged_clusters[cur]) + len(clusters[i]) - n_cutoff > n_cutoff - len(merged_clusters[cur]): cur += 1 merged_clusters[cur].extend(clusters[i]) else: merged_clusters[cur].extend(clusters[i]) cur += 1 else: merged_clusters[cur].extend(clusters[i]) logger.info("cluster size: %s" % (", ".join([str(len(merged_cluster)) for merged_cluster in merged_clusters]))) return merged_clusters
OpenBioMed-main
open_biomed/utils/cluster.py
import os import torch import torch.distributed as dist def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def is_main_process(): return get_rank() == 0 def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def init_distributed_mode(args): if not args.distributed: args.device = 0 return args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.device = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(args.device) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}'.format( args.rank, args.dist_url), flush=True) dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) dist.barrier() setup_for_distributed(args.rank == 0) def mean_reduce(val, cur_device, dest_device, world_size): val = val.clone().detach() if torch.is_tensor(val) else torch.tensor(val) val = val.to(cur_device) torch.distributed.reduce(val, dst=dest_device) return val.item() / world_size def concat_reduce(tensor, num_total_examples, world_size): output_tensors = [tensor.clone() for _ in range(world_size)] torch.distributed.all_gather(output_tensors, tensor) concat = torch.cat(output_tensors, dim=0) # truncate the dummy elements added by SequentialDistributedSampler return concat[:num_total_examples] @torch.no_grad() def concat_gather(tensor): if not is_dist_avail_and_initialized(): return tensor gather_tensor = [torch.zeros_like(tensor) for i in range(dist.get_world_size())] dist.all_gather(gather_tensor, tensor, async_op=False) return torch.cat(gather_tensor, dim=0) def concat_gather_with_grad(tensor): if not is_dist_avail_and_initialized(): return tensor gather_tensor = GatherLayer.apply(tensor) return torch.cat(gather_tensor, dim=0) class GatherLayer(torch.autograd.Function): """ Gather tensors from all workers with support for backward propagation: This implementation does not cut the gradients as torch.distributed.all_gather does. """ @staticmethod def forward(ctx, x): output = [ torch.zeros_like(x) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) torch.distributed.all_reduce(all_gradients) return all_gradients[torch.distributed.get_rank()]
OpenBioMed-main
open_biomed/utils/distributed_utils.py
import numpy as np import math def get_normalized_ctd(proteins): from PyBioMed.PyProtein import CTD ctds = [] for prot in proteins: ctds.append(np.array(list(CTD.CalculateCTD(prot).values()))) ctds = np.array(ctds) for i in range(ctds.shape[1]): mean = np.mean(ctds[:, i]) var = np.var(ctds[:, i]) ctds[:, i] = (ctds[:, i] - mean) / math.sqrt(var) for i in range(ctds.shape[0]): ctds[i] /= np.linalg.norm(ctds[i]) return ctds
OpenBioMed-main
open_biomed/utils/prot_utils.py
from abc import ABC, abstractmethod import torch from torch_geometric.data import Data, Batch from transformers import BatchEncoding, DataCollatorWithPadding, BertTokenizer, T5Tokenizer, GPT2Tokenizer, EsmTokenizer from utils.mol_utils import SmilesTokenizer name2tokenizer = { "bert": BertTokenizer, "t5": T5Tokenizer, "gpt2": GPT2Tokenizer, "esm": EsmTokenizer, "unimap": SmilesTokenizer, } def ToDevice(obj, device): if isinstance(obj, dict): for k in obj: obj[k] = ToDevice(obj[k], device) return obj elif isinstance(obj, tuple) or isinstance(obj, list): for i in range(len(obj)): obj[i] = ToDevice(obj[i], device) return obj else: return obj.to(device) class BaseCollator(ABC): def __init__(self, config): self.config = config self._build(config) @abstractmethod def __call__(self, data, **kwargs): raise NotImplementedError def _collate_single(self, data, config): if isinstance(data[0], Data): return Batch.from_data_list(data) elif torch.is_tensor(data[0]): return torch.stack([x.squeeze() for x in data]) elif isinstance(data[0], BatchEncoding): return config["collator"](data) elif isinstance(data[0], dict): result = {} for key in data[0]: result[key] = self._collate_single([x[key] for x in data], config[key] if key in config else {}) return result elif isinstance(data[0], int): return torch.tensor(data).view((-1, 1)) def _collate_multiple(self, data, config): cor = [] flatten_data = [] for x in data: cor.append(len(flatten_data)) flatten_data += x cor.append(len(flatten_data)) return (cor, self._collate_single(flatten_data, config),) def _build(self, config): if not isinstance(config, dict): return if "model_name_or_path" in config: tokenizer = name2tokenizer[config["transformer_type"]].from_pretrained(config["model_name_or_path"]) if config["transformer_type"] == "gpt2": tokenizer.pad_token = tokenizer.eos_token config["collator"] = DataCollatorWithPadding( tokenizer=tokenizer, padding=True ) return for key in config: self._build(config[key]) class MolCollator(BaseCollator): def __init__(self, config): super(MolCollator, self).__init__(config) def __call__(self, mols): if len(self.config["modality"]) > 1: batch = {} for modality in self.config["modality"]: batch[modality] = self._collate_single([mol[modality] for mol in mols], self.config["featurizer"][modality]) else: batch = self._collate_single(mols, self.config["featurizer"]["structure"]) return batch class ProteinCollator(BaseCollator): def __init__(self, config): super(ProteinCollator, self).__init__(config) def __call__(self, proteins): if len(self.config["modality"]) > 1: batch = {} for modality in self.config["modality"]: if isinstance(proteins[0][modality], list): batch[modality] = self._collate_multiple([protein[modality] for protein in proteins], self.config["featurizer"][modality]) else: batch[modality] = self._collate_single([protein[modality] for protein in proteins], self.config["featurizer"][modality]) else: batch = self._collate_single(proteins, self.config["featurizer"]["structure"]) return batch class CellCollator(BaseCollator): def __init__(self, config): super(CellCollator, self).__init__(config) def __call__(self, cells): batch = self._collate_single(cells, self.config["featurizer"]) return batch class TextCollator(BaseCollator): def __init__(self, config): super(TextCollator, self).__init__(config) def __call__(self, texts): batch = self._collate_single(texts, self.config) return batch class TaskCollator(ABC): def __init__(self, config): super(TaskCollator, self).__init__() self.config = config @abstractmethod def __call__(self, data, **kwargs): raise NotImplementedError class DPCollator(TaskCollator): def __init__(self, config): super(DPCollator, self).__init__(config) self.mol_collator = MolCollator(config) def __call__(self, data): mols, labels = map(list, zip(*data)) return self.mol_collator(mols), torch.stack(labels) class DTICollator(TaskCollator): def __init__(self, config): super(DTICollator, self).__init__(config) self.mol_collator = MolCollator(config["mol"]) self.protein_collator = ProteinCollator(config["protein"]) def __call__(self, data): mols, prots, labels = map(list, zip(*data)) return self.mol_collator(mols), self.protein_collator(prots), torch.tensor(labels) class DRPCollator(TaskCollator): def __init__(self, config): super(DRPCollator, self).__init__(config) self.mol_collator = MolCollator(config["mol"]) self.cell_collator = CellCollator(config["cell"]) def __call__(self, data): mols, cells, labels = map(list, zip(*data)) return self.mol_collator(mols), self.cell_collator(cells), torch.tensor(labels) class PPICollator(TaskCollator): def __init__(self, config, graph_ppi): super(PPICollator, self).__init__(config) self.graph_ppi = graph_ppi self.protein_collator = ProteinCollator(config) def __call__(self, data): prots1, prots2, labels = map(list, zip(*data)) if self.graph_ppi: return torch.LongTensor(prots1), torch.LongTensor(prots2), torch.stack(labels) else: return self.protein_collator(prots1), self.protein_collator(prots2), torch.stack(labels) class MolQACollator(TaskCollator): def __init__(self, config, collate_outputs=True): super(MolQACollator, self).__init__(config) self.mol_collator = MolCollator(config["mol"]) self.question_collator = TextCollator(config["text"]["question"]) self.collate_outputs = collate_outputs if self.collate_outputs: self.answer_collator = TextCollator(config["text"]["answer"]) def __call__(self, data): mols, questions, answers = map(list, zip(*data)) if self.collate_outputs: return self.mol_collator(mols), self.question_collator(questions), self.answer_collator(answers) else: return self.mol_collator(mols), self.question_collator(questions), answers
OpenBioMed-main
open_biomed/utils/collators.py
import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import torch import logging logger = logging.getLogger(__name__) import re from utils.data_utils import DataProcessorFast from utils.mol_utils import valid_smiles from utils.collators import ToDevice class Conversation(object): def __init__(self, model, processor_config, device, system, roles=("Human", "Assistant"), sep="###", max_length=512): self.model = model self.mol_processor = DataProcessorFast("molecule", processor_config["mol"]) self.prot_processor = DataProcessorFast("protein", processor_config["protein"]) #TODO: add cell self.device = device self.system = system self.roles = roles self.sep = sep self.max_length = max_length self.messages = [] self.mol_embs = [] self.prot_embs = [] self.cell_embs = [] def _wrap_prompt(self): ret = self.system + self.sep + " " for role, message in self.messages: if message: ret += self.roles[role] + ": " + message + " " + self.sep + " " else: ret += self.roles[role] + ": " return ret def _append_message(self, role, message): self.messages.append([role, message]) def _get_context_emb(self): prompt = self._wrap_prompt() logger.debug("Prompt: %s" % (prompt)) pattern = re.compile("<moleculeHere>|<proteinHere>|<cellHere>") p_text = pattern.split(prompt) spec_tokens = pattern.findall(prompt) assert len(p_text) == len(self.mol_embs) + len(self.prot_embs) + len(self.cell_embs) + 1, "Unmatched numbers of placeholders and molecules." seg_tokens = [ self.model.llm_tokenizer([seg], return_tensors="pt", add_special_tokens=(i == 0)).to(self.device) for i, seg in enumerate(p_text) ] seg_embs = [self.model.llm.get_input_embeddings()(seg_token.input_ids) for seg_token in seg_tokens] mixed_embs = [] cur_mol, cur_prot, cur_cell = 0, 0, 0 for i in range(len(p_text) - 1): mixed_embs.append(seg_embs[i]) if spec_tokens[i] == "<moleculeHere>": mixed_embs.append(self.mol_embs[cur_mol]) cur_mol += 1 elif spec_tokens[i] == "<proteinHere>": mixed_embs.append(self.prot_embs[cur_prot]) cur_prot += 1 elif spec_tokens[i] == "<cellHere>": mixed_embs.append(self.cell_embs[cur_cell]) cur_cell += 1 mixed_embs.append(seg_embs[-1]) return torch.cat(mixed_embs, dim=1) def ask(self, text): if len(self.messages) > 0 and (self.messages[-1][1].endswith("</molecule>") or self.messages[-1][1].endswith("</protein>")) and self.messages[-1][0] == 0: self.messages[-1][1] = self.messages[-1][1] + " " + text else: self._append_message(0, text) def append_molecule(self, smi): if not valid_smiles(smi): logger.error("Failed to generate molecule graph. Maybe the SMILES is invalid.") return mol_inputs = ToDevice(self.mol_processor(smi), self.device) with self.model.maybe_autocast(): mol_embs = self.model.proj_mol(self.model.encode_mol(mol_inputs, ret_atom_feats=True)) self.mol_embs.append(mol_embs.unsqueeze(0)) self._append_message(0, "<molecule><moleculeHere></molecule>") def append_protein(self, protein, from_file=False): if from_file: protein = open(protein, "r").readline() prot_inputs = ToDevice(self.prot_processor(protein), self.device) with self.model.maybe_autocast(): prot_embs = self.model.proj_prot(self.model.encode_protein(prot_inputs)) self.prot_embs.append(prot_embs) self._append_message(0, "<protein><proteinHere></protein>") def answer(self, max_new_tokens=256, num_beams=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1, temperature=1.0,): self._append_message(1, None) embs = self._get_context_emb() if embs.shape[1] + max_new_tokens > self.max_length: begin_idx = embs.shape[1] + max_new_tokens - self.max_length embs = embs[:, begin_idx] logger.warn("The number of tokens in current conversation exceeds the max length (%d). The model will not see the contexts outside the range." % (self.max_length)) output = self.model.llm.generate( inputs_embeds=embs, max_length=max_new_tokens, num_beams=num_beams, top_p=top_p, do_sample=False, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature )[0] if output[0] in [0, 1]: output = output[1:] output = output[:-1] output_tokens = self.model.llm_tokenizer.decode(output, add_special_tokens=False) output_tokens = output_tokens.split("Assistant:")[-1].strip() self.messages[-1][1] = output_tokens return output_tokens, output.cpu().numpy() def reset(self): self.messages = [] self.mol_embs = [] self.prot_embs = [] self.cell_embs = [] if __name__ == "__main__": import json from models.multimodal import BioMedGPTV config = json.load(open("./configs/encoders/multimodal/biomedgptv.json", "r")) device = torch.device("cuda:0") config["network"]["device"] = device model = BioMedGPTV(config["network"]) ckpt = torch.load("./ckpts/fusion_ckpts/biomedgpt_10b.pth") model.load_state_dict(ckpt) model = model.to(device) model.eval() prompt_sys = "You are working as an excellent assistant in biology. " + \ "Below a human gives the representation of a molecule or a protein. Answer some questions about it. " chat = Conversation( model=model, processor_config=config["data"], device=device, system=prompt_sys, roles=("Human", "Assistant"), sep="###", max_length=2048 ) chat.append_protein("MAKEDTLEFPGVVKELLPNATFRVELDNGHELIAVMAGKMRKNRIRVLAGDKVQVEMTPYDLSKGRINYRFK") questions = ["What are the official names of this protein?", "What is the function of this protein?"] for q in questions: print("Human: ", q) chat.ask(q) print("Assistant: ", chat.answer()[0]) print("Chat reset.") chat.reset() chat.append_molecule("C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2C(=O)C[C@]\\\\4([C@H]3CC/C4=C/C(=O)OC)C") questions = ["Please describe this drug."] for q in questions: print("Human: ", q) chat.ask(q) print("Assistant: ", chat.answer()[0])
OpenBioMed-main
open_biomed/utils/chat_utils.py
import logging logger = logging.getLogger(__name__) import argparse import csv import collections import json import numpy as np import os import pickle import re from typing import List, Optional import rdkit.Chem as Chem from rdkit.Chem import MolStandardize from rdkit import RDLogger RDLogger.DisableLog("rdApp.*") import torch from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer def valid_smiles(smi): try: mol = Chem.MolFromSmiles(smi.strip("\n")) if mol is not None: return True else: return False except: return False def can_smiles(smi): try: mol = Chem.MolFromSmiles(smi) standardizer = MolStandardize.normalize # standardize the molecule standardized_mol = standardizer.Normalizer().normalize(mol) # get the standardized SMILES string standardized_smiles = Chem.MolToSmiles(standardized_mol, isomericSmiles=True) except: standardized_smiles = smi return standardized_smiles def write_sdf(cid2smiles_file, output_file, sdf_file): cid2smiles = pickle.load(open(cid2smiles_file, "rb")) smiles2cid = {} for cid in cid2smiles: if cid2smiles[cid] != '*': smi = Chem.MolToSmiles(Chem.MolFromSmiles(cid2smiles[cid])) smiles2cid[smi] = cid all_mols = [] print("Loading output file...") with open(output_file, "r") as f: for i, line in enumerate(f.readlines()): if i == 0: continue line = line.rstrip("\n").split("\t") try: gt_smi = Chem.MolToSmiles(Chem.MolFromSmiles(line[1])) output_mol = Chem.MolFromSmiles(line[2]) if output_mol is not None: output_mol.SetProp("CID", smiles2cid[gt_smi]) all_mols.append(output_mol) except: continue print("Writing sdf file...") with Chem.SDWriter(sdf_file) as f: for mol in all_mols: f.write(mol) def load_mol2vec(file): mol2vec = {} with open(file, "r") as f: reader = csv.reader(f, delimiter=',') headers = next(reader) for row in reader: mol_str = " ".join(row[-300:]) mol2vec[row[3]] = np.fromstring(mol_str, sep=" ") return mol2vec def link_datasets(source, target): targetsmi2id = {} for i, smi in enumerate(target.smiles): try: smi = Chem.MolToSmiles(Chem.MolFromSmiles(smi), isomericSmiles=True) targetsmi2id[smi] = i except: continue match_indexes = [] for smi in source.smiles: try: smi = Chem.MolToSmiles(Chem.MolFromSmiles(smi), isomericSmiles=True) match_indexes.append(targetsmi2id[smi]) except: match_indexes.append(-1) return match_indexes def convert_pyg_batch(output, batch_idx, max_n_nodes): batch_size = torch.max(batch_idx).item() + 1 batch_output = [] batch_attention_mask = [] for i in range(batch_size): feat = output[torch.where(batch_idx == i)] if feat.shape[0] < max_n_nodes: batch_output.append(torch.cat(( feat, torch.zeros(max_n_nodes - feat.shape[0], feat.shape[1]).to(feat.device) ), dim=0)) batch_attention_mask.append(torch.cat(( torch.ones(feat.shape[0]).to(feat.device), torch.zeros(max_n_nodes - feat.shape[0]).to(feat.device) ), dim=0)) else: batch_output.append(feat[:max_n_nodes, :]) batch_attention_mask.append(torch.ones(max_n_nodes).to(feat.device)) batch_output = torch.stack(batch_output, dim=0) batch_attention_mask = torch.stack(batch_attention_mask, dim=0) return batch_output, batch_attention_mask def add_argument(parser): parser.add_argument("--mode", type=str, choices=["write_sdf", "unittest"]) def add_sdf_argument(parser): parser.add_argument("--cid2smiles_file", type=str, default="") parser.add_argument("--output_file", type=str, default="") parser.add_argument("--sdf_file", type=str, default="") if __name__ == "__main__": parser = argparse.ArgumentParser() add_argument(parser) args, _ = parser.parse_known_args() if args.mode == "write_sdf": add_sdf_argument(parser) args = parser.parse_args() write_sdf(args.cid2smiles_file, args.output_file, args.sdf_file) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} def smiles_tokenizer(smi): pattern = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" regex = re.compile(pattern) tokens = [token for token in regex.findall(smi)] return tokens class SmilesTokenizer(PreTrainedTokenizer): """ Tokenizer in RobertaTokenizer style. Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer implementation found in Huggingface's transformers library. It runs a WordPiece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al. Please see https://github.com/huggingface/transformers and https://github.com/rxn4chemistry/rxnfp for more details. Examples -------- >>> from deepchem.feat.smiles_tokenizer import SmilesTokenizer >>> current_dir = os.path.dirname(os.path.realpath(__file__)) >>> vocab_path = os.path.join(current_dir, 'tests/data', 'vocab.txt') >>> tokenizer = SmilesTokenizer(vocab_path) >>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O")) [12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17, 22, 19, 18, 19, 13] References ---------- .. [1] Schwaller, Philippe; Probst, Daniel; Vaucher, Alain C.; Nair, Vishnu H; Kreutter, David; Laino, Teodoro; et al. (2019): Mapping the Space of Chemical Reactions using Attention-Based Neural Networks. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.9897365.v3 Note ---- This class requires huggingface's transformers and tokenizers libraries to be installed. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file: str = '', bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs): """Constructs a SmilesTokenizer. Parameters ---------- vocab_file: str Path to a SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt """ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file=vocab_file, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) #super().__init__(vocab_file, **kwargs) #merges_file # take into account special tokens in max length # self.max_len_single_sentence = self.model_max_length - 2 # self.max_len_sentences_pair = self.model_max_length - 3 if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocab file at path '{}'.".format(vocab_file)) with open(vocab_file, 'r') as vr: self.vocab = json.load(vr) # self.vocab = load_vocab(vocab_file) # self.highest_unused_index = max( # [i for i, v in enumerate(self.vocab.keys()) if v.startswith("[unused")]) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) self.basic_tokenizer = smiles_tokenizer self.init_kwargs["model_max_length"] = self.model_max_length @property def vocab_size(self): return len(self.vocab) @property def vocab_list(self): return list(self.vocab.keys()) def _tokenize(self, text: str): """Tokenize a string into a list of tokens. Parameters ---------- text: str Input string sequence to be tokenized. """ split_tokens = [token for token in self.basic_tokenizer(text)] return split_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: ``<s> X </s>`` - pair of sequences: ``<s> A </s></s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def _convert_token_to_id(self, token: str): """Converts a token (str/unicode) in an id using the vocab. Parameters ---------- token: str String token from a larger sequence to be converted to a numerical id. """ return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index: int): """Converts an index (integer) in a token (string/unicode) using the vocab. Parameters ---------- index: int Integer index to be converted back to a string-based token as part of a larger sequence. """ return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]): """Converts a sequence of tokens (string) in a single string. Parameters ---------- tokens: List[str] List of tokens for a given string sequence. Returns ------- out_string: str Single string from combined tokens. """ out_string: str = " ".join(tokens).replace(" ##", "").strip() return out_string def add_special_tokens_ids_single_sequence(self, token_ids: List[int]): """Adds special tokens to the a sequence for sequence classification tasks. A BERT sequence has the following format: [CLS] X [SEP] Parameters ---------- token_ids: list[int] list of tokenized input ids. Can be obtained using the encode or encode_plus methods. """ return [self.cls_token_id] + token_ids + [self.sep_token_id] def add_special_tokens_single_sequence(self, tokens: List[str]): """Adds special tokens to the a sequence for sequence classification tasks. A BERT sequence has the following format: [CLS] X [SEP] Parameters ---------- tokens: List[str] List of tokens for a given string sequence. """ return [self.cls_token] + tokens + [self.sep_token] def add_special_tokens_ids_sequence_pair(self, token_ids_0: List[int], token_ids_1: List[int]) -> List[int]: """Adds special tokens to a sequence pair for sequence classification tasks. A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP] Parameters ---------- token_ids_0: List[int] List of ids for the first string sequence in the sequence pair (A). token_ids_1: List[int] List of tokens for the second string sequence in the sequence pair (B). """ sep = [self.sep_token_id] cls = [self.cls_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def add_padding_tokens(self, token_ids: List[int], length: int, right: bool = True) -> List[int]: """Adds padding tokens to return a sequence of length max_length. By default padding tokens are added to the right of the sequence. Parameters ---------- token_ids: list[int] list of tokenized input ids. Can be obtained using the encode or encode_plus methods. length: int TODO right: bool, default True TODO Returns ------- List[int] TODO """ padding = [self.pad_token_id] * (length - len(token_ids)) if right: return token_ids + padding else: return padding + token_ids def save_vocabulary( self, vocab_path: str ): # -> tuple[str]: doctest issue raised with this return type annotation """Save the tokenizer vocabulary to a file. Parameters ---------- vocab_path: obj: str The directory in which to save the SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt Returns ------- vocab_file: Tuple Paths to the files saved. typle with string to a SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt """ index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"]) else: vocab_file = vocab_path with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted( self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( "Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format( vocab_file)) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,)
OpenBioMed-main
open_biomed/utils/mol_utils.py
import torch.nn as nn activation = { "sigmoid": nn.Sigmoid(), "softplus": nn.Softplus(), "relu": nn.ReLU(), "gelu": nn.GELU(), "tanh": nn.Tanh(), } class MLP(nn.Module): def __init__(self, config, input_dim, output_dim): super(MLP, self).__init__() self.model = nn.Sequential() hidden_dims = [input_dim] + config["hidden_size"] + [output_dim] for i in range(len(hidden_dims) - 1): self.model.append(nn.Linear(hidden_dims[i], hidden_dims[i + 1])) if i != len(hidden_dims) - 2: self.model.append(nn.Dropout(config["dropout"])) if config["activation"] != "none": self.model.append(activation[config["activation"]]) if config["batch_norm"]: self.model.append(nn.BatchNorm1d()) def forward(self, h): return self.model(h).squeeze()
OpenBioMed-main
open_biomed/models/predictor.py
from abc import ABC, abstractmethod import torch.nn as nn class MolEncoder(nn.Module, ABC): def __init__(self): super(MolEncoder, self).__init__() @abstractmethod def encode_mol(self, mol): raise NotImplementedError class ProteinEncoder(nn.Module, ABC): def __init__(self): super(ProteinEncoder, self).__init__() @abstractmethod def encode_protein(self, prot): raise NotImplementedError class KnowledgeEncoder(nn.Module, ABC): def __init__(self): super(KnowledgeEncoder, self).__init__() @abstractmethod def encode_knowledge(self, kg): raise NotImplementedError class TextEncoder(nn.Module, ABC): def __init__(self): super(TextEncoder, self).__init__() @abstractmethod def encode_text(self, text): raise NotImplementedError
OpenBioMed-main
open_biomed/models/base_models.py
from models.molecule import * from models.protein import * from models.cell import * from models.knowledge import * from models.text import * from models.multimodal import * SUPPORTED_MOL_ENCODER = { "cnn": MolCNN, "tgsa": GINTGSA, "graphcl": GraphCL, "graphmvp": GraphMVP, "molclr": MolCLR, "mgnn": MGNN, "molt5": MolT5, "bert": MolBERT, "biomedgpt-1.6b": BioMedGPTCLIP, "biomedgpt-10b": BioMedGPTV, "kv-plm": KVPLM, "momu": MoMu, "molfm": MolFM } SUPPORTED_MOL_DECODER = { "moflow": MoFlow, "molt5": MolT5 } SUPPORTED_PROTEIN_ENCODER = { "cnn": ProtCNN, "cnn_gru": CNNGRU, "mcnn": MCNN, "pipr": CNNPIPR, "prottrans": ProtTrans } SUPPORTED_CELL_ENCODER = { "scbert": PerformerLM, "celllm": PerformerLM_CellLM } SUPPORTED_TEXT_ENCODER = { "base_transformer": BaseTransformers, "biomedgpt-1.6b": BioMedGPTCLIP, "biomedgpt-10b": BioMedGPTV, "kv-plm": KVPLM, "kv-plm*": KVPLM, "molfm": MolFM, "momu": MoMu, "text2mol": Text2MolMLP, "molt5": MolT5 } SUPPORTED_TEXT_DECODER = { "molt5": MolT5, } SUPPORTED_KNOWLEDGE_ENCODER = { "TransE": TransE, "gin": GIN }
OpenBioMed-main
open_biomed/models/__init__.py
from typing import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from models.base_models import ProteinEncoder class Conv1dReLU(nn.Module): ''' kernel_size=3, stride=1, padding=1 kernel_size=5, stride=1, padding=2 kernel_size=7, stride=1, padding=3 ''' def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super().__init__() self.inc = nn.Sequential( nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding), nn.ReLU() ) def forward(self, x): return self.inc(x) class LinearReLU(nn.Module): def __init__(self,in_features, out_features, bias=True): super().__init__() self.inc = nn.Sequential( nn.Linear(in_features=in_features, out_features=out_features, bias=bias), nn.ReLU() ) def forward(self, x): return self.inc(x) class StackCNN(nn.Module): def __init__(self, layer_num, in_channels, out_channels, kernel_size, stride=1, padding=0): super().__init__() self.inc = nn.Sequential(OrderedDict([('conv_layer0', Conv1dReLU(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding))])) for layer_idx in range(layer_num - 1): self.inc.add_module('conv_layer%d' % (layer_idx + 1), Conv1dReLU(out_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)) self.inc.add_module('pool_layer', nn.AdaptiveMaxPool1d(1)) def forward(self, x): return self.inc(x).squeeze(-1) class MCNN(ProteinEncoder): def __init__(self, config): super().__init__() self.output_dim = config["output_size"] self.embed = nn.Embedding(config["vocab_size"], config["embedding_num"], padding_idx=0) self.block_list = nn.ModuleList() for block_idx in range(config["block_num"]): self.block_list.append( StackCNN(block_idx + 1, config["embedding_num"], config["hidden_size"], config["kernel_size"]) ) self.linear = nn.Linear(config["block_num"] * config["hidden_size"], config["output_size"]) def forward(self, x): x = self.embed(x).permute(0, 2, 1) feats = [block(x) for block in self.block_list] x = torch.cat(feats, -1) x = self.linear(x) return x def encode_protein(self, prot): return self.forward(prot)
OpenBioMed-main
open_biomed/models/protein/mcnn.py
from models.protein.cnn import ProtCNN, CNNGRU, CNNPIPR from models.protein.mcnn import MCNN from models.protein.prottrans import ProtTrans
OpenBioMed-main
open_biomed/models/protein/__init__.py
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from models.base_models import ProteinEncoder class ProtCNN(ProteinEncoder): def __init__(self, config): super(ProtCNN, self).__init__() self.output_dim = config["output_dim"] layer_size = len(config["in_ch"]) - 1 self.conv = nn.ModuleList( [nn.Conv1d( in_channels = config["in_ch"][i], out_channels = config["in_ch"][i + 1], kernel_size = config["kernels"][i] ) for i in range(layer_size)] ) self.conv = self.conv.double() hidden_dim = self._get_conv_output((config["vocab_size"], config["max_length"])) self.fc1 = nn.Linear(hidden_dim, config["output_dim"]) def _get_conv_output(self, shape): bs = 1 input = Variable(torch.rand(bs, *shape)) output_feat = self._forward_features(input.double()) n_size = output_feat.data.view(bs, -1).size(1) return n_size def _forward_features(self, x): for l in self.conv: x = F.relu(l(x)) x = F.adaptive_max_pool1d(x, output_size=1) return x def forward(self, v): v = self._forward_features(v.double()) v = v.view(v.size(0), -1) v = self.fc1(v.float()) return v def encode_protein(self, prot): return self.forward(prot) class CNNGRU(ProteinEncoder): def __init__(self, config): super(CNNGRU, self).__init__() self.conv1d = nn.Conv1d(in_channels=config["input_dim"], out_channels=config["cnn_dim"], kernel_size=3, padding=0) self.bn1 = nn.BatchNorm1d(config["cnn_dim"]) self.biGRU = nn.GRU(config["cnn_dim"], config["cnn_dim"], bidirectional=True, batch_first=True, num_layers=1) self.maxpool1d = nn.MaxPool1d(config["pool_size"], stride=config["pool_size"]) self.global_avgpool1d = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Linear(math.floor(config["input_len"] / config["pool_size"]), config["output_dim"]) def forward(self, prot): x = prot.transpose(1, 2) x = self.conv1d(x) x = self.bn1(x) x = self.maxpool1d(x) x = x.transpose(1, 2) x, _ = self.biGRU(x) x = self.global_avgpool1d(x) x = x.squeeze() x = self.fc1(x) return x def encode_protein(self, prot): return self.forward(prot) class ResConvGRU(nn.Module): def __init__(self, input_dim, hidden_dim, pool_size): super(ResConvGRU, self).__init__() self.conv1d = nn.Conv1d(in_channels=input_dim, out_channels=hidden_dim, kernel_size=3, padding=1) self.biGRU = nn.GRU(hidden_dim, hidden_dim, bidirectional=True, batch_first=True, num_layers=1) self.pool = nn.MaxPool1d(pool_size) def forward(self, prot): x = prot.transpose(1, 2) x = self.conv1d(x) x = self.pool(x) x = x.transpose(1, 2) h, _ = self.biGRU(x) x = torch.cat([h, x], dim=2) return x class CNNPIPR(ProteinEncoder): def __init__(self, config): super(CNNPIPR, self).__init__() self.convs = nn.Sequential( ResConvGRU(config["input_dim"], config["hidden_dim"], 2), ResConvGRU(3 * config["hidden_dim"], config["hidden_dim"], 2), ResConvGRU(3 * config["hidden_dim"], config["hidden_dim"], 2), ) self.last_conv = nn.Conv1d(in_channels=config["hidden_dim"] * 3, out_channels=config["hidden_dim"], kernel_size=3, padding=1) self.pool = nn.AdaptiveAvgPool1d(1) self.fc = nn.Linear(config["input_len"] // 8, config["output_dim"]) self.dropout = nn.Dropout(config["dropout"]) self.act = nn.LeakyReLU(0.3) self.output_dim = config["output_dim"] def forward(self, prot): x = self.convs(prot) x = x.transpose(1, 2) x = self.last_conv(x) x = x.transpose(1, 2) x = self.pool(x).squeeze() x = self.fc(x) return self.act(x) def encode_protein(self, prot): return self.forward(prot)
OpenBioMed-main
open_biomed/models/protein/cnn.py
import torch import torch.nn as nn from transformers import AutoModel from models.base_models import ProteinEncoder class ProtTrans(ProteinEncoder): def __init__(self, config): super(ProtTrans, self).__init__() self.max_length = config["max_length"] self.output_dim = config["output_dim"] self.model = AutoModel.from_pretrained(config["model_name_or_path"]) self.dropout = nn.Dropout(config["dropout"]) self.fc = nn.Linear(self.model.config.hidden_size, self.output_dim) def forward(self, prot): batch_size, model_max_length = prot["input_ids"].shape h = self.model(**prot).last_hidden_state h = h[:, 0, :].view(batch_size, self.max_length // model_max_length, -1) h = torch.mean(h, dim=1) h = self.dropout(h) return self.fc(h)
OpenBioMed-main
open_biomed/models/protein/prottrans.py
import logging logger = logging.getLogger(__name__) import json import torch import torch.nn as nn from torch_geometric.data import Batch from transformers.modeling_outputs import BaseModelOutput from models import SUPPORTED_MOL_ENCODER, SUPPORTED_TEXT_ENCODER, SUPPORTED_TEXT_DECODER from models.multimodal import KVPLM, MolT5, MolFM, DrugFM from utils.mol_utils import convert_pyg_batch class MolQASepRepModel(nn.Module): def __init__(self, config): super(MolQASepRepModel, self).__init__() self.config = config if "config_path" in config["mol"]: mol_encoder_config = json.load(open(config["mol"]["config_path"], "r")) else: mol_encoder_config = config["mol"] #for key, value in mol_encoder_config.items(): # self.config["mol"][key] = value self.mol_encoder = SUPPORTED_MOL_ENCODER[config["mol"]["name"]](mol_encoder_config) if "init_checkpoint" in config["mol"]: logger.info("Loading molecule checkpoint from %s" % (config["mol"]["init_checkpoint"])) state_dict = torch.load(config["mol"]["init_checkpoint"], map_location="cpu") if "param_key" in config["mol"]: state_dict = state_dict[config["mol"]["param_key"]] self.mol_encoder.load_state_dict(state_dict) if config["text_encoder"]["name"] == config["mol"]["name"]: self.text_encoder = self.mol_encoder else: self.text_encoder = SUPPORTED_TEXT_ENCODER[config["text_encoder"]["name"]](config["text_encoder"]) self.mol_proj = nn.Linear(self.mol_encoder.output_dim, self.text_encoder.output_dim) if config["text_decoder"]["name"] == config["text_encoder"]["name"]: self.text_decoder = self.text_encoder self.encoder_decoder_proj = None else: self.text_decoder = SUPPORTED_TEXT_DECODER[config["text_decoder"]["name"]](config["text_decoder"]) self.encoder_decoder_proj = nn.Linear(self.text_encoder.output_dim, self.text_decoder.hidden_size) def _concat_mol_text(self, mol_embeds, mol_attention_mask, text_embeds, text_attention_mask): # put <cls> first bs = mol_embeds.shape[0] num_atoms = torch.sum(mol_attention_mask, dim=1).int() output_embeds, output_attention_mask = [], [] for i in range(bs): output_embeds.append(torch.cat(( text_embeds[i, 0, :].unsqueeze(0), mol_embeds[i, :num_atoms[i], :], text_embeds[i, 1:, :], mol_embeds[i, num_atoms[i]:, :] ), dim=0)) output_attention_mask.append(torch.cat(( text_attention_mask[i, 0].unsqueeze(0), mol_attention_mask[i, :num_atoms[i]], text_attention_mask[i, 1:], mol_attention_mask[i, num_atoms[i]:] ), dim=0)) return torch.stack(output_embeds, dim=0), torch.stack(output_attention_mask, dim=0) def _encode(self, mol, question): _, mol_outputs = self.mol_encoder.encode_mol(mol, return_node_feats=True) #mol_outputs = self.mol_encoder.encode_mol(mol) if isinstance(mol, Batch): mol_embeds, mol_attention_mask = convert_pyg_batch(mol_outputs, mol.batch, self.config["mol"]["max_n_nodes"]) else: mol_embeds = mol_outputs mol_attention_mask = mol.attention_mask mol_embeds = self.mol_proj(mol_embeds) text_embeds = self.text_encoder.main_model.get_input_embeddings()(question.input_ids) embeds, attention_mask = self._concat_mol_text(mol_embeds, mol_attention_mask, text_embeds, question.attention_mask) #text_outputs = self.text_encoder.encode_text(question) #encoder_outputs, encoder_attention_mask = self._concat_mol_text(mol_embeds, mol_attention_mask, text_outputs.last_hidden_state, question.attention_mask) encoder_outputs = self.text_encoder.main_model.encoder( inputs_embeds=embeds, attention_mask=attention_mask ) encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs, hidden_states=None, attentions=None ) return encoder_outputs, attention_mask def forward(self, mol, question, answer): encoder_outputs, encoder_attention_mask = self._encode(mol, question) if self.encoder_decoder_proj is not None: encoder_outputs = self.encoder_decoder_proj(encoder_outputs) labels = answer.input_ids.masked_fill(~answer.attention_mask.bool(), -100) return self.text_decoder( encoder_outputs=encoder_outputs, encoder_attention_mask=encoder_attention_mask, decoder_attention_mask=answer.attention_mask, labels=labels ) def generate(self, mol, question, num_beams=5, max_length=256): encoder_outputs, encoder_attention_mask = self._encode(mol, question) return self.text_decoder.decode( encoder_outputs=encoder_outputs, encoder_attention_mask=encoder_attention_mask, num_beams=num_beams, max_length=max_length, ) class MolQAJointRepModel(nn.Module): SUPPORTED_JOINT_REP_MODEL = { "kvplm": (KVPLM, "early"), "kvplm*": (KVPLM, "early"), "molt5": (MolT5, "early"), "molfm": (MolFM, "feature"), "drugfm": (DrugFM, "feature") } def __init__(self, config): super(MolQAJointRepModel, self).__init__() self.config = config encoder_cls, fusion_type = self.SUPPORTED_JOINT_REP_MODEL[config["encoder"]["name"]] if "config_path" in config["encoder"]: encoder_config = json.load(open(config["encoder"]["config_path"], "r")) else: encoder_config = config["encoder"] self.encoder = encoder_cls(encoder_config) if "init_checkpoint" in config["encoder"]: state_dict = torch.load(config["encoder"]["init_checkpoint"], map_location="cpu") if "param_key" in config["encoder"]: state_dict = state_dict[config["encoder"]["param_key"]] self.encoder.load_state_dict(state_dict) self.fusion_type = fusion_type if config["encoder"]["name"] != config["text_decoder"]["name"]: self.decoder = SUPPORTED_TEXT_DECODER[config["text_decoder"]["name"]](config["text_decoder"]) self.encoder_decoder_proj = nn.Linear(self.encoder.output_dim, self.decoder.hidden_size) else: self.decoder = self.encoder self.encoder_decoder_proj = None def _concat_smi_text(self, mol, text): bs = mol.input_ids.shape[0] num_atoms = torch.sum(mol.attention_mask, dim=1) output_input_ids, output_attention_mask = [], [] # ignore <eos> in molecule and <cls> in text for i in range(bs): output_input_ids.append(torch.cat(( mol.input_ids[i, :num_atoms[i] - 1], text.input_ids[i, 1:], mol.input_ids[i, num_atoms[i]:] ), dim=0)) output_attention_mask.append(torch.cat(( mol.attention_mask[i, :num_atoms[i] - 1], text.attention_mask[i, 1:], mol.attention_mask[i, num_atoms[i]:] ), dim=0)) return torch.stack(output_input_ids, dim=0), torch.stack(output_attention_mask, dim=0) def _encode(self, mol, question): if self.fusion_type == "early": input_ids, input_attention_mask = self._concat_smi_text(mol, question) encoder_outputs = self.encoder.encode({ "input_ids": input_ids, "attention_mask": input_attention_mask }) encoder_attention_mask = input_attention_mask elif self.fusion_type == "feature": encoder_outputs = self.encoder(mol, question).last_hidden_state encoder_attention_mask = question.attention_mask if self.encoder_decoder_proj is not None: encoder_outputs = self.encoder_decoder_proj(encoder_outputs) encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs, hidden_states=None, attentions=None ) return encoder_outputs, encoder_attention_mask def forward(self, mol, question, answer): encoder_outputs, encoder_attention_mask = self._encode(mol, question) labels = answer.input_ids.masked_fill(~answer.attention_mask.bool(), -100) return self.decoder( encoder_outputs=encoder_outputs, encoder_attention_mask=encoder_attention_mask, decoder_attention_mask=answer.attention_mask, labels=labels ) def generate(self, mol, question, num_beams=5, max_length=256): encoder_outputs, encoder_attention_mask = self._encode(mol, question) return self.decoder.decode( encoder_outputs=encoder_outputs, encoder_attention_mask=encoder_attention_mask, num_beams=num_beams, max_length=max_length ) SUPPORTED_MOLQA_MODELS = { "sep_rep": MolQASepRepModel, "joint_rep": MolQAJointRepModel, }
OpenBioMed-main
open_biomed/models/task_model/molqa_model.py
import json import torch import torch.nn as nn from models import SUPPORTED_MOL_ENCODER, SUPPORTED_TEXT_ENCODER class MTRModel(nn.Module): def __init__(self, config): super(MTRModel, self).__init__() mol_config = json.load(open(config["structure"]["config_path"], "r")) text_config = json.load(open(config["text"]["config_path"], "r")) self.mol_encoder = SUPPORTED_MOL_ENCODER[config["structure"]["name"]](mol_config) self.text_encoder = SUPPORTED_TEXT_ENCODER[config["text"]["name"]](text_config) self.mol_proj = nn.Linear(self.mol_encoder.output_dim, config["projection_dim"]) self.text_proj = nn.Linear(self.text_encoder.output_dim, config["projection_dim"]) def encode_mol(self, mol): h = self.mol_encoder.encode_mol(mol) return self.mol_proj(h) def encode_text(self, text): h = self.text_encoder.encode_text(text) return self.text_proj(h)
OpenBioMed-main
open_biomed/models/task_model/mtr_model.py
import torch import torch.nn as nn from models import SUPPORTED_CELL_ENCODER class CTCModel(nn.Module): def __init__(self, config, num_labels): super(CTCModel, self).__init__() self.encoder_name = config["structure"]["name"] self.encoder = SUPPORTED_CELL_ENCODER[config["structure"]["name"]](**config["structure"]) ckpt = torch.load(config["structure"]["ckpt_path"]) if config["structure"]["param_key"] != "": ckpt = ckpt[config["structure"]["param_key"]] self.encoder.load_state_dict(ckpt) self.conv = nn.Conv2d(1, 1, (1, config["structure"]["dim"])) self.act = nn.ReLU() self.pred_head = nn.Sequential( nn.ReLU(), nn.Linear(config["structure"]["gene_num"] + 1, config["pred_head"]["hidden_size"][0]) ) config["pred_head"]["hidden_size"] += [num_labels] for i in range(len(config["pred_head"]["hidden_size"]) - 1): self.pred_head.append(nn.ReLU()) self.pred_head.append(nn.Dropout(config["pred_head"]["dropout"])) self.pred_head.append(nn.Linear(config["pred_head"]["hidden_size"][i], config["pred_head"]["hidden_size"][i + 1])) def forward(self, data): batch_size = data.shape[0] if self.encoder_name == "celllm": h, gene_pos = self.encoder(data, return_encodings=True) else: h = self.encoder(data, return_encodings=True) h = h[:,None,:,:] h = self.conv(h) h = self.act(h) h = h.view(h.shape[0], -1) if self.encoder_name == "celllm": pad_gene_id = self.encoder.pad_gene_id gene_num = pad_gene_id - 1 out_emb = torch.zeros(batch_size, gene_num + 1).to(h.device) # , dim for batch in range(batch_size): seq_len = (gene_pos[batch] != pad_gene_id).sum() out_emb[batch][gene_pos[batch][:seq_len]] = h[batch][:seq_len] h = out_emb return self.pred_head(h)
OpenBioMed-main
open_biomed/models/task_model/ctc_model.py
import torch import torch.nn as nn from transformers.modeling_outputs import BaseModelOutput from models.multimodal.molt5 import MolT5 from models import SUPPORTED_MOL_ENCODER from utils.mol_utils import convert_pyg_batch class MolCapModel(nn.Module): def __init__(self, config): super(MolCapModel, self).__init__() self.generate_model = MolT5(config["text"]) if "structure" in config: self.encode_model = SUPPORTED_MOL_ENCODER[config["structure"]["name"]](**config["structure"]) self.max_n_nodes = config["structure"]["max_n_nodes"] else: self.encode_model = None def forward(self, mol): labels = mol["text"]["input_ids"].masked_fill(~mol["text"]["attention_mask"].bool(), -100) h, encoder_attention_mask = self.encode(mol) return self.generate_model( encoder_outputs=h, encoder_attention_mask=encoder_attention_mask, decoder_attention_mask=mol["text"]["attention_mask"], labels=labels ) def encode(self, mol): if self.encode_model is None: h = self.generate_model.encode(mol["structure"]) encoder_attention_mask = mol["structure"]["attention_mask"] else: _, node_feats = self.encode_model(mol["structure"]) h, encoder_attention_mask = convert_pyg_batch(node_feats, mol["structure"].batch, max_n_nodes=self.max_n_nodes) h = BaseModelOutput( last_hidden_state=h, hidden_states=None, attentions=None ) return h, encoder_attention_mask def decode(self, mol, num_beams, max_length): h, encoder_attention_mask = self.encode(mol) return self.generate_model.decode( encoder_outputs=h, encoder_attention_mask=encoder_attention_mask, num_beams=num_beams, max_length=max_length ) class GraphEnhancedMolCapModel(nn.Module): def __init__(self, config): super(GraphEnhancedMolCapModel, self).__init__() self.generate_model = MolT5(config["text"]) self.graph_encoder = SUPPORTED_MOL_ENCODER[config["graph"]["name"]](config["graph"]) if "init_checkpoint" in config["graph"]: ckpt = torch.load(config["graph"]["init_checkpoint"]) if "param_key" in config["graph"]: ckpt = ckpt[config["graph"]["param_key"]] self.graph_encoder.load_state_dict(ckpt) if config["graph"]["stop_grad"]: for k, v in self.graph_encoder.named_parameters(): v.requires_grad = False self.graph_projector = nn.Sequential( nn.Linear(config["graph"]["output_dim"], self.generate_model.hidden_size), nn.ReLU(inplace=True), nn.Linear(self.generate_model.hidden_size, self.generate_model.hidden_size) ) self.max_n_nodes = config["graph"]["max_n_nodes"] self.use_node_embeds = config["graph"]["max_n_nodes"] > 0 def forward(self, mol): h, encoder_attention_mask = self.encode(mol) labels = mol["text"]["input_ids"].masked_fill(~mol["text"]["attention_mask"].bool(), -100) return self.generate_model( encoder_outputs=h, encoder_attention_mask=encoder_attention_mask, decoder_attention_mask=mol["text"]["attention_mask"], labels=labels ) def decode(self, mol, num_beams, max_length): h, encoder_attention_mask = self.encode(mol) return self.generate_model.decode( encoder_outputs=h, encoder_attention_mask=encoder_attention_mask, num_beams=num_beams, max_length=max_length ) def encode(self, mol): B, _ = mol["structure"]["SMILES"]["attention_mask"].shape device = mol["structure"]["SMILES"]["attention_mask"].device smi_feats = self.generate_model.encode(mol["structure"]["SMILES"]) if self.use_node_embeds: graph_feats, node_feats = self.graph_encoder.encode_mol(mol["structure"]["graph"], proj=False, return_node_feats=True) graph_feats = self.graph_projector(graph_feats) node_feats, node_attention_mask = convert_pyg_batch(node_feats, mol["structure"]["graph"].batch, self.max_n_nodes) node_feats = self.graph_projector(node_feats) h = BaseModelOutput( #last_hidden_state=torch.cat([graph_feats.unsqueeze(1), node_feats, smi_feats], dim=1), last_hidden_state=torch.cat([graph_feats.unsqueeze(1), node_feats], dim=1), hidden_states=None, attentions=None ) #encoder_attention_mask = torch.cat([torch.ones(B, 1).to(device), node_attention_mask, mol["structure"]["SMILES"]["attention_mask"]], dim=1) encoder_attention_mask = torch.cat([torch.ones(B, 1).to(device), node_attention_mask], dim=1) else: graph_feats = self.graph_encoder.encode_structure(mol["structure"]["graph"], proj=False) graph_feats = self.graph_projector(graph_feats) h = BaseModelOutput( last_hidden_state=torch.cat([graph_feats.unsqueeze(1), smi_feats], dim=1), hidden_states=None, attentions=None ) encoder_attention_mask = torch.cat([torch.ones(B, 1).to(device), mol["structure"]["SMILES"]["attention_mask"]], dim=1) return h, encoder_attention_mask
OpenBioMed-main
open_biomed/models/task_model/molcap_model.py
import torch import torch.nn as nn from models.molecule.gin_tgsa import GINTGSA from models.cell import CellGAT from models.cell import SUPPORTED_CELL_ENCODER class ConvPooler(nn.Module): def __init__(self, dim, full_seq_len): super().__init__() self.full_seq_len = full_seq_len self.pad_gene_id = full_seq_len self.conv = nn.Conv2d(1, 1, (1, dim)) def forward(self, h, gene_pos): batchsize, seqlen, dim = h.shape h = h[:,None,:,:] h = self.conv(h) h = h.view(h.shape[0], -1) out_emb = torch.zeros(batchsize, self.full_seq_len).to(h.device)#, dim for batch in range(batchsize): seq_len = (gene_pos[batch] != self.pad_gene_id).sum() out_emb[batch][gene_pos[batch][:seq_len]] = h[batch][:seq_len] h = out_emb return h class ConvPoolerShort(nn.Module): def __init__(self, dim): super().__init__() self.conv = nn.Conv2d(1, 1, (1, dim)) def forward(self, h): h = h[:,None,:,:] h = self.conv(h) h = h.view(h.shape[0], -1) return h class TGDRP(nn.Module): def __init__(self, config): super().__init__() self.layer_drug = config["layer_drug"] self.dim_drug = config["dim_drug"] self.input_dim_cell = config["input_dim_cell"] self.layer_cell = config["layer_cell"] self.dim_cell = config["dim_cell"] self.dropout = config["dropout"] self.cell_encoder_config = config["cell_encoder"] def _build(self): # drug graph branch self.GNN_drug = GINTGSA(self.layer_drug, self.dim_drug) self.drug_emb = nn.Sequential( nn.Linear(self.dim_drug * self.layer_drug, 256), nn.ReLU(), nn.Dropout(p=self.dropout), ) # cell graph branch if self.cell_encoder_config["name"] == 'gat': self.cell_encoder = CellGAT(self.input_dim_cell, self.layer_cell, self.dim_cell, self.cluster_predefine) cell_encode_dim = self.dim_cell * self.cell_encoder.final_node elif self.cell_encoder_config["name"] == 'deepcdr': self.cell_encoder = SUPPORTED_CELL_ENCODER[self.cell_encoder_config["name"]](**self.cell_encoder_config) cell_encode_dim = self.cell_encoder_config['output_dim'] else: self.cell_encoder = SUPPORTED_CELL_ENCODER[self.cell_encoder_config["name"]](**self.cell_encoder_config) if "ckpt_path" in self.cell_encoder_config: ckpt = torch.load(self.cell_encoder_config["ckpt_path"]) if self.cell_encoder_config["param_key"] != "": ckpt = ckpt[self.cell_encoder_config["param_key"]] self.cell_encoder.load_state_dict(ckpt) if self.cell_encoder_config["name"] in ["scbert", "celllm"]: if self.cell_encoder_config["name"] == "celllm": self.cell_encoder.to_out = ConvPooler(self.cell_encoder_config["dim"], self.cell_encoder_config["gene_num"] + 1) cell_encode_dim = self.cell_encoder_config["gene_num"] + 1 else: self.cell_encoder.to_out = ConvPoolerShort(self.cell_encoder_config["dim"]) cell_encode_dim = self.cell_encoder_config["max_seq_len"] else: cell_encode_dim = self.dim_cell * self.cell_encoder.final_node self.cell_emb = nn.Sequential( nn.Linear(cell_encode_dim, 1024), nn.ReLU(), nn.Dropout(p=self.dropout), nn.Linear(1024, 256), nn.ReLU(), nn.Dropout(p=self.dropout), ) self.regression = nn.Sequential( nn.Linear(512, 512), nn.ELU(), nn.Dropout(p=self.dropout), nn.Linear(512, 512), nn.ELU(), nn.Dropout(p=self.dropout), nn.Linear(512, 1) ) def forward(self, drug, cell): # forward drug x_drug = self.GNN_drug(drug) x_drug = self.drug_emb(x_drug) # forward cell x_cell = self.cell_encoder(cell) x_cell = self.cell_emb(x_cell) # combine drug feature and cell line feature x = torch.cat([x_drug, x_cell], -1) x = self.regression(x) return x
OpenBioMed-main
open_biomed/models/task_model/drp_model.py
import json import torch import torch.nn as nn from transformers.modeling_outputs import BaseModelOutput from models import SUPPORTED_TEXT_ENCODER from models.multimodal.molt5 import MolT5 class Text2SMILESModel(nn.Module): def __init__(self, config): super(Text2SMILESModel, self).__init__() self.generate_model = MolT5(config["smiles"]) if "text" in config: if "config_path" in config["text"]: text_config = json.load(open(config["text"]["config_path"])) text_config["name"] = config["text"]["name"] text_config["use_num_layers"] = config["text"]["use_num_layers"] else: text_config = config["text"] self.text_encoder = SUPPORTED_TEXT_ENCODER[config["text"]["name"]](text_config) if "init_checkpoint" in config["text"]: ckpt = torch.load(config["text"]["init_checkpoint"]) if "param_key" in config["text"]: ckpt = ckpt[config["text"]["param_key"]] self.text_encoder.load_state_dict(ckpt) self.text_projector = nn.Sequential( nn.Linear(config["text"]["output_dim"], self.generate_model.hidden_size), nn.ReLU(inplace=True), nn.Linear(self.generate_model.hidden_size, self.generate_model.hidden_size) ) else: self.text_encoder = None def forward(self, mol): h, encoder_attention_mask = self._encode_text(mol) labels = mol["structure"]["input_ids"].masked_fill(~mol["structure"]["attention_mask"].bool(), -100) return self.generate_model( encoder_outputs=h, encoder_attention_mask=encoder_attention_mask, decoder_attention_mask=mol["structure"]["attention_mask"], labels=labels ) def decode(self, mol, num_beams, max_length): h, encoder_attention_mask = self._encode_text(mol) return self.generate_model.decode( encoder_outputs=h, encoder_attention_mask=encoder_attention_mask, num_beams=num_beams, max_length=max_length ) def _encode_text(self, mol): if self.text_encoder is not None: text_feats = self.text_encoder.encode_text(mol["text"], return_cls=False, proj=False) text_feats = self.text_projector(text_feats) else: text_feats = self.generate_model.encode(mol["text"]) h = BaseModelOutput( last_hidden_state=text_feats, hidden_states=None, attentions=None ) text_attention_mask = mol["text"]["attention_mask"] return h, text_attention_mask
OpenBioMed-main
open_biomed/models/task_model/text2smi_model.py
import logging logger = logging.getLogger(__name__) import torch import torch.nn as nn import json from transformers import AutoModel from models import SUPPORTED_MOL_ENCODER, SUPPORTED_PROTEIN_ENCODER from models.predictor import MLP class DTIModel(nn.Module): def __init__(self, config, pred_dim): super(DTIModel, self).__init__() drug_encoder_config = json.load(open(config["mol"]["config_path"], "r")) self.drug_encoder = SUPPORTED_MOL_ENCODER[config["mol"]["name"]](drug_encoder_config) if "ckpt" in drug_encoder_config: state_dict = torch.load(open(drug_encoder_config["ckpt"], "rb"), map_location="cpu") if "param_key" in drug_encoder_config: state_dict = state_dict[drug_encoder_config["param_key"]] self.drug_encoder.load_state_dict(state_dict) logger.info("load drug encoder from %s" % (drug_encoder_config["ckpt"])) protein_encoder_config = json.load(open(config["protein"]["config_path"], "r")) self.protein_encoder = SUPPORTED_PROTEIN_ENCODER[config["protein"]["name"]](protein_encoder_config) if "ckpt" in protein_encoder_config: state_dict = torch.load(open(protein_encoder_config["ckpt"], "rb"), map_location="cpu") if "param_key" in protein_encoder_config: state_dict = state_dict[protein_encoder_config["param_key"]] self.protein_encoder.load_state_dict(state_dict) logger.info("load protein encoder from %s" % (protein_encoder_config["ckpt"])) self.pred_head = MLP(config["pred_head"], self.drug_encoder.output_dim + self.protein_encoder.output_dim, pred_dim) def forward(self, drug, protein): h_drug = self.drug_encoder.encode_mol(drug) h_protein = self.protein_encoder.encode_protein(protein) h = torch.cat((h_drug, h_protein), dim=1) return self.pred_head(h) class DeepEIK4DTI(nn.Module): def __init__(self, config, pred_dim): super(DeepEIK4DTI, self).__init__() self.use_attention = config["use_attention"] self.projection_dim = config["projection_dim"] drug_encoder_config = json.load(open(config["mol"]["structure"]["config_path"], "r")) self.drug_structure_encoder = SUPPORTED_MOL_ENCODER[config["mol"]["structure"]["name"]](drug_encoder_config) protein_encoder_config = json.load(open(config["protein"]["structure"]["config_path"], "r")) self.protein_structure_encoder = SUPPORTED_PROTEIN_ENCODER[config["protein"]["structure"]["name"]](protein_encoder_config) self.structure_hidden_dim = self.drug_structure_encoder.output_dim + self.protein_structure_encoder.output_dim self.kg_project = nn.Sequential( nn.Linear(config["mol"]["kg"]["embedding_dim"] + config["protein"]["kg"]["embedding_dim"], self.projection_dim), nn.Dropout(config["projection_dropout"]) ) if "text" in config: self.text_encoder = AutoModel.from_pretrained(config["text"]["model_name_or_path"]) else: self.text_encoder = None self.text_project = nn.Sequential( nn.Linear(config["text_dim"], self.projection_dim), nn.Dropout(config["projection_dropout"]) ) if self.use_attention: self.attn = nn.MultiheadAttention(self.structure_hidden_dim + self.projection_dim, num_heads=config["num_attention_heads"], kdim=self.text_encoder.hidden_dim, vdim=self.text_encoder.hidden_dim) self.pred_head = MLP(config["pred_head"], self.structure_hidden_dim + 2 * self.projection_dim, pred_dim) def forward(self, drug, protein): h_drug_structure = self.drug_structure_encoder.encode_mol(drug["structure"]) h_protein_structure = self.protein_structure_encoder.encode_protein(protein["structure"]) h_structure = torch.cat((h_drug_structure, h_protein_structure), dim=1) h_kg = self.kg_project(torch.cat((drug["kg"], protein["kg"]), dim=1)) if self.text_encoder is not None: h_text = self.text_encoder(**drug["text"]).last_hidden_state[:, 0, :] else: h_text = drug["text"] if self.use_attention: _, attn = self.attn(torch.cat(h_structure, h_kg).unsqueeze(1), h_text, h_text) h_text = torch.matmul(attn * drug["text"].unsqueeze(1), h_text) h_text = self.text_project(h_text) h = torch.cat((h_structure, h_kg, h_text), dim=1) return self.pred_head(h)
OpenBioMed-main
open_biomed/models/task_model/dti_model.py
import torch import torch.nn as nn import json from transformers import AutoModel from models import SUPPORTED_MOL_ENCODER from models.multimodal.molfm.molfm import MolFM activation = { "sigmoid": nn.Sigmoid(), "softplus": nn.Softplus(), "relu": nn.ReLU(), "gelu": nn.GELU(), "tanh": nn.Tanh(), } class MLP(nn.Module): def __init__(self, config, input_dim, output_dim): super(MLP, self).__init__() self.model = nn.Sequential() hidden_dims = [input_dim] + config["hidden_size"] + [output_dim] for i in range(len(hidden_dims) - 1): self.model.append(nn.Linear(hidden_dims[i], hidden_dims[i + 1])) if i != len(hidden_dims) - 2: self.model.append(nn.Dropout(config["dropout"])) if config["activation"] != "none": self.model.append(activation[config["activation"]]) if config["batch_norm"]: self.model.append(nn.BatchNorm1d()) def forward(self, h): return self.model(h) # TODO: choose header for different encoder HEAD4ENCODER = { "deepeik": MLP, "momu": nn.Linear, "molfm": nn.Linear, "molclr": nn.Linear, "graphmvp": nn.Linear, "biomedgpt-1.6b": nn.Linear, "kvplm": MLP } class DPModel(nn.Module): def __init__(self, config, out_dim): super(DPModel, self).__init__() # prepare model if config["model"] == "DeepEIK": self.encoder = SUPPORTED_MOL_ENCODER[config["model"]](config["network"]) else: self.encoder = SUPPORTED_MOL_ENCODER[config["model"]](config["network"]["structure"]) encoder_ckpt = config["network"]["structure"]["init_checkpoint"] if encoder_ckpt != "": ckpt = torch.load(encoder_ckpt, map_location="cpu") param_key = config["network"]["structure"]["param_key"] if param_key != "": ckpt = ckpt[param_key] missing_keys, unexpected_keys = self.encoder.load_state_dict(ckpt, strict=False) print("missing_keys: ", missing_keys) print("unexpected_keys: ", unexpected_keys) self.proj_head = HEAD4ENCODER[config["network"]["structure"]["name"]](self.encoder.output_dim, out_dim) def forward(self, drug): if not isinstance(self.encoder, MolFM): h = self.encoder.encode_mol(drug, proj=False, return_node_feats=False) # encoder_struct else: h = self.encoder.encode_structure_with_kg(drug["structure"], drug["kg"]) return self.proj_head(h) class DeepEIK4DP(nn.Module): def __init__(self, config, out_dim): super(DeepEIK4DP, self).__init__() self.use_attention = config["use_attention"] self.projection_dim = config["projection_dim"] drug_encoder_config = json.load(open(config["mol"]["structure"]["config_path"], "r")) self.drug_structure_encoder = SUPPORTED_MOL_ENCODER[config["mol"]["structure"]["name"]](drug_encoder_config) self.structure_hidden_dim = self.drug_structure_encoder.output_dim self.kg_project = nn.Sequential( nn.Linear(config["mol"]["kg"]["embedding_dim"], self.projection_dim), nn.Dropout(config["projection_dropout"]) ) # TODO: need to update based on different text_tokenizer if "text" in config["mol"]: self.text_encoder = AutoModel.from_pretrained(config["mol"]["text"]["model_name_or_path"]) else: self.text_encoder = None # get the embeding of a sentence self.text_project = nn.Sequential( nn.Linear(config["text_dim"], self.projection_dim), nn.Dropout(config["projection_dropout"]) ) if self.use_attention: self.attn = nn.MultiheadAttention(self.structure_hidden_dim + self.projection_dim, num_heads=config["num_attentin_heads"], kdim=self.text_encoder.hidden_dim, vdim=self.text_encoder.hidden_dim ) # structure + kg + text self.pred_head = MLP(config["pred_head"], self.structure_hidden_dim + 2 * self.projection_dim, out_dim) def forward(self, drug): self.h_drug_structure = self.drug_structure_encoder(drug["structure"]) h_kg = drug["kg"] if self.text_encoder is not None: h_text = self.text_encoder(**drug["text"]).last_hidden_state[:, 0, :] else: h_text = drug["text"] # TODO: if self.use_attention: _, attn = self.attn(torch.cat(self.h_drug_structure, h_kg).unsqueeze(1), h_text, h_text) h_text = torch.matmul(attn * drug["text"].unsqueeze(1), h_text) h_text = self.text_project(h_text) h = torch.cat((self.h_drug_structure, h_kg, h_text), dim=1) return self.pred_head(h)
OpenBioMed-main
open_biomed/models/task_model/dp_model.py
import json import torch import torch.nn as nn from models import SUPPORTED_PROTEIN_ENCODER, SUPPORTED_KNOWLEDGE_ENCODER from models.predictor import MLP class PPISeqModel(nn.Module): def __init__(self, config, num_classes): super(PPISeqModel, self).__init__() protein_encoder_config = json.load(open(config["encoder"]["config_path"], "r")) self.protein_encoder = SUPPORTED_PROTEIN_ENCODER[config["encoder"]["name"]](protein_encoder_config) self.feature_fusion = config["feature_fusion"] if self.feature_fusion == 'concat': in_dim = self.protein_encoder.output_dim * 2 else: in_dim = self.protein_encoder.output_dim self.pred_head = MLP(config["pred_head"], in_dim, num_classes) def forward(self, prot1, prot2): x1 = self.protein_encoder(prot1) x2 = self.protein_encoder(prot2) #print(x1, x2) if self.feature_fusion == 'concat': x = torch.cat([x1, x2], dim=1) else: x = torch.mul(x1, x2) return self.pred_head(x) class PPIGraphModel(nn.Module): def __init__(self, config, num_classes): super(PPIGraphModel, self).__init__() self.graph_encoder = SUPPORTED_KNOWLEDGE_ENCODER[config["name"]](config) self.feature_fusion = config["feature_fusion"] if self.feature_fusion == 'concat': in_dim = self.graph_encoder.output_dim * 2 else: in_dim = self.graph_encoder.output_dim self.fc = nn.Linear(in_dim, num_classes) def forward(self, prot1, prot2, graph): x = self.graph_encoder(graph) x1, x2 = x[prot1], x[prot2] if self.feature_fusion == 'concat': x = torch.cat([x1, x2], dim=1) else: x = torch.mul(x1, x2) x = self.fc(x) return x class DeepEIK4PPI(nn.Module): def __init__(self, config, num_classes): super(DeepEIK4PPI, self).__init__() def forward(self, prot1, prot2): pass
OpenBioMed-main
open_biomed/models/task_model/ppi_model.py
import torch import torch.nn as nn class DeepCDR(torch.nn.Module): def __init__(self, input_dim, output_dim=100, **kwargs): super().__init__() self.linear1 = nn.Linear(input_dim, 256) self.dropout = nn.Dropout(0.1) self.norm = nn.BatchNorm1d(256) self.linear2 = nn.Linear(256, output_dim) def forward(self, gexpr_input): # print(gexpr_input) gexpr_input = gexpr_input.float() x_gexpr = self.linear1(gexpr_input) x_gexpr = torch.tanh(x_gexpr) x_gexpr = self.norm(x_gexpr) x_gexpr = self.dropout(x_gexpr) x_gexpr = self.linear2(x_gexpr) return x_gexpr
OpenBioMed-main
open_biomed/models/cell/deepcdr.py
import math import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.cuda.amp import autocast from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states from einops import rearrange, repeat from operator import itemgetter from functools import partial from contextlib import contextmanager from local_attention import LocalAttention try: from apex import amp APEX_AVAILABLE = True except: APEX_AVAILABLE = False # for routing arguments into the functions of the reversible layer def route_args(router, args, depth): routed_args = [(dict(), dict()) for _ in range(depth)] matched_keys = [key for key in args.keys() if key in router] for key in matched_keys: val = args[key] for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])): new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes) routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args}) return routed_args # following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html class Deterministic(nn.Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py # once multi-GPU is confirmed working, refactor and send PR back to source class ReversibleBlock(nn.Module): def __init__(self, f, g): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) def forward(self, x, f_args = {}, g_args = {}): x1, x2 = torch.chunk(x, 2, dim=2) y1, y2 = None, None with torch.no_grad(): y1 = x1 + self.f(x2, record_rng=self.training, **f_args) y2 = x2 + self.g(y1, record_rng=self.training, **g_args) return torch.cat([y1, y2], dim=2) def backward_pass(self, y, dy, f_args = {}, g_args = {}): y1, y2 = torch.chunk(y, 2, dim=2) del y dy1, dy2 = torch.chunk(dy, 2, dim=2) del dy with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, set_rng=True, **g_args) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, set_rng=True, **f_args) torch.autograd.backward(fx2, dx1, retain_graph=True) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim=2) dx = torch.cat([dx1, dx2], dim=2) return x, dx class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, args): ctx.args = args for block, kwarg in zip(blocks, args): x = block(x, **kwarg) ctx.y = x.detach() ctx.blocks = blocks return x @staticmethod def backward(ctx, dy): y = ctx.y args = ctx.args for block, kwargs in zip(ctx.blocks[::-1], args[::-1]): y, dy = block.backward_pass(y, dy, **kwargs) return dy, None, None class SequentialSequence(nn.Module): def __init__(self, layers, args_route = {}): super().__init__() assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers' self.layers = layers self.args_route = args_route def forward(self, x, output_attentions = False, **kwargs): args = route_args(self.args_route, kwargs, len(self.layers)) layers_and_args = list(zip(self.layers, args)) if output_attentions: attn_weights = [] for (f, g), (f_args, g_args) in layers_and_args: if output_attentions: x = x + f(x, output_attentions = output_attentions, **f_args)[0] attn_weights.append(f(x, output_attentions = output_attentions, **f_args)[1].unsqueeze(0)) else: x = x + f(x, **f_args) x = x + g(x, **g_args) if output_attentions: attn_weights = torch.transpose(torch.cat(attn_weights, dim=0), 0, 1) # the final dim is (batch, layer, head, len, len) attn_weights = torch.mean(attn_weights, dim=1) # the dim is (batch, head, len, len) return x, attn_weights else: return x class ReversibleSequence(nn.Module): def __init__(self, blocks, args_route = {}): super().__init__() self.args_route = args_route self.blocks = nn.ModuleList([ReversibleBlock(f=f, g=g) for f, g in blocks]) def forward(self, x, **kwargs): x = torch.cat([x, x], dim=-1) blocks = self.blocks args = route_args(self.args_route, kwargs, len(blocks)) args = list(map(lambda x: {'f_args': x[0], 'g_args': x[1]}, args)) out = _ReversibleFunction.apply(x, blocks, args) return torch.stack(out.chunk(2, dim=-1)).sum(dim=0) # helpers def exists(val): return val is not None def empty(tensor): return tensor.numel() == 0 def default(val, d): return val if exists(val) else d @contextmanager def null_context(): yield def cast_tuple(val): return (val,) if not isinstance(val, tuple) else val # def get_module_device(module): # return next(module.parameters).device def get_module_device(module): try: return next(module.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module): tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = module._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device def find_modules(nn_module, type): return [module for module in nn_module.modules() if isinstance(module, type)] class Always(nn.Module): def __init__(self, val): super().__init__() self.val = val def forward(self, *args, **kwargs): return self.val # kernel functions # transcribed from jax to pytorch from # https://github.com/google-research/google-research/blob/master/performer/fast_attention/jax/fast_attention.py def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None): b, h, *_ = data.shape data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. ratio = (projection_matrix.shape[0] ** -0.5) projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) diag_data = data ** 2 diag_data = torch.sum(diag_data, dim=-1) diag_data = (diag_data / 2.0) * (data_normalizer ** 2) diag_data = diag_data.unsqueeze(dim=-1) if is_query: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) else: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.max(data_dash)) + eps) return data_dash.type_as(data) def generalized_kernel(data, *, projection_matrix, kernel_fn = nn.ReLU(), kernel_epsilon = 0.001, normalize_data = True, device = None): b, h, *_ = data.shape data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. if projection_matrix is None: return kernel_fn(data_normalizer * data) + kernel_epsilon projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) data_prime = kernel_fn(data_dash) + kernel_epsilon return data_prime.type_as(data) def orthogonal_matrix_chunk(cols, device = None): unstructured_block = torch.randn((cols, cols), device = device) q, r = torch.qr(unstructured_block.cpu(), some = True) q, r = map(lambda t: t.to(device), (q, r)) return q.t() def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, device = None): nb_full_blocks = int(nb_rows / nb_columns) block_list = [] for _ in range(nb_full_blocks): q = orthogonal_matrix_chunk(nb_columns, device = device) block_list.append(q) remaining_rows = nb_rows - nb_full_blocks * nb_columns if remaining_rows > 0: q = orthogonal_matrix_chunk(nb_columns, device = device) block_list.append(q[:remaining_rows]) final_matrix = torch.cat(block_list) if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1) elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device) else: raise ValueError(f'Invalid scaling {scaling}') return torch.diag(multiplier) @ final_matrix # linear attention classes with softmax kernel # non-causal linear attention def linear_attention(q, k, v): k_cumsum = k.sum(dim = -2) D_inv = 1. / torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) context = torch.einsum('...nd,...ne->...de', k, v) out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv) return out # efficient causal linear attention, created by EPFL # TODO: rewrite EPFL's CUDA kernel to do mixed precision and remove half to float conversion and back def causal_linear_attention(q, k, v, eps = 1e-6): from fast_transformers.causal_product import CausalDotProduct autocast_enabled = torch.is_autocast_enabled() is_half = isinstance(q, torch.cuda.HalfTensor) assert not is_half or APEX_AVAILABLE, 'half tensors can only be used if nvidia apex is available' cuda_context = null_context if not autocast_enabled else partial(autocast, enabled = False) causal_dot_product_fn = amp.float_function(CausalDotProduct.apply) if is_half else CausalDotProduct.apply k_cumsum = k.cumsum(dim=-2) + eps D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q)) with cuda_context(): if autocast_enabled: q, k, v = map(lambda t: t.float(), (q, k, v)) out = causal_dot_product_fn(q, k, v) out = torch.einsum('...nd,...n->...nd', out, D_inv) return out # inefficient causal linear attention, without cuda code, for reader's reference # not being used def causal_linear_attention_noncuda(q, k, v, chunk_size = 128): last_k_cumsum = 0 last_context_cumsum = 0 outs = [] for q, k, v in zip(*map(lambda t: t.chunk(chunk_size, dim = -2), (q, k, v))): k_cumsum = last_k_cumsum + k.cumsum(dim=-2) D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q)) context = torch.einsum('...nd,...ne->...nde', k, v) context_cumsum = last_context_cumsum + context.cumsum(dim=-3) out = torch.einsum('...nde,...nd,...n->...ne', context_cumsum, q, D_inv) last_k_cumsum = k_cumsum[:, :, -1:] last_context_cumsum = context_cumsum[:, :, -1:] outs.append(out) return torch.cat(outs, dim = -2) def norm_tensor(tensor, dim=-1): return tensor / tensor.sum(dim=dim).unsqueeze(dim) class FastAttention(nn.Module): def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), no_projection = False): super().__init__() nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) self.dim_heads = dim_heads self.nb_features = nb_features self.ortho_scaling = ortho_scaling self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling) projection_matrix = self.create_projection() self.register_buffer('projection_matrix', projection_matrix) self.generalized_attention = generalized_attention self.kernel_fn = kernel_fn # if this is turned on, no projection will be used # queries and keys will be softmax-ed as in the original efficient attention paper self.no_projection = no_projection self.causal = causal if causal: try: import fast_transformers.causal_product.causal_product_cuda self.causal_linear_fn = partial(causal_linear_attention) except ImportError: print('unable to import cuda code for auto-regressive Performer. will default to the memory inefficient non-cuda version') self.causal_linear_fn = causal_linear_attention_noncuda @torch.no_grad() def redraw_projection_matrix(self, device): projections = self.create_projection(device = device) self.projection_matrix.copy_(projections) del projections def forward(self, q, k, v, output_attentions = False): device = q.device # inds = [8060, 8064, 6243, 8575, 10342, 10913, 9366, 993, 7796, 5210, 5212, 5504, 6851, 6559, 5508, 13107, 13820] if self.no_projection: q = q.softmax(dim = -1) k = torch.exp(k) if self.causal else k.softmax(dim = -2) elif self.generalized_attention: create_kernel = partial(generalized_kernel, kernel_fn = self.kernel_fn, projection_matrix = self.projection_matrix, device = device) q, k = map(create_kernel, (q, k)) else: create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device) q = create_kernel(q, is_query = True) k = create_kernel(k, is_query = False) attn_fn = linear_attention if not self.causal else self.causal_linear_fn out = attn_fn(q, k, v) if output_attentions: v_diag = torch.eye(v.shape[-2]).to(device) v_diag = v_diag.unsqueeze(0).unsqueeze(0).repeat(v.shape[0],v.shape[1],1,1) # attn_weights = torch.zeros(1, 1, len(inds), len(inds)).to(device).to(torch.float16) # attn_weights = torch.zeros(1, q.shape[1], len(inds), len(inds)).to(device).to(torch.float16) attn_weights = torch.zeros(1, 1, q.shape[2], q.shape[2]).to(device).to(torch.float16) for head_dim in range(q.shape[1]): # attn_weights[0, head_dim] = torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16)))[0, inds][:, inds] attn_weights += torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16))) # attn_weights += norm_tensor(torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16))), dim=-1) attn_weights /= q.shape[1] return out, attn_weights else: return out # classes class ReZero(nn.Module): def __init__(self, fn): super().__init__() self.g = nn.Parameter(torch.tensor(1e-3)) self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) * self.g class PreScaleNorm(nn.Module): def __init__(self, dim, fn, eps=1e-5): super().__init__() self.fn = fn self.g = nn.Parameter(torch.ones(1)) self.eps = eps def forward(self, x, **kwargs): n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps) x = x / n * self.g return self.fn(x, **kwargs) class PreLayerNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class Chunk(nn.Module): def __init__(self, chunks, fn, along_dim = -1): super().__init__() self.dim = along_dim self.chunks = chunks self.fn = fn def forward(self, x, **kwargs): if self.chunks == 1: return self.fn(x, **kwargs) chunks = x.chunk(self.chunks, dim = self.dim) return torch.cat([self.fn(c, **kwargs) for c in chunks], dim = self.dim) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False): super().__init__() activation = default(activation, nn.GELU) self.glu = glu self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) self.act = activation() self.dropout = nn.Dropout(dropout) self.w2 = nn.Linear(dim * mult, dim) def forward(self, x, **kwargs): if not self.glu: x = self.w1(x) x = self.act(x) else: x, v = self.w1(x).chunk(2, dim=-1) x = self.act(x) * v x = self.dropout(x) x = self.w2(x) return x class SelfAttention(nn.Module): def __init__( self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), dropout = 0., no_projection = False, qkv_bias = False ): super().__init__() assert dim % heads == 0, 'dimension must be divisible by number of heads' dim_head = default(dim_head, dim // heads) inner_dim = dim_head * heads self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, no_projection = no_projection) self.heads = heads self.global_heads = heads - local_heads self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None self.to_q = nn.Linear(dim, inner_dim, bias = qkv_bias) self.to_k = nn.Linear(dim, inner_dim, bias = qkv_bias) self.to_v = nn.Linear(dim, inner_dim, bias = qkv_bias) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, pos_emb = None, context = None, mask = None, context_mask = None, output_attentions = False, **kwargs): b, n, _, h, gh = *x.shape, self.heads, self.global_heads cross_attend = exists(context) context = default(context, x) context_mask = default(context_mask, mask) if not cross_attend else context_mask q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) attn_outs = [] if not empty(q): if exists(context_mask): global_mask = context_mask[:, None, :, None] v.masked_fill_(~global_mask, 0.) if exists(pos_emb) and not cross_attend: q, k, = apply_rotary_pos_emb(q, k, pos_emb) if output_attentions: out, attn_weights = self.fast_attention(q, k, v, output_attentions) else: out = self.fast_attention(q, k, v) attn_outs.append(out) if not empty(lq): assert not cross_attend, 'local attention is not compatible with cross attention' out = self.local_attn(lq, lk, lv, input_mask = mask) attn_outs.append(out) out = torch.cat(attn_outs, dim = 1) # combine attn_out and cross_attn_out, here we have only attn_out, that means this line does nothing out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) if output_attentions: return self.dropout(out), attn_weights else: return self.dropout(out) # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x): t = torch.arange(x.shape[1], device=x.device) return self.emb(t) # rotary positional embedding helpers def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(q, k, sinu_pos): sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j = 2) sin, cos = sinu_pos.unbind(dim = -2) sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j = 2), (sin, cos)) q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) return q, k # sinusoidal positional embeddings class Gene2VecPositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, gene2vec_path): super().__init__() gene2vec_weight = np.load(gene2vec_path) gene2vec_weight = np.concatenate((gene2vec_weight, np.zeros((1, gene2vec_weight.shape[1]))), axis=0) gene2vec_weight = torch.from_numpy(gene2vec_weight) self.emb = nn.Embedding.from_pretrained(gene2vec_weight) def forward(self, x): t = torch.arange(x.shape[1], device=x.device) return self.emb(t) # performer class Performer(nn.Module): def __init__( self, dim, # dimension depth, # layers heads, # heads dim_head, # dim of head local_attn_heads = 0, # num of local attention heads, (heads - local_attn_heads) is num of global performers local_window_size = 256, # window size of local attention causal = False, # autoregressive or not ff_mult = 4, # dim of intermediate features after attention / dim of input features nb_features = None, # number of random features, if not set, will default to (d * log(d)), where d is the dimension of each head ?? what is random feature ?? feature_redraw_interval = 1000, # how frequently to redraw the projection matrix, the more frequent, the slower the training reversible = False, # reversible layers, from Reformer (save memory) ff_chunks = 1, # chunk feedforward layer, from Reformer generalized_attention = False, # defaults to softmax approximation, but can be set to True for generalized attention ?? what is generalized attention ?? kernel_fn = nn.ReLU(), # the kernel function to be used, if generalized attention is turned on, defaults to Relu use_scalenorm = False, # use scale norm, from 'Transformers without Tears' paper, a substitute for LayerNorm, priority: scalenorm.rezero.layernorm use_rezero = False, # use Rezero or not, from 'Rezero is all you need' paper, a substitute for LayerNorm, priority: scalenorm.rezero.layernorm ff_glu = False, # use GLU (Gated Linear Units) variant for feedforward ff_dropout = 0., # feedforward dropout attn_dropout = 0., # post-attention dropout cross_attend = False, # ?? no_projection = False, # ?? auto_check_redraw = True, # ?? qkv_bias = True, # ?? ): super().__init__() layers = nn.ModuleList([]) local_attn_heads = cast_tuple(local_attn_heads) local_attn_heads = local_attn_heads * depth if len(local_attn_heads) == 1 else local_attn_heads assert len(local_attn_heads) == depth, 'tuple specifying number of local attention heads per depth must be equal to the total depth' assert all(map(lambda n: n >= 0 and n <= heads, local_attn_heads)), 'local attention head value must be less than the total number of heads' if use_scalenorm: wrapper_fn = partial(PreScaleNorm, dim) elif use_rezero: wrapper_fn = ReZero else: wrapper_fn = partial(PreLayerNorm, dim) for _, local_heads in zip(range(depth), local_attn_heads): layers.append(nn.ModuleList([ wrapper_fn(SelfAttention(dim, causal = causal, heads = heads, dim_head = dim_head, local_heads = local_heads, local_window_size = local_window_size, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection, qkv_bias = qkv_bias)), wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1)) ])) # if no need cross_attend(decoder), begin next cycle if not cross_attend: continue layers.append(nn.ModuleList([ wrapper_fn(SelfAttention(dim, heads = heads, dim_head = dim_head, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection)), wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1)) ])) execute_type = ReversibleSequence if reversible else SequentialSequence route_attn = ((True, False),) * depth * (2 if cross_attend else 1) # ((True, False), (True, False), (True, False), (True, False), (True, False), (True, False)) route_context = ((False, False), (True, False)) * depth attn_route_map = {'mask': route_attn, 'pos_emb': route_attn} context_route_map = {'context': route_context, 'context_mask': route_context} if cross_attend else {} self.net = execute_type(layers, args_route = {**attn_route_map, **context_route_map}) # keeping track of when to redraw projections for all attention layers self.auto_check_redraw = auto_check_redraw self.feature_redraw_interval = feature_redraw_interval self.register_buffer('calls_since_last_redraw', torch.tensor(0)) def fix_projection_matrices_(self): self.feature_redraw_interval = None def check_redraw_projections(self): if not self.training: return if exists(self.feature_redraw_interval) and self.calls_since_last_redraw >= self.feature_redraw_interval: device = get_module_device(self) fast_attentions = find_modules(self, FastAttention) for fast_attention in fast_attentions: fast_attention.redraw_projection_matrix(device) self.calls_since_last_redraw.zero_() return self.calls_since_last_redraw += 1 def forward(self, x, output_attentions = False, **kwargs): if self.auto_check_redraw: self.check_redraw_projections() return self.net(x, output_attentions = output_attentions, **kwargs) class PerformerLM(nn.Module): def __init__( self, *, num_tokens, # num of tokens max_seq_len, # max length of sequence dim, # dim of tokens depth, # layers heads, # num of heads dim_head = 64, # dim of heads local_attn_heads = 0, local_window_size = 256, causal = False, ff_mult = 4, nb_features = None, feature_redraw_interval = 1000, reversible = False, ff_chunks = 1, ff_glu = False, emb_dropout = 0., ff_dropout = 0., attn_dropout = 0., generalized_attention = False, kernel_fn = nn.ReLU(), use_scalenorm = False, use_rezero = False, cross_attend = False, no_projection = False, tie_embed = False, # False: output is num of tokens, True: output is dim of tokens //multiply final embeddings with token weights for logits, like gpt decoder// g2v_position_emb = True, # priority: gene2vec, no embedding auto_check_redraw = True, qkv_bias = False, tune_layer = [-1], gene2vec_path = "../assets/gene2vec_16906.npy", **kwargs ): super().__init__() local_attn_heads = cast_tuple(local_attn_heads) self.max_seq_len = max_seq_len self.token_emb = nn.Embedding(num_tokens, dim) if g2v_position_emb: self.pos_emb = Gene2VecPositionalEmbedding(dim, max_seq_len, gene2vec_path) self.layer_pos_emb = Always(None) else: self.pos_emb = torch.zeros_like self.layer_pos_emb = Always(None) self.dropout = nn.Dropout(emb_dropout) self.performer = Performer(dim, depth, heads, dim_head, local_attn_heads, local_window_size, causal, ff_mult, nb_features, feature_redraw_interval, reversible, ff_chunks, generalized_attention, kernel_fn, use_scalenorm, use_rezero, ff_glu, ff_dropout, attn_dropout, cross_attend, no_projection, auto_check_redraw, qkv_bias) self.norm = nn.LayerNorm(dim) self.to_out = nn.Linear(dim, num_tokens) if not tie_embed else None for param in self.parameters(): param.requires_grad = False for param in self.norm.parameters(): param.requires_grad = True for layer in tune_layer: for param in self.performer.net.layers[layer].parameters(): param.requires_grad = True def check_redraw_projections(self): self.performer.check_redraw_projections() def fix_projection_matrices_(self): self.performer.fix_projection_matrices_() def forward(self, x, return_encodings = False, output_attentions = False, **kwargs): b, n, device = *x.shape, x.device assert n <= self.max_seq_len, f'sequence length {n} must be less than the max sequence length {self.max_seq_len}' # token and positional embedding x = self.token_emb(x) if output_attentions: x.requires_grad_() # used for attn_map output x += self.pos_emb(x) x = self.dropout(x) # performer layers layer_pos_emb = self.layer_pos_emb(x) if output_attentions: x, attn_weights = self.performer(x, pos_emb = layer_pos_emb, output_attentions = output_attentions, **kwargs) # norm and to logits x = self.norm(x) if return_encodings: return x, attn_weights if exists(self.to_out): return self.to_out(x), attn_weights return (x @ self.token_emb.weight.t()), attn_weights else: x = self.performer(x, pos_emb = layer_pos_emb, output_attentions = output_attentions, **kwargs) # norm and to logits x = self.norm(x) if return_encodings: return x if exists(self.to_out): x = self.to_out(x) return x return x @ self.token_emb.weight.t()
OpenBioMed-main
open_biomed/models/cell/performer.py
from models.cell.gat import CellGAT from models.cell.performer import PerformerLM from models.cell.performer_celllm import PerformerLM_CellLM from models.cell.deepcdr import DeepCDR SUPPORTED_CELL_ENCODER = { "scbert": PerformerLM, "celllm": PerformerLM_CellLM, "gat": CellGAT, "deepcdr": DeepCDR }
OpenBioMed-main
open_biomed/models/cell/__init__.py
import math import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.cuda.amp import autocast from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states from einops import rearrange, repeat from operator import itemgetter from functools import partial from contextlib import contextmanager from local_attention import LocalAttention try: from apex import amp APEX_AVAILABLE = True except: APEX_AVAILABLE = False # for routing arguments into the functions of the reversible layer def route_args(router, args, depth): routed_args = [(dict(), dict()) for _ in range(depth)] matched_keys = [key for key in args.keys() if key in router] for key in matched_keys: val = args[key] for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])): new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes) routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args}) return routed_args # following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html class Deterministic(nn.Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py # once multi-GPU is confirmed working, refactor and send PR back to source class ReversibleBlock(nn.Module): def __init__(self, f, g): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) def forward(self, x, f_args = {}, g_args = {}): x1, x2 = torch.chunk(x, 2, dim=2) y1, y2 = None, None with torch.no_grad(): y1 = x1 + self.f(x2, record_rng=self.training, **f_args) y2 = x2 + self.g(y1, record_rng=self.training, **g_args) return torch.cat([y1, y2], dim=2) def backward_pass(self, y, dy, f_args = {}, g_args = {}): y1, y2 = torch.chunk(y, 2, dim=2) del y dy1, dy2 = torch.chunk(dy, 2, dim=2) del dy with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, set_rng=True, **g_args) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, set_rng=True, **f_args) torch.autograd.backward(fx2, dx1, retain_graph=True) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim=2) dx = torch.cat([dx1, dx2], dim=2) return x, dx class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, args): ctx.args = args for block, kwarg in zip(blocks, args): x = block(x, **kwarg) ctx.y = x.detach() ctx.blocks = blocks return x @staticmethod def backward(ctx, dy): y = ctx.y args = ctx.args for block, kwargs in zip(ctx.blocks[::-1], args[::-1]): y, dy = block.backward_pass(y, dy, **kwargs) return dy, None, None class SequentialSequence(nn.Module): def __init__(self, layers, args_route = {}): super().__init__() assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers' self.layers = layers self.args_route = args_route def forward(self, x, output_attentions = False, **kwargs): args = route_args(self.args_route, kwargs, len(self.layers)) layers_and_args = list(zip(self.layers, args)) if output_attentions: attn_weights = [] for (f, g), (f_args, g_args) in layers_and_args: if output_attentions: x = x + f(x, output_attentions = output_attentions, **f_args)[0] attn_weights.append(f(x, output_attentions = output_attentions, **f_args)[1].unsqueeze(0)) else: x = x + f(x, **f_args) x = x + g(x, **g_args) if output_attentions: attn_weights = torch.transpose(torch.cat(attn_weights, dim=0), 0, 1) # the final dim is (batch, layer, head, len, len) attn_weights = torch.mean(attn_weights, dim=1) # the dim is (batch, head, len, len) return x, attn_weights else: return x class ReversibleSequence(nn.Module): def __init__(self, blocks, args_route = {}): super().__init__() self.args_route = args_route self.blocks = nn.ModuleList([ReversibleBlock(f=f, g=g) for f, g in blocks]) def forward(self, x, **kwargs): x = torch.cat([x, x], dim=-1) blocks = self.blocks args = route_args(self.args_route, kwargs, len(blocks)) args = list(map(lambda x: {'f_args': x[0], 'g_args': x[1]}, args)) out = _ReversibleFunction.apply(x, blocks, args) return torch.stack(out.chunk(2, dim=-1)).sum(dim=0) # helpers def exists(val): return val is not None def empty(tensor): return tensor.numel() == 0 def default(val, d): return val if exists(val) else d @contextmanager def null_context(): yield def cast_tuple(val): return (val,) if not isinstance(val, tuple) else val # def get_module_device(module): # return next(module.parameters).device def get_module_device(module): try: return next(module.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module): tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = module._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device def find_modules(nn_module, type): return [module for module in nn_module.modules() if isinstance(module, type)] class Always(nn.Module): def __init__(self, val): super().__init__() self.val = val def forward(self, *args, **kwargs): return self.val # kernel functions # transcribed from jax to pytorch from # https://github.com/google-research/google-research/blob/master/performer/fast_attention/jax/fast_attention.py def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None): b, h, *_ = data.shape data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. ratio = (projection_matrix.shape[0] ** -0.5) projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) diag_data = data ** 2 diag_data = torch.sum(diag_data, dim=-1) diag_data = (diag_data / 2.0) * (data_normalizer ** 2) diag_data = diag_data.unsqueeze(dim=-1) if is_query: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) else: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.max(data_dash)) + eps) return data_dash.type_as(data) def generalized_kernel(data, *, projection_matrix, kernel_fn = nn.ReLU(), kernel_epsilon = 0.001, normalize_data = True, device = None): b, h, *_ = data.shape data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. if projection_matrix is None: return kernel_fn(data_normalizer * data) + kernel_epsilon projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) data_prime = kernel_fn(data_dash) + kernel_epsilon return data_prime.type_as(data) def orthogonal_matrix_chunk(cols, device = None): unstructured_block = torch.randn((cols, cols), device = device) q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced') q, r = map(lambda t: t.to(device), (q, r)) return q.t() def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, device = None): nb_full_blocks = int(nb_rows / nb_columns) block_list = [] for _ in range(nb_full_blocks): q = orthogonal_matrix_chunk(nb_columns, device = device) block_list.append(q) remaining_rows = nb_rows - nb_full_blocks * nb_columns if remaining_rows > 0: q = orthogonal_matrix_chunk(nb_columns, device = device) block_list.append(q[:remaining_rows]) final_matrix = torch.cat(block_list) if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1) elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device) else: raise ValueError(f'Invalid scaling {scaling}') return torch.diag(multiplier) @ final_matrix # linear attention classes with softmax kernel # non-causal linear attention def linear_attention(q, k, v): k_cumsum = k.sum(dim = -2) D_inv = 1. / torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) context = torch.einsum('...nd,...ne->...de', k, v) out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv) return out # efficient causal linear attention, created by EPFL # TODO: rewrite EPFL's CUDA kernel to do mixed precision and remove half to float conversion and back def causal_linear_attention(q, k, v, eps = 1e-6): from fast_transformers.causal_product import CausalDotProduct autocast_enabled = torch.is_autocast_enabled() is_half = isinstance(q, torch.cuda.HalfTensor) assert not is_half or APEX_AVAILABLE, 'half tensors can only be used if nvidia apex is available' cuda_context = null_context if not autocast_enabled else partial(autocast, enabled = False) causal_dot_product_fn = amp.float_function(CausalDotProduct.apply) if is_half else CausalDotProduct.apply k_cumsum = k.cumsum(dim=-2) + eps D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q)) with cuda_context(): if autocast_enabled: q, k, v = map(lambda t: t.float(), (q, k, v)) out = causal_dot_product_fn(q, k, v) out = torch.einsum('...nd,...n->...nd', out, D_inv) return out # inefficient causal linear attention, without cuda code, for reader's reference # not being used def causal_linear_attention_noncuda(q, k, v, chunk_size = 128): last_k_cumsum = 0 last_context_cumsum = 0 outs = [] for q, k, v in zip(*map(lambda t: t.chunk(chunk_size, dim = -2), (q, k, v))): k_cumsum = last_k_cumsum + k.cumsum(dim=-2) D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q)) context = torch.einsum('...nd,...ne->...nde', k, v) context_cumsum = last_context_cumsum + context.cumsum(dim=-3) out = torch.einsum('...nde,...nd,...n->...ne', context_cumsum, q, D_inv) last_k_cumsum = k_cumsum[:, :, -1:] last_context_cumsum = context_cumsum[:, :, -1:] outs.append(out) return torch.cat(outs, dim = -2) def norm_tensor(tensor, dim=-1): return tensor / tensor.sum(dim=dim).unsqueeze(dim) class FastAttention(nn.Module): def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), no_projection = False): super().__init__() nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) self.dim_heads = dim_heads self.nb_features = nb_features self.ortho_scaling = ortho_scaling self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling) projection_matrix = self.create_projection() self.register_buffer('projection_matrix', projection_matrix) self.generalized_attention = generalized_attention self.kernel_fn = kernel_fn # if this is turned on, no projection will be used # queries and keys will be softmax-ed as in the original efficient attention paper self.no_projection = no_projection self.causal = causal if causal: try: import fast_transformers.causal_product.causal_product_cuda self.causal_linear_fn = partial(causal_linear_attention) except ImportError: print('unable to import cuda code for auto-regressive Performer. will default to the memory inefficient non-cuda version') self.causal_linear_fn = causal_linear_attention_noncuda @torch.no_grad() def redraw_projection_matrix(self, device): projections = self.create_projection(device = device) self.projection_matrix.copy_(projections) del projections def forward(self, q, k, v, output_attentions = False): device = q.device # inds = [8060, 8064, 6243, 8575, 10342, 10913, 9366, 993, 7796, 5210, 5212, 5504, 6851, 6559, 5508, 13107, 13820] if self.no_projection: q = q.softmax(dim = -1) k = torch.exp(k) if self.causal else k.softmax(dim = -2) elif self.generalized_attention: create_kernel = partial(generalized_kernel, kernel_fn = self.kernel_fn, projection_matrix = self.projection_matrix, device = device) q, k = map(create_kernel, (q, k)) else: create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device) q = create_kernel(q, is_query = True) k = create_kernel(k, is_query = False) attn_fn = linear_attention if not self.causal else self.causal_linear_fn out = attn_fn(q, k, v) if output_attentions: v_diag = torch.eye(v.shape[-2]).to(device) v_diag = v_diag.unsqueeze(0).unsqueeze(0).repeat(v.shape[0],v.shape[1],1,1) # attn_weights = torch.zeros(1, 1, len(inds), len(inds)).to(device).to(torch.float16) # attn_weights = torch.zeros(1, q.shape[1], len(inds), len(inds)).to(device).to(torch.float16) attn_weights = torch.zeros(1, 1, q.shape[2], q.shape[2]).to(device).to(torch.float16) for head_dim in range(q.shape[1]): # attn_weights[0, head_dim] = torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16)))[0, inds][:, inds] attn_weights += torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16))) # attn_weights += norm_tensor(torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16))), dim=-1) attn_weights /= q.shape[1] return out, attn_weights else: return out # classes class ReZero(nn.Module): def __init__(self, fn): super().__init__() self.g = nn.Parameter(torch.tensor(1e-3)) self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) * self.g class PreScaleNorm(nn.Module): def __init__(self, dim, fn, eps=1e-5): super().__init__() self.fn = fn self.g = nn.Parameter(torch.ones(1)) self.eps = eps def forward(self, x, **kwargs): n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps) x = x / n * self.g return self.fn(x, **kwargs) class PreLayerNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class Chunk(nn.Module): def __init__(self, chunks, fn, along_dim = -1): super().__init__() self.dim = along_dim self.chunks = chunks self.fn = fn def forward(self, x, **kwargs): if self.chunks == 1: return self.fn(x, **kwargs) chunks = x.chunk(self.chunks, dim = self.dim) return torch.cat([self.fn(c, **kwargs) for c in chunks], dim = self.dim) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False): super().__init__() activation = default(activation, nn.GELU) self.glu = glu self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) self.act = activation() self.dropout = nn.Dropout(dropout) self.w2 = nn.Linear(dim * mult, dim) def forward(self, x, **kwargs): if not self.glu: x = self.w1(x) x = self.act(x) else: x, v = self.w1(x).chunk(2, dim=-1) x = self.act(x) * v x = self.dropout(x) x = self.w2(x) return x class SelfAttention(nn.Module): def __init__( self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), dropout = 0., no_projection = False, qkv_bias = False ): super().__init__() assert dim % heads == 0, 'dimension must be divisible by number of heads' dim_head = default(dim_head, dim // heads) inner_dim = dim_head * heads self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, no_projection = no_projection) self.heads = heads self.global_heads = heads - local_heads self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None self.to_q = nn.Linear(dim, inner_dim, bias = qkv_bias) self.to_k = nn.Linear(dim, inner_dim, bias = qkv_bias) self.to_v = nn.Linear(dim, inner_dim, bias = qkv_bias) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, pos_emb = None, context = None, mask = None, context_mask = None, output_attentions = False, **kwargs): b, n, _, h, gh = *x.shape, self.heads, self.global_heads cross_attend = exists(context) context = default(context, x) context_mask = default(context_mask, mask) if not cross_attend else context_mask q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) attn_outs = [] if not empty(q): if exists(context_mask): global_mask = context_mask[:, None, :, None] v.masked_fill_(~global_mask, 0.) if exists(pos_emb) and not cross_attend: q, k, = apply_rotary_pos_emb(q, k, pos_emb) if output_attentions: out, attn_weights = self.fast_attention(q, k, v, output_attentions) else: out = self.fast_attention(q, k, v) attn_outs.append(out) if not empty(lq): assert not cross_attend, 'local attention is not compatible with cross attention' out = self.local_attn(lq, lk, lv, input_mask = mask) attn_outs.append(out) out = torch.cat(attn_outs, dim = 1) # combine attn_out and cross_attn_out, here we have only attn_out, that means this line does nothing out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) if output_attentions: return self.dropout(out), attn_weights else: return self.dropout(out) # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x): t = torch.arange(x.shape[1], device=x.device) return self.emb(t) # rotary positional embedding helpers def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(q, k, sinu_pos): sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j = 2) sin, cos = sinu_pos.unbind(dim = -2) sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j = 2), (sin, cos)) q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) return q, k # sinusoidal positional embeddings class Gene2VecPositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, gene2vec_path): super().__init__() gene2vec_weight = np.load(gene2vec_path) gene2vec_weight = np.concatenate((gene2vec_weight, np.ones((1, gene2vec_weight.shape[1]))), axis=0) # CLS gene2vec_weight = np.concatenate((gene2vec_weight, np.zeros((1, gene2vec_weight.shape[1]))), axis=0) # PAD gene2vec_weight = torch.from_numpy(gene2vec_weight) self.emb = nn.Embedding.from_pretrained(gene2vec_weight) def forward(self, x, pos = None): if pos is None: t = torch.arange(x.shape[1], device=x.device) return self.emb(t) else: return self.emb(pos) # performer class Performer(nn.Module): def __init__( self, dim, # dimension depth, # layers heads, # heads dim_head, # dim of head local_attn_heads = 0, # num of local attention heads, (heads - local_attn_heads) is num of global performers local_window_size = 256, # window size of local attention causal = False, # autoregressive or not ff_mult = 4, # dim of intermediate features after attention / dim of input features nb_features = None, # number of random features, if not set, will default to (d * log(d)), where d is the dimension of each head ?? what is random feature ?? feature_redraw_interval = 1000, # how frequently to redraw the projection matrix, the more frequent, the slower the training reversible = False, # reversible layers, from Reformer (save memory) ff_chunks = 1, # chunk feedforward layer, from Reformer generalized_attention = False, # defaults to softmax approximation, but can be set to True for generalized attention ?? what is generalized attention ?? kernel_fn = nn.ReLU(), # the kernel function to be used, if generalized attention is turned on, defaults to Relu use_scalenorm = False, # use scale norm, from 'Transformers without Tears' paper, a substitute for LayerNorm, priority: scalenorm.rezero.layernorm use_rezero = False, # use Rezero or not, from 'Rezero is all you need' paper, a substitute for LayerNorm, priority: scalenorm.rezero.layernorm ff_glu = False, # use GLU (Gated Linear Units) variant for feedforward ff_dropout = 0., # feedforward dropout attn_dropout = 0., # post-attention dropout cross_attend = False, # ?? no_projection = False, # ?? auto_check_redraw = True, # ?? qkv_bias = True, # ?? ): super().__init__() layers = nn.ModuleList([]) local_attn_heads = cast_tuple(local_attn_heads) local_attn_heads = local_attn_heads * depth if len(local_attn_heads) == 1 else local_attn_heads assert len(local_attn_heads) == depth, 'tuple specifying number of local attention heads per depth must be equal to the total depth' assert all(map(lambda n: n >= 0 and n <= heads, local_attn_heads)), 'local attention head value must be less than the total number of heads' if use_scalenorm: wrapper_fn = partial(PreScaleNorm, dim) elif use_rezero: wrapper_fn = ReZero else: wrapper_fn = partial(PreLayerNorm, dim) for _, local_heads in zip(range(depth), local_attn_heads): layers.append(nn.ModuleList([ wrapper_fn(SelfAttention(dim, causal = causal, heads = heads, dim_head = dim_head, local_heads = local_heads, local_window_size = local_window_size, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection, qkv_bias = qkv_bias)), wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1)) ])) # if no need cross_attend(decoder), begin next cycle if not cross_attend: continue layers.append(nn.ModuleList([ wrapper_fn(SelfAttention(dim, heads = heads, dim_head = dim_head, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection)), wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1)) ])) execute_type = ReversibleSequence if reversible else SequentialSequence route_attn = ((True, False),) * depth * (2 if cross_attend else 1) # ((True, False), (True, False), (True, False), (True, False), (True, False), (True, False)) route_context = ((False, False), (True, False)) * depth attn_route_map = {'mask': route_attn, 'pos_emb': route_attn} context_route_map = {'context': route_context, 'context_mask': route_context} if cross_attend else {} self.net = execute_type(layers, args_route = {**attn_route_map, **context_route_map}) # keeping track of when to redraw projections for all attention layers self.auto_check_redraw = auto_check_redraw self.feature_redraw_interval = feature_redraw_interval self.register_buffer('calls_since_last_redraw', torch.tensor(0)) def fix_projection_matrices_(self): self.feature_redraw_interval = None def check_redraw_projections(self): if not self.training: return if exists(self.feature_redraw_interval) and self.calls_since_last_redraw >= self.feature_redraw_interval: device = get_module_device(self) fast_attentions = find_modules(self, FastAttention) for fast_attention in fast_attentions: fast_attention.redraw_projection_matrix(device) self.calls_since_last_redraw.zero_() return self.calls_since_last_redraw += 1 def forward(self, x, output_attentions = False, **kwargs): if self.auto_check_redraw: self.check_redraw_projections() return self.net(x, output_attentions = output_attentions, **kwargs) class PerformerLM_CellLM(nn.Module): def __init__( self, *, num_tokens, # num of tokens max_seq_len, # max length of sequence dim, # dim of tokens depth, # layers heads, # num of heads dim_head = 64, # dim of heads local_attn_heads = 0, local_window_size = 256, causal = False, ff_mult = 4, nb_features = None, feature_redraw_interval = 1000, reversible = False, ff_chunks = 1, ff_glu = False, emb_dropout = 0., ff_dropout = 0., attn_dropout = 0., generalized_attention = False, kernel_fn = nn.ReLU(), use_scalenorm = False, use_rezero = False, cross_attend = False, no_projection = False, tie_embed = False, # False: output is num of tokens, True: output is dim of tokens //multiply final embeddings with token weights for logits, like gpt decoder// g2v_position_emb = True, # priority: gene2vec, no embedding auto_check_redraw = True, qkv_bias = False, tune_layer = [-1], gene2vec_path = '../assets/gene2vec_19379_512.npy', gene_num = 19379, **kwargs ): super().__init__() local_attn_heads = cast_tuple(local_attn_heads) self.max_seq_len = max_seq_len self.token_emb = nn.Embedding(num_tokens, dim) self.pad_token_id = num_tokens - 1 self.cls_token_id = num_tokens - 2 self.pad_gene_id = gene_num + 1 self.cls_gene_id = gene_num if g2v_position_emb: self.pos_emb = Gene2VecPositionalEmbedding(dim, max_seq_len, gene2vec_path) self.layer_pos_emb = Always(None) else: self.pos_emb = torch.zeros_like self.layer_pos_emb = Always(None) self.dropout = nn.Dropout(emb_dropout) self.performer = Performer(dim, depth, heads, dim_head, local_attn_heads, local_window_size, causal, ff_mult, nb_features, feature_redraw_interval, reversible, ff_chunks, generalized_attention, kernel_fn, use_scalenorm, use_rezero, ff_glu, ff_dropout, attn_dropout, cross_attend, no_projection, auto_check_redraw, qkv_bias) self.norm = nn.LayerNorm(dim) self.to_out = nn.Linear(dim, num_tokens) if not tie_embed else None for param in self.parameters(): param.requires_grad = False for param in self.norm.parameters(): param.requires_grad = True for layer in tune_layer: for param in self.performer.net.layers[layer].parameters(): param.requires_grad = True def check_redraw_projections(self): self.performer.check_redraw_projections() def fix_projection_matrices_(self): self.performer.fix_projection_matrices_() def forward(self, x, return_encodings = False, output_attentions = False, **kwargs): input_exp = torch.ones(x.shape[0], self.max_seq_len).long().to(x.device) * self.pad_token_id gene_pos = torch.ones(x.shape[0], self.max_seq_len).long().to(x.device) * self.pad_gene_id mask = torch.zeros(x.shape[0], self.max_seq_len).to(x.device).bool() for i, input_seq in enumerate(x): exp = input_seq[input_seq > 0] pos = torch.tensor(range(input_seq.shape[0])).to(x.device)[input_seq > 0] exp[exp > (self.cls_token_id - 1)] = self.cls_token_id - 1 exp = exp.long() exp = torch.cat((torch.tensor([self.cls_token_id]).to(x.device), exp)) pos = torch.cat((torch.tensor([self.cls_gene_id]).to(x.device), pos)) actual_len = min(exp.shape[0], self.max_seq_len) input_exp[i, :actual_len] = exp[:actual_len] gene_pos[i, :actual_len] = pos[:actual_len] mask[i, :actual_len] = True x = input_exp b, n, device = *x.shape, x.device assert n <= self.max_seq_len, f'sequence length {n} must be less than the max sequence length {self.max_seq_len}' # token and positional embedding x = self.token_emb(x) if output_attentions: x.requires_grad_() # used for attn_map output x += self.pos_emb(x, gene_pos) x = self.dropout(x) # performer layers layer_pos_emb = self.layer_pos_emb(x) if output_attentions: x, attn_weights = self.performer(x, pos_emb = layer_pos_emb, output_attentions = output_attentions, mask = mask, **kwargs) # norm and to logits x = self.norm(x) if return_encodings: return x, attn_weights if exists(self.to_out): return self.to_out(x), attn_weights return (x @ self.token_emb.weight.t()), attn_weights else: x = self.performer(x, pos_emb = layer_pos_emb, output_attentions = output_attentions, mask = mask, **kwargs) # norm and to logits x = self.norm(x) x *= mask.unsqueeze(-1) if return_encodings: return x, gene_pos if exists(self.to_out): try: x = self.to_out(x) except: x = self.to_out(x, gene_pos) return x return x @ self.token_emb.weight.t()
OpenBioMed-main
open_biomed/models/cell/performer_celllm.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch_geometric.nn import GATConv, max_pool class CellGAT(torch.nn.Module): def __init__(self, num_feature, layer_cell, dim_cell, cluster_predefine): super().__init__() self.num_feature = num_feature self.layer_cell = layer_cell self.dim_cell = dim_cell self.cluster_predefine = cluster_predefine self.final_node = len(self.cluster_predefine[self.layer_cell - 1].unique()) self.convs_cell = torch.nn.ModuleList() self.bns_cell = torch.nn.ModuleList() # self.activations = torch.nn.ModuleList() for i in range(self.layer_cell): if i: conv = GATConv(self.dim_cell, self.dim_cell) else: conv = GATConv(self.num_feature, self.dim_cell) bn = torch.nn.BatchNorm1d(self.dim_cell, affine=False) # True or False # activation = nn.PReLU(self.dim_cell) self.convs_cell.append(conv) self.bns_cell.append(bn) # self.activations.append(activation) def forward(self, cell): for i in range(self.layer_cell): cell.x = F.relu(self.convs_cell[i](cell.x, cell.edge_index)) num_node = int(cell.x.size(0) / cell.num_graphs) cluster = torch.cat([self.cluster_predefine[i] + j * num_node for j in range(cell.num_graphs)]) cell = max_pool(cluster, cell, transform=None) cell.x = self.bns_cell[i](cell.x) node_representation = cell.x.reshape(-1, self.final_node * self.dim_cell) return node_representation def grad_cam(self, cell): for i in range(self.layer_cell): cell.x = F.relu(self.convs_cell[i](cell.x, cell.edge_index)) if i == 0: cell_node = cell.x cell_node.retain_grad() num_node = int(cell.x.size(0) / cell.num_graphs) cluster = torch.cat([self.cluster_predefine[i] + j * num_node for j in range(cell.num_graphs)]) cell = max_pool(cluster, cell, transform=None) cell.x = self.bns_cell[i](cell.x) node_representation = cell.x.reshape(-1, self.final_node * self.dim_cell) return cell_node, node_representation
OpenBioMed-main
open_biomed/models/cell/gat.py
from models.multimodal.bert import MolBERT from models.multimodal.biomedgpt import BioMedGPTCLIP, BioMedGPTV from models.multimodal.kv_plm import KVPLM from models.multimodal.momu import MoMu from models.multimodal.molfm.molfm import MolFM from models.multimodal.molfm.drugfm import DrugFM from models.multimodal.molt5 import MolT5 from models.multimodal.text2mol import Text2MolMLP
OpenBioMed-main
open_biomed/models/multimodal/__init__.py
import torch import torch.nn as nn from transformers import T5Tokenizer, T5ForConditionalGeneration from models.base_models import MolEncoder, TextEncoder class MolT5(MolEncoder, TextEncoder): def __init__(self, config): super(MolT5, self).__init__() self.main_model = T5ForConditionalGeneration.from_pretrained(config['model_name_or_path']) self.tokenizer = T5Tokenizer.from_pretrained(config['model_name_or_path']) if "stop_grad" in config: for k, v in self.main_model.named_parameters(): v.requires_grad = False self.hidden_size = self.main_model.config.hidden_size self.output_dim = self.hidden_size def forward(self, encoder_outputs, encoder_attention_mask, decoder_attention_mask, labels): return self.main_model( encoder_outputs=encoder_outputs, attention_mask=encoder_attention_mask, decoder_attention_mask=decoder_attention_mask, labels=labels ).loss def encode(self, text): return self.main_model.encoder(**text).last_hidden_state def decode(self, encoder_outputs, encoder_attention_mask, num_beams, max_length): outputs = self.main_model.generate( encoder_outputs = encoder_outputs, attention_mask = encoder_attention_mask, num_beams=num_beams, max_length=max_length, ) return self.tokenizer.batch_decode(outputs, skip_special_tokens=True) def encode_mol(self, mol): return self.encode(mol) def encode_text(self, text): return self.main_model.encoder(**text)
OpenBioMed-main
open_biomed/models/multimodal/molt5.py