python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import torch import types import os from tqdm import tqdm import numpy as np from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.projects.deeplab import add_deeplab_config import glob from mask2former import add_maskformer2_config from predictor import VisualizationDemo import matplotlib import matplotlib.pyplot as plt import argparse import json def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_maskformer2_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg MASK2FORMER_CONFIG_FILE = "./maskformer2_swin_large_IN21k_384_bs16_100ep.yaml" MASK2FORMER_WEIGHTS_FILE = "./model_final_e5f453.pkl" if __name__ == "__main__": torch.autograd.set_grad_enabled(False) parser = argparse.ArgumentParser(description="Specify dirs") parser.add_argument("--scene_dir_path", default="./masked_rdp_data/", type=str) parser.add_argument("--save_dir_path", default="./maskformer_masks/", type=str) args = parser.parse_args() scene_dir = args.scene_dir_path save_dir = args.save_dir_path os.makedirs(os.path.join(save_dir), exist_ok=True) for scan in tqdm(os.listdir(scene_dir)): os.makedirs(os.path.join(save_dir, scan), exist_ok=True) rgb_list = glob.glob(os.path.join(scene_dir, scan, "*png")) for img2_idx in range(len(rgb_list)): IMGFILE = os.path.join(scene_dir, scan, str(img2_idx) + ".png") MASK_LOAD_FILE = os.path.join(save_dir, scan, str(img2_idx) + ".pt") LOAD_IMG_HEIGHT = 512 LOAD_IMG_WIDTH = 512 cfgargs = types.SimpleNamespace() cfgargs.imgfile = IMGFILE cfgargs.config_file = MASK2FORMER_CONFIG_FILE cfgargs.opts = ["MODEL.WEIGHTS", MASK2FORMER_WEIGHTS_FILE] cfg = setup_cfg(cfgargs) demo = VisualizationDemo(cfg) img = read_image(IMGFILE, format="BGR") predictions, visualized_output = demo.run_on_image(img) masks = torch.nn.functional.interpolate( predictions["instances"].pred_masks.unsqueeze(0), [LOAD_IMG_HEIGHT, LOAD_IMG_WIDTH], mode="nearest" ) masks = masks.half() torch.save(masks[0].detach().cpu(), MASK_LOAD_FILE)
3D-LLM-main
three_steps_3d_feature/first_step/maskformer_mask.py
import os from pathlib import Path import cv2 import numpy as np import open_clip import torch from segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry from tqdm import tqdm, trange import glob import argparse from tqdm import tqdm def main(): parser = argparse.ArgumentParser(description="Specify dirs") parser.add_argument("--scene_dir_path", default="./masked_rdp_data/", type=str) parser.add_argument("--save_dir_path", default="./sam_masks/", type=str) args = parser.parse_args() torch.autograd.set_grad_enabled(False) sam = sam_model_registry["vit_h"](checkpoint=Path("sam_vit_h_4b8939.pth")) sam.to(device="cuda") mask_generator = SamAutomaticMaskGenerator( model=sam, points_per_side=8, pred_iou_thresh=0.92, crop_n_layers=1, crop_n_points_downscale_factor=2, ) save_dir = args.save_dir_path os.makedirs(save_dir, exist_ok=True) print("Extracting SAM masks...") room_list = os.listdir(args.scene_dir_path) model, _, preprocess = open_clip.create_model_and_transforms("ViT-H-14", "laion2b_s32b_b79k") model.cuda() model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device:", device) dataset_dir = args.scene_dir_path for room in tqdm(os.listdir(dataset_dir)): os.makedirs(save_dir + room, exist_ok=True) dataset_path = dataset_dir + room + "/*png" data_list = glob.glob(dataset_path) for img_name in data_list: img_base_name = os.path.basename(img_name) try: savefile = os.path.join( save_dir, room, os.path.basename(img_name).replace(".png", ".pt"), ) if os.path.exists(savefile): continue imgfile = img_name img = cv2.imread(imgfile) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) masks = mask_generator.generate(img) cur_mask = masks[0]["segmentation"] _savefile = os.path.join( save_dir, room, os.path.splitext(os.path.basename(imgfile))[0] + ".pt", ) mask_list = [] for mask_item in masks: mask_list.append(mask_item["segmentation"]) mask_np = np.asarray(mask_list) mask_torch = torch.from_numpy(mask_np) torch.save(mask_torch, _savefile) except: pass if __name__ == "__main__": main()
3D-LLM-main
three_steps_3d_feature/first_step/sam_mask.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import logging from itertools import count import numpy as np import torch from fvcore.transforms import HFlipTransform from torch import nn from torch.nn.parallel import DistributedDataParallel from detectron2.data.detection_utils import read_image from detectron2.modeling import DatasetMapperTTA __all__ = [ "SemanticSegmentorWithTTA", ] class SemanticSegmentorWithTTA(nn.Module): """ A SemanticSegmentor with test-time augmentation enabled. Its :meth:`__call__` method has the same interface as :meth:`SemanticSegmentor.forward`. """ def __init__(self, cfg, model, tta_mapper=None, batch_size=1): """ Args: cfg (CfgNode): model (SemanticSegmentor): a SemanticSegmentor to apply TTA on. tta_mapper (callable): takes a dataset dict and returns a list of augmented versions of the dataset dict. Defaults to `DatasetMapperTTA(cfg)`. batch_size (int): batch the augmented images into this batch size for inference. """ super().__init__() if isinstance(model, DistributedDataParallel): model = model.module self.cfg = cfg.clone() self.model = model if tta_mapper is None: tta_mapper = DatasetMapperTTA(cfg) self.tta_mapper = tta_mapper self.batch_size = batch_size def __call__(self, batched_inputs): """ Same input/output format as :meth:`SemanticSegmentor.forward` """ def _maybe_read_image(dataset_dict): ret = copy.copy(dataset_dict) if "image" not in ret: image = read_image(ret.pop("file_name"), self.model.input_format) image = torch.from_numpy(np.ascontiguousarray(image.transpose(2, 0, 1))) # CHW ret["image"] = image if "height" not in ret and "width" not in ret: ret["height"] = image.shape[1] ret["width"] = image.shape[2] return ret processed_results = [] for x in batched_inputs: result = self._inference_one_image(_maybe_read_image(x)) processed_results.append(result) return processed_results def _inference_one_image(self, input): """ Args: input (dict): one dataset dict with "image" field being a CHW tensor Returns: dict: one output dict """ orig_shape = (input["height"], input["width"]) augmented_inputs, tfms = self._get_augmented_inputs(input) final_predictions = None count_predictions = 0 for input, tfm in zip(augmented_inputs, tfms): count_predictions += 1 with torch.no_grad(): if final_predictions is None: if any(isinstance(t, HFlipTransform) for t in tfm.transforms): final_predictions = self.model([input])[0].pop("sem_seg").flip(dims=[2]) else: final_predictions = self.model([input])[0].pop("sem_seg") else: if any(isinstance(t, HFlipTransform) for t in tfm.transforms): final_predictions += self.model([input])[0].pop("sem_seg").flip(dims=[2]) else: final_predictions += self.model([input])[0].pop("sem_seg") final_predictions = final_predictions / count_predictions return {"sem_seg": final_predictions} def _get_augmented_inputs(self, input): augmented_inputs = self.tta_mapper(input) tfms = [x.pop("transforms") for x in augmented_inputs] return augmented_inputs, tfms
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/test_time_augmentation.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. from detectron2.config import CfgNode as CN def add_maskformer2_config(cfg): """ Add config for MASK_FORMER. """ # NOTE: configs from original maskformer # data config # select the dataset mapper cfg.INPUT.DATASET_MAPPER_NAME = "mask_former_semantic" # Color augmentation cfg.INPUT.COLOR_AUG_SSD = False # We retry random cropping until no single category in semantic segmentation GT occupies more # than `SINGLE_CATEGORY_MAX_AREA` part of the crop. cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0 # Pad image and segmentation GT in dataset mapper. cfg.INPUT.SIZE_DIVISIBILITY = -1 # solver config # weight decay on embedding cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0 # optimizer cfg.SOLVER.OPTIMIZER = "ADAMW" cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1 # mask_former model config cfg.MODEL.MASK_FORMER = CN() # loss cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = 0.1 cfg.MODEL.MASK_FORMER.CLASS_WEIGHT = 1.0 cfg.MODEL.MASK_FORMER.DICE_WEIGHT = 1.0 cfg.MODEL.MASK_FORMER.MASK_WEIGHT = 20.0 # transformer config cfg.MODEL.MASK_FORMER.NHEADS = 8 cfg.MODEL.MASK_FORMER.DROPOUT = 0.1 cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048 cfg.MODEL.MASK_FORMER.ENC_LAYERS = 0 cfg.MODEL.MASK_FORMER.DEC_LAYERS = 6 cfg.MODEL.MASK_FORMER.PRE_NORM = False cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256 cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 100 cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE = "res5" cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ = False # mask_former inference config cfg.MODEL.MASK_FORMER.TEST = CN() cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = False cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = False cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD = 0.0 cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD = 0.0 cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False # Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet) # you can use this config to override cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY = 32 # pixel decoder config cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256 # adding transformer in pixel decoder cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0 # pixel decoder cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder" # swin transformer backbone cfg.MODEL.SWIN = CN() cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224 cfg.MODEL.SWIN.PATCH_SIZE = 4 cfg.MODEL.SWIN.EMBED_DIM = 96 cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2] cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24] cfg.MODEL.SWIN.WINDOW_SIZE = 7 cfg.MODEL.SWIN.MLP_RATIO = 4.0 cfg.MODEL.SWIN.QKV_BIAS = True cfg.MODEL.SWIN.QK_SCALE = None cfg.MODEL.SWIN.DROP_RATE = 0.0 cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0 cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3 cfg.MODEL.SWIN.APE = False cfg.MODEL.SWIN.PATCH_NORM = True cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"] cfg.MODEL.SWIN.USE_CHECKPOINT = False # NOTE: maskformer2 extra configs # transformer module cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME = "MultiScaleMaskedTransformerDecoder" # LSJ aug cfg.INPUT.IMAGE_SIZE = 1024 cfg.INPUT.MIN_SCALE = 0.1 cfg.INPUT.MAX_SCALE = 2.0 # MSDeformAttn encoder configs cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"] cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4 cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8 # point loss configs # Number of points sampled during training for a mask point head. cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS = 112 * 112 # Oversampling parameter for PointRend point sampling during training. Parameter `k` in the # original paper. cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO = 3.0 # Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in # the original paper. cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/config.py
# Copyright (c) Facebook, Inc. and its affiliates. from typing import Tuple import torch from torch import nn from torch.nn import functional as F from detectron2.config import configurable from detectron2.data import MetadataCatalog from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head from detectron2.modeling.backbone import Backbone from detectron2.modeling.postprocessing import sem_seg_postprocess from detectron2.structures import Boxes, ImageList, Instances, BitMasks from detectron2.utils.memory import retry_if_cuda_oom from .modeling.criterion import SetCriterion from .modeling.matcher import HungarianMatcher @META_ARCH_REGISTRY.register() class MaskFormer(nn.Module): """ Main class for mask classification semantic segmentation architectures. """ @configurable def __init__( self, *, backbone: Backbone, sem_seg_head: nn.Module, criterion: nn.Module, num_queries: int, object_mask_threshold: float, overlap_threshold: float, metadata, size_divisibility: int, sem_seg_postprocess_before_inference: bool, pixel_mean: Tuple[float], pixel_std: Tuple[float], # inference semantic_on: bool, panoptic_on: bool, instance_on: bool, test_topk_per_image: int, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface sem_seg_head: a module that predicts semantic segmentation from backbone features criterion: a module that defines the loss num_queries: int, number of queries object_mask_threshold: float, threshold to filter query based on classification score for panoptic segmentation inference overlap_threshold: overlap threshold used in general inference for panoptic segmentation metadata: dataset meta, get `thing` and `stuff` category names for panoptic segmentation inference size_divisibility: Some backbones require the input height and width to be divisible by a specific integer. We can use this to override such requirement. sem_seg_postprocess_before_inference: whether to resize the prediction back to original input size before semantic segmentation inference or after. For high-resolution dataset like Mapillary, resizing predictions before inference will cause OOM error. pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image semantic_on: bool, whether to output semantic segmentation prediction instance_on: bool, whether to output instance segmentation prediction panoptic_on: bool, whether to output panoptic segmentation prediction test_topk_per_image: int, instance segmentation parameter, keep topk instances per image """ super().__init__() self.backbone = backbone self.sem_seg_head = sem_seg_head self.criterion = criterion self.num_queries = num_queries self.overlap_threshold = overlap_threshold self.object_mask_threshold = object_mask_threshold self.metadata = metadata if size_divisibility < 0: # use backbone size_divisibility if not set size_divisibility = self.backbone.size_divisibility self.size_divisibility = size_divisibility self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) # additional args self.semantic_on = semantic_on self.instance_on = instance_on self.panoptic_on = panoptic_on self.test_topk_per_image = test_topk_per_image if not self.semantic_on: assert self.sem_seg_postprocess_before_inference @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) # Loss parameters: deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT # loss weights class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT # building criterion matcher = HungarianMatcher( cost_class=class_weight, cost_mask=mask_weight, cost_dice=dice_weight, num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, ) weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight} if deep_supervision: dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "masks"] criterion = SetCriterion( sem_seg_head.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses, num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, ) return { "backbone": backbone, "sem_seg_head": sem_seg_head, "criterion": criterion, "num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, "object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, "overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, "metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, "sem_seg_postprocess_before_inference": ( cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON ), "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, # inference "semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON, "instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON, "panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON, "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, } @property def device(self): return self.pixel_mean.device def forward(self, batched_inputs): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper`. Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * "image": Tensor, image in (C, H, W) format. * "instances": per-region ground truth * Other information that's included in the original dicts, such as: "height", "width" (int): the output resolution of the model (may be different from input resolution), used in inference. Returns: list[dict]: each dict has the results for one image. The dict contains the following keys: * "sem_seg": A Tensor that represents the per-pixel segmentation prediced by the head. The prediction has shape KxHxW that represents the logits of each class for each pixel. * "panoptic_seg": A tuple that represent panoptic output panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. segments_info (list[dict]): Describe each segment in `panoptic_seg`. Each dict contains keys "id", "category_id", "isthing". """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.size_divisibility) features = self.backbone(images.tensor) outputs = self.sem_seg_head(features) if self.training: # mask classification target if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] targets = self.prepare_targets(gt_instances, images) else: targets = None # bipartite matching-based loss losses = self.criterion(outputs, targets) for k in list(losses.keys()): if k in self.criterion.weight_dict: losses[k] *= self.criterion.weight_dict[k] else: # remove this loss if not specified in `weight_dict` losses.pop(k) return losses else: mask_cls_results = outputs["pred_logits"] mask_pred_results = outputs["pred_masks"] # upsample masks mask_pred_results = F.interpolate( mask_pred_results, size=(images.tensor.shape[-2], images.tensor.shape[-1]), mode="bilinear", align_corners=False, ) del outputs processed_results = [] for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) processed_results.append({}) if self.sem_seg_postprocess_before_inference: mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( mask_pred_result, image_size, height, width ) mask_cls_result = mask_cls_result.to(mask_pred_result) # semantic segmentation inference if self.semantic_on: r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) if not self.sem_seg_postprocess_before_inference: r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) processed_results[-1]["sem_seg"] = r # panoptic segmentation inference if self.panoptic_on: panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) processed_results[-1]["panoptic_seg"] = panoptic_r # instance segmentation inference if self.instance_on: instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) processed_results[-1]["instances"] = instance_r return processed_results def prepare_targets(self, targets, images): h_pad, w_pad = images.tensor.shape[-2:] new_targets = [] for targets_per_image in targets: # pad gt gt_masks = targets_per_image.gt_masks padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks new_targets.append( { "labels": targets_per_image.gt_classes, "masks": padded_masks, } ) return new_targets def semantic_inference(self, mask_cls, mask_pred): mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] mask_pred = mask_pred.sigmoid() semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) return semseg def panoptic_inference(self, mask_cls, mask_pred): scores, labels = F.softmax(mask_cls, dim=-1).max(-1) mask_pred = mask_pred.sigmoid() keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) cur_scores = scores[keep] cur_classes = labels[keep] cur_masks = mask_pred[keep] cur_mask_cls = mask_cls[keep] cur_mask_cls = cur_mask_cls[:, :-1] cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks h, w = cur_masks.shape[-2:] panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) segments_info = [] current_segment_id = 0 if cur_masks.shape[0] == 0: # We didn't detect any mask :( return panoptic_seg, segments_info else: # take argmax cur_mask_ids = cur_prob_masks.argmax(0) stuff_memory_list = {} for k in range(cur_classes.shape[0]): pred_class = cur_classes[k].item() isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() mask_area = (cur_mask_ids == k).sum().item() original_area = (cur_masks[k] >= 0.5).sum().item() mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: if mask_area / original_area < self.overlap_threshold: continue # merge stuff regions if not isthing: if int(pred_class) in stuff_memory_list.keys(): panoptic_seg[mask] = stuff_memory_list[int(pred_class)] continue else: stuff_memory_list[int(pred_class)] = current_segment_id + 1 current_segment_id += 1 panoptic_seg[mask] = current_segment_id segments_info.append( { "id": current_segment_id, "isthing": bool(isthing), "category_id": int(pred_class), } ) return panoptic_seg, segments_info def instance_inference(self, mask_cls, mask_pred): # mask_pred is already processed to have the same shape as original input image_size = mask_pred.shape[-2:] # [Q, K] scores = F.softmax(mask_cls, dim=-1)[:, :-1] labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) labels_per_image = labels[topk_indices] topk_indices = topk_indices // self.sem_seg_head.num_classes # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) mask_pred = mask_pred[topk_indices] # if this is panoptic segmentation, we only keep the "thing" classes if self.panoptic_on: keep = torch.zeros_like(scores_per_image).bool() for i, lab in enumerate(labels_per_image): keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] mask_pred = mask_pred[keep] result = Instances(image_size) # mask (before sigmoid) result.pred_masks = (mask_pred > 0).float() result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) # Uncomment the following to get boxes from masks (this is slow) # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() # calculate average mask prob mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) result.scores = scores_per_image * mask_scores_per_image result.pred_classes = labels_per_image return result
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/maskformer_model.py
# Copyright (c) Facebook, Inc. and its affiliates. from . import data # register all new datasets from . import modeling # config from .config import add_maskformer2_config # dataset loading from .data.dataset_mappers.coco_instance_new_baseline_dataset_mapper import COCOInstanceNewBaselineDatasetMapper from .data.dataset_mappers.coco_panoptic_new_baseline_dataset_mapper import COCOPanopticNewBaselineDatasetMapper from .data.dataset_mappers.mask_former_instance_dataset_mapper import ( MaskFormerInstanceDatasetMapper, ) from .data.dataset_mappers.mask_former_panoptic_dataset_mapper import ( MaskFormerPanopticDatasetMapper, ) from .data.dataset_mappers.mask_former_semantic_dataset_mapper import ( MaskFormerSemanticDatasetMapper, ) # models from .maskformer_model import MaskFormer from .test_time_augmentation import SemanticSegmentorWithTTA # evaluation from .evaluation.instance_evaluation import InstanceSegEvaluator
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ from typing import List, Optional import torch import torch.distributed as dist import torchvision from torch import Tensor def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("not supported") return NestedTensor(tensor, mask) # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/utils/misc.py
# Copyright (c) Facebook, Inc. and its affiliates.
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/matcher.py """ Modules to compute the matching cost and solve the corresponding LSAP. """ import torch import torch.nn.functional as F from scipy.optimize import linear_sum_assignment from torch import nn from torch.cuda.amp import autocast from detectron2.projects.point_rend.point_features import point_sample def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets) denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :] loss = 1 - (numerator + 1) / (denominator + 1) return loss batch_dice_loss_jit = torch.jit.script( batch_dice_loss ) # type: torch.jit.ScriptModule def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor): """ Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). Returns: Loss tensor """ hw = inputs.shape[1] pos = F.binary_cross_entropy_with_logits( inputs, torch.ones_like(inputs), reduction="none" ) neg = F.binary_cross_entropy_with_logits( inputs, torch.zeros_like(inputs), reduction="none" ) loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum( "nc,mc->nm", neg, (1 - targets) ) return loss / hw batch_sigmoid_ce_loss_jit = torch.jit.script( batch_sigmoid_ce_loss ) # type: torch.jit.ScriptModule class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0): """Creates the matcher Params: cost_class: This is the relative weight of the classification error in the matching cost cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_mask = cost_mask self.cost_dice = cost_dice assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0" self.num_points = num_points @torch.no_grad() def memory_efficient_forward(self, outputs, targets): """More memory-friendly matching""" bs, num_queries = outputs["pred_logits"].shape[:2] indices = [] # Iterate through batch size for b in range(bs): out_prob = outputs["pred_logits"][b].softmax(-1) # [num_queries, num_classes] tgt_ids = targets[b]["labels"] # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -out_prob[:, tgt_ids] out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred] # gt masks are already padded when preparing target tgt_mask = targets[b]["masks"].to(out_mask) out_mask = out_mask[:, None] tgt_mask = tgt_mask[:, None] # all masks share the same set of points for efficient matching! point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device) # get gt labels tgt_mask = point_sample( tgt_mask, point_coords.repeat(tgt_mask.shape[0], 1, 1), align_corners=False, ).squeeze(1) out_mask = point_sample( out_mask, point_coords.repeat(out_mask.shape[0], 1, 1), align_corners=False, ).squeeze(1) with autocast(enabled=False): out_mask = out_mask.float() tgt_mask = tgt_mask.float() # Compute the focal loss between masks cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) # Compute the dice loss betwen masks cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) # Final cost matrix C = ( self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice ) C = C.reshape(num_queries, -1).cpu() indices.append(linear_sum_assignment(C)) return [ (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices ] @torch.no_grad() def forward(self, outputs, targets): """Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ return self.memory_efficient_forward(outputs, targets) def __repr__(self, _repr_indent=4): head = "Matcher " + self.__class__.__name__ body = [ "cost_class: {}".format(self.cost_class), "cost_mask: {}".format(self.cost_mask), "cost_dice: {}".format(self.cost_dice), ] lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/matcher.py
# Copyright (c) Facebook, Inc. and its affiliates. from .backbone.swin import D2SwinTransformer from .pixel_decoder.fpn import BasePixelDecoder from .pixel_decoder.msdeformattn import MSDeformAttnPixelDecoder from .meta_arch.mask_former_head import MaskFormerHead from .meta_arch.per_pixel_baseline import PerPixelBaselineHead, PerPixelBaselinePlusHead
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ MaskFormer criterion. """ import logging import torch import torch.nn.functional as F from torch import nn from detectron2.utils.comm import get_world_size from detectron2.projects.point_rend.point_features import ( get_uncertain_point_coords_with_randomness, point_sample, ) from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list def dice_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(-1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_masks dice_loss_jit = torch.jit.script( dice_loss ) # type: torch.jit.ScriptModule def sigmoid_ce_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). Returns: Loss tensor """ loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") return loss.mean(1).sum() / num_masks sigmoid_ce_loss_jit = torch.jit.script( sigmoid_ce_loss ) # type: torch.jit.ScriptModule def calculate_uncertainty(logits): """ We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is the number of foreground classes. The values are logits. Returns: scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ assert logits.shape[1] == 1 gt_class_logits = logits.clone() return -(torch.abs(gt_class_logits)) class SetCriterion(nn.Module): """This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, num_points, oversample_ratio, importance_sample_ratio): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # pointwise mask loss parameters self.num_points = num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio def loss_labels(self, outputs, targets, indices, num_masks): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert "pred_logits" in outputs src_logits = outputs["pred_logits"].float() idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_o loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {"loss_ce": loss_ce} return losses def loss_masks(self, outputs, targets, indices, num_masks): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] src_masks = src_masks[src_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # No need to upsample predictions as we are using normalized coordinates :) # N x 1 x H x W src_masks = src_masks[:, None] target_masks = target_masks[:, None] with torch.no_grad(): # sample point_coords point_coords = get_uncertain_point_coords_with_randomness( src_masks, lambda logits: calculate_uncertainty(logits), self.num_points, self.oversample_ratio, self.importance_sample_ratio, ) # get gt labels point_labels = point_sample( target_masks, point_coords, align_corners=False, ).squeeze(1) point_logits = point_sample( src_masks, point_coords, align_corners=False, ).squeeze(1) losses = { "loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks), "loss_dice": dice_loss_jit(point_logits, point_labels, num_masks), } del src_masks del target_masks return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_masks): loss_map = { 'labels': self.loss_labels, 'masks': self.loss_masks, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_masks) def forward(self, outputs, targets): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_masks = sum(len(t["labels"]) for t in targets) num_masks = torch.as_tensor( [num_masks], dtype=torch.float, device=next(iter(outputs.values())).device ) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_masks) num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: for i, aux_outputs in enumerate(outputs["aux_outputs"]): indices = self.matcher(aux_outputs, targets) for loss in self.losses: l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses def __repr__(self): head = "Criterion " + self.__class__.__name__ body = [ "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)), "losses: {}".format(self.losses), "weight_dict: {}".format(self.weight_dict), "num_classes: {}".format(self.num_classes), "eos_coef: {}".format(self.eos_coef), "num_points: {}".format(self.num_points), "oversample_ratio: {}".format(self.oversample_ratio), "importance_sample_ratio: {}".format(self.importance_sample_ratio), ] _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from detectron2.config import configurable from detectron2.layers import Conv2d from detectron2.utils.registry import Registry from .position_encoding import PositionEmbeddingSine from .transformer import Transformer TRANSFORMER_DECODER_REGISTRY = Registry("TRANSFORMER_MODULE") TRANSFORMER_DECODER_REGISTRY.__doc__ = """ Registry for transformer module in MaskFormer. """ def build_transformer_decoder(cfg, in_channels, mask_classification=True): """ Build a instance embedding branch from `cfg.MODEL.INS_EMBED_HEAD.NAME`. """ name = cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME return TRANSFORMER_DECODER_REGISTRY.get(name)(cfg, in_channels, mask_classification) @TRANSFORMER_DECODER_REGISTRY.register() class StandardTransformerDecoder(nn.Module): @configurable def __init__( self, in_channels, mask_classification=True, *, num_classes: int, hidden_dim: int, num_queries: int, nheads: int, dropout: float, dim_feedforward: int, enc_layers: int, dec_layers: int, pre_norm: bool, deep_supervision: bool, mask_dim: int, enforce_input_project: bool, ): """ NOTE: this interface is experimental. Args: in_channels: channels of the input features mask_classification: whether to add mask classifier or not num_classes: number of classes hidden_dim: Transformer feature dimension num_queries: number of queries nheads: number of heads dropout: dropout in Transformer dim_feedforward: feature dimension in feedforward network enc_layers: number of Transformer encoder layers dec_layers: number of Transformer decoder layers pre_norm: whether to use pre-LayerNorm or not deep_supervision: whether to add supervision to every decoder layers mask_dim: mask feature dimension enforce_input_project: add input project 1x1 conv even if input channels and hidden dim is identical """ super().__init__() self.mask_classification = mask_classification # positional encoding N_steps = hidden_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) transformer = Transformer( d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision, ) self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.query_embed = nn.Embedding(num_queries, hidden_dim) if in_channels != hidden_dim or enforce_input_project: self.input_proj = Conv2d(in_channels, hidden_dim, kernel_size=1) weight_init.c2_xavier_fill(self.input_proj) else: self.input_proj = nn.Sequential() self.aux_loss = deep_supervision # output FFNs if self.mask_classification: self.class_embed = nn.Linear(hidden_dim, num_classes + 1) self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) @classmethod def from_config(cls, cfg, in_channels, mask_classification): ret = {} ret["in_channels"] = in_channels ret["mask_classification"] = mask_classification ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES # Transformer parameters: ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS ret["dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD ret["enc_layers"] = cfg.MODEL.MASK_FORMER.ENC_LAYERS ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM return ret def forward(self, x, mask_features, mask=None): if mask is not None: mask = F.interpolate(mask[None].float(), size=x.shape[-2:]).to(torch.bool)[0] pos = self.pe_layer(x, mask) src = x hs, memory = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos) if self.mask_classification: outputs_class = self.class_embed(hs) out = {"pred_logits": outputs_class[-1]} else: out = {} if self.aux_loss: # [l, bs, queries, embed] mask_embed = self.mask_embed(hs) outputs_seg_masks = torch.einsum("lbqc,bchw->lbqhw", mask_embed, mask_features) out["pred_masks"] = outputs_seg_masks[-1] out["aux_outputs"] = self._set_aux_loss( outputs_class if self.mask_classification else None, outputs_seg_masks ) else: # FIXME h_boxes takes the last one computed, keep this in mind # [bs, queries, embed] mask_embed = self.mask_embed(hs[-1]) outputs_seg_masks = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) out["pred_masks"] = outputs_seg_masks return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_seg_masks): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. if self.mask_classification: return [ {"pred_logits": a, "pred_masks": b} for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1]) ] else: return [{"pred_masks": b} for b in outputs_seg_masks[:-1]] class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/transformer_decoder/maskformer_transformer_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py import logging import fvcore.nn.weight_init as weight_init from typing import Optional import torch from torch import nn, Tensor from torch.nn import functional as F from detectron2.config import configurable from detectron2.layers import Conv2d from .position_encoding import PositionEmbeddingSine from .maskformer_transformer_decoder import TRANSFORMER_DECODER_REGISTRY class SelfAttentionLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, tgt_mask, tgt_key_padding_mask, query_pos) return self.forward_post(tgt, tgt_mask, tgt_key_padding_mask, query_pos) class CrossAttentionLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False): super().__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, memory, memory_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(tgt, memory, memory_mask, memory_key_padding_mask, pos, query_pos) class FFNLayer(nn.Module): def __init__(self, d_model, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False): super().__init__() # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm = nn.LayerNorm(d_model) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt): tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt): tgt2 = self.norm(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt): if self.normalize_before: return self.forward_pre(tgt) return self.forward_post(tgt) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x @TRANSFORMER_DECODER_REGISTRY.register() class MultiScaleMaskedTransformerDecoder(nn.Module): _version = 2 def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): version = local_metadata.get("version", None) if version is None or version < 2: # Do not warn if train from scratch scratch = True logger = logging.getLogger(__name__) for k in list(state_dict.keys()): newk = k if "static_query" in k: newk = k.replace("static_query", "query_feat") if newk != k: state_dict[newk] = state_dict[k] del state_dict[k] scratch = False if not scratch: logger.warning( f"Weight format of {self.__class__.__name__} have changed! " "Please upgrade your models. Applying automatic conversion now ..." ) @configurable def __init__( self, in_channels, mask_classification=True, *, num_classes: int, hidden_dim: int, num_queries: int, nheads: int, dim_feedforward: int, dec_layers: int, pre_norm: bool, mask_dim: int, enforce_input_project: bool, ): """ NOTE: this interface is experimental. Args: in_channels: channels of the input features mask_classification: whether to add mask classifier or not num_classes: number of classes hidden_dim: Transformer feature dimension num_queries: number of queries nheads: number of heads dim_feedforward: feature dimension in feedforward network enc_layers: number of Transformer encoder layers dec_layers: number of Transformer decoder layers pre_norm: whether to use pre-LayerNorm or not mask_dim: mask feature dimension enforce_input_project: add input project 1x1 conv even if input channels and hidden dim is identical """ super().__init__() assert mask_classification, "Only support mask classification model" self.mask_classification = mask_classification # positional encoding N_steps = hidden_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) # define Transformer decoder here self.num_heads = nheads self.num_layers = dec_layers self.transformer_self_attention_layers = nn.ModuleList() self.transformer_cross_attention_layers = nn.ModuleList() self.transformer_ffn_layers = nn.ModuleList() for _ in range(self.num_layers): self.transformer_self_attention_layers.append( SelfAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_cross_attention_layers.append( CrossAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_ffn_layers.append( FFNLayer( d_model=hidden_dim, dim_feedforward=dim_feedforward, dropout=0.0, normalize_before=pre_norm, ) ) self.decoder_norm = nn.LayerNorm(hidden_dim) self.num_queries = num_queries # learnable query features self.query_feat = nn.Embedding(num_queries, hidden_dim) # learnable query p.e. self.query_embed = nn.Embedding(num_queries, hidden_dim) # level embedding (we always use 3 scales) self.num_feature_levels = 3 self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) self.input_proj = nn.ModuleList() for _ in range(self.num_feature_levels): if in_channels != hidden_dim or enforce_input_project: self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1)) weight_init.c2_xavier_fill(self.input_proj[-1]) else: self.input_proj.append(nn.Sequential()) # output FFNs if self.mask_classification: self.class_embed = nn.Linear(hidden_dim, num_classes + 1) self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) @classmethod def from_config(cls, cfg, in_channels, mask_classification): ret = {} ret["in_channels"] = in_channels ret["mask_classification"] = mask_classification ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES # Transformer parameters: ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD # NOTE: because we add learnable query features which requires supervision, # we add minus 1 to decoder layers to be consistent with our loss # implementation: that is, number of auxiliary losses is always # equal to number of decoder layers. With learnable query features, the number of # auxiliary losses equals number of decoders plus 1. assert cfg.MODEL.MASK_FORMER.DEC_LAYERS >= 1 ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS - 1 ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM return ret def forward(self, x, mask_features, mask = None): # x is a list of multi-scale feature assert len(x) == self.num_feature_levels src = [] pos = [] size_list = [] # disable mask, it does not affect performance del mask for i in range(self.num_feature_levels): size_list.append(x[i].shape[-2:]) pos.append(self.pe_layer(x[i], None).flatten(2)) src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None]) # flatten NxCxHxW to HWxNxC pos[-1] = pos[-1].permute(2, 0, 1) src[-1] = src[-1].permute(2, 0, 1) _, bs, _ = src[0].shape # QxNxC query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) predictions_class = [] predictions_mask = [] # prediction heads on learnable query features outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0]) predictions_class.append(outputs_class) predictions_mask.append(outputs_mask) for i in range(self.num_layers): level_index = i % self.num_feature_levels attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False # attention: cross-attention first output = self.transformer_cross_attention_layers[i]( output, src[level_index], memory_mask=attn_mask, memory_key_padding_mask=None, # here we do not apply masking on padded region pos=pos[level_index], query_pos=query_embed ) output = self.transformer_self_attention_layers[i]( output, tgt_mask=None, tgt_key_padding_mask=None, query_pos=query_embed ) # FFN output = self.transformer_ffn_layers[i]( output ) outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels]) predictions_class.append(outputs_class) predictions_mask.append(outputs_mask) assert len(predictions_class) == self.num_layers + 1 out = { 'pred_logits': predictions_class[-1], 'pred_masks': predictions_mask[-1], 'aux_outputs': self._set_aux_loss( predictions_class if self.mask_classification else None, predictions_mask ) } return out def forward_prediction_heads(self, output, mask_features, attn_mask_target_size): decoder_output = self.decoder_norm(output) decoder_output = decoder_output.transpose(0, 1) outputs_class = self.class_embed(decoder_output) mask_embed = self.mask_embed(decoder_output) outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) # NOTE: prediction is of higher-resolution # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW] attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False) # must use bool type # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool() attn_mask = attn_mask.detach() return outputs_class, outputs_mask, attn_mask @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_seg_masks): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. if self.mask_classification: return [ {"pred_logits": a, "pred_masks": b} for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1]) ] else: return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/transformer_decoder/mask2former_transformer_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py """ Various positional encodings for the transformer. """ import math import torch from torch import nn class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self, _repr_indent=4): head = "Positional encoding " + self.__class__.__name__ body = [ "num_pos_feats: {}".format(self.num_pos_feats), "temperature: {}".format(self.temperature), "normalize: {}".format(self.normalize), "scale: {}".format(self.scale), ] # _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/transformer_decoder/position_encoding.py
# Copyright (c) Facebook, Inc. and its affiliates. from .maskformer_transformer_decoder import StandardTransformerDecoder from .mask2former_transformer_decoder import MultiScaleMaskedTransformerDecoder
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/transformer_decoder/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/transformer.py """ Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy from typing import List, Optional import torch import torch.nn.functional as F from torch import Tensor, nn class Transformer(nn.Module): def __init__( self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False, ): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) decoder_layer = TransformerDecoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, ) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, query_embed, pos_embed): # flatten NxCxHxW to HWxNxC bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) if mask is not None: mask = mask.flatten(1) tgt = torch.zeros_like(query_embed) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) hs = self.decoder( tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed ) return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w) class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward( self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): output = src for layer in self.layers: output = layer( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos ) if self.norm is not None: output = self.norm(output) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output = tgt intermediate = [] for layer in self.layers: output = layer( output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, ) if self.return_intermediate: intermediate.append(self.norm(output)) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) return output.unsqueeze(0) class TransformerEncoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn( q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn( q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn( q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre( tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) return self.forward_post( tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/transformer_decoder/transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Callable, Dict, List, Optional, Tuple, Union import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ from torch.cuda.amp import autocast from detectron2.config import configurable from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from ..transformer_decoder.position_encoding import PositionEmbeddingSine from ..transformer_decoder.transformer import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn def build_pixel_decoder(cfg, input_shape): """ Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`. """ name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape) forward_features = getattr(model, "forward_features", None) if not callable(forward_features): raise ValueError( "Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. " f"Please implement forward_features for {name} to only return mask features." ) return model # This is a modified FPN decoder. @SEM_SEG_HEADS_REGISTRY.register() class BasePixelDecoder(nn.Module): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, conv_dim: int, mask_dim: int, norm: Optional[Union[str, Callable]] = None, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features conv_dims: number of output channels for the intermediate conv layers. mask_dim: number of output channels for the final conv layer. norm (str or callable): normalization for all conv layers """ super().__init__() input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5" feature_channels = [v.channels for k, v in input_shape] lateral_convs = [] output_convs = [] use_bias = norm == "" for idx, in_channels in enumerate(feature_channels): if idx == len(self.in_features) - 1: output_norm = get_norm(norm, conv_dim) output_conv = Conv2d( in_channels, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(output_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(None) output_convs.append(output_conv) else: lateral_norm = get_norm(norm, conv_dim) output_norm = get_norm(norm, conv_dim) lateral_conv = Conv2d( in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm ) output_conv = Conv2d( conv_dim, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(lateral_conv) weight_init.c2_xavier_fill(output_conv) self.add_module("adapter_{}".format(idx + 1), lateral_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(lateral_conv) output_convs.append(output_conv) # Place convs into top-down order (from low to high resolution) # to make the top-down computation in forward clearer. self.lateral_convs = lateral_convs[::-1] self.output_convs = output_convs[::-1] self.mask_dim = mask_dim self.mask_features = Conv2d( conv_dim, mask_dim, kernel_size=3, stride=1, padding=1, ) weight_init.c2_xavier_fill(self.mask_features) self.maskformer_num_feature_levels = 3 # always use 3 scales @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): ret = {} ret["input_shape"] = { k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES } ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM return ret def forward_features(self, features): multi_scale_features = [] num_cur_levels = 0 # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.in_features[::-1]): x = features[f] lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] if lateral_conv is None: y = output_conv(x) else: cur_fpn = lateral_conv(x) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest") y = output_conv(y) if num_cur_levels < self.maskformer_num_feature_levels: multi_scale_features.append(y) num_cur_levels += 1 return self.mask_features(y), None, multi_scale_features def forward(self, features, targets=None): logger = logging.getLogger(__name__) logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.") return self.forward_features(features) class TransformerEncoderOnly(nn.Module): def __init__( self, d_model=512, nhead=8, num_encoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, pos_embed): # flatten NxCxHxW to HWxNxC bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) if mask is not None: mask = mask.flatten(1) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) return memory.permute(1, 2, 0).view(bs, c, h, w) # This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map. @SEM_SEG_HEADS_REGISTRY.register() class TransformerEncoderPixelDecoder(BasePixelDecoder): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, transformer_dropout: float, transformer_nheads: int, transformer_dim_feedforward: int, transformer_enc_layers: int, transformer_pre_norm: bool, conv_dim: int, mask_dim: int, norm: Optional[Union[str, Callable]] = None, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features transformer_dropout: dropout probability in transformer transformer_nheads: number of heads in transformer transformer_dim_feedforward: dimension of feedforward network transformer_enc_layers: number of transformer encoder layers transformer_pre_norm: whether to use pre-layernorm or not conv_dims: number of output channels for the intermediate conv layers. mask_dim: number of output channels for the final conv layer. norm (str or callable): normalization for all conv layers """ super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm) input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5" feature_strides = [v.stride for k, v in input_shape] feature_channels = [v.channels for k, v in input_shape] in_channels = feature_channels[len(self.in_features) - 1] self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1) weight_init.c2_xavier_fill(self.input_proj) self.transformer = TransformerEncoderOnly( d_model=conv_dim, dropout=transformer_dropout, nhead=transformer_nheads, dim_feedforward=transformer_dim_feedforward, num_encoder_layers=transformer_enc_layers, normalize_before=transformer_pre_norm, ) N_steps = conv_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) # update layer use_bias = norm == "" output_norm = get_norm(norm, conv_dim) output_conv = Conv2d( conv_dim, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(output_conv) delattr(self, "layer_{}".format(len(self.in_features))) self.add_module("layer_{}".format(len(self.in_features)), output_conv) self.output_convs[0] = output_conv @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): ret = super().from_config(cfg, input_shape) ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD ret[ "transformer_enc_layers" ] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config ret["transformer_pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM return ret def forward_features(self, features): multi_scale_features = [] num_cur_levels = 0 # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.in_features[::-1]): x = features[f] lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] if lateral_conv is None: transformer = self.input_proj(x) pos = self.pe_layer(x) transformer = self.transformer(transformer, None, pos) y = output_conv(transformer) # save intermediate feature as input to Transformer decoder transformer_encoder_features = transformer else: cur_fpn = lateral_conv(x) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest") y = output_conv(y) if num_cur_levels < self.maskformer_num_feature_levels: multi_scale_features.append(y) num_cur_levels += 1 return self.mask_features(y), transformer_encoder_features, multi_scale_features def forward(self, features, targets=None): logger = logging.getLogger(__name__) logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.") return self.forward_features(features)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/fpn.py
# Copyright (c) Facebook, Inc. and its affiliates.
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Callable, Dict, List, Optional, Tuple, Union import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ from torch.cuda.amp import autocast from detectron2.config import configurable from detectron2.layers import Conv2d, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from ..transformer_decoder.position_encoding import PositionEmbeddingSine from ..transformer_decoder.transformer import _get_clones, _get_activation_fn from .ops.modules import MSDeformAttn # MSDeformAttn Transformer encoder in deformable detr class MSDeformAttnTransformerEncoderOnly(nn.Module): def __init__(self, d_model=256, nhead=8, num_encoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", num_feature_levels=4, enc_n_points=4, ): super().__init__() self.d_model = d_model self.nhead = nhead encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points) self.encoder = MSDeformAttnTransformerEncoder(encoder_layer, num_encoder_layers) self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() normal_(self.level_embed) def get_valid_ratio(self, mask): _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def forward(self, srcs, pos_embeds): masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs] # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, c, h, w = src.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) src = src.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) src_flatten = torch.cat(src_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # encoder memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten) return memory, spatial_shapes, level_start_index class MSDeformAttnTransformerEncoderLayer(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4): super().__init__() # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None): # self attention src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class MSDeformAttnTransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None): output = src reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) for _, layer in enumerate(self.layers): output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask) return output @SEM_SEG_HEADS_REGISTRY.register() class MSDeformAttnPixelDecoder(nn.Module): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, transformer_dropout: float, transformer_nheads: int, transformer_dim_feedforward: int, transformer_enc_layers: int, conv_dim: int, mask_dim: int, norm: Optional[Union[str, Callable]] = None, # deformable transformer encoder args transformer_in_features: List[str], common_stride: int, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features transformer_dropout: dropout probability in transformer transformer_nheads: number of heads in transformer transformer_dim_feedforward: dimension of feedforward network transformer_enc_layers: number of transformer encoder layers conv_dims: number of output channels for the intermediate conv layers. mask_dim: number of output channels for the final conv layer. norm (str or callable): normalization for all conv layers """ super().__init__() transformer_input_shape = { k: v for k, v in input_shape.items() if k in transformer_in_features } # this is the input shape of pixel decoder input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5" self.feature_strides = [v.stride for k, v in input_shape] self.feature_channels = [v.channels for k, v in input_shape] # this is the input shape of transformer encoder (could use less features than pixel decoder transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride) self.transformer_in_features = [k for k, v in transformer_input_shape] # starting from "res2" to "res5" transformer_in_channels = [v.channels for k, v in transformer_input_shape] self.transformer_feature_strides = [v.stride for k, v in transformer_input_shape] # to decide extra FPN layers self.transformer_num_feature_levels = len(self.transformer_in_features) if self.transformer_num_feature_levels > 1: input_proj_list = [] # from low resolution to high resolution (res5 -> res2) for in_channels in transformer_in_channels[::-1]: input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, conv_dim, kernel_size=1), nn.GroupNorm(32, conv_dim), )) self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList([ nn.Sequential( nn.Conv2d(transformer_in_channels[-1], conv_dim, kernel_size=1), nn.GroupNorm(32, conv_dim), )]) for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) self.transformer = MSDeformAttnTransformerEncoderOnly( d_model=conv_dim, dropout=transformer_dropout, nhead=transformer_nheads, dim_feedforward=transformer_dim_feedforward, num_encoder_layers=transformer_enc_layers, num_feature_levels=self.transformer_num_feature_levels, ) N_steps = conv_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) self.mask_dim = mask_dim # use 1x1 conv instead self.mask_features = Conv2d( conv_dim, mask_dim, kernel_size=1, stride=1, padding=0, ) weight_init.c2_xavier_fill(self.mask_features) self.maskformer_num_feature_levels = 3 # always use 3 scales self.common_stride = common_stride # extra fpn levels stride = min(self.transformer_feature_strides) self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride)) lateral_convs = [] output_convs = [] use_bias = norm == "" for idx, in_channels in enumerate(self.feature_channels[:self.num_fpn_levels]): lateral_norm = get_norm(norm, conv_dim) output_norm = get_norm(norm, conv_dim) lateral_conv = Conv2d( in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm ) output_conv = Conv2d( conv_dim, conv_dim, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=output_norm, activation=F.relu, ) weight_init.c2_xavier_fill(lateral_conv) weight_init.c2_xavier_fill(output_conv) self.add_module("adapter_{}".format(idx + 1), lateral_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(lateral_conv) output_convs.append(output_conv) # Place convs into top-down order (from low to high resolution) # to make the top-down computation in forward clearer. self.lateral_convs = lateral_convs[::-1] self.output_convs = output_convs[::-1] @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): ret = {} ret["input_shape"] = { k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES } ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS # ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD ret["transformer_dim_feedforward"] = 1024 # use 1024 for deformable transformer encoder ret[ "transformer_enc_layers" ] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config ret["transformer_in_features"] = cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES ret["common_stride"] = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE return ret @autocast(enabled=False) def forward_features(self, features): srcs = [] pos = [] # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.transformer_in_features[::-1]): x = features[f].float() # deformable detr does not support half precision srcs.append(self.input_proj[idx](x)) pos.append(self.pe_layer(x)) y, spatial_shapes, level_start_index = self.transformer(srcs, pos) bs = y.shape[0] split_size_or_sections = [None] * self.transformer_num_feature_levels for i in range(self.transformer_num_feature_levels): if i < self.transformer_num_feature_levels - 1: split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i] else: split_size_or_sections[i] = y.shape[1] - level_start_index[i] y = torch.split(y, split_size_or_sections, dim=1) out = [] multi_scale_features = [] num_cur_levels = 0 for i, z in enumerate(y): out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1])) # append `out` with extra FPN levels # Reverse feature maps into top-down order (from low to high resolution) for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]): x = features[f].float() lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] cur_fpn = lateral_conv(x) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + F.interpolate(out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False) y = output_conv(y) out.append(y) for o in out: if num_cur_levels < self.maskformer_num_feature_levels: multi_scale_features.append(o) num_cur_levels += 1 return self.mask_features(out[-1]), out[0], multi_scale_features
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/msdeformattn.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from __future__ import absolute_import from __future__ import print_function from __future__ import division import time import torch import torch.nn as nn from torch.autograd import gradcheck from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch N, M, D = 1, 2, 2 Lq, L, P = 2, 2, 2 shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1])) S = sum([(H*W).item() for H, W in shapes]) torch.manual_seed(3) @torch.no_grad() def check_forward_equal_with_pytorch_double(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') @torch.no_grad() def check_forward_equal_with_pytorch_float(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True): value = torch.rand(N, S, M, channels).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 func = MSDeformAttnFunction.apply value.requires_grad = grad_value sampling_locations.requires_grad = grad_sampling_loc attention_weights.requires_grad = grad_attn_weight gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step)) print(f'* {gradok} check_gradient_numerical(D={channels})') if __name__ == '__main__': check_forward_equal_with_pytorch_double() check_forward_equal_with_pytorch_float() for channels in [30, 32, 64, 71, 1025, 2048, 3096]: check_gradient_numerical(channels, True, True, True)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/ops/test.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR import os import glob import torch from torch.utils.cpp_extension import CUDA_HOME from torch.utils.cpp_extension import CppExtension from torch.utils.cpp_extension import CUDAExtension from setuptools import find_packages from setuptools import setup requirements = ["torch", "torchvision"] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "src") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) sources = main_file + source_cpu extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] # Force cuda since torch ask for a device, not if cuda is in fact available. if (os.environ.get('FORCE_CUDA') or torch.cuda.is_available()) and CUDA_HOME is not None: extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] else: if CUDA_HOME is None: raise NotImplementedError('CUDA_HOME is None. Please set environment variable CUDA_HOME.') else: raise NotImplementedError('No CUDA runtime is found. Please set FORCE_CUDA=1 or test it by running torch.cuda.is_available().') sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "MultiScaleDeformableAttention", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules setup( name="MultiScaleDeformableAttention", version="1.0", author="Weijie Su", url="https://github.com/fundamentalvision/Deformable-DETR", description="PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention", packages=find_packages(exclude=("configs", "tests",)), ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/ops/setup.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn.functional as F from torch.autograd import Function from torch.autograd.function import once_differentiable try: import MultiScaleDeformableAttention as MSDA except ModuleNotFoundError as e: info_string = ( "\n\nPlease compile MultiScaleDeformableAttention CUDA op with the following commands:\n" "\t`cd mask2former/modeling/pixel_decoder/ops`\n" "\t`sh make.sh`\n" ) raise ModuleNotFoundError(info_string) class MSDeformAttnFunction(Function): @staticmethod def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step): ctx.im2col_step = im2col_step output = MSDA.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step) ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) return output @staticmethod @once_differentiable def backward(ctx, grad_output): value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = \ MSDA.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights): # for debug and test only, # need to use cuda version instead N_, S_, M_, D_ = value.shape _, Lq_, M_, L_, P_, _ = sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for lid_, (H_, W_) in enumerate(value_spatial_shapes): # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_) # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1) # N_*M_, D_, Lq_, P_ sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_, mode='bilinear', padding_mode='zeros', align_corners=False) sampling_value_list.append(sampling_value_l_) # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_) attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_) output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_) return output.transpose(1, 2).contiguous()
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/ops/functions/ms_deform_attn_func.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from .ms_deform_attn_func import MSDeformAttnFunction
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/ops/functions/__init__.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from __future__ import absolute_import from __future__ import print_function from __future__ import division import warnings import math import torch from torch import nn import torch.nn.functional as F from torch.nn.init import xavier_uniform_, constant_ from ..functions import MSDeformAttnFunction from ..functions.ms_deform_attn_func import ms_deform_attn_core_pytorch def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) return (n & (n-1) == 0) and n != 0 class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """ Multi-Scale Deformable Attention Module :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation.") self.im2col_step = 128 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1])) try: output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) except: # CPU output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) # # For FLOPs calculation only # output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR from .ms_deform_attn import MSDeformAttn
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/pixel_decoder/ops/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging from copy import deepcopy from typing import Callable, Dict, List, Optional, Tuple, Union import fvcore.nn.weight_init as weight_init from torch import nn from torch.nn import functional as F from detectron2.config import configurable from detectron2.layers import Conv2d, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from ..transformer_decoder.maskformer_transformer_decoder import build_transformer_decoder from ..pixel_decoder.fpn import build_pixel_decoder @SEM_SEG_HEADS_REGISTRY.register() class MaskFormerHead(nn.Module): _version = 2 def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): version = local_metadata.get("version", None) if version is None or version < 2: # Do not warn if train from scratch scratch = True logger = logging.getLogger(__name__) for k in list(state_dict.keys()): newk = k if "sem_seg_head" in k and not k.startswith(prefix + "predictor"): newk = k.replace(prefix, prefix + "pixel_decoder.") # logger.debug(f"{k} ==> {newk}") if newk != k: state_dict[newk] = state_dict[k] del state_dict[k] scratch = False if not scratch: logger.warning( f"Weight format of {self.__class__.__name__} have changed! " "Please upgrade your models. Applying automatic conversion now ..." ) @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, num_classes: int, pixel_decoder: nn.Module, loss_weight: float = 1.0, ignore_value: int = -1, # extra parameters transformer_predictor: nn.Module, transformer_in_feature: str, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features num_classes: number of classes to predict pixel_decoder: the pixel decoder module loss_weight: loss weight ignore_value: category id to be ignored during training. transformer_predictor: the transformer decoder that makes prediction transformer_in_feature: input feature name to the transformer_predictor """ super().__init__() input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] feature_strides = [v.stride for k, v in input_shape] feature_channels = [v.channels for k, v in input_shape] self.ignore_value = ignore_value self.common_stride = 4 self.loss_weight = loss_weight self.pixel_decoder = pixel_decoder self.predictor = transformer_predictor self.transformer_in_feature = transformer_in_feature self.num_classes = num_classes @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): # figure out in_channels to transformer predictor if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder": transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM elif cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "pixel_embedding": transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM elif cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "multi_scale_pixel_decoder": # for maskformer2 transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM else: transformer_predictor_in_channels = input_shape[cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE].channels return { "input_shape": { k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES }, "ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, "num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, "pixel_decoder": build_pixel_decoder(cfg, input_shape), "loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT, "transformer_in_feature": cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE, "transformer_predictor": build_transformer_decoder( cfg, transformer_predictor_in_channels, mask_classification=True, ), } def forward(self, features, mask=None): return self.layers(features, mask) def layers(self, features, mask=None): mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features) if self.transformer_in_feature == "multi_scale_pixel_decoder": predictions = self.predictor(multi_scale_features, mask_features, mask) else: if self.transformer_in_feature == "transformer_encoder": assert ( transformer_encoder_features is not None ), "Please use the TransformerEncoderPixelDecoder." predictions = self.predictor(transformer_encoder_features, mask_features, mask) elif self.transformer_in_feature == "pixel_embedding": predictions = self.predictor(mask_features, mask_features, mask) else: predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask) return predictions
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/meta_arch/mask_former_head.py
# Copyright (c) Facebook, Inc. and its affiliates.
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/meta_arch/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging from typing import Callable, Dict, List, Optional, Tuple, Union import fvcore.nn.weight_init as weight_init from torch import nn from torch.nn import functional as F from detectron2.config import configurable from detectron2.layers import Conv2d, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from ..transformer_decoder.maskformer_transformer_decoder import StandardTransformerDecoder from ..pixel_decoder.fpn import build_pixel_decoder @SEM_SEG_HEADS_REGISTRY.register() class PerPixelBaselineHead(nn.Module): _version = 2 def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): version = local_metadata.get("version", None) if version is None or version < 2: logger = logging.getLogger(__name__) # Do not warn if train from scratch scratch = True logger = logging.getLogger(__name__) for k in list(state_dict.keys()): newk = k if "sem_seg_head" in k and not k.startswith(prefix + "predictor"): newk = k.replace(prefix, prefix + "pixel_decoder.") # logger.warning(f"{k} ==> {newk}") if newk != k: state_dict[newk] = state_dict[k] del state_dict[k] scratch = False if not scratch: logger.warning( f"Weight format of {self.__class__.__name__} have changed! " "Please upgrade your models. Applying automatic conversion now ..." ) @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, num_classes: int, pixel_decoder: nn.Module, loss_weight: float = 1.0, ignore_value: int = -1, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features num_classes: number of classes to predict pixel_decoder: the pixel decoder module loss_weight: loss weight ignore_value: category id to be ignored during training. """ super().__init__() input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) self.in_features = [k for k, v in input_shape] feature_strides = [v.stride for k, v in input_shape] feature_channels = [v.channels for k, v in input_shape] self.ignore_value = ignore_value self.common_stride = 4 self.loss_weight = loss_weight self.pixel_decoder = pixel_decoder self.predictor = Conv2d( self.pixel_decoder.mask_dim, num_classes, kernel_size=1, stride=1, padding=0 ) weight_init.c2_msra_fill(self.predictor) @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): return { "input_shape": { k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES }, "ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, "num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, "pixel_decoder": build_pixel_decoder(cfg, input_shape), "loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT, } def forward(self, features, targets=None): """ Returns: In training, returns (None, dict of losses) In inference, returns (CxHxW logits, {}) """ x = self.layers(features) if self.training: return None, self.losses(x, targets) else: x = F.interpolate( x, scale_factor=self.common_stride, mode="bilinear", align_corners=False ) return x, {} def layers(self, features): x, _, _ = self.pixel_decoder.forward_features(features) x = self.predictor(x) return x def losses(self, predictions, targets): predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163 predictions = F.interpolate( predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False ) loss = F.cross_entropy( predictions, targets, reduction="mean", ignore_index=self.ignore_value ) losses = {"loss_sem_seg": loss * self.loss_weight} return losses @SEM_SEG_HEADS_REGISTRY.register() class PerPixelBaselinePlusHead(PerPixelBaselineHead): def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): version = local_metadata.get("version", None) if version is None or version < 2: # Do not warn if train from scratch scratch = True logger = logging.getLogger(__name__) for k in list(state_dict.keys()): newk = k if "sem_seg_head" in k and not k.startswith(prefix + "predictor"): newk = k.replace(prefix, prefix + "pixel_decoder.") logger.debug(f"{k} ==> {newk}") if newk != k: state_dict[newk] = state_dict[k] del state_dict[k] scratch = False if not scratch: logger.warning( f"Weight format of {self.__class__.__name__} have changed! " "Please upgrade your models. Applying automatic conversion now ..." ) @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, # extra parameters transformer_predictor: nn.Module, transformer_in_feature: str, deep_supervision: bool, # inherit parameters num_classes: int, pixel_decoder: nn.Module, loss_weight: float = 1.0, ignore_value: int = -1, ): """ NOTE: this interface is experimental. Args: input_shape: shapes (channels and stride) of the input features transformer_predictor: the transformer decoder that makes prediction transformer_in_feature: input feature name to the transformer_predictor deep_supervision: whether or not to add supervision to the output of every transformer decoder layer num_classes: number of classes to predict pixel_decoder: the pixel decoder module loss_weight: loss weight ignore_value: category id to be ignored during training. """ super().__init__( input_shape, num_classes=num_classes, pixel_decoder=pixel_decoder, loss_weight=loss_weight, ignore_value=ignore_value, ) del self.predictor self.predictor = transformer_predictor self.transformer_in_feature = transformer_in_feature self.deep_supervision = deep_supervision @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): ret = super().from_config(cfg, input_shape) ret["transformer_in_feature"] = cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder": in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM else: in_channels = input_shape[ret["transformer_in_feature"]].channels ret["transformer_predictor"] = StandardTransformerDecoder( cfg, in_channels, mask_classification=False ) ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION return ret def forward(self, features, targets=None): """ Returns: In training, returns (None, dict of losses) In inference, returns (CxHxW logits, {}) """ x, aux_outputs = self.layers(features) if self.training: if self.deep_supervision: losses = self.losses(x, targets) for i, aux_output in enumerate(aux_outputs): losses["loss_sem_seg" + f"_{i}"] = self.losses( aux_output["pred_masks"], targets )["loss_sem_seg"] return None, losses else: return None, self.losses(x, targets) else: x = F.interpolate( x, scale_factor=self.common_stride, mode="bilinear", align_corners=False ) return x, {} def layers(self, features): mask_features, transformer_encoder_features, _ = self.pixel_decoder.forward_features(features) if self.transformer_in_feature == "transformer_encoder": assert ( transformer_encoder_features is not None ), "Please use the TransformerEncoderPixelDecoder." predictions = self.predictor(transformer_encoder_features, mask_features) else: predictions = self.predictor(features[self.transformer_in_feature], mask_features) if self.deep_supervision: return predictions["pred_masks"], predictions["aux_outputs"] else: return predictions["pred_masks"], None
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/meta_arch/per_pixel_baseline.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu, Yutong Lin, Yixuan Wei # -------------------------------------------------------- # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec class Mlp(nn.Module): """Multilayer perceptron.""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0 ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): """Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) ) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=0.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = ( self.qkv(x) .reshape(B_, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1) ].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): """Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop ) self.H = None self.W = None def forward(self, x, mask_matrix): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. mask_matrix: Attention mask for cyclic shift. """ B, L, C = x.shape H, W = self.H, self.W assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # pad feature maps to multiples of window size pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition( shifted_x, self.window_size ) # nW*B, window_size, window_size, C x_windows = x_windows.view( -1, self.window_size * self.window_size, C ) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchMerging(nn.Module): """Patch Merging Layer Args: dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x, H, W): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. num_heads (int): Number of attention head. window_size (int): Local window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, dim, depth, num_heads, window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, ): super().__init__() self.window_size = window_size self.shift_size = window_size // 2 self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, H, W): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ # calculate attention mask for SW-MSA Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 h_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) w_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size ) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ) for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) if self.downsample is not None: x_down = self.downsample(x, H, W) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x, H, W, x_down, Wh, Ww else: return x, H, W, x, H, W class PatchEmbed(nn.Module): """Image to Patch Embedding Args: patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x class SwinTransformer(nn.Module): """Swin Transformer backbone. A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: pretrain_img_size (int): Input image size for training the pretrained model, used in absolute postion embedding. Default 224. patch_size (int | tuple(int)): Patch size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. num_heads (tuple[int]): Number of attention head of each stage. window_size (int): Window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop_rate (float): Dropout rate. attn_drop_rate (float): Attention dropout rate. Default: 0. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. patch_norm (bool): If True, add normalization after patch embedding. Default: True. out_indices (Sequence[int]): Output from which stages. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, pretrain_img_size=224, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.2, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, out_indices=(0, 1, 2, 3), frozen_stages=-1, use_checkpoint=False, ): super().__init__() self.pretrain_img_size = pretrain_img_size self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.out_indices = out_indices self.frozen_stages = frozen_stages # split image into non-overlapping patches self.patch_embed = PatchEmbed( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) # absolute position embedding if self.ape: pretrain_img_size = to_2tuple(pretrain_img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1], ] self.absolute_pos_embed = nn.Parameter( torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]) ) trunc_normal_(self.absolute_pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, ) self.layers.append(layer) num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] self.num_features = num_features # add a norm layer for each output for i_layer in out_indices: layer = norm_layer(num_features[i_layer]) layer_name = f"norm{i_layer}" self.add_module(layer_name, layer) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1 and self.ape: self.absolute_pos_embed.requires_grad = False if self.frozen_stages >= 2: self.pos_drop.eval() for i in range(0, self.frozen_stages - 1): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): """Forward function.""" x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) if self.ape: # interpolate the position embedding to the corresponding size absolute_pos_embed = F.interpolate( self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic" ) x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C else: x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = {} for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) if i in self.out_indices: norm_layer = getattr(self, f"norm{i}") x_out = norm_layer(x_out) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs["res{}".format(i + 2)] = out return outs def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(SwinTransformer, self).train(mode) self._freeze_stages() @BACKBONE_REGISTRY.register() class D2SwinTransformer(SwinTransformer, Backbone): def __init__(self, cfg, input_shape): pretrain_img_size = cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE patch_size = cfg.MODEL.SWIN.PATCH_SIZE in_chans = 3 embed_dim = cfg.MODEL.SWIN.EMBED_DIM depths = cfg.MODEL.SWIN.DEPTHS num_heads = cfg.MODEL.SWIN.NUM_HEADS window_size = cfg.MODEL.SWIN.WINDOW_SIZE mlp_ratio = cfg.MODEL.SWIN.MLP_RATIO qkv_bias = cfg.MODEL.SWIN.QKV_BIAS qk_scale = cfg.MODEL.SWIN.QK_SCALE drop_rate = cfg.MODEL.SWIN.DROP_RATE attn_drop_rate = cfg.MODEL.SWIN.ATTN_DROP_RATE drop_path_rate = cfg.MODEL.SWIN.DROP_PATH_RATE norm_layer = nn.LayerNorm ape = cfg.MODEL.SWIN.APE patch_norm = cfg.MODEL.SWIN.PATCH_NORM use_checkpoint = cfg.MODEL.SWIN.USE_CHECKPOINT super().__init__( pretrain_img_size, patch_size, in_chans, embed_dim, depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape, patch_norm, use_checkpoint=use_checkpoint, ) self._out_features = cfg.MODEL.SWIN.OUT_FEATURES self._out_feature_strides = { "res2": 4, "res3": 8, "res4": 16, "res5": 32, } self._out_feature_channels = { "res2": self.num_features[0], "res3": self.num_features[1], "res4": self.num_features[2], "res5": self.num_features[3], } def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert ( x.dim() == 4 ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} y = super().forward(x) for k in y.keys(): if k in self._out_features: outputs[k] = y[k] return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } @property def size_divisibility(self): return 32
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/backbone/swin.py
# Copyright (c) Facebook, Inc. and its affiliates.
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/modeling/backbone/__init__.py
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/evaluation/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import itertools import json import logging import numpy as np import os import pickle from collections import OrderedDict import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.config import CfgNode from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_json from detectron2.evaluation.coco_evaluation import COCOEvaluator, _evaluate_predictions_on_coco from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, BoxMode, pairwise_iou from detectron2.utils.file_io import PathManager from detectron2.utils.logger import create_small_table # modified from COCOEvaluator for instance segmetnat class InstanceSegEvaluator(COCOEvaluator): """ Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """ def _eval_predictions(self, predictions, img_ids=None): """ Evaluate predictions. Fill self._results with the metrics of the tasks. """ self._logger.info("Preparing results for COCO format ...") coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) tasks = self._tasks or self._tasks_from_predictions(coco_results) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id # all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) # num_classes = len(all_contiguous_ids) # assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} for result in coco_results: category_id = result["category_id"] # assert category_id < num_classes, ( # f"A prediction has class={category_id}, " # f"but the dataset only has {num_classes} classes and " # f"predicted class id should be in [0, {num_classes - 1}]." # ) assert category_id in reverse_id_mapping, ( f"A prediction has class={category_id}, " f"but the dataset only has class ids in {dataset_id_to_contiguous_id}." ) result["category_id"] = reverse_id_mapping[category_id] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info( "Evaluating predictions with {} COCO API...".format( "unofficial" if self._use_fast_impl else "official" ) ) for task in sorted(tasks): assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas, use_fast_impl=self._use_fast_impl, img_ids=img_ids, max_dets_per_image=self._max_dets_per_image, ) if len(coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, task, class_names=self._metadata.get("thing_classes") ) self._results[task] = res
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/evaluation/instance_evaluation.py
# Copyright (c) Facebook, Inc. and its affiliates. from . import datasets
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates.
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/dataset_mappers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/d2/detr/dataset_mapper.py import copy import logging import numpy as np import torch from detectron2.config import configurable from detectron2.data import detection_utils as utils from detectron2.data import transforms as T from detectron2.data.transforms import TransformGen from detectron2.structures import BitMasks, Boxes, Instances __all__ = ["COCOPanopticNewBaselineDatasetMapper"] def build_transform_gen(cfg, is_train): """ Create a list of default :class:`Augmentation` from config. Now it includes resizing and flipping. Returns: list[Augmentation] """ assert is_train, "Only support training augmentation" image_size = cfg.INPUT.IMAGE_SIZE min_scale = cfg.INPUT.MIN_SCALE max_scale = cfg.INPUT.MAX_SCALE augmentation = [] if cfg.INPUT.RANDOM_FLIP != "none": augmentation.append( T.RandomFlip( horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal", vertical=cfg.INPUT.RANDOM_FLIP == "vertical", ) ) augmentation.extend([ T.ResizeScale( min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size ), T.FixedSizeCrop(crop_size=(image_size, image_size)), ]) return augmentation # This is specifically designed for the COCO dataset. class COCOPanopticNewBaselineDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by MaskFormer. This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ @configurable def __init__( self, is_train=True, *, tfm_gens, image_format, ): """ NOTE: this interface is experimental. Args: is_train: for training or inference augmentations: a list of augmentations or deterministic transforms to apply crop_gen: crop augmentation tfm_gens: data augmentation image_format: an image format supported by :func:`detection_utils.read_image`. """ self.tfm_gens = tfm_gens logging.getLogger(__name__).info( "[COCOPanopticNewBaselineDatasetMapper] Full TransformGens used in training: {}".format( str(self.tfm_gens) ) ) self.img_format = image_format self.is_train = is_train @classmethod def from_config(cls, cfg, is_train=True): # Build augmentation tfm_gens = build_transform_gen(cfg, is_train) ret = { "is_train": is_train, "tfm_gens": tfm_gens, "image_format": cfg.INPUT.FORMAT, } return ret def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) image, transforms = T.apply_transform_gens(self.tfm_gens, image) image_shape = image.shape[:2] # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "pan_seg_file_name" in dataset_dict: pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB") segments_info = dataset_dict["segments_info"] # apply the same transformation to panoptic segmentation pan_seg_gt = transforms.apply_segmentation(pan_seg_gt) from panopticapi.utils import rgb2id pan_seg_gt = rgb2id(pan_seg_gt) instances = Instances(image_shape) classes = [] masks = [] for segment_info in segments_info: class_id = segment_info["category_id"] if not segment_info["iscrowd"]: classes.append(class_id) masks.append(pan_seg_gt == segment_info["id"]) classes = np.array(classes) instances.gt_classes = torch.tensor(classes, dtype=torch.int64) if len(masks) == 0: # Some image does not have annotation (all ignored) instances.gt_masks = torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1])) instances.gt_boxes = Boxes(torch.zeros((0, 4))) else: masks = BitMasks( torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) ) instances.gt_masks = masks.tensor instances.gt_boxes = masks.get_bounding_boxes() dataset_dict["instances"] = instances return dataset_dict
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/dataset_mappers/coco_panoptic_new_baseline_dataset_mapper.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import numpy as np import torch from torch.nn import functional as F from detectron2.config import configurable from detectron2.data import MetadataCatalog from detectron2.data import detection_utils as utils from detectron2.data import transforms as T from detectron2.projects.point_rend import ColorAugSSDTransform from detectron2.structures import BitMasks, Instances __all__ = ["MaskFormerSemanticDatasetMapper"] class MaskFormerSemanticDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by MaskFormer for semantic segmentation. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ @configurable def __init__( self, is_train=True, *, augmentations, image_format, ignore_label, size_divisibility, ): """ NOTE: this interface is experimental. Args: is_train: for training or inference augmentations: a list of augmentations or deterministic transforms to apply image_format: an image format supported by :func:`detection_utils.read_image`. ignore_label: the label that is ignored to evaluation size_divisibility: pad image size to be divisible by this value """ self.is_train = is_train self.tfm_gens = augmentations self.img_format = image_format self.ignore_label = ignore_label self.size_divisibility = size_divisibility logger = logging.getLogger(__name__) mode = "training" if is_train else "inference" logger.info(f"[{self.__class__.__name__}] Augmentations used in {mode}: {augmentations}") @classmethod def from_config(cls, cfg, is_train=True): # Build augmentation augs = [ T.ResizeShortestEdge( cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING, ) ] if cfg.INPUT.CROP.ENABLED: augs.append( T.RandomCrop_CategoryAreaConstraint( cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE, cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA, cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, ) ) if cfg.INPUT.COLOR_AUG_SSD: augs.append(ColorAugSSDTransform(img_format=cfg.INPUT.FORMAT)) augs.append(T.RandomFlip()) # Assume always applies to the training set. dataset_names = cfg.DATASETS.TRAIN meta = MetadataCatalog.get(dataset_names[0]) ignore_label = meta.ignore_label ret = { "is_train": is_train, "augmentations": augs, "image_format": cfg.INPUT.FORMAT, "ignore_label": ignore_label, "size_divisibility": cfg.INPUT.SIZE_DIVISIBILITY, } return ret def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ assert self.is_train, "MaskFormerSemanticDatasetMapper should only be used for training!" dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) if "sem_seg_file_name" in dataset_dict: # PyTorch transformation not implemented for uint16, so converting it to double first sem_seg_gt = utils.read_image(dataset_dict.pop("sem_seg_file_name")).astype("double") else: sem_seg_gt = None if sem_seg_gt is None: raise ValueError( "Cannot find 'sem_seg_file_name' for semantic segmentation dataset {}.".format( dataset_dict["file_name"] ) ) aug_input = T.AugInput(image, sem_seg=sem_seg_gt) aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input) image = aug_input.image sem_seg_gt = aug_input.sem_seg # Pad image and segmentation label here! image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) if sem_seg_gt is not None: sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long")) if self.size_divisibility > 0: image_size = (image.shape[-2], image.shape[-1]) padding_size = [ 0, self.size_divisibility - image_size[1], 0, self.size_divisibility - image_size[0], ] image = F.pad(image, padding_size, value=128).contiguous() if sem_seg_gt is not None: sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous() image_shape = (image.shape[-2], image.shape[-1]) # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = image if sem_seg_gt is not None: dataset_dict["sem_seg"] = sem_seg_gt.long() if "annotations" in dataset_dict: raise ValueError("Semantic segmentation dataset should not have 'annotations'.") # Prepare per-category binary masks if sem_seg_gt is not None: sem_seg_gt = sem_seg_gt.numpy() instances = Instances(image_shape) classes = np.unique(sem_seg_gt) # remove ignored region classes = classes[classes != self.ignore_label] instances.gt_classes = torch.tensor(classes, dtype=torch.int64) masks = [] for class_id in classes: masks.append(sem_seg_gt == class_id) if len(masks) == 0: # Some image does not have annotation (all ignored) instances.gt_masks = torch.zeros((0, sem_seg_gt.shape[-2], sem_seg_gt.shape[-1])) else: masks = BitMasks( torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) ) instances.gt_masks = masks.tensor dataset_dict["instances"] = instances return dataset_dict
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/dataset_mappers/mask_former_semantic_dataset_mapper.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import numpy as np import torch from torch.nn import functional as F from detectron2.config import configurable from detectron2.data import detection_utils as utils from detectron2.data import transforms as T from detectron2.structures import BitMasks, Instances from .mask_former_semantic_dataset_mapper import MaskFormerSemanticDatasetMapper __all__ = ["MaskFormerPanopticDatasetMapper"] class MaskFormerPanopticDatasetMapper(MaskFormerSemanticDatasetMapper): """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by MaskFormer for panoptic segmentation. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ @configurable def __init__( self, is_train=True, *, augmentations, image_format, ignore_label, size_divisibility, ): """ NOTE: this interface is experimental. Args: is_train: for training or inference augmentations: a list of augmentations or deterministic transforms to apply image_format: an image format supported by :func:`detection_utils.read_image`. ignore_label: the label that is ignored to evaluation size_divisibility: pad image size to be divisible by this value """ super().__init__( is_train, augmentations=augmentations, image_format=image_format, ignore_label=ignore_label, size_divisibility=size_divisibility, ) def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ assert self.is_train, "MaskFormerPanopticDatasetMapper should only be used for training!" dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) # semantic segmentation if "sem_seg_file_name" in dataset_dict: # PyTorch transformation not implemented for uint16, so converting it to double first sem_seg_gt = utils.read_image(dataset_dict.pop("sem_seg_file_name")).astype("double") else: sem_seg_gt = None # panoptic segmentation if "pan_seg_file_name" in dataset_dict: pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB") segments_info = dataset_dict["segments_info"] else: pan_seg_gt = None segments_info = None if pan_seg_gt is None: raise ValueError( "Cannot find 'pan_seg_file_name' for panoptic segmentation dataset {}.".format( dataset_dict["file_name"] ) ) aug_input = T.AugInput(image, sem_seg=sem_seg_gt) aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input) image = aug_input.image if sem_seg_gt is not None: sem_seg_gt = aug_input.sem_seg # apply the same transformation to panoptic segmentation pan_seg_gt = transforms.apply_segmentation(pan_seg_gt) from panopticapi.utils import rgb2id pan_seg_gt = rgb2id(pan_seg_gt) # Pad image and segmentation label here! image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) if sem_seg_gt is not None: sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long")) pan_seg_gt = torch.as_tensor(pan_seg_gt.astype("long")) if self.size_divisibility > 0: image_size = (image.shape[-2], image.shape[-1]) padding_size = [ 0, self.size_divisibility - image_size[1], 0, self.size_divisibility - image_size[0], ] image = F.pad(image, padding_size, value=128).contiguous() if sem_seg_gt is not None: sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous() pan_seg_gt = F.pad( pan_seg_gt, padding_size, value=0 ).contiguous() # 0 is the VOID panoptic label image_shape = (image.shape[-2], image.shape[-1]) # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = image if sem_seg_gt is not None: dataset_dict["sem_seg"] = sem_seg_gt.long() if "annotations" in dataset_dict: raise ValueError("Pemantic segmentation dataset should not have 'annotations'.") # Prepare per-category binary masks pan_seg_gt = pan_seg_gt.numpy() instances = Instances(image_shape) classes = [] masks = [] for segment_info in segments_info: class_id = segment_info["category_id"] if not segment_info["iscrowd"]: classes.append(class_id) masks.append(pan_seg_gt == segment_info["id"]) classes = np.array(classes) instances.gt_classes = torch.tensor(classes, dtype=torch.int64) if len(masks) == 0: # Some image does not have annotation (all ignored) instances.gt_masks = torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1])) else: masks = BitMasks( torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) ) instances.gt_masks = masks.tensor dataset_dict["instances"] = instances return dataset_dict
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/dataset_mappers/mask_former_panoptic_dataset_mapper.py
# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/d2/detr/dataset_mapper.py import copy import logging import numpy as np import torch from detectron2.config import configurable from detectron2.data import detection_utils as utils from detectron2.data import transforms as T from detectron2.data.transforms import TransformGen from detectron2.structures import BitMasks, Instances from pycocotools import mask as coco_mask __all__ = ["COCOInstanceNewBaselineDatasetMapper"] def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks def build_transform_gen(cfg, is_train): """ Create a list of default :class:`Augmentation` from config. Now it includes resizing and flipping. Returns: list[Augmentation] """ assert is_train, "Only support training augmentation" image_size = cfg.INPUT.IMAGE_SIZE min_scale = cfg.INPUT.MIN_SCALE max_scale = cfg.INPUT.MAX_SCALE augmentation = [] if cfg.INPUT.RANDOM_FLIP != "none": augmentation.append( T.RandomFlip( horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal", vertical=cfg.INPUT.RANDOM_FLIP == "vertical", ) ) augmentation.extend([ T.ResizeScale( min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size ), T.FixedSizeCrop(crop_size=(image_size, image_size)), ]) return augmentation # This is specifically designed for the COCO dataset. class COCOInstanceNewBaselineDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by MaskFormer. This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ @configurable def __init__( self, is_train=True, *, tfm_gens, image_format, ): """ NOTE: this interface is experimental. Args: is_train: for training or inference augmentations: a list of augmentations or deterministic transforms to apply tfm_gens: data augmentation image_format: an image format supported by :func:`detection_utils.read_image`. """ self.tfm_gens = tfm_gens logging.getLogger(__name__).info( "[COCOInstanceNewBaselineDatasetMapper] Full TransformGens used in training: {}".format(str(self.tfm_gens)) ) self.img_format = image_format self.is_train = is_train @classmethod def from_config(cls, cfg, is_train=True): # Build augmentation tfm_gens = build_transform_gen(cfg, is_train) ret = { "is_train": is_train, "tfm_gens": tfm_gens, "image_format": cfg.INPUT.FORMAT, } return ret def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) # TODO: get padding mask # by feeding a "segmentation mask" to the same transforms padding_mask = np.ones(image.shape[:2]) image, transforms = T.apply_transform_gens(self.tfm_gens, image) # the crop transformation has default padding value 0 for segmentation padding_mask = transforms.apply_segmentation(padding_mask) padding_mask = ~ padding_mask.astype(bool) image_shape = image.shape[:2] # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask)) if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "annotations" in dataset_dict: # USER: Modify this if you want to keep them for some reason. for anno in dataset_dict["annotations"]: # Let's always keep mask # if not self.mask_on: # anno.pop("segmentation", None) anno.pop("keypoints", None) # USER: Implement additional transformations if you have other types of data annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] # NOTE: does not support BitMask due to augmentation # Current BitMask cannot handle empty objects instances = utils.annotations_to_instances(annos, image_shape) # After transforms such as cropping are applied, the bounding box may no longer # tightly bound the object. As an example, imagine a triangle object # [(0,0), (2,0), (0,2)] cropped by a box [(1,0),(2,2)] (XYXY format). The tight # bounding box of the cropped triangle should be [(1,0),(2,1)], which is not equal to # the intersection of original bounding box and the cropping box. instances.gt_boxes = instances.gt_masks.get_bounding_boxes() # Need to filter empty instances first (due to augmentation) instances = utils.filter_empty_instances(instances) # Generate masks from polygon h, w = instances.image_size # image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float) if hasattr(instances, 'gt_masks'): gt_masks = instances.gt_masks gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w) instances.gt_masks = gt_masks dataset_dict["instances"] = instances return dataset_dict
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/dataset_mappers/coco_instance_new_baseline_dataset_mapper.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import numpy as np import pycocotools.mask as mask_util import torch from torch.nn import functional as F from detectron2.config import configurable from detectron2.data import detection_utils as utils from detectron2.data import transforms as T from detectron2.projects.point_rend import ColorAugSSDTransform from detectron2.structures import BitMasks, Instances, polygons_to_bitmask __all__ = ["MaskFormerInstanceDatasetMapper"] class MaskFormerInstanceDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by MaskFormer for instance segmentation. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ @configurable def __init__( self, is_train=True, *, augmentations, image_format, size_divisibility, ): """ NOTE: this interface is experimental. Args: is_train: for training or inference augmentations: a list of augmentations or deterministic transforms to apply image_format: an image format supported by :func:`detection_utils.read_image`. size_divisibility: pad image size to be divisible by this value """ self.is_train = is_train self.tfm_gens = augmentations self.img_format = image_format self.size_divisibility = size_divisibility logger = logging.getLogger(__name__) mode = "training" if is_train else "inference" logger.info(f"[{self.__class__.__name__}] Augmentations used in {mode}: {augmentations}") @classmethod def from_config(cls, cfg, is_train=True): # Build augmentation augs = [ T.ResizeShortestEdge( cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING, ) ] if cfg.INPUT.CROP.ENABLED: augs.append( T.RandomCrop( cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE, ) ) if cfg.INPUT.COLOR_AUG_SSD: augs.append(ColorAugSSDTransform(img_format=cfg.INPUT.FORMAT)) augs.append(T.RandomFlip()) ret = { "is_train": is_train, "augmentations": augs, "image_format": cfg.INPUT.FORMAT, "size_divisibility": cfg.INPUT.SIZE_DIVISIBILITY, } return ret def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ assert self.is_train, "MaskFormerPanopticDatasetMapper should only be used for training!" dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) aug_input = T.AugInput(image) aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input) image = aug_input.image # transform instnace masks assert "annotations" in dataset_dict for anno in dataset_dict["annotations"]: anno.pop("keypoints", None) annos = [ utils.transform_instance_annotations(obj, transforms, image.shape[:2]) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] if len(annos): assert "segmentation" in annos[0] segms = [obj["segmentation"] for obj in annos] masks = [] for segm in segms: if isinstance(segm, list): # polygon masks.append(polygons_to_bitmask(segm, *image.shape[:2])) elif isinstance(segm, dict): # COCO RLE masks.append(mask_util.decode(segm)) elif isinstance(segm, np.ndarray): assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format( segm.ndim ) # mask array masks.append(segm) else: raise ValueError( "Cannot convert segmentation of type '{}' to BitMasks!" "Supported types are: polygons as list[list[float] or ndarray]," " COCO-style RLE as a dict, or a binary segmentation mask " " in a 2D numpy array of shape HxW.".format(type(segm)) ) # Pad image and segmentation label here! image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) masks = [torch.from_numpy(np.ascontiguousarray(x)) for x in masks] classes = [int(obj["category_id"]) for obj in annos] classes = torch.tensor(classes, dtype=torch.int64) if self.size_divisibility > 0: image_size = (image.shape[-2], image.shape[-1]) padding_size = [ 0, self.size_divisibility - image_size[1], 0, self.size_divisibility - image_size[0], ] # pad image image = F.pad(image, padding_size, value=128).contiguous() # pad mask masks = [F.pad(x, padding_size, value=0).contiguous() for x in masks] image_shape = (image.shape[-2], image.shape[-1]) # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = image # Prepare per-category binary masks instances = Instances(image_shape) instances.gt_classes = classes if len(masks) == 0: # Some image does not have annotation (all ignored) instances.gt_masks = torch.zeros((0, image.shape[-2], image.shape[-1])) else: masks = BitMasks(torch.stack(masks)) instances.gt_masks = masks.tensor dataset_dict["instances"] = instances return dataset_dict
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/dataset_mappers/mask_former_instance_dataset_mapper.py
# Copyright (c) Facebook, Inc. and its affiliates. import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets import load_sem_seg ADE20K_SEM_SEG_FULL_CATEGORIES = [ {"name": "wall", "id": 2978, "trainId": 0}, {"name": "building, edifice", "id": 312, "trainId": 1}, {"name": "sky", "id": 2420, "trainId": 2}, {"name": "tree", "id": 2855, "trainId": 3}, {"name": "road, route", "id": 2131, "trainId": 4}, {"name": "floor, flooring", "id": 976, "trainId": 5}, {"name": "ceiling", "id": 447, "trainId": 6}, {"name": "bed", "id": 165, "trainId": 7}, {"name": "sidewalk, pavement", "id": 2377, "trainId": 8}, {"name": "earth, ground", "id": 838, "trainId": 9}, {"name": "cabinet", "id": 350, "trainId": 10}, {"name": "person, individual, someone, somebody, mortal, soul", "id": 1831, "trainId": 11}, {"name": "grass", "id": 1125, "trainId": 12}, {"name": "windowpane, window", "id": 3055, "trainId": 13}, {"name": "car, auto, automobile, machine, motorcar", "id": 401, "trainId": 14}, {"name": "mountain, mount", "id": 1610, "trainId": 15}, {"name": "plant, flora, plant life", "id": 1910, "trainId": 16}, {"name": "table", "id": 2684, "trainId": 17}, {"name": "chair", "id": 471, "trainId": 18}, {"name": "curtain, drape, drapery, mantle, pall", "id": 687, "trainId": 19}, {"name": "door", "id": 774, "trainId": 20}, {"name": "sofa, couch, lounge", "id": 2473, "trainId": 21}, {"name": "sea", "id": 2264, "trainId": 22}, {"name": "painting, picture", "id": 1735, "trainId": 23}, {"name": "water", "id": 2994, "trainId": 24}, {"name": "mirror", "id": 1564, "trainId": 25}, {"name": "house", "id": 1276, "trainId": 26}, {"name": "rug, carpet, carpeting", "id": 2178, "trainId": 27}, {"name": "shelf", "id": 2329, "trainId": 28}, {"name": "armchair", "id": 57, "trainId": 29}, {"name": "fence, fencing", "id": 907, "trainId": 30}, {"name": "field", "id": 913, "trainId": 31}, {"name": "lamp", "id": 1395, "trainId": 32}, {"name": "rock, stone", "id": 2138, "trainId": 33}, {"name": "seat", "id": 2272, "trainId": 34}, {"name": "river", "id": 2128, "trainId": 35}, {"name": "desk", "id": 724, "trainId": 36}, {"name": "bathtub, bathing tub, bath, tub", "id": 155, "trainId": 37}, {"name": "railing, rail", "id": 2053, "trainId": 38}, {"name": "signboard, sign", "id": 2380, "trainId": 39}, {"name": "cushion", "id": 689, "trainId": 40}, {"name": "path", "id": 1788, "trainId": 41}, {"name": "work surface", "id": 3087, "trainId": 42}, {"name": "stairs, steps", "id": 2530, "trainId": 43}, {"name": "column, pillar", "id": 581, "trainId": 44}, {"name": "sink", "id": 2388, "trainId": 45}, {"name": "wardrobe, closet, press", "id": 2985, "trainId": 46}, {"name": "snow", "id": 2454, "trainId": 47}, {"name": "refrigerator, icebox", "id": 2096, "trainId": 48}, {"name": "base, pedestal, stand", "id": 137, "trainId": 49}, {"name": "bridge, span", "id": 294, "trainId": 50}, {"name": "blind, screen", "id": 212, "trainId": 51}, {"name": "runway", "id": 2185, "trainId": 52}, {"name": "cliff, drop, drop-off", "id": 524, "trainId": 53}, {"name": "sand", "id": 2212, "trainId": 54}, {"name": "fireplace, hearth, open fireplace", "id": 943, "trainId": 55}, {"name": "pillow", "id": 1869, "trainId": 56}, {"name": "screen door, screen", "id": 2251, "trainId": 57}, {"name": "toilet, can, commode, crapper, pot, potty, stool, throne", "id": 2793, "trainId": 58}, {"name": "skyscraper", "id": 2423, "trainId": 59}, {"name": "grandstand, covered stand", "id": 1121, "trainId": 60}, {"name": "box", "id": 266, "trainId": 61}, {"name": "pool table, billiard table, snooker table", "id": 1948, "trainId": 62}, {"name": "palm, palm tree", "id": 1744, "trainId": 63}, {"name": "double door", "id": 783, "trainId": 64}, {"name": "coffee table, cocktail table", "id": 571, "trainId": 65}, {"name": "counter", "id": 627, "trainId": 66}, {"name": "countertop", "id": 629, "trainId": 67}, {"name": "chest of drawers, chest, bureau, dresser", "id": 491, "trainId": 68}, {"name": "kitchen island", "id": 1374, "trainId": 69}, {"name": "boat", "id": 223, "trainId": 70}, {"name": "waterfall, falls", "id": 3016, "trainId": 71}, { "name": "stove, kitchen stove, range, kitchen range, cooking stove", "id": 2598, "trainId": 72, }, {"name": "flower", "id": 978, "trainId": 73}, {"name": "bookcase", "id": 239, "trainId": 74}, {"name": "controls", "id": 608, "trainId": 75}, {"name": "book", "id": 236, "trainId": 76}, {"name": "stairway, staircase", "id": 2531, "trainId": 77}, {"name": "streetlight, street lamp", "id": 2616, "trainId": 78}, { "name": "computer, computing machine, computing device, data processor, electronic computer, information processing system", "id": 591, "trainId": 79, }, { "name": "bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger vehicle", "id": 327, "trainId": 80, }, {"name": "swivel chair", "id": 2679, "trainId": 81}, {"name": "light, light source", "id": 1451, "trainId": 82}, {"name": "bench", "id": 181, "trainId": 83}, {"name": "case, display case, showcase, vitrine", "id": 420, "trainId": 84}, {"name": "towel", "id": 2821, "trainId": 85}, {"name": "fountain", "id": 1023, "trainId": 86}, {"name": "embankment", "id": 855, "trainId": 87}, { "name": "television receiver, television, television set, tv, tv set, idiot box, boob tube, telly, goggle box", "id": 2733, "trainId": 88, }, {"name": "van", "id": 2928, "trainId": 89}, {"name": "hill", "id": 1240, "trainId": 90}, {"name": "awning, sunshade, sunblind", "id": 77, "trainId": 91}, {"name": "poster, posting, placard, notice, bill, card", "id": 1969, "trainId": 92}, {"name": "truck, motortruck", "id": 2880, "trainId": 93}, {"name": "airplane, aeroplane, plane", "id": 14, "trainId": 94}, {"name": "pole", "id": 1936, "trainId": 95}, {"name": "tower", "id": 2828, "trainId": 96}, {"name": "court", "id": 631, "trainId": 97}, {"name": "ball", "id": 103, "trainId": 98}, { "name": "aircraft carrier, carrier, flattop, attack aircraft carrier", "id": 3144, "trainId": 99, }, {"name": "buffet, counter, sideboard", "id": 308, "trainId": 100}, {"name": "hovel, hut, hutch, shack, shanty", "id": 1282, "trainId": 101}, {"name": "apparel, wearing apparel, dress, clothes", "id": 38, "trainId": 102}, {"name": "minibike, motorbike", "id": 1563, "trainId": 103}, {"name": "animal, animate being, beast, brute, creature, fauna", "id": 29, "trainId": 104}, {"name": "chandelier, pendant, pendent", "id": 480, "trainId": 105}, {"name": "step, stair", "id": 2569, "trainId": 106}, {"name": "booth, cubicle, stall, kiosk", "id": 247, "trainId": 107}, {"name": "bicycle, bike, wheel, cycle", "id": 187, "trainId": 108}, {"name": "doorframe, doorcase", "id": 778, "trainId": 109}, {"name": "sconce", "id": 2243, "trainId": 110}, {"name": "pond", "id": 1941, "trainId": 111}, {"name": "trade name, brand name, brand, marque", "id": 2833, "trainId": 112}, {"name": "bannister, banister, balustrade, balusters, handrail", "id": 120, "trainId": 113}, {"name": "bag", "id": 95, "trainId": 114}, {"name": "traffic light, traffic signal, stoplight", "id": 2836, "trainId": 115}, {"name": "gazebo", "id": 1087, "trainId": 116}, {"name": "escalator, moving staircase, moving stairway", "id": 868, "trainId": 117}, {"name": "land, ground, soil", "id": 1401, "trainId": 118}, {"name": "board, plank", "id": 220, "trainId": 119}, {"name": "arcade machine", "id": 47, "trainId": 120}, {"name": "eiderdown, duvet, continental quilt", "id": 843, "trainId": 121}, {"name": "bar", "id": 123, "trainId": 122}, {"name": "stall, stand, sales booth", "id": 2537, "trainId": 123}, {"name": "playground", "id": 1927, "trainId": 124}, {"name": "ship", "id": 2337, "trainId": 125}, {"name": "ottoman, pouf, pouffe, puff, hassock", "id": 1702, "trainId": 126}, { "name": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "id": 64, "trainId": 127, }, {"name": "bottle", "id": 249, "trainId": 128}, {"name": "cradle", "id": 642, "trainId": 129}, {"name": "pot, flowerpot", "id": 1981, "trainId": 130}, { "name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter", "id": 609, "trainId": 131, }, {"name": "train, railroad train", "id": 2840, "trainId": 132}, {"name": "stool", "id": 2586, "trainId": 133}, {"name": "lake", "id": 1393, "trainId": 134}, {"name": "tank, storage tank", "id": 2704, "trainId": 135}, {"name": "ice, water ice", "id": 1304, "trainId": 136}, {"name": "basket, handbasket", "id": 146, "trainId": 137}, {"name": "manhole", "id": 1494, "trainId": 138}, {"name": "tent, collapsible shelter", "id": 2739, "trainId": 139}, {"name": "canopy", "id": 389, "trainId": 140}, {"name": "microwave, microwave oven", "id": 1551, "trainId": 141}, {"name": "barrel, cask", "id": 131, "trainId": 142}, {"name": "dirt track", "id": 738, "trainId": 143}, {"name": "beam", "id": 161, "trainId": 144}, {"name": "dishwasher, dish washer, dishwashing machine", "id": 747, "trainId": 145}, {"name": "plate", "id": 1919, "trainId": 146}, {"name": "screen, crt screen", "id": 3109, "trainId": 147}, {"name": "ruins", "id": 2179, "trainId": 148}, {"name": "washer, automatic washer, washing machine", "id": 2989, "trainId": 149}, {"name": "blanket, cover", "id": 206, "trainId": 150}, {"name": "plaything, toy", "id": 1930, "trainId": 151}, {"name": "food, solid food", "id": 1002, "trainId": 152}, {"name": "screen, silver screen, projection screen", "id": 2254, "trainId": 153}, {"name": "oven", "id": 1708, "trainId": 154}, {"name": "stage", "id": 2526, "trainId": 155}, {"name": "beacon, lighthouse, beacon light, pharos", "id": 160, "trainId": 156}, {"name": "umbrella", "id": 2901, "trainId": 157}, {"name": "sculpture", "id": 2262, "trainId": 158}, {"name": "aqueduct", "id": 44, "trainId": 159}, {"name": "container", "id": 597, "trainId": 160}, {"name": "scaffolding, staging", "id": 2235, "trainId": 161}, {"name": "hood, exhaust hood", "id": 1260, "trainId": 162}, {"name": "curb, curbing, kerb", "id": 682, "trainId": 163}, {"name": "roller coaster", "id": 2151, "trainId": 164}, {"name": "horse, equus caballus", "id": 3107, "trainId": 165}, {"name": "catwalk", "id": 432, "trainId": 166}, {"name": "glass, drinking glass", "id": 1098, "trainId": 167}, {"name": "vase", "id": 2932, "trainId": 168}, {"name": "central reservation", "id": 461, "trainId": 169}, {"name": "carousel", "id": 410, "trainId": 170}, {"name": "radiator", "id": 2046, "trainId": 171}, {"name": "closet", "id": 533, "trainId": 172}, {"name": "machine", "id": 1481, "trainId": 173}, {"name": "pier, wharf, wharfage, dock", "id": 1858, "trainId": 174}, {"name": "fan", "id": 894, "trainId": 175}, {"name": "inflatable bounce game", "id": 1322, "trainId": 176}, {"name": "pitch", "id": 1891, "trainId": 177}, {"name": "paper", "id": 1756, "trainId": 178}, {"name": "arcade, colonnade", "id": 49, "trainId": 179}, {"name": "hot tub", "id": 1272, "trainId": 180}, {"name": "helicopter", "id": 1229, "trainId": 181}, {"name": "tray", "id": 2850, "trainId": 182}, {"name": "partition, divider", "id": 1784, "trainId": 183}, {"name": "vineyard", "id": 2962, "trainId": 184}, {"name": "bowl", "id": 259, "trainId": 185}, {"name": "bullring", "id": 319, "trainId": 186}, {"name": "flag", "id": 954, "trainId": 187}, {"name": "pot", "id": 1974, "trainId": 188}, {"name": "footbridge, overcrossing, pedestrian bridge", "id": 1013, "trainId": 189}, {"name": "shower", "id": 2356, "trainId": 190}, {"name": "bag, traveling bag, travelling bag, grip, suitcase", "id": 97, "trainId": 191}, {"name": "bulletin board, notice board", "id": 318, "trainId": 192}, {"name": "confessional booth", "id": 592, "trainId": 193}, {"name": "trunk, tree trunk, bole", "id": 2885, "trainId": 194}, {"name": "forest", "id": 1017, "trainId": 195}, {"name": "elevator door", "id": 851, "trainId": 196}, {"name": "laptop, laptop computer", "id": 1407, "trainId": 197}, {"name": "instrument panel", "id": 1332, "trainId": 198}, {"name": "bucket, pail", "id": 303, "trainId": 199}, {"name": "tapestry, tapis", "id": 2714, "trainId": 200}, {"name": "platform", "id": 1924, "trainId": 201}, {"name": "jacket", "id": 1346, "trainId": 202}, {"name": "gate", "id": 1081, "trainId": 203}, {"name": "monitor, monitoring device", "id": 1583, "trainId": 204}, { "name": "telephone booth, phone booth, call box, telephone box, telephone kiosk", "id": 2727, "trainId": 205, }, {"name": "spotlight, spot", "id": 2509, "trainId": 206}, {"name": "ring", "id": 2123, "trainId": 207}, {"name": "control panel", "id": 602, "trainId": 208}, {"name": "blackboard, chalkboard", "id": 202, "trainId": 209}, {"name": "air conditioner, air conditioning", "id": 10, "trainId": 210}, {"name": "chest", "id": 490, "trainId": 211}, {"name": "clock", "id": 530, "trainId": 212}, {"name": "sand dune", "id": 2213, "trainId": 213}, {"name": "pipe, pipage, piping", "id": 1884, "trainId": 214}, {"name": "vault", "id": 2934, "trainId": 215}, {"name": "table football", "id": 2687, "trainId": 216}, {"name": "cannon", "id": 387, "trainId": 217}, {"name": "swimming pool, swimming bath, natatorium", "id": 2668, "trainId": 218}, {"name": "fluorescent, fluorescent fixture", "id": 982, "trainId": 219}, {"name": "statue", "id": 2547, "trainId": 220}, { "name": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "id": 1474, "trainId": 221, }, {"name": "exhibitor", "id": 877, "trainId": 222}, {"name": "ladder", "id": 1391, "trainId": 223}, {"name": "carport", "id": 414, "trainId": 224}, {"name": "dam", "id": 698, "trainId": 225}, {"name": "pulpit", "id": 2019, "trainId": 226}, {"name": "skylight, fanlight", "id": 2422, "trainId": 227}, {"name": "water tower", "id": 3010, "trainId": 228}, {"name": "grill, grille, grillwork", "id": 1139, "trainId": 229}, {"name": "display board", "id": 753, "trainId": 230}, {"name": "pane, pane of glass, window glass", "id": 1747, "trainId": 231}, {"name": "rubbish, trash, scrap", "id": 2175, "trainId": 232}, {"name": "ice rink", "id": 1301, "trainId": 233}, {"name": "fruit", "id": 1033, "trainId": 234}, {"name": "patio", "id": 1789, "trainId": 235}, {"name": "vending machine", "id": 2939, "trainId": 236}, {"name": "telephone, phone, telephone set", "id": 2730, "trainId": 237}, {"name": "net", "id": 1652, "trainId": 238}, { "name": "backpack, back pack, knapsack, packsack, rucksack, haversack", "id": 90, "trainId": 239, }, {"name": "jar", "id": 1349, "trainId": 240}, {"name": "track", "id": 2830, "trainId": 241}, {"name": "magazine", "id": 1485, "trainId": 242}, {"name": "shutter", "id": 2370, "trainId": 243}, {"name": "roof", "id": 2155, "trainId": 244}, {"name": "banner, streamer", "id": 118, "trainId": 245}, {"name": "landfill", "id": 1402, "trainId": 246}, {"name": "post", "id": 1957, "trainId": 247}, {"name": "altarpiece, reredos", "id": 3130, "trainId": 248}, {"name": "hat, chapeau, lid", "id": 1197, "trainId": 249}, {"name": "arch, archway", "id": 52, "trainId": 250}, {"name": "table game", "id": 2688, "trainId": 251}, {"name": "bag, handbag, pocketbook, purse", "id": 96, "trainId": 252}, {"name": "document, written document, papers", "id": 762, "trainId": 253}, {"name": "dome", "id": 772, "trainId": 254}, {"name": "pier", "id": 1857, "trainId": 255}, {"name": "shanties", "id": 2315, "trainId": 256}, {"name": "forecourt", "id": 1016, "trainId": 257}, {"name": "crane", "id": 643, "trainId": 258}, {"name": "dog, domestic dog, canis familiaris", "id": 3105, "trainId": 259}, {"name": "piano, pianoforte, forte-piano", "id": 1849, "trainId": 260}, {"name": "drawing", "id": 791, "trainId": 261}, {"name": "cabin", "id": 349, "trainId": 262}, { "name": "ad, advertisement, advertizement, advertising, advertizing, advert", "id": 6, "trainId": 263, }, {"name": "amphitheater, amphitheatre, coliseum", "id": 3114, "trainId": 264}, {"name": "monument", "id": 1587, "trainId": 265}, {"name": "henhouse", "id": 1233, "trainId": 266}, {"name": "cockpit", "id": 559, "trainId": 267}, {"name": "heater, warmer", "id": 1223, "trainId": 268}, {"name": "windmill, aerogenerator, wind generator", "id": 3049, "trainId": 269}, {"name": "pool", "id": 1943, "trainId": 270}, {"name": "elevator, lift", "id": 853, "trainId": 271}, {"name": "decoration, ornament, ornamentation", "id": 709, "trainId": 272}, {"name": "labyrinth", "id": 1390, "trainId": 273}, {"name": "text, textual matter", "id": 2748, "trainId": 274}, {"name": "printer", "id": 2007, "trainId": 275}, {"name": "mezzanine, first balcony", "id": 1546, "trainId": 276}, {"name": "mattress", "id": 1513, "trainId": 277}, {"name": "straw", "id": 2600, "trainId": 278}, {"name": "stalls", "id": 2538, "trainId": 279}, {"name": "patio, terrace", "id": 1790, "trainId": 280}, {"name": "billboard, hoarding", "id": 194, "trainId": 281}, {"name": "bus stop", "id": 326, "trainId": 282}, {"name": "trouser, pant", "id": 2877, "trainId": 283}, {"name": "console table, console", "id": 594, "trainId": 284}, {"name": "rack", "id": 2036, "trainId": 285}, {"name": "notebook", "id": 1662, "trainId": 286}, {"name": "shrine", "id": 2366, "trainId": 287}, {"name": "pantry", "id": 1754, "trainId": 288}, {"name": "cart", "id": 418, "trainId": 289}, {"name": "steam shovel", "id": 2553, "trainId": 290}, {"name": "porch", "id": 1951, "trainId": 291}, {"name": "postbox, mailbox, letter box", "id": 1963, "trainId": 292}, {"name": "figurine, statuette", "id": 918, "trainId": 293}, {"name": "recycling bin", "id": 2086, "trainId": 294}, {"name": "folding screen", "id": 997, "trainId": 295}, {"name": "telescope", "id": 2731, "trainId": 296}, {"name": "deck chair, beach chair", "id": 704, "trainId": 297}, {"name": "kennel", "id": 1365, "trainId": 298}, {"name": "coffee maker", "id": 569, "trainId": 299}, {"name": "altar, communion table, lord's table", "id": 3108, "trainId": 300}, {"name": "fish", "id": 948, "trainId": 301}, {"name": "easel", "id": 839, "trainId": 302}, {"name": "artificial golf green", "id": 63, "trainId": 303}, {"name": "iceberg", "id": 1305, "trainId": 304}, {"name": "candlestick, candle holder", "id": 378, "trainId": 305}, {"name": "shower stall, shower bath", "id": 2362, "trainId": 306}, {"name": "television stand", "id": 2734, "trainId": 307}, { "name": "wall socket, wall plug, electric outlet, electrical outlet, outlet, electric receptacle", "id": 2982, "trainId": 308, }, {"name": "skeleton", "id": 2398, "trainId": 309}, {"name": "grand piano, grand", "id": 1119, "trainId": 310}, {"name": "candy, confect", "id": 382, "trainId": 311}, {"name": "grille door", "id": 1141, "trainId": 312}, {"name": "pedestal, plinth, footstall", "id": 1805, "trainId": 313}, {"name": "jersey, t-shirt, tee shirt", "id": 3102, "trainId": 314}, {"name": "shoe", "id": 2341, "trainId": 315}, {"name": "gravestone, headstone, tombstone", "id": 1131, "trainId": 316}, {"name": "shanty", "id": 2316, "trainId": 317}, {"name": "structure", "id": 2626, "trainId": 318}, {"name": "rocking chair, rocker", "id": 3104, "trainId": 319}, {"name": "bird", "id": 198, "trainId": 320}, {"name": "place mat", "id": 1896, "trainId": 321}, {"name": "tomb", "id": 2800, "trainId": 322}, {"name": "big top", "id": 190, "trainId": 323}, {"name": "gas pump, gasoline pump, petrol pump, island dispenser", "id": 3131, "trainId": 324}, {"name": "lockers", "id": 1463, "trainId": 325}, {"name": "cage", "id": 357, "trainId": 326}, {"name": "finger", "id": 929, "trainId": 327}, {"name": "bleachers", "id": 209, "trainId": 328}, {"name": "ferris wheel", "id": 912, "trainId": 329}, {"name": "hairdresser chair", "id": 1164, "trainId": 330}, {"name": "mat", "id": 1509, "trainId": 331}, {"name": "stands", "id": 2539, "trainId": 332}, {"name": "aquarium, fish tank, marine museum", "id": 3116, "trainId": 333}, {"name": "streetcar, tram, tramcar, trolley, trolley car", "id": 2615, "trainId": 334}, {"name": "napkin, table napkin, serviette", "id": 1644, "trainId": 335}, {"name": "dummy", "id": 818, "trainId": 336}, {"name": "booklet, brochure, folder, leaflet, pamphlet", "id": 242, "trainId": 337}, {"name": "sand trap", "id": 2217, "trainId": 338}, {"name": "shop, store", "id": 2347, "trainId": 339}, {"name": "table cloth", "id": 2686, "trainId": 340}, {"name": "service station", "id": 2300, "trainId": 341}, {"name": "coffin", "id": 572, "trainId": 342}, {"name": "drawer", "id": 789, "trainId": 343}, {"name": "cages", "id": 358, "trainId": 344}, {"name": "slot machine, coin machine", "id": 2443, "trainId": 345}, {"name": "balcony", "id": 101, "trainId": 346}, {"name": "volleyball court", "id": 2969, "trainId": 347}, {"name": "table tennis", "id": 2692, "trainId": 348}, {"name": "control table", "id": 606, "trainId": 349}, {"name": "shirt", "id": 2339, "trainId": 350}, {"name": "merchandise, ware, product", "id": 1533, "trainId": 351}, {"name": "railway", "id": 2060, "trainId": 352}, {"name": "parterre", "id": 1782, "trainId": 353}, {"name": "chimney", "id": 495, "trainId": 354}, {"name": "can, tin, tin can", "id": 371, "trainId": 355}, {"name": "tanks", "id": 2707, "trainId": 356}, {"name": "fabric, cloth, material, textile", "id": 889, "trainId": 357}, {"name": "alga, algae", "id": 3156, "trainId": 358}, {"name": "system", "id": 2683, "trainId": 359}, {"name": "map", "id": 1499, "trainId": 360}, {"name": "greenhouse", "id": 1135, "trainId": 361}, {"name": "mug", "id": 1619, "trainId": 362}, {"name": "barbecue", "id": 125, "trainId": 363}, {"name": "trailer", "id": 2838, "trainId": 364}, {"name": "toilet tissue, toilet paper, bathroom tissue", "id": 2792, "trainId": 365}, {"name": "organ", "id": 1695, "trainId": 366}, {"name": "dishrag, dishcloth", "id": 746, "trainId": 367}, {"name": "island", "id": 1343, "trainId": 368}, {"name": "keyboard", "id": 1370, "trainId": 369}, {"name": "trench", "id": 2858, "trainId": 370}, {"name": "basket, basketball hoop, hoop", "id": 145, "trainId": 371}, {"name": "steering wheel, wheel", "id": 2565, "trainId": 372}, {"name": "pitcher, ewer", "id": 1892, "trainId": 373}, {"name": "goal", "id": 1103, "trainId": 374}, {"name": "bread, breadstuff, staff of life", "id": 286, "trainId": 375}, {"name": "beds", "id": 170, "trainId": 376}, {"name": "wood", "id": 3073, "trainId": 377}, {"name": "file cabinet", "id": 922, "trainId": 378}, {"name": "newspaper, paper", "id": 1655, "trainId": 379}, {"name": "motorboat", "id": 1602, "trainId": 380}, {"name": "rope", "id": 2160, "trainId": 381}, {"name": "guitar", "id": 1151, "trainId": 382}, {"name": "rubble", "id": 2176, "trainId": 383}, {"name": "scarf", "id": 2239, "trainId": 384}, {"name": "barrels", "id": 132, "trainId": 385}, {"name": "cap", "id": 394, "trainId": 386}, {"name": "leaves", "id": 1424, "trainId": 387}, {"name": "control tower", "id": 607, "trainId": 388}, {"name": "dashboard", "id": 700, "trainId": 389}, {"name": "bandstand", "id": 116, "trainId": 390}, {"name": "lectern", "id": 1425, "trainId": 391}, {"name": "switch, electric switch, electrical switch", "id": 2676, "trainId": 392}, {"name": "baseboard, mopboard, skirting board", "id": 141, "trainId": 393}, {"name": "shower room", "id": 2360, "trainId": 394}, {"name": "smoke", "id": 2449, "trainId": 395}, {"name": "faucet, spigot", "id": 897, "trainId": 396}, {"name": "bulldozer", "id": 317, "trainId": 397}, {"name": "saucepan", "id": 2228, "trainId": 398}, {"name": "shops", "id": 2351, "trainId": 399}, {"name": "meter", "id": 1543, "trainId": 400}, {"name": "crevasse", "id": 656, "trainId": 401}, {"name": "gear", "id": 1088, "trainId": 402}, {"name": "candelabrum, candelabra", "id": 373, "trainId": 403}, {"name": "sofa bed", "id": 2472, "trainId": 404}, {"name": "tunnel", "id": 2892, "trainId": 405}, {"name": "pallet", "id": 1740, "trainId": 406}, {"name": "wire, conducting wire", "id": 3067, "trainId": 407}, {"name": "kettle, boiler", "id": 1367, "trainId": 408}, {"name": "bidet", "id": 188, "trainId": 409}, { "name": "baby buggy, baby carriage, carriage, perambulator, pram, stroller, go-cart, pushchair, pusher", "id": 79, "trainId": 410, }, {"name": "music stand", "id": 1633, "trainId": 411}, {"name": "pipe, tube", "id": 1885, "trainId": 412}, {"name": "cup", "id": 677, "trainId": 413}, {"name": "parking meter", "id": 1779, "trainId": 414}, {"name": "ice hockey rink", "id": 1297, "trainId": 415}, {"name": "shelter", "id": 2334, "trainId": 416}, {"name": "weeds", "id": 3027, "trainId": 417}, {"name": "temple", "id": 2735, "trainId": 418}, {"name": "patty, cake", "id": 1791, "trainId": 419}, {"name": "ski slope", "id": 2405, "trainId": 420}, {"name": "panel", "id": 1748, "trainId": 421}, {"name": "wallet", "id": 2983, "trainId": 422}, {"name": "wheel", "id": 3035, "trainId": 423}, {"name": "towel rack, towel horse", "id": 2824, "trainId": 424}, {"name": "roundabout", "id": 2168, "trainId": 425}, {"name": "canister, cannister, tin", "id": 385, "trainId": 426}, {"name": "rod", "id": 2148, "trainId": 427}, {"name": "soap dispenser", "id": 2465, "trainId": 428}, {"name": "bell", "id": 175, "trainId": 429}, {"name": "canvas", "id": 390, "trainId": 430}, {"name": "box office, ticket office, ticket booth", "id": 268, "trainId": 431}, {"name": "teacup", "id": 2722, "trainId": 432}, {"name": "trellis", "id": 2857, "trainId": 433}, {"name": "workbench", "id": 3088, "trainId": 434}, {"name": "valley, vale", "id": 2926, "trainId": 435}, {"name": "toaster", "id": 2782, "trainId": 436}, {"name": "knife", "id": 1378, "trainId": 437}, {"name": "podium", "id": 1934, "trainId": 438}, {"name": "ramp", "id": 2072, "trainId": 439}, {"name": "tumble dryer", "id": 2889, "trainId": 440}, {"name": "fireplug, fire hydrant, plug", "id": 944, "trainId": 441}, {"name": "gym shoe, sneaker, tennis shoe", "id": 1158, "trainId": 442}, {"name": "lab bench", "id": 1383, "trainId": 443}, {"name": "equipment", "id": 867, "trainId": 444}, {"name": "rocky formation", "id": 2145, "trainId": 445}, {"name": "plastic", "id": 1915, "trainId": 446}, {"name": "calendar", "id": 361, "trainId": 447}, {"name": "caravan", "id": 402, "trainId": 448}, {"name": "check-in-desk", "id": 482, "trainId": 449}, {"name": "ticket counter", "id": 2761, "trainId": 450}, {"name": "brush", "id": 300, "trainId": 451}, {"name": "mill", "id": 1554, "trainId": 452}, {"name": "covered bridge", "id": 636, "trainId": 453}, {"name": "bowling alley", "id": 260, "trainId": 454}, {"name": "hanger", "id": 1186, "trainId": 455}, {"name": "excavator", "id": 871, "trainId": 456}, {"name": "trestle", "id": 2859, "trainId": 457}, {"name": "revolving door", "id": 2103, "trainId": 458}, {"name": "blast furnace", "id": 208, "trainId": 459}, {"name": "scale, weighing machine", "id": 2236, "trainId": 460}, {"name": "projector", "id": 2012, "trainId": 461}, {"name": "soap", "id": 2462, "trainId": 462}, {"name": "locker", "id": 1462, "trainId": 463}, {"name": "tractor", "id": 2832, "trainId": 464}, {"name": "stretcher", "id": 2617, "trainId": 465}, {"name": "frame", "id": 1024, "trainId": 466}, {"name": "grating", "id": 1129, "trainId": 467}, {"name": "alembic", "id": 18, "trainId": 468}, {"name": "candle, taper, wax light", "id": 376, "trainId": 469}, {"name": "barrier", "id": 134, "trainId": 470}, {"name": "cardboard", "id": 407, "trainId": 471}, {"name": "cave", "id": 434, "trainId": 472}, {"name": "puddle", "id": 2017, "trainId": 473}, {"name": "tarp", "id": 2717, "trainId": 474}, {"name": "price tag", "id": 2005, "trainId": 475}, {"name": "watchtower", "id": 2993, "trainId": 476}, {"name": "meters", "id": 1545, "trainId": 477}, { "name": "light bulb, lightbulb, bulb, incandescent lamp, electric light, electric-light bulb", "id": 1445, "trainId": 478, }, {"name": "tracks", "id": 2831, "trainId": 479}, {"name": "hair dryer", "id": 1161, "trainId": 480}, {"name": "skirt", "id": 2411, "trainId": 481}, {"name": "viaduct", "id": 2949, "trainId": 482}, {"name": "paper towel", "id": 1769, "trainId": 483}, {"name": "coat", "id": 552, "trainId": 484}, {"name": "sheet", "id": 2327, "trainId": 485}, {"name": "fire extinguisher, extinguisher, asphyxiator", "id": 939, "trainId": 486}, {"name": "water wheel", "id": 3013, "trainId": 487}, {"name": "pottery, clayware", "id": 1986, "trainId": 488}, {"name": "magazine rack", "id": 1486, "trainId": 489}, {"name": "teapot", "id": 2723, "trainId": 490}, {"name": "microphone, mike", "id": 1549, "trainId": 491}, {"name": "support", "id": 2649, "trainId": 492}, {"name": "forklift", "id": 1020, "trainId": 493}, {"name": "canyon", "id": 392, "trainId": 494}, {"name": "cash register, register", "id": 422, "trainId": 495}, {"name": "leaf, leafage, foliage", "id": 1419, "trainId": 496}, {"name": "remote control, remote", "id": 2099, "trainId": 497}, {"name": "soap dish", "id": 2464, "trainId": 498}, {"name": "windshield, windscreen", "id": 3058, "trainId": 499}, {"name": "cat", "id": 430, "trainId": 500}, {"name": "cue, cue stick, pool cue, pool stick", "id": 675, "trainId": 501}, {"name": "vent, venthole, vent-hole, blowhole", "id": 2941, "trainId": 502}, {"name": "videos", "id": 2955, "trainId": 503}, {"name": "shovel", "id": 2355, "trainId": 504}, {"name": "eaves", "id": 840, "trainId": 505}, {"name": "antenna, aerial, transmitting aerial", "id": 32, "trainId": 506}, {"name": "shipyard", "id": 2338, "trainId": 507}, {"name": "hen, biddy", "id": 1232, "trainId": 508}, {"name": "traffic cone", "id": 2834, "trainId": 509}, {"name": "washing machines", "id": 2991, "trainId": 510}, {"name": "truck crane", "id": 2879, "trainId": 511}, {"name": "cds", "id": 444, "trainId": 512}, {"name": "niche", "id": 1657, "trainId": 513}, {"name": "scoreboard", "id": 2246, "trainId": 514}, {"name": "briefcase", "id": 296, "trainId": 515}, {"name": "boot", "id": 245, "trainId": 516}, {"name": "sweater, jumper", "id": 2661, "trainId": 517}, {"name": "hay", "id": 1202, "trainId": 518}, {"name": "pack", "id": 1714, "trainId": 519}, {"name": "bottle rack", "id": 251, "trainId": 520}, {"name": "glacier", "id": 1095, "trainId": 521}, {"name": "pergola", "id": 1828, "trainId": 522}, {"name": "building materials", "id": 311, "trainId": 523}, {"name": "television camera", "id": 2732, "trainId": 524}, {"name": "first floor", "id": 947, "trainId": 525}, {"name": "rifle", "id": 2115, "trainId": 526}, {"name": "tennis table", "id": 2738, "trainId": 527}, {"name": "stadium", "id": 2525, "trainId": 528}, {"name": "safety belt", "id": 2194, "trainId": 529}, {"name": "cover", "id": 634, "trainId": 530}, {"name": "dish rack", "id": 740, "trainId": 531}, {"name": "synthesizer", "id": 2682, "trainId": 532}, {"name": "pumpkin", "id": 2020, "trainId": 533}, {"name": "gutter", "id": 1156, "trainId": 534}, {"name": "fruit stand", "id": 1036, "trainId": 535}, {"name": "ice floe, floe", "id": 1295, "trainId": 536}, {"name": "handle, grip, handgrip, hold", "id": 1181, "trainId": 537}, {"name": "wheelchair", "id": 3037, "trainId": 538}, {"name": "mousepad, mouse mat", "id": 1614, "trainId": 539}, {"name": "diploma", "id": 736, "trainId": 540}, {"name": "fairground ride", "id": 893, "trainId": 541}, {"name": "radio", "id": 2047, "trainId": 542}, {"name": "hotplate", "id": 1274, "trainId": 543}, {"name": "junk", "id": 1361, "trainId": 544}, {"name": "wheelbarrow", "id": 3036, "trainId": 545}, {"name": "stream", "id": 2606, "trainId": 546}, {"name": "toll plaza", "id": 2797, "trainId": 547}, {"name": "punching bag", "id": 2022, "trainId": 548}, {"name": "trough", "id": 2876, "trainId": 549}, {"name": "throne", "id": 2758, "trainId": 550}, {"name": "chair desk", "id": 472, "trainId": 551}, {"name": "weighbridge", "id": 3028, "trainId": 552}, {"name": "extractor fan", "id": 882, "trainId": 553}, {"name": "hanging clothes", "id": 1189, "trainId": 554}, {"name": "dish, dish aerial, dish antenna, saucer", "id": 743, "trainId": 555}, {"name": "alarm clock, alarm", "id": 3122, "trainId": 556}, {"name": "ski lift", "id": 2401, "trainId": 557}, {"name": "chain", "id": 468, "trainId": 558}, {"name": "garage", "id": 1061, "trainId": 559}, {"name": "mechanical shovel", "id": 1523, "trainId": 560}, {"name": "wine rack", "id": 3059, "trainId": 561}, {"name": "tramway", "id": 2843, "trainId": 562}, {"name": "treadmill", "id": 2853, "trainId": 563}, {"name": "menu", "id": 1529, "trainId": 564}, {"name": "block", "id": 214, "trainId": 565}, {"name": "well", "id": 3032, "trainId": 566}, {"name": "witness stand", "id": 3071, "trainId": 567}, {"name": "branch", "id": 277, "trainId": 568}, {"name": "duck", "id": 813, "trainId": 569}, {"name": "casserole", "id": 426, "trainId": 570}, {"name": "frying pan", "id": 1039, "trainId": 571}, {"name": "desk organizer", "id": 727, "trainId": 572}, {"name": "mast", "id": 1508, "trainId": 573}, {"name": "spectacles, specs, eyeglasses, glasses", "id": 2490, "trainId": 574}, {"name": "service elevator", "id": 2299, "trainId": 575}, {"name": "dollhouse", "id": 768, "trainId": 576}, {"name": "hammock", "id": 1172, "trainId": 577}, {"name": "clothes hanging", "id": 537, "trainId": 578}, {"name": "photocopier", "id": 1847, "trainId": 579}, {"name": "notepad", "id": 1664, "trainId": 580}, {"name": "golf cart", "id": 1110, "trainId": 581}, {"name": "footpath", "id": 1014, "trainId": 582}, {"name": "cross", "id": 662, "trainId": 583}, {"name": "baptismal font", "id": 121, "trainId": 584}, {"name": "boiler", "id": 227, "trainId": 585}, {"name": "skip", "id": 2410, "trainId": 586}, {"name": "rotisserie", "id": 2165, "trainId": 587}, {"name": "tables", "id": 2696, "trainId": 588}, {"name": "water mill", "id": 3005, "trainId": 589}, {"name": "helmet", "id": 1231, "trainId": 590}, {"name": "cover curtain", "id": 635, "trainId": 591}, {"name": "brick", "id": 292, "trainId": 592}, {"name": "table runner", "id": 2690, "trainId": 593}, {"name": "ashtray", "id": 65, "trainId": 594}, {"name": "street box", "id": 2607, "trainId": 595}, {"name": "stick", "id": 2574, "trainId": 596}, {"name": "hangers", "id": 1188, "trainId": 597}, {"name": "cells", "id": 456, "trainId": 598}, {"name": "urinal", "id": 2913, "trainId": 599}, {"name": "centerpiece", "id": 459, "trainId": 600}, {"name": "portable fridge", "id": 1955, "trainId": 601}, {"name": "dvds", "id": 827, "trainId": 602}, {"name": "golf club", "id": 1111, "trainId": 603}, {"name": "skirting board", "id": 2412, "trainId": 604}, {"name": "water cooler", "id": 2997, "trainId": 605}, {"name": "clipboard", "id": 528, "trainId": 606}, {"name": "camera, photographic camera", "id": 366, "trainId": 607}, {"name": "pigeonhole", "id": 1863, "trainId": 608}, {"name": "chips", "id": 500, "trainId": 609}, {"name": "food processor", "id": 1001, "trainId": 610}, {"name": "post box", "id": 1958, "trainId": 611}, {"name": "lid", "id": 1441, "trainId": 612}, {"name": "drum", "id": 809, "trainId": 613}, {"name": "blender", "id": 210, "trainId": 614}, {"name": "cave entrance", "id": 435, "trainId": 615}, {"name": "dental chair", "id": 718, "trainId": 616}, {"name": "obelisk", "id": 1674, "trainId": 617}, {"name": "canoe", "id": 388, "trainId": 618}, {"name": "mobile", "id": 1572, "trainId": 619}, {"name": "monitors", "id": 1584, "trainId": 620}, {"name": "pool ball", "id": 1944, "trainId": 621}, {"name": "cue rack", "id": 674, "trainId": 622}, {"name": "baggage carts", "id": 99, "trainId": 623}, {"name": "shore", "id": 2352, "trainId": 624}, {"name": "fork", "id": 1019, "trainId": 625}, {"name": "paper filer", "id": 1763, "trainId": 626}, {"name": "bicycle rack", "id": 185, "trainId": 627}, {"name": "coat rack", "id": 554, "trainId": 628}, {"name": "garland", "id": 1066, "trainId": 629}, {"name": "sports bag", "id": 2508, "trainId": 630}, {"name": "fish tank", "id": 951, "trainId": 631}, {"name": "towel dispenser", "id": 2822, "trainId": 632}, {"name": "carriage", "id": 415, "trainId": 633}, {"name": "brochure", "id": 297, "trainId": 634}, {"name": "plaque", "id": 1914, "trainId": 635}, {"name": "stringer", "id": 2619, "trainId": 636}, {"name": "iron", "id": 1338, "trainId": 637}, {"name": "spoon", "id": 2505, "trainId": 638}, {"name": "flag pole", "id": 955, "trainId": 639}, {"name": "toilet brush", "id": 2786, "trainId": 640}, {"name": "book stand", "id": 238, "trainId": 641}, {"name": "water faucet, water tap, tap, hydrant", "id": 3000, "trainId": 642}, {"name": "ticket office", "id": 2763, "trainId": 643}, {"name": "broom", "id": 299, "trainId": 644}, {"name": "dvd", "id": 822, "trainId": 645}, {"name": "ice bucket", "id": 1288, "trainId": 646}, {"name": "carapace, shell, cuticle, shield", "id": 3101, "trainId": 647}, {"name": "tureen", "id": 2894, "trainId": 648}, {"name": "folders", "id": 992, "trainId": 649}, {"name": "chess", "id": 489, "trainId": 650}, {"name": "root", "id": 2157, "trainId": 651}, {"name": "sewing machine", "id": 2309, "trainId": 652}, {"name": "model", "id": 1576, "trainId": 653}, {"name": "pen", "id": 1810, "trainId": 654}, {"name": "violin", "id": 2964, "trainId": 655}, {"name": "sweatshirt", "id": 2662, "trainId": 656}, {"name": "recycling materials", "id": 2087, "trainId": 657}, {"name": "mitten", "id": 1569, "trainId": 658}, {"name": "chopping board, cutting board", "id": 503, "trainId": 659}, {"name": "mask", "id": 1505, "trainId": 660}, {"name": "log", "id": 1468, "trainId": 661}, {"name": "mouse, computer mouse", "id": 1613, "trainId": 662}, {"name": "grill", "id": 1138, "trainId": 663}, {"name": "hole", "id": 1256, "trainId": 664}, {"name": "target", "id": 2715, "trainId": 665}, {"name": "trash bag", "id": 2846, "trainId": 666}, {"name": "chalk", "id": 477, "trainId": 667}, {"name": "sticks", "id": 2576, "trainId": 668}, {"name": "balloon", "id": 108, "trainId": 669}, {"name": "score", "id": 2245, "trainId": 670}, {"name": "hair spray", "id": 1162, "trainId": 671}, {"name": "roll", "id": 2149, "trainId": 672}, {"name": "runner", "id": 2183, "trainId": 673}, {"name": "engine", "id": 858, "trainId": 674}, {"name": "inflatable glove", "id": 1324, "trainId": 675}, {"name": "games", "id": 1055, "trainId": 676}, {"name": "pallets", "id": 1741, "trainId": 677}, {"name": "baskets", "id": 149, "trainId": 678}, {"name": "coop", "id": 615, "trainId": 679}, {"name": "dvd player", "id": 825, "trainId": 680}, {"name": "rocking horse", "id": 2143, "trainId": 681}, {"name": "buckets", "id": 304, "trainId": 682}, {"name": "bread rolls", "id": 283, "trainId": 683}, {"name": "shawl", "id": 2322, "trainId": 684}, {"name": "watering can", "id": 3017, "trainId": 685}, {"name": "spotlights", "id": 2510, "trainId": 686}, {"name": "post-it", "id": 1960, "trainId": 687}, {"name": "bowls", "id": 265, "trainId": 688}, {"name": "security camera", "id": 2282, "trainId": 689}, {"name": "runner cloth", "id": 2184, "trainId": 690}, {"name": "lock", "id": 1461, "trainId": 691}, {"name": "alarm, warning device, alarm system", "id": 3113, "trainId": 692}, {"name": "side", "id": 2372, "trainId": 693}, {"name": "roulette", "id": 2166, "trainId": 694}, {"name": "bone", "id": 232, "trainId": 695}, {"name": "cutlery", "id": 693, "trainId": 696}, {"name": "pool balls", "id": 1945, "trainId": 697}, {"name": "wheels", "id": 3039, "trainId": 698}, {"name": "spice rack", "id": 2494, "trainId": 699}, {"name": "plant pots", "id": 1908, "trainId": 700}, {"name": "towel ring", "id": 2827, "trainId": 701}, {"name": "bread box", "id": 280, "trainId": 702}, {"name": "video", "id": 2950, "trainId": 703}, {"name": "funfair", "id": 1044, "trainId": 704}, {"name": "breads", "id": 288, "trainId": 705}, {"name": "tripod", "id": 2863, "trainId": 706}, {"name": "ironing board", "id": 1342, "trainId": 707}, {"name": "skimmer", "id": 2409, "trainId": 708}, {"name": "hollow", "id": 1258, "trainId": 709}, {"name": "scratching post", "id": 2249, "trainId": 710}, {"name": "tricycle", "id": 2862, "trainId": 711}, {"name": "file box", "id": 920, "trainId": 712}, {"name": "mountain pass", "id": 1607, "trainId": 713}, {"name": "tombstones", "id": 2802, "trainId": 714}, {"name": "cooker", "id": 610, "trainId": 715}, {"name": "card game, cards", "id": 3129, "trainId": 716}, {"name": "golf bag", "id": 1108, "trainId": 717}, {"name": "towel paper", "id": 2823, "trainId": 718}, {"name": "chaise lounge", "id": 476, "trainId": 719}, {"name": "sun", "id": 2641, "trainId": 720}, {"name": "toilet paper holder", "id": 2788, "trainId": 721}, {"name": "rake", "id": 2070, "trainId": 722}, {"name": "key", "id": 1368, "trainId": 723}, {"name": "umbrella stand", "id": 2903, "trainId": 724}, {"name": "dartboard", "id": 699, "trainId": 725}, {"name": "transformer", "id": 2844, "trainId": 726}, {"name": "fireplace utensils", "id": 942, "trainId": 727}, {"name": "sweatshirts", "id": 2663, "trainId": 728}, { "name": "cellular telephone, cellular phone, cellphone, cell, mobile phone", "id": 457, "trainId": 729, }, {"name": "tallboy", "id": 2701, "trainId": 730}, {"name": "stapler", "id": 2540, "trainId": 731}, {"name": "sauna", "id": 2231, "trainId": 732}, {"name": "test tube", "id": 2746, "trainId": 733}, {"name": "palette", "id": 1738, "trainId": 734}, {"name": "shopping carts", "id": 2350, "trainId": 735}, {"name": "tools", "id": 2808, "trainId": 736}, {"name": "push button, push, button", "id": 2025, "trainId": 737}, {"name": "star", "id": 2541, "trainId": 738}, {"name": "roof rack", "id": 2156, "trainId": 739}, {"name": "barbed wire", "id": 126, "trainId": 740}, {"name": "spray", "id": 2512, "trainId": 741}, {"name": "ear", "id": 831, "trainId": 742}, {"name": "sponge", "id": 2503, "trainId": 743}, {"name": "racket", "id": 2039, "trainId": 744}, {"name": "tins", "id": 2774, "trainId": 745}, {"name": "eyeglasses", "id": 886, "trainId": 746}, {"name": "file", "id": 919, "trainId": 747}, {"name": "scarfs", "id": 2240, "trainId": 748}, {"name": "sugar bowl", "id": 2636, "trainId": 749}, {"name": "flip flop", "id": 963, "trainId": 750}, {"name": "headstones", "id": 1218, "trainId": 751}, {"name": "laptop bag", "id": 1406, "trainId": 752}, {"name": "leash", "id": 1420, "trainId": 753}, {"name": "climbing frame", "id": 526, "trainId": 754}, {"name": "suit hanger", "id": 2639, "trainId": 755}, {"name": "floor spotlight", "id": 975, "trainId": 756}, {"name": "plate rack", "id": 1921, "trainId": 757}, {"name": "sewer", "id": 2305, "trainId": 758}, {"name": "hard drive", "id": 1193, "trainId": 759}, {"name": "sprinkler", "id": 2517, "trainId": 760}, {"name": "tools box", "id": 2809, "trainId": 761}, {"name": "necklace", "id": 1647, "trainId": 762}, {"name": "bulbs", "id": 314, "trainId": 763}, {"name": "steel industry", "id": 2560, "trainId": 764}, {"name": "club", "id": 545, "trainId": 765}, {"name": "jack", "id": 1345, "trainId": 766}, {"name": "door bars", "id": 775, "trainId": 767}, { "name": "control panel, instrument panel, control board, board, panel", "id": 603, "trainId": 768, }, {"name": "hairbrush", "id": 1163, "trainId": 769}, {"name": "napkin holder", "id": 1641, "trainId": 770}, {"name": "office", "id": 1678, "trainId": 771}, {"name": "smoke detector", "id": 2450, "trainId": 772}, {"name": "utensils", "id": 2915, "trainId": 773}, {"name": "apron", "id": 42, "trainId": 774}, {"name": "scissors", "id": 2242, "trainId": 775}, {"name": "terminal", "id": 2741, "trainId": 776}, {"name": "grinder", "id": 1143, "trainId": 777}, {"name": "entry phone", "id": 862, "trainId": 778}, {"name": "newspaper stand", "id": 1654, "trainId": 779}, {"name": "pepper shaker", "id": 1826, "trainId": 780}, {"name": "onions", "id": 1689, "trainId": 781}, { "name": "central processing unit, cpu, c p u , central processor, processor, mainframe", "id": 3124, "trainId": 782, }, {"name": "tape", "id": 2710, "trainId": 783}, {"name": "bat", "id": 152, "trainId": 784}, {"name": "coaster", "id": 549, "trainId": 785}, {"name": "calculator", "id": 360, "trainId": 786}, {"name": "potatoes", "id": 1982, "trainId": 787}, {"name": "luggage rack", "id": 1478, "trainId": 788}, {"name": "salt", "id": 2203, "trainId": 789}, {"name": "street number", "id": 2612, "trainId": 790}, {"name": "viewpoint", "id": 2956, "trainId": 791}, {"name": "sword", "id": 2681, "trainId": 792}, {"name": "cd", "id": 437, "trainId": 793}, {"name": "rowing machine", "id": 2171, "trainId": 794}, {"name": "plug", "id": 1933, "trainId": 795}, {"name": "andiron, firedog, dog, dog-iron", "id": 3110, "trainId": 796}, {"name": "pepper", "id": 1824, "trainId": 797}, {"name": "tongs", "id": 2803, "trainId": 798}, {"name": "bonfire", "id": 234, "trainId": 799}, {"name": "dog dish", "id": 764, "trainId": 800}, {"name": "belt", "id": 177, "trainId": 801}, {"name": "dumbbells", "id": 817, "trainId": 802}, {"name": "videocassette recorder, vcr", "id": 3145, "trainId": 803}, {"name": "hook", "id": 1262, "trainId": 804}, {"name": "envelopes", "id": 864, "trainId": 805}, {"name": "shower faucet", "id": 2359, "trainId": 806}, {"name": "watch", "id": 2992, "trainId": 807}, {"name": "padlock", "id": 1725, "trainId": 808}, {"name": "swimming pool ladder", "id": 2667, "trainId": 809}, {"name": "spanners", "id": 2484, "trainId": 810}, {"name": "gravy boat", "id": 1133, "trainId": 811}, {"name": "notice board", "id": 1667, "trainId": 812}, {"name": "trash bags", "id": 2847, "trainId": 813}, {"name": "fire alarm", "id": 932, "trainId": 814}, {"name": "ladle", "id": 1392, "trainId": 815}, {"name": "stethoscope", "id": 2573, "trainId": 816}, {"name": "rocket", "id": 2140, "trainId": 817}, {"name": "funnel", "id": 1046, "trainId": 818}, {"name": "bowling pins", "id": 264, "trainId": 819}, {"name": "valve", "id": 2927, "trainId": 820}, {"name": "thermometer", "id": 2752, "trainId": 821}, {"name": "cups", "id": 679, "trainId": 822}, {"name": "spice jar", "id": 2493, "trainId": 823}, {"name": "night light", "id": 1658, "trainId": 824}, {"name": "soaps", "id": 2466, "trainId": 825}, {"name": "games table", "id": 1057, "trainId": 826}, {"name": "slotted spoon", "id": 2444, "trainId": 827}, {"name": "reel", "id": 2093, "trainId": 828}, {"name": "scourer", "id": 2248, "trainId": 829}, {"name": "sleeping robe", "id": 2432, "trainId": 830}, {"name": "desk mat", "id": 726, "trainId": 831}, {"name": "dumbbell", "id": 816, "trainId": 832}, {"name": "hammer", "id": 1171, "trainId": 833}, {"name": "tie", "id": 2766, "trainId": 834}, {"name": "typewriter", "id": 2900, "trainId": 835}, {"name": "shaker", "id": 2313, "trainId": 836}, {"name": "cheese dish", "id": 488, "trainId": 837}, {"name": "sea star", "id": 2265, "trainId": 838}, {"name": "racquet", "id": 2043, "trainId": 839}, {"name": "butane gas cylinder", "id": 332, "trainId": 840}, {"name": "paper weight", "id": 1771, "trainId": 841}, {"name": "shaving brush", "id": 2320, "trainId": 842}, {"name": "sunglasses", "id": 2646, "trainId": 843}, {"name": "gear shift", "id": 1089, "trainId": 844}, {"name": "towel rail", "id": 2826, "trainId": 845}, {"name": "adding machine, totalizer, totaliser", "id": 3148, "trainId": 846}, ] def _get_ade20k_full_meta(): # Id 0 is reserved for ignore_label, we change ignore_label for 0 # to 255 in our pre-processing, so all ids are shifted by 1. stuff_ids = [k["id"] for k in ADE20K_SEM_SEG_FULL_CATEGORIES] assert len(stuff_ids) == 847, len(stuff_ids) # For semantic segmentation, this mapping maps from contiguous stuff id # (in [0, 91], used in models) to ids in the dataset (used for processing results) stuff_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(stuff_ids)} stuff_classes = [k["name"] for k in ADE20K_SEM_SEG_FULL_CATEGORIES] ret = { "stuff_dataset_id_to_contiguous_id": stuff_dataset_id_to_contiguous_id, "stuff_classes": stuff_classes, } return ret def register_all_ade20k_full(root): root = os.path.join(root, "ADE20K_2021_17_01") meta = _get_ade20k_full_meta() for name, dirname in [("train", "training"), ("val", "validation")]: image_dir = os.path.join(root, "images_detectron2", dirname) gt_dir = os.path.join(root, "annotations_detectron2", dirname) name = f"ade20k_full_sem_seg_{name}" DatasetCatalog.register( name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="tif", image_ext="jpg") ) MetadataCatalog.get(name).set( stuff_classes=meta["stuff_classes"][:], image_root=image_dir, sem_seg_root=gt_dir, evaluator_type="sem_seg", ignore_label=65535, # NOTE: gt is saved in 16-bit TIFF images ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_ade20k_full(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_ade20k_full.py
# Copyright (c) Facebook, Inc. and its affiliates. import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets import load_sem_seg MAPILLARY_VISTAS_SEM_SEG_CATEGORIES = [ { "color": [165, 42, 42], "instances": True, "readable": "Bird", "name": "animal--bird", "evaluate": True, }, { "color": [0, 192, 0], "instances": True, "readable": "Ground Animal", "name": "animal--ground-animal", "evaluate": True, }, { "color": [196, 196, 196], "instances": False, "readable": "Curb", "name": "construction--barrier--curb", "evaluate": True, }, { "color": [190, 153, 153], "instances": False, "readable": "Fence", "name": "construction--barrier--fence", "evaluate": True, }, { "color": [180, 165, 180], "instances": False, "readable": "Guard Rail", "name": "construction--barrier--guard-rail", "evaluate": True, }, { "color": [90, 120, 150], "instances": False, "readable": "Barrier", "name": "construction--barrier--other-barrier", "evaluate": True, }, { "color": [102, 102, 156], "instances": False, "readable": "Wall", "name": "construction--barrier--wall", "evaluate": True, }, { "color": [128, 64, 255], "instances": False, "readable": "Bike Lane", "name": "construction--flat--bike-lane", "evaluate": True, }, { "color": [140, 140, 200], "instances": True, "readable": "Crosswalk - Plain", "name": "construction--flat--crosswalk-plain", "evaluate": True, }, { "color": [170, 170, 170], "instances": False, "readable": "Curb Cut", "name": "construction--flat--curb-cut", "evaluate": True, }, { "color": [250, 170, 160], "instances": False, "readable": "Parking", "name": "construction--flat--parking", "evaluate": True, }, { "color": [96, 96, 96], "instances": False, "readable": "Pedestrian Area", "name": "construction--flat--pedestrian-area", "evaluate": True, }, { "color": [230, 150, 140], "instances": False, "readable": "Rail Track", "name": "construction--flat--rail-track", "evaluate": True, }, { "color": [128, 64, 128], "instances": False, "readable": "Road", "name": "construction--flat--road", "evaluate": True, }, { "color": [110, 110, 110], "instances": False, "readable": "Service Lane", "name": "construction--flat--service-lane", "evaluate": True, }, { "color": [244, 35, 232], "instances": False, "readable": "Sidewalk", "name": "construction--flat--sidewalk", "evaluate": True, }, { "color": [150, 100, 100], "instances": False, "readable": "Bridge", "name": "construction--structure--bridge", "evaluate": True, }, { "color": [70, 70, 70], "instances": False, "readable": "Building", "name": "construction--structure--building", "evaluate": True, }, { "color": [150, 120, 90], "instances": False, "readable": "Tunnel", "name": "construction--structure--tunnel", "evaluate": True, }, { "color": [220, 20, 60], "instances": True, "readable": "Person", "name": "human--person", "evaluate": True, }, { "color": [255, 0, 0], "instances": True, "readable": "Bicyclist", "name": "human--rider--bicyclist", "evaluate": True, }, { "color": [255, 0, 100], "instances": True, "readable": "Motorcyclist", "name": "human--rider--motorcyclist", "evaluate": True, }, { "color": [255, 0, 200], "instances": True, "readable": "Other Rider", "name": "human--rider--other-rider", "evaluate": True, }, { "color": [200, 128, 128], "instances": True, "readable": "Lane Marking - Crosswalk", "name": "marking--crosswalk-zebra", "evaluate": True, }, { "color": [255, 255, 255], "instances": False, "readable": "Lane Marking - General", "name": "marking--general", "evaluate": True, }, { "color": [64, 170, 64], "instances": False, "readable": "Mountain", "name": "nature--mountain", "evaluate": True, }, { "color": [230, 160, 50], "instances": False, "readable": "Sand", "name": "nature--sand", "evaluate": True, }, { "color": [70, 130, 180], "instances": False, "readable": "Sky", "name": "nature--sky", "evaluate": True, }, { "color": [190, 255, 255], "instances": False, "readable": "Snow", "name": "nature--snow", "evaluate": True, }, { "color": [152, 251, 152], "instances": False, "readable": "Terrain", "name": "nature--terrain", "evaluate": True, }, { "color": [107, 142, 35], "instances": False, "readable": "Vegetation", "name": "nature--vegetation", "evaluate": True, }, { "color": [0, 170, 30], "instances": False, "readable": "Water", "name": "nature--water", "evaluate": True, }, { "color": [255, 255, 128], "instances": True, "readable": "Banner", "name": "object--banner", "evaluate": True, }, { "color": [250, 0, 30], "instances": True, "readable": "Bench", "name": "object--bench", "evaluate": True, }, { "color": [100, 140, 180], "instances": True, "readable": "Bike Rack", "name": "object--bike-rack", "evaluate": True, }, { "color": [220, 220, 220], "instances": True, "readable": "Billboard", "name": "object--billboard", "evaluate": True, }, { "color": [220, 128, 128], "instances": True, "readable": "Catch Basin", "name": "object--catch-basin", "evaluate": True, }, { "color": [222, 40, 40], "instances": True, "readable": "CCTV Camera", "name": "object--cctv-camera", "evaluate": True, }, { "color": [100, 170, 30], "instances": True, "readable": "Fire Hydrant", "name": "object--fire-hydrant", "evaluate": True, }, { "color": [40, 40, 40], "instances": True, "readable": "Junction Box", "name": "object--junction-box", "evaluate": True, }, { "color": [33, 33, 33], "instances": True, "readable": "Mailbox", "name": "object--mailbox", "evaluate": True, }, { "color": [100, 128, 160], "instances": True, "readable": "Manhole", "name": "object--manhole", "evaluate": True, }, { "color": [142, 0, 0], "instances": True, "readable": "Phone Booth", "name": "object--phone-booth", "evaluate": True, }, { "color": [70, 100, 150], "instances": False, "readable": "Pothole", "name": "object--pothole", "evaluate": True, }, { "color": [210, 170, 100], "instances": True, "readable": "Street Light", "name": "object--street-light", "evaluate": True, }, { "color": [153, 153, 153], "instances": True, "readable": "Pole", "name": "object--support--pole", "evaluate": True, }, { "color": [128, 128, 128], "instances": True, "readable": "Traffic Sign Frame", "name": "object--support--traffic-sign-frame", "evaluate": True, }, { "color": [0, 0, 80], "instances": True, "readable": "Utility Pole", "name": "object--support--utility-pole", "evaluate": True, }, { "color": [250, 170, 30], "instances": True, "readable": "Traffic Light", "name": "object--traffic-light", "evaluate": True, }, { "color": [192, 192, 192], "instances": True, "readable": "Traffic Sign (Back)", "name": "object--traffic-sign--back", "evaluate": True, }, { "color": [220, 220, 0], "instances": True, "readable": "Traffic Sign (Front)", "name": "object--traffic-sign--front", "evaluate": True, }, { "color": [140, 140, 20], "instances": True, "readable": "Trash Can", "name": "object--trash-can", "evaluate": True, }, { "color": [119, 11, 32], "instances": True, "readable": "Bicycle", "name": "object--vehicle--bicycle", "evaluate": True, }, { "color": [150, 0, 255], "instances": True, "readable": "Boat", "name": "object--vehicle--boat", "evaluate": True, }, { "color": [0, 60, 100], "instances": True, "readable": "Bus", "name": "object--vehicle--bus", "evaluate": True, }, { "color": [0, 0, 142], "instances": True, "readable": "Car", "name": "object--vehicle--car", "evaluate": True, }, { "color": [0, 0, 90], "instances": True, "readable": "Caravan", "name": "object--vehicle--caravan", "evaluate": True, }, { "color": [0, 0, 230], "instances": True, "readable": "Motorcycle", "name": "object--vehicle--motorcycle", "evaluate": True, }, { "color": [0, 80, 100], "instances": False, "readable": "On Rails", "name": "object--vehicle--on-rails", "evaluate": True, }, { "color": [128, 64, 64], "instances": True, "readable": "Other Vehicle", "name": "object--vehicle--other-vehicle", "evaluate": True, }, { "color": [0, 0, 110], "instances": True, "readable": "Trailer", "name": "object--vehicle--trailer", "evaluate": True, }, { "color": [0, 0, 70], "instances": True, "readable": "Truck", "name": "object--vehicle--truck", "evaluate": True, }, { "color": [0, 0, 192], "instances": True, "readable": "Wheeled Slow", "name": "object--vehicle--wheeled-slow", "evaluate": True, }, { "color": [32, 32, 32], "instances": False, "readable": "Car Mount", "name": "void--car-mount", "evaluate": True, }, { "color": [120, 10, 10], "instances": False, "readable": "Ego Vehicle", "name": "void--ego-vehicle", "evaluate": True, }, { "color": [0, 0, 0], "instances": False, "readable": "Unlabeled", "name": "void--unlabeled", "evaluate": False, }, ] def _get_mapillary_vistas_meta(): stuff_classes = [k["readable"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES if k["evaluate"]] assert len(stuff_classes) == 65 stuff_colors = [k["color"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES if k["evaluate"]] assert len(stuff_colors) == 65 ret = { "stuff_classes": stuff_classes, "stuff_colors": stuff_colors, } return ret def register_all_mapillary_vistas(root): root = os.path.join(root, "mapillary_vistas") meta = _get_mapillary_vistas_meta() for name, dirname in [("train", "training"), ("val", "validation")]: image_dir = os.path.join(root, dirname, "images") gt_dir = os.path.join(root, dirname, "labels") name = f"mapillary_vistas_sem_seg_{name}" DatasetCatalog.register( name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg") ) MetadataCatalog.get(name).set( image_root=image_dir, sem_seg_root=gt_dir, evaluator_type="sem_seg", ignore_label=65, # different from other datasets, Mapillary Vistas sets ignore_label to 65 **meta, ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_mapillary_vistas(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_mapillary_vistas.py
# Copyright (c) Facebook, Inc. and its affiliates. from . import ( register_ade20k_full, register_ade20k_panoptic, register_coco_stuff_10k, register_mapillary_vistas, register_coco_panoptic_annos_semseg, register_ade20k_instance, register_mapillary_vistas_panoptic, )
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.utils.file_io import PathManager MAPILLARY_VISTAS_SEM_SEG_CATEGORIES = [ {'color': [165, 42, 42], 'id': 1, 'isthing': 1, 'name': 'Bird', 'supercategory': 'animal--bird'}, {'color': [0, 192, 0], 'id': 2, 'isthing': 1, 'name': 'Ground Animal', 'supercategory': 'animal--ground-animal'}, {'color': [196, 196, 196], 'id': 3, 'isthing': 0, 'name': 'Curb', 'supercategory': 'construction--barrier--curb'}, {'color': [190, 153, 153], 'id': 4, 'isthing': 0, 'name': 'Fence', 'supercategory': 'construction--barrier--fence'}, {'color': [180, 165, 180], 'id': 5, 'isthing': 0, 'name': 'Guard Rail', 'supercategory': 'construction--barrier--guard-rail'}, {'color': [90, 120, 150], 'id': 6, 'isthing': 0, 'name': 'Barrier', 'supercategory': 'construction--barrier--other-barrier'}, {'color': [102, 102, 156], 'id': 7, 'isthing': 0, 'name': 'Wall', 'supercategory': 'construction--barrier--wall'}, {'color': [128, 64, 255], 'id': 8, 'isthing': 0, 'name': 'Bike Lane', 'supercategory': 'construction--flat--bike-lane'}, {'color': [140, 140, 200], 'id': 9, 'isthing': 1, 'name': 'Crosswalk - Plain', 'supercategory': 'construction--flat--crosswalk-plain'}, {'color': [170, 170, 170], 'id': 10, 'isthing': 0, 'name': 'Curb Cut', 'supercategory': 'construction--flat--curb-cut'}, {'color': [250, 170, 160], 'id': 11, 'isthing': 0, 'name': 'Parking', 'supercategory': 'construction--flat--parking'}, {'color': [96, 96, 96], 'id': 12, 'isthing': 0, 'name': 'Pedestrian Area', 'supercategory': 'construction--flat--pedestrian-area'}, {'color': [230, 150, 140], 'id': 13, 'isthing': 0, 'name': 'Rail Track', 'supercategory': 'construction--flat--rail-track'}, {'color': [128, 64, 128], 'id': 14, 'isthing': 0, 'name': 'Road', 'supercategory': 'construction--flat--road'}, {'color': [110, 110, 110], 'id': 15, 'isthing': 0, 'name': 'Service Lane', 'supercategory': 'construction--flat--service-lane'}, {'color': [244, 35, 232], 'id': 16, 'isthing': 0, 'name': 'Sidewalk', 'supercategory': 'construction--flat--sidewalk'}, {'color': [150, 100, 100], 'id': 17, 'isthing': 0, 'name': 'Bridge', 'supercategory': 'construction--structure--bridge'}, {'color': [70, 70, 70], 'id': 18, 'isthing': 0, 'name': 'Building', 'supercategory': 'construction--structure--building'}, {'color': [150, 120, 90], 'id': 19, 'isthing': 0, 'name': 'Tunnel', 'supercategory': 'construction--structure--tunnel'}, {'color': [220, 20, 60], 'id': 20, 'isthing': 1, 'name': 'Person', 'supercategory': 'human--person'}, {'color': [255, 0, 0], 'id': 21, 'isthing': 1, 'name': 'Bicyclist', 'supercategory': 'human--rider--bicyclist'}, {'color': [255, 0, 100], 'id': 22, 'isthing': 1, 'name': 'Motorcyclist', 'supercategory': 'human--rider--motorcyclist'}, {'color': [255, 0, 200], 'id': 23, 'isthing': 1, 'name': 'Other Rider', 'supercategory': 'human--rider--other-rider'}, {'color': [200, 128, 128], 'id': 24, 'isthing': 1, 'name': 'Lane Marking - Crosswalk', 'supercategory': 'marking--crosswalk-zebra'}, {'color': [255, 255, 255], 'id': 25, 'isthing': 0, 'name': 'Lane Marking - General', 'supercategory': 'marking--general'}, {'color': [64, 170, 64], 'id': 26, 'isthing': 0, 'name': 'Mountain', 'supercategory': 'nature--mountain'}, {'color': [230, 160, 50], 'id': 27, 'isthing': 0, 'name': 'Sand', 'supercategory': 'nature--sand'}, {'color': [70, 130, 180], 'id': 28, 'isthing': 0, 'name': 'Sky', 'supercategory': 'nature--sky'}, {'color': [190, 255, 255], 'id': 29, 'isthing': 0, 'name': 'Snow', 'supercategory': 'nature--snow'}, {'color': [152, 251, 152], 'id': 30, 'isthing': 0, 'name': 'Terrain', 'supercategory': 'nature--terrain'}, {'color': [107, 142, 35], 'id': 31, 'isthing': 0, 'name': 'Vegetation', 'supercategory': 'nature--vegetation'}, {'color': [0, 170, 30], 'id': 32, 'isthing': 0, 'name': 'Water', 'supercategory': 'nature--water'}, {'color': [255, 255, 128], 'id': 33, 'isthing': 1, 'name': 'Banner', 'supercategory': 'object--banner'}, {'color': [250, 0, 30], 'id': 34, 'isthing': 1, 'name': 'Bench', 'supercategory': 'object--bench'}, {'color': [100, 140, 180], 'id': 35, 'isthing': 1, 'name': 'Bike Rack', 'supercategory': 'object--bike-rack'}, {'color': [220, 220, 220], 'id': 36, 'isthing': 1, 'name': 'Billboard', 'supercategory': 'object--billboard'}, {'color': [220, 128, 128], 'id': 37, 'isthing': 1, 'name': 'Catch Basin', 'supercategory': 'object--catch-basin'}, {'color': [222, 40, 40], 'id': 38, 'isthing': 1, 'name': 'CCTV Camera', 'supercategory': 'object--cctv-camera'}, {'color': [100, 170, 30], 'id': 39, 'isthing': 1, 'name': 'Fire Hydrant', 'supercategory': 'object--fire-hydrant'}, {'color': [40, 40, 40], 'id': 40, 'isthing': 1, 'name': 'Junction Box', 'supercategory': 'object--junction-box'}, {'color': [33, 33, 33], 'id': 41, 'isthing': 1, 'name': 'Mailbox', 'supercategory': 'object--mailbox'}, {'color': [100, 128, 160], 'id': 42, 'isthing': 1, 'name': 'Manhole', 'supercategory': 'object--manhole'}, {'color': [142, 0, 0], 'id': 43, 'isthing': 1, 'name': 'Phone Booth', 'supercategory': 'object--phone-booth'}, {'color': [70, 100, 150], 'id': 44, 'isthing': 0, 'name': 'Pothole', 'supercategory': 'object--pothole'}, {'color': [210, 170, 100], 'id': 45, 'isthing': 1, 'name': 'Street Light', 'supercategory': 'object--street-light'}, {'color': [153, 153, 153], 'id': 46, 'isthing': 1, 'name': 'Pole', 'supercategory': 'object--support--pole'}, {'color': [128, 128, 128], 'id': 47, 'isthing': 1, 'name': 'Traffic Sign Frame', 'supercategory': 'object--support--traffic-sign-frame'}, {'color': [0, 0, 80], 'id': 48, 'isthing': 1, 'name': 'Utility Pole', 'supercategory': 'object--support--utility-pole'}, {'color': [250, 170, 30], 'id': 49, 'isthing': 1, 'name': 'Traffic Light', 'supercategory': 'object--traffic-light'}, {'color': [192, 192, 192], 'id': 50, 'isthing': 1, 'name': 'Traffic Sign (Back)', 'supercategory': 'object--traffic-sign--back'}, {'color': [220, 220, 0], 'id': 51, 'isthing': 1, 'name': 'Traffic Sign (Front)', 'supercategory': 'object--traffic-sign--front'}, {'color': [140, 140, 20], 'id': 52, 'isthing': 1, 'name': 'Trash Can', 'supercategory': 'object--trash-can'}, {'color': [119, 11, 32], 'id': 53, 'isthing': 1, 'name': 'Bicycle', 'supercategory': 'object--vehicle--bicycle'}, {'color': [150, 0, 255], 'id': 54, 'isthing': 1, 'name': 'Boat', 'supercategory': 'object--vehicle--boat'}, {'color': [0, 60, 100], 'id': 55, 'isthing': 1, 'name': 'Bus', 'supercategory': 'object--vehicle--bus'}, {'color': [0, 0, 142], 'id': 56, 'isthing': 1, 'name': 'Car', 'supercategory': 'object--vehicle--car'}, {'color': [0, 0, 90], 'id': 57, 'isthing': 1, 'name': 'Caravan', 'supercategory': 'object--vehicle--caravan'}, {'color': [0, 0, 230], 'id': 58, 'isthing': 1, 'name': 'Motorcycle', 'supercategory': 'object--vehicle--motorcycle'}, {'color': [0, 80, 100], 'id': 59, 'isthing': 0, 'name': 'On Rails', 'supercategory': 'object--vehicle--on-rails'}, {'color': [128, 64, 64], 'id': 60, 'isthing': 1, 'name': 'Other Vehicle', 'supercategory': 'object--vehicle--other-vehicle'}, {'color': [0, 0, 110], 'id': 61, 'isthing': 1, 'name': 'Trailer', 'supercategory': 'object--vehicle--trailer'}, {'color': [0, 0, 70], 'id': 62, 'isthing': 1, 'name': 'Truck', 'supercategory': 'object--vehicle--truck'}, {'color': [0, 0, 192], 'id': 63, 'isthing': 1, 'name': 'Wheeled Slow', 'supercategory': 'object--vehicle--wheeled-slow'}, {'color': [32, 32, 32], 'id': 64, 'isthing': 0, 'name': 'Car Mount', 'supercategory': 'void--car-mount'}, {'color': [120, 10, 10], 'id': 65, 'isthing': 0, 'name': 'Ego Vehicle', 'supercategory': 'void--ego-vehicle'} ] def load_mapillary_vistas_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta): """ Args: image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ def _convert_category_id(segment_info, meta): if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = True else: segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = False return segment_info with PathManager.open(json_file) as f: json_info = json.load(f) ret = [] for ann in json_info["annotations"]: image_id = ann["image_id"] # TODO: currently we assume image and label has the same filename but # different extension, and images have extension ".jpg" for COCO. Need # to make image extension a user-provided argument if we extend this # function to support other COCO-like datasets. image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") label_file = os.path.join(gt_dir, ann["file_name"]) sem_label_file = os.path.join(semseg_dir, ann["file_name"]) segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] ret.append( { "file_name": image_file, "image_id": image_id, "pan_seg_file_name": label_file, "sem_seg_file_name": sem_label_file, "segments_info": segments_info, } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"] return ret def register_mapillary_vistas_panoptic( name, metadata, image_root, panoptic_root, semantic_root, panoptic_json, instances_json=None ): """ Register a "standard" version of ADE20k panoptic segmentation dataset named `name`. The dictionaries in this registered dataset follows detectron2's standard format. Hence it's called "standard". Args: name (str): the name that identifies a dataset, e.g. "ade20k_panoptic_train" metadata (dict): extra metadata associated with this dataset. image_root (str): directory which contains all the images panoptic_root (str): directory which contains panoptic annotation images in COCO format panoptic_json (str): path to the json panoptic annotation file in COCO format sem_seg_root (none): not used, to be consistent with `register_coco_panoptic_separated`. instances_json (str): path to the json instance annotation file """ panoptic_name = name DatasetCatalog.register( panoptic_name, lambda: load_mapillary_vistas_panoptic_json( panoptic_json, image_root, panoptic_root, semantic_root, metadata ), ) MetadataCatalog.get(panoptic_name).set( panoptic_root=panoptic_root, image_root=image_root, panoptic_json=panoptic_json, json_file=instances_json, evaluator_type="mapillary_vistas_panoptic_seg", ignore_label=65, # different from other datasets, Mapillary Vistas sets ignore_label to 65 label_divisor=1000, **metadata, ) _PREDEFINED_SPLITS_ADE20K_PANOPTIC = { "mapillary_vistas_panoptic_train": ( "mapillary_vistas/training/images", "mapillary_vistas/training/panoptic", "mapillary_vistas/training/panoptic/panoptic_2018.json", "mapillary_vistas/training/labels", ), "mapillary_vistas_panoptic_val": ( "mapillary_vistas/validation/images", "mapillary_vistas/validation/panoptic", "mapillary_vistas/validation/panoptic/panoptic_2018.json", "mapillary_vistas/validation/labels", ), } def get_metadata(): meta = {} # The following metadata maps contiguous id from [0, #thing categories + # #stuff categories) to their names and colors. We have to replica of the # same name and color under "thing_*" and "stuff_*" because the current # visualization function in D2 handles thing and class classes differently # due to some heuristic used in Panoptic FPN. We keep the same naming to # enable reusing existing visualization functions. thing_classes = [k["name"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES] thing_colors = [k["color"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES] stuff_classes = [k["name"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES] stuff_colors = [k["color"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES] meta["thing_classes"] = thing_classes meta["thing_colors"] = thing_colors meta["stuff_classes"] = stuff_classes meta["stuff_colors"] = stuff_colors # Convert category id for training: # category id: like semantic segmentation, it is the class id for each # pixel. Since there are some classes not used in evaluation, the category # id is not always contiguous and thus we have two set of category ids: # - original category id: category id in the original dataset, mainly # used for evaluation. # - contiguous category id: [0, #classes), in order to train the linear # softmax classifier. thing_dataset_id_to_contiguous_id = {} stuff_dataset_id_to_contiguous_id = {} for i, cat in enumerate(MAPILLARY_VISTAS_SEM_SEG_CATEGORIES): if cat["isthing"]: thing_dataset_id_to_contiguous_id[cat["id"]] = i # else: # stuff_dataset_id_to_contiguous_id[cat["id"]] = i # in order to use sem_seg evaluator stuff_dataset_id_to_contiguous_id[cat["id"]] = i meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id return meta def register_all_mapillary_vistas_panoptic(root): metadata = get_metadata() for ( prefix, (image_root, panoptic_root, panoptic_json, semantic_root), ) in _PREDEFINED_SPLITS_ADE20K_PANOPTIC.items(): # The "standard" version of COCO panoptic segmentation dataset, # e.g. used by Panoptic-DeepLab register_mapillary_vistas_panoptic( prefix, metadata, os.path.join(root, image_root), os.path.join(root, panoptic_root), os.path.join(root, semantic_root), os.path.join(root, panoptic_json), ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_mapillary_vistas_panoptic(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_mapillary_vistas_panoptic.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import logging import numpy as np import os from PIL import Image from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets.coco import load_coco_json, register_coco_instances from detectron2.utils.file_io import PathManager ADE_CATEGORIES = [{'id': 7, 'name': 'bed'}, {'id': 8, 'name': 'windowpane'}, {'id': 10, 'name': 'cabinet'}, {'id': 12, 'name': 'person'}, {'id': 14, 'name': 'door'}, {'id': 15, 'name': 'table'}, {'id': 18, 'name': 'curtain'}, {'id': 19, 'name': 'chair'}, {'id': 20, 'name': 'car'}, {'id': 22, 'name': 'painting'}, {'id': 23, 'name': 'sofa'}, {'id': 24, 'name': 'shelf'}, {'id': 27, 'name': 'mirror'}, {'id': 30, 'name': 'armchair'}, {'id': 31, 'name': 'seat'}, {'id': 32, 'name': 'fence'}, {'id': 33, 'name': 'desk'}, {'id': 35, 'name': 'wardrobe'}, {'id': 36, 'name': 'lamp'}, {'id': 37, 'name': 'bathtub'}, {'id': 38, 'name': 'railing'}, {'id': 39, 'name': 'cushion'}, {'id': 41, 'name': 'box'}, {'id': 42, 'name': 'column'}, {'id': 43, 'name': 'signboard'}, {'id': 44, 'name': 'chest of drawers'}, {'id': 45, 'name': 'counter'}, {'id': 47, 'name': 'sink'}, {'id': 49, 'name': 'fireplace'}, {'id': 50, 'name': 'refrigerator'}, {'id': 53, 'name': 'stairs'}, {'id': 55, 'name': 'case'}, {'id': 56, 'name': 'pool table'}, {'id': 57, 'name': 'pillow'}, {'id': 58, 'name': 'screen door'}, {'id': 62, 'name': 'bookcase'}, {'id': 64, 'name': 'coffee table'}, {'id': 65, 'name': 'toilet'}, {'id': 66, 'name': 'flower'}, {'id': 67, 'name': 'book'}, {'id': 69, 'name': 'bench'}, {'id': 70, 'name': 'countertop'}, {'id': 71, 'name': 'stove'}, {'id': 72, 'name': 'palm'}, {'id': 73, 'name': 'kitchen island'}, {'id': 74, 'name': 'computer'}, {'id': 75, 'name': 'swivel chair'}, {'id': 76, 'name': 'boat'}, {'id': 78, 'name': 'arcade machine'}, {'id': 80, 'name': 'bus'}, {'id': 81, 'name': 'towel'}, {'id': 82, 'name': 'light'}, {'id': 83, 'name': 'truck'}, {'id': 85, 'name': 'chandelier'}, {'id': 86, 'name': 'awning'}, {'id': 87, 'name': 'streetlight'}, {'id': 88, 'name': 'booth'}, {'id': 89, 'name': 'television receiver'}, {'id': 90, 'name': 'airplane'}, {'id': 92, 'name': 'apparel'}, {'id': 93, 'name': 'pole'}, {'id': 95, 'name': 'bannister'}, {'id': 97, 'name': 'ottoman'}, {'id': 98, 'name': 'bottle'}, {'id': 102, 'name': 'van'}, {'id': 103, 'name': 'ship'}, {'id': 104, 'name': 'fountain'}, {'id': 107, 'name': 'washer'}, {'id': 108, 'name': 'plaything'}, {'id': 110, 'name': 'stool'}, {'id': 111, 'name': 'barrel'}, {'id': 112, 'name': 'basket'}, {'id': 115, 'name': 'bag'}, {'id': 116, 'name': 'minibike'}, {'id': 118, 'name': 'oven'}, {'id': 119, 'name': 'ball'}, {'id': 120, 'name': 'food'}, {'id': 121, 'name': 'step'}, {'id': 123, 'name': 'trade name'}, {'id': 124, 'name': 'microwave'}, {'id': 125, 'name': 'pot'}, {'id': 126, 'name': 'animal'}, {'id': 127, 'name': 'bicycle'}, {'id': 129, 'name': 'dishwasher'}, {'id': 130, 'name': 'screen'}, {'id': 132, 'name': 'sculpture'}, {'id': 133, 'name': 'hood'}, {'id': 134, 'name': 'sconce'}, {'id': 135, 'name': 'vase'}, {'id': 136, 'name': 'traffic light'}, {'id': 137, 'name': 'tray'}, {'id': 138, 'name': 'ashcan'}, {'id': 139, 'name': 'fan'}, {'id': 142, 'name': 'plate'}, {'id': 143, 'name': 'monitor'}, {'id': 144, 'name': 'bulletin board'}, {'id': 146, 'name': 'radiator'}, {'id': 147, 'name': 'glass'}, {'id': 148, 'name': 'clock'}, {'id': 149, 'name': 'flag'}] _PREDEFINED_SPLITS = { # point annotations without masks "ade20k_instance_train": ( "ADEChallengeData2016/images/training", "ADEChallengeData2016/ade20k_instance_train.json", ), "ade20k_instance_val": ( "ADEChallengeData2016/images/validation", "ADEChallengeData2016/ade20k_instance_val.json", ), } def _get_ade_instances_meta(): thing_ids = [k["id"] for k in ADE_CATEGORIES] assert len(thing_ids) == 100, len(thing_ids) # Mapping from the incontiguous ADE category id to an id in [0, 99] thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)} thing_classes = [k["name"] for k in ADE_CATEGORIES] ret = { "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id, "thing_classes": thing_classes, } return ret def register_all_ade20k_instance(root): for key, (image_root, json_file) in _PREDEFINED_SPLITS.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, _get_ade_instances_meta(), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_ade20k_instance(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_ade20k_instance.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets import load_sem_seg from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES from detectron2.utils.file_io import PathManager _PREDEFINED_SPLITS_COCO_PANOPTIC = { "coco_2017_train_panoptic": ( # This is the original panoptic annotation directory "coco/panoptic_train2017", "coco/annotations/panoptic_train2017.json", # This directory contains semantic annotations that are # converted from panoptic annotations. # It is used by PanopticFPN. # You can use the script at detectron2/datasets/prepare_panoptic_fpn.py # to create these directories. "coco/panoptic_semseg_train2017", ), "coco_2017_val_panoptic": ( "coco/panoptic_val2017", "coco/annotations/panoptic_val2017.json", "coco/panoptic_semseg_val2017", ), } def get_metadata(): meta = {} # The following metadata maps contiguous id from [0, #thing categories + # #stuff categories) to their names and colors. We have to replica of the # same name and color under "thing_*" and "stuff_*" because the current # visualization function in D2 handles thing and class classes differently # due to some heuristic used in Panoptic FPN. We keep the same naming to # enable reusing existing visualization functions. thing_classes = [k["name"] for k in COCO_CATEGORIES if k["isthing"] == 1] thing_colors = [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 1] stuff_classes = [k["name"] for k in COCO_CATEGORIES] stuff_colors = [k["color"] for k in COCO_CATEGORIES] meta["thing_classes"] = thing_classes meta["thing_colors"] = thing_colors meta["stuff_classes"] = stuff_classes meta["stuff_colors"] = stuff_colors # Convert category id for training: # category id: like semantic segmentation, it is the class id for each # pixel. Since there are some classes not used in evaluation, the category # id is not always contiguous and thus we have two set of category ids: # - original category id: category id in the original dataset, mainly # used for evaluation. # - contiguous category id: [0, #classes), in order to train the linear # softmax classifier. thing_dataset_id_to_contiguous_id = {} stuff_dataset_id_to_contiguous_id = {} for i, cat in enumerate(COCO_CATEGORIES): if cat["isthing"]: thing_dataset_id_to_contiguous_id[cat["id"]] = i # else: # stuff_dataset_id_to_contiguous_id[cat["id"]] = i # in order to use sem_seg evaluator stuff_dataset_id_to_contiguous_id[cat["id"]] = i meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id return meta def load_coco_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta): """ Args: image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ def _convert_category_id(segment_info, meta): if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = True else: segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = False return segment_info with PathManager.open(json_file) as f: json_info = json.load(f) ret = [] for ann in json_info["annotations"]: image_id = int(ann["image_id"]) # TODO: currently we assume image and label has the same filename but # different extension, and images have extension ".jpg" for COCO. Need # to make image extension a user-provided argument if we extend this # function to support other COCO-like datasets. image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") label_file = os.path.join(gt_dir, ann["file_name"]) sem_label_file = os.path.join(semseg_dir, ann["file_name"]) segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] ret.append( { "file_name": image_file, "image_id": image_id, "pan_seg_file_name": label_file, "sem_seg_file_name": sem_label_file, "segments_info": segments_info, } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"] return ret def register_coco_panoptic_annos_sem_seg( name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json ): panoptic_name = name delattr(MetadataCatalog.get(panoptic_name), "thing_classes") delattr(MetadataCatalog.get(panoptic_name), "thing_colors") MetadataCatalog.get(panoptic_name).set( thing_classes=metadata["thing_classes"], thing_colors=metadata["thing_colors"], # thing_dataset_id_to_contiguous_id=metadata["thing_dataset_id_to_contiguous_id"], ) # the name is "coco_2017_train_panoptic_with_sem_seg" and "coco_2017_val_panoptic_with_sem_seg" semantic_name = name + "_with_sem_seg" DatasetCatalog.register( semantic_name, lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, sem_seg_root, metadata), ) MetadataCatalog.get(semantic_name).set( sem_seg_root=sem_seg_root, panoptic_root=panoptic_root, image_root=image_root, panoptic_json=panoptic_json, json_file=instances_json, evaluator_type="coco_panoptic_seg", ignore_label=255, label_divisor=1000, **metadata, ) def register_all_coco_panoptic_annos_sem_seg(root): for ( prefix, (panoptic_root, panoptic_json, semantic_root), ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items(): prefix_instances = prefix[: -len("_panoptic")] instances_meta = MetadataCatalog.get(prefix_instances) image_root, instances_json = instances_meta.image_root, instances_meta.json_file register_coco_panoptic_annos_sem_seg( prefix, get_metadata(), image_root, os.path.join(root, panoptic_root), os.path.join(root, panoptic_json), os.path.join(root, semantic_root), instances_json, ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_coco_panoptic_annos_sem_seg(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_coco_panoptic_annos_semseg.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.utils.file_io import PathManager ADE20K_150_CATEGORIES = [ {"color": [120, 120, 120], "id": 0, "isthing": 0, "name": "wall"}, {"color": [180, 120, 120], "id": 1, "isthing": 0, "name": "building"}, {"color": [6, 230, 230], "id": 2, "isthing": 0, "name": "sky"}, {"color": [80, 50, 50], "id": 3, "isthing": 0, "name": "floor"}, {"color": [4, 200, 3], "id": 4, "isthing": 0, "name": "tree"}, {"color": [120, 120, 80], "id": 5, "isthing": 0, "name": "ceiling"}, {"color": [140, 140, 140], "id": 6, "isthing": 0, "name": "road, route"}, {"color": [204, 5, 255], "id": 7, "isthing": 1, "name": "bed"}, {"color": [230, 230, 230], "id": 8, "isthing": 1, "name": "window "}, {"color": [4, 250, 7], "id": 9, "isthing": 0, "name": "grass"}, {"color": [224, 5, 255], "id": 10, "isthing": 1, "name": "cabinet"}, {"color": [235, 255, 7], "id": 11, "isthing": 0, "name": "sidewalk, pavement"}, {"color": [150, 5, 61], "id": 12, "isthing": 1, "name": "person"}, {"color": [120, 120, 70], "id": 13, "isthing": 0, "name": "earth, ground"}, {"color": [8, 255, 51], "id": 14, "isthing": 1, "name": "door"}, {"color": [255, 6, 82], "id": 15, "isthing": 1, "name": "table"}, {"color": [143, 255, 140], "id": 16, "isthing": 0, "name": "mountain, mount"}, {"color": [204, 255, 4], "id": 17, "isthing": 0, "name": "plant"}, {"color": [255, 51, 7], "id": 18, "isthing": 1, "name": "curtain"}, {"color": [204, 70, 3], "id": 19, "isthing": 1, "name": "chair"}, {"color": [0, 102, 200], "id": 20, "isthing": 1, "name": "car"}, {"color": [61, 230, 250], "id": 21, "isthing": 0, "name": "water"}, {"color": [255, 6, 51], "id": 22, "isthing": 1, "name": "painting, picture"}, {"color": [11, 102, 255], "id": 23, "isthing": 1, "name": "sofa"}, {"color": [255, 7, 71], "id": 24, "isthing": 1, "name": "shelf"}, {"color": [255, 9, 224], "id": 25, "isthing": 0, "name": "house"}, {"color": [9, 7, 230], "id": 26, "isthing": 0, "name": "sea"}, {"color": [220, 220, 220], "id": 27, "isthing": 1, "name": "mirror"}, {"color": [255, 9, 92], "id": 28, "isthing": 0, "name": "rug"}, {"color": [112, 9, 255], "id": 29, "isthing": 0, "name": "field"}, {"color": [8, 255, 214], "id": 30, "isthing": 1, "name": "armchair"}, {"color": [7, 255, 224], "id": 31, "isthing": 1, "name": "seat"}, {"color": [255, 184, 6], "id": 32, "isthing": 1, "name": "fence"}, {"color": [10, 255, 71], "id": 33, "isthing": 1, "name": "desk"}, {"color": [255, 41, 10], "id": 34, "isthing": 0, "name": "rock, stone"}, {"color": [7, 255, 255], "id": 35, "isthing": 1, "name": "wardrobe, closet, press"}, {"color": [224, 255, 8], "id": 36, "isthing": 1, "name": "lamp"}, {"color": [102, 8, 255], "id": 37, "isthing": 1, "name": "tub"}, {"color": [255, 61, 6], "id": 38, "isthing": 1, "name": "rail"}, {"color": [255, 194, 7], "id": 39, "isthing": 1, "name": "cushion"}, {"color": [255, 122, 8], "id": 40, "isthing": 0, "name": "base, pedestal, stand"}, {"color": [0, 255, 20], "id": 41, "isthing": 1, "name": "box"}, {"color": [255, 8, 41], "id": 42, "isthing": 1, "name": "column, pillar"}, {"color": [255, 5, 153], "id": 43, "isthing": 1, "name": "signboard, sign"}, { "color": [6, 51, 255], "id": 44, "isthing": 1, "name": "chest of drawers, chest, bureau, dresser", }, {"color": [235, 12, 255], "id": 45, "isthing": 1, "name": "counter"}, {"color": [160, 150, 20], "id": 46, "isthing": 0, "name": "sand"}, {"color": [0, 163, 255], "id": 47, "isthing": 1, "name": "sink"}, {"color": [140, 140, 140], "id": 48, "isthing": 0, "name": "skyscraper"}, {"color": [250, 10, 15], "id": 49, "isthing": 1, "name": "fireplace"}, {"color": [20, 255, 0], "id": 50, "isthing": 1, "name": "refrigerator, icebox"}, {"color": [31, 255, 0], "id": 51, "isthing": 0, "name": "grandstand, covered stand"}, {"color": [255, 31, 0], "id": 52, "isthing": 0, "name": "path"}, {"color": [255, 224, 0], "id": 53, "isthing": 1, "name": "stairs"}, {"color": [153, 255, 0], "id": 54, "isthing": 0, "name": "runway"}, {"color": [0, 0, 255], "id": 55, "isthing": 1, "name": "case, display case, showcase, vitrine"}, { "color": [255, 71, 0], "id": 56, "isthing": 1, "name": "pool table, billiard table, snooker table", }, {"color": [0, 235, 255], "id": 57, "isthing": 1, "name": "pillow"}, {"color": [0, 173, 255], "id": 58, "isthing": 1, "name": "screen door, screen"}, {"color": [31, 0, 255], "id": 59, "isthing": 0, "name": "stairway, staircase"}, {"color": [11, 200, 200], "id": 60, "isthing": 0, "name": "river"}, {"color": [255, 82, 0], "id": 61, "isthing": 0, "name": "bridge, span"}, {"color": [0, 255, 245], "id": 62, "isthing": 1, "name": "bookcase"}, {"color": [0, 61, 255], "id": 63, "isthing": 0, "name": "blind, screen"}, {"color": [0, 255, 112], "id": 64, "isthing": 1, "name": "coffee table"}, { "color": [0, 255, 133], "id": 65, "isthing": 1, "name": "toilet, can, commode, crapper, pot, potty, stool, throne", }, {"color": [255, 0, 0], "id": 66, "isthing": 1, "name": "flower"}, {"color": [255, 163, 0], "id": 67, "isthing": 1, "name": "book"}, {"color": [255, 102, 0], "id": 68, "isthing": 0, "name": "hill"}, {"color": [194, 255, 0], "id": 69, "isthing": 1, "name": "bench"}, {"color": [0, 143, 255], "id": 70, "isthing": 1, "name": "countertop"}, {"color": [51, 255, 0], "id": 71, "isthing": 1, "name": "stove"}, {"color": [0, 82, 255], "id": 72, "isthing": 1, "name": "palm, palm tree"}, {"color": [0, 255, 41], "id": 73, "isthing": 1, "name": "kitchen island"}, {"color": [0, 255, 173], "id": 74, "isthing": 1, "name": "computer"}, {"color": [10, 0, 255], "id": 75, "isthing": 1, "name": "swivel chair"}, {"color": [173, 255, 0], "id": 76, "isthing": 1, "name": "boat"}, {"color": [0, 255, 153], "id": 77, "isthing": 0, "name": "bar"}, {"color": [255, 92, 0], "id": 78, "isthing": 1, "name": "arcade machine"}, {"color": [255, 0, 255], "id": 79, "isthing": 0, "name": "hovel, hut, hutch, shack, shanty"}, {"color": [255, 0, 245], "id": 80, "isthing": 1, "name": "bus"}, {"color": [255, 0, 102], "id": 81, "isthing": 1, "name": "towel"}, {"color": [255, 173, 0], "id": 82, "isthing": 1, "name": "light"}, {"color": [255, 0, 20], "id": 83, "isthing": 1, "name": "truck"}, {"color": [255, 184, 184], "id": 84, "isthing": 0, "name": "tower"}, {"color": [0, 31, 255], "id": 85, "isthing": 1, "name": "chandelier"}, {"color": [0, 255, 61], "id": 86, "isthing": 1, "name": "awning, sunshade, sunblind"}, {"color": [0, 71, 255], "id": 87, "isthing": 1, "name": "street lamp"}, {"color": [255, 0, 204], "id": 88, "isthing": 1, "name": "booth"}, {"color": [0, 255, 194], "id": 89, "isthing": 1, "name": "tv"}, {"color": [0, 255, 82], "id": 90, "isthing": 1, "name": "plane"}, {"color": [0, 10, 255], "id": 91, "isthing": 0, "name": "dirt track"}, {"color": [0, 112, 255], "id": 92, "isthing": 1, "name": "clothes"}, {"color": [51, 0, 255], "id": 93, "isthing": 1, "name": "pole"}, {"color": [0, 194, 255], "id": 94, "isthing": 0, "name": "land, ground, soil"}, { "color": [0, 122, 255], "id": 95, "isthing": 1, "name": "bannister, banister, balustrade, balusters, handrail", }, { "color": [0, 255, 163], "id": 96, "isthing": 0, "name": "escalator, moving staircase, moving stairway", }, { "color": [255, 153, 0], "id": 97, "isthing": 1, "name": "ottoman, pouf, pouffe, puff, hassock", }, {"color": [0, 255, 10], "id": 98, "isthing": 1, "name": "bottle"}, {"color": [255, 112, 0], "id": 99, "isthing": 0, "name": "buffet, counter, sideboard"}, { "color": [143, 255, 0], "id": 100, "isthing": 0, "name": "poster, posting, placard, notice, bill, card", }, {"color": [82, 0, 255], "id": 101, "isthing": 0, "name": "stage"}, {"color": [163, 255, 0], "id": 102, "isthing": 1, "name": "van"}, {"color": [255, 235, 0], "id": 103, "isthing": 1, "name": "ship"}, {"color": [8, 184, 170], "id": 104, "isthing": 1, "name": "fountain"}, { "color": [133, 0, 255], "id": 105, "isthing": 0, "name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter", }, {"color": [0, 255, 92], "id": 106, "isthing": 0, "name": "canopy"}, { "color": [184, 0, 255], "id": 107, "isthing": 1, "name": "washer, automatic washer, washing machine", }, {"color": [255, 0, 31], "id": 108, "isthing": 1, "name": "plaything, toy"}, {"color": [0, 184, 255], "id": 109, "isthing": 0, "name": "pool"}, {"color": [0, 214, 255], "id": 110, "isthing": 1, "name": "stool"}, {"color": [255, 0, 112], "id": 111, "isthing": 1, "name": "barrel, cask"}, {"color": [92, 255, 0], "id": 112, "isthing": 1, "name": "basket, handbasket"}, {"color": [0, 224, 255], "id": 113, "isthing": 0, "name": "falls"}, {"color": [112, 224, 255], "id": 114, "isthing": 0, "name": "tent"}, {"color": [70, 184, 160], "id": 115, "isthing": 1, "name": "bag"}, {"color": [163, 0, 255], "id": 116, "isthing": 1, "name": "minibike, motorbike"}, {"color": [153, 0, 255], "id": 117, "isthing": 0, "name": "cradle"}, {"color": [71, 255, 0], "id": 118, "isthing": 1, "name": "oven"}, {"color": [255, 0, 163], "id": 119, "isthing": 1, "name": "ball"}, {"color": [255, 204, 0], "id": 120, "isthing": 1, "name": "food, solid food"}, {"color": [255, 0, 143], "id": 121, "isthing": 1, "name": "step, stair"}, {"color": [0, 255, 235], "id": 122, "isthing": 0, "name": "tank, storage tank"}, {"color": [133, 255, 0], "id": 123, "isthing": 1, "name": "trade name"}, {"color": [255, 0, 235], "id": 124, "isthing": 1, "name": "microwave"}, {"color": [245, 0, 255], "id": 125, "isthing": 1, "name": "pot"}, {"color": [255, 0, 122], "id": 126, "isthing": 1, "name": "animal"}, {"color": [255, 245, 0], "id": 127, "isthing": 1, "name": "bicycle"}, {"color": [10, 190, 212], "id": 128, "isthing": 0, "name": "lake"}, {"color": [214, 255, 0], "id": 129, "isthing": 1, "name": "dishwasher"}, {"color": [0, 204, 255], "id": 130, "isthing": 1, "name": "screen"}, {"color": [20, 0, 255], "id": 131, "isthing": 0, "name": "blanket, cover"}, {"color": [255, 255, 0], "id": 132, "isthing": 1, "name": "sculpture"}, {"color": [0, 153, 255], "id": 133, "isthing": 1, "name": "hood, exhaust hood"}, {"color": [0, 41, 255], "id": 134, "isthing": 1, "name": "sconce"}, {"color": [0, 255, 204], "id": 135, "isthing": 1, "name": "vase"}, {"color": [41, 0, 255], "id": 136, "isthing": 1, "name": "traffic light"}, {"color": [41, 255, 0], "id": 137, "isthing": 1, "name": "tray"}, {"color": [173, 0, 255], "id": 138, "isthing": 1, "name": "trash can"}, {"color": [0, 245, 255], "id": 139, "isthing": 1, "name": "fan"}, {"color": [71, 0, 255], "id": 140, "isthing": 0, "name": "pier"}, {"color": [122, 0, 255], "id": 141, "isthing": 0, "name": "crt screen"}, {"color": [0, 255, 184], "id": 142, "isthing": 1, "name": "plate"}, {"color": [0, 92, 255], "id": 143, "isthing": 1, "name": "monitor"}, {"color": [184, 255, 0], "id": 144, "isthing": 1, "name": "bulletin board"}, {"color": [0, 133, 255], "id": 145, "isthing": 0, "name": "shower"}, {"color": [255, 214, 0], "id": 146, "isthing": 1, "name": "radiator"}, {"color": [25, 194, 194], "id": 147, "isthing": 1, "name": "glass, drinking glass"}, {"color": [102, 255, 0], "id": 148, "isthing": 1, "name": "clock"}, {"color": [92, 0, 255], "id": 149, "isthing": 1, "name": "flag"}, ] ADE20k_COLORS = [k["color"] for k in ADE20K_150_CATEGORIES] MetadataCatalog.get("ade20k_sem_seg_train").set( stuff_colors=ADE20k_COLORS[:], ) MetadataCatalog.get("ade20k_sem_seg_val").set( stuff_colors=ADE20k_COLORS[:], ) def load_ade20k_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta): """ Args: image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ def _convert_category_id(segment_info, meta): if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = True else: segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = False return segment_info with PathManager.open(json_file) as f: json_info = json.load(f) ret = [] for ann in json_info["annotations"]: image_id = ann["image_id"] # TODO: currently we assume image and label has the same filename but # different extension, and images have extension ".jpg" for COCO. Need # to make image extension a user-provided argument if we extend this # function to support other COCO-like datasets. image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") label_file = os.path.join(gt_dir, ann["file_name"]) sem_label_file = os.path.join(semseg_dir, ann["file_name"]) segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] ret.append( { "file_name": image_file, "image_id": image_id, "pan_seg_file_name": label_file, "sem_seg_file_name": sem_label_file, "segments_info": segments_info, } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"] return ret def register_ade20k_panoptic( name, metadata, image_root, panoptic_root, semantic_root, panoptic_json, instances_json=None ): """ Register a "standard" version of ADE20k panoptic segmentation dataset named `name`. The dictionaries in this registered dataset follows detectron2's standard format. Hence it's called "standard". Args: name (str): the name that identifies a dataset, e.g. "ade20k_panoptic_train" metadata (dict): extra metadata associated with this dataset. image_root (str): directory which contains all the images panoptic_root (str): directory which contains panoptic annotation images in COCO format panoptic_json (str): path to the json panoptic annotation file in COCO format sem_seg_root (none): not used, to be consistent with `register_coco_panoptic_separated`. instances_json (str): path to the json instance annotation file """ panoptic_name = name DatasetCatalog.register( panoptic_name, lambda: load_ade20k_panoptic_json( panoptic_json, image_root, panoptic_root, semantic_root, metadata ), ) MetadataCatalog.get(panoptic_name).set( panoptic_root=panoptic_root, image_root=image_root, panoptic_json=panoptic_json, json_file=instances_json, evaluator_type="ade20k_panoptic_seg", ignore_label=255, label_divisor=1000, **metadata, ) _PREDEFINED_SPLITS_ADE20K_PANOPTIC = { "ade20k_panoptic_train": ( "ADEChallengeData2016/images/training", "ADEChallengeData2016/ade20k_panoptic_train", "ADEChallengeData2016/ade20k_panoptic_train.json", "ADEChallengeData2016/annotations_detectron2/training", "ADEChallengeData2016/ade20k_instance_train.json", ), "ade20k_panoptic_val": ( "ADEChallengeData2016/images/validation", "ADEChallengeData2016/ade20k_panoptic_val", "ADEChallengeData2016/ade20k_panoptic_val.json", "ADEChallengeData2016/annotations_detectron2/validation", "ADEChallengeData2016/ade20k_instance_val.json", ), } def get_metadata(): meta = {} # The following metadata maps contiguous id from [0, #thing categories + # #stuff categories) to their names and colors. We have to replica of the # same name and color under "thing_*" and "stuff_*" because the current # visualization function in D2 handles thing and class classes differently # due to some heuristic used in Panoptic FPN. We keep the same naming to # enable reusing existing visualization functions. thing_classes = [k["name"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1] thing_colors = [k["color"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1] stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES] stuff_colors = [k["color"] for k in ADE20K_150_CATEGORIES] meta["thing_classes"] = thing_classes meta["thing_colors"] = thing_colors meta["stuff_classes"] = stuff_classes meta["stuff_colors"] = stuff_colors # Convert category id for training: # category id: like semantic segmentation, it is the class id for each # pixel. Since there are some classes not used in evaluation, the category # id is not always contiguous and thus we have two set of category ids: # - original category id: category id in the original dataset, mainly # used for evaluation. # - contiguous category id: [0, #classes), in order to train the linear # softmax classifier. thing_dataset_id_to_contiguous_id = {} stuff_dataset_id_to_contiguous_id = {} for i, cat in enumerate(ADE20K_150_CATEGORIES): if cat["isthing"]: thing_dataset_id_to_contiguous_id[cat["id"]] = i # else: # stuff_dataset_id_to_contiguous_id[cat["id"]] = i # in order to use sem_seg evaluator stuff_dataset_id_to_contiguous_id[cat["id"]] = i meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id return meta def register_all_ade20k_panoptic(root): metadata = get_metadata() for ( prefix, (image_root, panoptic_root, panoptic_json, semantic_root, instance_json), ) in _PREDEFINED_SPLITS_ADE20K_PANOPTIC.items(): # The "standard" version of COCO panoptic segmentation dataset, # e.g. used by Panoptic-DeepLab register_ade20k_panoptic( prefix, metadata, os.path.join(root, image_root), os.path.join(root, panoptic_root), os.path.join(root, semantic_root), os.path.join(root, panoptic_json), os.path.join(root, instance_json), ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_ade20k_panoptic(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_ade20k_panoptic.py
# Copyright (c) Facebook, Inc. and its affiliates. import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets import load_sem_seg COCO_CATEGORIES = [ {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"}, {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"}, {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"}, {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"}, {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"}, {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"}, {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"}, {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"}, {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"}, {"color": [250, 170, 30], "isthing": 1, "id": 10, "name": "traffic light"}, {"color": [100, 170, 30], "isthing": 1, "id": 11, "name": "fire hydrant"}, {"color": [220, 220, 0], "isthing": 1, "id": 13, "name": "stop sign"}, {"color": [175, 116, 175], "isthing": 1, "id": 14, "name": "parking meter"}, {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"}, {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"}, {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"}, {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"}, {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"}, {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"}, {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"}, {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"}, {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"}, {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"}, {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"}, {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"}, {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"}, {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"}, {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"}, {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"}, {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"}, {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"}, {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"}, {"color": [78, 180, 255], "isthing": 1, "id": 37, "name": "sports ball"}, {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"}, {"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "baseball bat"}, {"color": [45, 89, 255], "isthing": 1, "id": 40, "name": "baseball glove"}, {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"}, {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"}, {"color": [255, 208, 186], "isthing": 1, "id": 43, "name": "tennis racket"}, {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"}, {"color": [171, 134, 1], "isthing": 1, "id": 46, "name": "wine glass"}, {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"}, {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"}, {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"}, {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"}, {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"}, {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"}, {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"}, {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"}, {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"}, {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"}, {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"}, {"color": [209, 99, 106], "isthing": 1, "id": 58, "name": "hot dog"}, {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"}, {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"}, {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"}, {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"}, {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"}, {"color": [163, 255, 0], "isthing": 1, "id": 64, "name": "potted plant"}, {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"}, {"color": [0, 182, 199], "isthing": 1, "id": 67, "name": "dining table"}, {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"}, {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"}, {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"}, {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"}, {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"}, {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"}, {"color": [219, 142, 185], "isthing": 1, "id": 77, "name": "cell phone"}, {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"}, {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"}, {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"}, {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"}, {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"}, {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"}, {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"}, {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"}, {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"}, {"color": [201, 57, 1], "isthing": 1, "id": 88, "name": "teddy bear"}, {"color": [246, 0, 122], "isthing": 1, "id": 89, "name": "hair drier"}, {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"}, {"id": 92, "name": "banner", "supercategory": "textile"}, {"id": 93, "name": "blanket", "supercategory": "textile"}, {"id": 94, "name": "branch", "supercategory": "plant"}, {"id": 95, "name": "bridge", "supercategory": "building"}, {"id": 96, "name": "building-other", "supercategory": "building"}, {"id": 97, "name": "bush", "supercategory": "plant"}, {"id": 98, "name": "cabinet", "supercategory": "furniture-stuff"}, {"id": 99, "name": "cage", "supercategory": "structural"}, {"id": 100, "name": "cardboard", "supercategory": "raw-material"}, {"id": 101, "name": "carpet", "supercategory": "floor"}, {"id": 102, "name": "ceiling-other", "supercategory": "ceiling"}, {"id": 103, "name": "ceiling-tile", "supercategory": "ceiling"}, {"id": 104, "name": "cloth", "supercategory": "textile"}, {"id": 105, "name": "clothes", "supercategory": "textile"}, {"id": 106, "name": "clouds", "supercategory": "sky"}, {"id": 107, "name": "counter", "supercategory": "furniture-stuff"}, {"id": 108, "name": "cupboard", "supercategory": "furniture-stuff"}, {"id": 109, "name": "curtain", "supercategory": "textile"}, {"id": 110, "name": "desk-stuff", "supercategory": "furniture-stuff"}, {"id": 111, "name": "dirt", "supercategory": "ground"}, {"id": 112, "name": "door-stuff", "supercategory": "furniture-stuff"}, {"id": 113, "name": "fence", "supercategory": "structural"}, {"id": 114, "name": "floor-marble", "supercategory": "floor"}, {"id": 115, "name": "floor-other", "supercategory": "floor"}, {"id": 116, "name": "floor-stone", "supercategory": "floor"}, {"id": 117, "name": "floor-tile", "supercategory": "floor"}, {"id": 118, "name": "floor-wood", "supercategory": "floor"}, {"id": 119, "name": "flower", "supercategory": "plant"}, {"id": 120, "name": "fog", "supercategory": "water"}, {"id": 121, "name": "food-other", "supercategory": "food-stuff"}, {"id": 122, "name": "fruit", "supercategory": "food-stuff"}, {"id": 123, "name": "furniture-other", "supercategory": "furniture-stuff"}, {"id": 124, "name": "grass", "supercategory": "plant"}, {"id": 125, "name": "gravel", "supercategory": "ground"}, {"id": 126, "name": "ground-other", "supercategory": "ground"}, {"id": 127, "name": "hill", "supercategory": "solid"}, {"id": 128, "name": "house", "supercategory": "building"}, {"id": 129, "name": "leaves", "supercategory": "plant"}, {"id": 130, "name": "light", "supercategory": "furniture-stuff"}, {"id": 131, "name": "mat", "supercategory": "textile"}, {"id": 132, "name": "metal", "supercategory": "raw-material"}, {"id": 133, "name": "mirror-stuff", "supercategory": "furniture-stuff"}, {"id": 134, "name": "moss", "supercategory": "plant"}, {"id": 135, "name": "mountain", "supercategory": "solid"}, {"id": 136, "name": "mud", "supercategory": "ground"}, {"id": 137, "name": "napkin", "supercategory": "textile"}, {"id": 138, "name": "net", "supercategory": "structural"}, {"id": 139, "name": "paper", "supercategory": "raw-material"}, {"id": 140, "name": "pavement", "supercategory": "ground"}, {"id": 141, "name": "pillow", "supercategory": "textile"}, {"id": 142, "name": "plant-other", "supercategory": "plant"}, {"id": 143, "name": "plastic", "supercategory": "raw-material"}, {"id": 144, "name": "platform", "supercategory": "ground"}, {"id": 145, "name": "playingfield", "supercategory": "ground"}, {"id": 146, "name": "railing", "supercategory": "structural"}, {"id": 147, "name": "railroad", "supercategory": "ground"}, {"id": 148, "name": "river", "supercategory": "water"}, {"id": 149, "name": "road", "supercategory": "ground"}, {"id": 150, "name": "rock", "supercategory": "solid"}, {"id": 151, "name": "roof", "supercategory": "building"}, {"id": 152, "name": "rug", "supercategory": "textile"}, {"id": 153, "name": "salad", "supercategory": "food-stuff"}, {"id": 154, "name": "sand", "supercategory": "ground"}, {"id": 155, "name": "sea", "supercategory": "water"}, {"id": 156, "name": "shelf", "supercategory": "furniture-stuff"}, {"id": 157, "name": "sky-other", "supercategory": "sky"}, {"id": 158, "name": "skyscraper", "supercategory": "building"}, {"id": 159, "name": "snow", "supercategory": "ground"}, {"id": 160, "name": "solid-other", "supercategory": "solid"}, {"id": 161, "name": "stairs", "supercategory": "furniture-stuff"}, {"id": 162, "name": "stone", "supercategory": "solid"}, {"id": 163, "name": "straw", "supercategory": "plant"}, {"id": 164, "name": "structural-other", "supercategory": "structural"}, {"id": 165, "name": "table", "supercategory": "furniture-stuff"}, {"id": 166, "name": "tent", "supercategory": "building"}, {"id": 167, "name": "textile-other", "supercategory": "textile"}, {"id": 168, "name": "towel", "supercategory": "textile"}, {"id": 169, "name": "tree", "supercategory": "plant"}, {"id": 170, "name": "vegetable", "supercategory": "food-stuff"}, {"id": 171, "name": "wall-brick", "supercategory": "wall"}, {"id": 172, "name": "wall-concrete", "supercategory": "wall"}, {"id": 173, "name": "wall-other", "supercategory": "wall"}, {"id": 174, "name": "wall-panel", "supercategory": "wall"}, {"id": 175, "name": "wall-stone", "supercategory": "wall"}, {"id": 176, "name": "wall-tile", "supercategory": "wall"}, {"id": 177, "name": "wall-wood", "supercategory": "wall"}, {"id": 178, "name": "water-other", "supercategory": "water"}, {"id": 179, "name": "waterdrops", "supercategory": "water"}, {"id": 180, "name": "window-blind", "supercategory": "window"}, {"id": 181, "name": "window-other", "supercategory": "window"}, {"id": 182, "name": "wood", "supercategory": "solid"}, ] def _get_coco_stuff_meta(): # Id 0 is reserved for ignore_label, we change ignore_label for 0 # to 255 in our pre-processing. stuff_ids = [k["id"] for k in COCO_CATEGORIES] assert len(stuff_ids) == 171, len(stuff_ids) # For semantic segmentation, this mapping maps from contiguous stuff id # (in [0, 91], used in models) to ids in the dataset (used for processing results) stuff_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(stuff_ids)} stuff_classes = [k["name"] for k in COCO_CATEGORIES] ret = { "stuff_dataset_id_to_contiguous_id": stuff_dataset_id_to_contiguous_id, "stuff_classes": stuff_classes, } return ret def register_all_coco_stuff_10k(root): root = os.path.join(root, "coco", "coco_stuff_10k") meta = _get_coco_stuff_meta() for name, image_dirname, sem_seg_dirname in [ ("train", "images_detectron2/train", "annotations_detectron2/train"), ("test", "images_detectron2/test", "annotations_detectron2/test"), ]: image_dir = os.path.join(root, image_dirname) gt_dir = os.path.join(root, sem_seg_dirname) name = f"coco_2017_{name}_stuff_10k_sem_seg" DatasetCatalog.register( name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg") ) MetadataCatalog.get(name).set( image_root=image_dir, sem_seg_root=gt_dir, evaluator_type="sem_seg", ignore_label=255, **meta, ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_coco_stuff_10k(_root)
3D-LLM-main
three_steps_3d_feature/first_step/mask2former/data/datasets/register_coco_stuff_10k.py
import torch import torchvision import cv2 import numpy as np from tqdm import tqdm import os from torch import nn import argparse import clip import open_clip LOAD_IMG_HEIGHT = 512 LOAD_IMG_WIDTH = 512 from PIL import Image def get_bbox_around_mask(mask): bbox = None nonzero_inds = torch.nonzero(mask) # (num_nonzero, 2) if nonzero_inds.numel() == 0: topleft = [0, 0] botright = [mask.shape[0], mask.shape[1]] bbox = (topleft[0], topleft[1], botright[0], botright[1]) # (x0, y0, x1, y1) else: topleft = nonzero_inds.min(0)[0] # (2,) botright = nonzero_inds.max(0)[0] # (2,) bbox = (topleft[0].item(), topleft[1].item(), botright[0].item(), botright[1].item()) # (x0, y0, x1, y1) # x0, y0, x1, y1 return bbox, nonzero_inds if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device:", device) OPENCLIP_MODEL = "ViT-L-14" # "ViT-bigG-14" OPENCLIP_DATA = "laion2b_s32b_b82k" # "laion2b_s39b_b160k" print("Initializing model...") model, _, preprocess = open_clip.create_model_and_transforms(OPENCLIP_MODEL, OPENCLIP_DATA) model.visual.output_tokens = True model.cuda() model.eval() tokenizer = open_clip.get_tokenizer(OPENCLIP_MODEL) parser = argparse.ArgumentParser(description="Specify dirs") parser.add_argument("--scene_dir_path", default="./masked_rdp_data/", type=str) parser.add_argument("--mask_dir_path", default="./maskformer_masks/", type=str) parser.add_argument("--save_dir_path", default="./nps_maskformer_clip/", type=str) args = parser.parse_args() scene_lists = sorted(os.listdir(args.scene_dir_path)) for scene in tqdm(scene_lists): os.makedirs(os.path.join(args.save_dir_path, scene), exist_ok=True) for file in os.listdir(os.path.join(args.mask_dir_path, scene)): try: INPUT_IMAGE_PATH = os.path.join(args.scene_dir_path, scene, file.replace(".pt", ".png")) SEMIGLOBAL_FEAT_SAVE_FILE = os.path.join(args.save_dir_path, scene, file) if os.path.isfile(SEMIGLOBAL_FEAT_SAVE_FILE): continue raw_image = cv2.imread(INPUT_IMAGE_PATH) raw_image = cv2.resize(raw_image, (512, 512)) image = torch.tensor(raw_image).to(device) """ Extract and save global feat vec """ global_feat = None with torch.cuda.amp.autocast(): _img = preprocess(Image.open(INPUT_IMAGE_PATH)).unsqueeze(0) # [1, 3, 224, 224] imgfeat = model.visual(_img.cuda())[1] # All image token feat [1, 256, 1024] imgfeat = torch.mean(imgfeat, dim=1) global_feat = imgfeat.half().cuda() global_feat = torch.nn.functional.normalize(global_feat, dim=-1) # --> (1, 1024) FEAT_DIM = global_feat.shape[-1] cosine_similarity = torch.nn.CosineSimilarity(dim=-1) MASK_LOAD_FILE = os.path.join(args.mask_dir_path, scene, file) outfeat = torch.zeros(LOAD_IMG_HEIGHT, LOAD_IMG_WIDTH, FEAT_DIM, dtype=torch.half) mask = torch.load(MASK_LOAD_FILE).unsqueeze(0) # 1, num_masks, H, W num_masks = mask.shape[-3] pallete = get_new_pallete(num_masks) rois = [] roi_similarities_with_global_vec = [] roi_sim_per_unit_area = [] feat_per_roi = [] roi_nonzero_inds = [] for _i in range(num_masks): curmask = mask[0, _i] bbox, nonzero_inds = get_bbox_around_mask(curmask) x0, y0, x1, y1 = bbox bbox_area = (x1 - x0 + 1) * (y1 - y0 + 1) img_area = LOAD_IMG_WIDTH * LOAD_IMG_HEIGHT iou = bbox_area / img_area if iou < 0.005: continue with torch.no_grad(): img_roi = image[x0:x1, y0:y1] img_roi = Image.fromarray(img_roi.detach().cpu().numpy()) img_roi = preprocess(img_roi).unsqueeze(0).cuda() roifeat = model.visual(img_roi)[1] # All image token feat [1, 256, 1024] roifeat = torch.mean(roifeat, dim=1) feat_per_roi.append(roifeat) roi_nonzero_inds.append(nonzero_inds) _sim = cosine_similarity(global_feat, roifeat) rois.append(torch.tensor(list(bbox))) roi_similarities_with_global_vec.append(_sim) roi_sim_per_unit_area.append(_sim) rois = torch.stack(rois) scores = torch.cat(roi_sim_per_unit_area).to(rois.device) retained = torchvision.ops.nms(rois.float().cpu(), scores.float().cpu(), iou_threshold=1.0) feat_per_roi = torch.cat(feat_per_roi, dim=0) # N, 1024 retained_rois = rois[retained] retained_scores = scores[retained] retained_feat = feat_per_roi[retained] retained_nonzero_inds = [] for _roiidx in range(retained.shape[0]): retained_nonzero_inds.append(roi_nonzero_inds[retained[_roiidx].item()]) mask_sim_mat = torch.nn.functional.cosine_similarity( retained_feat[:, :, None], retained_feat.t()[None, :, :] ) mask_sim_mat.fill_diagonal_(0.0) mask_sim_mat = mask_sim_mat.mean(1) # avg sim of each mask with each other mask softmax_scores = retained_scores.cuda() - mask_sim_mat softmax_scores = torch.nn.functional.softmax(softmax_scores, dim=0) for _roiidx in range(retained.shape[0]): _weighted_feat = ( softmax_scores[_roiidx] * global_feat + (1 - softmax_scores[_roiidx]) * retained_feat[_roiidx] ) _weighted_feat = torch.nn.functional.normalize(_weighted_feat, dim=-1) outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]] += ( _weighted_feat[0].detach().cpu().half() ) outfeat[ retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1] ] = torch.nn.functional.normalize( outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]].float(), dim=-1, ).half() outfeat = outfeat.unsqueeze(0).float() # interpolate is not implemented for float yet in pytorch outfeat = outfeat.permute(0, 3, 1, 2) # 1, H, W, feat_dim -> 1, feat_dim, H, W outfeat = torch.nn.functional.interpolate(outfeat, [512, 512], mode="nearest") outfeat = outfeat.permute(0, 2, 3, 1) # 1, feat_dim, H, W --> 1, H, W, feat_dim outfeat = torch.nn.functional.normalize(outfeat, dim=-1) outfeat = outfeat[0].half() # --> H, W, feat_dim torch.save(outfeat, SEMIGLOBAL_FEAT_SAVE_FILE) except: print(SEMIGLOBAL_FEAT_SAVE_FILE, "fail")
3D-LLM-main
three_steps_3d_feature/second_step/clip_maskformer.py
import torch import torchvision import cv2 import numpy as np from tqdm import tqdm import os from torch import nn from lavis.models.eva_vit import create_eva_vit_g import argparse LOAD_IMG_HEIGHT = 512 LOAD_IMG_WIDTH = 512 def get_bbox_around_mask(mask): # mask: (img_height, img_width) # compute bbox around mask bbox = None nonzero_inds = torch.nonzero(mask) # (num_nonzero, 2) if nonzero_inds.numel() == 0: topleft = [0, 0] botright = [mask.shape[0], mask.shape[1]] bbox = (topleft[0], topleft[1], botright[0], botright[1]) # (x0, y0, x1, y1) else: topleft = nonzero_inds.min(0)[0] # (2,) botright = nonzero_inds.max(0)[0] # (2,) bbox = (topleft[0].item(), topleft[1].item(), botright[0].item(), botright[1].item()) # (x0, y0, x1, y1) # x0, y0, x1, y1 return bbox, nonzero_inds if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device:", device) parser = argparse.ArgumentParser(description="Specify dirs") parser.add_argument("--scene_dir_path", default="./masked_rdp_data/", type=str) parser.add_argument("--mask_dir_path", default="./sam_masks/", type=str) parser.add_argument("--save_dir_path", default="./nps_sam_blip/", type=str) args = parser.parse_args() for scene in tqdm(sorted(os.listdir(args.scene_dir_path))): try: os.makedirs(os.path.join(args.save_dir_path, scene), exist_ok=True) for file in os.listdir(os.path.join(args.mask_dir_path, scene)): INPUT_IMAGE_PATH = os.path.join(args.scene_dir_path, scene, file.replace(".pt", ".png")) SEMIGLOBAL_FEAT_SAVE_FILE = os.path.join(args.save_dir_path, scene, file) if os.path.isfile(SEMIGLOBAL_FEAT_SAVE_FILE): continue raw_image = cv2.imread(INPUT_IMAGE_PATH) raw_image = cv2.resize(raw_image, (512, 512)) image = torch.tensor(raw_image[:512, :512]).permute(2, 0, 1).unsqueeze(0).to(device) visual_encoder = create_eva_vit_g(512).to(device) output = visual_encoder(image) global_feat = torch.tensor(output) global_feat = global_feat.half().cuda() global_feat = global_feat[:, :-1, :].resize(1, 36, 36, 1408).permute((0, 3, 1, 2)) m = nn.AdaptiveAvgPool2d((1, 1)) global_feat = m(global_feat) global_feat = global_feat.squeeze(-1).squeeze(-1) global_feat = torch.nn.functional.normalize(global_feat, dim=-1) FEAT_DIM = global_feat.shape[-1] cosine_similarity = torch.nn.CosineSimilarity(dim=-1) MASK_LOAD_FILE = os.path.join(args.mask_dir_path, scene, file) outfeat = torch.zeros(512, 512, FEAT_DIM, dtype=torch.half) print(f"Loading instance masks {MASK_LOAD_FILE}...") mask = torch.load(MASK_LOAD_FILE).unsqueeze(0) # 1, num_masks, H, W mask = mask[:, :, :512, :512] num_masks = mask.shape[-3] rois = [] roi_similarities_with_global_vec = [] roi_sim_per_unit_area = [] feat_per_roi = [] roi_nonzero_inds = [] for _i in range(num_masks): curmask = mask[0, _i].long() bbox, nonzero_inds = get_bbox_around_mask(curmask) x0, y0, x1, y1 = bbox bbox_area = (x1 - x0 + 1) * (y1 - y0 + 1) img_area = LOAD_IMG_WIDTH * LOAD_IMG_HEIGHT iou = bbox_area / img_area if iou < 0.005: continue roi = torch.ones((512, 512, 3)) img_roi = torch.tensor(raw_image[:512, :512])[x0:x1, y0:y1] roi[x0:x1, y0:y1] = img_roi img_roi = roi.permute(2, 0, 1).unsqueeze(0).to(device) roifeat = visual_encoder(img_roi) roifeat = torch.tensor(roifeat) roifeat = roifeat.half().cuda() roifeat = roifeat[:, :-1, :].resize(1, 36, 36, 1408).permute((0, 3, 1, 2)) m = nn.AdaptiveAvgPool2d((1, 1)) roifeat = m(roifeat) roifeat = roifeat.squeeze(-1).squeeze(-1) roifeat = torch.nn.functional.normalize(roifeat, dim=-1) feat_per_roi.append(roifeat) roi_nonzero_inds.append(nonzero_inds) _sim = cosine_similarity(global_feat, roifeat) rois.append(torch.tensor(list(bbox))) roi_similarities_with_global_vec.append(_sim) roi_sim_per_unit_area.append(_sim) rois = torch.stack(rois) scores = torch.cat(roi_sim_per_unit_area).to(rois.device) retained = torchvision.ops.nms(rois.float().cpu(), scores.float().cpu(), iou_threshold=1.0) feat_per_roi = torch.cat(feat_per_roi, dim=0) print(f"retained {len(retained)} masks of {rois.shape[0]} total") retained_rois = rois[retained] retained_scores = scores[retained] retained_feat = feat_per_roi[retained] retained_nonzero_inds = [] for _roiidx in range(retained.shape[0]): retained_nonzero_inds.append(roi_nonzero_inds[retained[_roiidx].item()]) mask_sim_mat = torch.nn.functional.cosine_similarity( retained_feat[:, :, None], retained_feat.t()[None, :, :] ) mask_sim_mat.fill_diagonal_(0.0) mask_sim_mat = mask_sim_mat.mean(1) # avg sim of each mask with each other mask softmax_scores = retained_scores.cuda() - mask_sim_mat softmax_scores = torch.nn.functional.softmax(softmax_scores, dim=0) for _roiidx in range(retained.shape[0]): _weighted_feat = ( softmax_scores[_roiidx] * global_feat + (1 - softmax_scores[_roiidx]) * retained_feat[_roiidx] ) _weighted_feat = torch.nn.functional.normalize(_weighted_feat, dim=-1) outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]] += ( _weighted_feat[0].detach().cpu().half() ) outfeat[ retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1] ] = torch.nn.functional.normalize( outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]].float(), dim=-1, ).half() outfeat = outfeat.unsqueeze(0).float() # interpolate is not implemented for float yet in pytorch outfeat = outfeat.permute(0, 3, 1, 2) # 1, H, W, feat_dim -> 1, feat_dim, H, W outfeat = torch.nn.functional.interpolate(outfeat, [512, 512], mode="nearest") outfeat = outfeat.permute(0, 2, 3, 1) # 1, feat_dim, H, W --> 1, H, W, feat_dim outfeat = torch.nn.functional.normalize(outfeat, dim=-1) outfeat = outfeat[0].half() # --> H, W, feat_dim print(outfeat.shape) torch.save(outfeat, SEMIGLOBAL_FEAT_SAVE_FILE) except: pass
3D-LLM-main
three_steps_3d_feature/second_step/blip_sam.py
import torch import torchvision import cv2 import numpy as np from tqdm import tqdm import os from torch import nn from lavis.models.eva_vit import create_eva_vit_g import argparse LOAD_IMG_HEIGHT = 512 LOAD_IMG_WIDTH = 512 def get_bbox_around_mask(mask): bbox = None nonzero_inds = torch.nonzero(mask) # (num_nonzero, 2) if nonzero_inds.numel() == 0: topleft = [0, 0] botright = [mask.shape[0], mask.shape[1]] bbox = (topleft[0], topleft[1], botright[0], botright[1]) # (x0, y0, x1, y1) else: topleft = nonzero_inds.min(0)[0] # (2,) botright = nonzero_inds.max(0)[0] # (2,) bbox = (topleft[0].item(), topleft[1].item(), botright[0].item(), botright[1].item()) # (x0, y0, x1, y1) # x0, y0, x1, y1 return bbox, nonzero_inds if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device:", device) parser = argparse.ArgumentParser(description="Specify dirs") parser.add_argument("--scene_dir_path", default="./masked_rdp_data/", type=str) parser.add_argument("--mask_dir_path", default="./maskformer_masks/", type=str) parser.add_argument("--save_dir_path", default="./nps_maskformer_blip/", type=str) args = parser.parse_args() for scene in tqdm(os.listdir(args.scene_dir_path)): try: os.makedirs(os.path.join(args.save_dir_path, scene), exist_ok=True) for file in os.listdir(os.path.join(args.mask_dir_path, scene)): INPUT_IMAGE_PATH = os.path.join(args.scene_dir_path, scene, file.replace(".pt", ".png")) SEMIGLOBAL_FEAT_SAVE_FILE = os.path.join(args.save_dir_path, scene, file) if os.path.isfile(SEMIGLOBAL_FEAT_SAVE_FILE): continue raw_image = cv2.imread(INPUT_IMAGE_PATH) raw_image = cv2.resize(raw_image, (512, 512)) image = torch.tensor(raw_image[:512, :512]).permute(2, 0, 1).unsqueeze(0).to(device) visual_encoder = create_eva_vit_g(512).to(device) output = visual_encoder(image) global_feat = torch.tensor(output) global_feat = global_feat.half().cuda() global_feat = global_feat[:, :-1, :].resize(1, 36, 36, 1408).permute((0, 3, 1, 2)) m = nn.AdaptiveAvgPool2d((1, 1)) global_feat = m(global_feat) global_feat = global_feat.squeeze(-1).squeeze(-1) global_feat = torch.nn.functional.normalize(global_feat, dim=-1) # --> (1, 1024) FEAT_DIM = global_feat.shape[-1] cosine_similarity = torch.nn.CosineSimilarity(dim=-1) MASK_LOAD_FILE = os.path.join(args.mask_dir_path, scene, file) outfeat = torch.zeros(512, 512, FEAT_DIM, dtype=torch.half) print(f"Loading instance masks {MASK_LOAD_FILE}...") mask = torch.load(MASK_LOAD_FILE).unsqueeze(0) # 1, num_masks, H, W mask = mask[:, :, :512, :512] num_masks = mask.shape[-3] pallete = get_new_pallete(num_masks) rois = [] roi_similarities_with_global_vec = [] roi_sim_per_unit_area = [] feat_per_roi = [] roi_nonzero_inds = [] for _i in range(num_masks): curmask = mask[0, _i] bbox, nonzero_inds = get_bbox_around_mask(curmask) x0, y0, x1, y1 = bbox bbox_area = (x1 - x0 + 1) * (y1 - y0 + 1) img_area = LOAD_IMG_WIDTH * LOAD_IMG_HEIGHT iou = bbox_area / img_area if iou < 0.005: continue roi = torch.ones((512, 512, 3)) img_roi = torch.tensor(raw_image[:512, :512])[x0:x1, y0:y1] roi[x0:x1, y0:y1] = img_roi img_roi = roi.permute(2, 0, 1).unsqueeze(0).to(device) roifeat = visual_encoder(img_roi) roifeat = torch.tensor(roifeat) roifeat = roifeat.half().cuda() roifeat = roifeat[:, :-1, :].resize(1, 36, 36, 1408).permute((0, 3, 1, 2)) m = nn.AdaptiveAvgPool2d((1, 1)) roifeat = m(roifeat) roifeat = roifeat.squeeze(-1).squeeze(-1) roifeat = torch.nn.functional.normalize(roifeat, dim=-1) feat_per_roi.append(roifeat) roi_nonzero_inds.append(nonzero_inds) _sim = cosine_similarity(global_feat, roifeat) rois.append(torch.tensor(list(bbox))) roi_similarities_with_global_vec.append(_sim) roi_sim_per_unit_area.append(_sim) # / iou) rois = torch.stack(rois) scores = torch.cat(roi_sim_per_unit_area).to(rois.device) retained = torchvision.ops.nms(rois.float().cpu(), scores.float().cpu(), iou_threshold=1.0) feat_per_roi = torch.cat(feat_per_roi, dim=0) # N, 1024 print(f"retained {len(retained)} masks of {rois.shape[0]} total") retained_rois = rois[retained] retained_scores = scores[retained] retained_feat = feat_per_roi[retained] retained_nonzero_inds = [] for _roiidx in range(retained.shape[0]): retained_nonzero_inds.append(roi_nonzero_inds[retained[_roiidx].item()]) mask_sim_mat = torch.nn.functional.cosine_similarity( retained_feat[:, :, None], retained_feat.t()[None, :, :] ) mask_sim_mat.fill_diagonal_(0.0) mask_sim_mat = mask_sim_mat.mean(1) # avg sim of each mask with each other mask softmax_scores = retained_scores.cuda() - mask_sim_mat softmax_scores = torch.nn.functional.softmax(softmax_scores, dim=0) for _roiidx in range(retained.shape[0]): _weighted_feat = ( softmax_scores[_roiidx] * global_feat + (1 - softmax_scores[_roiidx]) * retained_feat[_roiidx] ) _weighted_feat = torch.nn.functional.normalize(_weighted_feat, dim=-1) outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]] += ( _weighted_feat[0].detach().cpu().half() ) outfeat[ retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1] ] = torch.nn.functional.normalize( outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]].float(), dim=-1, ).half() outfeat = outfeat.unsqueeze(0).float() # interpolate is not implemented for float yet in pytorch outfeat = outfeat.permute(0, 3, 1, 2) # 1, H, W, feat_dim -> 1, feat_dim, H, W outfeat = torch.nn.functional.interpolate(outfeat, [512, 512], mode="nearest") outfeat = outfeat.permute(0, 2, 3, 1) # 1, feat_dim, H, W --> 1, H, W, feat_dim outfeat = torch.nn.functional.normalize(outfeat, dim=-1) outfeat = outfeat[0].half() # --> H, W, feat_dim print(outfeat.shape) torch.save(outfeat, SEMIGLOBAL_FEAT_SAVE_FILE) except: pass
3D-LLM-main
three_steps_3d_feature/second_step/blip_maskformer.py
import torch import torchvision import cv2 import numpy as np from tqdm import tqdm import os from torch import nn import argparse import clip import open_clip LOAD_IMG_HEIGHT = 512 LOAD_IMG_WIDTH = 512 from PIL import Image def get_bbox_around_mask(mask): # mask: (img_height, img_width) # compute bbox around mask bbox = None nonzero_inds = torch.nonzero(mask) # (num_nonzero, 2) if nonzero_inds.numel() == 0: topleft = [0, 0] botright = [mask.shape[0], mask.shape[1]] bbox = (topleft[0], topleft[1], botright[0], botright[1]) # (x0, y0, x1, y1) else: topleft = nonzero_inds.min(0)[0] # (2,) botright = nonzero_inds.max(0)[0] # (2,) bbox = (topleft[0].item(), topleft[1].item(), botright[0].item(), botright[1].item()) # (x0, y0, x1, y1) # x0, y0, x1, y1 return bbox, nonzero_inds if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device:", device) OPENCLIP_MODEL = "ViT-L-14" # "ViT-bigG-14" OPENCLIP_DATA = "laion2b_s32b_b82k" # "laion2b_s39b_b160k" print("Initializing model...") model, _, preprocess = open_clip.create_model_and_transforms(OPENCLIP_MODEL, OPENCLIP_DATA) model.visual.output_tokens = True model.cuda() model.eval() tokenizer = open_clip.get_tokenizer(OPENCLIP_MODEL) parser = argparse.ArgumentParser(description="Specify dirs") parser.add_argument("--scene_dir_path", default="./masked_rdp_data/", type=str) parser.add_argument("--mask_dir_path", default="./maskformer_masks/", type=str) parser.add_argument("--save_dir_path", default="./nps_sam_clip/", type=str) args = parser.parse_args() scene_lists = sorted(os.listdir(args.scene_dir_path)) for scene in tqdm(scene_lists): os.makedirs(os.path.join(args.save_dir_path, scene), exist_ok=True) for file in os.listdir(os.path.join(args.mask_dir_path, scene)): try: INPUT_IMAGE_PATH = os.path.join(args.scene_dir_path, scene, file.replace(".pt", ".png")) SEMIGLOBAL_FEAT_SAVE_FILE = os.path.join(args.save_dir_path, scene, file) if os.path.isfile(SEMIGLOBAL_FEAT_SAVE_FILE): continue raw_image = cv2.imread(INPUT_IMAGE_PATH) raw_image = cv2.resize(raw_image, (512, 512)) image = torch.tensor(raw_image).to(device) """ Extract and save global feat vec """ global_feat = None with torch.cuda.amp.autocast(): _img = preprocess(Image.open(INPUT_IMAGE_PATH)).unsqueeze(0) # [1, 3, 224, 224] imgfeat = model.visual(_img.cuda())[1] # All image token feat [1, 256, 1024] imgfeat = torch.mean(imgfeat, dim=1) global_feat = imgfeat.half().cuda() global_feat = torch.nn.functional.normalize(global_feat, dim=-1) # --> (1, 1024) FEAT_DIM = global_feat.shape[-1] cosine_similarity = torch.nn.CosineSimilarity(dim=-1) MASK_LOAD_FILE = os.path.join(args.mask_dir_path, scene, file) outfeat = torch.zeros(LOAD_IMG_HEIGHT, LOAD_IMG_WIDTH, FEAT_DIM, dtype=torch.half) mask = torch.load(MASK_LOAD_FILE).unsqueeze(0) # 1, num_masks, H, W num_masks = mask.shape[-3] rois = [] roi_similarities_with_global_vec = [] roi_sim_per_unit_area = [] feat_per_roi = [] roi_nonzero_inds = [] for _i in range(num_masks): curmask = mask[0, _i] bbox, nonzero_inds = get_bbox_around_mask(curmask) x0, y0, x1, y1 = bbox bbox_area = (x1 - x0 + 1) * (y1 - y0 + 1) img_area = LOAD_IMG_WIDTH * LOAD_IMG_HEIGHT iou = bbox_area / img_area if iou < 0.005: continue with torch.no_grad(): img_roi = image[x0:x1, y0:y1] img_roi = Image.fromarray(img_roi.detach().cpu().numpy()) img_roi = preprocess(img_roi).unsqueeze(0).cuda() roifeat = model.visual(img_roi)[1] # All image token feat [1, 256, 1024] roifeat = torch.mean(roifeat, dim=1) feat_per_roi.append(roifeat) roi_nonzero_inds.append(nonzero_inds) _sim = cosine_similarity(global_feat, roifeat) rois.append(torch.tensor(list(bbox))) roi_similarities_with_global_vec.append(_sim) roi_sim_per_unit_area.append(_sim) rois = torch.stack(rois) scores = torch.cat(roi_sim_per_unit_area).to(rois.device) retained = torchvision.ops.nms(rois.float().cpu(), scores.float().cpu(), iou_threshold=1.0) feat_per_roi = torch.cat(feat_per_roi, dim=0) # N, 1024 retained_rois = rois[retained] retained_scores = scores[retained] retained_feat = feat_per_roi[retained] retained_nonzero_inds = [] for _roiidx in range(retained.shape[0]): retained_nonzero_inds.append(roi_nonzero_inds[retained[_roiidx].item()]) mask_sim_mat = torch.nn.functional.cosine_similarity( retained_feat[:, :, None], retained_feat.t()[None, :, :] ) mask_sim_mat.fill_diagonal_(0.0) mask_sim_mat = mask_sim_mat.mean(1) # avg sim of each mask with each other mask softmax_scores = retained_scores.cuda() - mask_sim_mat softmax_scores = torch.nn.functional.softmax(softmax_scores, dim=0) for _roiidx in range(retained.shape[0]): _weighted_feat = ( softmax_scores[_roiidx] * global_feat + (1 - softmax_scores[_roiidx]) * retained_feat[_roiidx] ) _weighted_feat = torch.nn.functional.normalize(_weighted_feat, dim=-1) outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]] += ( _weighted_feat[0].detach().cpu().half() ) outfeat[ retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1] ] = torch.nn.functional.normalize( outfeat[retained_nonzero_inds[_roiidx][:, 0], retained_nonzero_inds[_roiidx][:, 1]].float(), dim=-1, ).half() outfeat = outfeat.unsqueeze(0).float() # interpolate is not implemented for float yet in pytorch outfeat = outfeat.permute(0, 3, 1, 2) # 1, H, W, feat_dim -> 1, feat_dim, H, W outfeat = torch.nn.functional.interpolate(outfeat, [512, 512], mode="nearest") outfeat = outfeat.permute(0, 2, 3, 1) # 1, feat_dim, H, W --> 1, H, W, feat_dim outfeat = torch.nn.functional.normalize(outfeat, dim=-1) outfeat = outfeat[0].half() # --> H, W, feat_dim torch.save(outfeat, SEMIGLOBAL_FEAT_SAVE_FILE) except: print(SEMIGLOBAL_FEAT_SAVE_FILE, "fail")
3D-LLM-main
three_steps_3d_feature/second_step/clip_sam.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os import sys from omegaconf import OmegaConf from lavis.common.registry import registry from lavis.datasets.builders import * from lavis.models import * from lavis.processors import * from lavis.tasks import * root_dir = os.path.dirname(os.path.abspath(__file__)) default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml")) registry.register_path("library_root", root_dir) repo_root = os.path.join(root_dir, "..") registry.register_path("repo_root", repo_root) cache_root = os.path.join(repo_root, default_cfg.env.cache_root) registry.register_path("cache_root", cache_root) registry.register("MAX_INT", sys.maxsize) registry.register("SPLIT_NAMES", ["train", "val", "test"])
3D-LLM-main
three_steps_3d_feature/second_step/lavis/__init__.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import os import torch import torch.distributed as dist from lavis.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized from lavis.common.logger import MetricLogger, SmoothedValue from lavis.common.registry import registry from lavis.datasets.data_utils import prepare_sample class BaseTask: def __init__(self, **kwargs): super().__init__() self.inst_id_key = "instance_id" @classmethod def setup_task(cls, **kwargs): return cls() def build_model(self, cfg): model_config = cfg.model_cfg model_cls = registry.get_model_class(model_config.arch) return model_cls.from_config(model_config) def build_datasets(self, cfg): """ Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'. Download dataset and annotations automatically if not exist. Args: cfg (common.config.Config): _description_ Returns: dict: Dictionary of torch.utils.data.Dataset objects by split. """ datasets = dict() datasets_config = cfg.datasets_cfg assert len(datasets_config) > 0, "At least one dataset has to be specified." for name in datasets_config: dataset_config = datasets_config[name] builder = registry.get_builder_class(name)(dataset_config) dataset = builder.build_datasets() datasets[name] = dataset return datasets def train_step(self, model, samples): loss = model(samples)["loss"] return loss def valid_step(self, model, samples): raise NotImplementedError def before_evaluation(self, model, dataset, **kwargs): model.before_evaluation(dataset=dataset, task_type=type(self)) def after_evaluation(self, **kwargs): pass def inference_step(self): raise NotImplementedError def evaluation(self, model, data_loader, cuda_enabled=True): metric_logger = MetricLogger(delimiter=" ") header = "Evaluation" # TODO make it configurable print_freq = 10 results = [] for samples in metric_logger.log_every(data_loader, print_freq, header): samples = prepare_sample(samples, cuda_enabled=cuda_enabled) eval_output = self.valid_step(model=model, samples=samples) results.extend(eval_output) if is_dist_avail_and_initialized(): dist.barrier() return results def train_epoch( self, epoch, model, data_loader, optimizer, lr_scheduler, scaler=None, cuda_enabled=False, log_freq=50, accum_grad_iters=1, ): return self._train_inner_loop( epoch=epoch, iters_per_epoch=len(data_loader), model=model, data_loader=data_loader, optimizer=optimizer, scaler=scaler, lr_scheduler=lr_scheduler, log_freq=log_freq, cuda_enabled=cuda_enabled, accum_grad_iters=accum_grad_iters, ) def train_iters( self, epoch, start_iters, iters_per_inner_epoch, model, data_loader, optimizer, lr_scheduler, scaler=None, cuda_enabled=False, log_freq=50, accum_grad_iters=1, ): return self._train_inner_loop( epoch=epoch, start_iters=start_iters, iters_per_epoch=iters_per_inner_epoch, model=model, data_loader=data_loader, optimizer=optimizer, scaler=scaler, lr_scheduler=lr_scheduler, log_freq=log_freq, cuda_enabled=cuda_enabled, accum_grad_iters=accum_grad_iters, ) def _train_inner_loop( self, epoch, iters_per_epoch, model, data_loader, optimizer, lr_scheduler, scaler=None, start_iters=None, log_freq=50, cuda_enabled=False, accum_grad_iters=1, ): """ An inner training loop compatible with both epoch-based and iter-based training. When using epoch-based, training stops after one epoch; when using iter-based, training stops after #iters_per_epoch iterations. """ use_amp = scaler is not None if not hasattr(data_loader, "__next__"): # convert to iterator if not already data_loader = iter(data_loader) metric_logger = MetricLogger(delimiter=" ") metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}")) # if iter-based runner, schedule lr based on inner epoch. logging.info( "Start training epoch {}, {} iters per inner epoch.".format( epoch, iters_per_epoch ) ) header = "Train: data epoch: [{}]".format(epoch) if start_iters is None: # epoch-based runner inner_epoch = epoch else: # In iter-based runner, we schedule the learning rate based on iterations. inner_epoch = start_iters // iters_per_epoch header = header + "; inner epoch [{}]".format(inner_epoch) for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header): # if using iter-based runner, we stop after iters_per_epoch iterations. if i >= iters_per_epoch: break samples = next(data_loader) samples = prepare_sample(samples, cuda_enabled=cuda_enabled) samples.update( { "epoch": inner_epoch, "num_iters_per_epoch": iters_per_epoch, "iters": i, } ) lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i) with torch.cuda.amp.autocast(enabled=use_amp): loss = self.train_step(model=model, samples=samples) # after_train_step() if use_amp: scaler.scale(loss).backward() else: loss.backward() # update gradients every accum_grad_iters iterations if (i + 1) % accum_grad_iters == 0: optimizer.step() optimizer.zero_grad() metric_logger.update(loss=loss.item()) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # after train_epoch() # gather the stats from all processes metric_logger.synchronize_between_processes() logging.info("Averaged stats: " + str(metric_logger.global_avg())) return { k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items() } @staticmethod def save_result(result, result_dir, filename, remove_duplicate=""): import json result_file = os.path.join( result_dir, "%s_rank%d.json" % (filename, get_rank()) ) final_result_file = os.path.join(result_dir, "%s.json" % filename) json.dump(result, open(result_file, "w")) if is_dist_avail_and_initialized(): dist.barrier() if is_main_process(): logging.warning("rank %d starts merging results." % get_rank()) # combine results from all processes result = [] for rank in range(get_world_size()): result_file = os.path.join( result_dir, "%s_rank%d.json" % (filename, rank) ) res = json.load(open(result_file, "r")) result += res if remove_duplicate: result_new = [] id_list = [] for res in result: if res[remove_duplicate] not in id_list: id_list.append(res[remove_duplicate]) result_new.append(res) result = result_new json.dump(result, open(final_result_file, "w")) print("result file saved to %s" % final_result_file) return final_result_file
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/base_task.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.common.registry import registry from lavis.tasks.base_task import BaseTask from lavis.tasks.captioning import CaptionTask from lavis.tasks.image_text_pretrain import ImageTextPretrainTask from lavis.tasks.multimodal_classification import ( MultimodalClassificationTask, ) from lavis.tasks.retrieval import RetrievalTask from lavis.tasks.vqa import VQATask, AOKVQATask from lavis.tasks.vqa_reading_comprehension import VQARCTask, GQARCTask from lavis.tasks.dialogue import DialogueTask def setup_task(cfg): assert "task" in cfg.run_cfg, "Task name must be provided." task_name = cfg.run_cfg.task task = registry.get_task_class(task_name).setup_task(cfg=cfg) assert task is not None, "Task {} not properly registered.".format(task_name) return task __all__ = [ "BaseTask", "AOKVQATask", "RetrievalTask", "CaptionTask", "VQATask", "VQARCTask", "GQARCTask", "MultimodalClassificationTask", # "VideoQATask", # "VisualEntailmentTask", "ImageTextPretrainTask", "DialogueTask", ]
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/__init__.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import json import logging import os import numpy as np import torch from lavis.common.dist_utils import is_main_process from lavis.common.registry import registry from lavis.tasks.base_task import BaseTask @registry.register_task("retrieval") class RetrievalTask(BaseTask): def __init__(self, cfg): super().__init__() self.cfg = cfg @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg return cls(cfg=run_cfg) def evaluation(self, model, data_loader, **kwargs): # score_i2t, score_t2i = model.compute_sim_matrix(model, data_loader) score_i2t, score_t2i = model.compute_sim_matrix(data_loader, task_cfg=self.cfg) if is_main_process(): eval_result = self._report_metrics( score_i2t, score_t2i, data_loader.dataset.txt2img, data_loader.dataset.img2txt, ) logging.info(eval_result) else: eval_result = None return eval_result def after_evaluation(self, val_result, **kwargs): return val_result @staticmethod @torch.no_grad() def _report_metrics(scores_i2t, scores_t2i, txt2img, img2txt): # Images->Text ranks = np.zeros(scores_i2t.shape[0]) for index, score in enumerate(scores_i2t): inds = np.argsort(score)[::-1] # Score rank = 1e20 for i in img2txt[index]: tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank # Compute metrics tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) # Text->Images ranks = np.zeros(scores_t2i.shape[0]) for index, score in enumerate(scores_t2i): inds = np.argsort(score)[::-1] ranks[index] = np.where(inds == txt2img[index])[0][0] # Compute metrics ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) tr_mean = (tr1 + tr5 + tr10) / 3 ir_mean = (ir1 + ir5 + ir10) / 3 r_mean = (tr_mean + ir_mean) / 2 agg_metrics = (tr1 + tr5 + tr10) / 3 eval_result = { "txt_r1": tr1, "txt_r5": tr5, "txt_r10": tr10, "txt_r_mean": tr_mean, "img_r1": ir1, "img_r5": ir5, "img_r10": ir10, "img_r_mean": ir_mean, "r_mean": r_mean, "agg_metrics": agg_metrics, } with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(eval_result) + "\n") return eval_result
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/retrieval.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.common.registry import registry from lavis.tasks.base_task import BaseTask @registry.register_task("image_text_pretrain") class ImageTextPretrainTask(BaseTask): def __init__(self): super().__init__() def evaluation(self, model, data_loader, cuda_enabled=True): pass
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/image_text_pretrain.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import json import os from lavis.common.dist_utils import main_process from lavis.common.logger import MetricLogger from lavis.common.registry import registry from lavis.tasks.base_task import BaseTask from lavis.datasets.data_utils import prepare_sample import numpy as np @registry.register_task("dialogue") class DialogueTask(BaseTask): def __init__(self, num_beams, max_len, min_len, evaluate, report_metric=True): super().__init__() self.num_beams = num_beams self.max_len = max_len self.min_len = min_len self.evaluate = evaluate self.report_metric = report_metric @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.num_beams max_len = run_cfg.max_len min_len = run_cfg.min_len evaluate = run_cfg.evaluate report_metric = run_cfg.get("report_metric", True) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, report_metric=report_metric, ) def valid_step(self, model, samples): results = [] loss = model(samples)["loss"].item() return [loss] def after_evaluation(self, val_result, split_name, epoch, **kwargs): if self.report_metric: avg_loss = np.mean(val_result) metrics = {"agg_metrics": avg_loss} else: metrics = {"agg_metrics": 0.0} return metrics @main_process def _report_metrics(self, eval_result_file, split_name): # TODO better way to define this coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt") coco_val = coco_dialogue_eval(coco_gt_root, eval_result_file, split_name) agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"] log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}} with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(log_stats) + "\n") coco_res = {k: v for k, v in coco_val.eval.items()} coco_res["agg_metrics"] = agg_metrics return coco_res # TODO better structure for this. from pycocoevalcap.eval import COCOEvalCap from pycocotools.coco import COCO from torchvision.datasets.utils import download_url def coco_dialogue_eval(coco_gt_root, results_file, split): urls = { "val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json", "test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json", } filenames = { "val": "coco_karpathy_val_gt.json", "test": "coco_karpathy_test_gt.json", } download_url(urls[split], coco_gt_root) annotation_file = os.path.join(coco_gt_root, filenames[split]) # create coco object and coco_result object coco = COCO(annotation_file) coco_result = coco.loadRes(results_file) # create coco_eval object by taking coco and coco_result coco_eval = COCOEvalCap(coco, coco_result) # evaluate on a subset of images by setting # coco_eval.params['image_id'] = coco_result.getImgIds() # please remove this line when evaluating the full validation set # coco_eval.params['image_id'] = coco_result.getImgIds() # evaluate results # SPICE will take a few minutes the first time, but speeds up due to caching coco_eval.evaluate() # print output evaluation scores for metric, score in coco_eval.eval.items(): print(f"{metric}: {score:.3f}") return coco_eval
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/dialogue.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import json import os from lavis.common.dist_utils import main_process from lavis.common.registry import registry from lavis.tasks.base_task import BaseTask @registry.register_task("captioning") class CaptionTask(BaseTask): def __init__(self, num_beams, max_len, min_len, evaluate, report_metric=True): super().__init__() self.num_beams = num_beams self.max_len = max_len self.min_len = min_len self.evaluate = evaluate self.report_metric = report_metric @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.num_beams max_len = run_cfg.max_len min_len = run_cfg.min_len evaluate = run_cfg.evaluate report_metric = run_cfg.get("report_metric", True) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, report_metric=report_metric, ) def valid_step(self, model, samples): results = [] # run_cfg = slf.cfg.run_cfg captions = model.generate( samples, use_nucleus_sampling=False, num_beams=self.num_beams, max_length=self.max_len, min_length=self.min_len, ) img_ids = samples["image_id"] for caption, img_id in zip(captions, img_ids): results.append({"caption": caption, "image_id": int(img_id)}) return results def after_evaluation(self, val_result, split_name, epoch, **kwargs): eval_result_file = self.save_result( result=val_result, result_dir=registry.get_path("result_dir"), filename="{}_epoch{}".format(split_name, epoch), remove_duplicate="image_id", ) if self.report_metric: metrics = self._report_metrics( eval_result_file=eval_result_file, split_name=split_name ) else: metrics = {"agg_metrics": 0.0} return metrics @main_process def _report_metrics(self, eval_result_file, split_name): # TODO better way to define this coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt") coco_val = coco_caption_eval(coco_gt_root, eval_result_file, split_name) agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"] log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}} with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(log_stats) + "\n") coco_res = {k: v for k, v in coco_val.eval.items()} coco_res["agg_metrics"] = agg_metrics return coco_res # TODO better structure for this. from pycocoevalcap.eval import COCOEvalCap from pycocotools.coco import COCO from torchvision.datasets.utils import download_url def coco_caption_eval(coco_gt_root, results_file, split): urls = { "val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json", "test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json", } filenames = { "val": "coco_karpathy_val_gt.json", "test": "coco_karpathy_test_gt.json", } download_url(urls[split], coco_gt_root) annotation_file = os.path.join(coco_gt_root, filenames[split]) # create coco object and coco_result object coco = COCO(annotation_file) coco_result = coco.loadRes(results_file) # create coco_eval object by taking coco and coco_result coco_eval = COCOEvalCap(coco, coco_result) # evaluate on a subset of images by setting # coco_eval.params['image_id'] = coco_result.getImgIds() # please remove this line when evaluating the full validation set # coco_eval.params['image_id'] = coco_result.getImgIds() # evaluate results # SPICE will take a few minutes the first time, but speeds up due to caching coco_eval.evaluate() # print output evaluation scores for metric, score in coco_eval.eval.items(): print(f"{metric}: {score:.3f}") return coco_eval
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/captioning.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import json import os import lavis.common.dist_utils as dist_utils from lavis.common.registry import registry from lavis.common.vqa_tools.vqa import VQA from lavis.common.vqa_tools.vqa_eval import VQAEval from lavis.tasks.base_task import BaseTask @registry.register_task("vqa") class VQATask(BaseTask): def __init__( self, num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method="rank", ): super().__init__() self.num_beams = num_beams self.max_len = max_len self.min_len = min_len self.evaluate = evaluate self.inference_method = inference_method self.num_ans_candidates = num_ans_candidates self.answer_list = None self.ques_files = dict() self.anno_files = dict() @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.get("num_beams", 3) max_len = run_cfg.get("max_len", 10) min_len = run_cfg.get("min_len", 1) evaluate = run_cfg.get("evaluate", False) inference_method = run_cfg.get("inference_method", "rank") num_ans_candidates = run_cfg.get("num_ans_candidates", 128) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, num_ans_candidates=num_ans_candidates, inference_method=inference_method, ) def build_datasets(self, cfg): datasets = super().build_datasets(cfg) # get question file, annotation file and anwser list in COCO format for dataset in datasets.values(): for split in dataset: if ( hasattr(dataset[split], "coco_fmt_qust_file") and dataset[split].coco_fmt_qust_file is not None ): self.ques_files[split] = dataset[split].coco_fmt_qust_file self.anno_files[split] = dataset[split].coco_fmt_anno_file try: self.answer_list = dataset[split].answer_list except AttributeError: # if answer_list is not provided, then set it to None pass if len(self.ques_files) > 0: assert len(self.ques_files) == len( self.anno_files ), "Only support one split for evaluation." return datasets def valid_step(self, model, samples): answers = model.predict_answers( samples=samples, answer_list=self.answer_list, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, num_ans_candidates=self.num_ans_candidates, ) pred_qa_pairs = [] question_id = samples["question_id"] for answer, ques_id in zip(answers, question_id): ques_id = int(ques_id.item()) pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) return pred_qa_pairs def after_evaluation(self, val_result, split_name, **kwargs): result_file = self.save_result( val_result, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_vqa_result", remove_duplicate="question_id", ) metrics = self._report_metrics(result_file=result_file, split=split_name) return metrics @dist_utils.main_process def _report_metrics(self, result_file, split): """ Use official VQA evaluation script to report metrics. """ metrics = {} if split in self.ques_files and split in self.anno_files: vqa = VQA(self.anno_files[split], self.ques_files[split]) vqa_result = vqa.loadRes( resFile=result_file, quesFile=self.ques_files[split] ) # create vqaEval object by taking vqa and vqaRes # n is precision of accuracy (number of places after decimal), default is 2 vqa_scorer = VQAEval(vqa, vqa_result, n=2) logging.info("Start VQA evaluation.") vqa_scorer.evaluate() # print accuracies overall_acc = vqa_scorer.accuracy["overall"] metrics["agg_metrics"] = overall_acc logging.info("Overall Accuracy is: %.02f\n" % overall_acc) logging.info("Per Answer Type Accuracy is the following:") for ans_type in vqa_scorer.accuracy["perAnswerType"]: logging.info( "%s : %.02f" % (ans_type, vqa_scorer.accuracy["perAnswerType"][ans_type]) ) metrics[ans_type] = vqa_scorer.accuracy["perAnswerType"][ans_type] with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(metrics) + "\n") return metrics @registry.register_task("aok_vqa") class AOKVQATask(VQATask): def valid_step(self, model, samples): answers = model.predict_answers( samples=samples, answer_list=self.answer_list, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, num_ans_candidates=self.num_ans_candidates, ) pred_qa_pairs = [] question_id = samples["question_id"] gt_answers = samples["direct_answers"] for pred_answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): pred_qa_pairs.append( {"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer} ) return pred_qa_pairs @dist_utils.main_process def _report_metrics(self, result_file, split): """ Implementing accuracy computation for AOKVQA, see https://github.com/allenai/aokvqa/blob/main/evaluation/eval_predictions.py#L45 for details. """ # TODO add evaluation for multi-choice results = json.load(open(result_file, "r")) acc = [] for res in results: if res["gt_ans"] is None: # prepare test results for leaderboard evaluation self._save_result_leaderboard(results) return pred = res["pred_ans"] gt_ans = res["gt_ans"] num_match = sum([pred == gt for gt in gt_ans]) vqa_acc = min(1.0, num_match / 3.0) acc.append(vqa_acc) accuracy = sum(acc) / len(acc) * 100 metrics = {"agg_metrics": accuracy, "acc": accuracy} with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(metrics) + "\n") logging.info(metrics) return metrics @dist_utils.main_process def _save_result_leaderboard(self, results): """ Saving the results in the format required for leaderboard evaluation. [TODO] add support for multi-choice. """ result_leaderboard = dict() for res in results: result_leaderboard[res["question_id"]] = { "direct_answer": res["pred_ans"], "multiple_choice": "", } result_file = registry.get_path("result_dir") + "_leaderboard.json" with open(result_file, "w") as f: json.dump(result_leaderboard, f) logging.info(f"Saved results for leaderboard evaluation at {result_file}")
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/vqa.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import json import os import torch import torch.distributed as dist from itertools import chain import lavis.common.dist_utils as dist_utils from lavis.common.dist_utils import get_rank, get_world_size, is_main_process from lavis.common.registry import registry from lavis.common.vqa_tools.vqa_eval import VQAEval as VQATool from lavis.tasks.vqa import VQATask @registry.register_task("vqa_reading_comprehension") class VQARCTask(VQATask): def __init__( self, num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method="rank", **kwargs, ): super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method) self.config = kwargs.get('config') @classmethod def setup_task(cls, cfg): run_cfg = cfg.run_cfg num_beams = run_cfg.get("num_beams", 3) max_len = run_cfg.get("max_len", 10) min_len = run_cfg.get("min_len", 1) evaluate = run_cfg.get("evaluate", False) inference_method = run_cfg.get("inference_method", "rank") num_ans_candidates = run_cfg.get("num_ans_candidates", 128) return cls( num_beams=num_beams, max_len=max_len, min_len=min_len, evaluate=evaluate, num_ans_candidates=num_ans_candidates, inference_method=inference_method, config=run_cfg, ) def valid_step(self, model, samples): answers, captions, gradcams = model.predict_answers( samples=samples, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, internal_bsz_fid=self.config['internal_bsz_fid'], num_captions=self.config['num_captions'], num_captions_fid=self.config['num_captions_fid'], cap_max_length=self.config['cap_max_length'], cap_min_length=self.config['cap_min_length'], top_k=self.config['top_k'], top_p=self.config['top_p'], repetition_penalty=self.config['repetition_penalty'], num_patches=self.config['num_patches'], block_num=self.config['block_num'], ) pred_qa_pairs = [] sample_captions = [] sample_gradcams = [] question_id = samples["question_id"] for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id): ques_id = int(ques_id.item()) pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) sample_captions.append({"question_id": ques_id, "caption": caption}) sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) return [sample_gradcams, sample_captions, pred_qa_pairs] def after_evaluation(self, val_result, split_name, **kwargs): result_ = list(chain(*val_result[0::3])) result_file = self.save_gradcam( result_, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_gradcam_result", remove_duplicate="question_id", ) result_ = list(chain(*val_result[1::3])) result_file = self.save_result( result_, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_caption_result", remove_duplicate="question_id", ) result_ = list(chain(*val_result[2::3])) result_file = self.save_result( result_, result_dir=registry.get_path("result_dir"), filename=f"{split_name}_vqa_result", remove_duplicate="question_id", ) metrics = self._report_metrics(result_file=result_file, split=split_name) return metrics def save_gradcam(self, result, result_dir, filename, remove_duplicate=""): result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank())) final_result_file = os.path.join(result_dir, '%s.pth' % filename) torch.save({'result': result}, result_file) dist.barrier() if is_main_process(): logging.warning("rank %d starts merging results." % get_rank()) # combine results from all processes result = [] for rank in range(get_world_size()): result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank)) res_ckpt = torch.load(result_file, map_location='cpu') res = res_ckpt['result'] result += res if remove_duplicate: result_new = [] id_list = [] for res in result: if res[remove_duplicate] not in id_list: id_list.append(res[remove_duplicate]) result_new.append(res) result = result_new torch.save({'result': result}, final_result_file) print("result file saved to %s" % final_result_file) return final_result_file @registry.register_task("gqa_reading_comprehension") class GQARCTask(VQARCTask): def valid_step(self, model, samples): answers, captions, gradcams = model.predict_answers( samples=samples, inference_method=self.inference_method, num_beams=self.num_beams, max_len=self.max_len, min_len=self.min_len, internal_bsz_fid=self.config['internal_bsz_fid'], num_captions=self.config['num_captions'], num_captions_fid=self.config['num_captions_fid'], cap_max_length=self.config['cap_max_length'], cap_min_length=self.config['cap_min_length'], top_k=self.config['top_k'], top_p=self.config['top_p'], repetition_penalty=self.config['repetition_penalty'], num_patches=self.config['num_patches'], block_num=self.config['block_num'], ) pred_qa_pairs = [] sample_captions = [] sample_gradcams = [] question_id = samples["question_id"] gt_answers = samples["answer"] for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers): ques_id = int(ques_id.item()) pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer}) sample_captions.append({"question_id": ques_id, "caption": caption}) sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) return [sample_gradcams, sample_captions, pred_qa_pairs] @dist_utils.main_process def _report_metrics(self, result_file, split): """ TODO: add other evaluation metrics for GQA """ results = json.load(open(result_file, "r")) acc = [] vqa_tool = VQATool() for res in results: if res["gt_ans"] is None: # prepare test results for leaderboard evaluation self._save_result_leaderboard(results) return gt_ans = res["gt_ans"] pred = res["pred_ans"] if self.inference_method == "generate": pred = vqa_tool.processPunctuation(pred) pred = vqa_tool.processDigitArticle(pred) vqa_acc = 1 if pred == gt_ans else 0 acc.append(vqa_acc) accuracy = sum(acc) / len(acc) * 100 metrics = {"agg_metrics": accuracy, "acc": accuracy} with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(metrics) + "\n") logging.info(metrics) return metrics @dist_utils.main_process def _save_result_leaderboard(self, results): """ Saving the results in the format required for leaderboard evaluation. """ result_leaderboard = [] for res in results: result_leaderboard.append({ "questionId": str(res['question_id']), "prediction": str(res["pred_ans"]), }) result_file = registry.get_path("result_dir") + "_leaderboard.json" with open(result_file, "w") as f: json.dump(result_leaderboard, f) logging.info(f"Saved results for leaderboard evaluation at {result_file}")
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/vqa_reading_comprehension.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import json import os import logging import numpy as np import torch from lavis.common.dist_utils import main_process from lavis.common.registry import registry from lavis.tasks.base_task import BaseTask @registry.register_task("multimodal_classification") class MultimodalClassificationTask(BaseTask): def __init__(self): super().__init__() def valid_step(self, model, samples): results = [] outputs = model.predict(samples) predictions = outputs["predictions"] targets = outputs["targets"] predictions = predictions.max(1)[1].cpu().numpy() targets = targets.cpu().numpy() indices = samples[self.inst_id_key] for pred, tgt, index in zip(predictions, targets, indices): if isinstance(index, torch.Tensor): index = index.item() results.append( { self.inst_id_key: index, "prediction": pred.item(), "target": tgt.item(), } ) return results def after_evaluation(self, val_result, split_name, epoch, **kwargs): eval_result_file = self.save_result( result=val_result, result_dir=registry.get_path("result_dir"), filename="{}_epoch{}".format(split_name, epoch), remove_duplicate=self.inst_id_key, ) metrics = self._report_metrics( eval_result_file=eval_result_file, split_name=split_name ) return metrics @main_process def _report_metrics(self, eval_result_file, split_name): results = json.load(open(eval_result_file)) predictions = np.array([res["prediction"] for res in results]) targets = np.array([res["target"] for res in results]) accuracy = (targets == predictions).sum() / targets.shape[0] metrics = {"agg_metrics": accuracy, "acc": accuracy} log_stats = {split_name: {k: v for k, v in metrics.items()}} with open( os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" ) as f: f.write(json.dumps(log_stats) + "\n") logging.info(metrics) return metrics
3D-LLM-main
three_steps_3d_feature/second_step/lavis/tasks/multimodal_classification.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import gzip import logging import os import random as rnd import tarfile import zipfile import decord import webdataset as wds import numpy as np import torch from torch.utils.data.dataset import IterableDataset, ChainDataset from decord import VideoReader from lavis.common.registry import registry from lavis.datasets.datasets.base_dataset import ConcatDataset from tqdm import tqdm decord.bridge.set_bridge("torch") MAX_INT = registry.get("MAX_INT") def load_video(video_path, n_frms=MAX_INT, height=-1, width=-1, sampling="uniform"): vr = VideoReader(uri=video_path, height=height, width=width) vlen = len(vr) start, end = 0, vlen n_frms = min(n_frms, vlen) if sampling == "uniform": indices = np.arange(start, end, vlen / n_frms).astype(int) elif sampling == "headtail": indices_h = sorted(rnd.sample(range(vlen // 2), n_frms // 2)) indices_t = sorted(rnd.sample(range(vlen // 2, vlen), n_frms // 2)) indices = indices_h + indices_t else: raise NotImplementedError # get_batch -> T, H, W, C frms = vr.get_batch(indices).permute(3, 0, 1, 2).float() # (C, T, H, W) return frms def apply_to_sample(f, sample): if len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] else: return x return _apply(sample) def move_to_cuda(sample): def _move_to_cuda(tensor): return tensor.cuda() return apply_to_sample(_move_to_cuda, sample) def prepare_sample(samples, cuda_enabled=True): if cuda_enabled: samples = move_to_cuda(samples) # TODO fp16 support return samples def reorg_datasets_by_split(datasets): """ Organizes datasets by split. Args: datasets: dict of torch.utils.data.Dataset objects by name. Returns: Dict of datasets by split {split_name: List[Datasets]}. """ # if len(datasets) == 1: # return datasets[list(datasets.keys())[0]] # else: reorg_datasets = dict() # reorganize by split for _, dataset in datasets.items(): for split_name, dataset_split in dataset.items(): if split_name not in reorg_datasets: reorg_datasets[split_name] = [dataset_split] else: reorg_datasets[split_name].append(dataset_split) return reorg_datasets def concat_datasets(datasets): """ Concatenates multiple datasets into a single dataset. It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support generic IterableDataset because it requires creating separate samplers. Now only supports conctenating training datasets and assuming validation and testing have only a single dataset. This is because metrics should not be computed on the concatenated datasets. Args: datasets: dict of torch.utils.data.Dataset objects by split. Returns: Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets, "val" and "test" remain the same. If the input training datasets contain both map-style and DataPipeline datasets, returns a tuple, where the first element is a concatenated map-style dataset and the second element is a chained DataPipeline dataset. """ # concatenate datasets in the same split for split_name in datasets: if split_name != "train": assert ( len(datasets[split_name]) == 1 ), "Do not support multiple {} datasets.".format(split_name) datasets[split_name] = datasets[split_name][0] else: iterable_datasets, map_datasets = [], [] for dataset in datasets[split_name]: if isinstance(dataset, wds.DataPipeline): logging.info( "Dataset {} is IterableDataset, can't be concatenated.".format( dataset ) ) iterable_datasets.append(dataset) elif isinstance(dataset, IterableDataset): raise NotImplementedError( "Do not support concatenation of generic IterableDataset." ) else: map_datasets.append(dataset) # if len(iterable_datasets) > 0: # concatenate map-style datasets and iterable-style datasets separately chained_datasets = ( ChainDataset(iterable_datasets) if len(iterable_datasets) > 0 else None ) concat_datasets = ( ConcatDataset(map_datasets) if len(map_datasets) > 0 else None ) train_datasets = concat_datasets, chained_datasets train_datasets = tuple([x for x in train_datasets if x is not None]) train_datasets = ( train_datasets[0] if len(train_datasets) == 1 else train_datasets ) datasets[split_name] = train_datasets return datasets def extract_archive(from_path, to_path=None, overwrite=False): """Extract archive. Args: from_path: the path of the archive. to_path: the root path of the extracted files (directory of from_path) overwrite: overwrite existing files (False) Returns: List of paths to extracted files even if not overwritten. Examples: >>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz' >>> from_path = './validation.tar.gz' >>> to_path = './' >>> torchtext.utils.download_from_url(url, from_path) >>> torchtext.utils.extract_archive(from_path, to_path) >>> ['.data/val.de', '.data/val.en'] >>> torchtext.utils.download_from_url(url, from_path) >>> torchtext.utils.extract_archive(from_path, to_path) >>> ['.data/val.de', '.data/val.en'] """ if to_path is None: to_path = os.path.dirname(from_path) if from_path.endswith((".tar.gz", ".tgz")): logging.info("Opening tar file {} to {}.".format(from_path, to_path)) with tarfile.open(from_path, "r") as tar: files = [] for file_ in tqdm(tar): file_path = os.path.join(to_path, file_.name) if file_.isfile(): files.append(file_path) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue tar.extract(file_, to_path) logging.info("Finished extracting tar file {}.".format(from_path)) return files elif from_path.endswith(".zip"): assert zipfile.is_zipfile(from_path), from_path logging.info("Opening zip file {} to {}.".format(from_path, to_path)) with zipfile.ZipFile(from_path, "r") as zfile: files = [] for file_ in tqdm(zfile.namelist()): file_path = os.path.join(to_path, file_) files.append(file_path) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue zfile.extract(file_, to_path) files = [f for f in files if os.path.isfile(f)] logging.info("Finished extracting zip file {}.".format(from_path)) return files elif from_path.endswith(".gz"): logging.info("Opening gz file {} to {}.".format(from_path, to_path)) default_block_size = 65536 filename = from_path[:-3] files = [filename] with gzip.open(from_path, "rb") as gzfile, open(filename, "wb") as d_file: while True: block = gzfile.read(default_block_size) if not block: break else: d_file.write(block) d_file.write(block) logging.info("Finished extracting gz file {}.".format(from_path)) return files else: raise NotImplementedError( "We currently only support tar.gz, .tgz, .gz and zip achives." ) def save_frames_grid(img_array, out_path): import torch from PIL import Image from torchvision.utils import make_grid if len(img_array.shape) == 3: img_array = img_array.unsqueeze(0) elif len(img_array.shape) == 5: b, t, c, h, w = img_array.shape img_array = img_array.view(-1, c, h, w) elif len(img_array.shape) == 4: pass else: raise NotImplementedError( "Supports only (b,t,c,h,w)-shaped inputs. First two dimensions can be ignored." ) assert img_array.shape[1] == 3, "Exepcting input shape of (H, W, 3), i.e. RGB-only." grid = make_grid(img_array) ndarr = grid.permute(1, 2, 0).to("cpu", torch.uint8).numpy() img = Image.fromarray(ndarr) img.save(out_path)
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/data_utils.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from lavis.common.registry import registry from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.imagefolder_dataset import ImageFolderDataset @registry.register_builder("imagenet") class ImageNetBuilder(BaseDatasetBuilder): train_dataset_cls = ImageFolderDataset eval_dataset_cls = ImageFolderDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/imagenet/defaults.yaml"} def _download_ann(self): pass def build(self): self.build_processors() build_info = self.config.build_info vis_info = build_info.get(self.data_type) datasets = dict() for split in build_info.splits: assert split in [ "train", "val", ], "Invalid split name {}, must be one of 'train', 'val' and 'test'." is_train = split == "train" vis_processor = ( self.vis_processors["train"] if is_train else self.vis_processors["eval"] ) vis_path = os.path.join(vis_info.storage, split) # create datasets dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls datasets[split] = dataset_cls( vis_processor=vis_processor, vis_root=vis_path, classnames=imagenet_classnames, ) return datasets imagenet_classnames = [ "tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", "box turtle", "banded gecko", "green iguana", "Carolina anole", "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", "American alligator", "triceratops", "worm snake", "ring-necked snake", "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", "freight car", "French horn", "frying pan", "fur coat", "garbage truck", "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper", ]
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/imagefolder_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import os import shutil import warnings import lavis.common.utils as utils import torch.distributed as dist from lavis.common.dist_utils import is_dist_avail_and_initialized, is_main_process from lavis.common.registry import registry from lavis.datasets.data_utils import extract_archive from lavis.processors.base_processor import BaseProcessor from omegaconf import OmegaConf from torchvision.datasets.utils import download_url class BaseDatasetBuilder: train_dataset_cls, eval_dataset_cls = None, None def __init__(self, cfg=None): super().__init__() if cfg is None: # help to create datasets from default config. self.config = load_dataset_config(self.default_config_path()) elif isinstance(cfg, str): self.config = load_dataset_config(cfg) else: # when called from task.build_dataset() self.config = cfg self.data_type = self.config.data_type self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} def build_datasets(self): # download, split, etc... # only called on 1 GPU/TPU in distributed if is_main_process(): self._download_data() if is_dist_avail_and_initialized(): dist.barrier() # at this point, all the annotations and image/videos should be all downloaded to the specified locations. logging.info("Building datasets...") datasets = self.build() # dataset['train'/'val'/'test'] return datasets def build_processors(self): vis_proc_cfg = self.config.get("vis_processor") txt_proc_cfg = self.config.get("text_processor") if vis_proc_cfg is not None: vis_train_cfg = vis_proc_cfg.get("train") vis_eval_cfg = vis_proc_cfg.get("eval") self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg) self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg) if txt_proc_cfg is not None: txt_train_cfg = txt_proc_cfg.get("train") txt_eval_cfg = txt_proc_cfg.get("eval") self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg) self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg) @staticmethod def _build_proc_from_cfg(cfg): return ( registry.get_processor_class(cfg.name).from_config(cfg) if cfg is not None else None ) @classmethod def default_config_path(cls, type="default"): return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type]) def _download_data(self): self._download_ann() self._download_vis() def _download_ann(self): """ Download annotation files if necessary. All the vision-language datasets should have annotations of unified format. storage_path can be: (1) relative/absolute: will be prefixed with env.cache_root to make full path if relative. (2) basename/dirname: will be suffixed with base name of URL if dirname is provided. Local annotation paths should be relative. """ anns = self.config.build_info.annotations splits = anns.keys() cache_root = registry.get_path("cache_root") for split in splits: info = anns[split] urls, storage_paths = info.get("url", None), info.storage if isinstance(urls, str): urls = [urls] if isinstance(storage_paths, str): storage_paths = [storage_paths] assert len(urls) == len(storage_paths) for url_or_filename, storage_path in zip(urls, storage_paths): # if storage_path is relative, make it full by prefixing with cache_root. if not os.path.isabs(storage_path): storage_path = os.path.join(cache_root, storage_path) dirname = os.path.dirname(storage_path) if not os.path.exists(dirname): os.makedirs(dirname) if os.path.isfile(url_or_filename): src, dst = url_or_filename, storage_path if not os.path.exists(dst): shutil.copyfile(src=src, dst=dst) else: logging.info("Using existing file {}.".format(dst)) else: if os.path.isdir(storage_path): # if only dirname is provided, suffix with basename of URL. raise ValueError( "Expecting storage_path to be a file path, got directory {}".format( storage_path ) ) else: filename = os.path.basename(storage_path) download_url(url=url_or_filename, root=dirname, filename=filename) def _download_vis(self): storage_path = self.config.build_info.get(self.data_type).storage storage_path = utils.get_cache_path(storage_path) if not os.path.exists(storage_path): warnings.warn( f""" The specified path {storage_path} for visual inputs does not exist. Please provide a correct path to the visual inputs or refer to datasets/download_scripts/README.md for downloading instructions. """ ) def build(self): """ Create by split datasets inheriting torch.utils.data.Datasets. # build() can be dataset-specific. Overwrite to customize. """ self.build_processors() build_info = self.config.build_info ann_info = build_info.annotations vis_info = build_info.get(self.data_type) datasets = dict() for split in ann_info.keys(): if split not in ["train", "val", "test"]: continue is_train = split == "train" # processors vis_processor = ( self.vis_processors["train"] if is_train else self.vis_processors["eval"] ) text_processor = ( self.text_processors["train"] if is_train else self.text_processors["eval"] ) # annotation path ann_paths = ann_info.get(split).storage if isinstance(ann_paths, str): ann_paths = [ann_paths] abs_ann_paths = [] for ann_path in ann_paths: if not os.path.isabs(ann_path): ann_path = utils.get_cache_path(ann_path) abs_ann_paths.append(ann_path) ann_paths = abs_ann_paths # visual data storage path vis_path = vis_info.storage if not os.path.isabs(vis_path): # vis_path = os.path.join(utils.get_cache_path(), vis_path) vis_path = utils.get_cache_path(vis_path) if not os.path.exists(vis_path): warnings.warn("storage path {} does not exist.".format(vis_path)) # create datasets dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls datasets[split] = dataset_cls( vis_processor=vis_processor, text_processor=text_processor, ann_paths=ann_paths, vis_root=vis_path, ) return datasets def load_dataset_config(cfg_path): cfg = OmegaConf.load(cfg_path).datasets cfg = cfg[list(cfg.keys())[0]] return cfg
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/base_dataset_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.common.registry import registry from lavis.common.utils import get_cache_path from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.video_vqa_datasets import VideoQADataset class VideoQABuilder(BaseDatasetBuilder): train_dataset_cls = VideoQADataset eval_dataset_cls = VideoQADataset def build(self): datasets = super().build() ans2label = self.config.build_info.annotations.get("ans2label") if ans2label is None: raise ValueError("ans2label is not specified in build_info.") ans2label = get_cache_path(ans2label.storage) for split in datasets: datasets[split]._build_class_labels(ans2label) return datasets @registry.register_builder("msrvtt_qa") class MSRVTTQABuilder(VideoQABuilder): DATASET_CONFIG_DICT = { "default": "configs/datasets/msrvtt/defaults_qa.yaml", } @registry.register_builder("msvd_qa") class MSVDQABuilder(VideoQABuilder): DATASET_CONFIG_DICT = { "default": "configs/datasets/msvd/defaults_qa.yaml", }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/video_qa_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.datasets.builders.base_dataset_builder import load_dataset_config from lavis.datasets.builders.caption_builder import ( COCOCapBuilder, MSRVTTCapBuilder, MSVDCapBuilder, VATEXCapBuilder, ) from lavis.datasets.builders.image_text_pair_builder import ( ConceptualCaption12MBuilder, ConceptualCaption3MBuilder, VGCaptionBuilder, SBUCaptionBuilder, ) from lavis.datasets.builders.classification_builder import ( NLVRBuilder, SNLIVisualEntailmentBuilder, ) from lavis.datasets.builders.imagefolder_builder import ImageNetBuilder from lavis.datasets.builders.video_qa_builder import MSRVTTQABuilder, MSVDQABuilder from lavis.datasets.builders.vqa_builder import ( COCOVQABuilder, OKVQABuilder, VGVQABuilder, GQABuilder, ) from lavis.datasets.builders.retrieval_builder import ( MSRVTTRetrievalBuilder, DiDeMoRetrievalBuilder, COCORetrievalBuilder, Flickr30kBuilder, ) from lavis.datasets.builders.dialogue_builder import AVSDDialBuilder from lavis.common.registry import registry __all__ = [ "COCOCapBuilder", "COCORetrievalBuilder", "COCOVQABuilder", "ConceptualCaption12MBuilder", "ConceptualCaption3MBuilder", "DiDeMoRetrievalBuilder", "Flickr30kBuilder", "GQABuilder", "ImageNetBuilder", "MSRVTTCapBuilder", "MSRVTTQABuilder", "MSRVTTRetrievalBuilder", "MSVDCapBuilder", "MSVDQABuilder", "NLVRBuilder", "OKVQABuilder", "SBUCaptionBuilder", "SNLIVisualEntailmentBuilder", "VATEXCapBuilder", "VGCaptionBuilder", "VGVQABuilder", "AVSDDialBuilder", ] def load_dataset(name, cfg_path=None, vis_path=None, data_type=None): """ Example >>> dataset = load_dataset("coco_caption", cfg=None) >>> splits = dataset.keys() >>> print([len(dataset[split]) for split in splits]) """ if cfg_path is None: cfg = None else: cfg = load_dataset_config(cfg_path) try: builder = registry.get_builder_class(name)(cfg) except TypeError: print( f"Dataset {name} not found. Available datasets:\n" + ", ".join([str(k) for k in dataset_zoo.get_names()]) ) exit(1) if vis_path is not None: if data_type is None: # use default data type in the config data_type = builder.config.data_type assert ( data_type in builder.config.build_info ), f"Invalid data_type {data_type} for {name}." builder.config.build_info.get(data_type).storage = vis_path dataset = builder.build_datasets() return dataset class DatasetZoo: def __init__(self) -> None: self.dataset_zoo = { k: list(v.DATASET_CONFIG_DICT.keys()) for k, v in sorted(registry.mapping["builder_name_mapping"].items()) } def get_names(self): return list(self.dataset_zoo.keys()) dataset_zoo = DatasetZoo()
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/__init__.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.retrieval_datasets import ( RetrievalDataset, RetrievalEvalDataset, VideoRetrievalDataset, VideoRetrievalEvalDataset, ) from lavis.common.registry import registry @registry.register_builder("msrvtt_retrieval") class MSRVTTRetrievalBuilder(BaseDatasetBuilder): train_dataset_cls = VideoRetrievalDataset eval_dataset_cls = VideoRetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/msrvtt/defaults_ret.yaml"} @registry.register_builder("didemo_retrieval") class DiDeMoRetrievalBuilder(BaseDatasetBuilder): train_dataset_cls = VideoRetrievalDataset eval_dataset_cls = VideoRetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/didemo/defaults_ret.yaml"} @registry.register_builder("coco_retrieval") class COCORetrievalBuilder(BaseDatasetBuilder): train_dataset_cls = RetrievalDataset eval_dataset_cls = RetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/coco/defaults_ret.yaml"} @registry.register_builder("flickr30k") class Flickr30kBuilder(BaseDatasetBuilder): train_dataset_cls = RetrievalDataset eval_dataset_cls = RetrievalEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/flickr30k/defaults.yaml"}
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/retrieval_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.common.registry import registry from lavis.datasets.datasets.aok_vqa_datasets import AOKVQADataset, AOKVQAEvalDataset from lavis.datasets.datasets.coco_vqa_datasets import COCOVQADataset, COCOVQAEvalDataset from lavis.datasets.datasets.vg_vqa_datasets import VGVQADataset from lavis.datasets.datasets.gqa_datasets import GQADataset, GQAEvalDataset @registry.register_builder("coco_vqa") class COCOVQABuilder(BaseDatasetBuilder): train_dataset_cls = COCOVQADataset eval_dataset_cls = COCOVQAEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/coco/defaults_vqa.yaml", "eval": "configs/datasets/coco/eval_vqa.yaml", } @registry.register_builder("vg_vqa") class VGVQABuilder(BaseDatasetBuilder): train_dataset_cls = VGVQADataset DATASET_CONFIG_DICT = {"default": "configs/datasets/vg/defaults_vqa.yaml"} @registry.register_builder("ok_vqa") class OKVQABuilder(COCOVQABuilder): DATASET_CONFIG_DICT = { "default": "configs/datasets/okvqa/defaults.yaml", } @registry.register_builder("aok_vqa") class AOKVQABuilder(BaseDatasetBuilder): train_dataset_cls = AOKVQADataset eval_dataset_cls = AOKVQAEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/aokvqa/defaults.yaml"} @registry.register_builder("gqa") class GQABuilder(BaseDatasetBuilder): train_dataset_cls = GQADataset eval_dataset_cls = GQAEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/gqa/defaults.yaml", "balanced_val": "configs/datasets/gqa/balanced_val.yaml", "balanced_testdev": "configs/datasets/gqa/balanced_testdev.yaml", }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/vqa_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.common.registry import registry from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.avsd_dialogue_datasets import ( AVSDDialDataset, AVSDDialEvalDataset, ) @registry.register_builder("avsd_dialogue") class AVSDDialBuilder(BaseDatasetBuilder): train_dataset_cls = AVSDDialDataset eval_dataset_cls = AVSDDialEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/avsd/defaults_dial.yaml"}
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/dialogue_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from lavis.common.registry import registry from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.image_text_pair_datasets import ImageTextPairDataset from lavis.datasets.datasets.laion_dataset import LaionDataset @registry.register_builder("conceptual_caption_3m") class ConceptualCaption3MBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/conceptual_caption/defaults_3m.yaml" } @registry.register_builder("conceptual_caption_12m") class ConceptualCaption12MBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/conceptual_caption/defaults_12m.yaml" } @registry.register_builder("sbu_caption") class SBUCaptionBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/sbu_caption/defaults.yaml"} @registry.register_builder("vg_caption") class VGCaptionBuilder(BaseDatasetBuilder): train_dataset_cls = ImageTextPairDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/vg/defaults_caption.yaml"} @registry.register_builder("laion2B_multi") class Laion2BMultiBuilder(BaseDatasetBuilder): train_dataset_cls = LaionDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults_2B_multi.yaml"} def _download_ann(self): pass def _download_vis(self): pass def build(self): self.build_processors() build_info = self.config.build_info datasets = dict() split = "train" # laion dataset only has train split # create datasets # [NOTE] return inner_datasets (wds.DataPipeline) dataset_cls = self.train_dataset_cls datasets[split] = dataset_cls( vis_processor=self.vis_processors[split], text_processor=self.text_processors[split], location=build_info.storage, ).inner_dataset return datasets
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/image_text_pair_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.coco_caption_datasets import ( COCOCapDataset, COCOCapEvalDataset, NoCapsEvalDataset, ) from lavis.common.registry import registry from lavis.datasets.datasets.video_caption_datasets import ( VideoCaptionDataset, VideoCaptionEvalDataset, ) @registry.register_builder("coco_caption") class COCOCapBuilder(BaseDatasetBuilder): train_dataset_cls = COCOCapDataset eval_dataset_cls = COCOCapEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/coco/defaults_cap.yaml", } @registry.register_builder("nocaps") class COCOCapBuilder(BaseDatasetBuilder): eval_dataset_cls = NoCapsEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/nocaps/defaults.yaml", } @registry.register_builder("msrvtt_caption") class MSRVTTCapBuilder(BaseDatasetBuilder): train_dataset_cls = VideoCaptionDataset eval_dataset_cls = VideoCaptionEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/msrvtt/defaults_cap.yaml", } @registry.register_builder("msvd_caption") class MSVDCapBuilder(BaseDatasetBuilder): train_dataset_cls = VideoCaptionDataset eval_dataset_cls = VideoCaptionEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/msvd/defaults_cap.yaml", } @registry.register_builder("vatex_caption") class VATEXCapBuilder(BaseDatasetBuilder): train_dataset_cls = VideoCaptionDataset eval_dataset_cls = VideoCaptionEvalDataset DATASET_CONFIG_DICT = { "default": "configs/datasets/vatex/defaults_cap.yaml", }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/caption_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from lavis.common.registry import registry from lavis.datasets.builders.base_dataset_builder import BaseDatasetBuilder from lavis.datasets.datasets.nlvr_datasets import NLVRDataset, NLVREvalDataset from lavis.datasets.datasets.snli_ve_datasets import SNLIVisualEntialmentDataset @registry.register_builder("nlvr") class NLVRBuilder(BaseDatasetBuilder): train_dataset_cls = NLVRDataset eval_dataset_cls = NLVREvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/nlvr/defaults.yaml"} @registry.register_builder("snli_ve") class SNLIVisualEntailmentBuilder(BaseDatasetBuilder): train_dataset_cls = SNLIVisualEntialmentDataset eval_dataset_cls = SNLIVisualEntialmentDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/snli_ve/defaults.yaml"}
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/builders/classification_builder.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from collections import OrderedDict from lavis.datasets.datasets.base_dataset import BaseDataset from PIL import Image from torchvision import datasets class ImageFolderDataset(BaseDataset): def __init__(self, vis_processor, vis_root, classnames=[], **kwargs): super().__init__(vis_processor=vis_processor, vis_root=vis_root) self.inner_dataset = datasets.ImageFolder(vis_root) self.annotation = [ {"image": elem[0], "label": elem[1], "image_id": elem[0]} for elem in self.inner_dataset.imgs ] self.classnames = classnames self._add_instance_ids() def __len__(self): return len(self.inner_dataset) def __getitem__(self, index): ann = self.annotation[index] img_fn = ann["image"] image_path = os.path.join(self.vis_root, img_fn) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) return { "image": image, "label": ann["label"], "image_id": ann["image_id"], "instance_id": ann["instance_id"], } def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "label": self.classnames[ann["label"]], "image": sample["image"], } )
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/imagefolder_dataset.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import webdataset as wds from lavis.datasets.datasets.base_dataset import BaseDataset class LaionDataset(BaseDataset): def __init__(self, vis_processor, text_processor, location): super().__init__(vis_processor=vis_processor, text_processor=text_processor) self.inner_dataset = wds.DataPipeline( wds.ResampledShards(location), wds.tarfile_to_samples(handler=wds.warn_and_continue), wds.shuffle(1000, handler=wds.warn_and_continue), wds.decode("pilrgb", handler=wds.warn_and_continue), wds.to_tuple("jpg", "json", handler=wds.warn_and_continue), wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue), wds.map(self.to_dict, handler=wds.warn_and_continue), ) def to_dict(self, sample): return { "image": sample[0], "text_input": self.text_processor(sample[1]["caption"]), } if __name__ == "__main__": from torchvision import transforms def to_image_text_pair(sample): return sample[0], sample[1]["caption"] normalize = transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711) ) transform_train = transforms.Compose( [ transforms.RandomResizedCrop(256, scale=(0.2, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] ) dataset = LaionDataset( vis_processor=transform_train, text_processor=lambda x: x, location="/export/laion/laion2B-multi/part-00000/{00000..01743}.tar", ) import torch loader = torch.utils.data.DataLoader(dataset.inner_dataset, batch_size=2) print(next(iter(loader))["text_input"])
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/laion_dataset.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import json from typing import Iterable from torch.utils.data import Dataset, ConcatDataset from torch.utils.data.dataloader import default_collate class BaseDataset(Dataset): def __init__( self, vis_processor=None, text_processor=None, vis_root=None, ann_paths=[] ): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ self.vis_root = vis_root self.annotation = [] for ann_path in ann_paths: self.annotation.extend(json.load(open(ann_path, "r"))) self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() def __len__(self): return len(self.annotation) def collater(self, samples): return default_collate(samples) def set_processors(self, vis_processor, text_processor): self.vis_processor = vis_processor self.text_processor = text_processor def _add_instance_ids(self, key="instance_id"): for idx, ann in enumerate(self.annotation): ann[key] = str(idx) class ConcatDataset(ConcatDataset): def __init__(self, datasets: Iterable[Dataset]) -> None: super().__init__(datasets) def collater(self, samples): # TODO For now only supports datasets with same underlying collater implementations all_keys = set() for s in samples: all_keys.update(s) shared_keys = all_keys for s in samples: shared_keys = shared_keys & set(s.keys()) samples_shared_keys = [] for s in samples: samples_shared_keys.append({k: s[k] for k in s.keys() if k in shared_keys}) return self.datasets[0].collater(samples_shared_keys)
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/base_dataset.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os import random from collections import OrderedDict from lavis.datasets.datasets.multimodal_classification_datasets import ( MultimodalClassificationDataset, ) from PIL import Image class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file_L": ann["images"][0], "file_R": ann["images"][1], "sentence": ann["sentence"], "label": ann["label"], "image": [sample["image0"], sample["image1"]], } ) class NLVRDataset(MultimodalClassificationDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.class_labels = self._build_class_labels() def _build_class_labels(self): return {"False": 0, "True": 1} @staticmethod def _flip(samples): sentence = samples["text_input"] image0, image1 = samples["image0"], samples["image1"] if "left" not in sentence and "right" not in sentence: if random.random() < 0.5: image0, image1 = image1, image0 else: if random.random() < 0.5: sentence = sentence.replace("left", "[TEMP_TOKEN]") sentence = sentence.replace("right", "left") sentence = sentence.replace("[TEMP_TOKEN]", "right") image0, image1 = image1, image0 samples["text_input"] = sentence samples["image0"] = image0 samples["image1"] = image1 return samples def __getitem__(self, index): ann = self.annotation[index] image0_path = os.path.join(self.vis_root, ann["images"][0]) image0 = Image.open(image0_path).convert("RGB") image0 = self.vis_processor(image0) image1_path = os.path.join(self.vis_root, ann["images"][1]) image1 = Image.open(image1_path).convert("RGB") image1 = self.vis_processor(image1) sentence = self.text_processor(ann["sentence"]) label = self.class_labels[ann["label"]] return self._flip( { "image0": image0, "image1": image1, "text_input": sentence, "label": label, # "image_id": ann["image_id"], "instance_id": ann["instance_id"], } ) class NLVREvalDataset(NLVRDataset): @staticmethod def _flip(samples): return samples
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/nlvr_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import time import random import torch from lavis.datasets.data_utils import move_to_cuda from torch.utils.data import DataLoader class MultiIterLoader: """ A simple wrapper for iterating over multiple iterators. Args: loaders (List[Loader]): List of Iterator loaders. ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly. """ def __init__(self, loaders, ratios=None): # assert all loaders has __next__ method for loader in loaders: assert hasattr( loader, "__next__" ), "Loader {} has no __next__ method.".format(loader) if ratios is None: ratios = [1.0] * len(loaders) else: assert len(ratios) == len(loaders) ratios = [float(ratio) / sum(ratios) for ratio in ratios] self.loaders = loaders self.ratios = ratios def __next__(self): # random sample from each loader by ratio loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0] return next(self.loaders[loader_idx]) class PrefetchLoader(object): """ Modified from https://github.com/ChenRocks/UNITER. overlap compute and cuda data transfer (copied and then modified from nvidia apex) """ def __init__(self, loader): self.loader = loader self.stream = torch.cuda.Stream() def __iter__(self): loader_it = iter(self.loader) self.preload(loader_it) batch = self.next(loader_it) while batch is not None: is_tuple = isinstance(batch, tuple) if is_tuple: task, batch = batch if is_tuple: yield task, batch else: yield batch batch = self.next(loader_it) def __len__(self): return len(self.loader) def preload(self, it): try: self.batch = next(it) except StopIteration: self.batch = None return # if record_stream() doesn't work, another option is to make sure # device inputs are created on the main stream. # self.next_input_gpu = torch.empty_like(self.next_input, # device='cuda') # self.next_target_gpu = torch.empty_like(self.next_target, # device='cuda') # Need to make sure the memory allocated for next_* is not still in use # by the main stream at the time we start copying to next_*: # self.stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream): self.batch = move_to_cuda(self.batch) # more code for the alternative if record_stream() doesn't work: # copy_ will record the use of the pinned source tensor in this # side stream. # self.next_input_gpu.copy_(self.next_input, non_blocking=True) # self.next_target_gpu.copy_(self.next_target, non_blocking=True) # self.next_input = self.next_input_gpu # self.next_target = self.next_target_gpu def next(self, it): torch.cuda.current_stream().wait_stream(self.stream) batch = self.batch if batch is not None: record_cuda_stream(batch) self.preload(it) return batch def __getattr__(self, name): method = self.loader.__getattribute__(name) return method def record_cuda_stream(batch): if isinstance(batch, torch.Tensor): batch.record_stream(torch.cuda.current_stream()) elif isinstance(batch, list) or isinstance(batch, tuple): for t in batch: record_cuda_stream(t) elif isinstance(batch, dict): for t in batch.values(): record_cuda_stream(t) else: pass class IterLoader: """ A wrapper to convert DataLoader as an infinite iterator. Modified from: https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py """ def __init__(self, dataloader: DataLoader, use_distributed: bool = False): self._dataloader = dataloader self.iter_loader = iter(self._dataloader) self._use_distributed = use_distributed self._epoch = 0 @property def epoch(self) -> int: return self._epoch def __next__(self): try: data = next(self.iter_loader) except StopIteration: self._epoch += 1 if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed: self._dataloader.sampler.set_epoch(self._epoch) time.sleep(2) # Prevent possible deadlock during epoch transition self.iter_loader = iter(self._dataloader) data = next(self.iter_loader) return data def __iter__(self): return self def __len__(self): return len(self._dataloader)
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/dataloader_utils.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from PIL import Image from lavis.datasets.datasets.vqa_datasets import VQADataset class VGVQADataset(VQADataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) answers = [ann["answer"]] # TODO this should be configured better weights = [0.2] return { "image": image, "text_input": question, "answers": answers, "weights": weights, }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/vg_vqa_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from abc import abstractmethod from lavis.datasets.datasets.base_dataset import BaseDataset class MultimodalClassificationDataset(BaseDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.class_labels = None @abstractmethod def _build_class_labels(self): pass
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/multimodal_classification_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from collections import OrderedDict from lavis.datasets.datasets.base_dataset import BaseDataset from PIL import Image class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": os.path.basename(ann["image"]), "caption": ann["caption"], "image": sample["image"], } ) class ImageTextPairDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): # TODO this assumes image input, not general enough ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) caption = self.text_processor(ann["caption"]) return {"image": image, "text_input": caption}
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/image_text_pair_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from lavis.datasets.datasets.base_dataset import BaseDataset from lavis.datasets.datasets.caption_datasets import CaptionDataset class VideoCaptionDataset(CaptionDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] vname = ann["video"] video_path = os.path.join(self.vis_root, vname) video = self.vis_processor(video_path) caption = self.text_processor(ann["caption"]) # "image_id" is kept to stay compatible with the COCO evaluation format return { "video": video, "text_input": caption, "image_id": self.img_ids[ann["image_id"]], } class VideoCaptionEvalDataset(BaseDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] vname = ann["video"] video_path = os.path.join(self.vis_root, vname) video = self.vis_processor(video_path) return { "video": video, "image_id": ann["image_id"], "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/video_caption_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import json import os from collections import OrderedDict from lavis.datasets.datasets.multimodal_classification_datasets import ( MultimodalClassificationDataset, ) class __DisplMixin: def displ_item(self, index): ann = self.annotation[index] vname = ann["video"] vpath = os.path.join(self.vis_root, vname) return OrderedDict( {"file": vpath, "question": ann["question"], "answer": ann["answer"]} ) class VideoQADataset(MultimodalClassificationDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) def _build_class_labels(self, ans_path): ans2label = json.load(open(ans_path)) self.class_labels = ans2label def _get_answer_label(self, answer): if answer in self.class_labels: return self.class_labels[answer] else: return len(self.class_labels) def __getitem__(self, index): assert ( self.class_labels ), f"class_labels of {__class__.__name__} is not built yet." ann = self.annotation[index] vname = ann["video"] vpath = os.path.join(self.vis_root, vname) frms = self.vis_processor(vpath) question = self.text_processor(ann["question"]) return { "video": frms, "text_input": question, "answers": self._get_answer_label(ann["answer"]), "question_id": ann["question_id"], "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/video_vqa_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from collections import OrderedDict from PIL import Image from lavis.datasets.datasets.base_dataset import BaseDataset import json import copy class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "dialogue": ann["dialogue"], "image": sample["image"], } ) class DialogueDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ self.vis_root = vis_root self.annotation = [] for ann_path in ann_paths: dialogs = json.load(open(ann_path, "r"))["dialogs"] for dialog in dialogs: all_turns = dialog["dialog"] dialogue_context = [] for turn in all_turns: dialog_instance = copy.deepcopy(dialog) question = turn["question"] answer = turn["answer"] dialog_instance["dialog"] = copy.deepcopy(dialogue_context) dialog_instance["question"] = question dialog_instance["answer"] = answer self.annotation.append(dialog_instance) dialogue_context.append(turn) self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann["image_id"] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) caption = self.text_processor(ann["caption"]) return { "image": image, "text_input": caption, "image_id": self.img_ids[ann["image_id"]], } class DialogueEvalDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ self.vis_root = vis_root self.annotation = [] for ann_path in ann_paths: dialogs = json.load(open(ann_path, "r"))["dialogs"] for dialog in dialogs: all_turns = dialog["dialog"] dialogue_context = all_turns[:-1] last_turn = all_turns[-1] question = last_turn["question"] answer = last_turn["answer"] dialog["dialog"] = dialogue_context dialog["question"] = question dialog["answer"] = answer self.annotation.append(dialog) self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann["image_id"] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) return { "image": image, "image_id": ann["image_id"], "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/dialogue_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os import json from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from lavis.datasets.datasets.caption_datasets import CaptionDataset, CaptionEvalDataset COCOCapDataset = CaptionDataset class COCOCapEvalDataset(CaptionEvalDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) img_id = ann["image"].split("/")[-1].strip(".jpg").split("_")[-1] return { "image": image, "image_id": img_id, "instance_id": ann["instance_id"], } class NoCapsEvalDataset(CaptionEvalDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) img_id = ann["img_id"] return { "image": image, "image_id": img_id, "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/coco_caption_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from collections import OrderedDict import json import os import torch from PIL import Image from lavis.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "question": ann["question"], "question_id": ann["question_id"], "direct_answers": "; ".join(ann["direct_answers"]), "choices": "; ".join(ann["choices"]), "correct_choice": ann["choices"][ann["correct_choice_idx"]], "image": sample["image"], } ) class AOKVQADataset(VQADataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) answer_key = "direct_answers" answer_weight = {} for answer in ann[answer_key]: if answer in answer_weight.keys(): answer_weight[answer] += 1 / len(ann[answer_key]) else: answer_weight[answer] = 1 / len(ann[answer_key]) answers = list(answer_weight.keys()) weights = list(answer_weight.values()) return { "image": image, "text_input": question, "answers": answers, "weights": weights, } class AOKVQAEvalDataset(VQAEvalDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ self.vis_root = vis_root self.annotation = json.load(open(ann_paths[0])) answer_list_path = ann_paths[1] if os.path.exists(answer_list_path): self.answer_list = json.load(open(answer_list_path)) else: self.answer_list = None try: self.coco_fmt_qust_file = ann_paths[2] self.coco_fmt_anno_file = ann_paths[3] except IndexError: self.coco_fmt_qust_file = None self.coco_fmt_anno_file = None self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() def collater(self, samples): ( image_list, question_list, question_id_list, instance_id_list, choices_list, correct_choice_idx_list, direct_answers_list, ) = ([], [], [], [], [], [], []) for sample in samples: image_list.append(sample["image"]) question_list.append(sample["text_input"]) question_id_list.append(sample["question_id"]) instance_id_list.append(sample["instance_id"]) choices_list.append(sample["choices"]) correct_choice_idx_list.append(sample["correct_choice_idx"]) direct_answers_list.append(sample["direct_answers"]) return { "image": torch.stack(image_list, dim=0), "text_input": question_list, "question_id": question_id_list, "instance_id": instance_id_list, "choices": choices_list, "correct_choice_idx": correct_choice_idx_list, "direct_answers": direct_answers_list, } def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) choices = ann["choices"] if "correct_choice_idx" in ann: correct_choice_idx = ann["correct_choice_idx"] else: correct_choice_idx = None if "direct_answers" in ann: direct_answers = ann["direct_answers"] else: direct_answers = None return { "image": image, "text_input": question, "question_id": ann["question_id"], "instance_id": ann["instance_id"], "choices": choices, "correct_choice_idx": correct_choice_idx, "direct_answers": direct_answers, }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/aok_vqa_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from collections import OrderedDict from lavis.datasets.datasets.multimodal_classification_datasets import ( MultimodalClassificationDataset, ) from PIL import Image class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": os.path.basename(ann["image"]), "sentence": ann["sentence"], "label": ann["label"], "image": sample["image"], } ) class SNLIVisualEntialmentDataset(MultimodalClassificationDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.class_labels = self._build_class_labels() def _build_class_labels(self): return {"contradiction": 0, "neutral": 1, "entailment": 2} def __getitem__(self, index): ann = self.annotation[index] image_id = ann["image"] image_path = os.path.join(self.vis_root, "%s.jpg" % image_id) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) sentence = self.text_processor(ann["sentence"]) return { "image": image, "text_input": sentence, "label": self.class_labels[ann["label"]], "image_id": image_id, "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/snli_ve_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import torch from lavis.datasets.datasets.base_dataset import BaseDataset class VQADataset(BaseDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) def collater(self, samples): image_list, question_list, answer_list, weight_list = [], [], [], [] num_answers = [] for sample in samples: image_list.append(sample["image"]) question_list.append(sample["text_input"]) weight_list.extend(sample["weights"]) answers = sample["answers"] answer_list.extend(answers) num_answers.append(len(answers)) return { "image": torch.stack(image_list, dim=0), "text_input": question_list, "answer": answer_list, "weight": torch.Tensor(weight_list), "n_answers": torch.LongTensor(num_answers), } class VQAEvalDataset(BaseDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths)
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/vqa_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os import json from PIL import Image from lavis.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset from collections import OrderedDict class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "question": ann["question"], "question_id": ann["question_id"], "answers": "; ".join(ann["answer"]), "image": sample["image"], } ) class COCOVQADataset(VQADataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) answer_weight = {} for answer in ann["answer"]: if answer in answer_weight.keys(): answer_weight[answer] += 1 / len(ann["answer"]) else: answer_weight[answer] = 1 / len(ann["answer"]) answers = list(answer_weight.keys()) weights = list(answer_weight.values()) return { "image": image, "text_input": question, "answers": answers, "weights": weights, } class COCOVQAEvalDataset(VQAEvalDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ self.vis_root = vis_root self.annotation = json.load(open(ann_paths[0])) answer_list_path = ann_paths[1] if os.path.exists(answer_list_path): self.answer_list = json.load(open(answer_list_path)) else: self.answer_list = None try: self.coco_fmt_qust_file = ann_paths[2] self.coco_fmt_anno_file = ann_paths[3] except IndexError: self.coco_fmt_qust_file = None self.coco_fmt_anno_file = None self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) return { "image": image, "text_input": question, "question_id": ann["question_id"], "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/coco_vqa_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os import json from PIL import Image from lavis.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset from collections import OrderedDict class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "question": ann["question"], "question_id": ann["question_id"], "answers": "; ".join(ann["answer"]), "image": sample["image"], } ) class GQADataset(VQADataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) answers = [ann["answer"]] weights = [1] return { "image": image, "text_input": question, "answers": answers, "weights": weights, } class GQAEvalDataset(VQAEvalDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. gqa/images/) ann_root (string): directory to store the annotation file """ self.vis_root = vis_root self.annotation = json.load(open(ann_paths[0])) ## TODO: support inference method == 'ranking' answer_list_path = ann_paths[1] if len(ann_paths) > 1 else '' if os.path.exists(answer_list_path): self.answer_list = json.load(open(answer_list_path)) else: self.answer_list = None self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) if "answer" in ann: # answer is a string answer = ann["answer"] else: answer = None return { "image": image, "text_input": question, "answer": answer, "question_id": ann["question_id"], "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/gqa_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import torch from lavis.datasets.datasets.dialogue_datasets import ( DialogueDataset, DialogueEvalDataset, ) class AVSDDialDataset(DialogueDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] vname = ann["image_id"] video = self.vis_processor(self.vis_root, vname) dialogue = self.text_processor(ann) # "image_id" is kept to stay compatible with the COCO evaluation format return { "video_fts": video["video_fts"], "video_token_type_ids": video["token_type_ids"], "input_ids": dialogue["input_ids"], "token_type_ids": dialogue["token_type_ids"], "labels": dialogue["labels"], "image_id": ann["image_id"], "instance_id": ann["instance_id"], } def collater(self, samples): input_ids, token_type_ids, labels, video_fts, video_token_type_ids = ( [], [], [], [], [], ) for i in samples: input_ids.append(i["input_ids"]) token_type_ids.append(i["token_type_ids"]) labels.append(i["labels"]) video_fts.append(i["video_fts"]) video_token_type_ids.append(i["video_token_type_ids"]) input_ids = self.text_processor.padding(input_ids) labels = self.text_processor.padding( labels, -1 ) # ignore token indice -1 by default video_fts = self.vis_processor.padding(video_fts) token_type_ids = self.text_processor.padding(token_type_ids) video_token_type_ids = self.text_processor.padding(video_token_type_ids) token_type_ids = torch.cat([video_token_type_ids, token_type_ids], dim=1) attn_mask = self.text_processor.get_attention_mask(input_ids) video_mask = self.vis_processor.get_attention_mask(video_fts) attn_mask = torch.cat([video_mask, attn_mask], dim=1) video_labels = ( torch.ones((video_fts.size(0), video_fts.size(1))).long() * -1 ) # ignore token indice -1 by default labels = torch.cat([video_labels, labels], dim=1) samples = {} samples["input_ids"] = input_ids samples["token_type_ids"] = token_type_ids samples["labels"] = labels samples["video_fts"] = video_fts samples["attn_mask"] = attn_mask return samples class AVSDDialEvalDataset(DialogueEvalDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] vname = ann["image_id"] video = self.vis_processor(self.vis_root, vname) dialogue = self.text_processor(ann) # "image_id" is kept to stay compatible with the COCO evaluation format return { "video_fts": video["video_fts"], "video_token_type_ids": video["token_type_ids"], "input_ids": dialogue["input_ids"], "token_type_ids": dialogue["token_type_ids"], "labels": dialogue["labels"], "image_id": ann["image_id"], "instance_id": ann["instance_id"], } def collater(self, samples): input_ids, token_type_ids, labels, video_fts, video_token_type_ids = ( [], [], [], [], [], ) for i in samples: input_ids.append(i["input_ids"]) token_type_ids.append(i["token_type_ids"]) labels.append(i["labels"]) video_fts.append(i["video_fts"]) video_token_type_ids.append(i["video_token_type_ids"]) input_ids = self.text_processor.padding(input_ids) labels = self.text_processor.padding( labels, -1 ) # ignore token indice -1 by default video_fts = self.vis_processor.padding(video_fts) token_type_ids = self.text_processor.padding(token_type_ids) video_token_type_ids = self.text_processor.padding(video_token_type_ids) token_type_ids = torch.cat([video_token_type_ids, token_type_ids], dim=1) attn_mask = self.text_processor.get_attention_mask(input_ids) video_mask = self.vis_processor.get_attention_mask(video_fts) attn_mask = torch.cat([video_mask, attn_mask], dim=1) video_labels = ( torch.ones((video_fts.size(0), video_fts.size(1))).long() * -1 ) # ignore token indice -1 by default labels = torch.cat([video_labels, labels], dim=1) samples = {} samples["input_ids"] = input_ids samples["token_type_ids"] = token_type_ids samples["labels"] = labels samples["video_fts"] = video_fts samples["attn_mask"] = attn_mask return samples
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/avsd_dialogue_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from collections import OrderedDict from lavis.datasets.datasets.base_dataset import BaseDataset from PIL import Image class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "caption": ann["caption"], "image": sample["image"], } ) class CaptionDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann["image_id"] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __getitem__(self, index): # TODO this assumes image input, not general enough ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) caption = self.text_processor(ann["caption"]) return { "image": image, "text_input": caption, "image_id": self.img_ids[ann["image_id"]], } class CaptionEvalDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) return { "image": image, "image_id": ann["image_id"], "instance_id": ann["instance_id"], }
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/caption_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os from collections import OrderedDict from lavis.datasets.datasets.base_dataset import BaseDataset from PIL import Image class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] visual_key = "image" if "image" in ann else "video" return OrderedDict( { "file": ann[visual_key], "caption": ann["caption"], visual_key: sample[visual_key], } ) class RetrievalDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann["image_id"] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) caption = self.text_processor(ann["caption"]) return { "image": image, "text_input": caption, "image_id": self.img_ids[ann["image_id"]], "instance_id": ann["instance_id"], } class RetrievalEvalDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.text = [] self.image = [] self.txt2img = {} self.img2txt = {} txt_id = 0 for img_id, ann in enumerate(self.annotation): self.image.append(ann["image"]) self.img2txt[img_id] = [] for i, caption in enumerate(ann["caption"]): self.text.append(self.text_processor(caption)) self.img2txt[img_id].append(txt_id) self.txt2img[txt_id] = img_id txt_id += 1 def __getitem__(self, index): image_path = os.path.join(self.vis_root, self.annotation[index]["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) return {"image": image, "index": index} class VideoRetrievalDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of videos. ann_root (string): directory to store the annotation file """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann["video"] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __getitem__(self, index): ann = self.annotation[index] vpath = os.path.join(self.vis_root, ann["video"]) video = self.vis_processor(vpath) caption = self.text_processor(ann["caption"]) # return image, caption, self.img_ids[ann['image_id']] return { "video": video, "text_input": caption, "image_id": self.img_ids[ann["video"]], } class VideoRetrievalEvalDataset(BaseDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of videos. ann_root (string): directory to store the annotation file split (string): val or test """ super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.text = [] self.image = [] self.txt2img = {} self.img2txt = {} txt_id = 0 for img_id, ann in enumerate(self.annotation): self.image.append(ann["video"]) self.img2txt[img_id] = [] for i, caption in enumerate(ann["caption"]): self.text.append(self.text_processor(caption)) self.img2txt[img_id].append(txt_id) self.txt2img[txt_id] = img_id txt_id += 1 def __getitem__(self, index): ann = self.annotation[index] vpath = os.path.join(self.vis_root, ann["video"]) video = self.vis_processor(vpath) return {"video": video, "index": index}
3D-LLM-main
three_steps_3d_feature/second_step/lavis/datasets/datasets/retrieval_datasets.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause Based on huggingface code base https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert """ import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import Tensor, device import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss import torch.nn.functional as F from transformers import BatchEncoding, PreTrainedTokenizer from transformers.activations import ACT2FN from transformers.file_utils import ( ModelOutput, ) from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from transformers.utils import logging from transformers.models.bert.configuration_bert import BertConfig from lavis.common.utils import get_abs_path from lavis.models.base_model import BaseEncoder logging.set_verbosity_error() logger = logging.get_logger(__name__) class BertEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) if config.add_type_embeddings: self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) ) self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) self.config = config def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[ :, past_key_values_length : seq_length + past_key_values_length ] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if token_type_ids is not None: token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings else: embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config, is_cross_attention): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr( config, "embedding_size" ): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_width, self.all_head_size) self.value = nn.Linear(config.encoder_width, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) if ( self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query" ): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size ) self.save_attention = False def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if ( self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query" ): seq_length = hidden_states.size()[1] position_ids_l = torch.arange( seq_length, dtype=torch.long, device=hidden_states.device ).view(-1, 1) position_ids_r = torch.arange( seq_length, dtype=torch.long, device=hidden_states.device ).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding( distance + self.max_position_embeddings - 1 ) positional_embedding = positional_embedding.to( dtype=query_layer.dtype ) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum( "bhld,lrd->bhlr", query_layer, positional_embedding ) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum( "bhld,lrd->bhlr", query_layer, positional_embedding ) relative_position_scores_key = torch.einsum( "bhrd,lrd->bhlr", key_layer, positional_embedding ) attention_scores = ( attention_scores + relative_position_scores_query + relative_position_scores_key ) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) if is_cross_attention and self.save_attention: self.save_attention_map(attention_probs) attention_probs.register_hook(self.save_attn_gradients) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = ( (context_layer, attention_probs) if output_attentions else (context_layer,) ) outputs = outputs + (past_key_value,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.self = BertSelfAttention(config, is_cross_attention) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads, ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = ( self.self.attention_head_size * self.self.num_attention_heads ) self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[ 1: ] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config, layer_num): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.layer_num = layer_num # compatibility for ALBEF and BLIP try: # ALBEF & ALPRO fusion_layer = self.config.fusion_layer add_cross_attention = ( fusion_layer <= layer_num and self.config.add_cross_attention ) self.fusion_layer = fusion_layer except AttributeError: # BLIP self.fusion_layer = self.config.num_hidden_layers add_cross_attention = self.config.add_cross_attention # if self.config.add_cross_attention: if add_cross_attention: self.crossattention = BertAttention( config, is_cross_attention=self.config.add_cross_attention ) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, mode=None, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = ( past_key_value[:2] if past_key_value is not None else None ) self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] # TODO line 482 in albef/models/xbert.py # compatibility for ALBEF and BLIP if mode in ["multimodal", "fusion"] and hasattr(self, "crossattention"): assert ( encoder_hidden_states is not None ), "encoder_hidden_states must be given for cross-attention layers" if isinstance(encoder_hidden_states, list): cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states[ (self.layer_num - self.fusion_layer) % len(encoder_hidden_states) ], encoder_attention_mask[ (self.layer_num - self.fusion_layer) % len(encoder_hidden_states) ], output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] else: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] outputs = ( outputs + cross_attention_outputs[1:-1] ) # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [BertLayer(config, i) for i in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, mode="multimodal", ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = ( () if output_attentions and self.config.add_cross_attention else None ) next_decoder_cache = () if use_cache else None try: # ALBEF fusion_layer = self.config.fusion_layer except AttributeError: # BLIP fusion_layer = self.config.num_hidden_layers if mode == "text": start_layer = 0 # output_layer = self.config.fusion_layer output_layer = fusion_layer elif mode == "fusion": # start_layer = self.config.fusion_layer start_layer = fusion_layer output_layer = self.config.num_hidden_layers elif mode == "multimodal": start_layer = 0 output_layer = self.config.num_hidden_layers # compatibility for ALBEF and BLIP # for i in range(self.config.num_hidden_layers): for i in range(start_layer, output_layer): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None # TODO pay attention to this. if self.gradient_checkpointing and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, mode=mode, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, mode=mode, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool, ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = ( seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] ) # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype, ), causal_mask, ], axis=-1, ) extended_attention_mask = ( causal_mask[:, None, :, :] * attention_mask[:, None, None, :] ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=self.dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, mode="multimodal", ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif encoder_embeds is not None: input_shape = encoder_embeds.size()[:-1] batch_size, seq_length = input_shape device = encoder_embeds.device else: raise ValueError( "You have to specify either input_ids or inputs_embeds or encoder_embeds" ) # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] if past_key_values is not None else 0 ) if attention_mask is None: attention_mask = torch.ones( ((batch_size, seq_length + past_key_values_length)), device=device ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device, is_decoder ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ 0 ].size() else: ( encoder_batch_size, encoder_sequence_length, _, ) = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [ self.invert_attention_mask(mask) for mask in encoder_attention_mask ] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask ) else: encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask ) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if encoder_embeds is None: embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) else: embedding_output = encoder_embeds encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, mode=mode, ) sequence_output = encoder_outputs[0] pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class BertForMaskedLM(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids=None, attention_mask=None, # token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, mode="multimodal", soft_labels=None, alpha=0, return_logits=False, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.bert( input_ids, attention_mask=attention_mask, # token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_embeds=encoder_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, mode=mode, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) ) if soft_labels is not None: loss_distill = -torch.sum( F.log_softmax(prediction_scores, dim=-1) * soft_labels, dim=-1 ) loss_distill = loss_distill[labels != -100].mean() masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill if not return_dict: output = (prediction_scores,) + outputs[2:] return ( ((masked_lm_loss,) + output) if masked_lm_loss is not None else output ) return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, **model_kwargs ): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token assert ( self.config.pad_token_id is not None ), "The PAD token should be defined for generation" attention_mask = torch.cat( [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1, ) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device, ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} class BertLMHeadModel(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=True, reduction="mean", mode="multimodal", soft_labels=None, alpha=0, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') >>> config = BertConfig.from_pretrained("bert-base-cased") >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, mode=mode, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :].contiguous() lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) lm_loss = loss_fct( shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) if reduction == "none": lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) if soft_labels is not None: loss_distill = -torch.sum( F.log_softmax(shifted_prediction_scores, dim=-1) * soft_labels, dim=-1 ) loss_distill = (loss_distill * (labels != -100)).sum(1) lm_loss = (1 - alpha) * lm_loss + alpha * loss_distill if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past=None, attention_mask=None, **model_kwargs ): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past, "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), "is_decoder": True, } def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past ), ) return reordered_past class XBertLMHeadDecoder(BertLMHeadModel): """ This class decouples the decoder forward logic from the VL model. In this way, different VL models can share this decoder as long as they feed encoder_embeds as required. """ @classmethod def from_config(cls, cfg, from_pretrained=False): med_config_path = get_abs_path(cfg.get("med_config_path")) med_config = BertConfig.from_json_file(med_config_path) if from_pretrained: return cls.from_pretrained("bert-base-uncased", config=med_config) else: return cls(config=med_config) def generate_from_encoder( self, tokenized_prompt, visual_embeds, sep_token_id, pad_token_id, use_nucleus_sampling=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, **kwargs ): if not use_nucleus_sampling: num_beams = num_beams visual_embeds = visual_embeds.repeat_interleave(num_beams, dim=0) image_atts = torch.ones(visual_embeds.size()[:-1], dtype=torch.long).to( self.device ) model_kwargs = { "encoder_hidden_states": visual_embeds, "encoder_attention_mask": image_atts, } if use_nucleus_sampling: # nucleus sampling outputs = self.generate( input_ids=tokenized_prompt.input_ids, max_length=max_length, min_length=min_length, do_sample=True, top_p=top_p, num_return_sequences=1, eos_token_id=sep_token_id, pad_token_id=pad_token_id, repetition_penalty=1.1, **model_kwargs ) else: # beam search outputs = self.generate( input_ids=tokenized_prompt.input_ids, max_length=max_length, min_length=min_length, num_beams=num_beams, eos_token_id=sep_token_id, pad_token_id=pad_token_id, repetition_penalty=repetition_penalty, **model_kwargs ) return outputs class XBertEncoder(BertModel, BaseEncoder): @classmethod def from_config(cls, cfg, from_pretrained=False): med_config_path = get_abs_path(cfg.get("med_config_path")) med_config = BertConfig.from_json_file(med_config_path) if from_pretrained: return cls.from_pretrained( "bert-base-uncased", config=med_config, add_pooling_layer=False ) else: return cls(config=med_config, add_pooling_layer=False) def forward_automask(self, tokenized_text, visual_embeds, **kwargs): image_atts = torch.ones(visual_embeds.size()[:-1], dtype=torch.long).to( self.device ) text = tokenized_text text_output = super().forward( text.input_ids, attention_mask=text.attention_mask, encoder_hidden_states=visual_embeds, encoder_attention_mask=image_atts, return_dict=True, ) return text_output def forward_text(self, tokenized_text, **kwargs): text = tokenized_text token_type_ids = kwargs.get("token_type_ids", None) text_output = super().forward( text.input_ids, attention_mask=text.attention_mask, token_type_ids=token_type_ids, return_dict=True, mode="text", ) return text_output
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/med.py
# Based on EVA, BEIT, timm and DeiT code bases # https://github.com/baaivision/EVA # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model from lavis.common.dist_utils import download_cached_file def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x.half()) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x.half(), weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None and init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x.half()).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001, use_checkpoint=False): super().__init__() self.image_size = img_size self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None self.use_checkpoint = use_checkpoint dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) # self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) # self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None # self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) # if isinstance(self.head, nn.Linear): # trunc_normal_(self.head.weight, std=.02) self.apply(self._init_weights) self.fix_init_weight() # if isinstance(self.head, nn.Linear): # self.head.weight.data.mul_(init_scale) # self.head.bias.data.mul_(init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, rel_pos_bias) else: x = blk(x, rel_pos_bias) return x # x = self.norm(x) # if self.fc_norm is not None: # t = x[:, 1:, :] # return self.fc_norm(t.mean(1)) # else: # return x[:, 0] def forward(self, x): x = self.forward_features(x) # x = self.head(x) return x def get_intermediate_layers(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) features = [] rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias) features.append(x) return features def interpolate_pos_embed(model, checkpoint_model): if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'].float() embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed def convert_weights_to_fp16(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() # if isinstance(l, (nn.MultiheadAttention, Attention)): # for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: # tensor = getattr(l, attr) # if tensor is not None: # tensor.data = tensor.data.half() model.apply(_convert_weights_to_fp16) def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"): model = VisionTransformer( img_size=img_size, patch_size=14, use_mean_pooling=False, embed_dim=1408, depth=39, num_heads=1408//88, mlp_ratio=4.3637, qkv_bias=True, drop_path_rate=drop_path_rate, norm_layer=partial(nn.LayerNorm, eps=1e-6), use_checkpoint=use_checkpoint, ) url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth" cached_file = download_cached_file( url, check_hash=False, progress=True ) state_dict = torch.load(cached_file, map_location="cpu") interpolate_pos_embed(model,state_dict) incompatible_keys = model.load_state_dict(state_dict, strict=False) # print(incompatible_keys) if precision == "fp16": # model.to("cuda") convert_weights_to_fp16(model) return model
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/eva_vit.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging from omegaconf import OmegaConf from lavis.common.registry import registry from lavis.models.base_model import BaseModel from lavis.models.albef_models.albef_classification import AlbefClassification from lavis.models.albef_models.albef_feature_extractor import AlbefFeatureExtractor from lavis.models.albef_models.albef_nlvr import AlbefNLVR from lavis.models.albef_models.albef_pretrain import AlbefPretrain from lavis.models.albef_models.albef_retrieval import AlbefRetrieval from lavis.models.albef_models.albef_vqa import AlbefVQA from lavis.models.alpro_models.alpro_qa import AlproQA from lavis.models.alpro_models.alpro_retrieval import AlproRetrieval from lavis.models.blip_models.blip import BlipBase from lavis.models.blip_models.blip_caption import BlipCaption from lavis.models.blip_models.blip_classification import BlipClassification from lavis.models.blip_models.blip_feature_extractor import BlipFeatureExtractor from lavis.models.blip_models.blip_image_text_matching import BlipITM from lavis.models.blip_models.blip_nlvr import BlipNLVR from lavis.models.blip_models.blip_pretrain import BlipPretrain from lavis.models.blip_models.blip_retrieval import BlipRetrieval from lavis.models.blip_models.blip_vqa import BlipVQA from lavis.models.blip2_models.blip2 import Blip2Base from lavis.models.blip2_models.blip2_opt import Blip2OPT from lavis.models.blip2_models.blip2_t5 import Blip2T5 from lavis.models.blip2_models.blip2_qformer import Blip2Qformer from lavis.models.blip2_models.blip2_image_text_matching import Blip2ITM from lavis.models.pnp_vqa_models.pnp_vqa import PNPVQA from lavis.models.pnp_vqa_models.pnp_unifiedqav2_fid import PNPUnifiedQAv2FiD from lavis.models.img2prompt_models.img2prompt_vqa import Img2PromptVQA from lavis.models.med import XBertLMHeadDecoder from lavis.models.vit import VisionTransformerEncoder from lavis.models.clip_models.model import CLIP from lavis.models.gpt_models.gpt_dialogue import GPTDialogue from lavis.processors.base_processor import BaseProcessor __all__ = [ "load_model", "AlbefClassification", "AlbefFeatureExtractor", "AlbefNLVR", "AlbefVQA", "AlbefPretrain", "AlbefRetrieval", "AlproQA", "AlproRetrieval", "BaseModel", "BlipBase", "BlipFeatureExtractor", "BlipCaption", "BlipClassification", "BlipITM", "BlipNLVR", "BlipPretrain", "BlipRetrieval", "BlipVQA", "Blip2Qformer", "Blip2Base", "Blip2ITM", "Blip2OPT", "Blip2T5", "PNPVQA", "Img2PromptVQA", "PNPUnifiedQAv2FiD", "CLIP", "VisionTransformerEncoder", "XBertLMHeadDecoder", "GPTDialogue", ] def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None): """ Load supported models. To list all available models and types in registry: >>> from lavis.models import model_zoo >>> print(model_zoo) Args: name (str): name of the model. model_type (str): type of the model. is_eval (bool): whether the model is in eval mode. Default: False. device (str): device to use. Default: "cpu". checkpoint (str): path or to checkpoint. Default: None. Note that expecting the checkpoint to have the same keys in state_dict as the model. Returns: model (torch.nn.Module): model. """ model = registry.get_model_class(name).from_pretrained(model_type=model_type) if checkpoint is not None: model.load_checkpoint(checkpoint) if is_eval: model.eval() if device == "cpu": model = model.float() return model.to(device) def load_preprocess(config): """ Load preprocessor configs and construct preprocessors. If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing. Args: config (dict): preprocessor configs. Returns: vis_processors (dict): preprocessors for visual inputs. txt_processors (dict): preprocessors for text inputs. Key is "train" or "eval" for processors used in training and evaluation respectively. """ def _build_proc_from_cfg(cfg): return ( registry.get_processor_class(cfg.name).from_config(cfg) if cfg is not None else BaseProcessor() ) vis_processors = dict() txt_processors = dict() vis_proc_cfg = config.get("vis_processor") txt_proc_cfg = config.get("text_processor") if vis_proc_cfg is not None: vis_train_cfg = vis_proc_cfg.get("train") vis_eval_cfg = vis_proc_cfg.get("eval") else: vis_train_cfg = None vis_eval_cfg = None vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg) vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg) if txt_proc_cfg is not None: txt_train_cfg = txt_proc_cfg.get("train") txt_eval_cfg = txt_proc_cfg.get("eval") else: txt_train_cfg = None txt_eval_cfg = None txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg) txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg) return vis_processors, txt_processors def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"): """ Load model and its related preprocessors. List all available models and types in registry: >>> from lavis.models import model_zoo >>> print(model_zoo) Args: name (str): name of the model. model_type (str): type of the model. is_eval (bool): whether the model is in eval mode. Default: False. device (str): device to use. Default: "cpu". Returns: model (torch.nn.Module): model. vis_processors (dict): preprocessors for visual inputs. txt_processors (dict): preprocessors for text inputs. """ model_cls = registry.get_model_class(name) # load model model = model_cls.from_pretrained(model_type=model_type) if is_eval: model.eval() # load preprocess cfg = OmegaConf.load(model_cls.default_config_path(model_type)) if cfg is not None: preprocess_cfg = cfg.preprocess vis_processors, txt_processors = load_preprocess(preprocess_cfg) else: vis_processors, txt_processors = None, None logging.info( f"""No default preprocess for model {name} ({model_type}). This can happen if the model is not finetuned on downstream datasets, or it is not intended for direct use without finetuning. """ ) if device == "cpu": model = model.float() return model.to(device), vis_processors, txt_processors class ModelZoo: """ A utility class to create string representation of available model architectures and types. >>> from lavis.models import model_zoo >>> # list all available models >>> print(model_zoo) >>> # show total number of models >>> print(len(model_zoo)) """ def __init__(self) -> None: self.model_zoo = { k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys()) for k, v in registry.mapping["model_name_mapping"].items() } def __str__(self) -> str: return ( "=" * 50 + "\n" + f"{'Architectures':<30} {'Types'}\n" + "=" * 50 + "\n" + "\n".join( [ f"{name:<30} {', '.join(types)}" for name, types in self.model_zoo.items() ] ) ) def __iter__(self): return iter(self.model_zoo.items()) def __len__(self): return sum([len(v) for v in self.model_zoo.values()]) model_zoo = ModelZoo()
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/__init__.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import os import numpy as np import torch import torch.nn as nn from lavis.common.dist_utils import download_cached_file, is_dist_avail_and_initialized from lavis.common.utils import get_abs_path, is_url from omegaconf import OmegaConf class BaseModel(nn.Module): """Base class for models.""" def __init__(self): super().__init__() @property def device(self): return list(self.parameters())[0].device def load_checkpoint(self, url_or_filename): """ Load from a finetuned checkpoint. This should expect no mismatch in the model keys and the checkpoint keys. """ if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") if "model" in checkpoint.keys(): state_dict = checkpoint["model"] else: state_dict = checkpoint msg = self.load_state_dict(state_dict, strict=False) logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg @classmethod def from_pretrained(cls, model_type): """ Build a pretrained model from default configuration file, specified by model_type. Args: - model_type (str): model type, specifying architecture and checkpoints. Returns: - model (nn.Module): pretrained or finetuned model, depending on the configuration. """ model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model model = cls.from_config(model_cfg) return model @classmethod def default_config_path(cls, model_type): assert ( model_type in cls.PRETRAINED_MODEL_CONFIG_DICT ), "Unknown model type {}".format(model_type) return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) def load_checkpoint_from_config(self, cfg, **kwargs): """ Load checkpoint as specified in the config file. If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model. When loading the pretrained model, each task-specific architecture may define their own load_from_pretrained() method. """ load_finetuned = cfg.get("load_finetuned", True) if load_finetuned: finetune_path = cfg.get("finetuned", None) assert ( finetune_path is not None ), "Found load_finetuned is True, but finetune_path is None." self.load_checkpoint(url_or_filename=finetune_path) else: # load pre-trained weights pretrain_path = cfg.get("pretrained", None) assert "Found load_finetuned is False, but pretrain_path is None." self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs) def before_evaluation(self, **kwargs): pass def show_n_params(self, return_str=True): tot = 0 for p in self.parameters(): w = 1 for x in p.shape: w *= x tot += w if return_str: if tot >= 1e6: return "{:.1f}M".format(tot / 1e6) else: return "{:.1f}K".format(tot / 1e3) else: return tot class BaseEncoder(nn.Module): """ Base class for primitive encoders, such as ViT, TimeSformer, etc. """ def __init__(self): super().__init__() def forward_features(self, samples, **kwargs): raise NotImplementedError @property def device(self): return list(self.parameters())[0].device class SharedQueueMixin: @torch.no_grad() def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None): # gather keys before updating queue image_feats = concat_all_gather(image_feat) text_feats = concat_all_gather(text_feat) batch_size = image_feats.shape[0] ptr = int(self.queue_ptr) assert self.queue_size % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.image_queue[:, ptr : ptr + batch_size] = image_feats.T self.text_queue[:, ptr : ptr + batch_size] = text_feats.T if idxs is not None: idxs = concat_all_gather(idxs) self.idx_queue[:, ptr : ptr + batch_size] = idxs.T ptr = (ptr + batch_size) % self.queue_size # move pointer self.queue_ptr[0] = ptr class MomentumDistilationMixin: @torch.no_grad() def copy_params(self): for model_pair in self.model_pairs: for param, param_m in zip( model_pair[0].parameters(), model_pair[1].parameters() ): param_m.data.copy_(param.data) # initialize param_m.requires_grad = False # not update by gradient @torch.no_grad() def _momentum_update(self): for model_pair in self.model_pairs: for param, param_m in zip( model_pair[0].parameters(), model_pair[1].parameters() ): param_m.data = param_m.data * self.momentum + param.data * ( 1.0 - self.momentum ) class GatherLayer(torch.autograd.Function): """ Gather tensors from all workers with support for backward propagation: This implementation does not cut the gradients as torch.distributed.all_gather does. """ @staticmethod def forward(ctx, x): output = [ torch.zeros_like(x) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) torch.distributed.all_reduce(all_gradients) return all_gradients[torch.distributed.get_rank()] def all_gather_with_grad(tensors): """ Performs all_gather operation on the provided tensors. Graph remains connected for backward grad computation. """ # Queue the gathered tensors world_size = torch.distributed.get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors # tensor_all = GatherLayer.apply(tensors) tensor_all = GatherLayer.apply(tensors) return torch.cat(tensor_all, dim=0) @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ # if use distributed training if not is_dist_avail_and_initialized(): return tensor tensors_gather = [ torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output def tile(x, dim, n_tile): init_dim = x.size(dim) repeat_idx = [1] * x.dim() repeat_idx[dim] = n_tile x = x.repeat(*(repeat_idx)) order_index = torch.LongTensor( np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]) ) return torch.index_select(x, dim, order_index.to(x.device))
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/base_model.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause Based on timm code base https://github.com/rwightman/pytorch-image-models/tree/master/timm """ import math import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.models.vision_transformer import _cfg, PatchEmbed from timm.models.registry import register_model from timm.models.layers import trunc_normal_, DropPath from timm.models.helpers import named_apply, adapt_input_conv from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper from lavis.models.base_model import BaseEncoder class Mlp(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_gradients = None self.attention_map = None def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def forward(self, x, register_hook=False): B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) if register_hook: self.save_attention_map(attn) attn.register_hook(self.save_attn_gradients) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) if use_grad_checkpointing: self.attn = checkpoint_wrapper(self.attn) self.mlp = checkpoint_wrapper(self.mlp) def forward(self, x, register_hook=False): x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class VisionTransformer(nn.Module): """Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=None, use_grad_checkpointing=False, ckpt_layer=0, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super().__init__() self.num_features = ( self.embed_dim ) = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, use_grad_checkpointing=( use_grad_checkpointing and i >= depth - ckpt_layer ), ) for i in range(depth) ] ) self.norm = norm_layer(embed_dim) trunc_normal_(self.pos_embed, std=0.02) trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def forward(self, x, register_blk=-1): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed[:, : x.size(1), :] x = self.pos_drop(x) for i, blk in enumerate(self.blocks): x = blk(x, register_blk == i) x = self.norm(x) return x @torch.jit.ignore() def load_pretrained(self, checkpoint_path, prefix=""): _load_weights(self, checkpoint_path, prefix) @torch.no_grad() def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""): """Load weights from .npz checkpoints for official Google Brain Flax implementation""" import numpy as np def _n2p(w, t=True): if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: w = w.flatten() if t: if w.ndim == 4: w = w.transpose([3, 2, 0, 1]) elif w.ndim == 3: w = w.transpose([2, 0, 1]) elif w.ndim == 2: w = w.transpose([1, 0]) return torch.from_numpy(w) w = np.load(checkpoint_path) if not prefix and "opt/target/embedding/kernel" in w: prefix = "opt/target/" if hasattr(model.patch_embed, "backbone"): # hybrid backbone = model.patch_embed.backbone stem_only = not hasattr(backbone, "stem") stem = backbone if stem_only else backbone.stem stem.conv.weight.copy_( adapt_input_conv( stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"]) ) ) stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"])) stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"])) if not stem_only: for i, stage in enumerate(backbone.stages): for j, block in enumerate(stage.blocks): bp = f"{prefix}block{i + 1}/unit{j + 1}/" for r in range(3): getattr(block, f"conv{r + 1}").weight.copy_( _n2p(w[f"{bp}conv{r + 1}/kernel"]) ) getattr(block, f"norm{r + 1}").weight.copy_( _n2p(w[f"{bp}gn{r + 1}/scale"]) ) getattr(block, f"norm{r + 1}").bias.copy_( _n2p(w[f"{bp}gn{r + 1}/bias"]) ) if block.downsample is not None: block.downsample.conv.weight.copy_( _n2p(w[f"{bp}conv_proj/kernel"]) ) block.downsample.norm.weight.copy_( _n2p(w[f"{bp}gn_proj/scale"]) ) block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"])) embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"]) else: embed_conv_w = adapt_input_conv( model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"]) ) model.patch_embed.proj.weight.copy_(embed_conv_w) model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"])) model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False)) pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False) if pos_embed_w.shape != model.pos_embed.shape: pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights pos_embed_w, model.pos_embed, getattr(model, "num_tokens", 1), model.patch_embed.grid_size, ) model.pos_embed.copy_(pos_embed_w) model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"])) model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"])) # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) for i, block in enumerate(model.blocks.children()): block_prefix = f"{prefix}Transformer/encoderblock_{i}/" mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/" block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"])) block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"])) block.attn.qkv.weight.copy_( torch.cat( [ _n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T for n in ("query", "key", "value") ] ) ) block.attn.qkv.bias.copy_( torch.cat( [ _n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1) for n in ("query", "key", "value") ] ) ) block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1)) block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"])) for r in range(2): getattr(block.mlp, f"fc{r + 1}").weight.copy_( _n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"]) ) getattr(block.mlp, f"fc{r + 1}").bias.copy_( _n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"]) ) block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"])) block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"])) def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 print("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape) ntok_new = posemb_new.shape[1] if num_tokens: posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] ntok_new -= num_tokens else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) if not len(gs_new): # backwards compatibility gs_new = [int(math.sqrt(ntok_new))] * 2 assert len(gs_new) >= 2 print("Position embedding grid-size from %s to %s", [gs_old, gs_old], gs_new) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate( posemb_grid, size=gs_new, mode="bicubic", align_corners=False ) posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): # interpolate position embedding embedding_size = pos_embed_checkpoint.shape[-1] num_patches = visual_encoder.patch_embed.num_patches num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches**0.5) if orig_size != new_size: # class_token and dist_token are kept unchanged extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape( -1, orig_size, orig_size, embedding_size ).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) print( "reshape position embedding from %d to %d" % (orig_size**2, new_size**2) ) return new_pos_embed else: return pos_embed_checkpoint class VisionTransformerEncoder(VisionTransformer, BaseEncoder): @classmethod def from_config(cls, cfg, from_pretrained=False): vit_type = cfg.get("vit_type", "base") image_size = cfg.get("image_size", 384) ckpt_layer = cfg.get("vit_ckpt_layer", 0) drop_path_rate = cfg.get("vit_drop_path_rate", 0) norm_layer_eps = cfg.get("vit_layer_norm_epsilon", -1) use_grad_checkpointing = cfg.get("vit_grad_ckpt", False) if norm_layer_eps == -1: norm_layer = None else: norm_layer = partial(nn.LayerNorm, eps=norm_layer_eps) # norm_layer=partial(nn.LayerNorm, eps=1e-6), assert vit_type in ["base", "large"], "vit parameter must be base or large" if vit_type == "base": vision_width = 768 visual_encoder = cls( img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, drop_path_rate=0 or drop_path_rate, norm_layer=norm_layer, ) if from_pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", map_location="cpu", check_hash=True, ) state_dict = checkpoint["model"] state_dict["pos_embed"] = interpolate_pos_embed( state_dict["pos_embed"], visual_encoder ) msg = visual_encoder.load_state_dict(state_dict, strict=False) elif vit_type == "large": vision_width = 1024 visual_encoder = cls( img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, drop_path_rate=0.1 or drop_path_rate, norm_layer=norm_layer, ) if from_pretrained: from timm.models.helpers import load_custom_pretrained from timm.models.vision_transformer import default_cfgs load_custom_pretrained( visual_encoder, default_cfgs["vit_large_patch16_224_in21k"] ) visual_encoder.vision_width = vision_width return visual_encoder def forward_features(self, x, register_blk=-1): return super().forward(x, register_blk)
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/vit.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import torch import torch.nn as nn from itertools import chain from lavis.common.registry import registry from lavis.models.base_model import BaseModel from torch.nn import CrossEntropyLoss, MSELoss from transformers import T5ForConditionalGeneration from lavis.models.pnp_vqa_models import prepare_qa_input from lavis.models.blip_models.blip_image_text_matching import compute_gradcam from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions @registry.register_model("pnp_vqa") class PNPVQA(BaseModel): """ PNPVQA model consists of three submodels for zero-shot VQA: 1. Image-questioning matching model 2. Image captioning model 3. Question answering model Supported model types: - base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base) - large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large) - 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b) Usage: >>> from lavis.models import load_model >>> model = load_model("pnp_vqa", "base", is_eval=True) >>> model = load_model("pnp_vqa", "large", is_eval=True) >>> model = load_model("pnp_vqa", "3b", is_eval=True) """ PRETRAINED_MODEL_CONFIG_DICT = {"base": "configs/models/pnp-vqa/pnp_vqa_base.yaml", "large": "configs/models/pnp-vqa/pnp_vqa_large.yaml", "3b": "configs/models/pnp-vqa/pnp_vqa_3b.yaml", } def __init__(self, image_question_matching_model, image_captioning_model, question_answering_model, offload_model=False): super().__init__() self.image_question_matching_model = image_question_matching_model self.image_captioning_model = image_captioning_model self.question_answering_model = question_answering_model self.offload_model = offload_model def forward_itm(self, samples, block_num=7): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) - text_input (list): A list of strings of length batch_size block_num (int): The index of cross-attention block for gradcam computation. Returns: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) - text_input (list): A list of strings of length batch_size - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) """ image = samples['image'] question = [text.strip('?') for text in samples['text_input']] tokenized_text = self.image_question_matching_model.tokenizer(question, padding='longest', truncation=True, return_tensors="pt").to(self.image_question_matching_model.device) with torch.set_grad_enabled(True): gradcams, _ = compute_gradcam(model=self.image_question_matching_model, visual_input=image, text_input=question, tokenized_text=tokenized_text, block_num=block_num) gradcams = [gradcam_[1] for gradcam_ in gradcams] samples['gradcams'] = torch.stack(gradcams).reshape(samples['image'].size(0), -1) return samples def forward_cap( self, samples, cap_max_length=20, cap_min_length=0, top_p=1, top_k=50, repetition_penalty=1.0, num_captions=100, num_patches=20, ): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) - text_input (list): A list of strings of length batch_size - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) cap_max_length (int): The maximum length of the caption to be generated. cap_min_length (int): The minimum length of the caption to be generated. top_p (float): The cumulative probability for nucleus sampling. top_k (float): The number of the highest probability tokens for top-k sampling. repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. num_captions (int): Number of captions generated for each image. num_patches (int): Number of patches sampled for each image. Returns: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) - text_input (list): A list of strings of length batch_size - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) - captions (nested list): A nested list of strings of total length batch_size * num_captions """ encoder_out = self.image_captioning_model.forward_encoder(samples) captions = [[] for _ in range(encoder_out.size(0))] min_num_captions = 0 while min_num_captions < num_captions: encoder_out_samples = [] for i in range(num_captions): patch_id = torch.multinomial(samples['gradcams'].to(self.image_captioning_model.device), num_patches).reshape(encoder_out.size(0), -1) + 1 patch_id = patch_id.sort(dim=1).values.unsqueeze(-1).expand(-1, -1, encoder_out.size(2)) encoder_out_sample = torch.gather(encoder_out, 1, patch_id) encoder_out_samples.append(encoder_out_sample) stacked = torch.stack(encoder_out_samples, dim=1) image_embeds = torch.flatten(stacked, start_dim=0, end_dim=1) #(bsz*num_seq, num_patch, dim) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.image_captioning_model.device) model_kwargs = { "encoder_hidden_states": image_embeds, "encoder_attention_mask": image_atts, } prompt = [self.image_captioning_model.prompt] * image_embeds.size(0) prompt = self.image_captioning_model.tokenizer(prompt, return_tensors="pt").to(self.image_captioning_model.device) prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id prompt.input_ids = prompt.input_ids[:, :-1] decoder_out = self.image_captioning_model.text_decoder.generate( input_ids=prompt.input_ids, max_length=cap_max_length, min_length=cap_min_length, do_sample=True, top_p=top_p, top_k=top_k, num_return_sequences=1, eos_token_id=self.image_captioning_model.tokenizer.sep_token_id, pad_token_id=self.image_captioning_model.tokenizer.pad_token_id, repetition_penalty=repetition_penalty, **model_kwargs) outputs = self.image_captioning_model.tokenizer.batch_decode(decoder_out, skip_special_tokens=True) for counter, output in enumerate(outputs): ind = counter//num_captions if len(captions[ind]) < num_captions: caption = output[len(self.image_captioning_model.prompt):] overlap_caption = [1 for caps in captions[ind] if caption in caps] if len(overlap_caption) == 0: captions[ind].append(caption) min_num_captions = min([len(i) for i in captions]) samples['captions'] = captions return samples def forward_qa( self, samples, num_beams=1, max_len=20, min_len=0, internal_bsz_fid=1, num_captions=100, num_captions_fid=1, ): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) - text_input (list): A list of strings of length batch_size - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) - captions (nested list): A nested list of strings of total length batch_size * num_captions - question_captions (nested list): A nested list of concatenated strings of questions and captions num_beams (int): Number of beams for beam search. 1 means no beam search. max_len (int): Maximum length of generated answers. min_len (int): Minimum length of generated answers. internal_bsz_fid (int): Internal batch size when using FiD decoding. num_captions (int): Number of captions generated for each image. num_captions_fid (int): Number of captions concatenated with a question during FiD decoding. Returns: List: A list of strings, each string is an answer. """ prepare_qa_input(samples, num_captions=num_captions, num_captions_fid=num_captions_fid) pred_answers = [] question_captions = samples['question_captions'] question_captions_chunk = [question_captions[i:i + internal_bsz_fid] for i in range(0, len(question_captions), internal_bsz_fid)] question_captions_chunk = list(chain(*question_captions_chunk)) for question_caption in question_captions_chunk: question_caption_input = self.question_answering_model.tokenizer(question_caption, padding='longest', truncation=True, return_tensors="pt").to(self.question_answering_model.device) question_caption_input.input_ids = question_caption_input.input_ids.reshape( internal_bsz_fid, -1, question_caption_input.input_ids.size(1)) question_caption_input.attention_mask = question_caption_input.attention_mask.reshape( internal_bsz_fid, -1, question_caption_input.attention_mask.size(1)) outputs = self.question_answering_model.generate(input_ids=question_caption_input.input_ids, attention_mask=question_caption_input.attention_mask, num_beams=num_beams, min_length=min_len, max_length=max_len, ) for output in outputs: pred_answer = self.question_answering_model.tokenizer.decode(output, skip_special_tokens=True) pred_answers.append(pred_answer) return pred_answers def predict_answers( self, samples, num_beams=1, inference_method="generate", max_len=20, min_len=0, internal_bsz_fid=1, num_captions=50, num_captions_fid=1, cap_max_length=20, cap_min_length=10, top_k=50, top_p=1, repetition_penalty=1, num_patches=50, block_num=7, ): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480. - text_input (str or [str]): String or a list of strings, each string is a question. The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first. num_beams (int): Number of beams for beam search. 1 means no beam search. inference_method (str): Inference method. Must be "generate". The model will generate answers. max_len (int): Maximum length of generated answers. min_len (int): Minimum length of generated answers. internal_bsz_fid (int): Internal batch size when using FiD decoding. num_captions (int): Number of captions generated for each image. num_captions_fid (int): Number of captions concatenated with a question during FiD decoding. cap_max_length (int): The maximum length of the caption to be generated. cap_min_length (int): The minimum length of the caption to be generated. top_k (float): The number of the highest probability tokens for top-k sampling. top_p (float): The cumulative probability for nucleus sampling. repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. num_patches (int): Number of patches sampled for each image. block_num (int): The index of cross-attention block for gradcam computation. Returns: List: A list of strings, each string is an answer. gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) captions (nested list): A nested list of strings of total length batch_size * num_captions """ assert inference_method in [ "generate", ], "Inference method must be 'generate', got {}.".format( inference_method ) if isinstance(samples["text_input"], str): samples["text_input"] = [samples["text_input"]] assert len(samples["text_input"]) == samples["image"].size( 0 ), "The number of questions must be equal to the batch size." samples = self.forward_itm(samples, block_num=block_num) samples = self.forward_cap(samples, cap_max_length=cap_max_length, cap_min_length=cap_min_length, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, num_captions=num_captions, num_patches=num_patches) if self.offload_model: samples['image'] = samples['image'].to('cpu') self.image_question_matching_model.to('cpu') self.image_captioning_model.to('cpu') torch.cuda.empty_cache() pred_answers = self.forward_qa(samples, num_beams=num_beams, max_len=max_len, min_len=min_len, internal_bsz_fid=internal_bsz_fid, num_captions=num_captions, num_captions_fid=num_captions_fid) if self.offload_model: self.image_question_matching_model.to(self.question_answering_model.device) self.image_captioning_model.to(self.question_answering_model.device) return pred_answers, samples['captions'], samples['gradcams'] @classmethod def from_config(cls, model_config): itm_config = model_config.image_question_matching_model cap_config = model_config.image_captioning_model qa_config = model_config.question_answering_model itm_cls = registry.get_model_class(itm_config.arch) cap_cls = registry.get_model_class(cap_config.arch) qa_cls = registry.get_model_class(qa_config.arch) image_question_matching_model = itm_cls.from_config(itm_config) image_captioning_model = cap_cls.from_config(cap_config) question_answering_model = qa_cls.from_config(qa_config) model = cls(image_question_matching_model=image_question_matching_model, image_captioning_model=image_captioning_model, question_answering_model=question_answering_model, offload_model= True if model_config.model_type == '3b' else False, ) return model
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/pnp_vqa_models/pnp_vqa.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import torch def prepare_qa_input(sample, num_captions, num_captions_fid): sample_question_captions = [] for question, captions in zip(sample['text_input'], sample['captions']): assert isinstance(captions, list) question_captions = [] question_caption = '' for cap_id, cap_ in enumerate(captions[0:num_captions]): question_caption += (cap_.strip() + '. ') if (cap_id + 1) != num_captions and ((cap_id + 1) % num_captions_fid == 0): question_caption = question.lower().strip() + " \\n " + question_caption.lower().strip() question_captions.append(question_caption) question_caption = '' if (cap_id + 1) == num_captions: question_caption = question.lower().strip() + " \\n " + question_caption.lower().strip() question_captions.append(question_caption) sample_question_captions.append(question_captions) sample['question_captions'] = sample_question_captions
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/pnp_vqa_models/__init__.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause Based on facebookresearch code base https://github.com/facebookresearch/FiD """ import torch import torch.nn as nn from lavis.common.registry import registry from lavis.models.base_model import BaseModel from lavis.common.utils import get_abs_path from transformers import T5Config, T5Tokenizer, T5ForConditionalGeneration @registry.register_model("pnp_unifiedqav2_fid") class PNPUnifiedQAv2FiD(T5ForConditionalGeneration, BaseModel): PRETRAINED_MODEL_CONFIG_DICT = {} def __init__(self, config, model_path): super().__init__(config) self.tokenizer = T5Tokenizer.from_pretrained(model_path) def forward(self, input_ids=None, attention_mask=None, **kwargs): if input_ids != None: if input_ids.dim() == 3: self.encoder.num_contexts = input_ids.size(1) input_ids = input_ids.view(input_ids.size(0), -1) if attention_mask != None: attention_mask = attention_mask.view(attention_mask.size(0), -1) return super().forward( input_ids=input_ids, attention_mask=attention_mask, **kwargs ) def generate(self, input_ids, attention_mask, num_beams=1, min_length=0, max_length=20): self.encoder.num_contexts = input_ids.size(1) return super().generate( input_ids=input_ids.view(input_ids.size(0), -1), attention_mask=attention_mask.view(attention_mask.size(0), -1), num_beams=num_beams, min_length=min_length, max_length=max_length ) def load_unifiedqa(self, state_dict): self.load_state_dict(state_dict) self.encoder = T5EncoderWrapper(self.encoder) @classmethod def from_config(cls, cfg): model_path = cfg.get('pretrained') t5_config_path = get_abs_path(cfg.get("t5_config_path")) t5_config = T5Config.from_json_file(t5_config_path) model = cls(t5_config, model_path) model.load_unifiedqa(T5ForConditionalGeneration.from_pretrained(model_path).state_dict()) return model class T5EncoderWrapper(torch.nn.Module): def __init__(self, encoder): super().__init__() self.encoder = encoder self.block = self.encoder.block self.parallelize = self.encoder.parallelize self.main_input_name = encoder.main_input_name def forward(self, input_ids=None, attention_mask=None, **kwargs): bsz, total_length = input_ids.shape context_length = total_length // self.num_contexts input_ids = input_ids.view(bsz*self.num_contexts, context_length) attention_mask = attention_mask.view(bsz*self.num_contexts, context_length) outputs = self.encoder(input_ids, attention_mask, **kwargs) outputs = (outputs[0].view(bsz, self.num_contexts*context_length, -1), ) + outputs[1:] return outputs
3D-LLM-main
three_steps_3d_feature/second_step/lavis/models/pnp_vqa_models/pnp_unifiedqav2_fid.py