python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
FLASHATTENION-LION-OPTIMIZE-main
training/src/callbacks/__init__.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/callbacks/fault_tolerance.py from typing import Any from pathlib import Path import pytorch_lightning as pl class ModelCheckpointMine(pl.callbacks.model_checkpoint.ModelCheckpoint): def __init__(self, *args, fault_tolerant=False, **kwargs): super().__init__(*args, **kwargs) self.fault_tolerant = fault_tolerant def on_exception(self, trainer: "pl.Trainer", *_: Any, **__: Any) -> None: if self.fault_tolerant: # overwrite if necessary trainer.save_checkpoint(str(Path(self.dirpath) / '.pl_auto_save.ckpt')) # def teardown(self, trainer: "pl.Trainer", *_: Any, **__: Any) -> None: # if self.fault_tolerant: # trainer.strategy.remove_checkpoint(str(Path(self.dirpath) / '.pl_auto_save.ckpt')) # TD [2022-07-17] I was trying to make resuming from standard checkpoint fault-tolerant. # However, when it resumes it's off by 1 iteration. My attempt to fix it in seq.py (below) didn't work. # So I decided to just copy _FaultToleranceCheckpoint and just save on_exception. # def on_save_checkpoint(self, checkpoint): # # TD [2022-07-12] The "completed" counter is off by 1 so when it resumes # # it's off by 1 iteration. However, the data is still off by 1 iteration, probably # # because the dataloader_state_dict['counter'] is off by @batch_size, and idk how # # to fix it cleanly. # checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['total']['completed'] += 1 # checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['current']['completed'] += 1 # checkpoint['loops']['fit_loop']['epoch_loop.state_dict']['_batches_that_stepped'] += 1 # checkpoint['loops']['fit_loop']['epoch_loop.state_dict']['dataloader_state_dict'][0]['state'][0]['num_batches_fetched'] += 1
FLASHATTENION-LION-OPTIMIZE-main
training/src/callbacks/model_checkpoint.py
from typing import Any from pytorch_lightning import Callback, Trainer, LightningModule from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict class ParamsLog(Callback): """Log the number of parameters of the model """ def __init__(self, total_params_log: bool = True, trainable_params_log: bool = True, non_trainable_params_log: bool = True): super().__init__() self._log_stats = AttributeDict( { 'total_params_log': total_params_log, 'trainable_params_log': trainable_params_log, 'non_trainable_params_log': non_trainable_params_log, } ) @rank_zero_only def on_fit_start(self, trainer: Trainer, pl_module: LightningModule) -> None: logs = {} if self._log_stats.total_params_log: logs["model/params_total"] = sum(p.numel() for p in pl_module.parameters()) if self._log_stats.trainable_params_log: logs["model/params_trainable"] = sum(p.numel() for p in pl_module.parameters() if p.requires_grad) if self._log_stats.non_trainable_params_log: logs["model/params_not_trainable"] = sum(p.numel() for p in pl_module.parameters() if not p.requires_grad) if trainer.logger is not None: trainer.logger.log_hyperparams(logs)
FLASHATTENION-LION-OPTIMIZE-main
training/src/callbacks/params_log.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/callbacks/lr_monitor.py. from typing import Any from pytorch_lightning import Callback, Trainer from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.strategies import DeepSpeedStrategy class LossScaleMonitor(Callback): """Monitor the loss scale for AMP (fp16). """ # Use on_before_optimizer_step instead of on_train_batch_start since there might be # gradient accumulation and we only care about the loss scale when it could change (i.e., # optimizer.step). @rank_zero_only def on_before_optimizer_step(self, trainer: Trainer, *args: Any, **kwargs: Any) -> None: if not trainer._logger_connector.should_update_logs: return stats = {} if isinstance(trainer.strategy, DeepSpeedStrategy): stats = {'scalar/scale': trainer.model.optimizer.loss_scale} if hasattr(trainer, 'precision_plugin') and hasattr(trainer.precision_plugin, 'scaler'): scaler = trainer.precision_plugin.scaler if scaler is not None: stats = { 'scaler/scale': scaler.get_scale(), 'scaler/growth_tracker': scaler._get_growth_tracker(), } if stats and trainer.loggers is not None: for logger in trainer.loggers: logger.log_metrics(stats, step=trainer.fit_loop.epoch_loop._batches_that_stepped)
FLASHATTENION-LION-OPTIMIZE-main
training/src/callbacks/loss_scale_monitor.py
# Adapted from https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py from itertools import chain from pathlib import Path import pickle from typing import Any, List, Union import subprocess import mmap from multiprocessing.shared_memory import SharedMemory import numpy as np import torch from torch.utils.data.dataloader import DataLoader, Dataset from transformers import AutoTokenizer from datasets import load_dataset from pytorch_lightning import LightningDataModule from src.datamodules.datasets.lm_dataset import LMDataset from src.datamodules.fault_tolerant_sampler import RandomFaultTolerantSampler from src.datamodules.fault_tolerant_sampler import FaultTolerantDistributedSampler from src.datamodules.datasets.detokenizer import DATASET_TOKENIZATION_REGISTRY from src.utils.utils import get_logger logger = get_logger() # https://github.com/numpy/numpy/issues/18294 class SHMArray(np.ndarray): #copied from https://numpy.org/doc/stable/user/basics.subclassing.html#slightly-more-realistic-example-attribute-added-to-existing-array def __new__(cls, input_array, shm=None): obj = np.asarray(input_array).view(cls) obj.shm = shm return obj def __array_finalize__(self, obj): if obj is None: return self.shm = getattr(obj, 'shm', None) class LMDataModule(LightningDataModule): def __init__(self, dataset_name, tokenizer_name, dataset_config_name=None, max_length=1024, cache_dir=None, val_ratio=0.0005, val_split_seed=2357, add_eos=True, detokenize=False, val_only=False, batch_size=32, batch_size_eval=None, num_workers=1, shuffle=False, pin_memory=False, drop_last=False, fault_tolerant=False, ddp=False, fast_forward_epochs=None, fast_forward_batches=None, use_shmem=True): super().__init__() self.dataset_name = dataset_name self.dataset_config_name = dataset_config_name self.tokenizer_name = tokenizer_name self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() self.max_length = max_length self.val_ratio = val_ratio self.val_split_seed = val_split_seed self.val_only = val_only self.add_eos = add_eos self.detokenize = detokenize self.batch_size = batch_size self.batch_size_eval = batch_size_eval if batch_size_eval is not None else self.batch_size self.num_workers = num_workers self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last if fault_tolerant: assert self.shuffle self.fault_tolerant = fault_tolerant if ddp: assert fault_tolerant self.ddp = ddp self.fast_forward_epochs = fast_forward_epochs self.fast_forward_batches = fast_forward_batches if self.fast_forward_epochs is not None or self.fast_forward_batches is not None: assert ddp and fault_tolerant self.use_shmem = use_shmem if self.use_shmem: assert cache_dir is not None def prepare_data(self): if self.cache_dir is None: # Just download the dataset load_dataset(self.dataset_name, self.dataset_config_name) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return concat_ids, self.tokenizer = self.process_dataset() self.vocab_size = len(self.tokenizer) # Create all splits self.dataset_train, self.dataset_val, self.dataset_test = [ LMDataset(concat_ids[split], seq_len=self.max_length) for split in ['train', 'validation', 'test'] ] def process_dataset(self): cache_dir = None if self.cache_dir is None else self.cache_dir / self._cache_dir_name if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) raw_datasets = load_dataset(self.dataset_name, self.dataset_config_name) # https://github.com/stanford-crfm/mistral/blob/main/src/corpora/auto.py if 'validation' not in raw_datasets: assert "train" in raw_datasets, "You must have train in raw_datasets to make a validation raw_datasets" raw_datasets = raw_datasets["train"].train_test_split( test_size=self.val_ratio, seed=self.val_split_seed, shuffle=True # Otherwise test will be at the end of the dataset ) raw_datasets['validation'] = raw_datasets['test'] if self.val_only: # Should only be used for evaluation, not for training raw_datasets['train'] = raw_datasets['validation'] # [2021-12-25] TD: Running the detokenizer on wikitext-103 makes ppl worse # (GPT2-small val ppl after 10 epochs ~22 -> ~25) # However, it's useful for zero-shot transfer from Openwebtext, # as after detokenization it's closer to Openwebtext's format. # https://github.com/stanford-crfm/mistral/issues/12 if self.detokenize: if self.dataset_name in DATASET_TOKENIZATION_REGISTRY: detokenizer = DATASET_TOKENIZATION_REGISTRY[self.dataset_name] raw_datasets = raw_datasets.map( lambda example: {'text': detokenizer(example['text'])}, num_proc=max(self.num_workers, 1), desc='Running detokenizer on dataset' ) tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name, use_fast=True) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # [2021-12-25] TD: For wikitext, don't need to add the EOS since each example already ends # with '\n', and there are no other '\n' in the examples. # assert all([t.count('\n') == 1 for t in raw_datasets['train']['text'] if t]) # Add EOS token to the end of the text if the text is not empty # https://github.com/stanford-crfm/mistral/issues/91 # https://github.com/stanford-crfm/mistral/pull/98 if self.add_eos: add_eos = lambda seq: (seq + tokenizer.eos_token) if seq else seq add_eos_batched = lambda seqs: [add_eos(seq) for seq in seqs] tokenize = lambda example: tokenizer(add_eos_batched(example[text_column_name])) else: tokenize = lambda example: tokenizer(example[text_column_name]) # tokenized_datasets = raw_datasets.map( # tokenize, # batched=True, # num_proc=max(self.num_workers, 1), # remove_columns=column_names, # desc="Running tokenizer on dataset", # ) dtype = np.uint16 if tokenizer.vocab_size < 64 * 1024 else np.int32 def tokenize_concat(examples): # We just need 'input_ids', not 'attention_mask' (since it's all 1) input_ids = np.fromiter(chain(*tokenize(examples)['input_ids']), dtype=dtype) # Need to return a list since we're doing batched processing return {'input_ids': [input_ids], 'len': [len(input_ids)]} tokenized_datasets = raw_datasets.map( tokenize_concat, batched=True, num_proc=max(self.num_workers, 1), remove_columns=column_names, desc="Running tokenizer on dataset", ) if self.use_shmem: # Concatenate all input_ids into an array in shared memory def write_ids_to_shm(example, shm_name, array_len): shm = SharedMemory(name=shm_name) shm_arr = np.ndarray((array_len,), dtype=dtype, buffer=shm.buf) start_idx = example['len_offset'] - len(example['input_ids']) shm_arr[start_idx:example['len_offset']] = example['input_ids'] shm.close() concat_ids = {} for name, ds in tokenized_datasets.items(): tokenized_datasets[name] = ds.add_column('len_offset', np.cumsum(ds['len'])) array_len = tokenized_datasets[name][-1]['len_offset'] shm = SharedMemory(create=True, size=array_len * np.dtype(dtype).itemsize) shm_name = shm.name tokenized_datasets[name].map( write_ids_to_shm, fn_kwargs={'shm_name': shm_name, 'array_len': array_len}, batched=False, num_proc=max(self.num_workers, 1), desc="Concatenating examples", ) shm_arr = np.ndarray((array_len,), dtype=dtype, buffer=shm.buf) # We need to keep a reference to the shared memory, otherwise it gets garbage-collected # when it goes out of scope, and that memory is gone. # https://github.com/numpy/numpy/issues/18294 concat_ids[name] = SHMArray(shm_arr, shm=shm) else: # Use disk concat_ids = {} assert cache_dir is not None cache_dir.mkdir(parents=True, exist_ok=True) def write_ids_to_disk(example, filename): with open(filename, 'r+b') as f: mm = mmap.mmap(f.fileno(), 0) start_idx = example['len_offset'] - len(example['input_ids']) array_len = len(example['input_ids']) arr = np.ndarray((array_len,), dtype=dtype, buffer=mm, offset=np.dtype(dtype).itemsize * start_idx) arr[:] = example['input_ids'] mm.flush() for name, ds in tokenized_datasets.items(): tokenized_datasets[name] = ds.add_column('len_offset', np.cumsum(ds['len'])) array_len = tokenized_datasets[name][-1]['len_offset'] filename = cache_dir / f'{name}.bin' # Need to create the file with this specific size first # https://ostechnix.com/create-files-certain-size-linux/ subprocess.run(['truncate', '-s', str(array_len * np.dtype(dtype).itemsize), str(filename)], check=True) tokenized_datasets[name].map( write_ids_to_disk, fn_kwargs={'filename': filename}, batched=False, num_proc=max(self.num_workers, 1), desc="Concatenating examples", ) concat_ids[name] = np.memmap(filename, dtype=dtype, mode='r', shape=(array_len,)) if cache_dir is not None: self._save_to_cache(concat_ids, tokenizer, cache_dir) if not self.use_shmem: for name in concat_ids: Path(cache_dir / f'{name}.bin').unlink() return concat_ids, tokenizer def _save_to_cache(self, concat_ids, tokenizer, cache_dir): cache_dir.mkdir(parents=True, exist_ok=True) logger.info(f'Saving to cache at {str(cache_dir)}') for k, v in concat_ids.items(): np.save(cache_dir / f'{k}.npy', v) with open(cache_dir / 'tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger.info(f'Load from cache at {str(cache_dir)}') concat_ids = {split: np.load(cache_dir / f'{split}.npy', mmap_mode='r') for split in ['train', 'validation', 'test']} with open(cache_dir / 'tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) return concat_ids, tokenizer @property def _cache_dir_name(self): return f'tokenizer_name-{self.tokenizer_name}-val_ratio-{self.val_ratio}-val_split_seed-{self.val_split_seed}-add_eos-{self.add_eos}-detokenize-{self.detokenize}' def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ if self.shuffle and self.fault_tolerant: shuffle = False sampler = (FaultTolerantDistributedSampler(self.dataset_train) if self.ddp else RandomFaultTolerantSampler(self.dataset_train)) # TD [2022-08-06]: Only the DDP sampler supports fast-forwarding for now # We assume that it's being resumed with the same number of GPUs if self.ddp and self.fast_forward_epochs is not None and self.fast_forward_batches is not None: sampler.load_state_dict({ 'epoch': self.fast_forward_epochs, 'counter': self.fast_forward_batches * self.batch_size }) else: shuffle = self.shuffle sampler = None return self._data_loader(self.dataset_train, batch_size=self.batch_size, shuffle=shuffle, sampler=sampler) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test, batch_size=self.batch_size_eval) def _data_loader(self, dataset: Dataset, batch_size: int, shuffle: bool = False, sampler=None) -> DataLoader: return DataLoader( dataset, batch_size=batch_size, num_workers=1, # Data is already in memory, we don't need many workers shuffle=shuffle, sampler=sampler, drop_last=self.drop_last, pin_memory=self.pin_memory, # persistent_workers=True ) def load_state_dict(self, checkpoint): if self.fault_tolerant: self.fast_forward_epochs = checkpoint['loops']['fit_loop']['epoch_progress']['current']['completed'] # TD [2022-08-07] ['epoch_loop.batch_progress']['total']['completed'] is 1 iteration # behind, so we're using the optimizer's progress. This is set correctly in seq.py. self.fast_forward_batches = checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['current']['completed'] # At this point the train loader hasn't been constructed yet
FLASHATTENION-LION-OPTIMIZE-main
training/src/datamodules/language_modeling_hf.py
# Adapted from https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/datamodules/imagenet_datamodule.py import os from pathlib import Path from typing import Any, List, Union, Callable, Optional import torch from torch.utils.data import Dataset, DataLoader, SequentialSampler from torch.utils.data.dataloader import default_collate from torch.utils.data.distributed import DistributedSampler from pytorch_lightning import LightningDataModule from torchvision import transforms from torchvision.datasets import ImageFolder class DictDataset(Dataset): def __init__(self, dataset_dict, length=None): """dataset_dict: dictionary mapping from index to batch length is used in the case of DistributedSampler: e.g. the dataset could have size 1k, but with 8 GPUs the dataset_dict would only have 125 items. """ super().__init__() self.dataset_dict = dataset_dict self.length = length or len(self.dataset_dict) def __getitem__(self, index): return self.dataset_dict[index] def __len__(self): return self.length # From https://github.com/PyTorchLightning/lightning-bolts/blob/2415b49a2b405693cd499e09162c89f807abbdc4/pl_bolts/transforms/dataset_normalizations.py#L10 def imagenet_normalization(): return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) class ImagenetDataModule(LightningDataModule): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2017/08/ Sample-of-Images-from-the-ImageNet-Dataset-used-in-the-ILSVRC-Challenge.png :width: 400 :alt: Imagenet Specs: - 1000 classes - Each image is (3 x varies x varies) (here we default to 3 x 224 x 224) Imagenet train, val and test dataloaders. The train set is the imagenet train. The val set is taken from the train set with `num_imgs_per_val_class` images per class. For example if `num_imgs_per_val_class=2` then there will be 2,000 images in the validation set. The test set is the official imagenet validation set. Example:: from pl_bolts.datamodules import ImagenetDataModule dm = ImagenetDataModule(IMAGENET_PATH) model = LitModel() Trainer().fit(model, datamodule=dm) """ name = "imagenet" def __init__( self, data_dir: str, image_size: int = 224, train_transforms=None, val_transforms=None, test_transforms=None, img_dtype='float32', # Using str since OmegaConf doesn't support non-primitive type cache_val_dataset=False, mixup: Optional[Callable] = None, num_aug_repeats: int = 0, num_workers: int = 0, batch_size: int = 32, batch_size_eval: Optional[int] = None, shuffle: bool = True, pin_memory: bool = True, drop_last: bool = False, *args: Any, **kwargs: Any, ) -> None: """ Args: data_dir: path to the imagenet dataset file num_imgs_per_val_class: how many images per class for the validation set image_size: final image size num_workers: how many data workers batch_size: batch_size shuffle: If true shuffles the data every epoch pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before returning them drop_last: If true drops the last incomplete batch """ super().__init__(*args, **kwargs) self.image_size = image_size self.train_transforms = train_transforms self.val_transforms = val_transforms self.test_transforms = test_transforms assert img_dtype in ['float32', 'float16', 'bfloat16'] self.img_dtype = torch.__getattribute__(img_dtype) self.cache_val_dataset = cache_val_dataset self.mixup = mixup self.num_aug_repeats = num_aug_repeats self.dims = (3, self.image_size, self.image_size) self.data_dir = Path(data_dir).expanduser() self.num_workers = num_workers self.batch_size = batch_size self.batch_size_eval = batch_size_eval if batch_size_eval is not None else self.batch_size self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last @property def num_classes(self) -> int: """ Return: 1000 """ return 1000 def _verify_splits(self, data_dir: str, split: str) -> None: dirs = os.listdir(data_dir) if split not in dirs: raise FileNotFoundError( f"a {split} Imagenet split was not found in {data_dir}," f" make sure the folder contains a subfolder named {split}" ) def prepare_data(self) -> None: """This method already assumes you have imagenet2012 downloaded. It validates the data using the meta.bin. .. warning:: Please download imagenet on your own first. """ self._verify_splits(self.data_dir, "train") self._verify_splits(self.data_dir, "val") def setup(self, stage: Optional[str] = None) -> None: """Creates train, val, and test dataset.""" if stage == "fit" or stage is None: train_transforms = (self.train_transform() if self.train_transforms is None else self.train_transforms) val_transforms = (self.val_transform() if self.val_transforms is None else self.val_transforms) if self.img_dtype is not torch.float32: assert isinstance(train_transforms, transforms.Compose) assert isinstance(val_transforms, transforms.Compose) convert_dtype = transforms.Lambda(lambda x: x.to(dtype=self.img_dtype)) train_transforms.transforms.append(convert_dtype) val_transforms.transforms.append(convert_dtype) self.dataset_train = ImageFolder(self.data_dir / 'train', transform=train_transforms) self.dataset_val = ImageFolder(self.data_dir / 'val', transform=val_transforms) if stage == "test" or stage is None: test_transforms = (self.val_transform() if self.test_transforms is None else self.test_transforms) if self.img_dtype is not torch.float32: assert isinstance(test_transforms, transforms.Compose) convert_dtype = transforms.Lambda(lambda x: x.to(dtype=self.img_dtype)) test_transforms.transforms.append(convert_dtype) self.dataset_test = ImageFolder(self.data_dir / 'val', transform=test_transforms) def train_transform(self) -> Callable: """The standard imagenet transforms. .. code-block:: python transforms.Compose([ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) """ preprocessing = transforms.Compose( [ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), imagenet_normalization(), ] ) return preprocessing def val_transform(self) -> Callable: """The standard imagenet transforms for validation. .. code-block:: python transforms.Compose([ transforms.Resize(self.image_size + 32), transforms.CenterCrop(self.image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) """ preprocessing = transforms.Compose( [ transforms.Resize(self.image_size + 32), transforms.CenterCrop(self.image_size), transforms.ToTensor(), imagenet_normalization(), ] ) return preprocessing def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ if self.num_aug_repeats == 0: shuffle = self.shuffle sampler = None else: shuffle = False from timm.data.distributed_sampler import RepeatAugSampler sampler = RepeatAugSampler(self.dataset_train, num_repeats=self.num_aug_repeats) return self._data_loader(self.dataset_train, batch_size=self.batch_size, shuffle=shuffle, mixup=self.mixup, sampler=sampler) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ # If using RepeatAugment, we set trainer.replace_sampler_ddp=False, so we have to # construct the DistributedSampler ourselves. if not self.cache_val_dataset: sampler = (DistributedSampler(self.dataset_val, shuffle=False, drop_last=self.drop_last) if self.num_aug_repeats != 0 else None) return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval, sampler=sampler) else: print('Caching val dataset') sampler = (SequentialSampler(self.dataset_val) if self.trainer.world_size <= 1 else DistributedSampler(self.dataset_val, shuffle=False, drop_last=self.drop_last)) indices = list(iter(sampler)) loader = DataLoader(self.dataset_val, batch_size=None, shuffle=False, sampler=sampler, num_workers=self.num_workers, drop_last=self.drop_last) batches = list(loader) assert len(batches) == len(indices) self.dataset_val = DictDataset(dict(zip(indices, batches)), length=len(self.dataset_val)) sampler = (DistributedSampler(self.dataset_val, shuffle=False, drop_last=self.drop_last) if self.num_aug_repeats != 0 else None) return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval, sampler=sampler) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ sampler = (DistributedSampler(self.dataset_test, shuffle=False, drop_last=self.drop_last) if self.num_aug_repeats != 0 else None) return self._data_loader(self.dataset_test, batch_size=self.batch_size_eval, sampler=sampler) def _data_loader(self, dataset: Dataset, batch_size: int, shuffle: bool = False, mixup: Optional[Callable] = None, sampler=None) -> DataLoader: collate_fn = ((lambda batch: mixup(*default_collate(batch))) if mixup is not None else default_collate) return DataLoader( dataset, collate_fn=collate_fn, batch_size=batch_size, shuffle=shuffle, sampler=sampler, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory, persistent_workers=True ) class Imagenet21kPDataModule(ImagenetDataModule): """ImageNet-21k (winter 21) processed with https://github.com/Alibaba-MIIL/ImageNet21K """ @property def num_classes(self) -> int: """ Return: 10450 """ return 10450
FLASHATTENION-LION-OPTIMIZE-main
training/src/datamodules/imagenet.py
import torch from timm.data import Mixup from timm.data.mixup import mixup_target class TimmMixup(Mixup): """ Wrap timm.data.Mixup that avoids the assert that batch size must be even. """ def __call__(self, x, target): if self.mode == 'elem': lam = self._mix_elem(x) elif self.mode == 'pair': # We move the assert from the beginning of the function to here assert len(x) % 2 == 0, 'Batch size should be even when using this' lam = self._mix_pair(x) else: lam = self._mix_batch(x) target = mixup_target(target, self.num_classes, lam, self.label_smoothing, x.device) return x, target
FLASHATTENION-LION-OPTIMIZE-main
training/src/datamodules/timm_mixup.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/2845e7565dbe6b765ae32870e7d2bc456529c30a/tests/tests_pytorch/utilities/test_auto_restart.py#L1397 from typing import Iterator import math import torch from torch.utils.data import RandomSampler, DistributedSampler class RandomFaultTolerantSampler(RandomSampler): def __init__(self, *args, generator=None, **kwargs): # generator = torch.Generator().manual_seed(seed) # super().__init__(*args, generator=generator, **kwargs) # TD [2022-07-17]: We don't force the seed to be zero. We generate random seed, # which should be reproducible if pl.seed_everything was called before hand. # This means that changing the seed of the experiment will also change the # sampling order. if generator is None: seed = int(torch.empty((), dtype=torch.int64).random_().item()) generator = torch.Generator().manual_seed(seed) super().__init__(*args, generator=generator, **kwargs) self.counter = 0 # self.start_counter = 0 self.restarting = False def state_dict(self): return {"random_state": self.state, "counter": self.counter} def load_state_dict(self, state_dict): self.generator.set_state(state_dict.get("random_state")) self.counter = state_dict["counter"] # self.start_counter = self.counter self.restarting = True # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per # epoch, and subsequent epoch will have very few batches. # def __len__(self): # # We need a separate self.start_counter because PL seems to call len repeatedly. # # If we use len(self.data_source) - self.counter then PL will think the epoch ends # # when we're only half way through. # return len(self.data_source) - self.start_counter def __iter__(self) -> Iterator[int]: n = len(self.data_source) self.state = self.generator.get_state() indices = torch.randperm(n, generator=self.generator).tolist() if not self.restarting: self.counter = 0 else: indices = indices[self.counter:] self.restarting = False # self.start_counter = self.counter for index in indices: self.counter += 1 yield index self.counter = 0 # self.start_counter = self.counter class FaultTolerantDistributedSampler(DistributedSampler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.counter = 0 # self.start_counter = 0 self.restarting = False def state_dict(self): return {"epoch": self.epoch, "counter": self.counter} def load_state_dict(self, state_dict): self.epoch = state_dict["epoch"] self.counter = state_dict["counter"] # self.start_counter = self.counter self.restarting = True # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per # epoch, and subsequent epoch will have very few batches. # def __len__(self) -> int: # return self.num_samples - self.start_counter def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] else: indices = list(range(len(self.dataset))) # type: ignore[arg-type] if not self.drop_last: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] else: # remove tail of data to make it evenly divisible. indices = indices[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples if not self.restarting: self.counter = 0 else: indices = indices[self.counter:] self.restarting = False # self.start_counter = self.counter for index in indices: self.counter += 1 yield index self.counter = 0 # self.start_counter = self.counter
FLASHATTENION-LION-OPTIMIZE-main
training/src/datamodules/fault_tolerant_sampler.py
# Copied from https://github.com/stanford-crfm/mistral/blob/main/src/corpora/detokenization.py # Which was originally from https://github.com/NVIDIA/Megatron-LM/blob/aed2f75e209e525c842aec7c044af7acae2a4614/tasks/zeroshot_gpt/detokenizer.py """ Handle detokenization for different dataset for zero-shot LM evaluation. """ import re def wikitext_detokenize(string: str) -> str: """ Wikitext is whitespace tokenized and we remove these whitespaces. Taken from https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt2/detokenizer.py """ # Contractions string = string.replace("s '", "s'") string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string) # Number Separators string = string.replace(" @-@ ", "-") string = string.replace(" @,@ ", ",") string = string.replace(" @.@ ", ".") # Punctuation string = string.replace(" : ", ": ") string = string.replace(" ; ", "; ") string = string.replace(" . ", ". ") string = string.replace(" ! ", "! ") string = string.replace(" ? ", "? ") string = string.replace(" , ", ", ") # Double Brackets string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string) string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string) string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string) string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string) string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string) # Miscellaneous string = string.replace("= = = =", "====") string = string.replace("= = =", "===") string = string.replace("= =", "==") string = string.replace(" " + chr(176) + " ", chr(176)) string = string.replace(" \n", "\n") string = string.replace("\n ", "\n") string = string.replace(" N ", " 1 ") string = string.replace(" 's", "'s") return string # Set Registry for Various Datasets DATASET_TOKENIZATION_REGISTRY = {"wikitext": wikitext_detokenize}
FLASHATTENION-LION-OPTIMIZE-main
training/src/datamodules/datasets/detokenizer.py
# Inspired by https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt/datasets.py # Except we don't pad the last block and don't use overlapping eval # And we return both the input and the target import math import numpy as np import torch class LMDataset(torch.utils.data.Dataset): def __init__(self, tokens, seq_len, drop_last=True): """tokens should be a numpy array """ self.seq_len = seq_len ntokens = len(tokens) if drop_last: ntokens = ((ntokens - 1) // seq_len) * seq_len + 1 self.ntokens = ntokens # We're careful not to slice tokens, since it could be a memmap'ed array or H5 dataset, # and slicing would load it to memory. self.tokens = tokens self.total_sequences = math.ceil((self.ntokens - 1) / self.seq_len) def __len__(self): return self.total_sequences def __getitem__(self, idx): start_idx = idx * self.seq_len seq_len = min(self.seq_len, self.ntokens - 1 - start_idx) data = torch.as_tensor(self.tokens[start_idx:(start_idx + seq_len + 1)].astype(np.int64)) return data[:-1], data[1:].clone()
FLASHATTENION-LION-OPTIMIZE-main
training/src/datamodules/datasets/lm_dataset.py
import inspect import torch.nn as nn import hydra try: from apex.contrib.layer_norm import FastLayerNorm except ImportError: FastLayerNorm = None from src.models.modules.seq_common import PositionalEncoding def group_parameters_for_optimizer(model, optimizer_cfg, bias_weight_decay=False, normalization_weight_decay=False): """Set weight_decay=0.0 for parameters in model.no_weight_decay, for parameters with attribute _no_weight_decay==True, for bias parameters if bias_weight_decay==False, for normalization parameters if normalization_weight_decay==False """ # Get the weight decay from the config, or from the default value of the optimizer constructor # if it's not specified in the config. if 'weight_decay' in optimizer_cfg: weight_decay = optimizer_cfg.weight_decay else: # https://stackoverflow.com/questions/12627118/get-a-function-arguments-default-value signature = inspect.signature(hydra.utils.get_class(optimizer_cfg._target_)) if 'weight_decay' in signature.parameters: weight_decay = signature.parameters['weight_decay'].default if weight_decay is inspect.Parameter.empty: weight_decay = 0.0 else: weight_decay = 0.0 # If none of the parameters have weight decay anyway, and there are no parameters with special # optimization params if weight_decay == 0.0 and not any(hasattr(p, '_optim') for p in model.parameters()): return model.parameters() skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay') else set() skip_keywords = (model.no_weight_decay_keywords() if hasattr(model, 'no_weight_decay_keywords') else set()) # Adapted from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L134 """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() special = set() whitelist_weight_modules = (nn.Linear, ) blacklist_weight_modules = (nn.Embedding, PositionalEncoding) if not normalization_weight_decay: blacklist_weight_modules += (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.LazyBatchNorm1d, nn.LazyBatchNorm2d, nn.LazyBatchNorm3d, nn.GroupNorm, nn.SyncBatchNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.LocalResponseNorm) if FastLayerNorm is not None: blacklist_weight_modules += (FastLayerNorm,) param_dict = {pn: p for pn, p in model.named_parameters() if p.requires_grad} for mn, m in model.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name # In case of parameter sharing, some parameters show up here but are not in # param_dict.keys() if not p.requires_grad or fpn not in param_dict: continue # frozen weights if hasattr(p, '_optim'): special.add(fpn) elif fpn in skip or any(skip_keyword in fpn for skip_keyword in skip_keywords): no_decay.add(fpn) elif getattr(p, '_no_weight_decay', False): no_decay.add(fpn) elif not bias_weight_decay and pn.endswith('bias'): no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) decay |= (param_dict.keys() - no_decay - special) # validate that we considered every parameter inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, f"Parameters {str(inter_params)} made it into both decay/no_decay sets!" assert len(param_dict.keys() - special - union_params) == 0, f"parameters {str(param_dict.keys() - union_params)} were not separated into either decay/no_decay set!" if weight_decay == 0.0 or not no_decay: param_groups = [{"params": [param_dict[pn] for pn in sorted(list(no_decay | decay))], "weight_decay": weight_decay}] else: # We need sorted(list()) so that the order is deterministic. Otherwise when we resume # the order could change and resume will fail. [H/t Albert] param_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] # Add parameters with special hyperparameters # Unique dicts hps = [dict(s) for s in set(frozenset(param_dict[pn]._optim.items()) for pn in special)] for hp in hps: params = [param_dict[pn] for pn in sorted(list(special)) if param_dict[pn]._optim == hp] param_groups.append({"params": params, **hp}) return param_groups
FLASHATTENION-LION-OPTIMIZE-main
training/src/optim/param_grouping.py
import torch from torch.optim import Optimizer from timm.scheduler import CosineLRScheduler # We need to subclass torch.optim.lr_scheduler._LRScheduler, or Pytorch-lightning will complain class TimmCosineLRScheduler(CosineLRScheduler, torch.optim.lr_scheduler._LRScheduler): """ Wrap timm.scheduler.CosineLRScheduler so we can call scheduler.step() without passing in epoch. It supports resuming as well. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._last_epoch = -1 self.step(epoch=0) def step(self, epoch=None): if epoch is None: self._last_epoch += 1 else: self._last_epoch = epoch # We call either step or step_update, depending on whether we're using the scheduler every # epoch or every step. # Otherwise, lightning will always call step (i.e., meant for each epoch), and if we set # scheduler interval to "step", then the learning rate update will be wrong. if self.t_in_epochs: super().step(epoch=self._last_epoch) else: super().step_update(num_updates=self._last_epoch)
FLASHATTENION-LION-OPTIMIZE-main
training/src/optim/timm_lr_scheduler.py
# Meant to work with Apex's DistributeFusedAdam from typing import Any, Callable, Dict, List, Optional, Union from pathlib import Path import types import torch from torch.optim.optimizer import Optimizer from torch.optim import LBFGS from apex.contrib.optimizers.distributed_fused_adam import DistributedFusedAdam from pytorch_lightning.strategies.ddp import DDPStrategy from pytorch_lightning.plugins.precision import PrecisionPlugin, NativeMixedPrecisionPlugin from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.utilities.types import _PATH # from lightning_lite.utilities.types import _PATH from pytorch_lightning.utilities.exceptions import MisconfigurationException class DistAdamNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin): def optimizer_step( # type: ignore[override] self, model: "pl.LightningModule", optimizer, optimizer_idx: int, closure: Callable[[], Any], **kwargs: Any, ) -> Any: if self.scaler is None: # skip scaler logic, as bfloat16 does not require scaler return NativeMixedPrecisionPlugin.optimizer_step( self, optimizer, model=model, optimizer_idx=optimizer_idx, closure=closure, **kwargs ) if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"Native AMP and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})." ) closure_result = closure() # HACK: we don't call self.scaler.unscale_ here. This is because DistributedFusedAdam # optimizer internally takes the scale into account. # If we call unscale_ here, it would be equivalent to unscaling the gradients twice. # Not unscaling has the side-effect that the NormMonitor callback will report the # gradient norm to be much larger than reality. # # `unscale` after the closure is executed but before the `on_before_optimizer_step` hook. # self.scaler.unscale_(optimizer) # This will call gradient clipping self._after_closure(model, optimizer, optimizer_idx) skipped_backward = closure_result is None # in manual optimization, the closure does not return a value if not model.automatic_optimization or not skipped_backward: # note: the scaler will skip the `optimizer.step` if nonfinite gradients are found step_output = self.scaler.step(optimizer, **kwargs) self.scaler.update() return step_output return closure_result def clip_grad_by_norm(self, optimizer: DistributedFusedAdam, clip_val: Union[int, float]) -> None: """Clip gradients by norm.""" # DistributedFusedAdam wants list, not generator # Gradients have not be scaled, so we need to scale up the clip_val if self.scaler is not None: clip_val *= self.scaler.get_scale() return optimizer.clip_grad_norm(clip_val) class DDPStrategyZero2(DDPStrategy): """To use Apex's DistributedFusedAdam, we need to shard the optimizer states when saving/loading checkpoints. """ strategy_name = "ddp_zero2" def __init__( self, *args, precision_plugin: Optional[PrecisionPlugin] = DistAdamNativeMixedPrecisionPlugin, # precision_plugin: Optional[PrecisionPlugin] = None, **kwargs: Union[Any, Dict[str, Any]], ) -> None: super().__init__( *args, precision_plugin=precision_plugin, **kwargs ) @property def precision_plugin(self) -> PrecisionPlugin: return self._precision_plugin if self._precision_plugin is not None else PrecisionPlugin() @precision_plugin.setter def precision_plugin(self, precision_plugin: Optional[PrecisionPlugin]) -> None: self._precision_plugin = precision_plugin # https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance self._precision_plugin.optimizer_step = types.MethodType( DistAdamNativeMixedPrecisionPlugin.optimizer_step, self._precision_plugin ) self._precision_plugin.clip_grad_by_norm = types.MethodType( DistAdamNativeMixedPrecisionPlugin.clip_grad_by_norm, self._precision_plugin ) def optimizer_state(self, optimizer: Optimizer) -> Optional[dict]: if isinstance(optimizer, LightningOptimizer): optimizer = optimizer._optimizer if isinstance(optimizer, DistributedFusedAdam): return optimizer.state_dict(gather_on_root=False) else: return optimizer.state_dict() def save_checkpoint( self, checkpoint: Dict[str, Any], filepath: _PATH, storage_options: Optional[Any] = None ) -> None: """Save model/training states as a checkpoint file through state-dump and file-write. Args: checkpoint: dict containing model and trainer state filepath: write-target file's path storage_options: parameter for how to save to storage, passed to ``CheckpointIO`` plugin """ filepath = Path(filepath) filepath.mkdir(parents=True, exist_ok=True) local_optimizer_states = checkpoint.pop('optimizer_states') if self.is_global_zero: self.checkpoint_io.save_checkpoint(checkpoint, filepath / 'model_states.pt', storage_options=storage_options) self.checkpoint_io.save_checkpoint(local_optimizer_states, filepath / f'{self.global_rank:03d}_optim_states.pt', storage_options=storage_options) def load_checkpoint(self, checkpoint_path: _PATH) -> Dict[str, Any]: torch.cuda.empty_cache() checkpoint_path = Path(checkpoint_path) if checkpoint_path.is_file(): return super().load_checkpoint(self, str(checkpoint_path)) else: assert checkpoint_path.is_dir() global_states = self.checkpoint_io.load_checkpoint(checkpoint_path / 'model_states.pt') local_optimizer_states = self.checkpoint_io.load_checkpoint( checkpoint_path / f'{self.global_rank:03d}_optim_states.pt', map_location='cuda' ) global_states['optimizer_states'] = local_optimizer_states return global_states
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/ddp_zero2.py
import collections import math import os import pathlib import re import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list ret = [i for i, e in enumerate(affinity_list) if e != 0] return ret def set_socket_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity) def set_single_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity[:1]) def set_single_unique_affinity(gpu_id, nproc_per_node): devices = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in devices] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) affinities = [] assigned = [] for socket_affinity in socket_affinities: for core in socket_affinity: if core not in assigned: affinities.append([core]) assigned.append(core) break os.sched_setaffinity(0, affinities[gpu_id]) def set_socket_unique_affinity(gpu_id, nproc_per_node, mode): device_ids = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in device_ids] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) socket_affinities_to_device_ids = collections.defaultdict(list) for idx, socket_affinity in enumerate(socket_affinities): socket_affinities_to_device_ids[tuple(socket_affinity)].append(idx) for socket_affinity, device_ids in socket_affinities_to_device_ids.items(): devices_per_group = len(device_ids) cores_per_device = len(socket_affinity) // devices_per_group for group_id, device_id in enumerate(device_ids): if device_id == gpu_id: if mode == 'interleaved': affinity = list(socket_affinity[group_id::devices_per_group]) elif mode == 'continuous': affinity = list(socket_affinity[group_id*cores_per_device:(group_id+1)*cores_per_device]) else: raise RuntimeError('Unknown set_socket_unique_affinity mode') # reintroduce siblings affinity += [siblings_dict[aff] for aff in affinity if aff in siblings_dict] os.sched_setaffinity(0, affinity) def get_thread_siblings_list(): path = '/sys/devices/system/cpu/cpu*/topology/thread_siblings_list' thread_siblings_list = [] pattern = re.compile(r'(\d+)\D(\d+)') for fname in pathlib.Path(path[0]).glob(path[1:]): with open(fname) as f: content = f.read().strip() res = pattern.findall(content) if res: pair = tuple(map(int, res[0])) thread_siblings_list.append(pair) return thread_siblings_list def set_affinity(gpu_id, nproc_per_node, mode='socket'): if mode == 'socket': set_socket_affinity(gpu_id) elif mode == 'single': set_single_affinity(gpu_id) elif mode == 'single_unique': set_single_unique_affinity(gpu_id, nproc_per_node) elif mode == 'socket_unique_interleaved': set_socket_unique_affinity(gpu_id, nproc_per_node, 'interleaved') elif mode == 'socket_unique_continuous': set_socket_unique_affinity(gpu_id, nproc_per_node, 'continuous') else: raise RuntimeError('Unknown affinity mode') affinity = os.sched_getaffinity(0) return affinity
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/gpu_affinity.py
import re from pathlib import Path import torch import math from einops import rearrange def load_checkpoint(path, device='cpu'): path = Path(path).expanduser() is_deepspeed = False if path.is_dir(): # DeepSpeed checkpoint is_deepspeed = True latest_path = path / 'latest' if latest_path.is_file(): with open(latest_path, 'r') as fd: tag = fd.read().strip() else: raise ValueError(f"Unable to find 'latest' file at {latest_path}") path /= f'{tag}/mp_rank_00_model_states.pt' state_dict = torch.load(path, map_location=device) if is_deepspeed: state_dict = state_dict['module'] # Replace the names of some of the submodules def key_mapping(key): return re.sub(r'^module.model.', '', key) state_dict = {key_mapping(k): v for k, v in state_dict.items()} return state_dict def blockdiag_to_dense_mlp_bert(state_dict): from src.ops.blockdiag_multiply import blockdiag_weight_to_dense_weight names = {name for name in state_dict if re.match('bert.encoder.layer.(\d+).(mlp.fc(1|2)|(intermediate|output).dense).weight', name)} for name in names: state_dict[name] = blockdiag_weight_to_dense_weight(state_dict[name]) return state_dict def interpolate_pos_embedding(state_dict, out_seqlen, pos_embedding_name='model.pos_encoder.pe', interleave=False): orig_emb = state_dict['state_dict'][pos_embedding_name] assert (out_seqlen % orig_emb.shape[1]) == 0, 'out_seqlen must be a multiple of the original sequence length' reps = [1 for i in orig_emb.shape] reps[1] = out_seqlen // orig_emb.shape[1] if interleave: assert math.isqrt(orig_emb.shape[1]) ** 2 == orig_emb.shape[1], 'interleave only works for square lengths' assert math.isqrt(out_seqlen) ** 2 == out_seqlen, 'interleave only works for square lengths' assert math.isqrt(reps[1]) ** 2 == reps[1], 'out_seqlen / seqlen must be a perfect square' emb_square = rearrange(orig_emb, 'b (h w) d -> b h w d', h = math.isqrt(orig_emb.shape[1])) emb_square_expanded = emb_square.repeat_interleave(math.isqrt(reps[1]), axis=1).repeat_interleave(math.isqrt(reps[1]), axis=2) new_emb = rearrange(emb_square_expanded, 'b h w d -> b (h w) d') state_dict['state_dict'][pos_embedding_name] = new_emb else: state_dict['state_dict'][pos_embedding_name] = orig_emb.repeat(*reps) ret = remove_model_prefix(state_dict) # # HACK: this is a hack for block-sparse flash attention ret = { k: v for k, v in ret.items() if not k.endswith('inner_attn.layout') } return ret def remove_model_prefix(state_dict): # HACK: this is a hack to get the model to load properly, get rid of 'model.' prefix for key in list(state_dict['state_dict'].keys()): if key.startswith('model.'): new_key = key[len('model.'):] state_dict['state_dict'][new_key] = state_dict['state_dict'].pop(key) # HACK: something is wrong with the state dict being loaded... return state_dict['state_dict']
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/checkpoint.py
# Copied from https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py from __future__ import division from __future__ import unicode_literals from typing import Iterable, Optional import weakref import copy import contextlib import torch def to_float_maybe(x): return x.float() if x.dtype in [torch.float16, torch.bfloat16] else x # Partially based on: # https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. Args: parameters: Iterable of `torch.nn.Parameter` (typically from `model.parameters()`). decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ def __init__( self, parameters: Iterable[torch.nn.Parameter], decay: float, use_num_updates: bool = True ): if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None parameters = list(parameters) self.shadow_params = [to_float_maybe(p.clone().detach()) for p in parameters if p.requires_grad] self.collected_params = None # By maintaining only a weakref to each parameter, # we maintain the old GC behaviour of ExponentialMovingAverage: # if the model goes out of scope but the ExponentialMovingAverage # is kept, no references to the model or its parameters will be # maintained, and the model will be cleaned up. self._params_refs = [weakref.ref(p) for p in parameters] def _get_parameters( self, parameters: Optional[Iterable[torch.nn.Parameter]] ) -> Iterable[torch.nn.Parameter]: if parameters is None: parameters = [p() for p in self._params_refs] if any(p is None for p in parameters): raise ValueError( "(One of) the parameters with which this " "ExponentialMovingAverage " "was initialized no longer exists (was garbage collected);" " please either provide `parameters` explicitly or keep " "the model to which they belong from being garbage " "collected." ) return parameters else: parameters = list(parameters) if len(parameters) != len(self.shadow_params): raise ValueError( "Number of parameters passed as argument is different " "from number of shadow parameters maintained by this " "ExponentialMovingAverage" ) return parameters def update( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min( decay, (1 + self.num_updates) / (10 + self.num_updates) ) one_minus_decay = 1.0 - decay if parameters[0].device != self.shadow_params[0].device: self.to(device=parameters[0].device) with torch.no_grad(): parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): torch.lerp(s_param, param.to(dtype=s_param.dtype), one_minus_decay, out=s_param) def copy_to( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Copy current averaged parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: param.data.copy_(s_param.data) def store( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. If `None`, the parameters of with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) self.collected_params = [ param.clone() for param in parameters if param.requires_grad ] def restore( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ if self.collected_params is None: raise RuntimeError( "This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) parameters = self._get_parameters(parameters) for c_param, param in zip(self.collected_params, parameters): if param.requires_grad: param.data.copy_(c_param.data) @contextlib.contextmanager def average_parameters( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ): r""" Context manager for validation/inference with averaged parameters. Equivalent to: ema.store() ema.copy_to() try: ... finally: ema.restore() Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) self.store(parameters) self.copy_to(parameters) try: yield finally: self.restore(parameters) def to(self, device=None, dtype=None) -> None: r"""Move internal buffers of the ExponentialMovingAverage to `device`. Args: device: like `device` argument to `torch.Tensor.to` """ # .to() on the tensors handles None correctly self.shadow_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.shadow_params ] if self.collected_params is not None: self.collected_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.collected_params ] return def state_dict(self) -> dict: r"""Returns the state of the ExponentialMovingAverage as a dict.""" # Following PyTorch conventions, references to tensors are returned: # "returns a reference to the state and not its copy!" - # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict return { "decay": self.decay, "num_updates": self.num_updates, "shadow_params": self.shadow_params, "collected_params": self.collected_params } def load_state_dict(self, state_dict: dict) -> None: r"""Loads the ExponentialMovingAverage state. Args: state_dict (dict): EMA state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = copy.deepcopy(state_dict) self.decay = state_dict["decay"] if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.num_updates = state_dict["num_updates"] assert self.num_updates is None or isinstance(self.num_updates, int), \ "Invalid num_updates" self.shadow_params = state_dict["shadow_params"] assert isinstance(self.shadow_params, list), \ "shadow_params must be a list" assert all( isinstance(p, torch.Tensor) for p in self.shadow_params ), "shadow_params must all be Tensors" self.collected_params = state_dict["collected_params"] if self.collected_params is not None: assert isinstance(self.collected_params, list), \ "collected_params must be a list" assert all( isinstance(p, torch.Tensor) for p in self.collected_params ), "collected_params must all be Tensors" assert len(self.collected_params) == len(self.shadow_params), \ "collected_params and shadow_params had different lengths" if len(self.shadow_params) == len(self._params_refs): # Consistent with torch.optim.Optimizer, cast things to consistent # device and dtype with the parameters params = [p() for p in self._params_refs] # If parameters have been garbage collected, just load the state # we were given without change. if not any(p is None for p in params): # ^ parameter references are still good for i, p in enumerate(params): self.shadow_params[i] = to_float_maybe(self.shadow_params[i].to( device=p.device, dtype=p.dtype )) if self.collected_params is not None: self.collected_params[i] = self.collected_params[i].to( device=p.device, dtype=p.dtype ) else: raise ValueError( "Tried to `load_state_dict()` with the wrong number of " "parameters in the saved state." )
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/ema.py
# Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/benchmark.py import torch try: from deepspeed.profiling.flops_profiler import get_model_profile has_deepspeed_profiling = True except ImportError as e: has_deepspeed_profiling = False try: from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count_table from fvcore.nn import ActivationCountAnalysis has_fvcore_profiling = True except ImportError as e: FlopCountAnalysis = None ActivationCountAnalysis = None has_fvcore_profiling = False def profile_deepspeed(model, input_size=(3, 224, 224), input_dtype=torch.float32, batch_size=1, detailed=False): device, dtype = next(model.parameters()).device, next(model.parameters()).dtype flops, macs, params = get_model_profile( model=model, args=torch.zeros((batch_size,) + input_size, device=device, dtype=input_dtype), print_profile=detailed, # prints the model graph with the measured profile attached to each module detailed=detailed, # print the detailed profile warm_up=10, # the number of warm-ups before measuring the time of each module as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k) output_file=None, # path to the output file. If None, the profiler prints to stdout. ignore_modules=None) # the list of modules to ignore in the profiling return macs, 0 # no activation count in DS def profile_fvcore(model, input_size=(3, 224, 224), input_dtype=torch.float32, max_depth=4, batch_size=1, detailed=False, force_cpu=False): if force_cpu: model = model.to('cpu') device, dtype = next(model.parameters()).device, next(model.parameters()).dtype example_input = torch.zeros((batch_size,) + input_size, device=device, dtype=input_dtype) fca = FlopCountAnalysis(model, example_input) aca = ActivationCountAnalysis(model, example_input) if detailed: print(flop_count_table(fca, max_depth=max_depth)) return fca, fca.total(), aca, aca.total()
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/flops.py
# Copied from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/utils/distributed.py # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from contextlib import contextmanager import torch def init_distributed(cuda): """ Initializes distributed backend. :param cuda: (bool) if True initializes nccl backend, if False initializes gloo backend """ world_size = int(os.environ.get('WORLD_SIZE', 1)) distributed = (world_size > 1) if distributed: backend = 'nccl' if cuda else 'gloo' torch.distributed.init_process_group(backend=backend, init_method='env://') assert torch.distributed.is_initialized() return distributed def barrier(): """ Call torch.distributed.barrier() if distritubed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): torch.distributed.barrier() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 return rank def get_world_size(): """ Gets total number of distributed workers or returns one if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() else: world_size = 1 return world_size def all_reduce_item(value, op='sum'): """ All-reduces single scalar value if distributed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): if op == 'sum' or op == 'mean': dop = torch.distributed.ReduceOp.SUM elif op == 'min': dop = torch.distributed.ReduceOp.MIN elif op == 'max': dop = torch.distributed.ReduceOp.MAX elif op == 'product': dop = torch.distributed.ReduceOp.PRODUCT else: raise RuntimeError('Unsupported reduce op') backend = torch.distributed.get_backend() if backend == torch.distributed.Backend.NCCL: device = torch.device('cuda') elif backend == torch.distributed.Backend.GLOO: device = torch.device('cpu') else: raise RuntimeError('Unsupported distributed backend') tensor = torch.tensor(value, device=device) torch.distributed.all_reduce(tensor, dop) if op == 'mean': tensor /= get_world_size() ret = tensor.item() else: ret = value return ret @contextmanager def sync_workers(): """ Yields distributed rank and synchronizes all workers on exit. """ rank = get_rank() yield rank barrier()
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/distributed.py
import logging import warnings from typing import List, Sequence import pytorch_lightning as pl import rich.syntax import rich.tree from omegaconf import DictConfig, OmegaConf from pytorch_lightning.utilities import rank_zero_only # Copied from https://docs.python.org/3/howto/logging-cookbook.html#using-a-context-manager-for-selective-logging class LoggingContext: def __init__(self, logger, level=None, handler=None, close=True): self.logger = logger self.level = level self.handler = handler self.close = close def __enter__(self): if self.level is not None: self.old_level = self.logger.level self.logger.setLevel(self.level) if self.handler: self.logger.addHandler(self.handler) def __exit__(self, et, ev, tb): if self.level is not None: self.logger.setLevel(self.old_level) if self.handler: self.logger.removeHandler(self.handler) if self.handler and self.close: self.handler.close() # implicit return of None => don't swallow exceptions def get_logger(name=__name__) -> logging.Logger: """Initializes multi-GPU-friendly python logger.""" logger = logging.getLogger(name) # this ensures all logging levels get marked with the rank zero decorator # otherwise logs would get multiplied for each GPU process in multi-GPU setup for level in ("debug", "info", "warning", "error", "exception", "fatal", "critical"): setattr(logger, level, rank_zero_only(getattr(logger, level))) return logger def extras(config: DictConfig) -> None: """A couple of optional utilities, controlled by main config file: - disabling warnings - forcing debug friendly configuration - verifying experiment name is set when running in experiment mode Modifies DictConfig in place. Args: config (DictConfig): Configuration composed by Hydra. """ log = get_logger(__name__) # disable python warnings if <config.ignore_warnings=True> if config.get("ignore_warnings"): log.info("Disabling python warnings! <config.ignore_warnings=True>") warnings.filterwarnings("ignore") # verify experiment name is set when running in experiment mode if config.get("experiment_mode") and not config.get("name"): log.info( "Running in experiment mode without the experiment name specified! " "Use `python run.py mode=exp name=experiment_name`" ) log.info("Exiting...") exit() # force debugger friendly configuration if <config.trainer.fast_dev_run=True> # debuggers don't like GPUs and multiprocessing if config.trainer.get("fast_dev_run"): log.info("Forcing debugger friendly configuration! <config.trainer.fast_dev_run=True>") if config.trainer.get("gpus"): config.trainer.gpus = 0 if config.datamodule.get("pin_memory"): config.datamodule.pin_memory = False if config.datamodule.get("num_workers"): config.datamodule.num_workers = 0 @rank_zero_only def print_config( config: DictConfig, fields: Sequence[str] = ( "trainer", "model", "datamodule", "train", "eval", "callbacks", "logger", "seed", "name", ), resolve: bool = True, ) -> None: """Prints content of DictConfig using Rich library and its tree structure. Args: config (DictConfig): Configuration composed by Hydra. fields (Sequence[str], optional): Determines which main fields from config will be printed and in what order. resolve (bool, optional): Whether to resolve reference fields of DictConfig. """ style = "dim" tree = rich.tree.Tree("CONFIG", style=style, guide_style=style) for field in fields: branch = tree.add(field, style=style, guide_style=style) config_section = config.get(field) branch_content = str(config_section) if isinstance(config_section, DictConfig): branch_content = OmegaConf.to_yaml(config_section, resolve=resolve) branch.add(rich.syntax.Syntax(branch_content, "yaml")) rich.print(tree) with open("config_tree.txt", "w") as fp: rich.print(tree, file=fp) def finish( config: DictConfig, model: pl.LightningModule, datamodule: pl.LightningDataModule, trainer: pl.Trainer, callbacks: List[pl.Callback], logger: List[pl.loggers.LightningLoggerBase], ) -> None: """Makes sure everything closed properly.""" # without this sweeps with wandb logger might crash! for lg in logger: if isinstance(lg, pl.loggers.wandb.WandbLogger): import wandb wandb.finish()
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/utils.py
# Meant to work with Pytorch's ZeroRedundancyOptimizer from typing import Any, Callable, Dict, List, Optional, Union from pathlib import Path import torch from torch.optim.optimizer import Optimizer from torch.distributed.optim import ZeroRedundancyOptimizer from pytorch_lightning.strategies.ddp import DDPStrategy from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.utilities.types import _PATH # from lightning_lite.utilities.types import _PATH # Copied from Pytorch's ZeroRedundancyOptimizer's state_dict method, but we only get # the local state dict to avoid synchronization across GPUs. # https://github.com/pytorch/pytorch/blob/0c7ca2d97ba5980a2af7dcd6b8106dc915e591cd/torch/distributed/optim/zero_redundancy_optimizer.py#L1131 def get_zero_optimizer_state_dict_local(optimizer, global_rank): optimizer._check_overlap_initialized() # Sync the exposed `param_groups` attributes to the local optimizer in # case they have been updated optimizer._sync_param_groups(optimizer.param_groups, optimizer.optim.param_groups) local_state_dict = optimizer.optim.state_dict() state_dict = super(ZeroRedundancyOptimizer, optimizer).state_dict() # Update the global optimizer state with local state information, # factoring in the translation from local to global indexing rank = global_rank # TODO: recursive copy to device local_param_groups = local_state_dict["param_groups"] global_param_groups = optimizer._partition_parameters()[rank] assert len(local_param_groups) == len(global_param_groups), \ "Mismatch between number of local and global parameter groups" for local_param_group, global_param_group in zip(local_param_groups, global_param_groups): # `local_param_group` stores local indices, while # `global_param_group` stores the tensors directly local_param_indices = local_param_group["params"] global_params = global_param_group["params"] assert len(local_param_indices) == len(global_params), \ "Mismatch between number of local and global parameters in parameter group" for local_param_index, global_param in zip(local_param_indices, global_params): # Update the global parameter state, if any if local_param_index in local_state_dict["state"]: global_param_index = optimizer._param_to_index[global_param] state_dict["state"][global_param_index] = local_state_dict["state"][local_param_index] # Sort the parameters in the state state_dict["state"] = dict(sorted(state_dict["state"].items())) return state_dict class DDPStrategyZero1(DDPStrategy): """To use ZeroRedundancyOptimizer, we need to shard the optimizer states when saving/loading checkpoints. """ strategy_name = "ddp_zero1" def optimizer_state(self, optimizer: Optimizer) -> Optional[dict]: if isinstance(optimizer, LightningOptimizer): optimizer = optimizer._optimizer if isinstance(optimizer, ZeroRedundancyOptimizer): return get_zero_optimizer_state_dict_local(optimizer, self.global_rank) else: return optimizer.state_dict() def save_checkpoint( self, checkpoint: Dict[str, Any], filepath: _PATH, storage_options: Optional[Any] = None ) -> None: """Save model/training states as a checkpoint file through state-dump and file-write. Args: checkpoint: dict containing model and trainer state filepath: write-target file's path storage_options: parameter for how to save to storage, passed to ``CheckpointIO`` plugin """ filepath = Path(filepath) filepath.mkdir(parents=True, exist_ok=True) local_optimizer_states = checkpoint.pop('optimizer_states') if self.is_global_zero: self.checkpoint_io.save_checkpoint(checkpoint, filepath / 'model_states.pt', storage_options=storage_options) self.checkpoint_io.save_checkpoint(local_optimizer_states, filepath / f'{self.global_rank:03d}_optim_states.pt', storage_options=storage_options) def load_checkpoint(self, checkpoint_path: _PATH) -> Dict[str, Any]: torch.cuda.empty_cache() checkpoint_path = Path(checkpoint_path) if checkpoint_path.is_file(): return super().load_checkpoint(self, str(checkpoint_path)) else: assert checkpoint_path.is_dir() global_states = self.checkpoint_io.load_checkpoint(checkpoint_path / 'model_states.pt') local_optimizer_states = self.checkpoint_io.load_checkpoint(checkpoint_path / f'{self.global_rank:03d}_optim_states.pt') global_states['optimizer_states'] = local_optimizer_states return global_states
FLASHATTENION-LION-OPTIMIZE-main
training/src/utils/ddp_zero1.py
import math from functools import partial from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair import hydra from einops import reduce, rearrange def pooling(x, pooling_mode='CLS', key_padding_mask=None, batch_first=True): if pooling_mode not in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN']: raise NotImplementedError(f'pooling_mode must be MEAN, SUM, CLS, LAST, FLATTEN') if pooling_mode in ['MEAN', 'SUM']: if key_padding_mask is not None: mask = rearrange(~key_padding_mask.bool_matrix, 'b s -> b s 1' if batch_first else 'b s -> s b 1') x = x.masked_fill(mask, 0) s = reduce(x, 'b s ... -> b ...' if batch_first else 's b ... -> b ...', 'sum') if pooling_mode == 'SUM': return s else: if key_padding_mask is None: return s / x.shape[1 if batch_first else 0] else: lengths = rearrange(key_padding_mask._lengths, 'b -> b 1') return s / lengths elif pooling_mode == 'CLS': return x[:, 0] if batch_first else x[0] elif pooling_mode == 'LAST': if key_padding_mask is None: return x[:, -1] if batch_first else x[-1] else: lengths = key_padding_mask._lengths if batch_first: batch_size = x.shape[0] return x[torch.arange(batch_size, device=x.device), lengths - 1] else: batch_size = x.shape[1] return x[lengths - 1, torch.arange(batch_size, device=x.device)] elif pooling_mode == 'FLATTEN': return rearrange(x, 'b ... -> b (...)' if batch_first else 's b ... -> b (s ...)') class ClassificationHeadLinear(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, d_model, num_classes, pooling_mode='MEAN', batch_first=False, **kwargs): super().__init__() assert pooling_mode in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN'], 'pooling_mode not supported' self.pooling_mode = pooling_mode self.batch_first = batch_first self.out_proj = nn.Linear(d_model, num_classes) def forward(self, hidden_states, key_padding_mask=None, **kwargs): """ hidden_states: (B, S, D) if batch_first else (S, B, D) """ hidden_states = pooling(hidden_states, pooling_mode=self.pooling_mode, key_padding_mask=key_padding_mask, batch_first=self.batch_first) hidden_states = self.out_proj(hidden_states) return hidden_states # Adapted from https://github.com/huggingface/transformers/blob/master/src/transformers/models/reformer/modeling_reformer.py class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, d_model, d_inner, num_classes, dropout=0.0, pooling_mode='MEAN', batch_first=False): super().__init__() assert pooling_mode in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN'], 'pooling_mode not supported' self.pooling_mode = pooling_mode self.batch_first = batch_first self.dense = nn.Linear(d_model, d_inner) self.dropout = nn.Dropout(dropout) self.out_proj = nn.Linear(d_inner, num_classes) def forward(self, hidden_states, key_padding_mask=None, **kwargs): """ hidden_states: (B, S, D) if batch_first else (S, B, D) """ hidden_states = pooling(hidden_states, pooling_mode=self.pooling_mode, key_padding_mask=key_padding_mask, batch_first=self.batch_first) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) # Huggingface uses tanh instead of relu hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class ClassificationHeadDual(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, d_model, d_inner, num_classes, dropout=0.0, pooling_mode='MEAN', batch_first=False, interaction='NLI'): super().__init__() assert pooling_mode in ['MEAN', 'SUM', 'CLS'], 'pooling_mode not supported' assert interaction in [None, 'NLI'], 'interaction not supported' self.pooling_mode = pooling_mode self.batch_first = batch_first self.interaction = interaction self.dense = nn.Linear(d_model * (4 if self.interaction == 'NLI' else 2), d_inner) self.dropout = nn.Dropout(dropout) self.out_proj = nn.Linear(d_inner, num_classes) def forward(self, hidden_states1, hidden_states2, key_padding_mask1=None, key_padding_mask2=None, **kwargs): """ hidden_states: (B, S, D) if batch_first else (S, B, D) """ x1 = pooling(hidden_states1, pooling_mode=self.pooling_mode, key_padding_mask=key_padding_mask1, batch_first=self.batch_first) x2 = pooling(hidden_states2, pooling_mode=self.pooling_mode, key_padding_mask=key_padding_mask2, batch_first=self.batch_first) hidden_states = (torch.cat([x1, x2, x1 * x2, x1 - x2], dim=-1) if self.interaction == 'NLI' else torch.cat([x1, x2], dim=-1)) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) # Huggingface uses tanh instead of relu hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class LMHead(nn.Module): def __init__(self, d_model, num_classes, batch_first=True, bias=True): super().__init__() self.lm_head = nn.Linear(d_model, num_classes, bias=bias) def forward(self, hidden_states, **kwargs): """ hidden_states: (B, S, D) if batch_first else (S, B, D) """ CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) return CausalLMOutput(self.lm_head(hidden_states)) def sinusoidal_init_(tensor): """ tensor: (max_len, d_model) """ max_len, d_model = tensor.shape position = rearrange(torch.arange(0.0, max_len), 's -> s 1') div_term = torch.exp(-math.log(10000.0) * torch.arange(0.0, d_model, 2.0) / d_model) tensor[:, 0::2] = torch.sin(position * div_term) tensor[:, 1::2] = torch.cos(position * div_term) return tensor # Adapted from https://github.com/pytorch/examples/blob/master/word_language_model/model.py class PositionalEncoding(nn.Module): r"""Inject some information about the relative or absolute position of the tokens in the sequence. The positional encodings have the same dimension as the embeddings, so that the two can be summed. Here, we use sine and cosine functions of different frequencies. .. math:: \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) \text{where pos is the word position and i is the embed idx) Args: d_model: the embed dim (required). dropout: the dropout value (default=0.1). max_len: the max. length of the incoming sequence (default=5000). Examples: >>> pos_encoder = PositionalEncoding(d_model) """ def __init__(self, d_model, dropout=0.1, max_len=5000, batch_first=False, initializer=None): super().__init__() self.batch_first = batch_first self.dropout = nn.Dropout(p=dropout) pe = torch.empty(max_len, d_model) if initializer is None: sinusoidal_init_(pe) pe = rearrange(pe, 's d -> 1 s d' if self.batch_first else 's d -> s 1 d') self.register_buffer('pe', pe) else: hydra.utils.call(initializer, pe) pe = rearrange(pe, 's d -> 1 s d' if self.batch_first else 's d -> s 1 d') self.pe = nn.Parameter(pe) def forward(self, x): r"""Inputs of forward function Args: x: the sequence fed to the positional encoder model (required). Shape: x: [sequence length, batch size, embed dim] if not batch_first else [B, S, D] output: [sequence length, batch size, embed dim] if not batch_first else [B, S, D] Examples: >>> output = pos_encoder(x) """ x = x + (self.pe[:, :x.size(1)] if self.batch_first else self.pe[:x.size(0)]) return self.dropout(x) # Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, act_fn=None, drop=0., device=None, dtype=None): """TD [2021-10-27] act_fn takes precedence over act_layer if set. This is to support Pytorch 1.10 Transformer interface that construct the activation *function*, not the activation *layer*. """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features drop_probs = _pair(drop) self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) self.act = act_layer() if act_fn is None else act_fn self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class MlpBig(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, act_fn=None, drop=0., device=None, dtype=None): """Copied from Mlp above. If num_layers > 2, add more Mlp layers, doubling each time. """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features cur_hidden_features = hidden_features layers = [] for _ in range(4): layers.append(nn.Linear(in_features, cur_hidden_features, **factory_kwargs)) layers.append(act_layer()) layers.append(nn.Dropout(drop)) in_features = cur_hidden_features cur_hidden_features *= 2 layers.append(nn.Linear(in_features, out_features, **factory_kwargs)) layers.append(nn.Dropout(drop)) self.fwd = nn.Sequential(*layers) def forward(self, x): return self.fwd(x) class GluMlp(nn.Module): """ MLP w/ GLU style gating See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202 """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.Sigmoid, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features assert hidden_features % 2 == 0 self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features // 2, out_features) self.drop = nn.Dropout(drop) def init_weights(self): # override init of fc1 w/ gate portion set to weight near zero, bias=1 fc1_mid = self.fc1.bias.shape[0] // 2 nn.init.ones_(self.fc1.bias[fc1_mid:]) nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-6) def forward(self, x): x = self.fc1(x) x, gates = x.chunk(2, dim=-1) x = x * self.act(gates) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class GatedMlp(nn.Module): """ MLP as used in gMLP """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, gate_layer=None, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() if gate_layer is not None: assert hidden_features % 2 == 0 self.gate = gate_layer(hidden_features) hidden_features = hidden_features // 2 # FIXME base reduction on gate property? else: self.gate = nn.Identity() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.gate(x) x = self.fc2(x) x = self.drop(x) return x class ConvMlp(nn.Module): """ MLP using 1x1 convs that keeps spatial dims """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True) self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.norm(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) return x
FLASHATTENION-LION-OPTIMIZE-main
training/src/models/modules/seq_common.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange from flash_attn.layers.rotary import apply_rotary_emb_func, apply_rotary_emb_torch is_sm8x = torch.cuda.get_device_capability('cuda') >= (8, 0) @pytest.mark.parametrize('dtype', ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', ([torch.float16])) @pytest.mark.parametrize('rotary_fraction', [1.0, 0.5]) # @pytest.mark.parametrize('rotary_fraction', [0.5]) @pytest.mark.parametrize('inplace', [False, True]) # @pytest.mark.parametrize('inplace', [False]) def test_rotary_single_tensor(inplace, rotary_fraction, dtype): rtol = 1e-3 batch_size = 32 nheads = 4 seqlen = 217 headdim = 128 x = torch.randn(batch_size, seqlen, nheads, headdim, dtype=dtype, device='cuda', requires_grad=True) x_pt = x.detach().clone().requires_grad_() rotary_dim = int(rotary_fraction * headdim) assert rotary_dim % 2 == 0 angle = torch.randn(seqlen, rotary_dim // 2, device='cuda') cos = torch.cos(angle).to(dtype=dtype) sin = torch.sin(angle).to(dtype=dtype) out = apply_rotary_emb_func(x, cos, sin, inplace) out_pt = apply_rotary_emb_torch(x_pt, cos, sin) # Numerical error if we just do any arithmetic atol = ((out + 0.3 - 0.3) - out).abs().max().item() assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol) g = torch.randn_like(out) g_pt = g.clone() # If inplace=True, we might modify the gradient inplace out.backward(g) out_pt.backward(g_pt) atol = ((x_pt.grad + 0.3 - 0.3) - x_pt.grad).abs().max().item() assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=2 * atol)
FLASHATTENION-LION-OPTIMIZE-main
tests/test_rotary.py
import math from functools import partial import torch import torch.nn.functional as F import pytest from einops import rearrange, repeat from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_unpadded_qkvpacked_func, _get_block_size, flash_attn_unpadded_kvpacked_func, flash_attn_unpadded_func from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_split_func from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis try: from flash_attn.flash_attn_triton import flash_attn_func except (ImportError, AttributeError): # Older version of Triton doesn't have tl.constexpr flash_attn_func = None is_sm75 = torch.cuda.get_device_capability('cuda') == (7, 5) is_sm80 = torch.cuda.get_device_capability('cuda') == (8, 0) def generate_random_padding_mask(max_seqlen, batch_size, device, mode='random'): assert mode in ['full', 'random', 'third', 'split'] if mode == 'full': lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32) elif mode == 'random': lengths = torch.randint(max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device) elif mode == 'third': lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device) elif mode == 'split': lengths0 = torch.randint(min(128, max_seqlen), max_seqlen + 1, (batch_size // 4 * 3, 1), device=device) lengths1 = torch.randint(min(max(1, max_seqlen - 20), 128), min(max_seqlen, 128) + 1, (batch_size - batch_size // 4 * 3, 1), device=device) lengths = torch.cat([lengths0, lengths1], dim=0) padding_mask = repeat(torch.arange(max_seqlen, device=device), 's -> b s', b=batch_size) < lengths return padding_mask def generate_qkv(x, Wqkv, nheads, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False): """ Arguments: x: (batch_size, seqlen, nheads * d) Wqkv: nn.Linear(nheads * d, 3 * nheads * d) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen, dim = x.shape q, k, v = Wqkv(x).chunk(3, dim=-1) if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask) q_unpad = rearrange(q_unpad, 'nnz (h d) -> nnz h d', h=nheads) output_pad_fn = lambda output_unpad: rearrange( pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads ) else: q_unpad = rearrange(q, 'b s (h d) -> (b s) h d', h=nheads) cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=q_unpad.device) max_seqlen_q = seqlen output_pad_fn = lambda output_unpad: rearrange(output_unpad, '(b s) h d -> b s h d', b=batch_size) if key_padding_mask is not None: k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask) k_unpad = rearrange(k_unpad, 'nnz (h d) -> nnz h d', h=nheads) v_unpad, _, _, _ = unpad_input(v, key_padding_mask) v_unpad = rearrange(v_unpad, 'nnz (h d) -> nnz h d', h=nheads) else: k_unpad = rearrange(k, 'b s (h d) -> (b s) h d', h=nheads) v_unpad = rearrange(v, 'b s (h d) -> (b s) h d', h=nheads) cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=q_unpad.device) max_seqlen_k = seqlen if qkvpacked: assert (query_padding_mask == key_padding_mask).all() qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = rearrange(torch.stack([q, k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads) if query_padding_mask is not None: dqkv_pad_fn = lambda dqkv_unpad: rearrange( pad_input(rearrange(dqkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_q, batch_size, seqlen), 'b s (t h d) -> b s t h d', t=3, h=nheads ) else: dqkv_pad_fn = lambda dqkv_unpad: rearrange(dqkv_unpad, '(b s) t h d -> b s t h d', b=batch_size) return (qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q, qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn) elif kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) q = rearrange(q, 'b s (h d) -> b s h d', h=nheads) kv = rearrange(torch.stack([k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads) dq_pad_fn = output_pad_fn if key_padding_mask is not None: dkv_pad_fn = lambda dkv_unpad: rearrange( pad_input(rearrange(dkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_k, batch_size, seqlen), 'b s (t h d) -> b s t h d', t=2, h=nheads ) else: dkv_pad_fn = lambda dkv_unpad: rearrange(dkv_unpad, '(b s) t h d -> b s t h d', b=batch_size) return (q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), kv.detach().requires_grad_(), output_pad_fn, dq_pad_fn, dkv_pad_fn) else: q, k, v = [rearrange(z, 'b s (h d) -> b s h d', h=nheads).detach().requires_grad_() for z in [q, k, v]] dq_pad_fn = output_pad_fn if key_padding_mask is not None: dk_pad_fn = lambda dk_unpad: rearrange( pad_input(rearrange(dk_unpad, 'nnz h d -> nnz (h d)'), indices_k, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads ) else: dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, '(b s) h d -> b s h d', b=batch_size) return (q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(), v_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) def attention_ref(q, k, v, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, bias=None, upcast=True, reorder_ops=False): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k: (batch_size, seqlen_k, nheads, head_dim) v: (batch_size, seqlen_k, nheads, head_dim) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) dropout_p: float dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k) bias: (batch_size, nheads, seqlen_q, seqlen_k) upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast output back to fp16/bf16. reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.) without changing the math. This is to estimate the numerical error from operation reordering. Output: output: (batch_size, seqlen_q, nheads, head_dim) attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout """ dtype_og = q.dtype if upcast: q, k, v = q.float(), k.float(), v.float() seqlen_q, seqlen_k = q.shape[1], k.shape[1] d = q.shape[-1] if not reorder_ops: scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k) else: scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d)) if bias is not None: scores = (scores + bias).to(dtype=scores.dtype) if key_padding_mask is not None: scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) attention = torch.softmax(scores, dim=-1) dropout_scaling = 1.0 / (1 - dropout_p) # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling # output = torch.einsum('bhts,bshd->bthd', attention_drop , v) if dropout_mask is not None: attention_drop = attention.masked_fill(~dropout_mask, 0.0) else: attention_drop = attention output = torch.einsum('bhts,bshd->bthd', attention_drop, v * dropout_scaling) if query_padding_mask is not None: output.masked_fill_(rearrange(~query_padding_mask, 'b s -> b s 1 1'), 0.0) attention = attention.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) return output.to(dtype=dtype_og), attention.to(dtype=dtype_og) def attention_kvpacked_ref(q, kv, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): return attention_ref(q, kv[:, :, 0], kv[:, :, 1], query_padding_mask, key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal, reorder_ops=reorder_ops) def attention_qkvpacked_ref(qkv, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): return attention_ref(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal, reorder_ops=reorder_ops) def generate_sparsity_mask(seqlen, sparsity=0.3): repeats = seqlen // 16 // 2 # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'), # torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'), # torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1) nrow, ncol = seqlen // 16, seqlen // 256 mask = torch.rand(nrow, ncol, device='cuda') < sparsity return mask def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) blockmask: (seqlen / 16, seqlen / 256) attn_mask: (batch_size, seqlen) dropout_p: float dropout_mask: (batch_size, nheads, seqlen, seqlen) Output: output: (batch_size, seqlen, nheads, head_dim) attention: softmax after dropout """ q, k, v = qkv.float().unbind(dim=2) d = qkv.shape[-1] seqlen = qkv.shape[1] scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k) scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf')) blockmask = repeat(blockmask, 's_16 s_256 -> (s_16 16) (s_256 256)') blockmask = blockmask[:seqlen, :seqlen] scores.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), float('-inf')) attention = torch.softmax(scores, dim=-1) attention = attention.masked_fill(rearrange(~attn_mask, 'b s -> b 1 s 1'), 0.0) attention = attention.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), 0.0) attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) output.masked_fill_(rearrange(~attn_mask, 'b s -> b s 1 1'), 0) return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype) def convert_flash_attn_S_to_softmax(S, query_padding_mask, key_padding_mask, head_dim, is_dropout, causal=False): """FlashAttention stores the S matrix in a different way. Arguments: S: (batch_size, nheads, seqlen_q, seqlen_k) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ S_flat = rearrange(S, 'b h t s -> b h (t s)') seqlen_q, seqlen_k = S.shape[-2:] block_size = _get_block_size(S.device, head_dim, is_dropout) loop_steps = (seqlen_k + block_size - 1) // block_size warps_n = 4 mmas_n = (seqlen_k // warps_n // 16) if seqlen_k <= block_size else (block_size // warps_n // 16) S_converted = rearrange(S_flat, 'b h (loop nsteps mmas_n warps_n eight t r c0 c1) -> b h (nsteps r eight) (loop mmas_n warps_n c0 t c1)', loop=loop_steps, nsteps=seqlen_q // 16, mmas_n=mmas_n, warps_n=warps_n, eight=8, t=4, r=2, c0=2, c1=2) # Need to zero out things not in attention_mask in case S was initialized with random values # and some of those values aren't overwritten. seqlen_q_og = query_padding_mask.shape[-1] if seqlen_q_og < seqlen_q: query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og)) else: query_padding_mask = query_padding_mask[:, :seqlen_q] S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) seqlen_k_og = key_padding_mask.shape[-1] if seqlen_k_og < seqlen_k: key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og)) else: key_padding_mask = key_padding_mask[:, :seqlen_k] S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), 0.0) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1) S_converted.masked_fill_(causal_mask, 0.0) if seqlen_q_og < seqlen_q: S_converted = S_converted[:, :, :seqlen_q_og, :] else: S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q)) if seqlen_k_og < seqlen_k: S_converted = S_converted[:, :, :, :seqlen_k_og] else: S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k)) return S_converted def normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask=None, key_padding_mask=None, is_dropout=False, causal=False): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k, v: (batch_size, seqlen_k, nheads, head_dim) key_padding_mask: (batch_size, seqlen_q) Output: softmax_lse: (batch_size, nheads, seqlen_q) softmax_max: (batch_size, nheads, seqlen_q) """ q, k, v = q.float(), k.float(), v.float() _, seqlen_q, _, head_dim = q.shape seqlen_k = k.shape[1] scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(head_dim), k) if key_padding_mask is not None: scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) block_size = _get_block_size(scores.device, head_dim, is_dropout) scores_block = scores.split(block_size, dim=-1) lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1) lcse_block = torch.logcumsumexp(lse_block, dim=-1).unbind(dim=-1) scores_max_block = ([torch.amax(scores_block[0], dim=-1)] + [torch.maximum(torch.amax(s, dim=-1), lcse) for s, lcse in zip(scores_block[1:], lcse_block[:-1])]) attn_unnorm_block = attn_unnorm.split(block_size, dim=-1) attn_norm = torch.cat([a / rearrange(torch.exp(lcse_block[-1] - m), 'b h s -> b h s 1') for a, m in zip(attn_unnorm_block, scores_max_block)], dim=-1) if query_padding_mask is not None: attn_norm.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) return attn_norm.to(dtype=attn_unnorm.dtype) def get_dropout_fraction(dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False): """ dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop. query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape dropped = ~dropout_mask if query_padding_mask is not None: dropped.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), False) if key_padding_mask is not None: dropped.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), False) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=dropout_mask.device), 1) dropped.masked_fill_(causal_mask, False) dropped_total = dropped.sum() query_lengths = (query_padding_mask.sum(dim=-1) if query_padding_mask is not None else torch.full((batch_size,), seqlen_q, device=dropout_mask.device)) key_lengths = (key_padding_mask.sum(dim=-1) if key_padding_mask is not None else torch.full((batch_size,), seqlen_k, device=dropout_mask.device)) if not causal: numel_per_batch = query_lengths * key_lengths else: numel_per_batch = torch.where( query_lengths <= key_lengths, query_lengths * (query_lengths + 1) / 2, query_lengths * key_lengths - (key_lengths * (key_lengths - 1) / 2) ) return dropped_total / (numel_per_batch.sum() * nheads) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded_qkvpacked(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) # Set smaller batch size so it would trigger num_splits > 1 batch_size = 8 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.98 <= dropout_fraction / dropout_p <= 1.02 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 # Error for dK and dV could be a bit higher if we're splitting along seqlen_q dimension assert (dqkv - dqkv_ref).abs().max().item() <= 4 * (dqkv_pt - dqkv_ref).abs().max().item() # assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded_kvpacked(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv, output_pad_fn, dq_pad_fn, dkv_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask, kvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_kvpacked_func( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, q, kv[:, :, 0], kv[:, :, 1], query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask, causal=causal) output_ref, attn_ref = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dq_unpad, dkv_unpad, = torch.autograd.grad(output, (q_unpad, kv_unpad), g) dq = dq_pad_fn(dq_unpad) dkv = dkv_pad_fn(dkv_unpad) dq_ref, dkv_ref, = torch.autograd.grad(output_ref, (q, kv), g) dq_pt, dkv_pt = torch.autograd.grad(output_pt, (q, kv), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dkv[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}') print(f'dV max diff: {(dkv[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dkv_pt[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}') print(f'dV Pytorch max diff: {(dkv_pt[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dkv - dkv_ref).abs().max().item() <= 2 * (dkv_pt - dkv_ref).abs().max().item() # assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol) # assert torch.allclose(dkv, dkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask, causal=causal) output_ref, attn_ref = attention_ref(q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_ref(q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output, (q_unpad, k_unpad, v_unpad), g) dq = dq_pad_fn(dq_unpad) dk = dk_pad_fn(dk_unpad) dv = dk_pad_fn(dv_unpad) dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g) dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dk - dk_ref).abs().max().item()}') print(f'dV max diff: {(dv - dv_ref).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}') print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() # assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol) # assert torch.allclose(dk, dk_ref, rtol=rtol, atol=atol) # assert torch.allclose(dv, dv_ref, rtol=rtol, atol=atol) @pytest.mark.skipif(True, reason='Experimental, not being used') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [512]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_split(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='split') batch_size0 = batch_size // 4 * 3 # this must match what's in generate_random_padding_mask # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen0, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) max_seqlen1 = 128 output_unpad, sm_lse, S_dmask0, S_dmask1 = flash_attn_unpadded_qkvpacked_split_func( qkv_unpad, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask0_converted = convert_flash_attn_S_to_softmax( S_dmask0, key_padding_mask[:batch_size0], key_padding_mask[:batch_size0], d, dropout_p > 0.0, causal=causal ) S_dmask1_converted = convert_flash_attn_S_to_softmax( S_dmask1, key_padding_mask[batch_size0:, :max_seqlen1], key_padding_mask[batch_size0:, :max_seqlen1], d, dropout_p > 0.0, causal=causal ) padding = (S_dmask0_converted.shape[-1] - S_dmask1_converted.shape[-1], S_dmask0_converted.shape[-2] - S_dmask1_converted.shape[-2]) S_dmask_converted = torch.cat([S_dmask0_converted, F.pad(S_dmask1_converted, (0, padding[0], 0, padding[1]))], dim=0) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item() # assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_race_condition(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask ) torch.random.manual_seed(0) output_unpad_0, sm_lse_0, S_dmask_0 = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) S_dmask_converted_0 = convert_flash_attn_S_to_softmax( S_dmask_0, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output_unpad_0) dq_unpad_0, dk_unpad_0, dv_unpad_0, = torch.autograd.grad(output_unpad_0, (q_unpad, k_unpad, v_unpad), g) # Parallelizing over seqlen_k makes dq non-deterministic deterministic_dq = False # Numerical error if we just do any arithmetic on dq dq_atol = ((dq_unpad_0 + 0.3 - 0.3) - dq_unpad_0).abs().max().item() equal_fn = torch.equal if deterministic_dq else partial(torch.allclose, atol=dq_atol) for _ in range(10): torch.random.manual_seed(0) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) assert torch.equal(output_unpad, output_unpad_0) # sm_lse has some parts that are uninitialized from torch.empty # assert torch.equal(sm_lse, sm_lse_0) assert torch.equal(S_dmask_converted, S_dmask_converted_0) if is_sm80 or d <= 64: # Only run backward for d=128 on A100 dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output_unpad, (q_unpad, k_unpad, v_unpad), g) assert equal_fn(dq_unpad, dq_unpad_0) assert torch.equal(dk_unpad, dk_unpad_0) assert torch.equal(dv_unpad, dv_unpad_0) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason='requires multiple GPUs') def test_flash_attn_multigpu(): seqlen = 256 d = 64 dropout_p = 0.0 causal = False dtype = torch.float16 device = 'cuda:1' torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item() @pytest.mark.skipif(flash_attn_func is None, reason='Triton is not installed or is too old') @pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [True]) @pytest.mark.parametrize('d', [40, 48, 64, 128, 80, 88, 96]) # @pytest.mark.parametrize('d', [48]) @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048)]) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(1024, 1023)]) @pytest.mark.parametrize('bias_shape', ([None, '1h1k', '1hqk', 'b11k', 'b1qk'])) # @pytest.mark.parametrize('bias_shape', (['1hqk'])) def test_flash_attn_triton_output(seqlen_q, seqlen_k, d, causal, dtype, bias_shape): if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype) k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2) if bias_shape == '1h1k': bias = torch.randn(1, nheads, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == '1hqk': bias = torch.randn(1, nheads, seqlen_q, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b11k': bias = torch.randn(batch_size, 1, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b1qk': bias = torch.randn(batch_size, 1, seqlen_q, seqlen_k, dtype=torch.float, device=device) else: bias = None q, k, v = [x.detach().requires_grad_() for x in [q, k, v]] output = flash_attn_func(q, k, v, bias, causal) output_ref, attn_ref = attention_ref(q, k, v, bias=bias, causal=causal) output_pt, attn_pt = attention_ref(q, k, v, bias=bias, causal=causal, upcast=False, reorder_ops=True) print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') g = torch.randn_like(output) dq, dk, dv = torch.autograd.grad(output, (q, k, v), g) dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g) dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dk - dk_ref).abs().max().item()}') print(f'dV max diff: {(dv - dv_ref).abs().max().item()}') print(f'dQ mean diff: {(dq - dq_ref).abs().mean().item()}') print(f'dK mean diff: {(dk - dk_ref).abs().mean().item()}') print(f'dV mean diff: {(dv - dv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}') print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}') print(f'dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}') print(f'dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}') print(f'dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() @pytest.mark.skipif(flash_attn_func is None, reason='Triton is not installed or is too old') @pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [True]) @pytest.mark.parametrize('d', [40, 48, 64, 128, 80, 88, 96]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (91, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048)]) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203)]) @pytest.mark.parametrize('bias_shape', ([None, '1h1k', '1hqk', 'b11k', 'b1qk'])) # @pytest.mark.parametrize('bias_shape', (['b1qk'])) def test_flash_attn_triton_race_condition(seqlen_q, seqlen_k, d, causal, dtype, bias_shape): if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype) k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2) if bias_shape == '1h1k': bias = torch.randn(1, nheads, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == '1hqk': bias = torch.randn(1, nheads, seqlen_q, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b11k': bias = torch.randn(batch_size, 1, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b1qk': bias = torch.randn(batch_size, 1, seqlen_q, seqlen_k, dtype=torch.float, device=device) else: bias = None q, k, v = [x.detach().requires_grad_() for x in [q, k, v]] output_0 = flash_attn_func(q, k, v, bias, causal) g = torch.randn_like(output_0) dq_0, dk_0, dv_0 = torch.autograd.grad(output_0, (q, k, v), g) # The SEQUENCE_PARALLEL option for the bwd to makes dq non-deterministic deterministic_dq = False # Numerical error if we just do any arithmetic on dq dq_atol = ((dq_0 + 0.3 - 0.3) - dq_0).abs().max().item() equal_fn = torch.equal if deterministic_dq else partial(torch.allclose, atol=dq_atol) # Run 10000 times and check that the results don't change for i in range(10000): output = flash_attn_func(q, k, v, bias, causal) output_equal = torch.equal(output, output_0) if not output_equal: # Printing / computing diff sometimes makes the race condition disappear print(f'{dtype = }, {causal = }, {d = }, {seqlen_q = }, {seqlen_k = }, {bias_shape = }, {i = }') print(f'Output max diff: {(output - output_0).abs().max().item()}') assert torch.equal(output, output_0) dq, dk, dv = torch.autograd.grad(output, (q, k, v), g) dq_equal = equal_fn(dq, dq_0) dk_equal = torch.equal(dk, dk_0) dv_equal = torch.equal(dv, dv_0) if not (dq_equal and dk_equal and dv_equal): print(f'{dtype = }, {causal = }, {d = }, {seqlen_q = }, {seqlen_k = }, {bias_shape = }, {i = }') print(f'dQ max diff: {(dq - dq_0).abs().max().item()}') print(f'dK max diff: {(dk - dk_0).abs().max().item()}') print(f'dV max diff: {(dv - dv_0).abs().max().item()}') assert equal_fn(dq, dq_0) assert torch.equal(dk, dk_0) assert torch.equal(dv, dv_0)
FLASHATTENION-LION-OPTIMIZE-main
tests/test_flash_attn.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange from flash_attn.losses.cross_entropy import CrossEntropyLossApex is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('inplace_backward', [False, True]) # @pytest.mark.parametrize('inplace_backward', [False]) @pytest.mark.parametrize('smoothing', [0.0, 0.9]) @pytest.mark.parametrize('vocab_size', [50257]) def test_cross_entropy_loss_apex(vocab_size, smoothing, inplace_backward, dtype): device = 'cuda' rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing) model = CrossEntropyLossApex(label_smoothing=smoothing, inplace_backward=inplace_backward) out = model(x, y) out_pt = model_pt(x_pt.float(), y) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
FLASHATTENION-LION-OPTIMIZE-main
tests/losses/test_cross_entropy.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/losses/test_cross_entropy_parallel.py import math import torch import torch.nn.functional as F import pytest from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.losses.cross_entropy import CrossEntropyLoss is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('inplace_backward', [False, True]) # @pytest.mark.parametrize('inplace_backward', [False]) @pytest.mark.parametrize('smoothing', [0.0, 0.9]) # @pytest.mark.parametrize('smoothing', [0.9]) @pytest.mark.parametrize('vocab_size', [50264]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) def test_cross_entropy_loss_parallel(vocab_size, world_size, smoothing, inplace_backward, dtype): assert vocab_size % world_size == 0 rtol, atol = ((1e-5, 1e-6) if dtype == torch.float32 else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3))) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') partition_vocab_size = vocab_size // world_size device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = (torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10).requires_grad_() x = tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt).detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction='none') model = CrossEntropyLoss(label_smoothing=smoothing, reduction='none', inplace_backward=inplace_backward, process_group=parallel_state.get_tensor_model_parallel_group()) out = model(x, y) out_pt = model_pt(x_pt.float(), y) assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad[:, (rank * partition_vocab_size):(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol) parallel_state.destroy_model_parallel()
FLASHATTENION-LION-OPTIMIZE-main
tests/losses/test_cross_entropy_parallel.py
import re import torch import pytest from transformers import OPTConfig from transformers.models.opt.modeling_opt import OPTForCausalLM from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.opt import remap_state_dict_opt, opt_config_to_gpt2_config from flash_attn.utils.pretrained import state_dict_from_pretrained @pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"]) # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) def test_opt_state_dict(model_name): config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) pretrained_state_dict = remap_state_dict_opt(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config) state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"]) # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) def test_opt_optimized(model_name): """Check that our implementation of OPT (without all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 device = 'cuda' config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True # Only prenorm supports residual_in_fp32 config.residual_in_fp32 = getattr(config, 'prenorm', True) config.pad_vocab_size_multiple = 8 model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda') input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device='cuda') if model_name != 'facebook/opt-350m': # The OPT-350m projects the embeddings to dimension 512 out = model.transformer(input_ids) out_hf = model_hf.model(input_ids).last_hidden_state out_ref = model_ref.model(input_ids).last_hidden_state print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}') assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}') print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}') assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_opt.py
import os import re import time import torch import pytest from einops import rearrange from transformers import GPT2Config, GPT2Tokenizer, OPTConfig, AutoTokenizer from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF from transformers.models.opt.modeling_opt import OPTForCausalLM from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.gpt import remap_state_dict_gpt2 from flash_attn.models.opt import remap_state_dict_opt, opt_config_to_gpt2_config from flash_attn.utils.pretrained import state_dict_from_pretrained from flash_attn.utils.distributed import all_gather_raw from flash_attn.utils.generation import update_graph_cache @pytest.mark.parametrize('fused_ft_kernel', [False, True]) # @pytest.mark.parametrize('fused_ft_kernel', [True]) @pytest.mark.parametrize('optimized', [False, True]) # @pytest.mark.parametrize('optimized', [False]) @pytest.mark.parametrize('rotary', [False, True]) # @pytest.mark.parametrize('rotary', [False]) @pytest.mark.parametrize('model_name', ["gpt2"]) def test_greedy_decode_gpt2(model_name, rotary, optimized, fused_ft_kernel): """Check that our implementation of GPT2 generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ dtype = torch.float16 device = 'cuda' rtol, atol = 3e-3, 3e-1 config = GPT2Config.from_pretrained(model_name) if rotary: config.n_positions = 0 config.rotary_emb_dim = 64 config.residual_in_fp32 = True if optimized: config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True # if not rotary, we load the weight from HF but ignore the position embeddings. # The model would be nonsense but it doesn't matter for the test. model = GPTLMHeadModel.from_pretrained(model_name, config, strict=not rotary, device=device, dtype=dtype) model.eval() if not rotary: model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device) model_hf = GPT2LMHeadModelHF.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model_ref.eval() model_hf.eval() torch.manual_seed(0) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") input_ids = tokenizer("Hello, my dog is cute and", return_tensors="pt").input_ids.to(device=device) max_length = 30 # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda') # max_length = input_ids.shape[1] + 40 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1) scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) out = model.generate(input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, return_dict_in_generate=True, output_scores=True, timing=True) print(out.sequences) print(tokenizer.batch_decode(out.sequences.tolist())) if fused_ft_kernel: out_cg = model.generate(input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, cg=True, return_dict_in_generate=True, output_scores=True, timing=True) print(out_cg.sequences) if not rotary: out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') print(tokenizer.batch_decode(out_ref.sequences.tolist())) assert torch.all(out.sequences == sequences) assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol) if not rotary: assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() @pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b", "facebook/opt-6.7b"]) # @pytest.mark.parametrize('model_name', ["facebook/opt-125m"]) def test_greedy_decode_opt(model_name): """Check that our implementation of OPT generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ print(f'\nMODEL: {model_name}') verbose = False dtype = torch.float16 device = 'cuda' rtol, atol = 3e-3, 3e-1 fused_ft_kernel = True config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) # Only prenorm supports residual_in_fp32 config.residual_in_fp32 = getattr(config, 'prenorm', True) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model.eval() torch.manual_seed(0) # OPT tokenizer requires use_fast=False # https://huggingface.co/docs/transformers/model_doc/opt tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) eos_token_id = tokenizer.eos_token_id input_ids = tokenizer("Hello, my dog is cute and", return_tensors="pt").input_ids.to(device=device) max_length = 60 # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda') # max_length = input_ids.shape[1] + 40 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1) scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) if eos_token_id is not None and (sequences[-1] == eos_token_id).all(): break sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) print('Without CUDA graph') torch.cuda.synchronize() start = time.time() out = model.generate(input_ids=input_ids, max_length=max_length, eos_token_id=eos_token_id, fused_ft_kernel=fused_ft_kernel, return_dict_in_generate=True, output_scores=True, timing=True) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') if verbose: print(out.sequences) print(tokenizer.batch_decode(out.sequences.tolist())) if fused_ft_kernel: # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache( model, None, batch_size, seqlen_og, max_length ) print('With CUDA graph') torch.cuda.synchronize() start = time.time() out_cg = model.generate(input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, cg=True, return_dict_in_generate=True, output_scores=True, timing=True) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') if verbose: print(out_cg.sequences) print(tokenizer.batch_decode(out_cg.sequences.tolist())) del model model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') del model_hf model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) model_ref.eval() print("HF fp32") torch.cuda.synchronize() start = time.time() out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') del model_ref print(tokenizer.batch_decode(out_ref.sequences.tolist())) if verbose: print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') assert torch.all(out.sequences == sequences) assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol) assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_gpt_generation.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_generation_parallel.py -k "parallel" import os import re import torch import pytest from einops import rearrange from transformers import GPT2Config, GPT2Tokenizer from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.gpt import remap_state_dict_gpt2 from flash_attn.utils.pretrained import state_dict_from_pretrained from flash_attn.utils.distributed import all_gather_raw # @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) @pytest.mark.parametrize('world_size', [2]) # @pytest.mark.parametrize('fused_ft_kernel', [False, True]) @pytest.mark.parametrize('fused_ft_kernel', [True]) # @pytest.mark.parametrize('rotary', [False, True]) @pytest.mark.parametrize('rotary', [False]) @pytest.mark.parametrize('model_name', ["gpt2"]) def test_tensor_parallel(model_name, rotary, fused_ft_kernel, world_size): """Check that our implementation of GPT2 generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ dtype = torch.float16 rtol, atol = 3e-3, 3e-1 config = GPT2Config.from_pretrained(model_name) if rotary: config.n_positions = 0 config.rotary_emb_dim = 64 config.residual_in_fp32 = True config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True config.pad_vocab_size_multiple = 8 * world_size config.sequence_parallel = False # Need to set this to False for generation os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0" if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() # Need this, otherwise when we capture the graph the process for GPU 1 would run on both # GPU0 and GPU1 and things would hang torch.cuda.set_device(device) from apex.transformer import parallel_state parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() process_group = parallel_state.get_tensor_model_parallel_group() # if not rotary, we load the weight from HF but ignore the position embeddings. # The model would be nonsense but it doesn't matter for the test. model = GPTLMHeadModel.from_pretrained(model_name, config, strict=not rotary, device=device, dtype=dtype, process_group=process_group, world_size=world_size, rank=rank) model.eval() if not rotary: model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device) model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype) model_ref.eval() model_hf.eval() torch.manual_seed(0) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") input_ids = tokenizer("Hello, my dog is cute and ", return_tensors="pt").input_ids.to(device=device) max_length = 30 # input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda') # max_length = input_ids.shape[1] + 40 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group) logits = rearrange(logits, '(n b) d -> b (n d)', b=input_ids.shape[0])[..., :config.vocab_size] scores.append(logits) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1) logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group) logits = rearrange(logits, '(n b) d -> b (n d)', b=input_ids.shape[0])[..., :config.vocab_size] scores.append(logits) sequences.append(scores[-1].argmax(dim=-1)) sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) print(sequences) out = model.generate(input_ids=input_ids, max_length=max_length, tensor_parallel=world_size, vocab_size=config.vocab_size, fused_ft_kernel=fused_ft_kernel, return_dict_in_generate=True, output_scores=True, timing=True) print(out.sequences) if fused_ft_kernel: out_cg = model.generate( input_ids=input_ids, max_length=max_length, tensor_parallel=world_size, vocab_size=config.vocab_size, fused_ft_kernel=fused_ft_kernel, cg=True, return_dict_in_generate=True, output_scores=True, timing=True) print(out_cg.sequences) if not rotary: out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') assert torch.all(out.sequences == sequences) assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol) if not rotary: assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() parallel_state.destroy_model_parallel()
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_gpt_generation_parallel.py
import re import torch import pytest from transformers import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.gpt import remap_state_dict_gpt2 from flash_attn.utils.pretrained import state_dict_from_pretrained @pytest.mark.parametrize('model_name', ["gpt2", "gpt2-medium"]) # @pytest.mark.parametrize('model_name', ["gpt2"]) def test_gpt2_state_dict(model_name): config = GPT2Config.from_pretrained(model_name) pretrained_state_dict = remap_state_dict_gpt2(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config) state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize('model_name', ["gpt2", "gpt2-medium"]) # @pytest.mark.parametrize('model_name', ["gpt2"]) def test_gpt2_non_optimized(model_name): """Check that our implementation of GPT2 (without any optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = GPT2Config.from_pretrained(model_name) model = GPTLMHeadModel.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda() model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda') input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device='cuda') out = model.transformer(input_ids) out_hf = model_hf.transformer(input_ids).last_hidden_state out_ref = model_ref.transformer(input_ids).last_hidden_state print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}') assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}') print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}') assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item() @pytest.mark.parametrize('model_name', ["gpt2", "gpt2-medium"]) # @pytest.mark.parametrize('model_name', ["gpt2"]) def test_gpt2_optimized(model_name): """Check that our implementation of GPT2 (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = GPT2Config.from_pretrained(model_name) vocab_size_og = config.vocab_size config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True config.residual_in_fp32 = True config.pad_vocab_size_multiple = 8 model = GPTLMHeadModel.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda() model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda') input_ids = torch.randint(0, vocab_size_og, (batch_size, max_seqlen), dtype=torch.long, device='cuda') out = model.transformer(input_ids) out_hf = model_hf.transformer(input_ids).last_hidden_state out_ref = model_ref.transformer(input_ids).last_hidden_state print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}') assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits[..., :vocab_size_og] logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}') print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}') assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_gpt.py
import re import torch import pytest from timm.models.vision_transformer import vit_base_patch16_224 from flash_attn.models.vit import vit_base_patch16_224 as flash_vit_base_patch16_224 @pytest.mark.parametrize('fused_mlp', [False, True]) # @pytest.mark.parametrize('fused_mlp', [False]) @pytest.mark.parametrize('optimized', [False, True]) # @pytest.mark.parametrize('optimized', [True]) def test_vit(optimized, fused_mlp): """Check that our implementation of ViT matches the timm's implementation: the output of our forward pass in fp16 should be around the same as timm' forward pass in fp16, when compared to timm's forward pass in fp32. """ dtype = torch.float16 device = 'cuda' kwargs = {} if optimized: kwargs = dict(use_flash_attn=True, fused_bias_fc=True, fused_dropout_add_ln=True) kwargs['fused_mlp'] = fused_mlp model = flash_vit_base_patch16_224(**kwargs).to(device=device, dtype=dtype) model_ref = vit_base_patch16_224(pretrained=True).to(device=device) model_timm = vit_base_patch16_224(pretrained=True).to(device=device, dtype=dtype) model.load_state_dict(model_ref.state_dict()) model.eval() model_ref.eval() model_timm.eval() torch.manual_seed(0) batch_size = 2 x = torch.randn(batch_size, 3, 224, 224, device=device, dtype=dtype) out = model(x) out_timm = model_timm(x) out_ref = model_ref(x.float()) print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'timm fp16 max diff: {(out_timm - out_ref).abs().max().item()}') print(f'timm fp16 mean diff: {(out_timm - out_ref).abs().mean().item()}') rtol = 2 if not fused_mlp else 4 assert (out - out_ref).abs().max().item() < rtol * (out_timm - out_ref).abs().max().item()
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_vit.py
import re from collections import OrderedDict import torch import torch.nn.functional as F import pytest from einops import rearrange from transformers import BertConfig from transformers.models.bert.modeling_bert import BertModel as BertModelHF from transformers.models.bert.modeling_bert import BertForPreTraining as BertForPreTrainingHF from flash_attn.models.bert import BertModel, BertForPreTraining from flash_attn.models.bert import remap_state_dict from flash_attn.utils.pretrained import state_dict_from_pretrained @pytest.mark.parametrize('model_name', ["bert-base-uncased", "bert-large-uncased"]) # @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) def test_bert_state_dict(model_name): config = BertConfig.from_pretrained(model_name) pretrained_state_dict = remap_state_dict(state_dict_from_pretrained(model_name), config) model = BertForPreTraining(config) state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape def get_hf_models(model_name, config, dtype): pretrained_state_dict = state_dict_from_pretrained(model_name) def key_mapping_ln_gamma_beta(key): key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key) key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key) return key pretrained_state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in pretrained_state_dict.items()) model_hf = BertForPreTrainingHF(config) # Missing key(s) in state_dict: "bert.embeddings.position_ids", "cls.predictions.decoder.bias" # position_ids is a buffer, and predictions.decoder.bias is tied to predictions.bias. model_hf.load_state_dict(pretrained_state_dict, strict=False) model_hf.cuda().to(dtype=dtype) return model_hf @pytest.mark.parametrize('model_name', ["bert-base-uncased", "bert-large-uncased"]) # @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) def test_bert_non_optimized(model_name): """Check that our implementation of BERT (without any optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = BertConfig.from_pretrained(model_name) model = BertForPreTraining.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = get_hf_models(model_name, config, torch.float32) model_hf = get_hf_models(model_name, config, dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda') attention_mask = torch.arange(max_seqlen, device='cuda')[None, :] < seqlens[:, None] input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device='cuda') out = model.bert(input_ids, attention_mask=attention_mask) sequence_output, pooled_output = out.last_hidden_state, out.pooler_output out_hf = model_hf.bert(input_ids, attention_mask=attention_mask) sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output out_ref = model_ref.bert(input_ids, attention_mask=attention_mask) sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output print(f'Output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}') print(f'Output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}') assert (sequence_output - sequence_output_ref).abs().max().item() < 3 * (sequence_output_hf - sequence_output_ref).abs().max().item() assert (pooled_output - pooled_output_ref).abs().max().item() < 3 * (pooled_output_hf - pooled_output_ref).abs().max().item() @pytest.mark.parametrize('model_name', ["bert-base-uncased", "bert-large-uncased"]) # @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) def test_bert_optimized(model_name): """Check that our implementation of BERT (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = BertConfig.from_pretrained(model_name) # Our implementation of fused_mlp assumes the activation is # nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new" or "gelu_fast". # If you just want "gelu", disable fused_mlp. config.hidden_act = "gelu_new" config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True model = BertForPreTraining.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = get_hf_models(model_name, config, torch.float32) model_hf = get_hf_models(model_name, config, dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda') attention_mask = torch.arange(max_seqlen, device='cuda')[None, :] < seqlens[:, None] input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device='cuda') out = model.bert(input_ids, attention_mask=attention_mask) sequence_output, pooled_output = out.last_hidden_state, out.pooler_output out_hf = model_hf.bert(input_ids, attention_mask=attention_mask) sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output # Need to zero out the padded tokens in the sequence before comparison. sequence_output_hf[~attention_mask, :] = 0.0 out_ref = model_ref.bert(input_ids, attention_mask=attention_mask) sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output sequence_output_ref[~attention_mask, :] = 0.0 print(f'BertModel output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}') print(f'BertModel output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}') print(f'HF fp16 BertModel max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}') print(f'HF fp16 BertModel mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}') assert (sequence_output - sequence_output_ref).abs().max().item() < 4 * (sequence_output_hf - sequence_output_ref).abs().max().item() assert (pooled_output - pooled_output_ref).abs().max().item() < 4 * (pooled_output_hf - pooled_output_ref).abs().max().item() out = model(input_ids, attention_mask=attention_mask) prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits # Need to zero out the padded tokens in the sequence before comparison. prediction_scores = prediction_scores.clone() prediction_scores[~attention_mask, :] = 0.0 out_hf = model_hf(input_ids, attention_mask=attention_mask) prediction_scores_hf, seq_relationship_scores_hf = out_hf.prediction_logits, out_hf.seq_relationship_logits prediction_scores_hf[~attention_mask, :] = 0.0 out_ref = model_ref(input_ids, attention_mask=attention_mask) prediction_scores_ref, seq_relationship_scores_ref = out_ref.prediction_logits, out_ref.seq_relationship_logits prediction_scores_ref[~attention_mask, :] = 0.0 print(f'prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}') print(f'prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}') print(f'HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}') print(f'HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}') assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (prediction_scores_hf - prediction_scores_ref).abs().max().item() assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (seq_relationship_scores_hf - seq_relationship_scores_ref).abs().max().item() @pytest.mark.parametrize('last_layer_subset', [False, True]) # @pytest.mark.parametrize('last_layer_subset', [True]) @pytest.mark.parametrize('has_key_padding_mask', [True, False]) # @pytest.mark.parametrize('has_key_padding_mask', [True]) @pytest.mark.parametrize('model_name', ["bert-base-uncased", "bert-large-uncased"]) # @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) def test_bert_dense_seq_output(model_name, has_key_padding_mask, last_layer_subset): """Check that our implementation of BERT (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = BertConfig.from_pretrained(model_name) # Our implementation of fused_mlp assumes the activation is # nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new" or "gelu_fast". # If you just want "gelu", disable fused_mlp. config.hidden_act = "gelu_new" config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True config.dense_seq_output = True config.last_layer_subset = last_layer_subset config.use_xentropy = True model = BertForPreTraining.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = get_hf_models(model_name, config, torch.float32) model_hf = get_hf_models(model_name, config, dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda') if has_key_padding_mask: attention_mask = torch.arange(max_seqlen, device='cuda')[None, :] < seqlens[:, None] else: attention_mask = None input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device='cuda') labels = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device='cuda') if attention_mask is not None: labels[~attention_mask] = 0 labels[(torch.rand(batch_size, max_seqlen, device='cuda') > 0.15)] = 0 masked_tokens_mask = labels.flatten() > 0 next_sequence_label = torch.randint(0, 2, (batch_size,), device='cuda') out = model( input_ids, attention_mask=attention_mask, labels=labels, next_sentence_label=next_sequence_label ) prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits out_hf = model_hf(input_ids, attention_mask=attention_mask, labels=labels, next_sentence_label=next_sequence_label) prediction_scores_hf, seq_relationship_scores_hf = out_hf.prediction_logits, out_hf.seq_relationship_logits prediction_scores_hf = rearrange(prediction_scores_hf, 'b s d -> (b s) d')[masked_tokens_mask] out_ref = model_ref(input_ids, attention_mask=attention_mask, labels=labels, next_sentence_label=next_sequence_label) prediction_scores_ref, seq_relationship_scores_ref = out_ref.prediction_logits, out_ref.seq_relationship_logits prediction_scores_ref = rearrange(prediction_scores_ref, 'b s d -> (b s) d')[masked_tokens_mask] print(f'prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}') print(f'prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}') print(f'HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}') print(f'HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}') assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (prediction_scores_hf - prediction_scores_ref).abs().max().item() assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (seq_relationship_scores_hf - seq_relationship_scores_ref).abs().max().item() # The loss calculation from HF is wrong: it doesn't ignore the labels that are 0. # assert (out.loss - out_ref.loss).abs().max().item() < 2 * (out_hf.loss - out_ref.loss).abs().max().item()
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_bert.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_parallel.py import math import torch import torch.nn as nn import torch.nn.functional as F import pytest from einops import rearrange from transformers import GPT2Config from apex.transformer import parallel_state from flash_attn.models.gpt import GPTLMHeadModel, shard_state_dict_tp from flash_attn.losses.cross_entropy import CrossEntropyLoss from flash_attn.utils.distributed import allreduce_sequence_parallel_grad is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [False]) @pytest.mark.parametrize('has_pos_emb', [True, False]) # @pytest.mark.parametrize('has_pos_emb', [True]) @pytest.mark.parametrize('dim', [1024]) def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype): head_dim = 64 assert dim % head_dim == 0 num_heads = dim // head_dim assert num_heads % world_size == 0 vocab_size = 50264 assert vocab_size % world_size == 0 num_layers = 2 rtol, atol = (3e-3, 1e-1) if dtype == torch.bfloat16 else (3e-3, 1e-2) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() process_group = parallel_state.get_tensor_model_parallel_group() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 input_ids = torch.randint(0, vocab_size, (batch_size, seqlen + 1), device=device) # We need to generate g here so that all processes get the same gradient, # as rank 0 will have an extra bias that changes the RNG. g = torch.randn(batch_size * seqlen, device=device) config = GPT2Config(n_embd=dim, n_head=num_heads, n_layer=num_layers, n_positions=seqlen if has_pos_emb else 0, vocab_size=50257, resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, scale_attn_by_inverse_layer_idx=True, use_flash_attn=True, fused_mlp=True, fused_bias_fc=True, fused_dropout_add_ln=True, residual_in_fp32=True, rotary_emb_fraction=0.0 if has_pos_emb else 0.5, pad_vocab_size_multiple=8 * world_size, sequence_parallel=sequence_parallel) config.vocab_size = math.ceil(config.vocab_size / (8 * world_size)) * (8 * world_size) model_pt = GPTLMHeadModel(config, device=device) def init_layer_norm(module): if isinstance(module, nn.LayerNorm): nn.init.normal_(module.weight) nn.init.normal_(module.bias) model_pt.apply(init_layer_norm) model = GPTLMHeadModel(config, process_group=process_group, device=device) total_nparams = sum(p.numel() for p in model_pt.parameters()) sharded_nparams = sum(p.numel() for p in model.parameters()) sharded_nparams_all = torch.empty(world_size, dtype=torch.long, device=device) torch.distributed.all_gather_into_tensor( sharded_nparams_all, torch.tensor([sharded_nparams], device=device), group=process_group ) shared_nparams = sum(p.numel() for p in model.parameters() if getattr(p, '_shared_params', False)) shared_nparams_all = torch.empty(world_size, dtype=torch.long, device=device) torch.distributed.all_gather_into_tensor( shared_nparams_all, torch.tensor([shared_nparams], device=device), group=process_group ) assert torch.all(shared_nparams_all == shared_nparams) assert total_nparams == ((sharded_nparams_all - shared_nparams_all).sum().item() + shared_nparams) # vocab_size has been rounded up here partition_vocab_size = config.vocab_size // world_size partition_dim = dim // world_size partition_hidden_dim = 4 * dim // world_size with torch.no_grad(): model.load_state_dict(shard_state_dict_tp(model_pt.state_dict(), config, world_size, rank)) model.tie_weights() with torch.autocast(device_type='cuda', dtype=dtype): out = model(input_ids[:, :-1]).logits if not sequence_parallel: out = rearrange(out, 'b s d -> (b s) d') out_pt = rearrange(model_pt(input_ids[:, :-1]).logits, 'b s d -> (b s) d') partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[:, rank * partition_vocab_size:(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol ) loss_fn = CrossEntropyLoss(inplace_backward=True, reduction='none', process_group=process_group) loss_fn_pt = CrossEntropyLoss(inplace_backward=True, reduction='none') loss = loss_fn(out, input_ids[:, 1:].flatten()) loss_pt = loss_fn_pt(out_pt, input_ids[:, 1:].flatten()) assert torch.allclose(loss, loss_pt, rtol=rtol, atol=atol) loss_pt.backward(g) loss.backward(g) allreduce_sequence_parallel_grad(model, process_group) parallel_state.destroy_model_parallel() grad_dict = shard_state_dict_tp({k: v.grad for k, v in model_pt.named_parameters()}, config, world_size, rank) assert torch.allclose( model.transformer.embeddings.word_embeddings.weight.grad, grad_dict['transformer.embeddings.word_embeddings.weight'], rtol=rtol, atol=atol * 5 ) if has_pos_emb: assert torch.allclose( model.transformer.embeddings.position_embeddings.weight.grad, grad_dict['transformer.embeddings.position_embeddings.weight'], rtol=rtol, atol=atol ) assert torch.allclose(model.transformer.ln_f.weight.grad, grad_dict['transformer.ln_f.weight'], rtol=rtol, atol=atol) assert torch.allclose(model.transformer.ln_f.bias.grad, grad_dict['transformer.ln_f.bias'], rtol=rtol, atol=atol) for i in range(num_layers): assert torch.allclose( model.transformer.layers[i].mixer.Wqkv.weight.grad, grad_dict[f'transformer.layers.{i}.mixer.Wqkv.weight'], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.transformer.layers[i].mixer.Wqkv.bias.grad, grad_dict[f'transformer.layers.{i}.mixer.Wqkv.bias'], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.transformer.layers[i].mixer.out_proj.weight.grad, grad_dict[f'transformer.layers.{i}.mixer.out_proj.weight'], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.transformer.layers[i].mixer.out_proj.bias.grad, grad_dict[f'transformer.layers.{i}.mixer.out_proj.bias'], rtol=rtol, atol=atol * 5) assert torch.allclose( model.transformer.layers[i].mlp.fc1.weight.grad, grad_dict[f'transformer.layers.{i}.mlp.fc1.weight'], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.transformer.layers[i].mlp.fc1.bias.grad, grad_dict[f'transformer.layers.{i}.mlp.fc1.bias'], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.transformer.layers[i].mlp.fc2.weight.grad, grad_dict[f'transformer.layers.{i}.mlp.fc2.weight'], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.transformer.layers[i].mlp.fc2.bias.grad, grad_dict[f'transformer.layers.{i}.mlp.fc2.bias'], rtol=rtol, atol=atol * 5) assert torch.allclose(model.transformer.layers[i].norm1.weight.grad, grad_dict[f'transformer.layers.{i}.norm1.weight'], rtol=rtol, atol=atol) assert torch.allclose(model.transformer.layers[i].norm1.bias.grad, grad_dict[f'transformer.layers.{i}.norm1.bias'], rtol=rtol, atol=atol) assert torch.allclose(model.transformer.layers[i].norm2.weight.grad, grad_dict[f'transformer.layers.{i}.norm2.weight'], rtol=rtol, atol=atol) assert torch.allclose(model.transformer.layers[i].norm2.bias.grad, grad_dict[f'transformer.layers.{i}.norm2.bias'], rtol=rtol, atol=atol)
FLASHATTENION-LION-OPTIMIZE-main
tests/models/test_gpt_parallel.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange, repeat from flash_attn.ops.layer_norm import DropoutAddLayerNorm, dropout_add_layer_norm from flash_attn.ops.layer_norm import dropout_add_layer_norm_subset from flash_attn.ops.rms_norm import DropoutAddRMSNorm, dropout_add_rms_norm from flash_attn.ops.rms_norm import dropout_add_rms_norm_subset try: from apex.normalization import FusedRMSNorm except: FusedRMSNorm = None is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('is_rms_norm', [False, True]) @pytest.mark.parametrize('has_colscale', [True, False]) # @pytest.mark.parametrize('has_colscale', [False]) @pytest.mark.parametrize('has_rowscale', [True, False]) # @pytest.mark.parametrize('has_rowscale', [True]) @pytest.mark.parametrize('has_residual', [True, False]) # @pytest.mark.parametrize('has_residual', [False]) @pytest.mark.parametrize('dropout_p', [0.37, 0.0]) # @pytest.mark.parametrize('dropout_p', [0.0]) @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) # @pytest.mark.parametrize('weight_dtype', [torch.float32]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)]) # @pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144]) @pytest.mark.parametrize('hidden_size', [256]) def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_rowscale, has_colscale, is_rms_norm): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported if is_rms_norm and FusedRMSNorm is None: pytest.skip() # We need Apex's FusedRMSNorm to test layer_norm_cls = torch.nn.LayerNorm if not is_rms_norm else FusedRMSNorm our_layer_norm_cls = DropoutAddLayerNorm if not is_rms_norm else DropoutAddRMSNorm our_layer_norm_func = dropout_add_layer_norm if not is_rms_norm else dropout_add_rms_norm device = 'cuda' # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 1e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() if has_colscale: colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) colscale_pt = colscale.detach().clone().requires_grad_() colscale_ref = colscale.detach().clone().float().requires_grad_() else: colscale = None if has_residual: x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() else: x1 = None if has_rowscale: rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype) survival_rate = 0.87 rowscale = rowscale.bernoulli_(survival_rate) / survival_rate x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1') x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1') else: rowscale = None x0_scaled_pt = x0_pt x0_scaled_ref = x0_ref if has_colscale: x0_scaled_pt = x0_scaled_pt * colscale_pt x0_scaled_ref = x0_scaled_ref * colscale_ref model_pt = layer_norm_cls(hidden_size).to(device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) if not is_rms_norm: torch.nn.init.normal_(model_pt.bias) model_ref = layer_norm_cls(hidden_size).to(device=device, dtype=torch.float32) model = our_layer_norm_cls(hidden_size, p=dropout_p, device=device, dtype=weight_dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model_ref.weight.copy_(model_pt.weight) if not is_rms_norm: model.bias.copy_(model_pt.bias) model_ref.bias.copy_(model_pt.bias) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, dmask = our_layer_norm_func(x0, x1, model.weight, model.bias, model.p, model.epsilon, rowscale=rowscale, layerscale=colscale, residual_in_fp32=residual_in_fp32, return_dropout_mask=True) assert out.dtype == input_dtype print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}') if has_residual: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref else: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype) out_ref = model_ref(residual_ref) assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 g = torch.randn_like(out) / batch_size out_pt.backward(g) out.backward(g) out_ref.backward(g) assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4 if has_residual: assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4 assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 3e-5 if not is_rms_norm: assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 3e-5 if has_colscale: assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (colscale_pt.grad - colscale_ref.grad).abs().max() + 2e-4 @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120]) def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported device = 'cuda' # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 1e-4) dropout_p = 0.37 # set seed torch.random.manual_seed(0) batch_size = 32 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) torch.nn.init.normal_(model_pt.bias) model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) model_pt.eval() model.eval() model_ref.eval() out = model(x0, x1) residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype) residual_ref = x0_ref + x1_ref out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype) out_ref = model_ref(residual_ref) assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 @pytest.mark.parametrize('is_rms_norm', [False, True]) @pytest.mark.parametrize('has_colscale', [True, False]) @pytest.mark.parametrize('has_rowscale', [True, False]) @pytest.mark.parametrize('has_residual', [True, False]) @pytest.mark.parametrize('dropout_p', [0.37, 0.0]) @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) # @pytest.mark.parametrize('has_colscale', [True]) # @pytest.mark.parametrize('has_rowscale', [False]) # @pytest.mark.parametrize('has_residual', [True]) # @pytest.mark.parametrize('dropout_p', [0.0]) # @pytest.mark.parametrize('weight_dtype', [torch.float32]) # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)]) @pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144]) # @pytest.mark.parametrize('hidden_size', [256]) def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_rowscale, has_colscale, is_rms_norm): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported if is_rms_norm and FusedRMSNorm is None: pytest.skip() # We need Apex's FusedRMSNorm to test layer_norm_cls = torch.nn.LayerNorm if not is_rms_norm else FusedRMSNorm our_layer_norm_cls = DropoutAddLayerNorm if not is_rms_norm else DropoutAddRMSNorm our_layer_norm_func = dropout_add_layer_norm if not is_rms_norm else dropout_add_rms_norm device = 'cuda' # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 2e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() if has_colscale: colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) colscale_pt = colscale.detach().clone().requires_grad_() colscale_ref = colscale.detach().clone().float().requires_grad_() else: colscale = None if has_residual: x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() else: x1 = None if has_rowscale: rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype) survival_rate = 0.87 rowscale = rowscale.bernoulli_(survival_rate) / survival_rate x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1') x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1') else: rowscale = None x0_scaled_pt = x0_pt x0_scaled_ref = x0_ref if has_colscale: x0_scaled_pt = x0_scaled_pt * colscale_pt x0_scaled_ref = x0_scaled_ref * colscale_ref model_pt = layer_norm_cls(hidden_size).to(device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) if not is_rms_norm: torch.nn.init.normal_(model_pt.bias) model_ref = layer_norm_cls(hidden_size).to(device=device, dtype=torch.float32) model = our_layer_norm_cls(hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model_ref.weight.copy_(model_pt.weight) if not is_rms_norm: model.bias.copy_(model_pt.bias) model_ref.bias.copy_(model_pt.bias) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, residual, dmask = our_layer_norm_func(x0, x1, model.weight, model.bias, model.p, model.epsilon, rowscale=rowscale, layerscale=colscale, prenorm=True, residual_in_fp32=residual_in_fp32, return_dropout_mask=True) print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}') if has_residual: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref else: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype) out_ref = model_ref(residual_ref) assert out.dtype == input_dtype assert residual.dtype == residual_dtype assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4 g = torch.randn_like(out) / batch_size (out_pt * F.sigmoid(residual_pt)).backward(g) (out * F.sigmoid(residual)).backward(g) (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g) assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4 if has_residual: assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4 assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4 if not is_rms_norm: assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4 if has_colscale: assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (colscale_pt.grad - colscale_ref.grad).abs().max() + 2e-4 @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120]) def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported device = 'cuda' # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 1e-4) dropout_p = 0.37 # set seed torch.random.manual_seed(0) batch_size = 32 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) torch.nn.init.normal_(model_pt.bias) model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) model_pt.eval() model.eval() model_ref.eval() out, residual = model(x0, x1) residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype) residual_ref = x0_ref + x1_ref out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype) out_ref = model_ref(residual_ref) assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4 @pytest.mark.parametrize('has_colscale', [True, False]) @pytest.mark.parametrize('has_residual', [True, False]) @pytest.mark.parametrize('dropout_p', [0.37, 0.0]) @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) # @pytest.mark.parametrize('has_colscale', [True]) # @pytest.mark.parametrize('has_residual', [True]) # @pytest.mark.parametrize('dropout_p', [0.0]) # @pytest.mark.parametrize('weight_dtype', [torch.float32]) # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)]) @pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144]) # @pytest.mark.parametrize('hidden_size', [256]) def test_dropout_layer_norm_subset_training( hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_colscale): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported device = 'cuda' # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 2e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 drop_path_rate = 0.4 drop_path_scale = 1 / (1 - drop_path_rate) def generate_droppath_masks(batch_size, seqlen, drop_path_rate, device): # Do it on CPU so we can get the numrows (with .item()) without GPU-CPU sync mask_batch = torch.rand(batch_size) < 1 - drop_path_rate numrows = (mask_batch).sum().item() * seqlen mask_batch = mask_batch.to(device=device, non_blocking=True) mask_batch_seqlen = repeat(mask_batch, 'b -> (b s)', s=seqlen) subset = torch.cumsum(mask_batch_seqlen, dim=0, dtype=torch.int32).masked_fill_(~mask_batch_seqlen, 0) return mask_batch, numrows, rearrange(subset, '(b s) -> b s', b=batch_size) x0_mask_batch, x0_numrows, x0_subset = generate_droppath_masks(batch_size, seqlen, drop_path_rate, device) out_mask_batch, out_numrows, out_subset = generate_droppath_masks(batch_size, seqlen, drop_path_rate, device) x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone()[x0_mask_batch].requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() if has_colscale: colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) colscale_pt = colscale.detach().clone().requires_grad_() colscale_ref = colscale.detach().clone().float().requires_grad_() else: colscale = None if has_residual: x1_pt = torch.randn_like(x0_pt, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() else: x1 = None if has_colscale: x0_scaled_pt = x0_pt * colscale_pt x0_scaled_ref = x0_ref * colscale_ref else: x0_scaled_pt = x0_pt x0_scaled_ref = x0_ref model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) torch.nn.init.normal_(model_pt.bias) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) model = DropoutAddLayerNorm(hidden_size, prenorm=False, p=dropout_p, device=device, dtype=weight_dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, dmask = dropout_add_layer_norm_subset( x0, x1, model.weight, model.bias, model.p, model.epsilon, layerscale=colscale, x0_subset=x0_subset, out_subset=out_subset, rowscale_const=drop_path_scale, out_numrows = out_numrows, prenorm=False, residual_in_fp32=residual_in_fp32, return_dropout_mask=True) print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}') x0_scaled_pt = x0_scaled_pt.masked_fill( repeat(~x0_mask_batch, 'b -> b s d', s=seqlen, d=hidden_size), 0 ) * drop_path_scale x0_scaled_ref = x0_scaled_ref.masked_fill( repeat(~x0_mask_batch, 'b -> b s d', s=seqlen, d=hidden_size), 0 ) * drop_path_scale dmask_expanded = torch.zeros_like(x0_pt, dtype=torch.uint8) dmask_expanded[x0_mask_batch] = dmask if has_residual: residual_pt = ((x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p) + x1_ref else: residual_pt = ((x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p)).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p) out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)[out_mask_batch] out_ref = model_ref(residual_ref)[out_mask_batch] assert out.dtype == input_dtype assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 g = torch.randn_like(out) / batch_size out_pt.backward(g) out.backward(g) out_ref.backward(g) assert (x0.grad - x0_ref.grad[x0_mask_batch]).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad)[x0_mask_batch].abs().max() + 1e-4 if has_residual: assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4 assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4 assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4 if has_colscale: assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (colscale_pt.grad - colscale_ref.grad).abs().max() + 2e-4 @pytest.mark.parametrize('has_colscale', [True, False]) @pytest.mark.parametrize('has_residual', [True, False]) @pytest.mark.parametrize('dropout_p', [0.37, 0.0]) @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) # @pytest.mark.parametrize('has_colscale', [True]) # @pytest.mark.parametrize('has_residual', [True]) # @pytest.mark.parametrize('dropout_p', [0.0]) # @pytest.mark.parametrize('weight_dtype', [torch.float32]) # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)]) @pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144]) # @pytest.mark.parametrize('hidden_size', [256]) def test_dropout_layer_norm_subset_prenorm_training( hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_colscale): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported device = 'cuda' # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 2e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 drop_path_rate = 0.4 drop_path_scale = 1 / (1 - drop_path_rate) def generate_droppath_masks(batch_size, seqlen, drop_path_rate, device): # Do it on CPU so we can get the numrows (with .item()) without GPU-CPU sync mask_batch = torch.rand(batch_size) < 1 - drop_path_rate numrows = (mask_batch).sum().item() * seqlen mask_batch = mask_batch.to(device=device, non_blocking=True) mask_batch_seqlen = repeat(mask_batch, 'b -> (b s)', s=seqlen) subset = torch.cumsum(mask_batch_seqlen, dim=0, dtype=torch.int32).masked_fill_(~mask_batch_seqlen, 0) return mask_batch, numrows, rearrange(subset, '(b s) -> b s', b=batch_size) x0_mask_batch, x0_numrows, x0_subset = generate_droppath_masks(batch_size, seqlen, drop_path_rate, device) out_mask_batch, out_numrows, out_subset = generate_droppath_masks(batch_size, seqlen, drop_path_rate, device) x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone()[x0_mask_batch].requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() if has_colscale: colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) colscale_pt = colscale.detach().clone().requires_grad_() colscale_ref = colscale.detach().clone().float().requires_grad_() else: colscale = None if has_residual: x1_pt = torch.randn_like(x0_pt, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() else: x1 = None if has_colscale: x0_scaled_pt = x0_pt * colscale_pt x0_scaled_ref = x0_ref * colscale_ref else: x0_scaled_pt = x0_pt x0_scaled_ref = x0_ref model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) torch.nn.init.normal_(model_pt.bias) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, residual, dmask = dropout_add_layer_norm_subset( x0, x1, model.weight, model.bias, model.p, model.epsilon, layerscale=colscale, x0_subset=x0_subset, out_subset=out_subset, rowscale_const=drop_path_scale, out_numrows = out_numrows, prenorm=True, residual_in_fp32=residual_in_fp32, return_dropout_mask=True) print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}') x0_scaled_pt = x0_scaled_pt.masked_fill( repeat(~x0_mask_batch, 'b -> b s d', s=seqlen, d=hidden_size), 0 ) * drop_path_scale x0_scaled_ref = x0_scaled_ref.masked_fill( repeat(~x0_mask_batch, 'b -> b s d', s=seqlen, d=hidden_size), 0 ) * drop_path_scale dmask_expanded = torch.zeros_like(x0_pt, dtype=torch.uint8) dmask_expanded[x0_mask_batch] = dmask if has_residual: residual_pt = ((x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p) + x1_ref else: residual_pt = ((x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p)).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p) out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)[out_mask_batch] out_ref = model_ref(residual_ref)[out_mask_batch] assert out.dtype == input_dtype assert residual.dtype == residual_dtype assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4 g = torch.randn_like(out) / batch_size (out_pt * F.sigmoid(residual_pt[out_mask_batch]) + residual_pt.mean(0, keepdim=True)).backward(g) (out * F.sigmoid(residual[out_mask_batch]) + residual.mean(0, keepdim=True)).backward(g) (out_ref * F.sigmoid(residual_ref[out_mask_batch].to(dtype=residual_dtype)) + residual_ref.mean(0, keepdim=True)).backward(g) assert (x0.grad - x0_ref.grad[x0_mask_batch]).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad)[x0_mask_batch].abs().max() + 1e-4 if has_residual: assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4 assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4 assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4 if has_colscale: assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (colscale_pt.grad - colscale_ref.grad).abs().max() + 2e-4
FLASHATTENION-LION-OPTIMIZE-main
tests/ops/test_dropout_layer_norm.py
import math from functools import partial import torch import torch.nn.functional as F import pytest from einops import rearrange from flash_attn.ops.fused_dense import FusedDense, FusedMLP @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16]) @pytest.mark.parametrize('return_residual', [False, True]) @pytest.mark.parametrize('has_bias', [True, False]) @pytest.mark.parametrize('out_features', [1024, 4096]) @pytest.mark.parametrize('in_features', [1024, 4096]) def test_fused_linear_bias(in_features, out_features, has_bias, return_residual, dtype): device = 'cuda' rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype) model = FusedDense(in_features, out_features, bias=has_bias, return_residual=return_residual, device=device, dtype=dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) if has_bias: model.bias.copy_(model_pt.bias) out_pt = model_pt(x_pt) if not return_residual: out = model(x) else: out, x_copy = model(x) x_copy = (x_copy[..., :out_features] if out_features < in_features else F.pad(x_copy, (0, out_features - in_features))) x_pt_copy = (x_pt[..., :out_features] if out_features < in_features else F.pad(x_pt, (0, out_features - in_features))) # Just add some random function of the residual out_pt = out_pt + F.gelu(x_pt_copy) out = out + F.gelu(x_copy) # with torch.no_grad(): # out_fl = F.linear(x_pt.float(), model.weight.float(), model.bias.float()).half() assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10) if has_bias: assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5) @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16]) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('heuristic', ['auto', -1]) # @pytest.mark.parametrize('heuristic', ['auto']) @pytest.mark.parametrize('checkpoint_lvl', [0, 1, 2]) # @pytest.mark.parametrize('checkpoint_lvl', [1]) @pytest.mark.parametrize('return_residual', [False, True]) # @pytest.mark.parametrize('return_residual', [False]) @pytest.mark.parametrize('has_bias2', [True, False]) @pytest.mark.parametrize('has_bias1', [True, False]) # @pytest.mark.parametrize('has_bias2', [True]) # @pytest.mark.parametrize('has_bias1', [True]) @pytest.mark.parametrize('activation', ['gelu_approx', 'relu']) # @pytest.mark.parametrize('activation', ['relu']) @pytest.mark.parametrize('out_features', [1024, 4096]) @pytest.mark.parametrize('in_features', [1024, 4096]) # @pytest.mark.parametrize('out_features', [4096]) # @pytest.mark.parametrize('in_features', [1024]) def test_fused_mlp(in_features, out_features, activation, has_bias1, has_bias2, return_residual, checkpoint_lvl, heuristic, dtype): device = 'cuda' rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() model_pt_fc1 = torch.nn.Linear(in_features, out_features, bias=has_bias1, device=device, dtype=dtype) model_pt_fc2 = torch.nn.Linear(out_features, in_features, bias=has_bias2, device=device, dtype=dtype) model = FusedMLP(in_features, out_features, in_features, activation=activation, bias1=has_bias1, bias2=has_bias2, return_residual=return_residual, checkpoint_lvl=checkpoint_lvl, heuristic=heuristic, device=device, dtype=dtype) with torch.no_grad(): model.fc1.weight.copy_(model_pt_fc1.weight) if has_bias1: model.fc1.bias.copy_(model_pt_fc1.bias) model.fc2.weight.copy_(model_pt_fc2.weight) if has_bias2: model.fc2.bias.copy_(model_pt_fc2.bias) activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else partial(F.relu, inplace=True)) out_pt = model_pt_fc2(activation_fn(model_pt_fc1(x_pt))) if not return_residual: out = model(x) else: out, x_copy = model(x) # Just add some random function of the residual out_pt = out_pt + F.gelu(x_pt) out = out + F.gelu(x_copy) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) # The error for relu is higher still if activation == 'relu': atol = 1e-1 if dtype == torch.bfloat16 else 5e-2 assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10) if has_bias1: assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10) if has_bias2: assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
FLASHATTENION-LION-OPTIMIZE-main
tests/ops/test_fused_dense.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/ops/test_fused_dense_parallel.py import math import torch import torch.nn.functional as F import pytest from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.ops.fused_dense import FusedDense, FusedMLP from flash_attn.ops.fused_dense import ColumnParallelLinear, ParallelFusedMLP is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [False]) @pytest.mark.parametrize('has_bias', [True, False]) # @pytest.mark.parametrize('has_bias', [False]) @pytest.mark.parametrize('out_features', [1024]) @pytest.mark.parametrize('in_features', [4096]) def test_fused_linear_bias(in_features, out_features, has_bias, sequence_parallel, world_size, dtype): assert out_features % world_size == 0 rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 2 seqlen = 512 assert batch_size * seqlen % world_size == 0 x_pt = torch.randn(batch_size * seqlen, in_features, device=device, dtype=dtype, requires_grad=True) if sequence_parallel: x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_() else: x = x_pt.detach().clone().requires_grad_() model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype) partition_out_features = out_features // world_size model = ColumnParallelLinear(in_features, out_features, parallel_state.get_tensor_model_parallel_group(), bias=has_bias, sequence_parallel=sequence_parallel, device=device, dtype=dtype) with torch.no_grad(): model.weight.copy_( model_pt.weight[rank * partition_out_features:(rank + 1) * partition_out_features] ) if has_bias: model.bias.copy_( model_pt.bias[rank * partition_out_features:(rank + 1) * partition_out_features] ) out = model(x) out_pt = model_pt(x_pt) assert torch.allclose( out, out_pt[:, rank * partition_out_features:(rank + 1) * partition_out_features], rtol=rtol, atol=atol ) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out_pt) / 32 out_pt.backward(g) out.backward(g[:, rank * partition_out_features:(rank + 1) * partition_out_features]) parallel_state.destroy_model_parallel() partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else x_pt.grad, rtol=rtol, atol=atol ) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.weight.grad, model_pt.weight.grad[rank * partition_out_features:(rank + 1) * partition_out_features], rtol=rtol, atol=atol * 10 ) if has_bias: assert torch.allclose( model.bias.grad, model_pt.bias.grad[rank * partition_out_features:(rank + 1) * partition_out_features], rtol=rtol, atol=atol * 5 ) @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [False]) @pytest.mark.parametrize('has_bias2', [True, False]) # @pytest.mark.parametrize('has_bias2', [True]) @pytest.mark.parametrize('out_features', [4096]) @pytest.mark.parametrize('in_features', [1024]) def test_fused_mlp(in_features, out_features, has_bias2, sequence_parallel, world_size, dtype): assert out_features % world_size == 0 rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 2 seqlen = 512 assert batch_size * seqlen % world_size == 0 x_pt = torch.randn(batch_size * seqlen, in_features, device=device, dtype=dtype, requires_grad=True) # We need to generate g here so that all processes get the same gradient, # as rank 0 will have an extra bias that changes the RNG. # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(x_pt) / 32 if sequence_parallel: x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_() else: x = x_pt.detach().clone().requires_grad_() model_pt_fc1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype) model_pt_fc2 = torch.nn.Linear(out_features, in_features, bias=has_bias2, device=device, dtype=dtype) partition_out_features = out_features // world_size partition_in_features = in_features // world_size model = ParallelFusedMLP(in_features, out_features, in_features, process_group=parallel_state.get_tensor_model_parallel_group(), bias2=has_bias2 and rank == 0, sequence_parallel=sequence_parallel, device=device, dtype=dtype) with torch.no_grad(): model.fc1.weight.copy_( model_pt_fc1.weight[rank * partition_out_features:(rank + 1) * partition_out_features] ) model.fc1.bias.copy_( model_pt_fc1.bias[rank * partition_out_features:(rank + 1) * partition_out_features] ) model.fc2.weight.copy_( model_pt_fc2.weight[:, rank * partition_out_features:(rank + 1) * partition_out_features] ) if has_bias2 and rank == 0: model.fc2.bias.copy_(model_pt_fc2.bias) out = model(x) out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate='tanh')) partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_pt, rtol=rtol, atol=atol ) out_pt.backward(g) out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else g) parallel_state.destroy_model_parallel() assert torch.allclose( x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else x_pt.grad, rtol=rtol, atol=atol ) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.fc1.weight.grad, model_pt_fc1.weight.grad[rank * partition_out_features:(rank + 1) * partition_out_features], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.fc1.bias.grad, model_pt_fc1.bias.grad[rank * partition_out_features:(rank + 1) * partition_out_features], rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.fc2.weight.grad, model_pt_fc2.weight.grad[:, rank * partition_out_features:(rank + 1) * partition_out_features], rtol=rtol, atol=atol * 10 ) if has_bias2 and rank == 0: assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
FLASHATTENION-LION-OPTIMIZE-main
tests/ops/test_fused_dense_parallel.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py import torch import torch.nn as nn import torch.nn.functional as F import pytest from einops import rearrange from apex.transformer import parallel_state from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [False]) @pytest.mark.parametrize('has_pos_emb', [True, False]) # @pytest.mark.parametrize('has_pos_emb', [True]) @pytest.mark.parametrize('dim', [1024]) def test_embedding_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype): vocab_size = 50264 seqlen = 2048 assert vocab_size % world_size == 0 assert dim % world_size == 0 rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device) input_ids = input_ids_pt.detach().clone() model_pt = GPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0, device=device, dtype=dtype) model = ParallelGPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0, parallel_state.get_tensor_model_parallel_group(), sequence_parallel=sequence_parallel, device=device, dtype=dtype) partition_vocab_size = vocab_size // world_size partition_dim = dim // world_size with torch.no_grad(): model.word_embeddings.weight.copy_( model_pt.word_embeddings.weight[rank * partition_vocab_size:(rank + 1) * partition_vocab_size] ) if has_pos_emb: model.position_embeddings.weight.copy_( model_pt.position_embeddings.weight[:, rank * partition_dim:(rank + 1) * partition_dim] ) out = model(input_ids, combine_batch_seqlen_dim=True) out_pt = rearrange(model_pt(input_ids), 'b s d -> (b s) d') partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_pt, rtol=rtol, atol=atol ) g = torch.randn_like(out_pt) out_pt.backward(g) out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else g) parallel_state.destroy_model_parallel() assert torch.allclose( model.word_embeddings.weight.grad, model_pt.word_embeddings.weight.grad[rank * partition_vocab_size:(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol ) if has_pos_emb: assert torch.allclose( model.position_embeddings.weight.grad, model_pt.position_embeddings.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim], rtol=rtol, atol=atol )
FLASHATTENION-LION-OPTIMIZE-main
tests/modules/test_embedding_parallel.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import pytest from einops import rearrange from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.modules.mha import MHA, ParallelMHA from flash_attn.modules.mlp import FusedMLP, ParallelFusedMLP from flash_attn.modules.block import Block from flash_attn.utils.distributed import allreduce_sequence_parallel_grad is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [True]) @pytest.mark.parametrize('dim', [1024]) def test_block_parallel(dim, sequence_parallel, world_size, dtype): head_dim = 64 assert dim % head_dim == 0 num_heads = dim // head_dim assert num_heads % world_size == 0 rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 2 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True) residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True) # We need to generate g here so that all processes get the same gradient, # as rank 0 will have an extra bias that changes the RNG. # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(x_pt) / 32 if sequence_parallel: x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_() residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_() else: x = x_pt.detach().clone().requires_grad_() residual = residual_pt.detach().clone().requires_grad_() mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, device=device, dtype=dtype) mlp_cls_pt = partial(FusedMLP, hidden_features=4 * dim, device=device, dtype=dtype) norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype) model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True) with torch.no_grad(): nn.init.normal_(model_pt.norm1.weight) nn.init.normal_(model_pt.norm1.bias) nn.init.normal_(model_pt.norm2.weight) nn.init.normal_(model_pt.norm2.bias) mixer_cls = partial(ParallelMHA, num_heads=num_heads, process_group=parallel_state.get_tensor_model_parallel_group(), rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, sequence_parallel=sequence_parallel, device=device, dtype=dtype) mlp_cls = partial(ParallelFusedMLP, hidden_features=4 * dim, process_group=parallel_state.get_tensor_model_parallel_group(), sequence_parallel=sequence_parallel, device=device, dtype=dtype) model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True, sequence_parallel=sequence_parallel, mark_shared_params=True) partition_dim = dim // world_size partition_hidden_dim = 4 * dim // world_size with torch.no_grad(): model.mixer.Wqkv.weight.copy_( rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i') ) model.mixer.Wqkv.bias.copy_( rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)') ) model.mixer.out_proj.weight.copy_( model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim] ) if rank == 0: model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias) model.mlp.fc1.weight.copy_( model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim] ) model.mlp.fc1.bias.copy_( model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim] ) model.mlp.fc2.weight.copy_( model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim] ) if rank == 0: model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias) model.norm1.weight.copy_(model_pt.norm1.weight) model.norm1.bias.copy_(model_pt.norm1.bias) model.norm2.weight.copy_(model_pt.norm2.weight) model.norm2.bias.copy_(model_pt.norm2.bias) mixer_kwargs = {'seqlen': seqlen} out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs) out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen), rearrange(residual_pt, '(b s) d -> b s d', s=seqlen)) out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]] partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_pt, rtol=rtol, atol=atol ) assert torch.allclose( out_residual, out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_residual_pt, rtol=rtol, atol=atol ) (out_pt + 2 * out_residual_pt).backward(g) (out + 2 * out_residual).backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else g) allreduce_sequence_parallel_grad(model, parallel_state.get_tensor_model_parallel_group()) parallel_state.destroy_model_parallel() assert torch.allclose( x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else x_pt.grad, rtol=rtol, atol=atol / 10 # magnitude of x.grad is quite small ) assert torch.allclose( residual.grad, residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else residual_pt.grad, rtol=rtol, atol=atol ) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.mixer.Wqkv.weight.grad, rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i'), rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.mixer.Wqkv.bias.grad, rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)'), rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.mixer.out_proj.weight.grad, model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose( model.mlp.fc1.weight.grad, model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.mlp.fc1.bias.grad, model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim], rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.mlp.fc2.weight.grad, model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)
FLASHATTENION-LION-OPTIMIZE-main
tests/modules/test_block_parallel.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_mha_parallel.py import math import torch import torch.nn.functional as F import pytest from einops import rearrange from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.modules.mha import MHA, ParallelMHA is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [False]) @pytest.mark.parametrize('head_dim', [64, 128]) # @pytest.mark.parametrize('head_dim', [64]) @pytest.mark.parametrize('embed_dim', [1024, 4096]) # @pytest.mark.parametrize('embed_dim', [1024]) def test_mha_parallel(embed_dim, head_dim, sequence_parallel, world_size, dtype): assert embed_dim % head_dim == 0 num_heads = embed_dim // head_dim assert num_heads % world_size == 0 rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 2 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 x_pt = torch.randn(batch_size * seqlen, embed_dim, device=device, dtype=dtype, requires_grad=True) # We need to generate g here so that all processes get the same gradient, # as rank 0 will have an extra bias that changes the RNG. # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(x_pt) / 32 if sequence_parallel: x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_() else: x = x_pt.detach().clone().requires_grad_() model_pt = MHA(embed_dim, num_heads, rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, device=device, dtype=dtype) partition_dim = embed_dim // world_size model = ParallelMHA(embed_dim, num_heads, parallel_state.get_tensor_model_parallel_group(), rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, sequence_parallel=sequence_parallel, device=device, dtype=dtype) with torch.no_grad(): model.Wqkv.weight.copy_( rearrange(rearrange(model_pt.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i') ) model.Wqkv.bias.copy_( rearrange(rearrange(model_pt.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)') ) model.out_proj.weight.copy_( model_pt.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim] ) if rank == 0: model.out_proj.bias.copy_(model_pt.out_proj.bias) out = model(x, seqlen=seqlen) out_pt = rearrange(model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen)), 'b s d -> (b s) d') partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_pt, rtol=rtol, atol=atol ) out_pt.backward(g) out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else g) parallel_state.destroy_model_parallel() assert torch.allclose( x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else x_pt.grad, rtol=rtol, atol=atol / 100 # magnitude of x.grad is quite small ) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.Wqkv.weight.grad, rearrange(rearrange(model_pt.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i'), rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.Wqkv.bias.grad, rearrange(rearrange(model_pt.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)'), rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.out_proj.weight.grad, model_pt.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.out_proj.bias.grad, model_pt.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
FLASHATTENION-LION-OPTIMIZE-main
tests/modules/test_mha_parallel.py
from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_forward, benchmark_all, pytorch_profiler from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func # from flash_attn.triton.fused_attention import attention as attention from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func from flash_attn.flash_attn_triton_og import attention as attention_og try: from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax except ImportError: scaled_upper_triang_masked_softmax = None def attention_pytorch(qkv, dropout_p=0.0, causal=True): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) return output.to(dtype=qkv.dtype) def attention_megatron(qkv): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0) output = torch.einsum('bhts,bshd->bthd', attention, v) return output.to(dtype=qkv.dtype) torch.manual_seed(0) repeats = 30 batch_size = 2 seqlen = 4096 nheads = 12 headdim = 128 # batch_size = 64 # seqlen = 512 # nheads = 8 # headdim = 128 dropout_p = 0.0 causal = True dtype = torch.bfloat16 device = 'cuda' qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) benchmark_all(flash_attn_unpadded_qkvpacked_func, rearrange(qkv, 'b s ... -> (b s) ...'), cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention') benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, desc='PyTorch Attention') benchmark_all(flash_attn_qkvpacked_func, qkv, causal, repeats=repeats, desc='FlashAttention Triton') pytorch_profiler(flash_attn_qkvpacked_func, qkv, causal, backward=True) q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG') # pytorch_profiler(attention, q, k, v, 1.0, backward=True) if scaled_upper_triang_masked_softmax is not None: benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')
FLASHATTENION-LION-OPTIMIZE-main
benchmarks/benchmark_causal.py
from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward, benchmark_combined from flash_attn.bert_padding import unpad_input, pad_input from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func def attention_ref(qkv, attn_mask, dropout_p, upcast=False, causal=False): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) attn_mask: (batch_size, seqlen) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) attention: softmax after dropout """ q, k, v = (qkv.float() if upcast else qkv).unbind(dim=2) seqlen = qkv.shape[1] d = qkv.shape[-1] scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d)) scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1) scores.masked_fill_(causal_mask, float('-inf')) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) # return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype) return output.to(dtype=qkv.dtype) torch.manual_seed(0) repeats = 30 batch_size = 64 nheads = 16 seqlen = 1024 n = 1024 d = n // nheads dropout_p = 0.1 causal = False dtype = torch.float16 device = 'cuda' x = torch.randn(batch_size, seqlen, n, device='cuda', dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) lengths = torch.randint(seqlen - 20, seqlen, (batch_size, 1), device='cuda') attention_mask_bool = repeat(torch.arange(seqlen, device='cuda'), 's -> b s', b=batch_size) < lengths attention_mask = torch.zeros(batch_size, seqlen, device='cuda', dtype=dtype) attention_mask[~attention_mask_bool] = -10000.0 attention_mask = rearrange(attention_mask, 'b s -> b 1 1 s') x_unpad, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(x, attention_mask_bool) qkv_unpad = rearrange(Wqkv(x_unpad), 'nnz (t h d) -> nnz t h d', t=3, h=nheads).detach().requires_grad_() qkv = rearrange(Wqkv(x), 'b s (t h d) -> b s t h d', t=3, h=nheads).detach().requires_grad_() fn = lambda qkv_unpad: flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen_in_batch, dropout_p, causal=causal ) benchmark_all(fn, qkv_unpad, repeats=repeats, desc='FlashAttention') fn = lambda qkv: attention_ref(qkv, attention_mask_bool, dropout_p, causal=causal) benchmark_all(fn, qkv, repeats=repeats, desc='PyTorch Standard Attention')
FLASHATTENION-LION-OPTIMIZE-main
benchmarks/benchmark_flash_attention.py
# [2022-10-23] Copied from https://github.com/NVIDIA/apex/blob/master/apex/transformer/functional/fused_softmax.py # for benchmarking. # We added support for seqlen=2k and seqlen=4k # coding=utf-8 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from apex._autocast_utils import _cast_if_autocast_enabled from apex.transformer.enums import AttnMaskType from fused_softmax_lib import scaled_masked_softmax_forward, scaled_masked_softmax_backward from fused_softmax_lib import scaled_masked_softmax_get_batch_per_block from fused_softmax_lib import scaled_upper_triang_masked_softmax_forward, scaled_upper_triang_masked_softmax_backward class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function): """ Fused operation which performs following three operations in sequence 1. Scale the tensor. 2. Apply upper triangular mask (typically used in gpt models). 3. Perform softmax. """ @staticmethod def forward(ctx, inputs, scale): scale_t = torch.tensor([scale]) softmax_results = scaled_upper_triang_masked_softmax_forward( inputs, scale_t[0] ) ctx.save_for_backward(softmax_results, scale_t) return softmax_results @staticmethod def backward(ctx, output_grads): softmax_results, scale_t = ctx.saved_tensors input_grads = scaled_upper_triang_masked_softmax_backward( output_grads, softmax_results, scale_t[0] ) return input_grads, None def scaled_upper_triang_masked_softmax(inputs, _, scale): b, np, sq, sk = inputs.size() assert sq == sk, "causal mask is only for self attention" # Reshaping input to 3D tensor (attn_batches, sq, sk) inputs = inputs.view(-1, sq, sk) args = _cast_if_autocast_enabled(inputs, scale) with torch.cuda.amp.autocast(enabled=False): probs = ScaledUpperTriangMaskedSoftmax.apply(*args) return probs.view(b, np, sq, sk) # NOTE (mkozuki): `ScaledMaskedSoftmax` somehow doesn't work well with `torch.cuda.amp.custom_fwd`. # Without `cast_inputs` kwarg, somehow inputs are not cast to dtype used in the autocast context. # So I needed to manually write two `torch.autograd.Function` inheritances. # Fused operation which performs following three operations in sequence # 1. Scale the tensor. # 2. Apply the mask. # 3. Perform softmax. class ScaledMaskedSoftmax(torch.autograd.Function): @staticmethod def forward(ctx, inputs, mask, scale): scale_t = torch.tensor([scale]) softmax_results = scaled_masked_softmax_forward(inputs, mask, scale_t[0]) ctx.save_for_backward(softmax_results, scale_t) return softmax_results @staticmethod def backward(ctx, output_grads): softmax_results, scale_t = ctx.saved_tensors input_grads = scaled_masked_softmax_backward( output_grads, softmax_results, scale_t[0] ) return input_grads, None, None def scaled_masked_softmax(inputs, mask, scale): # input is 4D tensor (b, np, sq, sk) args = _cast_if_autocast_enabled(inputs, mask, scale) with torch.cuda.amp.autocast(enabled=False): return ScaledMaskedSoftmax.apply(*args) class FusedScaleMaskSoftmax(torch.nn.Module): """ fused operation: scaling + mask + softmax Arguments: input_in_fp16: flag to indicate if input in fp16 data format. input_in_bf16: flag to indicate if input in bf16 data format. attn_mask_type: attention mask type (pad or causal) scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion mask_func: mask function to be applied. softmax_in_fp32: if true, softmax in performed at fp32 precision. scale: scaling factor used in input tensor scaling. """ def __init__( self, input_in_fp16, input_in_bf16, attn_mask_type, scaled_masked_softmax_fusion, mask_func, softmax_in_fp32, scale, ): super().__init__() self.input_in_fp16 = input_in_fp16 self.input_in_bf16 = input_in_bf16 if self.input_in_fp16 and self.input_in_bf16: raise RuntimeError( "both fp16 and bf16 flags cannot be active at the same time." ) self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16 self.attn_mask_type = attn_mask_type self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion self.mask_func = mask_func self.softmax_in_fp32 = softmax_in_fp32 self.scale = scale if not (self.scale is None or softmax_in_fp32): raise RuntimeError("softmax should be in fp32 when scaled") if self.scaled_masked_softmax_fusion: if self.attn_mask_type == AttnMaskType.causal: self.fused_softmax_func = scaled_upper_triang_masked_softmax elif self.attn_mask_type == AttnMaskType.padding: self.fused_softmax_func = scaled_masked_softmax else: raise ValueError("Invalid attn_mask_type.") def forward(self, input, mask): # [b, np, sq, sk] assert input.dim() == 4 if self.is_kernel_available(mask, *input.size()): return self.forward_fused_softmax(input, mask) else: return self.forward_torch_softmax(input, mask) def is_kernel_available(self, mask, b, np, sq, sk): attn_batches = b * np if ( self.scaled_masked_softmax_fusion # user want to fuse and self.input_in_float16 # input must be fp16 and ( self.attn_mask_type == AttnMaskType.causal or (self.attn_mask_type == AttnMaskType.padding and mask is not None) ) and 16 < sk <= 8192 # sk must be 16 ~ 8192 and sq % 4 == 0 # sq must be divisor of 4 and sk % 4 == 0 # sk must be divisor of 4 and attn_batches % 4 == 0 # np * b must be divisor of 4 ): if 0 <= sk <= 8192: batch_per_block = self.get_batch_per_block(sq, sk, b, np) if self.attn_mask_type == AttnMaskType.causal: if attn_batches % batch_per_block == 0: return True else: if sq % batch_per_block == 0: return True return False def forward_fused_softmax(self, input, mask): # input.shape = [b, np, sq, sk] scale = self.scale if self.scale is not None else 1.0 return self.fused_softmax_func(input, mask, scale) def forward_torch_softmax(self, input, mask): if self.input_in_float16 and self.softmax_in_fp32: input = input.float() if self.scale is not None: input = input * self.scale mask_output = self.mask_func(input, mask) if mask is not None else input probs = torch.nn.Softmax(dim=-1)(mask_output) if self.input_in_float16 and self.softmax_in_fp32: if self.input_in_fp16: probs = probs.half() else: probs = probs.bfloat16() return probs @staticmethod def get_batch_per_block(sq, sk, b, np): return scaled_masked_softmax_get_batch_per_block(sq, sk, b, np)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/fused_softmax.py
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/fmha.py import torch import torch.nn as nn import flash_attn_cuda def convert_blockmask(blockmask, causal): """Convert from the 0-1 format to the format used by the CUDA code. 0 means the block is skipped. nonzero means the block is not skipped. Argument: blockmask: (row, col): a 0-1 tensor Return: blockmask_converted: (col, row), dtype torch.int32: for each column, it contains the row indices of the nonzero blocks, padded with -1 to reach length @row. The indices are multiplied by 4, with the smallest bit used to encode whether it is the first nonzero in its row, and the 2nd smallest bit to encode whether it is the last nonzero in its row.. """ assert not causal # TD [2022-05-13]: The indexing and sorting is very tricky nrow, ncol = blockmask.shape # Sort does not support bool on CUDA blockmask = blockmask.to(dtype=torch.uint8) nonzero_val, nonzero_sorted_rowidx = blockmask.sort(dim=0, stable=True, descending=True) nonzero_unsorted_rowidx = nonzero_sorted_rowidx.argsort(dim=0) last_nonzero_col_per_row = blockmask.sort(dim=-1, stable=True).indices[:, -1] last_nonzero_col_per_row_after_sort = nonzero_unsorted_rowidx[ torch.arange(nrow, device=blockmask.device), last_nonzero_col_per_row ] first_nonzero_col_per_row = blockmask.sort(dim=-1, stable=True, descending=True).indices[:, 0] first_nonzero_col_per_row_after_sort = nonzero_unsorted_rowidx[ torch.arange(nrow, device=blockmask.device), first_nonzero_col_per_row ] nonzero_idx = nonzero_sorted_rowidx * 4 nonzero_idx[last_nonzero_col_per_row_after_sort, last_nonzero_col_per_row] += 2 nonzero_idx[first_nonzero_col_per_row_after_sort, first_nonzero_col_per_row] += 1 nonzero_idx[nonzero_val == 0] = -1 return nonzero_idx.T.contiguous().to(dtype=torch.int32) def _flash_blocksparse_attn_forward(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal, return_softmax): context, softmax_lse, *rest = flash_attn_cuda.fwd_block(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal, return_softmax, None) # if context.isnan().any() or softmax_lse.isnan().any(): # breakpoint() S_dmask = rest[0] if return_softmax else None return context, softmax_lse, S_dmask def _flash_blocksparse_attn_backward(dout, qkv, out, S_dmask, softmax_lse, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal): dqkv, dp, softmax_d = flash_attn_cuda.bwd_block(dout, qkv, out, S_dmask, softmax_lse, cu_seqlens, blockmask, dropout_p, softmax_scale, max_s, causal, None) # if dqkv.isnan().any() or softmax_d.isnan().any(): # breakpoint() return dqkv class FlashBlocksparseAttnFun(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) context, softmax_lse, S_dmask = _flash_blocksparse_attn_forward( qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal=causal, return_softmax=False ) ctx.save_for_backward(qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state) ctx.dropout_p = dropout_p ctx.max_s = max_s ctx.softmax_scale = softmax_scale ctx.causal = causal return context @staticmethod def backward(ctx, dout): qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) # S_dmask is None, temporarily use another tensor just to get it running dqkv = _flash_blocksparse_attn_backward( dout, qkv, context, context, softmax_lse, cu_seqlens, blockmask, ctx.dropout_p, ctx.max_s, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None, None # We duplicate code to return both the output and the softmax for testing # Returning both makes backward a bit slower, so we want to keep using the other version for speed. class FlashBlocksparseAttnFunWithS(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal): # Save rng_state because the backward pass is gonna regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) context, softmax_lse, S_dmask = _flash_blocksparse_attn_forward( qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal=causal, return_softmax=True ) ctx.save_for_backward(qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state) ctx.dropout_p = dropout_p ctx.max_s = max_s ctx.softmax_scale = softmax_scale ctx.causal = causal return context, S_dmask, softmax_lse @staticmethod def backward(ctx, dout, _dS_dmask_ignored, _dsoftmax_sum_ignored): qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dqkv = _flash_blocksparse_attn_backward( dout, qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, ctx.dropout_p, ctx.max_s, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None def flash_blocksparse_attn_func(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale=None, causal=False, return_attn_probs=False, convert_mask=True): """dropout_p should be set to 0.0 during evaluation """ func = FlashBlocksparseAttnFun if not return_attn_probs else FlashBlocksparseAttnFunWithS if convert_mask: blockmask = convert_blockmask(blockmask, causal=causal) return func.apply(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/flash_blocksparse_attn_interface.py
import math import torch import torch.nn as nn from einops import rearrange import hydra from flash_attn.flash_blocksparse_attn_interface import flash_blocksparse_attn_func from flash_attn.flash_blocksparse_attn_interface import convert_blockmask from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis class FlashBlocksparseAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_temp: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.1) """ def __init__(self, sparsity_config, softmax_temp=None, attention_dropout=0.0, max_seq_length=2048, device=None, dtype=None): super().__init__() self.sparsity_config = hydra.utils.instantiate(sparsity_config) self.softmax_temp = softmax_temp self.dropout_p = attention_dropout # initialize sparse layout and register as buffer max_seq_length = ((max_seq_length + 256 - 1) // 256) * 256 layout = self.sparsity_config.make_layout(max_seq_length) self.register_buffer("layout", layout) blockmask_converted = convert_blockmask(self.layout, causal=False) self.register_buffer("blockmask_converted", blockmask_converted) # logger.info(f'Attention class {self.__class__}: saving={self.layout.float().mean()}') def forward(self, qkv, attn_mask=None, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False, convert_mask=True): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None attn_mask: An implementation of BaseMask that encodes where each query can attend to key_padding_mask: An implementation of BaseMask that encodes how many query each sequence in the batch consists of """ assert not need_weights assert attn_mask is None assert qkv.dtype == torch.float16 assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] # Convert mask to take a subset seqlen_rounded = ((seqlen + 256 - 1) // 256) * 256 assert seqlen_rounded // 16 <= self.layout.shape[0], seqlen_rounded // 256 <= self.layout.shape[1] blockmask = self.layout[:seqlen_rounded // 16, :seqlen_rounded // 256] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_blocksparse_attn_func( qkv, cu_seqlens, blockmask, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: key_padding_mask_bool = key_padding_mask.bool_matrix nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask_bool) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_blocksparse_attn_func( x_unpad, cu_seqlens, blockmask, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None seqlen = max_s # Convert mask to take a subset seqlen_rounded = ((seqlen + 256 - 1) // 256) * 256 assert seqlen_rounded // 16 <= self.layout.shape[0], seqlen_rounded // 256 <= self.layout.shape[1] blockmask = self.layout[:seqlen_rounded // 16, :seqlen_rounded // 256] if convert_mask: output = flash_blocksparse_attn_func( qkv, cu_seqlens, blockmask, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal ) else: output = flash_blocksparse_attn_func( qkv, cu_seqlens, self.blockmask_converted, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal, convert_mask=False, ) return output, None class FlashBlocksparseMHA(nn.Module): def __init__(self, embed_dim, num_heads, sparsity_config, bias=True, batch_first=True, attention_dropout=0.0, causal=False, max_seq_length=2048, device=None, dtype=None, **kwargs) -> None: assert batch_first factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads assert self.head_dim in [16, 32, 64], "Only support head_dim == 16, 32, or 64" self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) self.inner_attn = FlashBlocksparseAttention( sparsity_config, attention_dropout=attention_dropout, max_seq_length=max_seq_length, **factory_kwargs ) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, **factory_kwargs) def forward(self, x, x_ignored_, x_ignored_1_, attn_mask=None, key_padding_mask=None, need_weights=False): qkv = self.Wqkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) context, attn_weights = self.inner_attn(qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal) return self.out_proj(rearrange(context, 'b s h d -> b s (h d)')), attn_weights
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/flash_blocksparse_attention.py
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py import torch import torch.nn.functional as F from einops import rearrange, repeat class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. # return input[indices] return torch.gather(rearrange(input, 'b ... -> b (...)'), 0, repeat(indices, 'z -> z d', d=second_dim)).reshape(-1, *other_shape) @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, 'b ... -> b (...)') grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. output[indices] = values # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values) return output @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. grad_values = grad_output[indices] # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1])) return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply class IndexFirstAxisResidual(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. output = input[indices] # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last # memory format to channel_first. In other words, input might not be contiguous. # If we don't detach, Pytorch complains about output being a view and is being modified inplace return output, input.detach() @staticmethod def backward(ctx, grad_output, grad_residual): indices, = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] assert grad_residual.shape[1:] == other_shape grad_input = grad_residual # grad_input[indices] += grad_output indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1))) indices = indices.expand_as(grad_output) grad_input.scatter_add_(0, indices, grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis_residual = IndexFirstAxisResidual.apply def unpad_input(hidden_states, attention_mask): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. return (index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices), indices, cu_seqlens, max_seqlen_in_batch) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) Return: hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[-1] # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype) # output[indices] = hidden_states output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, '(b s) ... -> b s ...', b=batch)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/bert_padding.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/__init__.py
# [2022-10-23] Downloaded from https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py # for benchmarking. # We fixed a few dtype cast to make it work for bf16 """ Fused Attention =============== This is a Triton implementation of the Flash Attention algorithm (see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf) """ import pytest import torch import triton import triton.language as tl @triton.jit def _fwd_kernel( Q, K, V, sm_scale, TMP, L, M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk off_k = off_hz * stride_qh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk # Initialize pointers to Q, K, V q_ptrs = Q + off_q k_ptrs = K + off_k v_ptrs = V + off_v # initialize pointer to m and l t_ptrs = TMP + off_hz * N_CTX + offs_m m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # load q: it will stay in SRAM throughout q = tl.load(q_ptrs) # loop over k, v and update accumulator for start_n in range(0, (start_m + 1) * BLOCK_M, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(k_ptrs + start_n * stride_kn) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) qk *= sm_scale qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, float("-inf")) # -- compute m_ij, p, l_ij m_ij = tl.max(qk, 1) p = tl.exp(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) # -- update m_i and l_i m_i_new = tl.maximum(m_i, m_ij) alpha = tl.exp(m_i - m_i_new) beta = tl.exp(m_ij - m_i_new) l_i_new = alpha * l_i + beta * l_ij # -- update output accumulator -- # scale p p_scale = beta / l_i_new p = p * p_scale[:, None] # scale acc acc_scale = l_i / l_i_new * alpha tl.store(t_ptrs, acc_scale) acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load acc = acc * acc_scale[:, None] # update acc v = tl.load(v_ptrs + start_n * stride_vk) p = p.to(v.dtype) acc += tl.dot(p, v) # update m_i and l_i l_i = l_i_new m_i = m_i_new # rematerialize offsets to save registers start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m tl.store(l_ptrs, l_i) tl.store(m_ptrs, m_i) # initialize pointers to output offs_n = tl.arange(0, BLOCK_DMODEL) off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on out_ptrs = Out + off_o tl.store(out_ptrs, acc) @triton.jit def _bwd_preprocess( Out, DO, L, NewDO, Delta, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr, ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_n = tl.arange(0, D_HEAD) # load o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) denom = tl.load(L + off_m).to(tl.float32) # compute do = do / denom[:, None] delta = tl.sum(o * do, axis=1) # write-back tl.store(NewDO + off_m[:, None] * D_HEAD + off_n[None, :], do) tl.store(Delta + off_m, delta) @triton.jit def _bwd_kernel( Q, K, V, sm_scale, Out, DO, DQ, DK, DV, L, M, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, Z, H, N_CTX, num_block, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, ): off_hz = tl.program_id(0) off_z = off_hz // H off_h = off_hz % H # offset pointers for batch/head Q += off_z * stride_qz + off_h * stride_qh K += off_z * stride_qz + off_h * stride_qh V += off_z * stride_qz + off_h * stride_qh DO += off_z * stride_qz + off_h * stride_qh DQ += off_z * stride_qz + off_h * stride_qh DK += off_z * stride_qz + off_h * stride_qh DV += off_z * stride_qz + off_h * stride_qh for start_n in range(0, num_block): lo = start_n * BLOCK_M # initialize row/col offsets offs_qm = lo + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) offs_m = tl.arange(0, BLOCK_N) offs_k = tl.arange(0, BLOCK_DMODEL) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) # pointer to row-wise quantities in value-like data D_ptrs = D + off_hz * N_CTX m_ptrs = M + off_hz * N_CTX # initialize dv amd dk dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # k and v stay in SRAM throughout k = tl.load(k_ptrs) v = tl.load(v_ptrs) # loop over rows for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): offs_m_curr = start_m + offs_m # load q, k, v, do on-chip q = tl.load(q_ptrs) # recompute p = softmax(qk, dim=-1).T # NOTE: `do` is pre-divided by `l`; no normalization here qk = tl.dot(q, k, trans_b=True) qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) m = tl.load(m_ptrs + offs_m_curr) p = tl.exp(qk * sm_scale - m[:, None]) # compute dv do = tl.load(do_ptrs) dv += tl.dot(p.to(do.dtype), do, trans_a=True) # compute dp = dot(v, do) Di = tl.load(D_ptrs + offs_m_curr) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp += tl.dot(do, v, trans_b=True) # compute ds = p * (dp - delta[:, None]) ds = p * dp * sm_scale # compute dk = dot(ds.T, q) dk += tl.dot(ds.to(q.dtype), q, trans_a=True) # # compute dq dq = tl.load(dq_ptrs, eviction_policy="evict_last") dq += tl.dot(ds.to(k.dtype), k) tl.store(dq_ptrs, dq, eviction_policy="evict_last") # # increment pointers dq_ptrs += BLOCK_M * stride_qm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_qm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, sm_scale): BLOCK = 128 # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.empty_like(q) grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1]) tmp = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) num_warps = 4 if Lk <= 64 else 8 _fwd_kernel[grid]( q, k, v, sm_scale, tmp, L, m, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK, BLOCK_N=BLOCK, BLOCK_DMODEL=Lk, num_warps=num_warps, num_stages=1, ) ctx.save_for_backward(q, k, v, o, L, m) ctx.BLOCK = BLOCK ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk return o @staticmethod def backward(ctx, do): q, k, v, o, l, m = ctx.saved_tensors do = do.contiguous() dq = torch.zeros_like(q, dtype=torch.float32) dk = torch.empty_like(k) dv = torch.empty_like(v) do_scaled = torch.empty_like(do) delta = torch.empty_like(l) _bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )]( o, do, l, do_scaled, delta, BLOCK_M=ctx.BLOCK, D_HEAD=ctx.BLOCK_DMODEL, ) # NOTE: kernel currently buggy for other values of `num_warps` num_warps = 8 _bwd_kernel[(ctx.grid[1],)]( q, k, v, ctx.sm_scale, o, do_scaled, dq, dk, dv, l, m, delta, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), q.shape[0], q.shape[1], q.shape[2], ctx.grid[0], BLOCK_M=ctx.BLOCK, BLOCK_N=ctx.BLOCK, BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=num_warps, num_stages=1, ) return dq.to(q.dtype), dk, dv, None attention = _attention.apply
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/flash_attn_triton_og.py
import math import torch import torch.nn as nn from einops import rearrange from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func from flash_attn.bert_padding import unpad_input, pad_input class FlashAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None if unpadded: (nnz, 3, h, d) key_padding_mask: a bool tensor of shape (B, S) """ assert not need_weights assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_attn_unpadded_qkvpacked_func( x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None output = flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) return output, None class FlashMHA(nn.Module): def __init__(self, embed_dim, num_heads, bias=True, batch_first=True, attention_dropout=0.0, causal=False, device=None, dtype=None, **kwargs) -> None: assert batch_first factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8" self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) self.inner_attn = FlashAttention(attention_dropout=attention_dropout, **factory_kwargs) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, **factory_kwargs) def forward(self, x, key_padding_mask=None, need_weights=False): """x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) key_padding_mask: bool tensor of shape (batch, seqlen) """ qkv = self.Wqkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) context, attn_weights = self.inner_attn(qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal) return self.out_proj(rearrange(context, 'b s h d -> b s (h d)')), attn_weights
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/flash_attention.py
""" *Experimental* implementation of FlashAttention in Triton. We use the FlashAttention implementation from Phil Tillet a starting point. https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py Changes: - Implement both causal and non-causal attention. - Implement both self-attention and cross-attention. - Support arbitrary seqlens (not just multiples of 128), for both forward and backward. - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward. - Support attention bias. - Speed up the forward pass a bit, and only store the LSE instead of m and l. - Make the backward for d=128 much faster by reducing register spilling. - Optionally parallelize the backward pass across seqlen_k, to deal with the case of small batch size * nheads. Caution: - This is an *experimental* implementation. The forward pass should be quite robust but I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler). - This implementation has only been tested on A100. - If you plan to use headdim other than 64 and 128, you should test for race conditions (due to the Triton compiler), as done in tests/test_flash_attn.py "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident that there are none left for other head dimensions. Differences between this Triton version and the CUDA version: - Triton version doesn't support dropout. - Triton forward is generally faster than CUDA forward, while Triton backward is generally slower than CUDA backward. Overall Triton forward + backward is slightly slower than CUDA forward + backward. - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor). - Triton version supports attention bias, while CUDA version doesn't. """ import math import torch import triton import triton.language as tl # Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128 # @triton.autotune( # configs=[ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1), # # This config has a race condition when EVEN_M == False, disabling it for now. # # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1), # ], # key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'] # ) @triton.heuristics( { "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _fwd_kernel( Q, K, V, Bias, Out, Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # off_b = tl.program_id(1) # off_h = tl.program_id(2) # off_hb = off_b * nheads + off_h # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) # Initialize pointers to Q, K, V # Adding parenthesis around indexing might use int32 math instead of int64 math? # https://github.com/openai/triton/issues/741 # I'm seeing a tiny bit of difference (5-7us) q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :]) # initialize pointer to m and l t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) # load q: it will stay in SRAM throughout # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call # tl.load(q_ptrs), we get the wrong output! if EVEN_M & EVEN_N: if EVEN_HEADDIM: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # loop over k, v and update accumulator end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf")) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")) if BIAS_TYPE != 'none': if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32) # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler # can then fuse the mult and add into an fma instruction. But if we have bias we need to # to multiply with softmax_scale here. qk = qk * softmax_scale + bias m_ij = tl.maximum(tl.max(qk, 1), lse_i) p = tl.exp(qk - m_ij[:, None]) else: m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) # scale acc_o acc_o_scale = tl.exp(m_i - m_ij) # # -- update output accumulator -- # BUG: have to store and immediately load tl.store(t_ptrs, acc_o_scale) acc_o_scale = tl.load(t_ptrs) acc_o = acc_o * acc_o_scale[:, None] # update acc_o if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) p = p.to(v.dtype) acc_o += tl.dot(p, v) # -- update statistics m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) o_scale = tl.exp(m_i - lse_i) # BUG: have to store and immediately load tl.store(t_ptrs, o_scale) o_scale = tl.load(t_ptrs) acc_o = acc_o * o_scale[:, None] # rematerialize offsets to save registers start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m tl.store(lse_ptrs, lse_i) # initialize pointers to output offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) else: tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # load o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) @triton.jit def _bwd_store_dk_dv( dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, ): # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.store(dv_ptrs), there's a race condition if EVEN_N & EVEN_M: if EVEN_HEADDIM: tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) else: tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) else: tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N) begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M # initialize row/col offsets offs_qm = begin_m + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) offs_m = tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) # initialize dv and dk dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) # There seems to be some problem with Triton pipelining that makes results wrong for # headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop # may have zero step, and pipelining with the bias matrix could screw it up. # So we just exit early. if begin_m >= seqlen_q: dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) return # k and v stay in SRAM throughout # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.load(k_ptrs), we get the wrong output! if EVEN_N & EVEN_M: if EVEN_HEADDIM: k = tl.load(k_ptrs) v = tl.load(v_ptrs) else: k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) # loop over rows num_block_m = tl.cdiv(seqlen_q, BLOCK_M) for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): start_m = tl.multiple_of(start_m, BLOCK_M) offs_m_curr = start_m + offs_m # load q, k, v, do on-chip # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117) if EVEN_M & EVEN_HEADDIM: q = tl.load(q_ptrs) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # recompute p = softmax(qk, dim=-1).T qk = tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf")) if IS_CAUSAL: qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) if BIAS_TYPE != 'none': tl.debug_barrier() # Race condition otherwise if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32) qk = qk * softmax_scale + bias # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong. # Also wrong for headdim=64. if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() lse_i = tl.load(LSE + offs_m_curr) if BIAS_TYPE == 'none': p = tl.exp(qk * softmax_scale - lse_i[:, None]) else: p = tl.exp(qk - lse_i[:, None]) # compute dv # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512, # the output is correct. if EVEN_M & EVEN_HEADDIM: do = tl.load(do_ptrs) else: # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask. do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # if EVEN_M: # if EVEN_HEADDIM: # do = tl.load(do_ptrs) # else: # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0) # else: # if EVEN_HEADDIM: # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) # else: # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) # & (offs_d[None, :] < headdim), other=0.0) dv += tl.dot(p.to(do.dtype), do, trans_a=True) # compute dp = dot(v, do) # There seems to be a race condition when headdim=48/96, and dq, dk are wrong. # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() dp = tl.dot(do, v, trans_b=True) # There's a race condition for headdim=48 if not EVEN_HEADDIM: tl.debug_barrier() # compute ds = p * (dp - delta[:, None]) # Putting the subtraction after the dp matmul (instead of before) is slightly faster Di = tl.load(D + offs_m_curr) # Converting ds to q.dtype here reduces register pressure and makes it much faster # for BLOCK_HEADDIM=128 ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) # compute dk = dot(ds.T, q) dk += tl.dot(ds, q, trans_a=True) # compute dq if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix' tl.debug_barrier() if not ATOMIC_ADD: if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M dq = tl.load(dq_ptrs, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, eviction_policy="evict_last") else: if EVEN_HEADDIM: dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy="evict_last") else: dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy="evict_last") else: # If we're parallelizing across the seqlen_k dimension dq = tl.dot(ds, k) if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M tl.atomic_add(dq_ptrs, dq) else: if EVEN_HEADDIM: tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) else: tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) # increment pointers dq_ptrs += BLOCK_M * stride_dqm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_dom if BIAS_TYPE == 'matrix': b_ptrs += BLOCK_M * stride_bm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) def init_to_zero(name): return lambda nargs: nargs[name].zero_() @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4* # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), ], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'], ) @triton.heuristics( { "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _bwd_kernel( Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # offset pointers for batch/head Q += off_b * stride_qb + off_h * stride_qh K += off_b * stride_kb + off_h * stride_kh V += off_b * stride_vb + off_h * stride_vh DO += off_b * stride_dob + off_h * stride_doh DQ += off_b * stride_dqb + off_h * stride_dqh DK += off_b * stride_dkb + off_h * stride_dkh DV += off_b * stride_dvb + off_h * stride_dvh if BIAS_TYPE != 'none': Bias += off_b * stride_bb + off_h * stride_bh # pointer to row-wise quantities in value-like data D += off_hb * seqlen_q_rounded LSE += off_hb * seqlen_q_rounded if not SEQUENCE_PARALLEL: num_block_n = tl.cdiv(seqlen_k, BLOCK_N) for start_n in range(0, num_block_n): _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N ) else: start_n = tl.program_id(0) _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N ) def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): # shape constraints batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape assert k.shape == (batch, seqlen_k, nheads, d) assert v.shape == (batch, seqlen_k, nheads, d) assert d <= 128, 'FlashAttention only support head dimensions up to 128' assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type' assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16' assert q.is_cuda and k.is_cuda and v.is_cuda softmax_scale = softmax_scale or 1.0 / math.sqrt(d) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 if bias.stride(-1) != 1: bias = bias.contiguous() if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) o = torch.empty_like(q) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) BLOCK = 128 num_warps = 4 if d <= 64 else 8 grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) _fwd_kernel[grid]( q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1, ) return o, lse, softmax_scale # softmax_scale could have been updated def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None): # Make sure that the last dimension is contiguous if do.stride(-1) != 1: do = do.contiguous() batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape # assert d in {16, 32, 64, 128} assert d <= 128 seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 assert lse.shape == (batch, nheads, seqlen_q_rounded) assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 softmax_scale = softmax_scale or 1.0 / math.sqrt(d) # dq_accum = torch.zeros_like(q, dtype=torch.float32) dq_accum = torch.empty_like(q, dtype=torch.float32) delta = torch.empty_like(lse) # delta = torch.zeros_like(lse) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) _bwd_preprocess_do_o_dot[grid]( o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM, ) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 assert bias.stride(-1) == 1 if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) # BLOCK_M = 128 # BLOCK_N = 64 # num_warps = 4 grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1, batch * nheads) _bwd_kernel[grid]( q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, # SEQUENCE_PARALLEL=False, # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, # num_warps=num_warps, # num_stages=1, ) dq.copy_(dq_accum) class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): """ qkv: (batch, seqlen, 3, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) """ # Make sure that the last dimension is contiguous if qkv.stride(-1) != 1: qkv = qkv.contiguous() o, lse, ctx.softmax_scale = _flash_attn_forward( qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(qkv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): qkv, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dqkv = torch.empty_like(qkv) _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dqkv, None, None, None flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply class FlashAttnKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None): """ q: (batch, seqlen_q, nheads, headdim) kv: (batch, seqlen_k, 2, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) """ # Make sure that the last dimension is contiguous q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]] o, lse, ctx.softmax_scale = _flash_attn_forward( q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(q, kv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, kv, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dkv = torch.empty_like(kv) _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dkv, None, None, None flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): """ q: (batch_size, seqlen_q, nheads, headdim) k, v: (batch_size, seqlen_k, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) """ # Make sure that the last dimension is contiguous q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]] o, lse, ctx.softmax_scale = _flash_attn_forward( q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(q, k, v, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dk, dv, None, None, None flash_attn_func = FlashAttnFunc.apply
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/flash_attn_triton.py
import torch import torch.nn as nn import torch.nn.functional as F import flash_attn_cuda def _get_block_size(device, head_dim, is_dropout): assert head_dim % 8 == 0 and head_dim <= 128 return 256 if head_dim <= 64 else 128 def _flash_attn_forward(q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax, num_splits=0, generator=None): """ num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means it will be set by an internal heuristic. We're exposing num_splits mostly for benchmarking. Don't change it unless you know what you're doing. """ softmax_lse, *rest = flash_attn_cuda.fwd( q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, return_softmax, num_splits, generator ) # if out.isnan().any() or softmax_lse.isnan().any(): # breakpoint() S_dmask = rest[0] if return_softmax else None return out, softmax_lse, S_dmask def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, num_splits=0, generator=None): """ num_splits: whether to parallelize over the seqlen_k dimension (num_splits > 1) or not (num_splits = 1). num_splits=0 means it will be set by an internal heuristic. Any value above 1 will call the same kernel (i.e. num_splits=2 would call the same kernel as num_splits=3), so effectively the choices are 0, 1, and 2. This hyperparameter can be tuned for performance, but default value (heuristic) should work fine. """ dout = dout.contiguous() # CUDA code assumes that dout is contiguous _, _, _, softmax_d = flash_attn_cuda.bwd( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, num_splits, generator) # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any(): # breakpoint() return dq, dk, dv, softmax_d class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) out, softmax_lse, S_dmask = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], torch.empty_like(qkv[:, 0]), cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(qkv, out, softmax_lse, cu_seqlens, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen = max_seqlen ctx.softmax_scale = softmax_scale ctx.causal = causal return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dqkv = torch.empty_like(qkv) _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens, ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None class FlashAttnKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) out, softmax_lse, S_dmask = _flash_attn_forward( q, kv[:, 0], kv[:, 1], torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dq = torch.empty_like(q) dkv = torch.empty_like(kv) _flash_attn_backward( dout, q, kv[:, 0], kv[:, 1], out, softmax_lse, dq, dkv[:, 0], dkv[:, 1], cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dq, dkv, None, None, None, None, None, None, None, None class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) out, softmax_lse, S_dmask = _flash_attn_forward( q, k, v, torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v) _flash_attn_backward( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dq, dk, dv, None, None, None, None, None, None, None, None class FlashAttnQKVPackedSplitFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask if dropout_p > 0: rng_state0 = torch.cuda.get_rng_state() generator1 = torch.Generator(device='cuda') rng_state1 = generator1.get_state() else: rng_state0, generator1, rng_state1 = None, None, None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) out = torch.empty_like(qkv[:, 0]) _, softmax_lse0, S_dmask0 = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[:batch_size0 + 1], cu_seqlens[:batch_size0 + 1], max_seqlen0, max_seqlen0, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) s = torch.cuda.Stream() with torch.cuda.stream(s): _, softmax_lse1, S_dmask1 = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[batch_size0:], cu_seqlens[batch_size0:], max_seqlen1, max_seqlen1, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax, generator=generator1 ) torch.cuda.current_stream().wait_stream(s) ctx.save_for_backward(qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1) ctx.dropout_p = dropout_p ctx.max_seqlen0 = max_seqlen0 ctx.max_seqlen1 = max_seqlen1 ctx.batch_size0 = batch_size0 ctx.softmax_scale = softmax_scale ctx.causal = causal if not return_softmax: return out else: max_seqlen_q = max(softmax_lse0.shape[2], softmax_lse1.shape[2]) max_seqlen_k = max(S_dmask0.shape[3], S_dmask1.shape[3]) softmax_lse = torch.cat([F.pad(softmax_lse0, (0, max_seqlen_q - softmax_lse0.shape[2])), F.pad(softmax_lse1, (0, max_seqlen_q - softmax_lse1.shape[2]))], dim=0) return out, softmax_lse, S_dmask0, S_dmask1 @staticmethod def backward(ctx, dout, *args): qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1 = ctx.saved_tensors batch_size0 = ctx.batch_size0 if rng_state0 is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state0) if rng_state1 is not None: generator1 = torch.Generator(device='cuda') generator1.set_state(rng_state1) else: generator1 = None dqkv = torch.empty_like(qkv) _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse0, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[:batch_size0 + 1], cu_seqlens[:batch_size0 + 1], ctx.max_seqlen0, ctx.max_seqlen0, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) s = torch.cuda.Stream() with torch.cuda.stream(s): _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse1, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[batch_size0:], cu_seqlens[batch_size0:], ctx.max_seqlen1, ctx.max_seqlen1, ctx.dropout_p, ctx.softmax_scale, ctx.causal, generator=generator1 ) torch.cuda.current_stream().wait_stream(s) if rng_state0 is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None, None, None def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """dropout_p should be set to 0.0 during evaluation Arguments: qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen: int. Maximum sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedFunc.apply(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """dropout_p should be set to 0.0 during evaluation Arguments: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. kv: (total_k, 2, nheads, headdim), where total_k = total number of key tokens in the batch. cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnKVPackedFunc.apply(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """dropout_p should be set to 0.0 during evaluation Arguments: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. k: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch. v: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch. cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnFunc.apply(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_unpadded_qkvpacked_split_func( qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """ Split attention into 2 kernels running on 2 separate streams for performance reason: e.g., if the batch has some sequences of length <= 128 and some > 128, it might be faster to have one kernel dealing with seqlen <= 128 and one kernel for seqlen > 128. dropout_p should be set to 0.0 during evaluation. Arguments: qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen0: int. Maximum sequence length in 1st part of the batch. max_seqlen1: int. Maximum sequence length in 2nd part of the batch. batch_size0: int. Number of sequences in the 1st part of the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedSplitFunc.apply(qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_func(qkv, cu_seqlens, dropout_p, max_s, softmax_scale=None, causal=False, return_attn_probs=False): """For backward-compatibility only, will remove soon. dropout_p should be set to 0.0 during evaluation """ return flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_s, dropout_p, softmax_scale, causal, return_attn_probs)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/flash_attn_interface.py
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/cross_entropy.py # But we make it much faster: we compute the local loss and the LSE, and by exchanging the LSE and # the losses we can get the global loss. There's no need to do it step by step # (compute local max, exchange, compute exp, compute local sum, exchange, etc.) # The original xentropy interface is here: https://github.com/NVIDIA/apex/blob/master/apex/contrib/xentropy/softmax_xentropy.py import torch import torch.nn as nn import xentropy_cuda_lib # `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for # `_all_gather_base` and `_reduce_scatter_base`. They require the most recent # version of PyTorch. The following 2 lines are for backward compatibility with # older PyTorch. if "all_gather_into_tensor" not in dir(torch.distributed): torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base class SoftmaxCrossEntropyLossFn(torch.autograd.Function): @staticmethod def forward(ctx, logits, labels, smoothing=0.0, ignored_index=-100, inplace_backward=False, process_group=None): """ logits: (batch, vocab_size) labels: (batch,) If process_group is not None, we're doing Tensor Parallel: each process is responsible for one part of the vocab. The loss needs to be aggregated across processes. """ batch, vocab_size = logits.shape assert labels.shape == (batch,) world_size = 1 if process_group is None else torch.distributed.get_world_size(process_group) ctx.total_classes = world_size * vocab_size if world_size == 1: losses, lse = xentropy_cuda_lib.forward(logits, labels, smoothing) losses.masked_fill_(labels==ignored_index, 0) labels_local = labels else: rank = torch.distributed.get_rank(process_group) vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size # Create a mask of valid vocab ids (1 means it needs to be masked). labels_mask = (labels < vocab_start_index) | (labels >= vocab_end_index) ignored_mask = labels == ignored_index labels_local = torch.where(ignored_mask, labels, labels - vocab_start_index) # For tensor parallel cross entropy with smoothing, we want to pass in the total number # of classes so that smoothing can be applied correctly. If total_classes=-1, use the # last dimension of the input tensor. losses, lse_local = xentropy_cuda_lib.forward(logits, labels_local, smoothing, world_size * vocab_size) assert lse_local.shape == (batch,) assert losses.shape == (batch,) losses.masked_fill_(ignored_mask, 0) # For labels == ignored_index, the loss is always 0. # If there's no smoothing, if labels are in the vocab of this partition, losses contains # lse_local - predicted logit, and 0 otherwise. # If there's smoothing=0.1, for labels in the vocab of this partition, losses contains # 0.9 * (lse_local - predicted logit) + 0.1 * (lse_local - sum logit / total_classes) # For labels not in the vocab of this partition, losses contains # 0.1 * (lse_local - sum logit / total_classes). lse_allgather = torch.empty(world_size, batch, dtype=lse_local.dtype, device=lse_local.device) torch.distributed.all_gather_into_tensor(lse_allgather, lse_local.contiguous(), group=process_group) handle_losses = torch.distributed.all_reduce( losses, op=torch.distributed.ReduceOp.SUM, group=process_group, async_op=True ) lse = torch.logsumexp(lse_allgather, dim=0) # If there's no smoothing, the total losses are lse_local - predicted_logit, # we just have to subtract the lse_local and add the lse (global). # If there's smoothing=0.1, the total losses are # 0.9 * (lse_local - predicted_logit) + 0.1 * (sum of all lse_local - sum logit / total_classes) # We want 0.9 * (lse - predicted_logit) + 0.1 * (lse - sum logit / total_classes). rank_per_sample = torch.div(labels, vocab_size, rounding_mode='floor') lse_local = lse_allgather[rank_per_sample, torch.arange(batch, device=lse_allgather.device)] handle_losses.wait() if smoothing == 0.0: losses += lse - lse_local else: losses += ((1 - smoothing) * (lse - lse_local) + smoothing * (lse - lse_allgather.sum(dim=0))) losses.masked_fill_(ignored_mask, 0) ctx.save_for_backward(logits, lse, labels_local) ctx.smoothing = smoothing ctx.ignored_index = ignored_index ctx.inplace_backward = inplace_backward return losses @staticmethod def backward(ctx, grad_loss): logits, lse, labels = ctx.saved_tensors grad_loss = grad_loss.contiguous() grad_loss.masked_fill_(labels==ctx.ignored_index, 0) grad_logits = xentropy_cuda_lib.backward(grad_loss, logits, lse, labels, ctx.smoothing, ctx.inplace_backward, ctx.total_classes) return grad_logits, None, None, None, None, None, None class CrossEntropyLoss(nn.Module): def __init__(self, ignore_index=-100, reduction='mean', label_smoothing=0.0, inplace_backward=False, process_group=None): super().__init__() if reduction not in ['mean', 'none']: raise NotImplementedError("Only support reduction = 'mean' or 'none'") self.ignore_index = ignore_index self.reduction = reduction self.label_smoothing = label_smoothing self.inplace_backward = inplace_backward self.process_group = process_group def forward(self, input, target): assert input.is_cuda and target.is_cuda # SoftmaxCrossEntropyLoss implicitly casts to float loss = SoftmaxCrossEntropyLossFn.apply( input, target, self.label_smoothing, self.ignore_index, self.inplace_backward, self.process_group ) if self.reduction == 'mean': return loss.sum() / (target != self.ignore_index).sum() else: return loss
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/losses/cross_entropy.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/losses/__init__.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/layers/__init__.py
# We use the same API as https://github.com/rwightman/pytorch-image-models/blob/v0.6.11/timm/models/layers/patch_embed.py # But we use nn.Linear instead of Conv2d and it's about 8x faster. from functools import partial import torch.nn as nn from torch import _assert from torch.nn.modules.utils import _pair from einops import rearrange try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, bias=True, fused_bias_fc=False, ): super().__init__() img_size = _pair(img_size) patch_size = _pair(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc or not bias else FusedDense self.proj = linear_cls(in_chans * patch_size[0] * patch_size[1], embed_dim, bias=bias) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): _, _, H, W = x.shape _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") x = self.proj(rearrange(x, 'b c (h p1) (w p2) -> b h w (c p1 p2)', p1=self.patch_size[0], p2=self.patch_size[1])) if self.flatten: x = rearrange(x, 'b h w c -> b (h w) c') x = self.norm(x) return x
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/layers/patch_embed.py
# Inspired by https://github.com/facebookresearch/xformers/blob/main/xformers/components/positional_embedding/rotary.py from typing import Tuple import math import torch from einops import rearrange, repeat import rotary_emb def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_emb_torch(x, cos, sin): """ x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) """ rotary_dim = cos.shape[-1] * 2 assert rotary_dim <= x.shape[-1] cos = repeat(cos, 's d -> s 1 (2 d)') sin = repeat(sin, 's d -> s 1 (2 d)') return torch.cat([x[..., :rotary_dim] * cos + rotate_half(x[..., :rotary_dim]) * sin, x[..., rotary_dim:]], dim=-1) class ApplyRotaryEmb(torch.autograd.Function): @staticmethod def forward(ctx, x, cos, sin, inplace=False): """ x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) rotary_dim must be <= headdim Apply rotary embedding to the first rotary_dim of x. """ batch, seqlen, nheads, headdim = x.shape rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= headdim assert seqlen <= rotary_seqlen assert sin.shape == (rotary_seqlen, rotary_dim // 2) x1, x2 = x[..., :rotary_dim].chunk(2, dim=-1) out = torch.empty_like(x) if not inplace else x o1, o2 = out[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (x1, x2) rotary_emb.apply_rotary(x1, x2, rearrange(cos[:seqlen], 's d -> s 1 d'), rearrange(sin[:seqlen], 's d -> s 1 d'), o1, o2, False) if not inplace and rotary_dim < headdim: out[..., rotary_dim:].copy_(x[..., rotary_dim:]) ctx.save_for_backward(cos, sin) ctx.inplace = inplace return out if not inplace else x @staticmethod def backward(ctx, do): cos, sin = ctx.saved_tensors _, seqlen, _, headdim = do.shape rotary_dim = cos.shape[-1] rotary_dim *= 2 inplace = ctx.inplace do1, do2 = do[..., :rotary_dim].chunk(2, dim=-1) dx = torch.empty_like(do) if not inplace else do dx1, dx2 = dx[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (do1, do2) rotary_emb.apply_rotary(do1, do2, rearrange(cos[:seqlen], 's d -> s 1 d'), rearrange(sin[:seqlen], 's d -> s 1 d'), dx1, dx2, True) if not inplace and rotary_dim < headdim: dx[..., rotary_dim:].copy_(do[..., rotary_dim:]) return dx, None, None, None apply_rotary_emb_func = ApplyRotaryEmb.apply class ApplyRotaryEmbQKV_(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None): """ qkv: (batch_size, seqlen, 3, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) cos_k, sin_k: (seqlen, rotary_dim / 2), optional rotary_dim must be <= headdim Apply rotary embedding *inplace* to the first rotary_dim of q and k. """ batch, seqlen, three, nheads, headdim = qkv.shape assert three == 3 rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= headdim assert seqlen <= rotary_seqlen cos_k = cos if cos_k is None else cos_k sin_k = sin if sin_k is None else sin_k assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2) q1, q2 = qkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'), rearrange(sin[:seqlen], 's d -> s 1 d'), q1, q2, False) k1, k2 = qkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(k1, k2, rearrange(cos_k[:seqlen], 's d -> s 1 d'), rearrange(sin_k[:seqlen], 's d -> s 1 d'), k1, k2, False) ctx.save_for_backward(cos, sin, cos_k, sin_k) return qkv @staticmethod def backward(ctx, dqkv): cos, sin, cos_k, sin_k = ctx.saved_tensors _, seqlen, _, _, headdim = dqkv.shape rotary_dim = cos.shape[-1] rotary_dim *= 2 dq1, dq2 = dqkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:seqlen], 's d -> s 1 d'), rearrange(sin[:seqlen], 's d -> s 1 d'), dq1, dq2, True) dk1, dk2 = dqkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k[:seqlen], 's d -> s 1 d'), rearrange(sin_k[:seqlen], 's d -> s 1 d'), dk1, dk2, True) return dqkv, None, None, None, None apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply class RotaryEmbedding(torch.nn.Module): """ The rotary position embeddings from RoFormer_ (Su et. al). A crucial insight from the method is that the query and keys are transformed by rotation matrices which depend on the relative positions. Other implementations are available in the Rotary Transformer repo_ and in GPT-NeoX_, GPT-NeoX was an inspiration .. _RoFormer: https://arxiv.org/abs/2104.09864 .. _repo: https://github.com/ZhuiyiTechnology/roformer .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox If scale_base > 0, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554). A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96 Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py """ def __init__(self, dim: int, base=10000, scale_base=0, device=None): """ """ super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) self.register_buffer("inv_freq", inv_freq) self.scale_base = scale_base scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base > 0 else None) self.register_buffer("scale", scale) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None def _update_cos_sin_cache(self, x, seqlen_offset=0): """x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim) """ seqlen = x.shape[1] + seqlen_offset # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if (seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=x.device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) if self.scale is None: self._cos_cached = torch.cos(freqs).to(x.dtype) self._sin_cached = torch.sin(freqs).to(x.dtype) else: power = ((torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2) / self.scale_base) scale = self.scale.to(device=power.device) ** rearrange(power, 's -> s 1') # We want the multiplication by scale to happen in fp32 self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype) self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype) def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: """ seqlen_offset: can be used in generation where the qkv being passed in is only the last token in the batch. """ self._update_cos_sin_cache(qkv, seqlen_offset) if self.scale is None: return apply_rotary_emb_qkv_( qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:] ) else: return apply_rotary_emb_qkv_( qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:], self._cos_k_cached[seqlen_offset:], self._sin_k_cached[seqlen_offset:] )
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/layers/rotary.py
import torch from transformers.utils import WEIGHTS_NAME, WEIGHTS_INDEX_NAME from transformers.utils import is_remote_url from transformers.modeling_utils import load_state_dict from transformers.utils.hub import cached_file, get_checkpoint_shard_files def state_dict_from_pretrained(model_name, device=None, dtype=None): # If not fp32, then we don't want to load directly to the GPU mapped_device = 'cpu' if dtype not in [torch.float32, None] else device is_sharded = False resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False) if resolved_archive_file is None: resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False) if resolved_archive_file is not None: is_sharded = True if resolved_archive_file is None: raise EnvironmentError(f"Model name {model_name} was not found.") if is_sharded: # resolved_archive_file becomes a list of files that point to the different # checkpoint shards in this case. resolved_archive_file, sharded_metadata = get_checkpoint_shard_files( model_name, resolved_archive_file ) state_dict = {} for sharded_file in resolved_archive_file: state_dict.update(torch.load(sharded_file, map_location=mapped_device)) else: state_dict = torch.load(cached_file(model_name, WEIGHTS_NAME), map_location=device) # Convert dtype before moving to GPU to save memory if dtype is not None: state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()} state_dict = {k: v.to(device=device) for k, v in state_dict.items()} return state_dict
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/utils/pretrained.py
# Copyright (c) 2023, Tri Dao. # Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31 from typing import Optional, Union, Sequence, Callable import gc import time from dataclasses import dataclass, field from collections import namedtuple import torch from torch import Tensor from torch.profiler import profile, record_function, ProfilerActivity from einops import rearrange from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput @dataclass class InferenceParams: """Inference parameters that are passed to the main model in order to efficienly calculate and store the context during inference.""" max_sequence_len: int max_batch_size: int sequence_len_offset: int = 0 batch_size_offset: int = 0 key_value_memory_dict: dict = field(default_factory=dict) fused_ft_kernel: bool = False lengths_per_sample: Optional[Tensor] = None # https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py # https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170 def modify_logits_for_top_p_filtering(logits, top_p): """Set the logits for none top-p values to -inf.""" if top_p <= 0.0: return # First sort and calculate cumulative sum of probabilities. sorted_logits, sorted_indices = torch.sort(logits, descending=False) cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs <= (1 - top_p) # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits = logits.masked_fill(indices_to_remove, float('-inf')) def sample(logits, top_k=1, top_p=0.0, temperature=1.0): """Sample from top-k logits. Arguments: logits: Tensor of shape (batch_size, vocab_size) """ if top_k == 1: # Short-circuit for greedy decoding return logits.argmax(dim=-1) else: if top_p > 0.0: assert top_p <= 1.0, 'top-p should be in (0, 1].' if top_k > 0: top_k = min(top_k, logits.size(-1)) # Safety check logits_top, indices = torch.topk(logits, top_k, dim=-1) logits_top /= temperature modify_logits_for_top_p_filtering(logits_top, top_p) return indices[ torch.arange(indices.shape[0], device=indices.device), torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1) ] else: logits_top = logits / temperature modify_logits_for_top_p_filtering(logits_top, top_p) return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1) def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0, eos_token_id=None, vocab_size=None, tensor_parallel=1, fused_ft_kernel=False, cg=False, timing=False): """Decoding, either greedy or with top-k or top-p sampling. If top-k = 0, don't limit the number of candidates (pure sampling). Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first, then top-p. We assume that all sequences in the same batch have the same length. Arguments: input_ids: (batch, seq_len) max_length: int Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields: sequences: (batch, max_length) scores: tuples of (batch, vocab_size) """ batch_size, seqlen_og = input_ids.shape if cg: assert fused_ft_kernel if not hasattr(model, '_decoding_cache'): model._decoding_cache = None model._decoding_cache = update_graph_cache( model, model._decoding_cache, batch_size, seqlen_og, max_length, tensor_parallel=tensor_parallel ) inference_params = model._decoding_cache.inference_params inference_params.max_sequence_len = max_length inference_params.max_batch_size = batch_size inference_params.sequence_len_offset = 0 else: inference_params = InferenceParams(max_sequence_len=max_length, max_batch_size=batch_size, fused_ft_kernel=fused_ft_kernel) scores = [] with torch.inference_mode(): logits = model(input_ids, inference_params=inference_params).logits[:, -1] if timing: torch.cuda.synchronize() start = time.time() if vocab_size is not None: logits = logits[..., :vocab_size] scores.append(logits) next_token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature) sequences = [next_token] inference_params.sequence_len_offset = seqlen_og while True: position_ids = torch.full((batch_size, 1), inference_params.sequence_len_offset, dtype=torch.long, device=input_ids.device) if not cg: logits = model(rearrange(next_token, 'b -> b 1'), position_ids=position_ids, inference_params=inference_params).logits[:, -1] else: logits = model._decoding_cache.run(rearrange(next_token, 'b -> b 1'), position_ids, inference_params.sequence_len_offset) if vocab_size is not None: logits = logits[..., :vocab_size] scores.append(logits) next_token = sample(logits, top_k=top_k, temperature=temperature) sequences.append(next_token) inference_params.sequence_len_offset += 1 if eos_token_id is not None and (next_token == eos_token_id).all(): break if inference_params.sequence_len_offset >= max_length - 1: break if timing: torch.cuda.synchronize() print(f'Decoding time: {(time.time() - start) * 1000:.0f}ms') output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput return output_cls( sequences=torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1), scores=tuple(scores) ) class GenerationMixin: def generate(self, input_ids, max_length, top_k=1, top_p=0.0, temperature=1.0, return_dict_in_generate=False, output_scores=False, **kwargs): output = decode(input_ids, self, max_length, top_k=top_k, top_p=top_p, temperature=temperature, **kwargs) if not output_scores: output.scores = None return output if return_dict_in_generate else output.sequences def allocate_kv_cache(max_batch_size, max_seqlen, nheads, headdim, layers: Union[int, Sequence], device, dtype=torch.float16): assert dtype in [torch.float16, torch.bfloat16, torch.float32] packsize = 4 if dtype == torch.float32 else 8 assert headdim % packsize == 0 k_cache_shape = (max_batch_size, nheads, headdim // packsize, max_seqlen, packsize) v_cache_shape = (max_batch_size, nheads, max_seqlen, headdim) if isinstance(layers, int): layers = range(layers) return {i: (torch.empty(k_cache_shape, device=device, dtype=dtype), torch.empty(v_cache_shape, device=device, dtype=dtype)) for i in layers} def seqlen_to_seqlen_type(seqlen: int) -> int: """Convert sequence length to a seqlen_type. This is used to determine which cuda graph to use. Arguments: seqlen: int """ return 0 if seqlen < 32 else (1 if seqlen < 2048 else 2) def seqlen_type_to_seqlen(seqlen_type: int) -> int: assert seqlen_type in [0, 1, 2] return 1 if seqlen_type == 0 else (32 if seqlen_type == 1 else 2048) @dataclass class DecodingCGCache: max_batch_size: int = 0 max_seqlen: int = 0 device = None dtype = None callables: dict = field(default_factory=dict) mempool = None inference_params: Optional[InferenceParams] = None run: Optional[Callable] = None @torch.inference_mode() def update_graph_cache(model, cache, batch_size, seqlen_og, max_seqlen, tensor_parallel=1, dtype=None, n_warmups=2): if cache is None: cache = DecodingCGCache() param_example = next(iter(model.parameters())) device = param_example.device if dtype is None: dtype = param_example.dtype if ((device, dtype) != (cache.device, cache.dtype) or batch_size > cache.max_batch_size or max_seqlen > cache.max_seqlen): # Invalidate the cache cache.callables = {} cache.mempool = None cache.inference_params = None gc.collect() cache.device, cache.dtype = device, dtype cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen headdim = getattr(model.config, 'head_dim', model.config.hidden_size // model.config.num_attention_heads) kv_cache = allocate_kv_cache( batch_size, max_seqlen, model.config.num_attention_heads // tensor_parallel, headdim, model.config.num_hidden_layers, device, dtype ) lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device) cache.inference_params = InferenceParams( max_sequence_len=max_seqlen, max_batch_size=batch_size, sequence_len_offset=seqlen_og, key_value_memory_dict=kv_cache, fused_ft_kernel=True, lengths_per_sample=lengths_per_sample ) cache.mempool = torch.cuda.graphs.graph_pool_handle() for s_type in range(seqlen_to_seqlen_type(seqlen_og), seqlen_to_seqlen_type(max_seqlen) + 1): if s_type not in cache.callables: seqlen = min(max(seqlen_og, seqlen_type_to_seqlen(s_type)), max_seqlen) cache.callables[s_type] = capture_graph( model, cache.inference_params, batch_size, seqlen_og, seqlen, mempool=cache.mempool, n_warmups=n_warmups ) def dispatch(input_ids, position_ids, seqlen): return cache.callables[seqlen_to_seqlen_type(seqlen)](input_ids, position_ids, seqlen) cache.run = dispatch cache.inference_params.sequence_length_offset = 0 # Reset so it's not confusing return cache def capture_graph(model, inference_params, batch_size, seqlen_og, max_seqlen, mempool=None, n_warmups=2): assert max_seqlen >= seqlen_og device = next(iter(model.parameters())).device input_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device) position_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device) inference_params.lengths_per_sample[:] = seqlen_og # Warmup before capture s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): for _ in range(n_warmups): logits = model(input_ids, position_ids=position_ids, inference_params=inference_params).logits[:, -1] s.synchronize() # This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0, # which requires that graph launch and non-captured launch to not overlap (I think, # that's how I interpret the documentation). I'm not sure if this is required. if torch.distributed.is_initialized(): torch.distributed.barrier() torch.cuda.current_stream().wait_stream(s) # Captures the graph # To allow capture, automatically sets a side stream as the current stream in the context graph = torch.cuda.CUDAGraph() with torch.cuda.graph(graph, pool=mempool): logits = model(input_ids, position_ids=position_ids, inference_params=inference_params).logits[:, -1] def run(new_input_ids, new_position_ids, seqlen): inference_params.lengths_per_sample[:] = seqlen input_ids.copy_(new_input_ids) position_ids.copy_(new_position_ids) graph.replay() return logits return run
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/utils/generation.py
# Copyright (c) 2022, Tri Dao. """ Useful functions for writing test code. """ import torch import torch.utils.benchmark as benchmark def benchmark_forward(fn, *inputs, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward pass of an arbitrary function. """ if verbose: print(desc, '- Forward pass') def fn_amp(*inputs, **kwinputs): with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): fn(*inputs, **kwinputs) for _ in range(repeats): # warmup fn_amp(*inputs, **kwinputs) t = benchmark.Timer( stmt='fn_amp(*inputs, **kwinputs)', globals={'fn_amp': fn_amp, 'inputs': inputs, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the backward pass of an arbitrary function. """ if verbose: print(desc, '- Backward pass') with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): y = fn(*inputs, **kwinputs) if type(y) is tuple: y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') for _ in range(repeats): # warmup y.backward(grad, retain_graph=True) t = benchmark.Timer( stmt='y.backward(grad, retain_graph=True)', globals={'y': y, 'grad': grad}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """ if verbose: print(desc, '- Forward + Backward pass') def f(grad, *inputs, **kwinputs): with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): y = fn(*inputs, **kwinputs) if type(y) is tuple: y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') y.backward(grad, retain_graph=True) for _ in range(repeats): # warmup f(grad, *inputs, **kwinputs) t = benchmark.Timer( stmt='f(grad, *inputs, **kwinputs)', globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """ return ( benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), ) def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False, amp_dtype=torch.float16, cpu=False, verbose=True, **kwinputs): """ Wrap benchmark functions in Pytorch profiler to see CUDA information. """ if backward: with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): g = torch.randn_like(fn(*inputs, **kwinputs)) for _ in range(30): # Warm up with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): if backward: for x in inputs: if isinstance(x, torch.Tensor): x.grad = None # fn(*inputs, **kwinputs) if not backward else fn(*inputs, **kwinputs).backward(g) out = fn(*inputs, **kwinputs) # Backward should be done outside autocast if backward: out.backward(g) activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA] with torch.profiler.profile( activities=activities, record_shapes=True, # profile_memory=True, with_stack=True, ) as prof: with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): if backward: for x in inputs: if isinstance(x, torch.Tensor): x.grad = None out = fn(*inputs, **kwinputs) if backward: out.backward(g) if verbose: # print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50)) print(prof.key_averages().table(row_limit=50)) if trace_filename is not None: prof.export_chrome_trace(trace_filename) def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs): torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() fn(*inputs, **kwinputs) torch.cuda.synchronize() mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000) if verbose: print(f'{desc} max memory: {mem}GB') torch.cuda.empty_cache() return mem
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/utils/benchmark.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/utils/__init__.py
from typing import Optional import torch from torch import Tensor from torch.distributed import ProcessGroup # `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for # `_all_gather_base` and `_reduce_scatter_base`. They require the most recent # version of PyTorch. The following 4 lines are for backward compatibility with # older PyTorch. if "all_gather_into_tensor" not in dir(torch.distributed): torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base if "reduce_scatter_tensor" not in dir(torch.distributed): torch.distributed.reduce_scatter_tensor = torch.distributed._reduce_scatter_base # Raw operation, does not support autograd, but does support async def all_gather_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False): world_size = torch.distributed.get_world_size(process_group) output = torch.empty(world_size * input_.shape[0], *input_.shape[1:], dtype=input_.dtype, device=input_.device) handle = torch.distributed.all_gather_into_tensor(output, input_.contiguous(), group=process_group, async_op=async_op) return output, handle # Raw operation, does not support autograd, but does support async def reduce_scatter_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False): world_size = torch.distributed.get_world_size(process_group) assert input_.shape[0] % world_size == 0 output = torch.empty(input_.shape[0] // world_size, *input_.shape[1:], dtype=input_.dtype, device=input_.device) handle = torch.distributed.reduce_scatter_tensor(output, input_.contiguous(), group=process_group, async_op=async_op) return output, handle # Raw operation, does not support autograd, but does support async def all_reduce_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False): input_ = input_.contiguous() handle = torch.distributed.all_reduce(input_, group=process_group, async_op=async_op) return input_, handle class AllGatherFunc(torch.autograd.Function): """Gather the input from sequence parallel region and concatenate.""" @staticmethod def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor: ctx.process_group = process_group output, _ = all_gather_raw(input_, process_group) return output @staticmethod def backward(ctx, grad_output: Tensor): grad_input, _ = reduce_scatter_raw(grad_output, ctx.process_group) return grad_input, None # Supports autograd, but does not support async all_gather = AllGatherFunc.apply class ReduceScatterFunc(torch.autograd.Function): """Reduce scatter the input from the sequence parallel region and concatenate.""" @staticmethod def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor: ctx.process_group = process_group output, _ = reduce_scatter_raw(input_, process_group) return output @staticmethod def backward(ctx, grad_output: Tensor): grad_input, _ = all_gather_raw(grad_output, ctx.process_group) return grad_input, None # Supports autograd, but does not support async reduce_scatter = ReduceScatterFunc.apply class AllReduceFunc(torch.autograd.Function): """Gather the input from sequence parallel region and concatenate.""" @staticmethod def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor: ctx.process_group = process_group output, _ = all_reduce_raw(input_, process_group) return output @staticmethod def backward(ctx, grad_output: Tensor): return grad_output, None # Supports autograd, but does not support async all_reduce = AllReduceFunc.apply def sync_shared_params(model: torch.nn.Module, process_group: ProcessGroup): # We want to iterate over parameters with _shared_params=True in the same order, # as different ranks might have different number of parameters (e.g., only rank 0 has bias). pamams_shared = {name: p for name, p in model.named_parameters() if getattr(p, '_shared_params', False)} for _, p in sorted(pamams_shared.items()): with torch.no_grad(): # Broadcast needs src to be global rank, not group rank torch.distributed.broadcast( p, src=torch.distributed.get_global_rank(process_group, 0), group=process_group ) # Ref: https://github.com/NVIDIA/Megatron-LM/blob/52e636888cccc41e931251c417a7181fc36de926/megatron/optimizer/optimizer.py#L256 def allreduce_sequence_parallel_grad(model: torch.nn.Module, process_group: ProcessGroup): # We want to iterate over parameters with _sequence_parallel=True in the same order, # as different ranks might have different number of parameters (e.g., only rank 0 has bias). params_seqparallel = {name: p for name, p in model.named_parameters() if getattr(p, '_sequence_parallel', False)} grads = [p.grad for _, p in sorted(params_seqparallel.items())] if grads: with torch.no_grad(): coalesced = torch._utils._flatten_dense_tensors(grads) torch.distributed.all_reduce(coalesced, group=process_group) for buf, synced in zip(grads, torch._utils._unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/utils/distributed.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/models/__init__.py
# Copyright (c) 2023, Tri Dao. import math import re from collections import OrderedDict import torch import torch.nn.functional as F from transformers import GPT2Config, OPTConfig def remap_state_dict_opt(state_dict, config): def key_mapping_model(key): key = re.sub(r'^model.decoder.', 'transformer.', key) # The OPT-350m model uses '^decoder' instead of '^model.decoder' key = re.sub(r'^decoder.', 'transformer.', key) return key state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items()) # Word embedding and position embedding def key_mapping_emb(key): key = re.sub(r'^transformer.embed_tokens.', 'transformer.embeddings.word_embeddings.', key) # The OPT-350m model uses has project_in and project_out key = re.sub(r'^transformer.project_in.', 'transformer.embeddings.project_in.', key) key = re.sub(r'^transformer.project_out.', 'project_out.', key) key = re.sub(r'^transformer.embed_positions.', 'transformer.embeddings.position_embeddings.', key) return key state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) # OPT uses the first 2 indices of pos_emb for padding tokens pos_embeddings = state_dict.pop('transformer.embeddings.position_embeddings.weight') state_dict['transformer.embeddings.position_embeddings.weight'] = pos_embeddings[2:] word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight') # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight'] # LayerNorm def key_mapping_ln(key): key = re.sub(r'^transformer.final_layer_norm.', r'transformer.ln_f.', key) # The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm' key = re.sub(r'^transformer.layer_norm.', r'transformer.ln_f.', key) key = re.sub(r'^transformer.layers.(\d+).self_attn_layer_norm.', r'transformer.layers.\1.norm1.', key) key = re.sub(r'^transformer.layers.(\d+).final_layer_norm.', r'transformer.layers.\1.norm2.', key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): return re.sub(r'^transformer.layers.(\d+).fc(1|2).', r'transformer.layers.\1.mlp.fc\2.', key) state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention for l in range(config.n_layer): Wq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.weight') Wk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.weight') Wv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.weight') bq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.bias') bk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.bias') bv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.bias') state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f'transformer.layers.{l}.mixer.Wqkv.bias'] = torch.cat( [bq, bk, bv], dim=0 ) def key_mapping_attn(key): return re.sub(r'^transformer.layers.(\d+).self_attn.out_proj.', r'transformer.layers.\1.mixer.out_proj.', key) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) return state_dict def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config: assert opt_config.layerdrop == 0.0 assert opt_config.layer_norm_elementwise_affine word_embed_proj_dim = (None if opt_config.word_embed_proj_dim == opt_config.hidden_size else opt_config.word_embed_proj_dim) return GPT2Config( vocab_size=opt_config.vocab_size, n_positions=opt_config.max_position_embeddings, n_embd=opt_config.hidden_size, n_layer=opt_config.num_hidden_layers, n_head=opt_config.num_attention_heads, n_inner=opt_config.ffn_dim, activation_function=opt_config.activation_function, resid_pdrop=opt_config.dropout, # HF's implementation of OPT doesn't seem to have embedding dropout embd_pdrop=opt_config.dropout, attn_pdrop=opt_config.attention_dropout, initializer_range=opt_config.init_std, bos_token_id=opt_config.bos_token_id, eos_token_id=opt_config.eos_token_id, # These are new arguments not in the original GPT2Config prenorm=opt_config.do_layer_norm_before, word_embed_proj_dim=word_embed_proj_dim )
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/models/opt.py
# Copyright (c) 2022, Tri Dao. # Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py import math import re from functools import partial from copy import deepcopy from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.init import trunc_normal_ from torchvision.ops import StochasticDepth from einops import rearrange from timm.models.helpers import named_apply from flash_attn.layers.patch_embed import PatchEmbed from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp, FusedMLP from flash_attn.modules.block import Block try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None def create_mixer_cls(num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False): mixer_cls = partial(MHA, num_heads=num_heads, cross_attn=cross_attn, bias=qkv_bias, dropout=attn_drop, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn) return mixer_cls def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp): inner_dim = int(embed_dim * mlp_ratio) if not fused_mlp: mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer()) else: mlp_cls = partial(FusedMLP, hidden_features=inner_dim) return mlp_cls def create_block(embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path1, drop_path2, norm_layer, act_layer, use_flash_attn, fused_bias_fc, fused_mlp, fused_dropout_add_ln, layer_idx=None, n_layer=None, last_layer_subset=False): mixer_cls = create_mixer_cls(num_heads, qkv_bias, attn_drop_rate, use_flash_attn, fused_bias_fc, cross_attn=(last_layer_subset and layer_idx == n_layer - 1)) mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp) # TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed block = Block(embed_dim, mixer_cls, mlp_cls, norm_cls=norm_layer, prenorm=True, resid_dropout1=drop_rate, resid_dropout2=drop_rate, drop_path1=drop_path1, drop_path2=drop_path2, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=True) return block class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None, class_token=True, no_embed_class=False, pre_norm=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, use_flash_attn=False, fused_bias_fc=False, fused_mlp=False, fused_dropout_add_ln=False, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head global_pool (str): type of global pooling for final sequence (default: 'token') embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True init_values: (float): layer-scale init values class_token (bool): use class token fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None) drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate weight_init (str): weight init scheme embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer act_layer: (nn.Module): MLP activation layer """ super().__init__() assert global_pool == 'token', 'Only support pooling with CLS token' assert class_token assert init_values is None, 'LayerScale is not supported yet' assert weight_init == '' assert fc_norm is None # pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk assert not pre_norm use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_prefix_tokens = 1 if class_token else 0 self.no_embed_class = no_embed_class patch_embed_extra_kwargs = ({'fused_bias_fc': fused_bias_fc} if embed_layer is PatchEmbed else {}) self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) **patch_embed_extra_kwargs ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule # We change the order of dropout, residual and layer norm: # Instead of LN -> Attn / MLP -> Dropout -> Add, we do: # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and # the main branch (output of MLP). The model definition is unchanged, but the mapping of the # nn.Dropout probabilities are changed. # This is for performance reason: we can fuse dropout + add + layer_norm. self.blocks = nn.ModuleList([create_block( embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path1=dpr[i-1] if i > 0 else 0., drop_path2=dpr[i], norm_layer=norm_layer, act_layer=act_layer, use_flash_attn=use_flash_attn, fused_bias_fc=fused_bias_fc, fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, n_layer=depth, last_layer_subset=(global_pool == 'token') ) for i in range(depth)]) self.dropout = nn.Dropout(p=drop_rate) self.drop_path = StochasticDepth(p=dpr[-1], mode='row') self.norm = norm_layer(embed_dim) self.fused_dropout_add_ln = fused_dropout_add_ln if self.fused_dropout_add_ln and dropout_add_layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') # Classifier Head self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.init_weights(weight_init) def init_weights(self, mode=''): assert mode == '' trunc_normal_(self.pos_embed, std=.02) if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(init_weights_vit_timm, self) def _init_weights(self, m): # this fn left here for compat with downstream users init_weights_vit_timm(m) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def _pos_embed(self, x): if self.no_embed_class: # deit-3, updated JAX (big vision) # position embedding does not overlap with class token, add then concat x = x + self.pos_embed if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) else: # original timm, JAX, and deit vit impl # pos_embed has entry for class token, concat then add if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.pos_embed return x def forward_features(self, x, all_tokens=True): """ If all_tokens==False and self.global_pool == 'token', we only return the features for the cls token. """ x = self.patch_embed(x) hidden_states = self._pos_embed(x) residual = None if self.global_pool != 'token' or all_tokens: # if True: for block in self.blocks: hidden_states, residual = block(hidden_states, residual) else: for block in self.blocks[:-1]: hidden_states, residual = block(hidden_states, residual) # For the last layer, we only want the 1st token of the output. So we do cross-attention # where the query is the 1st token and the key/value is the whole sequence. hidden_states, residual = self.blocks[-1](hidden_states, residual, mixer_subset=slice(0, 1)) if not self.fused_dropout_add_ln: residual = self.drop_path(self.dropout(hidden_states)) + residual hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype)) else: if self.drop_path.p == 0 or not self.training: rowscale = None else: rowscale = self.drop_path(torch.ones( hidden_states.shape[:-1], device=hidden_states.device, dtype=hidden_states.dtype) ) # Set prenorm=False here since we don't need to the residual hidden_states = dropout_add_layer_norm( hidden_states, residual, self.norm.weight, self.norm.bias, self.dropout.p if self.training else 0.0, self.norm.eps, rowscale=rowscale, prenorm=False, residual_in_fp32=True ) return hidden_states def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x, all_tokens=False) x = self.forward_head(x) return x def load_state_dict(self, state_dict, strict=True): patch_embed_weight = state_dict['patch_embed.proj.weight'] if patch_embed_weight.dim() == 4: # convert from Conv2d to Linear state_dict['patch_embed.proj.weight'] = rearrange(patch_embed_weight, 'o c h w -> o (c h w)') def key_mapping_attn(key): key = re.sub(r'^blocks.(\d+).attn.qkv.', r'blocks.\1.mixer.Wqkv.', key) key = re.sub(r'^blocks.(\d+).attn.proj.', r'blocks.\1.mixer.out_proj.', key) return key state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) n_layer = len(self.blocks) # Convert from Wqkv to Wq and Wkv for cross attention (last layer) if (self.blocks[-1].mixer.cross_attn and f'blocks.{n_layer - 1}.mixer.Wqkv.weight' in state_dict): Wqkv = state_dict.pop(f'blocks.{n_layer - 1}.mixer.Wqkv.weight') bqkv = state_dict.pop(f'blocks.{n_layer - 1}.mixer.Wqkv.bias') state_dict[f'blocks.{n_layer - 1}.mixer.Wq.weight'] = Wqkv[:self.embed_dim] state_dict[f'blocks.{n_layer - 1}.mixer.Wkv.weight'] = Wqkv[self.embed_dim:] state_dict[f'blocks.{n_layer - 1}.mixer.Wq.bias'] = bqkv[:self.embed_dim] state_dict[f'blocks.{n_layer - 1}.mixer.Wkv.bias'] = bqkv[self.embed_dim:] return super().load_state_dict(state_dict, strict=strict) def init_weights_vit_timm(module: nn.Module, name: str = ''): """ ViT weight initialization, original timm impl (for reproducibility) """ if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights() def vit_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ assert not pretrained model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = VisionTransformer(**model_kwargs) return model
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/models/vit.py
# Copyright (c) 2022, Tri Dao. # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py import re import logging from functools import partial from collections.abc import Sequence from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from transformers import BertConfig from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions from transformers.models.bert.modeling_bert import BertForPreTrainingOutput from einops import rearrange from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp, FusedMLP from flash_attn.modules.block import Block from flash_attn.modules.embedding import BertEmbeddings from flash_attn.bert_padding import unpad_input, pad_input from flash_attn.bert_padding import index_first_axis, index_first_axis_residual from flash_attn.utils.pretrained import state_dict_from_pretrained try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None try: from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm except ImportError: dropout_add_layer_norm, layer_norm = None, None try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = None logger = logging.getLogger(__name__) def create_mixer_cls(config, cross_attn=False, return_residual=False): use_flash_attn = getattr(config, 'use_flash_attn', False) fused_bias_fc = getattr(config, 'fused_bias_fc', False) mixer_cls = partial(MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn, dropout=config.attention_probs_dropout_prob, causal=False, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn, return_residual=return_residual) return mixer_cls def create_mlp_cls(config, layer_idx=None, return_residual=False): inner_dim = config.intermediate_size fused_mlp = getattr(config, 'fused_mlp', False) if fused_mlp: assert config.hidden_act in ['gelu_new', 'gelu_fast'], ('fused_mlp only ' 'supports approximate gelu') if not fused_mlp: approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none' mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate=approximate), return_residual=return_residual) else: if FusedMLP is None: raise ImportError('fused_dense is not installed') mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] mlp_cls = partial(FusedMLP, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual) return mlp_cls def create_block(config, layer_idx=None): last_layer_subset = getattr(config, 'last_layer_subset', False) cross_attn=last_layer_subset and layer_idx == config.num_hidden_layers - 1 # TD [2022-12-19]: For cross attention (last layer), we actually want to return the # residual x_kv, not residual x. But it's annoying to change the API (and it only affects # one layer) so we just choose not to return residual in this case. return_residual = not cross_attn mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=False, resid_dropout1=config.hidden_dropout_prob, resid_dropout2=config.hidden_dropout_prob, fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False), return_residual=return_residual) return block # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class BertEncoder(nn.Module): def __init__(self, config: BertConfig): super().__init__() self.use_flash_attn = getattr(config, 'use_flash_attn', False) self.layers = nn.ModuleList([create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): """If subset_mask is not None, we only want output for the subset of the sequence. This means that we only compute the last layer output for these tokens. subset_mask: (batch, seqlen), dtype=torch.bool """ if key_padding_mask is None or not self.use_flash_attn: mixer_kwargs = ({'key_padding_mask': key_padding_mask} if key_padding_mask is not None else None) for layer in self.layers: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, key_padding_mask ) mixer_kwargs = {'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen_in_batch} if subset_mask is None: for layer in self.layers: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer in self.layers[:-1]: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if key_padding_mask is not None: subset_idx = torch.nonzero(subset_mask[key_padding_mask], as_tuple=False).flatten() subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)) else: subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)) hidden_states_subset, hidden_states = index_first_axis_residual( hidden_states, subset_idx ) # It's ok to set max_seqlen_q to be much larger mixer_kwargs = {'x_kv': hidden_states, 'cu_seqlens': subset_cu_seqlens, 'max_seqlen': max_seqlen_in_batch, 'cu_seqlens_k': cu_seqlens, 'max_seqlen_k': max_seqlen_in_batch} hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs) return hidden_states class BertPooler(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, 'fused_bias_fc', False) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, 'fused_bias_fc', False) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False) if self.fused_dropout_add_ln and layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none' self.transform_act_fn = nn.GELU(approximate=approximate) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.layer_norm(hidden_states) else: hidden_states = layer_norm(hidden_states, self.layer_norm.weight, self.layer_norm.bias, self.layer_norm.eps) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, 'fused_bias_fc', False) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super().__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config @classmethod def from_pretrained(cls, model_name, config, *inputs, **kwargs): """ Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name_or_path: either: - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `model.chkpt` a TensorFlow checkpoint *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ # Instantiate model. model = cls(config, *inputs, **kwargs) load_return = model.load_state_dict(remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False) logger.info(load_return) return model class BertModel(BertPreTrainedModel): def __init__(self, config: BertConfig, add_pooling_layer=True): super().__init__(config) self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) if config.vocab_size % self.pad_vocab_size_multiple != 0: config.vocab_size += (self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)) self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False) if self.fused_dropout_add_ln and layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') assert config.position_embedding_type == 'absolute' assert config.hidden_act in ['gelu', 'gelu_new', 'gelu_fast'] self.embeddings = BertEmbeddings(config.hidden_size, config.vocab_size, config.max_position_embeddings, config.type_vocab_size, padding_idx=config.pad_token_id) self.emb_drop = nn.Dropout(config.hidden_dropout_prob) self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.apply(partial(_init_weights, initializer_range=config.initializer_range)) def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, masked_tokens_mask=None): """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining), we only want the output for the masked tokens. This means that we only compute the last layer output for these tokens. masked_tokens_mask: (batch, seqlen), dtype=torch.bool """ hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) # TD [2022-12:18]: Don't need to force residual in fp32 # BERT puts embedding LayerNorm before embedding dropout. if not self.fused_dropout_add_ln: hidden_states = self.emb_ln(hidden_states) else: hidden_states = layer_norm(hidden_states, self.emb_ln.weight, self.emb_ln.bias, self.emb_ln.eps) hidden_states = self.emb_drop(hidden_states) if masked_tokens_mask is not None: batch_size, seqlen = input_ids.shape[:2] # We also need the first column for the CLS token first_col_mask = torch.zeros(batch_size, seqlen, dtype=torch.bool, device=input_ids.device) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None sequence_output = self.encoder(hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask) if masked_tokens_mask is None: pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: # TD [2022-03-01]: the indexing here is very tricky. if attention_mask is not None: subset_idx = subset_mask[attention_mask] pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]] else: pool_input = sequence_output[first_col_mask[subset_mask]] sequence_output = sequence_output[masked_tokens_mask[subset_mask]] pooled_output = (self.pooler(pool_input, pool=False) if self.pooler is not None else None) return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config: BertConfig): super().__init__(config) # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # (around 15%) to the classifier heads. self.dense_seq_output = getattr(config, 'dense_seq_output', False) # If last_layer_subset, we only need the compute the last layer for a subset of tokens # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). self.last_layer_subset = getattr(config, 'last_layer_subset', False) if self.last_layer_subset: assert self.dense_seq_output, 'last_layer_subset requires dense_seq_output' use_xentropy = getattr(config, 'use_xentropy', False) if use_xentropy and CrossEntropyLoss is None: raise ImportError('xentropy_cuda is not installed') loss_cls = (nn.CrossEntropyLoss if not use_xentropy else partial(CrossEntropyLoss, inplace_backward=True)) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.mlm_loss = loss_cls(ignore_index=0) self.nsp_loss = loss_cls(ignore_index=-1) # Initialize weights and apply final processing self.apply(partial(_init_weights, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, labels=None, next_sentence_label=None): """ If labels are provided, they must be 0 for masked out tokens (as specified in the attention mask). Outputs: if `labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. """ masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None outputs = self.bert( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask.bool() if attention_mask is not None else None, masked_tokens_mask=masked_tokens_mask ) sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output if self.dense_seq_output and labels is not None: masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() if not self.last_layer_subset: sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'), masked_token_idx) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: if self.dense_seq_output and labels is not None: # prediction_scores are already flattened masked_lm_loss = self.mlm_loss(prediction_scores, labels.flatten()[masked_token_idx]) else: masked_lm_loss = self.mlm_loss(rearrange(prediction_scores, '... v -> (...) v'), rearrange(labels, '... -> (...)')) next_sentence_loss = self.nsp_loss(rearrange(seq_relationship_score, '... t -> (...) t'), rearrange(next_sentence_label, '... -> (...)')) total_loss = masked_lm_loss.float() + next_sentence_loss.float() return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, ) def remap_state_dict(state_dict, config): # LayerNorm def key_mapping_ln_gamma_beta(key): key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key) key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key) return key state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()) # Layers def key_mapping_layers(key): return re.sub(r'^bert.encoder.layer.', 'bert.encoder.layers.', key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # LayerNorm def key_mapping_ln(key): key = re.sub(r'^bert.embeddings.LayerNorm.', 'bert.emb_ln.', key) key = re.sub(r'^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)', r'bert.encoder.layers.\1.norm1.\2', key) key = re.sub(r'^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)', r'bert.encoder.layers.\1.norm2.\2', key) key = re.sub(r'^cls.predictions.transform.LayerNorm.(weight|bias)', r'cls.predictions.transform.layer_norm.\1', key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub(r'^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)', r'bert.encoder.layers.\1.mlp.fc1.\2', key) key = re.sub(r'^bert.encoder.layers.(\d+).output.dense.(weight|bias)', r'bert.encoder.layers.\1.mlp.fc2.\2', key) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention last_layer_subset = getattr(config, 'last_layer_subset', False) for d in range(config.num_hidden_layers): Wq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.weight') Wk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.weight') Wv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.weight') bq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.bias') bk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.bias') bv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.bias') if not (last_layer_subset and d == config.num_hidden_layers - 1): state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.weight'] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.bias'] = torch.cat( [bq, bk, bv], dim=0 ) else: state_dict[f'bert.encoder.layers.{d}.mixer.Wq.weight'] = Wq state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.weight'] = torch.cat( [Wk, Wv], dim=0 ) state_dict[f'bert.encoder.layers.{d}.mixer.Wq.bias'] = bq state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.bias'] = torch.cat( [bk, bv], dim=0 ) def key_mapping_attn(key): return re.sub(r'^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)', r'bert.encoder.layers.\1.mixer.out_proj.\2', key) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) def key_mapping_decoder_bias(key): return re.sub(r'^cls.predictions.bias', 'cls.predictions.decoder.bias', key) state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items()) # Word embedding pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict['bert.embeddings.word_embeddings.weight'] state_dict['bert.embeddings.word_embeddings.weight'] = F.pad( word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) ) decoder_weight = state_dict['cls.predictions.decoder.weight'] state_dict['cls.predictions.decoder.weight'] = F.pad( decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) ) # If the vocab was padded, we want to set the decoder bias for those padded indices to be # strongly negative (i.e. the decoder shouldn't predict those indices). # TD [2022-05-09]: I don't think it affects the MLPerf training. decoder_bias = state_dict['cls.predictions.decoder.bias'] state_dict['cls.predictions.decoder.bias'] = F.pad( decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 ) return state_dict
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/models/bert.py
# Copyright (c) 2023, Tri Dao. import logging import math import re from functools import partial from collections import namedtuple, OrderedDict from collections.abc import Sequence import torch import torch.nn as nn import torch.nn.functional as F from transformers import GPT2Config from einops import rearrange from flash_attn.modules.mha import MHA, ParallelMHA from flash_attn.modules.mlp import Mlp, FusedMLP, ParallelFusedMLP from flash_attn.modules.block import Block from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings from flash_attn.utils.distributed import sync_shared_params, all_gather_raw from flash_attn.utils.pretrained import state_dict_from_pretrained from flash_attn.utils.generation import GenerationMixin from flash_attn.models.opt import remap_state_dict_opt try: from flash_attn.ops.fused_dense import ColumnParallelLinear except ImportError: ColumnParallelLinear = None try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None try: from flash_attn.ops.triton.mlp import FusedDenseSqreluDense except ImportError: FusedDenseSqreluDense = None logger = logging.getLogger(__name__) def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads) softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5) if config.scale_attn_by_inverse_layer_idx: assert layer_idx is not None softmax_scale /= float(layer_idx + 1) dwconv = getattr(config, 'attn_dwconv', False) if dwconv: assert process_group is None, 'TensorParallel MHA does not support dwconv yet' rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim) rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', 0) use_flash_attn = getattr(config, 'use_flash_attn', False) fused_bias_fc = getattr(config, 'fused_bias_fc', False) if not fused_bias_fc: assert process_group is None, 'TensorParallel MHA requires fused_bias_fc' mha_cls = MHA if process_group is None else ParallelMHA serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv} if process_group is None else {}) parallel_kwargs = ({'process_group': process_group, 'sequence_parallel': getattr(config, 'sequence_parallel', True)} if process_group is not None else {}) mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads, dropout=config.attn_pdrop, softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx, rotary_emb_dim=rotary_emb_dim, rotary_emb_scale_base=rotary_emb_scale_base, use_flash_attn=use_flash_attn, **serial_kwargs, **parallel_kwargs, **factory_kwargs) return mixer_cls def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size fused_mlp = getattr(config, 'fused_mlp', False) if fused_mlp: assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu'] fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False) if fused_dense_sqrelu_dense: assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only ' 'supports approximate activation_function sqrelu') assert not (fused_dense_sqrelu_dense and fused_mlp) if process_group is not None: assert fused_mlp, 'Tensor Parallel is only implemented for FusedMLP' if not fused_mlp and not fused_dense_sqrelu_dense: if config.activation_function == 'relu': activation = partial(F.relu, inplace=True) else: approximate = ('tanh' if config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'none') activation=partial(F.gelu, approximate=approximate) mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=activation, **factory_kwargs) else: mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] if fused_mlp: if FusedMLP is None: raise ImportError('fused_dense is not installed') activation = ('gelu_approx' if config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'relu') mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP parallel_kwargs = ({'process_group': process_group, 'sequence_parallel': getattr(config, 'sequence_parallel', True)} if process_group is not None else {}) mlp_cls = partial(mlp_cls, hidden_features=inner_dim, activation=activation, checkpoint_lvl=mlp_checkpoint_lvl, **parallel_kwargs, **factory_kwargs) elif fused_dense_sqrelu_dense: assert FusedDenseSqreluDense is not None mlp_cls = partial(FusedDenseSqreluDense, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs) else: raise RuntimeError('MLP type not supported') return mlp_cls def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} sequence_parallel = getattr(config, 'sequence_parallel', True) mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs) mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_epsilon, **factory_kwargs) # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable residual_in_fp32 = getattr(config, 'residual_in_fp32', False) resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop prenorm = getattr(config, 'prenorm', True) block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=prenorm, resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop, fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False), residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel and process_group is not None, mark_shared_params=process_group is not None) block.layer_idx = layer_idx return block class GPTPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super().__init__() if not isinstance(config, GPT2Config): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config @classmethod def from_pretrained(cls, model_name, config, *args, strict=True, device=None, dtype=None, world_size=1, rank=0, **kwargs): """ Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. """ # Instantiate model. model = cls(config, *args, device=device, dtype=dtype, **kwargs) # Load state_dict in cpu because we already initialized the model in GPU, and we don't # want extra stuff taking up more GPU memory state_dict = state_dict_from_pretrained( model_name, device='cpu', dtype=dtype ) if model_name.startswith('gpt2'): state_dict = remap_state_dict_gpt2(state_dict, config) elif model_name.startswith('facebook/opt'): state_dict = remap_state_dict_opt(state_dict, config) else: raise NotImplementedError(f'Model {model_name} not supported') if world_size > 1: state_dict = shard_state_dict_tp(state_dict, config, world_size, rank) load_return = model.load_state_dict(state_dict, strict=strict) logger.info(load_return) return model # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) class GPTModel(GPTPreTrainedModel): def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None): super().__init__(config) factory_kwargs = {'device': device, 'dtype': dtype} self.process_group = process_group self.sequence_parallel = getattr(config, 'sequence_parallel', True) assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx', 'relu', 'sqrelu'] pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable self.residual_in_fp32 = getattr(config, 'residual_in_fp32', False) # These 2 options are for OPT-350m self.prenorm = getattr(config, 'prenorm', True) word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None) if process_group is None: self.embeddings = GPT2Embeddings( config.hidden_size, vocab_size, config.max_position_embeddings, word_embed_proj_dim=word_embed_proj_dim, **factory_kwargs ) else: self.embeddings = ParallelGPT2Embeddings( config.hidden_size, vocab_size, config.max_position_embeddings, process_group=process_group, sequence_parallel=self.sequence_parallel, **factory_kwargs ) # We change the order of dropout, residual and layer norm: # Instead of LN -> Attn / MLP -> Dropout -> Add, we do: # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and # the main branch (output of MLP). The model definition is unchanged, but the mapping of the # nn.Dropout probabilities are changed. # This is for performance reason: we can fuse dropout + add + layer_norm. self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs) for i in range(config.num_hidden_layers)]) self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False) if self.fused_dropout_add_ln and dropout_add_layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') if self.prenorm: self.drop_f = nn.Dropout(config.resid_pdrop) self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, **factory_kwargs) if process_group is not None: for p in self.ln_f.parameters(): # Mark the norm parameters as "shared_params" so that we sync their values at init. p._shared_params = True # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads. if self.sequence_parallel: p._sequence_parallel = True self.apply(partial(_init_weights, n_layer=config.num_hidden_layers, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None): # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen # dimensions so that we can split on it easily, in case of small batch size. # Only the attention layers need to know the seqlen. embedding_kwargs = ({'combine_batch_seqlen_dim': True} if self.process_group is not None and self.sequence_parallel else {}) hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs) residual = None mixer_kwargs = ({'seqlen': input_ids.shape[1]} if self.process_group is not None and self.sequence_parallel else {}) if inference_params is not None: mixer_kwargs['inference_params'] = inference_params for layer in self.layers: if self.prenorm: hidden_states, residual = layer(hidden_states, residual, mixer_kwargs=mixer_kwargs) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if self.prenorm: if not self.fused_dropout_add_ln: dropped = self.drop_f(hidden_states) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual hidden_states = dropout_add_layer_norm( hidden_states, residual, self.ln_f.weight, self.ln_f.bias, self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False, residual_in_fp32=self.residual_in_fp32 ) return hidden_states class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin): def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(config) self.process_group = process_group self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs) pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) # This option is for OPT-350m word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None) embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim if word_embed_proj_dim is not None: self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs) else: self.project_out = None if process_group is None: self.lm_head = nn.Linear(embed_dim, vocab_size, bias=False, **factory_kwargs) else: if ColumnParallelLinear is None: raise ImportError('fused_dense_lib is not installed') self.lm_head = ColumnParallelLinear( embed_dim, vocab_size, process_group, bias=False, sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs ) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=config.num_hidden_layers, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None): """ inference_params: for generation. Adapted from Megatron-LM (and Apex) https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 """ hidden_states = self.transformer(input_ids, position_ids=position_ids, inference_params=inference_params) if self.project_out is not None: hidden_states = self.project_out(hidden_states) lm_logits = self.lm_head(hidden_states) # During inference, we want the full logit for sampling if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None: lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group) lm_logits = rearrange(lm_logits, '(n b) s d -> b s (n d)', b=hidden_states.shape[0]) CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) return CausalLMOutput(logits=lm_logits) def load_state_dict(self, state_dict, strict=True): # Remapping from our checkpoints that used a different ordering of layers in the block # Previous: Attn / MLP -> Dropout -> Add -> LN # Current: Dropout -> Add -> LN -> Attn / MLP if 'transformer.ln_0.weight' in state_dict: n_layers = len(self.transformer.layers) ln_weight = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.weight') ln_bias = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.bias') state_dict['transformer.ln_f.weight'] = ln_weight state_dict['transformer.ln_f.bias'] = ln_bias for l in reversed(range(n_layers)): ln_weight = state_dict.pop(f'transformer.layers.{l}.norm1.weight') ln_bias = state_dict.pop(f'transformer.layers.{l}.norm1.bias') state_dict[f'transformer.layers.{l}.norm2.weight'] = ln_weight state_dict[f'transformer.layers.{l}.norm2.bias'] = ln_bias if l > 0: ln_weight = state_dict.pop(f'transformer.layers.{l - 1}.norm2.weight') ln_bias = state_dict.pop(f'transformer.layers.{l - 1}.norm2.bias') state_dict[f'transformer.layers.{l}.norm1.weight'] = ln_weight state_dict[f'transformer.layers.{l}.norm1.bias'] = ln_bias ln_weight = state_dict.pop('transformer.ln_0.weight') ln_bias = state_dict.pop('transformer.ln_0.bias') state_dict[f'transformer.layers.0.norm1.weight'] = ln_weight state_dict[f'transformer.layers.0.norm1.bias'] = ln_bias return super().load_state_dict(state_dict, strict=strict) def remap_state_dict_gpt2(state_dict, config): # Word embedding and position embedding def key_mapping_pos_emb(key): return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key) state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items()) word_embeddings = state_dict.pop('wte.weight') # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight'] # LayerNorm def key_mapping_ln(key): key = re.sub(r'^ln_f.(weight|bias)', r'transformer.ln_f.\1', key) key = re.sub(r'^h.(\d+).ln_(1|2).(weight|bias)', r'transformer.layers.\1.norm\2.\3', key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP for d in range(config.num_hidden_layers): W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight') state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t() W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight') state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t() def key_mapping_mlp(key): key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key) key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention for d in range(config.num_hidden_layers): state_dict.pop(f'h.{d}.attn.bias') # We don't store this bias Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight') state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t() Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight') state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t() def key_mapping_attn(key): key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key) key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key) return key state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) return state_dict def shard_state_dict_tp(state_dict, config, world_size, rank): """Convert the state_dict of a standard GPT model to the state_dict of a GPT model with tensor parallel. """ pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) assert vocab_size % world_size == 0 assert config.hidden_size % world_size == 0 inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size assert inner_dim % world_size == 0 def shard_first_dim(state_dict, key): x = state_dict[key] dim = x.shape[0] // world_size state_dict[key] = x[rank * dim:(rank + 1) * dim] def shard_last_dim(state_dict, key): x = state_dict[key] dim = x.shape[-1] // world_size state_dict[key] = x[..., rank * dim:(rank + 1) * dim] def shard_qkv_headdim(state_dict, key): x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3) dim = x.shape[1] // world_size state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim], 'three d ... -> (three d) ...') shard_first_dim(state_dict, 'transformer.embeddings.word_embeddings.weight') if 'lm_head.weight' in state_dict: shard_first_dim(state_dict, 'lm_head.weight') if 'transformer.embeddings.position_embeddings.weight' in state_dict: shard_last_dim(state_dict, 'transformer.embeddings.position_embeddings.weight') for i in range(config.num_hidden_layers): shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight') shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias') shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight') if rank != 0: state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias') shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight') shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias') shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight') if rank != 0: state_dict.pop(f'transformer.layers.{i}.mlp.fc2.bias') return state_dict
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/models/gpt.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/__init__.py
# Copyright (c) 2023, Tri Dao. # Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py # We make it work with pytorch amp and with bfloat16. # The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py from typing import Optional from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.distributed import ProcessGroup from torch.cuda.amp import custom_bwd, custom_fwd # import fused_dense_cuda # from apex import fused_dense_lib as fused_dense_cuda from flash_attn.ops.gelu_activation import gelu_bwd from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw from flash_attn.utils.distributed import reduce_scatter, all_reduce @torch.jit.script def relu_bwd(g, x): return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype) class FusedDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True): """ If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel with sequence parallelism: we do an all_gather_raw of x before doing the matmul. """ ctx.compute_weight_gradient = weight.requires_grad ctx.return_residual = return_residual ctx.process_group = process_group ctx.sequence_parallel = sequence_parallel if torch.is_autocast_enabled(): x = x.to(dtype=torch.get_autocast_gpu_dtype()) x = x.contiguous() if process_group is not None and sequence_parallel: # We want to kick off the all_gather early, before weight dtype conversion total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x if torch.is_autocast_enabled(): weight = weight.to(dtype=torch.get_autocast_gpu_dtype()) bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None weight = weight.contiguous() if process_group is not None and sequence_parallel: handle_x.wait() batch_shape, n = total_x.shape[:-1], total_x.shape[-1] batch_dim = batch_shape.numel() # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 if min(batch_dim, n, *weight.shape) > 65535 * 32: raise RuntimeError('fused_dense only supports matrix dims <= 2M') output = F.linear(total_x, weight, bias) if ctx.compute_weight_gradient: ctx.save_for_backward(x, weight) else: ctx.save_for_backward(weight) return output if not return_residual else (output, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() process_group = ctx.process_group sequence_parallel = ctx.sequence_parallel if ctx.compute_weight_gradient: x, weight = ctx.saved_tensors if process_group is not None and sequence_parallel: total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x else: weight, = ctx.saved_tensors total_x = None batch_shape = grad_output.shape[:-1] batch_dim = batch_shape.numel() grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_output, weight.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight) grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) if process_group is not None: reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) else: grad_input = None if ctx.needs_input_grad[1]: assert ctx.compute_weight_gradient if process_group is not None and sequence_parallel: handle_x.wait() grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad( total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2] ) else: grad_weight = None grad_bias = grad_output if ctx.needs_input_grad[2] else None if process_group is not None and ctx.needs_input_grad[0]: handle_grad_input.wait() return grad_input, grad_weight, grad_bias, None, None, None def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None, return_residual: bool = False, process_group: Optional[ProcessGroup] = None, sequence_parallel: bool = True): dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible: return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group, sequence_parallel) else: assert process_group is None out = F.linear(x, weight, bias) return out if not return_residual else (out, x) class FusedDense(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, return_residual: bool = False, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) self.return_residual = return_residual def forward(self, x, process_group=None): """ If process_group is not None, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul. """ return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual, process_group=process_group) class ColumnParallelLinear(nn.Linear): def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup, bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None: world_size = torch.distributed.get_world_size(process_group) if out_features % world_size != 0: raise ValueError(f'out_features ({out_features}) must be divisible by ' f'world_size ({world_size})') super().__init__(in_features, out_features // world_size, bias=bias, device=device, dtype=dtype) self.process_group = process_group self.sequence_parallel = sequence_parallel def forward(self, x): # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: # we do an all_gather of x before doing the matmul. # If not, then the input is already gathered. return fused_dense_func(x, self.weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel) class RowParallelLinear(nn.Linear): def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup, bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None: world_size = torch.distributed.get_world_size(process_group) rank = torch.distributed.get_rank(process_group) if in_features % world_size != 0: raise ValueError(f'in_features ({in_features}) must be divisible by ' f'world_size ({world_size})') # Only rank 0 will have bias super().__init__(in_features // world_size, out_features, bias=bias and rank == 0, device=device, dtype=dtype) self.process_group = process_group self.sequence_parallel = sequence_parallel def forward(self, x): """ We're doing Tensor Parallel with sequence parallelism: we do the matmul and then a reduce_scatter of the result. """ out = fused_dense_func(x, self.weight, self.bias) reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce return reduce_fn(out, self.process_group) class FusedMLPFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, activation='gelu_approx', save_pre_act=True, return_residual=False, checkpoint_lvl=0, heuristic=0, process_group=None, sequence_parallel=True): """ If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul. If sequence_parallel=False, then the input is already gathered. checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out / relu_out in the bwd 2: recompute pre_act and gelu_out / relu_out in the bwd """ assert -1 <= heuristic <= 4 assert activation in ['gelu_approx', 'relu'] if not save_pre_act: checkpoint_lvl = 2 assert checkpoint_lvl in [0, 1, 2] ctx.return_residual = return_residual ctx.process_group = process_group ctx.sequence_parallel = sequence_parallel ctx.checkpoint_lvl = checkpoint_lvl ctx.activation = activation ctx.heuristic = heuristic if torch.is_autocast_enabled(): x = x.to(dtype=torch.get_autocast_gpu_dtype()) x = x.contiguous() if process_group is not None and sequence_parallel: # We want to kick off the all_gather early, before weight dtype conversion total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]] bias1 = bias1.to(dtype=dtype) if bias1 is not None else None bias2 = bias2.to(dtype=dtype) if bias2 is not None else None weight1 = weight1.contiguous() bias1 = bias1.contiguous() if bias1 is not None else None weight2 = weight2.contiguous() bias2 = bias2.contiguous() if bias2 is not None else None if process_group is not None and sequence_parallel: handle_x.wait() batch_shape, n = total_x.shape[:-1], total_x.shape[-1] batch_dim = batch_shape.numel() # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32: raise RuntimeError('fused_dense only supports matrix dims <= 2M') if heuristic == -1: pre_act = F.linear(total_x, weight1, bias1) activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else F.relu) output1 = activation_fn(pre_act) # This is before adding bias1 # pre_act = F.linear(total_x.reshape(batch_dim, n), weight1) # with torch.jit.fuser('fuser2'): # output1 = bias_gelu(pre_act, bias1) else: is_gelu = activation == 'gelu_approx' output1, *rest = fused_dense_cuda.linear_act_forward( total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic ) if save_pre_act: pre_act = rest[0] output2 = F.linear(output1, weight2, bias2) if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'): # For RELU the pre_act is very small (just a bit-mask) so we just save it ctx.save_for_backward(x, weight1, weight2, pre_act, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, weight2, pre_act) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, weight2, bias1) output2 = output2.reshape(*batch_shape, output2.shape[-1]) return output2 if not return_residual else (output2, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl activation = ctx.activation activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else F.relu) if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() process_group = ctx.process_group sequence_parallel = ctx.sequence_parallel x, weight1, weight2, *rest = ctx.saved_tensors if process_group is None or not sequence_parallel: total_x = x batch_shape = grad_output.shape[:-1] batch_dim = batch_shape.numel() if checkpoint_lvl in [0, 1]: if process_group is not None and sequence_parallel: total_x, handle_x = all_gather_raw(x, process_group, async_op=True) if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'): pre_act, output1 = rest elif checkpoint_lvl == 1: pre_act, = rest output1 = activation_fn(pre_act) elif checkpoint_lvl == 2: bias1, = rest if process_group is not None and sequence_parallel: total_x, _ = all_gather_raw(x, process_group) if ctx.heuristic == -1: pre_act = F.linear(total_x, weight1, bias1) output1 = activation_fn(pre_act) else: output1, pre_act = fused_dense_cuda.linear_act_forward( total_x.reshape(batch_dim, total_x.shape[-1]), weight1, bias1, activation == 'gelu_approx', True, ctx.heuristic ) grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) output1 = output1.reshape(batch_dim, output1.shape[-1]) pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1]) if ctx.needs_input_grad[3]: grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad( output1, grad_output, ctx.needs_input_grad[4] ) else: grad_weight2 = None grad_bias2 = grad_output if ctx.needs_input_grad[4] else None if ctx.heuristic == -1: # grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act) grad_output1 = F.linear(grad_output, weight2.t()) with torch.jit.fuser('fuser2'): activation_grad_fn = gelu_bwd if activation == 'gelu_approx' else relu_bwd grad_pre_act = activation_grad_fn(grad_output1, pre_act) else: # The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't # just compute gelu/relu grad grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad( weight2, grad_output, pre_act, activation == 'gelu_approx', ctx.heuristic ) if not ctx.needs_input_grad[2]: grad_bias1 = None if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_pre_act, weight1.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1) grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) if process_group is not None: reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) else: grad_input = None if ctx.heuristic == -1: if ctx.needs_input_grad[1]: if process_group is not None and sequence_parallel: handle_x.wait() grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad( total_x.reshape(batch_dim, total_x.shape[-1]), grad_pre_act, ctx.needs_input_grad[2] ) else: grad_weight1 = None grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None else: if ctx.needs_input_grad[1]: if process_group is not None and sequence_parallel: handle_x.wait() grad_weight1 = F.linear(grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t()) else: grad_weight1 = None if process_group is not None and ctx.needs_input_grad[0]: handle_grad_input.wait() return (grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2, None, None, None, None, None, None, None) def fused_mlp_func( x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None, bias2: Optional[Tensor] = None, activation: str = 'gelu_approx', save_pre_act: bool = True, return_residual: bool = False, checkpoint_lvl: int = 0, heuristic: int = 0, process_group: Optional[ProcessGroup] = None, sequence_parallel: bool = True ): assert activation in ['gelu_approx', 'relu'] dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) # If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu) dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == 'relu' else 8) == 0) if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda) and (bias2 is None or bias2.is_cuda) and dtype_eligible and dim_eligible): return FusedMLPFunc.apply( x, weight1, bias1, weight2, bias2, activation, save_pre_act, return_residual, checkpoint_lvl, heuristic, process_group, sequence_parallel ) else: assert process_group is None pre_act = F.linear(x, weight1, bias1) activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else partial(F.relu, inplace=True)) output1 = activation_fn(pre_act) output2 = F.linear(output1, weight2, bias2) return output2 if not return_residual else (output2, x) class FusedMLP(nn.Module): def __init__(self, in_features, hidden_features, out_features=None, bias1=True, bias2=True, activation='gelu_approx', return_residual=False, checkpoint_lvl=0, heuristic='auto', device=None, dtype=None): """ If process_group is not None, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul, gelu, then matmul. Finally we do a reduce_scatter of the output. checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute pre_act and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu 'auto': heuristic will be picked automatically: For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf. For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16. return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ assert checkpoint_lvl in [0, 1, 2] assert activation in ['gelu_approx', 'relu'] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if out_features is None: out_features = in_features self.activation = activation self.return_residual = return_residual self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) def forward(self, x, process_group=None): dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype() if self.heuristic == 'auto': if self.activation == 'gelu_approx': cuda_ver = tuple(map(int, torch.version.cuda.split('.'))) heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1) else: heuristic = 0 else: heuristic = self.heuristic out = fused_mlp_func( x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias, activation=self.activation, save_pre_act=self.training, return_residual=self.return_residual, checkpoint_lvl=self.checkpoint_lvl, heuristic=heuristic, process_group=process_group ) if self.return_residual: out, x = out if process_group is not None: out = reduce_scatter(out, process_group) return out if not self.return_residual else (out, x) class ParallelFusedMLP(nn.Module): def __init__(self, in_features, hidden_features, out_features=None, activation='gelu_approx', process_group: ProcessGroup = None, bias1=True, bias2=True, sequence_parallel=True, checkpoint_lvl=0, heuristic='auto', device=None, dtype=None): """ process_group is required. We're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul, gelu, then matmul. Finally we do a reduce_scatter of the output. checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute pre_act and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu 'auto': heuristic will be picked automatically: For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf. For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16. """ assert checkpoint_lvl in [0, 1, 2] assert activation in ['gelu_approx', 'relu'] assert process_group is not None factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if out_features is None: out_features = in_features self.activation = activation self.process_group = process_group self.sequence_parallel = sequence_parallel self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group, bias=bias1, **factory_kwargs) self.fc2 = RowParallelLinear(hidden_features, out_features, process_group, bias=bias2, **factory_kwargs) def forward(self, x): dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype() if self.heuristic == 'auto': if self.activation == 'gelu_approx': cuda_ver = tuple(map(int, torch.version.cuda.split('.'))) heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1) else: heuristic = 0 else: heuristic = self.heuristic out = fused_mlp_func( x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias, activation=self.activation, save_pre_act=self.training, checkpoint_lvl=self.checkpoint_lvl, heuristic=heuristic, process_group=self.process_group, sequence_parallel=self.sequence_parallel ) reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce return reduce_fn(out, self.process_group)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/fused_dense.py
# Copyright (c) 2022, Tri Dao. # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py import torch from torch.nn import init from flash_attn.ops.layer_norm import DropoutAddLayerNormFn, DropoutAddLayerNormSubsetFn def rms_norm(x, weight, epsilon): return DropoutAddLayerNormFn.apply(x, None, weight, None, None, None, 0.0, epsilon, False, False, True) def dropout_add_rms_norm(x0, residual, weight, bias, dropout_p, epsilon, rowscale=None, layerscale=None, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if residual is None. Otherwise residual dtype is residual.dtype. """ return DropoutAddLayerNormFn.apply( x0, residual, weight, bias, rowscale, layerscale, dropout_p, epsilon, residual_in_fp32, prenorm, True, return_dropout_mask ) def dropout_add_rms_norm_subset(x0, residual, weight, bias, dropout_p, epsilon, layerscale=None, x0_subset=None, out_subset=None, rowscale_const=1.0, out_numrows=0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if residual is None. Otherwise residual dtype is residual.dtype. """ return DropoutAddLayerNormSubsetFn.apply( x0, residual, weight, bias, layerscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32, prenorm, True, return_dropout_mask ) class DropoutAddRMSNorm(torch.nn.Module): def __init__(self, hidden_size, prenorm=False, p=0.0, eps=1e-5, residual_in_fp32=False, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.prenorm = prenorm self.p = p self.epsilon = eps self.residual_in_fp32 = residual_in_fp32 self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) def forward(self, x0, residual=None): return dropout_add_rms_norm(x0, residual, self.weight, None, self.p if self.training else 0.0, self.epsilon, prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/rms_norm.py
# Copyright (c) 2022, Tri Dao. # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py import torch from torch.nn import init import dropout_layer_norm def _dropout_add_layer_norm_forward(x0, residual, gamma, beta, rowscale, colscale, dropout_p, epsilon, residual_in_fp32=False, is_rms_norm=False): """ Assume that arguments are contiguous """ hidden_size = gamma.numel() x0mat = x0.view((-1, hidden_size)) residualmat = residual.view((-1, hidden_size)) if residual is not None else None rowscale = rowscale.view(-1) if rowscale is not None else None zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd( x0mat, residualmat, gamma, beta, rowscale, colscale, None, None, dropout_p, epsilon, 1.0, 0, None, residual_in_fp32, is_rms_norm ) # dmask is None if dropout_p == 0.0 # xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma def _dropout_add_layer_norm_backward(dz, dx, x, x0, dmask, mu, rsigma, gamma, rowscale, colscale, dropout_p, has_residual, is_rms_norm=False): """ Assume that arguments are contiguous dx == None means that it was a post-norm architecture (x = drop(x0) + residual was not returned in the fwd). x0 must not be None if we have colscale. """ hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dzmat = dz.view(xmat.shape) dxmat = dx.view(xmat.shape) if dx is not None else None x0mat = x0.view((-1, hidden_size)) if x0 is not None else None rowscale = rowscale.view(-1) if rowscale is not None else None if colscale is not None: assert x0 is not None, 'x0 is required to compute the gradient of colscale' dx0mat, dresidualmat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd( dzmat, dxmat, xmat, x0mat, dmask, mu, rsigma, gamma, rowscale, colscale, None, None, dropout_p, 1.0, 0, has_residual, is_rms_norm ) # dresidualmat is None if not has_residual if colscale is None: return dx0mat, dresidualmat, dgamma, dbeta else: dcolscale = rest[0] return dx0mat, dresidualmat, dgamma, dbeta, dcolscale def _dropout_add_layer_norm_subset_forward(x0, residual, gamma, beta, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32=False, is_rms_norm=False): """ Assume that arguments are contiguous """ hidden_size = gamma.numel() x0mat = x0.view((-1, hidden_size)) residualmat = residual.view((-1, hidden_size)) if residual is not None else None x0_subset = x0_subset.view(-1) if x0_subset is not None else None out_subset = out_subset.view(-1) if out_subset is not None else None zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd( x0mat, residualmat, gamma, beta, None, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, None, residual_in_fp32, is_rms_norm ) # dmask is None if dropout_p == 0.0 # xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma def _dropout_add_layer_norm_subset_backward(dz, dx, x, x0, dmask, mu, rsigma, gamma, colscale, x0_subset, out_subset, dropout_p, rowscale_const, x0_numrows, has_residual, is_rms_norm=False): """ Assume that arguments are contiguous dx == None means that it was a post-norm architecture (x = drop(x0) + residual was not returned in the fwd). x0 must not be None if we have colscale. """ hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dzmat = dz.view(-1, hidden_size) dxmat = dx.view(xmat.shape) if dx is not None else None x0mat = x0.view((-1, hidden_size)) if x0 is not None else None x0_subset = x0_subset.view(-1) if x0_subset is not None else None out_subset = out_subset.view(-1) if out_subset is not None else None if colscale is not None: assert x0 is not None, 'x0 is required to compute the gradient of colscale' dx0mat, dresidualmat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd( dzmat, dxmat, xmat, x0mat, dmask, mu, rsigma, gamma, None, colscale, x0_subset, out_subset, dropout_p, rowscale_const, x0_numrows, has_residual, is_rms_norm ) # dresidualmat is None if not has_residual if colscale is None: return dx0mat, dresidualmat, dgamma, dbeta else: dcolscale = rest[0] return dx0mat, dresidualmat, dgamma, dbeta, dcolscale class DropoutAddLayerNormFn(torch.autograd.Function): @staticmethod def forward(ctx, x0, residual, gamma, beta, rowscale, colscale, dropout_p, epsilon, residual_in_fp32=False, prenorm=False, is_rms_norm=False, return_dmask=False): x0 = x0.contiguous() residual = residual.contiguous() if residual is not None else None gamma = gamma.contiguous() beta = beta.contiguous() if beta is not None else None rowscale = rowscale.contiguous() if rowscale is not None else None colscale = colscale.contiguous() if colscale is not None else None zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward( x0, residual, gamma, beta, rowscale, colscale, dropout_p, epsilon, residual_in_fp32, is_rms_norm ) # Only need to save x0 if we need to compute gradient wrt colscale x0_saved = x0 if colscale is not None else None ctx.save_for_backward(xmat.view(x0.shape), x0, dmask, gamma, mu, rsigma, rowscale, colscale) ctx.prenorm = prenorm ctx.dropout_p = dropout_p ctx.has_residual = residual is not None ctx.is_rms_norm = is_rms_norm ctx.has_beta = beta is not None if not return_dmask: return (zmat.view(x0.shape) if not prenorm else (zmat.view(x0.shape), xmat.view(x0.shape))) else: dmask = (dmask.view(x0.shape) if dropout_p > 0. else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)) ctx.mark_non_differentiable(dmask) return ((zmat.view(x0.shape), dmask) if not prenorm else (zmat.view(x0.shape), xmat.view(x0.shape), dmask)) @staticmethod def backward(ctx, dz, *args): # assert dz.is_contiguous() dz = dz.contiguous() # this happens! dx = args[0].contiguous() if ctx.prenorm else None x, x0, dmask, gamma, mu, rsigma, rowscale, colscale = ctx.saved_tensors # x0 is None if colscale is None dropout_p = ctx.dropout_p has_residual = ctx.has_residual dx0mat, dresidualmat, dgamma, dbeta, *rest = _dropout_add_layer_norm_backward( dz, dx, x, x0, dmask, mu, rsigma, gamma, rowscale, colscale, dropout_p, has_residual, ctx.is_rms_norm ) dx0 = dx0mat.view(x.shape) dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None dcolscale = rest[0] if colscale is not None else None return (dx0, dresidual, dgamma, dbeta if ctx.has_beta else None, None, dcolscale, None, None, None, None, None, None) class DropoutAddLayerNormSubsetFn(torch.autograd.Function): @staticmethod def forward(ctx, x0, residual, gamma, beta, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32=False, prenorm=False, is_rms_norm=False, return_dmask=False): x0 = x0.contiguous() residual = residual.contiguous() if residual is not None else None gamma = gamma.contiguous() beta = beta.contiguous() if beta is not None else None colscale = colscale.contiguous() if colscale is not None else None zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_subset_forward( x0, residual, gamma, beta, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32, is_rms_norm ) # Only need to save x0 if we need to compute gradient wrt colscale x0_saved = x0 if colscale is not None else None x_shape = (-1, *x0.shape[1:]) ctx.save_for_backward(xmat.view(x_shape), x0, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset) ctx.prenorm = prenorm ctx.dropout_p = dropout_p ctx.rowscale_const = rowscale_const ctx.x0_numrows = x0.shape[:-1].numel() ctx.has_residual = residual is not None ctx.is_rms_norm = is_rms_norm ctx.has_beta = beta is not None z_shape = (-1, *x0.shape[1:]) if not return_dmask: return (zmat.view(z_shape) if not prenorm else (zmat.view(z_shape), xmat.view(x0.shape))) else: z = zmat.view(z_shape) dmask = (dmask.view(x0.shape) if dropout_p > 0. else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)) ctx.mark_non_differentiable(dmask) return ((z, dmask) if not prenorm else (z, xmat.view(x_shape), dmask)) @staticmethod def backward(ctx, dz, *args): # assert dz.is_contiguous() dz = dz.contiguous() # this happens! dx = args[0].contiguous() if ctx.prenorm else None x, x0, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset = ctx.saved_tensors # x0 is None if colscale is None dropout_p = ctx.dropout_p has_residual = ctx.has_residual dx0mat, dresidualmat, dgamma, dbeta, *rest = _dropout_add_layer_norm_subset_backward( dz, dx, x, x0, dmask, mu, rsigma, gamma, colscale, x0_subset, out_subset, dropout_p, ctx.rowscale_const, ctx.x0_numrows, has_residual, ctx.is_rms_norm ) dx0 = dx0mat.view(-1, *x.shape[1:]) dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None dcolscale = rest[0] if colscale is not None else None return (dx0, dresidual, dgamma, dbeta if ctx.has_beta else None, dcolscale, None, None, None, None, None, None, None, None, None, None) def layer_norm(x, weight, bias, epsilon): return DropoutAddLayerNormFn.apply(x, None, weight, bias, None, None, 0.0, epsilon, False) def dropout_add_layer_norm(x0, residual, weight, bias, dropout_p, epsilon, rowscale=None, layerscale=None, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if residual is None. Otherwise residual dtype is residual.dtype. """ return DropoutAddLayerNormFn.apply( x0, residual, weight, bias, rowscale, layerscale, dropout_p, epsilon, residual_in_fp32, prenorm, False, return_dropout_mask ) def dropout_add_layer_norm_subset(x0, residual, weight, bias, dropout_p, epsilon, layerscale=None, x0_subset=None, out_subset=None, rowscale_const=1.0, out_numrows=0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if residual is None. Otherwise residual dtype is residual.dtype. """ return DropoutAddLayerNormSubsetFn.apply( x0, residual, weight, bias, layerscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32, prenorm, False, return_dropout_mask ) class DropoutAddLayerNorm(torch.nn.Module): def __init__(self, hidden_size, prenorm=False, p=0.0, eps=1e-5, residual_in_fp32=False, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.prenorm = prenorm self.p = p self.epsilon = eps self.residual_in_fp32 = residual_in_fp32 self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, x0, residual=None): return dropout_add_layer_norm(x0, residual, self.weight, self.bias, self.p if self.training else 0.0, self.epsilon, prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/layer_norm.py
# Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py import math import torch from torch import nn # 1/sqrt(2*pi)-> 0.3989423 # 1/sqrt(2) -> 0.70710678 # sqrt(2/pi) -> 0.79788456 # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def bias_gelu(y, bias): x = bias + y return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def bias_gelu_back(g, y, bias): """Assume that y has shape (B, D) and bias has shape (D) """ x = bias + y tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) grad_y = ff * g return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype) class GeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input, bias): ctx.save_for_backward(input, bias) return bias_gelu(input, bias) @staticmethod def backward(ctx, grad_output): input, bias = ctx.saved_tensors tmp = bias_gelu_back(grad_output, input, bias) return tmp, tmp bias_gelu_impl = GeLUFunction.apply # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def gelu_fwd(x): return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def gelu_bwd(g, x): tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return (ff * g).to(dtype=x.dtype) class FastGeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input): ctx.save_for_backward(input) return gelu_fwd(input) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors tmp = gelu_bwd(grad_output, input) return tmp fast_gelu_impl = FastGeLUFunction.apply
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/gelu_activation.py
# Adapted on https://github.com/ELS-RD/kernl/blob/main/src/kernl/implementations/linear_layer.py # and https://github.com/openai/triton/blob/master/python/triton/ops/matmul.py from typing import Optional import torch import triton import triton.language as tl from torch.autograd.function import FunctionCtx from torch.cuda.amp import custom_fwd from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time from flash_attn.ops.triton.k_activations import gelu, gelu_grad, gelu_approx, gelu_approx_grad, squared_relu, squared_relu_grad # CREDITS: Initially inspired by the Triton tutorial on matrix multiplications def init_to_zero(name): return lambda nargs: nargs[name].zero_() def get_configs_io_bound(): configs = [] for num_stages in [2, 3, 4, 5, 6]: for block_m in [16, 32]: for block_k in [32, 64]: for block_n in [32, 64, 128, 256]: num_warps = 2 if block_n <= 64 else 4 configs.append( triton.Config( {"BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k, "SPLIT_K": 1}, num_stages=num_stages, num_warps=num_warps, ) ) # split_k not used # for split_k in [2, 4, 8, 16]: # configs.append(triton.Config( # {'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k}, # num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C'))) return configs @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2), # good for int8 triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2), ] + get_configs_io_bound(), key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"], prune_configs_by={"early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10}, ) @triton.heuristics( { "EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0, } ) @triton.jit def kernel_fwd( C, # Pointers to matrices ACT_INPUT, A, B, bias, # Matrix dimensions M, N, K, CACHE_KEY_M, CACHE_KEY_N, CACHE_KEY_K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_cm, # stride_cn, # Assume that stride_cn == 1 stride_am, stride_ak, stride_bn, stride_bk, # Meta-parameters BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, # split k not used, not performant with activation, kept because early_config_prune is expecting it SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, A_ROWMAJOR: tl.constexpr, B_COLMAJOR: tl.constexpr, BIAS: tl.constexpr, SAVE_ACT_INPUT: tl.constexpr, ACTIVATION: tl.constexpr, ): """ Kernel for computing Out = activation(A x W + C) - Input has shape (M, K) - Weight has shape (K, N) - Bias has shape (N,) - Output has shape (M, N) - ActInputs (optional) has shape (M, N) 'ActInputs' optionally saves the A x W + C intermediate for backward computations This kernel will consolidate over K """ pid = tl.program_id(axis=0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) # now compute the block that each program will go through # rm (resp. rn) denotes a range of indices # for rows (resp. col) of C rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # trick to avoid masking on M and N axis ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = tl.arange(0, BLOCK_K) if A_ROWMAJOR: A = A + (ram[:, None] * stride_am + rk[None, :]) else: A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) if B_COLMAJOR: B = B + (rk[:, None] + rbn[None, :] * stride_bn) else: B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(K, 0, -BLOCK_K): if EVEN_K: a = tl.load(A) b = tl.load(B) else: a = tl.load(A, mask=rk[None, :] < k, other=0.0) b = tl.load(B, mask=rk[:, None] < k, other=0.0) acc += tl.dot(a, b) if A_ROWMAJOR: A += BLOCK_K else: A += BLOCK_K * stride_ak if B_COLMAJOR: B += BLOCK_K else: B += BLOCK_K * stride_bk # Putting bias after the matmul (instead of before) is faster, idk why if BIAS: bias = tl.load(bias + rn, mask=rn < N, other=0.0).to(tl.float32) acc += bias[None, :] # optional: save the activation inputs if SAVE_ACT_INPUT: # act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] * stride_cn act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] tl.store(act_in_ptrs, acc) # optional: fused activation (while the data is in shared memory) if ACTIVATION == "gelu": acc = gelu(acc) elif ACTIVATION == "gelu_approx": acc = gelu_approx(acc) elif ACTIVATION == "squared_relu": acc = squared_relu(acc) # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # write back result # C = C + rm[:, None] * stride_cm + rn[None, :] * stride_cn C = C + rm[:, None] * stride_cm + rn[None, :] mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc) def triton_linear_act( x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, activation: str = 'id', save_act_input: bool = False, ) -> torch.Tensor: """ Compute e = activation(x @ weight.T + bias). This wrapper kicks the `kernel_fwd` Triton kernel :param x: input tensor :param weight: weight matrix :param bias: an optional bias tensor :param activation: Activation name. Needs to be a Triton kernel. :param act_input: an optional tensor to save the activation inputs (for backward) :return: result tensor """ # if torch.is_autocast_enabled(): # dtype = torch.get_autocast_gpu_dtype() # x, weight, bias = [a.to(dtype=dtype) for a in [x, weight, bias]] assert activation in ['id', 'gelu', 'gelu_approx', 'squared_relu'] batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() x_reshaped = x.reshape(batch_dim, n) if x_reshaped.stride(0) > 1 and x_reshaped.stride(1) > 1: x_reshaped = x_reshaped.contiguous() if weight.stride(0) > 1 and weight.stride(1) > 1: weight = weight.contiguous() bias = bias.contiguous() if bias is not None else None assert x.dtype == weight.dtype, f"Input and weight must have the same dtype, got {x.dtype} and {weight.dtype}" if bias is not None: assert x.dtype == bias.dtype, f"Input and bias must have the same dtype, got {x.dtype} and {bias.dtype}" assert x_reshaped.shape[1] == weight.shape[1], f"Incompatible dimensions: {x_reshaped.shape} - {weight.shape}" assert bias is None or bias.shape[0] == weight.shape[0], "Incompatible dimensions in between weight and bias" M, K = x_reshaped.shape N, K = weight.shape output = torch.empty((M, N), device=x.device, dtype=x.dtype) act_input = torch.empty_like(output) if save_act_input else None # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa kernel_fwd[grid]( output, act_input, x_reshaped, weight, # data ptrs bias if bias is not None else x, # auto skip bias if not present M, # shapes N, K, M // 32, # key for triton cache (limit number of compilations) N // 32, K // 32, stride_cm=output.stride(0), # strides # stride_cn=output.stride(1), stride_am=x_reshaped.stride(0), stride_ak=x_reshaped.stride(1), stride_bk=weight.stride(1), stride_bn=weight.stride(0), BIAS=bias is not None, # optional fused bias SAVE_ACT_INPUT=save_act_input, # optional save activation inputs ACTIVATION=activation, # optional fused activation A_ROWMAJOR=x_reshaped.stride(1) == 1, B_COLMAJOR=weight.stride(1) == 1, GROUP_M=8, # speed optimization: group the programs ) if not save_act_input: return output.reshape(*batch_shape, output.shape[-1]) else: return (output.reshape(*batch_shape, output.shape[-1]), act_input.reshape(*batch_shape, act_input.shape[-1])) @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2), # good for int8 triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2), ] + get_configs_io_bound(), key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"], prune_configs_by={"early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10}, ) @triton.heuristics( { "EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0, } ) @triton.jit def kernel_bwd( C, # Pointers to matrices ACT_INPUT, A, B, # Matrix dimensions M, N, K, CACHE_KEY_M, CACHE_KEY_N, CACHE_KEY_K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_cm, # stride_cn, # Assume that stride_cn == 1 stride_am, stride_ak, stride_bk, stride_bn, # Meta-parameters BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, # split k not used, not performant with activation, kept because early_config_prune is expecting it SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, ACTIVATION: tl.constexpr, ): """ Kernel for computing Out = activation(A x W + C) - Input has shape (M, K) - Weight has shape (K, N) - Output has shape (M, N) - ActInputs (optional) has shape (M, N) 'ActInputs' optionally saves the A x W + C intermediate for backward computations This kernel will consolidate over K """ pid = tl.program_id(axis=0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) # now compute the block that each program will go through # rm (resp. rn) denotes a range of indices # for rows (resp. col) of C rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # trick to avoid masking on M and N axis ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(K, 0, -BLOCK_K): if EVEN_K: a = tl.load(A) b = tl.load(B) else: a = tl.load(A, mask=rk[None, :] < k, other=0.0) b = tl.load(B, mask=rk[:, None] < k, other=0.0) acc += tl.dot(a, b) A += BLOCK_K * stride_ak B += BLOCK_K * stride_bk # optional: fused activation (while the data is in shared memory) if ACTIVATION != 'id': act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] act_input = tl.load(act_in_ptrs).to(acc.dtype) if ACTIVATION == "gelu": acc *= gelu_grad(act_input) elif ACTIVATION == "gelu_approx": acc *= gelu_approx_grad(act_input) elif ACTIVATION == "squared_relu": acc *= squared_relu_grad(act_input) # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # write back result C = C + rm[:, None] * stride_cm + rn[None, :] mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc, mask=mask) def triton_dgrad_act( grad_output: torch.Tensor, weight: torch.Tensor, activation: str = 'id', act_input: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Compute e = activation(grad_output @ weight + bias). This wrapper kicks the `kernel_fwd` Triton kernel :param grad_output: input tensor :param weight: weight matrix :param activation: Activation name. Needs to be a Triton kernel. :param act_input: an optional tensor to save the activation inputs (for backward) :return: result tensor """ assert activation in ['id', 'gelu', 'gelu_approx', 'squared_relu'] batch_shape, n = grad_output.shape[:-1], grad_output.shape[-1] batch_dim = batch_shape.numel() grad_output_reshaped = grad_output.reshape(batch_dim, n) if grad_output_reshaped.stride(0) > 1 and grad_output_reshaped.stride(1) > 1: grad_output_reshaped = grad_output_reshaped.contiguous() if weight.stride(0) > 1 and weight.stride(1) > 1: weight = weight.contiguous() assert grad_output.dtype == weight.dtype, f"grad_output and weight must have the same dtype, got {grad_output.dtype} and {weight.dtype}" assert grad_output_reshaped.shape[1] == weight.shape[0], f"Incompatible dimensions: {grad_output_reshaped.shape} - {weight.shape}" if activation != 'id': assert act_input is not None, f'act_input is required for activation {activation}' # M, N, K in bwd are different from M, N, K in fwd M, K = grad_output_reshaped.shape K, N = weight.shape grad_input = torch.empty((M, N), device=grad_output.device, dtype=grad_output.dtype) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa kernel_bwd[grid]( grad_input, act_input, grad_output_reshaped, weight, # data ptrs M, # shapes N, K, M // 32, # key for triton cache (limit number of compilations) N // 32, K // 32, stride_cm=grad_input.stride(0), # strides # stride_cn=grad_input.stride(1), stride_am=grad_output_reshaped.stride(0), stride_ak=grad_output_reshaped.stride(1), stride_bk=weight.stride(0), stride_bn=weight.stride(1), ACTIVATION=activation, # optional fused activation GROUP_M=8, # speed optimization: group the programs ) return grad_input.reshape(*batch_shape, grad_input.shape[-1])
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/triton/linear.py
# Adapted from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from enum import Enum from typing import Optional import triton import triton.language as tl _sqrt2pi = math.sqrt(2.0 / math.pi) _sqrt1_2 = math.sqrt(1.0 / 2) _gaussian_pdf_normalization = 1.0 / math.sqrt(2 * math.pi) class Activation(str, Enum): SquaredReLU = "squared_relu" GeLU = "gelu" GeLUApprox = "gelu_approx" LeakyReLU = "leaky_relu" ReLU = "relu" def get_triton_activation_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu, Activation.LeakyReLU: leaky_relu, Activation.GeLU: gelu, Activation.GeLUApprox: gelu_approx, Activation.SquaredReLU: squared_relu, }[activation] if activation else None ) def get_triton_activation_bwd_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu_grad, Activation.LeakyReLU: leaky_relu_grad, Activation.GeLU: gelu_grad, Activation.GeLUApprox: gelu_approx_grad, Activation.SquaredReLU: squared_relu_grad, }[activation] if activation else None ) @triton.jit def tanh(x): # Tanh is just a scaled sigmoid return 2 * tl.sigmoid(2 * x) - 1 @triton.jit def cosh(x): exp_x = tl.exp(x) return (exp_x + 1.0 / exp_x) * 0.5 # a Triton implementation of the most used activations # See for instance http://arxiv.org/abs/1606.08415 for an overview # ReLU @triton.jit def relu(x): """ ReLU_ activation function .. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html """ zero = 0.0 return tl.where(x >= 0, x, zero.to(x.dtype)) @triton.jit def relu_grad(x): # ReLU is different from other activations # in that it does not require the input to retrospectively compute its gradient # here the input is the downstream gradient, and we return the upstream gradient directly zero = 0.0 one = 1.0 return tl.where(x >= 0, one.to(x.dtype), zero.to(x.dtype)) @triton.jit def squared_relu(x): """ Squared ReLU activation, as proposed in the Primer_ paper. .. _Primer: https://arxiv.org/abs/2109.08668 """ x_ = relu(x) return (x_ * x_).to(x.dtype) @triton.jit def squared_relu_grad(x): return tl.where(x >= 0, 2.0 * x, 0.0) # Leaky ReLU @triton.jit def leaky_relu(x): """ LeakyReLU_ activation .. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html """ scale = 0.01 + 0.0 scale = scale.to(x.dtype) return tl.where(x >= 0, x, scale * x) @triton.jit def leaky_relu_grad(x): min_grad = 0.01 max_grad = 1 min_grad = min_grad.to(x.dtype) max_grad = max_grad.to(x.dtype) return tl.where(x >= 0, max_grad, min_grad) @triton.jit def gelu(x): """Gaussian Error Linear Unit (GELU)""" return x * 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2)) @triton.jit def gelu_grad(x): cdf = 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2)) pdf = tl.exp(-0.5 * x * x) * _gaussian_pdf_normalization return cdf + x * pdf @triton.jit def gelu_approx(x): """ GeLU_ activation - Gaussian error linear unit, with tanh approximation .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf """ return 0.5 * x * (1.0 + tanh(_sqrt2pi * x * (1.0 + 0.044715 * x * x))) @triton.jit def gelu_approx_grad(x): # CREDITS: Fast implementation proposed in # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30 tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x)) return 0.5 * x * ( (1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x) ) + 0.5 * (1 + tanh_out)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/triton/k_activations.py
# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared # to naive implementation. import torch import torch.nn as nn import torch.nn.functional as F from torch.cuda.amp import custom_bwd, custom_fwd import fused_dense_lib as fused_dense_cuda from flash_attn.ops.triton.linear import triton_linear_act, triton_dgrad_act @torch.jit.script def sqrelu_fwd(x): r = F.relu(x) return (r * r).to(dtype=x.dtype) @torch.jit.script def sqrelu_bwd(g, x): return (2.0 * g * F.relu(x)).to(dtype=x.dtype) class FusedDenseSqreluDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0): """checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute act_input and gelu_out in the bwd """ if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight1, bias1, weight2, bias2 = [a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]] is_bf16 = x.dtype == torch.bfloat16 assert checkpoint_lvl in [0, 1, 2] x = x.contiguous() weight1 = weight1.contiguous() bias1 = bias1.contiguous() weight2 = weight2.contiguous() bias2 = bias2.contiguous() batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if is_bf16: act_input = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = sqrelu_fwd(act_input) else: save_act_input = checkpoint_lvl != 2 result = triton_linear_act( x.reshape(batch_dim, n), weight1, bias1, activation='squared_relu', save_act_input=save_act_input ) if save_act_input: output1, act_input = result else: output1 = result output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) ctx.checkpoint_lvl = checkpoint_lvl if checkpoint_lvl == 0: ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, bias1, weight2, act_input) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, bias1, weight2) return output2.reshape(*batch_shape, output2.shape[-1]) @staticmethod @custom_bwd def backward(ctx, grad_output): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl x, weight1, bias1, weight2, *rest = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() is_bf16 = x.dtype == torch.bfloat16 if checkpoint_lvl == 0: act_input, output1 = rest elif checkpoint_lvl == 1: act_input, = rest output1 = sqrelu_fwd(act_input) elif checkpoint_lvl == 2: if is_bf16: act_input = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = sqrelu_fwd(act_input) else: output1, act_input = triton_linear_act( x.reshape(batch_dim, n), weight1, bias1, activation='squared_relu', save_act_input=True ) if is_bf16: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) grad_output1 = grad_output @ weight2 grad_act_input = sqrelu_bwd(grad_output1, act_input) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_act_input ) else: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) grad_act_input = triton_dgrad_act(grad_output, weight2, activation='squared_relu', act_input=act_input) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_act_input ) return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply class FusedDenseSqreluDense(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, bias=True, checkpoint_lvl=0, device=None, dtype=None): """ checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd """ assert checkpoint_lvl in [0, 1, 2] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features assert bias == True, "DenseSqreluDense module without bias is currently not supported" self.checkpoint_lvl = checkpoint_lvl self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, **factory_kwargs) def forward(self, x): assert x.is_cuda return fused_dense_sqrelu_dense_function(x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/ops/triton/mlp.py
# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn from torch import Tensor from einops import rearrange from flash_attn.utils.distributed import reduce_scatter, all_reduce class GPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None, word_embed_proj_dim=None, device=None, dtype=None): """ If max_position_embeddings <= 0, there's no position embeddings If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension the project up to embed_dim """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if word_embed_proj_dim is None: self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs) self.project_in = None else: self.word_embeddings = nn.Embedding(vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs) self.project_in = nn.Linear(word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim, **factory_kwargs) def forward(self, input_ids, position_ids=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape embeddings = self.word_embeddings(input_ids) if self.project_in is not None: embeddings = self.project_in(embeddings) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class BertEmbeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, type_vocab_size, padding_idx=None, device=None, dtype=None): """ If max_position_embeddings <= 0, there's no position embeddings If type_vocab_size <= 0, there's no token type embeddings """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs) self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim, **factory_kwargs) if self.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs) def forward(self, input_ids, position_ids=None, token_type_ids=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) token_type_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if self.type_vocab_size > 0: if token_type_ids is None: token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = embeddings + token_type_embeddings return embeddings class VocabParallelEmbedding(nn.Embedding): def __init__(self, num_embeddings, *args, process_group=None, padding_idx=None, **kwargs): self.process_group = process_group if process_group is not None: world_size = torch.distributed.get_world_size(process_group) if num_embeddings % world_size != 0: raise ValueError(f'num_embeddings ({num_embeddings}) must be divisible by ' f'world_size ({world_size})') if world_size > 1 and padding_idx is not None: raise RuntimeError('ParallelEmbedding does not support padding_idx') else: world_size = 1 super().__init__(num_embeddings // world_size, *args, padding_idx=padding_idx, **kwargs) def forward(self, input: Tensor) -> Tensor: if self.process_group is None: return super().forward(input) else: rank = torch.distributed.get_rank(self.process_group) vocab_size = self.num_embeddings vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size # Create a mask of valid vocab ids (1 means it needs to be masked). input_ids_mask = (input < vocab_start_index) | (input >= vocab_end_index) input = input - vocab_start_index input[input_ids_mask] = 0 embeddings = super().forward(input) embeddings[input_ids_mask] = 0.0 return embeddings class ColumnParallelEmbedding(nn.Embedding): def __init__(self, num_embeddings, embedding_dim, *args, process_group=None, **kwargs): self.process_group = process_group if process_group is not None: world_size = torch.distributed.get_world_size(process_group) if embedding_dim % world_size != 0: raise ValueError(f'embedding_dim ({embedding_dim}) must be divisible by ' f'world_size ({world_size})') else: world_size = 1 super().__init__(num_embeddings, embedding_dim // world_size, *args, **kwargs) class ParallelGPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, process_group, padding_idx=None, sequence_parallel=True, device=None, dtype=None): """ If max_position_embeddings <= 0, there's no position embeddings """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.process_group = process_group self.sequence_parallel = sequence_parallel self.word_embeddings = VocabParallelEmbedding( vocab_size, embed_dim, padding_idx=padding_idx, process_group=process_group, **factory_kwargs ) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = ColumnParallelEmbedding( max_position_embeddings, embed_dim, process_group=process_group, **factory_kwargs ) def forward(self, input_ids, position_ids=None, combine_batch_seqlen_dim=False): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape world_size = torch.distributed.get_world_size(self.process_group) embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) if world_size <= 1: embeddings = embeddings + position_embeddings else: partition_dim = self.position_embeddings.embedding_dim rank = torch.distributed.get_rank(self.process_group) embeddings[..., rank * partition_dim:(rank + 1) * partition_dim] += position_embeddings if combine_batch_seqlen_dim: embeddings = rearrange(embeddings, 'b s d -> (b s) d') reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce return embeddings if world_size <= 1 else reduce_fn(embeddings, self.process_group)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/modules/embedding.py
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/modules/__init__.py
# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn import torch.nn.functional as F try: from flash_attn.ops.fused_dense import FusedMLP, ParallelFusedMLP except ImportError: FusedMLP, ParallelFusedMLP = None, None class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, activation=F.gelu, return_residual=False, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.return_residual = return_residual self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) self.activation = activation self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) def forward(self, x): y = self.fc1(x) y = self.activation(y) y = self.fc2(y) return y if not self.return_residual else (y, x)
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/modules/mlp.py
# Copyright (c) 2022, Tri Dao. from typing import Optional from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torchvision.ops import StochasticDepth from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None class Block(nn.Module): def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm, dropout_cls=nn.Dropout, prenorm=True, resid_dropout1=0., resid_dropout2=0., drop_path1=0., drop_path2=0., fused_dropout_add_ln=False, return_residual=False, residual_in_fp32=False, sequence_parallel=False, mark_shared_params=False): """ For prenorm=True, this Block has a slightly different structure compared to a regular prenorm Transformer block. The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add. [Ref: https://arxiv.org/abs/2002.04745] Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both the hidden_states (output of the MLP) and the residual. This is for performance reasons, as we can fuse the dropout, add and LayerNorm. The residual needs to be provided (except for the very first block). For prenorm=False, this Block has the same structure as a regular postnorm Transformer block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN. return_residual: whether each of the sub-layers (mixer and mlp) will return the residual. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ super().__init__() self.prenorm = prenorm self.fused_dropout_add_ln = fused_dropout_add_ln self.return_residual = return_residual self.residual_in_fp32 = residual_in_fp32 if self.residual_in_fp32: assert self.prenorm, 'residual_in_fp32 is only compatible with prenorm=True' if mixer_cls is None: mixer_cls = partial(MHA, num_heads=dim // 64) if mlp_cls is None: mlp_cls = partial(Mlp, hidden_features=4 * dim) self.mixer = mixer_cls(dim) self.dropout1 = dropout_cls(resid_dropout1) self.drop_path1 = StochasticDepth(drop_path1, mode='row') self.norm1 = norm_cls(dim) self.mlp = mlp_cls(dim) if not isinstance(self.mlp, nn.Identity): self.dropout2 = dropout_cls(resid_dropout2) self.drop_path2 = StochasticDepth(drop_path2, mode='row') self.norm2 = norm_cls(dim) if self.fused_dropout_add_ln: assert dropout_add_layer_norm is not None, 'dropout_add_ln is not installed' assert isinstance(self.norm1, nn.LayerNorm) and isinstance(self.dropout1, nn.Dropout) # TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0, # then the input to each worker in the tensor parallel group will be different. # This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers. # For now this is not an issue because we always use sequence_parallel=True during training # and only use sequence_parallel=False during inference. # Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads. if sequence_parallel: for p in self.norm1.parameters(): p._sequence_parallel = True if hasattr(self, 'norm2'): for p in self.norm2.parameters(): p._sequence_parallel = True # Mark the norm parameters as "shared_params" so that we sync their values at init. if mark_shared_params: for p in self.norm1.parameters(): p._shared_params = True if hasattr(self, 'norm2'): for p in self.norm2.parameters(): p._shared_params = True def forward(self, hidden_states: Tensor, residual: Optional[Tensor] = None, mixer_subset=None, mixer_kwargs=None): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual)) mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. """ if self.prenorm: if not self.fused_dropout_add_ln: dropped = self.drop_path1(self.dropout1(hidden_states)) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) else: if self.drop_path1.p == 0 or not self.training: rowscale1 = None else: rowscale1 = self.drop_path1(torch.ones( hidden_states.shape[:-1], device=hidden_states.device, dtype=hidden_states.dtype) ) hidden_states, residual = dropout_add_layer_norm( hidden_states, residual, self.norm1.weight, self.norm1.bias, self.dropout1.p if self.training else 0.0, self.norm1.eps, rowscale=rowscale1, prenorm=True, residual_in_fp32=self.residual_in_fp32 ) if mixer_kwargs is None: mixer_kwargs = {} if mixer_subset is not None: mixer_kwargs['mixer_subset'] = mixer_subset hidden_states = self.mixer(hidden_states, **mixer_kwargs) if mixer_subset is not None: residual = residual[:, mixer_subset] if not isinstance(self.mlp, nn.Identity): if not self.fused_dropout_add_ln: dropped = self.drop_path2(self.dropout2(hidden_states)) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) else: if self.drop_path2.p == 0 or not self.training: rowscale2 = None else: rowscale2 = self.drop_path2(torch.ones( hidden_states.shape[:-1], device=hidden_states.device, dtype=hidden_states.dtype) ) hidden_states, residual = dropout_add_layer_norm( hidden_states, residual, self.norm2.weight, self.norm2.bias, self.dropout2.p if self.training else 0.0, self.norm2.eps, rowscale=rowscale2, prenorm=True, residual_in_fp32=self.residual_in_fp32 ) hidden_states = self.mlp(hidden_states) return hidden_states, residual else: assert residual is None mixer_out = self.mixer( hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {}) ) if self.return_residual: # mixer out is actually a pair here mixer_out, hidden_states = mixer_out if not self.fused_dropout_add_ln: hidden_states = self.norm1((self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(dtype=self.norm1.weight.dtype)) else: if self.drop_path1.p == 0 or not self.training: rowscale1 = None else: rowscale1 = self.drop_path1(torch.ones( mixer_out.shape[:-1], device=mixer_out.device, dtype=mixer_out.dtype) ) hidden_states = dropout_add_layer_norm( mixer_out, hidden_states, self.norm1.weight, self.norm1.bias, self.dropout1.p if self.training else 0.0, self.norm1.eps, rowscale=rowscale1, prenorm=False ) if not isinstance(self.mlp, nn.Identity): mlp_out = self.mlp(hidden_states) if self.return_residual: # mlp out is actually a pair here mlp_out, hidden_states = mlp_out if not self.fused_dropout_add_ln: hidden_states = self.norm2((self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(dtype=self.norm2.weight.dtype)) else: if self.drop_path2.p == 0 or not self.training: rowscale2 = None else: rowscale2 = self.drop_path2(torch.ones( mlp_out.shape[:-1], device=mlp_out.device, dtype=mlp_out.dtype) ) hidden_states = dropout_add_layer_norm( mlp_out, hidden_states, self.norm2.weight, self.norm2.bias, self.dropout2.p if self.training else 0.0, self.norm2.eps, rowscale=rowscale2, prenorm=False ) return hidden_states
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/modules/block.py
# Copyright (c) 2022, Tri Dao. import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange try: from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func except ImportError: flash_attn_unpadded_qkvpacked_func, flash_attn_unpadded_kvpacked_func = None, None try: from flash_attn.ops.flash_attn_triton import flash_attn_qkvpacked_func, flash_attn_kvpacked_func except ImportError: flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None try: from flash_attn.ops.fused_dense import FusedDense, ColumnParallelLinear, RowParallelLinear except ImportError: FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None try: from flash_attn.layers.rotary import RotaryEmbedding except ImportError: RotaryEmbedding = None try: import ft_attention except ImportError: ft_attention = None class FlashSelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, triton=False): super().__init__() if attention_dropout != 0.0 or not triton: assert flash_attn_unpadded_qkvpacked_func is not None, 'FlashAttention is not installed' if attention_dropout == 0.0 and triton: assert flash_attn_qkvpacked_func is not None, 'FlashAttention Triton is not installed' self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout self.triton = triton def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D). If cu_seqlens is not None and max_seqlen is not None, then qkv has shape (total, 3, H, D), where total is the sum of the sequence lengths in the batch. causal: if passed, will override self.causal cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen: int. Maximum sequence length in the batch. Returns: -------- out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None, else (B, S, H, D). """ assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda causal = self.causal if causal is None else causal unpadded = cu_seqlens is not None if unpadded: assert cu_seqlens.dtype == torch.int32 assert max_seqlen is not None assert isinstance(max_seqlen, int) return flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_seqlen, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) else: batch_size, seqlen = qkv.shape[0], qkv.shape[1] # Triton version doesn't support dropout if self.triton and (self.dropout_p == 0 or not self.training): output = flash_attn_qkvpacked_func(qkv, None, causal, self.softmax_scale) else: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_seqlen = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_seqlen, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) return output class FlashCrossAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, triton=False): super().__init__() if attention_dropout != 0.0 or not triton: assert flash_attn_unpadded_kvpacked_func is not None, 'FlashAttention is not installed' if attention_dropout == 0.0 and triton: assert flash_attn_kvpacked_func is not None, 'FlashAttention Triton is not installed' self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout self.triton = triton def forward(self, q, kv, causal=None, cu_seqlens=None, max_seqlen=None, cu_seqlens_k=None, max_seqlen_k=None): """Implements the multihead softmax attention. Arguments --------- q: The tensor containing the query. (B, Sq, H, D) kv: The tensor containing the key and value. (B, Sk, 2, H, D) causal: if passed, will override self.causal cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. max_seqlen: int. Maximum sequence length in the batch of q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_k: int. Maximum sequence length in the batch of k and v. """ assert q.dtype in [torch.float16, torch.bfloat16] assert q.is_cuda and kv.is_cuda causal = self.causal if causal is None else causal unpadded = cu_seqlens is not None if unpadded: assert cu_seqlens.dtype == torch.int32 assert max_seqlen is not None assert isinstance(max_seqlen, int) assert cu_seqlens_k is not None assert cu_seqlens_k.dtype == torch.int32 assert max_seqlen_k is not None assert isinstance(max_seqlen, int) return flash_attn_unpadded_kvpacked_func( q, kv, cu_seqlens, cu_seqlens_k, max_seqlen, max_seqlen_k, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) else: batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3] if self.triton and (self.dropout_p == 0.0 or not self.training): # Triton version doesn't support dropout output = flash_attn_kvpacked_func(q, kv, None, causal, self.softmax_scale) else: q = rearrange(q, 'b s ... -> (b s) ...') kv = rearrange(kv, 'b s ... -> (b s) ...') cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device) cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=kv.device) output = flash_attn_unpadded_kvpacked_func( q, kv, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) return output class SelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, causal=None, key_padding_mask=None): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) causal: if passed, will override self.causal key_padding_mask: boolean mask to apply to the attention weights. True means to keep, False means to mask out. (B, S) """ batch_size, seqlen = qkv.shape[0], qkv.shape[1] causal = self.causal if causal is None else causal q, k, v = qkv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) if key_padding_mask is not None: padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) padding_mask.masked_fill_(key_padding_mask, 0.0) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s') if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0) output = torch.einsum('bhts,bshd->bthd', attention_drop, v) return output class CrossAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, q, kv, causal=None, key_padding_mask=None): """Implements the multihead softmax attention. Arguments --------- q: The tensor containing the query. (B, Sq, H, D) kv: The tensor containing the key and value. (B, Sk, 2, H, D) causal: if passed, will override self.causal key_padding_mask: boolean mask to apply to the attention weights. True means to keep, False means to mask out. (B, Sk) """ batch_size, seqlen_q = q.shape[0], q.shape[1] causal = self.causal if causal is None else causal seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3] k, v = kv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) if key_padding_mask is not None: padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device) padding_mask.masked_fill_(key_padding_mask, 0.0) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s') if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0) output = torch.einsum('bhts,bshd->bthd', attention_drop, v) return output class LinearResidual(nn.Linear): """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense. """ def forward(self, input: torch.Tensor) -> torch.Tensor: return super().forward(input), input def _update_kv_cache(kv, inference_params, layer_idx): """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim) """ # Pre-allocate memory for key-values for inference. num_heads, head_dim = kv.shape[-2:] if layer_idx not in inference_params.key_value_memory_dict: kv_cache = torch.empty( inference_params.max_batch_size, inference_params.max_sequence_len, 2, num_heads, head_dim, dtype=kv.dtype, device=kv.device ) inference_params.key_value_memory_dict[layer_idx] = kv_cache else: if not inference_params.fused_ft_kernel: kv_cache = inference_params.key_value_memory_dict[layer_idx] else: # For FT, k_cache has shape (b, h, headdim / packsize, s, packsize) # where packsize = 4 if fp32, 8 if fp16 or bf16. # v_cache has shape (b, h, s, headdim) k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx] kv_cache = None # Adjust key and value for inference batch_start = inference_params.batch_size_offset batch_end = batch_start + kv.shape[0] sequence_start = inference_params.sequence_len_offset sequence_end = sequence_start + kv.shape[1] assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0]) assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2]) # Copy key and values. if not inference_params.fused_ft_kernel: assert kv_cache is not None kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv kv = kv_cache[batch_start:batch_end, :sequence_end, ...] return kv else: assert inference_params.sequence_len_offset == 0 # FT kernel requires different layouts for the k_cache and v_cache. assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32] packsize = 4 if kv.dtype == torch.float32 else 8 if kv_cache is not None: kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv k_cache = rearrange(kv_cache[:, :, 0], 'b s h (d packsize) -> b h d s packsize', packsize=packsize).contiguous() v_cache = rearrange(kv_cache[:, :, 1], 'b s h d -> b h s d').contiguous() inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache) else: k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange( kv[:, :, 0], 'b s h (d packsize) -> b h d s packsize', packsize=packsize ) v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange( kv[:, :, 1], 'b s h d -> b h s d' ) return kv class MHA(nn.Module): """Multi-head self-attention and cross-attention """ def __init__(self, embed_dim, num_heads, cross_attn=False, bias=True, dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False, rotary_emb_dim=0, rotary_emb_scale_base=0, fused_bias_fc=False, use_flash_attn=False, return_residual=False, checkpointing=False, device=None, dtype=None) -> None: """ return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.cross_attn = cross_attn self.causal = causal self.layer_idx = layer_idx self.dwconv = dwconv self.rotary_emb_dim = rotary_emb_dim self.use_flash_attn = use_flash_attn self.return_residual = return_residual self.checkpointing = checkpointing self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads if self.rotary_emb_dim > 0: assert not cross_attn, 'MHA with rotary embedding does not support cross-attention yet' assert RotaryEmbedding is not None, 'rotary_emb is not installed' self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base, device=device) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense linear_resid_cls = (LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)) inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention if not self.cross_attn: if not self.return_residual: self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) else: self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) if self.dwconv: self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2, groups=3 * embed_dim) else: self.Wq = linear_cls(embed_dim, embed_dim, bias=bias, **factory_kwargs) if not self.return_residual: self.Wkv = linear_cls(embed_dim, 2 * embed_dim, bias=bias, **factory_kwargs) else: self.Wkv = linear_resid_cls(embed_dim, 2 * embed_dim, bias=bias, **factory_kwargs) if self.dwconv: self.dwconv_q = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim) self.dwconv_kv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, kernel_size=3, padding=2, groups=2 * embed_dim) self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) # output projection always have the bias (for now) self.out_proj = linear_cls(embed_dim, embed_dim, **factory_kwargs) def _update_kv_cache(self, kv, inference_params): """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim) """ assert not self.dwconv, 'Generation does not support dwconv yet' assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor' return _update_kv_cache(kv, inference_params, self.layer_idx) def forward(self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None, mixer_subset=None, inference_params=None, **kwargs): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total is the is the sum of the sequence lengths in the batch. x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into x. Only applicable when using FlashAttention. max_seqlen: int. Maximum sequence length in the batch. key_padding_mask: boolean mask, True means to keep, False means to mask out. (batch, seqlen). Only applicable when not using FlashAttention. mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. inference_params: for generation. Adapted from Megatron-LM (and Apex) https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 """ if cu_seqlens is not None: assert max_seqlen is not None assert key_padding_mask is None assert self.use_flash_attn assert not self.dwconv assert self.rotary_emb_dim == 0 if key_padding_mask is not None: assert cu_seqlens is None assert max_seqlen is None assert not self.use_flash_attn if inference_params is not None: assert key_padding_mask is None assert cu_seqlens is None and max_seqlen is None assert not self.dwconv kwargs = ({'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen, **kwargs} if self.use_flash_attn else {'key_padding_mask': key_padding_mask, **kwargs}) if not self.cross_attn: assert x_kv is None and mixer_subset is None if not self.return_residual: qkv = self.Wqkv(x) else: qkv, x = self.Wqkv(x) if self.dwconv: qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim) if inference_params is None: if self.rotary_emb_dim > 0: qkv = self.rotary_emb(qkv) if not self.checkpointing: context = self.inner_attn(qkv, **kwargs) else: context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs) else: if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0: if self.rotary_emb_dim > 0: qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset) q = qkv[:, :, 0] kv = self._update_kv_cache(qkv[:, :, 1:], inference_params) # If we're processing the prompt, causal=None (use self.causal). # If we're decoding, then causal=False. causal = None if inference_params.sequence_len_offset == 0 else False context = self.inner_cross_attn(q, kv, causal=causal) else: assert inference_params.fused_ft_kernel assert ft_attention is not None context = ft_attention.single_query_attention( *rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1), *inference_params.key_value_memory_dict[self.layer_idx], inference_params.lengths_per_sample, inference_params.sequence_len_offset, self.rotary_emb_dim ) context = rearrange(context, 'b h d -> b 1 h d') else: if not self.return_residual: q = self.Wq(x if mixer_subset is None else x[:, mixer_subset]) kv = self.Wkv(x_kv if x_kv is not None else x) else: if x_kv is not None: kv, x_kv = self.Wkv(x_kv) else: kv, x = self.Wkv(x) q = self.Wq(x if mixer_subset is None else x[:, mixer_subset]) q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim) kv = rearrange(kv, '... (two h d) -> ... two h d', two=2, d=self.head_dim) if self.dwconv: q = rearrange(self.dwconv_q(rearrange(q, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() kv = rearrange(self.dwconv_kv(rearrange(kv, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() if inference_params is None: if not self.checkpointing: context = self.inner_cross_attn(q, kv, **kwargs) else: context = torch.utils.checkpoint.checkpoint(self.inner_cross_attn, q, kv, **kwargs) else: kv = self._update_kv_cache(kv) context = self.inner_cross_attn(q, kv, causal=False) out = self.out_proj(rearrange(context, '... h d -> ... (h d)')) return out if not self.return_residual else (out, x) class ParallelMHA(nn.Module): """Multi-head self-attention and cross-attention """ def __init__(self, embed_dim, num_heads, process_group, bias=True, dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, rotary_emb_dim=0, rotary_emb_scale_base=0, use_flash_attn=False, checkpointing=False, sequence_parallel=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.layer_idx = layer_idx self.rotary_emb_dim = rotary_emb_dim self.use_flash_attn = use_flash_attn self.checkpointing = checkpointing self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads if self.rotary_emb_dim > 0: assert RotaryEmbedding is not None, 'rotary_emb is not installed' self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base, device=device) if ColumnParallelLinear is None or RowParallelLinear is None: raise ImportError('fused_dense is not installed') self.Wqkv = ColumnParallelLinear(embed_dim, 3 * embed_dim, process_group, bias=bias, sequence_parallel=sequence_parallel, **factory_kwargs) inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) # output projection always have the bias (for now) self.out_proj = RowParallelLinear(embed_dim, embed_dim, process_group, sequence_parallel=sequence_parallel, **factory_kwargs) def forward(self, x, seqlen=None, inference_params=None, **kwargs): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None. If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we split x during sequence parallel, we split the batch * seqlen dimension (in case batch is small). """ qkv = self.Wqkv(x) if seqlen is None: qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, d=self.head_dim) else: qkv = rearrange(qkv, '(b s) (three h d) -> b s three h d', s=seqlen, three=3, d=self.head_dim) if inference_params is None: if self.rotary_emb_dim > 0: qkv = self.rotary_emb(qkv) if not self.checkpointing: context = self.inner_attn(qkv, **kwargs) else: context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs) else: if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0: if self.rotary_emb_dim > 0: qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset) q = qkv[:, :, 0] assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor' kv = _update_kv_cache(qkv[:, :, 1:], inference_params, self.layer_idx) # If we're processing the prompt, causal=None (use self.causal). # If we're decoding, then causal=False. causal = None if inference_params.sequence_len_offset == 0 else False context = self.inner_cross_attn(q, kv, causal=causal) else: assert inference_params.fused_ft_kernel assert ft_attention is not None context = ft_attention.single_query_attention( *rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1), *inference_params.key_value_memory_dict[self.layer_idx], inference_params.lengths_per_sample, inference_params.sequence_len_offset, self.rotary_emb_dim ) context = rearrange(context, 'b h d -> b 1 h d') if seqlen is None: context = rearrange(context, 'b s h d -> b s (h d)') else: context = rearrange(context, 'b s h d -> (b s) (h d)') out = self.out_proj(context) return out
FLASHATTENION-LION-OPTIMIZE-main
flash_attn/modules/mha.py
#!/usr/bin/env python """The setup script.""" import io from os import path as op from setuptools import setup, find_packages with open("README.md") as readme_file: readme = readme_file.read() here = op.abspath(op.dirname(__file__)) # get the dependencies and installs with io.open(op.join(here, "requirements.txt"), encoding="utf-8") as f: all_reqs = f.read().split("\n") install_requires = [x.strip() for x in all_reqs if "git+" not in x] dependency_links = [x.strip().replace("git+", "") for x in all_reqs if "git+" not in x] extras_requires = { "all": ["leafmap", "localtileserver"], } requirements = [] setup_requirements = [] test_requirements = [] setup( author="Qiusheng Wu", author_email="[email protected]", python_requires=">=3.8", classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", ], description="Meta AI' Segment Anything Model (SAM) for Geospatial Data", install_requires=install_requires, extras_require=extras_requires, dependency_links=dependency_links, license="MIT license", long_description=readme, long_description_content_type="text/markdown", include_package_data=True, keywords="samgeo", name="segment-geospatial", packages=find_packages(include=["samgeo", "samgeo.*"]), setup_requires=setup_requirements, test_suite="tests", tests_require=test_requirements, url="https://github.com/opengeos/segment-geospatial", version='0.8.0', zip_safe=False, )
segment-geospatial-main
setup.py
#!/usr/bin/env python """Tests for `samgeo` package.""" import os import unittest from samgeo import samgeo class TestCommon(unittest.TestCase): """Tests for the common.py module.""" def setUp(self): """Set up test fixtures, if any.""" def tearDown(self): """Tear down test fixtures, if any.""" def test_is_colab(self): self.assertFalse(samgeo.is_colab()) def test_check_file_path(self): self.assertTrue(samgeo.check_file_path("tests/test_common.py")) def test_temp_file_path(self): self.assertFalse(os.path.exists(samgeo.temp_file_path(extension=".tif"))) def test_github_raw_url(self): self.assertEqual( samgeo.github_raw_url( "https://github.com/opengeos/segment-geospatial/blob/main/samgeo/samgeo.py" ), "https://raw.githubusercontent.com/opengeos/segment-geospatial/main/samgeo/samgeo.py", ) def test_download_file(self): self.assertTrue( samgeo.download_file( url="https://github.com/opengeos/leafmap/raw/master/examples/data/world_cities.csv" ) ) def test_image_to_cog(self): image = "https://github.com/opengeos/data/raw/main/raster/landsat7.tif" cog = "tests/data/landsat7_cog.tif" samgeo.image_to_cog(image, cog) self.assertTrue(os.path.exists(cog)) def test_vector_to_geojson(self): vector = "https://github.com/opengeos/leafmap/raw/master/examples/data/world_cities.geojson" self.assertIsInstance(samgeo.vector_to_geojson(vector), dict) def test_tms_to_geotiff(self): bbox = [-95.3704, 29.6762, -95.368, 29.6775] image = "satellite.tif" samgeo.tms_to_geotiff( output=image, bbox=bbox, zoom=20, source="Satellite", overwrite=True ) self.assertTrue(os.path.exists(image))
segment-geospatial-main
tests/test_common.py
"""Unit test package for samgeo."""
segment-geospatial-main
tests/__init__.py
#!/usr/bin/env python """Tests for `samgeo` package.""" import os import unittest from samgeo import samgeo class TestSamgeo(unittest.TestCase): """Tests for `samgeo` package.""" def setUp(self): """Set up test fixtures, if any.""" bbox = [-122.1497, 37.6311, -122.1203, 37.6458] image = "satellite.tif" samgeo.tms_to_geotiff( output=image, bbox=bbox, zoom=15, source="Satellite", overwrite=True ) self.source = image out_dir = os.path.join(os.path.expanduser("~"), "Downloads") checkpoint = os.path.join(out_dir, "sam_vit_h_4b8939.pth") self.checkpoint = checkpoint sam = samgeo.SamGeo( model_type="vit_h", checkpoint=checkpoint, sam_kwargs=None, ) self.sam = sam def tearDown(self): """Tear down test fixtures, if any.""" def test_generate(self): """Test the automatic generation of masks and annotations.""" sam = self.sam source = self.source sam.generate(source, output="masks.tif", foreground=True, unique=True) self.assertTrue(os.path.exists("masks.tif")) sam.show_anns(axis="off", alpha=1, output="annotations.tif") self.assertTrue(os.path.exists("annotations.tif")) sam.tiff_to_vector("masks.tif", "masks.gpkg") self.assertTrue(os.path.exists("masks.gpkg")) def test_predict(self): """Test the prediction of masks and annotations based on input prompts.""" sam = samgeo.SamGeo( model_type="vit_h", checkpoint=self.checkpoint, automatic=False, sam_kwargs=None, ) sam.set_image(self.source) point_coords = [[-122.1419, 37.6383]] sam.predict( point_coords, point_labels=1, point_crs="EPSG:4326", output='mask1.tif' ) self.assertTrue(os.path.exists("mask1.tif")) point_coords = [ [-122.1464, 37.6431], [-122.1449, 37.6415], [-122.1451, 37.6395], ] sam.predict( point_coords, point_labels=1, point_crs="EPSG:4326", output='mask2.tif' ) self.assertTrue(os.path.exists("mask2.tif"))
segment-geospatial-main
tests/test_samgeo.py
"""Top-level package for segment-geospatial.""" __author__ = """Qiusheng Wu""" __email__ = '[email protected]' __version__ = '0.8.0' from .samgeo import *
segment-geospatial-main
samgeo/__init__.py
""" The source code is adapted from https://github.com/aliaksandr960/segment-anything-eo. Credit to the author Aliaksandr Hancharenka. """ import os import tempfile import cv2 import numpy as np from tqdm import tqdm import shapely import pyproj import rasterio import geopandas as gpd import matplotlib.pyplot as plt def is_colab(): """Tests if the code is being executed within Google Colab.""" import sys if "google.colab" in sys.modules: return True else: return False def check_file_path(file_path, make_dirs=True): """Gets the absolute file path. Args: file_path (str): The path to the file. make_dirs (bool, optional): Whether to create the directory if it does not exist. Defaults to True. Raises: FileNotFoundError: If the directory could not be found. TypeError: If the input directory path is not a string. Returns: str: The absolute path to the file. """ if isinstance(file_path, str): if file_path.startswith("~"): file_path = os.path.expanduser(file_path) else: file_path = os.path.abspath(file_path) file_dir = os.path.dirname(file_path) if not os.path.exists(file_dir) and make_dirs: os.makedirs(file_dir) return file_path else: raise TypeError("The provided file path must be a string.") def temp_file_path(extension): """Returns a temporary file path. Args: extension (str): The file extension. Returns: str: The temporary file path. """ import tempfile import uuid if not extension.startswith("."): extension = "." + extension file_id = str(uuid.uuid4()) file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{extension}") return file_path def github_raw_url(url): """Get the raw URL for a GitHub file. Args: url (str): The GitHub URL. Returns: str: The raw URL. """ if isinstance(url, str) and url.startswith("https://github.com/") and "blob" in url: url = url.replace("github.com", "raw.githubusercontent.com").replace( "blob/", "" ) return url def download_file( url=None, output=None, quiet=False, proxy=None, speed=None, use_cookies=True, verify=True, id=None, fuzzy=False, resume=False, unzip=True, overwrite=False, subfolder=False, ): """Download a file from URL, including Google Drive shared URL. Args: url (str, optional): Google Drive URL is also supported. Defaults to None. output (str, optional): Output filename. Default is basename of URL. quiet (bool, optional): Suppress terminal output. Default is False. proxy (str, optional): Proxy. Defaults to None. speed (float, optional): Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None. use_cookies (bool, optional): Flag to use cookies. Defaults to True. verify (bool | str, optional): Either a bool, in which case it controls whether the server's TLS certificate is verified, or a string, in which case it must be a path to a CA bundle to use. Default is True.. Defaults to True. id (str, optional): Google Drive's file ID. Defaults to None. fuzzy (bool, optional): Fuzzy extraction of Google Drive's file Id. Defaults to False. resume (bool, optional): Resume the download from existing tmp file if possible. Defaults to False. unzip (bool, optional): Unzip the file. Defaults to True. overwrite (bool, optional): Overwrite the file if it already exists. Defaults to False. subfolder (bool, optional): Create a subfolder with the same name as the file. Defaults to False. Returns: str: The output file path. """ import zipfile try: import gdown except ImportError: print( "The gdown package is required for this function. Use `pip install gdown` to install it." ) return if output is None: if isinstance(url, str) and url.startswith("http"): output = os.path.basename(url) out_dir = os.path.abspath(os.path.dirname(output)) if not os.path.exists(out_dir): os.makedirs(out_dir) if isinstance(url, str): if os.path.exists(os.path.abspath(output)) and (not overwrite): print( f"{output} already exists. Skip downloading. Set overwrite=True to overwrite." ) return os.path.abspath(output) else: url = github_raw_url(url) if "https://drive.google.com/file/d/" in url: fuzzy = True output = gdown.download( url, output, quiet, proxy, speed, use_cookies, verify, id, fuzzy, resume ) if unzip and output.endswith(".zip"): with zipfile.ZipFile(output, "r") as zip_ref: if not quiet: print("Extracting files...") if subfolder: basename = os.path.splitext(os.path.basename(output))[0] output = os.path.join(out_dir, basename) if not os.path.exists(output): os.makedirs(output) zip_ref.extractall(output) else: zip_ref.extractall(os.path.dirname(output)) return os.path.abspath(output) def download_checkpoint(url=None, output=None, overwrite=False, **kwargs): """Download a checkpoint from URL. It can be one of the following: sam_vit_h_4b8939.pth, sam_vit_l_0b3195.pth, sam_vit_b_01ec64.pth. Args: url (str, optional): The checkpoint URL. Defaults to None. output (str, optional): The output file path. Defaults to None. overwrite (bool, optional): Overwrite the file if it already exists. Defaults to False. Returns: str: The output file path. """ checkpoints = { "sam_vit_h_4b8939.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", "sam_vit_l_0b3195.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", "sam_vit_b_01ec64.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", } if isinstance(url, str) and url in checkpoints: url = checkpoints[url] if url is None: url = checkpoints["sam_vit_h_4b8939.pth"] if output is None: output = os.path.basename(url) return download_file(url, output, overwrite=overwrite, **kwargs) def image_to_cog(source, dst_path=None, profile="deflate", **kwargs): """Converts an image to a COG file. Args: source (str): A dataset path, URL or rasterio.io.DatasetReader object. dst_path (str, optional): An output dataset path or or PathLike object. Defaults to None. profile (str, optional): COG profile. More at https://cogeotiff.github.io/rio-cogeo/profile. Defaults to "deflate". Raises: ImportError: If rio-cogeo is not installed. FileNotFoundError: If the source file could not be found. """ try: from rio_cogeo.cogeo import cog_translate from rio_cogeo.profiles import cog_profiles except ImportError: raise ImportError( "The rio-cogeo package is not installed. Please install it with `pip install rio-cogeo` or `conda install rio-cogeo -c conda-forge`." ) if not source.startswith("http"): source = check_file_path(source) if not os.path.exists(source): raise FileNotFoundError("The provided input file could not be found.") if dst_path is None: if not source.startswith("http"): dst_path = os.path.splitext(source)[0] + "_cog.tif" else: dst_path = temp_file_path(extension=".tif") dst_path = check_file_path(dst_path) dst_profile = cog_profiles.get(profile) cog_translate(source, dst_path, dst_profile, **kwargs) def reproject( image, output, dst_crs="EPSG:4326", resampling="nearest", to_cog=True, **kwargs ): """Reprojects an image. Args: image (str): The input image filepath. output (str): The output image filepath. dst_crs (str, optional): The destination CRS. Defaults to "EPSG:4326". resampling (Resampling, optional): The resampling method. Defaults to "nearest". to_cog (bool, optional): Whether to convert the output image to a Cloud Optimized GeoTIFF. Defaults to True. **kwargs: Additional keyword arguments to pass to rasterio.open. """ import rasterio as rio from rasterio.warp import calculate_default_transform, reproject, Resampling if isinstance(resampling, str): resampling = getattr(Resampling, resampling) image = os.path.abspath(image) output = os.path.abspath(output) if not os.path.exists(os.path.dirname(output)): os.makedirs(os.path.dirname(output)) with rio.open(image, **kwargs) as src: transform, width, height = calculate_default_transform( src.crs, dst_crs, src.width, src.height, *src.bounds ) kwargs = src.meta.copy() kwargs.update( { "crs": dst_crs, "transform": transform, "width": width, "height": height, } ) with rio.open(output, "w", **kwargs) as dst: for i in range(1, src.count + 1): reproject( source=rio.band(src, i), destination=rio.band(dst, i), src_transform=src.transform, src_crs=src.crs, dst_transform=transform, dst_crs=dst_crs, resampling=resampling, **kwargs, ) if to_cog: image_to_cog(output, output) def tms_to_geotiff( output, bbox, zoom=None, resolution=None, source="OpenStreetMap", crs="EPSG:3857", to_cog=False, return_image=False, overwrite=False, quiet=False, **kwargs, ): """Download TMS tiles and convert them to a GeoTIFF. The source is adapted from https://github.com/gumblex/tms2geotiff. Credits to the GitHub user @gumblex. Args: output (str): The output GeoTIFF file. bbox (list): The bounding box [minx, miny, maxx, maxy], e.g., [-122.5216, 37.733, -122.3661, 37.8095] zoom (int, optional): The map zoom level. Defaults to None. resolution (float, optional): The resolution in meters. Defaults to None. source (str, optional): The tile source. It can be one of the following: "OPENSTREETMAP", "ROADMAP", "SATELLITE", "TERRAIN", "HYBRID", or an HTTP URL. Defaults to "OpenStreetMap". crs (str, optional): The output CRS. Defaults to "EPSG:3857". to_cog (bool, optional): Convert to Cloud Optimized GeoTIFF. Defaults to False. return_image (bool, optional): Return the image as PIL.Image. Defaults to False. overwrite (bool, optional): Overwrite the output file if it already exists. Defaults to False. quiet (bool, optional): Suppress output. Defaults to False. **kwargs: Additional arguments to pass to gdal.GetDriverByName("GTiff").Create(). """ import os import io import math import itertools import concurrent.futures import numpy from PIL import Image try: from osgeo import gdal, osr except ImportError: raise ImportError("GDAL is not installed. Install it with pip install GDAL") try: import httpx SESSION = httpx.Client() except ImportError: import requests SESSION = requests.Session() if not overwrite and os.path.exists(output): print( f"The output file {output} already exists. Use `overwrite=True` to overwrite it." ) return xyz_tiles = { "OPENSTREETMAP": "https://tile.openstreetmap.org/{z}/{x}/{y}.png", "ROADMAP": "https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}", "SATELLITE": "https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}", "TERRAIN": "https://mt1.google.com/vt/lyrs=p&x={x}&y={y}&z={z}", "HYBRID": "https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}", } basemaps = get_basemaps() if isinstance(source, str): if source.upper() in xyz_tiles: source = xyz_tiles[source.upper()] elif source in basemaps: source = basemaps[source] elif source.startswith("http"): pass else: raise ValueError( 'source must be one of "OpenStreetMap", "ROADMAP", "SATELLITE", "TERRAIN", "HYBRID", or a URL' ) def resolution_to_zoom_level(resolution): """ Convert map resolution in meters to zoom level for Web Mercator (EPSG:3857) tiles. """ # Web Mercator tile size in meters at zoom level 0 initial_resolution = 156543.03392804097 # Calculate the zoom level zoom_level = math.log2(initial_resolution / resolution) return int(zoom_level) if isinstance(bbox, list) and len(bbox) == 4: west, south, east, north = bbox else: raise ValueError( "bbox must be a list of 4 coordinates in the format of [xmin, ymin, xmax, ymax]" ) if zoom is None and resolution is None: raise ValueError("Either zoom or resolution must be provided") elif zoom is not None and resolution is not None: raise ValueError("Only one of zoom or resolution can be provided") if resolution is not None: zoom = resolution_to_zoom_level(resolution) EARTH_EQUATORIAL_RADIUS = 6378137.0 Image.MAX_IMAGE_PIXELS = None gdal.UseExceptions() web_mercator = osr.SpatialReference() web_mercator.ImportFromEPSG(3857) WKT_3857 = web_mercator.ExportToWkt() def from4326_to3857(lat, lon): xtile = math.radians(lon) * EARTH_EQUATORIAL_RADIUS ytile = ( math.log(math.tan(math.radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS ) return (xtile, ytile) def deg2num(lat, lon, zoom): lat_r = math.radians(lat) n = 2**zoom xtile = (lon + 180) / 360 * n ytile = (1 - math.log(math.tan(lat_r) + 1 / math.cos(lat_r)) / math.pi) / 2 * n return (xtile, ytile) def is_empty(im): extrema = im.getextrema() if len(extrema) >= 3: if len(extrema) > 3 and extrema[-1] == (0, 0): return True for ext in extrema[:3]: if ext != (0, 0): return False return True else: return extrema[0] == (0, 0) def paste_tile(bigim, base_size, tile, corner_xy, bbox): if tile is None: return bigim im = Image.open(io.BytesIO(tile)) mode = "RGB" if im.mode == "RGB" else "RGBA" size = im.size if bigim is None: base_size[0] = size[0] base_size[1] = size[1] newim = Image.new( mode, (size[0] * (bbox[2] - bbox[0]), size[1] * (bbox[3] - bbox[1])) ) else: newim = bigim dx = abs(corner_xy[0] - bbox[0]) dy = abs(corner_xy[1] - bbox[1]) xy0 = (size[0] * dx, size[1] * dy) if mode == "RGB": newim.paste(im, xy0) else: if im.mode != mode: im = im.convert(mode) if not is_empty(im): newim.paste(im, xy0) im.close() return newim def finish_picture(bigim, base_size, bbox, x0, y0, x1, y1): xfrac = x0 - bbox[0] yfrac = y0 - bbox[1] x2 = round(base_size[0] * xfrac) y2 = round(base_size[1] * yfrac) imgw = round(base_size[0] * (x1 - x0)) imgh = round(base_size[1] * (y1 - y0)) retim = bigim.crop((x2, y2, x2 + imgw, y2 + imgh)) if retim.mode == "RGBA" and retim.getextrema()[3] == (255, 255): retim = retim.convert("RGB") bigim.close() return retim def get_tile(url): retry = 3 while 1: try: r = SESSION.get(url, timeout=60) break except Exception: retry -= 1 if not retry: raise if r.status_code == 404: return None elif not r.content: return None r.raise_for_status() return r.content def draw_tile( source, lat0, lon0, lat1, lon1, zoom, filename, quiet=False, **kwargs ): x0, y0 = deg2num(lat0, lon0, zoom) x1, y1 = deg2num(lat1, lon1, zoom) if x0 > x1: x0, x1 = x1, x0 if y0 > y1: y0, y1 = y1, y0 corners = tuple( itertools.product( range(math.floor(x0), math.ceil(x1)), range(math.floor(y0), math.ceil(y1)), ) ) totalnum = len(corners) futures = [] with concurrent.futures.ThreadPoolExecutor(5) as executor: for x, y in corners: futures.append( executor.submit(get_tile, source.format(z=zoom, x=x, y=y)) ) bbox = (math.floor(x0), math.floor(y0), math.ceil(x1), math.ceil(y1)) bigim = None base_size = [256, 256] for k, (fut, corner_xy) in enumerate(zip(futures, corners), 1): bigim = paste_tile(bigim, base_size, fut.result(), corner_xy, bbox) if not quiet: print( f"Downloaded image {str(k).zfill(len(str(totalnum)))}/{totalnum}" ) if not quiet: print("Saving GeoTIFF. Please wait...") img = finish_picture(bigim, base_size, bbox, x0, y0, x1, y1) imgbands = len(img.getbands()) driver = gdal.GetDriverByName("GTiff") if "options" not in kwargs: kwargs["options"] = [ "COMPRESS=DEFLATE", "PREDICTOR=2", "ZLEVEL=9", "TILED=YES", ] gtiff = driver.Create( filename, img.size[0], img.size[1], imgbands, gdal.GDT_Byte, **kwargs, ) xp0, yp0 = from4326_to3857(lat0, lon0) xp1, yp1 = from4326_to3857(lat1, lon1) pwidth = abs(xp1 - xp0) / img.size[0] pheight = abs(yp1 - yp0) / img.size[1] gtiff.SetGeoTransform((min(xp0, xp1), pwidth, 0, max(yp0, yp1), 0, -pheight)) gtiff.SetProjection(WKT_3857) for band in range(imgbands): array = numpy.array(img.getdata(band), dtype="u8") array = array.reshape((img.size[1], img.size[0])) band = gtiff.GetRasterBand(band + 1) band.WriteArray(array) gtiff.FlushCache() if not quiet: print(f"Image saved to {filename}") return img try: image = draw_tile( source, south, west, north, east, zoom, output, quiet, **kwargs ) if return_image: return image if crs.upper() != "EPSG:3857": reproject(output, output, crs, to_cog=to_cog) elif to_cog: image_to_cog(output, output) except Exception as e: raise Exception(e) def get_profile(src_fp): with rasterio.open(src_fp) as src: return src.profile def get_crs(src_fp): with rasterio.open(src_fp) as src: return src.crs def get_features(src_fp, bidx=1): from rasterio import features with rasterio.open(src_fp) as src: features = features.dataset_features( src, bidx=bidx, sampling=1, band=True, as_mask=False, with_nodata=False, geographic=True, precision=-1, ) gdf = gpd.GeoDataFrame.from_features(features) gdf.set_crs(src.crs) return gdf def set_transform(geo_box, width, height): return rasterio.transform.from_bounds(*geo_box, width, height) def transform_coords(x, y, src_crs, dst_crs, **kwargs): """Transform coordinates from one CRS to another. Args: x (float): The x coordinate. y (float): The y coordinate. src_crs (str): The source CRS, e.g., "EPSG:4326". dst_crs (str): The destination CRS, e.g., "EPSG:3857". Returns: dict: The transformed coordinates in the format of (x, y) """ transformer = pyproj.Transformer.from_crs( src_crs, dst_crs, always_xy=True, **kwargs ) return transformer.transform(x, y) def vector_to_geojson(filename, output=None, **kwargs): """Converts a vector file to a geojson file. Args: filename (str): The vector file path. output (str, optional): The output geojson file path. Defaults to None. Returns: dict: The geojson dictionary. """ if not filename.startswith("http"): filename = download_file(filename) gdf = gpd.read_file(filename, **kwargs) if output is None: return gdf.__geo_interface__ else: gdf.to_file(output, driver="GeoJSON") def get_vector_crs(filename, **kwargs): """Gets the CRS of a vector file. Args: filename (str): The vector file path. Returns: str: The CRS of the vector file. """ gdf = gpd.read_file(filename, **kwargs) epsg = gdf.crs.to_epsg() if epsg is None: return gdf.crs else: return f"EPSG:{epsg}" def geojson_to_coords( geojson: str, src_crs: str = "epsg:4326", dst_crs: str = "epsg:4326" ) -> list: """Converts a geojson file or a dictionary of feature collection to a list of centroid coordinates. Args: geojson (str | dict): The geojson file path or a dictionary of feature collection. src_crs (str, optional): The source CRS. Defaults to "epsg:4326". dst_crs (str, optional): The destination CRS. Defaults to "epsg:4326". Returns: list: A list of centroid coordinates in the format of [[x1, y1], [x2, y2], ...] """ import json import warnings warnings.filterwarnings("ignore") if isinstance(geojson, dict): geojson = json.dumps(geojson) gdf = gpd.read_file(geojson, driver="GeoJSON") centroids = gdf.geometry.centroid centroid_list = [[point.x, point.y] for point in centroids] if src_crs != dst_crs: centroid_list = transform_coords( [x[0] for x in centroid_list], [x[1] for x in centroid_list], src_crs, dst_crs, ) centroid_list = [[x, y] for x, y in zip(centroid_list[0], centroid_list[1])] return centroid_list def coords_to_xy( src_fp: str, coords: list, coord_crs: str = "epsg:4326", **kwargs ) -> list: """Converts a list of coordinates to pixel coordinates, i.e., (col, row) coordinates. Args: src_fp: The source raster file path. coords: A list of coordinates in the format of [[x1, y1], [x2, y2], ...] coord_crs: The coordinate CRS of the input coordinates. Defaults to "epsg:4326". **kwargs: Additional keyword arguments to pass to rasterio.transform.rowcol. Returns: A list of pixel coordinates in the format of [[x1, y1], [x2, y2], ...] """ if isinstance(coords, np.ndarray): coords = coords.tolist() xs, ys = zip(*coords) with rasterio.open(src_fp) as src: width = src.width height = src.height if coord_crs != src.crs: xs, ys = transform_coords(xs, ys, coord_crs, src.crs, **kwargs) rows, cols = rasterio.transform.rowcol(src.transform, xs, ys, **kwargs) result = [[col, row] for col, row in zip(cols, rows)] result = [ [x, y] for x, y in result if x >= 0 and y >= 0 and x < width and y < height ] if len(result) == 0: print("No valid pixel coordinates found.") elif len(result) < len(coords): print("Some coordinates are out of the image boundary.") return result def bbox_to_xy( src_fp: str, coords: list, coord_crs: str = "epsg:4326", **kwargs ) -> list: """Converts a list of coordinates to pixel coordinates, i.e., (col, row) coordinates. Args: src_fp (str): The source raster file path. coords (list): A list of coordinates in the format of [[minx, miny, maxx, maxy], [minx, miny, maxx, maxy], ...] coord_crs (str, optional): The coordinate CRS of the input coordinates. Defaults to "epsg:4326". Returns: list: A list of pixel coordinates in the format of [[minx, miny, maxx, maxy], ...] """ if isinstance(coords, str): gdf = gpd.read_file(coords) coords = gdf.geometry.bounds.values.tolist() if gdf.crs is not None: coord_crs = f"epsg:{gdf.crs.to_epsg()}" elif isinstance(coords, np.ndarray): coords = coords.tolist() if isinstance(coords, dict): import json geojson = json.dumps(coords) gdf = gpd.read_file(geojson, driver="GeoJSON") coords = gdf.geometry.bounds.values.tolist() elif not isinstance(coords, list): raise ValueError("coords must be a list of coordinates.") if not isinstance(coords[0], list): coords = [coords] new_coords = [] with rasterio.open(src_fp) as src: width = src.width height = src.height for coord in coords: minx, miny, maxx, maxy = coord if coord_crs != src.crs: minx, miny = transform_coords(minx, miny, coord_crs, src.crs, **kwargs) maxx, maxy = transform_coords(maxx, maxy, coord_crs, src.crs, **kwargs) rows1, cols1 = rasterio.transform.rowcol( src.transform, minx, miny, **kwargs ) rows2, cols2 = rasterio.transform.rowcol( src.transform, maxx, maxy, **kwargs ) new_coords.append([cols1, rows1, cols2, rows2]) else: new_coords.append([minx, miny, maxx, maxy]) result = [] for coord in new_coords: minx, miny, maxx, maxy = coord if ( minx >= 0 and miny >= 0 and maxx >= 0 and maxy >= 0 and minx < width and miny < height and maxx < width and maxy < height ): result.append(coord) if len(result) == 0: print("No valid pixel coordinates found.") return None elif len(result) == 1: return result[0] elif len(result) < len(coords): print("Some coordinates are out of the image boundary.") return result def geojson_to_xy( src_fp: str, geojson: str, coord_crs: str = "epsg:4326", **kwargs ) -> list: """Converts a geojson file or a dictionary of feature collection to a list of pixel coordinates. Args: src_fp: The source raster file path. geojson: The geojson file path or a dictionary of feature collection. coord_crs: The coordinate CRS of the input coordinates. Defaults to "epsg:4326". **kwargs: Additional keyword arguments to pass to rasterio.transform.rowcol. Returns: A list of pixel coordinates in the format of [[x1, y1], [x2, y2], ...] """ with rasterio.open(src_fp) as src: src_crs = src.crs coords = geojson_to_coords(geojson, coord_crs, src_crs) return coords_to_xy(src_fp, coords, src_crs, **kwargs) def get_pixel_coords(src_fp, xs, ys): with rasterio.open(src_fp) as src: rows, cols = rasterio.transform.rowcol(src.transform, xs, ys) box = np.array([min(cols), min(rows), max(cols), max(rows)]) return box def write_features(gdf, dst_fp): gdf.to_file(dst_fp) def write_raster(dst_fp, dst_arr, profile, width, height, transform, crs): profile.update({"driver": "GTiff", "nodata": "0"}) with rasterio.open(dst_fp, "w", **profile) as dst: if len(dst_arr.shape) == 2: dst_arr = dst_arr[np.newaxis, ...] for i in range(dst_arr.shape[0]): dst.write(dst_arr[i], i + 1) def chw_to_hwc(block): # Grab first 3 channels block = block[:3, ...] # CHW to HWC block = np.transpose(block, (1, 2, 0)) return block def hwc_to_hw(block, channel=0): # Grab first 3 channels block = block[..., channel].astype(np.uint8) return block def calculate_sample_grid(raster_h, raster_w, sample_h, sample_w, bound): h, w = sample_h, sample_w blocks = [] height = h + 2 * bound width = w + 2 * bound for y in range(-bound, raster_h, h): for x in range(-bound, raster_w, w): rigth_x_bound = max(bound, x + width - raster_w) bottom_y_bound = max(bound, y + height - raster_h) blocks.append( { "x": x, "y": y, "height": height, "width": width, "bounds": [[bound, bottom_y_bound], [bound, rigth_x_bound]], } ) return blocks def read_block(src, x, y, height, width, nodata=0, **kwargs): return src.read( window=((y, y + height), (x, x + width)), boundless=True, fill_value=nodata ) def write_block(dst, raster, y, x, height, width, bounds=None): if bounds: raster = raster[ bounds[0][0] : raster.shape[0] - bounds[0][1], bounds[1][0] : raster.shape[1] - bounds[1][1], ] x += bounds[1][0] y += bounds[0][0] width = width - bounds[1][1] - bounds[1][0] height = height - bounds[0][1] - bounds[0][0] dst.write(raster, 1, window=((y, y + height), (x, x + width))) def tiff_to_tiff( src_fp, dst_fp, func, data_to_rgb=chw_to_hwc, sample_size=(512, 512), sample_resize=None, bound=128, foreground=True, erosion_kernel=(3, 3), mask_multiplier=255, **kwargs, ): with rasterio.open(src_fp) as src: profile = src.profile # Computer blocks rh, rw = profile["height"], profile["width"] sh, sw = sample_size bound = bound resize_hw = sample_resize # Subdivide image into tiles sample_grid = calculate_sample_grid( raster_h=rh, raster_w=rw, sample_h=sh, sample_w=sw, bound=bound ) # set 1 channel uint8 output profile["count"] = 1 profile["dtype"] = "uint8" if erosion_kernel is not None: erosion_kernel = np.ones(erosion_kernel, np.uint8) with rasterio.open(dst_fp, "w", **profile) as dst: for b in tqdm(sample_grid): # Read each tile from the source r = read_block(src, **b) # Extract the first 3 channels as RGB uint8_rgb_in = data_to_rgb(r) orig_size = uint8_rgb_in.shape[:2] if resize_hw is not None: uint8_rgb_in = cv2.resize( uint8_rgb_in, resize_hw, interpolation=cv2.INTER_LINEAR ) # Run the model, call the __call__ method of SamGeo class uin8_out = func( uint8_rgb_in, foreground=foreground, erosion_kernel=erosion_kernel, mask_multiplier=mask_multiplier, **kwargs, ) if resize_hw is not None: uin8_out = cv2.resize( uin8_out, orig_size, interpolation=cv2.INTER_NEAREST ) # Write the output to the destination write_block(dst, uin8_out, **b) def image_to_image(image, func, sample_size=(384, 384), sample_resize=None, bound=128): with tempfile.NamedTemporaryFile() as src_tmpfile: s, b = cv2.imencode(".tif", image) src_tmpfile.write(b.tobytes()) src_fp = src_tmpfile.name with tempfile.NamedTemporaryFile() as dst_tmpfile: dst_fp = dst_tmpfile.name tiff_to_tiff( src_fp, dst_fp, func, data_to_rgb=chw_to_hwc, sample_size=sample_size, sample_resize=sample_resize, bound=bound, ) result = cv2.imread(dst_fp) return result[..., 0] def tiff_to_image( src_fp, func, data_to_rgb=chw_to_hwc, sample_size=(512, 512), sample_resize=None, bound=128, ): with tempfile.NamedTemporaryFile() as dst_tmpfile: dst_fp = dst_tmpfile.name tiff_to_tiff( src_fp, dst_fp, func, data_to_rgb=data_to_rgb, sample_size=sample_size, sample_resize=sample_resize, bound=bound, ) result = cv2.imread(dst_fp) return result[..., 0] def tiff_to_shapes(tiff_path, simplify_tolerance=None): from rasterio import features with rasterio.open(tiff_path) as src: band = src.read() mask = band != 0 shapes = features.shapes(band, mask=mask, transform=src.transform) result = [shapely.geometry.shape(shape) for shape, _ in shapes] if simplify_tolerance is not None: result = [shape.simplify(tolerance=simplify_tolerance) for shape in result] return result def draw_tile(source, lat0, lon0, lat1, lon1, zoom, filename, **kwargs): bbox = [lon0, lat0, lon1, lat1] image = tms_to_geotiff( filename, bbox, zoom=zoom, resolution=None, source=source, to_cog=False, return_image=True, quiet=False, **kwargs, ) return image def raster_to_vector(source, output, simplify_tolerance=None, **kwargs): """Vectorize a raster dataset. Args: source (str): The path to the tiff file. output (str): The path to the vector file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ from rasterio import features with rasterio.open(source) as src: band = src.read() mask = band != 0 shapes = features.shapes(band, mask=mask, transform=src.transform) fc = [ {"geometry": shapely.geometry.shape(shape), "properties": {"value": value}} for shape, value in shapes ] if simplify_tolerance is not None: for i in fc: i["geometry"] = i["geometry"].simplify(tolerance=simplify_tolerance) gdf = gpd.GeoDataFrame.from_features(fc) if src.crs is not None: gdf.set_crs(crs=src.crs, inplace=True) gdf.to_file(output, **kwargs) def raster_to_gpkg(tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a gpkg file. Args: tiff_path (str): The path to the tiff file. output (str): The path to the gpkg file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ if not output.endswith(".gpkg"): output += ".gpkg" raster_to_vector(tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs) def raster_to_shp(tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a shapefile. Args: tiff_path (str): The path to the tiff file. output (str): The path to the shapefile. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ if not output.endswith(".shp"): output += ".shp" raster_to_vector(tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs) def raster_to_geojson(tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a GeoJSON file. Args: tiff_path (str): The path to the tiff file. output (str): The path to the GeoJSON file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ if not output.endswith(".geojson"): output += ".geojson" raster_to_vector(tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs) def get_xyz_dict(free_only=True): """Returns a dictionary of xyz services. Args: free_only (bool, optional): Whether to return only free xyz tile services that do not require an access token. Defaults to True. Returns: dict: A dictionary of xyz services. """ import collections import xyzservices.providers as xyz def _unpack_sub_parameters(var, param): temp = var for sub_param in param.split("."): temp = getattr(temp, sub_param) return temp xyz_dict = {} for item in xyz.values(): try: name = item["name"] tile = _unpack_sub_parameters(xyz, name) if _unpack_sub_parameters(xyz, name).requires_token(): if free_only: pass else: xyz_dict[name] = tile else: xyz_dict[name] = tile except Exception: for sub_item in item: name = item[sub_item]["name"] tile = _unpack_sub_parameters(xyz, name) if _unpack_sub_parameters(xyz, name).requires_token(): if free_only: pass else: xyz_dict[name] = tile else: xyz_dict[name] = tile xyz_dict = collections.OrderedDict(sorted(xyz_dict.items())) return xyz_dict def get_basemaps(free_only=True): """Returns a dictionary of xyz basemaps. Args: free_only (bool, optional): Whether to return only free xyz tile services that do not require an access token. Defaults to True. Returns: dict: A dictionary of xyz basemaps. """ basemaps = {} xyz_dict = get_xyz_dict(free_only=free_only) for item in xyz_dict: name = xyz_dict[item].name url = xyz_dict[item].build_url() basemaps[name] = url return basemaps def array_to_image( array, output, source=None, dtype=None, compress="deflate", **kwargs ): """Save a NumPy array as a GeoTIFF using the projection information from an existing GeoTIFF file. Args: array (np.ndarray): The NumPy array to be saved as a GeoTIFF. output (str): The path to the output image. source (str, optional): The path to an existing GeoTIFF file with map projection information. Defaults to None. dtype (np.dtype, optional): The data type of the output array. Defaults to None. compress (str, optional): The compression method. Can be one of the following: "deflate", "lzw", "packbits", "jpeg". Defaults to "deflate". """ from PIL import Image if isinstance(array, str) and os.path.exists(array): array = cv2.imread(array) array = cv2.cvtColor(array, cv2.COLOR_BGR2RGB) if output.endswith(".tif") and source is not None: with rasterio.open(source) as src: crs = src.crs transform = src.transform if compress is None: compress = src.compression # Determine the minimum and maximum values in the array min_value = np.min(array) max_value = np.max(array) if dtype is None: # Determine the best dtype for the array if min_value >= 0 and max_value <= 1: dtype = np.float32 elif min_value >= 0 and max_value <= 255: dtype = np.uint8 elif min_value >= -128 and max_value <= 127: dtype = np.int8 elif min_value >= 0 and max_value <= 65535: dtype = np.uint16 elif min_value >= -32768 and max_value <= 32767: dtype = np.int16 else: dtype = np.float64 # Convert the array to the best dtype array = array.astype(dtype) # Define the GeoTIFF metadata if array.ndim == 2: metadata = { "driver": "GTiff", "height": array.shape[0], "width": array.shape[1], "count": 1, "dtype": array.dtype, "crs": crs, "transform": transform, } elif array.ndim == 3: metadata = { "driver": "GTiff", "height": array.shape[0], "width": array.shape[1], "count": array.shape[2], "dtype": array.dtype, "crs": crs, "transform": transform, } if compress is not None: metadata["compress"] = compress else: raise ValueError("Array must be 2D or 3D.") # Create a new GeoTIFF file and write the array to it with rasterio.open(output, "w", **metadata) as dst: if array.ndim == 2: dst.write(array, 1) elif array.ndim == 3: for i in range(array.shape[2]): dst.write(array[:, :, i], i + 1) else: img = Image.fromarray(array) img.save(output, **kwargs) def show_image( source, figsize=(12, 10), cmap=None, axis="off", fig_args={}, show_args={}, **kwargs ): if isinstance(source, str): if source.startswith("http"): source = download_file(source) if not os.path.exists(source): raise ValueError(f"Input path {source} does not exist.") source = cv2.imread(source) source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB) plt.figure(figsize=figsize, **fig_args) plt.imshow(source, cmap=cmap, **show_args) plt.axis(axis) plt.show(**kwargs) def show_mask(mask, random_color=False): ax = plt.gca() if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_points( image, coords, labels, marker_size=375, figsize=(12, 10), axis="on", title=None, mask=None, **kwargs, ): if isinstance(image, str): if image.startswith("http"): image = download_file(image) if not os.path.exists(image): raise ValueError(f"Input path {image} does not exist.") image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.figure(figsize=figsize) plt.imshow(image) ax = plt.gca() pos_points = coords[labels == 1] neg_points = coords[labels == 0] ax.scatter( pos_points[:, 0], pos_points[:, 1], color="green", marker="*", s=marker_size, edgecolor="white", linewidth=1.25, ) ax.scatter( neg_points[:, 0], neg_points[:, 1], color="red", marker="*", s=marker_size, edgecolor="white", linewidth=1.25, ) if title is not None: plt.title(title) plt.axis(axis) plt.show() def show_box(image, box, ax): ax = plt.gca() x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch( plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2) ) def overlay_images( image1, image2, alpha=0.5, backend="TkAgg", height_ratios=[10, 1], show_args1={}, show_args2={}, ): """Overlays two images using a slider to control the opacity of the top image. Args: image1 (str | np.ndarray): The first input image at the bottom represented as a NumPy array or the path to the image. image2 (_type_): The second input image on top represented as a NumPy array or the path to the image. alpha (float, optional): The alpha value of the top image. Defaults to 0.5. backend (str, optional): The backend of the matplotlib plot. Defaults to "TkAgg". height_ratios (list, optional): The height ratios of the two subplots. Defaults to [10, 1]. show_args1 (dict, optional): The keyword arguments to pass to the imshow() function for the first image. Defaults to {}. show_args2 (dict, optional): The keyword arguments to pass to the imshow() function for the second image. Defaults to {}. """ import sys import matplotlib import matplotlib.widgets as mpwidgets if "google.colab" in sys.modules: backend = "inline" print( "The TkAgg backend is not supported in Google Colab. The overlay_images function will not work on Colab." ) return matplotlib.use(backend) if isinstance(image1, str): if image1.startswith("http"): image1 = download_file(image1) if not os.path.exists(image1): raise ValueError(f"Input path {image1} does not exist.") if isinstance(image2, str): if image2.startswith("http"): image2 = download_file(image2) if not os.path.exists(image2): raise ValueError(f"Input path {image2} does not exist.") # Load the two images x = plt.imread(image1) y = plt.imread(image2) # Create the plot fig, (ax0, ax1) = plt.subplots(2, 1, gridspec_kw={"height_ratios": height_ratios}) img0 = ax0.imshow(x, **show_args1) img1 = ax0.imshow(y, alpha=alpha, **show_args2) # Define the update function def update(value): img1.set_alpha(value) fig.canvas.draw_idle() # Create the slider slider0 = mpwidgets.Slider(ax=ax1, label="alpha", valmin=0, valmax=1, valinit=alpha) slider0.on_changed(update) # Display the plot plt.show() def blend_images( img1, img2, alpha=0.5, output=False, show=True, figsize=(12, 10), axis="off", **kwargs, ): """ Blends two images together using the addWeighted function from the OpenCV library. Args: img1 (numpy.ndarray): The first input image on top represented as a NumPy array. img2 (numpy.ndarray): The second input image at the bottom represented as a NumPy array. alpha (float): The weighting factor for the first image in the blend. By default, this is set to 0.5. output (str, optional): The path to the output image. Defaults to False. show (bool, optional): Whether to display the blended image. Defaults to True. figsize (tuple, optional): The size of the figure. Defaults to (12, 10). axis (str, optional): The axis of the figure. Defaults to "off". **kwargs: Additional keyword arguments to pass to the cv2.addWeighted() function. Returns: numpy.ndarray: The blended image as a NumPy array. """ # Resize the images to have the same dimensions if isinstance(img1, str): if img1.startswith("http"): img1 = download_file(img1) if not os.path.exists(img1): raise ValueError(f"Input path {img1} does not exist.") img1 = cv2.imread(img1) if isinstance(img2, str): if img2.startswith("http"): img2 = download_file(img2) if not os.path.exists(img2): raise ValueError(f"Input path {img2} does not exist.") img2 = cv2.imread(img2) if img1.dtype == np.float32: img1 = (img1 * 255).astype(np.uint8) if img2.dtype == np.float32: img2 = (img2 * 255).astype(np.uint8) if img1.dtype != img2.dtype: img2 = img2.astype(img1.dtype) img1 = cv2.resize(img1, (img2.shape[1], img2.shape[0])) # Blend the images using the addWeighted function beta = 1 - alpha blend_img = cv2.addWeighted(img1, alpha, img2, beta, 0, **kwargs) if output: array_to_image(blend_img, output, img2) if show: plt.figure(figsize=figsize) plt.imshow(blend_img) plt.axis(axis) plt.show() else: return blend_img def update_package(out_dir=None, keep=False, **kwargs): """Updates the package from the GitHub repository without the need to use pip or conda. Args: out_dir (str, optional): The output directory. Defaults to None. keep (bool, optional): Whether to keep the downloaded package. Defaults to False. **kwargs: Additional keyword arguments to pass to the download_file() function. """ import shutil try: if out_dir is None: out_dir = os.getcwd() url = ( "https://github.com/opengeos/segment-geospatial/archive/refs/heads/main.zip" ) filename = "segment-geospatial-main.zip" download_file(url, filename, **kwargs) pkg_dir = os.path.join(out_dir, "segment-geospatial-main") work_dir = os.getcwd() os.chdir(pkg_dir) if shutil.which("pip") is None: cmd = "pip3 install ." else: cmd = "pip install ." os.system(cmd) os.chdir(work_dir) if not keep: shutil.rmtree(pkg_dir) os.remove(filename) print("Package updated successfully.") except Exception as e: raise Exception(e) def sam_map_gui(sam, basemap="SATELLITE", repeat_mode=True, out_dir=None, **kwargs): """Display the SAM Map GUI. Args: sam (SamGeo): basemap (str, optional): The basemap to use. Defaults to "SATELLITE". repeat_mode (bool, optional): Whether to use the repeat mode for the draw control. Defaults to True. out_dir (str, optional): The output directory. Defaults to None. """ try: import shutil import tempfile import leafmap import ipyleaflet import ipyevents import ipywidgets as widgets from ipyfilechooser import FileChooser except ImportError: raise ImportError( "The sam_map function requires the leafmap package. Please install it first." ) if out_dir is None: out_dir = tempfile.gettempdir() m = leafmap.Map(repeat_mode=repeat_mode, **kwargs) m.default_style = {"cursor": "crosshair"} m.add_basemap(basemap, show=False) # Skip the image layer if localtileserver is not available try: m.add_raster(sam.image, layer_name="Image") except: pass m.fg_markers = [] m.bg_markers = [] fg_layer = ipyleaflet.LayerGroup(layers=m.fg_markers, name="Foreground") bg_layer = ipyleaflet.LayerGroup(layers=m.bg_markers, name="Background") m.add(fg_layer) m.add(bg_layer) m.fg_layer = fg_layer m.bg_layer = bg_layer widget_width = "280px" button_width = "90px" padding = "0px 0px 0px 4px" # upper, right, bottom, left style = {"description_width": "initial"} toolbar_button = widgets.ToggleButton( value=True, tooltip="Toolbar", icon="gear", layout=widgets.Layout(width="28px", height="28px", padding=padding), ) close_button = widgets.ToggleButton( value=False, tooltip="Close the tool", icon="times", button_style="primary", layout=widgets.Layout(height="28px", width="28px", padding=padding), ) plus_button = widgets.ToggleButton( value=False, tooltip="Load foreground points", icon="plus-circle", button_style="primary", layout=widgets.Layout(height="28px", width="28px", padding=padding), ) minus_button = widgets.ToggleButton( value=False, tooltip="Load background points", icon="minus-circle", button_style="primary", layout=widgets.Layout(height="28px", width="28px", padding=padding), ) radio_buttons = widgets.RadioButtons( options=["Foreground", "Background"], description="Class Type:", disabled=False, style=style, layout=widgets.Layout(width=widget_width, padding=padding), ) fg_count = widgets.IntText( value=0, description="Foreground #:", disabled=True, style=style, layout=widgets.Layout(width="135px", padding=padding), ) bg_count = widgets.IntText( value=0, description="Background #:", disabled=True, style=style, layout=widgets.Layout(width="135px", padding=padding), ) segment_button = widgets.ToggleButton( description="Segment", value=False, button_style="primary", layout=widgets.Layout(padding=padding), ) save_button = widgets.ToggleButton( description="Save", value=False, button_style="primary" ) reset_button = widgets.ToggleButton( description="Reset", value=False, button_style="primary" ) segment_button.layout.width = button_width save_button.layout.width = button_width reset_button.layout.width = button_width opacity_slider = widgets.FloatSlider( description="Mask opacity:", min=0, max=1, value=0.5, readout=True, continuous_update=True, layout=widgets.Layout(width=widget_width, padding=padding), style=style, ) buttons = widgets.VBox( [ radio_buttons, widgets.HBox([fg_count, bg_count]), opacity_slider, widgets.HBox( [segment_button, save_button, reset_button], layout=widgets.Layout(padding="0px 4px 0px 4px"), ), ] ) def opacity_changed(change): if change["new"]: mask_layer = m.find_layer("Masks") if mask_layer is not None: mask_layer.interact(opacity=opacity_slider.value) opacity_slider.observe(opacity_changed, "value") output = widgets.Output( layout=widgets.Layout( width=widget_width, padding=padding, max_width=widget_width ) ) toolbar_header = widgets.HBox() toolbar_header.children = [close_button, plus_button, minus_button, toolbar_button] toolbar_footer = widgets.VBox() toolbar_footer.children = [ buttons, output, ] toolbar_widget = widgets.VBox() toolbar_widget.children = [toolbar_header, toolbar_footer] toolbar_event = ipyevents.Event( source=toolbar_widget, watched_events=["mouseenter", "mouseleave"] ) def marker_callback(chooser): with output: if chooser.selected is not None: try: gdf = gpd.read_file(chooser.selected) centroids = gdf.centroid coords = [[point.x, point.y] for point in centroids] for coord in coords: if plus_button.value: if is_colab(): # Colab does not support AwesomeIcon marker = ipyleaflet.CircleMarker( location=(coord[1], coord[0]), radius=2, color="green", fill_color="green", ) else: marker = ipyleaflet.Marker( location=[coord[1], coord[0]], icon=ipyleaflet.AwesomeIcon( name="plus-circle", marker_color="green", icon_color="darkred", ), ) m.fg_layer.add(marker) m.fg_markers.append(marker) fg_count.value = len(m.fg_markers) elif minus_button.value: if is_colab(): marker = ipyleaflet.CircleMarker( location=(coord[1], coord[0]), radius=2, color="red", fill_color="red", ) else: marker = ipyleaflet.Marker( location=[coord[1], coord[0]], icon=ipyleaflet.AwesomeIcon( name="minus-circle", marker_color="red", icon_color="darkred", ), ) m.bg_layer.add(marker) m.bg_markers.append(marker) bg_count.value = len(m.bg_markers) except Exception as e: print(e) if m.marker_control in m.controls: m.remove_control(m.marker_control) delattr(m, "marker_control") plus_button.value = False minus_button.value = False def marker_button_click(change): if change["new"]: sandbox_path = os.environ.get("SANDBOX_PATH") filechooser = FileChooser( path=os.getcwd(), sandbox_path=sandbox_path, layout=widgets.Layout(width="454px"), ) filechooser.use_dir_icons = True filechooser.filter_pattern = ["*.shp", "*.geojson", "*.gpkg"] filechooser.register_callback(marker_callback) marker_control = ipyleaflet.WidgetControl( widget=filechooser, position="topright" ) m.add_control(marker_control) m.marker_control = marker_control else: if hasattr(m, "marker_control") and m.marker_control in m.controls: m.remove_control(m.marker_control) m.marker_control.close() plus_button.observe(marker_button_click, "value") minus_button.observe(marker_button_click, "value") def handle_toolbar_event(event): if event["type"] == "mouseenter": toolbar_widget.children = [toolbar_header, toolbar_footer] elif event["type"] == "mouseleave": if not toolbar_button.value: toolbar_widget.children = [toolbar_button] toolbar_button.value = False close_button.value = False toolbar_event.on_dom_event(handle_toolbar_event) def toolbar_btn_click(change): if change["new"]: close_button.value = False toolbar_widget.children = [toolbar_header, toolbar_footer] else: if not close_button.value: toolbar_widget.children = [toolbar_button] toolbar_button.observe(toolbar_btn_click, "value") def close_btn_click(change): if change["new"]: toolbar_button.value = False if m.toolbar_control in m.controls: m.remove_control(m.toolbar_control) toolbar_widget.close() close_button.observe(close_btn_click, "value") def handle_map_interaction(**kwargs): try: if kwargs.get("type") == "click": latlon = kwargs.get("coordinates") if radio_buttons.value == "Foreground": if is_colab(): marker = ipyleaflet.CircleMarker( location=tuple(latlon), radius=2, color="green", fill_color="green", ) else: marker = ipyleaflet.Marker( location=latlon, icon=ipyleaflet.AwesomeIcon( name="plus-circle", marker_color="green", icon_color="darkred", ), ) fg_layer.add(marker) m.fg_markers.append(marker) fg_count.value = len(m.fg_markers) elif radio_buttons.value == "Background": if is_colab(): marker = ipyleaflet.CircleMarker( location=tuple(latlon), radius=2, color="red", fill_color="red", ) else: marker = ipyleaflet.Marker( location=latlon, icon=ipyleaflet.AwesomeIcon( name="minus-circle", marker_color="red", icon_color="darkred", ), ) bg_layer.add(marker) m.bg_markers.append(marker) bg_count.value = len(m.bg_markers) except (TypeError, KeyError) as e: print(f"Error handling map interaction: {e}") m.on_interaction(handle_map_interaction) def segment_button_click(change): if change["new"]: segment_button.value = False with output: output.clear_output() if len(m.fg_markers) == 0: print("Please add some foreground markers.") segment_button.value = False return else: try: fg_points = [ [marker.location[1], marker.location[0]] for marker in m.fg_markers ] bg_points = [ [marker.location[1], marker.location[0]] for marker in m.bg_markers ] point_coords = fg_points + bg_points point_labels = [1] * len(fg_points) + [0] * len(bg_points) filename = f"masks_{random_string()}.tif" filename = os.path.join(out_dir, filename) sam.predict( point_coords=point_coords, point_labels=point_labels, point_crs="EPSG:4326", output=filename, ) if m.find_layer("Masks") is not None: m.remove_layer(m.find_layer("Masks")) if hasattr(sam, "prediction_fp") and os.path.exists( sam.prediction_fp ): os.remove(sam.prediction_fp) # Skip the image layer if localtileserver is not available try: m.add_raster( filename, nodata=0, cmap="Blues", opacity=opacity_slider.value, layer_name="Masks", zoom_to_layer=False, ) except: pass output.clear_output() segment_button.value = False sam.prediction_fp = filename except Exception as e: segment_button.value = False print(e) segment_button.observe(segment_button_click, "value") def filechooser_callback(chooser): with output: if chooser.selected is not None: try: filename = chooser.selected shutil.copy(sam.prediction_fp, filename) vector = filename.replace(".tif", ".gpkg") raster_to_gpkg(filename, vector) fg_points = [ [marker.location[1], marker.location[0]] for marker in m.fg_markers ] bg_points = [ [marker.location[1], marker.location[0]] for marker in m.bg_markers ] coords_to_geojson( fg_points, filename.replace(".tif", "_fg_markers.geojson") ) coords_to_geojson( bg_points, filename.replace(".tif", "_bg_markers.geojson") ) except Exception as e: print(e) if hasattr(m, "save_control") and m.save_control in m.controls: m.remove_control(m.save_control) delattr(m, "save_control") save_button.value = False def save_button_click(change): if change["new"]: with output: sandbox_path = os.environ.get("SANDBOX_PATH") filechooser = FileChooser( path=os.getcwd(), filename="masks.tif", sandbox_path=sandbox_path, layout=widgets.Layout(width="454px"), ) filechooser.use_dir_icons = True filechooser.filter_pattern = ["*.tif"] filechooser.register_callback(filechooser_callback) save_control = ipyleaflet.WidgetControl( widget=filechooser, position="topright" ) m.add_control(save_control) m.save_control = save_control else: if hasattr(m, "save_control") and m.save_control in m.controls: m.remove_control(m.save_control) delattr(m, "save_control") save_button.observe(save_button_click, "value") def reset_button_click(change): if change["new"]: segment_button.value = False reset_button.value = False opacity_slider.value = 0.5 output.clear_output() try: m.remove_layer(m.find_layer("Masks")) m.clear_drawings() if hasattr(m, "fg_markers"): m.user_rois = None m.fg_markers = [] m.bg_markers = [] m.fg_layer.clear_layers() m.bg_layer.clear_layers() fg_count.value = 0 bg_count.value = 0 os.remove(sam.prediction_fp) except: pass reset_button.observe(reset_button_click, "value") toolbar_control = ipyleaflet.WidgetControl( widget=toolbar_widget, position="topright" ) m.add_control(toolbar_control) m.toolbar_control = toolbar_control return m def random_string(string_length=6): """Generates a random string of fixed length. Args: string_length (int, optional): Fixed length. Defaults to 3. Returns: str: A random string """ import random import string # random.seed(1001) letters = string.ascii_lowercase return "".join(random.choice(letters) for i in range(string_length)) def coords_to_geojson(coords, output=None): """Convert a list of coordinates (lon, lat) to a GeoJSON string or file. Args: coords (list): A list of coordinates (lon, lat). output (str, optional): The output file path. Defaults to None. Returns: dict: A GeoJSON dictionary. """ import json if len(coords) == 0: return # Create a GeoJSON FeatureCollection object feature_collection = {"type": "FeatureCollection", "features": []} # Iterate through the coordinates list and create a GeoJSON Feature object for each coordinate for coord in coords: feature = { "type": "Feature", "geometry": {"type": "Point", "coordinates": coord}, "properties": {}, } feature_collection["features"].append(feature) # Convert the FeatureCollection object to a JSON string geojson_str = json.dumps(feature_collection) if output is not None: with open(output, "w") as f: f.write(geojson_str) else: return geojson_str def show_canvas(image, fg_color=(0, 255, 0), bg_color=(0, 0, 255), radius=5): """Show a canvas to collect foreground and background points. Args: image (str | np.ndarray): The input image. fg_color (tuple, optional): The color for the foreground points. Defaults to (0, 255, 0). bg_color (tuple, optional): The color for the background points. Defaults to (0, 0, 255). radius (int, optional): The radius of the points. Defaults to 5. Returns: tuple: A tuple of two lists of foreground and background points. """ if isinstance(image, str): if image.startswith("http"): image = download_file(image) image = cv2.imread(image) elif isinstance(image, np.ndarray): pass else: raise ValueError("Input image must be a URL or a NumPy array.") # Create an empty list to store the mouse click coordinates left_clicks = [] right_clicks = [] # Create a mouse callback function def get_mouse_coordinates(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: # Append the coordinates to the mouse_clicks list left_clicks.append((x, y)) # Draw a green circle at the mouse click coordinates cv2.circle(image, (x, y), radius, fg_color, -1) # Show the updated image with the circle cv2.imshow("Image", image) elif event == cv2.EVENT_RBUTTONDOWN: # Append the coordinates to the mouse_clicks list right_clicks.append((x, y)) # Draw a red circle at the mouse click coordinates cv2.circle(image, (x, y), radius, bg_color, -1) # Show the updated image with the circle cv2.imshow("Image", image) # Create a window to display the image cv2.namedWindow("Image") # Set the mouse callback function for the window cv2.setMouseCallback("Image", get_mouse_coordinates) # Display the image in the window cv2.imshow("Image", image) # Wait for a key press to exit cv2.waitKey(0) # Destroy the window cv2.destroyAllWindows() return left_clicks, right_clicks def install_package(package): """Install a Python package. Args: package (str | list): The package name or a GitHub URL or a list of package names or GitHub URLs. """ import subprocess if isinstance(package, str): packages = [package] for package in packages: if package.startswith("https://github.com"): package = f"git+{package}" # Execute pip install command and show output in real-time command = f"pip install {package}" process = subprocess.Popen(command.split(), stdout=subprocess.PIPE) # Print output in real-time while True: output = process.stdout.readline() if output == b"" and process.poll() is not None: break if output: print(output.decode("utf-8").strip()) # Wait for process to complete process.wait() def text_sam_gui(sam, basemap="SATELLITE", out_dir=None, **kwargs): """Display the SAM Map GUI. Args: sam (SamGeo): basemap (str, optional): The basemap to use. Defaults to "SATELLITE". out_dir (str, optional): The output directory. Defaults to None. """ try: import shutil import tempfile import leafmap import ipyleaflet import ipyevents import ipywidgets as widgets import leafmap.colormaps as cm from ipyfilechooser import FileChooser except ImportError: raise ImportError( "The sam_map function requires the leafmap package. Please install it first." ) if out_dir is None: out_dir = tempfile.gettempdir() m = leafmap.Map(**kwargs) m.default_style = {"cursor": "crosshair"} m.add_basemap(basemap, show=False) # Skip the image layer if localtileserver is not available try: m.add_raster(sam.source, layer_name="Image") except: pass widget_width = "280px" button_width = "90px" padding = "0px 4px 0px 4px" # upper, right, bottom, left style = {"description_width": "initial"} toolbar_button = widgets.ToggleButton( value=True, tooltip="Toolbar", icon="gear", layout=widgets.Layout(width="28px", height="28px", padding="0px 0px 0px 4px"), ) close_button = widgets.ToggleButton( value=False, tooltip="Close the tool", icon="times", button_style="primary", layout=widgets.Layout(height="28px", width="28px", padding="0px 0px 0px 4px"), ) text_prompt = widgets.Text( description="Text prompt:", style=style, layout=widgets.Layout(width=widget_width, padding=padding), ) box_slider = widgets.FloatSlider( description="Box threshold:", min=0, max=1, value=0.5, step=0.01, readout=True, continuous_update=True, layout=widgets.Layout(width=widget_width, padding=padding), style=style, ) text_slider = widgets.FloatSlider( description="Text threshold:", min=0, max=1, step=0.01, value=0.5, readout=True, continuous_update=True, layout=widgets.Layout(width=widget_width, padding=padding), style=style, ) cmap_dropdown = widgets.Dropdown( description="Palette:", options=cm.list_colormaps(), value="viridis", style=style, layout=widgets.Layout(width=widget_width, padding=padding), ) opacity_slider = widgets.FloatSlider( description="Opacity:", min=0, max=1, value=0.5, readout=True, continuous_update=True, layout=widgets.Layout(width=widget_width, padding=padding), style=style, ) def opacity_changed(change): if change["new"]: if hasattr(m, "layer_name"): mask_layer = m.find_layer(m.layer_name) if mask_layer is not None: mask_layer.interact(opacity=opacity_slider.value) opacity_slider.observe(opacity_changed, "value") segment_button = widgets.ToggleButton( description="Segment", value=False, button_style="primary", layout=widgets.Layout(padding=padding), ) save_button = widgets.ToggleButton( description="Save", value=False, button_style="primary" ) reset_button = widgets.ToggleButton( description="Reset", value=False, button_style="primary" ) segment_button.layout.width = button_width save_button.layout.width = button_width reset_button.layout.width = button_width output = widgets.Output( layout=widgets.Layout( width=widget_width, padding=padding, max_width=widget_width ) ) toolbar_header = widgets.HBox() toolbar_header.children = [close_button, toolbar_button] toolbar_footer = widgets.VBox() toolbar_footer.children = [ text_prompt, box_slider, text_slider, cmap_dropdown, opacity_slider, widgets.HBox( [segment_button, save_button, reset_button], layout=widgets.Layout(padding="0px 4px 0px 4px"), ), output, ] toolbar_widget = widgets.VBox() toolbar_widget.children = [toolbar_header, toolbar_footer] toolbar_event = ipyevents.Event( source=toolbar_widget, watched_events=["mouseenter", "mouseleave"] ) def handle_toolbar_event(event): if event["type"] == "mouseenter": toolbar_widget.children = [toolbar_header, toolbar_footer] elif event["type"] == "mouseleave": if not toolbar_button.value: toolbar_widget.children = [toolbar_button] toolbar_button.value = False close_button.value = False toolbar_event.on_dom_event(handle_toolbar_event) def toolbar_btn_click(change): if change["new"]: close_button.value = False toolbar_widget.children = [toolbar_header, toolbar_footer] else: if not close_button.value: toolbar_widget.children = [toolbar_button] toolbar_button.observe(toolbar_btn_click, "value") def close_btn_click(change): if change["new"]: toolbar_button.value = False if m.toolbar_control in m.controls: m.remove_control(m.toolbar_control) toolbar_widget.close() close_button.observe(close_btn_click, "value") def segment_button_click(change): if change["new"]: segment_button.value = False with output: output.clear_output() if len(text_prompt.value) == 0: print("Please enter a text prompt first.") elif sam.source is None: print("Please run sam.set_image() first.") else: print("Segmenting...") layer_name = text_prompt.value.replace(" ", "_") filename = os.path.join( out_dir, f"{layer_name}_{random_string()}.tif" ) sam.predict( sam.source, text_prompt.value, box_slider.value, text_slider.value, output=filename, ) sam.output = filename if m.find_layer(layer_name) is not None: m.remove_layer(m.find_layer(layer_name)) if os.path.exists(filename): try: m.add_raster( filename, layer_name=layer_name, palette=cmap_dropdown.value, opacity=opacity_slider.value, nodata=0, zoom_to_layer=False, ) m.layer_name = layer_name output.clear_output() except Exception as e: print(e) segment_button.observe(segment_button_click, "value") def filechooser_callback(chooser): with output: if chooser.selected is not None: try: filename = chooser.selected shutil.copy(sam.output, filename) vector = filename.replace(".tif", ".shp") raster_to_vector(filename, vector) except Exception as e: print(e) if hasattr(m, "save_control") and m.save_control in m.controls: m.remove_control(m.save_control) delattr(m, "save_control") save_button.value = False def save_button_click(change): if change["new"]: with output: output.clear_output() if not hasattr(m, "layer_name"): print("Please click the Segment button first.") else: sandbox_path = os.environ.get("SANDBOX_PATH") filechooser = FileChooser( path=os.getcwd(), filename=f"{m.layer_name}.tif", sandbox_path=sandbox_path, layout=widgets.Layout(width="454px"), ) filechooser.use_dir_icons = True filechooser.filter_pattern = ["*.tif"] filechooser.register_callback(filechooser_callback) save_control = ipyleaflet.WidgetControl( widget=filechooser, position="topright" ) m.add_control(save_control) m.save_control = save_control else: if hasattr(m, "save_control") and m.save_control in m.controls: m.remove_control(m.save_control) delattr(m, "save_control") save_button.observe(save_button_click, "value") def reset_button_click(change): if change["new"]: segment_button.value = False save_button.value = False reset_button.value = False opacity_slider.value = 0.5 box_slider.value = 0.5 text_slider.value = 0.5 cmap_dropdown.value = "viridis" text_prompt.value = "" output.clear_output() try: if hasattr(m, "layer_name") and m.find_layer(m.layer_name) is not None: m.remove_layer(m.find_layer(m.layer_name)) m.clear_drawings() except: pass reset_button.observe(reset_button_click, "value") toolbar_control = ipyleaflet.WidgetControl( widget=toolbar_widget, position="topright" ) m.add_control(toolbar_control) m.toolbar_control = toolbar_control return m
segment-geospatial-main
samgeo/common.py
"""The LangSAM model for segmenting objects from satellite images using text prompts. The source code is adapted from the https://github.com/luca-medeiros/lang-segment-anything repository. Credits to Luca Medeiros for the original implementation. """ import os import warnings import argparse import numpy as np import torch from PIL import Image from segment_anything import sam_model_registry from segment_anything import SamPredictor from .common import * try: import rasterio except ImportError: print("Installing rasterio...") install_package("rasterio") warnings.filterwarnings("ignore") try: import groundingdino.datasets.transforms as T from groundingdino.models import build_model from groundingdino.util import box_ops from groundingdino.util.inference import predict from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict from huggingface_hub import hf_hub_download except ImportError: print("Installing GroundingDINO...") install_package("groundingdino-py") print("Please restart the kernel and run the notebook again.") # Mode checkpoints SAM_MODELS = { "vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", "vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", "vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", } # Cache path CACHE_PATH = os.environ.get( "TORCH_HOME", os.path.expanduser("~/.cache/torch/hub/checkpoints") ) def load_model_hf( repo_id: str, filename: str, ckpt_config_filename: str, device: str = "cpu" ) -> torch.nn.Module: """ Loads a model from HuggingFace Model Hub. Args: repo_id (str): Repository ID on HuggingFace Model Hub. filename (str): Name of the model file in the repository. ckpt_config_filename (str): Name of the config file for the model in the repository. device (str): Device to load the model onto. Default is 'cpu'. Returns: torch.nn.Module: The loaded model. """ cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename) args = SLConfig.fromfile(cache_config_file) model = build_model(args) model.to(device) cache_file = hf_hub_download(repo_id=repo_id, filename=filename) checkpoint = torch.load(cache_file, map_location="cpu") model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) model.eval() return model def transform_image(image: Image) -> torch.Tensor: """ Transforms an image using standard transformations for image-based models. Args: image (Image): The PIL Image to be transformed. Returns: torch.Tensor: The transformed image as a tensor. """ transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image_transformed, _ = transform(image, None) return image_transformed # Class definition for LangSAM class LangSAM: """ A Language-based Segment-Anything Model (LangSAM) class which combines GroundingDINO and SAM. """ def __init__(self, model_type="vit_h"): """Initialize the LangSAM instance. Args: model_type (str, optional): The model type. It can be one of the following: vit_h, vit_l, vit_b. Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details. """ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.build_groundingdino() self.build_sam(model_type) self.source = None self.image = None self.masks = None self.boxes = None self.phrases = None self.logits = None self.prediction = None def build_sam(self, model_type): """Build the SAM model. Args: model_type (str, optional): The model type. It can be one of the following: vit_h, vit_l, vit_b. Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details. """ checkpoint_url = SAM_MODELS[model_type] sam = sam_model_registry[model_type]() state_dict = torch.hub.load_state_dict_from_url(checkpoint_url) sam.load_state_dict(state_dict, strict=True) sam.to(device=self.device) self.sam = SamPredictor(sam) def build_groundingdino(self): """Build the GroundingDINO model.""" ckpt_repo_id = "ShilongLiu/GroundingDINO" ckpt_filename = "groundingdino_swinb_cogcoor.pth" ckpt_config_filename = "GroundingDINO_SwinB.cfg.py" self.groundingdino = load_model_hf( ckpt_repo_id, ckpt_filename, ckpt_config_filename, self.device ) def predict_dino(self, image, text_prompt, box_threshold, text_threshold): """ Run the GroundingDINO model prediction. Args: image (Image): Input PIL Image. text_prompt (str): Text prompt for the model. box_threshold (float): Box threshold for the prediction. text_threshold (float): Text threshold for the prediction. Returns: tuple: Tuple containing boxes, logits, and phrases. """ image_trans = transform_image(image) boxes, logits, phrases = predict( model=self.groundingdino, image=image_trans, caption=text_prompt, box_threshold=box_threshold, text_threshold=text_threshold, device=self.device, ) W, H = image.size boxes = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H]) return boxes, logits, phrases def predict_sam(self, image, boxes): """ Run the SAM model prediction. Args: image (Image): Input PIL Image. boxes (torch.Tensor): Tensor of bounding boxes. Returns: Masks tensor. """ image_array = np.asarray(image) self.sam.set_image(image_array) transformed_boxes = self.sam.transform.apply_boxes_torch( boxes, image_array.shape[:2] ) masks, _, _ = self.sam.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes.to(self.sam.device), multimask_output=False, ) return masks.cpu() def set_image(self, image): """Set the input image. Args: image (str): The path to the image file or a HTTP URL. """ if isinstance(image, str): if image.startswith("http"): image = download_file(image) if not os.path.exists(image): raise ValueError(f"Input path {image} does not exist.") self.source = image else: self.source = None def predict( self, image, text_prompt, box_threshold, text_threshold, output=None, mask_multiplier=255, dtype=np.uint8, save_args={}, return_results=False, **kwargs, ): """ Run both GroundingDINO and SAM model prediction. Parameters: image (Image): Input PIL Image. text_prompt (str): Text prompt for the model. box_threshold (float): Box threshold for the prediction. text_threshold (float): Text threshold for the prediction. output (str, optional): Output path for the prediction. Defaults to None. mask_multiplier (int, optional): Mask multiplier for the prediction. Defaults to 255. dtype (np.dtype, optional): Data type for the prediction. Defaults to np.uint8. save_args (dict, optional): Save arguments for the prediction. Defaults to {}. return_results (bool, optional): Whether to return the results. Defaults to False. Returns: tuple: Tuple containing masks, boxes, phrases, and logits. """ if isinstance(image, str): if image.startswith("http"): image = download_file(image) if not os.path.exists(image): raise ValueError(f"Input path {image} does not exist.") self.source = image # Load the georeferenced image with rasterio.open(image) as src: image_np = src.read().transpose( (1, 2, 0) ) # Convert rasterio image to numpy array transform = src.transform # Save georeferencing information crs = src.crs # Save the Coordinate Reference System image_pil = Image.fromarray( image_np[:, :, :3] ) # Convert numpy array to PIL image, excluding the alpha channel else: image_pil = image self.image = image_pil boxes, logits, phrases = self.predict_dino( image_pil, text_prompt, box_threshold, text_threshold ) masks = torch.tensor([]) if len(boxes) > 0: masks = self.predict_sam(image_pil, boxes) masks = masks.squeeze(1) if boxes.nelement() == 0: # No "object" instances found print("No objects found in the image.") return else: # Create an empty image to store the mask overlays mask_overlay = np.zeros_like( image_np[..., 0], dtype=dtype ) # Adjusted for single channel for i, (box, mask) in enumerate(zip(boxes, masks)): # Convert tensor to numpy array if necessary and ensure it contains integers if isinstance(mask, torch.Tensor): mask = ( mask.cpu().numpy().astype(dtype) ) # If mask is on GPU, use .cpu() before .numpy() mask_overlay += ((mask > 0) * (i + 1)).astype( dtype ) # Assign a unique value for each mask # Normalize mask_overlay to be in [0, 255] mask_overlay = ( mask_overlay > 0 ) * mask_multiplier # Binary mask in [0, 255] if output is not None: array_to_image(mask_overlay, output, self.source, dtype=dtype, **save_args) self.masks = masks self.boxes = boxes self.phrases = phrases self.logits = logits self.prediction = mask_overlay if return_results: return masks, boxes, phrases, logits def show_anns( self, figsize=(12, 10), axis="off", cmap="viridis", alpha=0.4, add_boxes=True, box_color="r", box_linewidth=1, title=None, output=None, blend=True, **kwargs, ): """Show the annotations (objects with random color) on the input image. Args: figsize (tuple, optional): The figure size. Defaults to (12, 10). axis (str, optional): Whether to show the axis. Defaults to "off". cmap (str, optional): The colormap for the annotations. Defaults to "viridis". alpha (float, optional): The alpha value for the annotations. Defaults to 0.4. add_boxes (bool, optional): Whether to show the bounding boxes. Defaults to True. box_color (str, optional): The color for the bounding boxes. Defaults to "r". box_linewidth (int, optional): The line width for the bounding boxes. Defaults to 1. title (str, optional): The title for the image. Defaults to None. output (str, optional): The path to the output image. Defaults to None. blend (bool, optional): Whether to show the input image. Defaults to True. kwargs (dict, optional): Additional arguments for matplotlib.pyplot.savefig(). """ import warnings import matplotlib.pyplot as plt import matplotlib.patches as patches warnings.filterwarnings("ignore") anns = self.prediction if anns is None: print("Please run predict() first.") return elif len(anns) == 0: print("No objects found in the image.") return plt.figure(figsize=figsize) plt.imshow(self.image) if add_boxes: for box in self.boxes: # Draw bounding box box = box.cpu().numpy() # Convert the tensor to a numpy array rect = patches.Rectangle( (box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=box_linewidth, edgecolor=box_color, facecolor="none", ) plt.gca().add_patch(rect) if "dpi" not in kwargs: kwargs["dpi"] = 100 if "bbox_inches" not in kwargs: kwargs["bbox_inches"] = "tight" plt.imshow(anns, cmap=cmap, alpha=alpha) if title is not None: plt.title(title) plt.axis(axis) if output is not None: if blend: plt.savefig(output, **kwargs) else: array_to_image(self.prediction, output, self.source) def raster_to_vector(self, image, output, simplify_tolerance=None, **kwargs): """Save the result to a vector file. Args: image (str): The path to the image file. output (str): The path to the vector file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ raster_to_vector(image, output, simplify_tolerance=simplify_tolerance, **kwargs) def show_map(self, basemap="SATELLITE", out_dir=None, **kwargs): """Show the interactive map. Args: basemap (str, optional): The basemap. It can be one of the following: SATELLITE, ROADMAP, TERRAIN, HYBRID. out_dir (str, optional): The path to the output directory. Defaults to None. Returns: leafmap.Map: The map object. """ return text_sam_gui(self, basemap=basemap, out_dir=out_dir, **kwargs) def main(): parser = argparse.ArgumentParser(description="LangSAM") parser.add_argument("--image", required=True, help="path to the image") parser.add_argument("--prompt", required=True, help="text prompt") parser.add_argument( "--box_threshold", default=0.5, type=float, help="box threshold" ) parser.add_argument( "--text_threshold", default=0.5, type=float, help="text threshold" ) args = parser.parse_args() with rasterio.open(args.image) as src: image_np = src.read().transpose( (1, 2, 0) ) # Convert rasterio image to numpy array transform = src.transform # Save georeferencing information crs = src.crs # Save the Coordinate Reference System model = LangSAM() image_pil = Image.fromarray( image_np[:, :, :3] ) # Convert numpy array to PIL image, excluding the alpha channel image_np_copy = image_np.copy() # Create a copy for modifications masks, boxes, phrases, logits = model.predict( image_pil, args.prompt, args.box_threshold, args.text_threshold ) if boxes.nelement() == 0: # No "object" instances found print("No objects found in the image.") else: # Create an empty image to store the mask overlays mask_overlay = np.zeros_like( image_np[..., 0], dtype=np.int64 ) # Adjusted for single channel for i in range(len(boxes)): box = boxes[i].cpu().numpy() # Convert the tensor to a numpy array mask = masks[i].cpu().numpy() # Convert the tensor to a numpy array # Add the mask to the mask_overlay image mask_overlay += (mask > 0) * (i + 1) # Assign a unique value for each mask # Normalize mask_overlay to be in [0, 255] mask_overlay = ((mask_overlay > 0) * 255).astype( rasterio.uint8 ) # Binary mask in [0, 255] with rasterio.open( "mask.tif", "w", driver="GTiff", height=mask_overlay.shape[0], width=mask_overlay.shape[1], count=1, dtype=mask_overlay.dtype, crs=crs, transform=transform, ) as dst: dst.write(mask_overlay, 1) if __name__ == "__main__": main()
segment-geospatial-main
samgeo/text_sam.py
""" The source code is adapted from https://github.com/aliaksandr960/segment-anything-eo. Credit to the author Aliaksandr Hancharenka. """ import os import cv2 import torch import numpy as np from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor from .common import * class SamGeo: """The main class for segmenting geospatial data with the Segment Anything Model (SAM). See https://github.com/facebookresearch/segment-anything for details. """ def __init__( self, model_type="vit_h", checkpoint="sam_vit_h_4b8939.pth", automatic=True, device=None, sam_kwargs=None, ): """Initialize the class. Args: model_type (str, optional): The model type. It can be one of the following: vit_h, vit_l, vit_b. Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details. checkpoint (str, optional): The path to the model checkpoint. It can be one of the following: sam_vit_h_4b8939.pth, sam_vit_l_0b3195.pth, sam_vit_b_01ec64.pth. Defaults to "sam_vit_h_4b8939.pth". See https://bit.ly/3VrpxUh for more details. automatic (bool, optional): Whether to use the automatic mask generator or input prompts. Defaults to True. The automatic mask generator will segment the entire image, while the input prompts will segment selected objects. device (str, optional): The device to use. It can be one of the following: cpu, cuda. Defaults to None, which will use cuda if available. sam_kwargs (dict, optional): Optional arguments for fine-tuning the SAM model. Defaults to None. The available arguments with default values are listed below. See https://bit.ly/410RV0v for more details. points_per_side: Optional[int] = 32, points_per_batch: int = 64, pred_iou_thresh: float = 0.88, stability_score_thresh: float = 0.95, stability_score_offset: float = 1.0, box_nms_thresh: float = 0.7, crop_n_layers: int = 0, crop_nms_thresh: float = 0.7, crop_overlap_ratio: float = 512 / 1500, crop_n_points_downscale_factor: int = 1, point_grids: Optional[List[np.ndarray]] = None, min_mask_region_area: int = 0, output_mode: str = "binary_mask", """ # Download the checkpoint if it does not exist CACHE_PATH = os.environ.get( "TORCH_HOME", os.path.expanduser("~/.cache/torch/hub/checkpoints") ) if not os.path.exists(checkpoint): basename = os.path.basename(checkpoint) checkpoint = os.path.join(CACHE_PATH, basename) if not os.path.exists(checkpoint): print(f"Checkpoint {checkpoint} does not exist.") download_checkpoint(output=checkpoint) self.checkpoint = checkpoint # Use cuda if available if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" if device == "cuda": torch.cuda.empty_cache() self.checkpoint = checkpoint self.model_type = model_type self.device = device self.sam_kwargs = sam_kwargs # Optional arguments for fine-tuning the SAM model self.source = None # Store the input image path self.image = None # Store the input image as a numpy array # Store the masks as a list of dictionaries. Each mask is a dictionary # containing segmentation, area, bbox, predicted_iou, point_coords, stability_score, and crop_box self.masks = None self.objects = None # Store the mask objects as a numpy array # Store the annotations (objects with random color) as a numpy array. self.annotations = None # Store the predicted masks, iou_predictions, and low_res_masks self.prediction = None self.scores = None self.logits = None # Build the SAM model self.sam = sam_model_registry[self.model_type](checkpoint=self.checkpoint) self.sam.to(device=self.device) # Use optional arguments for fine-tuning the SAM model sam_kwargs = self.sam_kwargs if self.sam_kwargs is not None else {} if automatic: # Segment the entire image using the automatic mask generator self.mask_generator = SamAutomaticMaskGenerator(self.sam, **sam_kwargs) else: # Segment selected objects using input prompts self.predictor = SamPredictor(self.sam, **sam_kwargs) def __call__( self, image, foreground=True, erosion_kernel=(3, 3), mask_multiplier=255, **kwargs, ): """Generate masks for the input tile. This function originates from the segment-anything-eo repository. See https://bit.ly/41pwiHw Args: image (np.ndarray): The input image as a numpy array. foreground (bool, optional): Whether to generate the foreground mask. Defaults to True. erosion_kernel (tuple, optional): The erosion kernel for filtering object masks and extract borders. Defaults to (3, 3). mask_multiplier (int, optional): The mask multiplier for the output mask, which is usually a binary mask [0, 1]. You can use this parameter to scale the mask to a larger range, for example [0, 255]. Defaults to 255. """ h, w, _ = image.shape masks = self.mask_generator.generate(image) if foreground: # Extract foreground objects only resulting_mask = np.zeros((h, w), dtype=np.uint8) else: resulting_mask = np.ones((h, w), dtype=np.uint8) resulting_borders = np.zeros((h, w), dtype=np.uint8) for m in masks: mask = (m["segmentation"] > 0).astype(np.uint8) resulting_mask += mask # Apply erosion to the mask if erosion_kernel is not None: mask_erode = cv2.erode(mask, erosion_kernel, iterations=1) mask_erode = (mask_erode > 0).astype(np.uint8) edge_mask = mask - mask_erode resulting_borders += edge_mask resulting_mask = (resulting_mask > 0).astype(np.uint8) resulting_borders = (resulting_borders > 0).astype(np.uint8) resulting_mask_with_borders = resulting_mask - resulting_borders return resulting_mask_with_borders * mask_multiplier def generate( self, source, output=None, foreground=True, batch=False, erosion_kernel=None, mask_multiplier=255, unique=True, **kwargs, ): """Generate masks for the input image. Args: source (str | np.ndarray): The path to the input image or the input image as a numpy array. output (str, optional): The path to the output image. Defaults to None. foreground (bool, optional): Whether to generate the foreground mask. Defaults to True. batch (bool, optional): Whether to generate masks for a batch of image tiles. Defaults to False. erosion_kernel (tuple, optional): The erosion kernel for filtering object masks and extract borders. Such as (3, 3) or (5, 5). Set to None to disable it. Defaults to None. mask_multiplier (int, optional): The mask multiplier for the output mask, which is usually a binary mask [0, 1]. You can use this parameter to scale the mask to a larger range, for example [0, 255]. Defaults to 255. The parameter is ignored if unique is True. unique (bool, optional): Whether to assign a unique value to each object. Defaults to True. The unique value increases from 1 to the number of objects. The larger the number, the larger the object area. """ if isinstance(source, str): if source.startswith("http"): source = download_file(source) if not os.path.exists(source): raise ValueError(f"Input path {source} does not exist.") if batch: # Subdivide the image into tiles and segment each tile self.batch = True self.source = source self.masks = output return tiff_to_tiff( source, output, self, foreground=foreground, erosion_kernel=erosion_kernel, mask_multiplier=mask_multiplier, **kwargs, ) image = cv2.imread(source) elif isinstance(source, np.ndarray): image = source else: raise ValueError("Input source must be either a path or a numpy array.") self.source = source # Store the input image path self.image = image # Store the input image as a numpy array mask_generator = self.mask_generator # The automatic mask generator masks = mask_generator.generate(image) # Segment the input image self.masks = masks # Store the masks as a list of dictionaries self.batch = False if output is not None: # Save the masks to the output path. The output is either a binary mask or a mask of objects with unique values. self.save_masks( output, foreground, unique, erosion_kernel, mask_multiplier, **kwargs ) def save_masks( self, output=None, foreground=True, unique=True, erosion_kernel=None, mask_multiplier=255, **kwargs, ): """Save the masks to the output path. The output is either a binary mask or a mask of objects with unique values. Args: output (str, optional): The path to the output image. Defaults to None, saving the masks to SamGeo.objects. foreground (bool, optional): Whether to generate the foreground mask. Defaults to True. unique (bool, optional): Whether to assign a unique value to each object. Defaults to True. erosion_kernel (tuple, optional): The erosion kernel for filtering object masks and extract borders. Such as (3, 3) or (5, 5). Set to None to disable it. Defaults to None. mask_multiplier (int, optional): The mask multiplier for the output mask, which is usually a binary mask [0, 1]. You can use this parameter to scale the mask to a larger range, for example [0, 255]. Defaults to 255. """ if self.masks is None: raise ValueError("No masks found. Please run generate() first.") h, w, _ = self.image.shape masks = self.masks # Set output image data type based on the number of objects if len(masks) < 255: dtype = np.uint8 elif len(masks) < 65535: dtype = np.uint16 else: dtype = np.uint32 # Generate a mask of objects with unique values if unique: # Sort the masks by area in ascending order sorted_masks = sorted(masks, key=(lambda x: x["area"]), reverse=False) # Create an output image with the same size as the input image objects = np.zeros( ( sorted_masks[0]["segmentation"].shape[0], sorted_masks[0]["segmentation"].shape[1], ) ) # Assign a unique value to each object for index, ann in enumerate(sorted_masks): m = ann["segmentation"] objects[m] = index + 1 # Generate a binary mask else: if foreground: # Extract foreground objects only resulting_mask = np.zeros((h, w), dtype=dtype) else: resulting_mask = np.ones((h, w), dtype=dtype) resulting_borders = np.zeros((h, w), dtype=dtype) for m in masks: mask = (m["segmentation"] > 0).astype(dtype) resulting_mask += mask # Apply erosion to the mask if erosion_kernel is not None: mask_erode = cv2.erode(mask, erosion_kernel, iterations=1) mask_erode = (mask_erode > 0).astype(dtype) edge_mask = mask - mask_erode resulting_borders += edge_mask resulting_mask = (resulting_mask > 0).astype(dtype) resulting_borders = (resulting_borders > 0).astype(dtype) objects = resulting_mask - resulting_borders objects = objects * mask_multiplier objects = objects.astype(dtype) self.objects = objects if output is not None: # Save the output image array_to_image(self.objects, output, self.source, **kwargs) def show_masks( self, figsize=(12, 10), cmap="binary_r", axis="off", foreground=True, **kwargs ): """Show the binary mask or the mask of objects with unique values. Args: figsize (tuple, optional): The figure size. Defaults to (12, 10). cmap (str, optional): The colormap. Defaults to "binary_r". axis (str, optional): Whether to show the axis. Defaults to "off". foreground (bool, optional): Whether to show the foreground mask only. Defaults to True. **kwargs: Other arguments for save_masks(). """ import matplotlib.pyplot as plt if self.batch: self.objects = cv2.imread(self.masks) else: if self.objects is None: self.save_masks(foreground=foreground, **kwargs) plt.figure(figsize=figsize) plt.imshow(self.objects, cmap=cmap) plt.axis(axis) plt.show() def show_anns( self, figsize=(12, 10), axis="off", alpha=0.35, output=None, blend=True, **kwargs, ): """Show the annotations (objects with random color) on the input image. Args: figsize (tuple, optional): The figure size. Defaults to (12, 10). axis (str, optional): Whether to show the axis. Defaults to "off". alpha (float, optional): The alpha value for the annotations. Defaults to 0.35. output (str, optional): The path to the output image. Defaults to None. blend (bool, optional): Whether to show the input image. Defaults to True. """ import matplotlib.pyplot as plt anns = self.masks if self.image is None: print("Please run generate() first.") return if anns is None or len(anns) == 0: return plt.figure(figsize=figsize) plt.imshow(self.image) sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True) ax = plt.gca() ax.set_autoscale_on(False) img = np.ones( ( sorted_anns[0]["segmentation"].shape[0], sorted_anns[0]["segmentation"].shape[1], 4, ) ) img[:, :, 3] = 0 for ann in sorted_anns: m = ann["segmentation"] color_mask = np.concatenate([np.random.random(3), [alpha]]) img[m] = color_mask ax.imshow(img) if "dpi" not in kwargs: kwargs["dpi"] = 100 if "bbox_inches" not in kwargs: kwargs["bbox_inches"] = "tight" plt.axis(axis) self.annotations = (img[:, :, 0:3] * 255).astype(np.uint8) if output is not None: if blend: array = blend_images( self.annotations, self.image, alpha=alpha, show=False ) else: array = self.annotations array_to_image(array, output, self.source) def set_image(self, image, image_format="RGB"): """Set the input image as a numpy array. Args: image (np.ndarray): The input image as a numpy array. image_format (str, optional): The image format, can be RGB or BGR. Defaults to "RGB". """ if isinstance(image, str): if image.startswith("http"): image = download_file(image) if not os.path.exists(image): raise ValueError(f"Input path {image} does not exist.") self.image = image image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif isinstance(image, np.ndarray): pass else: raise ValueError("Input image must be either a path or a numpy array.") self.predictor.set_image(image, image_format=image_format) def save_prediction( self, output, index=None, mask_multiplier=255, dtype=np.float32, vector=None, simplify_tolerance=None, **kwargs, ): """Save the predicted mask to the output path. Args: output (str): The path to the output image. index (int, optional): The index of the mask to save. Defaults to None, which will save the mask with the highest score. mask_multiplier (int, optional): The mask multiplier for the output mask, which is usually a binary mask [0, 1]. vector (str, optional): The path to the output vector file. Defaults to None. dtype (np.dtype, optional): The data type of the output image. Defaults to np.float32. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ if self.scores is None: raise ValueError("No predictions found. Please run predict() first.") if index is None: index = self.scores.argmax(axis=0) array = self.masks[index] * mask_multiplier self.prediction = array array_to_image(array, output, self.image, dtype=dtype, **kwargs) if vector is not None: raster_to_vector(output, vector, simplify_tolerance=simplify_tolerance) def predict( self, point_coords=None, point_labels=None, box=None, point_crs=None, mask_input=None, multimask_output=True, return_logits=False, output=None, index=None, mask_multiplier=255, dtype=np.float32, return_results=False, **kwargs, ): """Predict masks for the given input prompts, using the currently set image. Args: point_coords (str | dict | list | np.ndarray, optional): A Nx2 array of point prompts to the model. Each point is in (X,Y) in pixels. It can be a path to a vector file, a GeoJSON dictionary, a list of coordinates [lon, lat], or a numpy array. Defaults to None. point_labels (list | int | np.ndarray, optional): A length N array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. point_crs (str, optional): The coordinate reference system (CRS) of the point prompts. box (list | np.ndarray, optional): A length 4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray, optional): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form 1xHxW, where for SAM, H=W=256. multimask_output (bool, optional): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool, optional): If true, returns un-thresholded masks logits instead of a binary mask. output (str, optional): The path to the output image. Defaults to None. index (index, optional): The index of the mask to save. Defaults to None, which will save the mask with the highest score. mask_multiplier (int, optional): The mask multiplier for the output mask, which is usually a binary mask [0, 1]. dtype (np.dtype, optional): The data type of the output image. Defaults to np.float32. return_results (bool, optional): Whether to return the predicted masks, scores, and logits. Defaults to False. """ if isinstance(point_coords, str): point_coords = vector_to_geojson(point_coords) if isinstance(point_coords, dict): point_coords = geojson_to_coords(point_coords) if hasattr(self, "point_coords"): point_coords = self.point_coords if hasattr(self, "point_labels"): point_labels = self.point_labels if point_crs is not None: point_coords = coords_to_xy(self.image, point_coords, point_crs) if isinstance(point_coords, list): point_coords = np.array(point_coords) if point_labels is None: point_labels = [1] * len(point_coords) elif isinstance(point_labels, int): point_labels = [point_labels] * len(point_coords) if isinstance(point_labels, list): if len(point_labels) != len(point_coords): if len(point_labels) == 1: point_labels = point_labels * len(point_coords) else: raise ValueError( "The length of point_labels must be equal to the length of point_coords." ) point_labels = np.array(point_labels) if isinstance(box, list) and point_crs is not None: box = np.array(bbox_to_xy(self.image, box, point_crs)) predictor = self.predictor masks, scores, logits = predictor.predict( point_coords, point_labels, box, mask_input, multimask_output, return_logits ) self.masks = masks self.scores = scores self.logits = logits if output is not None: self.save_prediction(output, index, mask_multiplier, dtype, **kwargs) if return_results: return masks, scores, logits def show_map(self, basemap="SATELLITE", repeat_mode=True, out_dir=None, **kwargs): """Show the interactive map. Args: basemap (str, optional): The basemap. It can be one of the following: SATELLITE, ROADMAP, TERRAIN, HYBRID. repeat_mode (bool, optional): Whether to use the repeat mode for draw control. Defaults to True. out_dir (str, optional): The path to the output directory. Defaults to None. Returns: leafmap.Map: The map object. """ return sam_map_gui( self, basemap=basemap, repeat_mode=repeat_mode, out_dir=out_dir, **kwargs ) def show_canvas(self, fg_color=(0, 255, 0), bg_color=(0, 0, 255), radius=5): """Show a canvas to collect foreground and background points. Args: image (str | np.ndarray): The input image. fg_color (tuple, optional): The color for the foreground points. Defaults to (0, 255, 0). bg_color (tuple, optional): The color for the background points. Defaults to (0, 0, 255). radius (int, optional): The radius of the points. Defaults to 5. Returns: tuple: A tuple of two lists of foreground and background points. """ if self.image is None: raise ValueError("Please run set_image() first.") image = self.image fg_points, bg_points = show_canvas(image, fg_color, bg_color, radius) self.fg_points = fg_points self.bg_points = bg_points point_coords = fg_points + bg_points point_labels = [1] * len(fg_points) + [0] * len(bg_points) self.point_coords = point_coords self.point_labels = point_labels def clear_cuda_cache(self): """Clear the CUDA cache.""" if torch.cuda.is_available(): torch.cuda.empty_cache() def image_to_image(self, image, **kwargs): return image_to_image(image, self, **kwargs) def download_tms_as_tiff(self, source, pt1, pt2, zoom, dist): image = draw_tile(source, pt1[0], pt1[1], pt2[0], pt2[1], zoom, dist) return image def raster_to_vector(self, image, output, simplify_tolerance=None, **kwargs): """Save the result to a vector file. Args: image (str): The path to the image file. output (str): The path to the vector file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ raster_to_vector(image, output, simplify_tolerance=simplify_tolerance, **kwargs) def tiff_to_vector(self, tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a gpkg file. Args: tiff_path (str): The path to the tiff file. output (str): The path to the vector file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ raster_to_vector( tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs ) def tiff_to_gpkg(self, tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a gpkg file. Args: tiff_path (str): The path to the tiff file. output (str): The path to the gpkg file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ raster_to_gpkg( tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs ) def tiff_to_shp(self, tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a shapefile. Args: tiff_path (str): The path to the tiff file. output (str): The path to the shapefile. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ raster_to_shp( tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs ) def tiff_to_geojson(self, tiff_path, output, simplify_tolerance=None, **kwargs): """Convert a tiff file to a GeoJSON file. Args: tiff_path (str): The path to the tiff file. output (str): The path to the GeoJSON file. simplify_tolerance (float, optional): The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. """ raster_to_geojson( tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs ) class SamGeoPredictor(SamPredictor): def __init__( self, sam_model, ): from segment_anything.utils.transforms import ResizeLongestSide self.model = sam_model self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) def set_image(self, image): super(SamGeoPredictor, self).set_image(image) def predict( self, src_fp=None, geo_box=None, point_coords=None, point_labels=None, box=None, mask_input=None, multimask_output=True, return_logits=False, ): if geo_box and src_fp: self.crs = "EPSG:4326" dst_crs = get_crs(src_fp) sw = transform_coords(geo_box[0], geo_box[1], self.crs, dst_crs) ne = transform_coords(geo_box[2], geo_box[3], self.crs, dst_crs) xs = np.array([sw[0], ne[0]]) ys = np.array([sw[1], ne[1]]) box = get_pixel_coords(src_fp, xs, ys) self.geo_box = geo_box self.width = box[2] - box[0] self.height = box[3] - box[1] self.geo_transform = set_transform(geo_box, self.width, self.height) masks, iou_predictions, low_res_masks = super(SamGeoPredictor, self).predict( point_coords, point_labels, box, mask_input, multimask_output, return_logits ) return masks, iou_predictions, low_res_masks def masks_to_geotiff(self, src_fp, dst_fp, masks): profile = get_profile(src_fp) write_raster( dst_fp, masks, profile, self.width, self.height, self.geo_transform, self.crs, ) def geotiff_to_geojson(self, src_fp, dst_fp, bidx=1): gdf = get_features(src_fp, bidx) write_features(gdf, dst_fp) return gdf
segment-geospatial-main
samgeo/samgeo.py
import torch from infinite.main import LMInfinite d_model = 512 seq_len = 100 n_global = 100 l_pretrain = 50 #sample q = torch.randn(1, seq_len, d_model) k = torch.randn(1, seq_len, d_model) v = torch.randn(1, seq_len, d_model) #llm infinite mode model = LMInfinite( d_model, n_global, l_pretrain ) #forwad pass output = model(q, k, v) print(output.shape)
LM-Infinite-main
example.py
from infinite.main import LMInfinite
LM-Infinite-main
infinite/__init__.py
import torch from torch import nn import math import torch.nn.functional as F class LMInfinite(nn.Module): def __init__( self, d_model, n_global=100, l_pretrain=2048 ): super(LMInfinite, self).__init__() self.d_model = d_model self.n_global = n_global self.l_pretrain=l_pretrain def lambda_mask(self, seq_len): #create mask of shape (seq_len, seq_len) with ones on the allowed positions and negative infinite on the disallowed positions mask = torch.full((seq_len, seq_len), float('-inf')) for i in range(seq_len): #global branch mask[i, :min(self.n_global, i+1)] = 0 #local branch mask[i, max(0, i-self.l_pretrain+1):i+1] = 0 return mask def distance_limit(self, distance): #bound the effective distance within l_pretrain return torch.clamp(distance, max=self.l_pretrain) def forward(self, q, k, v): seq_len = q.size(1) #compute attention logits logits = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_model) #compute the distances between each pair of tokens distances = torch.arange(seq_len).unsqueeze(0) - torch.arange(seq_len).unsqueeze(1) #distance limit distances = self.distance_limit(distances) #add distance limit to the logits logits += distances #apply lambda mask mask = self.lambda_mask(seq_len) logits = logits + mask.to(logits.device) #attention weights weights = F.softmax(logits, dim=-1) #output output = torch.matmul(weights, v) return output
LM-Infinite-main
infinite/main.py
import argparse def parse_args(): parser = argparse.ArgumentParser(description='MOSS-RLHF @Fudan NLP Group') # Path parser.add_argument('--model_save_path', type=str, default='', help='checkpoint path, used for save model and training') parser.add_argument('--policy_model_path', type=str, default='', help='policy model and reference model path') parser.add_argument('--critic_model_path', type=str, default='', help='critic model and reward model path') parser.add_argument('--tokenizer_name_or_path', type=str, default='/huggingface_models/open-chinese-llama-7b', help='tokenizer name or path') parser.add_argument('--data_path', type=str, default='./data', help='dataset for training and validation') parser.add_argument('--logdir', type=str, default=None, help='path to save tensorboard logs') # Training parser.add_argument('--lr', type=float, default=5e-7, help='learning rate of policy model') parser.add_argument('--critic_lr', type=float, default=15e-7, help='learning rate of critic model') parser.add_argument('--seed', type=int, default=42, help='seed') parser.add_argument('--batch_size', type=int, default=32, help='training batch size, *NOT* for sampling from env') parser.add_argument('--train_steps', type=int, default=5000, help='train steps') parser.add_argument('--warmup_steps', type=int, default=500, help='warmup steps') parser.add_argument('--save_per_step', type=int, default=100, help='save ckpt per steps') parser.add_argument('--beta1', type=float, default=0.9, help='adam') parser.add_argument('--beta2', type=float, default=0.95, help='adam') parser.add_argument('--eps', type=float, default=1e-6, help='optimizer') parser.add_argument('--num_workers', type=int, default=1, help='dataloader') parser.add_argument('--num_prefetch', type=int, default=32, help='dataloader') parser.add_argument('--maxlen_prompt', type=int, default=2048, help='max len for training, including model prompt and response') parser.add_argument('--gradient_checkpoint', action='store_true', help='deepspeed') # PPO in LLMs parser.add_argument('--num_rollouts', type=int, default=128, help='nums of samples in current replay buffer') parser.add_argument('--rollout_batch_size', type=int, default=32, help='batch size of sampling from env') parser.add_argument('--ppo_pretrain_data_path', type=str, default='', help='dataset folder path for pertrain loss of step3: rlhf') parser.add_argument('--ppo_pretrain_data_type', type=str, default='sft', choices=['sft', 'pretrain'], help='dataset folder path for pertrain loss of step3: rlhf') parser.add_argument('--ppo_pretrain_batch_size_ratio', type=int, default=1, help='ppo batch size ratio') parser.add_argument('--ppo_pretrain_loss_weight', type=float, default=0., help='add pretrain loss in PPO training: ppo-rtx') parser.add_argument('--kl_penalty_weight', type=float, default=0.02, help='kl penalty') parser.add_argument('--advantage_clip', type=float, default=0.5, help='clip advantage') parser.add_argument('--vf_loss_weight', type=float, default=1., help='vf loss weight') parser.add_argument('--entropy_loss_weight', type=float, default=0., help='entropy loss weight') parser.add_argument('--reward_clip', type=float, default=10., help='reward clip') parser.add_argument('--entropy_clip', type=float, default=35., help='entropy loss clip') parser.add_argument('--pg_clip', type=float, default=0.2, help='pg loss clip') parser.add_argument('--value_clip', type=float, default=0.2, help='value clip for critic model') parser.add_argument('--gamma', type=float, default=1., help='GAE in PPO') parser.add_argument('--lam', type=float, default=0.95, help='GAE in PPO') # Trick and method options for PPO parser.add_argument('--use_reward_clip', action='store_true', help='use reward clip') parser.add_argument('--use_reward_scaling', action='store_true', help='use reward scaling') parser.add_argument('--use_reward_norm', action='store_true', help='user reward norm') parser.add_argument('--use_critic_loss_clip', action='store_true', help='use critic loss clip') parser.add_argument('--use_policy_loss_clip', action='store_true', help='use policy loss clip') parser.add_argument('--use_advantage_norm', action='store_true', help='use advantage norm') parser.add_argument('--use_advantage_clip', action='store_true', help='use advantage clip') parser.add_argument('--use_ppo_pretrain_loss', action='store_true', help='use ppo pretrain loss') parser.add_argument('--use_entropy_loss', action='store_true', help='use ppo entropy loss') # Sample from env parser.add_argument('--maxlen_res', type=int, default=128, help='max len for model response') parser.add_argument('--temperature', type=float, default=0.8, help='temperature') parser.add_argument('--repetition_penalty', type=float, default=1.1, help='repetition penalty') parser.add_argument('--topp', type=float, default=0.9, help='nucleus sampling') opt = parser.parse_args() return opt
MOSS-RLHF-main
config.py
import time import math import random import logging from typing import List import numpy as np import torch import torch.nn as nn from config import parse_args from ppo.ppo_trainer import PPOTrainer from ppo.ppo_datahelper import get_tokenizer from utils import * from transformers.models.llama.modeling_llama import LlamaForCausalLM class Llama(LlamaForCausalLM): def __init__(self, config, opt, tokenizer): super().__init__(config) self.opt = opt self.tokenizer = tokenizer def forward(self, decoder_input, incr_state=None): attention_mask = decoder_input.ne(self.tokenizer.pad_token_id) if incr_state is not None: decoder_input = decoder_input[:, -1:] output = super().forward( input_ids=decoder_input, attention_mask=attention_mask, past_key_values=incr_state, return_dict=True, use_cache=not self.training ) logits = output.logits new_incr_states = output.past_key_values return logits, new_incr_states @torch.no_grad() def generate(self, batch, **kwargs): """ Generate response """ maxlen_res = kwargs.pop('maxlen_res', self.opt.maxlen_res) temperature = kwargs.pop('temperature', self.opt.temperature) repetition_penalty = kwargs.pop('repetition_penalty', self.opt.repetition_penalty) topp = kwargs.pop('topp', self.opt.topp) decoder_input: torch.LongTensor = batch['text_vec'] # (bsz, ...) assert decoder_input[:, -1].ne(self.tokenizer.pad_token_id).all(), 'Last token should not be a padding token (you can use left padding instead).' dev = decoder_input.device bsz = decoder_input.size(0) scores = torch.zeros((bsz,), device=dev, dtype=torch.float16) done = torch.zeros((bsz,), device=dev).to(torch.bool) inds = torch.arange(bsz).to(dev).unsqueeze(1).view(-1) decoder_input = torch.index_select(decoder_input, 0, inds) init_length = decoder_input.size(1) incr_state = None for _token in range(maxlen_res): if done.all(): break score, incr_state, *_ = self.forward(decoder_input, incr_state) score = score.half() # now score is bs, len, vocab_size score = score[:, -1, :] # calculate repetition penalty if repetition_penalty > 1.: penalty_tokens = decoder_input[:, init_length:] penalty_scores = torch.gather(score, dim=1, index=penalty_tokens) penalty_scores = torch.where(penalty_scores < 0., penalty_scores * repetition_penalty, penalty_scores / repetition_penalty) score = score.scatter_(dim=1, index=penalty_tokens, src=penalty_scores) # nucleus sampling score = torch.softmax(score.div(temperature), dim=-1) probs = top_p_logits(score, topp=topp, filter_value=0) tok_ids = torch.multinomial(probs, 1)[:, 0] hyp_ids = torch.arange(probs.size(0), device=dev) scores = scores + probs[hyp_ids, tok_ids].log() * ~done tok_ids = torch.where(done, self.tokenizer.pad_token_id, tok_ids) decoder_input = torch.cat((decoder_input, tok_ids.unsqueeze(-1)), dim=-1) done = done | tok_ids.eq(self.tokenizer.eos_token_id) incr_state = self._reorder_cache(incr_state, hyp_ids) # get all finalized candidates for each sample decoder_input = decoder_input[:, init_length:] decoder_input = decoder_input.view(bsz, -1) scores = scores.view(bsz, ) lengths = decoder_input.ne(self.tokenizer.pad_token_id).sum(dim=-1) length_penalty = torch.pow(lengths, 1.0) scores /= length_penalty preds_scores = [] for i in range(bsz): seq: torch.LongTensor = decoder_input[i, :lengths[i, ]] res_scores = (float(scores[i, ]), seq.tolist()) preds_scores.append([res_scores]) best_preds_scores = [preds[0] for preds in preds_scores] return best_preds_scores, preds_scores class LlamaRewardModel(LlamaForCausalLM): def __init__(self, config, opt, tokenizer): super().__init__(config) self.opt = opt self.tokenizer = tokenizer self.reward_head = torch.nn.Linear(config.hidden_size, 1, bias=False) def forward(self, decoder_input, only_last=True): attention_mask = decoder_input.ne(self.tokenizer.pad_token_id) output = self.model.forward( input_ids=decoder_input, attention_mask=attention_mask, return_dict=True, use_cache=False ) if only_last: logits = self.reward_head(output.last_hidden_state[:, -1, :]).squeeze(-1) else: logits = self.reward_head(output.last_hidden_state).squeeze(-1) return (logits,) def main(opt): # setup accelerator accelerator = setup_accelerator() # setup deepspeed deepspeed_states = AcceleratorState().deepspeed_plugin deepspeed_states.deepspeed_config['train_micro_batch_size_per_gpu'] = opt.batch_size deepspeed_states.deepspeed_config['checkpoint'] = {'use_node_local_storage': True} # logging config logging.basicConfig( format='%(asctime)s - ' + f'Rank: {accelerator.process_index}' + ' - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO ) logger = logging.getLogger(__name__) # fix seed random.seed(opt.seed) np.random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed(opt.seed) # tokenizer tokenizer = get_tokenizer(opt) # load policy model logging.info(f"Loading policy model from: {opt.policy_model_path}...") policy_model = Llama.from_pretrained(opt.policy_model_path, opt, tokenizer) policy_model._set_gradient_checkpointing(policy_model.model, opt.gradient_checkpoint) # load critic model logging.info(f"Loading critic model from: {opt.critic_model_path}...") critic_model = LlamaRewardModel.from_pretrained(opt.critic_model_path, opt, tokenizer) critic_model._set_gradient_checkpointing(critic_model.model, opt.gradient_checkpoint) # load reference model logging.info(f"Loading reference model from: {opt.policy_model_path}...") ref_model = Llama.from_pretrained(opt.policy_model_path, opt, tokenizer) # load reward model logging.info(f"Loading reward model from: {opt.critic_model_path}...") reward_model = LlamaRewardModel.from_pretrained(opt.critic_model_path, opt, tokenizer) synchronize_if_distributed() trainer = PPOTrainer(opt, policy_model, ref_model, critic_model, reward_model, accelerator) trainer.train() logging.info('==================Congrats! Training completed, exit process...==================') if __name__ == '__main__': opt = parse_args() print_rank_0(opt) main(opt)
MOSS-RLHF-main
train_ppo.py
MOSS-RLHF-main
__init__.py
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import fire import torch import tqdm import transformers from train_ppo import LlamaRewardModel @torch.inference_mode() def make_diff( path_raw: str, path_tuned: str, path_diff: str, device="cpu", # "cuda" or "cpu" ): """Make the weight diff. This function is given to present full transparency of how the weight diff was created. Run: python weight_diff.py make_diff --path_raw <your_path_raw> --path_tuned <your_path_tuned> --path_diff <your_path_diff> """ model_tuned = LlamaRewardModel.from_pretrained( path_tuned, opt=None, tokenizer=None, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) # zh: decapoda-research/llama-7b-hf # en: model_raw = transformers.AutoModelForCausalLM.from_pretrained( path_raw, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) state_dict_tuned = model_tuned.state_dict() state_dict_raw = model_raw.state_dict() for key in tqdm.tqdm(state_dict_tuned): print(key) check_allsum = sum(state_dict_tuned[key].sum() for key in state_dict_tuned) # 49954.0859375 print(f'check sum is {check_allsum}') for key in tqdm.tqdm(state_dict_tuned): if 'layers' in key: state_dict_tuned[key].add_(-state_dict_raw[key]) model_tuned.save_pretrained(path_diff) @torch.inference_mode() def recover( path_raw, path_diff, path_tuned: Optional[str] = None, device="cpu", check_integrity_naively=True, ): """Recover the original weights from the released weight diff. This function is given for you to run. Things to do before running this: 1. Convert Meta's released weights into huggingface format. Follow this guide: https://huggingface.co/docs/transformers/main/model_doc/llama 2. Make sure you cloned the released weight diff into your local machine. The weight diff is located at: https://huggingface.co/tatsu-lab/alpaca-7b/tree/main 3. Run this function with the correct paths. E.g., python weight_diff.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir> Additional notes: - If things run too slowly, and you have an 80G GPU lying around, let GPU go brrr by setting `--device "cuda"`. - If you want to save the recovered weights, set `--path_tuned <your_path_tuned>`. Next time you can load the recovered weights directly from `<your_path_tuned>`. """ model_raw = transformers.AutoModelForCausalLM.from_pretrained( path_raw, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) model_recovered = LlamaRewardModel.from_pretrained( path_diff, opt=None, tokenizer=None, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) state_dict_recovered = model_recovered.state_dict() state_dict_raw = model_raw.state_dict() for key in tqdm.tqdm(state_dict_recovered): print(key) for key in tqdm.tqdm(state_dict_recovered): if 'layers' in key: state_dict_recovered[key].add_(state_dict_raw[key]) if check_integrity_naively: # This is not a rigorous, cryptographically strong integrity check :) allsum = sum(state_dict_recovered[key].sum() for key in state_dict_recovered) assert torch.allclose( allsum, torch.full_like(allsum, fill_value=49954.0859375), rtol=1e-5, atol=1e-8 ), "Naive integrity check failed. This could imply that some of the checkpoint files are corrupted." print('Check successfully.') if path_tuned is not None: model_recovered.save_pretrained(path_tuned) return model_recovered def main(task, **kwargs): globals()[task](**kwargs) if __name__ == "__main__": fire.Fire(main)
MOSS-RLHF-main
merge_weight_zh.py
from typing import List, Optional, Any, Dict import math from accelerate import Accelerator import torch from torch.utils.tensorboard import SummaryWriter class Metric: def __init__(self): pass def add(self, val): raise NotImplementedError def val(self) -> float: raise NotImplementedError def reset(self): raise NotImplementedError def compute(self, val: Any): return val def __add__(self, other): raise NotImplementedError def __radd__(self, other): return self.__add__(other) class MeanMetric(Metric): def __init__(self, num=0, denom=0): self.numerator = num self.denominator: int = denom def add(self, val: Any): self.numerator += self.compute(val) self.denominator += 1 def many(self, vals: List[Any], denoms: Optional[List[int]] = None): if denoms is None: denoms = [1] * len(vals) assert len(vals) == len(denoms) for v, n in zip(vals, denoms): self.numerator += self.compute(v) self.denominator += n def val(self): if self.denominator == 0: return 0 return self.numerator / self.denominator def reset(self): self.numerator = self.denominator = 0 def __add__(self, other: 'MeanMetric'): return MeanMetric(self.numerator + other.numerator, self.denominator + other.denominator) class SumMetric(Metric): def __init__(self, sum_=0): self.sum_ = sum_ def add(self, val): self.sum_ += self.compute(val) def many(self, vals: List[Any]): self.sum_ += sum(self.compute(v) for v in vals) def val(self): return self.sum_ def reset(self): self.sum_ = 0 def __add__(self, other: 'SumMetric'): return SumMetric(self.sum_ + other.sum_) class RealtimeMetric(Metric): def __init__(self, val=0): self.v = val def add(self, val): self.v = self.compute(val) def many(self, vals: List[Any]): self.add(vals[-1]) def val(self): return self.v def reset(self): self.v = 0 def __add__(self, other): return RealtimeMetric(self.v) class PPLMetric(MeanMetric): def val(self): try: return math.exp(super().val()) except OverflowError: return super().val() def __add__(self, other): return PPLMetric(self.numerator + other.numerator, self.denominator + other.denominator) class Metrics(): tb_writer = None def __init__(self, opt: Dict[str, Any], accelerator, mode='train'): self.metrics = {} self.mode = mode self.opt = opt self.accelerator = accelerator if Metrics.tb_writer is None and opt.logdir is not None and self.accelerator.is_main_process: Metrics.tb_writer = SummaryWriter(opt.logdir) def create_metric(self, metric_name: str, metric_obj: Metric): assert metric_name not in self.metrics self.metrics[metric_name] = metric_obj def record_metric(self, metric_name: str, val: Any): self.metrics[metric_name].add(val) def record_metric_many(self, metric_name: str, vals: List[Any], counts: Optional[List[int]] = None): if counts is None: self.metrics[metric_name].many(vals) else: self.metrics[metric_name].many(vals, counts) def reset(self, no_reset = ['global_exs']): for k, v in self.metrics.items(): if k not in no_reset: v.reset() def all_gather_metrics(self): with torch.no_grad(): metrics_tensor = {k: torch.tensor([v.val()], device=self.accelerator.device) for k, v in self.metrics.items()} if self.accelerator.use_distributed: gathered_metrics = self.accelerator.gather(metrics_tensor) for metric_name, gathered_tensor in gathered_metrics.items(): if metric_name == 'global_exs': gathered_metrics[metric_name] = gathered_tensor.sum() else: gathered_metrics[metric_name] = gathered_tensor.float().mean() else: gathered_metrics = metrics_tensor gathered_metrics = {k: v.item() for k, v in gathered_metrics.items()} return gathered_metrics def write_tensorboard(self, global_step, gathered_metrics: Dict[str, float] = None): results = self.all_gather_metrics() if gathered_metrics is None else gathered_metrics if self.tb_writer is not None: for k, scalar in results.items(): title = f"{k}/{'train' if 'train' == self.mode else 'eval'}" self.tb_writer.add_scalar(tag=title, scalar_value=scalar, global_step=global_step) def flush(self): if self.tb_writer is not None: self.tb_writer.flush() def display(self, global_step, data_size = None, gathered_metrics: Dict[str, float] = None): if not self.accelerator.is_main_process: return results = self.all_gather_metrics() if gathered_metrics is None else gathered_metrics log_str = '' if data_size is not None and 'global_exs' in results: print(f"=========== Step: {global_step}, Epoch: {(results['global_exs'] / data_size):.2f} ===========") else: print(f'=========== Step: {global_step} ===========') for k, value in results.items(): if isinstance(value, float): if k == 'lr': value = f'{value:.3e}' else: value = f'{value:.4f}' log_str += f'{k}: {value}\t' print(log_str) return results
MOSS-RLHF-main
metric.py
import torch import torch.nn.functional as F import logging from accelerate import Accelerator from accelerate.state import AcceleratorState from typing import Tuple accelerator = None def setup_accelerator(): global accelerator if accelerator is None: accelerator = Accelerator(split_batches=True) return accelerator def synchronize_if_distributed(): if accelerator.use_distributed: accelerator.wait_for_everyone() def to_cuda(batch): for k, v in batch.items(): if isinstance(v, torch.Tensor): batch[k] = v.to(accelerator.device, non_blocking=True) histroy_logs = set() def print_rank_0(info, only_on_cuda0=False): if accelerator and not accelerator.is_main_process: return if only_on_cuda0 and info not in histroy_logs: histroy_logs.add(info) logging.info(info) return def get_eval_ds_config(offload=None, stage=3): deepspeed_states = AcceleratorState().deepspeed_plugin device = "cpu" if offload else "none" zero_opt_dict = { "stage": stage, "stage3_param_persistence_threshold": 1e4, "offload_param": { "device": device } } return { "train_micro_batch_size_per_gpu": deepspeed_states.deepspeed_config['train_micro_batch_size_per_gpu'], "steps_per_print": 10, "zero_optimization": zero_opt_dict, "bf16": { "enabled": True }, "gradient_clipping": 1.0, "prescale_gradients": False, "wall_clock_breakdown": False } @torch.no_grad() def get_global_statistics(accelerator, xs: torch.Tensor, mask=None, device='cpu') -> Tuple[float, float, int]: """ Computes element-wise mean and variance of the tensor across processes https://github.com/microsoft/LMOps/blob/cde1fb1ef4608a7ac5bf00675fa3e94b1d960abb/minillm/minillm/utils.py#L108 """ xs = xs.to(accelerator.device) sum_and_count = torch.tensor([xs.sum(), (xs.numel() if mask is None else mask.sum())], device=xs.device) sum_and_count = accelerator.reduce(sum_and_count) global_sum, count = sum_and_count global_mean = global_sum / count sum_var = torch.sum(((xs - global_mean) ** 2).mul(1 if mask is None else mask)) sum_var = accelerator.reduce(sum_var) global_var = sum_var / count return global_mean.to(device), global_var.to(device), count.to(device) class RunningMoments: def __init__(self, accelerator): """ Calculates the running mean and standard deviation of a data stream. Modified version of https://github.com/DLR-RM/stable-baselines3/blob/a6f5049a99a4c21a6f0bcce458ca3306cef310e0/stable_baselines3/common/running_mean_std.py """ self.mean = 0 self.std = 1 self.var = 1 self.count = 1e-24 self.accelerator = accelerator @torch.no_grad() def update(self, xs: torch.Tensor) -> Tuple[float, float]: """ Updates running moments from batch's moments computed across ranks """ if self.accelerator.use_distributed: xs_mean, xs_var, xs_count = get_global_statistics(self.accelerator, xs) else: xs_count = xs.numel() xs_var, xs_mean = torch.var_mean(xs, unbiased=False) xs_mean, xs_var = xs_mean.float(), xs_var.float() delta = xs_mean - self.mean tot_count = self.count + xs_count new_sum = xs_var * xs_count # correct old_sum deviation accounting for the new mean old_sum = self.var * self.count + delta**2 * self.count * xs_count / tot_count tot_sum = old_sum + new_sum self.mean += delta * xs_count / tot_count self.var = tot_sum / tot_count self.std = (self.var * tot_count / (tot_count - 1)).float().sqrt() self.count = tot_count return xs_mean.item(), (xs_var * xs_count / (xs_count - 1)).float().sqrt().item() @torch.no_grad() def whiten(xs: torch.Tensor, mask: torch.BoolTensor, shift_mean=True, accelerator=None) -> torch.Tensor: """ Whitens values """ if accelerator != None and accelerator.use_distributed: mean, var, _ = get_global_statistics(accelerator, xs, mask=mask, device=accelerator.device) else: mean = xs.sum() / mask.sum() var = torch.sum(((xs - mean) ** 2).mul(mask)) / mask.sum() whitened = (xs - mean) * torch.rsqrt(var + 1e-6) if not shift_mean: whitened += mean return whitened def top_p_logits(logits, topp=0.9, filter_value=0, min_topk=1): """ Filter a distribution of logits using nucleus (top-p) filtering https://github.com/OpenLMLab/MOSS/blob/e088f438d1a95d424c6dffef0d73134ebe62cb72/models_jittor/generation.py#L146 """ cum_logits = logits.clone() if topp > 0: logits_sorted, inds = torch.sort(logits, dim=-1, descending=True) mask = (logits_sorted.cumsum(dim=-1) - logits_sorted) >= topp mask[:, :min_topk] = False # Remove tokens with cumulative top_p above the threshold mask = torch.zeros_like(mask).to(torch.bool).scatter_(dim=-1, index=inds, src=mask) cum_logits[mask] = filter_value cum_logits.div_(cum_logits.sum(dim=-1, keepdim=True)) return cum_logits def logprobs_from_logits(logits, labels): """ See: https://github.com/pytorch/pytorch/issues/563#issuecomment-330103591 """ logp = F.log_softmax(logits, dim=-1) logpy = torch.gather(logp, dim=-1, index=labels.unsqueeze(-1)).squeeze(-1) return logpy def get_category_distribution_entropy(bsz, logits): """ Compute category distribution entropy """ logits_distribution = torch.distributions.categorical.Categorical(logits=logits.reshape(-1, logits.size(-1))) ent = logits_distribution.entropy().reshape(bsz, -1) return ent def pad_sequences(seqs, pad_value, padding='right'): """ Padding sequence to the same length """ max_len = max(len(seq) for seq in seqs) if padding == 'right': padded_seqs = [seq + [pad_value] * (max_len - len(seq)) for seq in seqs] elif padding == 'left': padded_seqs = [[pad_value] * (max_len - len(seq)) + seq for seq in seqs] else: assert ValueError return padded_seqs
MOSS-RLHF-main
utils.py
MOSS-RLHF-main
ppo/__init__.py
import time, math, os import torch import torch.nn as nn import torch.optim as optim from typing import Dict, Any, Tuple, List from torch.utils.data import DataLoader from .ppo_datahelper import * from utils import * from metric import MeanMetric, PPLMetric, SumMetric, RealtimeMetric from accelerate import Accelerator import deepspeed from deepspeed.ops.adam import DeepSpeedCPUAdam from metric import Metrics class TrainState: def __init__(self): self.total_steps = 0 self.total_exps = 0 self.best_score = -9999999 def state_dict(self): return { 'total_steps': self.total_steps, 'total_exps': self.total_exps, 'best_score': self.best_score, } class RLHFTrainableModelWrapper(nn.Module): def __init__(self, policy_model, critic_model) -> None: super().__init__() self.policy_model = policy_model self.critic_model = critic_model def forward(self, inputs, **kwargs): return self.policy_model(decoder_input=inputs, **kwargs), self.critic_model(decoder_input=inputs, only_last=False, **kwargs) def train(self, mode=True): self.policy_model.train(mode) self.critic_model.train(mode) def eval(self): self.policy_model.eval() self.critic_model.eval() class PPOTrainer(): def __init__(self, opt, policy_model, ref_model, critic_model, reward_model, accelerator, **kwargs) -> None: self.opt = opt self.no_reset_metric_names = ['global_exs'] # metrics *NOT* be reset per save point self.print_interval = opt.num_rollouts // opt.batch_size self.num_rollouts: int = opt.num_rollouts self.reward_clip: float = opt.reward_clip self.pg_clip: float = opt.pg_clip self.value_clip: float = opt.value_clip self.entropy_clip: float = opt.entropy_clip self.advantage_clip: float = opt.advantage_clip self.kl_penalty_weight: float = opt.kl_penalty_weight self.vf_loss_weight: float = opt.vf_loss_weight self.entropy_loss_weight: float = opt.entropy_loss_weight self.ppo_pretrain_data_path: str = opt.ppo_pretrain_data_path self.ppo_pretrain_data_type: str = opt.ppo_pretrain_data_type self.ppo_pretrain_loss_weight: float = opt.ppo_pretrain_loss_weight self.use_entropy_loss: bool = opt.use_entropy_loss self.use_reward_clip: bool = opt.use_reward_clip self.use_reward_scaling: bool = opt.use_reward_scaling self.use_reward_norm: bool = opt.use_reward_norm self.use_advantage_norm: bool = opt.use_advantage_norm self.use_advantage_clip: bool = opt.use_advantage_clip self.use_critic_loss_clip: bool = opt.use_critic_loss_clip self.use_policy_loss_clip: bool = opt.use_policy_loss_clip self.use_ppo_pretrain_loss: bool = opt.use_ppo_pretrain_loss self.running = RunningMoments(accelerator) self.model = RLHFTrainableModelWrapper(policy_model=policy_model, critic_model=critic_model) self.accelerator = accelerator self.optimizer = self.build_optimizer() self.scheduler = optim.lr_scheduler.LambdaLR( optimizer=self.optimizer, lr_lambda=self.invsqrt_scheduler(self.opt.warmup_steps) ) self.train_metrics = self.build_metrics('train') self.valid_metrics = self.build_metrics('eval') self.tokenizer = get_tokenizer(opt) self.train_state = TrainState() self.max_steps: int = opt.train_steps self.save_per_step = opt.save_per_step self.model_save_path = opt.model_save_path self.replay_buffer = [] self.train_loader = None self.prompt_loader = DataLoader( OnlyPromptDataset(self.opt, self.accelerator, mode='train'), batch_size=None, num_workers=self.opt.num_workers, prefetch_factor=self.opt.num_prefetch, pin_memory=True) self.pretrain_loader = None if self.use_ppo_pretrain_loss: self.pretrain_loader = iter(DataLoader( self.pretrain_dataset_class()(self.opt, self.accelerator), batch_size=None, num_workers=self.opt.num_workers, prefetch_factor=self.opt.num_prefetch, pin_memory=True)) self.train_size = len(self.prompt_loader.dataset) self.prompt_loader = iter(self.prompt_loader) self.model, self.optimizer, self.scheduler = self.accelerator.prepare(self.model, self.optimizer, self.scheduler) # get unwrapped trainable model self.policy_model = self.accelerator.unwrap_model(self.model).policy_model self.critic_model = self.accelerator.unwrap_model(self.model).critic_model # get untrainable model eval_ds_config = get_eval_ds_config(offload=True) self.reward_model, *_ = deepspeed.initialize(model=reward_model, config=eval_ds_config) self.reward_model.eval() self.ref_model, *_ = deepspeed.initialize(model=ref_model, config=eval_ds_config) self.ref_model.eval() self.ppl_loss_fct = torch.nn.CrossEntropyLoss(reduction='none') self.PAD_TOKEN_LABEL_ID = self.ppl_loss_fct.ignore_index self.loss_fn = nn.CrossEntropyLoss(ignore_index=self.tokenizer.pad_token_id, reduction='none', label_smoothing=0.) synchronize_if_distributed() def build_metrics(self, mode='train'): metrics = Metrics(self.opt, mode=mode, accelerator=self.accelerator) metrics.create_metric('loss', MeanMetric()) metrics.create_metric('rewards', MeanMetric()) metrics.create_metric('res_len', MeanMetric()) metrics.create_metric('ppl', PPLMetric()) metrics.create_metric('ppl_policy0', PPLMetric()) metrics.create_metric('ups', MeanMetric()) metrics.create_metric('global_exs', SumMetric()) metrics.create_metric('lr', RealtimeMetric()) if mode == 'train': metrics.create_metric('reward_mean', MeanMetric()) metrics.create_metric('reward_std', MeanMetric()) metrics.create_metric('approx_kl', MeanMetric()) metrics.create_metric('ref_kl', MeanMetric()) metrics.create_metric('values', MeanMetric()) metrics.create_metric('values_clipped', MeanMetric()) metrics.create_metric('returns', MeanMetric()) metrics.create_metric('advantages', MeanMetric()) metrics.create_metric('ratio', MeanMetric()) metrics.create_metric('pg_clip', MeanMetric()) metrics.create_metric('vf_clip', MeanMetric()) metrics.create_metric('pg_loss', MeanMetric()) metrics.create_metric('vf_loss', MeanMetric()) metrics.create_metric('entro_loss', MeanMetric()) if self.use_ppo_pretrain_loss: metrics.create_metric('ppo_pretrain_loss', MeanMetric()) metrics.create_metric('token_acc', MeanMetric()) return metrics def invsqrt_scheduler(self, warmup_steps): def _invsqrt_lr(step): return math.sqrt(warmup_steps) / math.sqrt(max(warmup_steps, step)) def _warmup_lr(step): return max(step / warmup_steps, 0.1) def _invsqrt_lr_with_warmup(step): return max(_warmup_lr(step) if step < warmup_steps else _invsqrt_lr(step), 1e-8) return _invsqrt_lr_with_warmup def get_parms(self, model, submodel_name, lr, eps): params = [ { "params": [ p for n, p in model.named_parameters() if (not any(nd in n for nd in ["bias", "LayerNorm.weight"]) and p.requires_grad and submodel_name in n) ], "weight_decay": 0.0, "lr": lr, "eps": eps, }, { "params": [ p for n, p in model.named_parameters() if (any(nd in n for nd in ["bias", "LayerNorm.weight"]) and p.requires_grad and submodel_name in n) ], "weight_decay": 0.0, "lr": lr, "eps": eps, }, ] return params def build_optimizer(self): params = self.get_parms(self.model, 'policy_model.', self.opt.lr, self.opt.eps) params.extend(self.get_parms(self.model, 'critic_model.', self.opt.critic_lr, 1e-8)) deepspeed_states = AcceleratorState().deepspeed_plugin if deepspeed_states.deepspeed_config['zero_optimization']['offload_optimizer']['device'] in ('none', None): return optim.AdamW(params, eps=self.opt.eps, betas=(self.opt.beta1, self.opt.beta2)) return DeepSpeedCPUAdam(params, eps=self.opt.eps, betas=(self.opt.beta1, self.opt.beta2)) def strip_pad_token_id(self, seq: List[int]): return [tok for tok in seq if tok != self.tokenizer.pad_token_id] def pretrain_dataset_class(self): if self.ppo_pretrain_data_type == 'sft': return PPOSFTDataset elif self.ppo_pretrain_data_type == 'pretrain': # TODO: pretrain loss for llama pretrain dataset. return PPOSFTDataset else: raise ValueError def reward_model_forward(self, inputs, **kwargs): return self.reward_model(decoder_input=inputs, **kwargs) def policy_model_forward(self, inputs, **kwargs): return self.policy_model(decoder_input=inputs, **kwargs) def ref_model_forward(self, inputs, **kwargs): return self.ref_model(decoder_input=inputs, **kwargs) def critic_model_forward(self, inputs, **kwargs): return self.critic_model(decoder_input=inputs, only_last=False, **kwargs) def RLHF_model_forward(self, batch: Dict[str, Any], **kwargs): return self.model(batch['text_vec'], **kwargs) def concat_context_and_response(self, context: List[List[int]], responses: List[List[Tuple[float, List[int]]]]): assert len(context) == len(responses), f'Size not match: {len(context)} and {len(responses)}' total_context, total_response = [], [] for _context, _response in zip(context, responses): _context = self.strip_pad_token_id(_context) for _, resp in _response: resp = self.strip_pad_token_id(resp) if resp[-1] != self.tokenizer.eos_token_id: logging.warn(f'Generated response is too long: {self.tokenizer.decode(_context + resp, skip_special_tokens=False)}') total_context.append(_context.copy()) total_response.append(resp) # Debug # logging.info(f'===={self.tokenizer.decode(_context + resp, skip_special_tokens=False)}') total_gene_samples_vec = [c + r for c, r in zip(total_context, total_response)] return total_context, total_response, total_gene_samples_vec # total_context, total_response, total_gene_samples_vec def save_checkpoint(self, is_best: bool, total_steps: int): best_model_path = os.path.join(self.model_save_path, 'best_model') steps_model_path = os.path.join(self.model_save_path, 'Steps_{}'.format(total_steps)) unwrapped_model = self.policy_model state_dict = self.accelerator.get_state_dict(unwrapped_model) if is_best: unwrapped_model.save_pretrained( best_model_path, is_main_process=self.accelerator.is_main_process, save_function=self.accelerator.save, state_dict=state_dict, ) logging.info(f'Saved best model to {best_model_path}.') unwrapped_model.save_pretrained( steps_model_path, is_main_process=self.accelerator.is_main_process, save_function=self.accelerator.save, state_dict=state_dict, ) logging.info(f'Saved model of {total_steps} steps to {steps_model_path}.') synchronize_if_distributed() @torch.no_grad() def make_experiences(self): start_time = time.time() self.model.eval() synchronize_if_distributed() while len(self.replay_buffer) < self.num_rollouts: # get a batch from generator batch: Dict[str, Any] = next(self.prompt_loader) to_cuda(batch) context_vec = batch['text_vec'].tolist() # sample from env _, responses_vec = self.policy_model.generate(batch) assert len(context_vec) == len(responses_vec) context_vec_sampled, resp_vec_sampled, sampled_vec = self.concat_context_and_response(context_vec, responses_vec) sampled_vec = torch.tensor(pad_sequences(sampled_vec, pad_value=self.tokenizer.pad_token_id, padding='left'), dtype=torch.long, device=self.accelerator.device) bsz = sampled_vec.size(0) rewards, *_ = self.reward_model_forward(sampled_vec) rewards = rewards.cpu() self.train_metrics.record_metric_many('rewards', rewards.tolist()) if self.use_reward_scaling: # Reward scaling rewards_mean, rewards_std = self.running.update(rewards) if self.use_reward_norm: rewards = (rewards - self.running.mean) / self.running.std else: rewards /= self.running.std # do not -= mean since advantage will be normalized again logging.info(f"Running mean: {self.running.mean}, std: {self.running.std}") self.train_metrics.record_metric('reward_mean', rewards_mean) self.train_metrics.record_metric('reward_std', rewards_std) if self.use_reward_clip: # Reward clip rewards = torch.clip(rewards, -self.reward_clip, self.reward_clip) # Precompute logprobs, values ref_logits, *_ = self.ref_model_forward(sampled_vec) logits, *_ = self.policy_model_forward(sampled_vec) values, *_ = self.critic_model_forward(sampled_vec) torch.cuda.empty_cache() assert ref_logits.size(1) == logits.size(1) == values.size(1), f'{ref_logits.size()}, {logits.size()}, {values.size()}' ref_logprobs = logprobs_from_logits(ref_logits[:, :-1, :], sampled_vec[:, 1:]) logprobs = logprobs_from_logits(logits[:, :-1, :], sampled_vec[:, 1:]) values = values[:, :-1] kl_penalty = (-self.kl_penalty_weight * (logprobs - ref_logprobs)).cpu() # compute train ppl label = sampled_vec label[label == self.tokenizer.pad_token_id] = self.PAD_TOKEN_LABEL_ID shift_label = label[:, 1:].contiguous() valid_length = (shift_label != self.PAD_TOKEN_LABEL_ID).sum(dim=-1) # compute ppl shift_logits = logits[..., :-1, :].contiguous() ppl_value = self.ppl_loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_label.view(-1)) ppl_value = ppl_value.view(len(logits), -1) ppl_value = torch.sum(ppl_value, -1) / valid_length ppl_value = ppl_value.cpu().tolist() # compute ppl for policy0 shift_ref_logits = ref_logits[..., :-1, :].contiguous() ppl0_value = self.ppl_loss_fct(shift_ref_logits.view(-1, shift_ref_logits.size(-1)), shift_label.view(-1)) ppl0_value = ppl0_value.view(len(ref_logits), -1) ppl0_value = torch.sum(ppl0_value, -1) / valid_length ppl0_value = ppl0_value.cpu().tolist() logging.info(f'ppl_value: {ppl_value}') logging.info(f'ppl0_value: {ppl0_value}') # gather samples for i in range(bsz): resp_length = len(resp_vec_sampled[i]) penalized_rewards = kl_penalty[i].clone() penalized_rewards[-1] += rewards[i] self.train_metrics.record_metric('ref_kl', (logprobs[i][-resp_length:] - ref_logprobs[i][-resp_length:]).mean().item()) sample = { 'context_vec': context_vec_sampled[i], 'context': self.tokenizer.decode(context_vec_sampled[i], skip_special_tokens=False), 'resp_vec': resp_vec_sampled[i], 'resp': self.tokenizer.decode(resp_vec_sampled[i], skip_special_tokens=False), 'reward': penalized_rewards[-resp_length:].tolist(), 'values': values[i][-resp_length:].tolist(), 'ref_logprobs': ref_logprobs[i][-resp_length:].tolist(), 'logprobs': logprobs[i][-resp_length:].tolist(), 'ppl_value': ppl_value[i], 'ppl0_value': ppl0_value[i] } # get pretrain batch if self.use_ppo_pretrain_loss: ppo_batch: Dict[str, Any] = next(self.pretrain_loader) # nums: opt.ppo_pretrain_batch_size_ratio to_cuda(ppo_batch) sample['ppo_context_vec'] = ppo_batch['text_vec'].tolist() sample['ppo_loss_mask'] = ppo_batch['loss_mask'].tolist() self.replay_buffer.append(sample) logging.info(f'Sampled {len(self.replay_buffer)} samples in {(time.time() - start_time):.2f} seconds') self.model.train() def criterion(self, model_output: Tuple[torch.Tensor, ...], batch: Dict[str, Any], return_output=False, training=True): policy_output, critic_output = model_output policy_logits, *_ = policy_output values, *_ = critic_output values = values[:, :-1] loss_mask = batch['loss_mask'] loss_mask = loss_mask[:, 1:] old_values = batch['values'] old_logprobs = batch['logprobs'] advantages = batch['advantages'] returns = batch['returns'] if self.use_advantage_norm: # advantage norm advantages = whiten(advantages, loss_mask, accelerator=self.accelerator) if self.use_advantage_clip: # advantage clip advantages = torch.clamp(advantages, -self.advantage_clip, self.advantage_clip) n = loss_mask.sum() logprobs = logprobs_from_logits(policy_logits[:, :-1, :], batch['text_vec'][:, 1:]) * loss_mask # vf loss values_clipped = torch.clamp( values, old_values - self.value_clip, old_values + self.value_clip, ) vf_loss1 = (values - returns) ** 2 vf_loss2 = (values_clipped - returns) ** 2 # critic model loss clip if self.use_critic_loss_clip: vf_loss = 0.5 * torch.sum(torch.max(vf_loss1, vf_loss2) * loss_mask) / n else: vf_loss = 0.5 * torch.sum(vf_loss1 * loss_mask) / n vf_clipfrac = torch.sum((vf_loss2 > vf_loss1).float() * loss_mask) / n log_ratio = (logprobs - old_logprobs) * loss_mask ratio = torch.exp(log_ratio) with torch.no_grad(): approx_kl = torch.sum((ratio - 1) - log_ratio) / n pg_loss1 = -advantages * ratio pg_loss2 = -advantages * torch.clamp( ratio, 1.0 - self.pg_clip, 1.0 + self.pg_clip, ) # policy model loss clip if self.use_policy_loss_clip: pg_loss = torch.sum(torch.max(pg_loss1, pg_loss2) * loss_mask) / n else: pg_loss = torch.sum(pg_loss1 * loss_mask) / n pg_clipfrac = torch.sum((pg_loss2 > pg_loss1).float() * loss_mask) / n # cal the entropy if self.use_entropy_loss: ent = get_category_distribution_entropy(len(policy_logits), policy_logits[:, :-1, :]) entro_loss = torch.abs(torch.sum(ent * loss_mask) / n - self.entropy_clip) # cal pretrain loss if self.use_ppo_pretrain_loss: pretrain_sampled_vec = batch['ppo_context_vec'] scores, *_ = self.policy_model_forward(pretrain_sampled_vec) scores = scores[:, :-1, :] preds = scores.argmax(dim=-1) ppo_label_vec = batch['ppo_context_vec'][:, 1:].clone() ppo_loss_mask = batch['ppo_loss_mask'][:, 1:] ppo_label_vec[~ppo_loss_mask] = self.tokenizer.pad_token_id labels: torch.LongTensor = ppo_label_vec score_view = scores.reshape(-1, scores.size(-1)) # bs * num_tokens, vocab_size pretrain_loss = self.loss_fn(score_view, labels.reshape(-1)).sum() # calculate token acc notnull = labels.ne(self.tokenizer.pad_token_id) target_tokens = notnull.sum() correct = ((labels == preds) * notnull).sum() # average losses pretrain_loss = pretrain_loss / target_tokens if self.use_entropy_loss: loss1 = pg_loss + self.vf_loss_weight * vf_loss + self.entropy_loss_weight * entro_loss else: loss1 = pg_loss + self.vf_loss_weight * vf_loss loss2 = self.ppo_pretrain_loss_weight * pretrain_loss loss = loss1 + loss2 else: if self.use_entropy_loss: loss = pg_loss + self.vf_loss_weight * vf_loss + self.entropy_loss_weight * entro_loss else: loss = pg_loss + self.vf_loss_weight * vf_loss with torch.no_grad(): if training: obj_metrics = self.train_metrics else: obj_metrics = self.valid_metrics obj_metrics.record_metric('loss', loss.item()) obj_metrics.record_metric('pg_loss', pg_loss.item()) obj_metrics.record_metric('vf_loss', vf_loss.item()) if self.use_entropy_loss: obj_metrics.record_metric('entro_loss', entro_loss.item()) obj_metrics.record_metric('pg_clip', pg_clipfrac.item()) obj_metrics.record_metric('vf_clip', vf_clipfrac.item()) obj_metrics.record_metric('approx_kl', approx_kl.item()) obj_metrics.record_metric('values', (values.mul(loss_mask).sum() / n).item()) obj_metrics.record_metric('values_clipped', (values_clipped.mul(loss_mask).sum() / n).item()) obj_metrics.record_metric('advantages', (advantages.mul(loss_mask).sum() / n).item()) obj_metrics.record_metric('returns', (returns.mul(loss_mask).sum() / n).item()) obj_metrics.record_metric('ratio', (ratio.mul(loss_mask).sum() / n).item()) obj_metrics.record_metric('ppl', (batch['ppl_value'].sum() / n).item()) obj_metrics.record_metric('ppl_policy0', (batch['ppl0_value'].sum() / n).item()) if self.use_ppo_pretrain_loss: obj_metrics.record_metric('ppo_pretrain_loss', pretrain_loss.item()) obj_metrics.record_metric('token_acc', (correct / target_tokens).item()) if self.use_ppo_pretrain_loss: if return_output: return loss1, loss2, model_output else: return loss1, loss2 if return_output: return loss, model_output return loss def train_step(self, batch: Dict[str, Any], **kwargs): self.optimizer.zero_grad() # forward assert self.model.training model_output = self.RLHF_model_forward(batch, **kwargs) # compute loss loss = self.criterion(model_output, batch) if self.use_ppo_pretrain_loss: self.accelerator.backward(loss[0]) self.accelerator.backward(loss[1]) loss = loss[0] + loss[1] else: self.accelerator.backward(loss) if torch.isnan(loss) or torch.isinf(loss) or loss.abs().gt(10000.): logging.warn(f'Strange loss {loss.item()} detected.') self.optimizer.step() if not self.accelerator.optimizer_step_was_skipped: self.scheduler.step() @torch.no_grad() def evaluate(self, datatype='valid', **kwargs) -> Tuple[float, List]: assert datatype in ('valid', 'test') start_time = time.time() valid_dataloader = DataLoader( OnlyPromptDataset(self.opt, self.accelerator, mode=datatype), batch_size=None, num_workers=self.opt.num_workers, prefetch_factor=self.opt.num_prefetch, pin_memory=True) print_rank_0(f'Start evaluation on {datatype} data.') self.model.eval() for step, batch in enumerate(valid_dataloader): to_cuda(batch) _, responses = self.policy_model.generate(batch, **kwargs) _, _, output_vec = self.concat_context_and_response(batch['text_vec'].tolist(), responses) output_vec = torch.tensor(pad_sequences(output_vec, pad_value=self.tokenizer.pad_token_id, padding='left'), dtype=torch.long, device=self.accelerator.device) rewards = self.reward_model_forward(output_vec)[0].tolist() assert len(rewards) == output_vec.size(0), f"{rewards.size()}, {output_vec.size()}" self.valid_metrics.record_metric_many('rewards', rewards) # compute ppl ppl_logits, *_ = self.policy_model_forward(output_vec) ppl_ref_logits, *_ = self.ref_model_forward(output_vec) label = output_vec label[label == self.tokenizer.pad_token_id] = self.PAD_TOKEN_LABEL_ID shift_label = label[:, 1:].contiguous() valid_length = (shift_label != self.PAD_TOKEN_LABEL_ID).sum(dim=-1) # compute ppl shift_logits = ppl_logits[..., :-1, :].contiguous() ppl_value = self.ppl_loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_label.view(-1)) ppl_value = ppl_value.view(len(ppl_logits), -1) ppl_value = torch.sum(ppl_value, -1) / valid_length # compute ppl for policy 0 shift_ref_logits = ppl_ref_logits[..., :-1, :].contiguous() ppl0_value = self.ppl_loss_fct(shift_ref_logits.view(-1, shift_ref_logits.size(-1)), shift_label.view(-1)) ppl0_value = ppl0_value.view(len(ppl_ref_logits), -1) ppl0_value = torch.sum(ppl0_value, -1) / valid_length self.valid_metrics.record_metric_many('ppl', ppl_value.cpu().tolist()) self.valid_metrics.record_metric_many('ppl_policy0', ppl0_value.cpu().tolist()) # log info metrics = self.valid_metrics.all_gather_metrics() self.valid_metrics.display(self.train_state.total_steps, gathered_metrics=metrics) self.valid_metrics.write_tensorboard(self.train_state.total_steps, gathered_metrics=metrics) self.valid_metrics.flush() validation_score = metrics['rewards'] self.valid_metrics.reset(no_reset=[]) print_rank_0(f'Evaluation completed in {(time.time() - start_time):.2f} seconds.') self.model.train() torch.cuda.empty_cache() return validation_score, None def train(self): eval_score, _ = self.evaluate() self.train_state.best_score = eval_score synchronize_if_distributed() print_rank_0('Start training.') self.model.train() while self.train_state.total_steps < self.max_steps: self.make_experiences() self.train_loader = DataLoader( ExperienceDataset(self.replay_buffer, self.opt, self.accelerator), batch_size=None, num_workers=self.opt.num_workers, prefetch_factor=self.opt.num_prefetch, pin_memory=True) for batch in self.train_loader: if self.train_state.total_steps >= self.max_steps: break start_time = time.time() with torch.no_grad(): batchsize = batch.get('n_exps', batch['text_vec'].size(0)) self.train_metrics.record_metric_many('res_len', batch['res_len']) self.train_metrics.record_metric('global_exs', batchsize) self.train_state.total_exps += batchsize to_cuda(batch) # perform a step of train self.train_step(batch) del batch # record cost_time = time.time() - start_time self.train_metrics.record_metric('ups', 1. / cost_time) if hasattr(self.scheduler, 'get_last_lr'): lr = self.scheduler.get_last_lr()[0] else: lr = self.optimizer.param_groups[0]['lr'] self.train_metrics.record_metric('lr', lr) self.train_state.total_steps += 1 # print metrics need_reset = False if self.train_state.total_steps % self.print_interval == 0: metrics = self.train_metrics.all_gather_metrics() self.train_metrics.write_tensorboard(self.train_state.total_steps, gathered_metrics=metrics) self.train_metrics.display(self.train_state.total_steps, self.train_size, gathered_metrics=metrics) need_reset = True # do evaluation for every save_per_step steps if self.train_state.total_steps % self.save_per_step == 0: eval_score, _ = self.evaluate() self.model.train() # save checkpoint is_best = eval_score > self.train_state.best_score if is_best: self.train_state.best_score = eval_score print_rank_0(f'Greater than the best score {abs(eval_score)}.') else: print_rank_0(f'Did not beat the best score {abs(self.train_state.best_score)}.') self.save_checkpoint(is_best=is_best, total_steps=self.train_state.total_steps) if need_reset: self.train_metrics.reset(no_reset=self.no_reset_metric_names) synchronize_if_distributed() self.train_loader = None self.replay_buffer.clear() torch.cuda.empty_cache()
MOSS-RLHF-main
ppo/ppo_trainer.py
import os import random import logging import torch import json import copy from typing import List, Dict, Any, Tuple from transformers.models.llama.tokenization_llama import LlamaTokenizer from torch.utils.data import get_worker_info, IterableDataset from utils import print_rank_0, pad_sequences human_prompt = "<|Human|>" assistant_prompt = "<|MOSS|>" def get_tokenizer(opt): print_rank_0(f"Loading tokenizer from huggingface: {opt.tokenizer_name_or_path}...", only_on_cuda0=True) tokenizer = LlamaTokenizer.from_pretrained(opt.tokenizer_name_or_path, trust_remote_code=True) tokenizer.bos_token = '<s>' tokenizer.eos_token = '</s>' tokenizer.pad_token = '<unk>' tokenizer.pad_token_id = 0 tokenizer.unk_token = tokenizer.pad_token tokenizer.unk_token_id = tokenizer.pad_token_id tokenizer.add_special_tokens({"additional_special_tokens": [human_prompt, assistant_prompt]}) print_rank_0(f"Llama tokenizer size: {tokenizer.vocab_size}", only_on_cuda0=True) print_rank_0(f"Llama tokenizer pad token: {tokenizer.pad_token}, pad_token_id: {tokenizer.pad_token_id}", only_on_cuda0=True) print_rank_0(f"Llama tokenizer. special token: {tokenizer.special_tokens_map}", only_on_cuda0=True) return tokenizer def get_special_prompt(i): return human_prompt if i % 2 == 0 else assistant_prompt def get_model_prompt(context: List[str], eos_token="</s>"): if context[-1].startswith(human_prompt): end_prompt = assistant_prompt elif context[-1].startswith(assistant_prompt): end_prompt = human_prompt else: raise ValueError context = eos_token.join(context) return f'{context}{eos_token}{end_prompt}' class IterDataset(IterableDataset): def __init__(self): super().__init__() def __len__(self): return self.size def sample_generator(self): random.seed(None) worker_info = get_worker_info() if worker_info is not None: self.data = self.data[worker_info.id::worker_info.num_workers] logging.info(f'Worker {worker_info.id}: {len(self.data)} samples.') if self.mode == 'train': random.shuffle(self.data) for sample in self.data: yield self.format(sample) def batch_generator(self): batch = [] for sample in self.sample_generator(): sample_len = len(sample['text_vec']) if sample_len > self.opt.maxlen_prompt: logging.warn(f'Get sample length: {sample_len} > {self.opt.maxlen_prompt}.') continue batch.append(sample) if len(batch) >= self.batch_size: yield batch[:self.batch_size] batch = batch[self.batch_size:] if batch: yield batch def final_generator(self): data_generator = self.batch_generator() for batch_samples in data_generator: batch = self.batchify(batch_samples) yield batch def __iter__(self): return self.final_generator() class OnlyPromptDataset(IterDataset): def __init__(self, opt, accelerator, mode = 'train', **kwargs) -> None: super().__init__() self.opt = opt self.mode = mode self.accelerator = accelerator self.tokenizer = get_tokenizer(opt) self.data = [] files = sorted([file for file in os.listdir(opt.data_path) if file.endswith(f'{mode}.json')]) for file in files: file_path = os.path.join(opt.data_path, file) tmp_data = [] try: tmp_data = self.load_data(file_path) except Exception as e: logging.warn(f"Loading samples from {file_path} failed. {str(e)}...") self.data.extend(tmp_data) logging.info(f'Loaded {len(tmp_data)} samples from {file_path}.') logging.info(f'=============Loaded total {len(self.data)} samples from {files}.=============') self.size = len(self.data) if accelerator and self.accelerator.use_distributed: self.data = self.data[self.accelerator.process_index::self.accelerator.num_processes] self.batch_size = opt.rollout_batch_size # batch size for sampling from env def load_data(self, file_path: str): with open(file_path, 'r') as f: data: List[List[str]] = json.load(f) output: List[List[str]] = [sample for sample in data if all(sample)] del data return output def format(self, sample: List[str]) -> Dict[str, Any]: context = sample context = [get_special_prompt(i + (len(context) + 1) % 2) + s for i, s in enumerate(context)] context_vec = self.tokenizer.encode(get_model_prompt(context, self.tokenizer.eos_token), add_special_tokens=True) # truncate to max_len while len(context_vec) > self.opt.maxlen_prompt - self.opt.maxlen_res and len(context) > 1: context = context[1:] context_vec = self.tokenizer.encode(get_model_prompt(context, self.tokenizer.eos_token), add_special_tokens=True) output = { 'text': self.tokenizer.decode(context_vec, skip_special_tokens=False), 'text_vec': context_vec } return output # batchify for single format(sample) def batchify(self, batch_samples: List[Dict[str, Any]]) -> Dict[str, Any]: batch_text_vec = torch.tensor(pad_sequences( [sample['text_vec'] for sample in batch_samples], pad_value=self.tokenizer.pad_token_id, padding='left' ), dtype=torch.long) return { 'text_vec': batch_text_vec, 'text': [sample['text'] for sample in batch_samples] } def batch_generator(self): while True: for batch in super().batch_generator(): if len(batch) == self.batch_size: yield batch if self.mode != 'train': break class ExperienceDataset(IterDataset): def __init__(self, data, opt, accelerator, mode = 'train', **kwargs) -> None: self.opt = opt self.mode = mode self.accelerator = accelerator self.tokenizer = get_tokenizer(opt) self.use_ppo_pretrain_loss = opt.use_ppo_pretrain_loss self.batch_size = opt.batch_size self.gamma = opt.gamma self.lam = opt.lam self.data = data self.size = len(data) if self.accelerator.use_distributed: self.size *= self.accelerator.num_processes def get_advantages_and_returns(self, rewards: List[float], values: List[float]): ''' Copied from TRLX: https://github.com/CarperAI/trlx/blob/main/trlx/models/modeling_ppo.py ''' response_length = len(values) advantages_reversed = [] lastgaelam = 0 for t in reversed(range(response_length)): nextvalues = values[t + 1] if t < response_length - 1 else 0.0 delta = rewards[t] + self.gamma * nextvalues - values[t] lastgaelam = delta + self.gamma * self.lam * lastgaelam advantages_reversed.append(lastgaelam) advantages = advantages_reversed[::-1] returns = [a + v for a, v in zip(advantages, values)] assert len(returns) == len(advantages) == len(values) return advantages, returns def format(self, sample: Dict[str, Any]) -> Dict[str, Any]: output = copy.deepcopy(sample) advantages, returns = self.get_advantages_and_returns(sample['reward'], sample['values']) context_vec, resp_vec = sample['context_vec'], sample['resp_vec'] assert len(resp_vec) == len(advantages) == len(returns) text_vec = context_vec + resp_vec loss_mask = [0] * len(context_vec) + [1] * len(resp_vec) output['text'] = self.tokenizer.decode(text_vec, skip_special_tokens=False) output['text_vec'] = text_vec output['res_len'] = len(resp_vec) output['logprobs'] = [0.] * (len(context_vec) - 1) + output['logprobs'] output['loss_mask'] = loss_mask output['reward'] = sample['reward'] output['values'] = [0.] * (len(context_vec) - 1) + output['values'] output['advantages'] = [0.] * (len(context_vec) - 1) + advantages output['returns'] = [0.] * (len(context_vec) - 1) + returns return output def batch_generator(self): for batch in super().batch_generator(): yield batch # batchify for single format(sample) def batchify(self, batch_samples: List[Dict[str, Any]]) -> Dict[str, Any]: batch = { 'text': [sample['text'] for sample in batch_samples], 'text_vec': torch.tensor(pad_sequences([sample['text_vec'] for sample in batch_samples], pad_value=self.tokenizer.pad_token_id), dtype=torch.long), 'res_len': [sample['res_len'] for sample in batch_samples], 'logprobs': torch.tensor(pad_sequences([sample['logprobs'] for sample in batch_samples], pad_value=0.)), 'loss_mask': torch.tensor(pad_sequences([sample['loss_mask'] for sample in batch_samples], pad_value=0), dtype=torch.bool), 'ppl_value': torch.tensor([sample['ppl_value'] for sample in batch_samples]), 'ppl0_value': torch.tensor([sample['ppl0_value'] for sample in batch_samples]), 'reward': [sample['reward'] for sample in batch_samples], 'values': torch.tensor(pad_sequences([sample['values'] for sample in batch_samples], pad_value=0.)), 'advantages': torch.tensor(pad_sequences([sample['advantages'] for sample in batch_samples], pad_value=0.)), 'returns': torch.tensor(pad_sequences([sample['returns'] for sample in batch_samples], pad_value=0.)) } if self.use_ppo_pretrain_loss: tmp_ppo_context_vec = [] for pretrain_data_batch in [sample['ppo_context_vec'] for sample in batch_samples]: for one_sample in pretrain_data_batch: tmp_ppo_context_vec.append(one_sample) batch['ppo_context_vec'] = torch.tensor(pad_sequences( tmp_ppo_context_vec, pad_value=self.tokenizer.pad_token_id ), dtype=torch.long) del tmp_ppo_context_vec tmp_ppo_loss_mask = [] for pretrain_data_batch in [sample['ppo_loss_mask'] for sample in batch_samples]: for one_sample in pretrain_data_batch: tmp_ppo_loss_mask.append(one_sample) batch['ppo_loss_mask'] = torch.tensor(pad_sequences(tmp_ppo_loss_mask, pad_value=0), dtype=torch.bool) del tmp_ppo_loss_mask return batch class PPOSFTDataset(IterDataset): def __init__(self, opt, accelerator, **kwargs): self.opt = opt self.mode = 'train' self.accelerator = accelerator self.tokenizer = get_tokenizer(opt) self.batch_size = opt.ppo_pretrain_batch_size_ratio self.data = [] for file in os.listdir(opt.ppo_pretrain_data_path): if file.endswith(f'{self.mode}.json'): file_path = os.path.join(opt.ppo_pretrain_data_path, file) tmp_data = [] tmp_data = self.load_data(file_path) self.data.extend(tmp_data) logging.info(f'Loaded {len(tmp_data)} samples from {file_path}.') logging.info(f'=============Loaded total {len(self.data)} samples from {opt.ppo_pretrain_data_path}.=============') self.size = len(self.data) if accelerator and self.accelerator.use_distributed: self.data = self.data[self.accelerator.process_index::self.accelerator.num_processes] def load_data(self, file_path: str): with open(file_path, 'r') as f: data: List[List[str]] = json.load(f) output: List[Tuple[List[str], str]] = [] for turn in data: if not isinstance(turn, list) or len(turn) < 2 or not all(turn): continue output.append(turn) del data return output def format(self, sample: Tuple[List[str], str]) -> Dict[str, Any]: # original text concat special prompt: human prompt and assistant prompt context = [get_special_prompt(i) + u for i, u in enumerate(sample)] context_vec = self.tokenizer.encode( self.tokenizer.eos_token.join(context) + self.tokenizer.eos_token, add_special_tokens=True ) text_vec = context_vec[:self.opt.maxlen_prompt] loss_mask = [] cnt = 0 for v in text_vec: loss_mask.append(cnt % 2) cnt += int(v == self.tokenizer.eos_token_id) output = { 'text_vec': text_vec, 'loss_mask': loss_mask, } return output def batchify(self, batch_samples: List[Dict[str, Any]]) -> Dict[str, Any]: batch = dict() batch_text_vec = torch.tensor(pad_sequences( [sample['text_vec'] for sample in batch_samples], pad_value=self.tokenizer.pad_token_id, pad_left=False ), dtype=torch.long) loss_mask = torch.tensor(pad_sequences( [sample['loss_mask'] for sample in batch_samples], pad_value=0, pad_left=False ), dtype=torch.bool) batch.update({ 'text_vec': batch_text_vec, 'loss_mask': loss_mask }) return batch def batch_generator(self): while True: for batch in super().batch_generator(): if len(batch) == self.batch_size: yield batch if self.mode != 'train': break
MOSS-RLHF-main
ppo/ppo_datahelper.py
import tqdm.auto as tqdm import torch.nn.functional as F from typing import Optional, Dict, Sequence from typing import List, Optional, Tuple, Union import transformers from dataclasses import dataclass, field from Model.RadFM.multimodality_model import MultiLLaMAForCausalLM import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer from torchvision import transforms from PIL import Image def get_tokenizer(tokenizer_path, max_img_size = 100, image_num = 32): ''' Initialize the image special tokens max_img_size denotes the max image put length and image_num denotes how many patch embeddings the image will be encoded to ''' if isinstance(tokenizer_path,str): image_padding_tokens = [] text_tokenizer = LlamaTokenizer.from_pretrained( tokenizer_path, ) special_token = {"additional_special_tokens": ["<image>","</image>"]} for i in range(max_img_size): image_padding_token = "" for j in range(image_num): image_token = "<image"+str(i*image_num+j)+">" image_padding_token = image_padding_token + image_token special_token["additional_special_tokens"].append("<image"+str(i*image_num+j)+">") image_padding_tokens.append(image_padding_token) text_tokenizer.add_special_tokens( special_token ) ## make sure the bos eos pad tokens are correct for LLaMA-like models text_tokenizer.pad_token_id = 0 text_tokenizer.bos_token_id = 1 text_tokenizer.eos_token_id = 2 return text_tokenizer,image_padding_tokens def combine_and_preprocess(question,image_list,image_padding_tokens): transform = transforms.Compose([ transforms.RandomResizedCrop([512,512],scale=(0.8, 1.0), interpolation=transforms.InterpolationMode.BICUBIC), transforms.ToTensor(), ]) images = [] new_qestions = [_ for _ in question] padding_index = 0 for img in image_list: img_path = img['img_path'] position = img['position'] image = Image.open(img_path).convert('RGB') image = transform(image) image = image.unsqueeze(0).unsqueeze(-1) # c,w,h,d ## pre-process the img first target_H = 512 target_W = 512 target_D = 4 # This can be different for 3D and 2D images. For demonstration we here set this as the default sizes for 2D images. images.append(torch.nn.functional.interpolate(image, size = (target_H,target_W,target_D))) ## add img placeholder to text new_qestions[position] = "<image>"+ image_padding_tokens[padding_index] +"</image>" + new_qestions[position] padding_index +=1 vision_x = torch.cat(images,dim = 1).unsqueeze(0) #cat tensors and expand the batch_size dim text = ''.join(new_qestions) return [text], vision_x, def main(): print("Setup tokenizer") text_tokenizer,image_padding_tokens = get_tokenizer('./Language_files') print("Finish loading tokenizer") ### Initialize a simple case for demo ### print("Setup demo case") question = "Can you identify any visible signs of Cardiomegaly in the image?" image =[ { 'img_path': './view1_frontal.jpg', 'position': 0, #indicate where to put the images in the text string, range from [0,len(question)-1] }, # can add abitrary number of imgs ] text,vision_x = combine_and_preprocess(question,image,image_padding_tokens) print("Finish loading demo case") print("Setup Model") model = MultiLLaMAForCausalLM( lang_model_path='./Language_files', ### Build up model based on LLaMa-13B config ) ckpt = torch.load('./pytorch_model.bin',map_location ='cpu') # Please dowloud our checkpoint from huggingface and Decompress the original zip file first model.load_state_dict(ckpt) print("Finish loading model") model = model.to('cuda') model.eval() with torch.no_grad(): lang_x = text_tokenizer( question, max_length=2048, truncation=True, return_tensors="pt" )['input_ids'].to('cuda') vision_x = vision_x.to('cuda') generation = model.generate(lang_x,vision_x) generated_texts = text_tokenizer.batch_decode(generation, skip_special_tokens=True) print('---------------------------------------------------') print('Input: ', question) print('Output: ', generated_texts[0]) if __name__ == "__main__": main()
RadFM-main
Quick_demo/test.py
import torch.nn as nn import torch.nn.functional as F import torch from .helpers import PerceiverResampler from .utils import get_visual_encoder from einops import rearrange, repeat from einops_exts import rearrange_many import torchvision from .vit_3d import ViT from einops.layers.torch import Rearrange from .transformer_decoder import TransformerDecoder,TransformerDecoderLayer from torch.utils.checkpoint import checkpoint from torch.autograd import Variable import random from transformers import AutoTokenizer, AutoModel class MyEmbedding(nn.Module): def __init__(self, num_embeddings=32000, embedding_dim=5120, perceiver_num=32,vis_dim = 768, patch_size=32, frame_patch_size = 4 ,seg_channel = 256): super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.weight = nn.Parameter(torch.torch.randn((num_embeddings, embedding_dim))) self.figure_token_weight = nn.Parameter(torch.randn((2, embedding_dim))) self.flag = 'Text' self.patch_size = patch_size self.frame_patch_size = frame_patch_size self.seg_channel = seg_channel self.bert_tokenizer = AutoTokenizer.from_pretrained("/gpfs/home/cs/leijiayu/wuchaoyi/multi_modal/src/MedKEBERT") self.bert_model = AutoModel.from_pretrained("/gpfs/home/cs/leijiayu/wuchaoyi/multi_modal/src/MedKEBERT") self.bert_projection_fc = nn.Linear(768,vis_dim) self.vision_encoder = ViT( image_size = 512, # image size frames = 512, # max number of frames image_patch_size = patch_size, # image patch size frame_patch_size = frame_patch_size, # frame patch size dim = vis_dim, depth = 12, heads = 8, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) self.output_upscaling = nn.Sequential( nn.ConvTranspose3d(vis_dim, vis_dim // 4, kernel_size=2, stride=2), nn.BatchNorm3d(vis_dim // 4), nn.GELU(), nn.ConvTranspose3d(vis_dim // 4, vis_dim // 8, kernel_size=2, stride=2), nn.GELU(), ) decoder_layer = TransformerDecoderLayer(d_model = vis_dim, nhead = 8, normalize_before=True) decoder_norm = nn.LayerNorm(vis_dim) self.transformer_decoder = TransformerDecoder(decoder_layer = decoder_layer, num_layers = 4, norm=decoder_norm) self.transformer_decoder_mlp = nn.Sequential( nn.Linear(vis_dim,vis_dim // 4), nn.GELU(), nn.Linear(vis_dim // 4,vis_dim // 8), nn.GELU(), ) self.vis_dim = vis_dim self.perceiver = PerceiverResampler(dim=self.vis_dim, num_latents = perceiver_num) self.fc = nn.Linear(self.vis_dim,self.embedding_dim) self.cls_head = nn.Linear(self.vis_dim // 8, 1) def forward(self, text_input, vision_x, key_words_query = None): if self.flag == 'Text': B,S,C,H,W,D = vision_x.shape vision_x = rearrange(vision_x, "b S c h w d-> (b S) c h w d") vision_x, pos_embedding = self.vision_encoder(vision_x) # vision_x = Variable(vision_x,requires_grad=True) # vision_x, _ = checkpoint(self.vision_encoder,vision_x) vision_x = rearrange(vision_x, "(b s F) v d -> b s F v d", b=B, s=S,F=1) loss_matching = None if key_words_query != None: # key_words_query list[list[str]] B, words, each word matches corresponding vision_x embedding query_words = [item for sublist in key_words_query for item in sublist] query_words = list(set(query_words)) if len(query_words)>16: random.shuffle(query_words) query_words = query_words[0:16] if query_words != []: contrastive_labels = torch.zeros(B,len(query_words)) #B Q for i,sublist in enumerate(key_words_query): for j,item in enumerate(query_words): if item in sublist: contrastive_labels[i,j] = 1 contrastive_labels = contrastive_labels.to(vision_x.dtype).to(vision_x.device) with torch.no_grad(): query_words_embedding = self.bert_tokenizer(query_words, padding='max_length', truncation=True, max_length=256,return_tensors="pt") query_words_embedding = self.bert_model(input_ids = query_words_embedding['input_ids'].to(vision_x.device),attention_mask = query_words_embedding['attention_mask'].to(vision_x.device))['last_hidden_state'][:,0,:].to(vision_x.dtype).to(vision_x.device) # Q,D query_words_embedding = self.bert_projection_fc(query_words_embedding) query_words_embedding = query_words_embedding.unsqueeze(0).repeat(B,1,1) # B,Q,D _,N,_ = query_words_embedding.shape image_embedding = vision_x.mean(dim=1) # B V D average pooling 去除掉多模态。 image_embedding = rearrange(image_embedding, "b F v d -> b (F v) d") pos_embedding = rearrange(pos_embedding, "(b s) v d -> b s v d", b=B, s=S)[:,0,:,:] image_embedding = image_embedding.transpose(0,1) # (H/P W/P D/P) B D pos_embedding = pos_embedding.transpose(0,1) # (H/P W/P D/P) B D query_words_embedding = query_words_embedding.transpose(0,1) # N B D oo_embedding,_ = self.transformer_decoder(query_words_embedding, image_embedding, pos = pos_embedding) oo_embedding = oo_embedding.transpose(0,1) # B Q D oo_embedding = rearrange(oo_embedding, 'b n d -> (b n) d') oo_embedding = self.transformer_decoder_mlp(oo_embedding) oo_embedding = self.cls_head(oo_embedding).mean(dim = -1) oo_embedding = rearrange(oo_embedding, '(b n) -> b n', b=B, n=N) # B Q # oo_embedding = rearrange(oo_embedding, 'b n d -> b (n d)') # B Q loss_matching = F.binary_cross_entropy_with_logits(oo_embedding, contrastive_labels) vision_x = self.perceiver(vision_x) # reshapes to (b, S, n, d) #vision_x = checkpoint(self.perceiver,vision_x) n = vision_x.shape[2] vision_x = rearrange(vision_x, "b s n d -> (b s n) d") vision_x = self.fc(vision_x) vision_x = rearrange(vision_x, "(b T) d -> b T d", b=B, T=n*S) embedding_weight = torch.cat([self.weight, self.figure_token_weight],dim = 0) embedding_weight = embedding_weight.unsqueeze(0).repeat(B, 1, 1) embedding_weight = torch.cat([embedding_weight,vision_x],dim = 1) text_input = F.one_hot(text_input,embedding_weight.shape[1]).to(vision_x.dtype).to(vision_x.device) out_put = torch.matmul(text_input, embedding_weight) ## useless for now. ignore the folowing code## # if self.flag == 'Seg': # B,C,H,W,D = vision_x.shape # _,N,_ = text_input.shape # latent_embedding, pos_embedding = self.vision_encoder(vision_x) # B (H/P W/P D/P) D # image_embedding = latent_embedding.transpose(0,1) # (H/P W/P D/P) B D # pos_embedding = pos_embedding.transpose(0,1) # (H/P W/P D/P) B D # text_input = text_input.transpose(0,1) # N B D # mask_embedding,_ = self.transformer_decoder(text_input, image_embedding, pos = pos_embedding) # mask_embedding = mask_embedding.transpose(0,1) # B N D # mask_embedding = rearrange(mask_embedding, 'b n d -> (b n) d') # mask_embedding = self.transformer_decoder_mlp(mask_embedding) # mask_embedding = rearrange(mask_embedding, '(b n) d -> b n d', b=B, n=N,d = self.vis_dim // 8) # vision_x = rearrange(latent_embedding,'b (h w d) c -> b c h w d', h = (H // self.patch_size), w = (W // self.patch_size), d = (D // self.frame_patch_size), c=self.vis_dim) # vision_x = self.output_upscaling(vision_x) #B C H/4 W/4 D/4 # out_put = torch.einsum('bchwd,bnc->bnhwd', vision_x, mask_embedding) return out_put,loss_matching # model = MyEmbedding(vision_encoder_path = '') # text_input = torch.randint(low=0, high=3210, size=(4,2048)) # image_input = torch.randn((4,3,3,512,512,4)) # key_words_query = [[],[],[],['consoliation']] # print(model(text_input, image_input, key_words_query))
RadFM-main
Quick_demo/Model/RadFM/my_embedding_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math import torch from torch import nn from einops.layers.torch import Rearrange from einops import rearrange, repeat class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos class PositionEmbeddingLearned3d(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256,h_patch_num = 16, w_patch_num = 16,d_patch_num = 64): super().__init__() self.h_patch_num = h_patch_num self.w_patch_num = w_patch_num self.d_patch_num = d_patch_num self.row_embed = nn.Embedding(h_patch_num, num_pos_feats) self.col_embed = nn.Embedding(w_patch_num, num_pos_feats) self.dep_embed = nn.Embedding(d_patch_num, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) nn.init.uniform_(self.dep_embed.weight) def forward(self, B, h, w, d,x): i = (torch.arange(h, device=x.device) + 1)* (self.h_patch_num // h) -1 j = (torch.arange(w, device=x.device) + 1)* (self.w_patch_num // w) -1 k = (torch.arange(d, device=x.device) + 1)* (self.d_patch_num // d) -1 x_emb = self.row_embed(i).unsqueeze(1).unsqueeze(2).repeat(1,w,d,1) y_emb = self.col_embed(j).unsqueeze(0).unsqueeze(2).repeat(h,1,d,1) z_emb = self.dep_embed(k).unsqueeze(0).unsqueeze(1).repeat(h,w,1,1) pos = torch.cat([x_emb,y_emb,z_emb,], dim=-1).unsqueeze(0).repeat(B, 1, 1, 1, 1) pos = rearrange(pos,'b h w d c -> b (h w d) c') return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 if args.position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif args.position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding # Pos = PositionEmbeddingLearned3d() # x = torch.randn((8,3,32,32,1)) # print(Pos(8,16,16,1,x))
RadFM-main
Quick_demo/Model/RadFM/position_encoding.py